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Abstract 

The optimisation of Sliding Mode controllers for marine vehicle guidance is presented 

in this thesis. This study is concerned with two optimisation methods which are based 

on natural processes. The first is Simulated Annealing which involves processes 

analogous to those involved in the cooling process in metallurgy. The second involves 

Genetic Algorithms which are based on the evolutionary process of species and 

genetics. These methods are evaluated through studying their application to the 

optimisation of controller parameters for particular marine vessels. Their performance 

is measured through simulation studies during the optimisation process. Existing 

literature in the fields of the two optimisation techniques, Sliding Mode control and 

marine control is surveyed. The theory of Simulated Annealing is presented in terms of 

the optimisation process and its convergence properties through Markov Chain 

analysis. A novel variation of this method, Segmented Simulated Annealing, is also 

outlined and evaluated in terms of its improved convergence properties. The theory of 

Genetic Algorithms is presented in terms of its process and convergence properties 

using Markov Chains and the Schema Theorem. The derivation of a decoupled Sliding 

Mode control theory is described and its well known stability robust properties are 

ensured by the choice of an appropriate set of design criteria. The elimination of the 

chattering phenomenon is achieved by soft switching which ensures performance 

robustness. The application of Sliding Mode controllers for governing the motion of 

three marine vehicles and their subsequent optimisation is presented. The first is the 

simulation of a linear mathematical representation of a military submarine. The second 

is the simulation of a non-linear mathematical representation of a super tanker. The 

third is an actual scale model of a supply ship which enables evaluation of the 

optimised controllers in a laboratory water basin facility. These applications allow 

aspects of the optimisation of Sliding Mode controllers through studies of simulation 

and post-optimisation implementation to a real system. Other aspects concerning 

optimisation are also addressed such as the prediction of how easy a problem is to 

optimise prior to optimisation. The conclusions of this work present the advantages and 

disadvantages of using these optimisation methods for controller optimisation. The 

Genetic Algorithm approach is shown in a favourable light. Suggestions for further 

work are also presented. 
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Chapter 1: 

Introduction 

1.1 Introduction 

In recent decades the size and speed of all marine vehicles has increased, particularly in 

the case of vessels that carry cargo (e.g. oil and freight), many of which are now in 

excess of 500m in length and with a displacement of the order of 200,000 tonnes. The 

size of such vessels presents problems when manoeuvring them safely. Manoeuvring 

high performance vessels (e.g. submarines) is also a problem since the dynamic 

responses of this type of vessel move quickly and need to be accurately regulated. It is 

therefore apparent that there is a need for adequate regulation of the way in which these 

vessels move. Hence any system which will assist the helmsman to carry out this task 

more safely would be beneficial. A suitable way of achieving this is through the 

application of control theory [Franklin et al (1991), Slotine and Li (1991)]. 

The purpose of control theory is to formulate design strategies that allow a better 

understanding of systems and how to govern their behaviour. Generally speaking, it 

achieves this by designing a control system which is comprised of a governing 

mechanism, called a controller, and the process or system being controlled (e.g. a ship). 

These two elements are interconnected by actuators which directly influence the 

dynamic behaviour of the process by applying the control effort supplied by the 

controller (e.g. the rudder of a ship changes its heading). 

The control effort is provided by the controller through the main building block of 

automatic control i.e. feedback. This concept is used to monitor the actual dynamic 

response of the system by feeding back measurements of the variables or states which 

define this behaviour. These actual responses are compared with the desired responses 

which define the required behaviour of the process. The difference between the two sets 

of responses is called the error and represents the divergence of the process from its 

required operating behaviour. This error is used by the controller to produce sufficient 

control effort that will enable the actual states of the process to follow the desired states 

and thus make the process behave in the way required by its operator. The relationship 

between the error and the control effort is called the control law [Franklin et al (1991)]. 
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In this investigation a particular control law called Sliding Mode (SM) control is used 

[Utkin (1992), Slotine and Li (1991)]. This involves non-linear control theory due to 

the discontinuous operation of the controller. The way in which a SM controller works 

is through the sliding suiface, which is a function of the error difference between the 

actual and desired states of the process system. The controller drives this error to zero 

by providing a control input which reduces the sliding surface to zero. Hence the actual 

states track the desired responses as required. This is achieved through the two 

components of this controller which are the equivalent term and the switching term. 

The equivalent term provides nominal control action and the switching term provides 

additional discontinuous signals to drive the surface to zero. This switching action 

allows the controller to be robust to changes in the process environment and provides 

potential advantages over more conventional linear forms of controller. 

However the sliding mode approach does have potential disadvantages in terms of 

design. Each controller, independent of which control law is used, has to be designed in 

terms of the specific process system that it is being applied to, in this case marine 

vessels. As a result the key design parameters which define how a controller works 

have to be selected or tuned so that it operates in the way that is required of it. This 

design procedure can be a tedious and time consuming activity which varies with the 

level of expertise of the designer. Obviously if the designer is inexperienced with the 

controller type or the system, the time to obtain a satisfactory solution for the controller 

parameters will be longer than for someone with more experience. Thus there is an 

apparent need for automated methods for finding appropriate controller parameters. 

Techniques for obtaining parameter values are called parameter optimisation methods 

and these explore possible permutations of parameter solutions by various different 

means. The surface defined by these permutations and how well they perform is called 

the search space. This space normally contains one or more acceptable solutions to the 

problem (these are called the optimal solutions). These parameter optimisation methods 

have been applied to numerous engineering applications (e.g. pattern recognition, signal 

processing) and interest in their use for controller parameter optimisation has grown in 

recent years [Li et al (1995), Ng et al (1995), Li et al (1996)]. The foundation of these 

optimisation methods lie in hill-climbing techniques which explore the search space to 

find an optimal solution through incremental improvements in the solution performance. 
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Other methods involve gradient searches where the search follows a localised gradient 

improvement in the solution performance. Such methods have shortcomings in that 

they frequently fail to find the best solution possible (called the global optimal solution). 

Recently more advanced heuristics have been developed that are able to search for a 

global optimal solution in the search space. One group of methods that have become 

widely used are based on natural processes. Two such methods are considered in this 

work and are called Simulated Annealing (SA) and Genetic Algorithms (GAs). Both 

these methods are known for their unique methodology and improved search ability. 

Simulated Annealing is a hill-climbing technique which is based on the cooling process 

in metallurgy [Metropolis et al (1953), Kirkpatrick et al (1983), Kirkpatrick (1984)]. As 

with conventional hill-climbing, SA changes the problem parameter values and accepts 

incrementally beneficial changes to the solution performance. However it varies the 

size of the parameter variation in terms of a temperature index which reduces as the 

search proceeds. One important feature of this algorithm is it has the ability to accept 

poorer solutions and thus enable the search to avoid locally optimal solutions. This 

helps in the location of the best possible global solution. 

The Genetic Algorithm (GA) method is based on the natural selection process of species 

which is outlined in the Darwinian theory of survival of the fittest [Abercrombie et al 

(1985), Holland (1975), Goldberg (1989)]. This theory stated that a species evolves 

through its best genus in terms of adapting to its environment. This optimisation 

method applies evolutionary theory to parameter optimisation by establishing a 

population of parameter solutions in the search space then keeping the solutions which 

give the best performance and replacing the rest with other solutions. This allows the 

best to improve until a globally optimal solution is obtained. 

Both these methods have the potential for optimising controller parameters. Their 

application in the marine controller field is investigated in this thesis. The behaviour of 

these methods is observed through the optimisation of sliding mode controllers for three 

different marine vehicles. The first application is the simulation of a submarine where 

controllers for the vehicles depth and heading are investigated. The second simulated 

vessel is an oil tanker and the motion that is controlled is the heading which in turn 
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affects the course. The third is a scale model of a supply ship used in oil platform 

support. Although these applications are marine specific they have allowed a 

comparison study of the SA and GA methods to be carried out which provides 

conclusions that can be applied to controller optimisation in general. This study will 

show which methodes) provides the best optimisation performance and illustrate the 

usefulness of such methods as design tools. Also it will provide a basis for conclusions 

regarding the effectiveness of Sliding Mode controllers for marine applications. 

1.2 Outline of Thesis 

The study of controller optimisation methods is carried out in this thesis as outlined 

below. 

Chapter 2 discusses the existing research in the areas covered in this work. Firstly it 

provides an overview of parameter optimisation methods, particular the foundations of 

SA and GA methodology and their application to controller optimisation. The second 

field that is covered in this chapter is non-linear Sliding Mode Control which is the 

method used in this investigation. Finally the current progress in marine controller 

technology will be briefly discussed so that the apparent need in this area can be clearly 

seen. 

In Chapter 3 the theory behind the SA method is developed from the metal annealing 

process upon which it is based. The ability of this method to obtain an optimal solution 

is called its convergence which is analysed by the well established Markov Chain (MC) 

theory [Laarhoven and Aarts (1987), Laarhoven (1988)]. This will illustrate that the 

basic SA method may not be able to obtain a desired solution from a random start. 

Therefore a novel variation on this method called Segmented Simulated Annealing 

(SSA) [Atkinson (1992)] is presented which is shown through MC analysis to have a 

better probability of converging than the basic SA method. 

In Chapter 4 the theory of GAs is presented from its analogy to both the natural 

selection process of species and genetics. The mechanisms that comprise this algorithm 

are discussed and specific operating values are presented. The convergence ability of 

this method is described in terms of MCs and the Schema Theorem which illustrates 
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how GAs operate [Holland (1975), Goldberg (1989)]. This chapter shows theoretically 

that this method has a high probability of obtaining a globally optimal final solution for 

any problem it is applied to. 

Chapter 5 provides the Sliding Mode control theory that is used in this study. It presents 

a decoupling process to allow systems with multiple inputs to be controlled by a 

separate controller for each input. This provides a controller structure that is then used 

in each of the marine vehicle applications studied in this thesis. The performance 

robustness of this method to model uncertainties and external influences is proven in 

this chapter. Finally the problem of highly oscillating controller signals (called 

chattering) is discussed and the established method of soft switching is presented as a 

solution to this problem [Burton and Zinober (1988), Slotine and Li (1991), Healey and 

Marco (1992), Healey and Lienard (1993), MCGookin (1993), Fossen (1994)]. 

The first of the marine vehicle applications is presented in Chapter 6. This is a depth 

and heading control problem for a submarine [McGookin (1993), Dumlu and 

Istefanopulos (1995), Liceaga-Castro and van der Molen (1995(a)(b))]. The 

mathematical representation of this vessel is a linear model which is obtained from the 

operation of a generic submarine about a single operating condition. This particular 

model is used for three reasons: firstly to observe how the sliding mode controllers 

operate when applied to a linear system; secondly to see if any interaction between the 

depth and heading dynamics will degrade the performance of the controllers; and thirdly 

is to see how the three optimisation techniques operate when they are used to optimise 

controllers for such a linear system. 

Chapter 7 illustrates the oil tanker case observed in this study. The tanker is represented 

by a non-linear model which describes the dynamic interaction of the vessel's motions 

and the depth of the water in which the vessel is operating. This is obviously a more 

complex mO,del than the submarine and is more of a challenge for the controller and the 

optimisation strategies. In this case two different types of manoeuvres are used in the 

simulation and optimisation process. The first is called course changing where the 

heading is altered by commands form the helmsman (similar to the submarine heading 

case). The second is referred to as course keeping which uses the commands from an 
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autopilot to alter the heading of the vessel. Each has a Sliding Mode controller applied 

and the associated parameters are optimised using the three optimisation methods. 

Chapter 8 presents the final marine vehicle that is investigated in this study which is an 

actual scale model of a supply ship. This model is used as an experimentation vessel in 

the Guidance Navigation and Control (GNC) laboratory at the Norwegian University of 

Science and Technology. These laboratory facilities allow controllers to be applied to 

an actual vessel in a realistic environment. Thus a physical response of the vessel to a 

controller can be obtained without the expense of actual sea trials. In this stage of the 

investigation a non-linear mathematical representation of the scale model is used to 

optimise a course or heading changing controller through simulation. The performance 

of the resulting optimised controllers is evaluated through further simulation studies and 

application to the real vessel in the GNC laboratory. This evaluation process provides 

crucial information on implementing optimised controllers directly from simulation. It 

also provides additional insight into the optimisation processes through application to a 

vessel with dissimilar dynamic responses compared to the previous two vessels. 

Chapter 9 provides additional discussion about other aspects of the optimisation 

methods considered. It also provides a hypothesis for estimating the ease of optimising 

a problem from the dynamics of the system being considered. 

Finally the thesis ends with chapter 10 which presents the conclusions drawn from this 

work and suggests additional work which could be used to further develop key aspects 

of this research. 

1.3 Specific Originality 

In general the specific original contributions of this work are the companson and 

application studies of SA and GA methods to the optimisation of non-linear SM 

controller parameters. In particular the optimisation of the SM controllers outlined in 

Chapter 5. Also the application of these methods to the control of the marine vehicles in 

Chapters 6, 7 and 8 is particularly original. In the optimisation field itself, the study of 

the Segmented Simulated Annealing in Chapter 3 for this type of problem has never 

been carried out and is therefore highly original. 
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Chapter 2: 

Background Literature Survey 

2.1 Introduction 

The research investigated in this thesis stems from three rapidly growing areas i.e. 

parameter optimisation, control theory and marine control applications. These fields 

cover many different areas and only specific aspects are addressed in this work. 

This chapter presents a survey of relevant research in the following way. The first 

section (2.2) is concerned with the Simulated Annealing and Genetic Algorithm 

optimisation techniques. It illustrates the key points in the development of these 

techniques and their application to controller parameter optimisation. Section 2.3 

presents some of the key literature in the field of Sliding Mode control theory and its 

application. Finally, in Section 2.4 a brief survey of the modelling and control of marine 

vessels is presented. 

2.2 Optimisation Methods 

Although many parameter optimisation methods are available only two particular 

techniques are studied here. These are methods which emulate natural processes in 

order to provide parameter values for problems. They have been chosen because they 

are known to perform well in complex problems in which traditional methods can 

present difficulties. The two particular methods considered here are Simulated 

Annealing (SA) and Genetic Algorithms (GAs). The SA method is considered to be the 

most advanced search technique based on conventional hill-climbing methods. GAs are 

evolutionary methods which are quite unique in terms of how they optimise parameters. 

Both these methods will provide a good comparison for these different heuristics 

2.2.1 Simulated Annealing 

The Simulated Annealing methodology is based on the algorithm defined by Metropolis 

et al (1959). That paper presents a variation on conventional hill-climbing techniques 

which is based on the energy contained within metal particles in the presence of 
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increased temperature. The method differs from conventional techniques in two ways. 

Firstly it is able to vary the size of the parameter perturbations as the search proceeds 

and thus is able to fine-tune the values as the search reaches its final solution. The 

second aspect is a probabilistic acceptance mechanism which allows poorer solutions to 

be accepted. This allows the search to come out of areas of locally optimum solutions. 

This is the major difference and advantage of this approach over basic hill-climbing 

heuristics. 

Although proposed in 1959 this method is numerically intensive in terms of calculations 

and further development did not occur until the increase in processor power in the 

1980s. This led to the next stage in SA history which is the work by Kirkpatrick et al 

(1983). In that 1983 paper the authors formally present the mechanism of SA and report 

numerous optimisation studies investigated using this method. The most noted of these 

is their solution for the standard optimisation benchmark, the 'travelling salesman 

problem'. This presents the problem of minimising the distance travelled by a salesman 

during visits to a number of prospective customers. The solution to this problem and 

the other case studied in that paper show the benefits of using this optimisation method. 

A further study by Kirkpatrick (1984) provides more quantitative evidence of the 

successful application of the SA method. 

The further development of the theory and applications of this method are discussed in 

Laarhoven and Aarts (1987) and Laarhoven (1988). In these books the convergence 

theory of SA is developed in terms of Markov Chain analysis which lends itself well to 

such a stochastic process. The conclusion of these works is that the SA method 

converges to an optimal solution if an infinite chain is used. This is logical since an 

infinite chain will produce an exhaustive search of the problem search space. However 

this is also impractical as it requires an infinite amount of time to execute such a search. 

Therefore a finite search would limit the effectiveness of this method in terms of the 

range of values it can investigate. 

Improvements in the convergence ability of this method have been reported. In Szu and 

Hartley (1987) the use of a Cauchey probability distribution to extend the perturbation 

range is suggested. This is supposed to help the resulting Markov chain to converge to 

an optimal solution. 
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Despite these reported drawbacks further papers describing successful application of the 

SA method have been presented in numerous fields. Bohachevsky et al (1986) illustrate 

the use of an SA to optimise functions. The work by Courat et al (1995) presents a 

novel approach to optimising the position of circuit components with respect to space on 

a printed circuit board. Successful application to signal processing problems are 

addressed in Sharman (1988) and Sharman and Esparcia-Alcazar (1993). 

In the context of control, there has only been limited application of this method. 

Recently Whidbome and Postlethwaite (1996) have discussed the application of SA to 

the optimisation of weighting functions for Hoo controllers. Also much success has been 

reported by MCGookin et al (1996(a» in the application of the segmentation process for 

this method, as first presented by Atkinson (1992). This variation is applied to the 

optimisation of Sliding Mode controller parameters for submarine control. The limited 

literature on this method for control problems indicates the need for an investigation 

into this area. 

2.2.2 Genetic Algorithm 

The basis for Genetic Algorithms (GAs) is the Darwinian theory of survival of the fittest 

[Abercrombie et al (1985)]. This process of evolution inspired techniques which evolve 

parameters in a similar manner and GAs are one such method which also uses ideas 

from genetic reproduction theory to obtain solutions. The underlying principles of this 

method were developed by Holland in the 1960s and as a consequence a mathematical 

framework is formalised in his book [Holland (1975)]. 

From this start the algorithm received limited publicity because of its computational 

complexity. Use of GAs increased with the improvement in processor speed and 

availability in the late 1970s. 

In the mid 1980s the investigation into this algorithm and its applications intensified. 

One of the most noted developments in the literature of this time is Grefenstette (1986) 

who provided a thorough study of the operational parameters of this method. This study 

illustrates the effect of varying these parameters on the convergence properties of the 

optimisation. It concludes that a GA with a rank based selection scheme out performs a 
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'simple' GA in terms of convergence. This is supported by Brooks et al (1996) where 

the comparison is extended to other optimisation methods (e.g. Taboo Searches). 

The final key stage in the history of this method is the book by Goldberg (1989) which 

is felt to be instrumental in the recent increase in popularity of this method. This text 

provides discussion on GA theory and its application (e.g. the 'travelling salesman' 

problem). It also extends the Schema Theorem set out in Holland (1975) which 

provides a mathematical basis for the proof of convergence of this method. This book 

boosted the already growing research into this technique. 

The popularity of this method is further attested by the existence of numerous GA 

conferences. These are the series of International Conferences on Genetic Algorithms in 

the 1980s and more recently the IEE Genetic Algorithms in Engineering Systems: 

Innovations and Applications (GALESIA) conferences in 1995 and 1997. 

Literature concerning the theory of GAs has grown considerably since the publication of 

Goldberg's book in 1989. It has covered such aspects as convergence [Keane (1995)] 

and comparison with other methods [Brooks et al (1996), MCGookin et al (1997(d»]. 

Also hybrid techniques have been presented which allow GAs to be combined with 

other search heuristics [Adler (1993), Renders and Plasse (1996)]. These papers report 

improvements on the basic GA method through logical switching to the other methods 

in the latter stages of the search. 

As well as theoretical advancements, the number of applications in different fields has 

increased dramatically. Areas that have been covered include signal processing 

[Sharman and Esparcia-A1cazar (1993), Brooks et al (1996)], system identification 

[Kristinsson and Dumont (1992), Renders and Plasse (1996)] and image processing 

[Suthaharan et al (1997)]. 

The use of this method has been most noticeable in the area of control. Here the use of 

GAs for the optimisation of linear control systems has been quite extensive [Li et al 

(1995),Jones and de Moura Oliveira (1996), Kawabe et al (1996)]. 
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In non-linear sliding mode control there have been numerous successful applications [Li 

et al (1995), Li et al (1996), Ng et al (1995), Trebi-Ollennu and White (l996(a)), Goh et 

al (1996)]. These have shown the benefits of using this technique to optimise sliding 

mode controllers. 

In the context of marine applications of sliding mode controller optimisation, literature 

is not as limited as in the case of the SA method. The majority of papers are concerned 

with the optimisation of controllers for submersibles [Trebi-Ollennu and White 

(1996(b)), MCGookin et al (1996(b), 1997(b)(d))]. The literature for surface vessels is 

mostly limited to the work in this thesis in respect to sliding mode control [McGookin et 

al (1997(a)(c)(e)(f))]. However some work has been reported by Donha et al (1997) into 

Hoo controller optimisation. 

This shows a clear shortfall III research III the area of marine vehicle controller 

optimisation using GAs. 

However, the literature in this field reports the beneficial effects of using GAs for 

parameter optimisation. This good publicity continues to perpetuate this method as one 

of the most powerful modem optimisation methods. This and other aspects are 

investigated in this thesis. 

2.3 Sliding Mode Control 

The field of non-linear, variable structure Sliding Mode (SM) control has been in 

existence since the 1960s. However the basic formulation of the sliding mode theory is 

primarily due to the work by Utkin [Utkin (1972)]. This provided the definition of the 

slipping surface (which was later called the sliding sUrface) as the building block of this 

control theory. From this surface the equivalent control component is derived as "the 

mean value of control" for this theory. 

The work by Utkin has been further developed by Utkin and Yang (1978) where the 

linear state space derivation is extended to encompass the non-linear switching term that 

ensures robustness in this theory. This work is based on state feedback equivalent 

control which can be visualised quite easily. Also this work presents the use of 



Lyapunov functions to guarantee the robust properties of this control theory and thus 

illustrates the benefit of this type of control theory over conventional linear methods. 

The application of this methodology is carried out and illustrated in Slotine (1984). 

This work shows, through derivation, the applicability of SM control to systems without 

linearised simplifications. Hence the SM control theory could be applied to any system. 

However the numerical complexity of this non-linear approach limited the general use 

of this approach. 

The majority of the theory after this time deals with the unwanted oscillating 

phenomenon called chattering. The work by Burton and Zinober (1988) illustrated the 

need to smooth out the hard discontinuous switching term and thus eliminate chattering. 

This develops into the soft switching schemes that have become popular [Healey and 

Marco (1992), Healey and Lienard (1993), MCGookin (1993), Fossen (1994)]. 

These and other aspects of SM control theory are formally covered in the book by 

Slotine and Li (1991) on non-linear control. As well as addressing the Single Input, 

Single Output (S1SO) control case, this work also presented a Multi-Input, Multi-Output 

(MIMO) strategy. This and other MIMO methods [Fossen and Foss (1991), Corradini 

and Orlando (1997)], although numerically complete in their derivation, have a tendency 

to be difficult to implement. 

Implementation problems are largely avoided by using a decoupling process to produce 

a single controller for specific S1SO dynamics of the system being controlled [Healey 

and Marco (1992), Healey and Lienard (1993), MCGookin (1993), Fossen (1994)]. 

These have been proven to work well in various applications since cross-coupling 

between dynamics are accounted for by the robust switching action of these controllers. 

The successful applications of SM controllers in simulation studies for the aerospace 

field has shown their potential benefits for vehicle control [Fossard (1993), Mudge and 

Patton (1988( a)(b))]. This has also been reflected in the marine field [Fossen (1994)] 

particularly in the case of submersibles [Healey and Marco (1992), Healey and Lienard 

(1993), MCGookin (1993), Trebi-Ollennu and White (1996(b», MCGookin et al 

(1996(a)(b), 1997(b)(d)), Corradini and Orlando (1997)]. However a general application 
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study in the marine field particular in the context of controller performance optimisation 

has not been undertaken. 

2.4 Marine Vehicle Control Applications 

Although the increased size and abilities of marine vehicles has called for research into 

automatic control, this area has not been exploited to the same extent as areas such as 

the aerospace field [Fossard (1993), Mudge and Patton (1988(a)(b))]. However 

investigations have been undertaken into mathematical modelling [Norrbin (1970), 

Berlekom and Goddard (1972), Price and Bishop (1974), Astrom and Kallstrom (1976), 

Gill (1979), Kallstrom (1979)] and control [Zuidweg (1970), Kallstrom (1979), 

Kallstrom et al (1979), Miliken (1984), Dove and Wright (1991), Franklin et al (1991)]. 

This broad area of literature has provided a good basis for marine vehicle applications. 

This area of research has been consolidated by the two major texts by Fossen (1994) and 

Burcher and Rydell (1993). Both provide excellent insight into the dynamics and 

control of all types of marine vehicles by bringing together a wealth of knowledge 

formulated over the last couple of decades. 

Although these studies illustrate the benefits of using automatic control for governing 

the motion of marine vessels, their application in practice has been limited due to the 

reluctance of the shipping industry to use such methods. 

The most significant application has been in the use of Autonomous Underwater 

Vehicles (AUVs) such as Remotely Operated Vehicles (ROVs) [Healey and Marco 

(1992), Healey and Lienard (1993), Fossen (1994), Corradini and Orlando (1997), 

Trebi-Ollennu and White (1996(b))]. Other submarine studies have involved simulation 

and control of military vehicles [Miliken (1984), MCGookin (1993), Liceago-Castro and 

van der Molen (1995(a)(b)), Dumlu and Istefanopulos (1995), MCGookin et al 

(1996(a)(b), 1997(b)(d))]. However these studies have not been exploited in practice 

since more conventional operation methods are well established in the control of these 

vessels. 
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With surface ships the simulation studies of control systems are more extensive 

[Zuidweg (1970), Kallstrom (1979), Kallstrom and Astrom (1979), Fossen (1994), Vik 

and Fossen (1997), MCGookin et al (1997(a)(c)(e)(f))]. Again resistance to applying 

these control systems has also occurred in this area. Thus the need for study and 

application of these in-situ instead of through simulation is felt to be paramount for this 

area of research. 

In the context of marine control, system parameter optimisation research has been very 

limited. Only recently has it been a topic for significant investigation by this author 

[McGookin et al (1996(a)(b),1997(b)(d)), MCGookin et al (1997(a)(c)(e)(f))] and a few 

others [Trebi-Ollennu and White (1996(a)(b)), Donha et al (1997)]. Therefore the need 

for investigation in this field is clear. The work of this thesis will help fulfil this 

shortfall in the area of marine vehicle controller optimisation. 
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Chapter 3: 

Simulated Annealing 

3.1 Introduction 

The optimisation processes considered in this study are based on processes which occur 

in nature. The first of these is called Simulated Annealing (SA) which is a probabilistic 

hill-climbing technique based on the annealing/Cooling process of metals [Metropolis et 

al (1953), Kirkpatrick et al (1983)]. Annealing is defined as the heating of a metal to 

the point at which it becomes molten. When the metal has reached this stage it is 

allowed to cool by regulation of the temperature. At each temperature level the energy 

of the metal particles reduces and the metal itself becomes more rigid. This continues 

until the metal temperature has reached the surrounding ambient temperature and the 

energy has been minimised to its lowest value. At this final temperature stage the metal 

is completely solid. 

SA emulates this process by adapting a hill-climbing search to follow an adaptive 

perturbation mechanism which is based on a cooling regime (i.e. an Annealing 

Schedule) [Kirkpatrick et al (1983), Sharman (1988), Sharman and Esparcia-A1cazar 

(1993)]. Hill-climbing itself is an optimisation technique which searches for a solution 

by a piece-wise increment of the parameters that are being optimised. Obtained 

solutions are only accepted if they are considered to be better than the previous best. 

Since it has no way of accepting a worse solution the search process has a tendency to 

get stuck at local optimum solutions which are not as good as the global solution. SA 

avoids this by a probabilistic aspect of its heuristic. Another aspect of the SA algorithm 

considered here is the reduction of the possible step size for each stage in the annealing 

schedule. This enables the search to fine tune an optimal solution in the later stages of 

the search. 

Although this technique is superior to the basic hill-climbing heuristics, it does have its 

limitations as a global optimisation technique [McGookin et al (1996(a))]. This is 

addressed in this chapter and a solution is presented in the form of the technique called 

Segmented Simulated Annealing (SSA) [Atkinson (1992), MCGookin et al (1996(a))]. 

The segmentation process improves the performance of the original SA algorithm. 
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This chapter describes both these algorithms in the following stages. Firstly the 

mechanism of the SA used in this study is described in detail. In Section 3.3 the 

convergence properties of this technique are illustrated in terms of Markov Chain 

analysis [Laarhoven and Aarts (1987), Laarhoven (1988)] and the disadvantage of this 

technique shown. The SSA algorithm is then given in Section 3.4 and an analysis of its 

convergence properties given in Section 3.5. Finally the conclusions about these 

techniques are given in Section 3.6. 

3.2 Simulated Annealing Algorithm 

As the name suggests, SA emulates the annealing process in order to obtain an optimum 

solution [Metropolis et al (1953), Kirkpatrick et al (1983), Kirkpatrick (1984), Sharman 

(1988), Sharman and Esparcia-Alcazar (1993)]. It achieves this by firstly generating 

possible parameters at random which are then substituted into the problem and their 

effect on the system is obtained through simulation (see Figure 3.1). The applications 

studied here concern the optimisation of controllers for marine vehicles which are 

simulated in the time domain. These simulated responses are compared with the desired 

responses and a value of their relative cost C (usually called the energy) is obtained. 

This cost value is used by the SA algorithm to determine how good the response 

provided by the parameters is (i.e. ideally a low cost). These initial parameters are used 

as the starting point for the SA search. 

