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Abstract
INTERACTION BETWILEN TWO MARINE RISERS
by

Wusheng WU

This thesis takes top tensioned vertical riser interaction as its main study
object. It has its focus on the understanding of the mechanism about
potential instability of the risers caused by the interaction and the prediction
of potential collision. Started from two-dimensional cylinder interaction cases,
and later extended into the three-dimensional fiser scenarios, the problem is
investigated comprehensively. The study covers fluid force predicton,
stability analysis, continuation investigation and dynamics simulation. 'The
study disclosed the mechanism of the potential collision when the flow
velocity reaches a certain critical value, and provides a robust tool to predict
the threshold for the riser collision. Additionally, the investigation shows the
difference between marine riser interaction and the similar interaction occurs
in other engineering disciplines, such as power transmission lines, heat
exchangers etc. Also provided in this thesis are valuable information regarding

the riser dynamics should collision occurs. The research will be beneficial to

the marine riser designers and operators.



‘The research described in this thesis is believed to be orginal unless otherwise

explicitly referenced.



SUMMARY

As oil and gas exploration and production moves towards decp and ultra deep water areas
these days, the offshore industry is facing challenges, amongst which tiser interaction s
newly cmerging. Essentially this interaction is caused by the wake flow. It can play a
detrimental role in carbohydrate extraction and it will be particularly important in ultra
deep water development. This thesis takes the top tensioned vertical riser system, such as is
used in conjunction with TLPs and Spars, as a main object. It endeavours to deal with the
mechanism of the interaction between two marine risers and to predict the potential

collision between the two risers.

Deep water risers are so long that flow along the riser length does not change significantly.
‘Therefore, the nsers can be simplified into two-dimensional cylinder cases. Such an
approach provides a simplified way to understand the issuc. On the other hand, in order to
understand this subject in real scenarios and predict the phenomena quantitatively, the
study is also carried out in the three-dimensional space. The thesis is comprised of seven

independent while interrelated parts, viz:
1. Two-dimensional Time-Averaged force estimation

Utilising the free-streamline model, based on empirical data for flow separation, a
numerical procedure is used to seck the time-averaged forces cxerted on the
downstream cylinders. Such force data constitute the fluid interaction data source

for the subsequent cylinder/ riser stability and dynamics analyses.

2. Two-dimensional cylinder stability analysis



3.

4.

5.

By adopting the traditional Routh-Hurwitz stability algorithm, combined with the
direct numerical eigenvalue secking technique, the stability of the downstream
cylinder at designated positions is thoroughly investigated. Different bifurcation
types and different stability arcas are comprehensively investigated and identfied.

The characteristics of the marine riser interaction are identified as well.
‘Two-dimensional continuation investigation

Based on the charactenistics of marnne riser interaction, a systematic investigation
of the continuation and stability 1s conducted. Such an investigation is a cross
cxamination of the traditional stability analysis. Mcanwhile, the possible multiple
equilibrium positions of the dynamics system are identificd. Such an analysis

contributes to a concrete explanation of the causc of two cylinders collision.

‘T'wo-dimensional dynamics simulation

Based on the foregoing stability investigation, a thorough dynamics simulation is
implemented. The investigation is mainly focused on the behaviour after loss of
stability of the downstream cylinder. ‘The cylinder motion speed and movement
amplitude, together with the tme intervals between successive collisions  are

tdenafied.

Three-dimensional statics

The statics of a solitary marine niser has been a well understood topic. However, the
statics for wake interaction has never been explained before. In this section, a
comprchensive parametric investigation is conducted, non-dimensional parameters

are discussed and the effect of different factors is fully addressed.

It



6.

7.

Three-dimensional continuation

Three-dimensional continuation investigation is a direct extension of the two-

dimensional continuation study. The riser interaction system is first cast into the
modal co-otrdinate system which makes the dynamic system into a system with a
finite dimension. Pseudo arc length continuation strategy 1s used, and the two-
dimensional like conclusion has been drawn. By using non-dimensional parametets,

a useful critical flow condition for general deepwater risers is obtained.

Three-dimensional dynamics simulation

Utilising the mode superposition method, the dynamics system of two risers under
the action of an ocean current 1s investigated. The dynamic behaviour of the risers,
particularly in a strong ocean current is identified. Such an investigation can be
used to explain the observed dynamic behaviour of the risers and it can also serve

as a reference for the identification of the possible damage, which may result from

collision between two risers.

Among many results yielded in this research, two important ones ate listed as follows:

1.

2.

Explanation of the cause of collision between two cylinders/risers. It is concluded
in this research that the occurrence of collision is caused by loss of stability and
disappearance of equilibrium, rather than by the progressive and continuous

approach to each other between two cylinders/risers until contact happens.

The prediction of critical flow velocity before collision between the two risets starts
to occur. The Figure 0.1 shows the relation between critical flow tension factor

(H, = pv,JifT,,) for different design spacing and top tension factors of deecpwater

risers. For example, for a pair of 1000 meters long and 8” diameter gas riser, with

111



weight in water of 275 N/m, top tension factor of 3.0 and design spacing of 30
diameters. Based on the figure, when current flow velocity exceeds 0.45 m/s, the
collision between the two tisers will occut. Reflected in this figure, the critical flow
velocity will be below 1.0 m/s for risers with length over 1000 meters. Additionally,

increase top tension or increase the design spacing between the two risers can

substantally defer the niser collision to a higher current velocity.

L

30 -1 Uniform Current Profile

Wake Centreline

Figure 0.1 Critical HW for different riser design spacing and top tension factor. H, =pV, {——_I/T,“ .
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1.1 General Remarks
1.1.1  Offshore Oil & Gas Development

Ocean, which covers almost three quarters of the earth, is always so appealing to human
beings. It is a virtual cotnucopia, with abundant resources as we now know, such as oil,
natural gas, minerals, and other possible energy sources, such as wave, tidal, and ocean
thermal enetgy. In 1947 the first offshore platform for oil was installed off the coast of

Louisiana in just 6 meters of water. Today there are already over 7,000 offshore platforms

around the world in water depths approaching to 3,000 meters.

The offshore oil & gas industry is moving towards deep and ultra deep waters. This
development has been so fast that the concept of the deepwater and ultra deepwater has
constantly changed. Until 10 years ago, from a European perspective, the start of
deepwater was simple: 200 metres and deeper, essentially the edge of the continental shelf.
When viewed globally the answer is not so simple. The Gulf of Mexico, Brazil and West
Africa have seen deepwater recotds tumble as discoveries and production have come from
depths greater than 1,000 metres. Therefore, 200 metres is simply not considered to be

deepwater anymore especially as various organisations have their own definitions, ranging
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up to 500 metres and even beyond. To take this into account, the general definition of

deepwater, which this thesis will use, starts from 300 metres.

The growth of deep and ultra deep development has been particularly tremendous over the
recent three decades. It has been much spurred by the major price increases during the
1970’s (Garside, et al, 2001). During this period, significant transformation has taken place

in the industry. For example, shown in Figure 1.1, the deepwater production in the Gulf of

Mexico has increased tenfold since 1985 for oil and sixfold for gas production. At this

GOM OCS Deepwater Production, % of Total

0 oil
I Gas

1885 1886 1987 1968 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Year

Figure 1.1 Deepwater production, from MMS (MMS, Mineral Management Service,
defines deepwater as 1,000 feet of water or greater).

moment, global exploration continues to push into more remote areas and deeper water to
target opportunities that are just too exciting to be denied. Over 35 billion barrels oil
equivalent in deepwater have been found (Figure 1.2). The main active deepwater
development areas around the world are: West Africa, Brazil, Gulf of Mexico, Caspian Sea,

and North Atlantic (comprising Norway, W of Shetlands, Ireland, Greenland).
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Nevertheless, only 20 percent of resources have been developed and are producing.
Industry continues to advance into deeper and more complex settings. In recent time, the

number of wells being drilled in the so-called ultradeep water — those in 5,000 feet of

water or greater — continues to grow significantly. Currently there are more than eight

wells being drilled in water depths of 5,000 feet or greater, four in excess of 7,500 feet. The
eight wells and the company operating the well and the water depth are listed in the table
1.1. Such a data is constantly changing with the time. Some pioneering projects have been
launched in recent years to challenge the ultra deepwater development, such as DEMO

2000 (Wiencke, 2000), the Norwegian Deepwater Programme in Norway, and Deepstart in
Gulf of Mexico. All these show that ultra deep water will be the main arena for offshore

development in the yeats to come.

