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A B S T R AC T

In the early phase of the design of a space mission it is generally desirable

to investigate as many feasible alternative solutions as possible. Traditionally

a system margin approach is used in order to estimate the correct value of

subsystem budgets. While this is a consolidated and robust approach, it does

not give a measure of the reliability of any of the investigated solutions. In

addition the mass budget is typically overdimensioned, where a more accurate

design could lead to improvements in payload mass. This study will address

two principal issues typically associated with the design of a space mission:

(i) the effective and efficient generation of preliminary solutions by properly

treating their inherent multi-disciplinary elements and (ii) the minimisation of

the impact of uncertainties on the overall design, which in turn will lead to an

increase in the reliability of the produced results.

The representation and treatment of the uncertainties are key aspects of

reliable design. An insufficient consideration of uncertainty or an unadapted

mathematical representation leads to misunderstanding of the real issues of a

design, to delay in the future development of the project or even potentially to

its failure. The most common way to deal with uncertainty is the probabilistic

approach. However, this theory is not suitable to represent epistemic uncertain-

ties, arising from lack of knowledge. Alternative theories have been recently

developed, amongst which we find Evidence Theory which is implemented in

this work. Developed by Shafer from Dempster’s original work, it is regarded

by many as a suitable paradigm to accurately represent uncertainties. Evidence
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Theory is presented and discussed from an engineering point of view and special

attention given to the implementation of this approach.

Once mathematically represented, the uncertainties can be taken into account

in the design optimisation problem. However, the computational complexity

of Evidence Theory can be overwhelming and therefore more efficient ways to

solve the reliable design problem are required. Existing methods are considered

and improvements developed by the author, to increase the efficiency of the

algorithm by making the most of the available data, are proposed and tested.

Additionally, a new sample-based approximation technique to tackle large

scale problems, is introduced in this thesis. Assuming that the uncertainties

are modelled by means of intervals, the cluster approximation method, and

especially implemented as a Binary Space Partition, appears to be very well-

suited to the task.

The performance of the various considered methods to solve the reliable

design optimisation problem in the frame of Evidence Theory is tested and

analysed. The dependency on the problem characteristics, such as dimensional-

ity, complexity, or multitude of local solutions are carefully scrutinised. The

conclusions of these tests enables the author to propose guidelines on how to

tackle the problem depending on its specificity.

Finally, two examples of preliminary space mission design are used to il-

lustrate how the proposed methodology can be applied. Using realistic and

current mission designs, the results show the benefits that could be achieved

during the preliminary analyses and feasibility studies of space exploration.
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BSP Binary Space Partition.
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CPF Cumulative Plausibility Function.

CPU Central Processing Unit.

ET Evidence Theory.

JAXA Japan Aerospace Exploration Agency (Japanese space agency).

LHSU Latin Hypercube Sampling Uniform.

oAAB Outer Axis-Aligned Box.

OUU Optimisation Under Uncertainty.
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PPU Power Processing Unit.

RBDO Reliability-Based Design Optimisation.

RBRDO Reliability-Based Robust Design Optimisation.

RDO Robust Design Optimisation.

s.t. Such that.

SAA Sun Aspect Angle.

SEP Solar Electric Propulsion.

ToF Time of Flight.

mathematical operators

()f Superscript indicating the dependency on the function f .

()d Subscript indicating the dependency on the design vector d.

()opt Subscript indicating the optimality (see in the light of context).

(̃) Approximation of. For instance, C̃BF is an approximation of the

CBF.

∗ Product between two scalars.

+ = Add to. x+ = y means to add y to x (used in pseudo algorithms).

[a, b] Interval of reals greater than or equal to a and less than or equal

to b.

∩ Intersection of sets.

∃ There exists.
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∀ For all.

∈ Element of.

← Assign value. x← y means assign value of y to x (used in pseudo

algorithms).

/∈ Not an element of.

→ Transform into.

⊂ Subset of.

× Cartesian product between 2 sets.

∅ Empty set.

∧ And.

O() “Big O notation” describing the limiting behaviour of a function.

2Θ The power set of Θ.

R Set of real numbers.

Rn Set of n-tuples of real numbers.

B A box (see §3.3.3).

Binvalid A box identified as invalid.

Bdinvalid A set of boxes identified as invalid for a specific design d.

D Set of design variables.

FE The set of focal elements.

U Set of input variables.
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Xsample Set of sample points (d,u) in D×U , i.e. the design and uncertain

domains combined.

X y∗sample A subset of Xsample, such that all points are verifying the propo-

sition f(d,u) < y∗.

Y Codomain of the system function, i.e. the set of the system func-

tion output.

Y∗ The set of reals in Y that are less than or equal to the threshold

y∗.

Θ The frame of discernment.

f−1 (Y) Set of input variables of the function f that return an output in

the set Y.

δy∗ Difference or step between 2 successive values of the threshold y∗.

bl Vector of Belief levels.

bl(i) ith element of the vector of Belief levels.

d Vector of design variables.

u Vector of uncertain variables.

µf (d) The mean value of the system function f over the domain of

uncertain parameters U and for a given design vector d.

ν Threshold of a pool function.

A The complement of A.

ρd Distance of the best designs found and the optimal designs.
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min
d∈D

Minimum such that d ∈ D.

A∗error Normalised error area.

Aerror Error area, defined as the area between the optimal Pareto front

and the results found.

Bel(A) Belief of proposition A.

f Mathematical function representing the performance of a system.

f−1 The inverse of the function f . If f (x) = y, then f−1 (y) = x.

fcheby Chebyquad function.

fUcheby The modified Chebyquad function, used as system function of

optimisation under uncertainty.

fpool Pool function of the system function f .

FE A focal element.

g Constraint function.

ln Natural logarithm function.

m(E) Basic Probability Assignment of the proposition E. Also referred

to as mass of the proposition E.

m(1⊗2) The Basic Probability Assignment resulting from the combination

of 2 distinct sources of evidence, source 1 and source 2.

nU Number of uncertain parameters.

nbel Number of Belief levels.

nD Number of design variables.
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nFE Number of focal elements.

npop Population size for agent-based algorithm.

P (A) Probability of proposition A.

Pl(A) Plausibility of proposition A.

T ∗i Chebyshev polynomial of order i.

y∗ A threshold.

[λ1, λ2, λ3] Shaping parameters (see [Novak and Vasile, 2009] for more de-

tails).

[p, f, g, h, k] Pseudo-equinoctial elements (see [Novak and Vasile, 2009] for

more details).

δp Percentage of the maximal power that is wasted.

∆V Delta-V, change of velocity.

ṁsc Mass flow rate, i.e. the time derivative of the spacecraft mass.

ηengine Efficiency of the engine to convert electric power into thrust.

ηp Power conversion efficiency.

κA Area margin for the solar arrays.

κharness Mass margin for the harness subsystem.

κrad Mass margin for the radiator.

κSA Mass margin for the solar arrays.

c Control vector (see §5.2.1).
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µ Gravitational constant.

ISP Mean specific impulse.

ρharness Specific ratio mass/power of the harness subsystem.

ρSA Specific ratio mass/area of the solar arrays.

σtank Specific ratio of the tank subsystem.

θl Tuning parameter for Kriging surrogate model.

ASA Area of the solar arrays.

g0 Gravitational acceleration (g0 = 9.80665 m.s-2).

Gs Solar constant at 1AU (Gs = 1367 W.m-2).

ISP
max T

Specific impulse at maximum thrust.

ISP Specific impulse.

L Longitudinal anomaly.

m0
harness Inevitable mass of the harness subsystem (constant).

m0
sc Launch mass of the spacecraft.

m0
thrusters Inevitable mass of the thrusters subsystem (constant).

m0
array

Structural mass of the solar arrays (constant).

mnominal
thrusters

Nominal mass of one thruster.

mSEP
wet

Total SEP related mass, including propellant.

marray Mass of the solar arrays.

mharness Mass of the harness.
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mPL Mass of the payload.

mPPU Mass of the power processing units.

mrad Mass of radiator.

msc Mass of the spacecraft.

mstruct Mass of the structure of the spacecraft.

mtank Mass of propellant tank.

mthrusters Mass of the thrusters.

mxenon Mass of propellant (xenon).

nPPU Number of power processing units.

nthruster Number of thrusters installed aboard the spacecraft.

P1AU Power to be generated by the solar arrays at 1 Astronomical Unit.

pl Tuning parameter for Kriging surrogate model.

Pdis Dissipated power.

Pmax Maximum power.

Q Heat to be dissipated at perihelion.

T thrust.

t0 Departure time, initial epoch of the trajectory.

Tmax Maximum thrust.

ToFviol Violation of the time of flight.

V Voltage.
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1
I N T RO D U C T I O N

The space industry is traditionally torn between the contrasting dichotomy

of reliability and the need for performance. On one hand, sending probes

to visit our celestial neighbourhood or reaching the outer edges of the solar

system requires the development of high tech solutions, always trying to push

the boundaries of what was achieved before. Due to the enormous cost of

development, implementation and launch, the design is sought to be as efficient

as possible. On the other hand, little can be done once the engines of the

rocket launching the spacecraft in orbit are ignited. Additionally, the space era

is still, despite its recent 60th anniversary, relatively young, and the system

designs will frequently face environments which are poorly, if at all, known and

understood. After all, this is the reason space exploration happens in the first

place, to extend the knowledge of our world.

In this first chapter, the motivations and objectives of this study are in-

troduced. The background of reliable design is then succinctly presented and

additional information related to the scope of this thesis given. More details

will be given as adequately as possible in the core chapters of the dissertation.

Finally, the main contributions of the present work are summarised, and the

document outline given.

1
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1.1 research motivations and objectives

The aim of this research is to investigate the problem of efficient and reliable

space mission design. The early stages in the development of a space mission

are of particular interest, as many aspects of the configuration and overall

design of the spacecraft are extremely uncertain and strongly sensitive to the

multitude of different choices available to the analysts and engineers.

Evidence Theory is regarded by many as a suitable paradigm to represent

uncertainties. Therefore, the first objective of this study is to apply Evidence

Theory in the context of reliable design optimisation. In particular, the focus

here is on multi-disciplinary optimisation problems, in order to take into account

for instance the trajectory as well as the propulsion or power subsystems for a

space mission design.

The practical application of Evidence Theory will be discussed at length in

the following. One of the main issues faced is the computational complexity

associated with it. The second and principle objective is thus to study the

efficiency of existing methods, and to propose alternative ones to solve robust

design optimisation problems in the frame of Evidence Theory.

The third and final objective is to highlight to the space industry the benefits

of using robust design methodology in general, in the frame of Evidence Theory

in particular, and thus during especially the early stages of the space mission

analysis and design process.

1.2 background

During the early phase of the design of a space mission, it is generally desirable

to investigate as many feasible alternative solutions to the overall mission
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architectures, as possible. At this particular stage, an insufficient consideration

for uncertainty could lead to a wrong decision on the feasibility of the mission.

Traditionally, a system margin approach is used in order to take into account

the inherent uncertainties related to the computation of the system budgets. A

system margin, also referred to as design margin or management margin, is the

difference between the requirement and the demonstrated capability [Grady,

2006]. Thus, the design is consciously oversized to be robust to uncertainties.

The reliability of the mission is then independently computed in parallel.

An iterative, though integrated, process between the solution design and the

reliability assessment should finally converge to an acceptable solution. As

the development progresses, the maturity of the design increases, thus the

uncertainty tends to diminish and system margins are accordingly reduced. The

system margin approach is a simple and effective way to deal with uncertainty.

However, defining a margin is a difficult task, and experience or tradition are

frequently the sole justification of chosen value. The design obtained through

this approach presents the risk of being either over conservative, thus less

efficient than it could have been, or not robust enough, thus leading to costly

iterations during the development.

An alternative to this approach consists in modelling the uncertainties and

introducing them explicitly in the design process. The overall system design is

then optimised, minimising the impact of uncertainties on the optimal values of

the design criteria. The minimisation of the impact of uncertainties in the design

process is generally known as robust design and the associated optimisation

process robust optimisation.

The concept of robust design originates in the 1950s when Genichi Taguchi

suggested engineers actively design quality into their product [Taguchi, 1978,

Taguchi and Phadke, 1984,Taguchi and Yokoyama, 1993]. To do so, the design
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should be such that the product’s performance is insensitive to the variation

in variables beyond the designer’s control [Trosset, 1997]. Taguchi’s parameter

design method is a 3 stage approach: (i) the system design determines the

feasibility region of the design, in preparation for the next step, (ii) the

parameter design whose purpose is to optimise the objective function that

quantifies the notion of quality, and finally (iii) the tolerance design consisting

in reducing and controlling the sensitivity to critical variables [Roy, 2010].

Over the last few decades, robust design has been gaining wide attention and

its applications have been extended from improving the quality of individual

components to the design of complex engineering systems. Sensitivity analysis

combined with safety margins are still widely used in the industry but this

approach can be considered as the worst case philosophy. On the other hand

the methods for robust design have evolved towards nonlinear optimisation

formulation with multiple objectives subject to feasibility robustness [Chen

et al., 1996,Phadke, 1995,Du et al., 2000] or compromise programming [Chen

et al., 1998,Das, 2000,Vasile, 2002].

A key element of reliable design is how the uncertainties are mathematically

represented in the design process. Uncertainties are usually classified as either

aleatory or epistemic. Aleatory uncertainties are due to the random nature

of input data while epistemic uncertainties are generally linked to incomplete

modelling of the physical system, the boundary conditions, unexpected failure

modes, etc. The traditional approach to represent uncertainty is through

Probability Theory, and this has been widely used and implemented [Du et al.,

2000, Du and Chen, 2002]. However, critics have highlighted some limits in

applicability, because it fails to correctly and accurately represent epistemic

uncertainties. [Agarwal et al., 2003,Bae et al., 2002,Hoffman and Hammonds,

1994]. A few alternatives to this approach have therefore emerged over the
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last decades such as Interval Analysis [Hayes, 2003, Kreinovich et al., 2006],

Possibility Theory [Zadeh, 1999], Fuzzy Set Theory [Dubois and Prade, 1989],

or finally Evidence Theory [Dempster, 1966, Dempster, 1967, Shafer, 1976]

considered in this thesis.

Although introducing epistemic and aleatory uncertainties in the design

process would greatly improve the quality of the design (and would give a

measure of the reliability of the result), it significantly increases the com-

putational cost of any multidisciplinary optimisation. This is even more the

case, if the evaluation of the cost function (and/or the constraints) associated

to each discipline of a multidisciplinary problem is already computationally

expensive. Implementing naively Evidence Theory is straightforward, but the

untraceable computational cost associated with it has limited its usage [Barnett,

1981,Jousselme et al., 2002].

1.3 contributions

Evidence Theory is at the heart of this research. As with any young theory,

it is not widely known and often not completely comprehended. A detailed

and theoretical study of Evidence Theory is out of the scope of the present

work. The theory is instead presented and discussed from an engineering point

of view. A practical approach is taken, theoretical concepts kept as simple as

possible, and special attention given to the implementation of this approach

within a well defined engineering context.

Once integrated in a multidisciplinary optimisation problem, Evidence The-

ory’s computational complexity can be overwhelming. Therefore, an efficient

way to solve the design optimisation under uncertainty is required. Some have

been suggested by researchers in different scientific and engineering fields and
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they are discussed in this work. Improvements are introduced to the implemen-

tation of the bi-objective formulation to increase the efficiency of the algorithm

by making the most of the data available. Additionally, a new sample-based

approximation technique is proposed to tackle large scale problems. Assuming

that the uncertainties are modelled by means of intervals, the cluster approx-

imation method, and especially implemented as a Binary Space Partition,

appears to be very well-suited to the task.

A comprehensive test campaign on an analytical test case is presented. The

performance of the various considered methods to solve the reliable design

optimisation problem in the frame of Evidence Theory is analysed in detail. The

dependency on the problem characteristics, such as dimensionality, complexity,

or multitude of local solutions are scrutinised in detail. The conclusions of these

tests enables the author to propose guidelines on how to tackle the problem

depending on its specificity.

Finally, two examples of preliminary space mission design are used to il-

lustrate how the proposed methodology can be applied. Using realistic and

current mission designs, it is hoped that the benefits would be more evident

for preliminary analyses and feasibility studies of space exploration.

1.4 dissertation outline

The core of this dissertation is composed of four chapters. The first two present

Evidence Theory, the reliable design optimisation problem and how it can be

tackled. The last two focus on the practical aspects of the problem at hand.

The outline of the thesis is as follows.

The second chapter focuses on the mathematical modelling of uncertainties.

After presenting the type of uncertainties usually encountered in the specific
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case of space mission design, Evidence Theory is introduced. A parallel with

Probability Theory is then drawn in order to better grasp its specificity.

Engineering applications of Evidence Theory are discussed, highlighting the

issues faced and suggesting ways to resolve them or to limit their impact.

The third chapter is dedicated to the reliable design optimisation prob-

lem, alternatively named Optimisation Under Uncertainty (OUU). First, the

general definitions of robust and reliable design optimisation are given, and

then the particularities due to using Evidence Theory are discussed. Direct

(exact) and indirect (approximating) methods to solve OUU problems are then

presented. The direct methods use a multi-objective optimisation algorithm,

and differ following the formulation of the problem. Attention is also given to

the algorithmic aspect of these methods. Finally, an approximation method

through a clustering algorithm, which aims at mitigating the computation

burden associated with Evidence Theory is proposed.

The forth chapter presents an exhaustive analysis of the performances of

the proposed methods. The analytical test case used for this purpose, the

Chebyquad problem, is first formulated. Then is presented the methodology

applied to assess the performances, drawbacks and benefits of each approache

to solve the OUU. After discussing the results obtained, the chapter concludes

with guidelines on how to select the appropriate method based on the properties

of the problem at hand and the user’s aim.

Two space-related problems are then used as test case in the fifth chapter.

The first problem is derived from the BepiColombo mission to Mercury. The

second one simulates a feasibility study of a space mission.

Finally, the sixth chapter concludes the dissertation by summarising the

findings of this thesis, and suggesting areas of further research.
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1.5 publications

Some ideas and figures in this thesis have appeared previously in the following

publications.

Articles and Book Chapters

1 Robust Preliminary Space Mission Design under Uncertainty

(Massimiliano Vasile, Nicolas Croisard), Chapter in Computational In-

telligence in Expensive Optimization Problems (Yoel Tenne, Chi-Keong

Goh, Lim Meng Hiot, Yew Soon Ong, eds.), Springer Berlin Heidelberg,

volume 2, pp. 543-570, 2010.

2 Preliminary space mission design under uncertainty (Nicolas

Croisard, Massimiliano Vasile, Stephen Kemble, Gianmarco Radice),

Acta Astronautica, volume 66, pp. 654-664, 2010.

Conference Papers

3 System Engineering Design Optimisation Under Uncertainty

for Preliminary Space Mission (Nicolas Croisard, Massimiliano Vasile),

Chapter in 2009 IEEE Congress on Evolutionary Computation, Proceed-

ings, IEEE, volume 1-5, pp. 324-331, 2009. (IEEE Congress on Evolu-

tionary Computation Trondheim, NORWAY, MAY 18-21, 2009)

4 Efficient Robust Optimisation For Space Mission Design in the

Frame of Evidence Theory (Nicolas Croisard, Stephen Kemble, Mas-
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similiano Vasile, Gianmarco Radice), 4th International Conference on

Astrodynamics Tools and Techniques, 2010.

5 Semi-analytical solution for the optimal low-thrust deflection

of Near-Earth Objects: Efficient robust opimisation for space

mission design in the frame of evidence theory (Nicolas Croisard,

Massimiliano Vasile, Gianmarco Radice), 60th International Astronautical

Congress, 2009.

6 Preliminary space mission design under uncertainty (Nicolas

Croisard, Massimiliano Vasile, Stephen Kemble, Gianmarco Radice),

59th International Astronautical Congress IAC 2008, 2008.

7 Reliable Trajectory Design Through Evidence Theory and Mul-

tiobjective Optimization (Massimiliano Vasile, Nicolas Croisard), Ad-

vances in Global Optimization, 2007.

8 Uncertainty modelling in reliable preliminary space mission de-

sign (Nicolas Croisard, Matteo Ceriotti, Massimiliano Vasile), Proceedings

of International Joint Conference on Artificial Intelligence, 2007.



2
M O D E L L I N G U N C E RTA I N T I E S T H RO U G H E V I D E N C E

T H E O RY

This chapter focuses on the mathematical modelling of uncertainties. Over the

last few decades, this problem has been considered by many researchers in

different fields ranging from data fusion to decision making, from risk assessment

to design optimisation. The importance of an adapted framework was stressed to

avoid misrepresentation and inexact interpretation of the conclusions following

the analysis performed.

After presenting the type of uncertainties usually encountered in the specific

case of space mission design, Evidence Theory is introduced. This theory is

considered by many as well suited to address this problem, but was nevertheless

the subject of various criticisms and countless debates amongst theorists and

researchers.

A parallel with Probability Theory is then drawn in order to better grasp

the specificity of Evidence Theory. Finally, the last section of this chapter

deals with practical considerations, and examples of engineering applications

of Evidence Theory are given.

10
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2.1 uncertainties in space mission design

Uncertainties are usually classified in two distinct categories, aleatory and

epistemic uncertainty. According to Helton and Oberkampf [Helton, 1997,Helton

et al., 2007], the definition of each type is:

aleatory uncertainty arises from what is considered to be an inherent ran-

domness in the behaviour of the system under study.

also known as: Stochastic uncertainty, Type A uncertainty, Irreducible

uncertainty, Variability, Objective uncertainty.

epistemic uncertainty arises from a lack of knowledge about a quantity that

is assumed to have a fixed value in the context of a particular analysis.

also known as: Subjective uncertainty, Type B uncertainty, Reducible

uncertainty, State of Knowledge uncertainty, Ignorance.

Some researchers consider a third category, Error, also called numerical un-

certainty, which “is defined as a recognisable deficiency in any phase or activity

of modelling and simulation that is not due to lack of knowledge” [Agarwal

et al., 2003]. Such uncertainties are well-known, and a good estimation of

the error is generally available. This point distinguishes errors from epistemic

uncertainties. Aleatory uncertainties are due to the random nature of input

data while epistemic uncertainties are generally linked to incomplete modelling

of the physical system, the boundary conditions, unexpected failure modes,

etc.

In the case of preliminary space mission design, analysts face both types

of uncertainty. For example, the initial velocity of the spacecraft, the gravity

model or the solar radiation, all give rise to aleatory uncertainties. On the other

hand, most of the parameters that define the characteristics of the spacecraft
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subsystems are not known a priori and their values cannot be computed exactly

as they hinge on other unknown parameters. Their value has therefore to

be first estimated on the basis of previous experience and historical data or

through educated guesses by a group of experts. The uncertainty associated to

those parameters is therefore epistemic.

Traditionally, Probability Theory has been used for the modelling of uncertain

parameters. However, a few alternatives to this approach have emerged over the

last decades, amongst which is Evidence Theory. The reader may be interested

in alternative theories such as Interval Analysis [Hayes, 2003,Kreinovich et al.,

2006], Possibility Theory [Zadeh, 1999], Fuzzy Set Theory [Dubois and Prade,

1989], Theory of Paradoxical Reasoning [Smarandache and Dezert, 2005] or

Theory of Clouds [Neumaier, 2004]. The article by Klir and Smith [Klir and

Smith, 2001] provides a detailed analysis of the relationship between these

various theories, and how they are ordered by levels of generality.

2.2 introduction to the evidence theory

Evidence Theory was developed by Shafer [Shafer, 1976] based on Dempster’s

original work [Dempster, 1967]. The theory is a generalisation of classical

probability and possibility theories, and has been studied and applied as it

can handle both aleatory and epistemic uncertainties. It is also a well-suited

framework for expert-based information, where intervals are commonly used

and conflicting evidence may arise.

In this section, the fundamentals of Evidence Theory are presented. First,

the basic concepts of frame of discernment, power set and basic probability

assignment are defined. How sources of evidence are combined using original

Dempster’s original rule, and also more recent alternatives, is then discussed. In
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common with many of the other theories dealing with uncertainties, Evidence

Theory introduces 2 measures of likelihood: the Belief and the Plausibility. The

final part of this section defines and discusses in detail these two uncertainty

quantifications, and how they relate to each other.

2.2.1 Frame of discernment Θ, power set 2Θ and Basic Probability Assignment

The frame of discernment Θ, also known as the universal set, is “a set of mutually

exclusive elementary propositions” [Bae et al., 2002]. C. Murphy [Murphy, 2000]

adds that the list of propositions should be exhaustive.

If we use Schrödinger’s cat to illustrate Evidence Theory rather than quantum

mechanics, then the frame of discernment is composed of only two propositions

the cat is alive and the cat is dead. Clearly, these two propositions are elementary,

mutually exclusive (the cat cannot be alive and dead at the same time) and

exhaustive (the cat is either alive or dead, there is no other option).

The power set of Θ, 2Θ, is the set of all subsets of Θ. It contains therefore

all the possible propositions, not necessarily elementary nor exclusive, that

we want to quantify. In the Schrödinger’s cat example, the power set 2Θ is

composed of 4 elements, i.e. the cat is dead, the cat is alive, the cat is either

dead or alive and the empty set ∅.