GENERATE RANDOM INITIAL V ALVES 

REPEAT A NUMBER OF TIMES 
(THERMAL EQUILIBRIUM) 

Figure 3.1: SA Flow Diagram 
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The next step is to obtain new parameters by perturbing the current values by amounts 

related to the value of a temperature index, T. These new parameters are then evaluated 

through simulation and a value for their cost is obtained. This new cost is compared 

with the initial cost in order to see which set of parameters is better. As with hill­

climbing, if the new cost is lower than the previous cost then the new parameters are 

regarded as being better and replace the previous parameters as the current optimum 

solution. If the cost is higher they are subjected to probability tests called the 

Metropolis Criterion [Metropolis et al (1953), Kirkpatrick et al (1983), Kirkpatrick 

(1984)], which allows solutions with worse cost values to replace better solutions. This 

enables the SA to jump out of a local minimum in the search space and thus move 

towards the overall global minimum. 

In this study the above operations (perturbation, simulation/evaluation and acceptance) 

are repeated a set number of times (20 in the applications described in this work) at each 

temperature level. This repetition is called Thermal Equilibrium (see Figure 3.1) 

[Kirkpatrick et al (1983), Laarhoven and Aarts (1987), Laarhoven (1988)] and increases 

the number of points investigated by the SA. This is analogous to letting the metal 

stabilise every time the temperature is reduced. 

Once the thermal equilibrium has been executed the temperature index T is reduced in a 

way similar to that of the actual temperature in an annealing process. This systematic 

reduction in temperature is called the Annealing Schedule [Metropolis et al (1953), 

Kirkpatrick et al (1983), Laarhoven and Aarts (1987), Laarhoven (1988), Sharman 

(1988), Sharman and Esparcia-Alcazar (1993)] and determines how the perturbation 

range changes as the search proceeds. Since the perturbations are related to the 

temperature this schedule allows large steps at the beginning and smaller steps to fine 

tune the solutions as the search nears its conclusion. 

The whole process is repeated until either the best cost has reached a minimum level or 

the temperature value has become too small to significantly affect the parameters (see 

Figure 3.1). If the cost has reached the minimum level the SA should have obtained the 

optimum parameter values. However, if the temperature is too small the results may not 

be optimal. This can happen if the search does not start near the optimum region since 
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SA has only one starting point which limits the range of the search [McGookin et al 

(l996(a))]. 

3.2.1 Parameter Perturbation Mechanism 

The mechanism for changing the parameter values perturbs each one by an amount 

pert(T) which is found from the following relationship [Sharman and Esparcia-Alcazar 

(1993), MCGookin et al (1996(a))] 

pert(T)=PconslT) x Prand= k x Tx tanh(A) (3.1) 

where k is a scaling constant (selected as k = 0.1 in this study) and A is an angle 

generated at random (in the range from -21t to 21t ) in a uniform distribution. 

Subsequently the tanh function will yield a value between -1 and 1 as shown in Figure 

3.2. This will scale the pconslT) value so that the perturbations vary in magnitude and 

sIgn. 
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Figure 3.2: Perturbation tanh Function 

It can be seen that the perturbation range reduces with temperature thus ensuring fine 

tuning of the parameters towards the end of the schedule. This should hopefully occur 

as the search nears the optimum. A fixed step length would not allow this fine tuning 

action and would restrict the usefulness of this method by removing the flexibility that a 

variable perturbation size provides. 
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3.2.2 Annealing Schedule 

As mentioned previously, the temperature is reduced by the annealing schedule 

[Metropolis et al (1953), Kirkpatrick et al (1983), Laarhoven and Aarts (1987), 

Laarhoven (1988), Sharman (1988), Sharman and Esparcia-Alcazar (1993)]. Although 

there are various suggestions of how to implement this, the schedule chosen for this 

study is simply the reduction of the previous temperature by a set percentage (e.g. 

approximately 3% in this case). This is achieved by the following relationship 

(3.2) 

where To is the initial temperature (i.e. is chosen as 100 here), ris the reduction constant 

(e.g. 0.9664 in this case) and Tn is the current temperature. This is represented 

graphically in Figure 3.3. 
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Figure 3.3: Annealing Schedule 

The final cut off temperature Tfinal has been chosen in order to ensure a reasonably long 

schedule (e.g. 0.1 in this case). These values of To and Tfinal give the following total 

number of temperature changes n. 

log( Tfinal ITo) log( 0.1/100) 
n - = :::: 202 changes 

- log(r) log(0.9664) 
(3.3) 
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When thermal equilibrium IS considered the total number of iterations of the SA 

algorithm becomes 

ntotal = 202 x 20 = 4040 iterations (3.4) 

Which should be sufficient to observe the behaviour of this method. 

3.2.3 Metropolis Criterion 

The selection of parameters as optimal candidates has been discussed previously. But to 

reiterate, this method uses a cost probability check in order that suboptimal solutions are 

allowed to replace parameters that have better cost values. This is called the Metropolis 

Criterion which behaves in the following manner [Metropolis et al (1953), Kirkpatrick 

et al (1983), Kirkpatrick (1984)]. IT the cost associated with the newly generated 

parameters (Cnew) is lower then the new parameters replace the previous optimum 

parameters (as in conventional hill-climbing). However, if the new cost is not lower, 

the new parameters are not necessarily discarded. Instead, they may still be accepted if 

the cost passes a probability check (see Figure 3.4). 

METROPOLIS CRITERION 

YES 

ACCEPT NEW 
PARAMETERS 
AS OPTIMUM 

IS PROBABILITY> N 
(N IS A RANDOM 

NUMBER) 

REJECT NEW 
PARAMETERS AS 

OPTIMUM 

NO 

Figure 3.4: Metropolis Criterion 

By analogy with the physical process of annealing the probability, P, of the new 

parameters cost relative to the previous optimum cost (Cprev ) is calculated using 

Boltzmann's equation [Kirkpatrick et al (1983), Sharman (1988), Sharman and Esparcia-

Alcazar (1993)] i.e. 
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P (
c prev - Cnew J =exp 

T (3.5) 

P is then compared with a randomly generated number, N (which is generated uniforml y 

in the range from 0 to 1). If P > N then the new parameters are accepted as if C ,,, < C
pm

• 

However, the new parameters are rejected if the P < N (see Figure 3.4). As intended, 

this allows the search to move out of areas with local minima where it could get stuck. 

This ability enables the SA to reach the global optimum much better than conventional 

hill-climbing or gradient search method which would remain in a locally optimum 

regIOn. 

3.3 SA Convergence Analysis 

3.3.1 Markov Chain Theory 

The application of Markov Chain (MC) theory to Simulated Annealing is not new 

[Laarhoven and Aarts (1987), Laarhoven (1988)] as the convergence properties have 

been successfully established. However, a derivation of the range of the chain will be 

given here. In this section the foundations of the probability theory for MCs are defined 

and used to outline the formulation of a range theory. 

MC theory fits into the SA process by considering each perturbation as a possible link 

from the present position (see Figure 3.5). 

Figure 3.5: Markov Chain Representation 

The probability of a link} having evolved from a link i of a homogenous I Markov Chain 

is given by the following equation [Laarhoven and Aarts (1987) , Laarhoven (1988)] 

1 This chain is homogeneous because of the discontinuous nature of thermal equilibrium at each stage of 
the annealing schedule. 
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j =i (3.6) 

Each probability value is called a transition probability and they constitute the 

components of the transition matrix which describes the probabilistic history of every 

possible link that could be made. In equation (3.6) GlT) is the probability that the ith 

link is generated and is therefore called the generating probability [Laarhoven et al 

(1987), Laarhoven (1988)]. Aij is the acceptance probability which determines whether 

this link is accepted as the next optimum solution. This is defined by the Metropolis 

criterion [Metropolis et al (1953), Kirkpatrick et al (1983), Kirkpatrick (1984)] which 

uses Boltzmann's equation [Kirkpatrick et al (1983), Sharman (1988), Sharman and 

Esparcia-A1cazar (1993)] from (3.5) i.e. 

A .. (T) = 1 (e p,,~ - en", J IJ exp --'----
T 

(3.7) 

The overall probability equals one if a new link is accepted by the above conditions or if 

the new link cannot be generated or accepted from the current solution. Numerous links 

are formed in thermal equilibrium but only the improved candidates form permanent 

links in the chain. This process continues until the Me has reached a final solution. If 

thermal equilibrium is not present the resulting Me would be inhomogeneous. 

However the links formed during the constant temperature plateaux of thermal 

equilibrium results in this Me being homogeneous [Laarhoven et al (1987), Laarhoven 

(1988)]. 

A criterion for the Me to converge to an optimum solution is that the annealing 

schedule must drive the temperature T to zero as the number of iterations tends to 

infinity (converge to zero asymptotically). From equation (3.2) it can be seen that as the 

number of iterations becomes very large the temperature does converge to zero for this 

Annealing Schedule i.e. 

lim AS(T) = yooTo = 0 
n~oo 

:. as lim AS(T) -70 Too -70 
(3.8) 

n~oo 
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Therefore this condition for convergence is satisfied and indicates that both the 

acceptance and generating probabilities change as Too ~ O. The behaviour of each of 

these probabilities and hence the SA process itself can be obtained from this result. 

Firstly, the acceptance probability changes to 

Cnew ~ Cprev 

Cnew > Cprev 
(3.9) 

Which shows that only improved solutions will be accepted and the probability check 

becomes obsolete (i.e. this reverts to a basic hill-climbing technique). 

From this the generating probability alters because it is related to the perturbation 

mechanism which in tum is related to the temperature in this application. Therefore, if 

Too ~ 0 then the perturbation mechanism will not change the current optimum 

parameters and thus no new candidates will be produced. This indicates that the 

generating probability will become zero i.e. 

G .. (T ~O)=O IJ 00 (3.10) 

Therefore, from equation (3.4), the transition probabilities become 

(3.11) 

Hence, the SA process will converge to a final value. This will be an optimum if the 

chain is infinitely long (i.e. an exhaustive search of the given search space) [Laarhoven 

et al (1987), Laarhoven (1988)]. However, this is impractical as an infinite number of 

runs will never end and will not yield a final solution. Therefore, a finite homogeneous 

Markov Chain will have a limited range due to the parameter perturbation mechanism 

and this is one of the factors that defines the chains' ability to converge. 

3.3.2 SA Markov Chain Range 

The range of a MC generated by a SA process is a measure of the possible distance 

from the initial search point that the search can reach. This is determined by both the 

Annealing Schedule (see equation (3.2)) and the perturbation mechanism (see equation 

36 



(3.1)). Hence the maximum range of this MC (RMAX) can be determined by the constant 

part of the perturbation mechanism, the annealing schedule and the number of thermal 

equilibrium points, E, i.e. 

I 

RMAX = Le x Pconst CZ;) 
i=l 

I 

= LeXkX'Z; (3.12) 
i=l 

I 

= Lekri~ 
i=l 

Or generally, 

I 

RMAX = e LPconst(AS('Z;)) (3.13) 
i=l 

However the range of any MC (RMC) is less than this value due to the distribution of the 

random part of the perturbation mechanism (see equation (3.1))i.e. 

(3.14) 

where 9\ Me is the set of all possible MCs for this process and the given maximum 

range it can reach. 

If the set 9\ OPT is the set of all possible MCs leading to final solutions and is within 

9\ Me then the probability of this SA converging to an optimal solution is higher than 

average 1.e. 

(3.15) 

and is therefore more likely to converge to an optimum solution. However, if 9\OPT is 

not a subset of 9\ Me then convergence is highly improbable. 

Whether or not the chain has a large enough range depends on where the initial 

parameters lie. If they lie close to the optimal region (e.g. within the optimal region) 

then the chain will converge to an optimal solution. If the initial values are too far from 

the optimum then the chain will fail to converge. 

Since a-priori knowledge of the location of the optimal region is usually not available, 

this search method cannot be relied upon as a global optimisation technique. 
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3.4 Segmented Simulated Annealing 

The limited coverage of a search space is the main drawback with SA. This restricti on 

means that SA is not a good global search method and may not converge to an optimum 

if the initial parameter values are not near this region. The development of the 

Segmented Simulated Annealing (SSA) algorithm [Atkinson (1992), MCGookin et al 

(1996(a))] means that this is no longer a problem. SSA consists of a number (in this 

case 20) of consecutively executed single SA runs (without thermal equilibrium) (see 

Figure 3.6 for illustration of concept). Each one starts at a different point in the search 

space with a wide range of possible initial values. This segments the search space into 

smaller regions and allows the SSA to initially cover more of the search space than the 

conventional SA process. 

SEARCH SPACE 

SEGMENT 

\" -
(- -, A ... '- - OPTIMUM 

'" '" /.. REGION 

Figure 3.6: SSA Illustration 

The final cost values from each of the 20 runs are bubble sorted into ascending order 

(see Figure 3.7 for algorithm) and the cost in first place (i.e. the smallest) is taken to be 

the optimum with its corresponding parameters providing an optimal result . SSA is 

therefore a much better search method than the conventional SA because of its wider 

exploration of the search space particularly in the initial stages. 



I GENERATE RANDOM INITIAL VALUES I 
• 

I GENERATE 20 SCALING FACTORS I (ONE FOR EACH RUN) 

"-
APPLY SIMULATED 

r-+ ANNEALING FOR ONE 
SCALING FACTOR 

• STORE RESULTS I 
+ Y REPEAT UNTIL THE 

COMPLETION OF ALL 20 RUNS 

... 
SORT RUNS INTO ASCENDING 

COST ORDER .. 
TAKE MINIMUM COST RUN AS 

OPTIMUM 

"-
END 

Figure 3.7: SSA Flow Diagram 

3.5 SSA Markov Chain Convergence 

With a Segmented Simulated Annealing (SSA) [Atkinson (1992), MCGookin et al 

(1996(a»] process involving X runs, the initial values are represented as INIT;, i = LX. 

By segmenting the search space, greater initial coverage is achieved. Therefore the 

probability of a Me of one of the runs having sufficient range is higher than for a single 

SA run. Since the SSA covers X times more of the search space than the SA the 

probability of one run being initiated within the range of the optimum is higher than for 

a single run SA which will be called mCl i.e. 

V INII;, 1 ~ i ~ X : mc( i) E ~ MC 

P(mc(i) E ~OPT) > P(mcl E ~OPT) 
(3.16) 

where mc(i) is a given Me and ~OPT is the subset of ~ MC which leads to an optimal 

solution. In fact SSA is X time more likely to start a run near the optimum than a single 

SA run with Me. 

P(mc(i) E ~OPT) :::: X x P(mcl E ~OPT) (3.17) 

For uniform coverage the probability of the Me of a particular run being within range of 

the optimum is greater than the average probability of all Me being within range 

(PAvEorr) i.e. 
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P(mc(i) E 9i OPT »> PAVEOPT (3.18) 

Therefore by (3.15) it follows that the ith MC run will be highly likely to start near the 

optimum region and end in the set of all optimal solutions i.e. 

mc(i) E 9i Me E 9i OPT (3.19) 

which implies convergence. Hence the segmentation of the search space will increase 

the probability of the SSA process being able to find a globally optimal solution for a 

given problem. 

3.6 Summary 

In this chapter the mechanics of the Simulated Annealing algorithm has been shown. 

Also, through Markov Chain analysis, the limitations of this search process have been 

illustrated. The main limitation is the need for a-priori knowledge in order to ensure 

convergence to an optimal global solution. Hence it is indicated that SA performs well 

as a localised search method but is not reliable as a global search method. 

In order to rectify this weakness in the SA method, a segmentation process has been 

described and shown to improve the probability of the search starting within sufficient 

range of the optimum to converge to it. This is self evident since localising the search 

method to smaller segments of the search space will allow this method to converge. 

Therefore it can be concluded that the Segmented Simulated Annealing should act well 

as a global search method and reliably furnish optimal solutions on each execution. 

Verification of these conclusions may be found through the applications considered in 

future chapters. For each control system investigated both SA and SSA are applied to 

the parametric optimisation. For SA, the initial parameter values is positioned both near 

and reasonably far from the expected optimal regions, hence verifying the range theory 

illustrated in Section 3.3.2. 
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Chapter 4: 

Genetic Algorithms 

4.1 Introduction 

The Genetic Algorithm (GA) [Holland (1975), Goldberg (1989), Grefenstette (1986)] 

optimisation technique is a relatively new method for parameter optimisation. Although 

the theory has existed for a number of decades, the computational effort needed to 

execute it has until recently exceeded the capabilities of most processors. Only now can 

the potential of this method be fully realised in applications involving dynamic systems 

and control. 

The method is based on Charles Darwin's Natural Selection process [Abercrombie et al 

(1985)]. This asserts that the evolution of a particular species is on the basis of survival 

of the fittest whereby the best genus of a species will evolve and dominate other 

variations of the same species. In this context best means the strongest, healthiest and 

most intelligent genus which is able to adapt to its hostile surrounding by applying and 

developing its abilities. This degree of optimality for each genus is graded by some 

survival value i.e. the higher the value the more likely the genus is to survive. 

As evolution progresses, the strongest elements develop thus becoming more prevalent 

and the weaker variants are eventually eliminated. Taking this to its natural conclusion 

would indicate that the species will evolve to a natural optimum and produce an almost 

super-genus which is far superior to its earlier predecessors. An example of this is the 

evolution of modem man from the primitive origin of the species [Abercrombie et al 

(1985)]. At an early stage numerous genus variations developed from the same origin 

but only one branch survived. This link was the genus called homo-habitus which 

survived due to its unique ability to use tools and weapons. This gave it an advantage 

over the other genus variations. From this key evolutionary point homo-erectus evolved 

to homo-sapien and subsequently modem man. This illustrates that beneficial abilities 

can swmg the balance in determining which genus survives and which fades into 

history. 
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Direct parallels between evolution and optimisation can be drawn from this theory and 

are utilised by the GA method. The GA theory and how it is used for parameter 

optimisation is outlined in this chapter in the following way. Section 4.2 describes the 

mechanism of the GA by means of its component parts through use of genetic and 

evolutionary terminology. The convergence of this method is analysed in Section 4.3 by 

consideration of the Markov Chain (MC) [Laarhoven and Aarts (1987), Laarhoven 

(1988) and the Schema Theorem [Holland (1975), Goldberg (1989)]. Finally the 

theoretical conclusions of this analysis are given in Section 4.4. 

4.2 Genetic Algorithm 

The GA emulates the evolutionary process of species in the following way. In order to 

search the problem solution space the GA uses a number of integer strings called 

chromosomes as a representation of the parameters to be optimised [Holland (1975), 

Goldberg (1989)]. This group of strings is called the population and the number of 

constituent chromosomes is called the population size. The initial population is 

generated at random. These chromosomes are decoded into the corresponding 

parameters which are then applied to the optimisation problem and the resulting system 

is then simulated. A measure of how good the results of this simulation are is calculated 

using a cost function as in the SA methods in the previous chapter. Conventionally a 

fitness function is used to determine the degree of optimality of a chromosome solution 

[Goldberg (1989), Sharman and Esparcia-Alcazar (1993)]. This is usually a function of 

the reciprocal of the cost and is maximised in order to obtain a globally optimal final 

solution. In this application the cost (or raw fitness as it is sometimes called) is used so 

that the criteria for optimisation remain the same when comparing this method with the 

SA methods. Therefore the GA will try to minimise the cost. 

Once the cost values for the entire population are obtained they are then subjected to the 

operation of Reproduction where some of the chromosomes are selected for the next 

generation. After reproduction the chromosomes that are not selected are replaced by 

new chromosome obtained through the two other operations Crossover and Mutation 

(see Figure 4.1) which provide different points within the search space for analysis 

[Holland (1975), Goldberg (1989)]. 
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The processes of decoding, application/evaluation and chromosome . 1 . mampu atlOn are 

repeated for a set number of iterations by which time the GA h ld h s ou ave reached an 

optimal solution (see Figure 4.1). This number of iterations is called the .. generatzon Sl;:,e 

where each iteration is called a generation. 

GENERATE INmAL 
POPULATION & DECODING 

SIMULATE APPLICATION 
AND EV ALUA TE COST 

SORT INTO ASCENDING 
COST ORDER 

REPRODUCTION, 
CROSSOVER, MUTATION 
& DECODING PROCESSES 

SIMULATE APPLICATION 
AND EVALUATE COST 

REPEAT UNTIL LAST 
GENERATION 

END 

Figure 4.1: GA Flow Diagram 

The major components of the GA i.e. decoding, reproduction, crossover and mutation, 

are now discussed in detail. This should give an insight into the methods used in this 

investigation. 

4.2.1 Decoding 

Although the parameters considered here are real numbers, the representation used in 

this technique is integer. In fact the real number parameters can be decoded from this 

representation which is used in the operations of this method. The decoding process is 

described below. 

As mentioned previously the chromosomes consist of integers which represent the 

optimisation parameters. Each integer position is called a gene and the integer value is 

called an allele. This terminology stems from the genetic theory upon which this 

technique is based [Abercrombie et al (1985), Holland (1975), Goldberg (1989)]. Most 

early applications of GAs had a binary allele system which caused the chromosomes to 
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be large and hence memory intensive. A more compact numerical system is decimal 

which has ten possible allele values (i e from 0 to 9) and ther fl' 11 . . e ore resu ts In sma er 
chromosomes. 

The decoding scheme used here has five genes to represent a single parameter and 

therefore the size of the chromosome depends on the number of parameters. The value 

allocation of each gene is shown Figure 4.2. 

QJ 
l l l l l 

[(x 1.0) + (x 0.1) + (xO.01) + (x 0.001)] (OU2)-2) 
PARAME1ER VALUE x 10 = 

Figure 4.2: Gene Decoding 

In this illustration it can be seen that the first four digits form a real number which is 

made up from the scaled sum of the alleles. This sum is then multiplied by an exponent 

of 10 which is obtained by scaling the fifth gene between 3 and -2. The resulting range 

that is achieved by this scheme is from 9.999x103 to 0.00IxI0-2 which is chosen so that 

all possible values that the parameters could conceivably take are available (i.e. 105 

possible variations for each parameter). No sign is needed in this study since the 

parameter values are of a known sign condition. However, if sign became an issue it 

could easily become incorporated into the chromosome by adding a binary gene for each 

parameter. A suitable convention could be 0 is positive and I is negative. 

It should be noted that a similar binary representation for the parameters would require 

twenty genes per parameter to achieve the same range. This would increase the 

chromosome size and resulting memory use by a factor of four compared with the 

decimal approach. 

4.2.2 Reproduction 

Once the cost values of the chromosomes are obtained from the simulation results, they 

are subjected to the first major operation of this method. This is the reproduction 
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operation that determines which members of the present gen t' era IOn progress on to the 
next generation. 

There are numerous routines to perform this reproduction stage which differ in the way 

they select the candidates for the next generation. Three of the most popular are 

described below. 

Roulette Wheel is a probabilistic selection process where chromosomes are assigned cost 

dependent acceptance probability values. The higher the cost the better the 

chromosome's chances of being accepted. It also allows sub-optimal solutions to have a 

chance of being accepted and ensures a reasonable mix of good and bad solutions to 

progress on to subsequent generations. This increases the average cost of the population 

and hence prevents premature convergence. However the price for this is a slow 

convergence rate. 

Tournament Selection involves the random selection of small groups of chromosomes 

which are ranked in terms of cost. The best are kept and the worst are rejected. This is 

repeated until all the chromosomes have been considered. It allows the selection of 

suboptimal candidates and avoids premature convergence. 

Elitist Selection is similar to tournament in that it is a cost rank based scheme but in this 

method the entire population is ranked instead of small groups. Once they are ranked a 

fixed percentage of the top chromosomes are selected for the next generation and the 

remainder are rejected. However this may cause premature convergence to a local 

optimum since too many local solutions may occupy the higher echelons of the 

population. This can be rectified by using a high mutation rate (see section 4.2.4). 

In this study only elitist selection is considered due to its fast convergent properties. 

The resulting GA is called an elite GA because only the best chromosomes survive from 

generation to generation [Brooks et al (1996)]. 

The remainder of the chromosomes that are not selected are replaced by new 

chromosomes that are produced by the crossover and mutation operations [Holland 

(1975), Goldberg (1989)]. 
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4.2.3 Crossover 

The Crossover operation produces new chromosomes to replace those rejected by 

reproduction. It achieves this by firstly selecting any two chromosomes from the present 

generation which are called the parents. A number of the genes of one of the parents is 

swapped with the same number and positioned genes of the other parent. Usually this is 

achieved by selecting a single gene within a parent and swapping all genes that follow 

on from this point in the chromosome. This is called single point crossover (see Figure 

4.3). 

Figure 4.3: Single Point Crossover 

However, in this study two point crossover IS used where two gene positions are 

selected at random and all genes between these points are swapped (see Figure 4.4). 

This results in a greater amount of variation in the new chromosomes that are produced. 

The subsequent chromosomes that are produced by this operation are called the 

children. These inherit properties from both parents which may improve or degrade 

their performance. 

Figure 4.4: Two Point Crossover 
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The crossover process is repeated until there are enough children to replace the 

chromosomes rejected in reproduction. These children form the basis for the next 
generation. 

4.2.4 Mutation 

In nature, mutation IS the sudden randomly occurring change in chromosomal 

properties. This can be due to adverse environmental changes (e.g. chemical or 

radiation effects on a species). In the context of GAs, the mutation operation is simply 

the random selection of a percentage of the children's genes and the random change of 

their corresponding alleles. The number of mutated genes (gnz) relative to the total 

number of genes (glatal) is the mutation rate (m) which can be represented as [McGookin 

et al (1997(b))] 

gm 
m=--

gtatal 
(4.1) 

This is usually represented as a percentage. For elite GAs the mutation rate has to be 

higher than Goldberg's suggested value of 0.1 %. This increase prevents premature 

convergence to a local optimum and ensures that the global optimum is attained. 

Therefore a suitable range has been found to be 1 - 5%. 

4.2.5 Numerical Values 

In order to maintain compatibility in the investigations carried out into this method, the 

values for the key operational parameters remain constant for all applications considered 

here. These are selection percentage, crossover percentage, mutation rate percentage, 

popUlation and generation sizes. The values chosen for this study are shown in Table 

4.1. 

Selection Crossover Mutation Population Generation 
Size Size 

20% 80% 5% 50 100 

Table 4.1: GA Parameters 
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The last two values are chosen in order that the behaviour of thi s technique can be 

studied. It is suggested by Ng et al (1 995) that the population size should be 

approximately equal to the number of genes in each chromosome and that the generation 

size should be double this . Since there are three applications considered here the one 

with the largest number of parameters is used to determine these parameters. This is the 

submarine which will be shown to have nine parameters The values shown above wi ll 

give the following number of iterations of the optimisation problem. 

numberofiterations = [(100 x O.8)+1] x 50=4050 (4.2) 

4.3 GA Convergence 

4.3.1 Markov Chain theory 

The concept of Markov Chains for GAs is slightly different from that considered when 

applying this methodology to SA [Laarhoven and Aarts (1987), Laarhoven (1988)]. 

Since the crossover operation depends on two chromosomes of the previous generation 

there is some link dependency on more than one previous link. This forms a connecting 

effect of two or more links which produces Markov Chain-Mail rather than a single 

chain (see Figure 4.5). 

Figure 4.5: GA Markov "Chain-mail" Representation 

Although the representation is slightly different, GA MC theory itself fo ll ow the ame 

process as the SA case. The probability of each link in a Geneti c Algorithm (GA) i 

also represented by equation (3.6) in the previous chapter i.e . 



j = i (4.3) 

However the constituent parts of these probabilities depend on the reproduction, 

crossover and mutation operations which are outlined below. 

When considering GAs the generating probability IS divided into two operations: 

crossover and mutation i.e. 

(4.4) 

Crossover depends on the random selection of two parents and the relevant genes to 

swap I.e. 

where the parent chromosomes are selected with probability SCP. As mentioned in 

section 4.2.3, the gene selection process (both in terms of position and number) involves 

selecting two genes at random and swapping them and all others in between. This has 

the following probability function. 

(4.6) 

Here SPTl is the selection of the first gene and SPn is the conditional selection probability 

of the second gene given that the first gene has already been selected. 

Mutation is the random selection of a percentage of the total number of genes where m 

is the mutation rate defined from equation (4.1). It is represented by the following 

equation. 

(4.7) 

Here SMG is the selection of genes in the chromosome and M is the change of the gene to 

another value (which has a uniform probability in this case). The selection process has 

two parts 

(4.8) 
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where Sr is the selection of a gene in the total gene popul t' (. h . 
a IOn I.e. t e mutatIOn rate) 

and Sc is the probability of this gene being in the chromosom . . e III questIOn. 

The acceptance probability is dependent on the cost value of the ch I . romosome re atl ve to 

the other chromosomes' values. If the chromosome is within a certain cost limit it is 

accepted for the next generation (elitist). This limit is a set percentage of the popUlation 

(e.g. a%) and is associated with a limiting cost value (Ca%) which is calculated for each 

generation. Therefore the acceptance probability becomes 

{
l C.~C01 A; = I a70 

o Ci > Ca% 
(4.9) 

Hence only improved solutions are accepted and incremental improvements occur in 

each generation. However, this does not guarantee that the improved solutions are 

optimal. This will only occur when the majority of the optimised solutions progress to a 

form which is considered optimal. The natural progression of chromosomes to become 

this form comes from the Schema Theorem. This theorem will show that the top 

elements of the final generations are similar and optimal. 

4.3.2 Schema Theorem 

The Schema Theorem, as defined by Holland (1975) and Goldberg (1989), is based on 

the similarity between genes of certain chromosomes. These similar gene patterns are 

called schemata and chromosomes that exhibit the same schema have the same alleles in 

the same positions. The theorem of how these schemata behave is applied to the 

convergence of GAs by observing the probabilistic nature of the three operations of 

reproduction, crossover and mutation. Each of these operations affects the number of 

chromosomes with the same schema and alters the growth rate of prominent schemata 

that give optimal solutions. The effect of each of these on the growth of a schema is 

studied below. 

