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Abstract

This research presents a vibration analysis fothia tsotropic plate containing an
arbitrarily orientated surface crack. The work Heeen motivated by the well known
applicability of various vibrational techniques &tructural damage detection in which the
detection and localisation of damage to thin plsteictures at the earliest stage of
development can optimise subsystem performanceassure a safer life, and is intended
to be an enhancement to previous work on crackaggfor which the orientation of the
crack angle was not included. The novelty of thesearch activity has been in the
assimilation of a significantly enhanced crack maaihin the analytical model of the
plate, in modal space, and taking the form of acigfised Duffing equation. The
governing equation of motion of the plate modelhwénhanced crack modelling is
proposed to represent the vibrational respons@eptate and is based on classical plate
theory into which a developed crack model has l@s=smmilated. The formulation of the
angled crack is based on a simplified line-sprirgdel, and the cracked plate is subjected
to transverse harmonic excitation with arbitradhosen boundary conditions. In addition,
the nonlinear behaviour of the cracked plate maslehvestigated analytically from the
amplitude-frequency equation by use of the multgdales perturbation method. For both
cracked square and rectangular plate models, theemte of the boundary conditions, the
crack orientation angle, crack length, and locatbthe point load is demonstrated. It is
found that the vibration characteristics and nadmncharacteristics of the cracked plate
structure can be greatly affected by the orientatibthe crack in the plate.

The dynamics and stability of the cracked plate ehade also examined numerically using
dynamical systems tools for representing the behavof this system for a range of
parameters. Finally the validity of the developeddel is shown through comparison of
the results with experimental work and finite elemanalysis in order to corroborate the
effect of crack length and crack orientation arajiehe modal parameters, as predicted by
the analysis. The results show excellent predicigeeement and it can be seen that the
new analytical model could constitute a useful tlmol subsequent investigation into the
development of damage detection methodologiesdnenlised plate structures.
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Chapter 1

Chapter 1

Introduction

1.1 Motivation

In recent years the dynamic behaviour of thin matr rectangular plates has received
considerable attention due to its wide technicadartance. Thin plate structures have very
many broad applications, ranging from those of maatiive and structural engineering, up
to space technology. The demand for this type mfcgire has rapidly increased due to
industrial stringency, especially in aerospace alebkiin which light weight is essential.
However, this type of structure can lead to unwantestances of high vibration. Over
time, vibrational effects can have long-term aslaslshort-term damaging effects on the
structure. Such phenomena are potentially dangeasushey can create a complete
unbalance of the structure which can then ultinyatell. Therefore, the detection and
localisation of damage to thin plate structureshat initial stage of development can

optimise system performance and safety.

Two plate theories are widely accepted and usednmineering problems, namely the
Kirchhoff plate theory, or classical plate theaapd the Mindlin — Reissner plate theory. A
comprehensive background on plates has been pbgldimoshenko and Woinowsky-
Krieger (1959) in which methods were introduced tten be used in various derivative
systems. At the end of the M @entury plate theory was routinely applied to eegring
problems involving vibration and noise in structi(@zilard, 2004) and there are many
published papers offering vibration analyses ofcked plates. Based on the literature
which has been reviewed for the vibration analgs$ia cracked plate, it is seen that most
of the published papers have analysed vibratiomaites with part-through surface cracks,
part-through finite length cracks, all over pantetigh cracks, and internal cracks. All of
these cracks have tended to be located at theosidzlge of the plate, or have been
centrally located cracks parallel to one side efplate. Only a few papers (Maruyaarad
Ichinomiya (1989); Wu and Law (2004); Huang andskai (2009); Huangt al. (2011))
have investigated the vibration analysis of a platd a crack which is not horizontally or
vertically aligned along one side of the plate. ldger, until now, none of this research has
provided clarification of the modelling necessaoy accommodate a surface crack of

variable angular orientation which could then bedufor nonlinear vibration analysis.



Chapter 1

Therefore, one of the motivations for this thessto provide an extension to the
development of currently available analytical meder the vibration analysis of a cracked
plate. A new analytical model of an aircraft pasielicture, in the form of a thin flat plate
with enhanced crack modelling and various boundangditions, is provided in the form of
an isotropic cracked plate. This plate is thenettied to a transverse harmonic load and is
considered for nonlinear vibration analysis. Aki®wn, the different behaviour in the
vibration characteristic and the nonlinear respsrfecracked plates are both dependent
on several factors, such as plate geometry, extdanees and locations, prevailing
damping coefficients, and the geometry, locatiod anentation of the crack itself. Thus,
it is instructive to compare and analyse the eftdcbrientation of a crack in a plate, in

order to improve the overall performance of thadctire.

1.2 Research Aims and Objectives

It is necessary still to develop a deep understandf the derivation of the model of a
cracked plate, especially for the nonlinear casechMresearch work has been undertaken
on the linear model, and there are restricted neali models available for vibration
problems in cracked plates. A detailed derivatidrthe differential equation based on
classical plate theory for modelling a crack inatgfor a nonlinear model was initiated by
Israr (2008) and Israet al. (2009). In these works, the concept of a linergprnodel
based on Kirchhoff's plate bending theories, as fintroduced by Rice and Levy (1972),
was used for the crack formulation. The idea behimd concept was to reduce the
problem of a three-dimensional surface crack tauasgtwo-dimensional problem. The
type of crack considered by these authors was tathpaugh crack located at the centre
and parallel to one side of the plate. Hence, the @ this research is to extend the
vibration analysis of the cracked plate discussedaper by Israr (2008) and Isreir al.
(2009) by considering an alternative geometry winerine crack orientation is variable.
Therefore, the work in this thesis seeks to:

i. Develop the mathematical model of an aircraft patreicture which takes the form
of a specialised Duffing equation. An aircraft plasgucture is modelled as an
isotropic thin flat plate with an arbitrarily orieted surface crack, subjected to
transverse harmonic excitation with arbitrarily sen SSSS, CCSS and CCFF

boundary conditions based on classical plate theory

18



Chapter 1

ii. Investigate the nonlinear behaviour of the cragidate model from the amplitude-
frequency equation by use of the multiple scaledupeation method and to

compare the results of this with those obtainethfdirect numerical integration.

lii. Study the influence of the orientation of the cracigle on the nonlinear vibration
characteristics of the plate.

iv. Perform an appropriate finite element analysisroteoto corroborate the effect of
crack length and crack orientation angle on the ahpdrameters and vibrational

amplitude of the cracked plate.

v. Undertake a dynamical systems analysis of the echpkate model.

vi. Verify the developed model through comparison @& thasults with experimental

work.

1.3 Thesis Overview

Chapter 2 presents a critical review of the literatof thin plate structures and plates with

cracks, particularly for vibration problems.

Chapter 3 provides a derivation of the equatiomofion for the forced vibration of a plate

containing an arbitrarily orientated surface craak¢g based on three different boundary
conditions. The derivation method is based on wabkplate theory. Numerical results are
presented for the natural frequency of the firstdenof the intact plate and for the cracked
plate, for various aspect ratios and crack oriemtaangles. The physical parameters that

control the orientation of the crack angle are alsestigated.

Chapter 4 proposes an analytical solution to thdimear governing equation of motion
for the cracked plate by use of the perturbatiomhiek of multiple scales. In this chapter
the amplitude-frequency equation obtained is useh\vestigate the nonlinear behaviour
of square and rectangular plates containing a cairéaack of known orientation. The
influences of the boundary conditions, the craclerdation angle, crack length, and
location and magnitude of the point load are athdestrated. In addition, for purposes of
comparison, numerical results are also calculateddibectly integrating the derived

nonlinear ordinary differential equation. This ctapalso summaries a finite element

19
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model of an intact plate and a cracked plate bath @CFF boundary conditions, within

ABAQUS, for a further modal analysis in order tarodorate the effect of crack length
and crack orientation angle on the modal parameparsicularly the natural frequency as
predicted by the analysis. The finite element asialys also performed in order to study
the effects of parameter changes on the vibratiamglitude of the cracked plate.

Chapter 5 presents a dynamical systems analysiseoplate with a variably orientated
surface crack, and includes time domain plots, @lpésne representations, Poincaré maps,
and bifurcation diagrams. The transitions to cha@sanalysed using the dynamical tools
provided within MathematicH.

Chapter 6 gives experimental measurements in eodegrify the theoretical cracked plate
model. The response of intact and cracked platés various surface crack orientation
angles is investigated. The tested plates are &ebj¢éo a transverse harmonic excitation at
a selected point with arbitrarily chosen CCFF tgpendary conditions.

Chapter 7 provides the comparative studies betwkentheoretical modelling and FE
approaches, and the theoretical modelling with erpmntal measurements and to extend
the discussion where appropriate regarding theltsesiotained from Chapters 3 to 6
including the method of multiple scales, direct muical integration method within

Matematicd", and a numerical study into the system’s dynamics.

Chapter 8 concludes this PhD research and prosiaggestions for potential future work.
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Chapter 2

Literature Review

2.1 Plate Structures

Flexible structures are extensively used partitpiarmany aerospace applications. Plates,
beams, frames and shells are basic elements foctwtal analysis and are of great
practical significance to civil, mechanical, marimerospace engineering and other areas
of practical interest, such as slabs on columrexildle satellite manipulators, printed
circuit boards, and solar panels supported at apewts. Flexible plates are initially flat
structural elements where the thickness is mucHlenthan the other dimensions. Plates
can be classified into three groups; thin platet wmall deflections, thin plates with large
deflections, and thick plates. Two plate theoriee ®aidely accepted and used in
engineering problems, namely the Kirchhoff platedtty, or Classical plate theory, and the
Mindlin—Reissner plate theory. These two main tlesocan be applied to plate problems
depending on the value of the plate thickness.ditlakplate theory must be employed for
thin plates when ignoring the effect of shear defatron through the plate thickness, while
for thick plates Mindlin-Reissner plate theory mbstapplied so that the effects of shear
force can be taken into account. A comprehensie&draund on plates has been provided
by Timoshenko and Woinowsky-Krieger (1959) in whitctethods were introduced that

could be used in various derivative engineeringesys.

This research is focused on thin plate structuresder to develop enhanced modelling for
reliable, light and efficient structures. Plate enatls now lead to designs that are thinner,
lighter and larger than before. According to th#gedon often applied to define a thin

plate, the ratio of the thickness to the smallemsjength should be less than 1/20. If the
ratio is more than that, then transverse sheammhetton must be accounted for and the
plate is then said to be definitionally thick (Uglrli999). However, thin, light and large

structures lead potentially to high vibration. \&bon of flexible structures causes

generally reduced system effectiveness, structat@ue, and possible human discomfort
or reduced safety. With their potential applicatiaand problems, the vibration of plates
undergoing installations with complex boundary dbods has received considerable

attention from researchers.
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2.1.1 Vibration Problems in Plates

The vibration of plates has been studied extengisiglce 1787, due to its importance in
the design of plate structures, and many of theomapt studies in this field were
documented in Leissa’s monograph (Zhou and Zhef@6)2 At the end of the 19
century, plate theory and its resultant behavioas vapplied to engineering problems
involving vibration and noise in structures (SzilaR004). According to Szilard (2004),
initial mathematical solutions to the free vibratiproblem based on the membrane theory
of plates was formulated by Euler (1776) and Belin(iir89), and then in 1813, Lagrange
developed the governing equation for the free Wibnaanalysis of plates. Subsequently,
Navier (1836) derived a differential equation fdatps subjected to distributed static
lateral loads, and Kirchhoff (1887) obtained a famidifferential equation for plate
problems through the use of a different energy @gogr.

Corrections for rotary inertia and shear were fagplied by Timoshenko in 1921 for the
case of beams. Following Timoshenko, Reissner9##land 1945, improved the equation
for vibration of thick plates by including the effe of shear and rotary inertia through a
complementary energy principle. Afterwards, Mindlin1951 also developed an equation
including these effects with a different approagh utilising a modified theorem and
assumptions. In this study, he generalised the 3lmoko one dimensional theory of
beams to the plate and showed a more comprehetmgivdimensional theory of flexural
motions of plates which could be deduced direatiyrf the three dimensional equations of
elasticity (Tomar, 1962). According to Ugural (199@nalysis methods for plates are
strongly dependent on their boundary conditions gedmetrical shape. It is widely
recognised that closed-form solutions are possdigy for a limited set of simple

boundary conditions and geometries.

Warburton (1954) proposed the first comprehensolection of solutions for rectangular
plates. In this useful work he obtained the apprate natural frequency formulas for
plates with all possible boundary conditions fot mlodes of vibration, by use of
Rayleigh’s method. All 21 types of boundary coratitiproblem were obtained from a
combination of free, freely-supported, and fixedgedboundary conditions. The
approximate natural frequency formula was obtaimeterm of the boundary conditions,
the nodal pattern, the plate dimensions, and themabproperties. Tomar (1962) studied
the flexural vibrations of an isotropic elastic tplaaccording to Mindlin’s theory by

including the effects of shear and rotary ineiaaumerical solution for the equation for a
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simply supported thin square plate with variousogbf thickness to the side has been
obtained, and then the results were compared Wwiabket from fundamental classical plate
theory. In 1973, Leissa presented a comprehentidy ®f the free vibration of all the 21
combinations of classical boundary conditions fectangular plates. Accurate frequency
parameters have been presented for a range oftasgies, and comparisons were made
with useful approximate formulas by Warburton (1p5Bawe and Roufaeil (1980)
examined the use of the Rayleigh-Ritz method tdiptéhe natural frequencies of flexural
vibration of isotropic plates based on Mindlin theoand Bhat (1985) investigated the
vibration problem of rectangular plates by usingset of characteristic orthogonal
polynomials within the Rayleigh-Ritz method genedafrom a Gram-Schmidt process in
order to express the bending deflection of rectirgulates under static loads. The method
showed superior results for lower modes and pdatilyufor plates with some free edges.
Kitipornchai et al. (1993) have also carried out the free vibrationlymm of thick
rectangular plates using the Rayleigh-Ritz methblde energy function derived using
Mindlin’s plate theory was minimised using the Ragh-Ritz method which leads to the
governing eigenvalue equations. Sets of reasonadxdyrate vibration frequencies were
presented for a wide range of plate aspect rahids@ative thickness ratio for the first ten
modes of 21 sets of boundary conditions involvitigpassible combinations of clamped,
simply supported and free edges. They found thatRhyleigh-Ritz method can show
substantial success in the vibration analysisioktplates.

The Galerkin method is one of the more powerful atdoal methods for the solution of
differential equations, and is comparable in apilib other numerical techniques for
related stability problems such as the differentjahdrature method (Saadatpauiral,
2000). The Galerkin method involves direct usenefgoverning differential equation, so it
does not assume the existence of a functional ithatsually minimised as in other
methods. In 1989, Ng and Araar solved the fourttleordifferential equation for the
problem of free vibration and buckling of isotromi@amped rectangular plates of variable
thickness by use of the Galerkin method. In 1997 #8098, Azhari and Saadatpour, and
Saadatpour and Azhari, respectively, used the @alenethod for the dynamic and static
analysis of simply supported plates of general ebhapater, in 2000 Saadatpoefr al.
extended their work for the vibration analysis @ngral plates. By making use of the
Galerkin method, a theoretical formulation for tfree vibration analysis of simply
supported quadrilateral plates having intermediige or point supports was presented.
The results for the natural frequency of trapeZpidaombic, skew, and continuous

rectangular plates, with line supports i.e. oneaspao-span, three-span and etc., and a
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plate with a central support have been obtained @rdpared with results of other

researchers. Close agreement has been obtainedl frases. The Galerkin method was
also applied by Kopmaz and Telli in 2002 to obtdie eigenfrequencies of a rectangular
plate carrying a uniformly distributed mass. Usihg Galerkin procedure, the equation of
motion was reduced to a set of ordinary differdreguations and then used to obtain the

frequency equation.

Gorman, in 1995 and 2005, obtained a series ofienkifor the free vibration frequencies
and mode shapes of thin orthotropic cantileveregldtty the superposition method. In his
study the natural modes were expressed in the furrimigonometric and hypermetric
series, and the number of terms in the series diggean the requirements of precision.
Before that, Bardell in 1991 applied a new appro&om developments in the finite
element method called the hierarchical finite elemenethod (HFEM) in order to
determine the natural frequencies and modes dhtarictangular plate for ten different
boundary conditions. According to Bardell, the ttnelement method can generally be
regarded as a special case of the classical Raylitg method with the main difference
between the two lying in the choice of admissiblenctions used in the series of
representation of the solution. The basic finitengnt approach consists of dividing the
domain of interest into a number of smaller subdomaalled finite elements and then the
solution is approximated by locally admissible pagnial functions. The HFEM, known
as thep-version of the finite element method, is one & techniques needed to improve
the accuracy of the finite element approximatione HFEM involves keeping the element
mesh constant, and letting the degree of the appedig polynomial functions tend to
infinity. In Bardell's (1991) study of HFEM, the selts obtained have shown good
agreement with the work of other researchers agydcambination of edge condition can
be incorporated in this analysis.

Subsequently, Han and Petyt, 1996 (a) studied itread vibrations of symmetrically
laminated rectangular plates with clamped boundangditions by using the HFEM. Their
results showed that the solutions converged rapadtiy the increase in the number of
polynomials used, and this required far fewer degsé freedom than when using the
conventional finite element method. In the same w¢d 996, Han and Petyt (b) extended
their study to the forced vibration problems usihg same method of HFEM. The loads
were considered as harmonic acoustic plane wavplyiag on the plate surface in a
normal direction and at grazing incidence. The ltedor the natural frequencies of five
layer, symmetrically laminated, rectangular plates different grazing incidents were

24



Chapter 2

obtained and they found a decreasing trend of &eges with the increase of incidence.
Furthermore, they found that the maximum surfacedlvegy strains might not occur at the
middle of the edges due to distorted mode shapesidBs FEM, partial differential
equation models (PDESs) also can be solved by ubiadinite difference method (FDM)
and the differential quadrature method (DQM). Hoere\these methods face difficulties
when applied to problems with complex domains duthé non-coincidence of mesh lines
and boundaries. According to Shual. (2007) , in order to eliminate this problem the so
called meshless methods have been developed inglude moving least-square (MLS)
approximation, the reproducing kernel particle rdt (RKPM), the least-square-based
finite difference method (LSFD), the element-frealétkin method (EFG), and the
differential cubature method (DCM) etc. In Séwal’s (2007) study, the meshless LSFD
method was employed to solve the free vibratiorbl@ms of isotropic, thin, arbitrarily
shaped plates with simply supported and clampeeé edgndary conditions, in which the
governing equation for this plate problem was mfibrm of a fourth order PDE. The chain
rule was used in the approximation of the higheleoderivatives due to the efficiencies of
this rule for approximating higher-order derivatva the LSFD discretisation. They found
that the present approach of LSFD showed many &alges over the traditional methods
such as FDM and DQM. For example, numerical ercarssed by discretising derivatives
in the boundary conditions can be completely avbihethe case of clamped edges, and

considerably reduced in the case of simply supddsteindary conditions.

Wu et al. (2007) proposed a Bessel function method to oliteenexact solutions for the
free vibration analysis of rectangular thin plates three different boundary conditions,
namely fully simply supported, fully clamped, amndot opposite edges simply supported
with the other two edges clamped. According to Xamgl Liu (2009) , the Hamilton dual
method was applied by Ouyang and Zhong (1993), &abDeng (2005), and Zhong and
Zhang (2006) for analyses of the modes and nafie@liencies of thin plates, in which the
natural modes in these solutions were expresséldeiriorm of symplectic eigenfunction
expansions rather than in closed form, and &eal. (2004) gave some Hamiltonian dual
differential equations for thin plates. In a papgrXing and Liu (2009) the Hamiltonian
symplectic dual method was adopted and the separafivariables used in order to solve
the transverse free vibration problems of rectaagthlin plates. The first ten frequencies
and mode shapes for the SSCC, SCCC and CCCC case®hbtained and validated with
the FEM results. Xing and Liu (2009) concluded tkia¢se exact normal modes and

frequency equations can be used to obtain resul@ny combination of separable simply-
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supported and clamped boundary conditions whichtleas be taken as a benchmark for

verifying the different approximate approaches.

2.2 Nonlinearities

Nonlinear problems are of interest to the scien@ind engineering communities because
most physical systems such as structures are mihemonlinear in nature. No physical
system is strictly linear and hence linear modélphysical systems have limitations of
their own in which these linear models are onlyl@pple in a very restrictive domain, for
instance when the vibration amplitude is very smddinlinearities exist in an equation of
motion when some product of variables, or theiiv@gives, exists. Nonlinear equations
are difficult to solve and yet give rise to inténeg phenomena such as jumps, saturations,
sub-harmonics, super-harmonics, combination resmsarself-excited oscillations, modal
interactions, periodic doubling, and chaos. Detbdgplanations about the various types of
nonlinearities, with examples, can be found in bloeks by Nayfeh and Mook (1979),
Moon (1987), Cartmell (1990) and Thomsen and Ste(2802).

2.2.1 Nonlinear Plate Theory

The sources of nonlinear behaviour can be cladsiiio three main categories i.e.
geometric nonlinearity, material nonlinearity andubhdary condition nonlinearity. The
geometric nonlinearity category is important totegss with large deflections, or systems
that may fail due to buckling. When plates are etdéid beyond a certain magnitude, linear
theory loses its validity and produces incorresutes. The deflection of the plate may then
exceed the original dimensions of the plate andbsapredicted by linear theory, but it is
generally unrealistic. Thus, geometric nonlineanityst necessarily be taken into account.
In plates geometric nonlinearity may arise becafsevo reasons, namely the nonlinear
strain-displacement relationship, and the nonligar the governing differential equation
due to the coupling of inplane and transverse degrhent fields. As a result, mid-plane
stretching of the plate may occur. When the daftf@cdf the plate increases, the stretching
effect becomes more pronounced than the bendimgtefbarticularly when the edges of
the plate are restricted. However for beams thdimesr moment-curvature relationship

becomes significant when large deflections withgitgtching are considered.

Another important category of nonlinearity relatés material properties. Such
nonlinearities would render the stress strain i@lghip of the material of the structure
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nonlinear, so that Hooke's law is therefore invalid the case of nonlinear material

behaviour, linearity occurs up to the yield pointlahis region called the elastic region of
the material, in which the slope of the linear oegican be defined as the Young's

modulus, but beyond that point it deviates fronmadr to a nonlinear response. Nonlinear
systems are also caused by nonlinear boundary tcmmgli Examples of such phenomena
include the use of a nonlinear spring or dampethenedge of a plate, or the case of a
nonlinear spring in a mass-spring-damper systenffiidls equation is a special case of a
cubic nonlinear spring in a mass-spring-damperesysBesides these categories, inertia,
impacts, backlash, fluid effects and damping ase ahpable of categorising other types of

nonlinearities which exist in structures (Malatkz®03).

According to Malatkar (2003) and Israr (2008), elatructures undergoing transverse
deflection can be classified into three numeroggmes that describe the nature of their
behaviour and thus the characteristics of the nmadgitieal problem, namely; (1) small
deflection theory (linear), (2) moderately largdleietion theory (nonlinear), and (3) very
large deflection theory (highly nonlinear). Thishbagiour can generally be classified by
observation of the amount of deflection in comparigo the plate dimensions. Small
deflection theory can typically be used for deiflets less than twenty percent of the
thickness. Moderately large deflection theory ipleggl when the deflection is a multiple
of the plate thickness but much less than the péade length, whereas very large
deflection theory is applied when the deflection tbé plate is similar in order of
magnitude of the plate side length. Depending enplate classification the solution to
these problems can be relatively simple or hightynplex, and typically impossible
without the implementation of approximating techugg. Problems of linear and
moderately nonlinear deflection will be discussedhis review, but very large deflections

are currently not significant to this work and sedpsently will not be covered.

It is interesting to note that the majority of pitgd systems belong to the class of weakly
nonlinear (or quasi-linear) systems. For certairergmena, these systems exhibit
behaviour only slightly different to that of thdinear counterparts. In addition they also
exhibit phenomena which do not exist in the linelmmain. Therefore, for weakly
nonlinear structures, the usual starting pointiisthe identification of the linear natural
frequencies and mode shapes. Then, in the analygsdynamic response is usually
described in terms of its linear natural frequesca@®d mode shapes. The effect of the
small nonlinearities is seen in the equations guwmegrthe amplitude and phase of the
structures response.
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2.2.2 Nonlinear Vibration of Plates

A selective history of the nonlinear vibration dafes is given below. The credit for the
discovery of nonlinear theory, that accounts fothbmending and stretching of a plate, is
generally given to G. Kirchhoff (1824-1887). Thga®blems also can be found in the
book of Nayfeh and Mook (1979). Two highly citedetature reviews on nonlinear
vibrations are by Chia (1980) and Sathyamoorth@89Chia published a compilation of
information on nonlinear plates, with methods fqup@aching the different plate
problems, in his bool\onlinear Analysis of Platesvhereas Sathyamoorthy summarised
work on the nonlinear vibrations of plates from 398 1986. After Kirchhoff established
the classical linear plate theory, von Karman (3éveloped the nonlinear plate theory.
In his study the final form of the nonlinear diféatial equations governing the moderately
large deflection behaviour of a statically deflecptate was developed. Solutions for these
sets of nonlinear equations have been examinedigx&dy in the literature. Following an
approximation by Berger in 1955, the coupled vomnk&@n equations were replaced by a
simplified set of equations describing the largéledtion of plates. Berger solved several
problems in the static deflection of plates andcbasted that his simplified theory gave
results in substantial agreement with more elabarathods. The Berger formulation can
be used to investigate nonlinear vibrations whenstinain energy due to the second strain
invariant in the middle surface can justifiably igynored. This then results in decoupling
and linearisation of the governing equations. Hpglicability and simplicity of this
approximation to the nonlinear vibration analydiplates makes it a very useful approach.
Wah (1963) used the simplified Berger equation fapasing the condition that the in-
plane displacements andv can be assumed to disappear at the external boesdand
therefore applied this equation for the vibratioralgsis of rectangular plates with large
amplitudes, and with various boundary conditionsndhan (1975) considered the Berger
equation for the nonlinear vibration analysis ofastic plates. Research works on
geometrically nonlinear vibration of thick plateoptems are relatively frequent, however
only some of them are given here because thicleplate not considered in this research.
In Leissa's monograph (1993) other techniques larstrated which extend the Berger
technique to include the vibrational behaviour bége nonlinear plates. Part of this
approach is to assume a solution based on theaspaides and on some function in time.
This has been shown, in this thesis, to reducehéo vtell known Duffing oscillator

problem.

28



Chapter 2

Nonlinear plate dynamics were studied by Chu andriinn (1956) who began with an
investigation into the effects of large deflectiona the free flexural vibration of
rectangular plates. They used the von Karman eapsin order to study the problem of
an isotropic plate simply supported on all edges Wixed and hinged edges. The general
solution of these equations is unknown, but fipgtraximations to the solutions have been
obtained by these authors using a perturbation adedind the principle of conservation of
energy. Afterwards, in 1961, Yamaki obtained solusi for isotropic rectangular plates for
simply supported and clamped plates by use therkdaléethod. Srinivasan (1965)
applied a Ritz-Galerkin technique to obtain thelmzar free vibration response of hinged-
hinged beams and plates for different boundary itiomd. In 1968, Stani§iand Payne
introduced a technique based on the Galerkin apprdar determining the natural
frequencies of rectangular plates with discrete sesasadded for simply supported and
clamped boundary conditions. Their results indidatee expected trend that natural
frequencies decreased with added mass whereastieetns and stresses of the plate
increased. Next, calculation of the nonlinear radtérequencies of beams and plates for
large amplitude free vibrations was presented by (1873) using the Finite Element
Method. In this study, the nonlinearity consideveas due to large deflections, and not due
to nonlinear stress-strain relationships. Mei datithe stiffness matrix formulation for a
plate element based on a modification of Bergeyjsothesis. As a result, the nonlinear
behaviour of the hard spring type for the large liomge lateral oscillations was shown
clearly as the dimensionless amplitude increasasn® the same period Rehfield (1973)
applied Hamilton’s principle and a perturbation ggeh for analysing the nonlinear free
vibration of elastic structures including platesideams. In 1978 Prathap and Pandalai
incorporated the effects of transverse shear aiaayroertia in their study of the nonlinear
vibration of transversely isotropic rectangulartetausing the von Karmén field equations.
The three generalised coordinates together witlGdderkin technique were used to define
the state of deformation of the plate. Sathyamo(i879) also applied a Galerkin method
for the large amplitude free flexural vibration afthotropic rectangular plate problems.
Dumir and Bhaskar (1988) studied the large ampditissiced vibrations of orthotropic thin
rectangular plates using the orthogonal point callion method. Plates with all edges

clamped or simply supported and fixed edges haea bensidered in this work.

