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Abstract 

INTERACTION BE'lWEEN 1WO MARINE RISERS 

by 

WushengWU 

'ibis thesis takes top tensioned vertical riser interaction as its mam study 

object. It has its focus on the understanding of the mechanism about 

potential instability of the risers caused by the interaction and the prediction 

of potential collision. Started from two-dimensional cylinder interaction cases, 

and later extended into the three-dimensional riser scenarios, the problem is 

investigated comprehensively. 'Ibe study covers fluid force prediction, 

stability analysis, continuation investigation and dynamics simulation. The 

study disclosed the mechanism of the potential collision when the flow 

velocity reaches a certain critical value, and provides a robust tool to predict 

the threshold for the riser collision. Additionally, the investigation shows the 

difference between marine riser interaction and the similar interaction occurs 

in other engineering disciplines, such as power transmission lines, heat 

exchangers etc. Also provided in this thesis arc valuable infonnation ref.,rarding 

the riser dynamics should collision occurs. The research will be beneficial to 

the marine riser designers and operators. 



The research described in this thesis is believed to be original unless otherwise 

explicitly referenced. 



SUMMARY 

As oil and gas exploration and production moves towards deep and ultra deep water areas 

these days, the offshore industry is facing challenges, amongst which riser interaction is 

newly emerging. Essentially this interaction is caused by the wake flow. It can playa 

detrimental role in carbohydrate extraction and it will be particularly important in ultra 

deep water development. 1bis thesis takes the top tensioned vertical riser system, such as is 

used in conjunction with 11.Ps and Spars, as a main object. I t endeavours to deal with the 

mechanism of the interaction between two marine risers and to predict the potential 

collision between the two risers. 

Deep water risers are so long that flow along the riser length does not change significantly. 

'lberefore, the risers can be simplified into two-dimensional cylinder cases. Such an 

approach provides a simplified way to understand the issue. On the other hand, in order to 

understand this subject in real scenarios and predict the phenomena quantitatively, the 

study is also carried out in the three-dimensional space. 'lbe thesis is comprised of seven 

independent while interrelated parts, viz: 

1. Two-dimensional Time-Averaged force estimation 

Utilising the free-streamline model, based on empirical data for flow separation, a 

numerical procedure is used to seek the time-averaged forces exerted on the 

downstream cylinders. Such force data constitute the fluid interaction data source 

for the subsequent cylinder/ riser stability and dynamics analyses. 

2. Two-dimensional cylinder stability analysis 



By adopting the traditional Routh-Hurwitz stability algorithm, combined with the 

direct numerical eigenvalue seeking technique, the stability of the downstream 

cylinder at designated positions is thoroughly inYestigated. Different bifurcation 

types and different stability areas arc comprehensively investigated and identified. 

The characteristics of the marine riser interaction arc identified as well. 

3. Two-dimensional continuation investigation 

Based on the characteristics of marine riser interaction, a systematic investigation 

of the continuation and stability is conducted. Such an investigation is a cross 

examination of the traditional stability analysis. Meanwhile, the possible multiple 

equilibrium positions of the dynamics system arc identified. Such an analysis 

contributes to a concrete explanation of the cause of two cylinders collision. 

4. Two-dimensional dynamics simulation 

Based on the foregoing stability investigation, a thorough dynamics simulation is 

implemented. The investigation is mainly focused on the behaviour after loss of 

stability of the downstream cylinder. The cylinder motion speed and movement 

amplitude, together with the time intervals between successive collisions arc 

identified. 

5. "Ihrec-dimensional statics 

'Ine statics of a solitary marine riser has been a well understood topic. However, the 

statics for wake interaction has never been explained before. In this section, a 

comprehensive parametric investigation is conducted, non-dimensional parameters 

are discussed and the effect of different factors is fully addressed. 
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6. Three-dimensional continuation 

Three-dimensional continuation investigation IS a direct extension of the two

dimensional continuation study. The riser interaction system is flrst cast into the 

modal co-ordinate system which makes the dynamic system into a system with a 

finite dimension. Pseudo arc length continuation strategy is used, and the two

dimensional like conclusion has been drawn. By using non-dimensional parameters, 

a useful critical flow condition for general deepwater risers is obtained. 

7. Three-dimensional dynamics simulation 

Utilising the mode superposition method, the dynamics system of two risers under 

the action of an ocean current is investigated. The dynamic behaviour of the risers, 

particularly in a strong ocean current is identified. Such an investigation can be 

used to explain the observed dynamic behaviour of the risers and it can also serve 

as a reference for the identification of the possible damage, which may result from 

collision between two risers. 

Among many results yielded in this research, two important ones are listed as follows: 

1. Explanation of the cause of collision between two cylinders/risers. It is concluded 

in this research that the occurrence of collision is caused by loss of stability and 

disappearance of equilibrium, rather than by the progressive and continuous 

approach to each other between two cylinders/risers until contact happens. 

2. The prediction of critical flow velocity before collision between the two risers starts 

to occur. The Figure 0.1 shows the relation between critical flow tension factor 

(H. = p~:I~IITell) for different design spacing and top tension factors of deepwater 

risers. For example, for a pair of 1000 meters long and 8" diameter gas riser, with 
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weight in water of 275 N/m, top tension factor of 3.0 and design spacing of 30 

diameters. Based on the figure, when current flow velocity exceeds 0.45 mis, the 

collision between the two risers will occur. Reflected in this figure, the critical flow 

velocity will be below 1.0 mls for risers with length over 1000 meters. Additionally, 

increase top tension or increase the design spacing between the two risers can 

substantially defer the riser collision to a higher current velocity. 

• :z: 

30 ---i-~~'fO~-:U:tProfile l----- . 
Wake Centreline 

----- -_ ... --_. --_ .. -- "--_.-

20 ---- ~-~-- --

10 

°0~~~~1~0~~~~20~~~~30~~~~40~~~~5~0~~~-J60 

X 

Figure 0.1 Critical H . for different riser desihttl spacing and top tension factor. H = pV ~/T . 
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1.1 General Remarks 

1.1.1 Offshore Oil & Gas Development 

Ocean, which covers almost three quarters of the earth, is always so appealing to human 

beings. It is a virtual cornucopia, with abundant resources as we now know, such as oil, 

natural gas, minerals, and other possible energy sources, such as wave, tidal, and ocean 

thennal energy. In 1947 the first offshore platform for oil was installed off the coast of 

Louisiana in just 6 meters of water. Today there are already over 7,000 offshore platforms 

around the world in water depths approaching to 3,000 meters. 

The offshore oil & gas industry is moving towards deep and ultra deep waters. This 

development has been so fast that the concept of the deepwater and ultra deepwater has 

constandy changed. Until 10 years ago, from a European perspective, the start of 

deepwater was simple: 200 metres and deeper, essentially the edge of the continental shelf. 

When viewed globally the answer is not so simple. The Gulf of Mexico, Brazil and West 

Africa have seen deepwater records tumble as discoveries and production have come from 

depths greater than 1,000 metres. Therefore, 200 metres is simply not considered to be 

deepwater anymore especially as various organisations have their own definitions, ranging 
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up to 500 metres and even beyond. To take this into account, the general definition of 

deepwater, which this thesis will use, starts from 300 metres. 

The growth of deep and ultra deep development has been particularly tremendous over the 

recent three decades. It has been much spurred by the major price increases during the 

1970's (Garside, et al, 2001). During this period, significant transformation has taken place 

in the industry. For example, shown in Figure 1.1, the deepwater production in the Gulf of 

Mexico has increased tenfold since 1985 for oil and sixfold for gas production. At this 
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Figure 1.1 Deepwater production, from MMS (Ml\1S, Mineral Management Service, 
defines deepwater as 1,000 feet of water or greater) . 

moment, global exploration continues to push into more remote areas and deeper water to 

target opportunities that are just too exciting to be denied. Over 35 billion barrels oil 

equivalent in deepwater have been found (Figure 1.2). The main active deepwater 

development areas around the world are: West Africa, Brazil, Gulf of Mexico, Caspian Sea, 

and North Atlantic (comprising Norway, W of Shetlands, Ireland, Greenland). 
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Nevertheless, only 20 percent of resources have been developed and are producing. 

Industry continues to advance into deeper and more complex settings. In recent time, the 

number of wells being drilled in the so-called ultradeep water - those in 5,000 feet of 

water or greater - continues to grow significandy. Currendy there are more than eight 

wells being drilled in water depths of 5,000 feet or greater, four in excess of 7,500 feet. The 

eight wells and the company operating the well and the water depth are listed in the table 

1.1. Such a data is constandy changing with the time. Some pioneering projects have been 

launched in recent years to challenge the ultra deepwater development, such as DEMO 

2000 (Wieneke, 2000), the Norwegian Deepwater Programme in Norway, and Deepstart in 

Gulf of Mexico. All these show that ultra deep water will be the main arena for offshore 

development in the years to come. 
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Figure 1.2 Worldwide deepwater discoveries total more than 35 billion boe, 
about two thirds of that are oil. Source: Shell (Cook, 1999). 
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Table 1.1 List of present ultra deep water drilling 

Operator Water Depth 

Transocean Sedco Forex 9687 feet 

BHP Petroleum 8,835 feet 

Elf Exploration 7,790 feet 

Shell 7,760 feet 

Unocal 7,044 feet 

BP/Amoco 6,627 feet 

BP/Amoco 6,386 feet 

BP/Amoco 5,180 feet 

1.1.2 Platform and Riser System 

Table 1. 2 Category of offshore platfonn according to connections on seabed 

Type of Platfonn 

Fixed-bottom 

Roating 

Connection to Seabed 

Piles 

Gravity 

Tethers 

Example 

Steel jacket 

Concrete Gravity Structure (CGS) 

Tension Leg Platfonn (ILP) 

Catenary mooring lines Semi-submersible, Spar 

Single Point Mooring (SPM) Ship-shaped vessel (FPSO) 

5 

Neatly all the offshore production requires platform and riser systems. Generally, offshore 

platforms can be categorised according to whether they are rigid structures that extend all 

the way from above the water surface to the seabed (fixed-bottom platforms), or whether 

they float near the water surface. They can be further categorised according to the way they 

ate connected to the seabed. Table 1.2 shows a general categorisation of offshore 

platforms. Due to the spiral rising of cost for fixed-bottom platforms, such as jacket type, a 

floating production system would be the main option for deepwater and ultra deepwater 
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developments. By and large, deepwater developments by definition are: floating systems, 

subsea wells, or a combination of floaters and subsea wells. A key component of the 

floating production system is the riser system. It has a large influence on the decision made 

about hull type. 

In essence, risers are conduits that connect the wellhead on the ocean floor with the top 

vessel or platform on the sea surface. They may perform the following specific functions: 

1. Convey fluids between the wells and the FPS (i.e. production, injection or 

circulated fluids). 

2. Import, export, or circulate fluids between the FPS and remote equipment or 

pipeline systems. 

3. Guide drilling or workover tools and tubulars to and into the wells. 

4. Support auxiliary lines. 

5. Serve as, or be incorporated in a mooring element. 

6. Other specialized functions such as well bore annulus access for monitoring or 

fluids injection. 

Figure 1.3 shows a functional diagram of the riser system. I t is composed of four parts 

(API, 1998), i.e. Conduit, Top interface, Bottom interface and System integrity. 

Associated with different types of floating production systems listed in table 1.2, generally 

there are three kinds of risers (Barltrop, 1998), 
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1. Rigid Riser. Usually these are top tensioned vertical steel pipes. They can be 

manufactured in a large range of diameters. It is the most versatile for production, 

as it can handle aggressive fluids and high internal or external pressures. Drilling 

and work-over operations also generally require a vertical rigid riser. The limitation 

for this kind of riser is that the movement of the platform has to be smalL In 

deepwater developments, they are often used with 1LP and Spars systems, which 

can meet the small movement requirement with the help of the tethered station 

keeping. 

2. Flexible Riser. Usually steel-polymer composite pipes hung in a simple or S shaped 

catenary. They are mostly used in conjunction with FPSO or Semi-submersibles 

due to the fact that they can accommodate the platform's large movement. 

However, when the operation is in ultra deepwater, the very high static pressure 

constitutes a big challenge to this kind of riser. 
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3. Metal Catenary Risers (SCR). Catenary riser made of steel or titanium. It has the 

benefit of the catenary riser whilst offsetting the inadequacy of the traditional 

flexible riser in ultra deepwater under high static pressure. 

Among these different kinds of risers, the top-tensioned vertical rigid riser is the main 

object to be studied in this thesis. Some further introduction of such a riser system is 

presented below. 

1.1.3 Top tensioned vertical riser 

Figure 1.4 is a schematic of a top tensioned production riser. The main part of the riser is 

the conduit, which is for fluid transport, control or monitoring system umbilicals, and load 

paths for structural support must be provided and their continuous operation contained. 

Most of the time, the conduit are segmented. This is due to the limitations on the 

maximum continuous length of metal pipe that can be reasonably manufactured, 

transported, handled, installed, retrieved and replaced. These segments can be joined onsite 

by mechanical connectors such as threading or by flange, or by welding. The lowest 

segment may contain a tapered stress joint section or a flex joint in order to transfer 

structural loads into the riser end termination. 

The apparatus on top, corresponding to the top interface in functional diagram Figure 1.3, 

allows the riser to hang at the surface and attach it to surface valves and piping. It forms 

the main support of the risers. This apparatus is often composed of tensioner and slip 

joint. Figure 1.5 shows one schematic about the riser top interface. Seen in the figure, the 

tensioner forces are transmitted through the slip joint to the upper joint in the riser string. 

The variation of the tension force is adjusted via the hydropneumatic mechanical system. 

The slip joint is a mechanical device that attetnpts to cotnpensate for vessel motion and 

thereby minimize the effects of such motion on the riser string. It is composed of inner 

barrel and outer barrel. The inner barrel is attached to the vessel by means of a ball joint on 
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the bottom of the diverter. The outer barre~ which is attached to the riser string by means 

of a ball joint (tenned the upper ball joint), is supported at the tensioner ring by means of 

the tensioner cables. The outer barrel is free to translate and rotate relative to the inner 

barrel (Kozik & Noerager, 1976). In gener~ the riser tensioner design specifications 

identify the required nominal tension and the allowable variations in tension. For example, 

for production riser, 20 percent of tension riser is allowed. The specification also required 

that the allowable tension variation shall include the effects of all of the negatively 

contributing factors such as friction losses, gas pressure variation due to riser motion, and 

the failure of any single component (MacPhaiden & Abbot, 1985). 

The seabed portion, the stress or taper joint in the Figure 1.4, also known as the bottom 

interface in the functional diagram Figure 1.3, contains an apparatus that connects the riser 

to a wellhead or receptacle. Included are also methods/equipment to space out the riser 

and to account for bending loads at the bottom and/or top of the system. This portion 

must also be designed to accommodate riser loads and maintain fluid conduit and pressure 

integrity. 

For the riser system integrity, which includes not only fluid and pressure containment, but 

structural and global stability as well. The riser may also have bumpers, vortex-suppression 

devices and other attachments such as buoyancy modules. They are appendages or 

accessories to alleviate the dynamic problems caused by environment loads etc. 
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Figure 1.5 Top tensioner mechanism, from Kozik and Noerager (1976). 
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1.1.4 Chailenges to Top Tensioned Vertical Rigid Risers in Deepwater 

Top tensioned rigid risers used in conjunction with 1LP or Spars are likely to be applied in 

an array, with typically larger than 10 diameters of clearance. For this kind of riser, fatigue 

life and potential collision are the two main issues for the riser design. 

1. The fatigue life is closely related to the vortex-induced vibration, which has been a 

problem for risers for decades. In deepwater development, the spacing dependent 

current, such as shear current or non-unidirectional current, together with possible 

multiple modes "lock in" can further complicate the phenomena. 

2. Potential collision caused by wave and current. The harsh environment can excite 

individual risers to move around with the platform. If the excitation of the fluid 

loading is so strong that the envelope of the excursion of individual risers starts to 

overlap with each other, consequendy, the risers can collide with each other. Such 

collision can also occur between riser and tendons. (Rajab~ 1989) 

3. Another problem that can result in risers colliding with each other is the interaction 

between risers through the wake effect. The fluid loadings experienced by 

individual risers are not the same due to the fact that some risers are located in the 

wake of others. In deepwater, the deflection of the risers tends to be large, this kind 

of fluid interaction can trigger two risers to collide with each other under certain 

flow conditions, and ultimately can lead some risers to move around. The collision 

between risers will be harmful to the oil and gas production and possibly 

destructive to the riser structure, therefore such an interaction is an important issue 

that warrants a through investigation. 

Other challenges for such rigid risers in deep and ultra deep water include: 

• Method of deployment, 
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• Extremely high tensions for top tensioned risers in water depths greater 

than 2000 meters, 

• Accurate prediction of the dynamics etc . 

With the offshore industry's determination to move production into ultra deep water, this 

thesis studies the challenge imposed by interaction caused riser collisions, i.e. the third one 

of the above challenge list. In order to clarify the mechanism of the interaction, the study 

will take its focus on the interaction between two risers and started in two-dimensional 

space. 

1.2 Present Investigation 

'This thesis takes the 1LP /Spar rigid riser as its investigation background, focusing on the 

mechanism of the interaction between two risers, particularly the effect of the upstream 

wake on the downstream riser. The research covers the estimation of the fluid forces 

exerted on the downstream riser due to the interaction effect, the stability investigation of 

the riser pair, and the identification of potential multiple equilibrium states. Based on such 

a systematic investigation, a simulation of dynamics is then carried out to account for the 

dynamic behaviour the riser pair can possibly exhibit, and to explain the phenomena 

observed by some of the researchers in the experiment. The investigation is first unfolded 

in two-dimensional space with its focus on the explanation of the mechanism of 

interaction, and then extended in three-dimensional space to address the quantitative 

relationship about the critical states and corresponding dynamic behaviour. 

1.3 The Background of Chosen Topic 

The grounds to choose the topic for this thesis investigation are as follows, 
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1. 1LP /Spar are attractive options for future deep and ultra deep water 

developments, with relatively mature technology available (Snell and Banon,; 

2000); 

2. Geometrically, among the major components involved in a field development, 

it is the riser system together with the mooring system that really depends on 

the water depth. Neither the floating units, nor the subsea equipment depend 

on water depth to the same extent. On the other hand, the risers are one of the 

most delicate components of a Roating Production System and need particular 

attention to their design and deployment from a FPS (Rajabi, 1989). Therefore, 

among the deepwater challenges, riser has its unique importance. 

3. As identified herein, the riser interaction can potentially bring them to collide 

with each other. To date, the philosophy has been to space the risers further 

apart in order to avoid riser collisions (ABS, 2001). Such a philosophy needs an 

effective tool to identify the necessary riser clearance and to address its 

practicability. Moreover, the mechanism which brings two risers to collide need 

to be comprehended. 

4. Spacing the risers largely to avoid collision in ultra deepwater will result in a 

significant cost penalty and may even jeopardize the feasibility of the entire 

system. Therefore, should collision between risers be unavoidable, the damage 

that the impact can cause will be vital information to marine riser designers. 

Based on above rationale, the present thesis conducted a comprehensive investigation into 

the interaction between two risers. A brief introduction about the theoretical background 

and literature review on this topic is presented next. 
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1.4 Theoretical Background and Literature Review 

The mechanics of marine riser can be simplified into a problem about cylinders, which has 

been a subject extensively studied in the past. The exercise of cylinders in engineering is 

ubiquitous. For example, the application of multiple cylinders can be found in the offshore 

engineering, such as risers, tendons, or in power generation industry such as tube banks for 

heat exchangers, twin-bundled and multiple line bundled lines for power transmission. 

Application can also be found in civil engineering, such as groups of tower buildings, 

chimneys and power stacks. Though the problem faced by marine risers has its unique 

characteristics, which will be addressed in this thesis (Chapter 3), the theoretical mechanism 

has by and large similarities from one to the other. This thesis by no means tries to discuss 

all the issues related to cylinder applications. However, in order to present a full picture 

about the background of the problem, a comprehensive introduction and review about the 

flow over solitary and two/multiple cylinders is presented below. 

1.4.1 Solitary Cylinder 

1.4.1.1 rtxed rylinder 

Perhaps the flow around a solitary cylinder is a most well researched subject in fluid 

mechanics due to its simplicity in geometry. It has been long recognised that the flow over 

a smooth circular cylinder is essentially dependent on the Reynolds number. Figure 1.6 

presents an overall flow picture at different Reynolds number. 
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Figure 1.6 Regimes of fluid flow across smooth circular cylinder. Source: Blevins (1990). 
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It was observed that the flow over a smooth circular cylinder can be categorised into 

following regimes (Blevins, 1990), 

• Re<5, the fluid flow follows the cylinder contours. 

• 5 to 15~e<40, the flow separates from the back of the cylinder and a symmetric 

pair of vortices is fonned in the near wake. 

• ~e<90 and 90~e< 150, the wake become unstable and one of the vortices 

breaks away. A laminar periodic wake of staggered vortices of opposite sign is 

fonned. 
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• 150ge<300, the vortices breaking away from the cylinder become turbulent, 

although the boundary layer on the cylinder remains laminar. 

• 300ge<3xl0S. it is called subcritical Reynolds number. The laminar boundary 

layers separate at about 80 degrees aft of the nose of the cylinder and the vortex 

shedding is strong and periodic. 

• 1.5x105ge<3.5x10Ii
, transitional Reynolds number. The cylinder boundary layer 

becomes turbulent, the separation points move aft to 140 degrees, and the cylinder 

drag coefficient drops to about 0.3. 

• Re>3.5x106
, supercritical Reynolds number. Regular vortex shedding IS re-

established with a turbulent cylinder boundary layer. 

lllr-----------------. 
Cd 

1m J ""\ 

y ..... . 

Figure 1.7 Drag coefficient for circular cylinders as a function of Reynolds number 
(Schlichting, 1968). 

Corresponding to the flow variation over the Reynolds number, the fluid forces and the 

vortex shedding frequencies on the fixed cylinder changes accordingly. Figures 1.7 to 1.9 
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show the variation of mean drag force coefficient (time averaged), Strouhal number and 

oscillating lift force vary over Reynolds number respectively. 
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Figure 1.8 Relation between Strouhal number and Reynolds number for circular 
cylinders. Source: Blevins (1990). 
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Figure 1.9 Fluctuating lift force coefficient versus Reynolds number for a smooth 
circular cylinder (Robinson & Hamilton, 1992). 

It is interesting to see that in the subcritical Reynolds number regime, the drag force 

appears to be insensitive to the variation of the Reynolds number and it has a constant 

value about 1.2. The corresponding Strouhal number in this Reynolds number regime for 
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vortex shedding is about 0.2. On the other hand, the oscillating lift force coefficient from 

measurements generally show 0.4 for Reynolds number smaller than 5xl0~. Then, it 

increases to its maximum rms value of 0.6-0.7 at Reynolds number about 4xl0\ where it 

remains constant up to Reynolds number 105
• Then, it decreases to below 0.2 (Reynolds 

number about 3x 1 0\ and remains approximately constant at higher Reynolds number 

(pantazopoulos, 1994). 

In offshore engineering, a typical 12 inches marine riser will have a Reynolds number range 

from 3x 1 OJ to 3x 105 when the current varies from 0.1 m/ s to 1 m/ s. Therefore, the flow is 

mosdy within the subcritical Reynolds number regime, in which the flow separates from 

the laminar boundary layer on the cylinder surface and strong vortex shedding is formed in 

the cylinder's wake. 

1.4.1.2 VOrlex induced vibration 

When the circular cylinder is flexibly mounted, it will undergo vibration under the 

excitation of vortex shedding induced forces. However, the fluid flow will be complicated 

when the cylinder is in motion. The fluid flow and motion of the cylinder will interact with 

each other, which is a classical subject of fluid-structure interaction subject. The most 

significant feature of such motion is the phenomena of "lock in", or sometimes called 

"lock on", "synchronisation", or "resonant". It is a situation when the vortex shedding 

frequency is locked on to the cylinder's vibration. In which the Strouhal relation, that 

vortex-shedding frequency varies proportionally to the flow velocity, is violated. TIlls 

phenomenon will persist within a range of flow velocities, for example, when the cylinder 

is in air, the lock in will exist within the reduced flow velocity (defined as flow velocity 

divided by system natural frequency and cylinder diameter) 4.75 to 8 and maximum 

amplitude occurs in the range of 5.5 to 6.5. In water, the phenomena occur in the range of 

4.5 to 10 with maximum amplitude falling within the range of 6.5 to 8 (Sarpkaya & 
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Isaacson, 1981). Experimental observation discovered that there is vortex shedding mode 

changes in this particular "lock in" flow range (Williams, 1996), which explained the 

hysteresis effect on the response of the cylinder (Hartlen & Currie, 1970) observed. 

Excellent reviews about this dynamic phenomena can refer to Pantozoupolous (1994), 

Sarpkaya (1979), King (1976) and Blevins (1990) etc. 

1.4.2 Two Cylinder Interaction 

1.4.2.1rlxed ylinderFlow Interaction 

It was a common practice to assume the two cylinders should behave in a flow in a similar 

or even identical manner to a solitary cylinder (Ohya, 1989). This assumption is justified 

only when the two cylinders are sufficiently apart. In most cases, however, the flow over 

the solitary cylinder will change after a neighbouring cylinder is present. Such a flow will 

not only depend on the Reynolds number, but also and much more significantly, will 

depend on the arrangement of the two cylinders. The following introductions are mainly 

for the subcritical Reynolds number cases as it has been shown that the risers are typically 

working under subcritical Reynolds number conditions. According to the relative location 

between the two cylinders, the interaction between the two can be classified into following 

kinds of interactions Zdravkovich(1977): 

Figure 1.10 Definition of regions of flow interaction for two cylinders interaction, 
after Zdravkovich (1987). Proximity and wake interaction regions can be further 
divided. The corresponding subdivisions of these two interaction regions and other 
details are explained in Zdravkovich (1987). 
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• Proximity interaction, which takes place when the cylinders are close to each other. 

But none of them is submerged in the wake of another. There are two kinds of 

arrangement for such interaction. 

o Side-by-Side ATTangement 

When the two cylinders are arranged in side-by-side, the flow changes with the 

variation of the transverse spacing of the two cylinders, i.e. when the two cylinders 

are within 1.1 to 1.2 diameters distance, the two tend to behave as an integrated 

one, such as reflected in Figure 1.11. When the spacing is between 1.2 and 2, 

bistable wake is observed, the wake between two cylinders is different, one is wide 

and the other is narrow. There is a gap/jet flow between two cylinders. It flows 

towards the small wake. Also the gap flow can switch direction between the narrow 

and wide wakes at irregular intervals. When the spacing is further increased to 4 or 

5 diameters, the two wakes formed from the two cylinders are coupled and 

symmetrical with regard to the gap axis. When the spacing is further increased, the 

interaction will diminish gradually. Generally, interaction is considered to exist 

within 5 diameters Blevins (1990). 

o Staggered ATTangement 

When the two cylinders are in staggered arrangement, gap flow existed well over 

the stream wise direction spacing of 0.15. However, when the spacing is within 0.15 

diameters, the flow is bistable, the direction of the gap/jet flow can switch 

direction intermittendy. When the streamwise direction is over 0.15, the narrow 

upstream cylinder's wake and wide downstream wake prevail the whole region. 

Meanwhile, the lift and drag force on the downstream cylinder tend to be smaller. 
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• Combined Proximity and Wake Interaction, which takes place when downstream 

cylinder is located in the wake of the upstream one and the spacing between the 

two is relative small. Within such a region, the upstream cylinder is influenced by 

the presence of the downstream cylinder. For the downstream cylinder, two 

different arrangements reveal different characteristics: 

o Tandem arrangement 

When the spacing between the two cylinders is within 1 to 1.2-1.8 diameters, depending 

on Reynolds number, the flow separated from the upstream cylinder does not re-attach to 

the downstream cylinder and alternative vortex shedding is formed behind the downstream 

cylinder. However, they are originated from the upstream cylinder. The oscillating force on 

the upstream cylinder is negligible. The schematic about the flow are shown in the Figure 

1.11. 

When the spacing is increased from 1.8 to 3.4-3.8 diameters depending on Reynolds 

number, the free shear layers separated from upstream cylinder reattach on the upstream 

side of the downstream cylinder, a vortex street is formed only behind the downstream 

cylinder, under such condition, the oscillating forces on the upstream cylinder is still 

negligible. 

o Staggered arrangement 

Two kinds of flow exist for the staggered arrangement. When the transverse spacing is 

small, such as around 0.2 diameters, and the streamwise spacing is within 1.1 to 3.5 

diameters, strong gap flow occurs, which can entail strong wake central pointing lift forces. 

However, such a gap flow disappears when the transverse spacing is reduced. Outside this 

special gap flow area towards the wake boundary, the lift force reaches a maximum value 



W. WU 2003 Introduction 22 

near the edge of the wake boundary when transverse spacing is larger than 0.4 diameters, 

and diminishes gradually towards zero when the tandem arrangement is reached. 

• Wake interaction, which takes place when the downstream cylinder is located 

within the wake of the upstream one and the spacing between the two is relative 

large. There is no clear definition about the region of this kind of interaction in 

literatures so far as no clear boundary between wake interaction and the combined 

proximity and wake interaction (P+ W) can be identified. Here, we define this to be 

the area when the downstream cylinder is located at the spacing larger than 4 

diameters, and there is no significant interaction effect on the upstream cylinder. In 

such a region, no matter the two cylinders are arranged in tandem or staggered, the 

upstream cylinder will shed vortex as if otherwise it stands alone in the flow. The 

downstream cylinder is submerged in the vortex street of the upstream cylinder. 

The vortex shedding and fluid forces on the downstream cylinder are subject to the 

characteristics of the upstream wake flow. Such a region extends well over a 

spacing of hundreds of diameters. The characteristics of the fluid forces on the 

downstream cylinder will be discussed further in the next section. 

• Outside the above defined interaction regions, the interaction on both cylinders are 

negligible, the two cylinders behave as otherwise a solitary cylinder case. 

'Ibis thesis mainly deals with the case of wake interaction, in which the spacing between 

the two cylinders is often more than 10 diameters when at rest. Sometimes, the relative 

location can trespass the regime of combined interaction of proximity and wake though. 

The following introduction will have its focus on the wake interaction, and often with a 

reference to the combined proximity and wake interaction. 
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Figure 1.11 Wake flow under different arrangements. The detailed explanation about the 
symbols, such as P-SSA represents the Proximity interaction for the side-by-side arrangement is 
given in the Zdravkovich (1987). 

1.4.2.2 rlllid forces on downstream ryiinder in wake interaction 

For the wake interaction, fluid forces on the downstream cylinder is a collective result of 

the vortex shedding on itself, the incoming turbulent flow from the upstream cylinder and 

the vortex street of the upstream cylinder. According to the characteristics of the forces in 

frequency domain, they can be subjectively classified into three categories: 

• Vortex induced forces 

Due to the alternative vortex shedding behind the downstream cylinder, the forces on the 

downstream cylinder present a significant periodical signature, which often is affected by 

the existence of the upstream cylinder. The experimental observation shows that the 

frequency of vortex shedding on the downstream cylinder tends to be influenced by 

frequency of upstream cylinders wake when the two cylinders are at moderate spacing, i.e. 

around 4 to 5 diameters. However, such a vortex shedding interaction will diminish with 
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the further increase of the spacing. Eventually. the downstream cylinder will behave as a 

solitary cylinder. 

Compared to the solitary cylinder, the vortex-shedding induced forces generally tend to be 

larger. Arie et al (1983) investigated the oscillating lift and drag forces on the upstream and 

downstream cylinders. It is found that, 

• The rms (root mean square) of lift and drag on the downstream cylinder is much 

larger than upstream cylinder for spacing up to 7 diameters. When the spacing 

between the two is larger than 10 diameters, the difference to the solitary cylinder is 

by a small amount. 

• For the upstream cylinder, the rms of lift was extremely small for the spacing less 

than critical whereas it was approximately equal to that for a single cylinder beyond 

the critical spacing. 

• For the downstream cylinder, the rms lift was strongly dependent on the spacing 

and amounted to as high as 2.8 times the value found for a solitary cylinder at the 

spacing of 4 diameters. 

• The rms drag for both cylinders was only weakly dependent on the spacing. 

Figure 1.12 shows a comparison of nns of lift and drag on the upstream and downstream 

cylinders. Similar conclusions can be found for the staggered arrangement (Moriya & 

Sakamoto, 1985). 
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Figure 1.12 Rms lift and drag coefficients plotted against non
dimensional spacing 1/ d for tandem arrangement. Lines for visual aid 
only, from Arie et al (1983). 

• Buffeting force 

25 

The inflow to the downstream cylinder is composed of the vortices, which are shed from 

the upstream one, and embedded within high turbulence. Such a flow produces a 

temporally random force on the cylinder. In frequency domain, the force spectrum exhibits 

a broadband nature. Most of the time, the response of the cylinder to such an excitation is 

relatively small due to the excitation energy is distributed across a broad band of frequency 

rather than concentrated. The significance of such motion is mainly to contribute towards 

noise radiation, which is not a concern in offshore engineering. Therefore, research on this 

subject is not of much interest to the offshore engineering. 

• Time averaged force 

The third kind of force, which is the focus of present study, is named as time-averaged 

force. Such a force definition is rather subjective. In practice, all the vortex induced forces, 

the buffeting force and time averaged force are mixed together to give a total force signal 

on the cylinder. The time-averaged force can be treated as an average effect of the flow. It 

is the mean component of the total force signal. In the case of solitary cylinder, it has a 
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zero component in the cross-flow direction and the mean drag force in the streamwise 

direction. However, when the downstream cylinder is located within the wake, there is not 

only the drag force component, but also a nonzero cross-flow component, namely the lift 

force. The interaction effect on the downstream cylinder's force is significant even when 

the spacing extends over hundreds of diameters. Figure 1.13 shows the measured drag 

forces on the upstream and downstream cylinders respectively. This is the first 

measurement result about two cylinders interaction forces. It was represented by the 

difference between the drag force measured when there is interaction and the force 

measured on the solitary cylinder. Figure 1.14 shows the vector of the lift forces and the 

drag force difference between interaction drag and solitary cylinder drag. Evidently, within 

the wake interaction, the drag force on the downstream cylinder tends to be reduced. The 

lift force on the downstream cylinder tends to attract the downstream cylinder towards the 

wake centreline. Also there is a very small region in the vicinity of the upstream cylinder, in 

which the drag force increases, beyond which there is no interaction. The figure also 

indicates the different regions of wake interaction and combined proximity and wake 

interaction. A further investigation will be carried out in Chapter II . 
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Figure 1.13 Interference drag coefficient for tandem cylinders 
(Biermann and Hermstein, 1933). 
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Figure 1.14 Interference force coefficient for all arrangements, from Hori (1959). 

~nolds number effect 
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The effects of Reynolds number are important for solitary circular cylinder cases. On the 

other hand, Price and Paidoussis (1983) measured the drag and lift force on the 

downstream cylinder in the staggered arrangement. Their results at Re=S.3x104 were 

almost in agreement with those of Zdravkovich and Pridden (1977). The effect of 

Reynolds number in the range of (1.7-8.6) x104 was investigated for a number of wake 

positions and found to be negligible, suggesting that in this subcritical range, Reynolds 

number does not have a significant effect on the force coefficients. 

Nevertheless, from the experience on the solitary cylinders, it is well known that the wake 

differs significandy when the flow changes from subcritical into postcritical region. 

Generally the wake is narrowed considerably. Therefore, the forces on the downstream 

cylinder can change significandy when the flow is in the postcritical Reynolds number. As 



W. WU 2003 Introduction 28 

stated at the beginning of this thesis, this study takes marine risers as the background. 

Reynolds number effect is not a concern in the thesis. 

1.4.2.3f<texibfy Supported Two Cylinders 

When either one or both cylinders are elastic and vibrate, the flow field becomes 

significantly more complicated because of the interaction of the fluid flow and the 

cylinder's motion. To engineers, unfortunately this is more likely the case in reality. 

Compared to the fixed cylinder interaction, the study on the dynamics of the interaction is 

relatively fragmented, this may largely be attributed to a much more complicated system 

presented to the researchers. The factors which may govern the dynamics of the system 

include: 

• The inflow to the cylinder pair, such as the uniformity of the flow, flow turbulence 

intensity, etc. 

• Reynolds number, which determines the viscous effect of the flow. 

• Mechanical system characteristics of the two cylinders. Either one of the cylinders 

is flexible or both of them are flexible. If both cylinders are flexible, the 

characteristics of the mechanical system of the two can either be identical or 

different. 

• The arrangement of the two cylinders, i.e. the streamwise and transverse spacing 

between each other. 

• The coupling of the fluid and structural dynamic system, i.e. the relation between 

the fluid vortex shedding excited frequency and the natural frequency of the 

mechanical system. Also the weight between the fluid force and mechanical force. 
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Associated with all these factors, the downstream cylinder may exhibit different dynamic 

behaviours, the most significant ones known so far include, 

• Vortex induced vibration 

• Wake induced fluidelastic instability (galloping, flutter) 

They are elaborated in the following sections respectively. 

1.4.3 VOrlex-Induced- Vibration 

Amongst the two kinds of dynamic behaviour, vortex-induced-vibration is a relatively well-

researched subject. Compared to the solitary cylinder, the excitation to the downstream 

cylinder is affected by the upstream cylinder's vortex shedding and the turbulence formed 

in its wake, as evidenced by the oscillating forces on the downstream cylinder (Figure 1.12). 

A detailed investigation of two tandem arranged cylinders with spacing between 1.2 to 5 

(King & Johns, 1976) show that complex mutual interactions can arise between the flow, 

vortex shedding and the motion of the cylinders in such spacing. The dynamic response of 

the cylinders is a function of spacing, reduced flow velocity, mass ratio, and damping value. 

The response is particularly dependent on the spacing. Their observations can be 

summarised as follows: 

• When spacing is smaller than 2.75, symmetric vortices are shed from both cylinders 

in the range of 1.25 to 2.5 of the reduced flow velocity, and both cylinders will 

oscillate in the in-line direction provided the mass-damping ratio is less than 2.4. 

• When spacing is larger than 2.75, for reduced flow velocity within 1.25 to 2.5, the 

upstream cylinder is oscillating in-line and shedding symmetric vortices but the 

downstream cylinder do not oscillate and a wide turbulent wake is found. 
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• When reduced flow velocity is within 2.7 to 3.8, for all the spacing within 1.5 to 7, 

the alternative vortex shedding from the upstream cylinder tend to reinforce the 

shedding process on the downstream cylinder and the amplitude of the 

downstream cylinder is larger than the upstream cylinder. 
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Figure 1.15 Response of two cylinders in tandem as a function of flow velocity, the 
drag and lift force direction refers to streamwise and cross-flow direction respectively. 
From Jendrzejczyk el al (1979). 