Reproduction in this case is the elitist rank based selection process where only the top 

a% of the chromosomes are retained for the next generation. This means that the cost 

values fall into two categories i.e. those above the a% cost limit and those below (see 

equation (4.9)) which helps to define the probability of an individual or a particular 
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schema being accepted. Since the cost is used instead of fitness the deri vation i lightl y 

different. Let H represent a particular schema and sch = sch(H,t) represent the number 

of examples of schema H at time t. The reproductive schema growth equation become 

C 
sch(H,t+l) = sch(H,t)~ 

C(H) (4.10) 

where C(H) is the average cost of the chromosomes representing schema H. Therefore 

schema with small C( H) will have a higher likelihood of increasing in number. 

Crossover in this case is more involved than the conventional single process. Here a 

block of genes is subjected to this process and are defined by the genes at the beginning 

and end of the chosen block (see equations (4.5) and (4.6)). The following argument 

refers to the conditions illustrated in Figure 4.6. 

D DDDliJD 

p~l 

DDD:D D 

Figure 4.6: Crossover Cases 

For the schema represented by the shaded blocks there are two different sets of 

crossover points represented by the two dashed lines. The only difference in both ca es 

is the position of the initial point (pt!) relative to the section to be crossed over. The 

probability of either of these initial points being selected and destroying the schema by 

dividing the schema members is the same. The probability of thi s occurring is given by 

(4. I I ) 

where d(H) is the defining length of the schema (i.e . the greatest number of electi on 

points between two elements of the schema) and 19 is the number of gene in the 
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chromosomes. Only when you consider the conditional probability of the d' 
. secon pomt 

destroymg the schema is there a difference in the cases. 

In case one, where the initial point is inside the crossover region, the only way the 

schema can be affected is if the second point is outside this region. Therefore the 

destruction probability is defined as 

e(H) 
( 4.12) 

where e(H) is the number of selection points between the end of the crossover region 

and the end of the chromosome and n] is the position of ptl. 

However, if the initial point is outside then the second point has to fall inside the 

crossover region to destroy the schema. This gives the following probability. 

(4.13) 

Thus resulting in two distinct probability cases. The overall probability of destroying 

the schema will be 

(4.14) 

and therefore the probability of survival becomes 

(4.15) 

where Scp is the parent selection probability of equation (4.5). Taking equation (4.15) 

into account will affect the number of a particular schema occurring in subsequent 

generations and thus alter equation (4.10) thus 

( 4.16) 

The final operator to affect the schema growth equation is mutation. As equation (4.7) 

shows that the mutation generation probability is GM • In order for a schema to survive, 

individual components of the schema must survive the mutation process. Hence the 

probability of a schema surviving mutation is (1- GM). Since this has to apply to all the 



components of the schema it is multiplied by itself (H) t' H . 
o Imes. ere o(H) IS the order of 

the schema and is the number of fixed gene positions in the schema. Hence the 

mutation survival probability is 

(4.17) 

Since the probability GM is reasonably small, equation (4.17) can be approximated by the 

following series expansion [Goldberg (1989)] 

(4.18) 

where higher order terms are negligibly small. Hence equation (4.16) becomes 

Which can be simplified if small cross-products are ignored after multiplying out the 

brackets i.e. 

(4.20) 

By analysing this equation it can be concluded that schema with average cost values 

below the selection threshold will increase in number. Also if the defining length of the 

schema is short then it is more likely to survive crossover. Hence the same conclusions 

can be drawn that are stated in Goldberg (1989) i.e. that the final solutions tend to be 

optimal due to the steady growth of optimal schema. Taking this argument to its logical 

conclusion it can be seen that any improvement in the cost value will lead to an increase 

in the number of members of that schema and as time goes on the schema with an 

optimal solution will tend to populate more of the top a% of the population. Thus a 

saturation effect occurs in the final generations. 

4.3.3 Genetic Algorithm Convergence 

The Schema Theorem has shown that as GAs approach the optimal regIOn the 

chromosomes with the fittest cost values tend to duplicate and a saturation effect occurs. 

Therefore chromosomes with this schema will occupy the top a% of the population. 

Hence these schema will tend to re-occur since crossover will not affect the schema 
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(since individuals are similar) and mutation only incrementally improves these solutions 

(since detrimental mutation will result in rejection). Hence the optimal solutions will be 

similar and only solutions with the optimal schema will have an acceptance probability 

of 1. Since these optimal individuals are similar, their generation probability will 

converge to 1. Once the top a% is totally occupied with chromosomes of the same 

optimal schema, the selection cost limit Ca% asymptotically tends towards a value which 

is close to the optimal value of cost. Therefore the probability of incremental 

improvements to the optimal schema (due mostly to mutation) becomes very small and 

will finally become zero when no further improvement is possible. At this point the 

acceptance probability becomes zero for all new chromosomes since they give 

suboptimal solutions and one for the existing members of the top a%. This will effect 

the probability elements of the transition matrix in the following way:-

_{a Vj*i 
~'J" - 1 .. 

J=t 
(4.21) 

Therefore no new candidates are accepted which indicates that the GA has reached a 

final optimum. This is likely to be the global optimum since only optimal schema will 

occupy the top a% in the final generations. Hence GA convergence is suggested. 

4.4 Summary 

The mechanism of GAs has been demonstrated in this chapter and the convergence of 

this method has been illustrated through Markov Chain and Schema Theorem analysis. 

It has been shown mathematically that GAs are able to converge to an optimal solution 

without a-priori knowledge of where the optimal region lies. 

For elite GAs the convergence is quicker and is assured globally by an increase in 

mutation rate. This high mutation will initiate the variation that is inherent in other 

selection processes without the drawback of slow convergence. 

Hence the theory of elite GAs has proved that this method is potentially very powerful 

as a global optimisation technique. The actual application of this method to marine 

vehicle controller optimisation will verify this theory. 
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Chapter 5: 

Decoupled Sliding Mode Control Theory 

5.1 Introduction 

In general, control is considered to be the process of automatically governing a system's 

behaviour in some desired manner. This is achieved by designing a controller which 

provides the required inputs for a system so that it will perform as required. In the 

context of this work control is used to govern the motion of marine vehicles. The 

control law used here to obtain controllers for this purpose is the non-linear, robust 

Sliding Mode (SM) form of control [Utkin (1992), Slotine and Li (1991), Mudge and 

Patton (1988(a)(b)), Healey and Marco (1992), Healey and Lienard (1993), Burton and 

Zinober (1988)]. Such robust techniques are considered to be better than a conventional 

linear PID controller in that they can handle changes in the plant and external 

disturbances without as much performance degradation [Fossen (1994)]. However, 

these types of controllers have always been thought to be difficult to design due to their 

mathematical complexity [Healey and Marco (1992), Healey and Lienard (1993), Fossen 

(1994), Fossen and Foss (1991)]. 

This chapter illustrates a simple method for designing and implementing single input 

sliding mode controllers for controlling decoupled dynamics of a system [Healey and 

Marco (1992), Healey and Lienard (1993), Fossen (1994)]. The decoupling process 

takes the full representation of the system and isolates the dominant dynamics of the 

vessel. Each set of dynamics forms a subsystem which represents a specific motion of 

the vessel. In this case each subsystem has a single input which governs the respective 

motion. This process is a widely used method for controlling multi input systems 

[Franklin et al (1991)]. 

An introduction to the fundamental theory behind SM control is given in Section 5.2. 

The derivation of the resulting control law is given in Sections 5.3 and 5.4 of this 

chapter. In Sections 5.3 and 5.5 the stability of this method of control is obtained from 

Lyapunov's Stability Theorem [Utkin and Yang (1978), Utkin (1992), Slotine and Li 

(1991)]. From this foundation, the controller equation for a subsystem is derived and a 

suitable criterion for stability is also obtained. A discussion about performance is 



supplied in Section 5.6 which indicates that since stability is satisfied these controllers 

are robust to disturbances caused by changes in the system or external sources. Finally 

Sections 5.7 and 5.8 deal with the practical aspects of this type of controller. In 

particular, the problems encountered in terms of the phenomenon of chattering and steps 

to be taken to eliminate chattering without affecting the stability of the controller are 

considered [Healey and Marco (1992), Healey and Lienard (1993), Burton and Zinober 

(1988), Fossen (1994)]. 

5.2 Basic Theory 

The purpose of sliding mode control studied here, as with many other control laws, is to 

make the states of a system (x) follow some desired state response (Xd) [Franklin et al 

(1991), Fossen (1994)]. This is achieved by reducing the state error (x = x - x
d

) to zero 

by the use of something called the sliding surface (a(x)) [Utkin (1972), Utkin and 

Yang (1978), Utkin (1992), Slotine and Li (1991), Mudge and Patton (1988(a)(b», 

Healey and Marco (1992), Healey and Lienard (1993), Burton and Zinober (1988)] 

which is a function of the state error. The controller derived from SM theory tries to 

drive the state error to zero by driving the sliding surface to zero. It does this by 

providing a control input, for the system, which depends on state variables (to determine 

the state at present) and the desired state variables (to determine what the state should 

be). Once this control action is on the zero sliding surface the controller is said to be in 

the Sliding Mode. The controller defined from SM Theory has two components, the 

equivalent control (ueq ) and the switching term (usw) [Utkin and Yang (1978), Utkin 

(1992), Slotine and Li (1991), Mudge and Patton (1988(a)(b)] i.e. 

(5.1) 

The equivalent control law provides the main control action and the switching term 

provides additional control action in order to compensate for any change in the nominal 

operating point that the equivalent controller is designed around. This combined control 

effort ensures that the system tracks the state error to zero irrespective of changes in its 

operating conditions. 

Systems usually have more than one input that has to be controlled and this is true for 

the applications studied in this thesis. However, the type of SM controllers used for this 
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work only allows for a single [Healey and Marco (1992), Healey and Lienard (1993). 

MCGookin (1993) , Fossen (1994), Slotine and Li (1991 ), Mudge and Patton 

(1988(a)(b ))]. Therefore, the number of controllers has to be the same as the number of 

controlled variables. In order to implement these controllers the system is decoupled (or 

divided) into a number of single input subsystems which govern particular modes of 

motion of the system [Healey and Marco (1992), Healey and Lienard (1993), Fossen 

(1994) , Slotine and Li (1991), MCGookin (1993)] . Then the controller is designed using 

each subsystem as an independent system. The inputs which are obtained from these 

controllers are then applied simultaneously to the original , undivided system. Since the 

design of the decoupled controllers depends on the states of the system there is feedback 

present in the overall set-up [Healey and Marco (1992), Healey and Lienard (1993), 

Fossen (1994), MCGookin (1993)]. This is an accepted and widely used method of 

controller design and implementation. 

5.3 Sliding Surface 

The main premise behind why sliding mode controllers are considered non-linear is the 

switching control action. This is designed round the sliding surface, cr(x) which is 

derived so that as the surface value tends to and becomes zero the state error tends 

towards zero (see Figure 5.1). 

x 

.-.-
.-

.­.­.-

____ ~~~~_*-------------+x 

a(i) < 0 

Figure 5.1: Sliding Surface in State-Space 
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Hence the actual state converges to the desired state as in the model reference type of 

control system. The surface chosen for this application is defined by the following 

equation [Healey and Marco (1992), Healey and Lienard (1993), MCGookin (1993)], 

(5.2) 

where h is the right eigenvector of the desired closed loop system matrix Ac (see section 

5.4 for reasoning behind the selection of this vector). In order for the state error to 

converge to zero, global asymptotic convergence of the surface to a stable equilibrium 

position should be ensured. This is done by choosing a suitable Lyapunov function 

V(O") such that Lyapunov's Stability Theorem for time-invariant systems is satisfied 

[Slotine and Li (1991), Fossen (1994), MCGookin (1993)] i.e. 

Theorem 5.1 : ("Lyapunov's Global Stability Theorem") If a scalar function V(a) of a 

variable (J has continuous first order derivatives and satisfies the following conditions 

1. V( 0") is positive definite i.e. V 0" E 9\, V( 0") E 9\+ 

2. V(O") is negatively definite i.e. V 0" E 9\, V( 0") E 9\-

3. V(O") ~ 00 as 110"/1 ~ 00 

then the equilibrium at the origin of this function is globally asymptotically stable. 
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I I I I I I I I 4500 __ ~ __ J _______ ~ ______ ~ _______ ~ _____________ ~ ______ ~------~-------~----
I I I I : I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 

~ --- --~-------~------~-------r------ -------r------r------:-------r-- ---
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3500 _____ ~ _______ ~ ______ ~-----_-~----- ________ ~------~------~-------~ ____ _ 
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§ ~ ------~ ------~------~-------~------ -------~------i------~------ r------
.J: ::: I ::: I 

(.) I I I: I I I 

.§ 2500 ------~--- ---~------~-------:------- -------:-------:-------i---
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S 00 -80 -60 -40 40 60 eo 100 

C1 (sliding surface) 

Figure 5.2: Lyapunov Function from equation (5.3) against sliding surface 
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For this investigation the standard Lyapunov function below is chosen because of its 

similarity to the equation of kinetic energy and since it provides the 'bowl' like shape 

needed for such a function [Slotine and Li (1991)]. 

(5.3) 

This gives the curve shown in Figure 5.2. This function satisfies both the first and third 

convergence conditions of the Theorem 5.1. The first is satisfied since the a 2 tenn 

always give a non-negative value and hence yea) is lower bounded as required. The 

third is also easily seen to be satisfied. If the sliding surface is allowed to tend to an 

infinite value, the value of a 2 will also tend to infinity. Hence the value of yea) will 

tend to infinity as required and the third condition is satisfied. 

The remaining condition (i.e. the second) provides a necessary design criterion in order 

for convergence to occur i.e. 

(5.4) 

Convergence will occur only as long as this is satisfied since a negative gradient will 

naturally drive the function to the zero sliding surface irrespective of the initial value of 

V, aand x. 

Since all three conditions are met then the origin of the Lyapunov function is considered 

stable and will converge to that point as time tends to infinity i.e. 

yea) --7 0 as t --7 00 (5.5) 

Therefore, 

=> a--70 as t--7 00 (5.6) 

Hence it follows from equation (5.2) that as a tends to zero the state error will also 

converge to zero and the states will follow the desired state responses. Therefore, any 

controller designed round such a sliding surface will converge to a specified desired 

response. Hence the assurance of stability will allow a controller to guarantee the 

overall robustness of the system in terms of performance. 
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5.4 Controller Derivation 

The controller is derived from the definition of the linear state space equation of the 

decoupled dynamics that are being controlled. In order to decouple a system in standard 

state space form [Healey and Marco (1992), Healey and Lienard (1993), MCGookin 

(1993), Fossen (1994), Mudge and Patton (1988(a)(b))]. i.e. 

x = Ax+Bu+f(x) (5.7) 

careful selection of the states to be included in the decoupled subsystem is needed. Here 

x is the state vector, A is the system matrix, B is the input matrix, u represents the 

inputs of the system and f(x) describes any deviations that would cause the system to 

deviate from its equilibrium point e.g. nonlinearities, unmodelled dynamics or external 

disturbances. Unfortunately, such unknown quantities are usually omitted from a linear 

model of this type and this term is only included here for completeness. The 

subsystem's states are selected in such a way that the dominant dynamics of the 

manoeuvre that is being controlled are decoupled from the dynamics that have very little 

influence on the manoeuvre. This changes the Multi-Input, Multi-State (MIMS) system 

into as many Single Input, Multi-State (SIMS) systems as are required to be controlled 

[McGookin (1993), Fossen (1994)]. Consider an m state system with n inputs. If this is 

partitioned into a subsystem with p states and a single input the order of the system and 

input matrices would be reduced. This would give As c A, b s c Band fs c f as the 

subsystem equivalent forms of the above state space equation. In tum these would 

define the subsystem in the following state space form. 

(5.8) 

where Xs represents the subsystem states and Us is the single input that governs the 

subsystem motion. 

With most systems the control action is provided via the input to the system which in 

the SIMS subsystem above is Us. This control input for a subsystem is provided by 

equation (5.1) which becomes 

(5.9) 
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Here the nominal equivalent control part is chosen as a state feedback gain controller of 

the following form [Mudge and Patton (1988(a)(b)), Slotine and Li (1991), MCGookin 

(1993), Fossen (1994)]. 

- k T Ueq - - s Xs (5.10) 

where ks is a feedback gain obtained from pole placement theory. This theory is 

regarded as robust pole placement theory since it avoids the numerical uncertainties 

associated with Ackermann's work when applied to systems of higher order than 6 or 7 

[Franklin et al (1991)]. Therefore to avoid any such uncertainty the method proposed by 

Kautsky et al (1985) is used to obtain the feedback gain by minimising the sensitivity of 

the assigned poles to disturbances within the plant. Since this feedback control law is 

designed around a nominal linear plant it would not necessarily work well for all the 

operating conditions of the vessel. Therefore it requires additional control action in 

order to compensate for variation in the vessel's operating conditions. This additional 

control is provided by the non-linear switching term of equation (5.9) which is derived 

from the sliding surface in equation (5.2) i.e. 

On differentiating this equation with respect to time the following is obtained. 

Substituting equation (5.8) for Xs in the above equation gives 

and substituting for Us results in the following equation. 

If equation (5.10) is used to replace Ueq then the above equation becomes 

asCi) = hsT(Asxs - bsksTxs + bsusw +fs(xs)- Xsd ) 

= hsT(Acsxs +bsusw +fs(Xs)-XSd) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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where 

(S.16) 

is the closed loop system matrix created by the feedback gain. Hence the eigenvectors 

of Acs can be defined in terms of the feedback gain vector. Rearranging (S.1S) yields 

(S.17) 

This assumes that hs Tbs is nonzero. Since h? is chosen as the right eigenvector of Acs 

it therefore corresponds to an eigenvalue of zero of this matrix. Hence it provides the 

following relationship 

(S.18) 

Therefore (5.17) becomes 

(S.19) 

From Healey and Marco (1992) and Healey and Lienard (1993) d" is defined as 

(S.20) 

Here Ms (xs) is the difference between the actual system deviations (fs(xs)) and the 

estimate made of this function d\(xs)) i.e. Ms(xs)=fs(xs)-i\(xs), and 17s is the 

switching gain which determines the amount of switching control action which 

characterises this kind of control. The switching action itself is provided by the signum 

function which simply indicates the sign of the sliding surface [Fossen (1994)] i.e. 

1 if a ~ 0 

sgn(a(xs )) = 0 if a = 0 

-1 if a < 0 

(S.21) 

This determines which way the control effort should be applied in order to drive a and 

ultimately Xs to zero. The size of this switching action depends on the magnitude of the 

switching gain. 
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When (S .20) is applied to (S .19) the following is obtained 

(5.22) 

When (S.10) and (S.22) are combined in (S.9) the total controller equation becomes 

(5.23) 

This is not the form of the controller used in this study since the unknown dynamics are 

either not estimated or the values of is (xs ) are constant. In the latter case, the addition 

of this term in the controller equation provides a constant bias that allows the controller 

to have a sufficiently high operating point so as to compensate for the occurrence of 

unknown dynamic effects. Either way this value is negligible and can be compensated 

for by making the switching gain sufficiently high. Therefore the form of controller 

used in this work is [Fossen (1994), MCGookin (1993), Healey and Marco (1992), 

Healey and Lienard (1993)] 

(5.24) 

where the switching component compensates for the unknown dynamics of the system 

without the need for biasing provided by the is (xs ) value. 

5.5 Stability Criterion 

It was shown in Section S.3 that by the application of Lyapunov's Theorem the 

controller will converge to a sliding surface which is stable about the origin equilibrium 

point. This would indicate that the controller will exhibit stability robustness to changes 

in the plant or external changes in the system's operating environment. The only 

condition for global asymptotic stability and convergence to the equilibrium point that 

has not already been satisfied by the selection of a suitable Lyapunov function is 

condition 2 i.e. 

(5.25) 
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For this particular study this derivative is represented by equation (5.4). When (5.20) is 

substituted into this equation the following results. 

V( as) = O'sd's = as (hs T M(xs) -17s sgn( as)) 

= O'shs T M(xs) -17sO's sgn( as) (5.26) 

= O'shs T M(xs) -17sIO'sl 

This equation should satisfy the stability condition. 

(5.27) 

On rearranging we get 

(5.28) 

Since the switching action has to operate in opposition to the sliding surface, the 

switching gain must be positive. Therefore the above equation becomes: 

(5.29) 

which will ensure that condition 2 is satisfied and stability occurs. Therefore, in order 

to insure that this type of Sliding Mode controller is stable and robust to changes, the 

switching gain must be greater than this value i.e. large enough to handle any deviations 

from the plant's nominal operating point. 

5.6 Desired State Tracking 

The previous section shows that the decoupled SM controllers used in this investigation 

are able to meet Lyapunov's three criteria for stability and robustness. From this it can 

be deduced that the equilibrium point for the chosen Lyapunov function is when the 

sliding surface is zero. Hence 

as --7 0 as t --7 00 
(5.30) 

and consequently 

(5.31 ) 
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This indicates that the system's states track to the desired states' responses as t ~ 00 

which is the required behaviour of the control system. 

Therefore, as long as the design criterion for 17s is satisfied in order to ensure global 

asymptotic convergence, then perfect tracking of the desired state responses is achieved. 

Hence the controller will behave as a model reference controller [Landau (1974)]. 

5.7 Chattering 

A problem arises from the need to make the switching large enough to satisfy the 

robustness criteria. Due to the nature of the signum function, the switching action may 

cause the control input to start oscillating about the zero sliding surface. This 

phenomena is called chattering and it's presence can cause unwanted wear and tear in 

the input actuators of the system [Burton and Zinober (1988), Slotine and Li (1991), 

Healey and Marco (1992), Healey and Lienard (1993), Fossen (1994), MCGookin 

(1993)]. It may also cause the system to become unstable if the amplitude of the chatter 

is large. In either instance chattering causes the system's performance to deteriorate 

until it no longer tracks the desired state response. 

The way to remove this behaviour is to smooth out the switching term as the sliding 

surface approaches zero. This is done by replacing the signum function with a 

saturation function [Healey and Marco (1992), Healey and Lienard (1993), Fossen 

(1994), MCGookin (1993)] i.e. 

if as ~ 1 
lPs 

otherwise 
(5.32) 

Here lPs is called the boundary layer thickness and defines the range about the zero 

sliding surface where the switching term transition is smoothed. This term acts like a 

low pass filter and is the reason that this is called soft switching. 
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Figure 5.3: Switching Functions with Boundary Layer Thickness ¢ = 30 

Alternatively, the continuous tanh function provides the same type of switching 

transition without having any of the discontinuities of the saturation function. The 

behaviour of all three switching functions is illustrated in Figure 5.3 [Healey and Marco 

(1992), Healey and Lienard (1993), Fossen (1994), MCGookin (1993)]. The similarity 

between the saturation and hyperbolic tan functions should be noted. Hence the 

controller equation becomes 

(5.33) 

This form of controller equation is used in the investigation. The use of the tanh 

function removes chattering if the boundary layer thickness is sufficiently large to 

counteract the large switching action. 

5.8 Stability in the Boundary Layer 

It is self evident that if the controller reaches the boundary layer robustness is 

guaranteed since the switching area outside this region is effectively the signum function 

which is globally asymptotically stable. However the boundary layer should also be 

shown to be stable and robust. 
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If the saturation function is considered then the boundary layer can be examined clearly. 

This is more difficult with the tanh function due to the transition between the boundary 

layer and the hard switching region. However the following argument holds equally 

well for the continuous tanh function. 

Outside the boundary layer the saturation function equals the hard switching signum 

function and therefore the previous stability criterion is applied in this region (see 

Section 5.5). 

Inside the boundary layer the saturation function equals the sliding surface divided by 

the boundary layer thickness i.e. 

(5.34) 

Therefore to prove stability in this region we use the same strategy as in Section 5.5. 

This means that in order to ensure that stability is satisfied 

a
2 

T 
17sbl ¢ > on M(xs) 

17sbl > fh T M(xs) (5.35) 
a 

Since a:::; ¢ in the boundary layer and ¢ / a ~ 1 

17sbl 2 17s 
(5.36) 

where 17s is the switching gain outside the boundary layer. Therefore, if the stability 

condition outside the boundary layer is met sufficiently well the condition inside is 

automatically satisfied since it is within the required range of the switching gain in this 

region. However, if it is not, the system still remains stable since the confining area 

outside the boundary layer is stable and will therefore drive the state error towards zero. 

That means that the outside condition satisfies Lyapunov stability globally. Hence the 
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boundary layer does not affect the stability of the sliding mode controller. If anything 

the boundary layer ensures convergence onto the (J = 0 surface which in turn ensures 

perfect tracking and stability in the steady state. 

The above holds for the case where the saturation function is replaced by the hyperbolic 

tan function (tanh). This removes the discontinuities which are inherent in the sat and 

sgn functions without jeopardising the stability of the controller. 

5.9 Summary 

The decoupled controller form derived in this chapter (equation (5.33)) is used in the 

applications studied in the remainder of this investigation. It has been proven that this 

control law is globally asymptotically stable throughout the state space. Therefore if it 

is global then the controller is said to be robust since it will return to an asymptotic 

steady state at the origin, no matter what the initial conditions of the states are or what 

perturbations the states may encounter. Hence this will be the case as long as the 

stability criteria of equation (5.29) is satisfied. 

This controller is implemented in the three manne applications considered in the 

following chapters (i.e. submarine, tanker and ship). These are used as the optimisation 

subjects for the remainder of this thesis. 
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Chapter 6: 

Submarine Application 

6.1 Introduction 

The first application used to study both the sliding mode control law and the 

optimisation techniques is a linear mathematical model of a military submarine. This 

type of vehicle can move in three dimensions and has motion in six degrees of freedom 

(i.e. both lateral and rotational for each dimension) [Burcher and Rydell (1993)]. 

The mathematical representation of the vessel used in this study describes the motion of 

a generic 'cigar shaped' submarine [Miliken (1984)] which is approximately 100 metres 

in length and designed to be highly manoeuvrable. It has similar operational statistics to 

the Los Angeles, Trafalgar and Swiftsure classes that are in service at present 

[Richardson et al (1991)]. These high speed submarines perform as 'hunter-killers' in 

that their role is to seek and destroy adversarial vessels. The need for adequate control 

of these vessels is crucial, particularly at high speeds, so that they can execute their 

manoeuvres without causing damage to the crew or any innocent party. This is of 

particular importance during a war situation when accuracy and stealth are needed in 

order that the vessel and crew can carry out their mission without detection or 

destruction. In this study the manoeuvres considered are relatively slow compared to 

the capability of such a vessel and are therefore considered to be carried out under 

coercive conditions. 

Although these vessels are used for defence, the principals used in this investigation can 

be equally applied to commercial submersibles and Remotely Operated Vehicles 

(ROVs) since they have characteristics broadly similar to the above [Healey and Marco 

(1992), Healey and Lienard (1993), Trebi-Ollennu and White (1996 (a)(b)), Corradini 

and Orlando (1997)]. 

The model used here is linearised about a single operating point of 20kts forward speed. 

The representation is a linear state space model which simplifies the dynamics of the 

system. This simplified model can be easily applied to the sliding mode (SM) control 

law in Chapter 5 and as a result of its relatively fast dynamic responses is a good 
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candidate for testing the optimisation methods (Chapters 3 and 4). It also provides a 

six-degrees of freedom system which can be easily split into two subsystems to be 

controlled i.e. depth changing and heading changing. Hence two controllers (one for 

depth and one for heading) have to be designed and then optimised. This will allow the 

effect of the controller decoupling action to be observed in the context of dynamic 

cross-coupling. 

This chapter deals with the application of these controllers and the parameter 

optimisation process that follows. In Section 6.2 , the derivation of this model is briefly 

given from the equations of motion to its linear state space representation. The 

decoupling process and application of the sliding mode control law of the previous 

chapter is detailed in Section 6.3, thus giving the two controller structures necessary for 

this study. Section 6.4 gives the results of the study of this system by firstly providing a 

manually tuned set of parameter solutions as a benchmark for comparison. The 

remainder of that section illustrates the results obtained from the various optimisation 

methods. Conclusions regarding the comparison of the results obtained from this 

optimisation study are summarised in Section 6.5. 

6.2 Submarine Model in State Space Form 

6.2.1 Submarine Dynamics 

The linear state space model form used to represent this submarine is derived from the 

equations of motion of the vessel. These are obtained by considering the motion of the 

submarine relative to body-fixed axes and to some inertially fixed reference frame (i.e. 

the earth). These motions are defined in terms of the velocities illustrated in Figure 6.1 

where the dynamics are split into linear and angular for both the body and earth fixed 

reference frames [Fossen (1994), MCGookin (1993)]. It should be noted that this 

representation is defined in deep water and the ballast system is not modelled. 

Therefore the resulting model should not be used for simulations near to the surface of 

the sea where the ballast dynamics would effect the motion of the vessel. Also, effects 

from the depth of water beneath the vessel are neglected. 
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Figure 6.1: Submarine Reference Frames and Velocities 

The relative velocities and inputs illustrated above are outlined in the table below. In 

this study the aft hydroplanes are referred to as the stemplanes and the fore hydroplanes 

are called the bowplanes. 

Table 6.1: Submarine States and Inputs 

u 8b 

v 
w 

rudder deflection 

r 

e 

z 

The reference frames provide two separate sets of equations which describe their 

relative dynamics. These are the kinetic and kinematic equations. The kinetic equations 

define the hydrodynamics of the vessel in the body-fixed reference frame and are 

represented by the following matrix equation [Fossen (1994)]. 