Benamaret al. (1993) developed a theoretical model based on Hams principle and
spectral analysis for the study of large amplitustefully clamped isotropic rectangular
plates. This investigation was an extension ofrthgevious work on fully clamped

symmetrically laminated rectangular plates publisire 1990, and for simply supported
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and clamped-clamped beams in 1991. Numerical se8ultvarious plate aspect ratios and
vibration amplitudes were obtained and showed that mode shapes were amplitude
dependent. The general trends of the mode shapegehaere an increase of the
displacement, or curvature, near the clamps, attefling near the centre of the plate. A
good agreement was obtained between theoreticatlicio;ns and experimental
measurements, however the theoretical models emglay these studies considered
transverse displacements only and neglected thectseffof in-plane displacements.
Bencharif and Ng (1993) conducted a nonlinear amlgf thick rectangular plates by
using the finite difference method in order to sfanm the partial differential equations
into an algebraic system of equations to yieldssthiations. Haret al. (1994) applied the
HFEM for the geometrically nonlinear static anadysf thin laminated rectangular plates
with clamped boundary conditions. After succesgfafpplying this method, Han and Petyt
(1996) continued their work in order to study thenkmear vibration analysis of thin,
isotropic rectangular plates with the same boundamnditions. They employed the von
Karman nonlinear strain-displacement relationshmg the harmonic balance method, for
formulating the mathematical model and obtainirgeavalue-like equations, respectively.
A modified form of Berger's hypothesis was also é&ypd to study the in-plane
membrane force averaging effect on the geometyigahlinear behaviour. In Han and
Petyt's (1996) studies, the influences of largeration amplitude on the frequency and
mode shape of the fundamental mode have been pedsand the results have been
compared with other results from the publisheddiigre.

The Galerkin method was also used by Leung and Ma&995. In that paper the
geometrically nonlinear free vibration of thin gaand beam problems were studied by
Hamilton’s formalism instead of using the familiapproaches of the Newtonian or
Lagrangian formulations. The Galerkin method wapliad to discretise the continuous
Lagrangian in order to obtain the discrete Hamilemuations. Ribeiro and Petyt (1999)
analysed the steady state, geometrically nonlingenipdic vibration of rectangular thin
plates under harmonic external excitations by isee@HFEM and the harmonic balance
methods. Again in 1999 the theoretical model basedHamilton’s principle and spectral
analysis proposed by Benanaral. (1991 and 1993) was used by Kaditial. to calculate
the second nonlinear mode of a fully clamped repitar plate. The large vibration
amplitude problem was reduced to a set of nonliégebraic equations and was solved
numerically. They found that the nonlinear modevgta a higher bending stress near to
the clamps at large deformations compared withghedicted by linear theory. This model

was extended by Kadiri and Benamar (2002) in otdestudy the geometrically nonlinear
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free vibration of fully clamped rectangular plat®gth some improvement observed in
allowing a direct and easy calculation of the firstcond, and higher nonlinear mode
shapes, associated with the nonlinear natural éecjas and nonlinear bending stress
patterns. In Kadiri and Benamar’s study, the n@dmfree vibration problem was reduced
to the solution of a set of nonlinear algebraicagmuns and was performed numerically
using appropriate algorithms in order to obtained & nonlinear mode shapes for the
structure. In 2003 these authors proposed an imegroform for determining the
geometrically nonlinear response of rectangulateglavhich were excited by concentrated
or distributed harmonic forces. This approach wagslied to the cases of fully clamped
(CCCC), simply supported and clamped-clamped-singuigported (SCCS) rectangular
plates. The results showed that the relative nattequency was a function of the ratio of
the amplitude and thickness of the plate. Bidrial. (2003) also extended the work by
Benamaret al. (2003) based on Hamilton’s principle and specralysis to the case of
clamped-clamped-simply supported-simply supporte@3S) rectangular plates. In this
study the effects of large vibration amplitudes tbe first nonlinear mode shape, the
fundamental natural frequency, and the associdéedrhl stress distribution have all been
determined. Bikriet al. found that the nonlinear natural frequency inaeeasvith
increasing vibration amplitudes for the hardenipget nonlinearity, and the geometrical
nonlinearity was also characterised by a deformatibthe first mode shape when the
vibration amplitude increased. Consequently this waen to induce a variable rate of
increase in the maximum flexural stresses whemté@mum non-dimensional amplitude,
obtained in the vicinity of the plate centre, irases, whereas this rate remains constant in

the linear theory.

The use of HFEM to study the nonlinear free andddrvibration analyses of skew and
trapezoidal plates for the clamped boundary comulitvas presented by Leung and Zhu
(2004), by considering the effects of transverssaslleformation and rotary inertia. Only
weak nonlinearity without bifurcation was considera their study. A new methodology
that could be employed for plate structure problemth any combination of boundary
conditions to determine the nonlinear natural fesgpies and mode shapes was proposed
by Sahaet al. in 2005. In their study (Salet al), the static analysis served as a basis for
the subsequent dynamic problems, and both thed#epne were formulated through the
energy method. The solution methodology was empl@gean iterative numerical scheme
using the technique of successive relaxation. ®0620Amabili theoretically and
experimentally investigated the large amplituderatiions of rectangular plates with

geometric imperfections subjected to harmonic exoih. Recently, in 2011 Mitrat al.
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presented a large amplitude free vibration anafgsistiffened plate problems subjected to
uniformly distributed transverse loading with aglenfree edge and also associated with
different combinations of clamped and simply supgebrboundary conditions. In 2012,
Mitra et al. extended their work for the large amplitude foroedration analysis of
stiffened plates subjected to transverse harmaxidation. The governing equations in
both the forced and free vibration cases were ddrikased on the energy principle
method, and solved by employing an iterative dirsabstitution method with an
appropriate relaxation technique. Results wererga® frequency response curves in the
nondimesional frequency-amplitude plane, and weoemapanied by backbone curves for
the system. Mitraet al. (2012) found that when the amplitude of excitatreduced, the

nonlinear response of the system tended to attaishape of a backbone curve.

2.3 Damage Identification Methods in Plate Structur es

Damage identification techniques, particularlytirustures, have received increasing effort
from many researchers over the last few years. @dypelamage identification techniques

are categorised into local/visual and global meshaglshown in Figure 2-1.

[ Nondestructive Damage Identification Metho%s

|
v ! ! v

Ultrasonic Acoustic emission Vibration Visual
methods techniques techniques Inspection

|
v v v v

[ Natural frequenc ][ Mode shape ][ Modal dampin ] [ Modal strain enerc ]

Figure 2-1: Position of the Vibration-Based Identif  ication Methods
with respect to other damage identification methods (Loendersloot et al., 2010).

Local damage identification techniques comprise eexpental technique such as
ultrasonic methods, magnetic field methods, radiphgy testing, eddy-current methods or
thermal field methods, and require that the locattbdamage must be knovanpriori and
that the structure being inspected is readily agibks Global damage identification
methods, such as the vibration-based damage daetengthod, refer to numerical methods
and experimental techniques which can be appliedotaplex structures by examining
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changes in the vibration characteristics of thaecstre. These have led to developments
which overcome local damage identification methachitations in which such
experimental methods can only detect damage onear the surface of the structure
(Doeblinget al, 1998).

A comprehensive review of the vibration-based damiagntification methods has been
reported by several researchers (Doebkha@l, 1998; Wang and Chan, 2009; Fan and
Qiao, 2011). The basic principle behind this tedbgy is that modal parameters i.e.
frequencies, mode shapes, and modal damping, ldtenetions of the physical properties
of the structure, namely mass, damping, and siffn&herefore, changes in such physical
properties, for example reductions in stiffnessolifiesult from the onset of a crack, will
cause detectable changes in the modal propertidggat¥n-based damage detection
methods are especially attractive because theglabal monitoring methods in the sense
that noa priori information for the location of the damage is rexkdnd immediate access
to the damaged part is not required. These featamesespecially important when the
objects of monitoring are large or complex struesirand when some parts of these
structures are either inaccessible or very probliealty located for taking measurements.
Doebling et al, in 1998 reported a summary review of vibratiosdzth damage
identification methods. They provided an overvieWwnoethods to detect, locate, and
characterise damage in structural and mechanictksg by examining changes in the
measured vibration response. The methods are cetegaccording to various criteria,
such as the level of damage detection provided, etdoased vs. non-model-based
methods, and linear vs. nonlinear methods. Beglths Fan and Qiao (2011) presented a
comprehensive review of modal parameter-based damigigntification methods

specifically for beam or plate type-structures.

Many structures or major components in civil, apex®, and mechanical engineering can
be simplified to a plate or a beam. However theecralatively few references related to
damage identification methods for plate-type strregt. In 1999, Cornwedt al. applied a
strain energy method to detect damage in platestikectures. This method was based on
the changes in the strain energy of the structnderaquired only the mode shapes of the
structure before and after damage. The develoggatitim was found to be effective in
locating areas with stiffness reductions as lov@ using relatively few modes. Ht al.
(2005) developed a damage index using modal asadyal strain energy methods in order
to detect a surface crack in a laminated plate. &M@dhalysis was firstly performed to
obtain the mode shapes from experimental and fieliéenent analysis results, then the
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mode shapes obtained were used to calculate tie stiergy of the laminated plate before
and after damage by using the differential quadeatmethod (DQM) and they
subsequently defined a damage index. They fount ttlea damage index successfully
identified the surface crack location, as shownthy peak value of the damage index.
However, some peak values also emerged at othemagkd areas due to irregularities of
the mode shapes. Loendersloet al. (2010) studied a vibration based damage
identification of a composite plate with stiffeness are frequently applied in aircraft
components. They found that the modal strain endegyage index (MSE-DI) algorithm
IS a suitable method for detection and localisatiba delamination of the stiffener.

Yan and Yam (2002) detected damage in compositeoiessing the energy variation of the
structural vibration response decomposed by wawgilatysis. The study shows that the
proposed technique is capable of detecting extiersielall cracks in composite plates.
Pagetet al. (2003) examined the amplitude change of the wavetefficients to
characterise successfully the interactions of Lamdves with damage in a plate. A
versatile numerical approach for the analysis ofevaropagation and damage detection
within cracked plates was applied by Krawcaikal. (2003 and 2004). They considered
the spectral plate element as a tool for the inyason of such phenomena and showed
that when a propagating wave runs to the cracktimtaf the plate it divides itself into
two signals, which can show an indication of thendge section. The use of a spatial
wavelet based approach for damage detection ofctangular plate has also been
discussed by Chang and Chen (2004). In that sthey obtained spatially distributed
signals of the damaged rectangular plate by udnegfinite element method and then
analysed this by using wavelet transformation. €rsgmatially distributed signals can exist
in terms of mode shapes or displacements. ChangGirveh (2004) found that the
distributions of the wavelet coefficients can idgnthe damage position in a rectangular
plate by showing a peak at the position of the dprend that they have a high sensitivity
to the damage size. However, some indications ofiagge were also observed at the
clamped edges of the rectangular plate. Therefionggs concluded that it was very hard to
detect the crack position at the edges. The worlRbgka and Wilde in 2006 is also
devoted to wavelet based damage detection techmiguestimating the damage location
in beam and plate structures. In their study, ttevelet transform was applied to the
fundamental mode shape of the beam and plate hanestimated mode shapes of the steel
plate with four fixed boundary conditions were asald by use of the two dimensional
(2D) continuous wavelet transform. The locatiorthed damage is indicated by a peak in

the spatial variation of the transformed response.
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More recently data-based damage detection in the domain has been investigated by
several researchers. In this method, the idea wasd a measured dynamic response in
terms of time series analysis for damage diagniosigbrating structures. Basically the
time series is a sequence of data points, measypexlly at successive timgsspaced at
time intervals. Space-time series are the sets wfipte time series that are location-
related. In 2005, Trendafilova used nonlinear tsages based dynamic characteristics for
the purpose of damage detection and quantificatfanreinforced concentrate plate. Later
in 2007, Trendafilova and Manoach developed twdleianethods for damage detection
and localisation in a thin rectangular plate by aéarge amplitude vibrations which are
based on a state space representation of the timaid structural response. One of the
methods uses the statistical distribution of stgi@ce points on the attractor of a vibrating
structure, while the other one is based on the ”oinmap of the state space projected
dynamic response. Het al. (2011) developed a method for detecting damagplate
structures based on space-time series analysisofAthe proposed damage detection
methodologies based on time series and space-tariessshow a capability for the
detection and localisation of damage, however ngesssitivity has a great influence on the
results and can even destroy the detection.

Trendafilovaet al. (2005) have suggested a damage detection metlygydbbsed on the
analysis of the vibration response in an aircraftgascaled model. In this study localised
and distributed damage was considered, and a $i@pbFEM in ANSYS was used to
model the problem for the vibration response. Thegwvas split into five volumes for the
purpose of analysing the damage detection for ifis¢ ten natural frequencies. It was
shown that cracks of length less than half of tiegwvidth are undetectable in the case of
localised damage, whilst in the case of distribuedhage less than 30% in any of the
volumes was not detectable using natural frequenci&ée authors proposed in their
concluding remarks that changes in the lower médguencies were affected by damage
close to the wing root, and these changes decredsed the damage moved towards the
wing tip, or conversely the higher frequencies wai@e affected by damage close to the
wing tip and those changes increased when damagedimm the wing root towards the
tip. Subsequently in 2006, Trendafiloed al. applied a similar technique for vibration
based damage detection in aircraft panels moda#iadotropic plates with a crack at some
specified location. It has been found that the mettan produce extremely good results.
In 2009, Trendafiloveet al. applied frequency-based methods for the developroka
viable vibration health monitoring system (VHM) fibwin circular plates. The sensitivity of

the lower natural frequencies to certain types amdge has been examined and the
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authors attempted to establish the type and sizkefaficts which maybe detectable using
these frequencies. Their results show that theitsetys of the first several natural
frequencies to damage is rather limited. It is welbwn that small damage is easier to
detect by examining large amplitude vibrations, ahare much more affected by the
nonlinearities in a structure. Mooet al. (2011) developed and implemented a Bayesian
approach for crack identification in a freely viting plate using dynamic impulse
response data. The Bayesian framework is useddfmtifying the size, location, and
orientation of a single crack. This parameter eafiiom process was then implemented by
means of a simulated time series. The results dstrated that the credible intervals
(Bayesian confidence intervals) are extremely siamadl do not show any definitive trends

with crack orientation, crack length, etc.

2.4 Cracked Plate Structures

Failures can occur for many reasons, including dagies in the loading or environment,
defects in the materials or damage in a structimeslequacies in design, and deficiencies
in construction or maintenance. The types of dantlgehappen in structures are cracks,
fatigue, loosening of bolted joints, and corrosidrhin plate structures can lead to
unwanted instances of high vibration. Over timéyational effects can have long-term as
well as short-term damaging effects on the strect@racks can form and propagate
catastrophically with very little warning. Such ploenena are potentially dangerous as
they can create a complete imbalance of the stioithich can then ultimately fail.
Failure of a structure can result in terrible capsnces, economically and most probably
and importantly in terms of loss of life. Therefptiee detection and localization of damage
to thin plate structures at the initial stage ofelepment can optimize system performance

and safety.

The dynamic responses of rectangular plates widitks; or minor irregularities under
different loading conditions, have been investidate the past by many researchers for
different boundaries conditions, and various meshioalve been proposed to deal with the
problem (Israr, 2008). The length, position, anékemation of a crack will affect the
vibration characteristics of any host structure, addition to the effects of material
properties, plate geometry, and boundary conditi@macks in plate elements necessarily

cause local changes in plate stiffness (Irwin, }J9%&Xisting methods for the study of
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vibration analysis in cracked plates can be categodrinto three general techniques

namely analytical, numerical and experimental itigasions.

2.4.1 Vibration Analysis of a Cracked Plate Based 0  n an Analytical
Approach

Vibration analysis of a cracked plate was firstiyastigated by Lynn and Kumbasar in
1967. They used the Green’s function approach t@imba homogeneous Fredholm
integral equation of the first kind which satisfiekde mixed edge condition along a
fictitious line partially formed by the crack. Thesult of free vibration analysis of thin
rectangular plates with narrow cracks for simplpmuted edges boundary condition was
presented in terms of variations of frequencie$ watspect to different crack lengths and
the relative moment distributions along the uncealckegments. These results (Lynn and
Kumbasar, 1967) have been used as a comparisontdyy &d Keer (1972)who
investigated the vibration and stability of a signgupported rectangular plate with; i) a
crack emanating from one edge, and ii) a centialtated internal crack. In their study
dual series equation solution methods proposedd®r lind Sve in 1970 were applied by
taking the stress singularity at the crack tips iatcount. The dual series equations were
then converted by the use of certain integral g&ations to a homogeneous Fredholm
integral equation of the second kind in which tteunal frequencies and the auxiliary
function to calculate the mode shapes were detexmiStudies by Lynn and Kumbasar
(1967), Keer and Sve (1970) and Stahl and KeerZ)L8ffowed that their methods limited
the crack to a position along the symmetry axisaaddition, the antisymmetric vibration of
cracked plate has also been presented by StahKaed and the result in terms of
frequency factors as functions of crack length plasted and compared with the work of

Lynn and Kumbasar (1967) for which the maximumed#hces was about 11 %.

Trying to overcome this existing restriction in whithe crack was limited to a position
along the symmetry axis, Solecki in 1975 and 198@etbped a method that would allow
the study of isotropic, elastic, simply supportedtangular plates with arbitrarily located
cracks based on a combination of a finite Four@ngformation and a generalised Green-
Gauss theorem. Fundamental frequencies of natibedtdon were obtained for a square
plate with centrally located but arbitrarily incéid cracks of any length. The results
showed that the crack parallel to one edge of thaée pr diagonal crack reaching the
corners of the plate show very good agreement @thkr researches. Hirano and Okazaki
(1980) investigated the free vibrations of a regtdar plate having line cracks parallel to
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its edge while the two opposite edges perpendic¢aléne line of the crack are assumed to
be simply supported (Levy’s form of solution). TReurier expansion and the weighted
residual methods were used in order to formulagentixed boundary conditions on the
line of the crack. Neku (1982) analysed the frebration of a simply-supported
rectangular plate with a straight notch which sies$ a through-crack in a plate by
establishing the Green’s functions proposed by Lgnd Kumbasar (1967) via Levy’s
form of solution. Subsequently, in 1983, Soleclkaganted the natural flexural vibration of
a simply supported rectangular plate with an aahlir located crack parallel to one edge.
This problem was analysed by means of a finite iodransformation of discontinuous
functions representing the displacement and thpeshxross the crack. In his study the
case of the crack centrally located and off-cemiees taken as an example. The results
obtained were not sufficiently accurate for a craokending almost to the edges.
Basically, all of these papers (Solecki, 1975, 1880 1983; Hirano and Okazaki, 1980;
Neku, 1982) applied a finite Fourier transform he differential equation governing their
own problems. These authors obtained a systemtegris equations which possessed the
unknown discontinuities of the deflection and slog&oss the crack. The unknown
guantities then were expanded into a Fourier seni@sever this method was restricted to
plates in which one pair of opposite sides, perehar to the line of the crack, was

simply supported. This has come to be called they Ipdate.

The use of the Rayleigh method, with a simple sctim@ng technique to determine the
fundamental frequency of annular plates with iraéonacks, was presented by Lee (1992).
This method can be applied to annular plates wathous boundary conditions, but the
results were limited to the first natural frequendly 1993 Lee and Lim proposed a
numerical method based on the Rayleigh principlelitain the natural frequencies of a
simply supported rectangular plate with a centrldbated crack, including the effects of
transverse shear deformation and rotary inertiayg®y of the dynamic equivalent of the
simplified Reissner theory. Numerical results wepresented for cracked isotropic and
orthotropic rectangular plates. It was found tlatdracked orthotropic plates the effect of
rotary inertia could be neglected because the iaddit reduction in natural frequency
caused by this effect was relatively small compandtth the effect of transverse shear
deformation, while for thick isotropic plates wighlong crack, the effect of rotary inertia
reduced the fundamental frequency by a certain ainoomparable to the amount caused
by the effect of shear deformation alone. This métivas claimed as a simple alternative
to the existing analytical and finite element meklas the computation only involves the

integration of simple trigonometric functions. Thecomposition method was used by
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Liew et al. (1994) to determine the vibration frequencies wdcked plates with any
combination of boundary conditions. In 1996, a coghpnsive review of the vibration
analysis of cracked structures, including plates, been reported by Dimarogonas. Next, a
new technique for the vibration analysis of crackdates by considering the effect of
compliance due to bending was introduced by Khadaoh Rezaee in 2000 (a). Later in
2000 (b), the same authors established an andlgigsoach for damage in the form of a
crack in a rectangular plate under the applicabioan external load for different boundary
conditions by employing modified comparison funaog8ausing the Rayleigh-Ritz method.
Khadem and Rezaee, 2000 (b) concluded from theultsethat the presence of a crack at a
specific depth and location would affect each & tiatural frequencies differently. Chen
and Bicanic (2000) introduced a method in which itttomplete natural frequencies and
vibration modes could be used to detect damagennaticantilever plate. Leet al. (2003)
then derived the equation of motion for a thin ami plate with crack-like local damages.
They presented local damage in terms of the effecirthotropic elastic stiffness based on

the theory of continuum damage mechanics.

By applying Galerkin’'s method to Von Karmén plateedry, Wu and Shih (2005)
theoretically analysed the dynamic instability armhlinear response of simply supported
plates with an edge crack subjected to a periodjgane load along two opposite edges.
The incremental harmonic balance method was thegilieapto solve the nonlinear
temporal model. The results indicated that theilyalbehaviour and the response of the
system were governed by the crack location of thgepthe aspect ratio, conditions of in-
plane loading, and the amplitude of vibration. Whal &hih also explained that increasing
the crack ratio (the ratio of the crack lengthhe tength of the edge along the direction of
the crack) and/or the static component of the anplload, decreases the natural frequency
of the system. The nonlinear equations for a maeddfrackness rectangular plate with a
transverse surface penetrating crack on the twanpeter foundation were derived by
Xiao et al. (2005) based on the Reissner plate theory andHgmmilton variational
principle. In this study, the Galerkin method are tharmonic balance method were
employed to obtain the solution to the nonlinedration equations. The influences of the
position and depth of the crack, the geometric ipatars of the plate and the different
physical parameters of the foundation on the nealinamplitude frequency response
curves of the plate were carried out for free baupdonditions. The results showed that
for a given vibration amplitude the nonlinear viiova frequency of the plate decreases
with an increase of the crack depth, and when thekcposition was near the symmetry

plane of the plate. In addition, the nonlinear atimn frequency increases, as the thickness
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of the plate increases or the aspect ratio of tlaée pdecreases. In 2009, Israir al.
proposed an analytical model for the vibrationslysis of an isotropic aluminium plate
containing a crack in the form afcontinuous line with its centre located at thetieof
the plate, and running parallel to one edge optate. The plate was subjected to a point
load onits surface for three different possible boundaryditions. Galerkin's method was
applied to reformulate thgoverning equation of the cracked plate into tinepehdent
modalcoordinates, and the nonlinearity was introducedjpylyingBerger's method he
results are presented in terms of natural frequeecsusrack length and plate thickness,
and the nonlinear amplitude respontethe plate is calculated for one set of
boundaryconditions and three different load locations, oaepractical rangef external
excitation frequencies. Based on Mindlin plate tieddosseini-Hashemet al. (2010)
proposed a method for free vibration analysis oflenately thick rectangular plates with
all over-part through cracks for different classisaundary conditions. This solution was
presented for the case where the crack was opempropagating and perpendicular to two
opposite simply-supported edges. It was shownttietrack which was very close to the
clamped edge, results in a considerable reductiaghe natural frequencies of the cracked

plate.

2.4.2 Vibration Analysis of a Cracked Plate based o  nthe FE
approach

A finite element model for a cracked plate was l@dsthed by Qiaret al. in 1991 for the
investigation of the vibration characteristics ofsimply supported and a cantilevered
square plate with a crack. According to Q&tral, the additional strain energy of a crack
is related to the stress intensity factor (SIF)chhexpresses the flexibility coefficient that
can be used to obtain the stiffness matrix of fagepelement with the crack. Therefore, in
Qian et al’s study the element stiffness matrix was derivemimf an integration of the
stress intensity factor estimated for a finite @latith a through crack under bending,
twisting and shearing. Qiagt al. compared their results with the model of Soledl€d83)
with good agreement and claimed that their modalided a more efficient computational
technique requiring a shorter numerical computatiome due to the fact that mesh
subdivision in the neighbourhood of the crack spunnecessary. Later, in 1993, the
method of the formation of the stiffness matrix forectangular plate with a through crack
was presented in closed form by Krawczuk. He asdutinat the crack occurring in the
plate was nonpropagating, open, and that the aaljkchanges the stiffness of the plate,

while the mass is unchanged. The effect of thetijpmsand length of the crack on the
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natural frequencies of the simply supported andileaer plates was analysed and he
concluded that the decreasing natural frequences dunction of the length and location
of the crack, the mode shape, and the boundaryitcmmgliof the plate. In 1994, Krawczuk
and Ostachowicz used a similar method in orderréate the stiffness matrix of a plate
finite element having a single, nonpropagatingenmél, open crack, with an additional
example to study the influence of the length ansitmm of the crack upon the transverse
forced vibration amplitude. Similar results for wal frequency were obtained by
Krawczuk and Ostachowicz (1994) as for previouskwbut in terms of the influence of
the transverse forced vibration amplitude of thacked plate, the results showed that

increasing amplitudes are a function of the locatind length of the crack.

Krawczuket al. (2001) declared that all the research completethésn assumed that the
material around the crack tip behaved in a purégte manner. However, in reality a
plastic zone appears at the vicinity of the crapkand affects more the flexibility of the
structure compared to a purely elastic materialnd@del of a plate finite element having a
single, nonpropogating, open througtack was presented by Krawczekal. (2001) in
which the influence of the plastic zone ahead @f ¢hack tip on the flexibility of the
element was taken into account. This was done msidering the effect of flexural
bending deformation within the stiffness matrix. efthstudy showed that for plate
structures the influence of crack tip plasticity dmanges in natural frequencies can be
neglected because the differences between thecedast elasto-plastic crack model were
rather small. Fujimotcet al. (2003) analysed the vibration characteristics eft@ally
cracked plates subjected to uniaxial tension usiriybrid of the finite element method
(FEM) and body force method (BFM). In that studgemtral crack perpendicular to the
direction of the tensile load was investigated. Tdagling edges were clamped to constrain
out-of-plane deformations while the others weréfigle. The FEM was performed for the
purpose of eigenvalue analysis in order to study dependencies of the vibration
characteristics on the crack length and the ingl@ance intensity, whereas the BFM was
used to study local crack buckling caused by thepressive in-plane stress around the
crack that affects the vibration characteristies particular these authors considered the
effect of local buckling and ignored the effectpafst buckling due to the assumption that
the in-plane stresses are linearly proportionahtwapplied tensile load. They concluded
from their results that the crack length and thegeaof applied tensile load would affect
the natural frequency and mode shapes differeatigt,found that crack buckling occurred
at a small tensile load, as the crack length iregealn 2009, Saitet al investigated the

linear and nonlinear vibration response of a cavgifed rectangular plate with a transverse
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crack using a finite element model. Bacheteal. in 2009 adopted the extended finite
element method (XFEM) to analyse the vibrationsreftangular and square plates
containing through edge and central cracks foedsffiit boundary conditions. In this study,
the effects of shear deformation and rotary inewigre taken into account based on
Mindlin’s plate theory. The results obtained showhdt the XFEM was an efficient

method for the dynamic analysis of plates contgmiiscontinuities.