N
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Figure 1.2 Worldwide deepwater discoveries total more than 35 billion boe,
about two thirds of that are oil. Source: Shell (Cook, 1999).
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Table 1.1 List of present ultra deep water drilling

Operator Water Depth
Transocean Sedco Forex 9687 feet
BHP Petroleum 8,835 feet
Elf Exploration 7,790 feet
Shell 7,760 feet
Unocal 7,044 feet
BP/Amoco 6,627 feet
BP/Amoco 6,386 feet
BP/Amoco 5,180 feet

1.1.2  Platform and Riser System

Table 1. 2 Category of offshore platform according to connections on seabed

Type of Platform Connection to Seabed Example
Fixed-bottom Piles Steel jacket
Gravity Concrete Gravity Structure (CGS)
Floating Tethers Tension Leg Platform (TLP)
Catenary mooting lines Semi-submersible, Spar

Single Point Mooring (SPM)  Ship-shaped vessel (FPSO)

Neatly all the offshore production requires platform and riser systems. Generally, offshore
platforms can be categorised according to whether they are tigid structures that extend all
the way from above the water surface to the seabed (fixed-bottom platforms), or whether
they float near the water surface. They can be further categorised according to the way they
ate connected to the seabed. Table 1.2 shows a general categorisation of offshore
platforms. Due to the spiral rising of cost for fixed-bottom platforms, such as jacket type,

floating production system would be the main option for deepwater and ultra deepwater



W. WU 2003 Introduction

developments. By and large, deepwater developments by definition are: floating systems,
subsea wells, ot a combination of floaters and subsea wells. A key component of the

floating production system is the tiser system. It has a large influence on the decision made

about hull type.

In essence, tisers are conduits that connect the wellhead on the ocean floor with the top

vessel ot platform on the sea surface. They may perform the following specific functions:

1. Convey fluids between the wells and the FPS (ie. production, injection or

circulated fluids).

2. Import, export, or circulate fluids between the FPS and remote equipment or

pipeline systems.
3. Guide dnlling or workover tools and tubulars to and into the wells.
4. Support auxiliary lines.
5. Setve as, or be incorporated in 2 mooring element.

6. Other specialized functions such as well bore annulus access for monitoring ot

fluids injection.

Figure 1.3 shows a functional diagram of the riser system. It is composed of four parts

(AP, 1998), i.e. Conduit, Top interface, Bottom interface and System integrity.

Associated with different types of floating production systems listed in table 1.2, generally

there are three kinds of risers (Barltrop, 1998),
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Figure 1.3 Essential functional elements of a riser system.

1. Rigid Riser. Usually these are top tensioned vertical steel pipes. They can be
manufactured in a large range of diameters. It is the most versatile for production,
as it can handle aggressive fluids and high internal or external pressures. Drilling
and work-over operations also generally require a vertical rigid riser. The limitation
for this kind of riser is that the movement of the platform has to be small. In
deepwater developments, they are often used with TLP and Spars systems, which

can meet the small movement requirement with the help of the tethered station

keeping.

2. Flexible Riser. Usually steel-polymer composite pipes hung in a simple or S shaped
catenary. They are mostly used in conjunction with FPSO or Semi-submersibles
due to the fact that they can accommodate the platform’s large movement.
However, when the operation is in ultra deepwater, the very high static pressure

constitutes a big challenge to this kind of riser.
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3. Metal Catenary Risers (SCR). Catenary riser made of steel or titanium. It has the
benefit of the catenary rser whilst offsetting the inadequacy of the traditional

flexible tiser in ultra deepwater under high static pressure.

Among these different kinds of misers, the top-tensioned vertical rigid riser is the main

object to be studied in this thesis. Some further introduction of such a tiser system is

presented below.

1.1.3  Top tensioned vertical riser

Figure 1.4 is a schematic of a top tensioned production riser. The main part of the riser is
the conduit, which is for fluid transport, control or monitoring system umbilicals, and load
paths for structural support must be provided and their continuous operation contained.
Most of the time, the conduit ate segmented. This is due to the limitations on the
maximum continuous length of metal pipe that can be reasonably manufactured,
transpotted, handled, installed, retrieved and replaced. These segments can be joined onsite
by mechanical connectots such as threading or by flange, or by welding. The lowest

segment may contain a tapered stress joint section or a flex joint in order to transfer

structural loads into the riser end termination.

The apparatus on top, corresponding to the top interface in functional diagram Figure 1.3,

allows the riser to hang at the surface and attach it to surface valves and piping. It forms
the main support of the risers. This apparatus is often composed of tensioner and slip
joint. Figure 1.5 shows one schematic about the niser top interface. Seen in the figure, the
tensioner fotces ate transmitted through the slip joint to the upper joint in the tiser string.
The variation of the tension force is adjusted via the hydropneumatic mechanical system.
The slip joint is a mechanical device that attempts to compensate for vessel motion and
thereby minimize the effects of such motion on the riser string. It is composed of inner

barrel and outer barrel. The inner barrel is attached to the vessel by means of a ball joint on
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the bottom of the diverter. The outer barrel, which is attached to the riser string by means
of a ball joint (termed the upper ball joint), is supported at the tensioner ring by means of
the tensioner cables. The outer barrel is free to translate and rotate relative to the inner
barrel (Kozik & Noerager, 1976). In general, the riser tensioner design specifications
identify the required nominal tension and the allowable variations in tension. For example,
for production riser, 20 percent of tension riser is allowed. The specification also required
that the allowable tension varation shall include the effects of all of the negatively
contributing factors such as friction losses, gas pressure variation due to riser motion, and

the failure of any single component (MacPhaiden & Abbot, 1985).

The seabed portion, the stress or taper joint in the Figure 1.4, also known as the bottom
intetface in the functional diagram Figure 1.3, contains an apparatus that connects the riser
to a wellhead or receptacle. Included are also methods/equipment to space out the riser
and to account for bending loads at the bottom and/or top of the system. This portion
must also be designed to accommodate riser loads and maintain fluid conduit and pressure

integrity.

For the riser system integrity, which includes not only fluid and pressure containment, but
structural and global stability as well. The riser may also have bumpers, vortex-suppression
devices and other attachments such as buoyancy modules. They are appendages or

accessoties to alleviate the dynamic problems caused by environment loads etc.
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Figure 1.4 Top-tensioned production riser (From

Figure 1.5 Top tensioner mechanism, from Kozik and Noerager (1976).
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1.14  Challenges 10 Top Tensioned Vertical Rigid Risers in Deepwater
Top tensioned rigid risers used in conjunction with TLP or Spars are likely to be applied in

an array, with typically larger than 10 diameters of clearance. For this kind of riser, fatigue

life and potential collision are the two main issues for the riser design.

1. The fatigue life is closely related to the vortex-induced vibration, which has been a
problem for risers for decades. In deepwater development, the spacing dependent

current, such as shear current or non-unidirectional current, together with possible

multiple modes “lock in” can further complicate the phenomena.

2. Potential collision caused by wave and current. The harsh environment can excite
individual risers to move around with the platform. If the excitation of the fluid
loading is so strong that the envelope of the excursion of individual risers starts to

overlap with each other, consequently, the risers can collide with each other. Such

collision can also occur between riser and tendons. (Rajabi, 1989)

3. Another problem that can result in risers colliding with each other is the interaction
between tisers through the wake effect. The fluid loadings experienced by
individual risers are not the same due to the fact that some risers are located in the
wake of others. In deepwater, the deflection of the risers tends to be large, this kind
of fluid interaction can trigger two risers to collide with each other under certain
flow conditions, and ultimately can lead some risers to move around. The collision
between risers will be harmful to the oil and gas production and possibly

destructive to the riser structure, therefore such an interaction is an important issue

that warrants a through investigation.

Other challenges for such rigid risers in deep and ultra deep water include:

Method of deployment,
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= Extremely high tensions for top tensioned tisers in water depths greater

than 2000 meters,
s Accurate prediction of the dynamics etc.

With the offshore industry’s determination to move production into ultra deep water, this
thesis studies the challenge imposed by interaction caused riser collisions, i.e. the third one
of the above challenge list. In order to clarify the mechamism of the interaction, the study

will take its focus on the interaction between two tisers and started in two-dimensional

space.

1.2 Present Investigation

This thesis takes the TLP/Spar rigid riser as its investigation background, focusing on the
mechanism of the interaction between two risers, particularly the effect of the upstream
wake on the downstream nser. The research covers the estimation of the fluid forces
exerted on the downstream niser due to the interaction effect, the stability investigation of
the riser pair, and the identification of potential multiple equilibrium states. Based on such
a systematic investigation, a simulation of dynamics is then carried out to account for the
dynamic behaviour the riser pair can possibly exhibit, and to explain the phenomena
observed by some of the researchers in the experiment. The investigation is first unfolded
in two-dimensional space with its focus on the explanation of the mechanism of
interaction, and then extended in three-dimensional space to address the quantitative

relationship about the critical states and corresponding dynamic behaviour.

1.3 The Background of Chosen Topic

The grounds to choose the topic for this thesis investigation ate as follows,
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TLP/Spar ate attractive options for future deep and ultra deep water

developments, with relatively mature technology available (Snell and Banon,;

2000);

Geometrically, among the major components involved in a field development,
it is the riser system together with the mooting system that really depends on
the water depth. Neither the floating units, nor the subsea equipment depend
on water depth to the same extent. On the other hand, the nisers are one of the
most delicate components of a Floating Production System and need particular
attention to their design and deployment from a FPS (Rajabi, 1989). Therefore,

among the deepwater challenges, riser has its unique importance.

As identified herein, the niser interaction can potentially bring them to collide
with each other. To date, the philosophy has been to space the risers further
apatt in ordet to avoid riser collisions (ABS, 2001). Such a philosophy needs an
effective tool to identify the necessary riser clearance and to address its

practicability. Moreover, the mechanism which brings two risers to collide need

to be comprehended.