Mv + C(v)v + D(v)v + G(1J)1J = B/u (6.1 ) 
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Here M is the mass and inertia matrix, C contains the Coriolis terms, D is the damping 

matrix, G is gravitational and buoyancy components and B' relates the inputs to the 

system. The vector V represents the body-fixed velocities (i.e. V = [u, v, W, p, q, r]T), 11 

represents the earth-fixed states (i.e. 11 = [x, y, z, cp, 0, 1f!]T) and u is the input vector (i.e. 

u = [8r, 8s, 8b,]T) [Miliken (1984), Fossen (1994), MCGookin (1993), Burcher and 

Rydell (1993)]. From Table 6.1 it can be seen that the only earth-fixed distance 

modelled here is the diving depth, z (i.e. x and yare not considered). Hence the 

resulting model will be a tenth order system representation instead of twelfth order 

[Miliken (1984), MCGookin (1993), MCGookin et al (1996(a)(b), 1997(b)(d))]. 

The kinematic equations define the geometrical relationship of the motion of the vessel 

relative to the earth-fixed frame of reference. These are represented by the following 

equation: 

1) = J(11)V (6.2) 

Where J represents the Euler relationships between the two reference frames [Fossen 

(1994), MCGookin (1993)]. 

In order to obtain a linear representation from these equations they are linearised around 

a nominal operating condition. This treats each state as a relatively small perturbation 

about an equilibrium operating point. The linearisation process outlined in MCGookin 

(1993) yields the following linear equations. 

Mv+(C' +D')v+G'11 =B'u 

1) = J~v + J;11 

(6.3) 

(6.4) 

The equilibrium operating point chosen is a surge velocity of 20kts with all other states 

set to zero. Rearranging (6.3) yields 

v = -M-1(C' +D')v -M-1G'11+ M -1B 'U (6.5) 

When equations (6.4) and (6.5) are combined together the following matrix fonn is 

produced 

(6.6) 



This is easily seen to be the standard state space form similar to that described in 

equation (5.8) i.e. 

X= Ax+Bu (6.7) 

A more detailed derivation of these equations can be found in McGookin (1993) and 

Fossen (1994) (see Appendix A.I for model definition). 

6.2.2 Input Actuator Dynamics 

As well as the dynamics of the submarine which come from the hydrodynamics of the 

vessel, the input actuator dynamics are also defined. These apply physical rate and 

amplitude limits to all the input actuators which represent the limits on the hydroplanes 

due to their actual driving mechanisms. Firstly the rate limit is defined as the angle that 

the input can move through in one second. The input amplitude limit is the maximum 

angular deflection of that actuator. Values for both these constraints were obtained from 

Curtis (1996) and Lambert (1996). The values obtained for each of the actuators are 

show in Table 6.2 and represent typical figures which would apply to real submarines. 

Table 6.2: Actuator Limit Values 

ACTUATOR RATE LIMIT (o/sec) MAGNITUDE LIMIT (0) 

RUDDER 5 35 
STERNPLANE 5 25 
BOWPLANE 5 20 

These limits are used in this simulation study for limits on the corresponding actuators 

and add nonlinearities to the system in the form of actuator saturation. 

6.3 Decoupled Subsystems 

As mentioned in the previous chapter, the sliding mode controllers used in the 

investigation are applied to SIMS systems [Fossen (1994)]. This calls for decoupling 

MIMO into the appropriate form that was illustrated in Section 5.4. In this application 

the submarine system is decoupled into two subsystems (i.e. diving and heading) which 

are the only controllable dynamics that are considered here. 
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The third major dynamic is the roll motion of the vessel which is not usually controlled 

due to the position of the centres of gravity and buoyancy relative to each other [Burcher 

and Rydell (1993)]. Although these vessels are neutrally buoyant (i.e. the centres of 

gravity and buoyancy occupy the same point in the x-axis, Xg = Xb) their positions in the 

ZB axis are not equal. In fact Zb > Zg and the centre of buoyancy is above the centre of 

gravity. This is shown in Figure 6.2. It can be seen that if the centre of buoyancy moves 

relative to a fixed inertial reference during a manoeuvre (i.e. the vessel rolls), the centre 

of mass will force the centre of buoyancy back to an equilibrium point directl y above it 

thus causing this motion to be stable about a zero roll. Hence this motion is self 

correcting and does not need to be controlled. 

Roll Forces 

Centre of 
Gravity 

Centre of 
Bouyancy 

Weight 
Restoring 

Forces 

Figure 6.2: Roll Motion Stabilisation 

The decoupling process for each of the two subsystems is described below. 

6.3.1 Diving Subsystem 

As the name suggests, the diving subsystem describes the depth motion of the 

submarine which is only concerned with the dynamics in the XB-ZB plane in deep water 

(see Figure 6.3). This diagram shows that only four states comprise this subsystem and 

therefore it is a fourth order system reduced from the original tenth order submarine 

representation. These states are w, q, e and z. Table 6.1 shows that thi s motion can be 

controlled by two input actuators (i.e. sternplanes or bowplanes). However, in practical 

. h . d b the 
situations when submarines of this type operate at hIgh speed, dept IS goveme Y 

sternplanes. The bowplanes are kept in the fixed stick position (i.e . at a deflection of 

zero degrees) [Burcher and Rydell (1993)]. 
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Figure 6.3: Diving Manoeuvre 

However, in this representation of a submarine the stemplanes can be moved 

differentially as well as together. The differential motion is used to regulate the roll of 

the vessel which is not controlled in this application. Therefore the stemplanes are 

solely used for this diving manoeuvre. Since there are two stemplane deflections 

associated with the port and starboard actuators (i.e. 8s p and Os s ), the corresponding 

control effort is split between them. This means that the sum of the two input signals 

becomes the single input for this subsystem [McGookin (1993)]. Hence, decoupling thi s 

motion gives the following state-space equation for this subsystem. 

(6.8) 

where XD = [w, q, e, zf and UD is the resulting input. Since the stemplanes work together 

in this manoeuvre, the value of the port stemplane deflection is equal to the deflection of 

the starboard stemplane and thus 

(6.9) 

where 8s is the stemplane deflection. This implies that the control effort should be 

divided equally between the two inputs and enables this subsystem to be treated as a 

S1S0 system. Hence a decoupled sliding mode controller of the form outlined in the 

previous chapter (equation (5.33)) can be applied thus giving the follo wing equation. 
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(6.10) 

The desired states (XDd) are obtained from a second order response for the major 

dynamics. In this case that is the depth response. The simulation of this system is 

illustrated in more detail in MCGookin (1993). 

In order to ensure that this controller is performance robust, the condition set out in 

equation (5.29) is applied. Since the system representation used in this investigation 

does not illustrate any non-linear uncertainties the switching gain condition becomes 

(6.11) 

Therefore as long as the gain is positive definite the controller will be considered robust. 

This is easily incorporated into the optimisation techniques by confining their search to 

positive values. If estimates of nonlinearities became available these could also be 

incorporated in the optimisation process by limiting the search to values greater than 

these estimates. 

6.3.2 Heading Subsystem 

The heading subsystems describes the motion in the XB-Y B plane (see Figure 6.4) and 

represents the directional motion of the submarine. The control of this motion is more 

generally called course changing and comes from the regulation of the heading angle, 11', 

by manipulation of the rudder actuator deflection, Dr. This subsystem decouples to a 

third order system with v, rand lfI as the states. 

Decoupling this motion from the rest of the submarine dynamics gives a SISO system 

with the rudder deflection, Dr, as the input. This has the following state space form 

(6.12) 

where the state vector, XH = [v, v, lfI]T. From this representation of the subsystem a 

similar controller equation to the diving manoeuvre can be formed thus. 

(6.13) 
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Figure 6.4: Course Changing Manoeuvre 

Again the desired states are formed so that the controller will attempt to follow a second 

order response. Hence the course changing manoeuvre is controlled by regulation of the 

heading angle by means of the rudder actuator. 

Since uncertainties are also not modelled in this subsystem, the same condition for 

robustness as in the diving subsystem can be applied i.e. 

(6.14) 

This is fulfilled during optimisation by confining the search to positive gain values. 

6.3.3 Decoupled Controller Application to the Main System 

As the previous sections illustrated, the input signals to the actuators of the submarine 

model are calculated separately for each of the manoeuvres considered here. These 

provide inputs for the rudder and the stemplanes when the bowplane deflection is 

zeroed at the fixed stick position [Burcher and Rydell (1993)]. Although these 

commanded actuator inputs are obtained for their relative subsystems, they are 

combined as elements of the input vector, U, for the full representation of the submarine 

system (see Figure 6.5). However, before these commanded signals are applied to the 

model, they are passed through rate and amplitude limit checks which implement the 
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actuator limits shown in Table 6.2. These slow the response of the inputs to a realistic 

level and add a non-linear aspect to the system. 

Step 
Cornman ds 

Heading States (XH) 

~. 

Heading 8r Rudder 

Controller 
--r Actuator 

Limits 

Bowplane u Submarine Stick Fixed .. 
Value (0") --po 

Model 
8sp ~ 

uD Stemplane 
Diving ~ Actuator 

Controller 
&s 4 Limits 

t 
Diving States (xD) 

Figure 6.5: Submarine Model and Controller Configuration 

Sta tes (x) .. , 

This configuration is used as a schematic for simulating this system. In the resulting 

simulations the states are obtained from the state space equation by Euler's numerical 

integration method [Cheney and Kincaid (1985)]. This is used because of its speed of 

execution. If the step size is chosen so that it satisfies the time constant of the fastest of 

the two motions, no simulation instability should occur [Fossen (1994)]. However, if 

during the optimisation process such instability occurs then there is the chance that the 

control action is moving too fast for the system and may cause problems in a practical 

situation. 

6.4 Optimisation Process and Results 

This section outlines the aspects of the optimisation process used to investigate the 

diving and heading controllers for the submarine which are the same irrespective of the 

method used. These elements are specific to the optimisation subject and not the 

individual techniques and include controller parameters which are chosen for 

optimisation, the cost functions and desired responses that are used as the optimisation 

manoeuvres. 

The remainder of this section is concerned with the presentation of typical optimised 

results obtained from this investigation. The first set of controller parameters are from 
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manually tuned responses that have been obtained through engineering judgement and a 

certain amount of trial and error [McGookin (1 993)]. This set is used as a benchmark 

against which the optimised results can be compared. Typical optimised resul ts from 

SA, SSA and GA searches are presented and di scussed in terms of controller 

performance, search convergence and optimal cost values. 

6.4.1 Controller Parameters 

The first aspect that needs to be defined is the particular set of controller parameters 

which are to be optimised by the methods investigated here. These parameters are 

altered until the two controllers provide the control action desired of them. In thi s case 

the nine associated parameters shown in Table 6.3 are used [McGookin (1993), Fossen 

(1994), Healey and Marco (1992), Healey and Lienard (1993)]. 

Table 6.3: Submarine Controller Parameters to be optimised 

Div 
First Closed 10 

er Thickness 

As this table indicates, parameters pdi .. pd3 are three of the desired closed loop poles of 

the diving subsystem and phi and ph2 are two of the desired closed loop poles of the 

heading subsystem. Each subsystem has another pole positioned at the origin 

[McGookin (1993)]. These poles are used to define the closed loop system matrix for 

each subsystem (i .e. Ad. Once this matrix is defined, key vectors (i.e. k and h) can be 

obtained which are crucial to the controller definitions given in equations (6.10) and 

(6.13). 

The other two sets of parameters are the switching gains and boundary layer thickness 

for each SM controller [Slotine and Li (1991), Healey and Marco (1992), Healey and 

Lienard (1993)]. As already mentioned the switching gains define the amplitude of the 

switching action provided by these controllers and the boundary layer thickness ensure 

smooth transition as the zero sliding surface is approached (see Chapter 5). 
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All these parameters are crucial to the optimisation as they provide values for all the 

constituent parts of the controllers. 

6.4.2 Cost Function and Desired Responses 

The most important aspect of any optimisation process is the criterion upon which the 

search is to be based. In practical applications this can be quite difficult to quantify 

mathematically and can sometimes be represented erroneously thus causing the search 

method to optimise to an incorrect criterion. In this investigation the optimisation 

criteria are represented in a single cost function which provides a single objective for the 

optimisation processes. The value of the cost varies with the parameters values and thus 

defines the problem search space. The search space represents the terrain for the 

optimisation to explore and contains the global optimum solution for the problem. 

Therefore the cost function choice not only defines the specifications to which the 

problem is optimised, but it also determines how difficult the problem is to optimise 

(i.e. if the cost criteria vary randomly the search space will be rough and hence more 

difficult to optimise than a smoother search space). After careful consideration, the 

particular cost function used here is a well established autopilot cost function used in the 

marine field [Dove and Wright (1991)] which is minimised to achieve an optimal 

system. This function is fundamentally a discrete version of the integral least squares 

criterion i.e. 

tot 

c= L[(~Yi)2 +(Ui )2] (6.15) 
i=l 

Here tot is the total number of iterations, ~Yi is the ith output error between the desired 

and obtained outputs (in this case the outputs are either z (depth) or 1jI (heading angle)), 

Uj is the ith input to the submarine (which is either stemplane deflection, & , or rudder 

deflection, 8r). It should be noted that a separate cost function is required to optimise 

each subsystem. The reasons for using ~Y and U in the cost function are as follows. The 

quantity ~y (output error) gives an indication of how close the actual output is to the 

desired output, therefore showing how well the controllers are working. The component 

U (input to the system) is used to keep controller actuator movement and control effort 

to a minimum. This is of particular importance when the submarine is trying to execute 

covert manoeuvres. In these circumstances the actuator motion has to be kept to a 
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minimum in order to reduce cavitation noise which would make the submarine easy to 

detect. However restricted actuator usage results in large rise times in the output 

response since the movement is limited. Another reason for keeping the inputs small is 

to prevent the SM controllers from chattering (see Section 5.7). This is undesirable due 

to the high level of actuator activity which results in undue wear and tear [Burton and 

Zinober (1988), Slotine and Li (1991), MCGookin (1993), Healey and Marco (1992)]. 

In addition to the definition of the cost function the optimisation must be given a desired 

output response for the controllers to track. These are used as the desired states for the 

controller and to calculate the state errors (see Chapter 5). A consequence of this is that 

the output errors are obtained and used as a design criterion in the above cost function. 
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Figure 6.6: Submarine Desired Responses 

The chosen desired responses for depth and heading are critically damped steps with 

sufficient rise times so that the required inputs are well within the operational limits of 

the actuators involved (see Table 6.2). The amplitudes of the step for depth is chosen as 

10m for this study (see Figure 6.6(a)) and the heading change is selected to be a 45° turn 

(see Figure 6.6(b)) [McGookin (1993)]. 

Both reference steps are considered to be sufficient to test the performance of the SM 

controllers for large manoeuvres. Also these amplitudes are within the limits of the 

linearisation for this model and therefore the simulation results of this study are likely to 

be a good representation of the actual dynamics of such a submarine. 
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6.4.3 Manually Tuned Results 

The initial step in this study of the optimisation of controllers for the submarine is to 

obtain an acceptable solution through manually tuning the controller parameters in 

Table 6.3. This gives the parameter values shown in Table 6.4 which are obtained from 

MCGookin (1993). In order to provide further comparison equation (6.13) is used to 

calculate the cost of each subsystem and these are also shown in the table. 

Table 6.4: Manually Tuned Submarine Controller Parameters 

Parameters 
-0.3 
-0.2 
-0.1 
0.1 0.1 
0.1 0.1 

Cdive 175.5 C head 971.8 

When the manually tuned parameters are implemented in the submarine controllers the 

simulated output, output error and input responses in Figure 6.7 are obtained. The 

desired responses are represented by the dashed lines. 

15 1 

! '~ i~~I · i · ·· · l ·· l l 
-50 10 20 30 40 50 60 70 80 90 100 

I~t~ l rr [ l 
o 0 in io 30 «> 50 W 70 80 'Xl ICXl 

rhLm 1"'1 ! f i l 
o 10 20 30 40 50 60 70 80 90 100 

fi~T ··········· · ·· ... 1 
] -0 0 10 ~ ~ 40 50 60 70 80 90 100 

f~M j ~"'! i ' i 1 
o 10 20 30 40 50 60 70 80 90 100 

~ l L±f1"T"' , ···;1.· .... mi·· j 

~ ~fftf1 Fl ···· i, ·········~······· ··~ · L 
time (s) time (s) 

(a) Diving Subsystem Responses (b) Heading Subsystem Responses 

Figure 6.7: Manually Tuned Submarine Responses 

These responses are considered to be good inasmuch as the input signals operate well 

within recommended actuator amplitude limits (i.e. ±35° for rudder and ±25° for 

stemplane), thus allowing approximately 20° to be available if additional control is 

required to compensate for disturbances [Eda (1972) , Price and Bishop (1974), Fossen 
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(1994)]. Also both the output errors converge to zero , thus indicating that the 

controllers manipulate the outputs so that they track the desired response. Hence both 

SM controllers are operating as required. It should be noted that the duration of the 

manoeuvres is sufficiently long as to reduce the amount of resistance to the commanded 

motions and thus limit the amount of cavitation created by the hull. It can therefore be 

said that this design is considered to be a good benchmark for the optimisation results to 

be compared with and can be taken as an optimum region for the search space in this 

problem. 

Unfortunately, manual tuning is not a reliable process for finding optimal parameter 

values in that it often relies on luck as well as sound engineering judgement. It also 

involves a large number of designer hours to obtain an optimum result which can be 

tedious. Due to designer inexperience it took 80 design hours to obtain this solution. 

6.4.4 SA Results 

The parameter values in Table 6.5 are representative of those obtained from the 

controller optimisation using Simulated Annealing which starts its optimisation at a 

randomly generated point which is far from the optimum region (called SA(f)). Here 

the optimum region is defined as the manually tuned values. It should be noted that 

each subsystem is optimised separately through their individual costs. 

Table 6.5: SA(f) Optimised Submarine Controller Parameters 

Parameters Parameters 
-8.0735 -14.2700 
-9.3336 

-35.0190 
0.0001 4.0768 

8.9988 50.3473 

Cdive 160143.01 Chead 3154.34 

When these values are compared with the manually tuned values it can be clearly seen 

that they are not within the optimum region. This does not necessarily mean that they 

provide a suboptimal solution until the corresponding costs are considered. These show 

that the costs are considerably larger than the manually tuned calculation thus indicating 

that the solutions are not optimal. Another way to determine this is by observing the 
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performance of the controllers through the outputs, output errors and inputs shown in 

Figure 6.8. Again the desired responses are represented by dashed lines. 

(a) Diving Subsystem Responses (b) Heading Subsystem Responses 

Figure 6.8: SA(f) Optimised Submarine Responses 

As expected by the cost values and the SA theory presented in Chapter 3 these responses 

are suboptimal. They are unsatisfactory since the cost function design criteria for both 

subsystems are not met. In fact the control systems provide oscillatory inputs for both 

subsystems and as a result the outputs do not follow the desired responses thus giving a 

large varying error. This is most noticeable in the diving subsystem, whereas the 

heading controller has tracked the desired response well. However the rudder 

deflections are undesirable due to oscillations. Therefore it can be said that the SA(f) 

method has designed final controller parameters which do not provide optimum 

responses and may cause the system to become unstable. This verifies that this method 

would not converge to an optimal solution if the starting point is too far from the 

optimal region. 

Table 6.6: SA(n) Optimised Submarine Controller Parameters 

Parameters Parameters 

-0.4378 -0.2183 

-0.1397 -0.5097 

-0.0829 
2.3434 2.9419 

2.5478 5.4568 

177.46 971.76 
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When the SA is given the manually tuned parameters as its starting points (called 

SA(n)) the optimised values in Table 6.6 are typical of those obtained. The cost values 

are also given. These parameter values and costs are very similar to the manually tuned 

values thus indicating that the SA(n) remains within the optimum region. This is further 

evaluated by examining the same set of responses as observed previously (see Figure 

6.9). 
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Figure 6.9: SA(n) Optimised Submarine Responses 

These responses are considered to be good in that they are similar to the manually tuned 

responses of Figure 6.7. However, there are slight differences between the two sets of 

results. Firstly the control action of both inputs are not as large and generally smoother 

in the context of a reduced initial duration where exceeding the rate limit. It can also be 

seen that the peak error is slightly larger in both subsystems. This indicates that the SA 

obtained a solution which has a smooth input response at the expense of desired output 

tracking. Either way the solution is still close to the optimum as comparison with the 

manually tuned cost shows (see Table 6.6). However, the major variation in the 

parameters are in both switching gains and boundary layer thickness. It can be seen that 

the SA values are much larger which would indicate that the optimisation method is 

insensitive to direct variation in these parameters. However, when the ratio of 1J/¢ is 

considered it is found to be approximately unity for both. This is the same as the 

manually tuned case and would indicate that the ratio is being optimised rather than the 

individual parameters. 
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It is clear that this method requires a-priori knowledge of the location of the optimum 

region in order to obtain final results which are optimal. This indicates that the basic 

SA method needs to start its search in the optimal region so that it can be successful as 

an optimisation technique. Unfortunately, prior knowledge of where the optimum 

region lies can never be guaranteed and thus SA is an unreliable global search method. 

However, it performs well as a local method which could be used to fine tune solutions 

which have been obtained globally (e.g. by manual tuning). 

6.4.5 SSA Results 

With the SSA search the initial solutions are generated randomly throughout the search 

space. The final parameter values in Table 6.7 are obtained from a typical run of thi s 

method. 

Table 6.7: SSA Optimised Submarine Controller Parameters 

Parameters 
-0.2641 
-0.1694 
-0.0820 
0.1594 3.1493 
0.1978 19.8663 
174.23 973.54 

These optimal values and their associated costs are very similar to both the manually 

tuned and SA(n) values. However the increased value of ph2 has been compensated for 

by an increase in the boundary layer. On inspection of the responses that correspond to 

these parameters it is found that the obtained solution is optimal for the same reasons 

that the manually tuned responses are good (see Appendix B.1 for time histories). It 

should be noted that the cost values are of a similar magnitude to the manually tuned 

costs. Therefore this solution can be said to be in the optimal region for thi s problem. 

In order to support that this is an optimal solution, the cost convergence of the run 

considered here should be considered. This is achieved by observing the response of the 

sum of the two subsystems costs , in particular the median cost value of all the SA runs 

(see Figure 6.1 O(a)) and the best SA run (see Figure 6.1 O(b)) of the optimisation. 
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Figure 6.10: SSA Cost Convergence Responses 

It can be seen from the median cost that as the optimisation progresses the cost of the 

solutions found converge to a smaller value, thus indicating that a region of small cost 

(i.e. an optimum region) is found. However, the best cost history shows that the search 

converged to the optimum region within 36 iterations of this run. Since this particular 

run is the third to be executed, there are only 440 iterations to obtain this solution. 

Although this is a small number it cannot be guaranteed to be as small as this every time 

since the convergence depends on how close the initial solution is to the optimal region 

which is determined randomly. Therefore there is equal likelihood that the last run as 

well as the first will start near the optimum and hence provide the best run. It follows 

that every run of the SSA must be executed in order to obtain a globally optimal final 

solution. 
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Another way of determining how efficient this method is at obtaining the optimal region 

is the number of final solutions that each SA run provides that is similar to the best in 

terms of parameter values and cost. This clustering effect is called Saturation and 

would naturally occur if numerous runs start near the optimal region. The saturation of 

this SSA is represented by the histogram shown in Figure 6.11 where the sum of the 

subsystems' cost values are ranked in descending order. 

Figure 6.11(a) shows that there is a wide variation in cost values and that only a few can 

be considered optimally small. Figure 6.11 (b) shows the first 4 runs and only 3 of these 

are within the optimal region (i.e. 15% of the solutions). This is further verified by the 

corresponding parameter values which are similar to the best solution. These saturated 

solutions provide confidence in the best solution being close to the global optimum. If 

there is no saturation then there would be no way to determine if this a local solution 

and not the best that can be achieved. 

This analysis has shown that even though the convergence rate for this method cannot 

always be guaranteed to be small, it can obtain an optimal final solution with 

considerable confidence. This is considered to be the major advantage of using SSA, 

when compared with SA, in that it does not need a-priori knowledge of the optimum 

region in order to obtain an optimal final solution. Thus the results provided here lend 

support to the theory in Chapter 3 that this is a much better global search method than 

SA. 

6.4.6 GA Results 

The final set of results are obtained from GA optimisation. Typical parameters values 

and associated costs obtained from an optimisation using this method are presented in 

Table 6.8. This search method varies from the SSA methods in that it used the sum of 

the two subsystems' costs to optimise the controllers instead of dealing with them 

individually. 

Again these parameters are similar to the optimal solutions obtained by the previous 

methods and give similar responses (see Appendix B.2). It should be noted that the cost 

values are slightly smaller than previous solutions (particularly the heading subsystem). 
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Table 6.8: GA Optimised Submarine Controller Parameters 

Therefore the performance of this method as a global technique is shown to be very 

good. 

This is further verified by observing the cost histories as in the SSA study. Again the 

median costs (Figure (6. 12(a))) and the best costs (Figure (6.12(b ))) for each generation 

are shown. 
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(a) Median Cost History (b) Best Run Cost History 

Figure 6.12: GA Cost Convergence Responses 

The median cost shows that this method converges to an optimal regIOn within 20 

generations even though the mutation rate is high for the method used here. Also the 

best cost shows that the GA converges to the optimum cost region within 7 generations. 

Since there are 40 iterations of the problem in each generation the number of iteration 

executed is 280. This is a typical value for this method when applied to this problem 

and does not require further iterations to ensure convergence. Therefore this method 

converges more quickly than the SSA method. 
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In order to continue the comparison the amount of saturatl'on l'n the f' I " ma generatIon IS 

considered. This is illustrated by the histograms shown in Figure 6.13 . 
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Figure 6.13: GA Final Solution Costs 
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Again the wide variation in the generation costs can be seen in Figure 6.13(a) indicating 

that a sufficient search has been executed. The plot in Figure 6.13(b) shows the costs of 

the best individuals in the generation. It can be clearly seen that the amount of 

saturation (i.e. 15 individuals, 30% of the generation) is considerably more than in the 

SSA case. This provides even more confidence in the best solution being the global 

optimum. 

6.4.7 Sliding Mode Boundary Layer Operation 

Post-optimisation analysis of the optimal results obtained in this study show that the 

optimal controllers operate in the boundary layer alone rather than including the non­

linear extremities of the switching term (see Figure 6.14 where the dashed line is the 

tanh switching function and the solid line is the operating region of the controllers). 

In this region the switching term is proportional to the sliding surface i.e. 

(6.16) 

Thus, the controller structures become 

(6.17 ) 
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Figure 6.14: Switching Operating Regions 

Since the sliding surfaces are characterised by proportional and derivative (PD) error 

terms, the controllers become a hybrid of PD states and errors alone. Therefore, the 

controllers have linear PD properties rather than non-linear sliding mode switching 

terms in this region. Therefore, in order to ensure good performance the SM controllers 

operate in the boundary layer. 

Although these controllers do have a PD structure, they retain the switching range which 

limits the controller action in the event of a large output error occurring. This could 

happen if the input is larger or if external disturbances (e.g. waves or water currents) are 

applied [Eda (1972), Price and Bishop (1974), Fossen (1994)]. Although the 

performance would be affected by this limiting factor, it improves the robustness of the 

controllers. 

6.S Summary 

This chapter has presented the finding of a controller parameter optimisation study for a 

linear submarine model. In it the optimisation of two Sliding Mode controllers for the 

depth and heading control of the submarine was considered. These presented a good 

test for this type of model since cross-coupling between the two systems and the 

parametric complexity of the controllers are high for this system. The three 

optimisation methods used here are discussed below. 
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It has been illustrated that in this application Simulated Annealing only operates 

satisfactorily as a local optimisation method and requires a-priori knowledge of the 

optimal region in order to give satisfactory final responses. This, in a way, defeats the 

purpose of an global optimisation method as an optimal solution is already available. 

However it is suggested that this method could fine tune a solution which has already 

been obtained by other means. 

The Segmented Simulated Annealing process has been shown to provide a fine tuned 

final solution without any knowledge of the optimal region within the problem search 

space. Therefore segmenting the search space improves the performance of the SA 

method. However the amount of saturation in the final solutions is small and provides 

limited confidence in the optimal solution that has been obtained. Nevertheless it is 

considered to be a good global optimisation method. 

The Elite Genetic Algorithm studied here has been shown to be a good global search 

method which converges quickly to the optimum region. With regards to saturation this 

method provides adequate comparison within its final generation to give confidence in 

the optimal solution it provides. 

It can be seen from the three methods considered that only two can be used for global 

searches (i.e. SSA and GA). This verifies the theories set out in Chapters 3 and 4. 

Moreover this comparison has indicated the advantages and disadvantages of using 

these methods for the optimisation problem considered here. These conclusions are also 

found to apply when these controllers are optimised in the presence of simulated sea 

current disturbances. 

Since the same number of evaluations are executed by all the methods, it takes the same 

amount of time to optimise in each case. Coding these algorithms in MATLABTM and 

running them on a l66MHz Pentium PC took approximately 3 hours. This is a 

considerable saving on the 80 design hours it took to manually tune the controllers. 

Therefore it can be said that the SSA and GA methods can obtain solutions more 

quickly than conventional design methods. 
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Chapter 7: 

Super Tanker Application 

7.1 Introduction 

The second application considered in this work is the automatic control of a super 

tanker. These are large surface vessels that are used by the petroleum industry to 

transport crude oil [Berlekom and Goddard (1972)]. Although the resulting petroleum 

products affect nearly everything and everyone in modem life since the uses of oil are so 

widespread, they come with a hidden cost through the transportation of the crude oil 

[Crane (1973), Kallstrom et al (1979)]. Moving large quantities of oil inevitably 

involves risks to the environment and in the past few years safety issues have arisen 

concerning oil tanker navigation and control. These mostly arise from accidents such as 

the 'Sea Empress' disaster which had a considerable impact on the ecosystem of the 

local environment and will still have an effect for some time to come. As well as the 

environmental cost, it also presented a major cost to the oil company through loss of 

revenue, the effective loss of a ship and the subsequent clean up operation. 