2.4.3 Vibration Analysis of a Plate with a Variably ~ Orientated
Crack

Based on the literature which has been reviewedHhervibration analysis of a cracked
plate it is seen that most of the published papeke analysed vibrations in plates with
part-through surface cracks, part-through finitegté cracks, all over part-through cracks
and internal cracks. All of these cracks have tdrntdebe located at the side or edge of the
plate, or have been centrally located cracks prtdl one side of the plate. Only a few
papers have investigated the vibration analysisa gflate with a crack which is not
horizontally or vertically aligned along one sidétbe plate. In 1989, Maruyama and
Ichinomiya experimentally investigated the effettie lengths, positions, and inclination
angles of slits on the natural frequencies andesponding mode shapes of clamped
rectangular plates with straight narrow slits, gsiree vibration analysis by applying the
real-time technique of time-averaged holographierfierometry. A slit has a long, narrow
cut or opening. One of the main differences betwaagtnal cracks and slits is the crack tip
diameter. Some cracks which are fully opened atithdnave a crack tip diameter close to
that of slits and others have much smaller diamsdten slits (Datet al, 1982). In terms

of crack orientation angle effects, they concluttedh their experimental results that most
of the natural frequencies of the plates with alshgth of 40% of that of a longer side
monotonously increased up to an angle &f&td then decreased when the angle exceeded
this. The natural frequencies of the mdgdedecrease monotonously with an increase of
crack orientation angle because the slit gradusgllyroaches a vertical nodal line. Wu and
Law (2004) presented an anisotropic damage modelafdhick plate with a non-
propagating, open and inclined crack. The crack assimed to be a narrow through-
depth crack, such that it did not change the madbheoplate. An effective anisotropic
stiffness model of the cracked element was propomed the sensitivity for its detection

was studied.
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Huang and Leissa (2008pplied the Ritz method with a special displacenfienttion to
investigate the effects of location, length, anieration of side cracks on the free
vibration frequencies and mode shapes of simplyastpd and completely free square
plates with side cracks, including cracks which @aoé along a symmetric axis. A set of
functions was proposed which more appropriatelycualess the behaviour of stress
singularities at the crack tip, and which are dbleneet the discontinuities of displacement
and slope crossing the crack. More recently, Huetred (2011) extended their work from
side cracks to internal cracks. They claimed ti&t foublished vibration data for cracks
oriented at various angular positions by applyihg Ritz method to analyse the free
vibration of a simply supported and completely fsggiare plate with an internal through
crack having an arbitrary location and angular miggon. Analyses were carried out for
crack orientation angles varying frofitd 45, in 15 steps, and they found that for simply
supported square plates the first four frequendexseased when the orientation angle of
the crack increased. However, in the case of caelgléree square plates the trend was
different, and an increase in the crack orientatiogle caused a decrease in the first and
third frequencies, but an increase in the secandth and fifth frequencies. In the papers
of Huang and Leissa (2009) and Huat@l. (2011) the Ritz method was applied based on
classical thin plate theory. Later a vibration stodl a thick cracked rectangular plate using
the Ritz method with Mindlin plate theory was pmsel by Huanget al. (2011). In this
study rectangular plates having a side crack andhi@nmnal crack were considered for
simply supported and cantilevered rectangular @atendary conditions, and the obtained
results showed that the proposed new sets of fumthppropriately represented the stress
singularity behaviour around the crack tip and ielated the discontinuities of transverse

displacement and bending rotations across the crack

2.4.4 Line-Spring Model (LSM)

Generally cracks that exist in a structure takeftren of surface or internal cracks. At
present several techniques are available to studace crack problems including the
finite element method, the boundary integral methadd the body force method,

particularly for evaluating fracture parameters darface cracked plates and shells
(Miyoshi et al, 1985). All these methods are regarded as reliabt have a disadvantage
because a large amount of computer time is nee€echvercome this difficulty a new

method based on the line-spring model has beenlapme The line-spring model has

been used widely for fracture mechanics analysiplate and shell structures containing
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surface or internal cracks. According to Yang (1988 has been demonstrated in the
literature that the line-spring model can effediveroduce very useful approximate

solutions for highly complicated three dimensionedck problems in plates and shells.
This approach is computationally inexpensive comgpdo treating full three dimensional

models, and, within certain restrictions, can pdevacceptable accuracy. Most importantly
the line-spring model is also versatile, adaptingat variety of crack geometries and

loading cases. For instance, the model has beaessfally applied to the mixed mode

case, elastic-plastic fracture problems, crackammroblems, and to the case of arbitrary
loading due to residual stresses (Cordes and Jo$8¢8).

The line-spring model was first developed by Riod hevy (1972) to give an approximate
treatment for the three dimensional problem of dase crack penetrating partly through
the thickness of an elastic plate. Tidea behind this concept was to reduce the probliean
three dimensional surface crack to a quasi-two-dsimmal problem in which the constraint
effects of net ligaments from the three dimensigmablem were incorporated in the form of a
membrane load and bending moment imposed on tlwghrcrack. This transition was
accomplished using compliance relations from tren@lstrain, edge-cracked strip solutions.
In their study, hey employed two dimensional generalised planesstie and used
Kirchhoff's plate bending theories with a contingbudistributed line spring to represent a
part-through crack, and also chose compliance icosfts to match those of an edge-
cracked strip in plane strain. The line of discounily was of length @ and the plate was
subjected to remote uniform stretching and bentbhags along the far sides of the plate.
These authors computed the force and moment attressacked section to determine the
stress intensity factor, and the solution to thebfam was characterised in terms of the

Airy stress function.

In the literature, the line-spring model has bermnoiporated with singular integral
equation formulations of an isotropic elastic plateshell theory, it has been combined
with the finite element method, and has also bemmpled with the boundary element
method (LSBEM) in order to study surface crack pepts, due to the effectiveness of the
line-spring model as a tool for evaluating fractpegameters in surface cracked plates and
shells. In 1981, Delale and Erdogan reformulatedlite spring model in the context of
Reissner plate bending theory to include transvensar effects. New expressions for the
stress intensity factor of the plane strain probkEna strip containing an edge crack and
subjected to tension and bending were used withlid xatio of depth to thickness value of

up to 0.8. Then, in 1983, King presented a singdifline-spring model in which some
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simplifications were made by reducing the line4sgrmodel to a purely analytical one in
which the actual crack front was replaced withackrof constant depth, and displacement
compatibility between the ligament spring and treck was enforced only at the centre of
the crack. Despite the simplicity of this, the mlo@dso gave reasonably accurate
predictions for calculating the fracture parametarsh as thd-integral or crack opening
displacement (COD) at the root of a surface crdokeph and Erdogan (1987) extended
the line-spring model for the analysis of mixed madack problems. Miyazaki (1989)
presented a transient analysis of the dynamic sstretensity factor by use of the
combination of the finite element method with aistane-spring model. Considering the
advantage of the line-spring model, Zeng and Dail@®3 developed a line-spring
boundary element method (LSBEM) in which the lipetsy model was combined with
the boundary element method, based on the theoBew@fsner’s plate problem, and the
elastic plane problem, and then the model was tesadalyse the stress intensity factor of

general part through cracks in a finite plate.

The problem of a mode | surface or internal crach iplate with a residual stresses was
examined by Cordes and Joseph in 1995 with an esigpba the crack surface contact.
Residual stresses are usually caused by unintehtamivities during manufacturing and
installation, and need to be determined to enshbaé the material responds in a safe,
predictable manner during its lifetime. In the stud Cordes and Joseph (1995), the line-
spring model was used iteratively to determinehtheler of the closed portion of the crack
and the stress intensity factors along the opehgoorThese authors presented a series of
results for different crack lengths and depths, eochpared their results with the LSM
classical theory (the Irwin model of 1962) and finge element model, which showed that
their model results ranged from 0.6-0.8% higher,emghs the average percentage
difference was found to be 4.2%. The discrepancyessed slightly as the order of the
loading increased. It demonstrated that the modaldcbe versatile in solving contact

problems.

The basis of the simplified line-spring model pregd by King (1983) was used by Zeng
and Dai (1994) to derive a closed-form solution foe stress intensity factors at the
deepest point for an inclined surface crack undler liaxial stress state. This model
reduced the three dimensional problem of an indliserface crack into two quasi two
dimensional problems of a horizontally orientatbcbtigh crack. Analytical solutions for
the mode | and mode Il stress intensity factorthatmaximum depth point of a surface
crack were derived, and the effects of the biaiatl ratio and the crack inclination angle
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on these values of stress intensity factors (SMesg discussed. The study showed that the
mode | normalised SIF increases and the mode fthalbised SIF decreases as the biaxial
load ratio increases with fixed values of crackimation angle, while if the ratio of biaxial
load is fixed, the mode | normalised SIF decreames the mode Il normalised SIF
increases as the angle of crack inclination in@ga¥he formulation of a representative
model for a horizontal part-through crack locatédhee centre of a plate in a Duffing
equation was firgproposed by Israr (2008) and Isedral. (2009). Initially this model was
motivated by results from Rice and Levy (1972) ime a part-through crack formulation
was initiated using the concept of a line-springdeio After some further developments
based on this model these authors obtained a sefuations for the relationships between
the nominal tensile and bending stresses at thek doaation and the nominal tensile and

bending stresses at the far sides of the plate.

2.5 Perturbation Methods

Solutions for differential equations for plates,vesll as for beams, have been examined
very extensively in the literature. Such solutiams substantially more complicated in the
nonlinear case, specifically for geometrically noeérity as covered in this thesis, than
those discussed for linear problems. Some of theessolution techniques can be applied
in nonlinear cases as are applied for linear problafter some modifications have been
made. Solutions can be classified into two solugooups, the first being exact analytical
solutions and the second being approximate solsiti@xact solutions to the nonlinear
plate are obviously difficult to obtain, particdlafor the study of the dynamic behaviour
of nonlinearly deflecting rectangular plates. Hoegvapproximate solution techniques
exist for some general nonlinear plate problemswhich these solutions either use
approximating functions, or assume certain termbdmegligible, or use some form of
finite discretisation method (Israr, 2008). Suchpragimation solutions are purely
numerical, purely analytical, or a combination a@fttb Useful information on nonlinear
plates with a variety of methods offered to apphodiéferent plate problems can be found
in detail in the book by Chia (1980).

In the literature solutions for the vibration ars$y of damaged plates have also been
investigated using various approaches. These imgu&ayleigh’s method, the finite
displacement method, the finite Fourier transfothe Rayleigh-Ritz method, the finite

element method, the Galerkin method, the harmonitance method, and the
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decomposition method. Each solution technique isp#cial relevance, and treatment
involves some particular type of approximation. Thethod applied in this thesis is the
perturbation method of multiple scales, as firstdufy Israr in 2008 and Israt al. in
20009 for the vibration analysis of a plate contagna crack in the form @f continuous line
with its centre located at the centifehe plate and parallel to one edge offitage. Thus it

Is intended to be major enhancement of this previeork on cracked plates for which the

orientation of the angle was not included.

Perturbation methods are well established and hmeen used for over a century to
determine approximate analytical solutions for medr mathematical models. Such
mathematical models take many forms including d#fdal equations, difference
equations and integro-differential equations, amh e solved approximately with
perturbation methods. Perturbation methods work dyyplying small nonlinear
perturbations to known linearised solutions. Thairrect application is restricted to
weakly nonlinear systems, so the nonlinear terms are stoalpared to the linear terms.
This is usually the case when the motions areefihiit not very large. The correctness of
perturbation analysis decreases with growing anombdit of motion. Many different
perturbation methods such as the Lindstedt-Pointeaténique (LP), the Renormalisation
method, the Incremental Harmonic Balance (IHB), raging methods, Krylov-
Bogolioubov (KB), Krylov-Bogolioubov-Mitropolski (BM) and the Method of multiple

scales (MMS), have all been developed.

The development of basic perturbation theory foffedential equations was fairly
complete by the middle of the T @entury. Laplace firstly used perturbation methtmis
solve the problem of equilibrium of a large weigis8 drop on a plane (1749-1827) and
Delaunay (1816-1872) discovered the so-called prolif small denominators in a study
of the perturbative expansion of the three bodpl@m. There are books which introduce
and discuss several perturbation methods that @ruded to develop approximate
solutions to nonlinear problems, such as Nayfetvy31%nd (1981), also Kevorkian and
Cole (1981). Nayfeh used the perturbation methodmufitiple scales to solve the
differential equations for symmetrically excitedrctilar and rectangular plates, and
documented this in Nayfeh and Mook (1979). Accagdito Israr (2008), Chu and
Herrmann in 1956 investigated a perturbation sotubf the dynamic w (deflection)-F
(stress function) formulation using a double seard double cosine series, for the first
mode shape only. Lynn and Kumbasar (1967) solvedntiegral equation for the vibration
analysis of cracked rectangular plates by use efktylov and Bogoliubov method. In

47



Chapter 2

1973 Hamilton’s principle, with a combination oparturbation procedure, was applied by
Rehfield in order to study the nonlinear free vilmmas of beams and plates. Niyogi and
Meyers (1981) presented the nonlinear dynamic resp@f orthotropic plates using a
perturbation techniqgue. Wang (1990) employed thedstedt-Poincaré perturbation
technique to solve a form of the Duffing equatioithvan additional quadratic spring term
that was derived in a vibration analysis of impetfeectangular plates. The effects of
random initial geometric imperfections on the vilma behaviour of simply supported

rectangular plates were studied by Wang (1990)1981, Cheunget al. presented a

modified Lindstedt-Poincaré method for a certairorggly nonlinear oscillator with a

single-degree-of-freedom. In that study a new patamwas defined, which enables a
strongly nonlinear oscillation corresponding to tirgginal parameter to be transformed

into a small parameter system with the new paramete

Wang et al. (2009) studied the nonlinear thickness-shear tidova of an infinite and
isotropic elastic plate. In this procedure, a pdtion method was used in order to solve
the nonlinear ordinary differential equation thaaswobtained by use of the Galerkin
method. The amplitude-frequency relation showed tha nonlinear frequency of the
thickness-shear vibrations depended on amplitudeoarthe thickness of the plate. Heato
al. (2011) presented a nonlinear dynamic analysisrettngular cantilever plate made of
functionally graded materials and based on Redtlyisl order plate theory and the
asymptotic perturbation method. This perturbatiogthrad was employed to obtain four
nonlinear averaged equations which were then sdyeitie Runge-Kutta method in order

to find the nonlinear dynamic response of the plate

2.5.1 Method of Multiple Scales

The classical perturbation methods, including thethmd of multiple scales, are really
restricted to solving weakly nonlinear problemseTastriction of these methods is that the
perturbation parameter must definitionally be very small. Since the naehr vibration
characteristics of basic structural components siscbables, beams, plates and shells can
often be modelled as a weakly nonlinear systemththod of multiple scales has been
widely used in many analyses. The main idea ofntlie¢hod of multiple scales is to split
the single independent variable up into several melependent variables. This method
allows the construction of a set of perturbatiomatopns that can be solved under the

condition of removal of secular terms. Cartnedllal. (2003) reviewed the comprehensive

48



Chapter 2

literature dealing with the analyses of weakly mo#dr mechanical systems by the method
of multiple scales. In that paper the role of tesndering, the integration of the small
perturbation parameter within system constants;dimensionalisation and time-scaling,
series truncation, inclusion and exclusion of higloeder nonlinearities and typical
problems in the handling of secular terms wereeximined. These authors showed in a
comparative example that the form of the adoptedlepseries and the ordering terms can
have a major bearing on the structure of the smiutwith clear suggestion for accuracy
and physical relevance. Ideas were suggested fordme might deal with ordering by
basing it on some sort of physical appreciatiothefproblem in terms of hard and soft or
strong and weak quantities within the equation otiom such as damping mechanisms,

excitation amplitudes, and the coefficients of mogsr terms.

Some useful theories were highlighted by Israr 80@garding the application of the
method of multiple scales to dynamical systemsstlyir reduced-order discretisation
models may be inadequate to describe the dynamidge mriginal continuous system in
the presence of quadratic nonlinearities. StudigsPbkdemirli, Nayfeh, and Nayfeh
(1995), Nayfeh and Lacarbonara (1997), Alhazza Mdagfeh (2001), Emam and Nayfeh
(2002), and Nayfeh and Arafat (2002) found thatapplication of the method of multiple
scales, or any other perturbation method to theicedtorder model, obtained by the
Galerkin, or other discretisation procedures, ofeakly nonlinear continuous system with
guadratic nonlinearities can lead to both quamigaand qualitative erroneous results.
Lacarbonara, in 1999, showed that quadratic noafiies produce a second-order
contribution from all of the modes to the systemspanse in the case of a primary
resonance. Secondly, the application of the metificdultiple scales to dynamical systems
expressed in second-order form can lead to modul&tuations that can be derived from
a Lagrangian in the absence of dissipation andrit@xcitation, but cannot necessarily
be shown to lead to closed form or even to numesteady-state solutions. This is
potentially contrary to the conservative charaaérthese dynamical systems. More
specifically, this problem is encountered while edetining approximate solutions of
nonlinear systems possessing internal resonancasl¢os higher than the order at which
the influence of the internal resonance first appeas associated with the work of Rega
al., (1999). Interestingly, transforming the secomdeo governing equations into a system
of first-order equations and then treating themhwite method of multiple scales yields
modulation equations derivable from a Lagrangiaud, ia presented in Nayfeh (2000) and
Nayfeh and Chin (1999), and Malatkar (2003).
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Abe (2006) investigated primary and subharmoniomaaces on a hinged-hinged Euler-
Bernoulli beam resting on a nonlinear elastic fatrmh with distributed quadratic and
cubic nonlinearities. Steady-state responses waredf by using the method of multiple
scales and Galerkin's procedure. A multiple scat@stion for the nonlinear vibration of
isotropic rectangular plates was presented by 3ttansnd Khadem (2007). In their study
invariant manifold theory was applied to the plpteblem and it was confirmed that the
nonlinearities were of stiffness and inertia typEse multiple scale method was applied to
the equations of motion, and closed-form relatitorsthe nonlinear natural frequencies
and mode shapes of the plate were derived. Usiagoltitained relation, the effects of
initial displacement, thickness and dimensions lué plate on the nonlinear natural
frequencies and displacements were investigates rd$ults showed that by increasing the
ratio of thickness to the dimensions of the plat onlinear frequencies of the plate will
increase. Hegazy (2010) studied the dynamic bebawba rectangular thin plate under
parametric and external excitations modelled byptaxi second-order nonlinear ordinary
differential equations, and their approximate sohg were sought by applying the method
of multiple scales. The steady-state responsetl@dtability of the solutions for various
parameters, were both studied numerically using ftequency-response function and
phase-plane methods. Hegazy found that the sysseamgters generated different effects

on the nonlinear response of the thin plate.

The literature does not appear to contain any anhat references to using the method of
multiple scales for nonlinear vibration analysisaotracked or damaged plate except by
Israret al. (2006, 2008 and 2009). Starting in 2006, Istal. developed an approximate
analytical solution for the free vibration of crackisotropic plates using the multiple
scales method. An elliptical crack and the locedsst field with loading conditions were
incorporated into the partial differential equatifPDE) for an edge loaded plate with
various types of boundary conditions. Berger's folation was used to generate the
nonlinear term within the model. The plate PDE wasverted into a nonlinear Duffing-
type ODE in the time domain by use of the Galegincedure, and then an arbitrarily
small perturbation parameter was introduced in rotdeapply the method of multiple
scales. In 2008, these authors extended their \egriconsidering the application of
periodic loading for forced vibration analysis ohcked plates with different boundary
conditions. The results were obtained by the us¢hefmethod of multiple scales and
showed the influence of crack length and boundaoynditions on the vibration
characteristics of the plate. It showed that depenen increased crack length, the

vibration frequency decreases and the amplitudee@ses. A comparison between the
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method of multiple scales with direct integratifinite element analysis, and experimental
work was undertaken and reported. In this stuyag shown conclusively, by using a first
order multiple scales approximation, that the rmogdr characteristics of the steady-state
responses are encoded within the non-autonomousllatmsh equations. An extremely
close agreement between the differently obtainsdlt®was noted. However, these studies

were limited to a crack located parallel to onesfithe plate only.

2.6 Routes to Chaos in Nonlinear Systems

In practice, most models are nonlinear, so a safdyynamic stability, bifurcations, and
routes from order to chaos in nonlinear systemssiglly very important. Such a study
serves not only to promote further understandinthefcomplex dynamics under different
combination of system parameters, but also to camssential mechanisms that generate
chaos. Additionally, this sort of study is essdrttadeveloping controls of bifurcation and
chaos. Period-doubling bifurcations, the coexisteat attractors with complicated basin
structures, strange attractors with the fundameprigperty of a sensitive dependence on
initial conditions, and the existence of positivenegative Lyapunov exponents are some
of the most important features of dynamical behawvi@haos theory is the study of highly
adjustable nonlinear systems i.e. nonlinear systhaisare sensitive to initial conditions.
A system is characterised as chaotic if it meetsare criteria, such as exhibiting an
exponential rate of period doubling in its returapmor possessing a positive Lyapunov

exponent.

In recent years, there has been a lot of literatie@ing with bifurcation sequences, the
stability analysis of Lyapunov, and transitionscttaos. Exhaustive information on this
subject is presented in the monographs of ThompsahStewart (2002), Moon (1987),
Hilborn (2000) and Solart al. (1996). According to Thompson and Stewart (20€a,
founder of geometric dynamics is universally acklenlged to be Poincaré (1854-1912),
who, alone among his contemporaries, saw the usefsl of studying topological
structures in the phase space of dynamical trajestolhe theoretical foundations laid by
Poincaré were strengthened by Birkhoff (1844—194d), apart from a few instances such
as the stability analysis of Lyapunov, Poincaréleais had little impact on applied
dynamics for almost half a century. Subsequentiy, 927, Van der Pol and Van der Mark
reported irregular noise in experiments with arctetaic oscillator. It has been frequently

mentioned that chaotic vibrations occur when sortteng nonlinearity exits. Some
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examples of nonlinearities that can be observechany physical systems are; nonlinear
elastic or spring elements, damping, boundary ¢mmdi etc. In mechanical continua
nonlinear effects arise from a number of differepurces which includes kinematics,
constitutive relations, boundary conditions, noadin body forces, and geometric
nonlinearities associated with large deformationstiuctural solids.

In 1985, Parlitz and Lauterborn presented resonauncees, bifurcation diagrams, and
phase diagrams for the Duffing equation. This vissrnded to improve their understanding
of this type of equation by emphasising the impdrtale of nonlinear resonance. They
showed a periodic recurrence of a specific and $tnecture in the bifurcation set, which
was closely connected with the nonlinear resonaméethe system. They also found
evidence for a superstructure in the bifurcationrstated to nonlinear resonances in a
model of acoustic turbulence by Lauterborn and @raf@981), in the Toda oscillator
(Meyer-lise, 1984), in a nonlinear bubble osciliafibauterborn, 1976) and in a nonlinear
electronic oscillator (Klinkeet al, 1984 and Brorsoet al, 1983). At the same time, Wolf
et al. presented a technique that allows the estimatioon-negative Lyapunov exponents
from experimental time series data. Lyapunov exptmeprovide a qualitative and
guantitative characterisation of dynamical behaviamd are related to the average
exponential rates of divergence or convergenceeaflyy orbits in phase space. They are
positive for chaos, zero for a marginally stablbitprand negative for a periodic orbit. It
means that an attractor for a dissipative systeth wne or more positive Lyapunov
exponents is said to be strange or chaotic. VEblal. claimed that their algorithm can
detect and quantify chaos in experimental datadeyirately estimating the first few non-
negative Lyapunov exponents, and they tested thitod on famous model systems such
as those of Hénon (1976), Rossler (1976), Lorer@89), and the Rdssler-hyperchaos
problem (1979) with known Lyapunov spectra. Thegoafound that chaos can be

distinguished in some cases from external noise¢@mulogical complexity.

Numerical and experimental works to study the m@dr vibration and nonlinear acoustic
radiation of a typical aircraft fuselage panel &cby plane acoustic waves at normal
incidence were demonstrated by Maestretlal. (1992). In this study, they found that the
motion normally starts periodically, and eventudlgcomes chaotic with time with the
increase of the pressure level. A good agreemdniele@ the experimental and numerical
results were obtained, which showed that when &lgarexcited at a resonant frequency
by plane acoustic waves, linear, nonlinear and tohaesponses can be obtained by
changing the intensity of the loading. Lu and Ewaanowski in 1994, initiated a
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computational analysis in order to explore the affeof stationary and nonstationary
excitations on the response of a softening Duftiggillator in the region of the parameter
space where the period doubling sequence occumsy Tdund significant differences
between these two types of excitatioathematicd" packages for analysing and
controlling discrete and continuous nonlinear systeand for estimating the Lyapunov
exponents of continuous and discrete differentialyleamical systems were devised by
Guitiérrez and Iglesias (1998), and Sandri (198&3pectively. A program by Guitiérrez
and Iglesias (1998) was shown to be capable ofirobtathe periodic points and the
stability regions of nonlinear systems, as well afsircatory analysis and Lyapunov
exponents, while a program by Sandri (1996) canpudenthe Lyapunov spectrum of
continuous and discrete differentiable dynamicateys. The Lyapunov spectrum can be

calculated until it shows convergence, or untilaximum iteration count is reached.

Tan and Kang (2000) studied the forced responseMdithieu-Duffing oscillator subjected
to combined parametric and quasiperiodic excitaitiotine context of a large ratio between
the excitation frequencies. The response charatitsriwere examined in terms of the time
histories, frequency responses, Poincaré sectms, Lyapunov exponents. Numerical
results were obtained by the use of the spectriEnba method, and the Lyapunov
exponents were computed based on the algorithmopeapby Wolfet al. (1995). They
observed that routes to chaotic motions were diffeffor a frequency range near the
natural frequency of the linear system, and alsar ri®@ the parametric resonance
frequency. In 2008, Sheet al. investigated the bifurcations and routes to chafothe
Mathieu-Duffing oscillator using the incrementalrim@nic balance (IHB) procedure,
together with a developed new scheme that can bd fm® selecting the initial value
conditions. A series of periodic-doubling bifurcati points and threshold values of the
control parameters at the onset of chaos of théniglatDuffing oscillator were calculated,
and they showed that this sequence of periodic ldautbifurcations observed the

universal rule approximately.

53



Chapter 3

Chapter 3

A Plate with a Surface Crack of Variable Angular
Orientation

3.1 Introduction

In this chapter, an analytical approach is preskefde the forced vibration analysis of a
plate containing an arbitrarily orientated surfacack, based on three different boundary
conditions. The method is based on classical pitegtery. Firstly, the equation of motion is
derived for the plate containing the angled surfaeek (angled with respect to one side of
the plate) and subjected to transverse harmonidtaton. The crack formulation
representing the surface crack of variable angui@ntation is based on a simplified line-
spring model. Then, by employing the Berger forrtiatg the derived governing equation
of motion of the cracked plate model is transfornmd a cubic nonlinear system which is

shown to take the form of a specialised Duffingagopn.

3.2 Cracked Plate Modelling

It is necessary still to develop an understandindp® derivation of the model of a cracked
plate, especially for the nonlinear case. Much aegework has been undertaken on the
linear model, and there are restricted nonlineatigtgavailable for vibration problems in
cracked plates. A detailed derivation of the naedin differential equation based on
classical plate theory for modelling the vibratioha cracked plate was initiated by Israr
(2008) and Israet al. (2009). In these works, the concept of a linergprmodel based on
Kirchhoff's plate bending theories, as first intumgd by Rice and Levy (1972), was used
for the crack formulation. The idea behind this gt was to reduce the problem of a
three-dimensional surface crack to a quasi-two-dsimmal problem. The type of crack
considered by these authors was a part-througlk ¢oaated at the centre and parallel to

one side of the plate.