The above results were later confirmed by Jenclrzejczyk et af (1979). Though the later 

experiment found the response of the downstream cylinder was not always larger than the 

upstream cylinder. Figure 1.15 shows the response of the two cylinders at the spacing of 

1.75. Figure 1.16 shows the orbital paths of two cylinders at several flow velocities equal to 

1.7 and 3.0, respectively. It is seen that cylinder motion changes from motion 

predominandy in the drag direction to lift direction with the flow velocity increases. The 

two cylinders vibrate out of phase when they execute large oscillations. The orbital paths 

bend in the downstream direction. 
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Figure 1.16 Cylinder displacement as a function of flow velocity. From Jendrzejczyk et 
al(1979). 

1.4.4 Wake Indllced.rlllidelastic Instability (tllltter, Galloping) 

31 

Wake induced fluidelastic instability refers to such a state that when the downstream 

cylinder is sitting in the wake of the upstream one, any small disturbance to the system can 

lead the downstream cylinder to an unstable state, i.e. the small disturbance either be 

amplified to a large extent until a new balanced state is achieved, or the system breaks or 

collide with each other ultimately. According to the mathematical characteristics of the 

system lose its stability, traditionally, the instability is called wake induced galloping and 

wake induced flutter. 

1.4.4.1 Wake indllced galloping 

Galloping is a behaviour first understood in civil engineering from the phenomena of a 

solitary bluff body, such as square or D shaped cylinder. The system only has a single 

degree of freedom. When the fluid force, particularly the lift force, produces fluid damping 

and cause the system start to have an overall negative damping, the system lost its stability. 

The dynamic motion associated with such a system is called galloping. The most significant 

feature of the galloping is its response amplitude increase almost linearly with the flow 
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velocity and does not disappear at large flow velocity. Therefore, it potentially will cause 

catastrophic result. Examples of the galloping study can be found from Cheers (1950) and 

Hunt and Richards (1969) for ice-coated power lines, Parkinson (1971) and Simiu and 

Scanlan (1986) for bridge decks. There is no galloping phenomenon for a solitary circular 

cylinder due to its net lift force is zero and its drag force is always positive which 

guarantees the damping of the system is always positive. 

When the downstream cylinder is sitting in the wake, the fluid forces can produces negative 

system damping. There are mainly three kinds of causes to induce the downstream cylinder 

to galloping, i.e. gap flow, discontinuity of the flow and negative drag forces. All these 

occur in the near wake. 

The gap flow caused galloping refers to the cases when the two cylinder is within the 

proximity interaction, due to the switch of the gap flow directions, there is a hysteria effect 

between the fluid forces and the displacement of the downstream cylinder, such a force 

displacement relation can trigger the instability of the system. The classical theory about 

this can refer to that of Robert (1966). Similar explanations are applicable to the region 

where the flow is considered to be discontinuous. 

The negative drag induced galloping. The fluid force on the downstream cylinder is treated 

to be continuous with the relative displacement when the two cylinders are in the vicinity. 

Bokaian and Geoola (1984) measured the time-averaged forces on the downstream 

cylinder systematically. By fix the upstream cylinder, the downstream cylinder is restricted 

in the streamwise direction and free to move in the cross-flow direction, galloping is 

observed on the downstream cylinder. Such a dynamic behaviour is justified by the quasi

steady flow theory with the consideration of the negative drag force induced overall 

negative system damping. The typical feature of such galloping is that the motion 
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amplitude of the downstream cylinder increase monotonically with the flow speed once a 

critical state is reached. Therefore, unlike the vortex-induced vibration, the end result of 

such motion can be immediate destructive. One additional and significant finding in their 

experiment demonstrated that the vortex induced vibration and galloping can either coexist 

or they can occur one after the other, which implies that under the circumstances 

considered, the flow velocity for the occurrence of the galloping is well close to the 

condition for the lock in phenomena. Figure 1.17 shows the possible dynamic behaviour 

when two cylinders are arranged in the combined wake and proximity interaction regime or 

wake interaction regime in the water. 
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Figure 1.17 Response of a cylinder behind a fixed cylinder oscillating 
in the cross-flow direction only. From Bokaian and Geoola (1984). 

1.4.4.2 Wake inducedfllltter 
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Flutter was originated from the aerospace terminology for coupled torsion-plunge 

instability of airfoil structures. In such cases, the lost of system stability is mainly attributed 

to the coupling of the structure stiffness and the fluid forces. Theories on the occurrence 

of flutter can be found in the excellent reviews by Bisplinghoff et al (1955), Gordon (1978) 

etc. The phrase "wake induced flutter" was first introduced to the cylinder interaction by 

Simpson(1971). It refers the situation of the wake located cylinder lost its stability under 

the joint action of the fluid force induced stiffness and mechanical stiffness. Therefore, 

sometimes, it is also called as fluid stiffness controlled fluidelastic instability (Chen, 1986). 

The wake induced flutter is likely to occur when the two cylinders are separated with a 

moderate spacing, typically around 10 diameters and the downstream cylinder is located 

towards the boundary of the wake such as twin power transmission lines. The phenomena 

has been investigated by many researchers since its discovery, examples are Price (1975), 

Tsui (1977, 1986), Hardy and Dyke (1995) and Hemon(1999). In general, it was found that 

the fluid stiffness combined with structural stiffness lead to the unstable system when the 

flow velocity is high enough and the coupling of the mechanical springs met specific 

conditions (Simpson, 1979). When the cylinders lost its stability in such a way, it will 

undergo a large amplitude elliptic trajectory movement in the wake. Figure 1.18 shows an 

example of such trajectories. When the downstream cylinder is located in the lower half of 

the wake, due to the drag forces in the inner wake is smaller than in the outer wake, 

encouraged by the cross-flow direction lift forces, to absorb energy from the flow, the 

trajectory will be in counter-clockwise direction (Blevins, 1990). Figure 1.19 shows a full-

scale field observation of power transmission lines' motion. The instability index of the 

ordinate in the figure is defined as, 

1=_1 l:(AJ;)2 
60; 80 
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Here I is the subspan length. A; is the r.m.s value of the i-th component of the 

displacement oscillation spectrum at mid-subspan, and J. is the associated frequency. 

Therefore, the instability index reflects the motion amplitude and energy. The figure 

illustrated the amplitude increase with the flow velocity, which explains the significant 

difference to the vortex-induced vibration. 

Figure 1.18 Wake induced flutter stability boundary and orbits (Cooper, 1973). 

Nonnal wind speed (((\1I:h) 

Figure 1.19 Oscillation severity as a spacing to diameter ratio: -*-, spacing 

a=450 111111, diameter d=3S.0S 111111, a/ d=13.0; -l i-, spacing a=450 111111, diameter 
d=24.3 111111. a/d=18.6. From Hardy and Dyke (1995). 

Before closing the review on the galloping and flutter here, it should be noted that in the 

open literature, the definition of wake induced galloping and wake induced flutter is not 

always clearly distinguishable. For example, the wake induced flutter has been frequently 
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referred as wake induced galloping, such as in Parkinson (1989), Chen(1986), Brika and 

Laneville(1999), Jendrzejczyk et at (1979). 

1.4.5 Researches on riser cfynamics and interaction 

Marine risers can be considered to be three-dimensional cylinders. Therefore, theories of 

flow over cylinders and the cylinders' interactions are riser's special cases in two-

dimensional space. To understand the three-dimensional effect on the top tensioned 

vertical risers, studies have been carried out over the years on statics and dynamics of risers, 

most of them have its focus on the single riser circumstances. 

The key features of marine riser design was first defined by Fischer & Ludwig(1966). With 

statics analysis, they demonstrated the importance of tensioning the riser to prevent 

buckling and to control deflection and stress. With the enhancement of the computing 

capability, and probably largely spurred by the progressive deepwater production, the 

dynamics of marine risers become an indispensable analysis during riser design in 1970s. As 

the environment in which risers located is never static, such as top vessel movement, 

persistent wave, variable strength current always accompany with the risers, the risers are 

always in motion state. Sometimes, the stress caused by the dynamics can be very 

significant. The tasks for such riser analysis include two parts, i.e. the dynamic response of 

the risers under the loading condition and to predict environmental loads on the risers. 

Though practically these two parts are coupled with each other and they should be treated 

within an integrated system. The common practice of the environmental load prediction is 

via Morison's equation (Morison, et al, 1950), which is essentially a quasi-steady theory. 

The fluid forces are dependent only on the instantaneous state of the fluid flow and risers, 

and it is independent of the history of riser's motion and the flow. The riser structural 

response analysis can generally be classified into frequency domain analysis and time 

domain analysis, depending on the discretisation of the response equation (Bemitsas, 
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1982). Analysis can be further sub-classified, for example, envttonmentalloads include the 

vortex induced forces, which often has an empirical model or is a statistical model. The 

above mentioned Morison's equation is mostly applied to wave induced loading only, etc. 

At the moment, software is available for the analysis of the riser's dynamics, such as Shear 

7 , VIVA for the analysis of vortex induced vibration etc. 

On the other hand, it was until the beginning of 1990s that marine riser interaction started 

to catch the attention of researchers and engineers. This is mainly due to the fact that the 

riser interaction is exacerbated by the deepwater condition, stated early here as a new 

challenge. The first designated project on this kind of riser interaction is contracted by 

Minerals Management Service (US department of interior), entitled 

"Interference/Clearance Problems of Risers in Floating Production System" (Rajabi, 1989). 

However, the first notable publication should probably be attributed to Huse (1993), in 

which he used the wake shield effect model to account for the drag force on the 

downstream cylinder and, subsequently, he predicted the critical flow velocity before the 

collision between two risers occurs. All of such attempts were designed to meet the 

challenge of deepwater offshore development. Nevertheless, the need for detailed force 

information about the downstream riser in the wake field and its complexity makes a 

comprehensive investigation difficult. Without a stability analysis, Huse's explanation about 

the mechanism for two risers collision is based on conjecture rather than on rigorous 

analysis. In fact, as will be discussed in the later chapters, it is rather unclear. 

Little direct work has been done on the wake induced riser clashing elsewhere, except that 

in the last couple of years other researchers have joined in the fray (Sagatun, 1999; Li and 

Morrison, 2000). These recent research contributions focus upon developing simple 

structural models to quantify impact loading on, and possible damages to, the risers. They 

attempted to simplify the downstream riser as an equivalent mass that contributes to the 
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riser collision impact force. The possible damage can then be assessed. If the damage is 

considered to be tolerable, increasing riser initial spacing may not be required. At the same 

time as this research was being undertaken, the author realised that a lot of industry 

research was being done, namely Demo 2000, NDP programme and Deepstart etc., but 

the critical results and information remain proprietary and are not in the public domain. Up 

to date, to author's best knowledge, a systematic investigation on the interaction between 

two marine risers has not yet been seen elsewhere. 

1.5 Objectives of the thesis 

The main objectives of the thesis are as follows, 

1) To identify the mechanism of the riser losing stability 

2) To predict the critical condition under which inception of this loss of stability takes 

place 

3) To identify the possible dynamic behaviour should the dynamic phenomena occur 

4) To provide guidance to riser designers regarding how to avoid riser collision 

5) To compare the phenomena and mechanism against multiple cylinder application 

in other engineering disciplines 

6) To provide information about dynamic state before impact for the estimation of 

the damage that can occur should collision be unavoidable 

1.6 The Structure of the Thesis 

This thesis consists of ten independent but interrelated chapters. The main frame of this 

thesis is composed of two parts. The first part deals with cylinder interaction in two

dimensional space, with a focus on the investigation of the stability of downstream 
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cylinder, and the identification of the mechanism that bring the two cylinders to collide 

with each other. The second part deals with the three-dimensional riser interaction, with 

the aim of predicting quantitatively, the critical state before collision and the dynamic 

behaviour after occurrence of collision. 

Starting with force prediction, Chapter II provides an estimation of the interaction force 

exerted on the downstream cylinder by using a free streamline model. The data obtained in 

this chapter forms the basis of the subsequent analysis. 

Chapter III deals with the stability analysis, particularly by utilising the traditional Routh

Hurwitz stability algorithm, by which a significant difference between marine riser 

interaction and cylinder interaction application such as power lines is identified. 

Subsequendy, stable and unstable regions under specified flow conditions are identified for 

the whole wake field, which clearly shows the possible bifurcation type of the downstream 

cylinder can occur for a pair of cylinders in water. 

Chapter IV explores the potential multiple equilibrium by use of the continuation method. 

As the two cylinders interaction system is non-linear in nature, the identification of 

multiple equilibrium states is the first step towards the exploration of the non-linear 

characteristics of the system. 1ms chapter shows that there can be up to four equilibrium 

states for a specified cylinder pair. Meanwhile, as this chapter is a sister chapter of Chapter 

III, the stability at each individual equilibrium state was analysed through a direct, 

numerical eigenvalues seeking method. 

Chapter V investigated the dynamic behaviour of the two cylinders interaction, particularly 

after losing equilibrium. It depicts the trajectory and dynamic states when wake induced 

oscillation occurs. 
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Chapter VI describes the three-dimensional case, with statics analysis. Although substantial 

analysis has been made in the past regarding marine riser statics, the statics regarding the 

two risers interaction has not be properly addressed before. In this chapter, a detailed 

discussion about the statics concerned interaction effect has been presented. 

Chapter VII identified the potential multiple equilibrium for a specified marine riser pair. 

This is an extension of Chapter IV. However, due to the three dimensional effect, the 

quantitative relation is different to a two-dimensional case. A non-dimensional parameter is 

attempted to provide some guideline data for riser designers. 

Chapter VIII studied the dynamic behaviour of the riser pair, particularly when the riser 

pair is located in an ocean current, which is stronger than the critical condition. The 

trajectory and dynamic state, such as velocity before collision, the motion amplitude, and 

time interval between successive collisions are investigated. 

Chapter IX and X provided conclusions of this thesis, and also some recommendations on 

the future work regarding the further investigation on this subject. 



Chapter II 

THE ESTIMATION OF LIFT AND DRAG FORCE ON 

THE DOWNSTREAM CYLINDER OF A PAIR 
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2.1 General Remarks 

A pre-requisite for studying the dynamics of the cylinder interaction is to understand the 

fluid forces on the cylinders. The time-averaged forces are considered to be most 

responsible for the cases of fluidelastic instabilities. This chapter endeavors to find an 

empirical method to provide such necessary fluid force data for the subsequent analysis. 

The necessity for the study of such forces began in 1970's when twin-bundled overhead 

transmission conductors began to be put into use, and the large movement of leeward lines 

caught a lot of attentions from scientists. A knowledge of the time-averaged force is a pre

requisite for the study of dynamics of leeward cylinders. Explanations for the mechanism 

and characteristics of such forces were diversified. The first problem for the study of such 

forces is the direction of the lift. Savkar(1970) used the potential theory to find the force by 

representing the wake of the windward conductor by a shear layer, and found the lift force 

is directed away from the centre of the wake, while the experiment of Price(1975) and 

others found the lift force is directing towards the centre of the wake. Around the nature of 

the lift force, there are different arguments trying to explain the cause of this force, such as 

the buoyancy explanation by Maekawa(1964). He suggested that the static pressure on the 
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centre of the wake is minimum. However, the integration of the static pressure around the 

cylinder in the wake shows that at most only 30 percent of the force can be attributed to 

this reason (Best and Cook, 1967). The resolved force of drag, suggested by Mair and 

Maull(1971), suggested that due to the entrainment of fluid into the wake, the flow velocity 

is towards the centre of the wake, so that the lift force experienced by the leeward cylinder 

would be a resolved component of the drag force. It was shown by Price(1976) that this 

amount is still far from sufficient to account for the lift force. Rawlins(1974) ascribed the 

lift force to the circulation. He states that, owing to the variation of turbulence and velocity 

across the wake of the windward cylinder, the two boundary layers from the leeward 

cylinder feed different amounts of vorticity into their associated shear layers. Applying 

Kelvin's circulation theorem to this state, Rawlins concludes that a circulation around the 

cylinder is built up until the rates at which vorticity is discharged from the two boundary 

layers are equal. He got a lift coefficient which is proportional to the transverse gradient of 

the drag coefficient. Price(1976) shows that such a result is 30 percent lower than the 

measured result, and the position of the maximum lift is outward from the measured 

situation. Detailed discussion on these issues may refer to Price(1976). One currently 

accepted idea about the nature of this kind of lift force is that there is a collective 

contribution from the resolved drag, wake entrainment and additional circulation along the 

inner side of the downstream cylinder. Their relative weight is dependent on parameters 

like LID (spacing diameter ratio) and Re (ring et al, 1998) etc. 

Up to now, to account for the time-averaged forces appropriately by using the full N-S 

equation solver is still impractical, either due to the limitation by high Reynolds number or 

the huge amount of computation time, especially when dealing with very widely spaced 

cylinders such as 10 diameters or more apart. Therefore, nearly all past researches were 
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conducted using experimental data of force to explain the dynamic behaviour of such 

interactions. The pioneer and typical work is Simpson (1971). 

In this chapter, we consider the lift force due to the different flow separation position on 

the outer and inner side of the downstream cylinder. The separation position is dependent 

on the flow velocity around the downstream cylinder. Using the free stream line theory, the 

lift and drag force are estimated reasonably well, both in magnitude and distribution. It is 

considered that this is a useful tool for the analysis of the dynamic behaviour of the 

downstream cylinder. particularly when lacking the necessary large volume of experimental 

data. 
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2.2 The Estimation of Lift and Drag Force On the 

Downstream Cylinder 

2.2.1 Concept of the Nature of the f<orre 

--+ 
--+ 
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V. 

Figure 2.1 Schematic figure of the downstream cylinder located in the 
wake of upstream one. 

45 

Figure 2.1 is a sketch of the flow separation when one cylinder is located in the wake of 

another (the upstream cylinder and downstream cylinder are referred to as cylinder 1 and 

cylinder 2 respectively hereafter and in the results presented). Experiments show that the 

separation point on the inner side of the downstream cylinder is more rearward than that 

on the outer side. When cylinder 2 is located in the upper half of the wake of cylinder 1, 

inner side and outer side means the lower, upper part of cylinder 2 respectively as shown in 

Figure 2.1. From the knowledge of flow separation around a cylinder in uniform low 

turbulence free stream, it is known that the pressure after separation is nearly equal, 

especially at the sub-critical Reynolds number region (wake zone, the pressure in this area is 

called base pressure). The lowest pressure is usually lower when the separation point is 

located more rearward for the same base pressure. Considering the situation in Figure 2.1, 

this mechanism makes the pressure on the upper half of the downstream cylinder higher 
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than that of the lower half. It is believed in this investigation that the above mechanism is 

the source of the lift force which is directed towards the centre of the wake. 

Considering the magnitude of the lift and drag, according to the above suggestion, the 

asymmetric separation and the base pressure are vital important factors. The base pressure 

affects the drag force and the asymmetrical separation dictates the lift force. This will also 

be discussed in the later numerical test about the sensitivity of parameters of base pressure 

and separation position to the drag force. 
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Figure 2.2 Separation position for the leeward conductor, X=6.0, 
reproduced from Price(1976). 

The above hypothesis suggests that it is necessary to find the separation position and base 

pressure before proceeding to calculate the lift and drag force on the downstream cylinder. 

Figure 2.2 is a reproduction of an experiment result found by Price (1976). The Figure 

shows the variation of separation position with different transverse locations at longitudinal 

spacing X=6. It is clear to see that when Y=O, the separation position is same for the outer 

side and inner side due to the symmetric characteristics of the wake. The separation angle 

on the outer side decreases with the increase of Y. Meanwhile, the separation angle on the 
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inner side increases when the cylinder is moved outward near the wake centre. When the 

downstream cylinder is located around Y=O.5, the separation position on the inner side is 

in the most rearwards position. 1bis corresponds to the location when the inner side is 

located on the centre line of the wake of the upstream one. When the cylinder moves 

outwards further, the separation position shifts forwards with the increase of Y. Moreover, 

we can see a very interesting phenomenon, that is that regardless of whether it is the inner 

side or outer side, when they are at the same transverse location, the separation position is 

similar. 

To identify such a relation of the flow separation with corresponding flow is never an easy 

matter. Generally, it is incontestable that the flow separation position is related to Reynolds 

number, turbulence intensity of upstream cylinder's wake flow which impinged on the 

downstream cylinder, the downstream cylinder surface roughness, the pressure gradient 

across the upstream cylinder's wake etc. However, as the surface roughness is fixed for a 

specific situation, it can not be the reason of the variation of lift force across the wake. 

Although upstream cylinder wake turbulence intensity can be important, a direct relation 

between separation position and turbulence intensity is hardly persuasive. On the other 

hand, Reynolds number and pressure gradient are parameters closely related to flow 

velocity, and moreover, the wake turbulence characteristics are more or less related to wake 

velocity in some way. It is suggested in this thesis that the flow velocity around the 

downstream cylinder dictates the flow separation. The quantified relationship between flow 

separation and flow velocity will be presented in the subsequent sections. 

2.2.2 tree Slreom Line Model for the Prediction ojrorces 

The use of free stream theory can be dated back to Kirchhof's attempt to resolve the 

D' Alembert paradox(1869). The basic hypothesis is that the wake zone is an equal pressure 

area. In 1970s, free stream line theory was used to study the wake geometric shape of flow 



W.WU The Estimation of Lift And Drag Force On the Downstream (ylinderof A Pair 48 

over bluff bodies (parkinson and Jandali, 1970) and also to correct the blockage effect of 

wind tunnel walls (Beannan, 1975). Generally, mapping transfonnations were used, or very 

few sources (two or four) were distributed to represent the effect of the wake for 

symmetrical problems. A brief introduction to the numerical model used in this thesis is 

presented here, which is considered to be more powerful in dealing with the asymmetrical 

problems. 

~- - - - - -'- Wake Region _ 

(Xo,yo) 
I 

Boundary of Wake 

Figure 2.3 Schematic figure for Free Stream Line Model. 

As shown in Figure 2.3, the flow outside the wake and body are considered as ideal flow, 

the wake region is considered to be an equal pressure area. The surface where singularities 

are distributed includes the wake boundary (free stream line) and the wetted surface of the 

body, i.e. the region where the flow has not separated. N vortex elements are distributed on 

the wetted surface of the cylinder, their strengths are unknownr(qn)' (n = 1,2, ... N). M 

vortex elements are distributed along the free stream line, their strengths are equal to the 

inflow velocity (including two vortex elements whose lengths are infinite long at both ends 

of the above boundary to ensure that no flow will leak into the wake). The actual location 

of the free stream line is unknown. There are N control points on the wetted surface of the 
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body at which the impeachable condition must be satisfied. Thus, by supposing a location 

of free stream line, we can get the strength of the vortex on the wetted surface by solving 

the N equations with N unknown. The control equation can be written as (Lewis, 1991): 

(2.1) 

vortex located at the position q n of unit strength, 

(2.2) 

r(qn )is the unknown vortex strength at position qn' U «l is the free inflow velocity, 

K (q m' q j) is the induced velocity at q m by the unit strength vortex located on the wake 

boundary q j' n is the local unit nonnal vector at q m' i is the unit vector in the direction 

of axis x, k is a unit vector which is along the axis of the cylinder and point towards 

readers. 

Apparendy, the requirement that the pressure on the free streamline is equal everywhere 

can not be guaranteed by this solution immediately. Adjustment of the location of the free 

streamline has to be made. The correction is made as follows: 

Assuming the free streamline behaves like a rope or chain, the position at separation point 

is fixed. After each time, the induced velocity at free stream line is calculated. The free 

streamline is realigned according to the local velocity direction in such a way that the flow 
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in the vicinity of the free stream line is parallel to the free stream. The co-ordinates of the 

free stream line are corrected by following equations: 

i 

X=X +""Ax 
I (1 £. J 

j=1 

i 

Yi =y" + L~Yj 
/=1 

(2.3) 

Here, U j' v j are x, y direction components of the local velocity at lth element on free 

stream line respectively. I!J, which is the length of the vortex element on the free stream 

line, is set equal for every element in the present calculation. x",y" are the co-ordinates of 

the separation point. x, ,y; are co-ordinates of the i-th element on the free stream line. In 

the present calculation, the velocity at the separation point is related to the base pressure, 

and the flow velocity at the separation point is set to be tangential to the cylinder surface at 

that position. After getting the new position of the wake boundary, repeating above 

procedures until the free stream line can reach a position, where the equal pressure can be 

ensured. The solution at such a state is the final solution for the specified flow separation 

problem. 

2.2.3 Wake }<70w Velocity of a Solitary Cylinder 

For the interaction between two cylinders, the inflow of the downstream cylinder is the 

wake of upstream cylinder as shown in Figure 2.1. In order to specify the inflow of the 

downstream cylinder, it is necessary to explain the wake flow field characteristics of a 

solitary cylinder in the first place. By applying the momentum theorem to a control surface 

which eneIoses the cylinder to be studied, based on Prandd's mixing length hypothesis, the 
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first expression for cylinder wake flow velocity was obtained by Schlichting (1968). The 

expression can be one of the following two fonus: 

u( x, y j = U. (x je -O69~ .r.J 

(2.4) 

U.(xj= V. ·rf)~DI 

Referring to Figure 2.1, here 

u is the wake velocity deficit at the position x, y ; 

u 0 is the maximum wake velocity deficit on wake centerline at (x,O) ; 

c /)\ ,D\ are the drag coefficient and diameter, respectively, of the cylinder located in free 

stream. When interactions between two cylinders are being investigated, they refer to the 

upstream cylinder; 

b is the half width of the wake which is defined as: When y = b, u ~ O.SU 0 • 

Thus the wake flow velocity U can be expressed as: 

(2.5) 

Alternatively, the expression can also be written as: 

(2.6) 
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Here, bw is the width of the wake, i.e. distance from the wake centreline to the wake 

boundary. kh' ku are constants which can be derived from theoretical analysis or obtained 

from experimental results. It is approximately thatkh ~ 0.569, ku ~ 0.976. Essentially the 

two expressions above are same. In this chapter and subsequent analysis, the first form is 

utilised. 

Above results are valid only for the far wake field, for example, xl D, > 10. When the 

distance x is small, the wake velocity deficit tends to be over predicted and the width of the 

wake tends to be under predicted. Modifications need to be introduced. One example was 

made by Huse (1993). He supposed the wake originated at somewhere in front of the 

location of the cylinder. It is named as a virtual source. Thus the distance x from the 

cylinder location in (2.4) is replaced by modified distance xm which is measured from the 

virtual source, as shown in Figure 2.4. 

v ...... a-

Xv--l-------- x 

x. 

Figure 2.4 Schematic figure about longitudinal distance 
modification. 
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X)s the distance from virtual source to the cylinder location. It is suggested as (Huse, 

1993): 

The modified wake flow velocity expression are as follows 1: 

u(x,y} = U.(x}e -<l69l[.[.lI 

(2.5) 

Apparendy the effect of above Xv will diminish with the increase of distance x, which is in 

accordance with the distance modification requirement. 

2.2.4 Determination of Separation Angle and Base Pressure 

As discussed above, the separation position and base pressure play vital roles in 

determining the lift force and drag force acting on the downstream cylinder. For a specific 

cylinder (with a defined Reynolds number, surface roughness etc), it is assumed that the 

separation is mainly dependent on the flow velocity. The reasoning and evidence of this has 

been discussed in section 2.2.1. The downstream cylinder functions like a blunt airfoil. 

Figure 2.5 shows the sketch of the flow separation position with the flow velocity. As 

shown in the figure, 

at = (a o +a;)/2 
a2 =(ao -a;}/2 

I In original paper, the coefficient -{).693 was misprint<.>d as -0.639 

(2.6) 
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Figure 2.5 Schematic of flow separation angle. 

Here a I represents the average separation angle. It is considered that the average 

separation angle of the downstream cylinder is dependent on the inflow velocity at the 

centre of downstream cylinder. a 2 is the difference of the separation angle between outer 

and inner position. ao,a; are separation angles on the upper and lower part of the cylinder 

respectively. The difference of the separation position was considered to be dependent on 

the gradient of the velocity at the location of the downstream cylinder. The investigation 

made in this thesis is mainly focused on the sub-critical Reynolds number region, and the 

following relation is suggested. 

(2.7) 

Here a f \ represents the flow separation position when a solitary cylinder is sitting in the 
. Re 

free stream at Reynolds number of Re. By regressing Price's experimental results at the 

longitudinal position ofX=6, the coefficients are obtained as follows: 

C1 = 30.0158 

c2 =0.2054 

c3 = -32.01 

c4 = -4.98 

(2.8) 
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The regression curve is plotted in Figure 2.2. 

The base pressure is another complex variable. Williamson (1996) shows that the base 

pressure is sensitive to the process of vortex formation in the near wake, which itself is 

affected strongly by the evolution of various two-dimensional and three-dimensional wake 

instabilities, as Reynolds number are varied. However, the experiments show that when 

Reynolds number is within the region of about 1 ()4 to 105, the base pressure does not 

change much. When the cylinder is located in the wake of another one, there is pressure 

head loss in the wake. The static pressure of the oncoming flow in the upstream cylinder 

wake differs considerably to the free stream. It is not practical to relate the downstream 

cylinder wake pressure to the free stream parameter. Therefore, the downstream cylinder is 

treated as a single cylinder located in a high turbulence flow. Based on the successful 

experience of using the wake shield effect to explain the multiple cylinder drag force (Huse, 

1993), and also, some experiments that show that turbulence intensity has very little effect 

on the base pressure (Bearman, 1989), in the present investigation, the base pressure is set 

to be equal to that of a single cylinder located in free stream. Similarly, this reflects that the 

variation of the drag force coefficient acting on the downstream cylinder is mainly due to 

the variation of the wake flow velocity. 

2.3 Prediction for a Solitary Cylinder Using Free Stream Line 

Model 

A single cylinder in a uniform flow is considered here and two scenarios are calculated. 

One is for flow separated at 800 with base pressure coefficient -0.96. The other is for flow 

separated at 117.5° with a base pressure of -0.38. These two scenarios may represent 

laminar flow separation and turbulent flow separation respectively. The calculation used 50 
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vortex elements on the wetted surface and 50 on the wake boundary. Figure 2.6 is a 

comparison of the calculated result with the experiment conducted by Roshko (1954) and 

Bearmean (1968) respectively. From Figure 2.6, we can see that the prediction of the 

pressure distribution agrees very well with the experiment result. For completeness, two 

wake boundary shapes are also presented here (Figure 2.7). We can see that the wake in the 

two scenarios differs significandy in size. This is also in agreement with the experimental 

result. 
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Figure 2.6 (a) Pressure distribution on the wetted surface, Separation at 
8(1), Cpb=-O.96. 
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Figure 2.6(b) Pressure distribution on the wetted surface, Separation at 
117.5°, Cpb=-O.38. 

2.3.1 Sensitivity of Base Pressllre and Separation Position to Drag Force 

57 

In order to examine the role which base pressure and separation position play in lift and 

drag force calculations, some numerical tests have been carried out on the sensitivity of 
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such parameters to the force. For a single cylinder in uniform flow, the separation is 

symmetric. 

2 

1 

>-0 

-1 

-2 

-2 o 

cx.-800.Cp,=-O .96 

............................................... 

') 
: 

-~ .... , ..... .................................... . 

2 
X 

4 

Figure 2.7 Wake geometrical shape for two different separation scenarios. 
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If the base pressure is set as constant, and the separation angle varied from 810 to 1100 , 

then Table 2.1 is the calculated result. It should be noted that as this is a numerical test, the 

separation angle is set subjectively. Nevertheless, in reality, the base pressure and separation 

position are related in certain ways, so they should not be set arbitrarily. We can see that 

when the separation position is changed from 81 () to 110°, while keeping the base pressure 

constant (this is a very significant change in the separation position), the change of the drag 

coefficient only amounts to 4%. If, on the other hand, the separation position is kept fixed, 

and the base pressure is change from -1.12 to -0.8, about 29% increase of the base pressure, 

the drag coefficient is reduced from 1.188 to 0.883, about 26% of the decrease. 

These results show that the drag coefficient is sensitive to the value of the base pressure, 

whilst very insensitive to the separation position. It is easy to infer, from the discussion 
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about the nature of the lift force, that the lift force is sensitive to the separation position. In 

section 2.3 it was mentioned that the base pressure for a cylinder in wake is chosen as equal 

to that when it is located in the free stream. One reason is that, because Huse(1993) 

predicted the drag force for multiple cylinders successfully by supposing the drag 

coefficient in the wake to be equal to that in free stream, the result of this hypothesis is 

consistent with Huse's methodology, according to the nwnerical test conducted here about 

the relation between the base pressure and drag coefficient. 

Table 2.1 Numerical test about sensitivity of base pressure and 
separation position on drag force. 

NO. Cpb Separation angle aO CD 

1 -1.12 81° 1.188 

2 -1.12 95° 1.167 

3 -1.12 110° 1.138 

4 -1.0 81° 1.074 

5 -0.9 81° 0.979 

6 -0.8 81° 0.883 

2.4 Prediction of Lift and Drag Force of the Downstream 

Cylinder 

When one cylinder is located in the wake of another, the incoming flow velocity for the 

downstream cylinder differs from the free stream velocity, as expressed in section 2.2.3. 

Apparendy the velocity where the downstream cylinder covers is not uniform. The same 

method as Huse(1993) used is applied here to account for the average incoming velocity 

for the downstream cylinder, i.e. first taking rms (root mean square) value of u which 

covers the area of the downstream cylinder. The incoming velocity is then obtained by 
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subtracting it from the free stream velocity: U = V" - rms( u). Such a value is used in the 

following calculation of lift and drag force of the downstream cylinder. 

2.4.1 Two Cylinders with Same Diameter{D,:D2= 1 :1) 

The prediction of the lift and drag force on the downstream cylinder is based on the same 

method as for a single cylinder, provided that the separation position and base pressure are 

known. The result for C f) ,C I. is scaled to free stream velocity by the consideration of the 

wake velocity as stated in section 2.2.3. According to the philosophy discussed in 

Section 2.3, the separation angle is first sought, then the calculated sample is referred to the 

Reynolds number around the order of 104, where the drag coefficient of a solitary cylinder 

in a free stream is about 1.2. This sets the base pressure at around -1.12. The calculated 

separation angles at X=12 and X=18 are shown in Figure 2.8. Under the above condition, 

100 
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Figure 2.8(a) Separation angle profile at X=12. 
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Figure 2.8(b) Separation angle profile at X=18. 
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Figure 2.9(a) Variation of time-averaged force on the downstream cylinder 
across the wake, lift. 
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Figure 2.9(b) Variation of time-averaged force on the downstream cylinder 
across the wake, drag. 
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Figure 2.10(a) Variation of time-averaged force on the downstream 
cylinder across the wake, lift. 
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Figure 2.10(b) Variation of time-averaged force on the downstream 
cylinder across the wake, drag. 
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Figure 2.11(a) Variation of time-averaged force on the downstream 
cylinder across the wake, lift. 
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Figure 2.11(b) Variation of time-averaged force on the downstream 
cylinder across the wake, drag. 
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the lift and drag force coefficients are calculated and presented in Figure 2.9 to Figure 2.11. 

From Figure 2.9 to Figure 2.11, it can be seen that the result agrees well with the 

experiment, both in its magnitude and its variation with the longitudinal and transverse 

distance. Such a result will enable this thesis to predict the dynamic behaviour of the 

downstream cylinder. Comparing Figure 2.9 and 2.10, 2.11, it can be seen that with the 

increase of the streamwise distance, the maximum lift force magnitude decreases, and the 

position of maximum lift is shifted outward. 'Ibis is well reflected in the Figures, and 

compared to the experiment of Price(1976), the agreement of magnitude relation between 

at X=6.0, 12.0 and 18.0 is also satisfactory. For the drag coefficient, it is very clear that the 

shield effect diminishes with the increase of the stteamwise distance X, at the same time, 

wake boundary widens with the increase of the distance x. These effects are all presented 

in Figure 2.9(b) to 2.11 (b). The main difference from the experiment is that the width 

where lift force is large is not as wide as the experiment at a small distance. At a large 

distance, the wake width is a little underestimated in this calculation. However, bearing in 
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mind that such a prediction is to serve the purpose of dynamic analysis, these discrepancies 

are well acceptable. 

2.4.1.1 Comparison of Pressure Distribution 

The fluid force coefficients presented here are all calculated by the integration of pressure 

over the cylinder surface. It is worthwhile to compare pressure distributions between 

calculation and experiments. However, as stated in the base pressure discussion, the 

calculation of pressure coefficients is made solely dependent on the ambient flow of the 

downstream cylinder, i.e. the wake of the upstream cylinder. A transformation is needed for 

the purpose of comparison. 

Let 

c = P-P«l 
P I 2 

-pV, 2 0 

be the definition of pressure coefficients and used in the experiments, and 

c = P- Pw 
pc 1 

-pU 2 

2 

be the definition of pressure coefficients of the calculation. 

Let C p02 be the measured pressure coefficient at the stagnation point on the downstream 

cylinder, The following transformation is obtained: 
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By such a ttansfonnation, the calculated pressure coefficients can then be presented in the 

same way as the experimental data. The comparison of the calculated results and 

experimental results is shown in Figure 2.12. It is seen from the Figure that the drop from 

maximum pressure to minimum pressure agrees very well between present prediction and 

experimental result. In addition, the shift of the position at which the maximum pressure 

occurs agrees well between prediction and experimental result. The fairly good agreement 

for the base pressure gives support for the hypothesis set for the base pressure in section 

2.2.4. Therefore, the agreement is satisfactory. 
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Figure 2.12 Comparison of pressure distribution between calculation and experiments. 
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2.4.2 Downstream Cylinder is Smaller Than Upstream Cylinder(D,:D2=2:1,4:1) 

Sometimes, two cylinders may have different diameters. Experiments show that reducing 

the diameter ratio of leeward to windward cylinder to 1:2 will decrease the maximum lift by 

40 per cent, and a further reduction in diameter ratio to 1:4 will decrease the maximum lift 

coefficient by 91 per cent. On the other hand, such a difference in cylinder diameter ratio 

has no significant effect on drag coefficient. Most of the arguments described in the 

literature review can not explain these phenomena. It is easy to understand that if people, in 

explaining the lift, fully rely on the drag coefficient, no big change of lift coefficient can be 

expected due to the insensitive nature of drag coefficient to the diameter ratio which was 

shown by the experiments. However, according to the hypothesis presented in this thesis, it 

is not difficult to understand that this kind of effect will happen if the cylinder diameters 

are different between the upstream cylinder and downstream cylinder. 