In order to avoid such incidences happening it is very important to find ways to control 

the motion of these vessels safely [Crane (1973), Kallstrom (1979), Kallstrom et al 

(1979), Astrom (1976), Zuidweg (1970)]. This is not an easy task due to the size of 

these tankers which in the case of super tankers can be in excess of 300m in length. 

Their bulk makes them very difficult to manoeuvre and this is not aided by the restricted 

proportions of the ships' main heading actuator (the rudder) [Crane (1973), Kallstrom et 

al (1979), Fossen (1994), MCGookin et al (1997 (a),(c),(e)]. However, the use of 

automatic control systems could help to provide an answer to the problem of diminished 

controllability. Such control systems have to be able to minimise the rudder effort as 

the ship is manoeuvred so that actuator saturation does not occur if additional effort is 

needed to counteract external disturbances [Eda (1972), Price and Bishop (1974), 

Fossen (1994)] or further changes in heading. 

This chapter describes two automatic control systems for such a vessel. The first is a 

simple course changing control system which reacts to heading commands from a pilot 

in a similar way to the heading control system defined in the previous chapter [Fossen 
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(1994), MCGookin et al (1997(c),(e», Kallstrom et al (1979), Zuidweg (1 970)]. The 

second system considered here replaces the pilot/helmsman commands with the inputs 

from an autopilot and thus converts the system to a full y autonomous course keeping 

control system [Fossen (1994), MCGookin et al (1997(a),(e)]. This type of control 

system is not implemented in submarines as it requires GPS data to determine the 

heading which can only be obtained when the communications periscope is extended 

(i.e. near to the surface of the water). 

This chapter deals with the above issues through the following structure. Section 7.2 

describes the mathematical model of the tanker used in this optimisation study and 

outlines the problem of controlling these vessels in general. Section 7.3 describes both 

control systems used in this study. It will be shown that the same sliding mode 

controller for course changing can be used in the course keeping system while still 

maintaining the desired control effect. The penultimate section details the results 

obtained from the optimisation and the final section draws conclusions from these 

results. 

7.2 Tanker Model in State Space Form 

7.2.1 Tanker Dynamics 

BODY -FIXED REFERENCE FRAME yaw angle 

rudder angle 

(&) ~.1: 

/ 11. . .. . .... sway (v ) 

propellor rpm (n) Y B 

. . ...... . '-

(11' ) 

~ 
depth (h) 

yaw rate (r) 

EARTH-FIXED REFERENCE FRAME 

Figure 7.1: Tanker Reference Frames and Velocities 
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The mathematical representation used in this study models the heading and propulsion 

dynamics of a 190,000 dwt super tanker fo r transporting oil [Berlekom and Goddard 

1972), Fossen (1994)] . The state variables of this representation are illustrated in Figure 

7.1 as are the two reference frames. It can be clearly seen that the roll, pitch and heave 

dynamics are not considered here . This is usually the case when control systems for 

large surface vessels are simulated as they playa minimal role in the ship 's motion. 

The corresponding states and inputs for this vessel are outlined in Table 7.1. 

Table 7.1 : Tanker States and Inputs 

u 
v 
r 

8r 
n 

The model used here is non-linear and it exhibits cross-coupling between the mam 

dynamics. Therefore this is a good example in which to apply the decoupling process 

for the design of a sliding mode controller and to verify its effectiveness on non-linear 

systems. An additional aspect of this model is that it changes its dynamics with the 

depth of water (h) it travels on [Berlekom and Goddard (1972), Norrbin (1970), Fossen 

(1994)]. Again this will test the performance of the sliding mode (SM) theory since the 

vessel dynamics will be continually changing. 

As with the submarine, the dynamics of this vessel can be represented by the kinetic and 

kinematic equations. Due to the cross-coupling of the states and inputs , the kinetic 

equation exhibits extensive nonlinearities i.e. 

M(u)v + C(v,u)v + D(v)v +T(v)v = B'(v ,u)u (7.1 ) 

Again M, C and D are the masslinertia, Coriolis and damping matrices but in thi s case 

they are functions of the states and inputs . T represents the thrust dynamics of the 

propeller and B' relates the inputs to the system. It should be noted that there are no 

I W ater depth is a semi-controllable input since the pilot can direct the vessel in to areas wi th suitable 

water depths. These depths are obtained from bath ymetry charts of the voyage area. 
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gravitational or buoyancy terms (i.e. G is a zero vector). This is a result of Archimede's 

Principle [Fox and McDonald (1985)] which states that the buoyancy and weight of a 

floating body are equal and since roll and pitch are not modelled then the positions of 

the centres of buoyancy and gravity result in the vessel being neutrally buoyant [Fossen 

(1994)]. In this model the body-fixed velocities vector V reduces to V= [u, v, r]T and 1] 

becomes 11 = [xp, Yp, 1fI]T. The input vector u has the commanded inputs for the rudder 

and the propeller rpm. It also involves the depth of water, h, as mentioned earlier (i.e. u 

= [ore, ne, h]T). The interconnection of this input within the model causes a great deal of 

the dynamic cross-coupling and variation within this system (see Appendix A.2). 

In addition to the states mentioned above, the model has two further states. These are 

the actual rudder deflection and propeller rpm after limits have been applied. This will 

be dealt with in the next section. 

Although the kinetic equations differ from the standard form discussed in the previous 

chapter, the kinematic equations remain the same since the geometric relationships 

between the two references are the same i.e. 

(7.2) 

In this case J is reduced to the three states that are required since motion related to the 

ZE axis is not possible. 

To represent these equations in a standard state space form, (7.1) is rearranged to yield 

v = _M(U)-l( C(v,u)+ D(v)+ T(v))v + M(U)-lB'(v,u)u (7.3) 

When equations (7.2) and (7.3) are combined together the following matrix form is 

produced 

This can be written as 

x = A(x, u)x + B(x, u)u (7.5) 

Or more generally 
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x = f(x, u) (7 .6) 

which is the standard state-space form of a non-linear system (see Appendix A.2 for 

model). 

7.2.2 Input Actuator Dynamics 

As in the submarine case, the dynamics of the input actuators are modelled for the 

tanker. This obviously excludes the water depth input which is not a mechanical 

process. However the actual rudder and propeller rpm, after being subjected to rate and 

amplitude limits, are states of the system (see Table 7.1). Therefore the inputs are the 

commanded values which may be outside the physical operating range of the actuators. 

The rate and amplitude limit values for each of the actuators are show in Table 7.2 and 

represent standard values for this specific vessel. 

Table 7.2: Actuator Limit Values 

ACTUATOR RATE LIMIT MAGNITUDE 
RUDDER 2.33 

PROPELLOR RPM 80 

The rate limit for the propeller is not stated since the dynamics of its derivative is 

governed by a time constant, ~} i.e. 

Ii' = _1 (n - nJ.60 
Tp 

(7 .7) 

where Tp = 50 and the values of nand nc are in revolutions per second. The quantity n / 

has units of revolutions per minute. 

7.2.3 Rudder Effectiveness 

The main problem with controlling the heading of tankers is the limitations of the 

rudder actuator. In order to manoeuvre such a large vessel, a large turning moment is 

required to overcome the inertia. Generation of a turning moment of thi s size depends 

primarily on the localised flow over the rudder (i.e. the larger the flow the greater the 

turning moment) [Fossen (1994), MCGookin et al (l997(e». Therefore the effectivene s 
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of the rudder to produce a large enough turning moment defines the rise time of the 

particular motion response of a vessel of the type considered here. 

The localised flow over the rudder is represented in the model as the variable c which is 

obtained from the following equation [Fossen (1994)]. 

(7.8) 

Here Cun and Cnn are constants [Fossen (1994)]. This illustrates that it is a function of the 

surge velocity, u, and the propeller rpm, n. This is due to the location of the rudder 

immediately aft of the propeller. Since the value of n is usually kept constant the 

dominant factor in the flow expression is the surge velocity. For a tanker this velocity is 

relatively small due to the size of the vessel. This coupled with the large inertia that has 

to be overcome to execute the manoeuvre makes the rudder less effective than the 

rudder of a smaller and faster vessel. 

This deficiency indicates that in order to initiate a manoeuvre the rudder deflection must 

be large which runs the risk of saturating the actuator and rendering it ineffectual for any 

further commands during the motion. Therefore any automatic control system must be 

able to execute a commanded tum accurately while keeping the rudder deflection within 

its operational limits (see Table 7.2). Hence the trade off between accuracy and actuator 

saturation is the major problem that needs to be addressed in this application. 

7.3 DecoupJed Subsystems 

Although there are two main dynamics in this model (i.e. propulsion and heading), only 

the heading motion has a sliding mode controller to govern the vehicle's course 

changing motion. The propulsion dynamics are usually controlled by simple step 

commands and the dynamics of the system self regulate the response (see equation 

(7.8»). Therefore, only the course changing subsystem needs to be decoupled from the 

main dynamics in order to control the heading of the vessel. 
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7.3.1 Course Changing Subsystem 

The course changing subsystem describes the heading motion in the XB- Y B plane (see 

Figure 7.2) as in the submarine application. However the subsystem for obtaining the 

course changing controller differs in terms of the particular states used to represent it , 

even though the task of regulating the heading angle, If/, by manipulation of the rudder 

actuator, 8r, is the same. Due to practical economic considerations it is very unlikely 

that any additional expense will be allowed in obtaining the states for feedback . This is 

particularly the case with the sway velocity, v, where some commercial ships may not 

have a gyroscope to measure this variable whereas it would be available in the case of a 

military vessel (e.g. a submarine). Therefore, it is unreasonable to use this state in this 

application and the subsystem decouples to a third order system with states r, lfI and 8r 

with the commanded rudder deflection 8rc as the input [Fossen (1994)]. 

-~t-t------~~::----:J---
I ..... 

: _8~_[:-: ..... 
I 
I 
I 

• 
v 

Figure 7.2: Course Changing Manoeuvre 

Decoupling this motion results in a SISO system of the following state space form. 

(7.9) 

where the state vector, XH = [r, lfI, 8r]T. This representation of the subsystem allows the 

sliding mode theory of Chapter 5 to be applied (see section 5.4). 

(7 .10) 
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The desired states are fonned so that the controller will attempt to follow a second order 

response to a commanded step from a pilot. Thus the course changing manoeuvre is 

controlled in a similar way to that used by in the submarine case i.e. through governing 

the heading angle by mean of the rudder actuator. 

Since the representation of the heading dynamics (equation (7.9)) does not have an 

estimate of the model uncertainties, the switching gain criterion for performance 

robustness (see Chapter 5) is taken to be 

(7.11) 

This is satisfied during the optimisation process by ensuring the parameter values for 

this gain are positive definite. 

7.3.2 Decoupled Course Changing Controller Application to the Main System 

In the course changing configuration of this model, the rudder actuator command for the 

tanker model is obtained from a sliding mode controller. The input for the propulsion 

system is a simple step and the water depth is defined externally to the model. These 

provide the inputs to the model's kinetic and kinematic equations (see Figure 7.3). As 

in the submarine system, before the commanded signals are applied to the model they 

are passed through rate and amplitude limit checks which implement the actuator limits 

shown in Table 7.2. These elements reduce the rate of response of the inputs and add a 

further non-linear element to the system. 
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Figure 7.3: Tanker Model and Course Changing Controller Configuration 
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The simulation of this system in the course changing manoeuvre is based on Figure 7.3 

and again the states are obtained from the state space equation by the Euler integration 

method [Cheney and Kincaid (1985)]. 

7.3.3 Course Keeping Subsystem 

In course keeping the tanker control system is fully autonomous in that it automatically 

guides the vessel on a predetermined course without the necessity of a human operator. 

As long as the course is selected so that it avoids hazardous regions, such as shallow 

water, the passage of the tanker should be safe and uneventful. This system tracks a 

desired heading provided by an autopilot that determines course changes depending on 

the tanker's present position. 

If this is compared with course changing it is easy to see that in course keeping the step 

commands from the pilot/helmsman are replaced by signals from the autopilot. 

Therefore there are two fundamental components to this control system i.e. an autopilot 

[Fossen (1994), Healey and Marco (1992), Healey and Lienard (1993)] and a course 

changing controller [Fossen (1994), MCGookin et al (1997(c),(e)), Kallstrom et al 

(1979), Zuidweg (1970)] which are configured to the tanker model in the way shown in 

Figure 7.4. The course changing controller has the structure shown in equation (7.10). 
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GPS Position Data ( xp' Yp) 

Figure 7.4: Course Keeping Control System and Tanker Model 

This figure shows that the autopilot is integrated into the course changing 

controller/tanker system through the addition of an outer feedback loop which stabilises 
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the tanker position. The addition of an autopilot enables the tanker to keep course 

accurately which is of particular use in coastal or hazardous waters [Berlekom and 

Goddard (1972) , Crane (1973), Fossen (1994)]. 

The particular type of autopilot used here is called a Line Of Sight (LOS) autopi lot 

[Fossen (1994), Healey and Marco (1992), Healey and Lienard (1 993)] since it provides 

a desired heading reference from a direct line between the tanker's current position and 

its destination. It achieves this by directing the tanker along a predetermined course 

which is set out prior to autopilot activation. This course is made up of points called 

waypoints [Fossen (1994), Healey and Marco (1992) , Healey and Lienard (1993 )] that 

are used to calculate the reference heading angle between the tanker's present position 

and the waypoint position (see Figure 7.S(a)). This heading angle lfIref is obtained from 

equation (7.12) [Fossen (1994), Healey and Marco (1992), Healey and Lienard (1993)]. 

The sign convention for this angle defines that positive angles (00 < lfIref ~ 1800 ) are to 

starboard and negative angles (-1800 < lfIref < 00
) are to port. 

-1( Y wp - Y P J lfIref = tan 
x wp - xp 

(7.12) 

In this equation (xp, yp) are the current position co-ordinates of the tanker obtained from 

a Global Positioning System (GPS) and (xwp , y"p) are the waypoint co-ordinates. The 

reference heading is then used to obtain the desired heading response for the controller 

to track. 
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The autopilot guides the tanker from waypoint to waypoint in the following way. Once 

the tanker comes within a specified distance of the current waypoint, the autopilot 

acquires the next waypoint position and the tanker heads towards it (see Figure 7.5(b». 

This distance is called the acceptance radius and is typically between one and three boat 

lengths. The acquisition process is repeated until the tanker reaches its final destination. 

7.4 External Environment Considerations 

In order to simulate both the course changing and course keeping tanker systems, an 

artificial external environment has been created which differs for each control system. 

This involves the water depth configuration but also the waypoint course used for the 

course keeping study. 

7.4.1 Course Changing Depth Configuration 

In course changing there was no need for an elaborate depth configuration but a suitable 

change of depth is required for this investigation. This is obtained from consideration of 

how the water depth (h) interacts with the other dynamics. Within the model a 

parameter S is used to relate the depth of water under the vessel (h) and its draft to the 

design waterline (D) in the following equation. 

D 
S=h-D 

This gives the graphical representation of S against h shown in Figure 7.6. 

(7.13) 

On this graph the draft is represented by a dashed line. Also shown is a transition point 

where the hydrodynamic coefficient Yuv, changes value. It obeys the following 

conditional operation. 

(7.14) 

The result of this transition changes the dynamics of the sway equation by increasing the 

surge/sway coupling by an amount related to depth ratio S. Thus the ship starts to lose a 

certain degree of sway stability. 
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Figure 7.6: Depth Relationship 

180 200 

It can be clearly seen from Figure 7.6 that this relationship does not vary significantly 

for depths greater than 100m. Therefore, there are two distinct operating regions and a 

suitable choice would be to include a depth from both of them. However, it is normal 

practice for tankers to operate in water depths that are at least three times their draft 

which in this case is 55.38m [Crane (1973), Norrbin (1970)]. Therefore a depth of 

200m has been used for the course changing study of this vessel. This should allow a 

suitably realistic operating environment for this vessel to be evaluated in the context of 

controller performance. It has been found that varying the depth does not effect the 

controller performance significantly [McGookin (1997(e)] 

7.4.2 Course Keeping Depth and Autopilot Waypoint Configurations 

In the course keeping study, a slightly more sophisticated external environment IS 

required because the tanker's inertially referenced position is required for the autopilot 

operation. This calls for a fixed bathymetry contour for the autopilot to guide the tanker 

through, thus enabling the autopilot waypoints to be placed within this depth 

configuration. The depth configuration used in this study allows full advantage to be 

taken of the tanker model dynamics. The configuration used is illustrated in Figure 7.7 

and is created to represent a change in depth from deep water (500m) to shallow (25m). 
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Figure 7.7: Water Depth Configuration 

The deep water area is limited to this depth since further increase will not affect the 

tanker dynamics. Although the shallowest point is less than the recommended operating 

depth of about three times the draft [Crane (1973), Norrbin (1970)], it is used to 

investigate the controllability of the vessel if it got into trouble in shallow waters. The 

shallow waters are restricted by the banks of the channel which are used to limit the 

manoeuvrability of the tanker in this area. Unfortunately the banking effects 

encountered in such a narrow water channel are not incorporated into the model and 

could not be investigated here [Berlekom and Goddard (1972)]. 

The course laid out for the autopilot to follow must keep within the bounds of the depth 

configuration described above. In this case three points are used and their co-ordinates 

are illustrated in Figure 7.8. 
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The acceptance radii, projected course and depth contours are also shown in this figure. 

It should be noted that the radii of the waypoints in the shallower waters are only one 

boat length whereas in deeper water it is taken as two boat lengths. The shallow water 

radii are smaller because of the bank constraints of the channel. This calls for greater 

acquisition accuracy on behalf of the autopilot due to the constrained manoeuvrability in 

this region. In the deeper water this is not a problem since there is more room to move. 

7.5 Optimisation Process and Results 

As with the previous optimisation study, this problem also has numerous design aspects 

which must be defined in order to proceed. This section defines the parameters that are 

to be optimised for both the course changing and keeping control systems. Also the cost 

functions used as the optimisation criteria are outlined. Although the cost function used 

for both optimisations are similar, the course keeping system has an additional penalty 

cost which is related to the autopilot waypoint acquisition. In order to implement these 

costs a desired heading response for each system has to be defined. The final sections 

will present the optimisation results of this study along with manually tuned solutions 

for comparison. 

7.5.1 Controller Parameters 

The key design parameters which have been chosen to be optimised for both control 

systems are shown in Table 7.3. It can be seen that these parameters are the same as 

those used in the submarine heading controller optimisation in Chapter 6. 

Table 7.3: Tanker Controller Parameters to be optimised 

1st Closed 100 

2nd Closed 100 ole 
Switching gain 
Boundary Layer Thickness 

The first two parameters (phi, ph2) are two poles of the decoupled closed system (the 

third is a zero and corresponds to the yaw dynamics). These poles are used to obtain the 

feedback gain vector kH and closed loop system right eigenvector hH which are both 

constituent parts of the controller in equation (7.10). The final two design parameters 

are 11H and t/JH which are related to the switching action of this type of controller. As 
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mentioned previously the sw't h" . 
1 C tng gam 17H determmes the magnitude of the switch and 

f/>H defines the size of the boundary layer. 

7.5.2 Cost Functions and Desired Responses 

Again the optimisation design criterion is defined by the cost function. Since there are 

two systems which have different roles to fulfil, their individual cost functions must 

accommodate these differences. In addition to this each has a different desired response 

which the controller is required to track. Both these aspects are addressed separately for 

course changing and course keeping controllers. 

7.5.2.1 Course Changing Cost Function and Desired Response 

The cost function used as the design criterion in the course changing sections of this 

investigation is defined by equation (7.15) [Dove and Wright (1991)]. This function is 

similar to the integral least squares criterion used in the submarine optimisation i.e. 

tot 

CPER = I[A(dlfl;)2 +(Olj)2] (7.15) 
i=O 

Here tot is the total number of iterations, A is a scaling factor (A = 10 in this case), dlfl; is 

the ith heading angle error between the desired and obtained heading, Or; is the ith 

rudder deflection [Dove and Wright (1991), McGookin et al (1997 (c),(e))]. Since the 

optimisation processes attempt to minimise the value of this function it is easy to see 

that both dlfl and Or will be minimised too. The selection of these elements follows the 

same reasoning as in the submarine study. However the elements are more specific for 

this heading controller whereas the submarine case was general in order to cover the 

diving and heading motions. Therefore following this train of thought, the quantity dlfl 

gives an indication of how well the controller is operating by showing the tracking 

between the actual and desired headings. The input component Or is used to keep 

rudder actuator movement to a minimum so that it can operate well within the actuator's 

operating limits. As well as this being of importance for SM controllers (i.e. to 

eliminate chatter) it is essential for this tanker application. It has been shown in Section 

7.2.3 that large rudder deflections are required to manoeuvre such a vessel. This may 

cause problems since excessive control effort may be employed in order to reduce the 
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output error. As a consequence of this the rudder deflection will always be larger than 

the output error near the optimum and will thus dominate the cost values in this area. 

Hence the heading (output) error is scaled by the It constant so that an equally balanced 

trade-off between these elements is obtained and thus avoid excessive rudder usage. 

Another advantage of minimising the rudder deflection is the resulting savings in terms 

of fuel consumption since the resistance to the forward motion is minimised [Dove and 

Wright (1991)]. This results from the minimised rudder producing less drag since the 

amount of the hull which is in opposition to the turning manoeuvre is reduced. Hence 

more of the forward force goes to maintaining a relatively constant surge velocity and 

less fuel is used. 

As with the submarine application a desired heading response is required for the 

optimisation process. So that this study can be compared with the submarine 

investigation the same heading manoeuvre is used here. This is a critically damped step 

response which represents a 45 0 tum as shown in Figure 7.9. Although both desired 

heading responses are similar in shape, the duration of this response is much larger to 

account for the reduced manoeuvring ability of the tanker. 
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Figure 7.9: Desired Heading Response (45 0 manoeuvre) 

This provides the desired heading states for the controller and thus enables the state 

error vector to be calculated. From these the value of the heading error can be obtained 

and used to calculate the cost (equation (7.15)) for each solution generated by the 

. . . Again this manoeuvre is considered to be a sufficient test for optImIsatIOn processes. 

the course changing controller for this vessel. 
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7.5.2.2 Course Keeping Cost Function and Desired Response 

The cost function for the Tanker's course keeping manoeuvre has an additional 

component compared with the course changing cost function in equation (7.15). As 

well as the heading and rudder performance provided by equation (7.15) an additional 

criterion is used to monitor the number of waypoints (nwp) acquired by the autopilot. It 

is believed that in the time interval of the simulation only three waypoints should be 

acquired and therefore the following cost penalty function is used to calculate an 

addition cost value [Goldberg (1989)]. 

(7.16) 

Here K is a large value used to penalise the cost and is taken as a value of 10000 in this 

study. The sum of this cost and the performance costs from equation (7.15) gives the 

following cost equation for course keeping. 

CTOTAL = C PER + C PEN 

(7.17) 

The same value of A (i.e. A = 10) is also found to be sufficient for this part of the study. 

This total cost is used as the optimisation measure for course keeping in the same way 

as equation (7.15) alone is used for the course changing optimisations. 

As with the previous cost functions a desired heading value is required to provide the 

heading error component. This desired heading is supplied by the autopilot as it follows 

the waypoint course illustrated in Figure 7.8 and does not need to be defined in the 

specific nature as in the course changing case. Therefore the reference provided by the 

autopilot is used to obtain the heading error. 

7.5.3 Manually Tuned Results 

The first step in this optimisation study is to obtain an acceptable solution through 

manually tuning the controller parameters in Table 7.3. This gives the parameter values 

shown in Table 7.4. 
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Table 7.4: Manually Tuned Tanker Controller Parameters 

phi -0.2 
ph2 -0.1 

17H 0.1 
!PH 0.1 

The resulting controller is applied to both the course changing and course keeping 

problems. 

7.5.3.1 Course Changing Responses 

When the manually tuned parameters are implemented as the tanker course changing 

controller the simulated responses shown in Figure 7.10 are obtained. These are the 

output, output error and input responses which for this application are the heading angle, 

the heading error and the rudder deflection. 
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Figure 7.10: Manually Tuned Tanker Course Changing Responses 

These responses are considered to be good in that the tanker control system performance 

satisfies the design criteria set out for this manoeuvre. This can be clearly seen in the 

responses above since the heading error peak is small (i.e. less than 0.5°) and tracks to 

zero. Also the rudder deflections are well within the actuators operational envelope (i.e. 

less than 30°). The peak is still larger than the peak in the submarine rudder response 

which indicates that the bulk of this vessel calls for increased control effort to make it 

tum (see Section 7.2.3). This solution is found to satisfy the design criteria set for the 
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cost function and will provid d e a goo benchmark for the course changing part of this 
study. 

The cost for this response is calculated using equation (7.15) which gives the following 

value. 

CPER = 5069.53 (7.18) 

This helps estimate the optimal region for the course changing control problem. 

7.5.3.2 Course Keeping Responses 

When the manually tuned parameters are implemented in the tanker course keeping 

configuration the following simulated responses are obtained. In Figure 7.11(a) the 

heading, heading error and rudder deflections are presented as in the course changing 

case. Figure 7.11 (b) gives the position of the tanker with reference to the waypoint 

course and depth contours defined above. 

(a) Time History Responses (b) xp-YP Position Response 

Figure 7.11: Manually Tuned Tanker Course Keeping Responses 

These responses show that the tanker controller operates satisfactorily for course 

keeping since they satisfy the design criteria set out for this application. It can be clearly 

seen that the heading error peaks are sufficiently small and the response tracks to zero. 

Also the rudder usage is kept to a relative minimum and the largest peak value (i.e. 18°) 

is well within the amplitude limit for this actuator (i.e. 30°). In addition to these criteria 

the penalty cost is satisfied since the autopilot has acquired three waypoints as required. 

Since this control system has managed to manoeuvre the tanker through the 
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Predetermined course wI'th reI t' I " I " . a Ive y mInIma rudder movement, It IS lOgIcal to say that 
this is a near optimal solut' d db' . IOn an a goo enchmark for comparIson WIth the results 
from the optimisation techniques. 

In order to verify this further, the cost components for this solution are calculated using 

equation (7.17). This gives the cost values shown in Table 7.5. 

Table 7.5: Tanker Course Keeping Cost Values 

CPER 15247.74 
CPEN 0.00 

CTOTAL 15247.74 

It can be seen that the total cost for this solution is solely due to the performance 

measure and no penalty cost is applied since the autopilot has acquired the 3 waypoints. 

This total can be used as an estimate of the optimal region's cost value in the following 

investigation. 

Again the manual tuning process has been found to be a tedious and somewhat difficult 

process. It took 20 design hours to find these parameters. Therefore there is an obvious 

need for automatic optimisation for this problem. 

7.5.4 SA Results 

The SA method is used in this section to optimise separate sliding mode controller 

parameters for both course changing and course keeping manoeuvres 

7.5.4.1 Course Changing Responses 

Table 7.6: SA(f) Tanker Course Changing Controller Parameters 

phi -8.8033 
ph2 -0.0497 

11H 6.6910 

¢H 47.4657 

CPER 119222.68 

The parameter values and the related cost in Table 7.6 are obtained from the controller 

optimisation using Simulated Annealing which starts its optimisation at a randomly 
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generated point which is far from the optimum region (SA(!)). The optimum region is 

defined by the manually tuned values in Section 7.5.3. 

These values vary considerably from the manually tuned set and the cost is considerably 

larger than the value shown in equation (7.18). This indicates that the obtained solution 

is suboptimal in comparison with the manually tuned solution for this problem. This is 

reflected by the responses illustrated in Figure 7.12 . 
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Figure 7.12: SAC!) Optimised Tanker Course Changing Responses 

These responses indicate that the SAC!) method has not optimised the controller 

satisfactorily since it provides an oscillatory rudder response which would wear out this 

actuator. However the heading response tends to follow the desired heading as the small 

error shows and could be classed as an optimal solution. This is mainly due to the 

dynamics of the vessel acting like a low pass filter by not responding to the high 

frequency rudder signal. Nevertheless the SA method has designed final controller 

parameters which provide unacceptable rudder responses. This verifies the theory in 

Chapter 3 that this method would fail to converge if the starting point is too far from the 

optimal region. 

The parameter and cost values in Table 7.7 are obtained from an SA run which is given 

the manually tuned parameters as its starting points (SA(n)). This is regarded as a near 

optimum start for the search. 
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Table 7.7: SA(n) Tanker Course Changing Controller Parameters 

phI -0.1592 
ph2 -0.1653 

11H 0.7659 

l/>H 0.7189 
CPER 4996.01 

The resulting pole positions are similar to the manually tuned ones which would suggest 

a similar solution. However the values for 11H and l/>H are different which could alter the 

response of the controller. When the ratio of these two parameters is compared with the 

ratio of the manually tuned pair they are found to be similar. This could indicate that 

this controller is operating in the boundary layer as was found in the submarine case. 

How this affects the response of the controller can only be found through observing the 

simulated time history for this solution (see Figure 7.13) . 
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Figure 7.13: SA(n) Optimised Tanker Course Changing Responses 

These responses are considered to be good in that they are similar to the manually tuned 

responses of Figure 7.10. The heading error peak is small and again tracks to zero in 

finite time. This suggests that the SM controller has obtained the zero sliding surface 

and performance robustness is guaranteed. In addition to this, the rudder deflection is 

well within its operating envelope to the same extent as in the manually tuned solution. 

The satisfaction of both these criteria indicates that the SA obtained a solution which is 

within the optimum region. However, it can be considered an improvement on the 

manual solutions when the respective cost values are considered since the value in Table 

7.7 is smaller. 
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Again it is apparent that this method requires a-priori knowledge of the location of the 

optimum in order to optimise a given problem. Therefore SA is found to be a local 

search method as the theory in Chapter 3 and the results of the previous chapter testify. 