Spacing the nisers largely to avoid collision in ultra deepwater will result in a
significant cost penalty and may even jeopardize the feasibility of the entire
system. Therefore, should collision between risers be unavoidable, the damage

that the impact can cause will be vital information to marine riser designers.

Based on above rationale, the present thesis conducted a comprehensive investigation into

the interaction between two risers. A brief introduction about the theoretical background

and literature review on this topic is presented next.
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1.4 Theoretical Background and Literature Review

The mechanics of matine tiser can be simplified into a problem about cylinders, which has
been a subject extensively studied in the past. The exercise of cylinders in engineering is
ubiquitous. For example, the application of multiple cylinders can be found in the offshore
engineering, such as risers, tendons, or in power generation industry such as tube banks for
heat exchangers, twin-bundled and multiple line bundled lines for power transmission.
Application can also be found in civil engineering, such as groups of tower buildings,
chimneys and power stacks. Though the problem faced by marine risers has its unique
characteristics, which will be addressed in this thesis (Chapter 3), the theoretical mechanism
has by and large similarities from one to the other. This thesis by no means tries to discuss
all the issues related to cylinder applications. However, in ordet to present a full picture
about the background of the problem, a comprehensive introduction and review about the

flow over solitary and two/multiple cylinders is presented below.

1.4.1  Solitary Cylinder
1.4.1.1  Fixed cylinder

Pethaps the flow around a solitary cylinder is a2 most well researched subject in fluid
mechanics due to its simplicity in geometry. It has been long recognised that the flow ovet
a smooth circular cylinder is essentially dependent on the Reynolds number. Figure 1.6

ptesents an overall flow picture at different Reynolds number.
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Figure 1.6 Regimes of fluid flow across smooth circular cylinder. Source: Blevins (1990).

It was observed that the flow over a smooth circular cylinder can be categorised into

following regimes (Blevins, 1990),
o Re<S5, the fluid flow follows the cylinder contours.

e 5 to 15<Re<4), the flow separates from the back of the cylinder and a symmetric

pair of vortices is formed in the near wake.

o 40<Re<90 and 90<Re<150, the wake become unstable and one of the vortices

breaks away. A laminar petiodic wake of staggered vortices of opposite sign is

formed.
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150<Re<300, the vortices breaking away from the cylinder become turbulent,

although the boundary layer on the cylinder remains laminar.

o 300<Re<3x10’, it is called subcritical Reynolds number. The laminar boundary

layers separate at about 80 degrees aft of the nose of the cylinder and the vortex

shedding is strong and periodic.

e 1.5x10°<Re<3.5x10’, transitional Reynolds number. The cylinder boundary layer

becomes tutbulent, the separation points move aft to 140 degrees, and the cylinder

drag coefficient drops to about 0.3.

e Re>3.5x10°, supercritical Reynolds number. Regular vortex shedding is re-

established with a turbulent cylinder boundary layer.

1
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Figure 1.7 Drag coefficient for circular cylinders as a function of Reynolds number
(Schlichting, 1968).

Corresponding to the flow variation over the Reynolds number, the fluid forces and the

vortex shedding frequencies on the fixed cylinder changes accordingly. Figures 1.7 to 1.9
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show the variation of mean drag force coefficient (time averaged), Strouhal number and

oscillating lift force vary over Reynolds number respectively.
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Figure 1.8 Relation between Strouhal number and Reynolds number for circular
cylinders. Source: Blevins (1990).
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Figure 1.9 Fluctuating lift force coefficient versus Reynolds number for a smooth
circular cylinder (Robinson & Hamilton, 1992).

It is interesting to see that in the subcritical Reynolds number regime, the drag force
appeats to be insensitive to the variation of the Reynolds number and it has a constant

value about 1.2. The corresponding Strouhal number in this Reynolds number regime for
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vortex shedding is about 0.2. On the other hand, the oscillating lift force coefficient from
measurements generally show 0.4 for Reynolds number smaller than 5x10". Then, it
increases to its maximum rms value of 0.6-0.7 at Reynolds number about 4x10*, where it
remains constant up to Reynolds number 10°. Then, it decreases to below 0.2 (Reynolds

number about 3x10°), and remains approximately constant at higher Reynolds number

(Pantazopoulos, 1994).

In offshore engineering, a typical 12 inches marine riser will have a Reynolds number range
from 3x10° to 3x10° when the cutrent varies from 0.1 m/s to 1 m/s. Thetefore, the flow is
mostly within the subcritical Reynolds number regime, in which the flow separates from

the laminar boundary layer on the cylinder surface and strong vortex shedding is formed in
the cylinder’s wake.

1.4.1.2 Vortex induced vibration

When the circular cylinder is flexibly mounted, it will undetgo vibration under the
excitation of vortex shedding induced forces. However, the fluid flow will be complicated
when the cylinder is in motion. The fluid flow and motion of the cylinder will interact with
each other, which is a classical subject of fluid-structure interaction subject. The most
significant feature of such motion is the phenomena of “lock in”, or sometimes called
“lock on”, “synchronisation”, or “resonant”. It is a situation when the vortex shedding
frequency is locked on to the cylinder’s vibration. In which the Strouhal relation, that
vortex-shedding frequency varies proportionally to the flow velocity, is violated. This
phenomenon will persist within a range of flow velocities, for example, when the cylinder
is in air, the lock in will exist within the reduced flow velocity (defined as flow velocity
divided by system natural frequency and cylinder diameter) 4.75 to 8 and maximum

amplitude occurs in the range of 5.5 to 6.5. In watet, the phenomena occut in the range of

4.5 to 10 with maximum amplitude falling within the range of 6.5 to 8 (Sarpkaya &
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Isaacson, 1981). Experimental observation discovered that there is vortex shedding mode
changes in this particular “lock in” flow range (Williams, 1996), which explained the
hysteresis effect on the response of the cylinder (Hartlen & Currie, 1970) observed.

Excellent reviews about this dynamic phenomena can refer to Pantozoupolous (1994),

Sarpkaya (1979), King (1976) and Blevins (1990) etc.

1.4.2  Twoe Cylinder Interaction
1.4.2.1  Fixed Cylinder Flow Interaction

It was 2 common practice to assume the two cylinders should behave in a flow in a similar
or even identical manner to a solitary cylinder (Ohya, 1989). This assumption is justified
only when the two cylinders are sufficiently apart. In most cases, however, the flow over
the solitary cylinder will change after a neighbouting cylinder is present. Such a flow will
not only depend on the Reynolds number, but also and much more significantly, will
depend on the arrangement of the two cylinders. The following introductions are mainly
for the subcritical Reynolds number cases as it has been shown that the risers are typically
working under subctitical Reynolds number conditions. According to the relative location

between the two cylinders, the interaction between the two can be classified into following

kinds of interactions Zdravkovich(1977):
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Figure 1.10 Definition of regions of flow interaction for two cylinders interaction,
after Zdravkovich (1987). Proximity and wake interaction regions can be further
divided. The corresponding subdivisions of these two interaction regions and other
details are explained in Zdravkovich (1987).
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o Proximity interaction, which takes place when the cylinders are close to each other.
But none of them is submerged in the wake of another. There are two kinds of

atrangement for such interaction.
O Side-by-Side Arrangement

When the two cylinders are arranged in side-by-side, the flow changes with the
variation of the transverse spacing of the two cylinders, i.e. when the two cylinders
are within 1.1 to 1.2 diameters distance, the two tend to behave as an integrated
one, such as reflected in Figure 1.11. When the spacing is between 1.2 and 2,
bistable wake is observed, the wake between two cylinders is different, one is wide
and the other is narrow. There is a gap/jet flow between two cylinders. It flows
towards the small wake. Also the gap flow can switch direction between the narrow
and wide wakes at irregular intervals. When the spacing is further increased to 4 or
5 diameters, the two wakes formed from the two cylinders are coupled and
symmetrical with regard to the gap axis. When the spacing is further increased, the

interaction will diminish gradually. Generally, interaction is considered to exist

within 5 diameters Blevins (1990).
O  Staggered Arrangement

When the two cylinders are in staggered arrangement, gap flow existed well over
the streamwise direction spacing of 0.15. However, when the spacing is within 0.15
diameters, the flow is bistable, the direction of the gap/jet flow can switch
direction intermittently. When the streamwise direction is over 0.15, the narrow
upstream cylinder’s wake and wide downstream wake prevail the whole region.

Meanwhile, the lift and drag force on the downstream cylinder tend to be smaller.
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o Combined Proximity and Wake Interaction, which takes place when downstream
cylinder is located in the wake of the upstream one and the spacing between the
two is relative small. Within such a region, the upstream cylinder is influenced by
the presence of the downstream cylinder. For the downstream cylinder, two

different arrangements reveal different characteristics:

o Tandem arrangement

When the spacing between the two cylinders is within 1 to 1.2~1.8 diameters, depending
on Reynolds number, the flow separated from the upstream cylinder does not re-attach to
the downstream cylinder and alternative vortex shedding is formed behind the downstream
cylinder. Howevet, they are originated from the upstream cylinder. The oscillating force on

the upstream cylinder is negligible. The schematic about the flow are shown in the Figure
1.11.