Asymmetrical separation flow around a cylinder is like the flow over an airfoil with an angle 

of attack. When the cylinder in the wake is smaller, attack angle depends on the difference 

of the separation positions between the outer side and inner side, due to the area it covers 

being smaller, the difference in the separation position will be smaller. 1bis is similar to the 

reduced attack angle which leads to the lower lift force. Figure 2.13 to Figure 2.15 give the 

prediction results which show the difference when the diameter ratios of two cylinders are 

different. It can be seen that the result in Figure 2.13 is very similar to the experimental 

finding. The maximum lift, when the downstream cylinder is half size of the upstream one, 

is 63% of that when the two cylinders have the same diameters (experiments show 60%). 

According to Figure 2.14, when X=12.0, the maximum lift of downstream small cylinder is 

59% of that for same size cylinder. The experiments show that it is around 50%. While the 

location of the maximum lift is shifted inwards when the downstream cylinder is small, the 

drag coefficient shows there is no big difference between different diameter ratios. 
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According to the comparison, when the diameter ratio is 2: 1, the predicted result in this 

thesis is in good agreement with the experiments. 

Figure 2.15 shows the situation when the diameter of the downstream cylinder is only one-

fourth of the upstream one. The maximum lift on the downstream cylinder is 35% of that 

for diameter ratio of 1: 1. This result is quite a bit higher than in the experiment, which 

shows only 9%. However, experiments found that the lift force will change direction near 

the wake outer boundary. This phenomenon has not been reflected in the calculation. It is 

considered that, if the diameter difference is significandy large, other factors may also affect 

the flow around the downstream cylinder considerably. On the other hand, the drag 

coefficient for such a situation is still in good agreement with the experiments. This is 

because drag force is insensitive to the flow separation position. 
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Figure 2.13(a) Comparison of lift force for different diameter ratios. The 
downstream cylinder is smaller than the upstream one, at X=6. 
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Figure 2.13(b) Comparison of drag force for different diameter ratios. The 
downstream cylinder is smaller than the upstream one, at X=6. 
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Figure 2.14(a) Comparison of lift force for different diameter ratios. The 
downstream cylinder is smaller than the upstream one, at X=12. 
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Figure 2.14(b) Comparison of drag force for different diameter ratios. The 
downstream cylinder is smaller than the upstream one, at X=12. 
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Figure 2.15(a) Comparison of lift force for different diameter ratios. The 
downstream cylinder is smaller than the upstream one, at X=6. 
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Figure 2.1S(b) Comparison of drag force for different diameter ratios. The 
downstream cylinder is smaller than the upstream one, at X=6. 

2.4.3 Downstream Cylinder is La~er Than Upstream Cylinder{D,:Dz= 1 :2) 
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It is not expected that the method explained here can account for the fluid force on the 

downstream cylinder very well, for the situation when the downstream cylinder is larger 

than the upstream one. Because in that situation, the wake will be thought to be altered 

significandy due to the existence of the large downstream cylinder. Nevertheless, an 

attempt is made here for the diameter ratio(Dt:Dz) equal to 1:2, with the result shown in 

Figure 2.16. The trends of the variation of lift and drag agree well with the experiment. The 

maximum lift now is increased by 27% compared to the same cylinder size situation, while 

the experiment result is 63%, and the drag coefficient near the wake centre is detectably 

larger than in the situation for same cylinder size in small range of Y. There is no such 

difference in the experiments. However, when the downstream cylinder moves outwards, 

the result is in good agreement with the experiments. 
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Figure 2.16(a) Comparison of lift force for different diameter ratios. The 
downstream cylinder is larger than the upstream one, at X=6. 
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Figure 2.16(b) Comparison of drag force for different diameter ratios. The 
downstream cylinder is larger than the upstream one, at X=6. 
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2.5 Summaries 

Concluding the investigation conducted in this chapter, a practical method has been 

developed with a new philosophy which is able to account for the time-averaged force 

exerted on the downstream cylinder. The method is based on the experimental data to 

specify the separation situation for the downstream cylinder, which may bring some 

difficulties. However, by the use of existing experimental data, the calculation shows 

encouraging agreement with the experiment. Also, the method predicts well the situation 

when the downstream cylinder is half the diameter of the upstream one. Even for the 

special cases of a very small downstream cylinder or large downstream cylinder, the present 

method shows good correlation of the lift force and drag force variation. The method is 

considered to be a useful tool for the dynamic analysis of the interaction between two 

cylinders. Further, it may provide a new view on the nature of lift and drag force on the 

downstream cylinder. Finally, it should be noted that the method introduced in this thesis is 

mosdy applicable to sub-critical Reynolds number region. 



Chapter III 

STABILI1Y OF THE DOWNSTREAM CYLINDER IN 1WO

DIMENSIONAL SPACE 
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3.1 General Remarks 

Collision between two cylinders/risers when located in water at high flow speed has been observed 

in experiments (Bryndum & Anderson, 1999; Huse, 1993). The essential physics of the interaction 

between two cylinders/risers is the problem of two cylinders interaction in fluid. It occurs in many 

other engineering applications, such as interactions between two power transmission lines in the 

power industry, interaction between tubes in heat exchangers (including steam generators, boilers 

and condensers) and nuclear reactors, interference of chimneys or building groups in civil 

engineering, also interaction among bundle risers. Since 1960s, substantial amounts of theoretical 

and experimental research have been carried out to investigate the different fluidelastic phenomena. 

Table 3.1 tries to outline the main characteristics for each of the different cylinder applications. 

Each of the investigations made so far focused on its own engineering background, as enumerated 

in the above table. The general approaches adopted are based on quasi-steady flow theory, which 

essentially suppose that flow responds to the movement of the cylinder instandy. Often, by utilising 

experimental data of the fluid forces, the stability of each dynamic system was then analysed (e.g. 

Simpson 1971; Price and others 1993 etc). However, there appears to be no published paper which 
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Table 3.1 Comparison between different applications for cylinder interaction 

Problem Characteristics Phenomena Representative Work 

siD! a L/D UR 

Power Line 10 - -2000 -30 Rutter (Simpson 1971; Price 
-20 2x1o-' 1975; Tsui 1977,198~ 

Tube Bank 1.2-3.0 10-4 40 -20 Ruidelastic (Blevins, 1979 
- -400 Instability( damping or Lever and Weaver, 1986) 
10-1 stiffness controlled) 

Chimneys -1.5 -10-' <10 -2 VIVonly (Wong 1985, Socke~H. 

Groups and Kronke, I., 19871 
Bundle Riser <5 -0.2 > VIV, Galloping or (Overvik and others 

500 -2 Combined 1983; Price and others 
1993) 

UP/SPAR 10 -0.2 2000+ -30 To be answered (Huse 1996; Huse 1993) 
Riser -30 

has tried to correlate these fragmented investigations into a systematic study of a whole wake field 

and to explore the characteristics of marine riser interaction. No paper has been published to 

account for the marine riser interaction like collision by using the stability theory. 

A full revtew of the different theoretical methods employed to investigate the fluid-elastic 

behaviour is beyond the scope of this thesis, but reference can be made to Price (1995). 

1bis thesis, takes marine riser interaction as its main background, and a through investigation 

covering both near and far wake fields is made to illustrate the mathematical characteristics of the 

two cylinder interaction. The analysis is based on varied forms of Morison's equation. A full Routh-

Hurwitz stability algorithm is utilised together with direct numerical eigenvalue seeking technique to 

investigate the stability of the two cylinder interaction. The effects of control parameters such as 

stiffness ratio, spring coupling and particularly the mass parameter, are addressed. The author does 

not intend to pretend such an analysis method is original, however, due to the characteristics of 

marine risers, new results are obtained. The investigation conducted here is the most 

comprehensive one, covering a wide range of cylinder spacings and mass parameters. It was found 

1 S: cylinder centre to centre dilltance, D: cylinder diameter, a = pD'/2m. L: cylimkt k-nl?;th, u. = V,'/mD 
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that there is a restriction imposed by mass parameter for the Hopf bifurcation to occur. Stationary 

bifurcation is more likely to occur in riser interaction, particularly when the two risers are separated 

by a fair amount of spacing. A clarified explanation of the stability and stable/ unstable region 

evolution with control parameter is also presented. 
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3.2 Mathematical Formulation 

3.2.1rlllidrorces 

u 
y -+ 

~--
v. Y. -+ --. --. x --. --. I 

I 

~ I 
X. -I 

Figure 3.1 A schematic diagram of arrangement of two cylinders, the 
upstream cylinder is also supported by springs. 
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Figure 3.1 shows a cylinder located in the wake of another one. Both the downstream and upstream 

cylinders are elastically mounted. Supposing the interaction from the downstream cylinder to the 

upstream cylinder can be neglected, then the stability of the downstream cylinder is the main 

concern of this chapter, which is strongly dependent on the relative position of the downstream 

cylinder behind the balanced upstream one. The co-ordinate system has its origin at the centre of 

the upstream cylinder equilibrium position. The two springs for the downstream cylinder are 

perpendicular to each other, with an angle of B between the x axis and the Kx spring as shown in 

Figure 3.1. It is assumed that the lengths of the two springs are much larger than the small 

displacements of the downstream cylinder away from its equilibrium. Therefore, the angle is 

assumed to be constant in present analysis. Such a co-ordinate system is mainly for the purpose of 

stability analysis for the downstream cylinder. Because the displacement caused by the fluid forces 
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can be significant for marine risers, an absolute co-ordinate system fixed to the earth will be utilised 

in the next chapter. 

Figure 3.2 is a schematic diagram which shows the velocity triangle and the resultant fluid force 

acting on the downstream cylinder. Supposing the flow responds to the movement of cylinder 

Fo 

Figure 3.2 A schematic diagram of velocity, 
and fluid forces for quasi-steady flow model. 

instandy, then fluid forces are given by: 

Where Fx,Fy are fluid forces in the x,y directions, respectively; 

Ur (= ~(U - X)2 + y2 ) is the relative velocity to the downstream cylinder; 

p is fluid density, 

D is diameter of the cylinder, 
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P is the angle of the relative velocity to the x axis; 

C is fluid added mass coefficient due to the acceleration of the cylinder (which can be 
III 

detennined by potential flow theory). 

CD I = F~.I. / with FD,FL being the drag and lift forces respectively . 
. ' pU D 2 

It is shown in Figure 3.2 that 

U-x 
cos/3=-

Ur 

. /3 Y SIn =--
U r 

Substituting Equation (3.2) into Equation (3.1), we have 

F: = ~ pU,D[Cf)(U -x)+C/'y]-cm p~2 x 

F; = ~ pU,D[ -C/)y + Ct. (U - i)] _ cm p~2 y 

(3.2) 

(3.3) 
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Essentially, this is a varied fonn of Morison type equation for fluid forces acting on a moving 

cylinder with the consideration of transverse forces. 

In order to utilise the force coefficients obtained by Free Stream Line method, let b = U/~. The 

reference velocity for the force coefficients can then be transfonned from the local wake velocity 

U to the free stream velocity ~ by the following relations: 



W.WU Stability of the downstream rylintkr in two-dimensional space 82 

F 
Wh C 

1>,/. 

ere /),1. = pV
0
2 D 12 ; (3.4) 

For small motions around an equilibrium position, i.e. XjV, y/V - 0(1), the forces can be 

linearised and given as 

I. p:rD2 
C ] [X/V] [X] 

-CD x y/u -c
m

- 4- ji 
(3.5) 

Further as C IJ' C I. are position dependent, these force coefficients can also be expanded around 

the equilibrium position (xo' Yo ) : 

(3.6) 

where X = x/ D, Y = y/ D, 

Substituting Equation (3.6) into Equation (3.5), we have: 

[
F:] 1 2,Cf)O] 1 l,COX Cor IX -x;)] 

=-pV +-pV: 
2 0 2 ° 

F, C,.o C,-x C,.y Y - Yo 

,

-2C/
JO c,.o IkD/V] [X] +~p Vl _ c p:rD3 

2 () . m 4 .. 
-2C1•o -Coo YD/V Y 

(3.7) 

Equation (3.7) is the linearised form of the fluid force acting on the downstream cylinder when the 

downstream cylinder is located at the equilibrium position (xo ,Yo). Because the matrix 
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p ~ D [Cf)X Cm] 
C 1X C1,r 

(3.8) 

functions like a spring stiffness matrix, which accounts for the fluid recovery force when cylinder is 

deviated from equilibrium position, it is called the fluid stijfness matrix, whilst 

[

-2Cf)0 
p~2D2 

2U -2C 
1.0 

(3.9) 

behaves like coefficient matrix for a damping system, which explain the consumed energy when a 

cylinder moves about, it is called the fluid damping matrix in this thesis. 

3.2.2 Equations of Motion 

The motion of the downstream cylinder is governed by 

(3.10) 

where m is the structural mass per unit length of cylinder. K x ' Ky are the spring stiffnesses in x,y 

directions, respectively. (x &' Y &) is the initial position of the downstream cylinder when no current 

is present. The right hand side of the equation includes the fluid forces in (x, y) directions, as 

presented in Equation (3.7). Substituting Equation (3.7) into Equation (3.10), non-dimensionalising 

x, y with the cylinder diameter and introducing r = {J)xt with OJ x = ~ Kx / (m + c",ptrD2 /4), the 

equation of motion around the equilibrium position can be re-written as: 
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[
x) 2~x(R.R~sin2 0+COS

2 0)+ 2: URC})o 2~x((R.R; -l)SinBcoSB)-: URC/,o 

y + 2;.((R,R,-I)sinOcosO)+ 2; U,C", 2;.(R.R,cos' OHin' 0)+: U,C", 

+[R: sin
2 
0+cos

2 

B-aU;C/)X (~-I)SinBcoso-au;cDY]x[~]= 0 

(~-l)sinOcosB-aU!C/x R: cos2 B+sin2 B-aU;C/'y Y 

with 

Here, UR = ~ is reduced flow velocity. 
(J)x D 

( 
K )112 

Rk = ~ is the stiffness ratio between two orthognal directions. 
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(3.11) 

(3.12) 

a = ( P 1rD2) is often referred as the mass parameter, which, as will be seen, is the vitally 
2 m+cm~ 

4 

important parameter in determing fluid elastic behaviour. 
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R = Cy is the damping ratio between two spring directions. The inclusion of this term is to identify 
~ C 

x 

the role of the structural damping. 

For notation convenience, the tidle bar is dropped in the following discussion. Equation (3.11) 

represents a spring physically coupled system with the consideration of structural and fluid 

dampings. It is the basic equation to determine the stability of the downstream cylinder. Before 

delving into the stability analysis, some special forms are discussed here to show the relation 

between different simplified systems. 

3.2.2.1 Uncoupled, Undamped System 

The simplest form of the dynamics equation (3.11) is the uncoupled and undamped system, which 

is often mentioned in research into power transmission lines and often called "undamped flutter 

theory". The system neglects both the structural damping as well as the fluid damping, i.e. 

It should be noted that such a hypothesis is tenable only when the mass parameter is small. The 

system can then be simplified as, 

(3.13) 

3.2.2.2 Uncoupled System With Fluid Damping 

The form of (3.13) is simplest when the mass parameter is set as small. However, the cases, such as 

marine risers in water, do not satisfy these conditions. Therefore, a simple form with the 

consideration of the fluid damping while keep the spring uncoupled is the basic form for the 

consideration of riser interaction: 
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(3.14) 

3.2.2.3 Coupled System Without Damping 

Generally, the two springs for downstream cylinder are coupled as shown in Figure 3.1. A 

straightforward way to explain the effect of spring coupling is by utilising the case of an undamped 

coupled system. It is seen that in Equation (3.13), fluid stiffness is coupled while the physical spring 

is uncoupled. To apply this kind of result to the spring coupled system, a transformation can be 

made to uncouple the physical spring system. The system can be written as. 

x[CIJX cos
2 
0 + CI.Y sin

2 
0 - (cIX + Cm ) sin Ocos 0 

clX cos2 0 - C IJY sin2 0 + (cox - cl.r ) sin Ocos 0 

ClJr cos
2 
0- C,X sin

2 
0+ (c,)X - C,.Y )sin OCOSOIJ 

=0 

cvx sin2 
0+ c,.Y cos2 0+ (c,.x + clJY )sin OcosO Y 

(3.15) 

According to Equation (3.15), the effect of a coupled spring can be understood as the uncoupled 

system under the action of a transformed fluid force field. 

The stability analysis in this thesis is made either via the traditional method of Routh-Hurwitz 

stability algorithm, or by a direct numerical eigenvalue analysis. Routh-Hurwitz method provides 

the critical state of the system with analytic solution, however, it does not show the variation of the 

system stability. On the other hand, the numerical eigenvalue analysis provides detailed information 

of eigenvalue variation, however, to pick up the critical state can be difficult and time consuming. 

In order to obtain both the information about the critical state and the variation of the system 

stability, the two methods have been used joindy. The following section presents the application of 
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the Routh-Hurwitz stability algorithm. Combined with a direct numerical eigenvalue analysis 

method, the numerical results will be presented systematically in Section 3.4. 

3.3 Stability Analysis 

3.3.1 Traditional Method: Routh-Hurwitz Stabiliry Algorithm 

By assuming 

The stability of the downstream cylinder (3.11) can then be determined by the eigenvalue A from 

the following characteristic equation: 

=0 (3.16) 

where 

For notation convenience, following symbols are adopted hereafter: C dO = C ~o ,C/o = _c ~_.o 

Equation (3.16) can be rearranged to give the following fourth-order algebraic equation about 

eigenvalue A, 
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4 

LcjA! =0 
)=0 

where 

C2 = 2a2UH C;o + C1
2
0) - aU~( C/JX + CI,y) + 4RkR~';: + R; + 1 

+2aU R';X[CdO( RkRil +cos2 B) + 1 + sin2 B) - CIO ( RkR~ -1)sinBcosB] 

c, =-a2U~[CdO(C/JX + 2CI,y) + CIO(CIX -2CDy )] 

-2aU~';x[CI.Y(RkR~sin2 B+cos2 8)+C/Jx(RkR~cos2+sin2 8) 

-CDY ( RkR~ -I) - CI.x(RkR~ -1)sinBcosB] 

+aU R[ CdO[ Ri(cos2 8 + I) +sin2 0+ 1] - CIO( Ri - l)SinOcosO] 

+2';x(R; + RkR~) 

Co = a2U~(Cf)XCI,y - C1XCIJY ) + Ri -aU R[C/Jx(R; cos2 
0+ sin2 

0) 

+CI.Y( R; sin2 0+ cos2 8) - (Cf)Y + CIX )(R; -1)sinBcosB] 
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(3.17) 

The downstream cylinder will become unstable if the solution of A.. has a positive real part. 

However, seeking the solution of A.. directly from Eq (3.11) can be a computationally intensive task 

and the identification of the critical state can be tedious. The Routh-Hurwitz stability algorithm can 

release such a burden to find the stability of the system without solving the fourth-order algebraic 

equation. According to the algorithm, for a stable system, the following inequalities have to be 

satisfied: 

C3 >0 

C2C3 -cl > 0 
2 2 0 CIC2C3 - c1 - c3 Co > (3.18) 

CO(CIC2C3 -c~ -cico» 0 
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Generally, there are two possible routes for the equilibrium position to lose its stability, namely 

through either Hopf or stationary bifurcation. The former corresponds, physically, to a flutter or 

galloping oscillation and, mathematically, is the transverse crossing of the imaginary axis of a pair of 

eigenvalues, whereas the stationary bifurcation corresponds to an unstable movement away from 

the equilibrium position and, mathematically, is the crossing of the imaginary axis of an eigenvalue 

at the real axis. According to this algorithm, when one of the inequalities in (3.18) is not satisfied, 

the system is then unstable. The state when one of inequalities in (3.18) begins first to be violated 

corresponds to the critical state of bifurcation. The two scenarios of bifurcation are discussed 

separately in the following sections, and for clarity, the following analysis is first presented for the 

case of uncoupled system with the structural damping neglected, the case in the simplest form 

which is applicable to the marine riser interaction, as discussed in the section of 3.2.2.2. 

3.3.1.1 Hop! bifurcation 

Experimental measurements for the fluid forces on the downstream cylinder show that drag force 

does not have to be positive, which means the fluid damping matrix can be either positive definite 

or not positive definite. However, the mechanism of Hopf bifurcation for these two cases can be 

different. In following analysis, we discussed these two cases separately. 

3.3.1.1.1 Fluid Damping Matrix Positive Definite (l'1JMPD) 

The fluid damping matrix positive definite area encompasses most of the wake area, where drag 

force is positive. Within such an area, it is clear that c3 is always positive. It is also found that 

C2C3 - c1 is always positive. According to (3.18), the indicator for critical state of Hopf bifurcation is 

given by: 

{

C1 'C2 ,c3 - c~ - cico = 0 

C1 >0 
(3.19) 
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Equation (3.19) can be re-written as 

{
AI .U~ + Ao2U! + A3 = 0 

c1 >0 

where 

-2C-2 . A = 2(R2 _1)2 a dO 3 • 

(3.20) 

a-3C~!A2 = 3[ (2R: + 1)[ 2a( C~o + C/
2
0) - (Cox + CloY)] - (R: + 1) . [2CI,y + Cox - R,(2Coy - CIX )]] 

+9( R:Cnx + CloY ) + 2(2R: + 1)[ 2Cl.Y + Cox - RA2CDy - CIX )] 

a-4C~~AI = 3[2a(C~0 + C:O)-(CDX +Cl.Y)1 RA2CDy -CIX )- 2CI,y - Cox] 

-9( Cf)XCloY - CIXCf)Y ) - [2CloY + Cf)X - RA 2Cf)Y - CIX ) r 
R, = CloO/Cf)O 

(3.21) 
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If a real positive root of U R for (3.20) exists and the condition c1 > 0 holds, the Hopf bifurcation 

will occur. This loss of stability (of the downstream cylinder) is commonly referred as fluid stiffness 

controlled fluidelastic instability or wake induced flutter. The existence of U R requires that the 

following condition must be satisfied: 

(3.22) 

Equation (3.22) can be re-written as: 

£\u =4(2R; + It(C~o +Ciot a2 +(1- R;t[R~(2CDY -C/X )2 -8C/X CDy ] 

+4(1- R;X C;o + C,2o) x [Rf (2CJ)Y - C/X )(2R; -1)+4( C/,Y - R;CDX )]a (3.23) 

>0 

Equation (3.23) is a necessary condition for Hopf bifurcation to occur, which imposes certain 

restrictions on the mass parameter and the stiffness ratio Rk • For a particular case of stiffness ratio, 

a must satisfy the following conditions: 
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0< a < R;2 -1 [RA2CIJY - C'X )(2R; - 1) +4( C"y - R;Cnx ) - 2 sgn( R; -1)(2.10 f/21 
2(2R;+I) (C~O+C,20) 

When 

.1
Q 

= -R; R~(2Coy - c,x )2 + C,xCIJY(2R; + 1)2 

+(C"y - R;Cnx ) x [RA2Ri -IX2Cny - CIX )+ 2( C"y - R;Cox )] 

>0 

However, when 

(3.24a) 

(3.24b) 

(3.25) 
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These conditions show the restriction of mass parameter on the system Hopf bifurcation. From 

condition (3.23) it can be seen that stiffness ratio and mass parameter are two interrelated 

parameters. It shows that for a similar system with same stiffness ratio, a system with a large mass 

parameter is more stable to the fluid stiffness controlled Hopf bifurcation. 

The reason can be understood in the following way. Fluid damping is proportional to aUR' while 

fluid stiffness is proportional to aU~. For a fluid damping matrix positive definite case, fluid 

damping consumes energy when the cylinder moves. The only way to bring energy into the system, 

to cause instability, is via the fluid stiffness coupling. Such energy has to counterbalance with the 

energy consumed by the system damping. Imagining two scenarios, one with a small mass 

by fluid stiffness is same for two systems. However, due to 02 > °1 , the energy consumed by the 

fluid damping for the large mass parameter case is ~a2/al times more than for the small mass 

parameter one, which makes the Hopf bifurcation much more difficult to occur, hence the system 

with a large mass parameter is more stable with regard to Hopf bifurcation. 
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By solving Equation (3.20), the critical reduced velocity for the system to lose and gain its stability is 

given by: 

aU~ = {-{6a(2Ri + 1)( C;o + cio) +( Ri -1)[ R,(2CoY - C,x)+ 4( CLY - Cf)x)]} ±31l1~2} 

+2{6a( C~o + C/~)[ R,(2Coy - C,x )- 2CLY -Cf)X ] + [-4Cf)xC/'y +( 4R~ + 9)CU CDy 

+ RI ( -2CIJx C/)y + Cf)XC,X + 2CLYCIJY - CuC,.y )] + 2( ci)x + C;'Y ) - R~ (C;x + 4C;)y )} 

(3.26a) 

together with the condition of 

(3.26b) 

Discussion 

From above analysis, together with the condition for stiffness ratio (3.24b), in the fluid damping 

matrix positive definite area, mathematically, there are the following possibilities for 6.0 and 

Ilu regarding the Hopf bifurcation, i.e. 

6. k = [-R} (2C/)y - C,.X )2 + Rf (2Cf)Y - C,x )(2CLY + Cox) + 4( C'XCf)Y - Cf)xC,.y ) r 
-4[ 4C'XCDY - 2 RfCoA 2C/)y - CJ.x ) + 2C7)x I C,.xC,)y - RIC,.r (2Cm - C'X) + 2Ci,y ] 

<0 

Which makes liQ < o. 

If the above conditions are satisfied, Hopf bifurcation is independent of stiffness ratio and mass 

parameter. 

(c.2) Ilk > 0 
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Mathematically, there exists a value for ~ which makes /).a < O. When there is a physically sensible 

~, Hopf bifurcation is independent of mass parameters under such a condition. 

(c.3) /).a > 0, /).U > 0 

For values of Rk other than (c.l) and (c.2), /).a is positive. For such vales of Rk , the mass parameter 

has to satisfy the restriction condition of (3.24) should any Hopf bifurcation be possible. It is 

further seen that when, and only when, U~ > Oand (3.26b) are satisfied, the Hopf bifurcation can 

occur. The traditional wake induced flutter for transmission line falls into this category. If the 

solution is U~ > 0 while C I < 0, it is only an indicator that the system has lost its stability before 

flow velocity reaches solution of U R via stationary bifurcation. Other solutions, of negative U!, 

only show Hopf bifurcation as not being possible. 

(cA) /).a > 0 and flu < 0 

Such combination of fla and flu only shows that Hopfbifurcation is not possible. 

Undamped "F/lltter Theory and the FJfect of Spring COII/JlingAngle () 

When the damping (both structural and fluid) is neglected, as shown in (3.23), when 

(3.27) 

then /).U > 0, Hopf bifurcation becomes potential. Such an area is usually located at the outer 

part of the wake. lbis is the conclusion of classical undamped wake induced flutter theory 

(Blevins, 1990). However, the spring coupling essentially changes the characteristics of the fluid 

force, as shown in Equation 3.15, and eventually it can alter the stability characteristics 

significandy. 



W.WU Stability of the dolllnstream rylinder in lIIIo-dimensional space 94 

Considering the same undamped case, the former condition (3.27) for flutter becomes: 

[C,x COS
2 
{}- CDr sin2 

{}+ (CDX - CI.Y ) sin {)cos{}] 

x[ CDr cos2 
{}- C,x sin2 

{}+ (CDX - CI.Y) sin {} cos {}] < 0 
(3.28) 

which makes the possibility of Hopf bifurcation increased or decreased, depending on whether the 

coupling angle is smaller or larger than 

the involvement of (Cox - CI,y) makes the stability more position and coupling dependent. The 

condition (3.28) can be re-written as: 

[( CJ)x - Cu )
2 

- ( C,x - COY) 
2

] tan 2 (2{}) + 2( CDX - C"y )( CDY + C,x) tan( 2{}) + 4CDy C,x < 0 

(3.29) 

Potentially, most part of the wake can meet the condition of (3.29), as long as coupling angle is 

appropriate. Nevertheless, it should be emphasized here that the coupling angle has 

demonstrated a significant role it can play in the system stability. This conclusion is drawn from 

undamped flutter theory and applies mainly for small mass parameter cases. The condition for a 

Hopf bifurcation to occur, when mass parameter is large, can be much more strict, which will be 

seen in the later presented results. 

One interesting point here is that, no matter how the coupling angle changes or whatever the mass 

parameter may be, Hopf bifurcation is unlikely to occur on the wake centreline. As for the case of 
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B = 0°, then flu = 0, and when B * 0°, it is seen that (3.29) is impossible to satisfy. Therefore, the 

wake centreline is always a Hopfbifurcation free area for FDMPD. 

3.3.1.1.2rtuid Damping Matrix Not Positive Definite (f'LJMNPD) 

In such a region, the negative fluid damping can self-excite the movement of the downstream 

cylinder, even for a single-degree-of-freedom system(Bokaian 1989; Bokaian & Geoola 1984), as 

long as the energy brought in by the fluid damping can counter-balance the energy consumed by 

the system. If structural damping is neglected, the results show that as long as the fluid drag force is 

negative, the system is unstable. When structural damping is considered, by utilising condition 

(3.18), it is seen that Hopfbifurcation occurs when c) = O. This kind of instability is often referred 

as wake induced galloping. The critical flow velocity for Hopf bifurcation is: 

(3.27) 

3.3.1.2 Stationary bifurcation 

Another possible scenario for losing stability is through the stationary bifurcation. It can be seen 

from Equation (3.17) that when Co = 0 , then one of the eigenvalues is zero. If all other conditions 

of (3.18) ate satisfied, it is a critical state fot a stationary bifurcation and the corresponding reduced 

velocity is the critical reduced velocity. When the reduced velocity is larger than this critical value, 

one of eigenvalues can become a positive real number. Therefore, the critical state of the stationary 

bifurcation is given by: 

Co =0 (3.28) 

The physical interpretation of this condition can be drawn from Equation (3.11). It is clear that the 

fluid stiffness is proportional to the aUk. As the reduced velocity increases, it is possible that the 

fluid stiffness will become larger than the spring stiffness, resulting in an effective negative stiffness 
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along certain directions. lbis would be dependent on the partidar spring coupling. Under this 

circumstance the system will lose its stability as any disturbance will grow with time. 

By solving Equation (3.28), the solution of the critical reduced velocity is given by: 

(3.29a) 

together with condition 

{

Cl >0 

c1 >0 

C
2
C3 -c1 > 0 

(3.29b) 

(3.29a) also shows that when 

( R: Cox - C'oY) 
2 

+ 4 R: C,XC/JY < 0 

or 

there are no stationary bifurcations. 

3.3.2 Direct Numerical Eigenvalue Seeking 

The stability of system (3.11) can be analysed direcdy by seeking numerical eigenvalues. Because the 

matrix is of 4 x 4 size, the calculation is straightforward. By predefining the sets of control 

parameters, such as stiffness ratio, mass parameter, coupling angle, structural damping coefficient, 

and relative location and by varying the parameter of flow velocity, the stability can be analysed 

systematically. The advantage of the method is its straightforwardness, irrespective of physical 

parameter conditions. Meanwhile, the variation of eigenvalues can shed light on the understanding 

of the process of losing or gaining stability. The shortcomings are: the extra work needed to pick 

out the critical state if it is of interest to the investigation, the effect of individual control parameter 

isn't straightforward and if the system is in high order, the computation can be time consuming. 
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The systematic analysis made in this thesis is a combination of traditional Routh-Hurwitz stability 

algorithm and direct numerical eigenvalue seeking. 

3.4 Numerical Results 

The drag and lift coefficients on the downstream cylinder are the prerequisites for the stability 

analysis. These coefficients are dependent upon the position of the downstream cylinder relative to 

the upstream one. The results of calculations made in previous chapter, together with collated 

experimental data for small spacings between two cylinders (Bokaian & Geoola, 1984; 

Zdravkovich, 1977 etc.) are used. The calculation of wake flow velocity U is made by the method 

introduced in Chapter II. 

The stability analysis is carried out by assuming that the downstream cylinder is situated at an 

arbitrary equilibrium position. This is followed by finding the critical value of the reduced velocity, 

beyond which the cylinder will become unstable. The values of the mass parameter, stiffness ratio, 

and coupling angle are allowed to vary within certain ranges. 

The calculations show that, typically, the whole wake can be classified into four scenarios based 

upon the uncoupled case: 

(a) FDMPD at the wake centreline and inner part of the wake with medium or large spacings, 

(b) FDMPD at outer part of the wake with medium or large spacings, 

(c) FDMPD with flQ < 0 • 

(d) and the FDMNPD. 

The results are presented according to different regions separately. 
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3.4.1 Outer Wake at Medium or UJ'l!,e Spacing (f'lJMPD) 

Figures 3.3 and 3.4 are stability boundary diagrams for mass parameters of 0.2 and 2xl0-l, at a given 

equilibrium position of Xo = 5 and Yo = 2. The mass parameter of 0.2 represents the case for 

marine risers. The small mass parameter shown here is to give a comparison to account for the 

effect of the mass parameter. The position is located at the outer part of the wake, with medium 

spacing, which holds the most fluid force characteristics at large spacing, the spring coupling angle 

() is dl
• 

It is seen that for the case of marine risers, i.e. large mass parameter, the most likely type of 

bifurcation that will be encountered is stationary bifurcation. Mathematically, if the abscissa 

Rk reaches a high ratio, say 1.75 here, it is possible that the system can become unstable via Hopf 

bifurcation. Nevertheless, for the practical case of marine risers, the spring stiffness ratio represents 

the ratio of stiffness in the out-of-plane and in-plane motions, which is close to and often smaller 

than 1. For this reason, the stationary bifurcation is more likely to be the case under these 

conditions. On the other hand, when the mass parameter is small (ref. Figure 3.4), as with the case 

of transmission lines in air, the route for the system to become unstable is more likely via the Hopf 

bifurcation. Although stationary bifurcation is theoretically possible, the critical speed is 

unrealistically high. Calculations also show that, at position Xo=5, YrI=2, when Rk > 1.75, then 

flo < 0 (ref. Figure 3.5). 'This is the scenario for Hopf bifurcation being independent of mass 

parameter. 'This is the case for (c.2), as discussed in section 3.3.1.1.1. Under such conditions, the 

downstream cylinder tends to Hopf bifurcation as long as flow velocity reaches the critical state, no 

matter large or small the mass parameter may be. However, according to Figure 3.5, Rk < 1.75, 

flo > 0, Hopf bifurcation is dependent on mass parameter and stiffness ratio, and the limitation on 

mass parameter (3.24) applies. Hopf bifurcation is possible only when mass parameter is below the 

critical line shown in the Figure 3.6. 'This explains the difference shown in Figure 3.3 and 3.4. These 
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results are typical for the downstream cylinder located at the outer part of the wake, with medium 

or large spacing. 

24 
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Figure 3.3 Stability boundary at spacing of Xo=5, Yo=2 with a=O.2, O=d', typical for 
manne nset cases. 

5OOr---------------------------------------------
a=2X10". Xo=5. Yo=2.S=Oo 

Hopf Bifurcation Boundary 

StIItionary Bifurcation Boundary 

100 

Figure 3. 4 Stability boundary at spacing of X,,=5, Yo=2 with a=2 10-1, O=d', typical 
for transmission lines case. 
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Figure 3. 5 Variation of Aa with stiffness ratio at position Xo=5, Yo=2. 
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Figure 3. 6 Hopf bifurcation restriction on mass parameter for position Xo= 5, Yo=2. 
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Figures 3.7 to 3.10 show the cases for position of X()=8, Y,)=2.5 and Xo=10, Y,)=2.5 respectively. It 

is seen that all these positions share the same characteristics of the stability boundary with the case 

.-
Q 

~ 
~ • II: 
j 
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- - - - Stationary Bifurcation Boundary 
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r1'I~ ..,. ..,. th' .".".,,,, Stable ... 

Figure 3.7 Stability boundary for position XI)=8, YI)=2.5, a=O.2. 

a:z2X10~. X.=8, Yo=2.5,9=Oo 

--- Hopf Bifurcation Boundary 

- - - - Stationary Bifurcation Boundary 

O~--~~~~~~----~~~~~ __ ~~~ 
2 3 

Figure 3.8 Stability boundary for position XfJ=8, YI)=2.5, a=2xl0-l 
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Figure 3.9 Stability boundary at position Xo= 10, Yo=2.5, 0=0.2. 
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Figure 3.10 Stability boundary at position Xo=10, Yo=2.5, a=2xlrr. 
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3.4.1.1 The FJJect of Mass Parameter, Structural Damping, Spring Coupling 

Figure 3.11 is an alternative view of the relationship between stiffness ratio and mass parameter. It 

shows the variation of the stability boundary with mass parameter at the location Xo=5, Yo=2. The 

stiffness ratio is set as 1.1 and there is no spring coupling. It is seen that for the specified stiffness 

ratio, when mass parameter is small, with the increasing of flow velocity, the cylinder will lose 

stability via Hopf bifurcation and gain stability when flow velocity is further increased to another 

critical state. Finally, the cylinder will lose its stability via stationary bifurcation. However, when 

mass parameter is large, under the specified stiffness ratio, the cylinder will lose its stability only via 

stationary bifurcation. Figures 3.12 and 3.13 show the variation of eigenvalue with flow velocity for 

the case of 0=0.2 and 0=2x1rr with RA,=I.1 at X()=5, Yo=2 respectively. It is seen that for the case 

of 0=0.2, before the flow velocity reaches critical state, the eigenvalue pair first arrive at the real 

axis. At critical state, i.e. point S labelled in the Figure 3.12, one of the eigenvalue pair gets to the 

origin of the complex plane of eigenvalues. When flow velocity is further increased, one eigenvalue 

will pass the imaginary axis onto the real axis and stay in the right half of the eigenvalue plane. On 

the other hand, for the case of 0=2x1tr, the eigenvalue first transverse the imaginary axis at critical 

state of Hopf bifurcation, i.e. HI as labelled in the Figure 3.13, and the eigenvalue pair will stay in 

the right half plane for certain ranges of flow velocity. When flow velocity reaches another critical 

state H2, where the system gains its stability, the eigenvalue pair transverses across the imaginary 

axis and back to the left half plane. Finally, when flow velocity is further increased, the eigenvalue 

will reach the real axis and pass to the right half plane through origin at S in the figure, exhibiting 

stationary bifurcation. 
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Figure 3.11 Effect of mass parameter on stability boundary. 
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0.1 

Figures 3.14 and 3.15 show the effect of spring coupling. The relative spacing and stiffness ratio are 

taken as having the same value as above. It is seen that for a large mass parameter, no matter how 

the spring coupling angle changes, there is only stationary bifurcation, whilst for small mass 

parameter the coupling angle can make the Hopf bifurcation disappear or vice versa. Essentially, it 

can be viewed as the result of a changed fluid force field. This is in agreement with the discussion 

about the effect of () which is based on the case of the undamped condition. The result shows that 

the effect of spring coupling to large mass parameter is lessened. Figure 3.16 shows the effect of 

structural damping on the Hopf bifurcation boundary. As it is obvious that damping has no effect 

on stationary bifurcation, however, the figure shows that Hopf bifurcation (stiffness controlled 

fluidelastic stability) is insensitive to the structural damping even for small mass parameter. Only 

when the structural damping is large enough, can the Hopf bifurcation be suppressed. 
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Figure 3.14 Effect of spring coupling angle on stability boundary. 
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Figure 3.15 Effect of spring coupling angle on stability boundary. 
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Figure 3.16 Effect of structural damping on stability boundary. 