King (1983) simplified this line-spring model fourgace flaws in a plate in order to predict
the fracture parameters, for instance, Jhategral or crack opening displacement at the
root of a surface crack. In his simplification ttrack front was replaced with a crack of
constant depth which reduced the coupled integrah#ons in the paper by Rice and Levy
(1972) to a pair of linear algebraic equations, awitich was more convenient to
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implement computationally. Then the basis of thimspdified line-spring model was used
by Zheng and Dai (1994) to propose an analyticadehtor an angled surface crack under
biaxial stresses for investigating the effect & lthaxial load ratio and the crack orientation
angle on the values of stress intensity factorgHis type of crack. Hence, the aim of this
section is to extend the vibration analysis of thecked plate discussed in the work of
Israr (2008) and Israet al. (2009) by considering an alternative geometry whgrthe
crack orientation is variable. The model and meshotlisrar (2008), Israet al. (2009),
and Zheng and Dai (1994) are used as referencear@ndhodified to accommodate a
nonlinear model for a plate with an arbitrarilyesriated surface crack.

3.3 The Classical Dynamic Equation of a Plate with
Variably Orientated Crack

In this section, the governing equation of motion & plate with an arbitrarily orientated
surface crack of lengthads developed. The crack is assumed to be locatdgek aentre of
the top surface of the plate in the/ plane, and oriented at an anglaith respect to th&
axis of the plate, and the plate is subjected tengions, and bending momenty, as
shown in Figure 3-1. The following assumptionsraeee during the derivation:

1. The plate is made of thin elastic, homogeneous,isotdopic material, and has a

uniform thickness which is much smaller than theeodimensions,

2. The stress normal to the mid-plasg is considered to be small when compared
with the other stress components, and is therefegéected,

3. Plane sections initially normal to the middle sogaemain plane and normal to

that surface after bending, so that shear defooma&in be neglected,
4. The effects of rotary inertia and shear forcesatése neglected,

5. The effect of the in-plane forces on the deflectadrthe plate only acts in the
direction, so that the in-plane forces in thandx-y directions can be discounted
(Timoshenko and Woinowsky-Krieger, 1959, and Istaal, 2009).
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g, m,
Figure 3-1 : A rectangular plate with a surface cra  ck of length 2 a orientated at an angle g to
the horizontal x-axis and showing the bending and tensile stresses

To derive the equilibrium equation, an elementhef plate of sidedx anddy, aligned with
the {Xx, y} axis, and of thicknedsis considered, as illustrated in Figure 3-2, vi¥tandQy
defining the forces per unit lenggrojected parallel to the axis, My and My are the

bending moments per unit lengthl,, is the twisting moment per unit Iengtﬁly and

I\TXy are the bending moments per unit length due to@niably orientated crack situated

at the centre of the plate,is the density of the plate material, apds the lateral load per

unit area applied normal to the surface of theeplat

By summing all the forces in the direction and applying Newton’s Second Law, we

obtain,
+1 2F, =ma
a 2
—Qxdy+(Qx + 9% dxjdy—dex+ Q,+ 2y lax+ q,dxdy= p h° ¥ dxdy
0X oy dt
(3.1)
2
whereph%t\zN is the inertia force, which is assumed to be gatiownwards.
Therefore,
0Q,  0Q, 0°w
— X4+ Y =ph - 3.2
x oy phgz % (3.2)
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(a) A plate element containing a variably orientate  d crack, and with forces shown
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(b) A plate element containing a variably orientat  ed crack, with applied moments

Figure 3-2 : A plate structure loaded by uniform pr  essure with a variably orientated crack

located at the centre of the plate
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Summing the moments about thandy axes and then equating them individually to zero

leads to moment equilibrium about thaxis,

M, =0

y

M dy+| M +aMXd dy-(M_, +M )dx+| M +—6Myxd +M +—6Myxd d
- x |dy - X X
X y X AX y yX yX yX ay y yX ay y

-Q, dyﬁ ( aQX dxjdy— =0 (3.3)

0
After simplification, and the term containin%%(dx)zdy is neglected in equation (3.3)

since it is small quantity of a higher order thaage retained, gives the following
equation,
oM. oM oM
L+—2+—E=Q, (3.4)
0X oy oy

Differentiating with respect tg, equation (3.4) becomes,

2 0°M,, 9°M
a Nzlx + yX + X — an (35)
0X oxdy  oxdy 0X

Similarly, by summing for moment equilibrium abdbe x axis the moment equation can

be obtained as,

M, =0

X

_ oM, oM, _
(M, +M ))dx=| M+ oy dy+M, + oy dy |[dx=(M,, + M, )dy

oM _ M
+| M, +—2dx+ M, +—2dx|dy+Q ded—y+ Q, + Qydyd dy_
Yooox I 2 Yooy 2 (3.6)

0
Simplifying and also neglecting the term contain%n%Q—y(dy)zdx, leads to,
y

_OM, _OM, oM, oW, an

dy oy  Ox ox Y
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Differentiating equation (3.7) with respectytdeads to,

M M ’M M
_OM, oM, oM, oM, 0Q (3.8)

oy> oy?  oxdy  0xdy oy

Then, by substituting equations (3.5) and (3.8)o imtquation (3.2), the following

equilibrium equation can be derived,

az M X 2 az M Xy
ox> oxoy oxdy  ay’ oy

0°M,, M, M, _ 9w

7 —h—-q, (3.9)

Where M,, My and M,y are the bending moments per unit length alongxthend y

directions, whereast, and M, are the bending moments per unit length due to the

variably orientated crack situated at the centrinefplate.

From Timoshenko and Krieger (1959), and SzilardO®OM ,,M  and M can be

written in the following forms,

+h/2

M, = IJX zdz (3.10)
-h/2
+h/2
M, = Iay zdz (3.11)
-h/2
+h/2
M, =-M,, = Irxy zdz (3.12)
-h/2

with o,, o ,andr,, representing the stresses alongxtandy directions of the plate and

all these stresses components can be expressadibgtionw of the plate, defined as,

E 2 2
= —1_V22 (‘;X‘Q’w gy‘;"] (3.13)
Ez (d°w 0°w
y __l_Vz(ayz +V6X2J (3.14)
Ez 92w
Txy :m(l_l/) axay (315)
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Deflectionw is a function of the two coordinates in the plahehe plate. Substitution of
equations (3.13) to (3.15) into equations (3.10) (812), respectively, generates

expressions foMy, My andM,y as follows,

2 2
M, =-p| I Wy, 0W (3.16)
0X oy
2 2
M, =-p[ W4 OV (3.17)
oy 0X
0°w
M,=-M, =D~V 8
Xy yX ( )axay x )
3
D is the flexural rigidity of the plate in the comt®nal form of D = % (3.19)
-v

where E is the modulus of elasticity andis the Poisson’s ratio. Therefore, equations
(3.16), (3.17) and (3.18) can now be substituted squation (3.9). When there is no
lateral load acting on the plate, the partial défgial equation of motion for the plate with

an arbitrarily oriented surface crack is of thigip

0’M,, 0°M,
2 +
ot? oxoy oy’

2 3.20
ox*  ox’oy® oy* (3.20)

(64W 0*w a“wj 0w
+ + =— -
For plates subjected to a lateral load per unia geapplied normal to the surface of the

plate, the equation extends to,

0°w 0°M 0°M
=- +q, 22—+ — 3.21
J - oz " oxdy  dy’ (3:21)

0'w a'w  0'w
+2 +
ox*  ox’ay® oy’
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3.4 The equation of motion of a cracked plate inclu  ding
relevant forces in the middle plane of the plate

Figure 3-3 shows a plate element of thicknessid dimensiondx anddy subjected to in-
plane forces per unit length. These in-plane fopmrsunit length are denoted by ny, Ny
=ny N, andn,, =n,, . The in-plane forces, andn,, = n, are the in-plane forces per
unit length due to the existance of a variably maéed crack located at the centre of the

plate. The in-plane forc&, is not needed due to the transformation of thealkér

orientated surface crack into two basic problenmaeta a horizontal surface crack parallel
to the x-axis and subjected to normal tensile steggl bending moment, and a horizontal
surface crack parallel to the x-axis and subjetieaitangential tensile stress and a twisting

moment.

y zZ, W P dx .
(nyx + ﬁyx)dx /(ny + ﬁy)dX
dy (nxy +ﬁxy)d I 4&-4

\ 4

+6nxyd i +aﬁxyd q
n X+n X
7z T Mg Mo g XY

on - on 0 on
[”y +a—;dy+ n, +a;dyj dx Lnyx + I dy+n,, + M dyJ dx
oy oy

yX

Figure 3-3 : In-plane forces acting on a plate with an arbitrarily orientated crack of length2 a
located at the centre of the plate

In order to develop the equation of motion of thestem shown in Figure 3-3 an
equilibrium principle is applied to the plate elemheand this is assuming that there are no
body forces acting in the andy directions of the plate. Thus, the equilibrium &ipn of

the in-plane forces along thxeaxis gives,
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+ - 2F, =0
an _ on _on (3.22)
-ndy+| n, +—>dx|dy—-(n, +n, Jdx+|n +—2dy+n_ +—2dy|dx=0
X y ( X aX j y ( yX yx) ( yX ay y yX ay y]

and hence,

on on
N, , O I _g (3.23)
ox oy ay

By summing the in-plane forces in the directiontloé y axis we obtain the following

equation of equilibrium,

on on
- (ny + ﬁy )dx + (ny + a_yy dy + ﬁy + a—; dyjdx - (nXy + ﬁxy)dy (3.24)

on, _on,
+|n, +—>dx+n, +—dx|dy=0
0X 0X

on, om, on, om, (3.25)

However, to consider the equilibrium of forces @dhe direction of the axis we must
take into account the bending of the plate andéhlalting small angles between the forces
ny andny that act on the opposite sides of the element ¢$ivanko and Krieger, 1959). In
this case an arbitrary choice of boundary conditbthe Fixed-Fixed-Free-Free boundary
condition as applied by Israr (2008) as shown guFe 3-4 is considered here. However
other boundary conditions are equally possibleaAssult of this selection the equilibrium

equation of the in-plane forces along #exis can be written as,
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2 on on 2
Y F,(xy)= nx+anx dx |d g \;vdx +|n, +—-dy+n, +—dy|d 9 \;vdy
X 0X oy ay oy
on on 2
+| n,, +—>dx+n,, +—>dx|d OW 1y
[3)4 0X oxay

on on 2
+|n, +—2dy+n, +—>dy|d aWdy
oy oy oxay
(3.26)

Simplification and subsequent neglect of termsighér than second order, leading to the

following form, where the terms on the right haidksare all loads per unit area,

2 2 2 2
> F,(xy)=n, g \;dedy+ n, g \;dedy+ n, g \;dedy+ nxya—wdxdy
0X oy oy oxoy (3.27)
2 2 2 ’
+n,, ow dxdy+n,, ow dxdy+n,, ow dxdy
oxoy Xy oxay

Xz
n, + on, dxjdy
ox

yz
on . on on on
n, +—=dy+n +—deJdX n, +—dx+n, +—dx|d
[ Ty Yy 9o e Y

on,, _on,
n,, + dy+n, + dy |dx
oy oy

Figure 3-4 : Boundary condition with two edges fixe d and two edges free and subsequent
deformation of the plate having an arbitrarily orie ntated crack at the centre of the plate
(after Israr, 2008)
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Dividing equation (3.27) byxdyleads to,

9°w 92w 9w 02w 0w
F,(X,y) =n, +n +n +2n, —+2n, —— 3.28
Z Z( y) 6)(2 y 6y2 y 6y2 Yy axay y axay ( )

In equation (3.21) the lateral loayl is acting on the plate element in theirection which
is normal to the surface of the plate, thus by agldiquation (3.28) to the lateral load per

unit areaq, , we obtain the following equation of equilibriur the cracked plate,

9w o'w  o'w)_ 0w _ 0*w 9w _ d°w 9w
+ + =- +n, +n +n +2n,
ox*  oxPay® oy’ ot® x> Yoy* 7oy’ Y oxay (3.29)
_ 0%w azl\Wy 0°M .
+2n, + -2—1+q,
Yoxay  oy? oxoy

At this stage the effect of the in-plane forcedlmndeflection of the plate is assumed to act

just in thex-direction, so the in-plane forces in theandxy directions can justifiably be

2 2
neglected. After neglecting the two termg;g—vzv and 2nxy§7W, the equation of motion
y y

for the forced vibration of a thin plate with arb#rarily orientated surface crack becomes,

n

ox*  ox’oy® oy’ o> T ox®  oy? Y oy? 0x0y
2

I

oxoy

4 4 4 2 2 vl 2 2nr
D(a w,, 9'w 0 wj:_pha w, 9w, O0°M, _ o'w_0°M,
(3.30)

+q,

This equation (3.30) differs from Israr’s equat{@908) because two new ternﬁ,xy, and

n,, caused by the crack of variable angular orientadic introduced.

3.5 The Variably Orientated Crack Term Formulations

The formulation of a representative model for azmntal part-through crack located at the
centre of an isotropic plate was proposed by 162808) and Israet al. (2009). Initially
this model was motivated by results from Rice aedy(1972) in which a part-through

crack formulation was initiated using the conceptao line-spring model based on
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Kirchoff's bending theory for thin plates and skelln their research, an approximate
relationship between nominal tensile and bendingsses at the crack location has been
obtained. After some further work, Israr (2008) dsxhr et al. (2009) obtained a set of
equations for the relationships between the nomiemasile and bending stresses at the
crack location and the nominal tensile and bendimngsses at the far sides of the plate.
Thus, in order to use these methods to get moneraecrelationships for a thin, elastic,
isotropic plate containing a variably orientatedfate crack of length& it was found to

be necessary to obtain new relationships for theid@ and bending stress fields for this
problem as shown in Figure 3-1.

The formulation of the variably orientated surfamack terms is developed by using a
proposal made by Zheng and Dai (1994). These autrasented a simplified analytical
model for a variably orientated surface-crackedeplasing the concept of the simplified
line-spring model given by King (1983). The mairjeutive of Zheng and Dai (1994) was
to develop closed-form solutions for Mode | and Mdd stress intensity factors at the
maximum depth point of a variably orientated sugfacack. These solutions were used to
investigate the effect of the biaxial load rati@dhe crack orientation angle on the values
of the stress intensity factors for this type @&ad. In this research, the model proposed by
Zheng and Dai (1994) is used wgbme modification, i.e. by considering the cracgkxde

model loaded in uniaxial tensiag, and edge bendingy, , as depicted in Figure 3-5.

Figure 3-5 : A plate with an arbitrarily orientated surface crack loaded in tension and with a
bending moment
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In this particular system the boundary conditiohshe cracked plate relative to they’

coordinate system are assumed at infinity to become
o.=0,0,=0,andr,, =0 at y 2 (3.31)
M =0, M . =m andM . =0 at y' o (3.32)

where the stresg, acts along th®y’ axis. The boundary conditions relative to thg
coordinate system (Timoshenko and Krieger, 1958 ,zreng and Dai, 1994) become,
1 1
g, =—0,——0, CO2
X 2 [0} 2 o IB

X

1 .1
Ty =5% +§J0 co2p

(3.33)
1 .
Ty = 500 sin2p3
1 1
M,,=—m, ——m, cos2
xx 2”L ZVTL B
1 1
M, :Em) +§m) cos2f3 (3.34)

1 .
MXV:E m, sin23

The system illustrated in Figure 3-5 can be tramséal into two basic problems. The first
of these is that the plate is assumed to haveiadmbal surface crack parallel to tkexis
and subjected to normal tensile stress and bendomgent. The second problem is where
the plate has a horizontal surface crack paralléiéx-axis and is subjected to a tangential
tensile stress and a twisting moment. Zheng and (R894) developed appropriate
expressions involving the tensile and bending segsat the crack location and tensile
stresses at the far sides of the plate. These &sipres are employed here but are modified

by considering the fact that tleeacked plate is also subjected to bending monmnas

well asg,. These expressions are classified into four tyeesl are re-arranged by
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applying the relationship between tensile and bemdiresses at the far side of the plate

(Israr, 2008), as follows,

+h/2

=12 __j - ,(% v, 2) (3.35)
6 6 p+h/2
m, = F M,, = h2 o ZT12(X1 Y, Z)dZ. (3.36)

In this case, the subscripts 1, 2 are represemnted b for the first problem ang, g for the
second problem. These are intermediate variablgsirezl for algebraic simplification.

Thus, the relationship between the normal tensikss, 7, at the crack location and the
normal tensile stresg7,, at the far side of the plate becomes,
_ 2a

= 3.37
O (6a, +a, 1-v?)h +2a Ty (3:37)

The relationship between the bending str@sgs, at the crack location and the bending

moment,M  at the far side of the plate is given by,

_ 2a
My = My, (3.38)

3 [06“ + abbj(3+ v)1-v)h+2a

In the tangential direction the relationship betwélge tangential tensile stress, at the

crack location and the tangential tensile stregst the far side of the plate is found to be,

_ 2a
Tpa = (6C, +C, )1+ v)h+2a Dy

(3.39)

The last expression relating the bending strgg, at the crack location and the twisting
moment,M , at the far side of the plate is found to be offtven,

_ 2a
= M,, (3.40)

pa (:
3(5 + cbbj(1+ vh+2a
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This relationship is newly presented here becausévtisting momenM , is specifically

encountered in this equation. Later, the boundangitions in equations (3.33) and (3.34)
are applied to these expressions (3.37)-(3.40),tlaanl the stress relationships for Figure

3-5 can be represented as,

o = a1+ 0082,28) o, a
(6ay, +a, )(1— Vv )h +2a

= all+cos2

Mo = (1+cox2p) n .43)
{g + abbj(s +v)1-v)h+2a

—— asin2g

7r = (6C, +C, Ji+Vh+2a"° (3.43)

—— asin2g m, a0

m
pq C
3(6“ + Cbbj(1+ v)h+2a

At the crack locationg,,, andm,, are acting in the-direction, whereag ,, andm
are acting in thec-y directions. At the far sides of the platg, andM , act in they-

direction, whereas in they directions,7,, and M,

, apply.his the thickness of the plate,

a is the half crack lengthy; andCy are the non-dimensional stretching complianegs,
and Cypare the non-dimensional bending or twisting conmulés, andi,; = ay, and Cy; =

Cw represent the non-dimensional stretching-bendingnan-dimensional stretching-
twisting compliance coefficients at the crack centrespectively. The compliance
coefficientsay, app andap: = agp can be found in the paper by Rice and Levy (19&RY

the compliance coefficientS;, Cyp, andCy; = Cy, can be seen in the papers of Joseph and
Erdogan (1991) and Lu and Xu (1986).

According to Israr (2008), these tensile and begdinesses can be expressed in terms of
the tensile and bending force effects. Therefagaagons (3.41)-(3.44) can be stated in the
form of forces and moments by replacing the teresilé bending stress terms at the crack
location and at the far sides of the plate (Ricg bevy, 1972). These equations therefore

become,
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o= a1+ 0052,28) . -
(6atb T4y )(1_V )h +2a
— a(1+cos2p) y -
{O'th + abbj(s + V)(l— V)h +2a
= _ asin2g
npq ) (6Ctb + Ctt )(1+ V)h +2a o (347)
_ asin2g M. 048

Pq =
{c;m + Cbbj(1+ vh+2a

The force and moment equations thus obtained ¢iealésired terms, and these are then
added into the equation of motion of the platedarariably orientated surface crack, and
with a negative sign introduced because in realdynage can cause a reduction in the
overall stiffness, as discussed by Israr (2008)laratet al. (2009). Therefore they can be
written as follows,

o a (1+cos2p)
o =_ 3.49

ly = M (6a,, +a,)L-v?)h+2a o (3.49)

M, =M = = a(L+co2) M, (3.50)
3(g+abbj(3+ v)1-v)h+2a

== asin2p

A CE N (T 50

'\ny = _Mpq =" C asin2p M, (3.52)
3£gt+cbbj(1+ vh+2a

wheren  and M are the force and moment per unit length, respelgtivin they
direction, andn,,and M , are the force and moment per unit length inxhedirections.
Both the forces and moments are acting at the doaekion of the plate. Substituting the

expressions for,, M, m,,

andM ,, from equations (3.49)-(3.52) into the equation of

motion for the cracked plate model, equation (3.885ults in the following equation form,
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o'w, ., 0'w _ o'w :—phazw+n ﬂvﬂl
ox*  oxPay* oy’ o> Fox* ¢
_ a(l+ cos2p3) °M, a(l+cos2p3) 0°w (3.53)
a, dy?  (6a, +a,)L-vi)h+2a ° ay?
? + abb (3+ V)(l_ V)h + 2a
2asin2p 0°M, 2asin2p 0°w

nO
3[Cbt * Cbbj(l'F v)h+2a 0xdy (6, +C, L+ v)h+2a ° oxdy

We note that the bending stresses at the far dideegplate are defined by Timoshenko
and Krieger (1959) as follows,

2 2
My:an_—Da‘Q’+ 6‘2’ (3.54)
ay 0x
92w
M, =M, = —D(1—v)axay (3.55)

Therefore, by substituting equations (3.54) an85Binto equation (3.53), the final form
of the equation of motion for the forced vibratioina thin plate with an arbitrarily oriented

surface crack emerges, as follows,

a‘w a'w  d'w) _ 0°w 0°w
+2 + =-ph +n,—+q,
ox*  ox*oy® oy’ ot? x>
4 4
aD(1+ cosZ,B’)(?3 \iv+vaazwzj i
N y xay® ) a(l+cos2p) R (3.56)
—2 o 2
{%ea, forvfpvieza G0t Ja-vth+2a ™ oy
4 4
2aDsin2,6’( g W3+v agwj _
Xy ox3oy 2asin2p 0w

nO
{Cm N Cbb](1+ V)h+ 2a (6C,, +C, JA+v)h+2a ° 0xdy

3.6 Application of Galerkin's Method

The transverse deflectiow (x, y,t) is a function of the two coordinates in the plah¢he

plate and time. It can be separated in the usuahsraby recourse to Galerkin’s method.

Galerkin’s method can be used to obtain global @pprations for the solution of
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differential equations. It is a weighted residua@thod and has a wider applicability than
the Rayleigh-Ritz method because in general itpglieable to differential and integral
equations whereas the Rayleigh-Ritz method is egplié only to variational formulations
(Vendhan and Das, 1975). Kopmaz and Telli (2002duSalerkin’s method to reduce the
equation of motion of a simply supported rectangplate carrying a uniformly distributed
mass for free vibration analysis. Zhou and Ji (30860 studied the free vibration of
rectangular plates with a continuously distribuggding-mass in which they represented
the free vibration of a human-structure system.yThsed a combination of the Ritz-
Galerkin method to derive an approximation for thiedel with three edges simply
supported and one edge in the free boundary condilsraret al. (2009) used the
Galerkin method to investigate the forced vibratmha cracked plate with the crack

located at the centre, and parallel to one eddgesoplate.

In this section Galerkin’'s method is applied in theial manner to discretise the partial
differential equation and transform the transvelsection coordinatew(x, y,t) into time

dependent modal coordinates. The three differgrestyf boundary conditions specified in

Israr et al. (2009) are re-applied here. In order to use théhaak a physical system
comprising a rectangular plate of lendthn the x direction and, in they direction, as
shown in Figure 3.6 is considered. This Figure isdifled from Israr (2008) by
considering the crack orientated at angleith respect to the-axis. A point loadq, is
applied normal to the surface of the plate at @itrary location of X, Yo), and is based on
the application of the appropriate delta functimr(x, y,t) Is a set of functions dependent

on time and stated in the generalised form of theswerse deflection of the plate as

follows,

00

wxyt)= 30 A XY t) (3.57)
i=1 j=1
This equation describes the important behaviouthefplate, whereX; andY; represent

the characteristic or modal functions in thandy directions of the cracked rectangular

plate, respectivelyA, andy, are the arbitrary amplitude and the time dependesdal

coordinate for the system, respectively, wjthbeing the plate mode designators.
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Figure 3-6 : A cracked plate subjected to an arbitr  arily located load, @, (Israr, 2008)

The lateral load], at position(x,,y,), as illustrated in Figure 3-6, can be expressed a

follows (Israret al, 2009),

=q, (t)olx—x,)aly - v,) (3.58)

By substituting equations (3.57) and (3.58) int®§3, the following equation results,

64Xi 94X 9%y, n, 92X
6X4 Yl Ajl//ij (t)+ 6X26y2 All//'l ( ) 4] Xi Ajl//ij (t) B X

a(l+cos2p) n, 0°Y,
(6atb+0' )(1 V)h+ZaD ay Alwu()

1+ cos2 0%, a XY
-—— a(l+cos2p) [a“xi o JAW”()
Z(gt + abbj(3+ Vi-vh+2al ¥ y

2asin2f n, 0°X.Y, )
(6Ctb +C,)Ji+vh+2aD oaxay '
2asin2p ' XY~ d*'XY,
Jc (axa 5+ 6x36J A ()
=04 C,, [@+ v)h+2al Y y
6
ph 0%, (t)

__mh %olt) 51— 5 Yoty -
- D atz A]-Xin"' D 5()( Xo)d(y yo) (359)

21Y, A, )

=+
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In this work, three types of boundary condition @hwere applied by Israt al, 2009 are

re-used, namely all edges simply supported (SS&®), adjacent edges of the plate
clamped and the other two freely supported (CC8&(, two edges of the plate clamped
and the other two free (CCFF). The appropriate esgions for the characteristics or modal

functions that satisfy the stated boundary conui#tiof the plate are given below,

(@) Withall edges simply supported (SSSS)
l;

X :Z;Si EJ

_N© o 17Ty
Y =) s TJ (3.60)

(b) With two adjacent edges of the plate clamped the other two freely supported

(CCSS)
w . 1TTX . 17TX
X, =» sin—-sin—
' Z':l l, 2,
Y, =3 sin Y sinl (3.61)
2 2

(c) With two edges of the plate clamped and thermotivo free (CCFF)

oo ool o]

(3.62)
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3.7 Application of the Berger Formulation

The Berger formulation can be used to investigatelinear vibrations when the strain
energy due to the second invariant of the strainthé middle surface of the plate can
justifiably by ignored. This condition is applied order to determine the deflection of
plates when that deflection is of the order of nitagie of the thickness of the plate.
The applicability and simplicity of this approxin@i to the nonlinear vibration analysis of
plates makes it a useful approach. Wah (1963)doted the simplified Berger equation
by imposing the condition that the in-plane displaentsu andv can be assumed to
disappear at the external boundaries, and therejgpied this equation for the vibration
analysis of rectangular plates with large ampligyaged with various boundary conditions.
Vendhan (1975) considered the Berger equation Herronlinear vibration analysis of
elastic plates. In this research the Berger fortiarais used to convert the derived
governing equation of motion of the plate with aialy orientated surface crack into a
nonlinear ordinary differential equation model.timly an equation is developed for the
in-plane forces in terms of the transverse defbectv. This can be done by taking the
components of the additional strain in the middlanp of the plate, due to small
deflections in thex andy directions, as given by Timoshenko and Kriege5@9. The

strain in thex direction taken in the middle of the plate is,

2
£, :%J(Jr%@_\;vj (3.63)

Similarly the strain in thg direction is,

; :@&(MJ (3.64)

Based on Kirchoff’'s assumptions the plane stresmtsans that relate in-plane stresses to
in-plane strains for an isotropic material can épresented as (Timoshenko and Krieger,
1956),

n, = 7 (&‘X +vsy) (3.65)
N, = 1_E:2 (fy +V€x) (3.66)
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Substitution of (3.63) and (3.64) into equation$%3 and (3.66) give,

X

Eh {au l(&w} y @+1v(a—wj} (3.67)
ox 2\ ox oy 2 \oy

2 2
Eh 6v+1 ow +v@+£v(a—wj (3.68)
ox 2 \0ox

Given thaD = then equations (3.67) and (3.68) become,

ER’
121-v?)