When the spacing is increased from 1.8 to 3.4~3.8 diameters depending on Reynolds
number, the free shear layers separated from upstream cylinder reattach on the upstream
side of the downstream cylinder, a vortex street is formed only behind the downstream

cylinder, under such condition, the oscillating forces on the upstream cylinder is stil

negligible.
o Staggered arrangement

Two kinds of flow exist for the staggered arrangement. When the transverse spacing is
small, such as around 0.2 diameters, and the streamwise spacing is within 1.1 to 3.5
diameters, strong gap flow occurs, which can entail strong wake central pointing lift forces.
However, such a gap flow disappears when the transverse spacing is reduced. Outside this

special gap flow area towards the wake boundary, the lift force reaches 2 maximum value
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near the edge of the wake boundaty when transverse spacing is larger than 0.4 diameters,

and diminishes gradually towards zero when the tandem arrangement is reached.

Wake interaction, which takes place when the downstream cylinder is located
within the wake of the upstream one and the spacing between the two is relative
large. There is no cleat definition about the region of this kind of interaction in
literatures so far as no clear boundary between wake interaction and the combined
proximity and wake interaction (P+W) can be identified. Here, we define this to be
the area when the downstream cylinder is located at the spacing larger than 4
diameters, and there is no significant interaction effect on the upstream cylinder. In
such a region, no matter the two cylinders are arranged in tandem or staggered, the
upstream cylinder will shed vortex as if otherwise it stands alone in the flow. The
downstream cylinder is submerged in the vortex street of the upstream cylinder.
The vortex shedding and fluid forces on the downstream cylinder ate subject to the
characteristics of the upstream wake flow. Such a region extends well over a
spacing of hundreds of diameters. The characteristics of the fluid forces on the

downstream cylinder will be discussed further in the next section.

Outside the above defined interaction regions, the interaction on both cylinders are

negligible, the two cylinders behave as otherwise a solitary cylinder case.

This thesis mainly deals with the case of wake interaction, in which the spacing between

the two cylinders is often more than 10 diameters when at rest. Sometimes, the relative

location can trespass the regime of combined interaction of proximity and wake though.

The following introduction will have its focus on the wake interaction, and often with a

teference to the combined proximity and wake interaction.
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Figure 1.11 Wake flow under different arrangements. The detailed explanation about the

symbols, such as P-SSA represents the Proximity interaction for the side-by-side arrangement is
given in the Zdravkovich (1987).

1.4.2.2  Fluid forces on downstream cylinder in wake interaction

For the wake interaction, fluid forces on the downstream cylinder is a collective result of
the vortex shedding on itself, the incoming turbulent flow from the upstream cylinder and
the vortex street of the upstream cylinder. According to the characteristics of the forces in

frequency domain, they can be subjectively classified into three categories:

e Vortex induced forces

Due to the alternative vortex shedding behind the downstream cylinder, the forces on the
downstream cylinder present a significant periodical signature, which often is affected by
the existence of the upstream cylinder. The experimental observation shows that the
frequency of vortex shedding on the downstream cylinder tends to be influenced by
frequency of upstream cylinder’s wake when the two cylinders are at moderate spacing, i.e.

around 4 to 5 diameters. However, such a vottex shedding interaction will diminish with
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the further increase of the spacing. Eventually, the downstream cylinder will behave as a

solitary cylinder.

Compared to the solitary cylinder, the vortex-shedding induced forces generally tend to be

larger. Arie et al (1983) investigated the oscillating lift and drag forces on the upstream and

downstream cylinders. It is found that,

e The rms (root mean square) of lift and drag on the downstream cylinder is much
larger than upstream cylinder for spacing up to 7 diameters. When the spacing

between the two is larger than 10 diameters, the difference to the solitaty cylinder is

by a small amount.

e For the upstream cylinder, the mms of lift was extremely small for the spacing less

than critical whereas it was approximately equal to that for a single cylinder beyond

the critical spacing.

For the downstream cylinder, the rms lift was strongly dependent on the spacing

and amounted to as high as 2.8 times the value found for a solitary cylinder at the

spacing of 4 diameters.

e The rms drag for both cylinders was only weakly dependent on the spacing.

Figure 1.12 shows a comparison of tms of lift and drag on the upstream and downstream

cylinders. Similar conclusions can be found for the staggered arrangement (Morya &
Sakamoto, 1985).
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Figure 1.12 Rms kft and drag coefficients plotted against non-

dimensional spacing //4 for tandem arrangement. Lines for visual aid
only, from Arie et al (1983).

e Buffeting force

The inflow to the downstream cylinder is composed of the vottices, which ate shed from
the upstream one, and embedded within high turbulence. Such a flow produces a
temporally random force on the cylinder. In frequency domain, the force spectrum exhibits
a broadband nature. Most of the time, the response of the cylinder to such an excitation is
relatively small due to the excitation energy is distributed actoss a broad band of frequency
rather than concentrated. The significance of such motion is mainly to contribute towards

noise radiation, which is not a concern in offshore engineering. Therefore, research on this

subject is not of much interest to the offshore engineering.

¢ Time averaged force

The third kind of force, which is the focus of present study, is named as time-averaged
force. Such a force definition is rather subjective. In practice, all the vortex induced forces,
the buffeting force and time averaged force are mixed together to give a total force signal
on the cylinder. The time-averaged force can be treated as an average effect of the flow. It

is the mean component of the total force signal. In the case of solitary cylinder, it has a
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zero component in the cross-flow direction and the mean drag force in the streamwise
direction. However, when the downstream cylinder is located within the wake, there is not
only the drag force component, but also a nonzero cross-flow component, namely the lift
force. The interaction effect on the downstream cylinder’s force is significant even when
the spacing extends over hundreds of diameters. Figure 1.13 shows the measured drag
forces on the upstream and downstream cylinders respectively. This is the first
measurement result about two cylinders interaction forces. It was represented by the
difference between the drag force measured when there is interaction and the force
measured on the solitary cylinder. Figure 1.14 shows the vector of the lift forces and the
drag force difference between interaction drag and solitary cylinder drag. Evidently, within
the wake interaction, the drag force on the downstream cylinder tends to be reduced. The
lift force on the downstream cylinder tends to attract the downstream cylinder towards the
wake centreline. Also thete is a very small region in the vicinity of the upstream cylinder, in
which the drag force increases, beyond which there is no interaction. The figure also
indicates the different regions of wake interaction and combined proximity and wake

interaction. A further investigation will be carried out in Chapter II.
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Figure 1.13 Interference drag coefficient for tandem cylinders
(Biermann and Herrnstein, 1933).
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Figure 1.14 Interference force coefficient for all arrangements, from Hori (1959).

Reynolds number effect

The effects of Reynolds number are important for solitaty circular cylinder cases. On the
other hand, Price and Paidoussis (1983) measured the drag and lift force on the
downstream cylinder in the staggered arrangement. Their results at Re=5.3x10" were
almost in agreement with those of Zdravkovich and Pridden (1977). The effect of
Reynolds number in the range of (1.7~8.6) x10* was investigated for a number of wake

positions and found to be negligible, suggesting that in this subcritical range, Reynolds

number does not have a significant effect on the force coefficients.

Nevertheless, from the experience on the solitary cylinders, it is well known that the wake
differs significantly when the flow changes from subctitical into postcritical region.
Generally the wake is narrowed considerably. Therefore, the forces on the downstream

cylinder can change significantly when the flow is in the postcritical Reynolds number. As
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stated at the beginning of this thesis, this study takes marine risers as the background.

Reynolds number effect is not a concern in the thesis.

1.4.2.3  Flexibly Supported Two Cylinders

When either one or both cylinders are elastic and vibrate, the flow field becomes
significantly more complicated because of the interaction of the fluid flow and the

cylindet’s motion. To engineers, unfortunately this is more likely the case in reality.

Compared to the fixed cylinder interaction, the study on the dynamics of the interaction is
relatively fragmented, this may largely be attributed to a much more complicated system

presented to the researchers. The factors which may govern the dynamics of the system

include:

e The inflow to the cylinder pair, such as the uniformity of the flow, flow turbulence

intensity, etc.
¢ Reynolds number, which determines the viscous effect of the flow.

e Mechanical system characteristics of the two cylinders. Either one of the cylinders
is flexible or both of them are flexible. If both cylinders are flexible, the

characteristics of the mechanical system of the two can either be identical or

different.

The arrangement of the two cylinders, i.e. the streamwise and transverse spacing

between each other.

The coupling of the fluid and structural dynamic system, i.e. the relation between
the fluid vortex shedding excited frequency and the natural frequency of the

mechanical system. Also the weight between the fluid force and mechanical force.



Ww. WU 2003 Introduction 29

Associated with all these factors, the downstream cylinder may exhibit different dynamic

behaviours, the most significant ones known so far include,

e Vortex induced vibration

e Wake induced fluidelastic instability (galloping, flutter)
They are elaborated in the following sections respectively.

1.4.3  Vortex-Induced-Vibration

Amongst the two kinds of dynamic behaviout, vortex-induced-vibration 1s a relatively well-
researched subject. Compared to the solitary cylinder, the excitation to the downstream
cylinder is affected by the upstream cylinder’s vortex shedding and the turbulence formed

in its wake, as evidenced by the oscillating forces on the downstream cylinder (Figure 1.12).