3.4.2 Inner Wake and Centreline With Medium or La~e Separation (FDMPD) 

Figures 3.17 and 3.18 are representative cases for the downstream cylinder located near or on the 

wake centreline at large spacing. It is wilikely to be Hopf bifurcation, no matter whether the mass 

parameters are small or large. The variation of the stability boundary with the stiffness ratio or 

coupling angle is only due to the variation of stiffness in Y direction or the coupling effect. Such a 

bifurcation boundary is independent of structural damping and insensitive to the spring coupling 

angle and stiffness ratio. 'This is a Hopf bifurcation free area. It also can be seen that the critical 

speed is proportional to the root square of mass parameter as has been shown in equation 3.29. If 

mass parameter is very small, the critical speed can be so unrealistically high that practically it will 

not occur. However, such bifurcation is likely to happen for a large mass parameter such as marine 

risers. 
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Figure 3.18 Stability boundary at Xo= 10,1';)=0.1. 



W.WU S tabiliry of the downstream rylinder in 1IIJo-di11lensional space 109 

3.4.3 Small or Medium Spacing With lla < 0 (FDMPD) 

When the cylinder spacing approaches the medium to small range, although the drag force is 

positive, the variation of the fluid force coefficient becomes significant in such a way that 

potentially it can cause the downstream cylinder to lose its stability either via Hopf bifurcation or 

stationary bifurcation. Figures 3.19 and 3.20 are the cases for the location of Xo=2, Yo=0.5 and 

Xo=2, Yo=1 with () = 0° and stiffness ration of 1.01. It is seen that Hopf bifurcation is likely to 

happen no matter how small or large the mass parameter is. The abscissa in these two figures are 

structural damping coefficients, which shows that the Hopf bifurcation can be replaced by 

stationary bifurcation when the damping coefficient is large enough for a small mass parameter. 

However, it is hard to suppress a Hopf bifurcation for large mass parameters such as marine risers. 

Such a region is located in the vicinity of upstream cylinder and the fluid drag force is positive. 

Calculation shows such a region is insensitive to mass parameter and stiffness ratio and often with 

lla < 0 as shown in Figure 3.21, such a scenario is the case of c.2 in the discussion of section 

3.3.1.1.1. 
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Figure 3,19 Stability boundary for small spacing with Rk= 1.01. 
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3.4.4 Small Spacing (FDMNPD) 

Figures 3.22 and 3.23 show the stability boundary when the downstream cylinder is balanced at 

position of Xo=2, Yo=O and YrJ=O.1 respectively. The abscissa is structural damping. Such positions 

are within the region of negative fluid drag force. It is seen that, no matter whether the mass 

parameter is large or small, the downstream cylinder is prone to the Hopf bifurcation. The incipient 

velocity for the Hopf bifurcation is sensitive to the structural damping when the mass parameter is 

small, which explains why Hopf bifurcation can be supressed by the large structural damping. 

When the structural damping is large enough, the Hopf bifurcation can be transformed into the 

stationary bifurcation. On the other hand, the incipient velocity is less sensitive to the sttuctral 

damping when the mass parameter is large, as in the case of marine riser interaction, which implies 

that the Hopf bifurcation is hard to supress. The difference related to the mass parameter is 

essentially caused by the interrelation of the structural and fluid damping. As can be perceived, such 

a region is damping controlled, and the stability is insensitive to the spring coupling or the stiffness 

ratio. 
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Figure ~.22 Stability boundary for position XIJ=2, Yo=O, with Rk =1.01. 
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Figure 3.23 Stability boundary for position Xo=2, Yo=O.1 with R! = /.01. 

3.5 Stable/U nstable Region Maps 

Figures 3.24 to 3.41 are maps which show the stability of downstream cylinder at different 

locations, under specified mass parameters, stiffness ratios and spring coupling angles. Table 3.2 is 

the summary of the parameters adopted in these calculations. 

Table 3. 2 Parameters for the maps. 

Parameter Value 
a 0.2 I 0.02 0.0002 

Rot 0.95, 1.0 1.05 I 1.1 
UR 2,3,4,5,8,10,12,15 10,20,30,40,50,60,80,100 
e 011 5° 10° , , 

The shaded circle symbol represents an unstable location caused by Hopf bifurcation. The shaded 

square is an unstable location caused by stationary bifurcation. While hollow square represent stable 

area, the shaded circle sign with a plus sign inside also represents an unstable position caused by 
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Hopf bifurcation. The difference to the shaded circle without plus sign is that at such locations, 

there is a higher flow velocity, which can make the system regain its stability. In general, it is seen 

that in the vicinity of the upstream cylinder where the drag force is negative or its nearby area with 

Aa < 0 , Hopf bifurcation is likely to occur irrespective of the mass parameter and less sensitive to 

coupling angle. The unstable area spreads with the increase of flow velocity. On the other hand, in 

the area of medium or large spacing, stationary bifurcation is more likely to be the cause for the 

downstream cylinder to be unstable. Generally, stationary bifurcation starts from small spacing at 

outer wake region and spreads towards downstream and inner wake. Particularly shown in the 

figures, the spring coupling angle has no significant effect for the mass parameter of 0.02 and 0.2. 

However, it is a very important factor when mass parameter is 2xl0-4, for example, comparing 

Figure 3.36 and 3.38, 3.40, the large Bhas led to a significandy enlarged unstable area. 

Also implied in these figures is that, at the vicinity of the upstream cylinder and when the mass 

parameter is large such as with risers, there is a high chance that the fluidelastic behaviour can 

interact with the vortex induced vibration. Such an implication is consistent with the experimental 

observations (Bokaian, 1984). 

3.6 Summaries 

Based upon the work presented in this chapter, the following conclusions can be drawn: 

1. In general the downstream cylinder can lose its stability and become unstable through two 

different types of bifurcation, i.e. Hopf bifurcation and stationary bifurcation. 

2. Unlike power transmission lines, where the mass parameter is generally very small, in 

marine applications stationary bifurcation is the more likely scenario, particularly when two 

cylinders are widely spaced. 
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3. The value of the reduced velocity at the inception of instability is strongly influenced by the 

mass parameter. For stationary bifurcation, the critical reduced velocity is inversely 

proportional to the root square of mass parameter. 

4. Stiffness ratio can be very important in the form of system bifurcation, however, a practical 

system often has a stiffness ratio close to 1.0. Spring coupling angle can significantly alter 

the stability characteristics when the mass parameter is small. However, when mass 

parameter is large, the role of spring coupling is insignificant. 

5. To answer the question in table 3.1, the loss of stability is either in the way of fluid stiffness 

controlled, particularly when spacing between two cylinders is large, or fluid damping 

controlled, when the two cylinders are near to each other. 

6. The systematic map of stable and unstable locations under specified flow condition and 

cylinder arrangements serves as a guide to judge stability when the equilibrium of two 

cylinders has been identified, additionally it quantitatively explains the effect of parameters, 

such as mass parameter, spring coupling angle, stiffness ratio, reduced flow velocity and 

equilibrium location on the stability and bifurcation type. 
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Figure 3.24 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter 0=0.02, spring coupling angle 8=00, stiffness ratio R
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Figure 3.25 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=0.02, spring coupling angle 8=00, stiffness ratio Rc= 1.0 and flow velocity . 
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Figure 3.26 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=0.02, spring coupling angle 0=5°, stiffness ratio R..,=O.95 and flow velocity. 
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Pigure 3.27 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter 0=0.02, spring coupling angle 8=50, stiffness ratio R~=1.0 and flow velocity. 
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Figure 3.28 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter 0=0.02, spring coupling angle B=10n, stiffness ratio R~=O.95 and flow velocity. 
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Figure 3.29 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter 0=0.02, spring coupling angle 8=1 on, stiffness ratio R

k
=1.0 and flow velocity. 
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Figure 3.30 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=O.2, spring coupling angle fJ=(J I, stiffness ratio R

k
=O.95 and flow velocity. 
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Figure 3.31 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter 0=0.2, spring coupling angle 8=Ou, stiffness ratio R

t
= 1.0 and flow velocity. 
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Figure 3.32 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=O.2, spring coupling angle 0=50, stiffness ratio R

k
=O.95 and flow velocity. 
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Figure 3.33 Stable/ unstable equilibrium locations for the downstream cylinder under specified mass 
parameter 0=0.2, spring coupling angle 8=51), stiffness ratio R.t=1 .0 and flow velocity. 
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Figure 3.34 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 

parameter a=O.2, spring coupling angle B=100, stiffness ratio Re=O.95 and flow velocity. 
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Figure 3.35 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter 0=0.2, spring coupling angle B=10o, stiffness ratio R .. =1.0 and flow velocity. 
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Figure 3.36 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a= 2,OxlO-l, spring coupling angle 8=00, stiffness ratio R

k
=1.0Sand flow velocity. 
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Figure 3.37 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=2.0xlO-1 , spring coupling angle B=Oo, stiffness ratio R~= 1.1 and flow velocity. 
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Figure 3.38 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=2.0x10-l, spring coupling angle B=S!J, stiffness ratio R

k
=1.0S and flow velocity. 
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Figure 3.39 Stable/ unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=2.0xl0 4, spring coupling angle 9=50, stiffness ratio R

k
=l.l and £low velocity. 
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Figure 3.40 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=2.0xl0-l, spring coupling angle t9=10n, stiffness ratio R,t=1.0S and flow velocity. 
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Figure 3.41 Stable/unstable equilibrium locations for the downstream cylinder under specified mass 
parameter a=2.0x lO ~, spring coupling angle B=10o, stiffness ratio Rk= 1.1 and £low velocity. 
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4.1 General Remarks 

In chapter III, traditional tools were used to analyse the stability of the downstream 

cylinder, i.e. the utilisation of Routh-Hurwitz stability algorithm. The Routh-Hurwitz 

stability criteria can identify the critical state of the stability. However, the critical state does 

not show detailed infonnation about the variation of the stability and it can not answer a 

question like "In what kind of arrangement, for a specified spacing, are the two cylinders 

more likely to lose stability?". Also, the method is often limited to very small number of 

degrees of freedom. In order to learn detailed infonnation about the effect of control 

parameters, such as flow velocity, cylinder arrangement etc. on the stability of the cylinder, 

a numerical investigation concerning continuation has to be made. 

Looking back at the investigation into cylinder interaction, particularly on the issue of the 

stability of the cylinders, most researchers have focused solely on the stability itself. More 

specifically, most attention has been given to the identification of possibility of instability 

and the seeking of critical states(Simpson 1971; Price 1975, Price and Others 1993; Tsui 

1986; Tsui 1977). Some investigations provided parameter effect such as structural 

damping, cylinder arrangement (price 1975; Price and others 1993) etc. However, not a 
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single article has given consideration to the possible multiple equilibrium states and the 

structure of bifurcation for such a non-linear system. TIlls is partly because most of the 

investigations have concentrated on the problems of power transmission lines only, which 

is a particular case for very small mass parameter. Nevertheless, when the interaction 

between marine risers is considered, the variation of equilibrium position with flow velocity 

can be significant. As shown in Chapter III, the stability of a downstream cylinder depends 

on both the relative position and flow velocity. The information about the equilibrium 

position can therefore be vitally important. 

To find equilibrium positions for a given system, numerical tools are probably the most 

useful, in particular when: 

1) The non-linear system itself does not have analytical specification itself. For example, 

in the problem experienced here, the fluid force coefficients themselves do not provide 

accurate analytical expressions concerning the different arrangement of cylinders. 

2) The problem can be extremely difficult to solve analytically. 

The challenge faced by the numerical tool is the requirement to find all the possible 

equilibrium states for the specified nonlinear system. It is easy to understand that the stable 

state is much easier to trace, For example, by specifying an initial position for two cylinders 

with a stable equilibrium position, solving the dynamic system in time domain, then the 

cylinder is likely to rest on those positions. To exhaust the equilibrium positions, however, 

continuation and branching techniques have to be used. 

The essence of continuation is based on the hypothesis that the equilibrium positions are 

continuous functions of the control parameter. Supposing one equilibrium position is 

known at the beginning then, by a small variation of control parameter, the corresponding 
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equilibrium position for the varied control parameter should stay close to the first known 

equilibrium position and can be obtained by solving the non-linear dynamic system. By 

repeating this procedure up to the required control parameter, all the equilibrium positions 

related to the first known equilibrium can then be traced. The technique to find such chain 

positions is called "continllatiotl'. The chain of the solutions is called the "branch". However, 

the solutions explored in this way often comprise a continuous relation between 

equilibrium position and control parameter, and discontinuity can occur at times. The 

existence of multiple equilibrium positions implies that multiple branches can exist. The 

continuation technique only sorts out the branch corresponding to the particular first 

position. However, most of the time, these branches will intersect with each other. By 

identifying these intersection points, a switch of branch can be made to change the path of 

continuation and to trace other branches. Such a technique to identify intersections and 

switch the branch is often called "branching'. The seeking of chained solutions by 

continuation is usually irrespective of stability. To realise the stability analysis of the 

solution, the technique of stability analysis will then be required. The systematic description 

of the treatment method for the non-linear dynamic system can be found from references 

(Seydel 1994; Kubicek and Marek 1983). 

In this chapter, a full continuation investigation is launched, to try to identify the multiple 

equilibrium states of the downstream cylinder. The corresponding stability for each 

equilibrium position is analysed by a direct numerical eigenvalues seeking method regarding 

its Jacobian matrix. It is seen that for a specified arrangement, there can be up to four 

equilibrium positions for certain flow velocities. However, when flow velocity exceeds a 

certain value, there can be no physical equilibrium positions. Critical state is defined in this 

chapter to identify the flow velocity before the downstream cylinder loses its ultimate 

equilibrium state. 
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4.2 Theoretical Formulation 

4.2.1 Formulation 

• x 

I 
I 

I • 
I 

X. .. I 

Figure 4.1 Schematic diagram for the system to be investigated. 

Figure 4.1 is a schematic diagram of the two cylinders system investigated in this chapter. 

The upstream cylinder is supported by a streamwise direction spring only, while the 

downstream cylinder is supported by both a streamwise and cross flow direction spring. 

The co-ordinate system has its origin at the centre of the upstream cylinder's location when 

the fluid is stationary, with its x axis parallel to the flow direction and pointing towards 

downstream. The initial position of the downstream cylinder is CXs, Y J. The reason why 

the spring coupling is neglected in this chapter has been described in Chapter III. 

Furthermore, it is assumed here that the springs are ideal, i.e. the direction of the two 

springs supporting the downstream cylinder will not change with the displacement of the 

downstream cylinder. For such a system, the dynamics equations concerning the 

equilibrium position of both upstream and downstream cylinder are expressed as a system 

of six first-order differential equations: 
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i = l(x) 

with 

X2 

aU;Cm - 2~ xX2 - XI 

l(x) = 
(4.1) 

XI 

X2 

X3 
(4.2) x= 

X4 

Xs 

X6 

The form of XI' X3• Xs are expressed as: 

(4.3) 

x; is the position of upstream cylinder at reduced flow velocity of U R' XI' x3' Xs 

represent the non-dimensional streamwise displacement of upstream cylinder, streamwise 

and transverse displacement of the downstream cylinder from the initial positions, 

respectively. x2,x4,x6 are their corresponding velocities in non-dimensional form. em is 

the drag coefficient for upstream cylinder. The stability analysis for corresponding 
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equilibrium positions is made by direct numerical eigenvalue seeking for the Jacobian 

matrix of system (4.1) with 

J = aJ; 
'.J Ox. 

J 

(4.4) 

lbis serves as a parallel comparison with the analysis made in Chapter III, an alternative 

statement of the investigation is presented in the Appendix A. 

Equation (4.1) is a sixth-order standard autonomous system. The control parameters in the 

equations include reduced flow velocity U R' stiffness ratio R~, mass parameter a and 

different initial positions of {Xs, Y s}. The main issue in this chapter will be the reduced flow 

velocity. 

4.2.2 Continuation Procedu"s 

As shown in the previous chapter, stationary bifurcation is most likely to be the bifurcation 

type which the system will experience when it lose its stability. In order to avoid the 

problem which might arise with the turning points, an arc length method (Seydel 1994) was 

utilised in the analysis. The following equation serves as a complementary equation to 

system (4.1). 

(4.5) 

Here s is the arc length along the continuation solution curve. A is the control parameter. 

In the present study, the control parameter URis mainly investigated. Equation (4.5) 

together with (4.1) constitute self-contained non-linear equations, among which the 

continuation step length (s - Sj) is prescribed beforehand. Such a system is solvable by 

predictor and corrector two steps method. 
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4.2.2.1 Predictor Step: 

Predictor is a procedure to provide an initial guess for equilibrium based on the already 

known equilibrium. The procedure starts from a known solution ( Xi, Ai)' which can be 

sought at a small reduced flow velocity for system (4.1). In fact, the specified position of 

(.x:p ~)itself is an equilibrium at zero flow velocity. By taking prescribed arc length 

tls = s - S j' in present investigation, the predictor is implemented by way of AKIMA 

extrapolation. The AKIMA interpolation is based on a piecewise function composed of a 

set of polynomials, each of degree three, at most, and applicable to successive intervals of 

the given points. In this method, the slope of the curve is detennined at each given point 

locally, and each polynomial representing a portion of the curve between a pair of given 

points is detennined by the coordinates of and the slopes at the points. The formulations 

of the interpolation are as follows. 

Generally, the curve slope at each given point is determined by points in addition to itself. 

For example, assuming there are 5 successive points as 1,2,3,4 and 5. Their corresponding 

slopes are denoted by nlt. m2,m3 and m4 for each segment, i.e. 12, 23, 34, and 45. The 

curve slope at point 3 is then determined by the following formulation: 

t = Im4 - m31m2 + 1m2 - nltlm3 
Im4 -m31+lm2 -mIl (4.6) 

Subsequendy, the interpolation scheme for a point x which lies in the interval [Xl' x21 is 

expressed as: 

Where 
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(Xi'Y;)is the coordinate of point i. Detailed introduction of the method can refer to 

(Akima 1970, 1978). 

4.2.2.2 Comctor Step 

The objective of corrector step is to find the exact equilibrium based on the guess provided 

by predictor step. In this chapter, it is made via the modified version of M.J.D. Powell's 

hybrid algorithm contained in the package of IMSL library (IMSL user manual), which is a 

variation of Newton's method. The classical Newton-Raphson iteration for solving non-

linear equations requires a good estimation at the start otherwise the solution may fails to 

converge. A common strategy to resolve this trouble is to retain the iteration direction, but 

to restrict the length of successive corrections. Different schemes have been produced 

based on such a philosophy. The Powell's hybrid algorithm is one of them. The Algorithm 

uses a finite-difference approximation to the Jacobian and takes precautions to avoid large 

step sizes or increasing residuals. For further description, (see More and others 1980). Since 

a Finite Difference Method is used to estimate the Jacobian, the byproduct of the Jacobian 

matrix can be used for the stability analysis in present investigation. 

4.2.2.3 Branching: 

The detecting of the branching is made via the test function of the real part of the 

eigenvalue. When near the position where the real part of the eigenvalue sign changes, the 

switch of the continuation is then made by the direct method. 
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4.3 Numerical Results and Discussion 

As the focus of this thesis is on marine riser interactions, additionally, the displacement 

caused by flow for small mass parameter is relatively small. The present chapter sets the 

control parameters as 0=0.2, Rk=1.0, ~,,=~y=O, there is no spring coupling, and initial 

spacing XI" varies from 5 to 30 and Yr varies from 0 to 3. Three representative areas are 

investigated, i.e. the wake centreline, inner wake and outer wake respectively. For each area, 

systematic calculation results about continuation and corresponding stability analysis are 

presented. The control parameter in these cases is concentrated on reduced flow speed. 

4.3.1 Wake Centreline 

It is apparent that the cylinder on wake centreline will stay on the centreline because of the 

symmetry property of the wake. There is no lift force on the wake centreline. The lift force 

is directing towards it when the downstream cylinder is deviated from wake centreline. 

Figure 4.2 to Figure 4.7 are continuation results for position Xs=5, 8, 10, 15, 20, 30 with 

Ys=O respectively. It is seen that as the flow velocity increases, both the upstream cylinder 

and downstream cylinder are pushed back as shown in the figures. Nevertheless, due to the 

wake shielding effect, the displacement of downstream cylinder is not as large as that of the 

upstream one. When the reduced velocity increases to certain level, two equilibrium 

positions of the downstream cylinder emerge with one close to the upstream cylinder and 

another further downstream. With further increase of the reduced flow velocity a state is 

then .reached where the two equilibrium positions converge into a single equilibrium 

position and above this reduced velocity no equilibrium positions exist. Such a state when 

flow veloci!J exceeds this state there will be no equilibrium is defined as critical state in this 

investigation, the corresponding reduced flow velocity is defined as critical flow velocity 

and the state is labelled as M. In the presented six different spacing cases, all the variation 
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of the equilibrium have the same characteristics except the critical flow velocity are 

different. 

The accompanying eigenvalue figures show the variation of eigenvalues with the reduced 

velocity. The label S in these figures represents the position at which stationary bifurcation 

occurs. D is the state at which the downstream cylinder moves far most downstream in 

position. It can be seen that before the downstream cylinder moves to D, as labelled as 

Range I in the Figure 4.2(b), the cylinder is always stable. In the course from D to M, 

labelled as Range II in the figure, when initial spacing is smaller than or equal to 8, the 

cylinder is possible to exhibit Hopf bifurcation, H is the Hopf bifurcation point. Such a 

result is a little unexpected. As we know in most cases, the turning point is a transition 

point which change the branch stability from stable to unstable or vice-versa. In reality, 

such scenario of turning point which connects between unstable branches does exist, such 

as examples given by Seydel (1994). In the meantime, when Xs>8, the Hopf bifurcation 

disappears. The state from M to the upstream branch of the equilibrium (the one close to 

upstream cylinder), called range III here, is unstable as can be seen from the eigenvalues, 

typically with one pair of eigenvalues be real number, and one of the pair is positive. 

Comparing all the critical state on Figures 4.2(0) to 4.7(0), it is seen that the spacing 

between the two cylinders at these critical states increases with the initial spacing. When the 

initial spacing is smaller than 8 diameters, examining the stability under the different flow 

velocity by the use of the results of Figure 3.31 produced in Chapter III, before the flow 

velocity reaches its critical value, the spacing between the two has decreased to such a state 

that Hopf bifurcation becomes possible, both equilibrium are unstable if there are two 

equilibrium under one flow velocity. On the other hand, when the initial spacing is larger 

than 8 diameters, there will always be an equilibrium which has a relative large spacing at 
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which Hopf bifurcation not possible. At the critical state, the losing stability occurs by the 

stationary bifurcation. 
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4.3.2 Inner wake position 

Figures 4.B to 4.11 are the continuation results for positions (5,1), (B,l), (10, 1) and (15,1) 

and corresponding variations of eigenvalues with flow velocity respectively. These 

locations are close to the wake centreline and are generally called inner wake positions here. 

It is seen that the results are very similar to the cases when the two cylinders are arranged 

in tandem. Both cylinders are pushed towards downstream with the increase of flow 

velocity. Meanwhile, the downstream cylinder is moving towards inner part of the wake 

due to the lift force. When the flow velocity reaches a certain value, which is dependent on 

initial spacing, there will be two equilibrium positions, One will be located very near to the 

upstream one while the other is located somewhere downstream. A critical flow velocity 

exists above which there will be no equilibrium positions. Examining the accompanying 

eigenvalues variation with flow velocity, it can be seen that the general trend is same as the 

case on the wake centreline. When the two cylinders are initially arranged with a relative 

small spacing, say less than B diameters, and when the flow velocity is high enough, before 

reaching the critical state, the downstream cylinder can lose its stability via Hopf 

bifurcation. At critical state, stationary bifurcation occurs. For such a critical state, which is 

a turning point in the continuation diagram, the stability before and after the turning point 

are both unstable. Typically, before the turning point, the state corresponds to a pair of 

conjugate complex eigenvalues with positive real parts whilst after the turning point, the 

corresponding eigenvalues will have a pair of real number with at least one being positive. 

However, when the initial spacing exceeds a certain level, typically larger than B diameters 

(exact data depends on mass parameter), only stationary bifurcation will occur. It can be 

seen from the accompanying eigenvalues, that the turning point is the critical state and also 

of the stationary bifurcation. 
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Such an inner wake characteristic spreads with the streamwise distance. At large streamwise 

distance, at the transverse location of Y f =2 or even larger, the continuation results will 

have the same characteristics. 
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4.3.3 Ollter wake position 

Figures 4.12 to 4.22 show the scenario when the downstream cylinder is initially positioned 

at the outer part of the wake, with the following arrangement: 

Table 4. 1 Arrangement of the cylinder pair for the calculation. 

Stream wise spacing Xs Transverse spacing Y s 

5,8,10,15,30 2, 2.5, 3 

The continuation results show that, in general, with the increase of flow velocity, the 

downstream cylinder is slowly pulled towards the centre of the wake and the rate of change 

in the transverse location is increased with the move inwards of the downstream cylinder. 

With the further increase of flow velocity, firsdy one additional equilibrium point will 

appear which is close to the upstream cylinder, after which a state Q, at which three 

equilibrium points coexist occurs. The third equilibrium point is located between the 

previous two equilibrium points. When the flow velocity increases further, the middle 

equilibrium state is split into two equilibrium points. One is close to the downstream 

equilibrium point, which constitutes a downstream pair, and the other is close to the 

upstream one and forms the upstream pair. When the flow velocity is increased further, 

depending on the initial transverse location, one of the two equilibrium pairs will first 

converge and then disappear. The remaining pair will converge at a higher flow velocity. 

The maximum stream wise position that the downstream cylinder can reach is the 

downstream pair convergence point. The state of the last convergence is defined as the 

critical state, and after such a state, no equilibrium will exist. 

The accompanying eigenvalue analysis shows that the downstream cylinder is always stable 

on the path from its initial position to the downstream pair convergence position D, which 

is also a stationary bifurcation point (S). From D to Q the equilibrium is unstable, which 
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corresponds to the stationary bifurcation with a pair of real eigenvalues, one being positive. 

From Q to another position of stationary bifurcation M, there are three possibilities: 

1) It is stable in the whole path from Q to M, with both pairs of eigenvalues located 

within the left half of the eigenvalue plane, such as shown in Figures 4.15 to 4.22 for 

XJ =8, 10, 15, 20, 30. It is clear that when Xs>8, the equilibrium position located on Q 

to M is always stable. 

2) As shown in Figures 4.12, and 4.14, for initial position Xr=5,Y\.=2, X r=6, Y~=2.1, 

within the path from Q to M, there is a critical state labelled as H, and from Q to H is 

stable. However, H is a critical state of Hopf bifurcation, and from H up to M, the path 

is unstable. Figure 4.14(c) is an enlarged figure which shows the variation of 

eigenvalues around the Hopf bifurcation, and it also clearly shows that Hopf 

bifurcation exists in the course from Q to M. 

3) As can be perceived from Figure 4.12 for Xs=5, Ys=2.0, the whole path from Q to M 

can be unstable when initial spacing is further reduced. 

From the upstream pair convergence point to the upstream branch (the equilibrium close 

to the upstream cylinder), all the equilibrium states are unstable, often with a pair of real 

eigenvalues, and one of the pair being positive. 

Comparing to the cases when the two cylinders are arranged in tandem, all these results 

show that there are two possibilities of stability change at the turning point, i.e. either a 

change of stability or both branches before and after turning point are unstable. The later 

scenario only occurs when the initial spacing between the two cylinders is relative small. 

Figure 4.22 shows the variation of the equilibrium structure at streamwise location of 5 

diameters, and with different transverse locations. It shows the emergence of multiple 
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equilibriwn states when the transverse distance is large enough. Such a variation is a 

continuous process with changing transverse distance. 

In order to identify the most vulnerable arrangement for specified two cylinder spacing, 

Figure 4.23 shows the variation of critical flow velocity with the coming flow angles. It is 

seen that the minimwn critical flow velocity occurs on the wake centreline for the two 

cylinders arranged by same distance. In this comparison calculation, the variable is the flow 

direction. The figure also shows that the critical flow velocity does not change much when 

the flow direction is close to the case of 0 degree angle. The explanation for this can be 

deduced direcdy from the continuation diagram, as in most of the cases, the critical state 

occurs near the wake centreline. Such a result is very useful to riser designers. Should the 

collision between two risers has to be avoided, the tandem arrangement is the most 

important case to examine. 

Figure 4.24 shows the variation in critical flow velocity with the initial arrangement and 

corresponding spacing under the critical state. It is seen that critical flow velocity increases 

significandy with initial spacing as well as its corresponding spacing at the critical state. This 

means that an appropriate increase in cylinder spacing can effectively delay the loss of 

stability of the downstream cylinder. The figure also shows that when the downstream 

cylinder is initially located at the outer part of the wake, the critical flow velocity is 

significandy higher than the case when it is placed at inner wake. This is caused by the fact 

that when there are multiple equilibria, the ultimate loss of stability occurs by the 

convergence of the downstream equilibrium pair when the downstream cylinder is located 

towards the wake boundary. 
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4.4 Summaries 

For a cylinder located in the wake of an upstream cylinder, there can exist multiple 

stable/unstable equilibrium positions due to the complicated force field in the wake. On 

the wake centreline and innennost wake positions, the number of equilibrium positions is 

two, whereas in the outer wake region there can be as many as four equilibrium positions. 

Further, there exists a critical reduced velocity, which is defined in this chapter as 

Above this critical velocity, there will be no equilibrium positions. 1bis indicates a likely 

clashing between two cylinders once the critical velocity is exceeded. The numerical 

computation shows that the most vulnerable arrangement for a specified spacing is when 

the two are arranged in tandem fonn. The eigenvalue analysis shows that most of the time, 

stationary bifurcation is how the downstream cylinder loses stability, particularly when 

initial spacing is larger than 8 diameters. Such a quantitative conclusion is subject to the 

mass parameter be close to 0.2, otherwise the exact spacing giving rise to Hopf bifurcation 

may be slightly changed. 'Ibis is consistent with the previous analysis. Finally, it is worth 

noting that the analysis results presented in this chapter show that the critical flow velocity 

is well within the range of many deepwater riser system operating conditions, which implies 

that the collision between risers is an important issue for design of risers. 
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Chapter V 

DYNAMICS SIMULATION OF INTERACTION OF 1WO 
CYLINDERS IN 1WO-DIMENSIONAL SPACE 
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5.1 General Remarks 

For power transmission lines, when the flow velocity exceeds the critical flow state, 

periodical large amplitude movement with an elliptical trajectory will occur. Its motion will 

be in a clockwise direction when the downstream cylinder is located in the upper half of the 

wake and counter-clockwise when the downstream cylinder is located in the lower half of 

the wake. Such movements usually have amplitudes of several diameters, and grow with the 

increase of flow velocity (Blevins, 1990, Price, 1990, Hardy & Dyke, 1995). The 

continuation and stability investigation conducted in Chapter III and IV (also d. Wu et al, 

2000, 2OGta, 2OGlb) has shown, in general, the interaction between two cylinders in water 

loses its stability through stationary bifurcation, typically when the spacing between two 

cylinders is larger than 8 diameters. When the flow velocity exceeds the critical flow 

velocity. any disturbance on the downstream cylinder is likely to be amplified. The dynamic 

motion under such conditions is of interest to the marine riser designers and operators, in 

particular its motion trajectory and the momentum of the cylinder immediately before the 

collision should it occur. 

In this chapter, a comprehensive simulation is conducted to account for the dynamics after 

the downstream loses its stability. Both large spaced and relatively small spaced cylinder 

pairs are considered, and the scenarios before the flow velocity reaches the critical velocity 

are also discussed. A collision model is attempted, in order to account for the course of 



W.WU Dynami&s simulation of interaction of two rylinders in two-dimensional space 175 

collision when it does take place. The investigation endeavours to show the possible 

motion trajectory of the downstream cylinder and its dynamic behaviour. 

5.2 Theoretical Formulation 

As shown in the schematic diagram Figure 5.1, both the upstream cylinder and downstream 

cylinder are supported by two orthogonal springs. The origin of the co-ordinate system is 

set at the centre of the upstream cylinder when the fluid is stationary, the x axis is pointing 

towards downstream in the inflow direction, and y is in the cross-flow direction. 

Consideration of the cylinders in water is the main interest of this chapter. The x direction 

spring is assumed to be aligned in the direction of flow, and the springs are assumed to be 

ideal, so that the motion of the cylinder does not alter the arrangement of the two springs. 

The stiffness of the four springs is assumed to be the same. For such a system, the equation 

of motion can be written as: 

(5.1) 

(i = 1,2) 

Here i = 1,2 represents the upstream and downstream cylinders respectively. m is the mass 

of the cylinder per unit length, c is structure damping coefficient, k is the stiffness of the 

spring. (Xi' Yi ) is the displacement by which they have deviated from their corresponding 

layout positions (X,,;, y.~; ) 1. F:i' FYi are the fluid forces applied on the two cylinders. I is 

the unit matrix. 

l1ne layout p<)!4ition cotr'CSJIOIlds to the ~cnt wh<:n flow is stationary, with 

Xli = Y,fl = 0, X,t2 = X,f' Y,,2 = y" 
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Figure 5.1 Schematic diagram of co-ordinate system. 

According to quasi-steady flow theory, the fluid forces can be expressed as: 

F lU D [c- (U .) C- . ] p1r D2 .. x;=2P r; f)j i-Xi + l.iYi -Cm 4 Xi 

F 1 pU D[ C-' C- (V .)] ptr D2 .. . = - . - {).y. + ( . . - X - C y. 
)II 2" I I .1 1 I m 4 1 

(i = 1, 2) (5.2) 

In equation (5.2), Vi = ~ for the upstream cylinder, Cm is the fluid added mass coefficient, the 

definitions of other parameters are the same as those in Chapter III. 

Such a dynamic system can be written in the standard form of the first order differential equations: 

(5.3) 

where 
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Here, XI' X3, Xs represent the non-dimensional displacements deviated from the layout 

position in streamwise and cross-flow directions respectively, and x2 ' x4 ' X6 are their 

corresponding velocity terms. 

5.2.1 The Applicabiliry of the System 

The dynamic system (5.3) is suitable when the two cylinders are separated with a fair 

amount of distance and with a large reduced flow velocity. The latter condition is easy to 

meet in the present applications. When the two cylinders move close to each other, the 

mechanism of the interaction will become more complicated, particularly with regard to the 

interaction forces applied on the downstream cylinder. In this investigation, it is considered 

that the interaction comprises two parts. One is the viscous flow effect, which determines 

the time-averaged force, and the other is the potential flow effect. 

When the two cylinders are far apart form each other, the potential flow part of the 

interaction force is negligible. 'This is reflected in the fluid added mass term, which is 

assumed to be equivalent to the case of a solitary cylinder located in a still flow. When the 

two cylinders move closer, the potential flow effect can be significandy altered. Such kind 

of effect is assumed to be able to be reflected in the interaction force term and the fluid 

added mass. 
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Numerical computation has been carried out in the appendix B to account for this effect 

through the interaction force term. As shown in the Appendix B, this kind of effect only is 

significant when the two cylinders are very close to each other, such as less than 2 

diameters. On the other hand, within such a small range, the collision effect can be very 

important because the variation of the cylinder speed is very significant and the time 

interval during which the two cylinders stay within such a small distance is very short. 

Therefore, in the presentation of the numerical results, the proximity interaction is not 

considered. 

5.2.2 Consideration of Collision (Impact Model) 

C5J.: .""'--
a JC ~ " .' \ C \ 

•• rJ 2 : 
~, \ 

" \ 

(a) 

L. 

I 

/ 

I \ 

\ 

(h) 

(c) 

Figure 5.1 Schematic diagram showing the course of impact, (a) for upstream 
cylinder, (b) for downstream cylinder (c) co-ordinates transformation 

The characteristics of the fluid force on the downstream cylinder and its stability implies 

that a collision between downstream cylinder and upstream cylinder can occur during the 

movement of the downstream cylinder. However, the course of the collision can be 

complicated, as it depends on different factors such as the material of the cylinder, the 

detailed information on the cylinder surface etc. In this thesis, the collision is accounted for 

by: 

1). Momentum conservation for the radial and tangential motion respectively and 
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2). energy losses for the radial and tangential motions 

Although such collision models are basic, the detailed information about the impact is not 

the theme of this thesis, and the sophisticated impact model can be easily incorporated into 

present investigation if it is required. 

Figure 5.2 is a schematic diagram showing the planar motion of two cylinders and their 

impact. The contact position between two cylinders is at C and the normal and transverse 

velocities for upstream and downstream cylinder are represented by Ui,J.k' Here, i= " 2 

denotes upstream and downstream cylinder respectively, j= " 2 represents normal and 

tangential velocities, k= " 2 indicates before and after collision. According to the 

hypothesis outlined above, 

1). Conservation of momentum in radial motion 

U +u =U +u 1,1,1 2.1,1 1,1.2 2,1.2 (5.4) 

Here, the masses of the two cylinders are assumed to be equal. Therefore, they have been 

left out in the equation. 

2). Conservation of momentum in tangential motion 

U +U =u +U 1,2,1 2.2.1 1,2.2 2.2,2 (5.5) 

3). Supposing energy has the following relations 

2 2 k( 2 2) 
Ut,J.2 + U2•1•2 = r U1•1•1 + U2•1,I 

2 2 k( 2 2) 
U1•2•2 + U2•2•2 = I U1•2•1 + U2,2.1 

(5.6) 
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The coefficients kr and k, show the energy losses during the collision in radial and 

tangential directions respectively. The solving of above equations leads to the motion of the 

cylinders immediately after the collision. For simplicity, kr and k, are both taken as unity in 

the subsequent computation cases. 