X Tl el -
ay

2 2 2
nh®_ou  ov 1(awj +1v ow (3.69)
12D ax dy 2\ 0x 2

2 2 2
nh :0v+ ou 1(6\/\/} +%V(a—wj (3.70)

12D oy X 2 a_y 0X

Multiplying equations (3.69) and (3.70) bixdy, and after integrating them over the plate

area, leads to,

npll, _fou, ov 1fow) 1 fow)

oD _H(axwafz[axj +2V(6yj }dxdy (3.71)

nh2II ﬁ( 6u 1(6\/\/} +lv(ﬂvJ2}dXdy (3.72)
6x 2\ oy 2 \ox

By imposing the condition thatandv can disappear at the external boundaries and @roun

the crack because it is symmetrical, the equatiedsce to,

h | bz ?
=20 (e oo o 673
nh2II 1% ow\’

1R
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Substituting then the expression for the transvefsiection V\,(x,y,t) from equation

(3.57) into equation (3.73) and (3.74), leadshe,resulting in-plane force equations in the
x andy directions, in terms of the transverse deflectwhich become,

I 2 2
L2l (X, oY,

n, ql oA Jf ‘5?} Yy Egjj X | dxdy (3.75)
iyl an 2 , oX. 2 2_

Ny h2|| —— A )] o) )Y dxdy (3.76)
00

These two in-plane force equations forand n, can be conveniently re-written as,
n, = DR, A7 ¢ (t) (3.77)

where

6 e (X Y, () o
£ _hzlllzzz ﬂ)l[ axj K +V(6yJ X']dXdy (3.78)

n, = DRy A,z ‘//ijz (t) (3.79)

_walllzanzz %22
Py _hzlllz-zzu[(EJ X. +V(0Xj v, ]dxdy (3.80)

Following on from this by substitution of the inaple force expressions into equation

(3.59), then by multiplying each term of this egoatby the modal functionX;andy;,

for one of the three types of boundary conditiatest above, and then by integrating over

the plate area, it can be seen that the followqugagon may be obtained,
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F[ 2%, () axays

O ey 5
O'qw O'—;N

a(l+cos2p)
{"6 +abbj(3+v)(1—v)h+ 2

C (Xi'ij VXY, )] A XY, 4, (t) dxdy+
{gt+cbb](1+ Vh+2a (3.81)

o a(1+ cos2p) :
”[ P XY, + (6a,, +a )(1—v2)h+2a Fai %)

2asin2f
(6C, +C, )1+ v)h+2a P X

(XY +2XY +YMX, -

J

(vx, +vXY;)

!

N 2asin2p

+

XY | APX Y 2 t) dxdly

I |

=% (t)olx - >[<)o)5(y “Ye) v dxdy

whereX., X', X;", and X" are the first, second, third, and fourth derivativé X, with

respect tog, andY;, Y, ', Y;, andY," denote the first, second, third, and fourth deiest

of Y, with respect tgy. Equation (3.81) can be re-stated in the form nbrlinear ordinary

differential equation in terms of modal coordinates follows,

M, &; (t) +K; ¢, (t)"' G, l//ij3(t) =0 (3.82)
Where
®w Ils
M, :%ZZAJ [[x2v? dxdy (3.83)
i=1j=1 00
o o Iy
K, =YY A ”[ XY, +2XY +YVX,
i=1j=1 o0
- a(L+cos2f) (v x, +vx'Y’) (3.84)
{"6 +abbj(3+v)(1-v)h+2a
2asin2p

(XY, +vxY; | XY, dxdy

+
{C;bt + Cbbj(1+ v)h+2a
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bz a(l+cos2p) :
G, Py XY, Py XY
Z_;]Z;AU '[I[ Y i (Gatb T4y )(1_V2)h+ 2a 27" (3.85)
2asin2f
XY,

(6 G s vz XY, drey
and,

t
o = Al )Qij (3.86)

D

whereQ, = X;(x,)Y,(y,) is the integral of the delta function given byalset al. (2009) in

the form,
j X, L)dx= X, (x,) (3.87)

By considering the system to be under the influeotaeveak classical linear viscous
dampingu, and the load to be harmonic, then dividing thioly the modal mass in

equation (3.82) leads to the form of a specialBatfing equation,

@, 0)+ 20, )+ 6, 0+ 1 0 (0)= T acose (3.88)
where
K.
21 :'V'_], (3.89)
-G 3.90
Vi _M_ij (3.90)
Qr
T :M_J (3.91)

also noting thag is the applied load acting on the surface of tteepandQ; is the

excitation frequency. This equation is also contgjma cubic nonlinear term, damping

term and the excitation terna,; is the natural frequency of the plate with a vdgiab

78



Chapter 3

orientated crack angl, is the nonlinear cubic term that can be positiveegative. It is

positive valued when representing a hard springreaghtive valued when representing a
soft spring.

3.8 Enhanced Cracked Plate Simulation

In this section, simulation results are presenidtlie intact plate and the enhanced
cracked plate model with three arbitrarily chosgpes of boundary condition, namely
SSSS, CCSS and CCFF. The type of material usedignvestigation is an aluminium

alloy of 5083 grade, with the following materiabperties: Modulus of elasticity = 7.03

x 10'° N/m?, plate densityo = 2660 kg/m, Poisson’s rati@ = 0.33, and a measured

damping ratio ofy = 0.08. Results are presented for an investigaitiom the natural
frequency of the first mode of the intact plate @nel enhanced cracked plate model for
various aspect ratios. These results are divideu timee parts. A convergence study is
firstly carried out for the cracked plate modelsfaret al. (2009) with a centrally located
crack which is parallel to one side of the plateprder to verify the correctness of the
enhancedcrack model within an analytical model of the plagecondly, studies are
presented for a plate model with a variably oridrgerface crack, and in this case onwards
the cracked plate model with scaled geometry isduf®m comparison with the
experimental results, as discussed later. The alaftequency for this model can be
calculated using the definition from equation (3.88he effects of the boundary
conditions, geometry of the plate, the crack odagah angle, and crack length on the
natural frequency value are all demonstrated inh bedctions. Thirdly, factors that
influence changes in the trend of the natural feeqy for the CCFF type of boundary

condition are discussed in section 3.8.3.

3.8.1 A plate with a horizontally located centre cr  ack, f#=0°

The geometry of the plate used in this sectionnslar to that of Israr (2008) defined as
;= 0.5 m,l; = 1.0 m, and with plate thickneds,= 0.01 m. The magnitude of the load
chosen acting on the surface of the plateyis, 10 N at some arbitrarily specified point
located atx, = 0.375 m and, = 0.75 m measured from the origin of the platebl@al

shows the results obtained for an intact and cdhqgtate with a horizontal centre crack,

and where the middle point of the crack coincidéh the centre of the plate. The half
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crack lengthsa chosen are 0.01lm and 0.025m. The percentageatiffes between this
model and that of Israr (2008) are presented hmréhke three boundary conditions. The
results of the comparison of Table 3-1 show a wbrge agreement for all three boundary
conditions. The values of the differences in thstfinode natural frequencies of these two
models are small with a maximum percentage err@appfoximately 0.012Additionally,

for all three cases, the results show generally e natural frequency reduces with an
increase in half-crack length and it is also inflced when the boundary condition and

geometry of the plate is changed.
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First mode natural Frequency, (rad/s)

BCs. Length of the Intact Plate Error Cracked Plate Error Cracked Plate Error
plate (m) (%) a =0.01 (m) (%) a=0.025 (m) (%)
1 [, | This thesis Israr This thesis|  Israr This thesis|  Israr
(2008) (2008) (2008)

1.0 1.0 77.58 77.58 0 75.54 75.54 0 73.39 73.39 0

SSSS 0.5 1.0 193.95 193.95 0 192.54 192.54 0 191.09 191.09 0

1.0 0.5 193.95 193.95 0 183.18 183.18 0 171.42 171.42 0

0.5 0.5 310.32 310.32 0 302.17 302.17 0 293.57 293.57 0

1.0 1.0 445.67 445.67 0 432.51 432.51 0 418.58 418.58 0

COSS 0.5 1.0 1161.77 1161.77 0 1154.27 1154.27 0 1146.53 1146.53 0
1.0 0.5 1161.77 1161.77 0 1089.99 1089.98 0.001 1011.06 1011.04| 0.002
0.5 0.5 1782.66 1782.66 0 1730.05 1730.04| 0.001 1674.33 1674.31] 0.001

1.0 1.0 80.47 80.46| 0.012 77.39 77.39 0 74.10 74.10 0
CCFF 0.5 1.0 231.08 231.06| 0.009 229.97 229.95| 0.009 228.82 228.80| 0.009
1.0 0.5 231.0¢8 231.06| 0.009 213.87 213.85| 0.009 194.63 194.61| 0.010
0.5 0.5 321.87 321.85| 0.006 309.56 309.54| 0.006 296.40 296.38| 0.007

Table 3-1 : Natural frequencies of the intact and c
located at the centre of the plate for various type

racked plate models with a horizontal crack

s of boundary condition and different aspect ratios
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3.8.2 A plate with a variably orientated surface cr  ack

In this section scaled geometric values of theeptabdel are used to make it compatible
with experimental work specimens. The dimensioreslgr 0.15 m,l, = 0.3 m, plate
thicknessh = 0.003 m, and the load acting on the surfacdefplateq is assumed to be
the same as previously used, which is 10 N. TaBl2s3-3 and 3-4 show the results for

the first mode natural frequeney for different boundary conditions, different lehgtof
half-crack and for different values of crack orgian angle. The orientation angle is

chosen from Dto 807, in 20 steps and finishes at 90rhe crack is also located at the

centre of the plate having 0.003 m and 0.0075 rdnatk lengths, respectively.

Crack First Mode Natural Frequency, (rad/s)
angle,
)i Intact Cracked Cracked Intact Cracked Cracked
(deg) | Plate Plate, Plate, Plate Plate, Plate,
a=0.003 | a=0.0075 a=0.003 | a=0.0075
(m) (m) (m) (m)
Length of the square plate Length of the square plate
|1:0.3 |1=015
|2:0.3 |2:0.15
258.60 - - 1034.41 - -
0° 251.81 244.65 1007.24 978.58
20° 252.61 246.32 1010.46 985.28
40° 254.64 250.51 1018.55 1002.02
60° 256.92 255.18 1027.68 1020.74
8¢’ 258.40 258.19 1033.60 1032.77
o’ 258.60 258.60 1034.41 1034.41
Length of the rectangular plate Length of the rectangular plate
[ =0.15 [{1=0.3
|2:0.3 |2=015
646.50 - - 646.50 - -
0° 641.81 636.96 610.60 571.41
20° 642.36 638.08 614.91 580.69
40° 643.75 640.92 625.68 603.57
60° 645.33 644.13 637.72 628.57
8¢’ 646.36 646.22 645.45 644.37
9° 646.50 646.50 646.50 646.50

Table 3-2 : Natural frequencies of the intact and ¢~ racked plate models with a variably
orientated surface crack for the simply supported ( SSSS) boundary condition, at various
orientation angles.
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As before, the results show that the natural fraqueaeduces with an increase in half-
crack length, and this phenomenon is illustrate@igure 3-7, as an example for a plate
aspect ratio of 0.15/0.3. This ratio is also chdeerthe experimental specimen in the next
chapter since it has an exact rectangular geometoyn Figure 3-7 it can be seen that the
derived cracked plate model predicts the natuegjdency very well for cases with SSSS
and CCSS boundary conditions compared to the céabeGLZFF boundary condition for

which the prediction is rather inaccurate, espbciar a half-crack lengthy of less than

0.001 m, as shown in Figure 3-7 for the CCFF case.

Crack First Mode Natural Frequency, (rad/s)
angle,
B Intact Cracked Cracked Intact Cracked Cracked
(deg) | Plate Plate, Plate, Plate Plate, Plate,
a=0.003 | a=0.0075 a=0.003 | a=0.0075
(m) (m) (m) (m)
Length of the square plate Length of the square plate
|1:0.3 |1=015
|2:0.3 |2:0.15
1485.55 - - 5942.22 - -
0° 1441.70 1395.27 5766.82 5581.10
20° 1446.84 1406.06 5787.35 5624.25
40° 1459.88 1433.16 5839.53 5732.63
60° 1474.63 1463.41 5898.51 5853.66
8¢ 1484.22 1482.88 5936.87 5931.50
9C° 1485.55 1485.55 5942.22 5942.22
Length of the rectangular plate Length of the rectangular plate
1 =0.15 l,=0.3
|2:0.3 |2=015
3872.56 - - 3872.56 - -
0° 3847.57 3821.77 3633.32 3370.19
2¢° 3850.31 3827.53 3662.06 3432.70
4¢° 3857.62 3842.51 3733.95 3586.21
60° 3866.06 3859.64 3814.09 3753.20
8¢’ 3871.70 3870.92 3865.53 3858.34
aC° 3872.56 3872.56 3872.56 3872.56

Table 3-3 : Natural frequencies of the intact and ¢ racked plate models with a variably
orientated surface crack for the clamped-clamped si mply supported (CCSS)
boundary condition, at various orientation angles
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Crack First Mode Natural Frequency, (rad/s)
angle,
B Intact Cracked Cracked Intact Cracked Cracked
(deg) | Plate Plate, Plate, Plate Plate, Plate,
a=0.003 | a=0.0075 a=0.003 | a=0.0075
(m) (m) (m) (m)
Length of the square plate Length of the square plate
|1:0.3 |1:0.15
2=0.3 I, =0.15
268.22 - - 1072.89 - -
0° 247.29 223.78 989.15 895.10
20° 265.40 247.30 1061.58 989.21
40° 279.11 268.65 1116.42 1074.59
60° 282.94 279.22 1131.74 1116.86
80’ 275.47 275.35 1101.90 1101.42
P 268.22 268.22 1072.89 1072.89
Length of the rectangular plate Length of the rectangular plate
[, =0.15 l,=0.3
|2:0.3 |2:0.15
770.27 - - 770.27 - -
o° 743.88 715.78 650.48 498.48
20° 765.52 742.67 703.75 586.80
40° 782.78 769.00 757.28 689.93
60° 788.05 783.03 788.12 762.82
8¢ 779.10 778.91 784.84 782.59
0y 770.27 770.27 770.27 770.27

Table 3-4 : Natural frequencies of the intact and ¢ racked plate models with a variably
orientated surface crack for the clamped-clamped fr  ee-free (CCFF) boundary condition, at
various orientation angles

Furthermore, in terms of the crack orientation angffect for the boundary conditions
SSSS and CCSS, as shown in Figure 3-8, it canlglearseen that the natural frequency
increases with the increase in the crack angldp . But it is different for the case of
the CCFF boundary condition, where the frequencyeiases up to 80and then decreases
when g exceeds 60 This similar trend in the crack orientation effa@s also studied by
Maruyama and Ichinomiya (1989) who did experimemtsclamped rectangular plates
with a crack at various orientation angles. Wu dmav (2004) also investigated
experimentally a thick plate with an oriented crdok the free boundary condition case,
where the frequency was found to increase witmarease in the crack angle of up t8,60

but which reduced for crack angles exceediryy 60
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The results show overall that the cracked plateehsdvery sensitive to the crack length
and crack orientation angle and that it is ablg@redict natural frequency values for the
crack very well for the cases tested using the S&8&6 CCSS boundary conditions.
However, for a cracked plate with the CCFF boundaogdition the prediction showed

some disagreement between the intact plate andréoied plate for a crack orientation
angle of 40 and above. In this case the natural frequencyevidu the cracked plate is

higher than for the intact plate, and this doesfualiil the general expectation that cracks

lower the natural frequencies due to their redugtion the overall stiffness of the plate.
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Figure 3-7: First mode natural frequency as a funct  ion of half-crack length
for the cracked plate model with an aspect ratio of 0.15/0.3, at different values of crack
orientation angle from 0 ° to 90° for the SSSS, CCSS, and CCFF boundary conditions (  Black,
0°%; Red, 20°; Blue, 40 °; Green, 60 °; Orange, 80 °; Purple, 90 °)
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Figure 3-8: First mode natural frequency as a funct  ion of crack orientation angle
for the cracked plate model with an aspect ratio of 0.15/0.3, for SSSS, CCSS, and CCFF
boundary conditions (Dotted line, half-crack length of 3.0 mm: Black line, half-crack length
of 7.5 mm)

3.8.3 Factors which influence changes in the natur  al frequency

Besides the effect of crack length it is also fotimat the vibrational characteristics i.e. the
natural frequency of the cracked plate structusn be affected significantly by the
orientation of the crack in the surface of the @ldepending on the type of boundary
condition applied. In this section a parametridgtis performed on the natural frequency
equation of the cracked plate for the case of tB&FEboundary condition. This type of

boundary condition is selected because the resultsved changes in the trend of the
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natural frequency values at an angle of &d where this trend is seen to be different to
that of the SSSS and CCSS boundary conditions efdrey;, the objective of this study is to
examine cracked plate model configurations in otdedetermine the physical parameters
that influence the changeover of the maximum valtierack orientation angle. Here,
maximummeans that value of crack orientation angle foicththe natural frequency
reaches a maximum value before it then decreasdiisl simulation the natural frequency
of the cracked plate model is calculated by usiggaéon (3.89). The series of natural
frequency equations in term of crack orientatioglans obtained and this is then used to
calculate the natural frequency value for a rarfge \@lues from 8to 9C. From here, the
maximum natural frequency can be found. Howeveretlage competing effects within the
analysis at this stage and only a lengthy paramstudy could uncover the numerical

mechanisms causing this effect.

3.8.3.1 Crack Length

In this simulation half-crack lengths are chosemmrthe range of 0.1 mm to 30 mm.
Results of the crack orientation angle for maximatural frequency as a function of half-
crack lengtha, is plotted and shown in Figure 3-9. It is fourthtt the crack length
influences the crack orientation angle for maximuoatural frequency, for example when
the half-crack length is 1 mm the natural frequemcyeases for the crack angleup to
50.77 and reduces whef exceeds 50.77 When the half-crack length increases to 30
mm, the natural frequency increases up to 75.06 and then decreases whemxceeds
75.06. The results given in Figure 3-9 shows that tlaekiorientation angle for which the

natural frequency is maximum increases with thelclangth.

8C——

\‘
SR

S for max w (deg
3

Ul

0.000 0.005 0.010 0.015 0.02C 0.025 0.030
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Figure 3-9 : B for maximum natural frequency as a function of hal f-crack length
for the cracked plate model with an aspect ratio of 0.15/0.3
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3.8.3.2 Plate Thickness, h

Figure 3-10 shows the crack orientation anglefor maximum natural frequency as a
function of the plate thickneds from the range of 0.1 mm to 30 mm. The resultwsho

that the orientation of the crack for maximum nakdrequency is also affected by the
thickness of the plate, in which the valuepofor maximum natural frequency decreases

with an increase in the plate thickness.
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Figure 3-10 : B for maximum natural frequency as a function of pla te thickness
for the cracked plate model with an aspect ratio of 0.15/0.3

3.8.3.3Plate Aspect Ratio (I1/I,), R,

Plate aspect ratio is defined here as the lengith ohthe side on the-direction to the side
on they-direction. In this simulation the plate aspectaas studied for the range 0.1 to
1.0. Plate aspect ratio effects on the crack d@oglthe maximum natural frequency can be
observed in Figure 3-11. The result shows thatctiaek orientation angle for maximum

natural frequency increases with the plate aspict. r
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Figure 3-11 : B for maximum natural frequency as a function of pla te aspect ratio
for the cracked plate model

3.8.3.4 Poisson Ratio

The crack orientation angle for maximum naturatjfrency as a function of Poisson ratio
is illustrated in Figure 3-12. It can be seen ttie crack angle for which the natural
frequency is maximum decreases up to 0.42, and itfterases when the ratio exceeds

0.42.
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Figure 3-12 : B for maximum natural frequency as a function of Poi sson Ratio
for the cracked plate model
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3.8.3.5 Density, p and Modulus of Elasticity, E

In this simulation density and modulus of elasyict the cracked plate are varied from the
range of 1500 kg to 3000 kgnt and 1.0 x 18 Nm? to 10 x 18° Nm?, respectively.
However, both of the results only show a very dlidifference in the crack orientation
angle for a maximum natural frequency value, andignificant changes can be observed

from Figure 3-13.
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Figure 3-13 : B for maximum natural frequency as a function of (a) Density
and (b) Modulus of Elasticity

3.9 Chapter Conclusions

The equation of motion for a plate containing afawe crack of variable angular
orientation in the form of a specialised Duffinguatjon has been derived. This proposed
mathematical model is capable of detecting andigtiad the vibration behaviour of the
cracked plate, and showing the trend of the nafuegluency values for the SSSS, CCSS
and CCFF boundary conditions. Besides the boundanditions, crack length, and
location of the point load, it is also found thhe tvibrational characteristics of the plate
structure can be affected significantly by the miagion of the crack. In addition, the
physical parameters such as crack length, plat&ribss, plate aspect ratio, Poisson ratio,
plate density and modulus of elasticity also ctniie to the changes in the orientation

angles for which the natural frequency is maximum.
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Chapter 4

Approximate Solution Methods

4.1 Introduction

This chapter presents approximate solutions fornidinear problem of a plate with a
surface crack of variable angular orientation. Ebkitions obtained are used in order to
study and interpret the physical behaviour of ttrgcked plate model. An approximate
analytical method based on the perturbation metifadultiple scales and an appropriate
numerical solution technique i.e. the Finite Eletndtethod, within the Abaqus/CAE

environment, are applied here to solve this problém addition, for purposes of

comparison, the numerical results are also caledlay directly integrating the nonlinear
ordinary differential equation for the model and tlesults from this are compared with the

results obtained from the multiple scales method.

4.2 Approximate Analytical Method: First Order Mult  iple
Scales Method

One of the most widely used perturbation methodsésmethod of multiple scales. This is
an approximate analytical technique and is frequensed for obtaining close-form
solutions for nonlinear problems. The multiple ssainethod was successfully applied by
Israr (2008) and Israat al. (2009) for the horizontal centrally located crgckblem. In the
case of primary resonance analysis the excitateouency is usually assumed to be close
to the linear natural frequency of the system, weddetailed derivation of the appropriate
amplitude frequency-response equations are desdcribethose references. Here this
method is re-applied in order to investigate thalinear behaviour of a plate with a

variably orientated surface crack.

The basic idea behind this approach is that thglesimndependent variabl&,is uniformly

split up into several new independent variables T,, Ts,...T, and these independent
variables define successively slower dependenaestie dependent variables when
expressed in term of a uniformly valid expansionampn. The dependent variables are

typically expressed by the following (Cartmetlal, 2010):
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x(t, &)= "%, (T, Tyyerns T,y ) + O[T, ) (4.1)

whereT, ="t and the parametes,, is known as a (small) perturbation parameteh wit
« 1. x(t,¢) is a vector and its expansion in equation (4.19aissidered to be uniformly

valid for times up toO(g‘m). The aim of this section is to find an approximatealytical

solution to the forced nonlinear vibration probléon a plate with a variably orientated

crack by using a first order multiple scales exp@msSo, for the co-ordinate that we are

using here!//ij , the dependent variables would typically have fibim,

(/’ij (t,€) :wou (To,T) +£¢/Jjj (To,T) +0(‘92) (4.2)

where ¢, and ¢, are solution functions yet to be determined apdand T, are

successively slower time scales. The multiple iedejent variable$, are generated with
respect to real (clock) tintegiven by,

T, =¢"t forn=0,1, 2,... (4.3)

So, whem = 0;

T, =t, (4.4)
And whenn = 1;
T, = et (4.5)

On this basis the first and second time derivatogsbe perturbed as follows,

d _d, 0 ,dT, 9 dT, 0
dt ~ dt 0T, dt 9T, dt aT,

(4.6)

or a_29 . 9 +g?2 0 +... 4.7)

dt aT, T, _ aT,
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Re-stating equation (4.6) by using theoperator to represent the te%g'_ gives,

n

%:DO+‘sD1+52D2+...+£“Dn (4.8)

The second time derivative is,

d> _o(D, +é&D, +£°D, +...)+£6(D0 +&D, +£°D, +...)

dt2 aTo aTl (4 9)
L 20D D, +6%D, +.) '
T,
thus,
2
S5 =05 2D, +£(D? +2D,D, )+ 2¢°D,D, +£'D7 + ... (4.10)

Before applying the method of multiple scales téaoban approximate solution to this
problem it is necessary torder the cubic term, the damping, and the excitatiomte

These terms are ordered by means of the small péeam according to their perceived

relative numerical strength. To accomplish this assume that the cubic term is a

definitionally weak term, thus it is assumed todiae,

y=¢€y (4.11)

We also choose to impose a condition of weak dagnimch gives,

H=Ef (4.12)

and we decide to classify the excitation term asfaexcitation, so,

(4.13)

o)

1

)
o)
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Clearly, all terms are ordered ©(¢)! so that they will appear at the first order of
approximation. By substitution of (4.11), (4.123da@.13) into equation (3.88) it becomes

as follows,

wij (t) + Zgﬂwij (t) W l/Iu (t) + E}/“ l/Iu (t) E q COSQ t (414)

From this, substituting the uniformly valid expaorsiof equation (4.2) and the time
derivative equations (4.8) and (4.10) into the ady differential equation (ODE) of the

equation (4.14), we obtain,

(Dg + 28D0 I:)1 + 252 Do Dz + ‘EDl2 )(wOii + &//JJ'J )
+ 2‘9:[1([)0 +éeD, +£°D, )(‘/’Oij +eyy; )+ (‘Juz (wou +eyy; ) (4.15)

N i 4
+5V(‘/’0ij +£¢/ﬂ|) = £—qcosQ t
Expanding equation (4.15) leads to the followingrfp
Dgl//ou + 2£DOD1wOij +252D0D2¢/ou +£2D121//Oij +£D§¢/m + 252D0D11//Jjj

+253D0D21//nj +53D12¢/n'j +2£,[1Dol//ou +252,[’D11//Oij +2£3:[1D2w0ij

+ 2521[[ Do¢ﬁj + 2531[1 Dlwlij + 254/:‘1 Dzl//]jj + wuzl//ou + w.jzgl//]jj (4.16)

17;
+£yl//0u +3£ yl/IOU l//llj +3£ y(//OU(//]J] +£ y(//]J] =& C]COSS-Z t

By equating the coefficients of like powersof and neglecting terms of order greater than

&' in equation (4.16) leads to a definition of theotle order perturbation equation,
Dgl//ou' + a)ljzl//Oij =0, (417

and also the first order perturbation equation,
£ Dl + Gl = ~2DoDle, ~ 2/, ~ Fiil + o Geosa;t (4.18)

The general solution of the zeroth order pertudmatequation can be written in pure

function form or in complex exponential form. Inighcase we choose the complex
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exponential form as a general solution for equat{drl7) because this solution is

ultimately more algebraically convenient,
Wy = BE“" + Be " (4.19)

B is an as yet unknown complex amplitude and a fanatf the slower time scalg and

B is the complex conjugate & Next, by substituting this solution appropriataijo the
right hand side of equation (4.18), we get

D2y, + &y, = -2D,D, (Bei“*iTo + Be 4 ) - 2/1D, (Be“‘*jTo + _Be““*j“))

3 1]

~ 7 Be“™ + Be™) M (4.20)

qcosQ;t

Expanding, and after differentiating as necessatl vespect tol,,, gives the following

equation,

Diy + @ity =-2iw, D,Be™" +2iw, D,Be™" - 21y Be“" + 2if1a) Be "
-7, R3e%4m -3y B2 Be'“™ -3y, BB 264 - B 4T

+’7¢(Ee“’"t +ﬂe“9"‘j (4.21)
D (2 2

It can be seen that equation (4.21) contains setetms that will lead to non-uniform

contributions frony,; . Accordingly, to identify secular terms easily, femoval, we have

in this case to take a common factoref™ out from the right hand side of equation
(4.21),

Doy, + Wiy, =€" (— 2icy, D,B+2icy, D, Be*4" - 2iflc B + 2i flew, Be*4"
- j, B%*™ —3). B’B - 3j;, BB’ "

-, BT 4 5 G gla-aln i Ao ) (4.22)
D 2 D 2

In equation (4.22), iQQ; is close tow; which means thaQ; = «; then the second last

term inside the large brackets becomes almost &gauhd ifQ; =« then this term is
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secular. So we take the well known form of the digtg parameter, as given by Nayfeh
and Mook (1979),

Q, =a; +£0, (4.23)

i

In general this is called the primary resonancedtmm with g, as the detuning

parameter. The detuning parameter is introducesigiaify the closeness of the excitation

frequency,Q; to a natural frequencyy; of this system. Subsequently, substitution of

(4.23) into (4.22) leads to the following equation,

Dgl//nj + a)Ijzl//lij =gl“T (_ 2i ) D,B+2i w, D1§e—i2(t4jTo _ 2i,[1w.j B+ Ziﬂa),j Be 2T
— Aij B3ei2&41To —31'}”_ BZ§_317” Bgze—iZ&%jTo _J’}ij §3e—i4(quO

15 Qgeorts , 15 G glecysee ) (4.24)
D 2 D 2

Eliminating the secular terms by setting these seiorzero gives,

. A~ ~ 5 /7i' q ie0; Ty
~i20, D,B~i2 a),jB—ByiszB+E'%e T = (4.25)

Imposing the conditions tha = B(T,) for the amplitude to be steady-state or nearly so,

thus the steady-state value of the complex amg@ijtBdis given in the usual form of,
1, .
B= EbeI (4.26)

This allows us to introduce real valued amplitudel phase informationb(= b (T,) and

a = a (T,)). By differentiating this equation (4.26) with pegt to slow timél; we obtain,

dB

— = DlB:EUe”’ +ilgee (4.27)
dT, 2 2
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Substituting equations (4.26) and (4.27) into eigna4.25) yields,

2
-i20 (% b +iga'e‘”j -2/ (%bé”} -3y, (%bé”j (%be“”j

N (4.28)
+,7igeiaij-rl = O
D2
Expanding equation (4.28) and dividing throughdfygives,
@, bar'-ic, b= fie, b - g jbd + G glone) — (4.29)

D 2

Converting the excitation term into real and imagynparts means that equation (4.29)

becomes,

), ba'=iay b’ fleg, b - g b+ %g [cos(o*ij T, - a) +i sin(aij T, - a)] =0 (4.30)

Separating this out into its real and imaginarygbrads to the following equations,

3y b3 )
Re: ba'=J0> _ i gco aijTl—a) (4.31)
8w,  2Dw,
Im: ':—,ub+r}—“dsin(a..Tl—a) (4.32)
2Dw !