A detailed investigation of two tandem atranged cylinders with spacing between 1.2 to 5
(King & Johns, 1976) show that complex mutual interactions can atise between the flow,
vortex shedding and the motion of the cylinders in such spacing. The dynamic response of
the cylinders is a function of spacing, reduced flow velocity, mass ratio, and damping value.

The response is particularly dependent on the spacing. Their observations can be

summarised as follows:

When spacing is smaller than 2.75, symmetric vortices are shed from both cylinders
in the range of 1.25 to 2.5 of the reduced flow velocity, and both cylinders will

oscillate in the in-line direction provided the mass-damping ratio is less than 2.4.

When spacing is larger than 2.75, for reduced flow velocity within 1.25 to 2.5, the
upstream cylinder is oscillating in-line and shedding symmetric vortices but the

downstream cylinder do not oscillate and a wide turbulent wake is found.
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When reduced flow velocity is within 2.7 to 3.8, for all the spacing within 1.5 to 7,

the alternative vortex shedding from the upstream cylinder tend to reinforce the
shedding process on the downstream cylinder and the amplitude of the

downstteam cylinder is larger than the upstream cylinder.
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Figure 1.15 Response of two cylinders in tandem as a function of flow velocity, the
drag and lift force direction refers to streamwise and cross-flow direction respectively.

From Jendrzejczyk ¢f al (1979).

The above results were later confirmed by Jendrzejczyk ez @/ (1979). Though the later
expetiment found the response of the downstream cylinder was not always larger than the
upstream cylinder. Figure 1.15 shows the response of the two cylinders at the spacing of
1.75. Figure 1.16 shows the orbital paths of two cylinders at several flow velocities equal to
1.7 and 3.0, respectively. It is seen that cylinder motion changes from motion
predominantly in the drag direction to lift direction with the flow velocity increases. The

two cylinders vibrate out of phase when they execute large oscillations. The orbital paths

bend in the downstream direction.
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Figure 1.16 Cylinder displacement as a function of flow velocity. From Jendrzejczyk ef
al (1979).

1.4.4  Wake Induced Fluidelastic Instability (Flutter, Galloping)

Wake induced fluidelastic instability refers to such a state that when the downstream
cylinder is sitting in the wake of the upstream one, any small disturbance to the system can
lead the downstream cylinder to an unstable state, i.e. the small disturbance either be
amplified to a large extent until a new balanced state is achieved, or the system breaks ot
collide with each other ultimately. According to the mathematical characteristics of the

system lose its stability, traditionally, the instability is called wake induced galloping and

wake induced flutter.

1.44.1 Wake induced galloping

Galloping is a behaviour first understood in civil engineering from the phenomena of a
solitary bluff body, such as square or D shaped cylinder. The system only has a single
degree of freedom. When the fluid force, particularly the lift force, produces fluid damping
and cause the system start to have an overall negative damping, the system lost its stability.
The dynamic motion associated with such a system is called galloping. The most significant

feature of the galloping is its response amplitude increase almost linearly with the flow
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velocity and does not disappear at large flow velocity. Therefore, it potentially will cause
catastrophic result. Examples of the galloping study can be found from Cheers (1950) and
Hunt and Richards (1969) for ice-coated power lines, Parkinson (1971) and Simiu and
Scanlan (1986) for bridge decks. Thete is no galloping phenomenon for a solitary circular
cylinder due to its net lift force is zero and its drag force is always positive which

guarantees the damping of the system 1s always positive.

When the downstream cylinder is sitting in the wake, the fluid forces can produces negative
system damping. There are mainly three kinds of causes to induce the downstream cylinder

to galloping, i.e. gap flow, discontinuity of the flow and negative drag forces. All these

occur in the near wake.

The gap flow caused galloping refers to the cases when the two cylinder is within the
proximity interaction, due to the switch of the gap flow directions, thete is a hysteria effect
between the fluid forces and the displacement of the downstream cylinder, such a force
displacement relation can trigger the instability of the system. The classical theory about

this can refer to that of Robert (1966). Similar explanations are applicable to the region

where the flow is considered to be discontinuous.

The negative drag induced galloping. The fluid force on the downstream cylinder is treated
to be continuous with the relative displacement when the two cylindets are in the vicinity.
Bokaian and Geoola (1984) measured the time-avetaged forces on the downstteam
cylinder systematically. By fix the upstream cylinder, the downstream cylinder is restricted
in the streamwise direction and free to move in the cross-flow direction, galloping is
observed on the downstream cylinder. Such a dynamic behaviour is justified by the quasi-
steady flow theory with the consideration of the negative drag force induced overall

negative system damping. The typical feature of such galloping is that the motion
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amplitude of the downstream cylinder increase monotonically with the flow speed once a
critical state is reached. Therefore, unlike the vortex-induced vibration, the end result of
such motion can be immediate destructive. One additional and significant finding in their
experiment demonstrated that the vortex induced vibration and galloping can either coexist
or they can occur one after the other, which implies that under the circumstances
considered, the flow velocity for the occurrence of the galloping is well close to the
condition for the lock in phenomena. Figure 1.17 shows the possible dynamic behaviour

when two cylinders are arranged in the combined wake and proximity interaction regime or

wake interaction regime in the water.
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Figure 1.17 Response of a cylinder behind a fixed cylinder oscillating
in the cross-flow direction only. From Bokaian and Geoola (1984).

1.4.4.2  Wake induced flutter
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Flutter was originated from the aerospace terminology for coupled torsion-plunge
instability of airfoil structures. In such cases, the lost of system stability is mainly attributed
to the coupling of the structure stiffness and the fluid forces. Theories on the occurrence
of flutter can be found in the excellent reviews by Bisplinghoff ¢z 4/ (1955), Gordon (1978)
etc. The phrase “wake induced flutter” was first introduced to the cylinder interaction by
Simpson(1971). It refers the situation of the wake located cylinder lost its stability under
the joint action of the fluid force induced stiffness and mechanical stiffness. Therefore,
sometimes, it is also called as fluid stiffness controlled fluidelastic instability (Chen, 1986).
The wake induced flutter is likely to occur when the two cylinders are separated with a
moderate spacing, typically around 10 diameters and the downstream cylinder is located
towards the boundary of the wake such as twin power transmission lines. The phenomena
has been investigated by many researchers since its discovery, examples are Price (1975),
Tsui (1977, 1986), Hardy and Dyke (1995) and Hemon(1999). In general, it was found that
the fluid stiffness combined with structural stiffness lead to the unstable system when the
flow velocity is high enough and the coupling of the mechanical springs met specific
conditions (Simpson, 1979). When the cylinders lost its stability in such a way, it will
undergo a large amplitude elliptic trajectory movement in the wake. Figure 1.18 shows an
example of such trajectories. When the downstream cylinder is located in the lower half of
the wake, due to the drag forces in the inner wake is smaller than in the outer wake,
encoutaged by the cross-flow direction lift forces, to absorb enetgy from the flow, the
trajectory will be in counter-clockwise direction (Blevins, 1990). Figure 1.19 shows a full-

scale field observation of power transmission lines” motion. The instability index of the

ordinate in the figure is defined as,
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Here [ is the subspan length, 4 is the ram.s value of the 7th component of the

displacement oscillation spectrum at mid-subspan, and f is the associated frequency.
Therefore, the instability index reflects the motion amplitude and energy. The figure

illustrated the amplitude increase with the flow velocity, which explains the significant

difference to the vortex-induced vibration.
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Figure 1.18 Wake induced flutter stability boundary and orbits (Cooper, 1973).
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Figure 1.19 Oscillation severity as a spacing to diameter ratio: -*-, spacing
a=450 mm, diameter 4=35.05 mm, a/d=13.0; - -, spacing @=450 mm, diametes
d=24.3 mm, a/d=18.6. From Hardy and Dyke (1995).
Before closing the review on the galloping and flutter here, it should be noted that in the

open literature, the definition of wake induced galloping and wake induced flutter is not

always clearly distinguishable. For example, the wake induced flutter has been frequently
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referred as wake induced galloping, such as in Parkinson (1989), Chen(1986), Brika and

Laneville(1999), Jendrzejczyk et a/ (1979).

1.4.5  Researches on riser dynamics and interaction

Marine risers can be considered to be three-dimensional cylinders. Therefore, theoties of
flow over cylinders and the cylinders’ interactions are riser’s special cases in two-
dimensional space. To understand the three-dimensional effect on the top tensioned
vertical risers, studies have been carried out over the years on statics and dynamics of nsers,

most of them have its focus on the single riser circumstances.

The key features of marine riser design was first defined by Fischer & Ludwig(1966). With
statics analysis, they demonstrated the importance of tensioning the riser to prevent
buckling and to control deflection and stress. With the enhancement of the computing
capability, and probably largely spurred by the progressive deepwater production, the
dynamics of marine fisers become an indispensable analysis during riser design in 1970s. As
the environment in which risers located is never static, such as top vessel movement,
persistent wave, vatiable strength current always accompany with the risers, the risers are
always in motion state. Sometimes, the stress caused by the dynamics can be very
significant. The tasks for such riser analysis include two patts, i.e. the dynamic response of
the risers under the loading condition and to predict environmental loads on the risers.
Though practically these two parts are coupled with each other and they should be treated
within an integrated system. The common practice of the environmental load prediction is
via Morison’s equation (Morison, et al, 1950), which is essentially a quasi-steady theory.
The fluid forces are dependent only on the instantaneous state of the fluid flow and risers,
and it is independent of the history of tiser’s motion and the flow. The riser structural
response analysis can generally be classified into frequency domain analysis and time

domain analysis, depending on the discretisation of the response equation (Bernitsas,
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1982). Analysis can be furthet sub-classified, for example, environmental loads include the
vortex induced forces, which often has an empirical model or is a statistical model. The
above mentioned Morison’s equation is mostly applied to wave induced loading only, etc.