The level of confidence one has on an element E of 2Θ is quantified using

the Basic Probability Assignment (BPA) also called mass (m). A BPA satisfies

the following three axioms:

m(E) ≥ 0,∀E ∈ 2Θ (2.1)

m(∅) = 0 (2.2)

∑

E∈2Θ

m(E) = 1 (2.3)
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The BPA is therefore a function that maps the power set into [0, 1]. The

elements of 2Θ are solely defined by their associated BPA, and the ones

with strictly positive BPA are commonly called focal elements (FE). In the

remainder of this thesis, the set of focal elements is referred as FE , and the

couple (m,FE) as a BPA-structure.

Some particular cases of BPA-structure might be of interest [Shafer, 1976].

The term vacuous BPA-structure is used if the frame of discernment is the

only focal element, i.e. Θ = FE . In this case, the uncertainty is complete.

A consonant BPA-structure is such that the focal elements are nested, i.e.

FE1 ⊂ FE2 ⊂ · · · ⊂ FEn. Finally, if all focal elements are singleton sets, then

the BPA-structure is referred to as Bayesian as the Belief function (c.f. §2.2.4)

necessarily verifies the Bayes’ rule of additivity* (G. Shafer proved this in

Theorem 2.8 of [Shafer, 1976]).

When more than one parameter is considered uncertain (e.g. u1 and u2),

the power set is composed of the cartesian products of all the elements of the

power sets of each parameter’s frame of discernment: 2(Θ1,Θ2) = 2Θ1 × 2Θ2 .

Thus the BPA of a given element of 2(Θ1,Θ2) is the product of the BPA of the

two corresponding elements:

∀ (E1, E2) ∈ 2Θ1 × 2Θ2 , m1,2 (E1 × E2) = m1 (E1) ∗m2 (E2) (2.4)

A focal element of FE1,2 ⊂ 2(Θ1,Θ2) is therefore necessarily formed by a

focal element from FE1 and one from FE2. Also, the number of focal elements

increases exponentially with the number of uncertain parameters and their

respective number of focal elements. If nU parameters are considered uncertain

*The Bayes’ rule of additivity is: If A ∩B 6= ∅, then Bel (A ∩B) = Bel (A) +Bel (B)
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and |FEk| represents the number of focal elements relative to the kth uncertain

parameter, the total number of focal elements in FE1,2,··· ,nU is given by:

|FE1,2,··· ,nU | =
nU∏

k=1

|FEk| (2.5)

This extension is based on the assumption that the different uncertain

parameters are independent. Throughout this work, we will consider this

assumption to hold. Indeed, this is in a large majority the case in practical

engineering applications. For instance, the efficiency of an engine, and the

power to mass ratio of solar arrays are clearly independent parameters. Also,

the present thesis focuses on optimisation under uncertainties, and therefore

the case of dependent parameters is beyond its scope. The reader can refer to

the work of [Ferson et al., 2004] for more information about this issue.

2.2.2 Combining sources of evidence

Evidence can come from different sources, and this information could be

partially or totally conflicting. The opinion of two or more experts can be

available as evidence, the results of analysis or experiments, the measurements

of multiple sensors, etc. There is no reason, a priori, to consider one body of

evidence and ignore the others. Evidence Theory is “based on the assumption

that these sources are independent” [Sentz and Ferson, 2002]. All the available

information has therefore to be combined. Many different rules of information

combination exist, and depending on each particular circumstance, one or

another may be preferred.

Dempster’s rule is without any doubt the best known and possibly the

most commonly used approach to combine bodies of evidence. G. Shafer even
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wrote [Shafer, 1976] that “the heart of the theory [of Evidence] is Dempster’s

rule of effecting this combination”. If two sources of evidence are conceptualised

into two BPA functions m1 and m2, the combined BPA m(1⊗2) is defined by:

m(1⊗2)(A) =





∑
B∩C=Am1(B)∗m2(C)

1−K if A 6= ∅

0 otherwise

(2.6)

K =
∑

B∩C=∅
m1(B) ∗m2(C) (2.7)

This rule strongly emphasises the agreement between bodies of evidence.

The conflicting ones are ignored via the normalisation factor [Sentz and Ferson,

2002]. Zadeh was one of the first to point out the issue. He wrote in 1986

that “the relational point of view leads to the conjecture that [Dempster’s rule]

cannot be applied until it is ascertained that the bodies of evidence are not

conflicting” [Zadeh, 1986]. A number of other rules have thus been developed to

deal with conflicting bodies of evidence. K. Sentz and S. Ferson have collected

a wide but non-exhaustive list and classified them as follows [Sentz and Ferson,

2002]:

dempster’s like rules The Discount and Combined method [Shafer,

1976,Dubois and Prade, 1992] (a weight factor is applied to each source,

the greater the confidence in a source, the larger the weight factor), Yager’s

modified Dempster’s rule [Yager, 1987] (the conflict between sources is

attributed to the universal set instead of being ignored), Inagaki’s unified

combination rule [Inagaki, 1991] (a unification of Dempster’s and Yager’s

rules),
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averaging rules p-Averaging [Sentz and Ferson, 2002] (a generalisation

of averaging for probability distributions), Convolutive x-averaging [Sentz

and Ferson, 2002] (a generalisation of the average for scalar numbers),

distance-based rules Chen’s new fusion approach [Chen et al., 2005]

(based on a measure of the distance between conflicting sources of evi-

dence), Zhang’s centre combination rule [Zhang, 1994] (defines a measure

of Belief of the intersection of two sets on which evidence is available).

A disjunctive consensus rule has also been introduced by [Dubois and Prade,

1992].

The combination rules listed here are but some of the many that have been

proposed in literature. As can be seen, the analyst has many alternatives to

consider, and the selection of the appropriate combination rule is a difficult

issue. Moreover, as highlighted in [Oberkampf and Helton, 2002], “the results of

an uncertainty analysis can strongly depend on which combination method is

chosen for use”. The choice of the combination rule should therefore be driven

principally by the context of the information to be combined. For instance,

whether the information is conflicting or not is a key point.

In this thesis, we consider only the case in which the sources of evidence

have already been combined. Therefore, the aim of this subsection was not

to give a comprehensive overview of the combination problem, but simply to

highlight the variety of available rules and the importance of the selected one.

2.2.3 Intervals as elementary propositions

In most engineering applications of Evidence Theory, intervals are used as

elements of the frame of discernment, i.e. as elementary propositions. To quote
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P. Limbourg [Limbourg, 2005], “for the problems modelled, it is adequate (but

not necessary) to restrict the [elementary propositions] to intervals rather than

more complicated sets”. The frame of discernment can then be viewed as the

counterpart of the finite sample space in Probability Theory.

Let us consider a parameter u of which the real value is unknown. and

define the associated frame of discernment as the set of 5 intervals Θ =

{i1, i2, i3, i4, i5} as illustrated in Figure 1. An expert then defines the BPA on

i
1

i
2

i
4

i
5

i
3

-∞ +∞

Figure 1: Example of frame of discernment based on intervals.

the elements of the power set 2Θ by expressing his/her belief of the uncertain

parameter u belonging to each of them. For example, there is a probability

of 30% that u ∈ i2 ∩ i3, 10% that u ∈ i3, and 60% that u ∈ i4. All other

elements of 2Θ are assigned a null BPA. Therefore, the set of focal elements

is FE = {I1 = i2 ∪ i3, I2 = i3, I3 = i4} (c.f. Figure 2). Note that in this
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Figure 2: Example of set of focal elements based on intervals, and their associated
mass.

particular example, I1 and I2 are not disjoint. Moreover, even though i2 is not
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a focal element, I1 = i2 ∪ i3 and I2 = i3 are two distinct focal elements, and

have different mass.

When 2, 3 or more uncertain parameters are described by means of inter-

vals, focal elements become rectangles, rectangular parallelepipeds (boxes) or

orthotopes (hyper-rectangles).

In this work, intervals are unsurprisingly used throughout for the modelling

of uncertainties and defining the BPA-structures.

2.2.4 Belief and Plausibility functions

While Probability Theory uses a single value for quantifying uncertainty,

Evidence Theory uses two measures: the lower and upper bounds of the

uncertainty quantification. The lower bound is called Belief (Bel) and the

upper bound Plausibility (Pl) and are defined as follows:

Bel(A) =
∑

FE⊂A
FE∈2Θ

m(FE) (2.8)

Pl(A) =
∑

FE∩A 6=∅
FE∈2Θ

m(FE) (2.9)

Thus, all the propositions with a nonempty intersection with the set A

contribute to the Pl value while only the propositions included in A contribute

to the Bel value. For example, Figure 3 represents a BPA-structure of two

uncertain parameters u1 and u2. Parameter u1 is believed to belong to any

of the four intervals [a1, b1], [b1, c1], [c1, d1] and [d1, e1], thus forming the

set of focal elements FE1. Similarly, the parameter u2 is associated with

FE2 = {[a2, b2], [b2, c2], [c2, d2]}. Thus, the BPA-structure of the uncertain
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Figure 3: Belief and Plausibility of proposition A in a given BPA structure of two
uncertain parameters.

domain is composed of twelve focal elements FE1 to FE12. Let us define

proposition A as the area within the curve C . Only the focal elements FE1,

FE6 and FE10 (grey in the figure) are entirely included in C . In addition, FE2,

FE3, FE5, FE7, FE9 and FE11 are partly inside C (dotted in the figure),

therefore only partially implying the proposition A. The Belief and Plausibility

of A are then:

Bel(A) = m(FE1) +m(FE6) +m(FE10)

Pl(A) = m(FE1) +m(FE2) +m(FE3) +m(FE5) +m(FE6)

+ m(FE7) +m(FE9) +m(FE10) +m(FE11)
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If the pair (u1, u2) takes its value within [b1, c1]× [c2, d2], it fulfils proposition

A. However, if it is inside [c1, d1]× [b2, c2], it may verify A but also may not.

The Belief represents then our confidence in A being always true while the

Plausibility is our confidence in A being possibly true.

Three important and meaningful relations between Belief and Plausibility

functions arise directly from the fact that all basic assignments must sum to 1:

Bel(A) +Bel(A) ≤ 1 (2.10)

Pl(A) + Pl(A) ≥ 1 (2.11)

Pl(A) +Bel(A) = 1 (2.12)

where A represents the complement of A. The two first relations show that,

in contrast to Probability Theory, the Belief (resp. Plausibility) assigned to

an event does not uniquely determine the Belief (resp. Plausibility) of its

complement. The last relation means that Pl considers the uncertainty, while

Bel does not, as shown in Figure 4.

Figure 4: Interpretation of the relation between Belief, Plausibility and uncertainty
(from [Agarwal et al., 2003]).

2.2.5 Cumulative functions: CBF, CCBF, CPF, CCPF

Analytical functions or numerical surrogates are used in engineering to represent

a system. The function f , referred to as the system function, is defined on the
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set of input U and return value in the codomain Y. For the input variables u,

the quantity y = f(u) characterises the system performance. In mathematical

notation, the system function is defined as follows:

f : U → Y

u→ y = f(u) (2.13)

The Tsiolkovsky rocket equation is an example of a system function, returning

the change of velocity of a spacecraft for a given mass of propellant and total

mass of the spacecraft. When the input variables are subject to uncertainties,

the analyst is interested in propagating the uncertainties into Y, the output

domain of f . For this purpose, and similarly to Probability Theory, cumulative

and complementary cumulative functions are defined in Evidence Theory to

summarise the uncertainty in y.

As Evidence Theory defines two functions to quantify the uncertainty, two

pairs of cumulative functions are available to the analyst: (i) the Cumulative

Belief Function (CBF) and Complementary Cumulative Belief Function (CCBF)

related to the Belief and (ii) the Cumulative Plausibility Function (CPF)

and Complementary Cumulative Plausibility Function (CCPF) related to the

Plausibility.

The CBF is defined as follows:

CBF : Y → [0, 1]

y∗ → CBF (y∗) = Bel (y ≤ y∗) = Bel
(
f−1 (Y∗)

)
(2.14)
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where Y∗ is the set of values of Y that are lower than y∗, i.e. Y∗ = {y ∈ Y | y ≤ y∗}

and:

Bel
(
f−1 (Y∗)

)
=

∑

FE∈FE
∀u∈FE, f(u)≤y∗

m(FE) (2.15)

The CBF domain of definition is Y, the codomain of the system function f .

The CBF returns values in the interval [0, 1]. For a threshold y∗ ∈ Y , the CBF

of y∗ corresponds to the Belief that the system function value is lower than

the threshold y∗.

In the similar way, the other cumulative functions are defined below.

CCBF : Y → [0, 1]

y∗ → CCBF (y∗) = Bel (y > y∗) = Bel
(
f−1

(
Y∗
))

(2.16)

CPF : Y → [0, 1]

y∗ → CPF (y∗) = Pl (y ≤ y∗) = Pl
(
f−1 (Y∗)

)
(2.17)

CCPF : Y → [0, 1]

y∗ → CCPF (y∗) = Pl (y > y∗) = Pl
(
f−1

(
Y∗
))

(2.18)

with the following definitions:

Bel
(
f−1

(
Y∗
))

=
∑

FE∈FE
∀u∈FE, f(u)>y∗

m(FE) (2.19)

Pl
(
f−1 (Y∗)

)
=

∑

FE∈FE
∃u∈FE, f(u)≤y∗

m(FE) (2.20)

Pl
(
f−1

(
Y∗
))

=
∑

FE∈FE
∃u∈FE, f(u)>y∗

m(FE) (2.21)
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Figure 5 shows an illustration of typical cumulative and complementary

cumulative functions in the frame of Evidence Theory. For instance, when
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Figure 5: Examples of cumulative Belief and Plausibility functions (left) and comple-
mentary cumulative Belief and Plausibility functions (right).

CBF (y∗) is equal to 1, there is complete certainty that the system budget

remains lower the threshold y∗ whatever the actual values of the uncertain

parameters are. The difference between cumulative and complementary cumu-

lative functions lies only in the sign of the inequality. The CCBF (y∗) is the

Belief that the system function value is greater than the threshold y∗, instead

of lower. Similar comments apply to the CPF and CCPF.

2.3 evidence theory and probability theory

The classical way to treat uncertainty is through Probability Theory, but

its use has been questioned over recent decades. This section provides a

parallel overview of Probability Theory and Evidence Theory on 3 specific

aspects: the modelling of uncertainties, the mathematical paradigm and the

combining of evidence. The intention here is to highlight important differences

and commonalities in these two theories, and in this way better understand
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Evidence Theory through the prism of the more commonly known Probability

Theory.

2.3.1 Modelling Uncertainties

A probability density function is well suited to mathematically model aleatory

uncertainties, as long as enough data (experimental for instance) are avail-

able [Agarwal et al., 2003]. This is still the case, even when the analyst has

to make assumptions on the distribution function and estimate its parame-

ters. Moreover, [Bae et al., 2002] pointed out that aleatory uncertainty could

be in fact epistemic uncertainty when “insufficient data are available to con-

struct a probability distribution”. In this situation, alternative distributions

can represent the uncertainty because the mean, variance and/or shape are

unknown [Hoffman and Hammonds, 1994]. The results of the analysis would

therefore only reflect the arbitrary assumptions made.

Probability, however, fails to represent epistemic uncertainties because there

is no reason to prefer one distribution function over another [Oberkampf and

Helton, 2002]. Indeed, the probability applies only if one can identify a sample

of independent, identically-distributed observations of the phenomenon of

interest [Pate-Cornell, 1996]. When uncertainties are expressed by means of

intervals, based on experts’ opinion or limited experimental data, such as in

the case of space mission design, this representation becomes questionable. As

pointed out by Helton et al. [Helton et al., 2007], there is a large conceptual

difference between saying that “all that is known about a quantity is that its

value belongs to an interval [a,b]” and saying that “the probability distribution

of that quantity is uniform on [a,b]”. The latter statement, in fact, implies an
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additional piece of knowledge about the distribution of that quantity on the

interval [a,b].

Even though Probability Theory has been widely used to model uncertainties,

including epistemic ones, it nevertheless appears to have some limitations;

namely that the results and their interpretation may be questionable, as rightly

illustrated in [Le Duy et al., 2010].

2.3.2 The power set is not a σ-algebra

The power set of the finite sample space in Probability Theory is the equivalent

of the set of focal elements of Evidence Theory, in other words it is the collection

of events which can be assigned probabilities. This set constitutes a σ-algebra,

that is a collection of sets satisfying certain predefined properties: (i) it is not

empty, (ii) it is closed under complementation and it is closed under countable

union. In contrast, the set of all focal elements FE ⊂ 2Θ does not constitute a

σ-algebra. This distinguishes Evidence Theory from Probability Theory on a

mathematically fundamental level.

Unlike Probability Theory, unions and intersections of subsets of Θ are

not necessarily focal elements: evidence on the event {A or B} or {A and B}

does not imply/require information on either events {A} and {B}. The set of

focal elements is therefore not closed under countable union and countable

intersection. This means that the Principle of Indifference described and

criticised by Keynes [Keynes, 1921] is not needed in Evidence Theory. Moreover,

the complement of a focal element is not necessarily itself a focal element.

While P (A) = 1− P (A) is true in Probability Theory, this equality does not

hold in Evidence Theory.
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The BPA-structure is therefore less structured than its counterpart in Proba-

bility Theory. It is designed to represent only the pieces of information available

to the analyst. This characteristic is fundamental when the analyst needs to

make decisions based on poor or incomplete information.

2.3.3 Combining sources of evidence

Probability Theory and Evidence Theory face the same problem when it comes

to combining bodies of evidence, be they conflicting or not. We have already

discussed the issue for Evidence Theory in §2.2.2, and listed some of the many

rules available. The situation is no different for Probability Theory. A review

of some aggregation methods of experts’ opinions is available, for instance,

in [Clemen and Winkler, 1999]. One can cite, for example, the linear opinion

pool [Stone, 1961] as an example of mathematical combination methods or the

Delphi technique [Rowe and Wright, 2001] for behavioural approaches.

2.4 engineering applications of evidence theory

Evidence Theory is an efficient and interesting way to model uncertainty.

However, researches on how to apply this theory to complex engineering

problems have all faced significant issues. As shown previously, the choice

between numerous combination rules of information is one of them. Even more

problematic is the computational cost associated with this approach. This has

been the most challenging difficulty in applying Evidence Theory to engineering,

and many researchers have worked extensively on the subject. This section

will discuss this issue, and some approximation methods proposed to deal
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with it. Finally, the chapter will be concluded by presenting a few engineering

applications of Evidence Theory.

2.4.1 Computational Complexity

Combining sources of evidence has been proven to be a #P-complete decision

problem by Orponen [Orponen, 1990]. In other words, it is unlikely that a

polynomial-time algorithm can solve this problem. The same point was made

about computing the Belief function [Provan, 1990]. When dealing with a

large number of uncertain parameters and/or numerous bodies of evidence,

the computation can quickly become infeasible in practice [Burrus and Lesage,

2003].

It can also be deduced from the definitions of the cumulative functions

(equations 2.14–2.18), that the computational time required to evaluate a

cumulative function can become quickly prohibitive as the number of uncertain

parameters and the number of intervals per parameter increase. In fact, the total

number of focal elements grows exponentially with the number of uncertain

parameters nU and the number of focal elements per parameters, as seen in

equation (2.5). In particular if every uncertain parameter has the same number

of focal elements N , then |FE1,··· ,nU | = NnU . Furthermore, in order to identify

the focal elements included in (or intersecting) f−1 (Y∗), the maximum of

f over every focal element has to be computed and compared to y∗. In the

event that the system function is convex, this maximum lies at one of the

vertices of the focal element, otherwise, an optimisation problem has to be

solved over every focal element. These aspects will be considered in greater

detail in the next chapter, but before this, some approximation methods taken

from literature on the subject are presented.
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2.4.2 Simplification of the BPA-structure

To reduce the computational cost and make the Evidence Theory more widely

usable in real world applications, approximation methods of the BPA-strucutre

have been developed. The idea is to simplify it at a pre-processing stage in

order to speed up the computation of the cumulative functions. Two categories

of approximation are presented here.

The first and most widely studied in the literature aims at reducing the

number of focal elements. Three example of approximations are detailed: the (k-

l-x)-approximation, the D1-approximation and the Inner and Outer Clustering

Approximation.

A more recent strategy consists in trying to reduce the number of uncertain

parameters by evaluating their impact on the value of the cumulative function

through a sampling approach. A summary of this promising but complex

method is given thereafter.

k-l-x approximation

This approximation has been presented in [Tessem, 1993]. The idea here is

fairly simple and can be summarised as follows:

· Keep the focal elements with higher mass

· Delete the focal elements with lower mass

· Re-normalise the mass function

By keeping the focal elements with larger mass, the loss of information is

reasonably low. The re-normalisation step is only performed to ensure that the

masses still add up to one. The result of the approximation depends on the 3

parameters (k, l, x). The number of focal elements kept in the approximated
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mass function lies within the interval [k, l]. The exact number of focal elements

is based on x ∈ [0, 1] such that they represent a total mass of at least 1− x.

The computational cost of this approximation is O (nFElog(nFE)), where nFE

is the number of focal elements.

D1-approximation

The D1-approximation presented by M. Bauer [Bauer, 1997] is a variant of

the k-l-x method. The k elements with higher mass are still kept and the

remaining ones deleted. However, the mass of the deleted focal elements is

then redistributed within a selection of the k remaining ones. Following the

notation used by M. Bauer, let us define, for a given integer k, the sets of focal

elements M+ and M−:

M+ =
{
FE1, ..., FEk ⊆ 2Θ|∀FE /∈M+ : m (FEi) ≥ m(FE)

}
(2.22)

M− =
{
FE ⊆ 2Θ|m(FE) > 0, FE /∈M+

}
(2.23)

The distribution of the mass of each focal element of M− amongst those of

M+ is done as follow:

· The collection MA of supersets of A ∈M− is computed:

MA =
{
B ∈M+|A ⊂ B

}
(2.24)

· The mass m(A) is uniformly dispensed amongst the smallest members of

M+

· If MA = ∅, then M ′A is constructed

M ′A =
{
B ∈M+||B| ≥ |A|, B ∩A 6= ∅

}
(2.25)
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and m(A) is shared amongst the smallest members of M ′A.

· The mass that cannot be distributed following the two previous steps is

finally assigned to the frame of discernment Θ.

A complete description of the algorithm is available in [Bauer, 1997]. The

computational time required to perform the approximation of n focal elements

in k is O
(
k, (n − k)

)
. It has to be noted that this approximation is not well

suited for elementary propositions specified by mean of intervals, as is the case

in preliminary space mission design.

Inner and Outer Clustering Approximation

As a last example of an approximation based on the reduction of the number

of focal elements, we present here the method proposed by T. Denoeux in [De-

noeux, 2000, Denoeux, 2001]. The specificity of this approach relies on the

creation of not a single but a couple of BPA (m̂−, m̂+), leading to upper and

lower bounds of the Pl (and in some specific cases of the Bel too). Practically,

the reduction of the number of focal elements is done by regrouping successively

2 focal elements with the minimum distance (δ∩ for m̂−, δ∪ for m̂+) until the

goal number of focal elements is achieved.

δ∩(Fi, Fj) = m(Fi)|Fi|+m(Fj)|Fj | −
(
m(Fi) +m(Fj)

)
|Fi ∩ Fj |(2.26)

δ∪(Fi, Fj) =
(
m(Fi) +m(Fj)

)
|Fi ∩ Fj | −m(Fi)|Fi| −m(Fj)|Fj |(2.27)

Reducing the number of uncertain parameters

An alternative to reducing the number of focal elements is to limit the number

of uncertain parameters to the most influential ones. [Helton et al., 2007]
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proposed a multi-step method to sequentially construct the CBF (or the other

cumulative functions of Evidence Theory). The idea is essentially to first

perform a sensitivity analysis to order the uncertain parameters from the

most to the least contributing to the uncertainties in the system function. The

CBF is constructed considering only the uncertainty of the most influential

parameter, and the others are assigned degenerate evidence spaces (i.e. the sole

focal element is the power set). Then, the CBF is constructed again considering

2 uncertain parameters, then 3, and so on until no meaningful changes are

displayed. Thus, the analyst can decide to take into account a subset of the

uncertain parameters (only the most influential ones), and assume the others

completely uncertain.

2.4.3 Examples of Engineering Application of Evidence Theory

Many examples of application of Evidence Theory are available in literature.

The intention of this section is to mention a few examples of application

in engineering. [Sentz and Ferson, 2002] give as an appendix a large list of

applications classified by subjects. The reader should refer to this list and the

provided references for more information.

The classic scheme of application is in data fusion of multiple sensor measure-

ments [Burrus and Lesage, 2003]. In these situations, the ease to combine bodies

of evidence and the capability to deal with incompleteness or ignorance make

Evidence Theory a natural choice. For instance, the authors in [Le Hégarat-

Mascle et al., 1998] have at their disposal two bodies of evidence to identify

forest areas. The first one is a set of optical images, which are accurate but

sensitive to clouds, while the second is a set of radar images, which are less

precise but not affected by cloud coverage. The aggregation of two indepen-
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dent sources of evidences is illustrated in this application. Also, two types of

ignorance are present in this case: imprecision of the radar images and the

lack of knowledge in the optical image (when clouds cover the area of interest).