The velocity diagram in Figure 5.2(c) relates the polar co-ordinate velocities derived above 

to their Cartesian counterparts. The ttansfonnation equations before impact, for instance, 

are 

x = U1,I,2 cosO + U1,I,2 sin 0 

y = U1,1.2 sinO+u,.
'
,2 cosO 

5.3 Numerical Procedures 

(5.7) 

The fifth-order Runge-Kutta-Vemer integration method (Hull, et al1976) is applied in this 

investigation to seek the trajectory of the cylinder pair. The initial condition is specified 

beforehand, and the integration in time domain is made step by step until a specified time 

instant is reached. The collision model is embedded in the numerical integration. A detector 

is constandy monitoring the spacing between the two cylinders, and when the collision 

between the two cylinders is detected, collision model is then applied. 

5.4 Dynamics Simulation Results 

Following the procedures oudined above, numerical simulation explores the dynamic 

behaviour of a pair of cylinders under the predefined condition of flow velocity. All the 

calculations have set the mass parameter of 0.2 except where otherwise specifically stated. 

The typical calculation results are presented as follows. 
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5.4.1 Wake Centreline & Inner Wake 

Figures 5.2 to 5.9 show the scenarios when the pair of cylinder is arranged in such a way 

that the downstream cylinder is near or on the wake centreline of the upstream cylinder. It 

is seen that when the flow velocity is below the critical velocity and before any bifurcation 

occurs, the downstream cylinder quickly approaches the equilibrium position irrespective of 

the initial positions. Figure 5.2 shows the case for Xs=5, Ys=O under flow velocity UR=3.0. 

Initially the two cylinders are located at the position of (0,0) and (5,0) respectively. It is seen 

that the two cylinders are both pushed downstream simultaneously by the flow. The 

upstream cylinder reaches its equilibrium almost directly, whereas the downstream cylinder 

rests at its equilibrium after one cycle of oscillation. This difference is due to the relatively 

smaller fluid damping on the downstream cylinder attributed to the reduced fluid drag 

force. 

When the spacing of two cylinders is relatively small, say less than 8, it can be seen from 

Figure 5.3 that, when the flow velocity is just smaller than critical flow velocity, the quasi

periodical movement will occur, and possibly with slight intermittent collisions. The phase 

diagram shows the stable quasi-periodic nature of the motion. The velocity data (Figures 

5.3(e) and 5.3(t)) show that the motions in cross-flow and flow directions are comparable, 

but the motion period is slight larger than the natural period of the system. Referring to the 

stability analysis, this kind of movement is initiated by the loss of stability, because the 

spacing between two cylinders is so small that the amplitude of the motion is large enough 

already to bring two cylinders to contact with each other. Figure 5.4 shows the case when 

the flow velocity has exceeded the critical flow velocity. It is seen that the cylinder moves 

around, with collisions occurring from time to time. Although the motion of the 

downstream cylinder is not periodical, the time interval between successive collisions is very 

regular, and it has the same order of magnitude as the system's natural period. The main 

acceleration of the downstream cylinder occurs immediately before collision, i.e. in the 
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short time interval before the collision. The downstream cylinder is sucked towards the 

upstream cylinder, and the velocity is significantly larger than the vortex induced vibration 

motion can possibly show. In the above cases, the final dynamic movement of the 

downstream cylinder depends solely on the flow velocity. The initial positions of the two 

cylinders only contribute to the early transition movement of the cylinder. 

Figure 5.5 shows the case for the same arrangement of X,,=5, Y s=O. However, the mass 

parameter is set as 0.02. The flow velocity shown in the figure is 12.65, which is correlated 

with case a=0.2 by the similarity of aUR2, and exceeds the critical flow velocity. Comparing 

with Figure 5.4, it is seen that although the fluid force acting on the two cylinders are the 

same for the two cases, the amplitude of the downstream cylinder movement is larger than 

the case of a=O.2. Such a difference can be attributed to the reduced fluid damping. In spite 

of this, the time interval between two successive collisions is close to the natural period of 

the system. The general trajectory is similar: both exhibit irregular paths. 

Figure 5.6 shows the case with X<:.,=10, Ys=O and UR=5.9. Although the flow velocity is 

very close to the corresponding critical flow velocity, however, as there is no Hopf 

bifurcation when the initial spacing between two cylinders is larger than 8 diameters, the 

downstream cylinder approaches to its equilibrium directly. 

Figures 5.7 to 5.9 show the cases when the flow velocity has exceeded the critical flow 

velocity and the initial streamwise direction spacings between the two cylinders are 10 and 

20 diameters, with transverse distance of 0 or 1 diameter. It is seen in all the cases presented 

that large amplitude movement of the downstream cylinder was observed, with occasional 

collision between two cylinders from time to time. The main motion occurs in the direction 

of flow, and the amplitude of the motion is well correlated to their initial spacing. 
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This amplitude can be understood in the following way: for the case of a=O.2, which shows 

the significant large fluid damping, the most upstream position the downstream cylinder 

can reach is limited by the presence of the upstream cylinder, and the most downstream 

position it can possibly reach is when it is not affected by the upstream cylinder. These two 

extreme locations are the bounds for the movement of the downstream cylinder, and 

equals the initial spacing between two cylinders. Examining the velocity of the downstream 

cylinder immediately before collision, it is seen that, most of the time, it can be as high as 5, 

which is a significandy high velocity when compared to 1 for the maximum lock in 

amplitude for the two dimensional case. 
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Figure S.2(a) Streamwise direction displacement. 
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Figure 5.2(b) Streamwise direction velocity. 

Figure 5.2 The transition from initial arrangement to equilibrium, a=O.2, UR=3.0. Initially, the upstream 
cylinder is located at (0,0) and the downstream cylinder at (5,0). The corresponding critical flow velocity for 
this layout is UR=3.48. 
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Figure 5.3(b) Streamwise direction displacement. 
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Figure 5.3 The motion of downstream cylinder after Hopf bifurcation and, the 
flow velocity is below the critical flow velocity, 0=0.2, UR=3.45 . 
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Figure 5.4(a) Trajectory. 
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Figure 5.4(c) Cross-flow direction displacement 

188 



w.wu f?y1lll11lics simulation of interaction of two rylindm in two-dimensional space 

2.0 r__-----------------------, 
1.5 

1.0 

0.5 

0.0 

x 

Figure S.4(d) Stteamwise direction motion phase diagram 

8 

4.0 ~-------------------__. 
3.& 

3.0 

2.& 

2.0 
1.& 

1.0 

" 0.& i 0.0 
-0.& 

x.-a, Y.-O, UR-4.0 
_._._. UpelNamCylnder 

- D--"'.m Cylinder 

Figure S.4(e) Streamwise direction motion velocity. 

189 



W.WU Dynamics simulation of interaction of two rylindm in two-dimeMo1ll1/ space 

3.0 r-------------------------, 
2.5 

2.0 

1.5 

1.0 

20 
t 

_._._. u ...... mCylnder 

- DCI'M18tnIlm Cylinder 

Figure S,4(£) Cross-flow direction velocity. 

50 

Figure 5,4 A case for a=O.2. UR=4.0 which has exceeded the critical flow velocity. 
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Figure 5.5(t) Cross-flow direction velocity. 

Figure 5.5 A case for a=0.02, UR=12.65, the flow velocity has exceeded the critical flow velocity. 
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Figure 5.6 Transition from equilibrium immediately before critical flow velocity, with initial 
arrangement of (8.5,0), (10.5,0). 
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Figure 5.7(d) Motion trajectory. 

Figure 5.7 A case after flow velocity exceeds the critical flow velocity, 
a=O.2, UR=6.5, the corresponding critical flow vdocity is 5.9. 
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Figure 5.8(f) Cross-flow direction velocity. 

Figure 5.8 A case at off-wake centreline, after the critical flow velocity. 
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When the downstream cylinder is initially arranged at the outer wake, there can be up to 

four equilibrium states under certain flow velocities. Figure 5.10 is a schematic diagram of 
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the possible equilibrium states at different flow velocities. Labels Sl and S2 represent the 

first and second convergence points of the equilibrium pairs. Not shown in the figure is 

that, as well as SI being the converging point of the downstream pair, it can also be the 

convergence point of the upstream pair as well. S2 is the critical point of the system. 

Discussion of the dynamics for such an arrangement according to different flow velocity 

ranges follows. 

5.4.2.1 Low rlow VelocifY (1/,1< VJ 

When the flow velocity is smaller than VQ' the downstream cylinder will approach its only 

stable equilibrium state, irrespective of the initial relative positions of the two cylinders. 

Although there are two equilibrium states when the flow velocity is close to V0 the other 

equilibrium, which is located near the upstream cylinder, is unstable. When the initial 

position of the downstream cylinder is located near the unstable equilibrium point, it only 

exhibits temporary movement around the equilibrium and will transit to the stable 

equilibrium eventually. The final state will rest at the stable downstream equilibrium 

position. This process is identical to the transition for two cylinders arranged in tandem or 

the case when the downstream cylinder is located at the inner wake position. Figure 5.11 is 

a case for Xs=5, Ys=2 at UR=3.0. Initially the two cylinders are placed at their layout 

position. It is then seen that the two cylinders are pushed at almost the same speed towards 

their equilibrium. The whole course of transition only lasts one natural period time interval. 
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Figure 5.11 T flUlsition from initial layout position to its equilibrium at low flow velocity 
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5.4.2.2 Velocity VQ <Vo<Vn 

When the flow velocity is between the point Q and the first merger point of the equilibrium 

pair, depending on the initial spacing between two cylinders and the initial disturbance on 

the two cylinders, the downstream cylinder can exhibit different dynamic behaviour. When 

the spacing between two cylinders is smaller than 8 diameters, the downstream cylinder can 

either rest at its stable equilibrium or exhibit periodic movement. Figures 5.12 and 5.13 

show the case for the initial arrangement of X,,=5, Y s=2. It is seen that, depending on the 

initial locations (initial disturbance), the downstream cylinder can either rest at its stable 

equilibrium (Figure 5.12), or exhibit stable periodical movement (Figure 5.13). When the 

initial spacing between two cylinders is large enough, the downstream cylinder will rest at its 

corresponding equilibrium state, due to the coexistence of two stable equilibrium points. 

The final balanced position is dependent on its initial location. Figure 5.14 is a map 

showing the corresponding attraction domains for the different equilibrium points for 

X,,=10, Ys=2.S at UR=S.8. Initially, the upstream cylinder is located at its corresponding 

equilibrium. The line shown in the figure demarcates the ultimate position the downstream 

cylinder will go to. When the downstream cylinder is initially located above the demarcation 

line, the cylinder will eventually rest at the upper stable equilibrium shown in the figure. 

Otherwise, the cylinder will rest at the stable lower equilibrium state. The demarcation line 

represents the attraction for the unstable equilibrium located on that line. 
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Figure 5.12(b) Velocity; one possible route for the cylinder pair when initially two 
cylinders are located at (0,0) and (5,2) with flow velocity of UR=3.6 . 
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possible route for the cylinder pair when initially two cylinders are located 
at (3,0) and (8,0) with flow velocity ofUR=3.6 . 
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5.4.2.3 Vff<Vf)< V\"2 
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When the flow velocity is larger than the first merger point and smaller than the critical 

flow velocity, the downstream cylinder is either to be attracted to its equilibrium position or 

it starts to move around, depending on the initial spacing between the two cylinders. When 

the initial spacing between the two cylinders is larger than 8 diameters, the downstream 

cylinder is likely to transit to its equilibrium, in the same process as the two tandem 

arranged cylinders. When the initial spacing is smaller than 8 diameters, as shown in Figures 

5.15 and 5.16, the downstream cylinder tends to oscillate around its unstable equilibrium. If 

the velocity is larger enough, as shown in Figure 5.16, such an oscillation can bring two 

cylinders to collide with each other. 
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Figure 5.15 A case when the movement of the downstream cylinder is not 
enough to bring the two cylinders to collide with each other. 
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Figure 5.16(b) Streamwise direction displacement. 
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Figure 5.16(f) Streamwise direction motion phase diagram. 

Figure 5.16 A case started by losing stability and the amplitude of the motion bring 
two cylinders to collide with each other. 
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5.4.2.4 L.a7,ef'loU/ Veloa!} (V,,> Vfd 

When the flow velocity exceeds the critical flow velocity, as revealed in the continuation 

investigation, no physical equilibrium points will exist. The downstream cylinder will 

wander around, regardless of the initial disturbance between the two cylinders. Figures 5.17 

to 5.20 show the case with streamwise spacing varying from 5 diameters to 20 diameters. 

As can be seen from these figures, when the flow velocity exceeds the critical velocity, 

collision between the two cylinders is expected, on an irregular basis. The amplitude of the 

downstream cylinder does not change significandy with the flow velocity, although the 

velocity immediately before the collision does significandy change. The amplitude 

corresponds approximately to its initial design spacing. The time interval between 

successive collisions is larger than the natural period of the system. Most of the time, the 

cylinder moves at small velocity, with the main acceleration completing within a short 

period immediately before the collision. In two-dimensional space, such a velocity can 

reach 5, which is significandy larger than the vortex induced vibration amplitude. 

Therefore, in the evaluation of causes of possible damage, wake induced oscillation should 

be considered appropriately. 
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Figure 5.17(c) Cross-flow direction displacement. 
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Figure 5.17 (d) Streamwise direction velocity. 
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Figure 5.17 A case for Xs=5, Ys=2, UR=4.0 which has exceeded the 
corresponding critical flow velocity. 
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Figure 5.18(d) Streamwise Direction Motion Phase Diagram. 

Figure 5.18 A case forXs=5, Ys=2, UR=5.0. 
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Figure 5.19 A case for Xs=10, Ys=2.5, UR=6.5 which has exceeded its 
corresponding critical flow velocity. 
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5.5 Summaries 

The dynamic simulation conducted in this chapter disclosed the characteristics of the 

movement of the downstream cylinder under the action of the time-averaged forces, and 

can be summarised as follows: 

1) When flow velocity is small, regardless of whether the two cylinders are in tandem or 

staggered, and irrespective of the initial distances apart, the downstream cylinder tends 

to approach its equilibrium swiftly; 

2) When the layout of the two cylinders and the flow velocity are such that there are four 

equilibrium states, the dynamic behaviour of the downstream cylinder is dependent on 

the initial distance apart of the two cylinders. If the spacing between two cylinders is 

smaller than 8 diameters, then the downstream cylinder can either exhibit periodic 

movement or rest at its equilibrium, depending on the initial disturbance of the system. 

If the initial spacing between two cylinders is larger than 8 diameters, the downstream 
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cylinder may rest at a different equilibrium point, depending on its initial spacing. 1bis 

conclusion is based on the mass parameter of 0.2. However, the 8 diameters spacing 

index varies with mass parameters. 

3) When the flow velocity approaches the critical velocity, depending on the initial 

spacing, if there is no stable equilibrium, then the downstream cylinder will exhibit 

periodic movement irrespective of its initial disturbance. 1bis movement amplitude 

will depend on the flow velocity. When the flow velocity is large enough, the 

amplitude of the movement can bring the two cylinders to collide with each other. If 

one of the equilibrium points is stable, then the downstream cylinder ultimately 

approaches its equilibrium. 

4) When the flow velocity is higher than the critical flow velocity, regardless of the initial 

spacing of the two cylinders, the downstream cylinder tends to move around, and 

collision between the two cylinders is likely to occur. The duration between successive 

collisions corresponds to its natural period, although the movement can exhibit 

stochastic behaviour from time to time; 

5) The velocity of the cylinder before collision can reach as high as 5 in non-dimensional 

form, which implies that the wake induced cylinder motion velocity can be much 

higher than the vortex induced vibration can show. This is important for the 

evaluation of the damage caused by the collision. Meanwhile, the wake induced 

downstream cylinder motion mainly occurs in streamwise direction, instead of cross

flow direction which the vortex induced vibration often exhibits. 

6) Parameter aU~ shows similarity with the critical state for a stationary bifurcation. 

However, it is not simple to find the similarity of the downstream cylinder's motion 

after the flow velocity exceeds the critical flow velocity. In general, the smaller the 
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mass parameter, the larger the motion velocity can occur. Such a relation is attributed 

to the effect of the related fluid damping. 

7) The maximum amplitude that the movement of the downstream cylinder can possibly 

display is the layout distance between the two cylinders. This conclusion is consistent 

with the experimental observations (Huse, 1996). 

Although the model of collision utilised in this investigation is straight forward, according 

to the investigation results presented in this chapter, it has been able to reflect the key 

feature of the collision. It is worth noting that the results obtained in this chapter agree well 

with the experimental observation conducted by DHI (Bryndum & Anderson, 1999). 



Chapter VI 

STATICS OF A PAIR OF MARINE RISERS 
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6.1 General Remarks 

So far, the interaction between two cylinders in two dimensions has been investigated 

systematically, from the interaction forces to the stability analysis, followed by dynamic 

analysis. The results show that under certain conditions for the specified pair of cylinders, 

the downstream cylinder can exhibit different dynamic phenomena. However, most of the 

time, in practical engineering the interaction between cylinders occurs in three-dimensional 

space. In order to understand the practical riser interaction, following questions need to be 

answered: Does the three-dimensional effect affect the riser interaction qualitatively? Can 

the result in two-dimensional space be direcdy applied to the three-dimensional scenario, 

or how can it be applied? In the following chapters, the interactions will be examined 

comprehensively in three-dimensional space. 

6.1.1 Issues Related to Statics In Marine Riser Design 

A marine riser is essentially a conductor pipe in oil and gas development, which connects 

the wellhead at the sea floor with the top vessel on the sea surface. It is used to convey oil 

or gas or drilling fluid, depending on its functionality and as a guiding tool between wells 

and top vessel The key features of marine riser design, regarding statics, were defined by 

Fischer & Ludwig(1966) who showed, with static analysis, the importance of tensioning the 

riser to prevent buckling and to control deflection and stress. 
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Figure 6.1 Schematic of lLP risers arrangement. 

However, quite often, a cluster of 

risers, rather than a single riser, is 

used in oil and gas production. 

For example, the particular type 

of 1LP and Spar risers 

investigated 111 this thesis is a 

cluster of rigid nsers. They are 

linked between wellheads and 

vessel independently. Shown as 

an example in Figure 6.1 is a 

schematic of the 24 well slots 

riser array on the platform Mars, 

which is operated in the Gulf of 

Mexico about 130 miles southeast of New Orleans in water depth of 2,940 feet. For such 

an arrangement of marine risers. vortex induced vibration, time-averaged force induced 

riser deflection and potential oscillation are the main issues for the riser design. The vortex 

induced vibration is a dynamic problem due to the high frequency vibration, which usually 

determines the fatigue life of risers. These phenomena have been investigated extensively, 

reference to vortex induced vibration can be found in (Sarpkaya 1979; Pantazopoulos 

1994), and recent work on this topic can be found in (friantafyllou et al 1994; Larsen et al 

1996; Vandiver 1998) etc. 

On the other hand, the time-averaged force is a static as well as dynamic concern. In the 

past, investigation into riser statics only considered solitary risers. However, with multiple 

risers located around, and possible significant differences in deflections due to the 

interactions between risers, caused by ocean currents. static analysis which investigates the 
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interference effect as well as buckling effect and deflection control should be taken 

seriously. The extreme scenario of the interference effect is that two marine risers collide 

with each other in an ocean current. According to the investigation made into the two

dimensional cylinder interaction, such a phenomenon is caused by the loss of stability of 

the downstream riser under the action of a time-averaged force. It is not pronounced in 

shallow water operations, because the deflection of risers caused by current is insignificant. 

However, it has been recognised that the deflection of risers is proportional to the square 

of the depth of water (Huse 1993). With oil and gas exploration and development now 

moving towards ever deeper waters, the deflection of the riser will be increased 

significantly. Meanwhile, riser collision can play a detrimental role in oil and gas 

production. All these concerns make the statics related clearance between risers to be 

another important issue in riser design. In this chapter, the static deflection of risers caused 

by ocean current, with the consideration of interaction between two risers will be 

investigated. 

6.1.2 Theoretical Approaches Used in the Riser AnalYsis (Statics) 

The key objective for the riser interaction statics analysis is: for a pair of risers with 

specified physical and geometrical parameters, to find out the geometrical shape (or 

equilibrium state) and corresponding stress within riser if necessary. Further objectives are 

to identify the effect of every important control parameter, which could affect the final 

equilibrium state, such as top tension, riser weight, ocean current etc. 

Mathematically, the statics is a system of two fourth-order differential equations with 

boundary conditions defined Due to the nonlinear nature of both the structure coupling 

and fluid interaction, the classical solution to such a problem will be confined within very 

limited cases, and a numerical technique is an inevitable means to find the solution. There 

are a variety of ways to solve such a system, such as multi-shooting method, finite 
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difference method, finite element method, lumped method, and modal superposition 

method etc. Mathematically, all the methods above are used to discretise the differential 

equation into a set of simultaneous algebraic equations which are then solvable. The 

difference lies in the choice of discretisation method, as described below. 

• Finite Difference Method 

First the physical domain is discretized into many finite intervals. Differential equations are 

discretized by substituting derivatives with finite differences. Such a method is derived 

from the definition of derivatives, i.e. when the finite difference used is fine enough, then 

the approximate expression of the rate of change approaches the exact derivatives. The 

partial differential equation is thus cast into a system of simultaneous equations with the 

unknown at discretised positions. The boundary condition is incorporated into such a 

simultaneous equation and a self-contained system is thus formed and is solvable. This 

method is widely used in the numerical analysis of N-S equations in fluid dynamics as well 

as in other engineering applications. Detailed explanation can be found in (Mitchell, 1980). 

• Finite Element Method 

Finite Element Method discretises the system in such a way that the fluid domain or 

structure domain is divided into a lot of elements. Within each element, the solution is 

approximated by shape functions, which ensures that the boundary conditions are perfecdy 

defined. By assembling these element equations, a large system is thus fonned and is 

solvable. Such a method facilitates the detailed simulation of the element which hence is 

powerful in dealing with complex structures as well as fluid dynamics, reference can be 

made to Akin (1982). 

• Lumped Method 
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Lumped method is a simplified version of the Finite Element Method, which mainly 

simplifies the physically continuous elements into concentrated mass elements. Due to the 

reduced number of degrees-of-freedom, this means a large saving on the computing 

memory required to solve the equation. Hence the lumped method is advantageous on 

computing efficiency. Such a method is often applied in the analysis of mooring lines, and 

cables for complex integrated system analysis, for example (Huang, 1992). 

• Modal Superposition Method 

Modal superposition method is an implementation of Galerkin's method, where the co

ordinate system is first transformed into the modal co-ordinate system. In such a system, 

the boundary condition is perfecdy defined due to the nature of the modes. Because of the 

convergence characteristics of the system in the modal co-ordinate system. the modes can 

be truncated to a finite number. Therefore, the system is converted into a set of finite 

number of algebraic equations. 'This method will be applied in the subsequent analysis. 

• Shooting Method 

Shooting method is a classical method for systems where there is an Ordinary Differential 

Equation with boundary conditions defined. By supposing boundary value (for example, 

the curvature of the riser) at one end, and integrating the ordinary differential equation (e.g. 

by Runge-Kutta method), the corresponding control at the other end of the riser can be 

obtained. If the resultant control can satisfy the boundary condition there, then the 

solution is the one which is being sought. Otherwise, a refined initial guess at the first end 

is made, and the above procedure is repeated until the solution at the other end can satisfy 

the boundary condition. Such a solution technique is straightforward, for example, (Huse 

1993). Mathematically, this method is very similar to the Finite Difference Method in the 

nonnal discretization sense. The main difference lies in that the shooting method solves 
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the equation by iteration, while Finite Difference Method solves the system simultaneously, 

and also the shooting method can have unfixed discretized intervals. 

6.1.3 Method used in the present work 

In this chapter, the theoretical model of statics for the interaction between two marine 

risers is presented, followed by the modal superposition method to tackle the statics 

problem. The solution procedure is detailed in this chapter. The simulation of practical 

problem in the laboratory environment is also discussed. Finally, sample calculations are 

provided, and effects of individual parameters are elaborated. The stability and related 

dynamic behaviour will be discussed in the succeeding chapters. 

6.2 Theoretical Formulation 

Figure 6.2 is a schematic diagram of one riser located in the wake of another. The upstream 

riser can be either rigid or flexible. The origin of the co-ordinate system is chosen to be at 

the top of the riser (which represents the top connector for marine risers), the x co

ordinate is in the direction of the flow, y is in the cross-flow direction while z is made 

vertically downwards. The initial stream-wise distance between two risers is Xs, the cross

flow distance between two risers is Ys' Both of them have been non-dimensionalized by 

upstream riser diameter, and capital symbols in this Chapter refer to non-dimensional 

quantity. For simplicity, the two risers have the same diameter in the present investigation, 

although it is not a restriction of the investigation method used here. The unstrained riser 

length is 10 , The top end of the riser can be above the water surface. The distance from 

riser top end to water surface is zo' The bottom end of the riser is either fully attached to 

the floor or hanging in the water, as it would be during installation of marine risers or 

hang-off condition etc. The main focus in this thesis supposes that riser is fully attached to 

the floor, although the later situation can be considered in a similar way. 
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If the case is restricted to small angles, using linear strain analysis, then an initially straight 

riser can be modelled as a tensioned beam. The static equilibrium equation for lateral 

displacement of a tensioned beam is (Krolikowski & Gay, 1980, Fumes, 2000): 

- EI(s)- -- T (s)- = F (z) d
2 

[ d
2

X] d ( dx) 
ds 2 ds 2 ds e ds r 

- E/(s)- -- T,(s)- = F (z) d
2 

[ d
2 y] d ( dy) 

ds 2 ds 2 ds ds Y 

~(T dZ) = {- m .• g + Poi¢o - PIKAi bottom fully contact with floor 

ds ' ds - mIg + PoKAo - PiKAi + PoAoH(z - z B) bottom not attached to the floor 

Where 

.40, Ai: Outer and internal areas of riser cross section; 

EI : Bending stiffness of the riser structure; 

Fx : Applied fluid loading in the flow direction; 

(6.1) 
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Fy: Applied fluid loading in the cross-flow direction; 

g : gravity acceleration; 

m : Structural mass per unit length; 
.f 

s: The distance along the riser from the top end; 

x: Streamwise displacement; 

y: Cross-flow displacement; 

Z : Vertical distance downwards from top end (from origin of the co-ordinate system) 

r;: Effective tension of the riser, r: = T + PoAo - P; Ai 

Po : How static pressure around the riser, 

~ : Air pressure on water surface 

H(z - zo): Heaviside function 

1';: Pressure inside the riser with its cross-section area of Ai 

T: Tension within the riser structure; 

Po : The density of the fluid outside of the riser 



W.WU S tati&s f!f a pair f!f marine risers 229 

P a ' Ph' Pi : Density of air, water and inner fluid in the riser respectively; 

The boundary condition for the downstream riser: 

x=o 

y=o 

(6.2) 

T=1'a 

x=o 

y=o 
at bottom z = IH (6.3) 

Here 1 H is the vertical distance between top and bottom end after deflection. Due to the 

tensile property of the riser, I H will not be the same as the vertical projection in z direction 

of original length of the riser 10 • as this length is not known beforehand. The procedure to 

tackle this will be discussed later in this section. 

Due to the fact that the investigation is within the small angle hypothesis, i.e. the profile of 

the riser is flat, 
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The nonnal requirement for such a simplification needs the ratio of maximum defection to 

riser length is less than 1:8 (Irvine, 1981). 

According to longitudinal balance in equation (6.1), we have 

1. Bottom fully attached to floor: 

7; = T + PaAo - P;A; ~ 7;0 - m,gz 
2. Bottom hanging in water with the distance of Z H from top to end 

Here 

Although the solving procedure for a riser not attached to floor is similar to the problem of 

riser bottom attached to the floor, for clarity reason, it will not be detailed hereafter. Let 

The bending stiffness is further supposed to be equal everywhere, The control equation 

can be simplified as: 

Eld
4
X (Teo )d

2
X dX 1 2 « 1 ()~ ---- --m gZ --+m g-=-pU DC X Z Y Z 

13 dZ 4 I e dZ 2 e dZ 2 J) H Z 

EI d
4

y (Teo )d
2
y dY 1 2 « ~ ( )~ ---- --m gZ -+m g-=-pU DC X Z Y Z 

l~ dZ 4 /z II dZ 2 e dZ 2 I. 

(6.4) 

As shown in (6.4), the de-coupling of the structure displacement between X and Ybrought 

by the simplification %s ~ ciJtJz still can not make displacement of X and Y be 
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independent to each other due to the coupling by the fluid force coefficients on the right 

hand side of the equation. 

However, the problem to be considered for equation (6.4) is relatively uncomplicated. The 

essential feature of the problem is that the fluid force is in two dimensions and they are 

functions of positions themselves. This will lead to the deflected riser being in three 

dimensions, so that the deflected riser will not necessarily be confined within a single plane. 

6.2.2 Numerical Method Employed 

Modal superposition method is used in the present analysis. By considering the mode of a 

pinned-pinned beam, the solution of X, Y can be expressed as: 

(6.5) 

Here (6r = sin(rn::z), (r = 1, 2·· .... ) is the r-th order mode shape, 

Due to the orthogonal property of the modes, tPr possesses the following characteristics: 

(6.6) 

By substituting (6.5) into (6.4), The control equation in the x direction can be simplified to: 

00 EI 00 T 00 /I 00 , 

~ l~ (rnt ar;r + ~(rn)2 I: artPr + ~megZartPr + meg ?;a,(6, 

= ~ pV0
2 DCf)(X(Z1Y(Z)) 

(6.7) 

Expanding term of Z;; and ;; with the modal co-ordinates, after mathematical 

manipulation, equation (6.7) can be written as: 
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t[~l (rn t tP, + TeO (rn Y tPr -(rnY meg tCr.ttPs + megrn tDrstPs]ar 
r=1 IH IH .'1=1 .,=1 

Here 

Cr., = 2 J;Zsin(rnZ)sin(snZ}dZ = 

1 

2 

=.!.. pV0
2 DCJ) (x(z1 r(z)) 

2 

4rs [ (_lyH -1] 
ft2(S2 _ r2 y 

Dr.t = 2 £ sin(sft z )cos(rft z)dz = l~s [1- (-1 yH J 
n S2 - r2 
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(6.8) 

r=s 

r=s 

Although the equation has infinite number of modes, the numerical calculation can 

truncate the high order terms and it should converge fairly quickly because the deflected 

risers have some simple and smooth geometrical shapes. By applying the property of 

orthogonal characteristics between individual modes to equation (6.6), multiplying by tPk on 

both sides of the equation and integrating about Z from 0 to 1, the equation for modal co-

ordinates can be changed into: 

(6.10) 

The same approaches applies to the analysis of the deflection occurring in the y direction, 

so the equation can be written as: 

[~I (kft)4 + ~eo (kft)2Jbk - tKrft)2 megCrlc -meg(rft )Drlc ]br = l PVo2 DCI. (x(z~r(Z)}pkdZ 
H H r-I 

(6.11) 
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Equations (6.10) and (6.11) constitute a closed form for ak ,bk provided that lH is known. 

The equation can be solved simultaneously or iterated one after another for the non-linear 

coupling terms of Cn' C, .. 

The determination of fluid force coefficients CD' C,. is directly based on the two-

dimensional result by applying strip theory. It is assumed that the fluid force coefficient at a 

particular location depends on its position relative to its counterpart upstream riser. The 

validity of such a hypothesis could be argued. Basically, the fluid force possesses a random 

nature and has a component of periodical force related to the vortex shedding. Such a time 

variant force has a certain correlation along the riser length. This correlation factor is an 

important reason for causing experimental data scatter from one researcher to 

another(pantazopoulos 1994). However, it is only the time-averaged force which is of 

interest to the present investigation. The flow velocity investigated here is well outside of 

the range of lock in phenomena. Even for the vortex induced forces, the correlation along 

the riser is weak. Therefore, the time-averaged force at different location is assumed to be 

independent of neighbouring positions. 

So far, the condition on the 1 H has not been addressed. This is a variable which can not be 

known beforehand, according to the constraint of the Hooke's law, with which the elastic 

riser should comply. The vertical length I H and unstrained length 10 should obey the 

following relation: 

~= £ EA 
IH EA + TeO -megZ1H -PoAo +P;A; 

x [t. a, (b }cos(k1lZ)]' + [t. b. (b )COS(k1lZ»), + J.clz 

(6.12) 
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To solve the equations (6.10), (6.11) and (6.12), iterations have to be made. The procedure 

is as follows: 

1. Assume a value of I H ; 

2. Find the solution of deflected riser according to (6.10) and (6.11); 

3. Find the corresponding unstrained length by (6.12), which nonnally will not be exacdy 

the same as the given original length. 

4. According to the available assumed I H and the corresponding unsttained length, 

modify the value of I H • Then repeat the above procedure steps 2 to 4, until the 

solution satisfies the condition that the corresponding unsttained length is equal to the 

original length. Then the solution of final X, Y is the deflection which was being 

sought. 

6.2.3 Consideration of Similarity 

Similarity is an important rule when tests need to be conducted. It is also vitally important 

for the analysis of the results. Considering the similarity requirement for hydrodynamics 

and structure statics, it is seen that the deflection of the riser depends mainly on the 

following parameters: 

(6.13) 

Among these parameters, Dj I simply represents the geometrical similarity, 

R, is Reynolds number, which is the basic requirement for hydrodynamic similarity; 

EI/ T,i 2 
reflects the relative importance of bending stiffness and top tension; 
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I:o is the top tension factor which is the ratio of effective tension on top to the riser's 
meg/ 

weight in water; 

J p V,I lS called as flow _sion factor In this thesis and lS represented by H. • 
Teo 

H; X Co,/' reflects the relation between transverse loading and the top tension. The 

application of parameter H w will be further discussed in the next chapter. 

It is easy to show that within these non-dimensional parameters in equation (6.13), 

contradictions persist which prevent simulation. For example, the third and fourth 

parameters make a pair of conflicting parameters. Also, trying to meet the requirements of 

the structure dynamics will violate the requirements of the fluid dynamics similarity. 

particularly the condition of Reynolds number similarity. Therefore a compromise has to 

be made and favour has to be given to more important parameters. Table 6.1 gives two 

possible plan options to choose from, for similarity parameters when experiments are 

conducted. 

It is seen that both plans violate Reynolds number similarity for the fluid dynamics. 

Additionally, for the scale plan 1, %i can not be simulated, and for the plan 2, T.o/m,gl 

is violated. Theoretically, the plan 1 is better than 2, because for very long risers, Ell, p is a 
/7'0 

very small quantity which simply means the bending stiffness is not important when 

compared to the tension effect in determining the deflection. Furthermore, such a plan can 

keep the top tension proportional to the net weight of risers in water, which is a practical 

situation for risers. However, the shortcoming for such a simulation is the difficulty in the 

control of the flow velocity, which is scaled down to JX If the scale ratio is 30, for a full 
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scale case with current velocity of 1.0 m/ s, the test current velocity can only be 0.2 m/ s, 

which is too small a quantity to be controlled even in the laboratory. Another shortcoming 

is the violation of the Reynolds number in plan 1, which is much worse than plan 2. The 

Reynolds number for the model is only 1/900 of that for full scale if the scale ratio is 30. 

Such a Reynolds number in plan 1 is so small that it makes the flow dynamics significandy 

different from that for full scale. For practical considerations, the scale plan 2 would be a 

better selection. Although the similarity law of TeO / meg/ is violated, however, it is a rather 

less sensitive parameter in controlling the riser deflection. This will be demonstrated in the 

numerical results. 

Table 6. 1 Experimental similarity parameter for static deflection. 

PARAMETERS SCALE PLAN 1 SCALE PLAN 2 
Diameter, Length etc. Geometrical Parameters AI A 

Flow Velocity Vo JI 1 

Tension at the Top 1'0 i A2 
Bending Stiffness EI i A4 

Fluid outside and inside of the riser 1 1 

Violated Parameters % /2,Re I:o / meg1 , Re 
eO 

t Here A ( = I"" .. , /1 fo") is the model dimension scale ratio. 
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6.3 Numerical Results 

6.3.1 Benchmark Test of the Program 

Before any prediction is made about the riser statics, the program is first checked against 

the results published by the American Petroleum Institute(American Petroleum Institute, 

1992). In 1992, 14 organisations participated in a numerical comparison organised by API 

committee to find out the degree of agreement among their riser analysis computer 

programs and to present data which could then be used to validate other such programs. 

OFFSET 

J 
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, (RiRr Suppurt RiIllC) 
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Figure 6.3 A schematic diagram 
of the drilling Riser used for 
present investigation. 

The model used was a drilling riser with one choke line and one kill line. The drilling line is 

filled with drilling mud and the choke line and kill line are filled with sea water. Figure 6.3 

is a schematic diagram of the model used. The definitions of the parameters used in the 

calculation are listed in table 6.2. 
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The comparison of present calculation results against the results published by API is 

shown in tables 6.3 and 6.4. It is seen that the results agree very well with the results 

provided by the API, including the deflection angle at top connector and Lower Ball Joint, 

maximum bending moment and their locations. 1bis gives confidence in the subsequent 

calculation for the interaction between two risers 
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Table 6. 2 Sample calculation data (API, 1992). 

Vertical Distance 
Mean Water Level to Riser Tensioner Ring, (teet) 50.0 

Sea Floor to Lower Ball Joint(Feet) 30.0 
Riser Data 

Diameters, Inches 
Riser Pipe Outside Diameter 21.0 
Riser Pipe Inside Diameter 20.0 
Choke Line and Kill Line Outside Diameter 4.0 
Choke Line and Kill Line Inside Diameter 3.0 
Buoyant Material Outside Diameter 38.0 
Modulus of Elasticity of Riser Pipe, E, (psix 1 0(') 30 

Densities, (pounds/cubic foot) 
Seawater 64.0 
Drilling Mud 89.8 

Hydraulic Force Constants 
Cn, Drag Coefficient 0.7 
Dc, Effective Diameter for Current and Wave 

Unbuoyed Riser (inches) 29.0 
Buoyed Riser 38.0 

Weight (pounds), of 50-foot Joint, Complete With 
All Associated Lines, Couplings, and Buoyant 
Material, If Any 

Unbuoyed, 21-in 
Buoyed, 21-in (3OOO-ft water depth) 

Wa, 
matt 
8800 
14740 

Wp, 
in seawater 
7660 
2950 

Current 
A. 

Linear, V2 knot at mean 
water level, zero at lower ball 
joint 

B. 

Riser Length (feet) 
Top Tension (Kips) 

Static Offset (feet) 

Linear, 2 knot at mean water 
level, 0.4 knot at lower ball 
joint 
1520 
370 
600 
45 

3020 
500 
650 
90 

239 
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Table 6. 3 Comparison of calculation result with API published data (1500 ft Case). 