At the moment, software is available for the analysis of the riser’s dynamics, such as Shear

7, VIVA for the analysis of vortex induced vibration etc.

On the other hand, it was untll the beginning of 1990s that marine niser interaction started
to catch the attention of researchers and engineers. This is mainly due to the fact that the
tiser interaction is exacerbated by the deepwater condition, stated early here as a new

challenge. The first designated project on this kind of riser interaction is contracted by
Minerals ~ Management  Service (US  department of interior), entitled
“Interference/Clearance Problems of Risers in Floating Production System” (Rajabi, 1989).
However, the first notable publication should probably be attributed to Huse (1993), in
which he used the wake shield effect model to account for the drag force on the
downstream cylinder and, subsequently, he predicted the critical flow velocity before the
collision between two risers occurs. All of such attempts were designed to meet the
challenge of deepwater offshore development. Nevertheless, the need for detailed force
information about the downstream riser in the wake field and its complexity makes a
comprehensive investigation difficult. Without a stability analysis, Huse’s explanation about

the mechanism for two risers collision is based on conjecture rather than on rigorous

analysis. In fact, as will be discussed in the later chapters, it is rather unclear.

Little direct work has been done on the wake induced riser clashing elsewhete, except that
in the last couple of years other researchers have joined in the fray (Sagatun, 1999; Li and
Morrison, 2000). These recent research contributions focus upon developing simple
structural models to quantify impact loading on, and possible damages to, the risers. They

attempted to simplify the downstream riser as an equivalent mass that contributes to the
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riser collision impact force. The possible damage can then be assessed. If the damage is
considered to be tolerable, incteasing riser initial spacing may not be required. At the same
time as this research was being undertaken, the author realised that a lot of industry
research was being done, namely Demo 2000, NDP programme and Deepstart etc., but
the critical results and information remain proptietary and are not in the public domain. Up

to date, to author’s best knowledge, a systematic investigation on the interaction between

two marine risers has not yet been seen elsewhere.

1.5 Obijectives of the thesis

The main objectives of the thesis are as follows,

1) To identify the mechanism of the riser losing stability

2) To predict the critical condition under which inception of this loss of stability takes

place

3) To identify the possible dynamic behaviour should the dynamic phenomena occur

4) To provide guidance to riser designers regarding how to avoid riser collision

5) To compare the phenomena and mechanism against multiple cylinder application

in other engineering disciplines

6) To provide information about dynamic state before impact for the estimation of

the damage that can occur should collision be unavoidable

1.6 The Structure of the Thesis
This thesis consists of ten independent but interrelated chapters. The main frame of this
thesis is composed of two parts. The first part deals with cylinder interaction in two-

dimensional space, with a focus on the investigation of the stability of downstream
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cylinder, and the identification of the mechanism that bring the two cylinders to collide
with each othet. The second part deals with the three-dimensional riser interaction, with

the aim of predicting quantitatively, the critical state before collision and the dynamic

behaviour after occurrence of collision.

Starting with force prediction, Chapter II provides an estimation of the interaction force

exerted on the downstream cylinder by using a free streamline model. The data obtained in

this chapter forms the basis of the subsequent analysis.

Chapter III deals with the stability analysis, particularly by utilising the traditional Routh-
Hurwitz stability algorithm, by which a significant difference between marine riser
interacion and cylinder interaction application such as power lines is identified.
Subsequently, stable and unstable regions under specified flow conditions are identified for
the whole wake field, which clearly shows the possible bifurcation type of the downstream

cylinder can occur for a pair of cylinders in water.

Chaptet IV explores the potential multiple equilibrium by use of the continuation method.
As the two cylinders interaction system is non-linear in nature, the identification of
multiple equilibrium states is the first step towards the exploration of the non-linear
characteristics of the system. This chapter shows that there can be up to four equilibrium
states for a specified cylinder pair. Meanwhile, as this chapter is a sister chapter of Chapter
ITI, the stability at each individual equilibrium state was analysed through a direct,

numerical eigenvalues secking method.

Chapter V investigated the dynamic behaviour of the two cylinders interaction, particulatly

after losing equilibrium. It depicts the trajectory and dynamic states when wake induced

oscillation occurs.
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Chapter VI describes the three-dimensional case, with statics analysis. Although substantial
analysis has been made in the past regarding marine riser statics, the statics regarding the
two risers interaction has not be propetly addressed before. In this chapter, a detailed

discussion about the statics concerned interaction effect has been presented.

Chapter VII identified the potential multiple equilibrium for a specified marine riser pair.
This is an extension of Chapter IV. However, due to the three dimensional effect, the
quantitative relation is different to a two-dimensional case. A non-dimensional parameter is

attempted to provide some guideline data for riser designers.

Chapter VIII studied the dynamic behaviour of the riser pait, particularly when the riser
pair is located in an ocean current, which is stronger than the critical condition. The

trajectory and dynamic state, such as velocity before collision, the motion amplitude, and

time interval between successive collisions are investigated.

Chapter IX and X provided conclusions of this thesis, and also some recommendations on

the future work regarding the further investigation on this subject.



Chapter 11

THE ESTIMATION OF LIFT AND DRAG FORCE ON

THE DOWNSTREAM CYLINDER OF A PAIR
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2.1 General Remarks

A pre-requisite for studying the dynamics of the cylinder interaction is to understand the
fluid forces on the cylinders. The time-averaged forces are considered to be most
responsible for the cases of fluidelastic instabilities. This chapter endeavors to find an

empirical method to provide such necessary fluid force data for the subsequent analysis.

The necessity for the study of such forces began in 1970’s when twin-bundled overhead
transmission conductors began to be put into use, and the large movement of leeward lines
caught a lot of attentions from scientists. A knowledge of the time-averaged force is a pre-
requisite for the study of dynamics of leeward cylinders. Explanations for the mechanism
and characteristics of such forces were diversified. The first problem for the study of such
forces is the direction of the lift. Savkar(1970) used the potential theoty to find the force by
representing the wake of the windward conductor by a shear layer, and found the lift force
is directed away from the centre of the wake, while the experiment of Price(1975) and
others found the lift force is directing towards the centre of the wake. Around the nature of
the lift force, there are different arguments trying to explain the cause of this force, such as

the buoyancy explanation by Maekawa(1964). He suggested that the static pressure on the
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centre of the wake is minimum. However, the integration of the static pressure around the
cylinder in the wake shows that at most only 30 percent of the force can be attributed to
this reason (Best and Cook, 1967). The resolved force of drag, suggested by Mair and
Maull(1971), suggested that due to the entrainment of fluid into the wake, the flow velocity
is towards the centre of the wake, so that the lift force experienced by the leeward cylinder
would be a resolved component of the drag force. It was shown by Price(1976) that this
amount is still far from sufficient to account for the lift force. Rawlins(1974) ascribed the
lift force to the circulation. He states that, owing to the variation of turbulence and velocity
across the wake of the windward cylinder, the two boundaty layers from the leeward
cylinder feed different amounts of vorticity into their associated shear layers. Applying
Kelvin’s circulation theorem to this state, Rawlins concludes that a circulation around the
cylinder is built up until the rates at which vorticity is discharged from the two boundary
layers are equal. He got a lift coefficient which is proportional to the transverse gradient of
the drag coefficient. Price(1976) shows that such a result is 30 percent lower than the
measured result, and the position of the maximum lift is outward from the measured
situation. Detailed discussion on these issues may refer to Price(1976). One currently
accepted idea about the nature of this kind of lift force is that there is a collective
contribution from the resolved drag, wake entrainment and additional circulation along the
inner side of the downstream cylinder. Their relative weight is dependent on parameters

like L/ D (spacing diameter ratio) and R, (Ting et al, 1998) etc.

Up to now, to account for the time-averaged forces appropriately by using the full N-S
equation solver is still impractical, either due to the limitation by high Reynolds number or
the huge amount of computation time, especially when dealing with very widely spaced

cylinders such as 10 diameters or more apart. Thetefore, nearly all past researches were
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conducted using experimental data of force to explain the dynamic behaviour of such

interactions. The pioneer and typical work is Simpson (1971).

In this chapter, we consider the lift force due to the different flow separation position on
the outer and inner side of the downstream cylinder. The separation position is dependent
on the flow velocity around the downstream cylinder. Using the free stream line theory, the
lift and drag force are estimated reasonably well, both in magnitude and distribution. It is
considered that this is a useful tool for the analysis of the dynamic behaviour of the

downstream cylinder, particularly when lacking the necessary large volume of experimental
data.
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2.2 The Estimation of Lift and Drag Force On the

Downstream Cylinder

2.2.1  Concept of the Nature of the Force

.
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Figute 2.1 Schematic figure of the downstream cylinder located in the
wake of upstream one.