I

Equation (4.31) contains the slowly varying phasgl@a’ in one term. Equation (4.32)
contains the slowly varying amplitud#. Both of these equations also contain explicit

references to time through the time scaale This can conveniently be removed for

subsequent ease of solution by introducing a toeeinmsfd phase angle,

¢=0;T,—a )3
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Thus the slow-time phase and amplitude modulatipragons become,

bg=bo. - 3, o1 gcosy (4.34)
' 8w, 2Dy,
: My~
=+ sin 4.35
po+ oo —-4sing (4.35)

i

For steady state conditioftand ¢' are taken to be zero, so we obtain,

3y, b® .
o;b- 8 :_2Da). gcosg, (4.36)

and equation (4.35) becomes,

i~ .
=———gsin 4.37
o= 5oy 459 (4.37)

Substituting equation (4.37) into equation (4.36f applying a basic trigonometrical
identity, leads to the frequency-response equation,

3J7ij b2 ,7ij2 A2 A2
o = x - 4.38
7 4D’w,*b’ oA (4.39)

(

This can readily be re-structured,

3y b2\ 2
Yy JbZ— T g2 (4.39)

(°b?* +| o. - =
/'l 1) 86'.)” 4D20)IJ2

Next, the first order perturbation solution candigained by considering the right hand

side of equation (4.24) with the secular terms nezdo

Dgwl” + quzwlu — eilquo (_ j}u B3ei2a{jTo _ }’}U EBe—Ma{jTO) (440)
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Multiplying out the right hand side,

D2y, + oy =7, B% " - ). B% " (4.41)
Equation (4.41) can also be written as,

Diy; +afyy; =—7;B%€™™ +cc (4.42)
wherecc denotes the complex conjugate of the first riginichside term of equation (4.42).

The particular solution of;, can be obtained by taking a trial solution foisteguation,

and its first and second time derivatives, in e of,

Wy = AE™° +Ce P (4.43)
Wy =13 AE™™ ~i3ey Ce™" (4.44)
Py =9 AE*® -9y *Ce ™ (4.45)

Substituting equations (4.43) and (4.45) into eiguaf4.42) and grouping terms together

with the same exponent, we then get the constaaisdAC,

> B3
A:y”— and C=

8aw,” )

/iB’

2

(4.46)

By substituting these quantities back into equafd3), gives the particular solution for

Yy, as,
y, B i3 Ai' B® —i3ay
41111,- - (yll je 3y Ty +{yl 5 je 3Ty (447)

It should be noted that this equation can also litaimed directly by using the DSolve
function in Mathematica". Finally, the uniformly valid expansion for thersi order
approximate solution can be obtained by substgutquations (4.19) and (4.47) into
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equation (4.2), and after converting the exponenns into trigonometric forms the full
solution to first ordetr becomes,
Vb’

W; (t,€) =bcosQt - ¢) + 220 ? cos@BQt - 3¢) +o(£?) (4.48)

ij

Into which numerically calculated values focan be obtained from equation (4.39).

4.2.1 Linear and Nonlinear frequency response curve s

The analytical results for the solution based anapproximate method of multiple scales
are shown in Figures 4.1 and 4.2. These Figurew sluoves for the nonlinear response
which represent the behaviour of square and reatanglates containing the orientated

surface crack for the three different types of larg conditions. Equation (4.39) is used

to plot these curves, in which the nonlinear ceofit, y; is initially set to zero to

generate the linear response curve. The aspeatatatisen for the rectangular plate is 1:2

and similar mechanical and geometric propertiassasl in the previous section are re-used

here. Fory, #0 the system displays typical nonlinear charadtesisas evident in the

Figures, with characteristic hardening and softgmphenomena for a 0.003 m half-crack
length. In these Figures, for the cracked plate ehedth the SSSS and CCSS boundary
conditions, the nonlinearity bends the curves eortght, as for a hardening system. In this
case the nonlinear hardening effect is clearly matbnger for the SSSS boundary
condition. However, for the CCFF boundary conditibe nonlinearity bends the curves to
the left as for a softening system. It is evidéwat tfor all types of boundary condition, the
cracked rectangular plate model with an aspecot rati 1:2 displays a much stronger

general nonlinearity than that for a square plabeleh

4.2.2 Factors that influence nonlinearity
4.2.2.1 Crack orientation angle, B

The influence of the crack orientation angle on fileguency response is observed. The
results are shown in Figures 4-1 and 4-2. Casésdtdésr the SSSS and CCSS boundary

conditions show no obvious hardening effects fataregular plates. However for square
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plates, with an increase in the crack orientatingle the nonlinear hardening increases.
For the CCFF boundary condition it can clearly eersthat the nonlinear hardening effect
increases up to 8@&nd then reduces when the crack orientation astgets to exceed 80

It should be noted that the amplitude decreasdstivi increase in frequency.
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(a) Linear response curves (b) Nadimresponse curves

Figure 4-1 : Linear and nonlinear response curves f  or the cracked square plate
model, for three types of boundary conditions (0 °: Red line, 20 °: Blue line, 40 °: Green line,
60°: Orange line, 80 °: Purple line, 90 °: Black line)
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Figure 4-2 : Linear and nonlinear response curves f  or the cracked rectangular plate
model with an aspect ratio of 1:2, for three types of boundary conditions (0 °: Red line, 20 °:
Blue line, 40 °: Green line, 60 °: Orange line, 80 °: Purple line, 90 °: Black line)
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Chapter 4

Next, the effect of the location of the applieddds,, Y,) on the plate surface for a cracked

rectangular plate whete= 0.15 m and,=0.3 m, with the CCFF boundary condition and 3

mm half-crack length is investigated, as shown igufé 4-3. The Figure shows the

responses for the cracked plate with F, 60° and 90 crack orientation angles. For

instance, pl in the caption represents the locatioan applied load at point (0.1125,
0.1125), p2 at point (0.1125, 0.15) and p3 at p@rit125, 0.225). The poink{ Vo) is
measured from the fixed end of the plate. As shawthis Figure, it is found that the

widths of the nonlinear region become narrowerhaseixcitation location moves closer to

the constrained area.
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Figure 4-3 : Frequency response curves for a rectan
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4.2.2.3 Excitation amplitude

Subsequently, as shown in Figure 4-4, the influenicéhe excitation amplitude on the
frequency response curves is shown. A similar atenvestigated to that of the previous
section is used, with an excitation amplitude vaidnech is varied, i.e. to 5 N, 10 N, 15 N
and 20 N. The results show that the amplitudeseas® when the excitation amplitude

increases.
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_ _0.001%¢
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= = 0.00L(}
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0.0005 0.000t
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0.001:} ] o
5 € 00015¢
= 0.001(] 1=
0.001( f
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0.000(L. ==~ = ‘ ‘ == 0000 C
-400 -200 0 20C 400
oj(rad s-1) oj(rad s-1)

Figure 4-4 : The influence of the excitation amplit  ude on the nonlinearity of the rectangular
plate with a surface crack of variable orientation
(5N: Red line, 10N: Black line, 15N: Blue line, 20N : Green line)

4.2.2.4 Damping coefficient

In general the damping coefficient will influendeetresponse curves. As the damping
coefficient becomes larger the peaks of each hawrgnadually reduce, and then finally
disappear. For the undamped situation i.e. when O, the predicted peak amplitude is

infinite.
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4.3 Direct Integration Method

In order to make meaningful conclusions some appatgpbench-marking is needed. The
numerical results are therefore calculated by tyeategrating the nonlinear ordinary
differential equation (3.88). For this numericahguutation the NDSolve function is used

by imposing the initial conditiong/; (0) = 0 and¢; (0) = 0. In this simulation the

frequency detuning values are chosen from the raigelO0 rad/s to 400 rad/s. The
simulation is run for § 2¢°, 4%, 60, 80 and 90 crack orientation angles. The solution
can be used to construct plots in the time andufeqy domains and then a list of
amplitude values can be obtained from these gragtesamplitude values are selected for
steady state condition. Figure 4-6 shows the resgonf the cracked plate for each crack
orientation angle, and a comparison is made with dpproximate analytical solutions
obtained in section 4.1. In this figure, NI repmasethe numerical integration result and
MMS represents the result obtained from the metbiochultiple scales. The numerical
integration results qualitatively and quantitativpfoduce a similarly decreasing response
in the frequency and an increasing response iratmgitude. It can be seen in all figures
that there is an apparent changeover from uppéswer branches at around frequency
detuning value of -150 rad/s in which the jump pireena can be observed. The NI
solution captures the amplitude response of the MME/ well for the range of the
excitation frequencies. However, the overhanging pithe curve represents an unstable
solution, and this over-prediction of the softenowgrhang by the multiple scales solution
is undoubtedly due to an over-correction to theitsmh from the first order perturbation

contribution.
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4.4 Numerical Solution Technique: FE Method
(ABAQUS/CAE 6.9.1)

Various numerical solution techniques have beerldeed and applied to solve numerous
vibration problems in order to find their approxt@aolutions. The finite element method
is one of the major numerical solution techniqued ia the most widely applied computer
simulation method in engineering. The main advaataghe finite element method is that
a general purpose computer program can be easitijfieth in order to analyse specific
problem types. This is very useful for the study stfuctures of irregular geometry
subjected to various types of loading and boundawgditions. The finite element
procedure involves three basic steps for the coatiout carried out, which may be termed
as; 1) Pre-processing (building the finite elementdel, loading and imposition of
constraints), ii) FEA solver (assembly and solutainthe system of equations), and iii)

Post-processing (sorting and displaying the results

There are many available commercial FEM softwarekages, good examples being
ANSYS, NASTRAN, PATRAN, Dyna-3D, and ABAQUS. In thistudy, finite element
analysis using ABAQUS/CAE 6.9.1 is undertaken todelcand analyse the vibration of
the intact and cracked plate problem. ABAQUS cdresproblems of relatively simple
structural analysis to the most complicated lingad nonlinear analyses. In ABAQUS,
there are several intrinsic methods that can bé tesperform dynamic analysis. However,
for the study and analysis of a nonlinear dynampicsblem expressed in ODE form, as
here, then direct integration of the system musidesl. There are two basic types of direct
integration methods offered in ABAQUS, namely, mplicit Direct Integration which is
provided in ABAQUS/Standard and ii) Explicit Direcintegration provided in
ABAQUSI/EXxplicit.

The direct integration method provided in ABAQU®#®lard uses an implicit Hilber-
Hughes-Taylor operator in order to integrate theagiqns of motion. The integration
operator matrix is inverted and a set of nonlireguilibrium equations are solved at each
time increment. This offers the use of all elememtABAQUS, however it can be slower
than the explicit, approach. ABAQUS/Explicit uses cantral-difference integration
operator as the method of solution. In nonlineanasyic analysis ABAQUS/CAE
automatically selects appropriate load incrememntsl @onvergence tolerances and
continually adjusts them during the analysis to enakire that an accurate solution is

achieved. For reasons of validation and comparigbthe theoretical model a finite
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element model is used for a further modal analysierder to corroborate the effect of
crack length and crack orientation angle on theahpdrameters i.e. natural frequency and

also the vibrational amplitude as predicted bythe®retically-calculated results.

4.4.1 The sequence of steps required to perform the FE Analysis

The model used is a 150 x 300 x 3 mm aluminiumyafitate. Table 4-2 shows the
material and element properties of the model. Tlaterral used in this investigation is
Aluminium type 5083 which was used in the previgestion and commonly found in
many industrial applications. The steps taken tbop@ the elastic finite element analysis
using ABAQUS/CAE are as follows:

1. Creation of the part

« Initially, the rectangular plate is modelled indgbrdimensions, giving a deformable
solid model by sketching the two dimensional peofif the rectangular plate and
extruding it. Thirteen plate models are createde @presents the intact plate and
another twelve plates representing the plates vatious crack orientation angles,
specifically at 6, 20, 40, 6C°, 8¢°, and 96 with respect to the direction of the
plate, for a half-crack length of 3 mm and 7.5 miespectively. A crack with a
depth of 1.8 mm is created on each plate by theotiske cut feature under the

shape entry in the main menu.
2. Creation of the material definition

* This defines the material properties in the Prgperbdule, including the modulus

of elasticity, Poisson’s ratio and density of thetg, as listed in Table 4-2.
3. Definition and assignation of the section propsrtie

* Here one creates a homogeneous solid section,afatps section assignment of

the part in the same module.

108



Chapter 4

4. Assembly of the model

* In the Assembly module one creates a new partrinstédy double clicking the

entry instances shown in the model tree.

Property name Details
Material Name Aluminium 5083
Density 2 660 kg/fh

Young’'s Modulus | 7.03x 10'° N/m?

Poisson’s ratio 0.33
Element Type C3D8R- Linear solid element
Geometric order Linear

Table 4-1 : Properties of the aluminium rectangular plate model for FE analysis

5. Configuration of the analysis

e Creation of the steps for the analysis using tap stodule.

i. Step - Linear Perturbation — Frequency

A frequency extraction analysis is performed toedmine the vibration modes of the
plate. The standard Lanczos method (ABAQUS, 20&a%)kdeen applied to extract the
natural frequencies and mode shapes for the iatattcracked plates. The frequency

range allows for 10 vibration modes to be identifie

ii. Step — General — Dynamic, Implicit

An implicit analysis is used to analyse the int@otl cracked plates. This procedure is
used to compute the amplitude response of the ptaigels. This step specifies the
initial increment size and the number of incrememltsch is allowed. NLGEOM is a
geometrically nonlinear switch. The problem is undegeometrically linear analysis
when the switch is off. When the switch is on getiroally nonlinear analysis is
performed.
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6. Application of Boundary Conditions and a Load

« The boundary conditions and loading are appliettiénoad module. The Boundary
condition chosen is CCFF, and a concentrated fofd® N is applied at a distance
of 225 mm from the fixed edge parallel to theaxis and 115 mm from the fixed

edge parallel to thg-axis.

7. Meshing the model

* The Mesh Module is used to generate the finite elgrmesh. The mesh of the part
is created using the element shape and analysls tvé standard, 3D stress,
C3D8R -8 node linear brick using reduced integratithe C3D8R is an 8-node 3D
hexahedral element and a good mesh with this tymement usually provides a

solution of equivalent accuracy at less cost (ABARQUQ011).

8. Creating and submitting an analysis job

« When the definition of the plate model is compleda, analysis is created and
submitted to analyse the model. The job is subthittehe job module and analysis

is performed.

9. Viewing the analysis results

* The results of the analysis are viewed in the Visa@on module

4.4.2 Numerical Results

The finite element analysis is undertaken on tairteectangular plate models, comprising
one for the plate without a crack and twelve fa fitate with a crack located at the centre.
The crack lengths chosen are 3 mm and 7.5 mm, wielerientation angle, of the crack
with respect to the-axis is varied from Oto 80 in 20° steps, and for an inclination angle
of 9 as well. The arbitrary boundary condition for thké plate models is CCFF and the
lengths of the sides of the plate are takeh as150 mm in thex-direction and, = 300
mm in they-direction, which means the aspect ratio of theepia 0.5/1. A concentrated
force of 10 N is applied at a distance of 225 momfithe fixed edge on theaxis and 115
mm from the fixed edge on theaxis. The plates are discretised using from 22 @g %o
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24 817 linear solid (C3D8R) elements. The numbeelefments for each plate differs

depending on the length and the orientation angl¢he crack. Initially, a frequency

extraction analysis is performed using the Lancnosthod to extract the natural

frequencies and mode shapes of the intact and enlgalate models. The frequency range
allowed for 10 vibration modes to be identified.

Subsequently an implicit dynamic nonlinear analysi€mployed in order to obtain the
amplitude responses of this model. In implicit dyma analysis the integration operator
matrix is inverted and a set of nonlinear equilibti equations is solved at each time
increment (ABAQUS, 2011). In the step module ofthnalysis a specific value of the
initial increment size and the number of incremestsequired. Thus, to perform the

implicit dynamic analysis for this model, the Stapdule is edited as follows:

Basic tab time period: 20

Incrementation tab type: Fixed

Maximum number of increments: 2000

Increment size: 0.01

Check: Suppress half-step residual calculation.

NLGEOM: On

The periodic load is applied with a magnitude ofN.@nder the resonant frequency. The

steps taken in order to define this load are:

Tools --- amplitude --- create --- periodic.

In the Edit Amplitude dialog box, one enters a eatii frequency for each plate model in

the circular frequency field.
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4.4.2.1 Frequency Extraction Analysis

In Table 4-3 the frequency values taken from tlegdency extraction analysis for the
three first modes of the cracked plate, for origotaangles, are shown, together with the
results for an intact plate. It can be seen thatidhge crack shifts the frequency values of
the £, 2" and & modes downwards, as expected and due to reduats gilffness. In
terms of the crack orientation angle effects fahborack lengths of 3 mm and 7.5 mm, the
frequency values increase monotonously frotup to 66 (0° < g < 60°), and then
decrease whefiis more than 60(3 > 60).

FEA Results
Crack Frequency (Hz)
Orientation First Second Third
angle,s vibration vibration vibration
mode mode mode
Intact - 122.94 259.80 525.16
Plate
0° 122.73 259.32 524.18
20° 122.77 259.49 524.37
40° 122.84 259.82 525.00
3 mm 60° 123.05 260.79 527.47
80° 122.82 259.54 524.38
o0° 122.73 259.36 524.22
Cracked
Plate 0° 122.69 259.13 524.00
20° 122.75 259.37 524.18
40° 122.81 259.74 524.79
7.5mm 60° 123.04 260.72 527.34
80’ 122.81 259.57 524.29
o0° 122.69 259.33 524.12

st

Table 4-2 : Frequency extraction analysis for 1 , 2" and 3™ modes of vibration

Figure 4-7 shows the first three modes of vibrafmmthe intact plate. Figures 4-8 to 4-19
illustrate the first three mode shapes of the pléte a surface crack with an orientation
angle from Oto 90. The dark blue areas in these Figures indicatalndidplacements for
the first three modes of vibration, representirgydheas where the displacement is close to

Zero.
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4.4.2.1.1 The first three vibration mode shapes of the intact plate

(a) Mode | (b) Mode 11 (c) Mode 1l

Figure 4-6 : 1%, 2" and 3™ vibration mode shapes for the intact plate
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4.4.2.1.2 The first three vibration mode shapes of the plate with a crack of variable
orientation for a half-crack length of 3 mm

Crack

Orientation
Angle, 8 (deg)

Vibration Mode Shapes of Cracked Plate

Mode |

Mode Il

Mode Il

OO

20°

40°
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Crack Vibration Mode Shapes of Cracked Plate
Orientation Mode | Mode I Mode Il
Angle, 8 (deg)

60°

80°

9C°

Table 4-3 : Vibration mode shapes of cracked plates  for half-crack length of 3 mm
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4.4.2.1.3 The first three vibration mode shapes of the plate having a crack of variable
orientation for a half-crack length of 7.5 mm

Crack

Orientation
Angle, 8 (deg)

Vibration Mode Shapes of Cracked Plate

Mode |

Mode Il

Mode Il

OO

20°

40°
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Crack Vibration Mode Shapes of Cracked Plate
Orientation Mode | Mode I Mode Il
Angle, 8 (deg)

60°

80°

9C°

Table 4-4 : Vibration mode shapes of cracked plates  for half-crack length of 7.5 mm
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4.4.2.2 Dynamic Implicit Analysis

Table 4-5 shows the results of the amplitude respdar simulations that are carried out
for an intact and cracked plate with the followicrgick orientation angleg, are 6, 20,
40°, 6, 8¢ and 90 by applying an implicit dynamic nonlinear analysidthin the
ABAQUS/CAE environment, and, as expected, the anmidi values increase due to the
small crack in the plate. These amplitude resporsesalso affected by the crack
orientation angle where the amplitude decreases i up to 60 by increasing the
frequency value, and then the amplitude increaggsnawhen the frequency value

decreases.

Crack FEA Results
Orientation | Frequency| Amplitude
angle (Hz) (mm)
First vibration mode
Intact - 122.94 7.372
Plate
0° 122.73 7.483
20° 122.77 7.379
3 40° 122.84 7.263
mm 60° 123.05 7.200
80’ 122.82 7.727
Cracked eJox 122.73 7.739
plate o 122.69 7.564
20° 122.75 7.227
7.5 40° 122.81 6.969
mm 60° 123.04 6.796
8¢ 122.81 7.309
o0’ 122.69 7.614

Table 4-5 : Amplitude responses from the FE analysi s

A comparison of the frequency values and the aogitresponses is made between the

theoretical model and the FEA results and discussedapter 7.
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4.5 Chapter Conclusions

An approximate analytical method based on the pmation methods of multiple scales
and numerical solution techniques using the FirdEement Method within the
ABAQUS/CAE environment have been appliéithe nonlinear behaviour of the cracked
plate model has been investigated from the am@iuvelquency equation and this has showed
that the inclusion of a crack within the plate proes a global effect on the nonlinear response
of the overall system. In this study it has beeantb that the SSSS and CCSS boundary
conditions showed a hardening spring behaviour evhilsoftening spring phenomenon was
found for the CCFF boundary condition. The influeraf the crack orientation angle on the
frequency response has been observed. For the 886 CSS boundary conditions no
obvious hardening effects emerged for rectangultep. However for square plates with an
increase in the crack orientation angle, the nealirhardening phenomenon clearly increases.
In addition changing the location of the applieddmn the plate surface slightly affects the
nonlinear behaviour of the plate whereby the wiltlthe nonlinear region becomes narrower

as the excitation location moves closer to the ttamed area.

The solution obtained by the multiple scales methad been compared with numerical
integration for a cracked plate with the CCFF bamgdcondition. The NI solution
captures the amplitude response of the MMS veryl Wl the range of excitation
frequencies chosen. However, the overhanging gatieocurve was obtained during the
amplitude transitions. This situation was not foumdhe multiple scales solution because
of inevitable over-correction to the solution dgyithe first-order perturbation expansion.
Results from the finite element analysis have alsown that the large crack shifts the
frequency values of the'12" and 3 modes downwards, and, as expected, the amplitude
values increase due to the small crack in the gl#s a conclusion, it can be said ttret
vibration characteristics and nonlinear charadiesf the plate structure are affected by the

orientation of the crack in the plate.
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Chapter 5

Dynamical Systems Analysis

5.1 Introduction

In investigating the nonlinear behaviour of thetgla is necessary to study the numerical
dynamics of the system in order to understand t#bilgy, the relevant bifurcatory
phenomena, and therefore possible routes from dadehaos. This study is not only
intended to lead to an understanding of the comg{@amics under different combination
of system parameters, but also to capture the &glserechanism that generate chaos in
this system. In this chapter, an analysis of thalinear behaviour of a cracked plate that
contains a surface crack of variable angular caitgont and which takes the form of a
specialised Duffing equation, has been conductetdywdynamical system tools within the
Mathematicd” environment for the calculation of bifurcationgatslity of the phase

states, and the Poincaré map.

5.2 Equation of Motions for Dynamical System Analy  sis

In investigating the behaviour of the dynamicsho$ tcracked plate model from nonlinear
transition to chaos, a nonlinear ordinary differ@néquation of the system which takes the
form of a specialised Duffing equation (3.88) iedisThe equation is rewritten to make it

easier to use, as follows,

%+C, Xx+C, x+C, x* = Acos(Q ) (5.1)
where C =2u (b.2

G = Vi (5.4)
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=g (5.5)

This equation contains dimensional parameters@rid the frequency of excitation. In
order to make the form of the equation better famarical simulation and reduced
computational time scaling needs to be performest. fiNondimensionalisation of the
timescale in equation (5.1) is introduced as asdfasinondimensionalisation (Israr (2008),
Atepor (2008), and Lim (2003)), given by,

r=Jwt (5.6)
. d’x 0 %00 = ox”

X = wP X(t) = wXx'(1) (5.7)
x:\/Z;%( 0 x(t) = Jwx(r) (5.8)

wherew is the natural frequency of the first mode of ¢hecked plate model. Therefore

for the dimensionless timescateequation (5.1) becomes,

wX" +wC, X +C, x+Cy x° = Acos[% TJ (5.9)

The prime () denotes differentiation with respect to the disienless timer. Then,

dividing through byw in equation (5.9) leads to,

X" +iC1 X' +1C2 x+iC3 x® =écos[£ TJ

Jw w w w Jow
(5.10)

Assuming that the frequency of excitatiéhjs equal to the natural frequency of the
fundamental plate mode, thenQ = w giving,

x"+iC1 x’+102x+lc3 X3 :écos(\/c_u r) (5.11)
w w

Jo w
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For these types of analyses the second order gifiat equation (5.11) is split into the

more compact first order ordinary differential etjoa form as,

X' =y (5.12)

y’=-%cl y_c_lucz X—%}C3X3+2008(%TJ (5.13)

5.3 Numerical Methods: Mathematica '™ code

Dynamic analysis of the cracked plate is carriedusing special integration code written
in Mathematicd". The first order equations (5.12) and (5.13) aseduto calculate time
domain responses and phase plane trajectories,Palswaré maps and predictions of
bifurcations, by using the program code developgthb author within this software. The
route to chaos is observed with the above mentideatlire properties. In this work the
NDSolveintegrator, Mathematica’s differential equatiorckege is employed to perform
the integration and to enable prediction of theaugits of the cracked plate for a given
initial conditions. The parameter values for thegram code are calculated using the
similar mechanical properties of the aluminium wlttescribed in Chapters 3 and 4 with a
point load of 10N applied at some arbitrarily sfiedi point chosen here, to be located at
X = 0.375m and/, = 0.75m. These values are tabulated in Tables%2],and 5-3 for a
cracked plate with the following crack orientatiangles s are 6, 2¢°, 4%, 6&°, 8C° and
ac.
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System Parameters
(SSSS)
Crack | Half- | Damping Linear Cubic Excitation Natural
Angle | crack Cs Stiffness Nonlinearity | amplitude | frequency
B | length | (sY) Co Cs A ®
(deg) | (m) (s (m*s?) (ms?) (rads")
Intact - 417968.01 | 7.72182x 1C+ 646.5(
0 0.003 411921.00 7.60673 x 16 641.81
0.007¢ 40571¢0C | 7.4752:x 1C* 636.%6
20 0.003 412629.00 7.62019 x 16 642.36
0.0075 407150.00 7.50409 x 18&' 638.08
40 0.003 414420.00 7.65428 x 16 643.75
0.0075| 0.16 410779.00 7.57712 x 16'| 102.91 640.92
50 0.003 416456.00 7.69305 x 16 645.33
0.0075 414905.00 7.66018 x 16 644.13
80 0.00: 41778¢0C | 7.7183! x 1C** 646.3¢
0.0075 417599.00 7.71438 x 16 646.22
%0 0.00: 41796¢0C | 7.7218: x 1C+ 646.5(
0.0075 417968.00 7.72182 x 16 646.50

Table 5-1 : Data used for numerical simulations for

the SSSS boundary condition

System Parameters

(CCSS)
Crack | Half- | Damping Linear Cubic Excitation Natural
Angle | crack C% Stiffness Nonlinearity | amplitude | frequency
B length (s) C, Cs A ®
(deg) | (m) (s?) (m?s?) (ms?) (rads")
Intaci - 1.4996" x 1C" | 3.0163«x 1C* 3872.5!
0 0.003 1.48038 x 10| 2.97138 x 16 3847.57
0.007¢ 1.4605¢x 1C" | 2.9200:; x 1C 3821.7
20 0.003 1.48249 x 10| 2.97664 x 16 3850.31
0.0075 1.46500 x 10| 2.93128 x 18 3827.53
40 0.003 1.48812 x 10| 2.98995 x 16 3857.62
0.0075| 0.16 [ 147649 x 10| 2.95981 x 18| 161.71 3842.51
50 0.003 1.49464 x 10| 3.00510 x 16 3866.06
0.0075 1.48968 x 10| 2.99226 x 16 3859.64
80 0.00¢ 1.4990: x 1C" | 3.0149¢x 1C+ 3871.7!
0.0075 1.49841 x 10| 3.01343 x 16 3870.92
%0 0.00: 1.4996" x 1C" | 3.0163«x 1C* 3872.5!
0.0075 1.49967 x 10| 3.01634 x 16 3872.56

Table 5-2 : Data used for numerical simulations for

the CCSS boundary condition
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System Parameters
(CCFF)
Crack | Half- | Damping Linear Cubic Excitation Natural
Angle | crack C: Stiffness Nonlinearity | amplitude | frequency
B | length | (sY) C, Cs A ©
(deg) | (m) (s?) (m?s?) (ms?) (rads")
Intac - 59331..0C | -1.2648: x 1C 770.27
0 0.003 553353.00 -1.24599 x 18 743.88
0.007¢ 5123470C | -1.2244'x 10" 715.7¢
20 0.003 586013.00 -1.70743 x 16" 765.52
0.0075 551558.00 -1.91314 x 16 742.67
40 0.003 612740.00 -1.95737 x 16 782.78
0.0075| 0.16 591365.00 -2.28903 x 18| 39.36 769.00
50 0.003 621027.00 -1.87886 x 106" 788.05
0.0075 613140.00 -2.17624 x 16 783.03
80 0.00: 60699¢0C | -1.5086: x 10" 779.1(
0.0075 606696.00 -1.62755 x 16" 778.91
%0 0.00: 59331..0C| -1.2648:x 10" 770.27
0.0075 593312.00 -1.26484 x 16 770.27

Table 5-3 : Data used for numerical simulations for the CCFF boundary condition

5.4 Bifurcation Analysis

Bifurcation theory is the mathematical study of s in the qualitative behaviour of a
system. These qualitative changes may occur whempdhameter values of a system are
varied and they can be shown by a bifurcation diagrin the study of dynamical systems,
the bifurcation diagram is useful in order to sgmoasible route from order to chaos. The
location at which bifurcations occur in this diagraare called bifurcation points. In

addition bifurcation diagrams can also be useddaate nonperiodic motion. In this study
a period doubling bifurcation can readily be obsdnand analysed. A period doubling
bifurcation is a bifurcation in which the behavioaf the system changes at integer
multiples of the periodicity of the original resgen The motion may then become chaotic

if the control parameter is further varied (Moof92).