Tension Tension 1 Tension 2 

Current Current A Current B Current A Current B 

Max Bending Stress Cal. 3.91 5.81 0.76 1.04 

(Kips) literature2 3.91 6.04 0.71 1.00 

Location of Max Cal. (ft) 106.4 121.6 91.2 91.2 

Bending Stress if!J literature 122.45 125.12 118.15 121.35 

Angle From Cal.(LBJ) 4.53 6.53 2.51 3.12 

Vertical 0 literature 4.57 6.63 2.52 3.12 

Angle From Cal. (fop) 0.65 0.77 1.15 0.36 

Vertical (') Literature 0.64 0.77 1.14 0.36 

Table 6. 4 Comparison of calculation result with API published data (3000 ft Case). 

Tension Tension 1 Tension 2 

Current Current A CurrentB Current A CurrentB 

Max Bending Cal. 1.01 1.94 0.45 0.98 

Stress (Kips) Literature 1.03 2.11 0.44 0.96 

Location of Max Cal.(ft) 151.00 151.00 160.06 2838.80 

Bending stressif!J Literature 150.70 158.41 140.72 2839.91 

Angle From Cal.(LBJ) 3.33 5.71 2.59 4.01 

Vertical C,) Literature 3.45 6.22 2.64 4.14 

Angle From Cal. (fop) 0.76 1.72 1.09 0.82 

Vertical (j Literature 0.80 1.85 1.06 0.87 
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The riser data for the following systematic investigation is presented in table 6.4. They are 

taken from a riser model data. Both risers are filled with fluid from top to bottom end. The 

top end of the riser is located at the mean water level, and the current has a uniform 

profile. The results are presented mainly in the form of geometrical shape of the risers. 

Table 6.5 Parameters chosen for sample calculation (with model and prototype parameters 
for the convenience of comparison). 

Parameter3 Model Prototype 
Diameter of riser D (I 0.01 (m) 0.30 (m) 
'Thickness of wall t 0.001 (ml 0.03(m) 

Unstrained length 10 44.4 (m) 1332.0 (m) 

Material Stainless Steel 
Mass(Include Added Mass) 317.87 (Kg/m) 

Young's module E 2.1xl011 (N/m) 2.1x10tt (N/m) 
Bending stiffness El 60.86 (Nom) 4.93xl07(Nom~ 

Top Tension 1'0 2.709xlO(i(N) 
4.12 (KN) 3.708x106(N) 
8.24 (KN) 7.416x106(N) 

Weight of riser W in water 1.88 (N/m) 1.695 (KN/m) 

Flow velocity Vo 0.5 - 1.5 (m/s) 0.5-1.5 (m/s) 

6.3.2 Comparison Between a Free-Stand Riser and One Stand on the Wake Centreline f!f a Rigid 

Riser 

Figure 6.4 is a geometrical shape comparison between a free-stand riser and one stand in 

the wake of a rigid riser. The riser in the wake is located on the wake central line with initial 

streamwise separation of 10 diameters. 

2 API data prcscntl-cl here is the mean result of the data providl'<i by the different parties. 

3 The parameters selected here are chosen from a cluster of riser models (Ilusc 1996). 



W.WU S toties of a pair of marine risers 242 

xv zo 2000 V-o.5"" 

x 
0 10 

• 
0.1 '. • 
0.2 " ~ 0.3 • • 0.4 • • N • • 0.6 • • 0.7 .. • 0.8 • ~ 
0.9 •• 

o Free-Stand Cylinder 

- -____ - One in Wake at X=IO, Y=O 

,.:: 

x 

Figure 6.5(a) 

xv zo 2000 COMPAlllIION IETWElN FREE .. TANO AND IN WAKE V-o.5M~ DEfLECTlOM OF DOWNSTREAM CYUNDER 

0 15 20 

0.1 

0.2 

"- •• • • 
N 0.5 • • 0.8 • " 0.7 .' .. / 

0.8 .e/ 
Free-Stand Cylinder 

0.9 

30 

Figure 6.5(b) 

Figure 6.4 Comparison between free-stand riser and one sitting in wake,with 4,=1332 (m), 1I,=7.416x106 

(N); (a) Vo=O.5 mis, (b) Vo=1.0 m/s. 
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The figure shows that the streamwise deflection in the wake differs significandy from the 

free-stand riser. The difference amounts to 45 and 38 percent for the calculated scenario 

for flow velocities of 0.5 and 1.0 (m/ s) respectively. The deflection of the free stand riser 

here can be regarded as the scenario of an upstream riser as welL On the other hand, 

although the stteamwise deflection reaches more than 10 diameters, the variation in vertical 

length is very small and can be neglected should the displacement of the top end be 

considered. The elongation of the riser only amounts to 0.03 percent of the original length 

for this particular case. This implies that the top end can be simplified as fixed when the 

dynamics of the riser are to be considered, especially when the displacements related to 

dynamic terms are much smaller than those related to the static terms. Also shown in 

figure 6.4 is the effect of the flow velocity. It is seen that the difference between a free

stand riser and riser in the wake is more significant for the low flow velocity. Such an effect 

is a reflection of the nonlinear nature of the problem. When flow velocity is lower, the 

wake shield effect is more pronounced because the spacing is relatively small, compared to 

the large flow velocity situation in present calculated scenarios. 

6.3.3 Fffict ofUn-Strained Length of Riser On the Deflection 

Table 6.6 shows the effect of different un-strained riser lengths on the deflection of the 

riser. The comparison of the effect of the un-strained riser length can be difficult due to 

the similarity issues. Here, in all these comparison calculations, the pretension is kept as 

same ratio of the total weight of risers in water. All other parameters ar~ chosen according 

to full scale parameters shown in table 6.2, with flow velocity of 1.0 m/ s and top tension 

factor 3.28. In order to facilitate the calculation, the comparison is made for the free-stand 

riser only. 

It is seen that, when the length is large enough, the maximum deflection is increased 

linearly with the un-strained length. When the length is significandy small, the effect of 
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bending stiffness on the deflection is significant, and the above linear relation is not 

complied with. For the case presented, when the riser length reaches over 100 meters, i.e. 

El/7;o1: is smaller than 10-\ the role of tension begins to take over, and the deflection 

becomes solely dictated by tension. This is the case for deepwater risers. In fact, under 

such conditions, the very long riser can be simplified as a string case. It should be noted 

here that in all these comparisons, the tension of the riser is kept linearly varied with riser 

length in order to ensure the constant top tension factor. If the tension is kept as constant, 

which is possible by utilising buoyancy attaching to marine risers, then the deflection varies 

proportionally to the square of the riser length (Huse 1996). 

Table 6. 6 Maximum deflection for different unstrained 
length. 

unstrained length (m) deflection (x/D) 
25 0.05 
50 0.45 
100 1.46 
500 8.01 
1000 16.00 
1500 24.04 

The above result implies that when the length is relatively small, for a steel riser, the 

deflection in the streamwise direction is negligible due to the rigidity of the riser. With the 

increase in length, the deflection becomes more and more noticeable and important. This 

is the driving force causing interaction between risers that should be considered in today's 

deepwater offshore oil and gas developments. 
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6.3.4 Comparison When the Upstream Riser is Rigid and l-'texible. 

The difference between the free-stand riser and the riser sitting in wake is significant. In 

fluidelastic experiments, when a two risers interaction is studied, sometimes the upstream 

riser is simplified by using a rigid riser. Questions are raised here about the effect of an 

upstream riser when it is flexible. By adopting the foregoing parameters for the both risers, 

a comparison is made for the downstream riser located on the wake centreline. The 

upstream riser is either rigid or flexible. The current velocity is 0.5 m/ sand 0.6 m/ s 

respectively. As shown in Figure 6.5, the difference is reduced with the decrease of flow 

velocity. Figure 6.5 also shows that when the upstream riser is flexible, the deflection of the 

downstream riser is smaller than that when the upstream riser is rigid. This contradicts the 

intuitive feeling that when the upstream riser is pushed downstream by the flow, the 

downstream riser might be pushed further by the flow to keep up the spacing between two 

risers. The reason is that when the upstream riser 
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Figure 6.5 Effect of rigid and flexible upstream riser, Al=1332m, Tu=7.436xl06 (N). 
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moves downstream, the drag forces acting on the downstream riser are reduced. Therefore 

the deflections become smaller, and this is the factor which causes the two risers 

potentially to clash with each other. Such an effect becomes more significant with the 

increase of flow velocity, which moves the upstream riser towards downstream and 

increases the interaction. 

In order to make a comparison with the two-dimensional theory, the state of the flow is 

checked to estimate the reduced flow velocity. Neglecting the bending stiffness, the ftrst 

mode frequency of 1332 meter riser with top tension factor of 1.5 is about O.023H~ 

Therefore, even for the flow velocity of O.5(m/ s), the reduced velocity reaches 12, which is 

a significandy high value and more than enough to bring two risers into interaction and to 

lose stability under certain arrangements. 
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6.3.5 Three-Dimensional Geometrical Shape of the Riser in Wake 
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Figure 6.6 Three dimensional shape of a pair of risers. The upstream riser is either rigid or flexible. 

Figure 6.6 shows the three-dimensional geometrical shape of a riser located in the wake. 

The comparison is also made with an upstream riser that is either rigid or flexible. The 

physical parameters adopted here are as follows: 

D=O.JO (11I,ter) 

to= 1332 (11I,ter) 

TIF=3.28 

Vo=O.5 (fills) 
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The downstream riser is chosen at the transverse location of 1.5 diameters when at rest. 

The figure demonstrates that when the upstream riser is flexible, the transverse deflection 

of the downstream riser is much larger than that for the rigid scenario. 1bis is because if 

the upstream riser is flexible, the downstream riser at equilibrium position has a small 

spacing with the upstream riser, which makes the lift force much larger than that for the 

rigid riser and leads to a large deflection in the transverse direction. Probably the most 

interesting feature of this figure is that no matter whether the upstream riser is rigid or 

flexible, the deflection angle is nearly a constant along the riser. The deflection angle is 

defined as the angle between the line which connects the displaced position and original 

position and the x axis of the co-ordinate system. The results show that the deflected riser 

is nearly within a plane. 1bis supports the two-dimensional simplified model (using two 

orthogonal springs to simulate the in-plane and out-of-plane stiffness). However, evidendy, 

the angle varies depending upon whether the upstream riser is rigid and flexible. Care must 

be taken to address the problem related to the inclined spring arrangement angle when the 

problem is sensitive to the angle arrangement. 

6.3.6 Comparison of Risers Sitting at Different Transverse Locations in the Wake 

Comparison is made to illustrate the effects of staggered arrangement, by varying the 

transverse location. In the presented example, the streamwise spacing is chosen at 10 

diameters. Three different cross-flow distances are selected, i.e. 1, 1.2 and 2 times of 

diameters respectively. Figures 6.7 and 6.8 show the transverse displacement at different 

cross-flow locations, and Figures 6.9 and Figure 6.10 give the comparison for the 

streamwise direction displacement. Figures 6.11 and 6.12 show the comparison of the 

deflection angle at different locations. 

The comparison of the deflection angle (Figure 6.11 for rigid upstream riser and Figure 

6.12 for flexible upstream. riser) shows that, although for a given initial separation and flow 
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velocity the deflection is strongly dependent on these conditions, the deflected riser is 

generally within a plane and the fluid force always acts in three-dimensions. Also it is clear 

that the deflection corresponds well to the lift force magnitude. The deflection is largest 

when the riser is located at the transverse location of about 2 diameters. It should be noted 

that the deflection angle can be significandy different for different arrangements, which 

again implies that the spring coupling angle varies significandy should the two-dimensional 

model be applied. 
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Figure 6.7 Transverse deflection comparison for different transverse initial locations, 
upstream riser is flexible, the design streamwise spacing is 10 diameters. 
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Figure 6.8 Transverse deflection comparison for different transverse initial locations, 
upstream riser is rigid, the design streamwise spacing is 10 diameters. 
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Figure 6.9 Streamwise deflection comparison for different transverse initial locations, 
upstream riser is flexible, the design streamwise spacing is 10 diameters. 
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Figure 6.10 Streamwise deflection comparison for different transverse initial locations, 
upstream riser is rigid, the design streamwise spacing is 10 diameters. 
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Figure 6.11 Comparison of deflection angle for different transverse locations when 
upstream riser is flexible, the design streamwise spacing is 10 diameters. 
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Figure 6.12 Comparison of deflection angle for different transverse locations downstream 
of a rigid riser, design streamwise spacing is 10 diameters. 
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Top tension is a key factor in the design of marine risers. It determines the deflection of 

the riser and the bottom joint angle. Too high top tension will sacrifice effective payload 

on the floating production vessel. Sometimes, therefore, the buoyancy module is used to 

reduce the tension. On the other hand, too low tension can lead to buckling of the riser. 

According to the non-dimensional parameter listed in equation (6.13), the top tension is 

reflected in three parameters, among which top tension factor is an important parameter in 

riser design practice. As has been indicated here before, EI/ I:of shows the relation 

between bending stiffness and tension, when EI/r:oI
2 «I, the bending stiffness can be 

negligible and top tension will takes dominant role in determining the deflection of the 

riser. On the other hand, parameter H w reflects the amplitude of the flow forces, which 

determines the amplitude of the deflection. In order to examine the role of the TIF (fop 
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Tension Factor), a sample calculation for the constant parameter of EI/~o12 «< 1) and 

H w is made. Figure 6.13 shows that when tension is much larger than weight, the 

deflection distribution along the riser is nearly symmetrical, corresponding to a taut string. 

When the top tension factor is lower, the location at which the maximum deflection occurs 

moves towards to the lower part of the riser, due to the effect of weight, and the lower ball 

joint angle is significandy increased. The TIF determines the geometrical shape of the 

deflected riser. 

Figure 6.14 shows the riser pair with constant weight. The only varying parameter is the 

top tension, i.e. all the three non-dimensional parameters related to top tension are varying. 

It is seen that the effect of the top tension is very significant, and the small tension not only 

gives a larger deflection, its maximum deflection location has also moved downwards due 

to its lowered TIF. Therefore, top tension plays a most significant role in the deflection of 

risers. High top tension can reduce the deflection and the deflection angle at lower ball 

joint angle. 
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~igure 6.13 Effect of top tension factor on deflection of the riser downstream of a rigid 
nser. 
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Figure 6.14 Effect of top tension on the deflection of risers, Xs=30, Ys=O, Vo=O.5 (m/s). 
The three top tension factor refers to data in Table 6.5. 
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Figure 6.15 Effect of initial spacing between upstream and downstream riser. 
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Nearly all the sample investigations presented here so far are for a streamwise spacing of 

10 diameters. Obviously, the interaction varies with the initial spacing. The closer the 
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spacing, the stronger the interaction. Figure 6.15 shows the scenario at flow velocity of 0.6 

m/ s. With both risers sitting on the wake centreline downstream of a flexible riser. One is 

at spacing of 10 diameters and the other is at 20 diameters. It is clearly to be seen that the 

deflection of the far downstream riser is very much similar to the upstream riser, which 

means a weaker interaction than the smaller spaced riser. 1bis spacing difference will lead 

to mainly quantitative differences for the interaction. The detailed quantitative effect will 

be identified in the following chapter. 

6.3.9 FJfoct of Transverse torce 

Transverse force is a factor easily overlooked during the design of marine risers and study 

of riser interactions. This is partly because the relative small amplitude of the transverse 

displacement and also the difficulty in the identification of transverse force magnitude. 

However it will give worries to engineers, especially when interaction between risers is an 

important concern. In the power transmission industry, it is a major factor, together with 

the drag forces that produce the phenomena of wake induced flutter. The analysis in the 

two-dimensional case also shows that stationary bifurcation is usually a combination of the 

contributions of both lift and drag force. A comparison is made here to clarify the role of 

the lift forces. Figures 6.16 and 6.17 show the difference between taking lift into 

consideration under flow velocity of 0.5m/ s. The comparison is made at X J= 10, Y\.= 1 and 

2 respectively. 
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Figure 6.16 Comparison of deflection with and without transverse force taken into 
account, design spacing Xs=10, Ys=1, at V()=O.5 (111/ s) with hJ=1332 (111), To=7.416x106 
(N). 
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Figure 6.17 Comparison of deflection with and without transverse force taken into 
account, design spacing Xs=10, Ys=2, at V=O.S (111/ s) with kF1332 (111), To=7.416xl06 
(N). 
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Clearly, the deflection in they direction is different:, as there is no y direction displacement 

if no lift force is considered. On the other hand, if the lift force is considered, then the y 

direction displacement is of the order of 1 diameter. For a flow velocity of around 0.5 m/ s, 

there is a noticeable difference in the deflection in x direction. For the velocity considered 

here, the difference is again of the order of 1 diameter, and the difference will be enlarged 

with the increase of flow velocity. The case which did not take the lift force into 

consideration, has a larger x direction displacement. This is because the effect of lift force 

pulls the riser towards wake centreline and the corresponding drag force is smaller. 

Inherendy, this is a nonlinear behaviour related to the nature of the fluid force. As with the 

importance of the transverse location in the determination of the critical state, so also the 

consideration of the transverse force plays an important role in the investigation of riser 

interaction. 

6.3.10 Discussion of Test Simiiari(y 

The discussion of the laboratory simulation of the statics of very large scale models has 

shown that plan 2 (as shown in table 6.2) is more feasible than the theoretically better plan 

1. Inevitably, the violation of top tension factor will bring a deviation effect on the 

simulated statics of long riser interaction. Numerical comparison is carried out here to 

show the quantitative difference brought by such an un-simulated parameter. The 

hydrodynamic situation is also simulated. Figures 6.18 and 6.19 show the difference 

between the model result and full scale result for a riser sitting in the wake of a rigid riser 

and a flexible riser at velocity of Vo= 1.0 (m/ s) respectively. 

From the figure it is seen that the difference between model and full scale behind the rigid 

riser is about 10 percent. However, when the upstream riser is flexible, the difference for 

the downstream riser is much smaller. It should be noted that when the interactions 
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between two risers are the main interest of the experiment, the relative spacing between 

two risers can be a primary interest. As shown in Figure 6.19, for the presented case, the 

difference is less than 10 percent. Such a deviation is acceptable for the experimental 

requirement. The model scale of present comparison is made based on 1:30 as listed on 

table 6.2, which is a significant large ratio. 

Before closing the parametric study, it should be noted that throughout the present 

investigation, the small sag length ratio hypothesis has been constantly checked. It has been 

shown that the ratio of maximum deflection to the length of riser is well within the range 

of 1/8, in fact it is of the order of 10-3
• Therefore the simplification is fully justified within 

the present investigation. 

10 aaoo 

o~----------~~------------------------~ 

• Model 

--~ FullScaie 

N 

Figure 6.18 Comparison between model and full scale for both in rigid riser wake, Vo= 1.0 

(m/s). scale ario )"=1:30. model: ~F44.4 (111), To=8.24 (KN). full scale: 1.=1332 (111). 
T.,=7.416Xl()6 (N). 
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Figure 6.19 Comparison between model and full Scale for both in flexible riser wake 

(Vo=O.6 m/s). model: kJ=44.4 (m), Tu=8.24 (KN), full scale: 1.=1332 (m), To=7.416x106 
(N). 

259 

6.4 Summaries 

Numerical computation for two marine risers under time-averaged force action has been 

carried out by the modal superposition method. The program produced here was validated 

against the published API data. Based upon parametric study about two marine risers, 

conclusions are drawn as follows: 

1. Effect of wake is important in determining the deflection of the downstream risers, 

particularly when the risers are getting longer as oil and gas development is moving 

into deeper waters. The amplitude of riser deflection is comparable with the normal 

design clearance between risers. 

2. To appropriately account for the effect of an upstream riser is very important when the 

downstream riser is under static analysis. Where the upstream riser is rigid, the 

deflection of downstream riser differs significandy from when there is a flexible 
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upstream riser. Care must be taken in conducting riser interaction experiments if 

simplifying the upstream riser as rigid. 

3. Even when the streamwise displacement reaches more than 10 diameters for a riser of 

2000 diameters long, the variation in the vertical distance between top and bottom is 

small and negligible. 

4. Even though the fluid forces are three-dimensional, the deflected riser is nearly within 

a plane. The angle of the deflection is strongly dependent on the location of the riser in 

the wake. 

5. The effect of the top tension factor is a very important factor in determining the 

amplitude and shape of the deflection. Bending stiffness is negligible in identifying the 

amplitude of deflection for deepwater risers. 

6. Parameter H 11/ reflects the relation between hydrodynamic transverse loading and the 

axial tension, it is an important similarity parameter in determine the riser displacement. 

7. The model experiment to simulate the interaction of two very long risers is difficult. 

The similarity plan to use full scale flow velocity while neglecting the top tension factor 

(plan 2 as listed in table 6.1) could be a better option. 
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7.1 Introduction 

7.1.1 General Rlmarles 
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The interaction between two cylinders in two-dimensional spaces shows that under certain 

flow conditions for specified two cylinders arrangements, there can be more than one 

equilibrium point for the downstream cylinder. Following on from the previous chapter, 

the following questions need to be answered for the investigation of interaction between 

two marine risers: 

• How many equilibrium states are there for a specified arrangement of two risers and 

flow conditions? 

• Are all the equilibrium states stable? 

• When and how can two risers collide with each other if it is possible? 

• What is the effect of top tension factor, initial spacing, flow velocity etc. on the 

equilibrium state? 
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To answer these questions, continuation and stability analysis is required. As shown in 

Chapter IV, the continuation can identify the multiple equilibrium states. However, 

because the analysis has moved from two-dimensional space to three-dimensional space, 
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ordinary differential equations have been replaced by partial differential equations to 

describe the dynamics of the system. Necessary numerical procedures need to be taken to 

change the partial differential equations into a multiple finite degree of freedom system, so 

that the continuation can be implemented. 

No preVIous investigations into the interaction between two manne nsers have 

systematically adopted the approach of continuation, although possible collisions between 

marine risers have been recognised (Huse 1993). It is the view of this thesis that, to explain 

the mechanism of possible collision between two risers and to accurately identify critical 

states, such a specialised analysis is needed. This chapter deals with the identification of 

multiple equilibrium states and the critical state before collision. 

7.1.2 Method Used in This Work 

Continuing with the modal superposition method, the dynamic system for a riser located in 

the wake of another is investigated by the continuation method together with stability 

analysis. The continuation is based on the control parameter of pseudo arc length, and 

stability is analysed using the discretised system in a modal co-ordinate system through 

eigenvalue evaluation at individual equilibrium states. Because of the implication of the 

engineering applications, stability analysis was focused on the first and second mode 

eigenvalues. 

7.2 Theoretical Formulation 

7.2.1 Problem specification 

Compared to Chapter VI, the objective here is to seek all the equilibrium states of the 

specified system, and to analyse the stability of the corresponding dynamic system. 
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Therefore, the system for the equilibrium states is the same as the one used in Chapter VI. 

Additionally, a linearised dynamic system around the above equilibrium states is 

supplemented for the stability analysis. 

Based on the assumption of small lateral displacement both in streamwise direction and 

cross-flow direction compared to the riser length, the linearised dynamic system for a 

three-dimensional riser sitting in the wake of another at equilibrium X = X 0 ( Z) , 

y = Yo (Z) is written as (Krolikowski & Gay, 1980, Fumes, 2000): 

(7.1) 

Here, 

u , v: Inline and cross-flow displacement deviated from the equilibrium position 

respectively, which has been non-dimensionalised by the riser length 

m = m., + ma : Mass per unit length, including m.
t

, the mass of structure and the fluid inside 

the riser and ma , the fluid added mass 

C: Structural damping 
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t: Time 

The definitions of other parameters are the same as in previous Chapter. 

At the equilibrium state, X = Xo(Z), Y = Yo(Z) , the following conditions hold, 

EI d
4
X d [ dX] ----- T -m ZI - =F ·1 l~ dZ4 dZ (eo eg H) dZ xO H 

EI d
4

y d [(T Zl )dY]_ F 1 
l~ dZ4 - dZ eO - meg H dZ - yO' H 

[1.2) 

Here, Fxo' Fyo: Auid loading in x and y directions when the nser 1S located at its 

equilibrium of ~t' Y.J. 

The boundary conditions of the system are defined as both ends of the riser being 

supported in a pinned-pinned way, i.e. 

[1.3) 

(at Z=O and Z=l) 

7.2.2 Solution Procedures 

The modal superposition method is used in this chapter to carry out the continuation and 

stability analysis, by introducing the modal shape function, 

CIO CIO <Xl 

X(Z) = La,.;,. uc[) = I I[),.;,. ucl, = IlL,.;,. ,..\ ,..\ ,.=\ 
CIO CIO <Xl 

Y(Z) = Ib,.;,. U
2
C[)X = II[)x.,.;,. U

2
CIX = Illx.,.;,. ,..\ ,.·1 ,.=\ [1.4) CIO CIO <Xl 

u= Ie,.;,. u 2
Cm = LIm.,.;,. u2c -If; LY - LY.,.,. ,.1 ,-1 ,ml 

CIO 

v=Id,.;,. ;,. = sln(rnZ) 
,.1 
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Substituting (7.4) into (7.1), multiplying rPs on both sides of the equation, and integrating 

(7.1) both sides for Z from 0 to 1, after some mathematical manipulation, the dynamic 

system can be written as: 

'-X c, - .• 

. c pD N N pD N N 

X ---X --~~ X I' W +-~~yl' W ., - ., L.J L.J ,} m '.k... 2 L.J L.J ,} I.k '.k ... 
m m ,=\ k=\ m ,=\ 1.=\ 

+L c w +d w D( N N ) 

2 L L ,fox.1. ,.1.... ,fIJY.. ,,J. ..• 
m ,=\ k=\ 

d =Y 
.f .f 

• C pDNN pDNN 
y=--y--~~ X I' W --~~YI' W 

.• .• L.J~,J /J: '''.' 2 ~~ ,J m: ,.I..s m m ,=\ h\ m ,=\ 1.=\ 

+L c w +d w D( N N ) 

2 L L ,f,x" ,,J.... ,f"r.. ,.1..' m ,=\ *=\ 
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+ m. ~(.!.(S1r)2C d -.!.(S1r)D d)- (S1rY [EI(S1r)2 +T Jd (7.5) 

L.J / .. I. / .. • /2 /2 eO •• m 1.=\ H H m H H 

Here: 

1 

CSk = 2 !Z sin(brZ)sin(snZ)dz = 2 
k=s 
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k=s 

{

o (k + r + s) is even number 

W,.k •. v = _~( 1 + 1 _ 1 _ 1 ) (k+r+s) is odd number 
K k+r+s k-r-s k+r-s k-r+s 

h = 1(4 kc lr ±m
2
a ( ±rb,+ ±rb,+ frb,-, __ LmN+~+b .• ,-, __ LmN_lrr+b.,,-,_LmN_k_r .• b,-,_LmN+k_r.,b,J 

.Ir 4 111.1 III ,.-III+k-.I ,."l+k+.1 ,.",-k+.. • _ _ 
,~I ,~I ,~I ,~I ,~I ,~I ,~I 

Equation (J .5) is the dynamic system for the downstream riser in the modal co-ordinate 

system. Although the modal co-ordinates are in infinite numbers, based on the quick 

convergence characteristics of the system, normally only the lower order mode co-

ordinates are important and need to be analysed. So is the eigenvalue of the dynamic 

system. In practical calculation, the summation over the modes can be truncated at N-th 

order, which makes the system into 4N-dimensional first-order ordinary differential 

equations. Experience in previous chapter show that N takes 6 is enough for statics. 

However, N needs to take 15 to 20 when stability analysis is conducted. 
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7.2.3 Continuation 

The existence of multiple equilibrium states is the basic characteristic of nonlinear dynamic 

systems. According to the results found in Chapter IV, in two-dimensional space there can 

be more than one equilibrium state for a given condition of initial arrangement and flow 

velocity. In order to seek the multiple equilibrium states, the continuation technique has 

been applied. The given system is a 4N non-linear equations where N is the total mode 

number in the calculation. The parametric strategy will heavily rely on the method of arc 

length, because turning points are likely to occur. A weighted pseudo arc length strategy is 

used in this numerical analysis. The pseudo arc length is represented by the displacement of 

the mid-point of the riser and the flow velocity, expressed as follows: 

ds = ~ .n[dx2 + dy2] + (1- {J)dV2 [1.6) 

Here {J is the weight coefficient, which takes the value from 0 to 1. 

In the expression in modal co-ordinate system, the arc length is expressed as: 

[1.1) 

Such an expression is physically intuitive, which gives the result for the position of the 

downstream riser at the middle point. 

The selection of parameters {J is the key to the success of the continuation process. The 

value of {J reflects the relative importance of the flow velocity parameter or the 

displacement of the middle point of the riser. The experience of continuation in two

dimensional space shows that when the equilibrium point is near its maximum stream wise 

displacement, it is very sensitive to the streamwise deflection. At such states, more weight 
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should be given to the flow velocity, and p should take a small value. When the 

equilibrium is near its critical state, on the other hand, p should adopt a large value to 

avoid the sensitive relation to flow velocity that can cause the failure of the continuation. 

The numerical analysis in a three-dimensional space shows that extra care should be taken 

to realise a successful continuation. 
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In this investigation, agam., the continuation 1S implemented by the predictor and 

correction two steps method. The difference from the two-dimensional investigation is 

that the present continuation is conducted in a higher dimensional space. A detailed 

description may found in Seydel (1994). The Akima interpolation has been applied in the 

predictor step, which provides a 3N order spline curve along the control parameter of the 

arc length. The carrying out of such a method is straightforward, and the estimation 

provided by such a predictor is good enough for the corrector step to converge with the 

equilibrium point. The modified Powell hybrid algorithm and a finite-difference 

approximation to the Jacobian are used to solve the nonlinear system (More and others 

1980). 

7.2.4 StabilifY AnalYsis 

For the differential equation(7.5), there are two ways to determine the stability of the 

equilibrium state. 

One is the method of stability testing, literally to simulate the dynamic behaviour of the 

system, starting from a predefined state, which is near the equilibrium state, and to observe 

the behaviour over a long period of time. If the state is close enough to, or reaches, the 

equilibrium state, then the state is called stable. Such a method is always time consuming. 

Another method is to cast the system into a discretised system, i.e. transform a continuous 

system into a multiple degrees-of-freedom system, such as from (7.1) to (7.5) derived 
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above. Such a system is an ordinary differential equation system. Ibis makes it possible to 

use the concept of an eigenvalue system to investigate the stability of the system. Ibis is 

the method applied in this investigation. The corresponding Jacobian matrix for the 

dynamic system (1.5) is shown in equation (1.9). 

7.2.5 Continuation Procedure and ldentijication ojCritical State 

The continuation can be started from the statics analysis under a specified low flow 

velocity. Experience shows that the corresponding equilibrium state is often stable. 

Increasing the flow velocity along the arc by a prescribed arc length, the next equilibrium 

state is first estimated by the interpolation technique. For the very first step of the 

continuation, the first equilibrium is used directly as the estimated equilibrium in the 

predictor. The corrector is then used to seek the exact equilibrium. Step by step, the full 

chain of the equilibrium can be realised. At certain steps, adjustment of arc length weight 

factor is utilised if necessary. When the critical state (turning point) is met during the 

continuation, it is identified by solving an additional equation. The supplementary equation 

for the critical state is given by: 

dX 
-=0 
dVo 

(1.8) 

Here X direcdy takes the streamwise co-ordinate difference between the downstream riser 

and upstream riser, Vo is the free stream vdocity. 
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7.3 Numerical Results 

The marine riser data taken for the investigation carried out in this chapter is mainly 

adopted from table 6.2, The 12" riser pair have length of 1332 meters and a top tension of 

7.416x106 N (with top tension factor 3.28) unless otherwise explicitly stated. The analysis is 

carried out for the downstream riser located both on wake centreline and off-wake 

centreline. 

7.3.1 Wake Centreline 

Figures 7.1 to 7.3 show the continuation and stability analysis results for the two marine 

risers separated with X:r=8, 10 and 15 diameters respectively. Among these, Figures 7.1(a), 

7.2(a) and 7.3(a) show the positions of middle point of the two risers, i.e. the displacement 

at Z=O.5. Figures 7.1(b, c), 7.2(b, c) and 7.3(b, c) are the results of the eigenvalues showing 

the stability at the corresponding equilibrium states, and the rest show the geometrical 

shape of the two risers under corresponding flow velocity. It is seen that both upstream 

riser and downstream riser move towards downstream with the increase of the flow speed, 

because of their increased drag force in the direction of flow. However, the variation of 

movement of the upstream riser, which is almost proportional to the square of the flow 

speed, is larger than the downstream one. Such a difference in the variation of deflection 

with flow velocity brings the two risers closer. When the flow speed reaches a certain level. 

depending on the top tension and initial spacing of the two risers, two equilibrium states 

start to exist One is located downstream and the other is very close to the upstream riser. 

The latter is usually unstable. When flow velocity is increased further, the downstream riser 

first reaches a maximum downstream position D, after which the downstream riser begins 

to move towards upstream if the flow speed is further increased. Eventually, the two 

equilibrium states merge at an increased flow velocity. Such a position, M, is unique at 
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which only one equilibrium exists, and is defined as the critical state for the riser pair 

interaction. There will be no equilibrium if the flow velocity is further increased. 
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Examining the variation of eigenvalues with the flow speed, Figure 7 .1 (b) gives the first 

mode eigenvalues while Figure 7.1(c) shows the second mode eigenvalues. It is seen that 

when the flow velocity is zero, the pair of the eigenvalues has no real parts when the 

damping of the system is neglected. When velocity is increased until it reaches the state H, 

the first mode starts to tum into an unstable state, via a Hopf bifurcation. Such a 

characteristic depends on the initial spacing and the riser's top tension. Although the details 

of the variation of eigenvalues differ from situation to situation, the qualitative trends for 

every case discussed here are same. The existence of a Hopf bifurcation point H only 

occurs when spacing between two risers is relatively small, and it disappears when spacing 

becomes large. On the other hand, under this situation, for 10 diameters spacing, even here 

there is a Hopf bifurcation. The state is very close to the critical state, which implies that 

the Hopf bifurcation is not important practically. The variation of second mode 

eigenvalues shows that, often, the eigenvalue pair transverse the imaginary axis through the 

Hopf bifurcation at point Hz. Nevertheless, Hz always occurs at a higher flow velocity than 

the corresponding flow velocity for the point at which the first mode loses its stability. 

Such a result shows that the first mode of the riser is the most vulnerable to the wake 

induced instability. 'This is consistent with the experimental observation that the wake

induced oscillation is a low frequency motion. Also, the results shown here are consistent 

with the two-dimensional results. Figures 7.2(d) and 7.3(d) are the deflected geometrical 

shape of risers at flow velocity close to the critical speed. It can be seen that the two 

coexisting equilibrium states can both bend towards downstream. Figures 7.1 (d), 7.2(e) and 

7.3(e) show the geometrical shape of the two risers when flow velocity is just above the 

state where the additional equilibrium states start to appear. Often the two equilibrium 
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states have two different deflection directions, one towards downstream which is stable. 

The other one has its middle part bent towards the upstream riser because of the negative 

drag force, and the latter one is unstable. 
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Figure 7.1 (a) Displacement of the middle point of the riser. 
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Figure 7.1 Continuation for the riser pair with design spacing of Xs=8, 
Ys=O, To=7.416X1Q6 (N) 
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Figure 7.3(a) Displacement of the middle point of the risers. 
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Figure 7.3(b) Variation of first mode eigenvalue with the flow velocity. 
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Figure 7.3 Continuation for the riser pair with design spacing of X.;=lS, 
Ys=O, To=7.416X1Q6 (N). 
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7.3.1.1 F..xplanalion of Double Equilibrium States 

The continuation analysis for two tandem arranged risers shows that there is a critical state. 

When flow velocity is larger than the critical state, there will be no equilibrium, which 

implies that two risers are likely to collide with each other when flow velocity is high 

enough. The understanding of the critical point M can be made via the two-dimensional 

case by the following sketches 7.4. 

Figure 7.4(a) shows that, when the flow velocity is low, there is only one equilibrium state, 

which is stable. The linear relation between displacement and mechanical force represents 

the recovery force of the riser and the slope of the line represents the stiffness of the 

spring in two dimensions. Such a slope will not change, as long as the non-linearity of 

spring stiffness is not introduced into the present analysis. Figure 7.4(b) shows that with 

the increase of flow velocity, two equilibrium states begin to emerge, with one stable and 

the other unstable. When the flow velocity is increased further, a critical state with only one 

equilibrium state emerges which highlights the M point in the three-dimensional case. At 

this point, not only the mechanical spring force balances the fluid force, but the stiffness of 

the spring is equal to the equivalent fluid force spring stiffness. When the flow velocity is 

larger than this critical flow velocity, there may not be any physical equilibrium states, 

which simply means that the downstream riser can not find balanced positions. It is 

envisaged that after this flow velocity, the collision between the downstream riser and 

upstream riser will be inevitable. From these figures and the interpretation from the two-

dimensional case, when flow velocity exceeds the one corresponding to the critical position 

M, collision between the two risers is likely to occur. Further referring to figure 704, the 

slope of the linear spring recovery force reflects the relationship of the tension within riser 

and the riser displacement in three-dimensional case. A change in the tension will alter the 

slope and hence the critical point of the intersection between the linear line and the drag 

force curve. Also because the magnitude of the fluid force changes with the flow velocity, 
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the initial spacing difference will eventually change the critical points as well. Thus the 

critical state is closely related to the tension of the riser as well as the initial spacing. The 

quantitative relationship will be explored in a later section. 
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7.3.1.2 Discussion 0/ API Recommendation and Huse s Work 

The most recognised criteria to date regarding the onset of two risers to collide were 

proposed by Huse (1993) as recommended by API (1998). Compared to the method 

utilized in present study, Huse only account for the streamwise drag force while take no 

account of the cross flow forces. In the meantime, Huse only studied the situation when 

two risers are arranged in tandem. According to Huse's explanation of riser collision 

criteria, collision starts when the spacing between two risers is equal to the riser diameter. 

284 

In other words, the two risers already contact with each other at critical state. Figure 7.5 is 

a redrawing of the sketch of the collision between two risers (Huse, 1993). According to 

the present analysis, the recommendation is only a special case when the spacing 

corresponding to the critical state is equal to one diameter. According to the present study, 

the critical state is directly related to the stability change and reflected by a turning point on 

the continuation diagram. Therefore, the conclusion of the API recommendation 1S 

inaccurate. The drawback of such a recommendation lies in the following: 

1. The inaccuracy of the identification of critical state. The recommended critical state 

corresponds to the state when an additional equilibrium state starts to appear. The 

new emerged equilibrium state is in fact unstable. The real critical state occurs at a 

significantly higher flow velocity. For example, in Figure 7.3(a), the critical flow 

velocity identified by Huse's method would be 0.84 m/ s rather than present 0.91 

m/ s. The difference is about 10 percent for this case. Such a difference can be even 

larger depending on the top tension factor and design spacing between the two 

nsers. 