Figure 2.1 is a sketch of the flow separation when one cylinder is located in the wake of
another (the upstream cylinder and downstream cylinder are refetred to as cylinder 1 and
cylinder 2 respectively hereafter and in the results presented). Experiments show that the
separation point on the inner side of the downstream cylinder is more rearward than that
on the outer side. When cylinder 2 is located in the upper half of the wake of cylinder 1,
inner side and outer side means the lower, upper part of cylinder 2 respectively as shown in
Figure 2.1. From the knowledge of flow separation around a cylinder in uniform low
turbulence free stream, it is known that the pressure after separation is nearly equal,
especially at the sub-critical Reynolds number region (wake zone, the pressure in this area is
called base pressure). The lowest pressure is usually lower when the separation point is
located more rearward for the same base pressure. Considering the situation in Figure 2.1,

this mechanism makes the pressure on the upper half of the downstream cylinder higher
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than that of the lower half. It is believed in this investigation that the above mechanism is

the source of the lift force which is directed towards the centre of the wake.

Considering the magnitude of the lift and drag, according to the above suggestion, the
asymmetric separation and the base pressure are vital important factors. The base pressure
affects the drag force and the asymmettical separation dictates the lift force. This will also
be discussed in the later numerical test about the sensitivity of parameters of base pressure

and separation position to the drag force.

af*)

65 -

Figure 2.2 Separation position for the leeward conductor, X=6.0,
reproduced from Price(1976).

The above hypothesis suggests that it is necessary to find the separation position and base
pressure before proceeding to calculate the lift and drag force on the downstream cylinder.
Figute 2.2 is a reproduction of an experiment result found by Price (1976). The Figure
shows the variation of separation position with different transverse locations at longitudinal
spacing X=6. It is clear to see that when Y=0, the separation position is same for the outer
side and inner side due to the symmetric characteristics of the wake. The separation angle

on the outer side decreases with the increase of Y. Meanwhile, the separation angle on the
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inner side increases when the cylinder is moved outward neat the wake centre. When the
downstream cylinder is located around Y=0.5, the separation position on the inner side is
in the most rearwards position. This corresponds to the location when the inner side is
located on the centre line of the wake of the upstream one. When the cylinder moves
outwards further, the separation position shifts forwards with the increase of Y. Moreover,
we can see a vety interesting phenomenon, that is that regardless of whether it is the inner

side or outer side, when they are at the same transverse location, the separation position is

similar.

To identify such a relation of the flow separation with corresponding flow is never an easy
matter. Generally, it is incontestable that the flow separation position is related to Reynolds
number, turbulence intensity of upstream cylinder’s wake flow which impinged on the
downstream cylinder, the downstream cylinder surface roughness, the pressure gradient
across the upstream cylinder’s wake etc. Howevet, as the surface roughness is fixed for a
specific situation, it can not be the reason of the variation of lift force across the wake.
Although upstream cylinder wake turbulence intensity can be important, a direct relation
between separation position and turbulence intensity is hardly persuasive. On the other
hand, Reynolds number and pressure gradient are parameters closely related to flow
velocity, and moreovet, the wake turbulence characteristics ate more or less related to wake
velocity in some way. It is suggested in this thesis that the flow velocity around the
downstream cylinder dictates the flow separation. The quantified relationship between flow

separation and flow velocity will be presented in the subsequent sections.

2.2.2  Free Stream Line Model for the Prediction of Forces

The use of free stream theory can be dated back to Kirchhof’s attempt to resolve the
D’Alembert paradox(1869). The basic hypothesis is that the wake zone is an equal pressure

area. In 1970s, free stream line theoty was used to study the wake geometric shape of flow
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over bluff bodies(Parkinson and Jandali, 1970) and also to correct the blockage effect of
wind tunnel walls (Bearman, 1975). Generally, mapping transformations were used, or very
few sources (two or four) were distributed to represent the effect of the wake for
symmetrical problems. A brief introduction to the numerical model used in this thesis is

ptesented here, which is considered to be more powerful in dealing with the asymmetrical

problems.

X

—_—— e e —— —— «.— Wake Region

Boundary of Wake

Figure 2.3 Schematic figure for Free Stream Line Model.

As shown in Figure 2.3, the flow outside the wake and body are considered as ideal flow,
the wake region is considered to be an equal pressure area. The sutface where singularities
are distributed includes the wake boundary (free stream line) and the wetted sutface of the
body, i.e. the region where the flow has not separated. N vortex elements are distributed on
the wetted surface of the cylinder, their strengths ate unknownI'(q,), (n=1,2,..N). M
vortex elements are distributed along the free stream line, their strengths are equal to the
inflow velocity (including two vortex elements whose lengths are infinite long at both ends
of the above boundary to ensure that no flow will leak into the wake). The actual location

of the free stream line is unknown. There are N control points on the wetted surface of the
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body at which the impeachable condition must be satisfied. Thus, by supposing a location

of free stream line, we can get the strength of the vortex on the wetted surface by solving

the N equations with N unknown. The control equation can be written as (Lewis, 1991):

—%I‘(qm)+ih‘x[r(qn)lz(qm,qn)xﬁ]+fﬁx[uwk(qm,q,)xﬁ]mx(ijr,)=o @.1)
n=1 J=)

Here, R(qm,qn) is the vector from g,toq,, . K (4,.-9,)1s the induced velocity at g, by

vortex located at the position ¢, of unit strength,

E X R(qm’qn)

K(qy:9,)=—7=
27|R(q,-4,)

3 22

I'(g,)is the unknown vortex strength at position ¢,, U_is the free inflow velocity,
K@,.q ;) is the induced velocity at g,, by the unit strength vortex located on the wake
boundary ¢, nis the local unit normal vector at ¢,,, i is the unit vector in the direction
of axis x, k is a unit vector which is along the axis of the cylinder and point towards

readers.

Apparently, the requirement that the pressure on the free streamline is equal everywhere

can not be guaranteed by this solution immediately. Adjustment of the location of the free

streamline has to be made. The correction is made as follows:

Assuming the free streamline behaves like a rope or chain, the position at separation point
is fixed. After each time, the induced velocity at free stream line is calculated. The free

streamline is realigned according to the local velocity direction in such a way that the flow
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in the vicinity of the free stream line is parallel to the free stream. The co-ordinates of the

free stteam line are corrected by following equations:

( u,-Al
ij= 2 2
uj +VI
vj-Al
ij— 2 2
\ uj +VI
X, =x, +Zij
= 2.3)
yi =yr) +2Ay1
J=1

Hete, u,,v,are x,y direction components of the local velocity at j~th element on free

stream line respectively. Al, which is the length of the vortex element on the free stream

line, is set equal for every element in the present calculation. x,,y, are the co-ordinates of
the separation point. X,,y, are co-ordinates of the i-th element on the free stream line. In

the present calculation, the velocity at the separation point is related to the base pressure,
and the flow velocity at the separation point is set to be tangential to the cylinder surface at
that position. After getting the new position of the wake boundary, repeating above
procedures until the free stream line can reach a position, where the equal pressure can be

ensured. The solution at such a state is the final solution for the specified flow separation

problem.

2.2.3 Wake Flow Velocity of a Solitary Cylinder

For the interaction between two cylinders, the inflow of the downstream cylinder is the
wake of upstream cylinder as shown in Figure 2.1. In order to specify the inflow of the
downstream cylinder, it is necessary to explain the wake flow field characteristics of a
solitary cylinder in the first place. By applying the momentum theorem to a control surface

which encloses the cylinder to be studied, based on Prandtl's mixing length hypothesis, the
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first expression for cylinder wake flow velocity was obtained by Schlichting (1968). The

expression can be one of the following two forms:

-0693] Y i
u(x,y)=U,(x)e ["(x)}

W b(x)=025-/C, D, x 24)

U, (x)=V,, . CinD,
| x
Refetring to Figure 2.1, here

u is the wake velocity deficit at the position X, y;

U ,is the maximum wake velocity deficit on wake centerline at (x,0);

C,» D, ate the drag coefficient and diameter, tespectively, of the cylinder located in free

stream. When interactions between two cylinders are being investigated, they refer to the

upstream cylinder;

b is the half width of the wake which is defined as: When y=b, u~0.5U,.

Thus the wake flow velocity U can be expressed as:

U(x’y) =1- C,D, e-o.693[ﬁ] 2.5
Z x |

Alternatively, the expression can also be written as:
b, = k,+[xC,, D,

3
) 2 2.6
Vo Cm Dl bw
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Here, b, is the width of the wake, ie. distance from the wake centreline to the wake
boundary. k,, k, are constants which can be derived from theoretical analysis or obtained
from expetimental results. It is approximately thatk, =~ 0569, k, = 0.976. Essentially the

two expressions above are same. In this chapter and subsequent analyss, the first form is

utlised.

Above results are valid only for the far wake field, for example, x/D, >10. When the
distance x is small, the wake velocity deficit tends to be over predicted and the width of the
wake tends to be under predicted. Modifications need to be introduced. One example was

made by Huse (1993). He supposed the wake originated at somewhere in front of the

location of the cylinder. It is named as a virtual source. Thus the distance x from the
cylindet location in (2.4) is replaced by modified distance x,, which is measured from the

virtual source, as shown in Figure 2.4.