Other applications related to sensor data fusion can be found in [Li et al., 2010]

or [Vannoorenberghe et al., 1999].

Another area where Evidence Theory has been successfully applied is in

risk assessment. For example, [Le Duy et al., 2010] used Evidence Theory

to study the risk of accidents at nuclear power plants. After showing that

probability theory could lead to very ambiguous or even erroneous decision

making, Dempster-Shafer’s theory is used as an alternative. The authors

point out that “it allows decision makers to take into account the parameter

uncertainty in a proper way and to have further information about the final

results in the best case and worst case without having to bet on the form of a

single probabilistic distribution.”. Other applications linked to risk assessment

and decision making are [J. Holmberg et al., 1989] or [Engemann et al., 1996].

Finally, aerospace is also a field where the Evidence Theory has been consid-

ered. For instance, the design of an Intermediate Complexity Wing is described

in [Bae et al., 2002], the sizing problem of an aircraft concept in [Agarwal et al.,

2003], the optimisation of robust aero-capture trajectory in [Vasile, 2004] or

the preliminary design of a spacecraft in [Croisard et al., 2010].

2.5 conclusions

Evidence Theory has been introduced and discussed at length in this chapter. It

is considered as a suitable framework to modelling uncertainties. Even though

it is a relatively recent theory, the theoretical foundations are well established.

However, its applications are somehow limited, and mostly constrained to within
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the academic community. The main reason for this lies with the computational

cost associated with it. Also, engineers and decision makers in industry need

to be educated about the strengths of this approach when it is best to use it,

as well as how to interpret the results it provides.

Little work has been done to use Evidence Theory in reliability optimisation

problems. This will be the subject of the next chapter.
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S O LV I N G T H E O P T I M I S AT I O N U N D E R U N C E RTA I N T Y

P RO B L E M

In the previous chapter, modelling uncertainties in the frame of Evidence Theory

has been presented, and will be used here to formulate the Optimisation Under

Uncertainty (OUU) problem. In the first section, the general definitions of

robust and reliable design optimisation are given. Then the particularities due to

Evidence Theory are discussed, and two practical multi-objective formulations

are suggested.

The second section deals with three direct and exact methods to tackle the

OUU problem. The step method is an attempt to solve the problem sequentially

using a local optimiser. The two other methods rely on the population-based

genetic algorithm. The bi-objective method has been introduced previously by

Vasile [Vasile, 2002,Vasile, 2005]. However, no particular attention was given

to the implementation. Improvements are therefore proposed here to make it

more efficient.

Finally, an indirect method through a clustering algorithm is presented.

This method is based on sample points and space partition, and therefore is

an approximation technique. Different variants are suggested and discussed.

The main objective of the indirect method is to mitigate the well-known

computation burden associated with Evidence Theory, which becomes critical

when the Belief is used as an objective or constraint of an optimisation problem.

35
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3.1 the optimisation under uncertainty problem

3.1.1 Definitions

Solving a problem of optimisation consists in identifying the variables that

minimise (or maximise) a function f traditionally referred to as the cost

function. In engineering disciplines, it represents the system budget in the

design process, and is commonly named the system function. The variables are

then called design variables. Constant parameters are also used in the system

function for the system modelling to be representative of the design problem

at hand. Common system functions in space mission design are the mass of the

satellite, the power consumption of the onboard subsystems and components,

as well as the change of velocity necessary to fly the spacecraft to a target

planet.

So the system function maps D×U to Y , where D ⊂ RnD is the set of possible

designs d = [d1, d2, . . . , dnD ], and U ⊂ RnU the set of constant parameters

u = [u1, u2, . . . , unU ]. Y ⊂ R is the set of possible values of f . Additionally,

the design may need to verify constraints expressed via a function g : D → R.

Using this notation, a generic deterministic optimisation problem is defined as

follows:





min
d∈D

f (d,u)

s.t. g (d,u) ≤ 0

(3.1)

If some constant parameters happen to be uncertain, as is the case during the

preliminary stage of the design, then problem 3.1 is not deterministic anymore.

The uncertainty of the parameters needs to be modelled, and the optimisation
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formulation modified. Whether the aim is to find a robust design, a reliable

design, or a reliable and robust design at the same time, the formulation will

be different. First, let’s recall the definition of robustness and reliability as

given for example by [Yao et al., 2011]:

robustness The degree of tolerance of the system to be insensitive to

variations in both the system itself and the environment.

reliability The likelihood that a component (or a system) will perform

its intended function without failure for a specified period of time under

stated operating conditions.

Note that the Mission Reliability can also be defined as “the likelihood that

the system is operable and capable of performing its required function for a

stated mission duration” [Yao et al., 2011]. The difference is that the mission

reliability accepts partial failure as long as the system performs its mission,

while basic reliability does not. It is therefore less stringent. Whatever the

chosen definition is, the following is applicable.

Let’s define µf (d) as the mean value of the system function f over the

domain of uncertain parameters U for a given design, and P (·) as a measure of

likelihood that a proposition is verified. We can now formulate the optimisation

problem under uncertainty as follow:

robust design optimisation problem (rdo) The objective is to

find the optimal design point such that the likelihood of the system

function being lower than a given constant y∗ ∈ Y , named the threshold,

is maximum, while the constraints are satisfied:





max
d∈D

P (f (d,u) ≤ y∗)

s.t. P (g (d,u) ≤ 0) = 1

(3.2)
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reliability-based design optimisation problem (rbdo) The ob-

jective is to minimise µf , the mean value of the system function, while

the likelihood of the constraints being satisfied is at least a required level

R ∈ [0, 1]:





min
d∈D

µf (d)

s.t. P (g (d,u) ≤ 0) ≥ R
(3.3)

reliability-based robust design optimisation problem (rbrdo)

This formulation is in fact the two previous ones combined, that is:





max
d∈D

P (f (d,u) ≤ y∗)

s.t. P (g (d,u) ≤ 0) ≥ R
(3.4)

3.1.2 Optimisation Under Uncertainty in the Frame of Evidence Theory

Throughout the remainder of this chapter, we will make use of Evidence Theory

to characterise the uncertain parameters. Thus, let us associate a BPA-structure

to the frame of discernment U of the uncertain parameters u. Using the CBF

as the measure of likelihood, we can define the RBRDO as:





max
d∈D

CBF fd (y∗)

s.t. CBF g1

d (0) ≥ R1

CBF g2

d (0) ≤ R2

(3.5)
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The subscript ()d highlights the dependency of the CBF value on the design

vector d. The superscript ()f or ()gi identifies that the CBF is computed

respectively for the system or constraint functions. The reader may wonder

why problem 3.5 has two constraints rather than one as in problem 3.4. This

is due to the fact that in Evidence Theory, the Belief of a proposition is not

equal to 1 minus the belief of its opposite (c.f. §2.2.4). Therefore, depending

on the constraint, it might be pertinent to require the Belief to be higher than

(case of g1) or lower than (case of g2) a given level.

Note that Belief and Plausibility are interchangeable, and the choice to use

either of the two for objective and/or constraints depends on the problem and

the goal of the analyst. When chosen as the objective, the Belief corresponds

to a strict requirement on the performance of the mission. On the other hand,

if the analyst was interested in the possibility of having the mission feasible in

some conditions, then Plausibility should be selected. Similar considerations

are applicable to the constraints.

Although the solution to problem 3.5 gives a measure of the maximum

confidence in the proposition f < y∗, it does not give a measure of the best

achievable system budget. The simultaneous optimisation of the CBF and of

f resolves this. The problem can therefore be formulated as a bi-objective

optimisation problem, such that:





min
y∗∈Y

y∗

max
d∈D

CBF fd (y∗)

s.t. CBF g1

d (0) ≥ R1

CBF g2

d (0) ≤ R2

(3.6)
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A solution to problem 3.6 corresponds to a pair (d, y∗) such that y∗ is

minimal and the CBF is maximal, while the constraints are satisfied. Therefore,

a pair (d, y∗) can be said to be Pareto optimal if there is no other pair for

which the corresponding CBF is higher and y∗ is lower. The image of the set

of solutions that are Pareto optimal is called the Pareto front [Pareto et al.,

1972].

Two sample CBF curves corresponding to two design points are represented in

Figure 6. Note that depending on value of the threshold y∗, different designs can

be optimal. Furthermore, the following two considerations apply to problem 3.6:

· for each value of the threshold y∗, one or more designs can maximise the

belief.

· an ideal design d∗ is such that the CBF associated to it is better than

the CBF associated to any another design, for any threshold:

CBF fd∗ (y∗) > CBF fd (y∗) , ∀ (d, y∗) ∈ D × Y (3.7)

The latter point is particularly interesting because it defines the optimality

of a set (the entire CBF curve) over another. According to this principle,

the optimality of a design can be redefined as follows: a design d1 dominates

another design d2 if every point in the image space corresponding to d1 is

better, i.e has lower y∗ and higher CBF, than every point in the image space

corresponding to d2. This definition of optimality will lead us in section 3.2 to

a particular formulation of the OUU, the multi-belief approach.
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Figure 6: Typical solution of the optimisation under uncertainty problem (dash). The
CBF of 2 of the dominating designs are represented (? and �).

3.1.3 Difficulties in Solving OUU Problems

We have already discussed in the previous chapter, §2.4.1, the impact on the

computational cost of the number of focal elements. When used in an OUU

problem, as objective and/or constraints, the CPU time required to evaluate the

Belief is critical. Therefore, the approximation methods presented earlier may

be valuable (c.f. §2.4.2). However, finding ways to mitigate the computational

cost of the OUU in the frame of Evidence Theory remains necessary. Particular

attention will be given to this topic when discussing different ways to tackle

OUU.

Another issue is due to the nature of the Belief and Plausibility functions. As

we have seen during the presentation of the Evidence Theory in the previous
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chapter, they are discontinuous. Thus, traditional gradient-based optimisers

cannot handle OUU when Evidence Theory is used for modelling the uncer-

tainties. Various solutions have been proposed to overcome this problem, such

as the use of surrogate models [Agarwal et al., 2003, Agarwal et al., 2004]

or multi-agent collaborative search [Scari, 2005, Vasile, 2005]. The latter is

preferred in this work and will be discussed in the next section. Indeed, in

addition to addressing the discontinuity issue, population-based optimisers

are suitable for identifying the different designs dominating for various levels

of Belief. Surrogates have been proven efficient tools on some optimisation

problems with computationally expensive objective or constraints [Eldred et al.,

2002]. However, great care is required to tune them to each problem, and the

performance is necessarily dependent on the sample set available.

3.2 direct approach

The OUU problem in the frame of Evidence Theory has been formulated and

discussed in the previous section. Here, direct ways to tackle the problem are

presented. The focus is on the use of Evidence Theory in the objectives, but

most of the comments made are applicable to constraints as well.

Three direct approaches are considered, the step method and two alternatives

using a population-based algorithm, the bi-objective and multi-belief methods.

Their respective applicability, advantages and drawbacks are discussed.

3.2.1 Step Approach

To be able to compute the Belief, an appropriate threshold has to be set.

The step method is very straightforward as it computes the optimal belief for
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discrete values of the threshold y∗. It works as follows: an initial threshold y∗0

is chosen such that a design vector d0, for which the Belief is equal to 1, exists.

Then a smaller (or higher, depending on the problem) threshold y∗1 is selected,

and a local optimiser is used to find the design d1 that maximises the Belief,

using d0 as a starting point. This is repeated until a positive Belief cannot be

found. The set of thresholds can be given initially by the user. Alternatively,

the user fixes the step between 2 successive thresholds δy∗. A pseudo-code is

presented in Algorithm 3.1.

Algorithm 3.1: Step method

Input: y∗, δy∗

Output: Matrix Out where each row corresponds to a step. The ith row
of Out is composed of the value of the threshold, the optimum
design vector and the maximum belief found at the ith step.

/* Set the initial value of the best current Belief to 1 */

Belmax ← 1
while Belmax > 0 do

/* Update the threshold */

y∗ ← y∗ − δy∗
/* Optimisation of the belief for the given threshold */

[Belopt,dopt]← max
d∈D

Bel (f(d,u) < y∗)

/* Add a line at the end of the output matrix and save

the results */

Out(end+ 1, :) = [ν,Belopt,dopt]
/* Update the best current Belief variable */

Belmax ← Belopt
end

Due to the non-derivative nature of the belief function, a gradient-based

optimiser is not applicable. Therefore a derivative-free algorithm (the MatLab

fminsearch algorithm) was used. A first drawback of the step method is its

dependency on the selection of the initial values of the threshold y∗0 and the

threshold step δy∗ (or alternatively the ordered set of thresholds). These are

arbitrary choices, and at best can be informed by preliminary knowledge of
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the problem at hand. If the threshold step is small, a lot of iterations will

be required to solve the problem, which would be computationally expensive.

On the other hand, too large a step would make the local optimisation more

difficult, and the results less accurate (i.e. fewer points on the optimal Belief

curve and the associated designs would have been found). A further drawback

is that the procedure is sequential, which makes it impossible to have an

intermediate complete Belief curve. Interrupting the algorithm prematurely (if

the computational time reached a maximum for instance) would truncate the

available solutions to the higher levels of Belief.

But the most important drawback of all is that this method can fail to

converge to the global Pareto front or to identify multiple design points. In fact,

the use of the previous optimal di−1 to start the ith iteration helps the local

optimiser to converge quickly but prevents the identification of a completely

different design point. Therefore, the initial design d0 strongly influences the

convergence. In order to overcome this difficulty, a multi-start approach could

be used. However, a lot of computational effort could be wasted on unnecessarily

improving sub-optimal solutions or in converging multiple times to the same

design.

Alternatively, a global optimiser could be selected, such as a population-based

algorithm. This is presented next.

3.2.2 Direct Solution Through a Population-based Genetic Algorithm

Problem 3.6 is typically highly nonlinear and non-differentiable. Furthermore

it can present multiple locally optimal Pareto sets, therefore for its solution we

used the population-based genetic algorithm NSGA2 [Deb et al., 2002]. The

approaches presented in this chapter, however, are independent of the choice
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of the multi-objective optimiser. Other examples of the use of NSGA2 to solve

the OUU can be found in the work of Limbourg et al. [Limbourg, 2005]. We

propose here two approaches:

bi-objective approach This approach directly tackles the bi-objective

formulation problem 3.6. In this formulation, the number of objectives is

limited to 2. However, the number of optimisation variables is one more

than the number of design variables as the threshold is seen as both an

objective and optimisation variable. Moreover, the typical solution of the

OUU problem (cf. Figure 6 above) is seen in this formulation as a Pareto

front.

multi-belief approach This approach consists in computing the CBF

curve every time a design vector is selected. It dominates the others if

there exists at least one Belief level for which its corresponding threshold

is minimum. Therefore, we can see the problem as a multi-objective

optimisation problem where the objectives are all the minimum thresholds

corresponding to the given levels of Belief.

The two methods are discussed in more detail in the following sections.

The Bi-objective Formulation

The bi-objective formulation of the OUU problem has been applied in previous

works (c.f [Vasile, 2005,Vasile, 2004]). However, no special attention was given

to the actual computation of the Belief. An attempt to increase the efficiency

of the algorithm is made here. The idea is to consider the focal elements in

descending order of their BPA value, and to use the current best estimate of

the Belief curve to speed up the computation. Algorithm 3.2 describes the

proposed improvement.
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Algorithm 3.2: Computing the belief in the bi-objective formulation

Inputs : y∗, d, CBFopt
Outputs : y∗d, Beld

/* Initialise outputs */

Beld ← 0;
y∗d ← −∞;
/* Identify the current optimal belief corresponding to y∗ */

Belopt ← CBFopt(y
∗) ;

/* Initialise local variables */

i← 1 ; /* Counter */

nFE ← numel(FE) ; /* Number of focal elements */

achBel← 1 ; /* Achievable CBF value */

/* Main loop */

while achBel ≥ Belopt and i ≤ nFE do
/* Compute the maximum of f on the ith focal element */

ymax ← max
u∈FEi

f(d,u) ;

/* Update the achievable CBF value or the outputs */

if ymax ≤ y∗ then
Beld + = m (FE(i));
y∗d ← max(ymax, y

∗
d);

else
achBel − = m (FE(i));

end
i + = 1 ; /* Increase counter */

end

CBFopt represents the current best estimate of the optimal solution in the

objective space. It can be initialised to the CBF of any design, or simply set

equal to the null function. When evaluating an agent ai, corresponding to a

pair (d, y∗) (i.e. a design point and a new threshold), CBFopt is initially used

to identify the current best Belief for the threshold y∗. The algorithm then

starts to consider the focal elements one by one.

At every iteration, the achievable level of Belief is tracked (variable achBel

in Algorithm 3.2). It corresponds to the hypothetical Belief of design d if all

remaining focal elements were to be valid. Therefore, the achievable Belief is

reset to 1 for each new agent. Every time a focal element is not valid (f is

above y∗), the achievable Belief decreases by the corresponding BPA. As soon
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as the achievable Belief is lower than CBFopt (y∗), the design is guaranteed not

to improve the current solution, and the computation is prematurely stopped.

Sorting the focal elements by descending order of their BPA is suggested to

tackle first the ones that might influence most the achievable Belief.

Furthermore, once a value is assigned to the threshold y∗, the maximisation

of the system function f over each focal element is stopped as soon as a value

is found above the threshold. Finally, if the design is found to dominate the

current solution, the minimum threshold y∗d and the corresponding Belief level

Beld are returned, and used to update the CBFopt.

Note that to make the CBFopt available throughout the computation, a

global variable was used in our implementation, and was updated directly in

the objective function. Therefore no modification of the genetic algorithm was

necessary.

The computational cost of Algorithm 3.2 is dictated by nFE the number

of focal elements. However, the proposed enhancements introduced here are

expected to increasingly reduce the number of system function evaluations as

convergence is approached. This will be investigated in chapter 4.

The Multi-belief Approach

It is necessary for the multi-belief method to select a set of Belief levels to

define the objectives for the global optimiser. Once the BPA-structure of the

problem is defined, the complete set of all possible levels of Belief can be

determined. While this is the preferable choice, it can lead to excessively large

Belief level sets. The formulation of problem 3.8 allows the selection of only a

subset and this might be a wiser choice. Also, the belief levels could be selected

independently from the BPA-structure, and the algorithm would still work.
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If we name bl(i) the ith chosen level of Belief, and nbel the number of levels,

we have to solve the following nbel-objectives optimisation problem:





min
d∈D

y∗d (bl(1))

min
d∈D

y∗d (bl(2))

...

min
d∈D

y∗d (bl(nbel))

(3.8)

where y∗d (bl(k)) = min (y∗ | CBFd(y∗) = bl(k)) correspond to the minimal

threshold for which the Belief at design d is bl(k). All the nbel minimal

thresholds for a given design are known as soon as the entire belief curve is

computed, which is done each time a design is selected.

In the case of the multi-belief approach, an agent ai is simply ai = d. For

each selected design vector the complete belief curve is computed. Though

this is more computationally expensive than computing a single belief value, it

has the benefit of having only the design vector as an optimisation variable.

Therefore, each design needs to be evaluated once and only once. Additionally,

in Algorithm 3.2, the known extrema of f over all focal elements evaluated

during the loop are lost. Thus, while the information was available, it is not

used to identify if the current design is dominating for lower belief levels (or

identically lower thresholds). By computing the whole belief curve instead we

preserve this information.

A more elegant implementation of this approach would consist in redefining

the dominance index. If the classical Pareto dominance index

Ii =
∣∣∣
{
j | CBFdj

(y∗j ) > CBFdi
(y∗i )∧y∗j < y∗i , j = 1, . . . , npop∧j 6= i

}∣∣∣ (3.9)
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is used to define the Pareto optimality of a design vector di, where |.| denotes

the cardinality of a set, the optimiser cannot evaluate correctly the local Pareto

optimality of a point on the CBF − y∗ plane since for each design there is a

whole curve of points in the CBF − y∗ plane. If the Pareto dominance index

were defined as in equation 3.10 below

Ii = nbel −
∣∣∣
{
k ∈ [i, nbel] | ∀j ∈ [1, npop], y

∗
i (bl(k)) > y∗j (bl(k))

}∣∣∣ (3.10)

then a design with a dominance index lower than nbel dominates all the others

for at least one of the belief levels bl. Therefore leading to the same result as

the formulation of equation (3.8) and the standard dominance index. However,

this requires the implementation of the dominance index to be modified within

the optimiser, which may be complex and not always possible.

3.3 the cluster approximation method

3.3.1 Presentation

The direct computation of the Belief and Plausibility curves for every feasible

design point can be a computationally very expensive operation, due to the

complexity in the calculation of the cumulative functions even after one of

the approximation techniques is applied (c.f. §2.4.2). To mitigate this, an

indirect method, based on sample points of the system function, is proposed

here. Sampling-based methods have been previously proposed to compute the

cumulative belief function of Evidence Theory [Helton et al., 2006,Helton et al.,

2007]. The cluster approximation method is partly based on this work. However,
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the method proposed here is simplified to be suitable for OUU problems. Indeed,

Helton et al. focused on computing the CBF for a single design.

The idea is to identify at first, within the cartesian product of the uncertain

parameters domain and the design domain, the set f−1 (Y∗) where the system

function verifies the proposition f < y∗. For a design vector d, an approximation

C̃BFd (y∗) of the cumulative belief function at the threshold y∗ can then be

cheaply computed by adding the mass of the focal elements included in any

element of f−1 (Y∗) or union of elements:

C̃BFd (y∗) =
∑

(d,FE)⊂∪si
si⊂f−1(Y∗)

m (FE) (3.11)

Alternatively, the approximation can be made by subtracting the mass of

the focal elements intersecting any element of the complement set f−1
(
Y∗
)
:

C̃BFd (y∗) = 1−
∑

(d,FE)∩si 6= ∅
si⊂f−1(Y∗)

m (FE) (3.12)

This indirect method is referred to as the cluster approximation method, and

is illustrated in Figure 7. In this example, there is one uncertain parameter

and one design variable, respectively represented along the x and y axis. The

BPA is composed of only three focal elements, FE1, FE2 and FE3. The set

of subdomains where the system function verifies the proposition f ≤ y∗ is

f−1 (Y∗) = {s1, s2, s3}, represented as the shaded areas.

Two different designs d1 and d2 are represented. The approximations of

CBF for the two designs d1 and d2 are respectively:
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Figure 7: Illustration of the cluster approximation method with 3 focal elements FE1,
FE2 and FE3. The proposition f < y∗ is true only within the subdomains
s1, s2 and s3. Two examples of design points d1 and d2 are given.

C̃BFd1 (y∗) = m (FE1) (3.13)

C̃BFd2 (y∗) = m (FE2) +m (FE3) (3.14)

To compute the approximation of the CBF function, the set f−1 (Y∗) is

computed for increasing values of the threshold until a belief of 1 is found. As

for the step method, an initial threshold y∗0 is defined, and associated with the

threshold step δy∗. A set of sample points Xsample is also needed. At each step,

the subset X y∗sample of sample points verifying the proposition f(d,u) < y∗ are

identified, then arranged in clusters. The points of a given cluster define a

subdomain si in f−1 (Y∗). Then, the design maximising the approximation of

C̃BF (y∗) is selected. The algorithm used here is described in Algorithm 3.3.
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Algorithm 3.3: Basic algorithm of the cluster approximation method

Inputs : y∗, δy∗, Xsample
Output : Matrix Out where each row corresponds to a step. The ith row

of Out is composed of the value of the threshold, the optimum
design vector and the maximum approximated cumulative
belief found at the ith step.

/* Initialise B̃elmax */

B̃elmax ← 0

/* Main loop */

while B̃elmax < 1 do
/* Update the threshold */

y∗ ← y∗ − δy∗

/* Find the set of valid sampled points */

X y∗sample {(d,u) ∈ Xsample | f(d,u) ≤ y∗}
/* Identify the valid subdomains */

Partition in clusters the sample points of X validy∗

f−1 (Y∗)← {si}
/* Find the design point giving the highest C̃BF */

[C̃BF opt(y
∗),dopt]← max

d∈D
C̃BFd(y∗)

/* Add a line at the end of the output matrix and save

the results */

Out(end+ 1, :) = [y∗, C̃BF opt(y
∗),dopt]

/* Update the optimum belief variable */

B̃elmax ← C̃BF opt(y
∗)

end

One significant advantage of this method is that it identifies all the local

optimum design regions thus highligthing different classes of interesting design

(as in the direct solution). The global optimum is also likely to be found using a

simple local optimiser, starting for instance from the barycentre of each cluster.

The framework of the clustering approximation method has been presented.

An important step in the algorithm is how the set of valid sample points is
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partitioned into clusters, and then how the subdomains si are defined. This

is the critical part of the method, as it strongly affects the results and the

computational effort required to compute the approximated Belief curve. The

next section introduces 3 proposed implementations.

3.3.2 Identifying the Set of Feasible Subdomains

Cluster, Convex hulls and Axis-Aligned Boxes

This first approach uses a clustering algorithm to classify in small subsets

the valid sample points. Over the years, various clustering algorithms have

been proposed and used in different fields such as chemistry [Stanforth et al.,

2007] or image processing [Comaniciu and Meer, 2002]. A detailed analysis of

clustering algorithms is beyond the scope of this thesis. For more information,

the reader can refer to [Mirkin, 2005].