7.5.4.2 Course Keeping Responses 

The same analysis of the SA method is applied to the optimisation of a SM controller 

for course keeping. The results from SA(f) can be found in Table 7.8 below. 

Table 7.8: SA(f) Tanker Course Keeping Controller Parameters 

-15.8941 499030801.28 
-0.0006 0.00 
40.4830 CTOTAL 499030801.28 
20.7771 

As in the course changing application, the parameter values obtained by this method are 

found to differ from the manually tuned values. This solution is regarded as suboptimal 

since the cost values are large. Again this is made apparent when in the associated 

responses for this solution are considered (see Figure 7.14). 
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Figure 7.14: SA(f) Tanker Course Keeping Responses 

These responses are unsatisfactory in a similar way to the course changing responses as 

the rudder signal is very oscillatory. Again the error response shows that the desired 

heading from the autopilot is tracked sufficiently well and the three waypoints are 

acquired. This shows that the tanker does not readily respond to quick rudder changes 
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and thus the rudder has limited effectiveness in changing course rapidly (see Section 

7.2.3). 

A typical SA(n) search which starts at the manually tuned values provides the values 

shown in Table 7.9. 

Table 7.9: SA(n) Tanker Course Keeping Controller Parameters 

-0.1377 15072.95 
-0.1318 0.00 
1.6584 CTOTAL 15072.95 
1.8209 

It can be clearly seen that the pole positions are close to the manually tuned values and 

that the switching ratio (17H/CPH) is approximately the same. From the cost values it is 

apparent that the performance of this solution is within the optimal region and the three 

waypoint course has been successfully negotiated by the tanker. This can be further 

verified by the responses in Figure 7.15. 
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Figure 7.15: SA(n) Tanker Course Keeping Responses 

These show that the solution is optimal due to its similarity to the manually tuned 

responses of Figure 7.11 (i.e. minimal rudder usage and small error which tracks to 

zero). Thus the SA(n) has optimised the parameters for this control system. 

The results of this section add strength to the conclusion that SA is a local optimisation 

method which requires a-priori knowledge of the optimal region in order to optimise 
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globally [McGookin et al (1996(a))]. This is found to be the case for both the course 

changing and course keeping systems. 

However the solutions obtained by the SA(n) method positions the poles in close 

proximity to each other. This indicates that the resulting feedback gains have been 

highly tuned by this method. Although this shows no detrimental effects in the 

simulations, it could cause problems when physically applied by possibly destabilising 

the tanker or causing the rudder to saturate. 

7.5.5 SSA Results 

As with the SA investigation both course changing and keeping controllers are 

optimised separately by the SSA method. 

7.5.5.1 Course Changing Responses 

An SSA search which starts at randomly generated points within the search space is 

used to optimise the course changing SM controller problem. Typical results from such 

an optimisation are shown in the table below. 

Table 7.10: SSA Tanker Course Changing Controller Parameters 

ph1 -0.1563 
ph2 -0.1634 

17H 0.7325 

l/JH 0.6387 

CPER 4997.28 

The pole positions from this solution are similar to the previous optimal solutions 

obtained for this problem, particularly the SA(n) method. It can also be seen that the 

ratio of the switching gain to the boundary layer thickness is the same as in the previous 

near optimum solutions. Hence this solution is the same as the previous ones and is 

found to give similar responses (see Appendix C.1). This is confirmed by the 

performance cost value which is of optimal magnitude. 
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In order to verify that this method has converged to the optimum region an analysis of 

the median and best costs is required. 
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Figure 7.16: SSA Course Changing Cost Responses 

Figure 7.16(a) shows that the median cost of all the SA runs converges to a small value 

within 30 iterations. However the best cost plot illustrates that the run with the best 

final solution converges to within 10% of its final cost value in 86 iterations. As with 

the submarine case, this is not a true indication of the convergence since all the SA runs 

need to be executed to ensure the best possible solution is obtained. 

To analyse this solution further, the amount of saturation III the final solutions IS 

considered (see Figure 7.17). 
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Figure 7.17: SSA Course Changing Final Solution Costs 
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The histogram in Figure 7.17(a) shows the diversity of the final solutions in tenns of 

performance cost. The best final solutions in Figure 7 . I7(b) illustrates that saturation 

has occurred. From this histogram it can be seen that 7 individual runs (i.e. 35% of the 

solutions) have provided similar near optimum solutions . This is more than in the 

submarine case which exhibited 15% saturation. One reason for this is the smaller 

number of parameters being optimised in this case (i.e. the fewer permutations of 

parameter solutions to explore in order to find the optimum). 

Again it has been shown that the advantage of using SSA, compared with SA, is that it 

does not need a-priori knowledge in order to optimise this problem. Therefore thi s 

method is shown to be a good global method for optimising a tanker course changing 

controller. 

7.5.5.2 Course Keeping Responses 

When the SSA method is applied to the optimisation of a SM controller for the course 

keeping problem the following typical results are obtained. 

Table 7.11: SSA Tanker Course Keeping Controller Parameters 

-0.1569 15084.23 
-0.1164 0.00 
0.3447 CTOTAL 15084.23 
0.3841 

It should be noted that the pole positions are within the same region as the previous near 

optimum results. However the fine tuning action of this method has provided a solution 

with slightly higher feedback gains. As with the previous solutions, the switching ratio 

is approximately the same although the individual parameter values are different. This 

solution is considered to be a near optimal solution since the performance cost is of the 

same magnitude as previous solutions and the waypoint penalty cost is zero. When 

these values are considered in conjunction with the corresponding responses (see 

Appendix C.l) it is clear that this solution has satisfied the design criteria for thi s 

problem (i.e. small heading error, minimal rudder usage and three waypoints acquired). 

The convergence of this method is illustrated through considering the medi an cost 

response (Figure 7.18 (a)) and the best cost response (Figure 7.18(b)). 
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The median cost of all the SA runs shows converging trend towards a small cost region 

within 7 iterations of the method. However the best cost response shows that this run 

starts its search within about 10% of the final cost value. Therefore it has started within 

the optimum region. This has happened through the random segmentation process and 

cannot be guaranteed every time. 

To continue the analysis of this method the amount of saturation in the final solutions is 

illustrated by the following histograms. 
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Figure 7.19: SSA Course Keeping Final Solution Costs 

Figure 7.19(a) shows a wide range of solution cost values. However saturation is seen 

to occur in the best solutions (see Figure 7 .19(b )). In this case 8 individuals give similar 
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perfonnance (i.e. 40% of the solutions) which is the about same amount as in the course 

changing case. This provides confidence that this a near optimum solution. 

The above analysis of both the course changing and course keeping systems has shown 

that the SSA has perfonned very well as a global search technique for this problem. 

This strengthens its reputation as a better global search method than SA. 

7.5.6 GA Results 

Finally, the Elite GA method is used to optimise SM controller parameters for the tanker 

control problems discussed in this chapter. 

7.5.6.1 Course Changing Responses 

The parameter values shown in Table 7.12 are typical of those obtained by GA 

optimisation for the course changing problem. 

Table 7.12: GA Tanker Course Changing Controller Parameters 

ph] -0.2167 
ph2 -0.0990 

17H 1.2280 

¢H 0.9898 

CPER 3145.75 

The pole positions for this solution are very similar to the manually tuned values and 

will therefore behave in a similar manner. Again the individual switching gain and 

boundary layer thickness values are larger than the manually tuned values. However the 

switching ratio is approximately unity which is the same value that has been found in 

the previous solutions. This would suggest that the responses for this solution are the 

same (see Appendix C.2 for plots) and are near optimal for this problem. When the cost 

value for this solution is compared with previous optimum values it is apparent that this 

controller solution performs better in satisfying the design criteria for this problem. 

This is further confirmed by considering the convergence of the GA method through the 

median and best cost plots (see Figure 7.20). 
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Figure 7.20: GA Course Changing Cost Responses 

In Figure 7.20(a) the median cost is shown to converge to a low cost region within 3 

generations. This convergence is further illustrated by the best cost plot (Figure 

7.20(b)). It can be seen from this plot that the search obtains a solution with a cost that 

is within 1 0% of the final cost value in the 4th generation. This indicates that the GA 

has converged very quickly and with minimal a-priori knowledge. Also, this is much 

faster than in the submarine case and is due to the smaller number of controller 

parameters being optimised in this application. 

In order to extend the comparison, the amount of saturation in the final generation is 

considered (see Figure 7.21). 
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Figure 7.21: GA Course Changing Final Solution Costs 

As in the submarine case, the amount of saturation is high and provides confidence in 

the final solution being near optimal. It can be seen from Figure 7.21 (b) that there are 
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21 individuals which are similar (i.e. 42% of the final generation). This level is higher 

than the 30% experienced in the submarine optimisation in the previous chapter. Again 

this is a result of the smaller number of controller parameters and fewer solution 

permutations for this problem. 

7.5.6.2 Course Keeping Responses 

When the course keeping control system is optimised using the GA method the values 

shown in Table 7.13 are typical of those obtained. 

Table 7.13: GA Tuned Tanker Course Keeping Controller Parameters 

-0.0995 9471.16 
-0.1515 0.00 
0.4685 CTOTAL 9471.16 
0.3894 

As with the preVIOUS solutions, the poles are located in the same area and can be 

considered near optimal. Also the switching ratio has been optimised to the unity value 

as in the previous cases. The optimality of this solution can be further illustrated by the 

response for this solution (see Appendix C.2). These are found to satisfy the 

performance and penalty cost criteria for this problem as the cost values testify. 

The convergence of this search is verified by observing the cost profiles, as in previous 

analysis (see Figure 7.22). 

1.4 x 10 
4 

1.8 1.35 

1.6 1.3 

1.4 1.25 

1;; 1.2I-1
u

•
u 

••• ; •••••••••• ••• •• ; •••••••••••••• ; •••••••• + ............ ; . ....... ; ............. ; ............... ! .... .. . ..... , .. ... ... ... . 

8 
~ I~····u ... ; ......... u .... ; .............. ; ....... u .... ;.u ..• . . u.~ ....... ! .. 1 

] 0.81l .; ..... u .. ; ........... u;······.··············i······+·.u .... ; ............. + 

1.2 

§ 
1;; 1.1 5 
II 

1.1 

1.05 

0.4 

0.2 0.95 

00 0.9
0 30 40 50 60 70 80 90 100 

generations generations 

(a) Median Cost (b) Best Cost 

Figure 7.22: GA Course Keeping Cost Responses 

123 



The median cost (Figure 7.22(a» illustrates the trend of thi s search to reach an area of 

small cost solutions. It can be seen from Figure 7 .22(b) that the GA considered here 

converges to within 10% of its final cost value in 10 generations. Therefore it can be 

said to be in the optimum region for this problem. This is similar to the convergence 

rate obtained from the course changing investigation discussed in the previous section. 

Again the relatively fast convergence is due to the small number of parameters being 

optimised. 

When saturation is considered (see Figure 7.23) the number of similar individuals in the 

final solution is the same as in the course changing study (i .e. 21 individuals , 42% of the 

population). 
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This would indicate that a similar search space is being explored for both control 

problems. Also since similar parameter values are obtained for both it can be said that 

the SM controller for the tanker is sufficiently robust to give good performance 

irrespective of the manoeuvre and control system configuration (i.e. course changing or 

course keeping) it is applied to. 

7.5.7 Sliding Mode Boundary Layer Operation 

As in the submarine case, the values for T]H and ¢H vary quite considerably through the 

optimisations considered here. Again the ratio of T]i ¢H is seen to remain constant 

throughout thus indicating that in order to obtain good performance the sliding mode 
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controller must operate entirely within the boundary layer. However the existence of the 

hard limits at the extremities of the switching term guarantees robustness in the presence 

of large external disturbances (see Section 6.4.7 for detailed discussion). 

7.6 Summary 

This chapter has presented the findings of a comparison study between the optimisation 

methods and their application to control systems for a non-linear tanker model. The 

particular control systems are designed around two Sliding Mode controller applications 

which provide course changing and course keeping control capabilities for the tanker. 

The difference between these two systems is that course keeping provides a positional 

feedback loop which ensures that the vessel keeps to a predetermined course quite 

accurately. The course changing controller, on the other hand, only controls the heading 

of the vessel irrespective of the vessel's positional course. Both of these system 

configurations have been used as separate optimisation problems and the findings of the 

this application are discussed below. 

It has been shown, for both applications studied here, that the Simulated Annealing 

method is only good as a local search technique and requires knowledge of the optimal 

region in order to find an optimal solution. This is also found to be the case in the 

submarine case where parallels can be drawn. 

As expected from the theory set out in both Chapters 3 and 4, the Segmented Simulated 

Annealing and Elite Genetic Algorithm processes have performed well as global 

optimisation techniques. Both have obtained optimal solutions for course changing and 

course keeping configurations without a-priori knowledge of the optimal region. The 

convergence analysis provides evidence to support the Markov Chain analysis provided 

for both methods. These results strengthen the conclusions found in the submarine 

study and verify the theories set out in Chapters 3 and 4. 

In the submarine study (Chapter 6) the SSA method is shown to have less saturation 

than the GA method and therefore did not handle that optimisation well. However the 

level of saturation in this case is shown to be the same for both methods. Therefore the 

performance of both is the same in this respect. There are two reasons for the difference 
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in performance in both these applications. Firstly the number of parameters being 

optimised in the tanker case is smaller and therefore fewer permutations. This makes 

the problem easier to optimise since less variation is possible. The second is the 

dynamic responses of the two vessels. The submarine manoeuvres quickly and responds 

readily to its inputs. This causes greater variation in the cost values for the solutions. 

The cost values for the tanker do not vary as much since the vessel does not respond 

readily to its rudder. This limited effectiveness of the rudder reduces the variation in the 

cost values in the search space and thus the optimum is more dominant for this problem. 

It is apparent from the results of these applications that the SSA method is more 

sensitive to the number of parameters being optimised and cost variation than the GA 

method which maintains a high level of performance throughout the investigation. 

Since the same number of simulated evaluations are executed in each of the 

optimisations (i.e. 4050), it follows that each method takes the same amount of time to 

obtain a solution. In this case each optimisation took 8 hours on a 166 MHz Pentium 

running MATLABTM. This is a noticeable improvement on the manual tuning process. 

It has also been noted that the controller parameters provide similar controllers for both 

course changing and course keeping manoeuvres. Thus a single SM controller should 

be robust enough to be used for both situations as long as its parameters are optimised 

well. This is logical since the SM discussed in Chapter 5 tracks a reference signal 

irrespective of how the signal is generated (i.e. human operator or autopilot). 

126 



Chapter 8: 

Supply Ship Application 

8.1 Introduction 

The automatic control of a supply ship is chosen as the final optimisation subject for this 

study. Such ships are used for oil platform support (i.e. transporting supplies for crew 

and maintenance) and need to be highly manoeuvrable in order to carry out this role 

[Fossen (1994)]. As well as course changing manoeuvres this type of vessel has to 

maintain position accurately while loading and unloading is carried out. Such a 

manoeuvre is called Dynamic Position Keeping [Fossen (1994)] and can be difficult for 

a conventional propeller driven vessel to execute. In order to overcome this difficulty, 

the type of supply ship considered here uses a set of moveable thrusters to move the 

vessel in the required manner [Fossen (1994), MCGookin et al (1997(f))]. This means 

that there is a significant difference between this application and the oil tanker 

application considered in Chapter 7 in terms of ship dynamics. The supply vessel 

responds more quickly to input commands and has a faster time constant associated with 

the heading dynamics. 

An additional advantage of investigating this vessel is the opportunity of testing the 

resulting optimised controllers in scale model trials. The scale model is called 

CyberShip I and is the test vehicle for the Guidance, Navigation and Control (GNC) 

Laboratory at the Department of Engineering Cybernetics, the Norwegian University of 

Science and Technology, Trondheim. This laboratory provides an excellent 

environment for implementing the sliding mode (SM) control system on a physical 

vessel without the cost of actual sea trials. Access to this facility has also allowed 

aspects concerning optimised controller implementation to be addressed [McGookin et 

al ( 1997 (f))] . 

The optimisation of course changing controllers for this scale model is carried out 

through simulation studies as in the submarine and oil tanker cases. Then the resulting 

controllers are evaluated through further simulation and physical trials using different 

manoeuvres. These tests will also provide a comparison of the non-linear mathematical 
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representation of this vessel and the actual scale model , thus determining whether this 

mathematical model is representative of the dynamics of the experimental vessel. 

This investigation is concerned more with the implementation of optimised controllers 

than the techniques themselves. The majority of the study is to do wi th solutions 

obtained from the SSA and GA methods as they have already been shown to be global 

methods. This chapter covers this analysis in the following way. Section 8.2 derives 

the mathematical representation of this vehicle's dynamics and discusses the dynamics 

and configuration of the thrusters. Section 8.3 outlines the decoupled heading 

subsystem and the resulting course changing controller structure. The GNC laboratory 

facility and the model scaling factor are both described in Section 8.4. Penultimately, 

Section 8.5 displays the optimisation results and the response obtained from the 

simulation and physical trial evaluations. The final section summarises the conclusions 

for this part of the study. 

8.2 Ship Model in State Space Form 

8.2.1 Ship Dynamics 

XB ~ _ -­

yaw angle 1JI 

yaw rate (r) 

EARTH-FIXED REFERENCE FRAME 

BODY -FIXED REFERENCE FRAME 

.,-----, , , , 

Figure 8.1: Ship Reference Frames and States 
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In order to explore this application the dynamics of the scale model must be represented 

by a set of mathematical equations. As with the previous applications, the dynamics are 

derived from the hydrodynamic equations of motion of such a surface vessel. Again 

they are obtained from the motion of the model relative to its body-fixed and earth-fixed 

reference frames (see Figure 8.1) [Fossen (1994), MCGookin (1993)]. The relati ve 

motions of the vessel are defined in terms of the linear and angular velocities [Fossen 

(1994), MCGookin (1993)]. 

The resulting states and inputs which stem from these reference frames are listed in 

Table 8.1. 

Table 8.1: Ship States and Inputs 

u 
v 

r 

It should be noted from this table that the propulsion of this type of supply vessel is 

provided by four thrusters instead of the propeller and rudder configurations used in the 

previous vessels studied in this work. These thrusters provide force vectors relative to 

the body fixed axes and constitute the inputs to this vessel. The resulting forces are the 

components of the input force vector (i.e. 'C = ['rl , 'r2 ,'r3]T given that 'rl is the thrust 

vector along the XB-axis , 'r2 is the thrust vector along the body fixed Y B-axis and 'r3 is 

the thrust about the body fixed ZB-axis). 

As with the motion of all vessels, the dynamics of this scale model can be represented 

by its kinetic and kinematic equations. The kinetic equations are represented by the 

following matrix equation [Fossen (1994)] . 

Mv+C(v)v+Dv ='C (8.1 ) 

Here M, C(v) and D are the masslinertia, Coriolis and damping matrices respectively 

(see Appendix A.3 for values). The vector V represents the body-fixed veloci ties (i.e. V 

= [u ,v ,r]T) and 'C is the input force vector as defined above. When equation (8.1) is 
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compared with equation (6.3) it can be seen that the effects of gravity are counteracted 

by the buoyancy of the ship (i.e. it floats on the surface of the water). On re-arranging 

equation (8.1) the following is obtained. 

v = _M-1 (C(v) + D)v + M-1-r (8.2) 

As with the previous applications, particularly the tanker, the kinematic equations are 

represented by the following matrix equation (see Appendix A.3 for details). 

(8.3) 

Again J is the Euler matrix and 11 represents the earth-fixed states (i.e. 11 = [lfI, Xp ,yp]T). 

The purpose of this equation is to define the geometric relationship between the vessel 

and the earth-fixed reference frame which is common to all vessels. 

By combining equations (8.2) and (8.3) the following matrix form is produced 

(8.4) 

This can be easy related to the following form of the state space equation 

x = A{x)x + B-r (8.5) 

where x is the state vector, A(x) is a non-linear system matrix which depends on the 

system's states and B is the input matrix. As indicated in equation (8.1) the input to this 

ship model is the thrusters' force vector. Hence equation (8.5) represents the dynamics 

of CyberShip I and is used to simulate this vessel in the following study. 

8.2.2 Thruster Dynamics 

As indicated previously, the purpose of the four thrusters is to propel CyberShip I in the 

direction commanded by the operator. The configuration of the thrusters is shown in 

Figure 8.2. It can be clearly seen from this figure that the position of the thrusters is 

given relative to the centre of gravity which is also defined as the origin for the body 

fixed reference frame. Each thruster is represented by the force it produces (i.e. 11..4) and 

the azimuth angle defining its direction (i.e. al..4) as shown in Figure 8.2. 
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Figure 8.2: Thruster Configuration 

In the actual scale model, al and a2 can be set independently of each other whereas a3 

and C4 are always equal showing that their corresponding thrusters operate in the same 

direction. This convention is applied in the simulation of this vessel. 

Each thruster has its own natural limits in terms of direction and the force it can 

produce. The estimates of these limits that are used here are shown Table 8.2 and it can 

be seen that since each thruster is identical they all have the same limitations. 

Table 8.2: Thruster Magnitude Limits 

forces fl 4 (N) I angles a+ ~(radians) 
+0.9 

These limits set the operational envelope for the thrusters and subsequently the vessel. 

There are no rate limits given for this application since the forces occur almost 

instantaneously and the direction is chosen to be fixed. For this study the azimuth 

angles are chosen to be fixed at al = a2 = 1t radians and a3 = lX4 = rrJ2 radians. This 

indicates that the surge motion is governed by thrusters 1 and 2 at the stern and the 

sway/yaw motion is governed by thrusters 3 and 4. Although a more complex 

configuration can be implemented it is felt that this one was adequate for this 

investigation. 

In order to relate the three input force components (-r) of equation (8.5) to the individual 

forces produced by the thrusters (f1..4) the following trigonometric relationship is used 

[Fossen (1994)]. 
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l' = T(a)f 

[

casal casa2 
T(a) = sinal sina2 

0.497 sin( a l - ( 1) 0.497 sin( a2 - ( 2) 

casa3 
sina3 

0.407 sina3 

(8.6) 

casa3 ] 
sina3 

0527 sina3 

(8.7) 

Here the angles 81 and (h present a phase shift in the yaw rate thrust allocation which is 

caused by the position of the thrusters relative to the centre of gravity (see Figure 8.2). 

When the chosen azimuth angles are applied to equation (8.7) and small values are 

neglected, the following matrix is obtained. 

-1 -1 

T(a)= 0 0 

o 0 

o 0 

1 1 

00407 0.527 

(8.8) 

This relationship is used to distribute the commanded thrust forces from the controller 

among the four thrusters of this model. 

8.3 Decoupled Subsystems 

As with the tanker (and most surface vessels) there are two main sets of dynamics for 

this model (i.e. surge propulsion and heading). This application is similar to the others 

in that only course changing manoeuvres are considered and a single sliding mode 

controller is used to govern this motion. The surge dynamics is directly controlled by 

step commands applied via the relevant thrust force (i.e. 't'l). Therefore, only the 

heading dynamics need to be decoupled from the mathematical representation of the 

ship in order to define the course changing subsystem for this vessel. 

8.3.1 Course Changing Subsystem 

The course changing subsystem defines the heading motion of the ship in the same way 

as the submarine and tanker applications (see Figure 8.3). However this subsystem 

differs from the previous two cases in that the governing input is a force vector rather 

132 



than a rudder deflection. Hence this is a direct manoeuvnng force rather than the 

deflected control surface which in tum produces that force. 

Another difference in comparison with the tanker study is that the sway velocity is 

available for feedback to the controller. Even though this model is a scale replica the 

sway velocity is also available in the actual vessel. The reason that this velocity is made 

available for this vessel and not for others is due to the role it fulfils. Since a supply 

vessel of this type provides support for oil platforms it must be able to maintain a 

constant position while loading and unloading takes place. This is called dynamic 

position keeping and requires full velocity information in order to operate effectively. 

Hence surge, sway and yaw rate are measured for this purpose. Thus the states for the 

course changing subsystem are the same as in the submarine case (i .e. v, rand ljI) and 

the commanded yaw thrust 'f3 is the input. 

thruster I thruster 3 

-::1--------:~dB~~~4- X, 

thruster 2 I '" .......... ~ , 
I ..... 

I ~, 

I 

• 

Figure 8.3: Ship Course Changing Manoeuvre 

Once this subsystem is decoupled in the way described in Section 5.7 , the following 

state space equation is formed. 

(8.9) 

In this equation the state vector is XH = [v, r, ljI]T. This is then used as a bas is fo r 

designing a sliding mode controller in the way described in Chapter 5. The resulting 

controller becomes. 

133 



(8.10) 

Again the desired heading response is defined as a critically damped second order 

response which is then used as the tracking reference for the controller. 

As in the previous applications, the representation of the heading dynamics (equation 

(8.9)) does not have an estimate of the model uncertainties. Therefore the switching 

gain criterion for stability robustness (see Chapter 5) becomes 

(8.11 ) 

This is satisfied during the optimisation process by ensuring the parameter values for 

this gain are positive definite as in the previous applications. 

8.3.2 Decoupled Course Changing Controller Application to the Main System 

For course changing manoeuvres Cybership I uses the commanded thrust force 'l"3 from 

the sliding mode controller of equation (8.10). The surge motion is instigated by a 'l"t 

step command of +0.9 N and the sway thrust force, 'l"2, is set to 0.0 N. These provide the 

inputs for the simulation of the model ship (see Figure 8.4). As with the previous 

simulations, these inputs are first passed through checks which implement the limits 

defined in Table 8.2. This confines the operation of the vessel simulation to within the 

limits set by the thrusters on the actual scale model. The simulation of this ship is based 

on the schematic shown in Figure 8.4 and again Euler integration [Cheney and Kincaid 

(1985)] is used to obtain the states from the state space equation. 

Step 
Command s 

V'ref 

r---------------------' 
1 I ~ I----- I I 

't' I 

I I 

I I 
f2 =0.0 N i--",- Thruster Thrust 

~ 
Model I ~tat 

----+ Ship 
I Limits Allocation ~ 

I 
Dynamics I 

Course 't'3 I 
I 
I Changing i---.. ----+ I Controller I 

I Ship Model I 

t ----------------------

Heading States (XH) 

Figure 8.4: Ship Model and Course Changing Controller Configuration 

es (x) 
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This simulation is used by the optimisation processes to obtain sliding mode controller 

solutions for this model in course changing manoeuvres. The resulting controllers are 

then applied to the control of CyberShip I in the Guidance Navigation and Control 

(GNC) laboratory. 

8.4 Laboratory Facility and Model Scaling 

8.4.1 GNC Laboratory 

The Guidance, Navigation and Control (GNC) Laboratory is a watertank facility at the 

Department of Engineering Cybernetics, Norwegian University of Science and 

Technology, Trondheim. Primarily this lab is used as a test-bed for the implementation 

of control systems for governing the motion of the CyberShip I model (1 :70 scale 

compared to the actual vessel). The constituent parts of the GNC lab are illustrated in 

Figure 8.5. 

10m 

Figure 8.5: GNC Laboratory Schematic 

The figure shows that the laboratory is centred around the model basin which provides 

the sailing environment for the ship. This basin defines operational limits of the vessel 

under investigation which have to be taken into account when simulating the vessel. 
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The other hardware components provide telemetry and control data for the ship as 

outlined below. 

The Infrared Camera provides positional information for the ship in the basin. It 

achieves this by locating the position of the three masts on the model. 

The PC-386 computer receives the positional data from the camera and calculates the 

velocities and heading of the ship as well as its position in terms of tank co-ordinates 

(i.e. earth-fixed). 

The Pentium 133MHz computer is used to implement the sliding mode control system 

(equation 8.10) in software. It does this by running MATLABTM Simulink programs 

which use the telemetry data to provide commands that are intended to manoeuvre the 

ship. 

The Joystick allows the operator to input commands to the system and hence manoeuvre 

the ship. It can also be used to operate the ship in open loop without the used of a 

control system. 

The Wire Connection to the Model carries the commands to the ship thruster servos and 

carries the actual thruster motion back to the computer system. Although at present this 

is a wire connection, in future this will be carried out by a radio transmitter system. 

The dspace signal processor is the hub of the whole system. It processes the data from 

the other hardware elements and sends out the control system signals to the ship. Hence 

it is a crucial part of the system. The dspace system can be matched well to the Matlab 

Simulink software to provide an easy to use block diagram environment for the 

operator. 

The complete system gives an ideal test facility for trials of marine control systems that 

could execute various roles for this ship (e.g. course changing, dynamic position 

keeping). This laboratory is used to evaluate the controllers obtained through 

optimisation and determines how readily they can be applied to a physical system. 
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8.4.2 Model Velocity Scaling 

Since the CyberShip I is a scale model of an actual type of supply vessel the velocities it 

produces are scaled proportionally. The amount of scaling depends on the 

dimensionless parameter used to determine the ratio between the model and the actual 

vessel [Fox and McDonald (1985)]. In this case the Froude number is used to represent 

the relationship between two similar vessels in the same fluid i.e. 

V 
Fr=--

!9i 
(8.12) 

where V is the velocity of the vessel, 9 is the acceleration due to gravity and L is the 

length of the vessel. In this context the dimensionless Froude number of the model 

(Frm) is equal to the Froude number of the actual vessel (Fra) i.e. 

Frm = Fra 

Vm Va 

~gLm = ~gLa 

When this is rearranged the following velocity relationship is obtained 

(8.13) 

Since CyberShip I is a 1170th scale model, equation (8.12) becomes 

(8.14) 

Therefore the linear velocities of the boat are approximately eight time larger than the 

corresponding velocities on the model. 