2. It is misleading on the understanding of the dynamics at the post-critical state. 

According to the recommendation, it is easily speculated that if collision occurs, 
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the intermittent collision is caused by vortex-induced vibration, such as in the 

recent research conducted by (Halse, 2000; Kaasen et al, 2000; Magne et al, 2001). 

All of these assumed the vortex-induced vibration is the main contribution to the 

riser collision. They do not account for the real impact effect when two risers 

collide, neither do they explain the large amplitude low frequency movement of the 

downstream riser as observed in the experiment. 

Therefore, their recommendations have not shed any light on the real possible effects after 

the critical states. From the present analysis it is seen that after collision starts, further 

contact is unavoidable. Rather than vortex induced vibration, the non-stop intermittent 

collision is essentially caused by the disappearance of equilibrium states. For these reasons, 

the present analysis presents a much clearer picture of the mechanism between two risers' 

collision, and can identify more accurately the critical state just before the collision occurs. 

---------------------------------------, 

I 
'a 

I 
I 
N 

X (Flow Dnctlon Poeltlon) 

Figure 7.5 Schematic of the mechanism of riser collision (Sketch redrawn from Huse. 
1993). when AX=D, riser collision OCCUR. 
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7.3.2 Off Wake Centreline Scenarios 

7.3.2.1 Inner Wake Position 

Figures 7.6 to 7.7 are results for the downstream riser, initially located off the wake 

centreline. The results presented here are for a typical streamwise spacing of 10 diameters, 

with the transverse location of 0.5 to 2.0 diameters respectively. The top tension factor is 

taken as 3.28. It is seen that due to the effect of the transverse force, with the increase of 

flow velocity, the downstream riser is pulled towards the wake centreline while it moves 

towards downstream. When the flow velocity reaches a certain leve~ similar to the situation 

on the wake centreline, the downstream riser will have two equilibrium states, with one 

located downstream and the other close to the upstream riser. Further increase in the flow 

velocity means that the downstream riser will reach a maximum deflection state D, after 

which the downstream riser's deflection will be decreased if flow velocity is further 

increased. A critical state exists under which two equilibrium states merge. 1bis is a turning 

point on the continuation curve of deflection with regard to the control parameter of flow 

velocity. When the flow velocity is larger than the critical flow velocity, there will be no 

physical equilibrium. 

Figures 7.6(a), 7.7(a) show the details of such variation. The stability analysis shows that the 

variation of eigenvalue is similar to that when the downstream riser is located on the wake 

centreline. Also, for the case of streamwise spacing of 10 diameters, there is a Hopf 

bifurcation point H, immediately before the critical state M. However, the two states H and 

M are so close to each other that the existence of Hopf bifurcation is hardly distinguishable. 
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Figure 7.6(b) Geometrical shape of two risers at flow velocity of Vo=O.6 (m/ s). 
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o 0 

Figure 7.6(c) Geometrical shape of 12" riser pair at critical state (Only one equilibrium state). 
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Figure 7.6 continuation analysis for the riser pair with Xs=1O, Ys=O.5, 
TfF=3.28. 
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Figure 7.7(a) Displacement of the middle point of the upstream and downstream risers. 
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VooO.6S (m/s) 

Figure 7.7(b) Geometrical shape of two risers at flow velocity of V()=O.650 (m! s). 

VOOO.716 (mls) 

Figure 7.7(c) Geometrical shape of two risers at flow velocity of Vo=O.716 (m/ s), critical state. 
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Figure 7.7 continuation analysis for the riser pair with Xs=10, Ys=2, TfF=3.28. 
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7.3.2.2 Outer Wake Position 

Figures 7.8 Figure 7.9 are results for streamwise location of 10 diameters, with transverse location 

of 2.5 and 3.0 diameters, which are the locations for the wake induced flutter that can often occur 

in power transmission lines. In all these cases, the top tension factor is kept as 3.28. It is seen from 

figure 7.8(a, b) and 7.9(a, b) that, with the increase of flow velocity, the downstream riser is pulled 

towards the wake centreline while it moves towards downstream. However, when the flow velocity 

reaches a certain value, depending on the top tension and initial arrangement, the downstream riser 

will have two, three and four equilibrium states respectively, depending on the flow velocity. 

Nevertheless, there will be no equilibrium at all ultimately when the flow velocity is high enough. 

In the course of the variation from four equilibrium states to none, the process of equilibrium pair 

merger is the same as occurred in two-dimensional space, i.e. the downstream pair and upstream 

pair converged one after another, the order depending on the initial arrangement. Figures 7.8(c, d) 

also show the variation of different mode coordinates with flow velocity, the definition of modal 

co-ordinates is shown in equation (7.4). It shows that all the individual mode coordinates have the 

same variation course as the riser middle point displacement. All of them have monotonic variation 

with regard to flow velocity. Figure 7.8(e) shows the geometry of each individual equilibrium state 

when the flow velocity is 0.685 m/s. Under such a flow velocity, there are four equilibrium states 

altogether for the downstream riser, only two of which are stable, i.e. the most downstream one 

and the second to the most upstream one shown in Figure 7.8(e). Figure 7.9 shows a case when the 

downstream riser is located near the wake boundary initially. As in the case shown in Figure 7.8, 

there is a maximum of four equilibrium states. The critical state is located at the merger point of 

the downstream equilibrium pair, which is significandy larger in flow velocity than the merger point 

of upstream equilibrium pair. Figure 7.10 shows the variation of the equilibrium for different initial 

arrangements. It is seen that for the same streamwise spacing of 10 diameters, with the increase of 

initial transverse distance, the maximum number of equilibrium states is increased from two to 

four. All the variations are continuous with regard to flow velocity and transverse distance. Figure 



W. WU Continuation and stability anafysis for a pair if marine risers 293 

7.10(c) shows the variation of critical velocity with the transverse distance. It shows that the critical 

flow velocity is smallest on wake centreline for the same streamwise design spacing, and that the 

variation of critical flow velocity with transverse spacing is insensitive when the downstream riser is 

placed near the wake centerline. Rapid increase of the critical velocity occurs when the downstream 

riser is located near wake boundary, a location where multiple equilibrium states exist for certain 

flow velocity. 
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Figure 7.8(a) Streamwi e displacement of riser middle point with flow velocity for a pair of 12" 
Riser Patr, X~= 10, Ys=2.S, ITF=3.28 . 
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Figure 7.8(b) Transverse displacement of riser middle point with flow velocity for a pair of 12" 
Riser Pair, )(.;= 10, Ys=2.S, TIF=3.28. 
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Figure 7.8(c) Variation of modal co-ordinates with flow velocity for the 12" riser pair. 
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Figure 7.8(d) Variation of modal co-ordinates with flow velocity for the 12" riser pair. 
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Figure 7.8(e) Geometrical shape of each individual equilibrium states for the riser pair at 
flow velocity of Vo=0.685 (m/ s). 
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Figure 7.9(a) Strcamwise displacement of riser middle point with flow velocity for a pair of 12" 
riser pair, X~= 10, Ys=3.0, ITF=3.28 . 
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Figure 7.10(b) Transition of equilibrium states from inner wake to outer wake at 
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Figure 7.10(c) Critical Flow Velocity for Xs=10, with top tension of7.416x106 (N), 
i.e. TfF=3.28 . 

7.3.3 Critical State Against Design Spacing 

298 

For marine riser designers, if collision between risers is to be avoided, they need to know the 

critical flow velocity above which collision starts to occur for the specified top tension factor and 

clearance. Alternatively, for a specified ocean current, designers need to know the minimum top 

tension factor and clearance to keep two risers away from each other. Comparison between 

tandem and staggered arrangements has indicated that the critical flow velocity is smallest when the 

two risers are arranged inline. Accordingly, calculations were carried out to examine the critical 

state when the two risers are arranged inline. Figures 7.11 to 7.13 show the critical flow velocity 

and the corresponding middle riser position spacing variation with the riser clearance for three 

different top tension factors. It is seen that critical flow velocity and corresponding spacing 

increase with the increase of initial spacing, which reflects the increasing of clearance between 

risers, is a simple way to delay the possibility of riser collision. From the figure, it also can be seen 

that the effect of initial spacing is significant on the critical spacing. When the design spacing 

between two risers is larger, the corresponding spacing between two risers at critical state is 

significantly larger than 1 diameter. In fact, it has reached 8 diameters for the 30 diameters of 
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design spacing. Such a result shows a significant difference between present calculations and the 

recommendations provided by API. 
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Figure 7.11 TIF=1.2, critical flow velocity and corresponding riser middle position spacing. 
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Figure 7.12 TIF=1.64, critical flow velocity and corresponding riser middle position spacing. 
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Figure 7.13 TTF=3.28, critical flow velocity and corresponding riser middle position spacing. 

Table 7. 1 Parameters for a pair of 8" gas riser 

Parameters Value Unit 

Outer Diameter 0.2032 m 
Internal pressure 34487055.0 N/m2 

Wall thickness 0.0130 m 
Internal Diameter 0.1772 m 
Internal fluid gas 

Specific gravity 0.0 
length 1332.0 m 

mass (steel[ 60.88 kg/m 
mass internal 0.0 kg/m 
mass (added) 33.24 kg/m 
mass 94.12 kg/m 
mass parameter 0.2248 

~eight in water 271.14 N/m 
total weight 361157 N 

!fop Tension Factor 1.5 
2.0 
2.5 
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In order to examine the effect of different kinds of risers, and to provide more comprehensive data 

regarding the different top tension factor, two additional calculations are made. One is for a pair of 

8 inch gas risers which has the parameters shown in Table 7.1. 

The other is a pair of 10 inch production risers with one small tube located within the larger outer 

side one, which has the parameters as listed in Table 7.2. 

Figures 7.14 to 7.17 show the variation of critical flow velocity with specified top tension factor 

and design clearance. It is seen that all the data are consistent with each other regarding the 

relationship between critical flow velocity and the initial spacing although quantitatively such a 

relationship is dependent on the top tension and riser types. 

7.3.4 Comparison With Two-Dimensional Results 

When the two cylinders interact in two-dimensional space, it has been shown that the non-

dimensional parameter aUR
2 reflects the balance between fluid stiffness and the structural stiffness. 

It is the indicator for the stationary bifurcation. In three-dimensional space, the definition of a 

similar parameter can be difficult because of the existence of multiple mode frequency. However, 

as observed in the experiments (Huse. 1996). the wake induced oscillation is a kind of low 

frequency motion. The deflection of the riser is most significant in its first mode as shown in 

Figure 7.8. In addition. the first mode is the mode to lose its stability first should any instability 

occur. Therefore, an attempt is made to define the reduced flow velocity as: 

U -~ R-
mID 

Where m I is the first mode frequency when the riser is in still water. By using such a non-

dimensional parameter, the effect of the top tension factor is investigated for the 8" riser pair with 

design spacing as Xs=15, Ys=O. Figure 7.18 shows the variation of aUR
2 at critical state with the 

top tension factor. It can be seen that the critical aUR
2 increases with top tension factor and 
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approaches a constant when top tension factor is large enough (larger than 2.0 for the presented 

case). Also depicted in the figure is a reference line for the critical aU/ for two-dimensional case. 

The discrepancy between two-dimensional and three-dimensional results is attributed to the three 

dimensional effects. If the risers are assumed to be deflected in a perfect first mode shape, 

according to the statics control equations (6.11) and (6.12), because when the riser is under the 

critical state, the spacing along the riser is not constant, and the fluid loading is not constant along 

riser, which means that it is impossible for parameter aU/ to match the two dimensional case. This 

explains the similar results observed by Tsui(1986) in power transmission lines. Figure 7.19 shows 

the calculated critical sate results in non-dimensional form. As can be seen, even though the risers 

have different geometrical parameters, the critical aUR
2 mainly depends on top tension factor and 

the design spacing. When the top tension is very large, the results tend to converge with each 

other. On the other hand, the larger the design spacing, the larger the discrepancy which exists 

between 2D results. Such an increased 3D effect is because of the increased variation of fluid force 

along the riser at the critical state. 

7.3.5 &lation of Critical State H w with TIP and Design Spacing 

In Chapter VI, it has been pointed out that the displacement of the riser is a function of Top 

tension factor TTF, flow tension factor H w' Therefore, it is possible to relate the critical state by 

theses non-dimensional parameters. Figure 7.20 shows the relation of the critical H w for three 

different riser pairs with the same constant top tension factor of 2.0, the design spacing is set as 10 

diameters. It is clearly seen that for deep water risers, the critical H w is nearly constant for the same 

top tension factor and design spacing. As a result, graph can be drawn to show the relation 

between the critical H w and the top tension factor and design spacing. Such a graph will be 

applicable to the general deepwater designs. Figure 7.21 can work as a general guide for riser design 

to predict collisions. From this figure, it can be seen that for deepwater risers over 1000 meters, the 

critical flow velocity which bring the two risers to collide will be under 1 m/ s. 
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Table 7.2 Parameters for a pair of production risers 

Parameter Value Unit 
Len~ 1032 m 

Outer Pipe 
Outer Diameter 0.2445 m 
WallTIUckness 0.0138 m 

Internal Diameter 0.2169 m 
Inner piper 

Outer Diameter 0.1143 m 
WallTIUckness 0.00688 m 

Internal Diameter 0.10054 m 

Mass 
Riser 78.5138 ~/m 
Tub~ 18.2261 ~/m 
Annulus 27.3826 ~/m 

Internal fluid 7.1451 ~/m 
Added mass 48.1251 ~/m 
Total mass 179.3927 ~/m 

Mass parameter 0.1708 

Riser weight in water 815.6287 N/m 
Total w~ht in water 841728.8 N 
Top Tension Factor 1.5 
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figure 7.14 TIF= 1.5, critical flow speed and corresponding middle riser position spacing. 
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Figure 7.15 TIF=2.0, critical flow speed and corresponding middle riser position spacing. 
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Figure 7.16 TIF= 2.5, critical flow speed and corresponding middle riser position spacing. 
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Figure 7.17 TIF=1.5, critical flow speed for different design clearance. 
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7.4 Summaries 

The continuation in conjunction with stability analysis about interaction between two marine risers 

is implemented in this chapter. The numerical calculations show that great care should be taken in 

the implementation of continuation strategy, particularly for the predictor step. An inappropriate 

chosen continuation strategy can lead to failure. The numerical calculation results show that 

qualitatively, it agrees with those finds in the two-dimensional study. The following conclusions are 

drawn from the investigation: 

1. When the two risers are arranged in tandem, there can be either: no equilibrium state, one 

or two equilibrium states, depending on the initial spacing, top tension, and flow velocity 

etc. The state immediately before the disappearance of the equilibrium state corresponds 

to the critical state above which collisions between two risers are likely to occur. Also the 

critical state is corresponds to a stationary bifurcation state and is a turning point on the 

continuation diagram. 

2. When the downstream riser is located in the inner wake position, the continuation results 

are very similar to the case for two risers arranged in tandem, except that the critical state 

occurs at a larger flow velocity than in a tandem arrangement. 

3. When the downstream riser is located at the outer part of the wake, there may be up to 

four equilibrium states, with one or two which are stable. Nevertheless, when the flow 

velocity is large enough, there will be a critical state above which there will be no 

equilibrium states. 

4. The comparison between the three-dimensional investigation and the two-dimensional 

results shows that the critical parameter aU/, defined by first mode frequency, increases 

with the increase of top tension factor. When the top tension factor is large enough, it 
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approaches a constant, which is smaller than the value found in the two dimensional 

investigation. 

5. The critical parameter oU/ depends mainly on the top tension factor and design spacing. 

For general purpose of riser design, the guide curve can be made for the specified top 

tension factor, and design spacing, to check its critical parameter of oU/. 

6. A general purpose riser design guide graph has been obtained which can be used to predict 

the critical flow velocity before the riser collision occurs at specified design spacing and 

top tension factors. 
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DYNAMICS SIMULATION FOR A PAIR OF MARINE RISERS 
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8.1 Introduction 

8.1.1 General Remarks 
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Marine risers are rarely at rest since their deployment in ocean. Time varying ocean 

currents, together with harsh waves are often constant companions of the risers. Such an 

ocean environment can excite the marine riser direcdy via wave force and vortex shedding 

induced forces, or indirecdy via top vessel motion. Apart from these, as indicated in the 

foregoing analysis, the time-averaged force caused by riser interaction in ocean current can 

ultimately also lead risers to move around. The importance of riser dynamics in their design 

has been long recognised (Fish & Ludvig, 1966, Bernitsas, 1982). One of the direct 

consequences of such dynamics is the fatigue life of the risers. In the recent four to five 

decades, concerted efforts have been made to understand the mechanism of vortex

induced vibration and to predict such an effect The most recent work can be seen from 

Bokaian, 1994; Vandiver, 1997; Fumes, 1999; Willden et al, 2001; Moe et al, 2001. When 

the oil and gas development companies started to operate in deepwater, for example, 

3000ft to 10,000 ft or even deeper, the response of riser structure became an increasing 

concern. In such deep water, the UP like risers behave virtually like string in the ocean 

current For vortex-induced vibration, multiple modes can be excited simultaneously, as 
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indicated by Vandiver (1996) etc. Rajabi (1989), Duggal et al (1993) investigated pairs of 

tendons/risers under wave excitation, and demonstrated potential collisions between 

individual tendons/risers. However, so far, nothing has been published which account for 

riser dynamics with the consideration of risers interaction caused by ocean current, 

particularly via the time-averaged forces. The direct, perceptible effect of such dynamics is 

the intermittendy collision between individual riser as observed by (Huse, 1993, 1996; 

Bryndum and Andersen, 1999). In this chapter, a systematic investigation into time

averaged force induced riser dynamics has been made. As much effort has been made on 

the predicting of riser dynamics, a brief overview of the existing work is stated at the 

outset. 

8.1.2 Ovemelll of Existing Work on Riser Dynamics 

8.1.2.1 Systems Covered 

Because different researchers have different research objectives, the riser system has been 

investigated in different levels of complexity. The earliest investigations were focused on 

the solitary riser's statics and dynamics (Fisher & Ludvig 1966; Gosse & Barksdale 1969) 

etc. Now, different integrated systems have been looked into, such as the coupled system 

of top vessel and riser (or mooring lines), and also consideration of the sea bed effect 

(O'Brien & McNamara 1989; Heurtier et al, 2001). Multiple riser effect without direct fluid 

interaction was also included in some of the researches (Ormberg et al 1999). Some studies 

have focused on the detailed investigation of top joint effect and the dynamics under the 

condition of riser installation and hang-off (Watters et al 1998; Sattamini & Ferranti 1993; 

Patrikalakis & Y oon 1990; Teigen et al1990). The high perfonnance of modem computers 

has made it possible to consider even more complicated and detailed structure systems. 

However, study into risers affected by flow is mosdy confined within the scope of small 

spacing between risers, such a study, targeted on the bundle risers, was carried out by 

Vlahopoulos & Bemitsas 1991. The dynamics of TLP like riser pair or group remains un-
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explored, although the significance of riser interaction has been recognized in recent years 

(Huse, 1996). 

8.1.2.2 Numerical Method Empk?Yed 

It was shown that differences in riser deflection due to non-linearity can be as high as 28 

percent in the maximum displacement (Bernitsas & Kokarakis 1988). Because of such a 

non-linearity in the nature of the problem, both in structural dynamic terms and 

hydrodynamic forces terms, to obtain a classical solution is not generally possible. 

Recourse to numerical technique has to be made. In the numerical investigation of riser 

dynamics, the fluid forces are usually assumed to be known beforehand (the Morison's 

equation is often employed), which means the interaction of the structural dynamics to 

flow is not considered. Mathematically, it is required to solve a fourth-order partial 

differential equation in time and space domain. The boundary conditions are often defined 

at both ends of the risers, with the bottom end fixed and top end fixed or with a prescribed 

movement. The problem in time domain is either steady state or transient. For steady-state 

problems, there is no specific condition need to be defined (such as static problem or 

steady state vibration concern). Otherwise, the problem needs to specify the initial 

condition for the riser. 

The objective of the numerical technique is to discretise the partial differential equation 

into solvable simultaneous equations. According to different methods of the discretisation 

in space domain, the numerical technique is usually classified into: 

1) Finite Difference Method, such as (Burke 1973, Morgan 1975, Huagui, 1994), 

2) Finite Element Method (for example, Gardner & Kotch 1976), 

3) and also Modal Superposition Method (Modi et al1994, Fumes, 1999) etc. 
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The clarifications of these methods were provided in Chapter VI. 

According to the discretisation method in time domain, the approaches are classified into 

time history analysis and steady-state frequency domain analysis (Bemitsas, 1989). The time 

history analysis method starts from the transient state and obtains the solution in time 

history until a steady state solution is achieved or some specified time instant has been 

reached. The frequency domain analysis solves the partial differential equation in frequency 

domain by supposing the solution has steady state form solutions. The frequency domain 

method has the advantage of high efficiency while it has to linearise the control equation. 

The time domain solution usually calls for much more computation time and most of such 

computations have been spent on the transient state when the ultimate state to be sought is 

steady. The preference between above two methods is largely dependent on the 

requirement of the investigation. 

8.1.3 Prtsenl investigation 

In this chapter, by using the modal superposition method, a three-dimensional riser 

interaction code in time domain is implemented. The code is validated against published 

API data about the riser dynamics. Subsequendy, a detailed parametric study on the 

interaction was carried out. The dynamics of riser interaction has been examined 

systematically. The results show that wake-induced oscillation is a low frequency, large 

amplitude movement. The quick motion mainly occurs when two risers are close to each 

other, i.e. immediately before and after the collision. The motion speed of riser before 

imminent collision is significant and comparable to the possible maximum amplitude of 

the high order vortex induced-vibration motion. Such a result suggests that a rethink is 

needed for the investigation of collisions between two risers in which most investigations 

have assumed the vortex-induced vibration is the main contributor towards collision effect, 

such as Halse, 2000; Kaasen et al, 2000; Magne et al, 2001 etc. 
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8.2 Theoretical Formulation 

8.2.1 Mathematical Definition of the Problem 

Figure 8.1 Sketch of two flexible riser system. 

8.2.1.1 Stnlctllral Dynamic System 

Compared to the statics and continuation investigation conducted in the previous two 

chapters, the riser dynamics in this chapter focuses on risers' time domain behaviour 

particularly under specified high current. Therefore, unlike the dynamic system treated in 

stability analysis, the structural displacement in this Chapter is treated as a whole, which 

literally is the sum of the static displacement investigated in Chapter 6 and the dynamic 

displacement discussed in the Chapter 7, though small displacement hypothesis will be still 

applicable to such a system because the displacement is small when compared to riser 

length. Additionally, the top connector of the riser can move with the top vessel as will be 

reflected in the specification of the boundary conditions. 

Figure 8.1 redraws the co-ordinate system used in Chapter 6. For simplicity, let the two 

risers have the same uniform geometrical property and mechanical performance. The 
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linearised structural dynamic response of the risers to the fluid excitation are expressed as 

(Krolikowski & Gay, 1980, API, 1998) 

m iix, +c Ox, +~(EI(ix')_~(T Ox')=F at 2 at az2 az2 az e, az x, 

m
a2y

, +cOy, +~(EI02Y')_~(T 0',)= F ot2 at OZ2 az2 OZ e, OZ y, 

(8.1) 

(;=1,2) 

Here, subscript i = 1,2 denotes the upstream and downstream riser respectively. The 

movement of upstream riser in the transverse direction is also included in order to 

generalise the problem, the definitions of other parameters are the same as before. Fxi , FYi 

are fluid forces applied on the riser in x,ydirection respectively, which is a function of 

time as well as depth. The source of this kind of fluid loading can be time-averaged force 

as well as wave force or vortex-induced force depending on the focus of the research. In 

this Chapter, the time-averaged force is the main concern, while the wave force has been 

used to validate the computer code. 

8.2.1.2 The definition of bOllndary condition 

Let the bottom of the riser at the lower ball joint be pinned, and the top connector at the 

riser support ring be simulated by a spring with stiffness of kl" The boundary condition 

can be written as 

x/(z = 0) = xv(t); xi(z = IHi) = 0; 

a2x --' =0 

(8.2) 

=0 

(i = 1,2) 
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Here, ~T, is the variation of the top tension. I Hi (i = 1,2) is the vertical distance between 

riser support ring and lower ball joint, N HI is the vertical displacement of top riser support 

ring. Xv' Yv are excursions in x,y directions respectively which are related to the top vessel 

motion. 

8.2.1.3 Non-dimensional form of the !)stem 

Let 

Z = z;(t) 
I IHI(t) 

(8.3) 

X,(Z"I)-( 1.0- t. }.(I) 
X,(Z"t) = IH,(t) 

y,(z"I) - (1.0- ~, ,.(1) 
y,(Z"t) = IH,(t) 

(8.4) 

(i=I,2) 

As the movement of the riser in vertical direction is assumed to be small when compared 

to that in transverse and stteamwise directions, the non-dimensional form of the structural 

dynamic system and its corresponding boundary condition are then transformed into the 

following fonn: 

02 Xi coX, Ef 04 Xi 7;i if Xi 1 07;i oXi --+---+----------------
at 2 m at m/~, azi

4 ml~, aZ,2 ml~i az, oZ, 

+ X ~ 07;, + (1- Z, ) 0
2 

~v, + ~ (1- Z, ) ax Vi = F:, 
mlHi az, at m at mlHi 

02y, C oY, Ef cry r &y 1 or or --+ __ + ____ , __ e, ___ , _____ e_'_' 

at
2 

m at m/~, az/4 ml~, OZ,2 ml~, aZi az, 

+ Yv; 07;, +(1- Z,) 02~, +~(1-Z) aYv, = FYi 

mlH, aZi at m ' at mlHi 

(8.5) 

(i = 1,2) 

Here, 
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Xv, = lXv, ~" = Y
1 

V 

H, H, 

(8.6) 

at Z, = 0, 1 (i = 1, 2) 

The boundary condition in 8.6 is homogeneous. For such a system, the Hooke's law can be 

expressed as: 

1 +(oX;)2 +(01';)2 dZ; 
oZj OZi 

(8.7) 

Here 10, is the riser original length, E is Young's modulus, A is the cross section area of 

the riser, Pa is the static pressure outside the riser, P; is the static pressure inside the riser. 

Ao and AI are outer and internal cross section areas respectively, and the summation is 

made when the riser consists of multiple tubes. 

In the above structural dynamic equations, the displacement of x,Y , the distance between 

riser ends I Hi and the top tension are unknowns. Equation 8.5 to 8.7 form a self contained 

system should the external excitation of fluid force is known. The standard first-order 

differential equations are expressed in the following form, 
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p = j(jj.t) 

with 

p, = P2 

. c EI fl PI I:, a2 PI 1 aI:, (}p, 
P ---P -----+----+------

2 - m 2 ml~, az: ml~, az~ ml~, az. az. 

P3 = P4 

. c EI a4p3 ~,02 P3 1 aI:, ap3 
p ---p -----+----+------

4 - m 4 ml~, oz: ml~, az~ ml~, az, oz, 

_ Xi' aI:, _(1_Z,)a
2x:, _~(l_z.)aXVI + Fy , 

m1HJ az, at m at mlHl 

Ps = P6 

. c El a4 Ps 1:2 a2 Ps 1 a7;2 Ops p ---p -----+----+------
6 - m 6 ml!2 aZi ml~2 aZi m/~2 OZ2 aZ2 

_ X~2 07;2 -(1- Z2) 0
2 
X;2 -~(l- Z2) axV2 + FX2 

mlH2 aZ2 at m at mlH2 

p, = Ps 

. c EI ~ p, 1:2 a2 P7 1 a7;2 ap7 
P ---p -----+----+-----

8 - m 8 m/~2 OZ: m/!2 aZi m/!2 aZ2 aZ2 
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upstream and downstream riser in x andy direction respectively, P2' P4' P6' Ps are their 

corresponding velocity tenns. 

(8.8) 
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8.2.2 Hydrocfynamic tones 

The hydrodynamic force in equation 8.5 can be both space and time dependent. In the 

investigation made in this chapter, both wave forces and time-averaged forces are 

considered, the inclusion of wave force being mainly for the purpose of validating the 

computing program. 

8.2.2.1 Time-averaged rorce 

The time-averaged force is further applied by the two dimensional approach. By supposing 

the averaged effects at different depths of the riser are independent of each other, the time

averaged fluid force is only dependent on the relative position between two risers at the 

specified depth. When the ocean current is non-unifonn along the water column, a linear 

interpolation scheme is applied at the desired riser depth position. For a specified water 

depth, the time-averaged force is expressed as: 

FX'J = ~ ~VO.l - XIJ\(VOJ - Xu )OCm 

FYIJ =0 

Fx2 ) = ~ pUrl.l(Z))n[(U) -x2))Cm + .Y2jC1.2] 

Fy2 ) = ~ pU,2J(Zj )q(uj - x2) )C1•2 - y2jCm ] 

The subscript) represents the different riser depth. 

8.2.2.1.1 Wave force, j"li"e movement onlY 

(8.9) 

In the presence of waves, the fluid forces applied on the risers can be represented by 

Morison's Equation as follows, 
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(8.10) 

It should be noted that the transverse force caused by vortex shedding is not the content 

of the investigation in this chapter. 

8.2.3 Sollilion Procedllres 

Equation 8.3 is solved by the modal superposition method, together with time domain 

Runge-Kutta integration. The methodology behind is the same as that for statics analysis. 

The solution procedure is as follows: 

1. Specify an initial state of the two risers at given flow condition for specified riser pair. 

Ibe initial state can be design position 1 or any other specified state~ 

2. Solving the dynamic system at a given time step by Runge-Kutta integration. Implicitly, 

double iteration scheme is applied, with one similar to that used in statics analysis to 

comply with the Hooke's law and the other for the consideration of top tension 

variation; 

3. Utilising the above time step as the initial state, find the next time step state, such a 

time marching continues until the specified time reached. 

I 1X:sign potlition n:prt:llents the state for two riscnl when the fluid flow is stationary and thl:rc arc IlO disturbancc\>. 
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8.3 Numerical Results 

8.3.1 Dynamics of a Solitary Drilling Riser 

In order to validate the present numerical programs, a calculation was made to check 

against the published data by API (API, 1992). The chosen case is for a solitary drilling 

riser, 10 inches in diameter and 1520 ft in length. The specifications of the riser, with its kill 

line and choke line are provided in table 6.2, Chapter VI. The operation condition is 

specified as follows: 

Table 8. 1 Flow excitation specification. 

P .... met.r 

Top Tension 

Static Offset at the Top 
Vessel surge amplitude (peak to 

peak) 

Vessel surge phase angle relative to 
the wave crescent 

Vessel surge period 
H, wave height, peak to trough 
T, wave period 

Current profile 

Valu. 

370 
600 

90 

26.7 

_9dJ 

12.8 
40 

12.8 
Linear, 

Unit 

Kips 

Sec. 
1:'eet 
Sec. 

2 Knot at Mean Water Level, 
0.4 Knot at lower ball joint 

Figure 8.2 and Figure 8.3 show the calculated results, compared to the API published data, 

for the deflection envelope and bending stress for the case of top tension of 370 Kips and 

600 Kips respectively. The right hand side envelope is the maximum deflection or bending 

stress varying with depth, while the left hand side envelope denotes the minimum 

deflection or bending stress. The API results shown in the figure are composed of two 

curves for each specific envelope line, which itself shows the variation of the results 

supplied to the API by different institutions. It is seen that both geometrical shape and 

bending stress agree very well with the API published results. This gives the confidence in 

the subsequent calculations for the dynamics of two risers interaction. Additionally, in 
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order to examine the convergence of the numerical calculation, comparison is made for 

computation using different mode numbers. Shown in Figure 8.4 is a comparison of 

deflection and bending stress envelope between mode number of 20 and 40. It is seen that 

in Figure 8.4, the geometrical figure has converged very satisfactorily when the total mode 

number participated in the calculation is taken as 20. However, for detailed information 

such as bending stress, the calculation with mode number of 40 shows a slight difference 

to the mode number of 20 although, generally speaking, both results have nearly converged 

with each other. This is due to the relative slow convergence for terms of bending stress. 

Based on such a comparison, in the subsequent computation, the mode number is 

generally taken as 20 in order to make the calculation more efficient. 
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solitary drilling riser. Top tension 600 Kips. (a) Displacement; (b) Bending 
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height 40 feet. (a) Displacement, (b) Bending stress. 
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8.3.2 Transition of A Pair of Risers Under Stea4J Current OnlY 

In the subsequent systematic analysis of the dynamics of a pair of marine risers, the 

specification of the riser taken in the analysis is as follows: 

Table 8. 2 Specification of the riser pair. 

GeometrIcal Data Value Unit 

Outer Diameter (m) 0.30 111 

Internal Diameter (m) 0.24 111 

Riser Length (m) 1332.0 111 

Depth of Mean Water Level (m) 1332.0 111 

Property of Riser 

Young's Modulus E 2.10xl0" N/"; 

Bending Stiffness EI 4.93xl07 N·"; 

M ... ofRlser 

Weight in Water (KN/m) 1.695 KN/11I 

Density of Water (Kg/mJ) 1025.0 Kg! 111
3 

Hydrodynamic loading 

Current Profile and Velocity (m/s) U niJorm Profile 111/ s 

0.5 - 1.5 

Added Mass Coefficient 1.0 

Drag Coefficient in Free Stream 1.2 

Top Tension (N) 
2.709xlrf N 

3.708xlrf 

7.416xlrf 
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8.3.2.1 Tandem Arrangement 

Figure 8.5 shows that the riser pair experienced a transition from the design position to, 

and finally rested at, their corresponding equilibrium states. The pair is initially separated by 

10 diameters and in tandem arrangement, located at their corresponding design position, 

and only the time-averaged forces are considered. Under the sudden increase of the flow 

velocity, the downstream riser is pushed downstream. Due to the inertial effect, the 

downstream riser passed its equilibrium in the first place, then recovered immediately to its 

equilibrium. Shown in Figure 8.5(a) is the deflection at different positions of the riser. It is 

seen that different parts of the riser move ahnost in phase with each other. The figure 

shows that the fluid damping is significant as the riser approaches to its equilibrium state so 

quickly. Figure 8.5(b) is the final equilibrium geometry of the riser pair. As indicated in 

Chapter 7, the above 12" pair riser under 0.5 m/ s current is stable at their equilibrium state. 

The results here are consistent with the foregoing analysis. 
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Figure 8.5 12" Riser pair transit from initial design position to 
final equilibrium under current velocity of 0.5 m/ s. (a) 
Transition of different parts of the riser. (b) Geometry of the 
equilibrium. 

8.3.2.2 Staggered AmJnge11lent 
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Figures 8.6 and 8.7 show the case when the riser pair is in a staggered arrangement. The 

streamwise direction separation is set as to diameters, with cross flow direction spacing of 

2 and 2.5 diameters respectively. The flow velocity is 0.5 m/ s. As shown in Chapter VII, 

the equilibrium of the riser pair is stable under such an ocean current condition. In this 

case also, the riser pair is initially located at their corresponding design position. Figures 8.6 

and 8.7 show the whole transition course of the middle point of the riser. It is very similar 

to the tandem arrangement Initially, the riser is pushed towards downstream quickly, as 

shown in the velocity figure, meanwhile, the riser is pulled towards the wake centreline. 
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Very swiftly, the velocity of the downstream riser dies out and it rests at its equilibrium. 

Under such a flow velocity, even for the case of transverse location of 2.5 diameters, there 

is only one equilibrium state. Therefore, Figure 8.7 is similar to Figure 8.6. 

However, for the case of transverse spacing with 2.5 diameters, when the flow velocity is 

further increased, as shown in Figure 8.8 where flow velocity is 0.67 m/ s, more than one 

equilibrium state can be reached depending on the initial state. The initial position 1 

corresponds to the state of design position. Under such a condition, the upstream riser is 

also located at its corresponding design position initially, and it is seen that finally the 

downstream riser rests at final equilibrium position 1 (called as stable outer equilibrium in 

this Chapter). As indicated in the Figure 8.8(b), after an acceleration in stream wise 

direction and attraction towards wake centreline, the movement of the downstream riser 

dies out rapidly when near the equilibrium. The second initial arrangement is made as such 

that the upstream riser is close to its equilibrium whilst the downstream riser is close to its 

equilibrium in streamwise direction. However, transversely the downstream riser is located 

towards the wake centreline. Presumably the downstream riser has a symmetrical parabolic 

deflection with its centre point located at (20, 0.5) and, as can be seen from figure 8.8(a), 

the downstream riser is attracted to the second equilibrium state, i.e. stable inner 

equilibrium. 

Figure 8.9 shows the boundary between which the different initial conditions leads to 

different equilibrium states. The upstream riser is assumed to have the same initial state 

near its equilibrium with the streamwise displacement of its midpoint of 10 diameters. The 

initial position of the downstream riser varies from 15 diameters to 22 diameters in 

streamwise location, and from wake centreline to the 5 diameters in the transverse location. 

It is shown in the figure that there is a boundary, when the initial position is above the 

boundary, where the downstream riser will ultimately rests on the outer equilibrium. 



W.WU pynamics simulation for a pair '!f marine risers 331 

Alternatively, when the initial position is located underneath the boundary, the downstream 

riser will approach and rest on the inner equilibrium. When the initial location of the 

downstream riser is on the boundary, it leads to an unstable equilibrium, which is located 

between the two stable equilibrium states. 
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Figure 8.6 Transition from design position to equilibrium for arrangement of (10. 
2) under current of V,,=O.5 ml s. (a)Trajectory of upstream and downstream riser 
middle point. (b) Velocity history of the downstream riser middle point. 
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Figure 8.8 Transition to different equilibrium from different initial position. (a) 
Transition of the riser middle point to equilibrium for different initial condition, 
(b) The vdocity history of the downstream riser middle point when transition 
occurred from the design position. 
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8.3.3 Riser Pair in High Current (post Loss of Stability) 

8.3.3.1 Tandem ATTangement 
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The dynamic behaviour is examined when the current speed exceeds the critical state. 

Figure 8, t 0 shows the case when two risers are arranged in tandem with spacing of to 

diameters, and initially the two risers are located at their design positions. As shown in the 

figure, the downstream riser initially moves towards downstream. However, because there 

is no equilibrium state in the downstream, it moves back to the upstream and ultimately it 

collides with the upstream riser. Here, for simplicity, the effect of the upstream riser has 

been replaced by the effect of the wake force field. Therefore, the detail of the collision 

process has not been accounted for, Similarly to the scenario in the two-dimensional case, 

the downstream riser tends to be quickly pushed towards downstream after the collision. 