One cluster is considered representative of a single valid subdomain in

f−1 (Y∗). Once the clustering phase is completed, the clusters of points are

treated independently and sequentially, and used to define the boundaries of

the valid subdomains. To do so, various choices are again available. A convex

boundary would be attractive for the current application. Indeed, a focal

element is convex itself. Therefore verifying that a focal element is included

within si only requires a check that all its vertices are. A convex hull is a

candidate that comes naturally to mind, as it is the smallest convex domain

containing the valid sample points. If the convex hull has a complex shape, then

checking if a point is contained in it or not may require some computational

effort. This leads us to the third part of this method.

To speed up the computation, Axis-Aligned Boxes (AABs) are used. Each

subdomain si is associated with its outer AAB (called also the Axis-Aligned
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Boundary Box) and an inner AAB. If si is defined by the cluster of points

{x1,x2, . . . ,xp} of RL (here, L = nD + nU , i.e. the number of dimensions of

the design vector space and uncertain parameter space combined), then its

axis-aligned boundary box oAAB(si) is defined as:

oAAB(si) =
{
x ∈ RL | ∀k, 1 ≤ k ≤ L, min

1≤j≤L
xj(k) ≤ x(k) ≤ max

1≤j≤L
xj(k)

}

(3.15)

The inner AAB is an axis-aligned box that is contained within the subdomain

si. Unlike to the outer AAB, the definition of the inner AAB is not unique.

It is possible, for instance, to centre the inner AAB on the barycentre of the

sample points and to maximise its relative size such that it remains within si.

The idea behind the inner and outer AABs is that it is extremely cheap

to check if a focal element is outside or inside an AAB. The focal elements

that are outside the outer AABs are guaranteed not to be included in any

subdomain in f−1 (Y∗), while the ones inside the inner AABs are guaranteed

to be included in one subdomain in f−1 (Y∗). Once this selection process is

done, only the focal elements that do not enter in any of those categories need

to be checked to compute C̃BF (y∗).

In order to identify if any of the remaining focal elements fulfil the proposition

f(d,u) < y∗, ∀u ∈ FE, one only needs to check if its vertices are within the

same subdomain si. If si is a convex hull, the phase 1 of the revised simplex

method used to find a feasible solution to a linear programming problem can
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be used [Dantzig, 1965, Bunday, 1984]. Indeed, for a point v of RL and the

convex hull Hconv of the points {x1,x2, . . . ,xp}, we have:

v ∈ Hconv ⇐⇒ ∃λ ∈
(
R+
)p |

(
v =

p∑

k=1

λ(k) ∗ xk

)
∧
(

p∑

k=1

λ(k) = 1

)
(3.16)

The use of the simplex method as a convex hull inclusion test is detailed

in [Bailey and Cowles, 1987], in which it is shown that “the average time for a

single inclusion test is roughly proportional to the size of the point set times

the dimensionality”.

It is important to highlight that in this method, no assumptions are made on

the convexity of the system function f . Only the subdomains si are considered

as convex. For a large number of system functions, this should be acceptable.

Should this not be the case, alternative ways to define the boundaries of the

subdomains in f−1 (Y∗) can be envisaged. [Bates and Wynn, 2004] applied

Hilbert bases to identify points on the boundary and then used surrogate such

as Kriging [Sacks et al., 1989] to model the boundary. Note that if the boundary

is not convex, the inclusion test of focal elements within a subdomain becomes

much more complex.

Pixelisation as an Alternative

The clustering and convex hull technique presented above is suitable if the

number of sample points is reasonable and if the number of dimensions is limited

to just a few. Indeed, the computational time and memory requirements would

quickly hamper the clustering and impact even more severely on the creation of

the convex hulls. Thus, the benefits arising from the use of the approximation

method would be substantially reduced.
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In these cases, an alternative to identify the subdomains si is based on the

partition into pixels of the cartesian product of the design domain D and the

uncertain parameters domain U . A pixel is nothing other than an axis-aligned

box. No intersection is allowed between any two pixels, and the union of all the

pixels equals the whole domain D×U . This pixelisation technique replaces the

use of both the clustering algorithm and convex hulls to define the boundaries

of the subdomains si.

This is done by creating first the list of the pixels containing sample points

verifying the proposition f(d,u) < y∗, then pruning this list by eliminating

the pixels containing at least one sample point violating the proposition. It can

be proven that this operation is polynomial with the number of dimensions

and subdivisions of each dimension. A focal element is hereafter said to be

valid if all the pixels intersecting it are included in any si.

The quality of this approximation technique is obviously related to the

quality of the sampling, but also on the number and size of the pixels. The

larger the pixels the lower the accuracy of the coverage and therefore the results,

but the faster the algorithm. With respect to the convex hull, this approach

has the main advantage that it can represent a highly non-convex subdomain

si. Moreover, as the design domain is discretised, a finite number of different

designs are accessible. Therefore, one can consider testing them all to identify

the best one(s). If not, an optimiser working with binary variables can be used

to solve the OUU.

Binary Space Partition

The Binary Space Partition (BSP) was first introduced by [Fuchs et al., 1980]

for computer graphics. It is proposed here as an alternative method to partition

the domain into regions where the proposition f < y∗ is verified, and regions
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where it is not, based solely on sample points. Similarly to the pixelisation

technique described earlier, the BSP divides the domain into hyper-rectangles,

but does not require the user to specify their size nor location. Instead, the

partition is done following a simple recursive division of the domain, building

a full binary tree, i.e. a tree in which every node other than the leaves has two

children. The leaves of the tree are the equivalent to the pixel of the previous

technique, and are axis-aligned boxes like the pixels.

The idea of partitioning the domain iteratively has been applied in [Moure-

latos and Zhou, 2006], where plausibility was used as constraint of a RBDO

problem. However, sample points were not used, and neither were binary trees.

Algorithm 3.4 presents how the binary tree is structured, in other words how

the domain is partitioned and the set of valid subdomains identified. Basically,

the algorithm starts with the root which corresponds to the whole domain,

containing the whole set of sample points available. It is then split in two equal

(in size) partitions along the first dimension. These partitions constitute the

nodes of the first level. Both partitions are then split again along the second

dimension to create the nodes of the second level, and so forth. A node is split

only if it contains at least one sample point verifying the proposition, and

another one contradicting it. Therefore, there are three possibilities for a node

to become a leaf:

1. It contains only sample points fulfilling the proposition

2. It contains only sample points not verifying the proposition

3. It does not contain any sample points

It is considered here that a leaf (an axis-aligned box) is valid only in the

first case. It is tagged invalid in the two others. If the depth of the tree is not

limited, all the leaves are either valid or invalid. However, it might be relevant
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to limit the depth of the tree, to limit the number of hyper-rectangles to one,

or to limit the CPU time spent building the tree. In this case, some leaves will

be undetermined, and should be considered as invalid.

3.3.3 Inclusion Test for Focal Element

We have discussed already in §3.3.2 how a focal element is tested once the set

of valid subdomains has been defined using the convex hull. How this is done

when hyper-rectangles are used (pixelisation or BSP method) remains to be

defined. This is the purpose of this section. Note that the size of these boxes is

assumed to be too small to include any focal element. If that was the case, a

simple test on the vertices of the focal elements would suffice.

Once the domain has been partitioned in axis-aligned boxes, computing the

belief is fairly straightforward. The first step is to list all the boxes which are

invalid or empty, referred to as Binvalid. Then, for a given design point d, the

set Bdinvalid of boxes intersecting the design is identified. A focal element will

be said valid (and therefore its mass considered as part of the belief) if its

intersection with the set Bdinvalid is empty. Therefore, the boxes of Bdinvalid are

tested one after the other until one is found intersecting the focal element. If

that is the case, the check is stopped. If no intersection is found, the focal

element is valid, and the associated basic probability assignment added to the

Belief. The procedure is then restarted for the next focal element.

The classic technique to test the intersection of two convex polytopes, used

typically in computing geometry (e.g. computer games or collision detection),

is to apply the separating axis theorem [Eberly, 2000]. The theorem states

that “if two convex objects are not intersecting, there exists an axis for which

the projection of the objects will not overlap”. When the objects are like in
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our application 2 axis-aligned boxes AAB1 and AAB2, applying the theorem

consists simply of checking if there exists a dimension for which the lower

bound of ABB1 is greater than the upper bound of ABB2, or for which the

lower bound of ABB2 is greater than the upper bound of ABB1. If such a

condition is verified, then AAB1 ∩ABB2 = ∅.

3.4 conclusions

In this chapter, Optimisation Under Uncertainty has been defined and discussed

when Evidence Theory is used for modelling the uncertain parameters. Three

direct exact methods have been presented, namely the step method, the bi-

objective method and the multi-belief method. The step method appears to

be too limited and unlikely to solve OUU problems. The bi-objective and the

multi-belief methods rely on a population-based genetic algorithm, and differ

in the problem formulation used. Particular attention has been given to the

algorithm computing the Belief in the bi-objective method.

Additionally, an indirect method has been proposed to mitigate the com-

putational cost of the Belief, a critical aspect when used as objective in an

optimisation problem. The method consists in partitioning the domain of defi-

nition of the system function, based on sample points, into valid and invalid

regions. The Binary Space Partition appears to be particularly well suited to

the task. Indeed, it does not rely on any tuning, it is fast and simple, and

capable of representing any shape of subdomains. Finally, testing the validity

of focal elements requires little computational effort.

In the next chapter, the proposed methods will be extensively tested on an

analytical test case, and their respective performances, strengths and weaknesses

discussed.
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Algorithm 3.4: Algorithm of Binary Space Partition (BSP) - buildTree

Inputs : p the parent node, X p the set of sample points contained in
the parent’s domain, Yp the values at the sample points

/* Check the status of the parent */

if p.status == undetermined then
/* Create two children */

p.left← (new) child; p.right← (new)child
/* Get the dimension along which to split the parent’s

domain */

dimsplit ←
/* Compute the value of the middle of the domain */

V alsplit ←
/* Split the sample points between the children */

for i = 1 to npts do /* for each point */

/* Check if the ith point belongs to the left child

*/

if X p(i, dimsplit) < valsplit then
/* Assign the ith point to the left child */

X p.left ← X p.left ∪ X p(i, :); Yp.left ← Yp.left ∪ Yp(i)
else /* the ith point is in the right child’s domain

*/

X p.right ← X p.right ∪ X p(i, :); Yp.right ← Yp.right ∪ Yp(i)
end

end

/* Update the status of both children */

foreach child of parent do
if There is no point in the child then

c.status← invalid
else if All points in the child do not verify the proposition then

c.status← invalid
else if All points in the child verify the proposition then

c.status← valid
else

c.status← undetermined
end

end

/* Split both children (recursive call) */

buildTree(p.left,X p.left,Yp.left)
buildTree(p.right,X p.right,Yp.right)

end



4
A N A LY T I C A L T E S T C A S E : C H E B Y Q U A D

Various methods have been presented in the previous chapter to solve opti-

misation under uncertainty problems in the frame of Evidence Theory. To

investigate their strengths and weaknesses, they have been used on a set of

analytical test cases. This chapter presents these findings, and aims at defining

some guidelines on which method to use depending on the problem properties,

the computational power available and what the analyst is really after.

In the first section, the test cases are presented. They are based on the

Chebyquad function, which takes its name from the Chebyshev polynomials.

The various optimisation under uncertainty problems differ in number of design

variables, uncertain parameters or focal elements. Thus, the influence of these

fundamental characteristics on the performance will be addressed.

The second section deals with the test campaign approach. Particular at-

tention is given to how the solvers have been tuned. Also, the metrics used to

assess the results are defined.

The results are then presented in the following two sections. Section 3

focuses on the direct methods while section 4 on the indirect ones. The Binary

Space Partition, associated with two different sampling methods, is used. The

pixelisation method is not tested due to its similarities with the BSP. The

Convex hull has been also omitted, primarily due to its strong dependence on

the cluster algorithm. Additionally, the computational cost and memory needs

of the convex hull are tremendous on the most complex test cases.

61
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Finally, in the fifth section the quality of the solutions obtained with the

different methods are compared, and conclusions are drawn.

4.1 the chebyquad ouu problem

The Chebyquad test function is used throughout this chapter as the system

function of an OUU problem. The formulation of the problem follows the one

given in chapter 3. The Chebyquad function is discussed in the next subsection

while the following two deal successively with the BPA structure and the

optimal solutions.

4.1.1 The Chebyquad function

Definition

The Chebyquad function, introduced by [Fletcher, 1965], is used here as

an analytical test case of optimisation under uncertainties. It is of interest

because its dimensionality can be chosen. This will enable us to investigate

the influence of the number of design variables and uncertain parameters on

the performance of the different methods presented earlier in solving the OUU

problem. Moreover, the Chebyquad function presents multiple minima. This

characteristic helps to create test cases for which the optimal design point

changes from one confidence level to the other (c.f. §4.1.2).
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The Chebyquad function is based on shifted Chebyshev polynomials {T ∗i , i ≥ 0}.

They are defined as follows:





T ∗0 (t) = 1

T ∗1 (t) = 2t− 1

T ∗k (t) = (4t− 2) ∗ T ∗k−1(t)− T ∗k−2(t)∀k ≥ 2

(4.1)

Using these polynomials, one can define the set of functions {∆i, 1 ≤ i ≤ n},

n being the dimension of the variable x:

∆i : [0, 1]n → R

x → ∆i(x) =

∫ 1

0
T ∗i (t)dt− 1

n

n∑

j=1

T ∗i (xj) (4.2)

It can be shown that the integral of the shifted Chebyshev polynomials over

the interval [0, 1] are:

∫ 1

0
T ∗i (x)dx =





0 if i is odd

−1/(i2 − 1) if i is even

(4.3)

Finally, the Chebyquad function can be defined as follow:

fcheby : [0, 1]n → R

x → fcheby(x) =
n∑

i=1

(∆i(x))2 (4.4)

Figure 8 gives a representation of the Chebyquad function for n = 2 while

Figure 9 corresponds to n = 3.
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Figure 8: Contours of the Chebyquad function of 2 variables.

Evaluating the function

Evaluating the Chebyquad function (Eq. 4.4) can be done efficiently using the

algorithm suggested by [Fletcher, 1965]. Note that there is a typographical

error in the original code, corrected* in Algorithm 4.1.

A symmetric function

The Chebyquad function is symmetric: its value at any n-tuple of inputs is

the same as its value at any permutation of that n-tuple. For the case of two

variables, this translates into:

fcheby(x1, x2) = fcheby(x2, x1),∀(x1, x2) ∈ [0, 1]2 (4.5)

*the line f:=delta×delta; ieven:=false; in [Fletcher, 1965] was replaced by delta:=delta/n;
f:=delta×delta; ieven:=false;
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Algorithm 4.1: Calculating the Chebyquad function

Inputs : x, n
Outputs : fcheby

/* Compute ∆1 and the shifted Chebyshev polynomials */

∆← 0
for j=1 to n do

y[j]← 2 ∗ x[j]− 1
∆← ∆ + y[j]
Ti[j]← y[j]
Ti minus[j]← 1

end
∆← ∆/n

/* Compute the initial value of fcheby */

fcheby ← ∆ ∗∆

/* Main loop */

for i=2 to n do
/* Compute ∆i and the shifted Chebyshev polynomials */

∆← 0
for j=1 to n do

Ti plus← 2 ∗ y[j] ∗ Ti[j]− Ti minus[j]
∆← ∆ + Ti plus
T i minus[j]← Ti[j]
Ti[j]← Ti plus

end
∆← ∆/n

/* Subtract the value of the integral */

if i is even then ∆← ∆ + 1/(i ∗ i− 1)

/* Update the value of f */

fcheby ← f + ∆ ∗∆

end
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Figure 9: Slices of the Chebyquad function of 3 variables.

This property presents an issue when used as a test case for an optimum

solver. Finding the minimum (or maximum) of a symmetric function is easier

because there is not one but instead n! points� for which the function is

minimum. If using a population-based algorithm for instance, the density of

the population is effectively much higher. If a genetic algorithm is used, the

crossover will necessarily lead to offspring with ranking as high as their parents.

One could say that the search space is virtually reduced, its size effectively

divided by n!. This could create difficulties while interpreting the effect of the

number of variables on the performance of the optimiser. Additionally, the

symmetry penalises greatly indirect methods, which are based on sampling.

To remedy this matter, we propose to modify slightly the Chebyquad function

by adding a small offset favouring one area of the search space. But the offset

�n! = 1 ∗ 2 ∗ . . . ∗ n, where n is here the number of variables of the objective function.
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is only applied to the vector of design variables d, and not to the vector of

uncertain parameters u. The following equations define the modified Chebyquad

function:





fUcheby(u,d) = fcheby([u,d]) + 2 ∗ δfcheby(d)

δfcheby(d) =
∑nD

i=1 n
i−1
D ∗idxd(i)∑nD

i=1 n
i−1
D ∗(nD+1−i)

− 1

(4.6)

In the previous equations, u and d are respectively the vector of uncertain

parameters and design variables. [u,d] denotes the concatenation of u and d.

Finally, idxd is the vector of indices returned by any sorting algorithm applied

to the variable d (Quicksort [Hoare, 1962] is used in our implementation). For

example, if d = (0.3, 0.4, 0.05), then idxd = (2, 3, 1). The offset is null when

the elements of d are sorted in descending order. Thus the minimal value of

the original Chebyquad function remains unchanged. The offset is also always

null when only one design variable is used (nD = 1).

In the remainder of this chapter, the modified Chebyquad function fUcheby is

used as the system function of an OUU problem.

4.1.2 The BPA structure

For the sake of simplicity, the BPA for each uncertain parameter is identical

and given in Table 1

Let us have a look at the case with one uncertain parameter (nU = 1) and

one design variable (nD = 1), i.e the bi-dimensional Chebyquad. In Figure 10,

the variation of the system function is given for 3 different designs d1 = 0.2,
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Lower bound Upper bound BPA

0 0.5 0.70

0.5 0.9 0.30

Table 1: BPA structure for each uncertain parameter in the Chebyquad test case.

d2 = 0.7 and d3 = 0.65. We are interested in the Belief of the proposition

fcheby(u, d) < y∗.

u
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d2 = 0.7
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FE1, BPA = 0.7 FE2, BPA = 0.3

Figure 10: Chebyquad test case - Example of 3 different designs dominating for 3
different levels of Belief.

For a threshold y∗ = 0.18, the design d1 leads to a Belief of 0.3 (only the

second focal element FE2 is valid). If the threshold increases to y∗ = 0.33, the

same design still gives a Belief of 0.3; but a Belief of 0.7 is found at design d2

(only the first focal element FE1 is valid). Finally, for a threshold of y∗ = 0.36,
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only the third design d3 sees both focal elements verified. Thus a Belief of 1 is

found.

This illustrates that the optimal design will be found in distinct regions

depending on the threshold level, or similarly the Belief level. The BPA structure

has been designed explicitly to give the Chebyquad test case this property.

Finally, some cases will be run with larger sets of focal elements, in order to

investigate the impact on the performance of the proposed methods. Other BPA

structures with 3, 4 and 5 intervals per uncertain parameter are thus defined

in Tables 2, 3 and 4 respectively. When these extended BPA structures are

used, it is clearly mentioned. The simplest BPA with 2 intervals per uncertain

parameter is the default one.

Lower bound Upper bound BPA

0 0.25 0.20

0.25 0.50 0.50

0.50 0.90 0.30

Table 2: BPA structure for each uncertain parameter in the Chebyquad test case - 3
intervals per uncertain parameter.

Lower bound Upper bound BPA

0 0.25 0.20

0.25 0.50 0.50

0.50 0.70 0.20

0.70 0.90 0.10

Table 3: BPA structure for each uncertain parameter in the Chebyquad test case - 4
intervals per uncertain parameter.
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Lower bound Upper bound BPA

0 0.25 0.20

0.25 0.35 0.35

0.35 0.50 0.15

0.50 0.70 0.20

0.70 0.90 0.10

Table 4: BPA structure for each uncertain parameter in the Chebyquad test case - 5
intervals per uncertain parameter.

4.1.3 The optimal solution

The optimal designs and corresponding Pareto front of the Chebyquad test

cases are not known a priori. However, aggregating the solutions of numerous

attempts to solve the problem should lead to a very accurate approximation.

For illustration purposes, consider a method having only a 5% chance of finding

the optimal solution. Given that each trial is independent, a hundred successive

runs would give a 99% probability of success, that is 1− (1− 0.05)100 = 99%.

Based on this remark, the results of all simulations obtained with the direct

method (bi- and multi-objective) are combined. Note that the results obtained

from the indirect methods are not used directly. In contrast to the direct

methods, they return approximated solutions. Thus, the exact Cumulative

Belief Function (CBF) of the returned designs is computed a posteriori, and

then aggregated to the best results found by the direct methods. The obtained

Pareto front and list of optimal designs are then used in this chapter to assess

the performance of the different methods.

The list of optimal design for two test cases are given in the Tables 5 and 6.

All the cases considered in this work are listed in the appendix §A. As desired

(c.f. §4.1.2), the set of optimal designs is composed in all cases of at least 2

very distinct elements.
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Range of Belief Levels Design Vector

0.3 0.3 0.173842

0.7 0.7 0.682178

1 1 0.673443

Table 5: Optimal designs for the Chebyquad test case − nD = 1, nU = 1.

Range of Belief Levels Design Vector

0.0081 0.2646 0.699464 0.354749 0.125163

0.2664 0.3402 0.799063 0.487448 0.154594

0.3409 0.3483 0.45426 0.252255 0.132735

0.349 0.7518 0.757333 0.451786 0.105358

0.7522 0.7599 0.721529 0.441935 0.105807

0.7606 1 0.819988 0.462537 0.103319

Table 6: Optimal designs for the Chebyquad test case − nD = 3, nU = 4.

Also, the optimal Belief curve is given in Figure 11 for the cases with 1

design variable, and in Figure 12 for the cases with 3 design variables

Finally, the optimal Belief curves when the number of focal elements is

changed (for nD = 3 and nU = 2) are presented in Figure 13. It is worth noting

the influence of the number of focal elements on the curve. As the number of

focal elements increases, the optimal Belief curve tends to move towards lower

threshold values, but the threshold giving a Belief of one remains unchanged.

This is understandable by considering the definition of Belief. Additionally,

the more focal elements, the more continuous the curve appears to be. If the

number of focal elements were to tend toward infinity, the curve would converge

toward the cumulative density function of probability theory.
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Figure 11: Optimal Belief curves for the Chebyquad test cases with 1 design variable.
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Figure 12: Optimal Belief curves for the Chebyquad test cases with 3 design variables.
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Figure 13: Optimal Belief curves for the Chebyquad test cases with 3 design variables,
2 uncertain parameters, and various numbers of focal elements.
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4.2 methodology for assessing the performance of the pro-

posed methods

This section presents the methodology used to assess the performance of the

methods proposed in Chapter 3 to solve the OUU. The aim of the work

presented here is to provide insights into their strengths and weaknesses. We

focus particularly on the impact of the complexity of the problem on the

performance of the methods. This is further explained in §4.2.1. The intrinsic

performance of the global optimiser is out of the scope of this thesis. However,

setting it up properly is required to compare fairly the bi-objective and multi-

belief methods to the others. Similarly, other methods have tuning parameters

requiring attention too. What settings have been used, and how they have

been chosen, is dealt with in §4.2.2. Finally, comparison implies metrics, which

are presented in §4.2.3.

4.2.1 Varying the complexity of the problem

By complexity, we mean the number of design variables, the number of uncertain

parameters, and the number of focal elements. For Evidence Theory to be used

on reliability problems, it is critical that a nearly optimal solution is found in

a reasonable amount of time. As previously shown, the number of operations

increases exponentially with the number of focal elements. Also, if the number

of variables increases, finding a good solution becomes more difficult.

Thus, in the current assessment, the number of designs variables and uncer-

tain parameters is varied. As explained in §4.1, the system function used here

can accept any number of variables.
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Additionally, for a specific number of design variables and uncertain pa-

rameters, the number of focal elements is increased. This does not change

the dimensionality of the problem, but rather increases the effort required to

evaluate the CBF of each design. As a consequence the number of possible

optimal levels of Belief increases too.

Design
variables

Uncertain
parameters

Focal elements per
uncertain parameters

Focal
elements

1

1 2 2

2 2 4

3 2 8

4 2 16

2 2 2 4

3

1 2 2

2 2 4

3 2 8

4 2 16

3

2 3 9

2 4 16

2 5 25

4 2 2 4

Table 7: Selected Chebyquad test cases.

4.2.2 Setting parameters

Setting parameters for the step method

There are, for the step method, 3 parameters to be set: the initial threshold,

the threshold step, and optionally the number of starting points.
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The size of the step between 2 consecutive thresholds is critical. Indeed, it

directly impacts both the computational effort and the accuracy of the results.

A large step reduces the number of iterations, thus the CPU time. However

it needs to be small enough to reach an acceptable accuracy of the solutions.

A large step could lead to missing a particular level of Belief. If the optimal

design is only associated with this missed level of Belief, it will not appear in

the results at all.