In this study the MathematiB4 software environment is used for numerically inétigg
the governing equations of motion to produce arbé#tion diagram in order to understand
the dynamics within the cracked plate models, asudised in Chapter 3. The bifurcation

behaviour of the amplitude responses as a funciiorormalised excitation acceleration is
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plotted for three types of boundary conditions wi#tiable crack orientation angles, using
nondimensionalised parameters as tabulated in Tafile5-2, and 5-3. All the cases are

illustrated in Figures 5-2 to 5-10.

5.5 Lyapunov Exponents

Lyapunov exponents offer a means to study numéyiediether a system has a sensitive
dependence on initial conditions. They measure dherage rate of convergence or
divergence of nearby trajectories in the phase esp#c positive exponent means
divergence and a negative represents convergemgeefs.1 provides a visual example of
divergent trajectories by considering two pointspace, X and X, + AX,. A trajectory in
that space is assumed to be generated by using equaion or system of equations.
These trajectories can be thought of as paramfeinictions of a variable such as time. If
one of the trajectories is used as a referencectajy then the separation between the two

trajectories will also be a function of time.

AX (Xo,t)

Xot+AX,

Xo

Figure 5-1 : An illustration of the divergence of t  rajectories (after Israr, 2008)

A system with all negative Lyapunov exponents \Wilve an attracting fixed point or
periodic points, thus\x(X,,t) diminishes asymptotically with time and will npresent
chaotic behaviour. For chaotic points, the functiotX,,t) will behaves erratically. The
Lyapunov exponeni, can be defined by the natural logarithm of thedwy@gov number as,

A=lim=In——=
Lot A OF
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For systems with negative exponernits<(0), the trajectories move together and atti@aet t
stable fixed point. These systems exhibit asymptsi@bility in which the more negative
the exponent the greater the stability. For sysigtim zero Lyapunov exponents € 0) the
trajectory is a neutral fixed point or an eventyditked point. Such systems are indicated
to be in some sort of steady-state mode and arsiqaily conservative, and thus exhibit
Lyapunov stability. Subsequently, for systems wgbsitive exponentsi(> 0) the
trajectory is unstable and also chaotic. Two iliiti@lose trajectories in a system with
positive Lyapunov exponent will separate very glyiclA positive Lyapunov exponent
will cause this separation to increase over furtkenations, and the more positive the
exponent the faster they move apart. After separdtie two numerical solutions grow
more dissimilar until they are completely differeAiny system containing at least one

positive Lyapunov exponent indicates chaotic mo{Molf et al, 1985).

5.6 Bifurcations as Functions of Normalised Excitat ion
Acceleration

The chaotic motion of both the intact plate and ¢hecked plate models is investigated
here. In this study the first mode is examined @tad around the resonant region. The
excitation frequency is set equal to the first moggonance frequency from Tables 5-1, 5-
2, and 5-3 for the SSSS, CCSS, and CCFF boundawgitams, respectively. Figures 5-2
to 5-10 show the bifurcation diagrams for the atge responsex, of the intact and
cracked plate models, for the cases of half-craogths of 0.003 m and 0.0075 m, and as
controlled by the normalised excitation accelerati®eriodic doubling bifurcation can be
observed in all the Figures with an increase inrntwnalised excitation acceleration, and
when the normalised excitation acceleration vadu@dreased to a high level this periodic
response bifurcates to chaos. There are five tgpasystem motion which exist over the
range of normalised excitation acceleration, nansthple single period motion, stable
period-2 motion, stable period-4 motion, stable tipaliod motion, and finally what
appears to be chaotic motion. Rhojs the normalised acceleration amplitude of the
system.

In the case of the SSSS boundary condition foirtteet plate model, as shown in Figure
5-2, period-2 and period-4 motion can be found egions of normalised excitation

acceleration of 11.78 to 11.98 and 11.98 to 12r82pectively. For the cracked plate
model with a half-crack length of 0.03 m (Figur8@@)), these regimes can be found in the

regions of 11.69 to 11.89 and 11.89 to 11.92, ispdy, whereas for a half-crack length
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of 0.0075 m, period-2 motion in the regions of nalised excitation acceleration of 11.61
to 11.82 and 11.82 to 11.85 for period-4 as shawkigure 5-4(a). It can be observed from
these figures that as the periodic response beabraeatic less excitation acceleration is
required in each case. This is due to the decneaee normalised excitation frequency
and the effect of the cubic nonlinear coefficient.

Figures 5-2(a-f) and 5-3(a-f) show the bifurcatidiagram for the cracked plate model
with crack orientation angles of, 2, 4¢, 6, 8¢° and 90 and with a half-crack length
of 0.003 m and 0.0075 m, respectively. The regibnormalised excitation acceleration
for period-2 and period-4 motion is summarised abl€ 5-4 as an example. It can be
clearly seen that by increasing the crack oriematingles the periodic response bifurcates
to period doubling, and finally leads to chaos, amate excitation acceleration is required
for each case for the periodic response to becdmaetic due to the increase in the
normalised excitation frequency and the cubic mmar coefficient. The same

phenomenon also exists for the CCSS boundary gondés shown in Figures 5-5 to 5-7.
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Figure 5-4 : Bifurcation diagrams for SSSS boundary condition

and a half-crack length of 0.0075 m for amplitude a s a function of the normalised excitation
acceleration in the x-direction

Crack Region of normalised excitation acceleratiBho

orientation Period-2 Period-4

angle,s (deg) motion motion
o° 11.69 11.89 11.89 11.93
20° 11.70 11.90 11.90 11.94
40° 11.72 11.93 11.93 11.96
60° 11.75 11.96 11.96 11.98
8¢° 11.77 11.97 11.97 12.01
0y 11.78 11.98 11.98 12.02

Table 5-4 : Period doubling bifurcation of cracked plate for the SSSS boundary condition
and 0.003 m half-crack length.
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Figure 5-7 : Bifurcation diagrams for CCSS boundary condition
and a half-crack length of 0.0075 m for amplitude a s a function of the normalised excitation
acceleration in the x-direction

The bifurcation diagrams in Figure 5-8, 5-9 andOsshow the intact plate, a cracked plate
with an 0.003 m half-crack length, and a crackedeplvith an 0.0075 m half-crack length,
respectively, for the CCFF boundary condition. Tiegion of normalised excitation
acceleration for period-2 and period-4 motion steld in Table 5-5. Period doubling is a
classical transition route to chaos. It can be nteskfrom these figures that as the increase
in half-crack length goes from 0.003 m to 0.007%msystem also bifurcates to period-2,
period-4, and multiperiod motions or stable quasiqdlic motions, and finally transitions
to chaos, due to the decrease in normalised excithequency and the effect of the cubic
nonlinear coefficient. However by increasing theeworation angle of the crack less
excitation acceleration is required froft® 40 for the response of the system to become
chaotic. After 40 more excitation acceleration is needed to gettinitoregime. In the next
section, discrete excitation acceleration poinss,dapicted in Figures 5-2 to 5-10, are
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selected for the plotting of trajectories on thegd plane, Poincaré maps, and time plots

for each boundary condition in order to get mordaratanding of the system behaviour.
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Figure 5-10 : Bifurcation diagrams for CCFF boundar y condition
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acceleration in the x-direction
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Plate Half-crack | Crack Normalised excitation acceleration, Rho
structure | length (M) | grientation Period-2 Period-4
angles motion motion
(deg)
Intact plate - 41.30 42.00 42.00 42.15
0° 38.80 39.50 39.50 39.60
20° 35.10 35.70 35.70 35.80
Cracked 0.003 40° 34.30 34.90 34.90 34.97
plate 60° 35.40 36.50 36.50 36.20
8¢’ 38.70 39.35 39.35 39.50
o 41.30 42.00 42.00 42.15
0° 36.25 36.87 36.87 36.98
20° 35.10 35.73 35.73 35.78
Cracked 0.0075 40° 34.28 34.87 34.87 34.96
plate 60° 35.45 36.10 36.10 36.18
8¢’ 38.69 39.38 39.38 39.48
o 41.30 42.00 42.00 42.15

Table 5-5 : Period doubling bifurcation of cracked plate for the CCFF boundary condition.

5.7 Time Plots, Phase Planes, and Poincaré Maps

Generally the response of a dynamic system can beeiform of a fixed point, a periodic
solution, or a non-periodic solution. Poincaré magas easily differentiate between
periodic and non-periodic motions, and therefore aasist in the definition of chaotic
motion. In this section, the definition of the tepariod(s) for a periodic motion as being
the number of period(s) for a response functiorepeat itself is applied. Taking the period
asT = 2t/ means that the Poincaré maps sample the displatemad the velocity of the
cracked plate model everynd/a. If the system repeats itself after evefFysec, and
periodically returns to the same point in the phegssce, this is called period-1 motion, and
in a Poincaré map this will be as a single poimtr o points it is indicating period-2
motion, for four points period-4 motion, and theref perioda motion generally shows up
asn points in the Poincaré map. Subsequently chaotitom reveals itself as an infinite
number of orderly distributed points as the chaotluts visit all parts of the phase space
(Thomsen, 2003).
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In this study, the phase planes, Poincaré mapstiarel plots are produced at discrete
excitation acceleration points in order to investiggin more detail the qualitative changes
in system behaviour of Figures 5-2 to 5-10. Thesphalane and time plots are plotted at
assumed steady-state conditions with the inter¥atime taken from 495.50 to 500
seconds, whereas the Poincaré maps are plottedtadtransient time of 0 to 500 seconds.
This transient time for plotting Poincaré mapsekested because most of them converged
to a periodic motion with just a point, thereforeracher diagrams are preferred, and so as
these maps converge to a point, then the timesudfieient. This is usually called a point
attractor. The analyses are made for intact andkerh plate models with different
normalised excitation acceleration values. As aamgle the results for the plate with a
crack at an orientation angle of &nd 60, with 0.003m and 0.0075m half-crack lengths
are shown in Figures 5-11 to 5-25. The routes taottb motion are investigated by
observing the dynamic transitions of the plate nedetween the range of normalised
excitation acceleration, Rho = 11.60 to Rho = 12dd@he SSSS boundary condition, Rho
= 665.00 to Rho = 690.05 for CCSS, and Rho = 342®ho = 42.30 for the CCFF
boundary condition. This range of normalised exidtaacceleration consists of motion
from steady-state motion through to chaos. The rghatiens are obtained as in the

following sub-sections:

5.7.1 Figures 5-11(a) to 5-25(a), showing Period-1 motion

All the bifurcation diagrams for the three diffetégppes of boundary conditions with the
two cases of the half-crack length and differeniues of crack orientation angle show
periodic and stable motion, as depicted in Fig@-&sto 5-10. Figures 5-11(a) to 5-25(a)
show the plate motion in five different normalisectitation accelerations for each type of
boundary condition, namely SSSS, CCSS, and CCFthdrtase of the SSSS condition,
the normalised excitation accelerations choserRéue= 11.74, 11.60, 11.74, 11.60, and
11.60 for the intact plate, cracked plate for a0Bm half-crack length with°Cand 60
crack orientation angle, and for the cracked platean 0.0075m half-crack length witli 0
and 60 crack orientation angle, respectively. For the S@&se, the normalised excitation
accelerations chosen are Rho = 673.00, 670.0006,/865.00, and 665.00 while Rho =
40.50, 38.50, 34.50, 36.15, and 34.50 for the C®BENndary condition. From these

Figures it can be observed that:

* The time plots for the SSS, CCSS and CCFF casews shear evidence of a

periodic response. The oscillations repeat eveeyp@riod.
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* The phase planes show periodic orbits correspontirte bifurcation diagrams,
and these phase plane plots show only stationatypast-transient motion by the

elimination of the initial part of the solutions.

» All the Poincaré maps converge into a single pdihe maps consist of one single
point, which implies periodic motion, and indicateperiod-1 motion with a stable

attractor.

5.7.2 Figures 5-11(b) to 5-25(b), showing Period-2 motion

In these cases all the bifurcation diagrams for thmee different types of boundary
conditions, with the two cases of the half-crachgih and different values of crack
orientation angle, show periodic and stable motibperiod-2. The normalised excitation
accelerations chosen for the SSSS boundary conda® shown in Figures 5-11(b) to 5-
15(b), are Rho = 11.91, 11.74, 11.74, 11.74, an8QLfor the intact plate, the cracked
plate for an 0.003m half-crack length witA @d 60 crack orientation angle, and the
cracked plate for an 0.0075m half-crack length viitrand 66 crack orientation angle,
respectively. For the CCSS case, the normalisetla¢gion accelerations chosen are Rho =
682.00, 680.00, 682.00, 675.00, and 675.00 in EgBr16(b) to 5-20(b), whereas Rho =
41.70, 39.20, 35.80, 36.60, and 35.80 for the Cldtihdary condition is used, as depicted
in Figures 5-21(b) to 5-25(b). From these Figutesan be observed that:

* All the time plots show evidence of periodic moson

 All the phase plane trajectories indicate periodulding behaviour which
correspond with the bifurcation diagrams, as iflatstd in Figure 5-2 to 5-10. All
these phase plane results depict a period-2 motion.

*  The Poincaré maps converge to two points whidfcate period-2 motion.

5.7.3 Figures 5-11 (c) to 5-25(c), showing Period-4  motion

The bifurcation diagrams in Figure 5-2 to 5-10 sheweriod-4 motion for all boundary
conditions, and this period is explored throughufég 5-11(c) to 5-25(c) for the
normalised excitation accelerations, Rho = 12.A091, 11.98, 11.84, and 11.96, Rho =

688.50, 685.00, 688.00, 682.00, and 687.00, and RAA.10, 39.55, 36.15, 36.93, and
142



Chapter 5

36.15 for the SSSS, CCSS and CCFF boundary consljticespectively. The results

obtained show that:

All the time plots appear to be periodic, in whitie oscillations do repeat after

every 4 periods.

Their corresponding phase plane plots also indigat®d-4 motion as suggested in

their bifurcation diagrams.

The Poincaré maps consist of four points. The ncapserge to four distinct points

indicating period-4 motions.

5.7.4 Figures 5-11(d) to 5-25(d), showing Chaotic m  otion

All the bifurcation diagrams for these cases shbaotic motion, and the results from the

time plots, phase plane plots, and Poincaré map®xplored further through Figures 5-
11(d) to 5-25(d) for the normalised excitation dew#ions,Rho= 12.06, 11.99, 12.02,
11.90, and 12.00Rho = 690.00, 688.00, 689.50, 684.00, and 689.00, Rimal= 42.30,

39.80, 36.50, 37.71, and 36.50 for the SSSS, CG®SCGCFF boundary conditions,

respectively. Observations for Figures 5-11(d)-26%d) are as follows:

All the time plots show non-periodic motion in whithe oscillations do not repeat.

In these cases this could be a qualitative viswdtator of chaotic motion.

In the phase plane plots a densely filled phaseepia obtained. In particular,
a densely filled phase plane in a diagram is uguaken as a signature of chaotic
motion. It also can be seen that the plots are gemgplicated, and overlaid by

repeated orbit cross-overs.

The Poincaré maps show a large number of pointsaanidregular shape. This

represents highly nonlinear behaviour and is arcatdr of chaotic motion.
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Figure 5-11 : Dynamical systems analysis for an int  act plate with SSSS boundary condition
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Figure 5-12 : Dynamical systems analysis for a crac  ked plate with half-crack length of 0.003
m and S = 0° m with SSSS boundary condition
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Figure 5-13 : Dynamical systems analysis for a crac ~ ked plate with half-crack length of 0.003
m and £ = 60° m with SSSS boundary condition
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Figure 5-14 : Dynamical systems analysis for a crac  ked plate with half-crack length of
0.0075 m and S = 0° m with SSSS boundary condition
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Figure 5-15 : Dynamical systems analysis for a crac ~ ked plate with half-crack length of
0.0075 m and f# = 60° m with SSSS boundary condition
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Figure 5-16 : Dynamical systems analysis for an int

act plate with CCSS boundary condition
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Figure 5-17 : Dynamical systems analysis for a crac ~ ked plate with half-crack length of 0.003
m and £ = 0° with CCSS boundary condition
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Figure 5-18 : Dynamical systems analysis for a crac
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ked plate with

half-crack length of 0.003

m and f# = 60° with CCSS boundary condition
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(d) Time plot, phase plane, and Poincaré map fanaltised excitation acceleration of
684.00 (Chaotic motion)

Figure 5-19 : Dynamical systems analysis for a crac  ked plate with half-crack length of
0.0075 m and S = 0° with CCSS boundary condition
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Figure 5-20 : Dynamical systems analysis for a crac  ked plate with half-crack length of
0.0075 m and S = 60° with CCSS boundary condition
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164



Chapter 5

0.0z
2
0.01
1,
X 0.00 '
-0.01 1t
-0.02b— - : : -2 : : : : :
496 497 498 499 500 -0.01f —0.01C —-0.00¢ 0.00C 0.00¢ 0.01C 0.01¢
Time () X
1C;
5 ]
> O} .8. 1
_5:, ]
_107 L I L L L I L L L I L L I L L I L
-0.04 -002 000 00z 004
X
(c) Time plot, phase plane, and Poincaré map fanatised excitation acceleration of
42.10 (Period-4 motion)
0.0z
2
0.01
1,
X 0.00
> 0Or
-0.01} 1t
-0.02b— - : : -2 : : : : :
496 497 498 499 500 -0.01f —0.01C —-0.00¢ 0.00C 0.00¢ 0.01C 0.01¢
Time () X
2,
1F ]
> O; 4
_1} i
~0.02 -0.01 0.00 0.01 0.02

X
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Figure 5-21 : Dynamical systems analysis for an int

42.30 (Chaotic motion)

act plate with CCFF boundary condition
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39.20 (Period-2 motion)
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39.80 (Chaotic motion)

Figure 5-22 : Dynamical systems analysis for a crac ~ ked plate with half-crack length of 0.003
m and g = 0° with CCFF boundary condition
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(b) Time plot, phase plane, and Poincaré map fonatised excitation acceleration of
35.80 (Period-2 motion)
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Figure 5-23 : Dynamical systems analysis for a crac
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ked plate with half-crack length of 0.003
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(b) Time plot, phase plane, and Poincaré map fonatised excitation acceleration of
36.60 (Period-2 motion)
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36.93 (Period-4 motion)
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(d) Time plot, phase plane, and Poincaré map fonatised excitation acceleration of

37.71 (Chaotic motion)

Figure 5-24 : Dynamical systems analysis for a crac  ked plate with half-crack length of
0.0075 m and f = 0° with CCFF boundary condition
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36.50 (Chaotic motion)

Figure 5-25 : Dynamical systems analysis for a crac

0.0075 m and S = 60° with CCFF boundary condition

ked plate with half-crack length of
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5.8 Chapter Conclusions

A dynamical analysis of intact and cracked platedet® with different crack orientation
angles has been presented in this chapter. Tharlingonlinear (period doubling
behaviour), and chaotic responses of these systamsbe obtained by changing the
normalised excitation accelerations. The systenexsited at its resonant frequency.
Periodic doubling bifurcations can be clearly obedrin all the Figures. There are five
types of system motion existing over the range afmalised excitation acceleration,
namely stable single period motion, stable periadeion, stable period-4 motion, stable
multiperiod motion, and finally chaotic motion. Bess the types of boundary conditions,
the crack length and the crack orientation angteadso found have a significant effect on
the system’s motion i.e. on the route to chaotic¢iomo As the crack length is increased,
less excitation acceleration is required for theqakc response to become chaotic. This is
due to the decrease in the value of the cubic neaticoefficient and excitation frequency.
However by increasing the orientation angle of ¢heck, the systems with the SSSS and
CCSS boundary conditions are less likely to biftecavhile for the system with the CCFF
boundary condition a similar phenomenon occurs wihenangle is more than %40in
addition, the phase plane plots and Poincaré mapshé selected discrete normalised
excitation acceleration values evidently displagiguéc or chaotic motions corresponding

to their bifurcation diagrams.
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Chapter 6

Experimental Validation

6.1 Introduction

Chapter 6 presents an experimental study of theuwrdigs of the cracked plate system,
where the crack is located with variable orientatikcxperimental measurements of
fundamental natural frequency values and vibratianglitude responses at the resonance
frequencies are carried out, and then compared thightheoretical results in order to
verify the theoretical model as far as possibleailgof the experimental set up, including
the construction of the test rig and the equipnused, are all described here.

6.2 Plate Specimens

Seven aluminium alloy 5083 plate specimens withaédimensions of 150 mm x 300 mm
x 3 mm are used in this investigation. These ptgecimens are denoted by A to G
inclusive. Plate A represents an intact plate goats a plate with a horizontal centre crack
parallel to thex direction of the plate, and plates C to G repretieose specimens with
various surface crack orientation angleswith respect to th& direction, specifically at
20°, 40, 6C, 8C°, and 90. The test cracks machined into the specimens leavsl
dimensions, i.e. 15 mm x 0.3 mm x 1.8 mm. The sauk machined in each specimen, as

shown in Figure 5-1, by using a three axis millimgchine.
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(a) Plate A (b) Plate B (catelC (d) Plate D
Intact plate p=0 B =20 B =40

(e) Plate E (H Plate F
p =60 B =8C

Figure 6-1 : Classification of experimental crack o rientations, dark dot denoting excitation
location point

6.3 Experimental Setup and Procedure

A schematic layout of the experimental system v®wgiin Figure 6-2. In this Figure, the
electro-dynamic exciter is driven by a function gextor that is connected through a power
amplifier. A vibrometer controller connected to @estrum analyser enables the
identification of plate responses through the didgraan the laser vibrometer. Figure 6-3
shows the arrangement of the equipment used fongesnd the list of these instruments is
included in Appendix D. In this work, the clampddraped free-free (CCFF) boundary
condition is arbitrarily chosen. In order to obt#iis boundary condition a heavy steel rig
was designed and fabricated to function as an melserigid support for the two adjacent

sides of the plate. These two sides were clampdtet support by a sturdy frame. The
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whole rig was fitted to a suitably massive basider to isolate the system from any
unwanted ambient vibration. A harmonic excitatioasvapplied to the plate by an electro-
dynamic exciter, and this excitation was monitofeg means of a calibrated force
transducer fitted serially in the shaker rod. TReitation point was arbitrarily chosen at
the location of (112.5, 225) mm. This was meastirach the clamped end of the plate in
the x andy directions, respectively. Generally an excitatgignal was taken from a

function generator and amplified in order to dritie shaker. A 1D laser vibrometer was
used to get the response and to measure the disptat of the plate, and a spectrum
analyser was used to monitor this response. Inetkpgriment a mirror was fitted to obtain

the response of the plate at any required poimtefest on the surface of the plate.

He-Ne Mirror
Laser
Signal Processing Unit Vibro- Laser Beam
meter |
Plate
[ ]
| |« |
Exciter Force Transducer

Power Amplifier

IN1

out1 L

Signal
Analyser
(Quattro) |uss2

Computer

Figure 6-2 : Layout of the experimental setup

Firstly, the test plate was excited with a randotitation signal by the electro-dynamic
exciter in order to obtain the fundamental natimeduency of each plate. A true random
force signal was generated within the measuremamger of 0-1000 Hz with an input
voltage level of 0.875V RMS. The excitation levéNams = 0.875V was equivalent to on
excitation force of approximately 10N. This wasaibéed from the sensitivity of the force
transducer of 123.78 mV/N. Subsequently a sine vem$ performed to obtain the
maximum vibrational amplitude in the first modewbration of the plate. In this test the
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resonant frequency was applied, and then the resgaat several points on the surface of
the tested plate were observed and the maximumitaihglvalue noted.