The angular rates are handled In a similar manner. Since the angular rate n IS 

effectively 

V 
Q=­

L 

the relationship represented by equation (8.12) can be used i.e. 

(8.15) 
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(8.16) 

When the relevant scaling is applied this equation becomes 

(8.17) 

Hence the opposite ratio applies for the angular velocities I.e. the model's angular 

velocities are eight time larger than the actual vessel's. 

These ratios provide an insight into how the results shown in this study relate to the real 

vessel which is being modelled. 

8.5 Optimisation Process and Results 

As with the previous optimisation studies, this problem also has numerous design 

aspects to be defined in order to proceed. In this section the controller parameters that 

are to be optimised are defined along with the cost function used to represent the 

optimisation criteria. Similar to the previous cases a desired heading response has to be 

defined for the optimisation. This response is used as the optimisation case and the 

optimal results are outlined in the final subsections. However additional test data is 

used to evaluate the resulting controllers through other simulated manoeuvres and 

corresponding experiments in the GNC laboratory. This allows the global optimisation 

methods to be examined with respect to direct implementation issues. 

8.5.1 Controller Parameters 

Since this application is a course changing control system the four parameters used to 

optimise the controller which are shown in Table 8.3. Again these are the two poles of 

the decoupled closed system (the third is zero and corresponds to the yaw dynamics) and 

17h and f/>h which are the switching gain and boundary layer thickness respectively. 

These are manipulated by the optimisation techniques to produce an optimal controller 

for this application. 
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Table 8.3: Ship Controller Parameters to be optimised 

1 st Headin Closed 100 

2nd Headin Closed 100 ole 
Heading switching gain h 

Heading Boundary Layer Thickness 

8.5.2 Cost Function 

The cost function is effectively the same integral least squares criterion used in the 

previous chapters [Dove and Wright (1991)]. 

tot 

C = L [ (~ 1JIi ) 
2 + ( 'r 3i ) 

2 
] (8.18) 

i=O 

As in the previous cases tot is the total number of iterations and ~ 1JI; is the ith heading 

angle error. However the input in for this ship is 'r3i which is the ith thruster force value 

in yaw [Dove and Wright (1991), MCGookin et al (1997(c)(e)(f))]. Again the 

optimisation methods attempt to minimise the value of this function which in tum 

allows both ~1JI; and 'r3i to be minimised too. As with the submarine (Chapter 6) and 

tanker (Chapter 7) problems ~1JI; gives an indication of how well the controller is 

operating and 'r3i is used to keep the yaw thruster force value to a minimum to avoid 

operational limits (see Table 8.2) and chattering (see Section 5.7). This function allows 

the same trade off between heading tracking accuracy and input usage to be considered 

during the optimisation. Another advantage of minimising the thruster force is the 

saving in terms of fuel consumption since the resistance to the forward motion is 

minimised [Dove and Wright (1992)]. Since the thruster force is reduced, the hull 

produces less drag and hence more of the forward force goes to producing a larger surge 

velocity. This is similar to the tanker situation. 

8.5.3 Desired Responses 

In order to keep the optimisation conditions the same as the previous investigations, a 

desired heading response of 45° is chosen which gives the critically damped step shown 

in Figure 8.6. This response enables the desired states for the controller to be obtained 

and thus enables the state error vector to be calculated. 
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Figure 8.6: Desired Heading Response (450 manoeuvre) 

8.5.4 Optimised Controller Evaluation 

In order to test the optimised controller further it is simulated using another manoeuvre. 

A 20°/-20° manoeuvre is chosen which gives the desired heading response shown in 

Figure 8.7 [McGookin et al (1997(f)]. 
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Figure 8.7: Desired Heading Response (20°/-20° manoeuvre) 

The above response provides a manoeuvre which will assess any asymmetry with in the 

motion of the vessel since it commands positive and negative turns. This will allow the 

controller to be evaluated for a different simulated tum from the one for which it was 

optimised. The same desired response is then used in the GNC when the controller is 

used to manoeuvre CyberShip I. This provides further evaluation in terms of applying 

an optimised controller directly to the system it is designed for. 
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8.5.5 SA Discussion 

In the previous two chapters it has been shown that the SA method only operates well as 

a local optimisation technique. Although this is also found to be true in this case the 

purpose of this chapter is to investigate the practical implementation of globally 

optimised controllers in the GNC Laboratory. Therefore there is no need to reiterate 

what has already been proven in the previous part of this work. 

8.5.6 SSA Results and Evaluation 

The SSA method has been shown to work well for a global optimisation for the 

submarine and tanker problems. When this is applied to the supply ship problem the 

following set of results are typical of the results it obtains. 

Table 8.4: SSA Optimised Controller Parameter 

phi -3.7700 
ph2 -0.2053 

!lh 19.2135 

¢h 5.0369 

Chead 6.0161 

These give the simulated responses for the heading (ljI), the heading error (~ljI) and the 

thrust commanded for this manoeuvre ('l"3) as shown in Figure 8.8. 
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Figure 8.8: SSA Optimised Controller Simulation Responses (45 0 manoeuvre) 
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It can be seen that the results appear consistent with the design criteria that constitute the 

cost function since the peak error magnitude is very small (i.e. 0.1 ° which 0.2 % of the 

desired heading) and tracks to zero in the steady state. It is also apparent that the thrust 

magnitude is small and that the vessel executes this manoeuvre well within its 

operational envelope. However it should be noted that the initial thrust spike is quite 

large and may cause problems during implementation. From these results it can be 

deduced that the SSA has optimised the controller parameters to satisfy the design 

criteria and therefore the parameters and cost are within the optimal region. However 

these are simulated responses for a single manoeuvre and may not operate well for 

different simulated manoeuvres or when it is applied to the actual system. 

In order to test the optimised controller further it is simulated for the 200 /-200 

manoeuvre which was discussed above. The simulation gave the responses shown in 

Figure 8.9. 
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Figure 8.9: SSA Optimised Controller Simulation Responses (20°/-20° manoeuvre) 

As with the optimised responses of Figure 8.8, the heading, heading error and thruster 

time histories are shown. Again the error is small which indicates that the heading 

tracks the desired response well. The thruster force peaks are reasonably large showing 

that this manoeuvre is quite demanding for this vessel. However, it still remains within 

the operational limits of the thrusters and therefore shows that the controller can handle 

course changing commands other than the single manoeuvre it is designed for. These 
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simulation results illustrate that the optimised controller could be used for general 

course changing manoeuvres. 

The final test is the implementation of this controller for course changing on the GNC 

CyberShip I model. So that a comparison with the simulation results can be carried out , 

the responses for a 20°/-20° manoeuvre are given in Figure 8.10. 
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Figure 8.10: SSA Controller Model Basin Responses (20°/-20° manoeuvre) 

These show a slight difference from the simulated responses for this manoeuvre. It can 

be clearly seen that both the peak heading error and thruster commands are larger than in 

the simulated case. There are three main reasons for this difference. Firstly it has been 

found that the mathematical representation of the model is not accurate and therefore 

gives slightly unrealistic responses in the simulation study. The second aspect is that 

very little consideration is given to the drag caused by the position of the thrusters. 

Since the bow thrusters are perpendicular to the flow over the hull they cause maximum 

drag and this affects the motion of the model. This could account for the slight offset in 

the thruster plot. Finally the roll motion and water disturbance effects are also not 

considered and can alter the motion of the model in the lab's model basin. 

However the main drawback with this implementation is that during the largest part of 

the manoeuvre the thruster is seen to saturate. This would indicate that the controller 

gains are too highly tuned for this manoeuvre and that the optimised solution would 
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need further alteration to produce a satisfactory control system. Therefore the fine 

tuning action of this method can be a problem where implementation is concerned. 

8.5.7 GA Results and Evaluation 

The typical GA optimisation of this problem yields the values shown in Table 8.5. 

Table 8.5: GA Optimised Parameter Values 

ph] -2.2092 
ph2 -0.2059 

11h 8.1620 

4>h 1.2851 

Chead 6.0387 

Although there is variation in the parameter values, the cost is similar to the SSA 

optimised value. When these parameters are applied to the 45° manoeuvre simulation 

the responses in Figure 8.11 are obtained. 
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Figure 8.11: GA Optimised Controller Simulation Responses ( 450 manoeuvre) 

As in the SSA simulation the peak error magnitude is very small and is zero in the 

steady state. It should be noted that the thruster magnitude does not have as large an 

initial peak as in the SSA responses. However the switching gain is not as large as in 

the SSA case showing that this parameter is not as highly tuned. Nevertheless these 
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results show that the GA has optimised the parameters so that the controller 

performance satisfies the design criteria. 

This controller solution is evaluated further using the same 20°/-20° manoeuvre as in the 

SSA case. These give the responses shown in Figure 8.12. From these responses it can 

be clearly seen that the error and thruster force peak values are relatively small and good 

heading tracking is achieved. It should be noted that the thrust is applied for a longer 

duration than in the SSA case. This shows that the control effort is more evenly divided 

throughout the manoeuvre with this solution. Nevertheless this controller can be 

applied to similar manoeuvres to the magnitudes shown here (approximately 45°) and 

can be used for general course changing operations within this limit. 
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Figure 8.12: GA Optimised Controller Simulation Responses (20°/-20° manoeuvre) 

Again the final test is the application of this optimised controller for a 20°/-20° 

manoeuvre in the GNC lab. It is found that CyberShip I responds to this controller in 

the way shown in Figure 8.13. 

Again differences between these and the simulated responses are apparent for the same 

reasons as discussed in the previous section. Although these aspects could alter the 

motion, their influence does not substantially degrade the performance of the controller. 

It should be noted that this controller solution does not saturate. In fact the controller 

operates a lot better since the errors are relatively small and the thruster forces stay 
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Figure 8.13: GA Controller Model Basin Responses (20°/-20° manoeuvre) 

within their physical limits. From these responses it can be seen that the controller is 

still able to track the desired response adequately and a minor amount of further tuning 

could yield a slightly better solution. However the solution provided by the GA from 

simulated data has been shown to operate adequately when applied to the actual scale 

model. 

8.6 Summary 

In this chapter a study of controller parameter optimisation and evaluation for the actual 

scale ship model CyberShip I has been presented. Here a Sliding Mode controller has 

been optimised for a simulated course changing manoeuvre of 45°. The resulting 

controllers have also been evaluated for a simulated 20°/-20° manoeuvre and then 

applied in the GNC laboratory for the same manoeuvre. The optimisation study mainly 

considered the two global methods discussed in the previous applications (i.e. SSA and 

GA). Since the SA method has been shown to be a local optimisation method it was not 

considered here. 

The results from the SSA method showed that the optimised controller performed well 

for simulated manoeuvres. This is to be expected since the same mathematical 

representation is used. When the controller is applied in the GNC laboratory the 

thruster force is found to saturate thus showing that the controller gains are too highly 
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tuned. This is a result of the fine tuning mechanism associated with this method which 

can cause any resulting optimised controller to require further tuning before 

implementation. 

The GA optimised controller performed similarly for both simulated and actual 

responses. However no saturation occurs in the actual implementation in the GNC 

laboratory. This shows that the lack of fine tuning in the latter stages of this method can 

be advantageous since it does not run the risk of over tuning controller parameters as in 

the SSA case. 

Therefore the main result of this chapter is that the broad optimisation provided by the 

GA can avoid over tuning solutions more readily than the SSA method. It is also more 

likely to provide a solution which can be implemented directly to the actual problem 

without further parameter tuning. 
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Chapter 9: 

Optimisation Methods: Their Limitations and Refinement for 

Controller Design Problems 

9.1 Introduction 

The previous chapters of this work have been concerned with the comparison of specific 

evolutionary optimisation techniques such as simulated annealing (SA) and genetic 

algorithms (GAs). The systems under consideration have remained the same throughout 

and the study has thus enabled some more general observations to be made regarding 

optimisation methods. Variations of these optimisation methods have been examined 

and used to overcome some problems and potential disadvantages of standard 

optimisation tools that have been highlighted by this application oriented study. In this 

chapter these variations are discussed and each debated in separate sections. 

The initial variants are presented to attempt to remove some of the limitations in the 

performance of the global search techniques (i.e. SSA and GA) in the light of problems 

which have arisen in the course of this work. These guide the search techniques to the 

optimum region by removing redundancy inherent in the standard search methods 

[McGookin et al (1997 (b))]. 

Other aspects concerning alternative search principles are also discussed. The first is 

the use of smaller demetic groups within GA populations to aid the search for problems 

with a large number of parameters. Although it is not directly applicable to the 

problems investigated here the approach is presented to show the relationship between 

this method and the segmentation process used in the SSA method. A second principle 

considered concerns the use of multi-objective optimisation [Fonseca and Fleming 

(1994), Whidborne and Postlethwaite (1996)] where instead of single cost functions 

which provide single objectives each design criterion is considered separately. Pareto 

optimality is presented for this optimisation theory and the differences between this 

method and the single objective criteria used in the previous chapters are discussed. 

The final part of this chapter presents some discussion about the problem search space. 

This search space is the mathematical terrain which defines the variation and interaction 
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of the optimisation problem parameters in terms of the cost value for the possible 

solutions. Obviously the form of the terrain will determine how dominant the optimum 

region is within this space. This in tum determines how easy the problem will be to 

optimise. Therefore a method of determining the search space terrain prior to 

optimisation would be extremely useful. In this section such a method is presented for 

predicting how easy a controller problem is to optimise. This is based around the cost 

function definition and how the dynamics of the plant involved can influence the value 

of this function. Using definitions from control and marine vehicle theory a qualitative 

theory of optimisation prediction is evolved. From this and standard manoeuvrability 

tests a quantitative measure is presented [Nomoto and Norrbin (1969), Fossen (1994)] 

and used to determine the nature of the problem search space and suggest which 

optimisation methods should be used. Such an approach is of potential interest for 

control applications outside the marine field. 

These aspects are addressed in this chapter in the following way. Improvements in the 

segmented simulated annealing (SSA) and the GA algorithms are outlined in Section 

9.2. Section 9.3 describes the use of demetics to improve the GA technique when 

optimising large sets of parameters. This is compared with the segmentation process 

and parallels are drawn. Following this the multi-objective optimisation mechanism is 

described and compared with the single objective optimisation approach studied 

previously. Finally, the use of well established control definitions to determine 

optimisation ease is discussed in Section 9.4. This enables guidelines for a test to be 

used to determine which optimisation process should be used for a specific problem. 

9.2 SSA and GA Improvements 

Although both the SSA and GA methods have been shown to be good global 

optimisation techniques for the problems considered here, they also have drawbacks 

that have been discussed previously. These are detailed below. 

The SSA method is limited by the number of final candidates which are near the 

optimum region i.e. saturation. This tends to reduce confidence in the best final solution 

being near the global optimum without a-priori knowledge of where that optimum lies. 

A process called cloning is presented for this method. 
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In the case of the elite GA method the amount of saturation in the final generation can 

be excessive and may cause convergence to a local optimum if the mutation rate is not 

high enough (see Chapter 4). In order to prevent premature convergence a minimisation 

process is discussed here which will lessen the amount of saturation by reducing the 

population size during the optimisation. Both these mechanisms are outlined below. 

9.2.1 SSA Cloning Process 

Segmented Simulated Annealing is found to be lacking in the sense that it does not give 

a concentrated number of similar optimum solutions. This means that the final optimal 

solution, although good, could not be compared or verified by similar optimal results 

and thus reduces confidence that this solution is globally optimal. 

SEARCH SPACE 

,-
,- - OPTIMUM 

' ... ~,I"'''' REGION 

Figure 9.1: Cloning Process in the Search Space 

To rectify this the SSA algorithm can be altered in the following manner. The process 

of SA is carried out for only half the annealing schedule at which point a cloning 

operation is instigated where the best s% (e.g. 10%) of the solutions are cloned (or 

copied) a number of times (e.g. nine times). This percentage is known as the cloning 

percentage. The resulting clones then replace the remaining (lOO-s)% (e.g. 90%) poorer 

solutions and are then used as the starting point for the remainder of the temperature 

changes (see Figure 9.1). This method directs the search into the optimum region and 

increases the number of final solutions within the optimum region. Consequentl y thi s 

adds validity to the final solutions being global optimums in a similar way to GA 
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saturation (see Sections 6.4.6 and 7.5.6). This is applied to the SSA method in the way 

shown in Figure 9.2 and has been found to operate in the desired manner. 

GENERAlERANDOM INmAL VALUES 
AND GENERAlE 20 SCALING FACTORS 

(ONE FOR EACH RUN) 

• 
SELECT FIRST HALF OF THE TOTAL 

NUMBER OF lEMPERA lURE CHANGES 

J. 
APPLY SIMULAlED ANNEALING FOR 

ONE SCALING FACTOR AND SELEClED ... lEMPERATURECHANGES 

+ 
CLONE TOP 10% OF THE STORE RESULTS I 

SOLUTIONS AND REPLACE + THE REMAINING 90% 
REPEAT UNTIL THE 

+ COMPLETION OF ALL 20 RUNS 

SELECT SECOND HALF OF .. 
THE TOTAL NUMBER OF 

SORT RUNS INTO ASCENDING 
lEMPERATURECHANGES 

COST ORDER .. 
REPEAT IF FINAL 

lEMPERATUREHASNOTBEEN 
REACHED 

• TAKE MINIMUM COST RUN AS 
OPTIMUM 

• END 

Figure 9.2: SSA with Cloning Flow Diagram 

It should be noted that careful consideration must be given to the size of the cloning 

percentage. If this percentage is too small then the search will become too localised and 

the final solutions may not lie near the true optimal region. Therefore the cloning 

percentage should be chosen so that the amount of variation in the best s% is sufficiently 

wide to ensure diversity in the final solutions. This ensures that a reliable search has 

been carried out in the final stages of the annealing schedule. 

9.2.2 GA Population Minimisation Process 

Genetic Algorithms (GAs) [Goldberg (1989), Brooks et al (1996), MCGookin et al 

(1997(b))] have been found in this study to produce very similar individuals in the best 

members of the final generations. This phenomenon is called saturation and is mainly 

caused by the crossover operator. Since crossover between similar individuals will 

result in similar children and the mutation rate will only result in very slight incremental 

improvements in the solutions, the saturation effect is inevitable. Although this is 

considered to be a good aspect of this method, the amount of saturation can be slightly 
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excessive and can make certain population members redundant as they are already 

represented. These redundant elements cause the convergence rate to slow down since 

similar results are evaluated a number of times. This problem is particularly prevalent 

in elite GAs [Brooks et al (1996)] which through their rank based selection scheme can 

tend to saturate the final popUlation quite heavily. 

In order to reduce this redundancy and thus decrease the amount of saturation, numerous 

hybrid schemes have been implemented which use the GA in the initial part of the 

search and then another method when saturation occurs (e.g. Simulated Annealing 

[Adler (1993), Renders and Flasse (1996)]). Although these algorithms provide 

beneficial results they tend to stray from the evolutionary analogy used in GA theory. 

Therefore, in order to combat the saturation problem and still remain loyal to the 

fundamental basis of GAs, a form of Minimising Genetic Algorithm (MiGA) [McGookin 

et al (1997(b»] is presented here. This reduces the population size as redundant 

saturation occurs and thus decreases the number of crossover operations. By slightly 

varying the approach to mutation the apparent mutation rate increases thus adding more 

variety to the individuals found by the search. This helps to avoid local minima and 

helps ensure the acquisition of the global optimum. 

The GA saturation effect and the resulting reduction in convergence rate is analogous to 

there being too many tribe leaders and not enough minions to carry out constructive 

work. However it can be rectified by reducing the population size as saturation starts to 

occur [McGookin et al (1997(b»]. This is achieved as detailed below. 

9 .2.2.1 Population Reduction Process 

The process of reducing the population size is determined by monitoring the variation in 

the parameters and cost of the top k individuals of the population. The value of k is 

usually a certain percentage (b%) of the initial population size. This reduction should be 

chosen wisely so that the number individuals eliminated by this process does not reduce 

the population size too much. If the corresponding parameters and costs of these 

individuals are within a tolerance of 10% of each other then the population is reduced by 

d individuals. This is achieved by removing the bottom d/2 of the top k individuals and 

the worst d/2 individuals of the entire population so that, a cost balance is maintained. 
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To continue the previous analogy, this is similar to some of the tribe leaders moving 

away to bigger and better things and taking the most easily influenced individuals in the 

tribe with them. 

The value of d is apparently the major design parameter for this mechanism. It has been 

found that sensible guidelines for this value are 

k/2~d~k (9.1) 

Although both limits will gIve different reduction rates, the saturation rate will 

compensate so that they will give similar final population sizes (i.e. a smaller reduction 

rate will have its reduced parameters replaced more quickly and will therefore have to 

do more work to maintain the set number of saturated values). It has been found that the 

upper limit of this range (i.e. d = k) works sufficiently well. However, the number of 

individuals observed should be selected wisely in order to still retain a sufficient amount 

of saturation so that the final solution is confidently optimal. It should be noted that this 

process will still allow the final generation to contain some individuals which are 

similar to each other but they will be outside the specified tolerance. 

9.2.2.2 Crossover Rate Change 

Since the population size will reduce when saturation occurs and the percentage of 

children is kept constant (i.e. SO%), the resulting number of children will also reduce. 

Therefore the number of crossover processes executed will be reduced proportionally. 

This is proved below. 

After saturation the population size (q) will reduce by d i.e. 

(9.2) 

where qo is the initial population size. Therefore the number of children (c) will be 

reduced to the nearest even integer to 

Ci+1 = qi+l X O.S 

=(qi -d)XO.S 

=c· -dxO.S 
I 

(9.3) 
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Since the number of crossover executions (x) is half of the number of children the 

number of these executions becomes 

Ci+1 
X i+1=T 

_ Ci d x 0.8 
2 2 

dxO.8 
=xi - 2 

(9.4) 

Hence crossover is reduced by half the amount that the number of children is reduced. 

This in tum is related to the popUlation reduction rate. 

9.2.2.3 Mutation Rate Change 

Mutation is treated differently in this method. With a fixed popUlation size GA the 

mutation rate (m) is kept constant and thus the number of genes mutated (gm) is 

constant. However, in this method gm remains constant and the mutation rate is allowed 

to vary. Given that the number of chromosomes is reduced by the minimisation process, 

it can be easily seen that the number of genes eligible for mutation (gtotaD is decreased as 

well. Since the mutation rate can be defined by the following equation 

gm 
m=--

g total 
(9.5) 

where gm is constant, it can be concluded that as gtotal decreases the mutation rate m will 

increase. Therefore as the population size is minimised the mutation rate increases. 

This allows wider variation in the search and hence the ability to jump out of a local 

optimum in the later stages. It also enables an increase in incremental improvement in 

the final solutions which is in some way similar to the fine-tuning action of the SA and 

SSA. 

9.2.2.4 Variation of Optimisation Execution Time 

The major potential time saving is associated with reductions in the population size. If 

this number is reduced it follows that the number of evaluation simulations is reduced 

by the same amount. In control applications the execution time for a simulation is the 

main component of each iteration of the algorithm and it is logical to say that the 
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reduction in time is proportional to the population reduction. Hence a saving III 

execution time is achieved which is dependent on the saturation rate. 

However, the amount of time saved is dependent on the amount of saturation. This is 

dependent on how quickly the search locates the optimal region which in tum is related 

to how close the initial population is to this region. Of course this is randomly 

determined when the initial population is created and cannot be accurately guaranteed 

without a-priori knowledge. 

9.3 Segmentation and Demetics 

The study of the SSA has indicated that the segmentation of the search space can help 

the localised Simulated Annealing (SA) search technique to operate as a global search 

mechanism. Although this has been shown to work well with SA, it can be equally well 

applied to other hill-climbing and gradient search techniques which might not have 

adequate range to optimise a problem globally. 

In addition to helping local searches this segmentation process could also assist global 

search methods when the number of parameters is considered to be large (e.g. 20 

parameters). This increases the dimensions of the search space and thus increases the 

number of permutations of parameter values available for evaluation. Therefore 

segmenting the search space allows numerous wide ranging localised searches and thus 

increases the likelihood that a globally optimal solution is obtained in this circumstance. 

In the context of GAs a similar segmenting process already exists which is generally 

called Demetics. This isolates the population into smaller groups and evolves these 

groups separately (see Figure 9.3 for illustration). Each demetic population evolves 

through separate elite GAs by keeping the best of each group generation. In order to 

ensure variation in the populations and avoid local convergence, individuals are allowed 

to migrate to other populations at regular intervals (see Figure 9.3). The individuals and 

their corresponding destinations are selected at random thus making migration 

independent of the optimality of the individuals and groups considered. 
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POPULA TION 1 

DEMETIC 
POPULATION 3 

Figure 9.3: Demetic Illustration 

DEMETIC 
POPULA TION 4 

This demetic action allows the separate populations to evolve in the different areas of 

the search space that their constituent chromosomes occupy. Hence smaller groups are 

allowed to search globally and segment the search space among the groups to allow a 

wider search. Hence demetic searches in GAs are analogous to segmentation and are 

considered to be a particular subsection of that methodology. 

It should be noted that this process is found to be just as effective as a single population 

elite GA for the problems considered here. Therefore the number of parameters 

optimised in these investigations do not warrant a further segmentation of the search 

space through demetics. 

9.4 Multi-objective Optimisation 

Most optimisation problems have more than one equally valid optimisation criterion or 

objective to satisfy. Often these problems have no perfectly unique solution where all 

objectives are met and trade-offs must therefore occur in the final solutions. The control 

systems in this study have two design criteria to meet (i.e. minimisation of the controller 

input and of the resulting output error). However, these objectives have so far only been 

represented by a single cost function. Therefore the optimised solutions are the result of 

trade-offs between the two objectives for each controller. 
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If these objectives are considered separately the optimisation can result in non­

dominated solutions where any improvement in one objective will result in the 

degradation in the other objective. These objective solutions belong to the Pareto­

optimal set and thus a multi-objective regime can be used in these optimisations 

[Fonseca and Fleming (1994), Whidbome and Postlethwaite (1996)]. 

In order that these problems can be optimised in terms of these mUlti-objectives, the 

solutions are sorted by Pareto ranking (see Figure 9.4) [Fonseca and Fleming (1994)]. 

This is where each solution is considered in a f-dimension plane where f denotes the 

number of objectives to be optimised. Each solution is represented in this plane by the 

cost value for each objective. The case of two objectives is illustrated in Figure 9.4. 

D sing this illustration as an example the process of Pareto ranking will be explained 

further. 
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Figure 9.4: Pareto Ranking 

When the solutions are plotted in the objective cost plane a measure of their dominance 

can be found. This dominance is determined for an individual by how many other 

solutions have better (i.e. smaller) cost values for all of their objectives. The number of 

solutions which dominate the considered individual is used as its Pareto ranking 

number. Obviously any non-dominated solutions will have a ranking number of zero 

and will thus be a member of the Pareto-optimal set of solutions [Fonseca and Fleming 

(1994)]. Those solutions evaluated with a zero ranking are kept as the current optimal 

values and remain for the next evaluated iteration (e.g. the next generation in a GA). As 

the optimisation progresses these zero ranked solutions converge to a Pareto surface 
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which graphically represents the trade-off between the objectives (see Figure 9.5). The 

elements of this surface are considered as the optimal non-dominated solutions for this 

problem and can vary quite widely in terms of the relative objective costs. 
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Figure 9.5: Pareto Surface 

Unfortunately, this type of optimisation regime may not yield a sufficiently optimal final 

solution for implementation in the marine controller problems investigated in this study. 

Since objectives for these control problems are well defined as low input actuator usage 

and zero tracking error, any variation away from the direct trade-off region (region 1 in 

Figure 9.5) will result in an unacceptable final solution being presented as optimal. 

These suboptimal solutions fall in region 2 where one cost improves at the expense of 

the other. 
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One way to improve this method so that only solutions with small cost values for both 

objectives are found is to set a goal region for these desired solutions (see Figure 9.6). 

This alters the Pareto ranking in the following way. Firstly the solutions are ranked as 

described previously and the number of solutions which fall within the goal area is 

found. This number is then added to the ranking numbers of all those solutions which 

lie outside the goal region thus biasing then away from the Pareto-optimal set (see 

Figure 9.6). Hence only solutions which satisfy the goal and lie on the Pareto surface 

are considered optimal. 

Unfortunately definition of a goal region calls for a-priori knowledge of the optimal 

cost values which may not be available prior to the optimisation. Hence multi-objective 

optimisation is not a viable prospect for the controller optimisations studied here since 

the optimisation objectives are closely linked to each other. Any prejudice to either 

objective would result in final solutions which would not be considered practically 

optimal. Therefore the use of a single objective multi-aspected cost function provides 

optimal final solutions much more readily than would be possible with a multi-objective 

regIme. 

9.5 Optimisation Ease Prediction 

As indicated in the introduction to this chapter, the prediction of how easy a problem is 

to solve prior to optimisation would be very useful. The degree of optimisation 

difficulty is dependant on the search space which defines all possible permutations of 

the problem being studied in terms of cost value. This depends on the interaction of the 

constituent parts of the cost function which in tum defines the terrain of the search 

space. Since the majority of the solutions within the search space are suboptimal, the 

variation of the poorer solutions would help predict how difficult the given problem is 

to solve by estimating an extensive part of the search space terrain. 

9.5.1 Search Space Terrain 

If the search space is rough (i.e. the cost varies quite considerably with the optimisation 

parameters) it follows that the optimal region of the problem will be surrounded by 

terrain which will vary in amplitUde and contain many local optima. This type of 
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problem will require an extensive search to obtain a globally optimal final solution. 

Conversely, a search space that is smooth (i.e. the cost variation is relatively small) will 

have a dominant global optimum which is much easier to detect. Therefore it fo llows 

that a less extensive search is required and the problem is easier to optimise. 