Another parameter that can impact significantly the results is the number

of starting points. A large number increases the chances of finding the global

optimal results. But once again, the impact on the computational effort increases

with it. Here again, different values will be considered.

Finally, the value of the initial threshold needs to be chosen. Remember that

it should be large enough to ensure that a Belief of 1 is found. A simple way to

do so is to compute the threshold giving a Belief of 1 for a given design, and

use it as a starting point.

Table 8 summarises the settings for the step method in this work.

Parameter Value

Initial threshold value
Value giving a Belief of 1 for a randomly
selected design point (and used as initial
starting point)

Step between 2 consecutive
thresholds

.1, .05, .025, .0125, .00625

Number of initial design points
(more than 1 is multi-start)

1, 2, 5, 10

Table 8: Setting parameters of the Step method.

Note that the local optimiser (here fminsearch from Matlab) could also be

tuned. In this work, the default values are used.
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Setting parameters for the bi-objective and multi-belief methods

The settings of both the bi-objective and multi-start methods are all related

to the multi-objective global optimiser. NSGA2 is used here [Deb et al., 2002],

and it needs 5 parameters to be set. These are:

population size This is critical to the performance of the optimiser. A

small population limits the number of function evaluations and increases

the number of generations of evolution. However, a large population

favours global search. NSGA2 usually performs best with a rather large

population.

probability of crossover This controls the frequency at which two

agents of the current population create two offspring by crossover. The

higher this value, the more likely a crossover is to occur.

probability of mutation This controls the frequency at which an agent

of the current population mutates to create an offspring. The higher this

value, the more likely a mutation is to occur.

distribution index for crossover This controls the spreading of

the offspring of the current population. If a large value is chosen, the

resulting offspring solutions are close to the parent solutions. On the

other hand, for a small value, solutions away from parents are likely to

be created [Deb et al., 2007,Deb and Agrawal, 1995].

distribution index for mutation The distribution index of muta-

tion works in the same way as for the crossover. The same comments are

therefore applicable.

As for any test involving evolutionary algorithms, tuning the optimiser is

tricky and can affect significantly the results. We set the probabilities and
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distribution indices such that the convergence speed and the global exploration

are balanced. The key parameter, however, is the size of the population.

Therefore, 3 different sizes of population, adjusted to the number of design

variables are tested for every problem.

Table 9 summarises the settings used here. The 3 population sizes are given

separately in Table 10.

Parameter Value

Probability of crossover 0.9

Probability of mutation 1/(nD + 1) *

Distribution index for crossover 10

Distribution index for mutation 25
*nD is the number of design variables

Table 9: Setting parameters of NSGA2 for the bi-objective and multi-belief methods.

Design variables Population size

1 16, 32 and 48

2 20, 40 and 60

3 24, 48 and 72

4 32, 64 and 96

Table 10: NSGA2 - Population sizes for the bi-objective and multi-belief methods.

For the multi-belief method only, the Belief levels tested could be selected.

Once the combined BPA structure has been created, all the possible levels of

Belief are known. One could potentially be interested in results with a Belief in

a certain range, and therefore would select a subset of all possible Belief levels.

Also, the number of objectives might become unmanageable for the global

optimiser. Remember each level of Belief tested corresponds to 1 objective in

the problem formulation. In this work, however, the complete set of possible

Beliefs is used.
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Setting parameters for the binary space partition method

The binary space partition (BSP) method has 2 settings only. The number

of sample points and the step between 2 consecutive thresholds. The higher

the number of sample points, the more information on the system function is

available. Consequently, better results are expected. However, the time required

to compute the approximation is linked to the number of sample points.

The same comments are applicable to the threshold step. The smaller it is,

the greater the accuracy is expected to be. However, dividing by 2 the step

means about twice as many steps will be necessary to solve the OUU problem.

This is in fact analogous to the step method.

Table 11 summarises the settings used in this work.

Parameter Value

Number of sample points
102, 103, 5 · 103, 104, 5 · 104,
105, 5 · 105, 106

Step between 2 consecutive thresholds .1, .05, .025, .0125, .00625

Table 11: Setting parameters for the BSP method.

The way the sample points are selected can make a difference too. The

sampling method can be chosen from a wide variety of techniques, and should be

suited to the system function and the targeted goal of the sampling. Discussions

about sampling can be found for example in [Swiler et al., 2006]. To illustrate

the impact of the sampling, two different processes are tested. The first one is

a classic, the Latin Hypercube [McKay et al., 1979]. An attempt at driving the

sampling towards regions of interest has also been made. The idea proposed

here is to focus the sampling on regions where the system function returns

low values, i.e. regions of high performance of the system. For this, we use a

global optimiser (NSGA2 in this work) applied to a pool function. The pool
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function fpool simply returns the value of the system function f if it is above a

threshold ν, or the threshold itself otherwise.

fpool(x, ν) =




f(x) if f(x) ≥ ν

ν otherwise

(4.7)

  Regions of interest for the sampling
where f(x) ≤ ·

·

x

f, f
pool

f

f
pool

Figure 14: Example of a pool function.

Figure 14 illustrates a pool function. Because the minimum of the pool

function is found for all points in any region of interest, the global optimiser

will naturally focus its search on these regions, thus increasing more and more

the sample density in these regions. Note that during the process, all points
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evaluated by the global optimiser are saved as sample points, whether or not

the system function returns a value below the threshold ν.

The value of the threshold needs to be large enough to ensure that a design

region with a Belief of 1 is found. But the smaller the threshold is, the smaller

the pool size, and thus the higher the density of sample point is expected to be.

For this work, we set the threshold value to about 1.5 the optimal threshold

giving a Belief of 1. Table 12 gives the value used for the different problems.

Design variables Uncertain parameters Pool threshold

1

1 0.5

2 2.0

3 3.5

4 5.0

2 2 1.5

3

1 0.235

2 1.0

3 2.0

4 3.0

4 2 0.8

Table 12: BSP method - Selected thresholds for the pool sampling.

The global optimiser needs also to be space. The aim here is to spread the

sample points, but to have as many as possible within the pool, or nearby. Also,

it is likely that more than one pool exists. The sampling is representative if all

the pools are sampled. For this reason, higher values of the population size,

and of the distribution indices for both crossover and mutation were chosen

(c.f. Table 13).
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Parameter Value

Population size 100

Probability of crossover 0.9

Probability of mutation 1/(nD + nU ) *

Distribution index of crossover 20

Distribution index of mutation 40
*nD is the number of design variables, nU the number of uncertain parameters

Table 13: Setting parameters of NSGA2 for the pool sampling.

4.2.3 Comparison metrics

The performances of the proposed methods will be compared on the accuracy

of the output results with respect to the optimal solutions identified in §4.1.3.

The accuracy can be measured in the objective space (i.e. the threshold - Belief

space in this work) or the search space (i.e. the design domain here). These

are closely interdependent, but in cases where the problem has a flat optimum,

or close local optima, differences can be seen. The metrics used to assess the

accuracy are given in the next paragraph.

Being an approximation method, the BSP is expected to give less accurate

results. However, it is designed to overcome the computational burden associ-

ated with the use of Evidence Theory. Therefore, the CPU time will be also

considered.

Accuracy of the results

An optimisation method is primarily judged on the accuracy of the results

(in the search as well as in objectives space) obtained for a given number of

function evaluations. The metrics used in this chapter are defined below:



4.2 methodology for assessing the performance 84

error area The direct methods are exact, and thus can only find pes-

simistic Pareto fronts. However, the indirect methods may find over-

optimistic results as well. To address this, the error area is used. It is

defined as the area between the optimal Pareto front and the one found

by each run. An example of this area is given in Figure 15. It is the

shaded area between the optimal Pareto Front (continuous red curve)

and the obtained results (dashed blue curve). As the threshold range can

vary from one case to the other, the error area is normalised as follows:

A∗error =
Aerror

Yreqd
max
− Yreqd

min

(4.8)

where Yreqd
min

and Yreqd
max

are the minimum and maximum thresholds of the

optimal Pareto front. In the remainder of this work, the “error area”

refers to the normalised one.

design distance This metric measures the quality of the results in the

search space, that is how far from the optimal designs the found ones are.

To take into account the fact that a different design can be associated

with each level of Belief, the design distance is defined as follows:

ρd =
1

nbel

nbel∑

i=1

‖di − d∗i ‖ (4.9)

In this equation, d∗i is the optimal design for the ith Belief level, and di

the one found during the run. The factor 1/nbel
ensures this measure is

relatively invariant with the number of Belief levels.
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Different norms ‖·‖ can be used, but the classic Euclidean norm, L2, has

been preferred.

B
el
(f

<
y
∗ )

Threshold y∗
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Figure 15: Definition of the error area (grey) between a Pareto front (dash blue) and
the optimal Pareto front (continuous red).

CPU overhead for the indirect method

The sole purpose of the indirect method is to mitigate the computational effort.

Therefore, it is of interest to measure the CPU time required to compute only

the approximated Cumulative Belief Function C̃BF . The variation of the CPU

time with the number of designs variables, uncertain parameters and focal

elements is crucial in assessing the performance of the indirect methods.
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This concludes the presentation of the Chebyquad test campaign. The

following three sections report the results. Comments and interpretations are

provided throughout.

4.3 performance of the direct methods

This section gives insights on the performance of the direct methods to solve

the Chebyquad test cases. We will see that the anticipated weaknesses of

the step method are confirmed. But firstly, the bi-objective and multi-belief

methods are considered. The impact of the population size and the number

of functions calls per design point are investigated. The quality of the results

will be presented in detail in a separate section, and compared to the results

obtained with the BSP.

4.3.1 Bi-objective and Multi-belief methods

Impact of the population size

As described in §4.2.2, 3 population sizes have been considered for each case of

the bi-objective and multi-belief methods.

Let’s consider for instance the specific test of the Chebyquad with nD = 3

and nU = 2, and thus for the 3 tested population sizes. Figure 16a shows for

the bi-objective method the 95 percentile of the error area varying with the

number of function calls, while figure 16c gives the distance to the optimal

designs. Figures 16b and 16d illustrate the same for the multi-belief method.

The bi-objective method appears sensitive to the population size. During the

initial stages of the optimisation, a larger population gives lower values of the
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Figure 16: Bi-objective and Multi-belief - 95 left percentile of the error area (a)-(b)
and distance to optimal designs (c)-(d), versus number of function calls,
for the case nD = 3 and nU = 2.
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error area. The optimiser requires less function evaluations to drive the agents

towards the good regions of the design space. Additionally, a small population

leads the optimiser to be stuck in a local optimum much earlier than with a

larger population. Similar conclusions are applicable to the multi-belief case.

However, it appears far less sensitive than the bi-objective case.

Most of the other test cases confirm this trend (c.f. Appendix B.1.1 and B.2.1

for the complete set of figures). However, the multi-belief method performs

slightly better with the smallest population size than with the larger ones, on

the Chebyquad cases with only 1 design variable. This is particularly noticeable

on the test cases nD = 1, nU = 2, as illustrated in Figure 17.
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Figure 17: Multi-belief - 95 left percentile of (a) the error area and (b) distance to
optimal designs, versus number of function calls, for the case nD = 1 and
nU = 2.

Number of function calls per design

In this subsection, the effect that the number of function calls per design case

tested has on the peformance is investigated. Before going any further, it is

worth recalling that, in the bi-objective method, a design point is defined as a

design vector and a threshold, (d, y∗). This is not applicable to the multi-belief

method, however, as the complete CBF curve is computed for each design.
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The bi-objective method uses algorithmic tricks to limit as much as possible

the number of function evaluations per design. Figure 18a shows that the

average number of function calls per design evaluation on the nD = 3 cases

increases more or less linearly with the number of uncertain parameters. This

demonstrates clearly the benefit of the algorithm introduced in §3.2.2.
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Figure 18: Mean number of function calls per design versus number of uncertain
parameters on the nD = 3 cases, with (a) the bi-objective and (b) the
multi-belief methods.

For comparison, the same plot has been produced for the multi-belief method

(c.f. Figure 18b). In this case, the number of function calls per design evaluation

increases, as expected, exponentially with the number of uncertain parameters.

Indeed, for each design evaluation, the CBF is computed. Thus every focal

element needs to be considered. As the number of focal elements increases

exponentially with the number of uncertain parameters, so does the number of

function calls.

Now, let’s consider a single simulation of the bi-objective method. The run

#8 for the case nD = 3, nU = 2, and 24 agents in the population has been

chosen. Figure 19 presents the variation of the total number of function calls

as the number of design evaluations increases. The dashed line in the plot

represents an hypothetical linear relationship, while the continuous line is the
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actual simulation record. Up to about 4,500 designs tested, the number of

function calls increases linearly with the number of design evaluations. After

that, however, the additional design evaluations require fewer function calls.

This characterises a convergence to a local optimum. Indeed, more and more

design evaluations are prematurely terminated because they are found not to

improve the current Pareto front. This is especially clear around 8,000 design

evaluations. Similar behaviour is visible on any other runs and cases, but it is

more or less marked and may occur later or sooner in the run.
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Figure 19: Number of function calls versus number of design evaluations for the bi-
objective method - Case nD = 3, nU = 2, simulation #8 case.
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4.3.2 Step method

The results obtained with the step method are presented here. The potential

issues with this method, foreseen in the previous chapter (c.f. §3.2.1), were

verified on the Chebyquad test cases.

One problem envisaged was that the number of function calls cannot really

be controlled. Simulations on the test cases with 3 uncertain parameters needed

more than 100 millions function calls, that is more than 10 times what was

run for the other two direct methods. For this reason, not all Chebyquad test

cases have been run.

Also, the results were expected to be poor, due to the likelihood of the

algorithm getting stuck in a local minimum. This can be seen for example

in Figure 20, representing the case with 3 design variables and 2 uncertain

parameters. The average error area (left) and distance to optimal designs (right)

over the 100 runs are given during the run, as the number of functions calls

increases. When only 1 starting point is used, the result is very poor, and

there is no significant improvement with respect to the randomly chosen, initial

design point. In particular, the fact that the distance to the optimal designs

does not change much confirms that the agent remains close to the starting

point. A closer look at individual runs that performed badly clearly showed

this.

Using more than one starting point improves the performance. However, the

results are still not as good as those returned by direct methods. Additionally,

the number of function evaluations becomes very large. Remember that the

complete Belief curve is known only at the end of the run. Stopping prematurely

the iterations to control the number of function calls would truncate the part
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Figure 20: Step method - Average value over 100 runs of (a) error area and (b) distance
to optimal designs, versus number of function calls, for the case nD = 3
and nU = 2.

with lower Belief. Therefore, the step method is too weak to be used on OUU

problems, especially ones with multiple optimal designs.

4.4 performance of the binary space partition method

This section gives insights in the performance of the Binary Space Partition

method to solve the Chebyquad test cases. The impact of the number of sample

points, threshold step and the sampling method are successively considered.

Finally, special attention is given to the computational effort and its dependency

on the above parameters.

4.4.1 Impact of the number of sample points

The indirect methods are based on the information gained via sampling the

system function. The larger the set of sample points, the more accurate the

obtained results should be. However, the purpose of any approximation is to
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limit the number of sample points. This is particularly critical when the system

function is computationally expensive.

Figure 21 is the box plot representing the size of the best design regions,

for the case nD = 3 and nU = 2 when using pool sampling. 100 simulations

have been run. It can be clearly seen that as the number of sample points

increases, the mean size as well as the variance decreases. This illustrates that

the returned results become more precise with a larger sample set.
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Figure 21: Size of the best design regions versus number of sample points for the BSP
method - Pool sampling, case nD = 3, nU = 2.

Let’s turn our attention to accuracy of the results. Figure 22a represents the

variation of the error area for the same test case. The error area quickly decreases

up to 5,000 sample points. Additional sample points do not significantly improve

the error area: the method converged quickly on this example. Unsurprisingly,

the more complex the problem is, the more sample points are required. As
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a comparison, let us look at the case nD = 1 and nU = 4. Even though the

number of dimensions is the same as the previous case (i.e. 5), the problem

is more challenging as the number of focal elements increased from 4 to 16.

Also, each of them is now a tesseract instead of a rectangle. It can be seen in

Figure 22b that the error area does not reach a plateau, even with 1 million

sample points.
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Figure 22: Error area versus number of sample points for the BSP method - Pool
sampling, cases with (a) nD = 3, nU = 2, and (b) nD = 1, nU = 4.

4.4.2 Impact of the threshold step

The threshold step directly influences the computational effort required to

solve the problem and the accuracy of the results. The former is considered in

§4.4.4 dedicated to CPU time, so only the latter is discussed here.

When using the proposed approximation method to solve an OUU problem,

the Belief curve is in fact discretised. Indeed, the optimal Belief is computed for

a finite set of thresholds. This inevitably introduces inaccuracy in the results.

The smaller the threshold step, the more thresholds are tested, and thus the

more accurate the results should be. This is hinted at in Figure 22a of the
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previous section. A threshold step of 0.1 leads to less accurate results than

smaller ones.

As the number of focal elements increases, the optimal Belief curve is

composed of more and more steps (c.f. Figure 13). The influence of the threshold

step on the accuracy of the results is clearer in the case with nD = 3, nU = 2,

but with 25 focal elements instead of 4 as previously. This is illustrated in

Figure 23.

1E2 1E3 1E4 1E5 1E6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample size

E
rr
o
r
A
re
a
(l
ef
t
9
5
p
er
ce
n
ti
le
)

Method: BSP with pool sampling (n
D
=3, n

U
=2, n

FE
=25)

 

 

y∗ = 0.1

y∗ = 0.05

y∗ = 0.025

y∗ = 0.0125

y∗ = 0.00625

Figure 23: Error area versus number of sample points for the BSP method - Pool
sampling, case nD = 3, nU = 2, nFE = 25.

However, decreasing the threshold too much can quickly become ineffective,

because the accuracy of the results is also very dependent on the sample used.

See for example the case with nD = 1 and nU = 4 in Figure 22b of §4.4.1. In

this case, the results are very similar, and in fact larger threshold steps gives

slightly better results.
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In light of the above, it is recommended to start the algorithm with a large

threshold step, and reduce it until satisfying results are obtained. This way the

threshold step would be small enough to capture the major variations of the

optimal Belief curve, but not too small as to waste unnecessary CPU time.

4.4.3 Impact of the sampling method

The binary space partition has been associated with two different sampling

techniques, uniform latin hypercube sampling (referred to as LHSU) and the

pool method (referred to as pool sampling, or simply pool). In this section, the

differences in performance between the two are assessed.

The LHSU is designed to sample uniformly the system function over its

complete domain of definition. Pool sampling however aims at directing the

sampling towards regions of interest. Thus, one can anticipate pool sampling

will provide better results. The Chebyquad case with 3 design variables and

1 uncertain parameter clearly shows this (c.f. Figure 24). The difference is

most significant for the smaller size of the sample set, and tends to reduce as

convergence is approached.

Another comparison of the two sampling methods is done in Figure 25.

Here, for 1 design variable and 3 or 4 uncertain parameters, the two sampling

methods give similar results for small sample size. In fact, the LHSU slightly

outperforms pool sampling. However, there is a critical sample size for which

pool sampling visibly gives better results. The crossover occurs later in the

nU = 4 case than in the nU = 3 case.

This behaviour can be explained as follows. For a small sample size, pool

sampling returns points that are not spread widely enough to be representative

of the system function. The influence of the initial population, composed of only
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Figure 24: Comparison of the sampling methods for the BSP - Error area versus
number of sample points for the case nD = 3, nU = 1.
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100 individuals, remains very strong. The small number of generations did not

allow the sample set to cover the pools. The subsequent sample points become

more and more valuable as the genetic algorithm drives them towards the pools.

On the other hand, the sample set given by the LHSU is by design well spread.

Thus, as the number of sample points increases, a significant number fall into

regions of little interest.
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Figure 25: Comparison of the sampling methods for the BSP - Error area versus number
of sample points for the cases (a) nD = 1, nU = 3 and, (b) nD = 1, nU = 4.

Finally, let’s look at the variance of the results. On almost all the cases, the

standard deviation of the error area is very similar for both sampling techniques,

and small with respect to the mean value (see all the box plots of the error

area in Appendix B.3.1). However, 2 cases stood out, namely the problem with

nD = 1, nU = 4 and then nD = 3, nU = 1. Figure 26 shows for both cases

the standard deviation of the error area over 100 simulations. In the first test

case, the LHSU gives results with less variance, even if only marginally. But in

the second case, it is the inverse, and pool sampling gives significantly more

consistent solutions. This can be explained by considering the characteristics

of both OUU problems. With 3 design variables and 1 uncertain parameter,

the Chebyquad presents a very steep Pareto front (c.f. Figure 12). In other
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words, the range of thresholds that is relevant is very narrow. Therefore it is

vital that the sample points are located in regions where the system function’s

value is within, or close to, this range. The benefit of using pool sampling is

evident in these circumstances. The case with 1 design variable and 4 uncertain

parameters is quite different in that respect as the Pareto front is much flatter

(c.f. Figure 11). There is not a lot of benefit in using pool sampling here, and,

in fact, the randomness due to the global optimiser becomes visible.
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Figure 26: Comparison of the sampling methods for the BSP - Standard deviation of the
error area versus number of sample points for the cases (a) nD = 1, nU = 4
and, (b) nD = 3, nU = 1.

To conclude, pool sampling appears to be an improvement with respect to

the LHSU. However, this improvement is most of the time modest. Problems

that will benefit most from pool sampling are ones with large variation around

the optimal designs, and/or a small range of thresholds of the optimal Belief

curve. A few additional remarks can be made:

· The LHSU does not require any tuning, thus it is straightforward to use.

· Pool sampling requires a genetic algorithm (or similar) to drive the

sampling process. This has three drawbacks: (i) there is an additional
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computational cost, however small, associated with it, (ii) a tuning of the

optimiser is required and (iii) the user needs to define the pool threshold.

The latter is the most problematic, as this calls for some knowledge of

the problem before tackling it. A badly selected pool threshold would

compromise the quality of the sampling.

· Pool sampling makes it easy to adjust the sample size. One can generate

an initial sample, apply the BSP to get a feeling for the OUU problem,

and then restart the sampling process where it stopped, and so forth.

4.4.4 CPU time

This section deals with the computational cost associated with the binary space

partition method. The cost of the sampling is not considered here. Indeed, this

mostly depends on the system function, whose computational cost can vary

dramatically in real world problems.

The simulations have run on a Unix system, with a AMD Opteron� dual

core processor 275 (clock frequency: 2.2 GHz, cache: 1 MB, RAM: 4 GB). The

BSP code is written in C. The actual values of the CPU times presented here

are of little interest, as they depend on the machine used. However, the order

of magnitude and more importantly the dependency on the OUU problem and

the settings is relevant. The threshold step, sample size, dimensionality of the

problem, number of focal elements are considered below one after another.

The threshold step has a very predictable influence. Indeed, it directly

influences the number of iterations that will be performed, each iteration being

composed of (i) partitioning the space and (ii) finding the best approximated

Belief. As the number of iterations is inversely proportional to the threshold
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step, so is the CPU time. Figure 27b illustrates this on the Chebyquad case

with nD = 3 and nU = 2.

The number of sample points impacts linearly on the binary space partition.

This is because the function value at each and every point needs to be compared

to the threshold. Additionally, the more sample points, the more partitions are

created. Thus the Belief approximation is also more computationally expensive.

Figure 27a shows, for the case nD = 3, nU = 2, the impact of the sample points

on the CPU time required to compute the approximated Belief curve. For any

threshold step, the CPU time is linear. This is general to all cases, but the

gradient may vary significantly.
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Figure 27: CPU time required to compute the approximated Belief curve versus (a) the
number of sample points and, (b) the inverse of the threshold step - Pool
sampling, case nD = 3, nU = 2 (the dash lines mark a linear behaviour)

Similarly, the dimensionality of the problem should have a linear impact on

the CPU time required to partition the domain. This is illustrated in Figure 28,

which gives the mean CPU time as a function of the number of design variables.

The threshold step is fixed, and the 4 curves are given for 4 different sample

sizes. Also, the number of uncertain parameters is kept constant, thus so is

the number of focal elements. This means the CPU time required to compute
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the Belief approximation depends in this case only on the number of design

variables. The same applies to the CPU time required to partition the space.
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Figure 28: CPU time required to compute the approximated Belief curve versus the
number of design variables - Pool sampling, case nU = 2, y∗ = 0.0065 (the
dash lines mark a linear behaviour).

Based on the algorithm described in §3.3.3, the CPU time required to

compute the approximated Belief should increase linearly with the number

of focal elements of the problem at hand. Indeed, every focal element must

be tested to access the Belief value. Note that, as explained earlier, the total

number of focal elements increases exponentially with the number of focal

elements of each individual uncertain parameter (c.f. equation (2.5)). Figure 29

shows the mean CPU time of the BSP approximation with constant numbers of

sample points, design variables and uncertain parameters. Therefore, the CPU

time associated with the partition phase is fixed. The variation of CPU time

is here solely due to computing the Belief approximation. As expected, the
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increase of CPU time appears on the plot linear with the total number of focal

elements. Importantly, the increase is very flat, suggesting a weak dependence

of the BSP performance on the number of focal elements.
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Figure 29: CPU time required to compute the approximated Belief curve versus the
number of sample points - Pool sampling, case nD = 3, nU = 2.