1D Laser vibromet:

' For&etransducérj‘J

)

Figure 6-3 : The experimental test rig

6.4 Experimental results

Table 6-1 shows the results obtained from the .tdstgan clearly be seen that the
frequency decreases with the inclusion of the ciiacthe plate, for all three modes of
vibration. The frequencies of the intact plate ot#d were 107.60, 273.40, and 532. 80 Hz
for the first, second and third mode of vibratioespectively, while they reduce to 99.61,
262.10, and 525.00 Hz for the addition of a cratheagth 15 mm. In terms of crack
orientation, the same phenomenon was encounteriedtzs previous chapter, whereby the
frequency increases up to an angle of @ten decreases when the orientation angle
exceeds 60 Figure 6-3 shows the frequency response functiowes for the intact plate
and the cracked plate specimens, with crack otiemtangles of § 2@, 4, 6@, 8¢, and
9¢°. In addition, the maximum vibrational amplitudes the first mode of vibration were
obtained at the tip of the free end of the platecspens. However, the results show that
the amplitude of the vibration behaves converseltheé natural frequency, and decreases
up to 80, then increases when the crack orientation angleezls 80
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Aluminium | Crack Frequency (Hz) Maximum
Plates Orientation vibrational
Angle g (deg) amplitude
(mm)
First Second Third First
vibration | vibration | vibration vibration
mode mode mode mode only
Intact Plate - 107.60 273.40 532.8p 7.056
0° 99.61 262.10 525.00 7.498
20° 102.9( 26E.6C 526.2(C 7.27¢
Cracked 40° 105.30 266.60 527.30 7.187
Plate 60° 106.40 268.90 529.50 7.176
80’ 104.10 267.80 530.70 7.274
9C° 102.0( 265.6( 518.2( 7.591

Table 6-1 : Experimental results for the first thre
for intact and cracked aluminium plates with a 7.5

ratio of 0.15/0.3

6.5 Chapter Conclusions

Intact and cracked plates (with variably orientatedcks) have been investigated

experimentally in this chapter. The insertion a# tirack in the plate was found to have a
strong influence on the frequency and amplitud@orses. The orientation of the crack
also has a significant effect on the vibration eltgristics of this system. Plate structures
undergoing transverse deflection can be categom@sedonlinear systems depending on
several factors. One of them is when the defledsom multiple of the plate thickness but

much less than the plate side length (Malatkar,3280d Israr, 2008). Therefore, these
plate specimens could be exhibiting nonlinear behavbecause the results show that the
amplitude response is within this category. Besitl@s, nonlinear dynamical phenomena
for these plate specimens can also be observed tkegxcitation frequency is increased
until a jump phenomenon occurs in the first modae Tcomparative study between

theoretical and experimental results is discusséthiapter 7.

e modes of vibration
mm half-crack length for a plate aspect
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(e) Cracked plate with crack orientation angfles 60°
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(f) Cracked plate with crack orientation angfle; 80°
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Figure 6-4 : Frequency responses for the firstthre e modes of vibration
for an aluminium rectangular plate
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Chapter 7

Comparative Study and Discussion

7.1 Introduction

The equation of motion of a cracked plate modeltaiaomg a crack of variable angular
orientation was obtained in Chapter 3, and thisesyshas been analysed using theoretical
and experimental methods, as discussed in Chapters. For reasons of comparison and
validation a finite element model and experimentrevundertaken to enable a further
modal analysis in order to corroborate the effécrack length and crack orientation angle
on the natural frequency, and also the vibrati@maplitude, as predicted by the theory.
Thus, the purpose of this chapter is to provideragarative assessment of these methods,
and to extend the discussion, where appropriaigardeng the results obtained from
Chapters 3 to 6, including the method of multiptalss, the direct numerical integration
method within Mathemati¢¥, and a numerical study into the system’s dynamias,

enable conclusions to be defined for this ovetall.

7.2 Comparative Assessment

Comparative studies of the theoretical modellind &nite element approaches, and also
the theoretical modelling with experimental measm@sts are carried out for the
arbitrarily chosen boundary condition of CCFF imerto verify the model proposed in
this thesis. Intact plate and cracked plates wisttks at orientation angles of, @, 4(,
60°, 8¢, and 96, and different half-crack lengths of 3 mm and Mm% are all compared.
Tables 7-1 and 7-2 summarise the comparative asses®f the theoretical modelling and
the finite element modelling approaches, and theorttical predictions with the
experimental measurements, respectively. The pedoce of each method is compared in
terms of the first mode natural frequency of thacked plate models and their amplitude
responses. In Table 7-1 we can see that the resdtg good agreement between the finite
element-extracted and analytically-calculated testdr the frequencies and amplitudes.
Both sets of results show a significant changehia natural frequency and response
amplitude for the different lengths of the crackl atso for the varying orientation angle of
the crack. The natural frequencies obtained foh hetsults decrease slightly with an
increase in the crack length for every crack iratiion angle. In addition, it is apparent that
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the finite element predicted frequency and ampétadnds are similar to the analytical
results for which the frequency values increasmft® up to 60 and then decrease whgn

is more than 60 while the amplitude responses behave conversely close agreement
was obtained between the analytical and finite elgmesults, with the maximum error in
the prediction of the frequency value generallplaut 7.7 % and the amplitude response

at around 7.6 %.

Crack Natural Error Amplitude Error
Orientation Frequency (%) | for first vibration | (%)
Angle for first vibration mode
mode (mm)
(Hz)
Analy. FEA Analy. FEA
result | result result | result
Intact - 122.58| 122.94| 0.29| 7.979| 7.372| 7.61
Plate
0° 118.38| 122.73| 3.67| 8.019| 7.483| 6.68
20° 121.82| 122.77) 0.78| 7.220( 7.379| 2.20
3 40° 124.57] 122.84) 1.39| 6.993| 7.263| 3.86
mm 60° 125.41] 123.05| 1.88| 6.898| 7.200| 4.38
80’ 123.98| 122.82| 0.94| 7.524| 7.727| 2.70
o 122.58| 122.73| 0.12| 7.979| 7.739] 3.01
Cracked
Plate
0° 113.91] 122.69| 7.71| 8.066| 7.564| 6.22
20° 118.18| 122.75| 3.87| 6.951| 7.227| 3.97
7.5 40° 122.37] 122.81| 0.36| 6.659| 6.969| 4.66
mm 6C° 124.6:| 123.0¢| 1.2€ 6.54¢ 6.79¢| 3.7¢
80’ 123.95| 122.81| 0.92| 7.336/ 7.309| 0.37
o 122.58| 122.69| 0.09| 7.979| 7.614| 4.57

Analy. = Analytical

Table 7-1 : Comparison of the frequency and amplitu  de response results
for the theoretical and finite element analyses for Mode | only.

A comparison between the results obtained fronptbeosed cracked plate model and the
experimental work was also undertaken and the teeané listed in Table 7-2. Similarity
can be observed between the trends for the theakethd experimental results for the
CCFF boundary condition, with the maximum errortive prediction of the frequency
value showing as around 16.8 % and the amplitusjgorese at about 11.6 %.
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Crack Natural Error Amplitude Error
Orientation Frequency (%) | for first vibration | (%)
Angle for first vibration mode
mode (mm)
(Hz)
Analy. Exp. Analy. Exp.
result | result result | result
Intact - 122.58( 107.60| 12.2| 7.979| 7.056| 11.6
Plate
o° 113.90] 99.61| 12.5| 8.066| 7.498 7.0
20° 118.18| 102.90| 12.9| 6.951| 7.278 4.7
Cracked | 7.5 40° 122.37| 105.30f 13.9| 6.659| 7.187 7.9
Plate mm 60° 124.61] 106.40[ 14.6 6.548| 7.176 9.6
8¢ 123.95| 104.10, 16.0| 7.336| 7.274 0.8
o 122.58| 102.00| 16.8| 7.979| 7.591 4.9

Analy. = Analytical
Exp. = Experimental

Table 7-2 : Comparison between the experimental and  theoretical results
for the first mode of vibration

7.3 Discussions of Results

Discussion of the results from Chapters 3 to Givaddd into three categories, namely the

analytical results, numerical results and the arpantal results.

7.3.1 Analytical Results

A new mathematical model has been proposed forira glate with enhanced crack
modelling which considers an alternative geomethereby the crack orientation angle
can be varied, and is used for vibration analyBiie dynamic characteristics of the model
have been investigated and general observationswarenarised from the studies as

follows:

» Initially the correctness of the enhanced crack ehedthin an analytical model of
the plate has been partially checked by referrimgthe existing model for a
centrally located crack parallel to one side of pltege, as proposed by Israr (2008),
and close agreement was found. The values of tifierehces between the first
mode natural frequencies of these two models arallsiwith a maximum
percentage error of approximately 0.012 (Table.3-1)
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* The results show generally that the natural frequaeduces with an increase in
the half-crack length and it is also influencedthy boundary conditions and when

the geometry of the plate is changed.

A plate with a crack of variable angular orientatio

* In comparison with a plate model for a horizontdfigated centre crack of fixed
orientation, the natural frequency results for @elimodel with a crack of variable
angular orientation show that the presence of ekcaithe centre of the plate with
variable orientation angle significantly influendbe natural frequency of the first
mode, in all three boundary condition cases thaewmvestigated. These included
SSSS (Table 3-2), CCSS (Table 3-3), and CCFF (Ta#dle

* The results show that the natural frequency redwstts an increase in the half-
crack length, as shown in Figure 3-7, in which ¢hecked plate model predicts the
natural frequency very well for the SSSS and CC8&bary conditions, but the
prediction is rather inaccurate for a half-crackgih of less than 0.001m in the

case of the CCFF boundary condition.

* The results show that the natural frequency ine@gagth the increase in the crack
angle, up to 90for the SSSS and CCFF boundary conditions. Focése of the
CCFF boundary condition the frequency increasesoupd, and then decreases
when the crack angle exceeds @@igure 3-8). This similar trend was also seen by
Maruyama and Ichinomiya (1989) and Wu and Law (2004

* The physical reason that cracks generally lowenttaral frequencies of a plate is
due to changes to the local flexibility in the wity of the crack, which in turn

reduces the overall stiffness of the structure.

* In the case of the CCFF boundary condition thentaigon angles for which the
natural frequency is maximum are affected by chacigth, plate thickness, plate
aspect ratio, Poisson’s ratio, plate density aedniiodulus of elasticity. Simulation
with standard parameter properties showed chamngeéeinatural frequency values
at an angle of approximately 59 6.
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In addition to the effect of the half-crack lengthd the crack orientation angle, the
natural frequency is also influenced if the geomeif the plate is changed,

particularly in the length of the plate (via thgeast ratio) and the plate thickness.

The analytical developments involved using theybgtion method of multiple scales, a

direct numerical integration method, and finitenedmt analysis. In the following points

are summarised which emerged from these studies:

The results from the method of multiple scales given in Figures 4-1 and 4-2
representing the behaviour of square and rectangidées containing a crack of
variable angular orientation for the three choselboaindary conditions. The effect
of a crack within the plate model produced a glaftdct on the nonlinear response
of the overall system. For the cracked plate modigh the SSSS and CCSS
boundary conditions, the nonlinearity bends thevesirto the right, as for a
hardening system, whereas for the CCFF boundargittom the nonlinearity bends

the curves to the left as for a softening system.

The nonlinear hardening effect is much strongertlier SSSS boundary condition
compared to the CCSS case. It is evident that [fdy@es of boundary condition
the cracked rectangular plate model with an aspt of 1:2 displays a much

stronger general nonlinearity than the square plettdel.

The influence of the crack orientation angle on fileguency response was also
observed. For the SSSS and CCSS boundary conditionsbvious hardening
effects emerged for rectangular plates. Howevesfprare plates with an increase
in the crack orientation angle, the nonlinear hamlg phenomenon clearly
increases (Figure 4-1). Similarly, for the CCFF hdary condition the nonlinear
softening effect increases up to 60° and then esiwchen the crack orientation
angles starts to exceed 60°. It should be notadiileaamplitude decreases with an

increase in the excitation frequency value.

Changing the location of the applied load on treepbkurface slightly affects the
nonlinear behaviour of the cracked plate model etweithe width of the nonlinear
region becomes narrower as the excitation locatiomes closer to the constrained

area (Figure 4-3). In addition the frequency responurve is also affected by
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changing the value of the excitation amplitude stiekt the amplitude increases

when the excitation amplitude increases (Figurg.4-4
Increasing the damping coefficient results in aéase in the amplitudes.

The numerical results calculated by directly in&igyg the nonlinear ordinary
differential equation (3.89) within the Mathemafiaenvironment qualitatively
and quantitative produce a similarly decreasingaase in the natural frequency,
and an increasing response in the amplitude, botiolgorating those of the
method of multiple scales (Figure 4-6). Both thspmnses show a characteristic
softening effect, however the overhanging part leé turve in the numerical
prediction represents unstable solutions, and dies-prediction of the softening
overhang by the multiple scales solution is undedlyt due to an over-correction
to the solution from the first order perturbatiamtribution.

The results from the finite element analysis fa&r @CFF boundary condition also
show that a large crack shifts the frequency vahfethe £, 2" and 3 modes
downwards, as expected, and is due to a reducee gtiffness. For both crack
lengths of 3 mm and 7.5 mm, the frequency valuesease monotonously fron? 0
up to 66, and then decrease whgis more than 60(Table 4-3) in which a similar
trend from the analytical prediction was exhibited.

The amplitude responses from the finite elementyaisaof the cracked plate

model produced results that corroborate thoseefhththod of multiple scales. As
expected the frequency results show a decreasng @it the resonance condition,
and similarly, the amplitude results show an insieg trend, when using a small

crack, again fully in-line with the analytical mddé-4).

A comparative study of the theoretical modellingl dimite element approaches is
presented in Table 7-1. Both sets of results sheigraficant change in the natural
frequency and the response amplitude at the resen@mdition for the different
lengths of the crack and the varying orientatioglarof the crack. Very close
agreement was obtained between the analytical iaitd Element results, with a
maximum error in the prediction of the frequencyueaof about 7.7 % and the
amplitude response at around 7.6 %. This error niigkie occurred because in the

finite element analysis the crack width is takerb#0.3 mm, whereas it has been
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proposed as a continuous line spring in the dearmadf the cracked plate model
(chapter 3).

7.3.2 Numerical Results

Subsequent numerical analyses were conducted tfendynamical systems tools within

the Mathematic®" environment. From this investigation the followisgconcluded:

» Bifurcation diagrams for the amplitude resporses a function of the normalised

excitation acceleration can be obtained.

» Periodic doubling bifurcation can be observed Irtted results with an increase in
the normalised excitation acceleration, and whea ttormalised excitation
acceleration value is increased to a high leved geriodic response appears to
bifurcate to chaos. There are five types of systemtion exists over the range of
normalised excitation acceleration, namely stabigls period motion, stable
period-2 motion, stable period-4 motion, stable tipatiod motion, and finally

chaotic motion.

» Specific boundary conditions are found to haveranst influence on the route to
chaos. Crack length and crack orientation angle ladse a significant effect on the
system’s motion. As the crack length is increasedgystem appears to get more
chaotic. However, as the orientation angle of ttaek is increased from°@o 90
the system with SSSS and CCSS boundary conditesmasto get less chaotic. For
the CCFF boundary condition the same phenomenouarmect when the crack

orientation angle exceeded’40

Detailed analysis of the bifurcation diagrams igufes 5-2 to 5-10 was extended to the
time plots, phase planes, and the Poincaré mapshasn in Figures 5-11 to 5-25 for

discrete normalised excitation acceleration poihte following are general observations:

* Figures 5-11 to 5-25 illustrate the time plots, g@lane, and Poincaré maps for
the cracked plate model for the SSSS, CCSS and ®G&#Rdary conditions.

* All the time plots are for periodic motion.
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The periodic orbits in the phase plane move awayfeach other as the effect of
the predominant system nonlinearity is changedieeiby manipulation of the
cubic nonlinear coefficient due to the presenceéhefsmall crack in the system, or
by variations in the normalised excitation accdlera And therefore the
phenomenon behind this behaviour, as shown onhhsepplane, could represent a
bifurcation to chaos.

When the normalised excitation acceleration isaased complicated and richer
phase plots are obtained which could indicate ¢hawbtion. However, the orbits

repeat themselves in the same way, when the siioiftne is extended.

In the Poincaré maps strange attractors are alsainedl for higher value of
normalised excitation accelerations, and thesecharly indicative of chaotic

motion.

7.3.3 Experimental Results

The theoretical predictions of the vibration chéeastics of the cracked plate model have

been successfully validated through experiment areasent. The following conclusions

are obtained from this work:

The insertion of the crack in the centre of theraluum plate was found to have a

strong influence on the frequency and amplitudpoeses.

The results from the experimental measurementitgtiaély produce a similar
decreasing trend in the natural frequencies with itisertion of a crack. The
frequency value decreases with an increase inrduek dength, and increases with

an increase in the crack orientation angle up fo 60

The results also qualitatively produced a simifaréasing trend in the amplitude
response with the insertion of a crack as for Hemtetical prediction, except for a

crack at an orientation angle of°20

Similarity can be observed between the trendsHertheoretical and experimental
results for the CCFF boundary condition, with a maxm error in the prediction of
the frequency value of about 16.8 % and in the dugd response of about 11.6 %.
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However the measured values from the experimertsoarer than those predicted
by the theoretical calculations based on approxantathniques. This could be
because of the fact that microscopic flaws or saakvays exist under normal
conditions at the surface and within the interibthe body of a material (Griffith,

1921).

The plate specimens could be exhibiting nonlineglraviour because the results
show that the deflection is a multiple of the pldiekness, but is much less than

the plate side length, as discussed by Malatk@3pand Israr (2008).
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Chapter 8

Conclusions

This chapter summarises the main conclusions efttlesis and makes recommendations

for further work.

8.1 Summary and Conclusions

The equation of motion for an isotropic plate camteg a crack of variable angular

orientation subjected to transverse harmonic exaita has been derived based on
classical plate theory. This equation of motioa isonlinear ordinary differential equation
with a cubic nonlinearity which was generated lg/alse of Berger’s formulation. Berger’s
formulation was used to assimilate the in-planedsrwithin this mathematical model and
also to reduce the equation to the form of a spsedh Duffing equation. This

mathematical model has been shown to be capabldet#cting and predicting the

nonlinear vibration behaviour of the cracked plateg in showing the trend of the natural
frequency values, and the linear and nonlinearuieaqy curves for the three chosen
boundary conditions, namely SSSS, CCSS and CCFF. aFaracked square and
rectangular plate the influence of the boundarydd@mns, crack orientation angles, crack

lengths, and location of the point load have afirbdiscussed.

Initially the proposed model was validated throwgimvergence studies for a plate with a
horizontally orientated centre crack. The resultevged excellent agreement with those
obtained by Israr (2008yith the maximum error in the prediction of thesfirmode
natural frequency for the boundary conditions tala@napproximately 0.012%. Then the
proposed model was applied to a plate with a vhriabentated surface crack. It was
found that the vibration characteristics of thiatplstructure could be greatly affected by
the orientation of the crack depending on the typboundary condition applied. For the
SSSS and CCSS boundary conditions, the naturaldrexry increases with an increase in
the crack angle, up to 90°. But it is a differeitiaion for the case of the CCFF boundary
condition, where the natural frequency increases top60°, and then decreases
wheng exceeds 60°. This similar trend for the crack dagan effect was also reported by
Maruyama and Ichinomiya (1989) and Wu and Law (2004 terms of crack length
effects the results show generally that the nafoegluency reduces with an increase in the
half-crack length. The derived cracked plate mqudetlicts the natural frequency very well
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for cases with SSSS and CCSS boundary conditionseker for the CCFF boundary
condition the prediction is rather inaccurate, esgly for a half-crack lengthg of less
than 0.001 m. The physical parameters such as ¢eagkh, plate thickness, plate aspect
ratio, Poisson’s ratio, plate density and moduliuslasticity also contribute to the changes

in the orientation angles for which the naturatfrency is maximum.

The physical behaviour of this cracked plate mddel been explored in Chapter 4 through
the approximate solutions that have been obtairseséd on the perturbation method of
multiple scales and the finite element method. porposes of comparison numerical
results were also calculated by directly integigatthe nonlinear ordinary differential

equation for the model, and the results from the&senxcompared with the results obtained
from the multiple scales method. The inclusion afack within the plate model produced
a global effect on the nonlinear response of therall system for both solutions.

Interesting nonlinear behaviour was observed ferghmary resonance condition, and the
results obtained from the multiple scales methaalvgd hardening spring behaviour for
the SSSS and CCSS boundary conditions and a swujtesgring phenomenon for the
CCFF boundary condition. It was shown conclusivdly, using a first order multiple

scales approximation solution, that the nonlineharacteristics of the steady-state

responses are encoded within the non-autonomouslatmh equations.

The dynamics of the cracked plate model are ingatdd using dynamical systems tools in
Chapter 5 to study the relevant bifurcatory phenmanand stability of the system. From
the observation of bifurcation diagrams, time plake phase plane, and Poincaré maps,
this study has shown that additional and highly plex dynamics could be observed,
especially in more strongly excited systems. In itamld the amplitude response
characteristics for the performance of this systemuld be effectively achieved by
applying different combinations of system paranseter

Finally, the validity of the developed model waswh througha comparison of the results

with experimental work, in Chapter 6 and 7. Thepogse of an aluminium cracked plate
for the arbitrarily chosen CCFF boundary conditiamd when subjected to transverse
harmonic excitation, was observed. The insertionhef crack in the plate was found to
have a strong influence on the natural frequencg te amplitude responses. The
orientation of the crack also had a significaneefffon the vibration characteristics of this
experimental system in which the same phenomenanemeountered as in the analytical

model. The comparison showed that the analyticatiehavas able to predict results
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gualitatively similar to the experimental measurateg however the results vary
quantitatively. The discrepancies in the resultghthhave arisen because one or more of
the factors such as the nonlinear damping, shdkectsre interaction, internal
discontinuities within the plate, and initial cutwee of the plate were neglected in the
analytical model. These factors might be contritgita bigger role than expected, and this
could be further investigated. The instability mygiof the boundary condition of the plate
was manipulated by altering the tightness of tlaenged edges of the plates. The tightness
of the clamped edges can alter the stability cheristics of the system. For a highly
excited system careful design and assembly of ¥peremental system components is

crucial for better overall performance.

Overall, this research provides some basic thendyumderstanding of how inclusion of a
crack in a plate structure and the orientationhef ¢rack can both influence significantly
the vibration and nonlinear behaviour of a platecttre. It has provided an extension to
the development of currently available analyticaldels of the nonlinear characteristics of
a cracked plate structure, particularly for an raéive geometry in which the crack
orientation is variable. It can be seen that ther m@alytical model could constitute a
useful tool for subsequent investigation into thevelopment of damage detection

methodologies for generalised plate structures.

8.2 Recommendations for further work

Generally antinodally located cracks will have atipalar significance for resonant
properties. Such insight could be explored furtimethe future, as could the effects of
prescribed wave number and other modal properTies.orientation of travelling waves
shows a strong relationship with crack orientatibans the wave numbers in both thend

y directions could be used to determine this retesinip.

The effect of the nonlinearity introduced into thealytical model through the crack
analysis is unlikely to have been as faithfullyraghuced within the current finite element

analysis. This could be a further study in futueky

It would also be interesting to see if one couldee® this work for a thick plate by
applying Mindlin Plate theory and then investiggtithe influence of such cracks on the
responses of that kind of plate structure. SimjlaHe study could also be extended for all-

through cracks and elliptical cracks.
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Chapter 8

The route to chaotic motion of this cracked platstesm can be further explored by using
other dynamical systems tools to calculate the upap exponent in order to underpin and

provide more evidence of the existing results ftbmbifurcation diagrams.
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Appendices

Appendix A

i. EQUATION OF MOTION -CHAPTER 3(Equation 3.88)

wi It 1424 of It ]F(l/(( p*h)/D1 Zj1=1 st A oll folz ((Xi)"2 % (Yj)"2) dx dW)
1 1

S SUA; J“j [(x|4 AV]) s 26X2 Y2 ) + (Y4 #Xi) -

j=li=l

a(l+Cos[2%B]) (v#Xi2 »Yj2 +Yj4 =Xi)
3 (a_bt +Olbb) B+v) (1-v)h+2a

2%aSin [2%B] (v+Xi3 *Yjl +Vj3 «Xil)
( 3(%+Cbb) (l+vyh+2a

] Xi #Yj) dx ay
s L . ) * eilt]+
(1/(( *h)/Dl JiaXiaAj of ((Xl)Az*(YJ)AZ)d]XdW)
aat h"2*I1 %12
Ld rnoe , . . .
ZZJ j ((XL)A2 % (Y])"2) + (v (Y1) "2 % (Xi )~2)) dx dy
is1jav0 Y0

*(Xi2)*(Yj)] +

h"2 %Il =12

[ZZJ J. (Y1) A2 % (XI)A2) + (v (X1 ) "2 % (Y])A2)) led]y]]

i=1j=1

[[a (1+C05[2*/3])*[

/ (Brap +ai ) (L-v"2)h+2a) = (Yj2) (Xi)

2aSin [2x8]
(6xCip +C¢ ) (L+v)h+2a

65

hA2 %Il =12

LL r1ori ) . . )
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ii. DIRECT INTEGRATION METHOD- SECTION 4.3

eqn= ¥ U1 p* ¥ v(Subscript] o, i) *yft+  yi* W It
nij/D1 g*Cos  Qij[t]

Solution=NDSolve[{egn =0, Y[0] =0, ¢'[0] =0}, ¢
[t],{t,0,500},
MaxSteps -lInfinity,AccuracyGoal -Automatic,

PrecisionGoal->Automatic]

Plot[Evaluate[ Y[t)/.Solution],{t,0,500},
Frame -True, FrameTicks -Automatic,
FrameLabel -{Time[t], Y[m}

Plot[Evaluate[ ¥'[t]/.Solution],{t,0,500},
Frame -True, FrameTicks -Automatic,
FramelLabel -{Time[t], ¥'[m]}]

iii. BIFURCATION DIAGRAM - SECTION 5.6

M=3000000;step=0.00001;MaxAmp=M*step;a=0;b=0;
For[i=1,i<=M,i++,A=step*i;pp=NDSolve[
{xT  =ylt.yTt =-C2*X[t]-C1 y[t]-C3*(X[t])"3+A
Cos[omega t],
X[0] =a,y[0] ==Db}.{x,y}{t,0,2
Pi/lomega},MaxSteps  -Infinity];
a=Flatten[x[2 Pi/lomega] /. pp];
b=Flatten[y[2 Pi/omega] /. pp];rampupli]=Sqgrt[a* 2]]

pl=ListPlot[Table[Flatten[{m*step,rampup[m]}],{m,1 ,M}],
PlotStyle -PointSize[0.003]];

Show[{p1},PlotRange -{{0,30},{-0.0001,0.005}},
AxesLabel->{"Rho","x"},AxesOrigin -{0,-0.0001},

TextStyle -»{FontSize -12},Ticks -Automatic]
Quit[];

Duffing=NDSolve[

{xTt] ==y[t].y'[t] ==-C2*X[t]-C1*y[t]-C3*(x[t])"3 + A
Cos[omega*t],

X[0] =0,y[0] ==0},{x[t],y[t]},{t,0,500},MaxSteps -Infinity];
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iv. PLOTTING OF POINCARE MAP - SECTION 5.7

ParametricPlot[Evaluate[{x[t],y[t]}/.Duffing],{t,49 5.5,500},
FrameLabel -{Xx, y},AspectRatio - 1/2,AxesOrigin -{-0.005,-
0.4},

Frame-True,PlotRange -{{-0.005,0.005},{-0.4,0.4}},

LabelStyle -Directive[FontFamily -"Times New Roman",12]]

V.PLOTTING OF PHASE PLANE- SECTION 5.7

ListPlot[Table[Flatten[{x][t],y[t]}/.Duffing],{t,495 .5,500}],
PlotStyle  -»PointSize[0.02],FramelLabel -{X, v},

AxesOrigin  -»{-0.005,-1.5},Frame -True,

PlotRange -{{-0.005,0.005},{-1.5,1.5}},

LabelStyle  -Directive[FontFamily -"Times New Roman",12]]

Vi.PLOTTING OF TIME PLOT- SECTION 5.7

Plot[Evaluate[x][t]/.Duffing],{t,495.5,500},
FramelLabel -{"Time( ¢#)"x},

LabelStyle -Directive[FontFamily -"Times New Roman",12],
Frame-True,PlotRange -{{495.5,500},{-0.01,0.01}},
AxesOri gi n»{495.5,-0.01}]
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Appendix B

Experimental Measurement: List of Instruments

The list of instruments used in this research is:

* Power Amplifier- LDS PA25E-CE

* Electro-dynamic Exciter- LING Dynamics Systems LMoadel 201
e 1D Laser Vibrometer (Polytech OFV 303)

» Vibrometer Controller (Polytech OFV 3001: 100/113J2- 50/60Hz)
* Mirror

» Force Transducer IEPE (B&K 8230)

« Signal Analyser (Quattro)

» Desktop PC using Signal Calc ACE data acquisit@ftware, Data Physics Corp.
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(a) Power Amplifier

(e) Force Transducer () SignabAmser (g) Computer

Figure B1: Schematic view of the instruments used
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