In order to determine the ease of optimisation the search space terrain must be 

estimated. In the context of this study the terrain is defined in terms of the cost function 

elements which are the control inputs and the resulting output error. Thus the amount 

that these elements vary is very important to this definition. Therefore if the solution is 

near optimal this cost value will be minimal since the input usage is small and the 

output error is nearly zero. However a poor solution will give a large cost value since 

the input will not act in the way required and may oscillate wildly (e.g. in a type of limit 

cycle action). Since the majority of the search space contains such poor solutions the 

terrain can be determined by analysing the variation of these suboptimal results and the 

effect they have on the system being considered. 

It is logical to say that the input to the system reflects the optimality of the controller 

being designed. This will vary with the parameter permutations and can provide 

oscillatory signals which are consider suboptimal. However this is only part of the cost 

function and will only define part of the terrain variation of the search space. The 

remainder of the cost reflects the output response of the system to the corresponding 

inputs. Although the cost function contains the output error, this value will be very 

large for the poorer solutions. For these solutions this error will almost be as large as 

the output itself and can be approximated by it. Therefore the terrain can be determined 

by the output and input interaction. This can be obtained by considering the natural or 

open loop response of the system [Franklin et al (1991)] which reflects how the output 

reacts to given inputs. 

If the output follows the input readily and has a fast time constant, then both cost 

components will be of approximately the same magnitude. Therefore the poor cost 

values will be large and vary greatly with the optimality of all the possible solutions. 

Hence the search space will have a very rough terrain. However, if the system dynamics 

restrict the output response and it does not follow its inputs then the resulting cost 

values will be smaller and vary less. Hence the problem will have a smoother search 
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space. Hence the natural response of a system is the key to predicting the optimisation 

ease of a given problem. The natural response of the system is dependant on the pole 

positions of the open loop st ' . ys em matrIX and IS therefore related to the stability of the 

system [Franklin et al (1991)]. 

For marine vehicles the relationship between inputs and outputs defines their ability to 

execute specific manoeuvres. This capability of carrying out desired changes in motion 

is called manoeuvrability [Fossen (1994)]. This indicates how well a vessel is able to 

react to given inputs in order to give desired states which can be reflected by the natural 

response of the vessel [Franklin et al (1991)] and ultimately its stability. Hence by 

referring to the s-plane, this discussion can be extended (see Figure 9.7). 

IMAGINARY AXIS 

Figure 9.7: s-Plane Partition Diagram 

REAL 
AXIS 

From this diagram it can be seen that the s-plane can be regarded as three separate 

regions for marine vehicles [Franklin et al (1991)] . 

Region 1 is the right hand side of the s-plane which represents vessels which are 

inherently unstable. This instability means that the vessel is excessively manoeuvrable 

and requires extreme control effort in order to make the vessel move in the way 

required. This could cause the input actuators to saturate in certain cases . If the inputs 

are suboptimal the resulting output error will be extremely large. Hence both elements 

within the cost function vary with the optimality of the controller solution but the output 

error will vary much more than the input which causes it. Hence the search space for 

such vessels will vary greatly and it may be very difficult to obtain a sati sfactory optimal 

controller. 
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Region 2 encompasses the first section of the left hand side of the s-plane, including the 

imaginary axis. In this area the systems are slightly and marginally stable and are 

therefore regarded as having very low manoeuvrability due to large time constants 

[Franklin et al (1991)]. These represent very large vessels which require extreme 

control effort to overcome their inertia. Therefore within the cost function the input 

element will dominate the output error since any change in the output requires a very 

large input. Hence such vessels will have small output error variation in terms of large 

input variations. Thus the search space will be relatively smooth since only one element 

of the cost function is varying significantly which results in the optimum being easy to 

locate since variation in the cost terrain is slight. It follows that such problems will be 

easy to optimise and a local optimisation method may be able to locate the global 

optimum. 

Region 3 represents the area of the s-plane where vessels are extremely stable. These 

vessels are considered to be highly manoeuvrable since they have small time constants 

and thus react well to their inputs [Franklin et al (1991)]. Therefore they require 

minimal control to move. It follows that the elements of the cost function will vary 

proportionally since the output will follow the input. Therefore suboptimal controllers 

will result in output errors which vary in the same way as the inputs. Hence the search 

space for such vessels will vary considerably with many local optima to overcome. 

Thus a very good global optimisation technique is required to optimise such vessel's 

controllers. 

These three regIOns show that the degree of manoeuvrability reflects the natural 

response of the system. Therefore a manoeuvrability measure would indicate how the 

output varies with large changes in the given input. This can then be used to estimate 

how much effort is required to optimise the problem in hand by estimating the search 

space terrain. 

9.5.2 Manoeuvrability Test 

The above discussion provides a qualitative definition of how to predict the ease of 

controller optimisation. In order to give a quantitative measure a suitable test is 

required to determine the manoeuvrability of the vessel in question. A standard test for 
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the manoeuvrability of marine vehicles is the Kempf 20° 20°' t [N - zIgzag est omoto and 

Norrbin (1969), Fossen (1996)] for this purpose which was proposed to compare the 

manoeuvring and control characteristic of ships. 
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Figure 9.8: Zigzag Manoeuvre 

Although this test is used to determine the heading motion of vessels it can be applied to 

any motion of a marine vehicle. The first stage is to set the input actuator to 20 ° and 

the relevant output is allowed to reach the same value (i.e. 200)(see Figure 9.8). At this 

point the input is changed to -20 ° and the response of the vessel observed. This is 

repeated for a number of input changes and the results are analysed. These manoeuvres 

are quite rigorous as the inputs and required outputs are reasonably large. Although it is 

a very good test of how a vessel reacts to limited input commands (thus simulating the 

extremities of the search space) Kempf's test does not itself give a quantitative measure 

of the manoeuvrability. A suitable measure to use is the Norrbin Measure of 

Manoeuvrability [Nomoto and Norrbin (1969), Fossen (1994)] which is based on the 

ratio of the heading angle to the corresponding input. This results in the course 

changing quality number Pm i.e. 

lfI p=-
m 8 

(9.6) 

This measure can be applied to any motion and thus determines the manoeuvrability for 

that particular dynamic. It can therefore be generalised to the ratio of the output (Y) to 

the input which causes it (U) i.e. 

163 



y 
p=­

m U (9.7) 

In order to establish how applicable this is to the problems studied in this investigation 

the models are simulated for a 20°-20° zigzag manoeuvre and the Norrbin Measure is 

calculated. In order to evaluate the vessels from their piece-wise continuous time 

histories for this manoeuvre the following variation of equation (9.7) is used. 

1 [total/total ] 
Pm=y- Lf; LUi 

final i=O i=O 
(9.8) 

Here total is the final iteration of the zigzag simulation. When this is applied to the 

submarine, tanker and surface ship problems the values shown in Table 9.1 are obtained. 

It should be noted that the submarine diving output is taken to be the pitch angle instead 

of the depth itself. However this angle is directly rated to the depth and is sufficient to 

represent the dynamics of this subsystem. Also the input for the ship (1'3) is scaled so 

that its magnitude is equal to the other inputs (Le. a value of 20). 

Table 9.1: Manoeuvrability Measures 

Application Output Input Duration Pm 
Submarine (Diving) e Os 47.0s 0.0074 

Submarine (Heading) ljI Or 42.5s 0.0233 
Tanker (Heading) ljI Or 470.0s 0.0009 

Ship (Heading) ljI 331'3 9.9s 0.0018 

It can be clearly seen that the submarine has larger values for both diving and heading 

subsystems (particularly the heading). This is to be expected since such vessels have to 

be highly manoeuvrable to execute their role as pursuit vehicles. Therefore it follows 

that the search space terrain for that application varies more and will need a global 

optimisation method to obtain a satisfactory solution. 

The tanker on the other hand has a low value of Pm which is self evident since it is a 

large vessel and is not very manoeuvrable. Therefore the output will not vary much as 

the input changes and the search space terrain will be relatively smooth. Hence the 

global optimum will be easier to locate and the problem could be optimised by either a 

global or extended local search. 
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In the case of the ship model the measure of manoeuvrability is nearer to the tanker 

value than the submarine. This indicates that the model (and presumably the actual 

vessel it represents) is reasonably manoeuvrable. It follows that like the tanker this 

problem is relatively easy to optimise and does not require an excessively long search to 

obtain an optimal solution. 

From these results it can be concluded that a manoeuvrability measure can be used to 

estimate how easy a controller problem will be to optimise. In fact a guidelines for the 

selection of an optimisation method for a specific problem can be formulated on this 

basis. Figure 9.9 is a table which provides an outline of the optimisation methods which 

could be used for different values of the manoeuvrability measure Pm. 

Pm« 1 Pm~ 1 Pm» 1 

Vessel is Marginally Stable, has Vessel is Stable and Extremely Vessel will tend to be Unstable 
low Manoeuvrability and needs Manoeuvrable. Therefore output and Excessively Manoeuvrable. 
excessive Control effort. error will follow the input which Therefore output error will be 
Therefore output error will be creates it. Thus the problem very much larger than the input 
very much smaller than the input search space tertian will be which creates it. Thus the 
which creates it. Thus the moderately rough and need global problem search space terrian will 
problem search space tertian will search methods to optimise. be very rough and need an 

be smooth and the global extensive global search in order 
optimum will dominate. to optimise. 

Suggested Optimisation Method: Suggested Optimisation Method: Suggested Optimisation Method: 

GA, SSA, SA, Hill climbing, GA, SSA (moderate Elite GA, Demetic GA, SSA 

Gradient Search segmentation), SA (with large (extensive segmentation), 

annealing schedule) Exhaustive Search 

Figure 9.9: Optimisation Method Suggestion based on Manoeuvrability 

Although the discussion presented here is in terms of marine vessels, the theory can 

equally well apply to any system which possess an input that controls a desired output. 

9.6 Summary 

This chapter has provided a discussion on aspects of optimisation that have not been 

covered in the previous chapters. It has addressed areas which have been investigated 

during this research but are considered to diverge slightly from the main thread of the 

study. They are presented here for completeness and to give additional understanding of 

optimisation processes in general. 

165 



Firstly, improvements to the SSA and GA methods are described and discussed to 

indicate the benefits they provide over more standard methods investigated previously. 

Both the cloning process for SSA and the minimising GA compensate for drawbacks 

that were encountered during the main research and improve the performance of these 

methods. 

The use of demetic grouping for GAs is shown to be similar to the segmentation 

mechanism presented for SSA. This indicates that reducing the search space into 

smaller areas or segments assists optimisation methods by increasing their ability to 

optimise difficult problems. 

Also discussed in Section 9.4 is the theory of multi-objective cost optimisation. This is 

discussed in terms of its ability to obtain a globally optimal solution compared with the 

single objective cost functions used in the major part of this work. It is found that 

multi-objective optimisation only works satisfactorily if a cost goal region is defined 

and solutions that lie outside this area are penalised. This calls for a-priori knowledge 

of the desired optimal cost values which is not always possible. Therefore in this work 

multi-objective optimisation operates poorly compared with the single objective, multi­

aspect optimisations studied here. It can be concluded that if the elements of the cost 

function are sufficiently well defined then multi-objective optimisation is redundant. 

This is the case for marine vehicle control system optimisation. 

The final discussion of this chapter stems from observations made during this study. 

Since the stability and manoeuvrability aspects of a vessel determine its controllability, 

it follows that this will reflect the optimality of the optimisation solutions. This can be 

used to determine the amount of variation in the cost function and subsequently the 

terrain of the search space. It follows that this information gives some indication of how 

easy the problem is to optimise and can be used to determine the best optimisation 

technique for a given control problem. 

All these aspects extend the discussion of optimisation and go some way to giving 

additional insight into this complex area of study. 
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Chapter 10: 

Conclusions and Further Work 

10.1 Conclusions 

The general conclusion to be drawn from this work is that advanced optimisation 

methods are useful tools for obtaining controller parameters for specific applications 

with a minimal amount of a-priori knowledge of the optimal solution. It has been found 

that these techniques are able to optimise the performance of Sliding Mode controllers 

to specified design criteria. As long as these criteria are logically thought out and 

defined precisely, it is felt that these methods can be extended to the optimisation of any 

controller in any situation. 

Evidence has been given that the best performance in optimisation is achieved by the 

Genetic Algorithm method since the conclusions of this comparison study show this 

method in a favourable light. 

The particular conclusions regarding the optimisation techniques and controller type 

studied in this thesis are outlined below. 

10.1.1 Simulated Annealing 

The Simulated Annealing (SA) theory in Chapter 3 has shown that this method has a 

limited search range which could hamper its ability to find an optimal solution. This has 

been reinforced by the optimisation studies in Chapters 6 and 7. These have shown that 

SA searches fail to locate an optimal solution for a problem if the initial starting point is 

not near this optimum region. It follows that in order for this method to optimise a 

problem a-priori knowledge of a near optimum solution must be available. This in 

itself defeats the purpose of a global optimisation method which should require limited 

information about the optimal solution in order to obtain a suitable solution. Therefore 

SA is only useful as local optimisation method and this localisation is dependant on the 

range of the method which is defined by the annealing schedule. Hence the SA method 

could be used to fine tune an existing hand tuned solution but is not a reliable global 

method. 

167 



10.1.2 Segmented Simulated Annealing 

The convergence analysis of the Segmented Simulated Annealing (SSA) method in 

Chapter 3 has been borne out by the application studies in Chapters 6, 7 and 8. These 

have shown that this method can provide globally optimal solutions for controller 

parameters. Therefore by segmenting the search space the SA method is improved in 

terms of global searches. However the diversity of the final set of solutions presented 

by this method is too vast to ensure confidence in the acquisition of the true global 

optimum. 

Although the simulation results from this investigation have shown that this method 

provides final solutions which are finely tuned, the implementation of the controller for 

CyberShip I has indicated that the fine tuning process of this method may provide a 

controller with gains that are too high. This could result in control signals that saturate 

the actuator which they are attempting to govern. Therefore the SSA can obtain optimal 

simulated solutions which may need corrective tuning when implemented in the actual 

system. 

10.1.3 Genetic Algorithms 

The Markov Chain (MC) and Schema Theorem analysis in Chapter 4 suggests that the 

genetic algorithm (GA) method is a powerful optimisation technique which is 

guaranteed to find a globally optimal solution. This was verified by the simulation 

studies carried out for all three marine vehicles studied. These results show that the 

optimisation would satisfy well defined design criteria and provide satisfactory 

solutions. The amount of saturation in the final generation provided a high level of 

confidence in the solution. However this saturation should be monitored as it may cause 

premature convergence [McGookin (1997(b))]. 

It has also been shown that the GA provides solutions which are similar in performance 

to manually tuned controllers and thus may be sufficient for implementation. When a 

GA tuned controller was applied to CyberShip I it was found to perform well and 

require no further tuning. This could be further improved if the mathematical 

representation of the actual vessel was more accurate. However due to the broad nature 

of the GA search the solution is not highly tuned and can therefore be readily applied to 
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a real system. So overall this method has been shown to have the best performance of 

the methods considered in this thesis. 

10.1.4 Sliding Mode Controllers and Marine Vehicle Applications 

A decoupled Sliding Mode (SM) controller has been developed in this thesis which can 

be classed as a non-linear model-following controller structure (see Chapter 5). This 

control law has been shown to be asymptotically stable and thus robust to changes in the 

system's operating conditions if the design criterion in Section 5.5 is satisfied. 

This criterion ensures stability robustness by setting the switching gain magnitude 

sufficiently high to compensate for any model uncertainties and external disturbances to 

the system it is controlling. If this criterion is met the controller will operate on the zero 

sliding surface where the actual and desired states are equal (i.e. zero tracking error). 

Therefore the controller is guaranteed to make the system behave in the way required 

and thus performance robustness is ensured. Both robustness issues are unaffected by 

the use of a boundary layer to prevent chattering. In fact the presence of this layer helps 

the sliding surface approach its zero value by gradually reducing the effective switching 

amplitude of this control law . 

The application of this type of controller to marine vehicles has been shown to perform 

well through simulation if suitable parameter values are chosen. The results from these 

simulations illustrate the performance robustness of this type of control methodology 

through its ability to track the desired output response for the system. This has been 

shown for application to both linear and non-linear systems. The stability robustness 

has been guaranteed in each case by satisfying the design criterion for the switching gain 

value (i.e. for the applications studied here the switching gain is positive definite to 

ensure robustness). 

However the application of this method to CyberShip I shows that if there is a slight 

deviation in the mathematical representation the controller may not be implementable in 

the physical system. This part of the study illustrated the importance of good 

mathematical models in order for controllers to be designed sufficiently well. When the 

performance of the controllers for this system is considered it can be seen that with 

appropriate tuning this type of controller will be well suited to the control of marine 
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vehicles. It has been shown to track the desired heading well thus showing that the zero 

sliding surface discussed in Chapter 5 has been obtained. Hence the performance 

robustness of this type of controller is assured in this case. 

Also from the CyberShip I study it is apparent that if the commanded input is too 

demanding the controller tracking deteriorates. This is to be expected since the 

controller is designed around a nominal representation of the vessel. However the 

performance of this controller has been found to outperform conventional PID 

controllers and thus be considered a better control law for application to marine vessels. 

10.2 Further Work 

The work presented in this thesis can be extended in many ways along the numerous 

lines of research that constitute its main structure. These are the optimisation methods, 

SM control techniques and the marine vehicle applications which are discussed below. 

10.2.1 Optimisation Methods 

The optimisation methods discussed in this work have only optimised parameters for a 

given controller structure. It is therefore suggested that these methods should be 

extended to develop the structure of a controller as well as its key parameters. 

This would be easily done through variations in the GA method by allowing certain 

gene values represent controller building block elements which could be combined to 

form various controller structures. More flexibility could be provided by using the 

extension of the evolutionary programming concepts inherent in GAs to a more general 

approach called Genetic Programming (GP) [Koza (1992)]. This method forms 

symbolic expression trees which could represent controller functions. These variable 

length trees are constructed from a library of conventional mathematical functions and 

are then evaluated in a similar way to the GA method (i.e. through simulation). 

In this way the structure of a controller could be evolved as well as the parameter 

values. However careful consideration concerning such things as stability and 

robustness is essential for the resulting controllers. This and the long execution time for 

such optimisation methods could cause practical problems. 
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Also, with respect to optimisation methods, it is felt that the hypothesis in Chapter 9 

concerning predicting the optimisation ease should be developed. This should provide a 

general theory for predicting the optimisation ease of a problem prior to the optimisation 
process. 

10.2.2 Sliding Mode Controller Design 

Although multi-input versions of SM control theory exist [Slotine and Li (1991), Fossen 

and Foss (1991), Utkin (1992)], they are numerically complex which tends to prevent 

them from being implemented in practical situations. From a theoretical standpoint the 

method of decoupling the dynamics which are required for control is an acceptable 

process and in Chapter 5 it has shown that a single input SM controller can be easily 

designed with minimal numerical complexity. It has also been shown that these 

controllers can compensate for any matched uncertainties that it can directly influence 

by having a suitably large switching term. By extending this design framework to the 

multi-input case could make this control theory more readily used. 

On a more practical side, the use of toolboxes for a package such as MATLAB would 

aid in the design of mUlti-input SM controllers. This would make the design of such 

controllers an easier process where the designer need not worry about an in-depth 

understanding of the control theory. 

Both this and a more comprehensible design theory would allow this type of non-linear 

model-following control system to be more accepted on an industry wide basis. 

10.2.3 Marine Vehicle Applications 

The number of marine vehicle control applications are really limitless since the roles of 

ocean going vessels are so diverse. Each would require a system specific controller in 

order to meet the required performance specifications. Two applications of some 

importance are discussed below i.e. the control of military submarines at slow speeds 

and the dynamic position control of floating oil production barges. Both would provide 

ideal applications for testing non-linear control theory and optimisation techniques. 
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10.2.3.1 Submarine Control at Slow Speeds 

In the study of the submar' . d . 
me carne out In Chapter 6 the vessel executed manoeuvres at 

high speeds (e.g. 20kts). This means that the hydroplanes operate in the way described 

in that chapter in that the sternplanes control the diving motion and the bowplanes are 

ineffectual and remain at zero displacement (see Figure 10.1). 
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Figure 10.1: Hydroplane Action at High Speed 

At slower speeds (i.e. < 2kts) the roles of the hydroplanes are in some ways reversed due 

to the reduced flow hydrodynamics of the vessel. This results in the bowplanes 

dominating the depth control and the sternplanes start to operate in the opposite 

direction compared with their high speed deflections (see Figure 10.2). This 

phenomenon is called the Chinese Effect [Burcher and Rydell (1993), Papoulias and 

Riedel (1994)] and is of particular importance when the submarine is trying to maintain 

periscope depth. It is clear that this is a particularly difficult control problem which 

requires a rigorous control system to compensate for this effect. This would therefore 

provide an ideal test application for both the SM control theory and the optimisation 

techniques. 
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Figure 10.2: Hydroplane Action at Low Speeds (Chinese Effect) 
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10.2.3.2 Oil Production Barges 

In recent years it has been f d h . no Ice t at reserves of easIly access ible oil are starting to 

dwindle and that exploitation of sources located in deeper water has to be considered. 

These deeper oil fields cannot be drilled using conventional oil platforms since the 

expenditure would not yield a satisfactory return. 

OIL PRODUCTION VESSEL 

THRUSTERS 

ANCHORS 

Figure 10.3: Oil Production Vessel Illustration 

A proposed way of drilling these fields is by using Oil Production Barges which can be 

positioned over the field as required (see Figure 10.3). These vessels maintain position 

by a combination of thrusters and anchors. The anchors (e.g. ten in number) keep the 

general position of the barge within the confines of a few boat lengths. The thrusters are 

then used to keep the position of the barge constant with reference to GPS position data 

and operate in the same way as CyberShip /. Dynamically speaking this would present 

quite a difficult control problem as drift of the anchors ' positions and the effects of 

severe sea conditions [Eda (1972), Price and Bishop (1974), McGookin (1993), Fossen 

(1994)] could drastically effect the vessel. Hence this problem would also provide an 

ideal test subject for the control and optimisation theories presented in this thes is. 
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Appendix A: 

Mathematical Representations of Vessels 

A.I Linear Submarine Model 

The military submarine model discussed in Chapter 6 [Miliken (1984)] is represented by 

the following state space equation 

x=Ax+Bu (A.I) 

where the state (x) and input (u) vectors are defined in the chapter and the system and 

input matrices are defined below. 

System Matrix A: 

-3.82xl0-2 -2.19xlO-2 -2.77 x 10-3 -1.90x 10-2 -2.94xlO-1 3.17 x 10° 0.00 x 10° -2.77 x 10-3 0.00 x 10° 0.00 x 10° 

US x 10-3 -159xl0-1 -1.93xl0-3 -us x 10° 1.13 x 10-1 -154x 10-1 1.30 x 10-1 -1.76xlO-3 0.00 x 10° 0.00 x 10° 

2.42 x lO-S 4.6Sx 10-4 -1.06xl0-1 -1.60x 10° 1.21 x 101 8.02 x 10-2 0.00 x 10° 756xlO-3 0.00 x 10° 0.00 x 10° 

2.46 x 10-4 -1.17 x 10-2 -1.32xlO-3 -4.34 x 10-1 -2.39 x 10-1 -7.18xlO-3 -l.60xIO-1 2.16 x 10-3 0.00 x 10° 0.00 x 10° 

-S.37 x 10-6 -1.86x lO-S 1.32 x 10-3 -1.14xlO-2 -4.08xlO-1 l.Olx 10-4 0.00 x 10° -250x 10° 0.00 x 10° 0.00 x 10° 

-2.76x lO-S -2.03 x 10-3 2.41XlO-S -8.10xl0-3 3.60 x 10-3 -3.82xl0-1 258xlO-4 -350xlO-6 0.00 x 10° 0.00 x 10° 

0.00 x 10° 0.00 x 10° 0.00 x 10° l.OOx 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 

0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 1.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 

0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 1.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 

0.00 x 10° 0.00 x 10° 1.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° -3.82x 101 0.00 x 10° 0.00 x 10° 

Input Matrix B: 

-1.63 x 10-3 -5.84 x 10-2 2.80xlO-3 2.80x 10-3 

0.00 x 10° 2.31 x 10° -1.70 x 10-1 1.70 x 10-1 

-1.44 x 10° -1.48 x 10-6 -9.85 x 10-1 -9.85 x 10-1 

0.00 x 10° 4.26xlO-2 2.08xlO-1 -2.08 X 10-1 

1.39 X 10-2 4.89xlO° -2.38 x 10° -2.38x 10° 

0.00 x 10° -5.86 x 10-2 -3.37 x 10-4 3.37 X 10-4 

0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 

0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 

0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° 

0.00 x 10° 0.00 x 10° 0.00 x 10° O.OOxlO° 
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A.2 Non-linear Super Tanker Model 

The Super Tanker model discussed in Chapter 7 [Berlekom and Goddard (1972), Fossen 

(1994)] is represented by the following state space equation 

x=f(x,u) (A.2) 

where the state (x) and input (u) vectors are defined in the chapter. The non-linear 

vector function f is comprised from the rigid body and kinematic equations for such a 

vessel i.e. (note: values for the non-dimensional coefficients used here can be obtained 

from Berlekom and Goddard (1972) and Fossen (1993)) 

v = 1 (Yuvuv + Yjvlvlvlv + Yjclcorlclc8r + Ld 22 ur + Yclcl.BI.BllollcIcII3II318rl 
(L(m22 - Y",,)) 

+ YTgTL+ LYur,ur' + Yuv,uv, + Yjvlv,lvlv, + Yclcl.BI.Bllorl,lclclf311318rl() 

t = 2 1 (N uvuv + LNlvlrlvlr + N clclorlclc8r + Ld 33ur + N Clcl.BI.BlorlclcII3II318rl 
(L (m33 - Nt,')) 

+ LN TgT + LN ur,ur( + N uv,uv( + LNlvlr,lvlr( + N Clcl.BI.Bllorl,lclcII3II318rl() 

ljI = r 

x = u cos(ljI) - vsin(ljI) 
p 

y p = u sin(ljI) + vcos(ljI) 

8r = (8rc - 8r) / ~t 

il = (nc - n) / ~t 

where 

{3=v/u, 
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A.3 Non-linear Supply Ship Model 

The mathematical model of CyberShip I discussed in Chapter 8 [Fossen (1994)] is 

represented by the kinetic and kinematic equations. The kinetic equation defines the 

rigid body dynamics thus 

Mv + C(v)v + Dv = 't' CA.3) 

T [ T where V = [u ,v ,r] ,'t' = 'l'l, 'l'2 ,'l'3] , 

mll 0 0 m-X. 0 o 1 [19.0 0 

2~J 
u 

M= 0 m22 m23 - 0 m-Y mxc - Y; = 0 35.2 v 

0 ~2(= m23 ) m33 0 mxc - N v I z - N; 0 0 

0 0 -~2V-n1nrl [ 0 0 - 35.2v 1 
C(v) = 0 0 mllu = 0 0 19.0u 

~2v+m23r -mllu o 35.2v -19.0u 0 

-X 0 0 mll I Ii 0 o 1 [6.3 
0 

2~ol u 

D= 0 -y 0 - 0 ~2 IT2 o - 0 7.0 
v 

0 0 -N 0 0 m33 I T3 0 0 
r 

given that the time constants for surge, sway and yaw are Tl = 3.0s, T2 = 5.0s and T3 = 

LOs respectively. 

The kinematics equation is 

1j = J(11)V 

T "IT d where V= [u ,v ,r] ,11 = [xp 'YP' lJIJ an 

cos lJI - sin lJI 0 

cos lJI 0 

o r 

CAA) 
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Appendix B: 

Additional Optimisation Responses for Submarine Application 

B.I SSA Optimised Responses 

The SSA optimisation responses discussed in Section 6.4.5 are presented below. 
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Figure B.t: SSA Optimised Submarine Responses 

B.2 GA Optimised Responses 

The GA optimisation responses discussed in Section 6.4.6 are presented below. 
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Figure B.2: GA Optimised Submarine Responses 
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Appendix C: 

Additional Optimisation Responses for Super Tanker Application 

C.I SSA Optimised Responses 

The Course Changing responses discussed in Section 7.5.5.1 are presented below. 
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Figure C.l: SSA Optimised Tanker Course Changing Responses 

The Course Keeping responses discussed in Section 7.5.5.2 are presented below. 
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C.2 GA Optimised Responses 

The Course Changing responses discussed in Section 7.5.6.1 are presented below. 

~ 60~--~--~--.---.---.---.---.-__ ~ __ ~~ 
~ 40 ····· .... · .... ···········c·L····_· -i-·""'····""'···~"··~····7":"····~···~r~····~ .. ··:-::-:···!::r:::-::·· .. ~· .. :-::-: .. ··~r·7.· .. 7. .. · ~ ... ~~ ... ~ ... -.... ~ .. . 

E 20 ······;········ .... ·t·· .. ·· ...... t····· .. ······t .. ·· ··· .. ·+ .. ···· .. ····i ...... ·· ...... :·· .......... · 
] ····t·············j"·········· .. ·t·········· .. ·j-········· .... J .............. j .............. ! ............ . 

time (s) 

~ ~ ·············;··············).· .. ·· .... · .. + .. ····· .. ···1···· .......... j .............. \ ............ . 
u . 

;...
gf_ -0.1 .......... ;:: ............... ,.:: .............. ,.~: ............ ; .............. v ............. j. ............. ,....: j 
'oJ ~ l l ~ .. ·······T·············(············ 

] -0. 100 200 300 400 500 600 700 800 900 1000 

i lWI:I"f(')ilml,1 
o 100 200 300 400 500 600 700 800 900 1000 

time (s) 

Figure C.3: GA Optimised Tanker Course Changing Responses 

The Course Keeping responses discussed in Section 7.5.6.2 are presented below. 
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