We have shown here that, as expected, the CPU time of the BSP varies:

· linearly with the number of dimensions of the problem to partition the

space.

· linearly with the number of sample points to partition the space.

· linearly with the threshold step.

· exponentially with the number of focal elements of each uncertain param-

eter when calculating the approximated Belief. Additionally, the results
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suggest a weak dependence of the performance on the number of focal

elements.

The main purpose of the indirect method is to control the CPU time required

to solve an OUU problem. Direct methods face the issue of exponential increase

of CPU time with the number of focal elements of each uncertain parameter.

The proposed binary space partition method confines the exponential increase

to the smallest part possible of the algorithm, the computation of the Belief

approximation. This is directly linked to the nature of the exponential increase

of the number of focal elements with the number of uncertain parameters. The

Chebyquad tests have illustrated that this exponential variation is in fact very

flat. Thus the BSP method appears to handle problems with very large sets

of focal elements in a matter of seconds. This should be tested again on the

problems related to space mission design in the next chapter.

4.5 quality of the results

Finally, the quality of the results given by each method is compared. The aim

is to provide insights into the strengths and weakness by comparing on all

Chebyquad test cases firstly the accuracy of the Belief curve, and secondly

how far the returned designs are from the optimal ones. Ultimately, this would

help the end user to select the appropriate method to solve practical OUU

problems.

4.5.1 Accuracy in the objective domain

On all the plots of this subsection, the error area as defined in §4.2.3 versus

the number of function calls is given. The results of the bi-objective and the
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multi-belief methods for the direct cases, and the BSP with both sampling

methods for the indirect cases are provided, on the same graph, for direct

comparison. Moreover, the plots are grouped into sets of 4 as follows:

· Figure 30 for the 4 test cases with 1 design variable,

· Figure 31 for the 4 test cases with 3 design variables,

· Figure 32 for the 4 test cases with 2 uncertain parameters,

· Figure 33 for the 4 test cases with 3 design variables, 2 uncertain param-

eters and varying numbers of focal elements.

The results obtained with the smallest threshold step are presented for the

indirect methods, as this provided the best results. For the direct methods, the

results obtained with the largest population size are given for the same reason.

The only exception is with the multi-belief method when applied to the test

cases with 1 design variable, where the smallest population size is used (c.f.

§4.3.1).

Based on these figures, the following comments can be made:

· The multi-belief method clearly dominates the bi-objective one on the test

cases with 1 design variable. As the number of design variables increases,

the bi-objective method performs in comparison better, especially for

small number of function calls. The same remark is valid when the number

of focal elements increases. In fact, the test cases with 16 and 25 focal

elements are the only ones for which the bi-objective method outperforms

the multi-belief one for most, if not all, numbers of function calls, even if

only marginally.

· The approximated Belief curve obtained with the BSP is better for

small numbers of function calls on all test cases. The point at which
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1E2 1E3 1E4 1E5 1E6 1E7 1E8

10
−8

10
−6

10
−4

10
−2

10
0

Function calls

E
rr
o
r
A
re
a
(9
5
le
ft
p
er
ce
n
ti
le
)

(n
D
=1, n

U
=4, δy*=0.00625)

 

 

Bi-Obj (npop = 48)

Multi-Bel (npop = 16)

BSP (Pool sampling)

BSP (LHSU sampling)

(d) nD = 1, nU = 4

Figure 30: Comparison of all the methods - Error area (95%) versus number of function
calls for the cases with nD = 1 and (a) nU = 1, (b) nU = 2, (c) nU = 3,
and (d) nU = 4.
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(c) nD = 3, nU = 3
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Figure 31: Comparison of all the methods - Error area (95%) versus number of function
calls for the cases with nD = 3 and (a) nU = 1, (b) nU = 2, (c) nU = 3,
and (d) nU = 4.
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Figure 32: Comparison of all the methods - Error area (95%) versus number of function
calls for the cases with nU = 2 and (a) nD = 1, (b) nD = 2, (c) nD = 3,
and (d) nD = 4.
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Figure 33: Comparison of all the methods - Error area (95%) versus number of function
calls for the cases with nD = 3, nU = 2 and (a) nFE = 4, (b) nFE = 9, (c)
nFE = 16, and (d) nFE = 25.
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the direct methods perform better changes with the complexity of the

problem. With 1 design variable, the crossover occurs between 1 to 10×103

function calls. With 3 design variables, this occurs much later, around

50 to 1000×103. In any case, the crossover occurs later as the number of

uncertain parameters or focal elements increases.

· The bi-objective method performs particularly poorly in the test cases

with 1 design variable and 1 uncertain parameter.

· The BSP displays an oscillating behaviour for the case nD = 3, nU = 4

(and also, although barely noticeably for nD = 3, nU = 3). The additional

sample points do not improve the results, but rather drive the algorithm

to identify at best distinct regions. This could be due to very close local

optima, hard to distinguish with an approximation technique.

4.5.2 Accuracy in the design domain

Let’s turn our attention now to the performance with respect to the best

designs found. The plots are again grouped into sets of 4 as follows:

· Figure 34 for the 4 test cases with 1 design variable,

· Figure 35 for the 4 test cases with 3 design variables,

· Figure 36 for the 4 test cases with 2 uncertain parameters,

· Figure 37 for the 4 test cases with 3 design variables, 2 uncertain param-

eters and various numbers of focal elements.

The comments made above remain valid when considering the distance

to the optimal design points. One can note that the BSP tends to perform

comparatively better in the search space than in the objective space. In the case
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(b) nD = 1, nU = 2
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(c) nD = 1, nU = 3
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(d) nD = 1, nU = 4

Figure 34: Comparison of all the methods - Distance to optimal designs (95%) versus
number of function calls for the cases with nD = 1 and (a) nU = 1, (b)
nU = 2, (c) nU = 3, and (d) nU = 4.
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(a) nD = 3, nU = 1
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(b) nD = 3, nU = 2
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(c) nD = 3, nU = 3
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(d) nD = 3, nU = 4

Figure 35: Comparison of all the methods - Distance to optimal designs (95%) versus
number of function calls for the cases with nD = 3 and (a) nU = 1, (b)
nU = 2, (c) nU = 3, and (d) nU = 4.
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(a) nD = 1, nU = 2
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(b) nD = 2, nU = 2
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(c) nD = 3, nU = 2
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(d) nD = 4, nU = 2

Figure 36: Comparison of all the methods - Distance to optimal designs (95%) versus
number of function calls for the cases with nU = 2 and (a) nD = 1, (b)
nD = 2, (c) nD = 3, and (d) nD = 4.
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(a) nFE = 4
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(b) nFE = 9
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(c) nFE = 16
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(d) nFE = 25

Figure 37: Comparison of all the methods - Distance to optimal designs (95%) versus
number of function calls for the cases with nD = 3, nU = 2 and (a) nFE = 4,
(b) nFE = 9, (c) nFE = 16, and (d) nFE = 25.
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with 3 design variables and 4 uncertain parameters, the best design points are

closer to the optimal ones than those found by either direct method. However,

in this test, the results obtained by the direct methods are fairly far away. This

could be explained by (i) the existence of similar local optima and/or (ii) the

dimensionality of the problem. With a total of 7 variables (the most tested in

this work), it is likely that more function calls are necessary to converge closer

to the set of optimal designs.

4.6 conclusions

The extensive test campaign presented in this chapter was carried on the

analytical Chebyquad problems. It provided useful information on the different

proposed methods to solve OUU problem in the frame of Evidence Theory.

Unsurprisingly, the step method is too weak to solve even fairly simple OUU

problems. It fails especially to identify distinct optimal designs at different

levels of Belief.

Of the two other direct methods, the multi-belief method has a better overall

performance. This is particularly noticeable in problems with small numbers of

design variables and focal elements. As the complexity of the problem increases,

the bi-objective method becomes more and more valuable, especially if the

number of function calls is to be limited. This is due to the algorithmic tricks

introduced in this work, which proved their effectiveness. Also, in contrast

to the multi-belief method, the bi-objective formulation is fairly sensitive to

population size. It appears preferable to use a rather large population to achieve

best performance.

The BSP method proved to be a pertinent way to tackle OUU problems

if the number of function calls is to be kept small. Once the sampling is
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available, the computational time required to approximate the optimal Belief

curve and identify good designs is very reasonable. It remains exponential with

the number of focal elements, but this is confined to a very limited part of

the algorithm, accounting for a fraction of the total in even the most complex

Chebyquad test cases. The BSP method can handle problems with a very large

set of focal elements in a matter of seconds.

Two sampling techniques have been associated with the BSP. Compared

to Latin Hypercube Sampling, the proposed pool sampling method slightly

improves the results. More importantly, it makes it easy to adjust the sample

size by restarting the sampling if the BSP outputs are not good enough.

However, the user needs to define the pool threshold which implies some

knowledge of the problem before tackling it. A badly selected pool threshold

would compromise the quality of the sampling.

The 3 methods are of interest, and can be selected depending on the problem

at hand. General guidelines could be summarised as follows:

· If little is known about the problem, the BSP can be used to quickly

extract the major trends, thus helping the analyst to select (and tune)

the solver.

· If the system function is computationally expensive, the BSP is clearly a

wise choice.

· For problems with large numbers of variables and/or focal elements, the

bi-objective method should be considered instead of the multi-belief. This

is also the case if only a part of the Belief curve is of interest. Indeed,

the threshold is a variable to the genetic algorithm, and the analyst can

constrain it and thus focus the search on Belief range of interest.
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Improvements to the algorithms presented in this work are of course possible.

Greater attention could be given to the sampling process associated with

the indirect method. The pool function, for instance, could be enhanced by

introducing an additional pool threshold. The idea is to further reduce the pool

size, driving the sample points away from regions where the system function

returns too high or too low values. A second modification would be to limit

the number of partitions along the design dimensions. Because this is an

approximation method, the precision of the designs cannot be very high, and

therefore it does not make sense to have tiny regions of interest returned by

the solver. This should increase significantly the probability that the optimal

designs are contained in the best design regions identified by the BSP. A

third modification that comes to mind concerns the bi-objective method. The

threshold is treated by the optimiser in the same way as the designs variables.

Thus crossovers between the threshold and one of the design variables occur.

This is likely to impair the performance of the genetic algorithm. This issue

could be resolved by preventing the genetic algorithm from considering, during

the creation of a new generation, the variable “threshold” for crossover.



5
A P P L I C AT I O N S T O S PAC E M I S S I O N D E S I G N

This chapter is dedicated to applying the various methods introduced in the

previous chapters to solve space-related reliable design problems. Two different

test cases are proposed, a BepiColombo-like mission to Mercury, and a feasibility

study to rendez-vous with an asteroid.

These two applications are representative of exploration and science missions

(as opposed to commercial applications). The reason for this choice is because

risk is more accepted in space exploration missions, a reminder, and remainder,

of the pioneer spirit of the early years of the space age. Additionally, science

missions are more subject to uncertainty, especially at the preliminary stage,

generally due to the limited knowledge of the operational environment. Indeed,

the design of a science spacecraft is each time strongly tailored to the specifics

of the mission, while commercial satellites are in comparison mass-produced.

The consequence is that a lot of feasibility studies for space science missions

are performed, but only a handful moves on to the implementation stage.

A second commonality of the test cases is the use of Solar Electric Propulsion

(SEP). The rationale for this choice is due to the fact that such a propulsion

system has a significant impact, in particular mass-wise, on the overall configu-

ration of the spacecraft. The mass of propellant is significantly reduced with

respect to a conventional chemical propulsion system, but the need for large

solar arrays, more complex harness and power processing units, and even larger

radiator, could negate the expected mass savings. Also, the substantially lower

thrust levels available with SEP than impulsive propulsive systems impacts

118
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greatly on the trajectory, and its optimisation is a difficult problem. Clearly,

therefore, designing a spacecraft with SEP is a challenging multidisciplinary

activity.

The first test case is largely based on the BepiColombo mission to Mercury.

A comparison of the direct and indirect methods to solve the OUU problem

is made. The conclusions are in line with what was observed in the previous

chapter.

The second application is a feasibility study of a mission to the asteroid

1999JU3. The scenario is of a space mission analysis required to find a reliable

preliminary design without initial knowledge of the problem, and limited

computational power and time allocated for the task.

5.1 a case study: the bepicolombo mission

In this section, we will present the results obtained when the direct and indirect

methods, introduced and discussed in the previous chapters, are applied to the

preliminary design of a BepiColombo-like mission. The objective of the design

is to minimise the mass of the subsystems linked to the low-thrust propulsion.

We assume that the design is at a preliminary stage, and therefore consider

uncertainties on a few parameters.

After introducing the actual BepiColombo mission, the mass modelling of

the subsystems is detailed and the OUU problem is formulated. Results and

comments conclude the presentation of this first test case.
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5.1.1 A short Presentation of BepiColombo

BepiColombo is mission to the innermost and smallest planet in the Solar

System, Mercury, and is jointly conducted by the European Space Agency

(ESA) and the Japan Aerospace Exploration Agency (JAXA). The spacecraft,

designed and built by EADS Astrium, is currently in the implementation and

testing stage. It is due for launch in the summer of 2014 and will take about

6 years to reach its final destination. Mercury is a poorly explored planet, as

only two spacecraft to-date have visited the planet. NASA’s Mariner 10 and

Messenger both flew by Mercury 3 times each, and started in March 2011 a

year long science phase in orbit around the planet [NASA, 2011].

The BepiColombo mission consists of two separate orbiters, travelling to Mer-

cury together aboard a composite spacecraft. The Mercury Planetary Orbiter

(MPO) will study the surface and internal composition of the planet and the

Mercury Magnetospheric Orbiter (MMO) will study Mercury’s magnetosphere.

The twin orbiters will also investigate the permanently shadowed craters of

the polar regions for chemical signatures of sulphur or water ice.

MPO and MMO are stacked-up with the Mercury Transfer Module (MTM),

consisting itself of electric propulsion and traditional chemical rocket units. In

the current scenario, BepiColombo will use a series of gravity-assist manoeuvres

around Earth, Venus and Mercury, in combination with deep space manoeuvres

with the thrust provided by SEP. Figure 39 is an illustration of the type of

trajectory BepiColombo could soon be flying.

For more information about the BepiColombo mission and the trajectory

design, the reader can refer for instance to [ESA, 2011,EADS Astrium, 2011,

Jehn et al., 2004,Benkhoff et al., 2010,Yarnoz et al., 2006].
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(a) MPO (b) MMO

Figure 38: Artist’s impression of the BepiColombo 2 orbiters around Mercury: (a)
MPO and (b) MMO (downloaded from ESA’s website [ESA, 2011]).
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Figure 39: Example trajectory for the BepiColombo mission (from [Jehn et al., 2004]).
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5.1.2 Spacecraft Mass Model

The mass model presented here is a generic one used for preliminary system

mass assessment of a SEP mission. It enables the mass dependence on thrust

profile and specific impulse to be evaluated [Kemble, 2006]. The total SEP

related mass is given by the following equation:

mSEP
wet

= mtank+marray+mrad+mharness+mPPU+mthrusters+mxenon (5.1)

In this equation, the subsystems considered are the tanks (mtank), the

solar arrays (marray), the radiator (mrad), the harness equipment (mharness),

the power processing unit (mPPU ), the thrusters (mthrusters) and finally the

propellant required to perform the low thrust transfer (mxenon). The expressions

of all these quantities are given in the following subsections.

The mass model has been kindly provided by S. Kemble, senior expert

in Mission Analysis at Astrium UK, Stevenage. It is based on decades of

experience in interplanetary mission design, and is representative to what is

used at the preliminary stage of a space mission design. The numerical values

of the parameters used in this model have been suggested by Astrium’s experts

for the relevant subsystem.

Mass of SEP-related Subsystems

tank The mass of the tank is directly proportional to the mass of propel-

lant:

mtank = σtank ∗mxenon (5.2)
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where σtank is the specific ratio of the tank subsystem (σtank = 11%).

solar arrays The area of the solar arrays required is given by equa-

tion 5.3.

ASA =
P1AU

ηp ∗Gs
∗ κA (5.3)

where P1AU is the power to be generated by the solar arrays at 1 Astronomical

Unit, ηp is the power conversion efficiency (ηp = 0.22751), Gs is the solar

constant at 1AU (Gs = 1367 W.m-2), and κA is the area margin for the solar

arrays (κA = 1.2).

Using the area of the solar arrays, their mass is given by equation 5.4.

marray =

(
ASA ∗ ρSA +m0

array

)
∗ κSA (5.4)

where ρSA is the specific ratio mass/area of the solar arrays (ρSA = 2.89 kg.m-2),

m0
array

is the inevitable structural mass of the solar arrays (constant and

independent of ASA) and κSA is the mass margin for the solar arrays (κSA =

1.1).

radiator The radiator (and the associated elements) is sized based on

the maximum power Pmax, thus at closest approach to the Sun. In the case

of the BepiColombo mission, this is at the perihelion of Mercury’s orbit, i.e.

0.3 AU. The sizing is performed using a system of two equations that link

the power used by the thrusters, the thrust, the specific impulse and the

voltage. The power is a linear function of the thrust and the square root of the

voltage. The specific impulse on the other hand is a second order polynomial

of the trust with linear coefficients of the square root of the voltage. With the
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thrust equal to its maximum (T = Tmax) and the specific impulse equal to its

value at maximum thrust (ISP = ISP
max T

), the voltage is first computed using

equation 5.5, then the maximum power Pmax via equation 5.6.

ISP = b2T
2 + b1T + b0 (5.5)

P =
c

ηengine
∗ (a1T + a0) (5.6)

where a1, a0, b2, b1 and b0 are linear functions of
√
V . V is the voltage in volts,

ηengine the efficiency of the engine to convert electric power into thrust and c a

constant.

Once Pmax is known, the dissipated power while at perihelion can be evalu-

ated:

Pdis = δpPmax +Q (5.7)

where δp is the percentage of the maximal power that is wasted (δp = 0.15)

and Q is the heat to be dissipated at perihelion (constant and independent of

Pmax).

Two different types of radiator can be envisaged for this BepiColombo-

like mission. The choice depends on the value of the dissipated power (cf.

equation 5.7) being above or below a given threshold Pdis
lim

. The mass of the

radiator and its associated structure is calculated using the following equation:

mrad =





(
c0 + c1

Pdis
Pdis
lim

)
∗ κrad if Pdis < Pdis

lim
,

(
c2 + c3

Pdis
Pdis
lim

+ c4

(
Pdis
Pdis
lim

)2
)
∗ κrad otherwise.

(5.8)
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where c0, c1, c2, c3 and c4 are constants and κrad is the mass margin for the

radiator (κrad = 1.15).

harness The harness mass is given by the following equation:

mharness = m0
harness + ρharnessPmaxκharness (5.9)

where m0
harness is the inevitable mass of the harness subsystem, ρharness is

the specific ratio mass/power of the harness subsystem (ρharness = 1.3763 ·

10−3 kg.W-1) and κharness is the mass margin for the harness subsystem

(κharness = 1.2).

power processing unit The mission of BepiColombo is designed

with 4 power processing units (PPU). The mass of each of them is estimated

using an equation linear with the maximum power Pmax (cf. equation 5.6) and

the square of the mean specific impulse (cf. equation 5.12).

thrusters Finally, the mass of the thrusters and the associated com-

ponents varies with the technology used and also the number of thrusters

necessary to achieve the required thrust.

mthrusters = m0
thrusters + nthrustermnominal

thrusters
(5.10)

where m0
thrusters is the inevitable mass of the thrusters subsystem, mnominal

thrusters

is the nominal mass of one thruster and nthruster is the number of thrusters

installed aboard the spacecraft (nthruster = 2).
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Propellant Mass

The mass of xenon is estimated from the ∆V budget using the rocket equation.

mxenon = m0
sc

(
1− e−

∆V
ISP ∗g0

)
(5.11)

where m0
sc is the translunar orbit mass, i.e. the wet mass of the spacecraft just

after the Earth-Moon system escape (specific to this mission, m0
sc = 2400 kg),

g0 is the gravitational acceleration (g0 = 9.80665 m.s-2), ∆V is the delta V

budget for the SEP transfer from the Earth-Moon system escape to the Mercury

capture (in m.s-1) and ISP is the mean specific impulse of the SEP transfer,

given in seconds (ISP
max T

is the specific impulse at maximum thrust):

ISP = 0.989 ∗ ISP
max T

(5.12)

the ∆v budget The delta V budget is composed of:

· the deep space ∆V (cf. below),

· the ∆V for second Lunar Gravity Assist: 40 m.s-1,

· the ∆V for SAA control: 100 m.s-1,

· the ∆V for flyby navigation: 260 m.s-1,

· the ∆V for other navigation: 280 m.s-1,

· and some contingency: +5% of the deep space ∆V .

The deep space ∆V is a quantity essential to any optimisation of spacecraft

design. Indeed, it has a direct impact on the propellant mass (cf. equation 5.11)
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and the tank mass (cf. equation 5.2). In the frame of the BepiColombo test

case, this value is computationally expensive to obtain and cannot be done

fully automatically. Therefore, it is not feasible to consider it within the

model as it is. In order to overcome this issue, a surrogate model based on

180 different transfers computed independently for various values of P1AU

the power to be generated by the solar arrays at 1 Astronomical Unit (AU)

and Tmax the maximum thrust, has been developed (c.f. Appendix C for a

list of the 180 sample points used to build the surrogate model). The use of

surrogate models has been widely proposed to speed up the optimisation process,

without [Jones, 2001,Hawe and Sykulski, 2007,Sakata et al., 2004,Wang, 2003]

or with uncertainties [Eldred et al., 2002,Agarwal et al., 2003,Wang et al., 2005].

A surrogate model has the benefit of significantly reducing the computational

time but at the expense of accuracy. Therefore great care should be taken

to choose the appropriate model and tune its parameters. Kriging has been

selected for this application because it is an exact surrogate (i.e. equal to the

∆V at the observed points), accepting non-uniformly distributed sample points

(which allow to densely sample areas of great variation) and finally gives an

estimate of the prediction error which could be used to drive the sampling. The

DACE package [Lophaven et al., 2002] was used, with a first order polynomial

regression model and an exponential correlation model. Figure 40 represents

the Kriging model, with the black dots marking the sample points.

a short introduction to kriging predictor The idea of Krig-

ing approximation is to model the lack of knowledge one has in the function

value at some non-sampled point x. This is done by considering that the value

of the function at x is “like the realization of a random variable Y (x) that
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Figure 40: Kriging surrogate of the deep space ∆V for the low thrust mission of
BepiColombo.

is normally distributed with mean µ and variance σ2” [Jones, 2001]. Then, a

correlation function is defined by:

Corr
[
Y (xi), Y (xj)

]
= exp

(
−

N∑

l=1

θl | xil − xjl |pl
)

(5.13)

where xi and xj are two points of the input space of dimensionality N .

The parameters θl and pl, (l ∈ [1, N ]) are tuning parameters adjusted such

that the model fits the observations. The mean µ and standard deviation σ

are also unknown and need to be selected. To do so, the Kriging methodology

is to find the tuning parameters that maximise the likelihood of the observed

data. Therefore, the definition of the parameters is an optimisation problem

itself. To simplify it, some additional properties of the correlation models are

chosen. The MatLab toolbox DACE [Lophaven et al., 2002] suggested 3 types
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of simplified correlation models based on the previous formulation (exponential,

general exponential and gaussian) but one can also choose other models such

as the one suggested in [Sacks et al., 1989].

For more information about Kriging, the reader can refer to [Cressie, 1990,

Davis, 2002]. Also, other alternative meta-models are available such as splines [Bar-

tels et al., 1987] or radial basis functions [Powell, 2001].

Summary

The simple model presented here enables the analyst to estimate the mass of

the main subsystems of a low thrust spacecraft with only three inputs: (i) the

power to be generated by the solar arrays at 1AU P1AU , (ii) the maximum

thrust Tmax and (iii) the specific impulse at maximum thrust ISP
max T

. An

illustration of the variation of the SEP related mass with the design variables

is given in Figure 41.

5.1.3 The OUU problem

The objective of the design is to maximise the Belief that the SEP-related

mass mSEP
wet

is as small as possible. The design domain and the BPA-structure

are detailed hereafter.

design variables The mass modelling is such that only 3 design vari-

ables are necessary to define the mass of the SEP-related subsystems. Table 14

gives the range of possible values of each of them.

the bpa-structure In this application, we have selected three pa-

rameters as uncertain: the power conversion efficiency ηp, the specific ratio



5.1 a case study: the bepicolombo mission 131

250 300 350 400
4500

5000
5500

6000
800

850

900

950

1000

1050

1100

1150

1200

 

Tmax [mN]P1AU [W]

 

m
S
E
P

w
e
t
[k
g
]

Isp max T = 8000 s

Isp max T = 7000 s

Isp max T = 4000 s

Isp max T = 6000 s

Isp max T = 5000 s

Figure 41: Variation of the SEP wet mass with the design variables for the BepiColombo
test case.

Table 14: Design variables for BepiColombo test case.