There is a process of slow recovery towards upstream and then a quick push back towards 

downstream. The time interval for a single process is about 26 Seconds in this particular 

case, which is in the same order of the first mode frequency. For such a case, the vortex 

shedding frequency is around 20 times higher than the first mode natural frequency. The 
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amplitude of the movement of the downstream nser is more than 10 diameters. 

Distinctively, the trajectory is different from the vortex-induced vibration. Figures 8.2(c) to 

(f) show the course of the movement at different time instants. As shown in the figures, 

when the middle position of the upstream riser is nearest to the downstream riser, the first 

contact will be most likely to occur near the middle position of the risers. 
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Figure 8.10 The motion of the downstream riser after the flow velocity 
has exceeds the critical state, current speed: 0.8 m/ s. (a) Streamwise 
direction dispbcement of the downstream riser middle point; (b) 
Streamwise direction velocity of the downstream riser middle point; (c) 
to (f) Variation of geometrical shape at different time instant. t=95, 
110,111 and 111.8 seconds respectively. 
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Further calculations are made to account for the effect of different design spacings, flow 

velocities and top tension factors on the movement amplitude, velocity and time intervals 

between successive collisions. The comparisons are shown in Tables 8.3 to 8.5. The 

movement range of the downstream riser is defined as the distance between the two 

extreme positions that the middle part of riser can reach. The maximum velocity of the 

downstream riser is defined as the peak velocity of the riser middle part moving towards 

upstream. In the comparison of different top tension factors and design spacing, the flow 

velocity is chose as such that it is close to and above the critical state. The calculation 

results show that when the flow velocity exceeds the critical state, the wandering around of 

the downstream riser will have the magnitude of more than 10 diameters, collisions 

between two risers will occur from time to time, and that the time interval between 

successive collisions is dependent on the flow velocity and design spacing. On the other 

hand, for the same design spacing, the motion amplitude of the downstream riser does not 

vary significandy with the flow speed, nor with the top tension factor. Such a result is not 

reflected in the two-dimensional simulation, and it is likely to be due to the unaccounted 

collision effect. 

Table 8. 3 Comparison between different top tension factors (Xs=10, Ys=O). 

Top Tension Factor 1.20 1.64 3.28 

Natural Period (Sec) 38.50 29.83 18.99 

Critical velocity (ml s) 0.305 0.415 0.663 

Flow Velocity (ml s) 0.35 0.42 0.70 

Maximum 
(ml s) 

Velocity Towards Upstream 1.41 0.96 1.49 

Motion Amplitude (xD) 18.0 18.2 18.2 

Time Interval (Sec.) 59.2 88.7 36.4 
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Table 8. 4 Comparison between different designing spacing (ITF=3.28). 

Design Spacing lOD 20D 30D 

Critical velocity (m/ s) 0.663 1.107 1.473 

Row Velocity (ml s) 0.70 1.12 1.55 

Maximum Velocity Towards Upstream (ml s) 1.49 1.36 2.72 

Motion Amplitude (xD) 18.2 16.7 10.0 

Time Interval (Sec.) 36.4 101.5 45.1 

Table 8.5 Comparison between different flow speed (Xs=10, Ys=O, TTF=3.28). 

Row Velocity (m I s) 
0.70 0.75 0.80 

Maximum Velocity Towards Upstream (ml s) 
1.49 1.48 2.31 

Motion Amplitude (xD) 
18.2 18.2 18.4 

Time Interval (Sec.) 
36.4 28.5 25.5 

The maximum motion velocity of the downstream riser towards upstream increases with 

the flow velocity. In order to make a comparison with the vortex-induced vibration, the 

maximum velocity of the VIV motion is estimated as follows: 

Consider the case of flow velocity of 0.7 mis, the corresponding vortex shedding 

frequency is 0.47 Hz should the Strouhaul number be taken as 0.2. If "lock in" occurs and, 

assuming the maximum motion amplitude to be 1 diameter, the correspond motion 

velocity is about 0.88 m/ s. 

According to the results presented in the tables, the motion caused by the wake-induced 

oscillation is clearly more significant than the vortex-induced vibration. Additionally, the 
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collision related to vortex-induced vibration occurs locally, while the wake-induced motion 

caused collision is often with all parts of the riser moving together, as shown in Figure 

8.10, and hence, with much more energy participated in. Therefore, the wake-induced 

motion plays a very significant role in the collision. 

8.3.3.2 Staggered Arrangement 

Figures 8.11 to 8.14 show the cases when the two risers are in a staggered arrangement, 

with XI"= 10,20 and Yr= 1, 2.5 respectively. The current velocity is close to and above the 

corresponding critical flow velocity for each individual case. The motion trajectories 

(Figure 8.11, 8.12, 8.13 and 8.14(c)) show that the characteristics of all the presented cases 

are similar. The motions are always in a clockwise direction, with the main acceleration 

course occurring when two risers are in inline positions. Such a motion shows that within 

the whole cycle of the movement, the streamwise fluid drag force tend to input energy to 

the riser's motion, as the drag force tends to be larger when the riser is located at outer part 

of the wake. This energy absorption of the downstream riser's motion is balanced by the 

energy dissipation caused by the fluid damping effect. The biggest acceleration occurred 

for two risers immediately before the collision, as seen from Figure 8.14(d). The process of 

the push back by current is much quicker than the recovery. The amplitude of the 

movement is generally larger than 10 diameters. Tables 8.6 to 8.8 show the effects of top 

tension factor, initial spacing, and flow velocity on the motion amplitude and velocity. 
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Table 8. 6 Comparison between different top tension factors for XI'= 10, Yr= I . 

Top Tension Factor 
1.20 1.64 3.28 

Flow Velocity (m/ s) 
0.35 0.42 0.70 

Maximum Velocity Towards Upstream (m/ s) 
1.37 1.50 1.45 

Motion Amplitude (xD) 
12.7 13.3 12.2 

Time Interval (Sec.) 
60.9 58.7 36.2 

Table 8. 7 Comparison between different design spacing for the same top tension, 
TJF=3.28. Yr=1 . 

Design Spacing (xD) 
10 20 30 

Flow Velocity (m/ s) 
0.70 1.15 1.55 

Maximum Velocity Towards Upstream (m/ s) 
1.45 2.23 1.06 

Motion Amplitude (xD) 
12.2 16.1 9.9 

Time Interval (Sec.) 
36.2 61.2 62.5 

Table 8. 8 Comparison between different flow speed TIF=3.28. Xr=10. Yr=1 . 

Flow Velocity (m/ s) 
0.70 0.75 0.80 

Maximum Velocity Towards Upstream (m/ s) 
1.45 1.83 1.97 

Motion Amplitude (xD) 
12.2 12.0 11.9 

Time Interval (Sec.) 
36.2 27.5 23.9 
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It is seen that, as with the cases of tandem arrangement, the movement amplitude is 

insensitive to the flow velocity once the critical flow velocity has been exceeded. This also 

applies to the relationship between movement amplitude and the top tension factor. 
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However, the amplitude varies significandy with the design spacing. The time interval 

between two successive collisions changes considerably with the flow velocity, and the 

motion speed before the collision is considerably high when compared to the vortex

induced motions. Such results are the same as the tandem arrangement. 

8.4 Summaries 

As a result of the analysis conducted in this chapter, following conclusions can be drawn. 

1. With only time-averaged force considered, when the flow velocity is lower than the 

critical flow velocity, the downstream risers tend to approach their equilibrium quickly 

should there be any disturbance. When there is more than more equilibrium then, 

depending on the initial state of the riser, it can approach to different equilibrium state. 

2. When the flow velocity exceeds the critical state corresponding to the specific 

arrangement and top tension, the downstream riser will start to wander around. This 

kind of movement is a low frequency, large amplitude motion, which can ultimately 

bring the two risers to collide with each other intermittently. 

3. The frequency of the collision (the inverse of the time interval between two successive 

collisions) is dependent on flow velocity, which generally is in the same order of 

magnitude as the first mode frequency. Relative to the vortex-induced vibration, such a 

movement is very low in frequency. 

4. The amplitude of the movement is dependent on the design spacing and insensitive to 

the top tension factor and flow speed. 

5. Because the motion mainly occurs in the streamwise direction, the collision caused by 

such wake-induced motion mainly occurs in the direction of flow. It is significandy 



w.wu Dynamics simulation for a pair of marine risers 346 

more important in the contribution towards the collision than the vortex-induced 

vibration regarding its synchronised motion and high movement speed. 

6. The minor discrepancy to the two-dimensional simulation may be attributed to the 

unaccounted collision course during the movement of the two risers. The detailed 

explanation calls for a proper collision model to be incorporated into the analysis. 



Chapter IX 

DISCUSSION 
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9.1 General Remarks 

As set out in the beginning of this thesis, this investigation focuses on finding the 

mechanism of the interaction between two risers and providing effective tools to identify 

the critical state of the interaction. It also aims to provide information about the dynamic 

behaviour when risers lose their equilibrium. 'Ibis thesis started with the force prediction 

for the downstream cylinder located in the wake, which forms the basis for the subsequent 

analysis. 'Ibis was followed by stability analysis, continuation study and dynamics 

simulation, with the investigations further extended into the three-dimensional. These 

ultimately addressed the real scenarios for riser design and operation. Various calculation 

examples have been presented throughout the thesis. 

9.2 Contributions of the Thesis 

The following are the main contributions of this thesis to the body of knowledge: 

9.2.1 Tillll.Avtragtd rorre Prediction 

The application of &ee streamline theory to account for the fluid forces exerted on the 

wake located downstream cylinder gives a new insight into the mechanism of the fluid 

forces on the downstream cylinder, which is more intuitive and acceptable than the 
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previous arguments. Although the importance of such efforts will be lessened with the 

further enhancing of CFD power in the near future, it still will be very helpful in the 

construction of a dynamics model and understanding the dynamics related phenomena. In 

addition, it will be beneficial to the understanding of CFD results. 

9.2.2 Mechanism of Riser Collision 

The present investigation is the very first one endeavoured solely on the investigation of 

the stability of the 1LP /Spar riser interaction and identification of the critical state by 

continuation analysis. The study disclosed the collision mechanism of two risers, a 

phenomenon which has been recognized in recent years but never be appropriately 

addressed. 

In parallel with this investigation, there is work conducted in industry such as that by 

Marintek and MCS. Both of them set out to identify the critical state of riser interaction. 

The former used a shooting method to seek the equilibrium state and the latter used the 

available commercial "Aexcom" software package. Neither method can explain accurately 

the mechanism of the collision, nor can they identify the critical state accurately and 

unproblematically. Both can easily mislead users to the conclusion that the two risers are 

brought into contact gradually, because of the progressive closing of the two risers with the 

increase of the current velocity. Furthermore, their explanations can distort the 

contribution of collision energy, should it be investigated. In this sense, the present 

investigation clarifies the mechanism of riser collision and provides effective tools to 

identify the critical state. 

9.2.3 Dynamics Simlilation 

The dynamics simulation conducted in this thesis portrays the wake-induced dynamic 

behaviour of the cylinders, both in two-dimensional and three-dimensional space. The 

analysis provides an approximate energy description for the risers immediately before the 
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collision, which clearly shows that it is at least in the same order of magnitude as the 

vortex-induced vibration. In the past, nearly all the work on collision investigation was 

based on the vortex-induced vibration, the results of this investigation reinforces the 

importance which the wake-induced oscillation has in participating in the riser collision. 

9.2.4 Riser Statics 

The statics analysis revealed the non-negligible effects of the wake on the interaction in a 

very concrete and quantitative way. The parametrical investigation shows the importance 

of the wake effects in different perspectives. In addition, the difficulties of the laboratory 

simulation of very large scale marine riser interactions were addressed. The contribution of 

such an analysis lies in the provision of a quantitative knowledge to the riser engineers 

rather than theoretical one. 

9.2.5 Comparison Between Different Cylinder Interactions 

The present investigation, in two-dimensional space, is the most comprehensive and 

fundamental research into the interaction between two cylinders ever conducted. It not 

only covers a much wider area of wake field than has been tried before elsewhere, but also 

addresses the issue on the mass parameter, which is a topic that has been neglected in the 

past research. The investigation identified the peculiarities of marine riser interaction. Such 

a study is beneficial to marine riser engineers as well as researchers in other engineering 

disciplines. 

9.2.6 Mllitipk Eqllilihrill11J States 

The first identification of multiple equilibrium states can be significant to the further 

understanding of multiple riser interactions. Although the importance of multiple 

equilibrium states or possible distutbances caused by unsteady flow or vortex-induced 

vibration have not been elaborated upon in this thesis, further investigation could result in 

an exciting chapter on riser dynamics. 
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9.3 Applications of the Research 

9.3.1 Riser Design 

This investigation provides important guidelines on how to avoid riser collision, based 

on the prediction of the critical states provided in the continuation analysis. Hence, 

riser designers can identify the necessary top tension and design spacing, under 

specified design ocean current. Further negotiations can then be made within the 

integrated system design, based on such predictions, during the riser designing process. 

9.3.2 Riser Operation 

This thesis shows how to predict the possibility of riser collision under specified ocean 

currents. Therefore, should severe weather occur, the riser operator can know 

beforehand whether the riser operation should continue or be suspended. 

9.3.3 Damage evaiNation 

The dynamics simulation provides important information on the possible damage that 

can occur should collision between risers happen. Based on such data, it can not only 

guide the riser operators to take sensible measure under severe weather, but also, it 

provides a valuable reference to aid in identifying the cause of the damage should any 

such damage emerge. 

9.4 Recommendations for Further Studies 

As the offshore industry seems determined to move towards deep and ultra deep 

water, the riser interaction issue demands that even more questions be answered. Based 

on the present investigation, the following areas would be of interest and important to 

the further understanding of riser interaction, 

1. The role of vortex-induced vibration to the timer-averaged force induced collision, 

both on the critical state identification and the contribution to the collision. The 

vortex-induced vibration constitutes a significant disturbance to the riser 
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equilibrium. Particularly as identified in the continuation investigation, there can be 

multiple equilibrium states coexisting under certain riser arrangements and flow 

conditions. The interaction between vortex-induced vibration and the timer

averaged force effect, and also the interaction between multiple equilibrium states 

can be important and interesting to the investigation of the dynamics of the risers. 

2. The dynamic simulation on the riser collision. The collision between two risers 

depends on many factors, such as wall surface characteristics, the material of the 

two risers, and the contacting point during the collision and many others. The 

detailed investigation using an appropriate model can ultimately identify more 

accurately the damage to the riser and the dynamic behaviour of the riser after 

collision. 

3. The extension from two risers to multiple riser interaction. The ultimate objective 

of the investigation into riser interaction is to understand the mechanism of riser 

cluster interaction, such as for 1LP and Spar risers. Based upon the present 

investigation, further investigations could be started into three-riser interaction, 

with one located in the wake formed by the other two risers. By using same 

methodology as in this thesis, investigations can be made into understanding the 

effects of the additional risers, and ultimately lead to the understanding of the 

multiple riser interaction. 

4. Due to the deepwater challenges identified in the first chapter, the interaction 

between the risers and the whole system is also a key issue in deepwater 

development. An understanding of the effects of the whole system dynamics on 

the inter-riser interaction (the interaction studied in this thesis) is important to the 

further understanding of the inter-riser interaction mechanism. 



Chapter X 

CONCLUSIONS 
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Based on the investigations described in this thesis, the following conclusions can be 

drawn: 

• The application of the &ee streamline theory to account for fluid forces exerted on the 

wake-located downstream cylinder is successful. When lacking the necessary fluid force 

information, it is an effective tool to provide the data necessary for the investigation of 

the dynamics of the two cylinders interaction. 

• The present investigation in two dimensional space is the most comprehensive and 

fundamental research on the interaction between two cylinders conducted so far, 

which not only covers a much wider area of the wake field that has not been tried 

before elsewhere, but also addresses the issue on the mass parameter which is a topic 

has been neglected in the past research. Combining the stability analysis and 

continuation investigation, the study disclosed the mechanism of the cause of the two 

cylinder potential collision, a phenomenon which has been recognised in recent years 

and has never been appropriately addressed. The present continuation is the very first 

exercise in accurately identifying the critical state of the two cylinder collision. The 
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dynamic simulation explains the phenomenon of the two cylinder interaction in time 

domain, which is helpful to the understanding of the experimental observations and 

for the further estimation of the possible damage incurred should collision occur. 

• The three dimensional investigation is an extension of the two dimensional study. 

However, from the perspective of quantitative study, it is essential part of the 

investigation of the two risers interaction. Starting from the statics investigation, the 

examination of the interaction effects reveals the non-negligible effects of the wake on 

the interaction. The parametrical investigation shows the importance of the wake effect 

in different ways. The difficulties of the laboratory simulation of the very large scale 

marine riser interaction were also addressed. The continuation investigation cross

confirms the two dimensional investigation results, and, more practically, the 

investigation provided some general data regarding the critical state to avoid the riser 

collision. It is hoped that this can work as a design guideline for riser clearance. The 

dynamics simulation in three-dimensional space clarified the dynamic behaviour of the 

two risers interaction, and presents some valuable information on the riser collision 

investigation. 
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Without specific explanation, the symbols used in this thesis are referred to as follows: 

( 
PD2) a : Mass parameter = 2m ; 

A, Ao, A,: Cylinder cross section area, the whole area and the inner area 

. . ( U) b : Wake velOCIty ratlo = Vo ' 

or half wake width, where the wake velocity deficit is half of the magnitude on wake 

centreline at same streamwise location. 

F 
C I) ,C I. : Drag and lift coefficients for downstream cylinder respectively = DJ. 

1 2 

2PVoD 

F 
CD,C1.: Drag and lift coefficient referenced by the wake velocity = 1),1. 

!pU 2D 
2 

C/)o ,C 1.0: Drag and lift coefficients for downstream cylinder respectively at equilibrium 

position; 

C P. C "':: Pressure coefficients based on free stream flow velocity and wake flow velocity 

respectively 

D: Diameter of cylinder; 

E : Young's modulus; 



W.WU Nomenclature 358 

F F' Auid force in x,y direction respectively; 
x' y' 

g : Gravity acceleration speed; 

H : Aow tension factor . .. 

I : Cross section area momentum; 

k : Unit vector along cylinder axis pointing towards readers 

kr : Stiffness of tensioner system 

K( q III' q /I) : Induced velocity at q III by vortex located at q /I with unit strength 

K x' K y : Spring stiffness in x, y direction respectively 

I : Length of the cylinder; 

10 , I zo' !::J z: U nstrained length, vertical distance between top connector and bottom 

connector and the deviation of the vertical distance with the existence of dynamic 

movement. 

m: Mass, including mass of cylinder per unit length and fluid added mass (= ms + ma); 

ms: Structure mass of the cylinder in air 

ma: Auid added mass of the cylinder 

ii : Local normal unit vector of the surface on cylinder or wake boundary 

P, Po, P;, ~: Pressure, static pressure outside the cylinder, inner pressure insider the 

cylinder, and pressure on the surface of water respectively 

q j' q III: Locations of elements on cylinder surface and wake boundary 

r : The ratio between the lift coefficient and drag coefficient(= C L J 
Cf) 
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1 

R.: stiffness ratio between y direction and X direction in two dimensional case = (~ )' 

s: Co-ordinate along the cylinder length 

s: cylinder centre to centre spacing 

T : Tension within cylinder; 

T : Effective tension within riser e 

(U
j

, v,) : Induced flow velocity at location of (Xi' Yi) 

U: Wake velocity deficit 

(U.I ' V.I ) : local flow velocity at j-th element 

V : Wake flow velocity; 

Vo: Wake flow velocity deficit on the wake centreline 

v, :Resultant velocity (= ~(U - X)2 + y2 ) 

. ( V.,) V R: Reduced velOCIty = --
OJxD 

V <Xl: inflow velocity to the cylinder (used in the free stream line theory illustration) 

Vo: Free incoming flow velocity; 

(Xi' Yi) : Co-ordinate of i-th element on wake boundary 

(Xo' Yo) : Co-ordinate of the flow separation point 
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X X • distance between the virtual source and real cylinder in the wake consideration, 
v' m' 

modified streamwise location of the downstream cylinder 

(X, y): Co-ordinate of the downstream cylinder 

(x, Y): Non-dimensionalised co-ordinates of the downstream cylinder; 

Z : Vertical co-ordinate for a three dimensional case 

a.: Azimuth angle on the cylinder; 

P : The deviation angle of flow velocity induced by the movement of the cylinder 

p : Density of fluid 

T: Nondimensionalised time variable (= (j) xl); 

B: Spring coupling angle. 

r (q n ): Vortex strength at position q n 

; : Structure damping coefficient; 

(j) x ,(j) y : Natural circular frequency in X and y direction respectively 

AI : Element length on wake boundary 

(ax), ~YJ): Correction of the position of wake boundary due to the modification of 

induced flow velocity 

(x),(x): Upper dot and upper dot dot represent first and second order derivatives with 

respect to time t or T respectively. 

subsript: 

1, 2 :upstream and downstream cylinder 
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Appendix A 

BIFURCATION STRUCTURE AT LOSING STABILITY 

A Continuation Analysis Based on the System in 

Parallel With Chapter III 
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A.1 General Remarks 

A systematic continuation investigation has been presented in Chapter IV regarding the 

variation of equilibrium positions with the flow velocity and their corresponding stability 

for a prescribed initial arrangement. However, the specification of the system provided 

therein is different from that in Chapter III. In order to give a parallel explanation for the 

bifurcation structure in the analysis made in Chapter III, an alternative specification of the 

dynamic system is presented in this appendix. 

If the co-ordinate system is originated at the centre of upstream cylinder, and assuming the 

downstream cylinder is always in an equilibrium position under any prescribed flow 

velocity, then the dynamic system for the downstream cylinder can be written in the 

following standard form, 

i=l(x) (A.l) 
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f(x) = 
(A.2) 

With X = 

Where XI' X3 denote the streamwise and transverse displacements of the cylinder from 

the equilibrium position (X 0' Yo), i.e. 

(A. 3) 

and Coo. C1•O are fluid drag and lift coefficients at equilibrium position (XO, Yo). The 

definitions of other parameters are the same as in Chapter III. The Jacobian matrix of 

system (A.2) is 

J = oJ; 
i.J Ox 

J 

(i,j = 1, 2, 3, 4) (AA) 

Which is the matrix for stability analysis and it is exactly the same as the one utilised in 

Chapter III. 

Let cylinder mass parameter be set as 0.2, stiffness ratio set as 1.01 and supposing there is 

no spring coupling. the streamwise position varies from 5 to 15 and transverse position 
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varies from ° to 2. The whole wake field is investigated systematically. The results are 

presented according to wake centreline, inner wake position and outer wake position 

respectively as follows: 

A.2 Wake Centreline 

Figure (A.I) to (A.4) are continuation results for the equilibrium positions of (5,0), (8,0), 

(12,0), (15,0). It is seen that for all four cases, there is a bifurcation point, which is called the 

"critical state". When flow velocity is under the critical value, the prescribed position is 

always stable. However, there is an unstable equilibrium position accompanying the 

prescribed one located somewhere upstream. When the critical velocity is reached, a 

transcritical stationary bifurcation occurs, with an exchange of stability. The prescribed 

position begins to lose stability, whilst the stability is gained at the other branch, which is 

located somewhere downstream. If the eigenvalue characteristics of corresponding 

equilibria in one dimensional space are checked, then the stable position is found to be a 

stable node and the unstable position is a saddle point as depicted on Figures (A.2). Figure 

(A.S) and (A.6) show the variation of eigenvalues with the different flow velocities (The 

flow velocity is not shown in the figure here). It is seen that with the increase of flow 

velocity, for the branch from At) to T to Bo, one pair of the eigenvalues landed on the real 

axis before losing stability, with one moving toward the positive real axis and the other 

towards the negative direction. At critical state of T, the eigenvalue reaches the origin. If 

there is a further increase of flow velocity, the eigenvalue transverses the imaginary axis and 

lands on the right half of the eigenvalue plane. The other branch of A, to T to B
" 

on the 

other hand, does the same, but in the reverse order. 

Compared with the analysis made in Chapter III, the variation of eigenvalues along Ao to T 

to B()confonns to the critical state of stationary bifurcation. Meanwhile, the results show a 

downstream stable equilibrium position that has a corresponding unstable equilibrium 
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position located upstream when near the critical state. At critical state, the two positions 

converge with each other, which is the result shown in Chapter IV. 

A.3 Inner Wake Position 

Figures A.7 to Figure A.16 show the continuation for the equilibrium position at transverse 

location of ¥o= 1 while Xo varies from 5 to 15. It is clear that there are two turning points 

and one transcritical bifurcation point in the results. The path of ArJ to ~J to Bo is the 

stability variation route that was investigated in Chapter III, and the state of transcritical 

bifurcation To is the critical state, which was defined in Chapter Ill. Checking the 

eigenvalues variation depicted in Figure A.9, clearly ~J is a stationary bifurcation point. 

Meanwhile, there are other three equilibrium positions when the flow velocity is close to 

the critical state To, among which two are unstable. Referring to Figure A.10, both two 

turning points correspond to the stationary bifurcation. 

Checking the results against the analysis made in Chapter IV, the transcritical bifurcation 

point To corresponds to the state of Q in Chapter IV. This implies that the loss of stability 

investigated in Chapter III does not necessarily cause the two cylinders to collide with each 

other, because there are other equilibrium positions at which the cylinder can be stable. 

The two turning points T, and T2 correspond to the two turning points D(S) and M(D) in 

Chapter IV. 

A.4 Outer Wake Position 

Figures A.17 to A.22 show the cases when the equilibrium positions are located at Yo=2. 

They show that characteristics of the bifurcation are the same as the cases for Yo= 1. 

Generally there are two turning points and one transcritical bifurcation point. The minor 

difference is that two turning points are all located somewhere further in than the 

prescribed equilibrium position. At a large flow velocity, the stable equilibrium position is 
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located well outside of the wake. Such a solution is caused by the parameters of the 

dynamic system. Because the prescribed position is presumably the equilibrium position, 

which may include those cases where the downstream cylinder is initially located outsider 

the wake, the unstable position here can be considered to be accidentally entrapped into 

the equilibrium position in the wake. The results also exhibit a much smaller region of flow 

velocity when there are four equilibrium positions. This suggest that the region for multiple 

equilibria is getting smaller at outer wake, conforming to the result of Chapter IV. 

Figures A.23 and A.24 are two special cases for demonstrating eigenvalue variation for a 

small mass parameter a=2xlWat Xo=5. For two different stiffness ratios, Rk =I.5 and 2.0, 

to choose such a high Rk is purely for the convenience of illustrating how the eigenvalue 

varies with the flow velocity. It is seen that with the increase of flow velocity, Hopf 

bifurcation can be regained at a certain velocity, and ultimately, the cylinder will lose 

stability via stationary bifurcation. Nevertheless, when the stiffness ratio is high, the 

stability after Hopf bifurcation may not be able to be regained. 

A.S Remarks 

The analysis presented in this appendix is fully consistent with the conclusion drawn in 

Chapter III and Chapter IV. It also provides an alternative insight into the structure of 

possible bifurcation which the system can show. This appendix also shows the 

imperfection of the traditional stability analysis described in Chapter III, for example the 

difficulty in explaining behaviour after loss of stability. The bifurcation structure for the 

case investigated in this appendix for 0=0.2 confirms that it is mainly a stationary 

bifurcation. 
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Appendix B 

FLUID ADDED MASS COEFFICIENT AND INTERACTION FORCE 
WHEN ONE CYLINDER IS NEAR TO ANOTHER AND WITH 

DIFFERENT MOVING VELOCI1Y 

Potential flow interaction 
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B.l General Remarks 

According to that potential flow theory, when one cylinder is moving at constant velocity in 

a reservoir of otherwise stationary fluid, there is no force acting on the cylinder (d' Alembert 

Paradox, the net force on a single body without circulation in a steady ideal flow is zero). 

When the cylinder is accelerating in such fluid, however, one force (which is proportional 

to the acceleration of the cylinder) is applied by the flow. Such a force is defined as the fluid 

added mass force, which acts to oppose the cylindees acceleration. 

In general. added mass can he associated with both translation and rotation of the body. 

The added mass force on a rigid three-dimensional body accelerating from still in a 

reservoir of stationary fluid is the swn of added mass forces associated with all six possible 

rigid body accelerations (Blevins, 1990), 

(B.l) 

Here, mij is the fluid added mass term, u; denote three translation and three rotation 

velocity. For the case of one circular cylinder in two-dimensional flow, then the only 

nonzero terms in (B.l) are 
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FINid added mass coefficient and interaction force 

Here, a is the radius of the cylinder and p is the fluid density. 

B-3 

However, when there are other objects in the flow, especially when they are close to each 

other, the fluid added mass will be position dependent because the nearby objects will 

affect the disturbed flow. 

In two-dimensional flow, assuming there are two cylinders located nearby and they are 

labelled as 1 and 2 respectively, the fixed to earth co-ordinate system is used to identify the 

moving direction by x and y. The definition of the interaction force and the fluid added 

mass force, caused by acceleration of the two cylinders, can be defined as: 

du,x 

F;x m\lxy ~2xx ~2xy 
dt 

~Ixx dUly 

F;y ~IYX ~I.Y.Y ~2yx ~2.Y.Y dt (B.2) =- x 
du2x F;x ~Ixx ~Ixy ~2xx ~2xy 

F2y ~Iyx ~lyy ~2YX ~2yy dt 
du2y 

dt 

Here, u lx ' u iY• u 2x• u 2y represent the x and y direction velocities of cylinder 1 and 2 

respectively. m;w' m;;xy' m;,yx, mii.Y.Y are added masses caused by cylinder's own acceleration, 

mijxx' m yxy ' mijyx' myyy are interaction forces caused by the acceleration of the cylinder 

nearby. The determination of these terms has to be found by solving the fluid flow. 

In this appendix, numerical computation is carried out to explain the variation of fluid 

added mass of the cylinder in the presence of another cylinder nearby. The computation is 

based on the potential flow theory with the complex potential method (Dalton and 

Helfinstine 1971). The investigated individual cylinder is moving at different speed. 
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B.2 Solitary Cylinder 

For the convenience of explanation, it is better to start with the case of a solitary cylinder. If 

a solitary cylinder with radius a is moving in an unbounded stationary fluid with velocity U 

at an angle of a between moving direction and x axis (ref. Figure B.l), then the complex 

potential can be described as 

z u 

Figure B.t Schematic diagram for treatment of solitary 
cylinder. 

Here w is the complex potential, 

; is the velocity potential function and '" is the stream function 

Z is the complex variable with 

Z=x+iy 

the co-ordinate system is earth-fixed, and 

(B.3) 

(BA) 

(B.5) 
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(B.6) 

is the instantaneous position of the cylinder which varies with time. 

Expression (B.3) denotes the flow field at any given position Z, disturbed by the motion of 

the cylinder at position Zo. The effect of the disturbance is equivalent to a doublet. 

The flow velocity in the flow field can be represented as 

V(Z) = dW(Z) = u(Z)-iv(Z) 
dZ 

(B.7) 

Where u and vare the x and y direction components of the flow velocity in Cartesian co-

ordinate system. 

In order to find the fluid forces acting on the moving cylinder, the Bernoulli equation is 

utilised, which is 

(B. 8) 

Here p is the pressure in the flow field, if fluid forces on the cylinder is of concern, the 

pressure is then taken at the surface of cylinder. Po is the pressure in undisturbed fluid, 

g(t)is an arbitrary function of time (assumed to be zero in this case). 

The fluid force acting on the cylinder per unit length can be obtained by integrating 

pressure around the cylinder as follows, 

(B.9) 
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Where ds = (Z - Zo )dO, and Co represents the circumference of the cylinder. By 

substituting expressions (B.7), (B.8) into (B.9), the fluid force can be written in the 

following way 

2 dU 
F= -p1l"Q -

dl 
(B.lO) 

Such a force is the fluid added mass force, and if the definition of (B.l) is applied, the 

added mass is equal to the amount of fluid expelled by the cylinder ( P7r42 ). It represents 

the mass of fluid entrained by the cylinder when the cylinder is accelerating. lbis is also 

called virtual mass or hydrodynamic mass. 

B.3 Two Cylinders 

.e. 

~ _____ x 
o 

Figure B.2 Schematic diagram of two cylinder interaction for 
added mass evaluation. 

When one cylinder is moving in the stationary fluid, with another cylinder nearby, or when 

two cylinders move in a stationary fluid at their own velocity, the methodology is similar. 

However, because of the interaction between two cylinders, extra expressions are needed to 

account for such an interaction. 



W.WU F INid added mass coeJfo:ient and i"teractio" force B-7 

As shown in Figure B.2, two cylinders are labelled as 1 and 2 respectively. They are located 

at position Z, and Z2 in complex co-ordinate system. The moving velocities for two 

cylinders are V, and V 2 , with angles of a I and a 2 between x axis and the direction of 

movement respectively. Without considering interaction, the disturbances caused by two 

individual cylinders' movement can be represented by 

U 2 la, pe 
W =-

, Z-Z 
I 

(j=1,2) (B.ll) 

However, the total flow velocity disturbed by the two cylinders can not satisfy the 

impenetrable condition on the cylinders, which is the essential boundary condition for flow 

field, i.e. 

(j= 1,2) (B.12) 

Here, Ii) is the unit normal vector of cylinder j. If the boundary conditions for two 

cylinders are treated separately, and only cylinder 2 is considered, because cylinder 1 is 

equivalent to a doublet, by arranging a mirror doublet within cylinder 2, the boundary 

condition on cylinder 2 can be automatically satisfied. The mirror doublet is denoted by 

number index of (2,1,1), which means at position of cylinder 2 caused by source doublet 

within cylinder 1, and it is the first mirror doublet, then the complex potential can be 

expressed as: 

eial .,., 

W =-p Ua2 - __ 
2.1.1 2.1.1 I Z _ Z 

2,1,1 

(B.13) 

Where 
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(B.14) 

(B.15) 

However, the aforementioned 3 doublet can not satisfy the boundary condition for cylinder 

1. In order to satisfy the boundary condition for cylinder 1, mirror doublets have to be 

arranged within cylinder 1 for the two doublets located at cylinder 2. They are numbered as 

(2,1,1) and (2,1,2), which are the images of Z, and (1,2,1) respectively. Their complex 

velocity is 

eial.l. 1 

w =-p U a2 __ _ 
1.2.1 1.2.1 2 Z _ Z 

1.2.1 

(B.16) 

(B.17) 

a2 

Z = Z + -:-=---:::7 
1.2.1 I (Z2 -ZI) 

(B.18) 

(B.19) 

eial.l.2 

w =-p Ua2
---1.2.2 1.2.2 I Z _ Z 

1.2.2 

PI.2.2 = Iz _ Z 12 P2.I.1 
2.1.1 I 

(B.20) 

2 

Z =Z + a 
1.2.2 I (Z _ Z ) 

2.1.1 I 

(B.21) 

a I 2 2 = 1r + 21121 - a . . 2.1.1 (B.22) 
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The above additional two mirror doublets violated the boundary condition for cylinder 2 

again, so further mirror doublets are needed. Such a process will continue infinitely. The 

general complex potential of the mirror doublet can be written as: 

e,a,.)J x {VJ -_p a2 __ _ 

W,./ .. - ,.}.k Z _ Z U 
I,J,k i 

(k = 1,3, S ... 2n + 1) 

(k = 2,4,6 ... 2n) 
(B.23) 

(B.24) 

a2 

Z = Z + ~--=-:-
I./.k '(Z. - z) 

J.I.k-1 , 

(B.2S) 

(B.26) 

Here, i = l,j = 20r i = 2,j = 1 with k = 1,2, ... 

However, it is seen that the strength of the mirror doublet is diminishing, as shown in 

equation (B.24), Pi,),k < Pi,J,I<-I' and the whole flow complex potential is a summation of the 

complex potential caused by all these singularities which will converge. The final flow 

complex potential can be expressed as: 

'" '" 
W = WI +W2 + L,WI,2.k + L,w2•1J (B.27) 

.=1 k=1 

The flow velocity is, 
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(B.28) 

The Bernoulli equation (B.9) is used to detennination of fluid force. 

(B.29) 

Here c, is the circumference of the j-th cylinder. It can be seen that, when two cylinders 

move at different velocities, the fluid forces can not be expressed as a linear summation of 

two dynamic head, because of the coupling between two velocity in the dynamic head. 

Such a component represents the potential flow interaction force when two cylinders are 

moving at constant velocity. On the other hand, the force is a linear function of the two 

cylinders acceleration. As fluid added mass is the main interest here, assuming the two 

cylinders started from still, by applying the definition of (B.2), all the coefficients can then 

be obtained. 

B.4 Computation Results and Discussion 

When two cylinders are arranged in tandem layout, Figures B.3 to B.6 show the different 

added mass terms. It is seen when the two cylinders are separated by more than two 

diameters, all the added mass coefficients approach to the case for solitary cylinder, i.e. the 

interaction effect diminishes. When the two cylinders are close to each other, e.g. less than 

1.5 diameters, the interaction increases dramatically with the further decrease in the spacing. 

Such an effect applies both to the interaction term like m m (i"* J') and the added 
yxx' yyy 
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mass term as m,1XX , m,,),),. As the result of flow symmetrical characteristics, the term of 

m and mljYX are null. Ijxy 

Figures B.7 and B.8 show the interaction force terms when the two cylinders are arranged 

in a staggered layout. The data shown in the figures are the fluid force acting on the 

cylinder 1 caused by the acceleration of cylinder 2 in x direction. It is seen that when the 

spacing between two cylinders is larger than 2 diameters, the effect of the interaction is 

small. The interaction force is pronounced only when the spacing between two cylinders is 

very small. The interaction term is largest when 7]=45°. 

Based on the above calculation results, it can be concluded that the interaction effect due to 

the fluid force, caused by the acceleration of the two cylinders, is not prominent when the 

two cylinders are separated with more than 2 diameters. Only when the spacing is very 

small, can the effect then be significant. If the time domain simulation for the two cylinders 

interaction is considered, when the two cylinders are very close to each other, the collision 

will be likely to occur, and the collision effect will be much more significant than the fluid 

added mass force terms. The above analysis justified the insignificance of the interaction 

effect due to the added mass force terms in the dynamics simulation. 
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Figure B.3 Auid added mass coefficient. 
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Figure B.5 Interaction force coefficient. 
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Figure B.7 The interaction force on cylinder 1 
caused by the acceleration of cylinder 2. 
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Figure B.4 Auid added mass coefficient. 
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Figure B.6 Interaction force coefficient. 
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Figure B.B The interaction force on cylinder 1 
caused by the acceleration of cylinder 2. 
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