Parameter Symbol
Lower Upper

Unit
bound bound

Power at 1AU P1AU 4200 6450 [W]

Maximum thrust Tmax 210 400 [mN]

Specific impulse ISP
max T

4000 8000 [s]
(at maximum thrust)
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mass/area of the solar arrays ρSA, and the specific ratio mass/power of the

harness subsystem ρharness. They appear respectively in equations 5.3, 5.4 and

5.9.

Table 15 presents the BPA-structure. These choices are the result of recom-

mendations from experts at EADS Astrium UK. Indeed, various technologies

and quality of space solar power systems are available to the designer, and

their performances vary significantly, directly impacting on the value of ηp

and ρSA. Similarly, the specific mass/power ratio of the harness subsystem is

dependent on the technology used but also on the internal configuration of the

spacecraft, which is unknown at the preliminary stage of the spacecraft design.

Table 15: Uncertainty representation using Evidence Theory - BepiColombo test case.

Uncertain Intervals Basic probability

parameter Lower bound Upper bound assignment

ηp

0.18959 0.195 0.05

0.195 0.205 0.15

0.205 0.215 0.25

0.215 0.22751 0.55

ρSA

2.89 3.00 0.10

3.00 3.10 0.15

3.10 3.25 0.35

3.25 3.3105 0.40

ρharness

1.3763 · 10−3 1.4500 · 10−3 0.05

1.4500 · 10−3 1.5500 · 10−3 0.25

1.5500 · 10−3 1.6000 · 10−3 0.30

1.6000 · 10−3 1.6515 · 10−3 0.40

A margins approach is typically used to take into account uncertainties when

designing space missions. As the goal here is to crystallise the uncertainties

and their impact with Evidence Theory, we selected parameters as uncertain

when they are associated with a system margin, and set these to 0 in the OUU
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problem. In our example, these are κA, κSA and κharness. Their values in a

conventional design approach are reported in Table 16.

Table 16: Margins applied in the low thrust spacecraft model.

Margins Value Subsystem

∆V +5% ∆V contingency

κA 1.20 Area of the solar arrays

κSA 1.10 Mass of the solar arrays

κrad 1.15 Mass of the radiator

κharness 1.20 Mass of the harness subsystem

Note that the BPA-structure is such that the effect of the 3 parameters being

considered as uncertain is artificially equivalent to applying the default system

margins. The consequence is that the optimal design of the OUU giving a

Belief of 1 is the same as the deterministic one. This is obviously not generally

the case but it helps here to better comprehend the results.

5.1.4 Results and Comparisons

The proposed approaches to solve the OUU problem have been tested against

the test case of the BepiColombo mission described previously. It is believed that

a (nearly) optimal solution has been identified after very extensive simulations.

It serves here as a reference to evaluate the quality of the results found for

each test by calculating, as in the previous chapter, the error area between the

solution and the optimal curve in the objective space.

The locations of the optimal design points are given in Figure 42. It is

important to realise that 2 classes of solutions exist for this problem, distinct

by the value of P1AU : 4,650 or 4,800 watts. The optimal maximum thrust is
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clearly 230 mN and the specific impulse at maximum thrust between 5639 and

5655 seconds.

 

 

Belief P_1AU [W] T_max [mN] Isp [s]

0, 4200W, 210mN, 4000s

0.2, 4650W, 248mN, 4800s

0.4, 5100W, 286mN, 5600s

0.6, 5550W, 324mN, 6400s

0.8, 6000W, 362mN, 7200s

1, 6450W, 400mN, 8000s Belief ∈  ]0.8, 1]
Belief ∈  ]0.6, 0.8]
Belief ∈  ]0.4, 0.6]
Belief ∈  ]0.2, 0.4]
Belief ∈  [0, 0.2]

Figure 42: Locations of the optimal design points for different level of Belief - Bepi-
Colombo test case.

Direct Solution Simulations

Firstly, the direct solution is tested for three different numbers of total system

function evaluations: 100,000 , 500,000 and 1,000,000. Each system function

evaluation costs 0.00034 s on an Intel Pentium D, 3.6GHz with 1GB of RAM.

As the multi-objective optimiser is not deterministic, 100 simulations have

been run for both implementations (bi-objective and multi-belief) to obtain

meaningful conclusions. Moreover, the setting of NSGA2 were: (i) agents:

20 (ii) probability of crossover and mutation: 0.75 and 0.33 (iii) distribution

index for crossover and for mutation: 10 and 25. As for any test involving an

evolutionary algorithm, the settings of the optimiser parameters is tricky and
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Figure 43: Influence of the number of agents in the performance of NSGA2 for the
BepiColombo test case, bi-objective method.

can significantly affect the results. The probabilities and distribution indices

were selected such that convergence speed and global exploration is balanced.

The most significant parameter however is clearly the size of the population.

Preliminary tests for up to 100,000 function evaluations indicated that 20 agents

was a suitable population. Figure 43 shows that for the bi-objective function,

the optimal population size is around 20 for our selection of probabilities and

distribution indices. The same population size was used for the multi-Belief

method for comparison purposes.

The BPA structure defined for the BepiColombo-like test case is composed

of 64 adjacent focal elements (cf. Table 15). As we do not assume convexity of

the system function mSEP
wet

, a local optimiser* is used to identify the maximum

of the system function over each of the 64 focal elements.

*The Matlab function fmincon is used here.
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The average solution found for one hundred function evaluations is given in

Figure 44, and the mean value of the error area and its variance are given for

all simulations in Table 17.
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Figure 44: Solutions found for the OUU with only 100,000 system function evaluations
- BepiColombo test case.

Table 17: Mean value and variance of the normalised error area for the OUU Bepi-
Colombo test case for 100 runs.

nval
Bi-Objective Multi-Belief

mean variance mean variance

100,000 2.39 · 10−1 5.23 · 10−2 2.36 · 10−1 4.78 · 10−2

500,000 9.26 · 10−3 2.37 · 10−5 9.85 · 10−3 1.63 · 10−5

1,000,000 5.27 · 10−3 2.53 · 10−6 3.24 · 10−3 3.00 · 10−6
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Finally, the OUU problem can be considered as successfully solved if the

classes of optimal design are identified. In the test case of BepiColombo, there

are two classes of optimal solutions defined by two boxes:

Class 1 = [4640 W, 4740 W]× [229 mN, 231 mN]× [5620 s, 5680 s]

Class 2 = [4780 W, 4820 W]× [229 mN, 231 mN]× [5620 s, 5680 s]

(5.14)

Table 18 gives the rate for which solutions have been found in both classes, or

in either class. Both approaches have very similar performances. It is interesting

to note the bi-objective approach finds solutions in both classes more often

than the multi-belief one. The reason for this is that the bi-objective tests

more designs for the same computational effort, therefore increasing, as a

consequence, the success rate of finding a solution.

Table 18: Percentage for which solutions have been found over 100 runs in both classes
and in at least one class, for the case of BepiColombo.

Number of system Bi-Objective Multi-Belief

function evaluations both classes one class both classes one class

100,000 2% 20% 0% 2%

500,000 94% 99% 58% 100%

1,000,000 100% 100% 79% 100%

Indirect Solution Simulations

For the indirect approach, 3 different methods have been tested: the clustering -

convex hull method, the pixelisation method and the BSP method. The indirect

approach is designed to tackle problems with computationally expensive system

function. Therefore, to be representative of a real case scenario, the number

of system functions has been limited to 100,000. The resulting approximation

of the Pareto front is represented in Figure 45. The pixelisation and the BSP

methods are such that they may overestimate the real result. This is the reason
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Figure 45: Approximation found with the indirect approaches for the OUU with only
100,000 system function samples - BepiColombo test case.

why they appear to be far better than the clustering - convex hull method

in the objective space, and even a little better than the actual solution. The

BSP in particular overestimated the actual solution. It remains that all three

approximations provide reasonably good approximations of the Pareto front.

In contrast to the direct solution methods, the complexity of the indirect

one does not increase exponentially with the number of focal elements. Indeed,

only the focal elements that lie between the outer and inner axis-aligned boxes

need to be checked. Their number will remain limited and fairly constant

throughout the procedure as the inner and outer AABs grow at the same rate.

Moreover, the number of sample points needed to gather the same information

increases polynomially with the number of dimensions. It is not dependent on

the number of focal elements in any way. Figure 46 shows the number of design

points that the direct approach can test with 100,000 function evaluations.

As the number of focal elements increases, the result of the direct approach
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Figure 46: Variation of the number of designs evaluated in the direct approach versus
the number of focal elements. The number of system function evaluations
has been fixed to 100,000.

naturally decreases in quality. On the other hand this increase will have no

effect on the indirect approach.

5.1.5 Conclusions

A BepiColombo-like mission has been used as an application to the OUU

problem. The direct and indirect methods have been used and compared. The

results obtained during this test case confirm the conclusions drawn in the

previous chapter when only an analytical test case was used. Note that for this

representative test case, it was necessary to substitute with a surrogate model

the variation of the ∆V with the design variables. Indeed, the ∆V budget

is dependent on the trajectory, and the one BepiColombo will fly is a very

complex one indeed. Calculating such a trajectory requires a few minutes of
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computational time, and for each trajectory design, the algorithm must be set

up properly and verifications must be done on the results to validate them.

5.2 another case study: mission to c-type asteroid

The first space-related test case was strongly inspired from an already well

defined mission. For this second test case, the context is more of a feasibility

study. The aim is to illustrate the proposed methodology to tackle a reliable

preliminary space mission design.

The next section details the proposed test case. First the mission scenario,

the trajectory design and the mass modelling are described. The OUU problem

is then formulated.

The Binary Space Partition method is used as a first step to gather basic

knowledge of the problem at hand. The bi-objective method is then used on

the pruned search space to refine the results.

5.2.1 Presentation

Mission scenario

In this test case, the objective is to design a reliable mission to rendez-vous

with the asteroid 1999JU3. The departure from Earth is scheduled for 2020.

The 10 months period from the 1st of January 2020 (7304.5 MJD2000) until

the 1st of November 2020 (7609.5 MJD2000) is favourable for a transfer.

The time of flight is also constrained from 280 to 650 days. Time of flight

lower than 280 days would require impractical levels of ∆V s, while an upper
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bound of about two years is representative of constraints linked to biological

payloads or operational costs for instance.

Finally, the wet mass at launch is fixed to m0
sc = 600 kg. Therefore, the

objective of the design is in this case to maximise the mass of payload mPL.

Asteroid 1999JU3

The asteroid 1999JU3, also designated as 162173 [Campins et al., 2009], is the

target for a second sample return mission to primitive bodies by the Japanese

space agency JAXA, after the success of Hayabusa launched in 2003. Hayabusa

was a sample return mission to the S-type asteroid Itokawa, pictured in Figure 47

in 2005. Hayabusa-2 has been confirmed for a launch in 2014 or 2015, and

should return collected samples from 1999JU3 in the year 2020 [JAXA, 2011].

Figure 47: Pictures taken by Hayabusa of the asteroid Itokawa, on the
10/09/2005 [Spacecraft, 2005].

The asteroid 1999JU3 is classified as a C-type asteroid, which are known to

be parent bodies of carbonaceous chondrites, having unaltered composition and

more organic matters than other meteorites [Hasegawa et al., 2008]. C-type

asteroids are the most commonly known ones (∼75%), have generally a low
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albedo (less than 0.04, thus very dark), and are distributed mostly around the

outer side of the asteroid belt. The other main types of asteroids according

to Tholen’s taxonomy [Tholen, 1989] are S-type (∼17% of known asteroids,

moderately bright (albedo ∼0.14) and mainly metallic nickel-iron mixed with

iron- and magnesium-silicates) and the M-type (most of the rest, moderately

bright (albedo of 0.10 to 0.18), with a surface composition of metal, olivine

and pyroxene).

With an apocenter radius of 1.4AU and a pericenter radius of 0.96AU,

1999JU3 is classified as an Apollo type asteroid, as it crosses the Earth’s orbit.

Also, the synodic period of the Sun-Earth-1999JU3 system is 4.37 years. The

keplerian orbital elements of the asteroid are given in Table 19 and its orbit is

represented in the ecliptic plane in Figure 48.

Eccentricity Inclination

Right

Semi Ascension of Argument

major the Ascending of

axis Node periapsis

[AU] [deg] [deg] [deg]

1.1891 0.18996 5.8842 251.71 211.29

Table 19: Keplerian orbital elements of the asteroid 1999JU3 used in this study (up-
dated keplerian elements are made available regularly at the NEODYS of
the University of Pisa http://newton.dm.unipi.it/neodys).

Trajectory Design Through Shape-Based Approach

As is the case for almost all space exploration missions, the trajectory is a

key element of the design process. This is even more true when a low thrust

propulsion system is used as it has an impact not only on the propellant and

tank mass but also on the power requirements which in turn affect the size of

the solar arrays, the radiator, harness and power processing units. Moreover,

http://newton.dm.unipi.it/neodys
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Figure 48: Orbit of the Asteroid 1999JU3 in (a) the ecliptic plane and (b)-(c) out-of-
plane.
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low thrust engines can produce by definition only a very low amount of thrust,

typically values of a few mN, that the trajectory should be compliant with.

When the mission design is at a preliminary stage, a computationally efficient

way to calculate a trajectory is required to enable the investigation of as many

alternatives as possible.

In this test case, a shape-based method to compute the trajectories and

the associated controls has been used. The implementation of this method

presented in [Novak and Vasile, 2009] has been kindly made available for this

work by the lead author Dr D. Novak.

To summarise, the shape-based approach consists in expressing the space-

craft’s position with the pseudo-equinoctial elements and using the longitudinal

anomaly L for parametrisation [Novak and Vasile, 2009]. The expression of the

pseudo-equinoctial elements are given in equation 5.15. For more information,

please refer to [Novak and Vasile, 2009].





p = p0 + p1e
λ1(L−L0)

f = f0 + f1e
λ2(L−L0)

g = g0 + g1e
λ2(L−L0)

h = h0 + h1e
λ3(L−L0)

k = k0 + k1e
λ3(L−L0)

(5.15)

When using the pseudo-equinoctial elements to shape the trajectories, the

computational time was reduced by setting λ2 and λ3 to 0.1 as in [Novak and

Vasile, 2009]. Indeed, since the departure and arrival orbits are nearly circular

(eccentricity of 0.01675 and 0.18996 respectively), the shaping parameter λ2 does

not substantially affect the time of flight and the total ∆V . With the inclination
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of the target 1999JU3 being very low (5.88 deg), the optimal transfers will be

close to planar, and therefore, fixing λ3, the shaping parameters governing the

out-of-plane motion, will not affect the results.

The transfer time t should also be given as a function of L but it is difficult

to provide a priori such an expression which results in practically acceptable

thrust profiles [Novak and Vasile, 2009]. Here, it is shaped by using its derivative

with respect to L for the unperturbed orbit, neglecting the control term (cf.

equation 5.16).

t(L) =

∫ L

L0

1√
µp(l)

(
p(l)

1 + f(l) cosL+ g(l) sinL

)2

dl (5.16)

where µ is the gravitational constant of the central body (of the Sun in our

case). Of course, shaping the time in such a way leads to a unique time profile

directly linked to the shape of the pseudo-equinoctial elements, and therefore to

a unique time of flight. As the trajectory has to leave from Earth and arrive at

1999JU3 with no relative velocity, a time of flight constraint has to be satisfied.

The shaping parameter λ1 is thus chosen accordingly via a Newton loop. If it

occurs that the time of flight constraint cannot be fulfilled that way, a two

step procedure is used:

1. λ1 is chosen such that the time of flight violation ToFviol is as close as

possible to zero: The last two values of λ1 returned by the Newton loop

are on both side of the minimum. They are used as starting points for a

bisection on the derivative of the time of flight violation with respect to

λ1, i.e. violation dToFviol
dλ1

. This leads to λ∗1 for which dToFviol
dλ1

(λ∗1) = 0.
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2. Once λ∗1 is found, the time evolution is shaped as proposed in [Novak

and Vasile, 2009], section 1.4. Using the time of flight violation ToF ∗viol

associated with λ∗1, the time as a function of L becomes:

t(L) =

∫ L

L0

1√
µp(l)

(
p(l)

1 + f(l) cosL+ g(l) sinL

)2

+ ToF ∗viol
6(L− L0)(L− Lf )

Lf − L0
dl (5.17)

Note that the proposed way to deal with the time of flight constraint is a

slight modification from [Novak and Vasile, 2009]. The reason is to have results

that are as continuous as possible by removing numerical discontinuities. This

is critical as the trajectory computation will be part of the objective function

in the optimisation under uncertainty problem.

Thrust Profile and Propellant Consumption

Once a trajectory and its associated control c(t) are known, the second step is

to compute the variation of mass along the trajectory.

The thrust magnitude at a given instant is simply the product of the mass

of the spacecraft msc and the norm of the control:

T (t) = msc(t) ∗ ‖c(t)‖ (5.18)

By replacing T in the relation between the specific impulse and the thrust (c.f.

§5.1.2) with the previous equation, we have:

ISP = b2 (msc ∗ ‖c‖)2 + b1 (msc ∗ ‖c‖) + b0 (5.19)
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Additionally, let us remember the definition of the specific impulse:

ISP = − T

g0ṁsc

= −msc ∗ ‖c‖
g0ṁsc

(5.20)

where g0 is the gravitational acceleration at sea level and ṁsc is the mass flow

rate.

Combining the two equations 5.19 and 5.20, we find:

msc ∗ ‖c‖
g0ṁsc

= b2 (msc ∗ ‖c‖)2 + b1 (msc ∗ ‖c‖) + b0

ṁsc =
msc ∗ ‖c‖

g0(b2 (msc ∗ ‖c‖)2 + b1 (msc ∗ ‖c‖) + b0)
(5.21)

As the initial mass m0
sc is known, we can numerically integrate the differential

equation equation 5.21 using, for example, the function ODE45 of MatLab. This

leads to the variation with time of the mass msc(t) of the spacecraft along

the trajectory. Subsequently, the thrust profile can then be reconstructed via

equation 5.18.

Note that the design is limited to only one engine with a maximum thrust

Tmax = 250 mN. If the trajectory requires a higher thrust level, the trajectory

is discarded.

Mass Modelling

payload mass As mentioned in the mission scenario §5.2.1, the objective

of the design is to maximise the payload mass. It simply corresponds to the

mass of the spacecraft minus the mass of all the equipment needed to fly it to

the targeted destination.



5.2 another case study: mission to c-type asteroid 148

mPL = m0
sc − (mstruct +mtank +mthrusters +mxenon

+ mPPU + marray + mrad + mharness) (5.22)

The mass modelling of the subsystem used in this test case is almost identical

to the one used for the BepiColombo test case (c.f. §5.1.2). Only 1 thruster and

1 PPU are used (nthruster = 1, nPPU = 1) and the initial wet mass is much

smaller (600 instead of 2400 kg). Also, as the payload mass is optimised, the

mass of the structure mstruct needs to be taken into account. We fixed it to be

5% of the wet mass at launch, i.e.:

mstruct = 0.05 ∗m0
sc (5.23)

computing the power and specific impulse In order to use

the mass model, the maximum power Pmax, the power to be generated by

the solar arrays at 1AU P1AU and the mean specific impulse ISP needs to be

evaluated.

The power profile along the trajectory is computed from the thrust profile

(c.f. §5.2.1), and using the relation between the thrust and the power required

given in equation 5.6. Then, the maximum power Pmax is available, necessary

to calculate the mass of the radiators, harness and PPU subsystems. Also

available is the power at 1AU P1AU sizing the solar arrays.

In the BepiColombo test case, the mean specific impulse was computed based

on an empirical formula (c.f. equation 5.12). This was because the trajectory

and therefore the control law associated was not computed for each design
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point. In the present test case however, the control law is available. Therefore,

the rocket equation is used as follows to compute the mean specific impulse:

ISP =
∆V

g0 ∗ ln
(
m0

sc
mf

) (5.24)

The total ∆V of a given trajectory is the integral of the control over the

trajectory:

∆V =

∫ t0+ToF

t0

‖c(τ)‖ dτ (5.25)

(t0 is the initial epoch of the trajectory and ToF the time of flight).

Therefore, once the trajectory has been computed, the required information

to compute the mass of the different subsystems, and finally of the payload,

is available. Figure 49 represents the variation of the payload mass with the

departure epoch t0 and the time of flight ToF (the uncertain parameters have

been fixed at their nominal values). The figure clearly show a horse-saddle

shape, with two local optima found for an early departure and long time of

flight, or a late departure and a short time of flight.

5.2.2 The OUU Problem

In contrast to the BepiColombo test case, we aim here at maximising the

Belief that the payload mass is greater than a given threshold. Therefore, the

Complementary Cumulative Belief Function (CCBF) must be used instead of

the CBF.

design variables As seen in the previous section, the payload mass is

fully defined once the trajectory is available. Therefore, there are in this case
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Figure 49: Payload mass to the Asteroid 1999JU3 versus the departure epoch and the
time of flight for the deterministic case.
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only two design variables, the departure time t0 and the time of flight ToF .

Table 20 gives the range of possible values of the design variables.

Table 20: Design variables for the asteroid mission test case.

Parameter Symbol
Lower Upper

Unit
bound bound

Departure epoch t0 7304.5 7609.5 days (MJD2000)

Time of flight ToF 280 650 days

uncertain parameters Five parameters are considered as uncertain.

This is two more than the BepiColombo test case, and therefore the problem

is expected to be more difficult to solve. The uncertain parameters are:

· ηengine the efficiency of the engine to convert electric power into thrust

(c.f. equation 5.6)

· ηp the power conversion efficiency (c.f. equation 5.3)

· ρSA the specific ratio mass/area of the solar arrays (c.f. equation 5.4)

· ρharness the specific ratio mass/power of the harness subsystem (c.f.

equation 5.9)

· δp the percentage of the maximal power that is wasted (c.f. equation 5.7)

The BPA-structure, given in Table 21, has a total of 1024 focal elements.

remarks This test case is supposed to represent a real life situation

in the industry, where an engineer is investigating the feasibility of a space

mission. Therefore, nothing is assumed to be known of the optimal solution.

Also, a solution should be available within a few hours on a mid-of-the-range
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Table 21: Uncertainty representation using Evidence Theory - Asteroid test case.

Uncertain Intervals Basic probability

parameter Lower bound Upper bound assignment

ηengine

0.735 0.745 0.20

0.745 0.755 0.40

0.755 0.760 0.30

0.760 0.765 0.10

ηp

0.18959 0.195 0.05

0.195 0.205 0.15

0.205 0.215 0.25

0.215 0.22751 0.55

ρSA

2.89 3.00 0.10

3.00 3.10 0.15

3.10 3.25 0.35

3.25 3.3105 0.40

ρharness

1.3763 · 10−3 1.4500 · 10−3 0.05

1.4500 · 10−3 1.5500 · 10−3 0.25

1.5500 · 10−3 1.6000 · 10−3 0.30

1.6000 · 10−3 1.6515 · 10−3 0.40

δp

0.10 0.12 0.10

0.12 0.14 0.20

0.14 0.16 0.40

0.16 0.18 0.30

personal computer, in order to allow multiple iterations for a trade-off analysis

for example.

The OUU problem is more challenging than the BepiColombo case as the

number of focal elements is 16 times larger, and there are a total of 5 uncertain

parameters instead of only 3. Moreover, the trajectory is computed for each

new set of design variables. Even though the shape-based method is very fast,

the CPU time required is about one second. Note that the uncertain parameters
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do not influence the trajectory. Therefore, when the direct method is used, the

trajectory is computed only once per design point, before the mass modelling

is applied during the Belief evaluation. The BPA-structure and the system

function are such that the extremum lies on one of the 32 vertices of each focal

element. Therefore, there is no need to use a local optimiser, and the system

function is only evaluated at the vertices to extract the minimal value of the

payload mass. The number of function evaluations, to calculate the complete

CCBF curve of a single design, however, remains large, 3125 precisely.

Based on these considerations, the methodology used here to solve the OUU

problem is: first, the BSP method is used to extract the major trends of

the problem, the solution is then refined using the bi-objective method. The

methodology follows the conclusions of the previous chapter 4. The bi-objective

method is used rather than multi-objective one because the number of focal

elements is important. The results obtained at both steps are given in the next

sections.

5.2.3 Using the BSP Method to Identify Promising Design Regions

The BSP is used first to identify design regions of interest. The pool sampling

method has been preferred to the LHSU. Indeed, it is generally the case that

a significant share of the couples (departure epoch - time of flight) are not

compatible with a reasonable ∆V . Thus, a lot of design points are likely to be

infeasible. Pool sampling should help to limit the sampling in the infeasible

region.

The setting used for the pool sampling is the same as in the Chebyquad

test cases, and given in Table 22. The pool threshold was set to 5% of the

departure mass, i.e. 30 kg, which is purposely a bit lower than the desired ratio
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(usually 10-20%). Finally, 100 generations of 100 agents are used, thus a set

of 10,000 sample points is created. A large population size was chosen here to

favour exploration of the design and uncertain parameter space. The number

of generations was driven by the time constraint imposed. Indeed, the system

function takes a little less than one second to evaluate, thus a little more than

2 hours and a half is required for 10,000 sample points.

Table 22: Setting parameters of NSGA2 for the pool sampling for the mission design
to 1999JU3.

Parameter Value

Pool threshold 30

Population size 100

Number of generations 100

Probability of crossover 0.9

Probability of mutation 1/7

Distribution index of crossover 20

Distribution index of mutation 40

Once the sample points are available, the approximated Belief curve is

computed. The initial threshold is selected to the highest payload mass found

during the sampling, The threshold step is selected to be 1 kg, considered small

enough for the accuracy required at a preliminary design stage. Figure 50 gives

the approximated optimal Belief curve found.

Figure 51a shows the location of the best design regions for small payload

mass and high Belief, and Figure 51b the best design regions for large payload

mass and low Belief.

It clearly appears that 3 distinct regions are of interest for the higher values

of the payload mass, while there is only 1 for the lower values. This latter is in

fact included in one of the design regions identified for higher payload mass.

Table 23 gives the best design regions found.
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Figure 51: Best design regions found by the BSP method on the mission to 1999JU3
test case: (a) for low payload mass and (b) for large payload mass.
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Table 23: Best design regions identified with the BSP method - Mission to 1999JU3
test case.

Best Departure epoch Time of flight

Found for
Design [MJD2000] [days]

Regions Lower Upper Lower Upper

bound bound bound bound

BDR #1 7380.75 7457.00 465.0 650.0 m∗PL ≤ 40 kg

BDR #2 7304.50 7457.00 465.0 650.0 m∗PL > 40 kg

BDR #3 7457.00 7533.25 372.5 465.0 m∗PL > 40 kg

BDR #4 7533.25 7609.50 280.0 372.5 m∗PL > 40 kg

The CCBF has been computed for the design points at the centre of the 2nd,

3rd and 4th design regions. Figure 52 shows these 3 curves. Note that there is a

significant difference with the approximated Pareto front obtained with the

BSP (c.f. Figure 50). More sample points would have certainly improved the

approximation accuracy, and reduced the size of the design regions as well.

Of the 3 design regions being tested, BDR #4 clearly appears the least

promising, as there is not even complete certainty that any payload could be

brought to destination. BDR #2 and BDR #3 on the other hand are designs

that can bring respectively 30 and 50 kg of payload with certainty, and close

to 100 kg if decision makers are willing to take significant risks.

5.2.4 Using the Bi-objective Method to Refine the Best Designs

The bi-objective method is now used to refine the preliminary results obtained

with the indirect method. Three distinct design regions have been identified as

interesting, BDR #2, BDR #3 and BDR #4. Thus, the bi-objective method is

run 3 times, each time limiting the search space to one of the design regions.

The initial Pareto front is set to the CCBF curve computed at the centre of the
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corresponding design region (c.f. Figure 52). The evolution of the area between

the axis m∗PL = 0 and the current Pareto front is plotted for each design region

in Figure 53. After 1 million function calls, the bi-objective method does not
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Figure 53: Area versus number of function calls during the bi-objective optimisation
for the Mission to 1999JU3 test case (area between the axis m∗PL = 0 and
the current Pareto front).

significantly improve the results. The code has been left running for another 1

million function calls, at which point convergence was considered reached.

It is interesting to note that even though the design region BDR #4 was

the least promising of the three, it turned out that a better result than for

BDR #3 was found once refined with the bi-objective method.
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5.2.5 Results and Comments

The bi-objective method was used to refine the results obtained by the BSP,

confining the search space to 3 independent design regions. Each of them

converged to different local optimal designs, which are dominating for any

belief level. This can be seen in Figure 54. Note that for BDR #3 and #4, the
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Figure 54: Locations of the optimal design points for the OUU - Mission to 1999JU3
test case.

optimal design is found at the edge of the search space. This tends to indicate

that the optimum might be outside, and therefore not reachable. To refine even

further the results, one could run the bi-objective method on the design region

{t0 ∈ [7450, 7550]; ToF ∈ [325, 400]}.

Finally, the optimal Belief curves for the 3 design regions are given in

Figure 55. The design found in BDR #2 significantly dominates the two others.
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This is much more apparent for high Belief levels (about 20 kg difference),

while on the riskier side, the 3 designs are much closer (5 to 10 kg difference).

The dominating design presents a steeper Belief curve, which means that its

performance is less sensitive to the inherent uncertainties present in the misison

scenario.

To conclude, 3 robust designs for the low thrust mission to 1999JU3 have

been found. The mission is feasible, and 80 to 120 kg of payload could be

transported to the destination. The decision makers could opt for the design

less sensitive to uncertainty and more efficient, but would have to accept a long

transfer duration. The alternatives are more risky but have a transfer time

which is 10 months shorter.

5.3 conclusions

In this chapter, two reliable space mission designs in the frame of Evidence

Theory have been tackled by the methods introduced and discussed earlier.

On the BepiColombo-like test case, a comparison of the direct and indirect

methods has been presented. It confirms what was observed on the Chebyquad

test cases of chapter 4.

A second application was a feasibility study of a mission to rendez-vous

with an asteroid. The problem has been solved using a two-step approach.

First, the BSP was used to garner knowledge about the problem, gain a

first idea of the Belief curve, and identify interesting design regions. Then,

the bi-objective method was run on this pruned search space to refine the

results. Three alternative designs were found, showing different characteristics,

performance and sensitivity to uncertainties. This should be appealing to the

decision makers to allow them to take a more conscious decision.



6
F I N A L R E M A R K S

The work presented in this thesis responds to the requirement of finding efficient

ways to optimise the preliminary design of space missions. At the early stage

of development, an insufficient consideration for uncertainty could lead, for

instance, to a wrong decision on the feasibility of the mission. This is especially

true for exploration and science missions, which are inherently subject to a

large level of uncertainty. A problem formulation, combining multidisciplinary

design optimisation and Evidence Theory for the crystallisation of uncertainties,

has been investigated and applied to space related test cases.

In this chapter an overview of the original work carried out by the author is

provided, and the main results of this thesis are summarised. On the base of

the findings of this study, future works and some recommendations are given.

6.1 summary and findings of the thesis

By combining modern statistical methods to model uncertainties inherent to

any preliminary phase and global search techniques for multidisciplinary design,

the aim of this dissertation is to provide a methodology to generate optimised

reliable design solutions that can be used in feasibility studies or during the

preliminary phase of a large scale engineering development.

The first objective of this thesis was to present the uncertainty modelling and

to consider the application of Evidence Theory as an alternative to Probability

162
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Theory or worst case philosophy in the domain of multidisciplinary design

optimisation. There is an almost universal agreement that Probability Theory

is well suited to represent any form of variability when sufficient data is

available. However, epistemic uncertainties due to a lack of information are

acknowledged by the risk assessment and reliable engineering community as

being insufficiently and incorrectly modelled by traditional theories. Recently,

alternative approaches have been developed to address this issue. In chapter 2,

the different typologies of uncertainties are introduced. Evidence Theory,

adequate to represent both aleatory and epistemic uncertainties, is presented

from a practical and application-focused angle. Even if it is a relatively recent

paradigm, the theoretical foundations are well established. The applications of

Evidence Theory to real life engineering cases are, however, still rare and work

in this area is mostly limited to within the academic community. This can be

explained by both the large computational cost associated with it and little

awareness of the advantages that this approach can bring, by engineers and

decision makers.

Once the mathematical framework representing uncertainties was in place,

attention was given to the formulation of the Optimisation Under Uncertainty

problem. After defining the concept of robust and reliable design optimisation,

chapter 3 presented existing methods to tackle the problem. In particular,

the bi-objective method introduced previously by Dr. Vasile was revisited and

algorithmic improvements to make it more efficient proposed. The definition of

dominance was also revisited for the particular case of robust design, and led

to the multi-belief formulation of the problem. Dedicated algorithms have been

proposed to significantly reduce the computational effort by using as much as

possible available data and prematurely terminating computations that are

deemed to be unnecessary. Additionally, an indirect method was proposed
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to mitigate the computational cost of evaluating the Belief, a critical aspect

when used as objective in an optimisation problem. The cluster approximation

method is a sample-based technique designed such that the computational time

is as much as possible linear with the problem dimensionality and complexity.

Observing that epistemic uncertainties are classically represented by means of

intervals led to the use of a Binary Space Partition as a dedicated clustering

implementation.

Studying the efficiency of existing methods, and proposing improvements or

alternative ones to solve robust design optimisation problems in the frame of

Evidence Theory was the second and main objective of this thesis. To assess

the presented methods, an extensive test campaign has been conducted on set

analytical test cases especially designed for this work. The cost function is based

on the Chebyshev polynomials, and has the particularity that its dimensionality

can be modified easily. When used as a system function of the OUU, it allowed

us to investigate the influence of the number of uncertain parameters and

design variables. Additionally this cost function presents multiple and similar

local optima. Therefore, the capability of the different methods in identifying

the different optimal designs for varying levels of robustness was put to the

test.

Of the studied direct methods, the multi-belief method has a better overall

performance, particularly in problems with a small number of design variables

and focal elements. As the complexity of the problem increases, the bi-objective

method becomes more and more valuable, demonstrating the effectiveness of

the algorithmic improvements introduced in this work. The BSP approximation

proved to be an appropriate way to tackle OUU problems if the system function

is computationally expensive to evaluate. The computational time required

to approximate the optimal Belief curve and identify good designs is very
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reasonable; it remains exponential with the number of focal elements, but this

is confined to a very limited part of the algorithm, accounting for a fraction of

the total in even the most complex test cases. The BSP method can handle

problems with a very large set of focal elements in a matter of seconds.

Finally, the third motivation of this work was to highlight to the space

industry the potential benefits of using a robust design methodology in general,

and combined with Evidence Theory in particular. For this purpose, two

examples of preliminary space mission design were used to illustrate how

the proposed methodology can be applied. The context of exploration and

science missions based on solar electric propulsion was chosen because of the

importance of uncertainties at the early stage of the development, and the

evident multidisciplinary aspect of such designs. On the BepiColombo-like test

case, a comparison of the direct and indirect methods which confirmed what

was observed during the Chebyquad test cases was presented. A second test

case was the feasibility study of a mission to rendez-vous with an asteroid

conducted as a two-step approach. First, the BSP was used to garner insight

and knowledge about the problem, obtain a first idea of the Belief curve, and

identify interesting design regions. The bi-objective method was then run to

refine the results, converging eventually to three alternative designs. These

presented different characteristics, performance and sensitivity to uncertainties,

something that should be appealing to the decision makers always eager to

make a conscious and educated choice.

6.2 future work

In the present work, techniques to solve OUU in the frame of Evidence The-

ory have been compared based on their performance at solving the suite of
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Chebyquad test cases. It would be interesting to apply to the same set of prob-

lems reliable design optimisation approaches using alternative characterisation

of uncertainties such as probability theory, possibly theory and fuzzy sets.

Further work is primarily required on the novel BSP method. A proposed

modification is to limit the number of partitions along the design dimensions.

Because it is an approximation method, it is illusory to identify very small

design regions as the most promising ones. This should increase significantly

the probability that the optimal designs are contained in the best design regions

identified by the BSP. Also, greater attention could be given to the sampling

process associated with the indirect method. The proposed pool function for

instance could be enhanced by introducing a secondary pool threshold, thus

driving the sample points away from regions where the system function returns

too low as well as too high values. Also, a great variety of sample techniques

exists in the literature [McKay et al., 1979, Sacks et al., 1989, Swiler et al.,

2006] such as stratified sampling, Halton sampling, Hammersley sampling or

Centroidal Voronoi Tesselation to name but a few. An extensive survey would

be useful to identify the most suitable ones for the cluster-approximation

method.

The implementation of the bi-objective method could benefit from a small

modification to the way the threshold is treated by the optimiser. As well

as being an objective, the threshold is a variable to the problem, and no

distinction is made between the threshold and the design variables. Thus

crossovers between the threshold and one of the design variables occur. The

different nature of the threshold and the design variables is such that this could

impair the performance of the genetic algorithm. Resolving this issue could be

done, for instance, by not allowing the genetic algorithm to consider, during

the creation of a new generation, the variable “threshold” for crossover.
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A third area of work could be a more detailed investigation of hybrid methods,

combining an indirect with a direct approach. As illustrated in the test case

of a mission to an asteroid, the strength of the indirect method is to explore

quickly a large search space in order to identify regions of interest. A direct

method, more expensive computationally but more accurate, can be used to

refine the results focusing only on the most promising design regions. On what

type of problems could such a hybrid method be beneficial?, when to stop the

indirect method and switch to the direct one?, are two examples of questions

worth considering for future work.

Finally, a side-by-side comparison of a preliminary space mission design

obtained with the margin approach, OUU in the frame of Probability Theory

and in the frame of Evidence Theory would be an excellent way to show

the advantages and drawbacks of these three different approaches. Increasing

awareness of alternatives to the traditional margin approach to the space sector

could potentially reduce cost and increase the efficiency of spacecraft.
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Range of Belief Levels Design Vector

0.3 0.3 0.173842

0.7 0.7 0.682178

1 1 0.673443

Table 24: Optimal designs for the Chebyquad test case − nD = 1, nU = 1.

Range of Belief Levels Design Vector

0.09 0.09 0.191919

0.21 0.42 0.485028

0.49 0.51 0.44336

0.58 1 0.405518

Table 25: Optimal designs for the Chebyquad test case − nD = 1, nU = 2.

Range of Belief Levels Design Vector

0.027 0.189 0.230804

0.21 0.216 0.260538

0.237 0.657 0.221281

0.664 1 0.250607

Table 26: Optimal designs for the Chebyquad test case − nD = 1, nU = 3.
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Range of Belief Levels Design Vector

0.0081 0.0756 0.132664

0.0819 0.3402 0.154223

0.3409 0.3483 0.085711

0.349 0.7599 0.164933

0.7606 1 0.171172

Table 27: Optimal designs for the Chebyquad test case − nD = 1, nU = 4.

Range of Belief Levels Design Vector

0.09 0.42 0.874115 0.372492

0.49 0.51 0.602761 0.157933

0.58 1 0.84244 0.287314

Table 28: Optimal designs for the Chebyquad test case − nD = 2, nU = 2.

Range of Belief Levels Design Vector

0.3 0.3 0.69472 0.345349 0.086826

0.7 0.7 0.856388 0.512679 0.257763

1 1 0.859629 0.511439 0.261674

Table 29: Optimal designs for the Chebyquad test case − nD = 3, nU = 1.

Range of Belief Levels Design Vector

0.09 0.42 0.757428 0.431014 0.172716

0.49 0.51 0.686636 0.334509 0.18326

0.58 0.91 0.764115 0.624332 0.212111

1 1 0.774884 0.599244 0.207528

Table 30: Optimal designs for the Chebyquad test case − nD = 3, nU = 2.
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Range of Belief Levels Design Vector

0.027 0.189 0.793518 0.418702 0.135768

0.21 0.63 0.615884 0.282179 0.123454

0.637 0.657 0.550663 0.239762 0.12951

0.664 1 0.923037 0.576031 0.142915

Table 31: Optimal designs for the Chebyquad test case − nD = 3, nU = 3.

Range of Belief Levels Design Vector

0.0081 0.2646 0.699464 0.354749 0.125163

0.2664 0.3402 0.799063 0.487448 0.154594

0.3409 0.3483 0.45426 0.252255 0.132735

0.349 0.7518 0.757333 0.451786 0.105358

0.7522 0.7599 0.721529 0.441935 0.105807

0.7606 1 0.819988 0.462537 0.103319

Table 32: Optimal designs for the Chebyquad test case nD = 3, nU = 4.

Range of Belief Levels Design Vector

0.09 0.42 0.8396 0.549243 0.292853 0.116824

0.49 0.51 0.763035 0.449228 0.295807 0.097998

0.58 0.91 0.907828 0.617423 0.549481 0.166354

1 1 0.909181 0.624566 0.544437 0.166683

Table 33: Optimal designs for the Chebyquad test case − nD = 4, nU = 2.

Range of Belief Levels Design Vector

0.04 0.25 0.902088 0.62163 0.069178

0.26 0.3 0.790716 0.412628 0.079565

0.31 0.55 0.899332 0.539279 0.075084

0.56 0.75 0.824657 0.629007 0.246533

0.76 0.87 0.800269 0.548682 0.211941

0.88 0.96 0.755155 0.436385 0.172314

1 1 0.774598 0.598206 0.207061

Table 34: Optimal designs for the Chebyquad test case − nD = 3, nU = 2, nFE = 9.
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Range of Belief Levels Design Vector

0.01 0.2 0.945115 0.717337 0.220019

0.21 0.25 0.902853 0.623078 0.0689

0.26 0.35 0.92104 0.552536 0.068486

0.36 0.45 0.891621 0.529437 0.070581

0.46 0.55 0.90034 0.53897 0.074554

0.56 0.58 0.828584 0.621051 0.255333

0.59 0.75 0.824661 0.629153 0.246608

0.76 0.83 0.82532 0.596019 0.231908

0.84 0.87 0.800294 0.548614 0.211882

0.88 0.91 0.906597 0.515045 0.101358

0.92 0.95 0.828675 0.508124 0.180209

0.96 0.96 0.754917 0.437172 0.17337

0.97 1 0.774802 0.599312 0.2077

Table 35: Optimal designs for the Chebyquad test case -nD = 3, nU = 2, nFE = 16.
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Range of Belief Levels Design Vector

0.01 0.105 0.851554 0.631755 0.061778

0.1075 0.14 0.903072 0.553663 0.086327

0.1425 0.2275 0.838037 0.604303 0.045701

0.23 0.245 0.916553 0.604512 0.066377

0.2475 0.2625 0.850812 0.566599 0.051487

0.265 0.3675 0.853864 0.570215 0.051496

0.37 0.4375 0.806569 0.523843 0.061421

0.44 0.46 0.851088 0.532885 0.07782

0.4625 0.4675 0.92129 0.55206 0.068041

0.47 0.49 0.921014 0.552668 0.068637

0.4925 0.55 0.899401 0.539362 0.075122

0.5525 0.5775 0.729199 0.711689 0.289385

0.58 0.61 0.875066 0.572086 0.111317

0.6125 0.6375 0.788346 0.646746 0.264081

0.64 0.66 0.806617 0.654676 0.263607

0.6625 0.69 0.814938 0.618218 0.244094

0.6925 0.75 0.824507 0.626848 0.245544

0.7525 0.83 0.825139 0.595591 0.231732

0.8325 0.87 0.799923 0.549544 0.21286

0.8725 0.91 0.908522 0.516207 0.101321

0.9125 0.95 0.830023 0.50934 0.180105

0.9525 0.96 0.756403 0.440593 0.175134

0.9625 1 0.774429 0.599243 0.208078

Table 36: Optimal designs for the Chebyquad test case − nD = 3, nU = 2, nFE = 25.
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b.1 bi-objective method

b.1.1 Accuracy of the results
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Figure 56: Bi-objective, Chebyquad cases with nD = 1 and nU = 1, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 57: Bi-objective, Chebyquad cases with nD = 1 and nU = 2, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.

1E5 1E6 1E7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Function calls

E
rr
o
r
A
re
a
(l
ef
t
9
5
p
er
ce
n
ti
le
)

Method: Bi−objectif (n
D
=1, n

U
=3)

 

 

npop = 16

npop = 32

npop = 48

(a)

1E4 1E5 1E6 1E7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Function calls

D
is
ta
n
ce

to
o
p
ti
m
a
l
d
es
ig
n
s
L
2
(9
5
le
ft
p
er
ce
n
ti
le
)

Method: Bi−objectif (n
D
=1, n

U
=3)

 

 

npop = 16

npop = 32

npop = 48

(b)

Figure 58: Bi-objective, Chebyquad cases with nD = 1 and nU = 3, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 59: Bi-objective, Chebyquad cases with nD = 1 and nU = 4, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 60: Bi-objective, Chebyquad cases with nD = 2 and nU = 2, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.



B.1 bi-objective method 176

1E3 1E4 1E5
10

0

10
1

Function calls

E
rr
o
r
A
re
a
(l
ef
t
9
5
p
er
ce
n
ti
le
)

Method: Bi−objectif (n
D
=3, n

U
=1)

 

 

npop = 24

npop = 48

npop = 72

(a)

1E2 1E3 1E4 1E5
10

−1

10
0

Function calls

D
is
ta
n
ce

to
o
p
ti
m
a
l
d
es
ig
n
s
L
2
(9
5
le
ft
p
er
ce
n
ti
le
)

Method: Bi−objectif (n
D
=3, n

U
=1)

 

 

npop = 24

npop = 48

npop = 72

(b)

Figure 61: Bi-objective, Chebyquad cases with nD = 3 and nU = 1, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 62: Bi-objective, Chebyquad cases with nD = 3 and nU = 2, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 63: Bi-objective, Chebyquad cases with nD = 3 and nU = 3, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 64: Bi-objective, Chebyquad cases with nD = 3 and nU = 4, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 65: Bi-objective, Chebyquad cases with nD = 4 and nU = 2, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 66: Bi-objective, Chebyquad cases with nD = 3, nU = 2 and nFE = 9, 95
percentile value of: (a) error area, and (b) distance to optimal designs.
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Figure 67: Bi-objective, Chebyquad cases with nD = 3, nU = 2 and nFE = 16, 95
percentile value of: (a) error area, and (b) distance to optimal designs.
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Figure 68: Bi-objective, Chebyquad cases with nD = 3, nU = 2 and nFE = 25, 95
percentile value of: (a) error area, and (b) distance to optimal designs.
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b.2 multi-belief method

b.2.1 Accuracy of the results
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Figure 69: Multi-belief, Chebyquad cases with nD = 1 and nU = 1, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 70: Multi-belief, Chebyquad cases with nD = 1 and nU = 2, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 71: Multi-belief, Chebyquad cases with nD = 1 and nU = 3, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 72: Multi-belief, Chebyquad cases with nD = 1 and nU = 4, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 73: Multi-belief, Chebyquad cases with nD = 2 and nU = 2, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 74: Multi-belief, Chebyquad cases with nD = 3 and nU = 1, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 75: Multi-belief, Chebyquad cases with nD = 3 and nU = 2, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 76: Multi-belief, Chebyquad cases with nD = 3 and nU = 3, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 77: Multi-belief, Chebyquad cases with nD = 3 and nU = 4, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 78: Multi-belief, Chebyquad cases with nD = 4 and nU = 2, 95 percentile value
of: (a) error area, and (b) distance to optimal designs.
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Figure 79: Multi-belief, Chebyquad cases with nD = 3, nU = 2 and nFE = 9, 95
percentile value of: (a) error area, and (b) distance to optimal designs.
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Figure 80: Multi-belief, Chebyquad cases with nD = 3, nU = 2 and nFE = 16, 95
percentile value of: (a) error area, and (b) distance to optimal designs.
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Figure 81: Multi-belief, Chebyquad cases with nD = 3, nU = 2 and nFE = 25, 95
percentile value of: (a) error area, and (b) distance to optimal designs.
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Figure 82: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 1
and nU = 1: (a) with pool sampling, and (b) with LHSU.
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Figure 83: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 1
and nU = 2: (a) with pool sampling, and (b) with LHSU.
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Figure 84: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 1
and nU = 3: (a) with pool sampling, and (b) with LHSU.
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Figure 85: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 1
and nU = 4: (a) with pool sampling, and (b) with LHSU.
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Figure 86: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 2
and nU = 2: (a) with pool sampling, and (b) with LHSU.
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Figure 87: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 3
and nU = 1: (a) with pool sampling, and (b) with LHSU.
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Figure 88: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 3
and nU = 2: (a) with pool sampling, and (b) with LHSU.
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Figure 89: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 3
and nU = 3: (a) with pool sampling, and (b) with LHSU.
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Figure 90: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 3
and nU = 4: (a) with pool sampling, and (b) with LHSU.



B.3 bsp method 191

Function calls

E
rr
o
r
A
re
a

Method: BSP with pool sampling (n
D
=4; n

U
=2; δy*=0.00625; n

sim
=100)

1E2 1E3 1E4 1E5 1E6
0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

Function calls

E
rr
o
r
A
re
a

Method: BSP with LHSU (n
D
=4; n

U
=2; δy

reqd
=0.00625; n

sim
=100)

1E2 1E3 1E4 1E5 1E6
0

0.5

1

1.5

2

2.5

3

(b)

Figure 91: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 4
and nU = 2: (a) with pool sampling, and (b) with LHSU.
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Figure 92: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 3,
nU = 2 and nFE = 9: (a) with pool sampling, and (b) with LHSU.



B.3 bsp method 192

Function calls

E
rr
o
r
A
re
a

Method: BSP with pool sampling (n
D
=3; n

U
=2; n

FE
=16; δy*=0.00625; n

sim
=100)

1E2 1E3 1E4 1E5 1E6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

Function calls

E
rr
o
r
A
re
a

Method: BSP with LHSU (n
D
=3; n

U
=2; n

FE
=16; δy

reqd
=0.00625; n

sim
=100)

1E2 1E3 1E4 1E5 1E6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Figure 93: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 3,
nU = 2 and nFE = 16: (a) with pool sampling, and (b) with LHSU.
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Figure 94: BSP, with threshold step y∗ = 0.00625, on the Chebyquad case with nD = 3,
nU = 2 and nFE = 25: (a) with pool sampling, and (b) with LHSU.
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Table 37: Sample points of the deep space ∆V over a grid of P1AU and Tmax for
BepiColombo.
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