Figure 2.4 Schematic figure about longitudinal distance
modification.

m=XTX,
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x,is the distance from virtual source to the cylinder location. It is suggested as (Huse,

1993):
X, = 4D, /Cm

The modified wake flow velocity expression ate as follows!:

-0.693| z
u(x,y)=U,(x)e [b(’)l

U,(x)=V,JCp D /x, (2.5)
b(x)=025-yC,,-D,-x,

Apparently the effect of above x, will diminish with the increase of distance x, which is in

accordance with the distance modification requirement.

2.24  Determination of Separation Angle and Base Pressure

As discussed above, the separation position and base pressure play vital roles in
determining the lift force and drag force acting on the downstream cylinder. For a specific
cylinder (with a defined Reynolds number, surface roughness etc), it is assumed that the
separation is mainly dependent on the flow velocity. The reasoning and evidence of this has
been discussed in section 2.2.1. The downstream cylinder functions like a blunt airfoil.

Figure 2.5 shows the sketch of the flow separation position with the flow velocity. As

shown in the figure,
a, =(a,+a,)/2 26
a2=(a0—a,)/2 .

! In original paper, the cocfficient ~0.693 was misprinted as —0.639
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Figure 2.5 Schematic of flow separation angle.

Here «,represents the average separation angle. It is considered that the average
separation angle of the downstream cylinder is dependent on the inflow velocity at the
centre of downstream cylinder. @, is the difference of the separation angle between outer
and inner position. @, are separation angles on the upper and lower part of the cylinder
respectively. The difference of the separation position was considered to be dependent on
the gradient of the velocity at the location of the downstream cylinder. The investigation
made in this thesis is mainly focused on the sub-critical Reynolds number region, and the

following relation is suggested.

u 5] Dau D3 63u
a, =l +e AREEIRCES a

Here a.,\Re represents the flow separation position when a solitary cylinder is sitting in the

free stream at Reynolds number of Re. By regressing Price’s experimental results at the

longitudinal position of X=6, the coefficients are obtained as follows:

¢, =300158
¢, =02054 i
¢, =-3201 @8

c, =—498
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The regression curve is plotted in Figure 2.2.

The base pressure is another complex variable. Williamson (1996) shows that the base
pressure is sensitive to the process of vortex formation in the near wake, which itself is
affected strongly by the evolution of various two-dimensional and three-dimensional wake
instabilities, as Reynolds number are varied. However, the experiments show that when
Reynolds number is within the region of about 10* to 105, the base pressure does not
change much. When the cylinder is located in the wake of another one, there is pressure
head loss in the wake. The static pressure of the oncoming flow in the upstream cylinder
wake differs considerably to the free stream. It is not practical to relate the downstream
cylinder wake pressure to the free stream parameter. Therefore, the downstream cylinder is
treated as a single cylinder located in a high turbulence flow. Based on the successful
expetience of using the wake shield effect to explain the multiple cylinder drag force (Huse,
1993), and also, some experiments that show that turbulence intensity has very little effect
on the base pressure (Bearman, 1989), in the present investigation, the base pressure is set
to be equal to that of a single cylinder located in free stream. Similarly, this reflects that the

variation of the drag force coefficient acting on the downstream cylinder is mainly due to

the variation of the wake flow velocity.

2.3 Prediction for a Solitary Cylinder Using Free Stream Line
Model

A single cylinder in a uniform flow is considered here and two scenarios are calculated.
One is for flow separated at 80° with base pressure coefficient -0.96. The other is for flow
separated at 117.5° with a base pressure of -0.38. These two scenatios may represent

laminar flow separation and turbulent flow separation respectively. The calculation used 50
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vortex elements on the wetted surface and 50 on the wake boundary. Figure 2.6 is a
comparison of the calculated result with the experiment conducted by Roshko (1954) and
Bearmean (1968) respectively. From Figure 2.6, we can see that the prediction of the
ptessure distribution agrees very well with the experiment result. For completeness, two
wake boundary shapes are also presented here (Figure 2.7). We can see that the wake in the

two scenarios differs significantly in size. This is also in agreement with the experimental

result.



Ww. WU The Estimation of Lift And Drag Force On the Downstream Cylinder of A Patr 57

1.5

v Experiment, Roshko (1954)
Present Calculation

_,_

0.5

“Hhi

05

-1

LEESREY SREEARERAE BLEL

(a

15llAlllllAlALJllljlill|llllllllllll'

25 50 75 100 125 150 175
af )

Figure 2.6 (a) Pressure distribution on the wetted surface, Separation at
80", Cypp=-0.96.

15
1 ‘3 v Experiment, Bearman (1968)
: Present Calculation
05
L = - .-
i = %
0'_- Vo '
g osf M
.1:-
A5
-2:-
_25:..“1.,..|.,.A1Au.1..Hl....l...‘l
o 25 50 75 °‘I()O 125 150 175

o)
Figure 2.6(b) Pressure distribution on the wetted surface, Separation at

117.5%, Cpp=-0.38.

2.3.1  Sensitivity of Base Pressure and Separation Position to Drag Force

In otder to examine the role which base pressure and separation position play in lift and

drag force calculations, some numerical tests have been catrried out on the sensitivity of
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such parameters to the force. For a single cylinder in uniform flow, the separation 18

symmetric.
2 0
o=30 .Cpb=-0.96
' - \
>0

- 0 =
a=117.5% Cy -0.38

|
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X
Figure 2.7 Wake geometrical shape for two different separation scenarios.

If the base pressure is set as constant, and the separation angle varied from 819 to 110,
then Table 2.1 is the calculated result. It should be noted that as this is a numerical test, the
separation angle is set subjectively. Nevertheless, in reality, the base pressure and separation
position ate related in certain ways, so they should not be set arbitrarily. We can see that
when the separation position is changed from 81° to 110°, while keeping the base pressure
constant (this is a very significant change in the separation position), the change of the drag
coefficient only amounts to 4%. If, on the other hand, the separation position is kept fixed,

and the base pressure is change from -1.12 to -0.8, about 29% increase of the base pressure,

the drag coefficient is reduced from 1.188 to 0.883, about 26% of the decrease.

These results show that the drag coefficient is sensitive to the value of the base pressure,

whilst very insensitive to the separation position. It is easy to infer, from the discussion
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about the nature of the lift force, that the lift force is sensitive to the separation position. In
section 2.3 it was mentioned that the base pressure for a cylinder in wake is chosen as equal
to that when it is located in the free stream. One reason is that, because Huse(1993)
predicted the drag force for multiple cylinders successfully by supposing the drag
coefficient in the wake to be equal to that in free stream, the result of this hypothesis is

consistent with Huse’s methodology, according to the numerical test conducted here about

the relation between the base pressure and drag coefficient.

Table 2.1 Numerical test about sensitivity of base pressure and
separation position on drag force.

NO. | G Separation angle o’ Co
1 -1.12 810 1.188
2 -1.12 950 1.167
3 -1.12 1100 1.138
4 -1.0 810 1.074
5 -0.9 810 0.979
6 -0.8 810 0.883

2.4 Prediction of Lift and Drag Force of the Downstream
Cylinder

When one cylinder is located in the wake of another, the incoming flow velocity for the
downstream cylinder differs from the free stream velocity, as exptessed in section 2.2.3.
Apparently the velocity where the downstream cylinder covers is not uniform. The same
method as Huse(1993) used is applied here to account for the average incoming velocity
for the downstream cylinder, i.e. first taking rms (root mean square) value of u which

covers the area of the downstream cylinder. The incoming velocity is then obtained by
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subtracting it from the free stream velocity: U =V, —rms(u) . Such a value is used in the

following calculation of lift and drag force of the downstream cylinder.
2.4.1  Two Cylinders with Same Diameter(D :D,=1:1)

The prediction of the lift and drag force on the downstream cylinder is based on the same
method as for a single cylinder, provided that the separation position and base pressure are
known. The result for C,,,C, is scaled to free stream velocity by the consideration of the

wake velocity as stated in section 2.2.3. According to the philosophy discussed in
Section 2.3, the separation angle is first sought, then the calculated sample is referred to the
Reynolds number around the order of 10¢, where the drag coefficient of a solitary cylinder
in a free stream is about 1.2. This sets the base pressure at around -1.12. The calculated

separation angles at X=12 and X=18 are shown in Figure 2.8. Under the above condition,
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Figure 2.8(a) Separation angle profile at X=12.
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Figure 2.8(b) Separation angle profile at X=18.
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Figure 2.9(a) Variation of time-averaged force on the downstream cylinder
across the wake, lift.
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Figurc 2.10(a) Variation of time-avemged force on the downstream
cylinder across the wake, lift.
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Figure 2.11(a) Variation of time-averaged force on the downstream
cylinder across the wake, lift.
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Figure 2.11(b) Variation of time-averaged force on the downstream
cylinder across the wake, drag,

the lift and drag force coefficients are calculated and presented in Figure 2.9 to Figure 2.11.

From Figure 2.9 to Figure 211, it can be seen that the result agrees well with the
expetiment, both in its magnitude and its variation with the longitudinal and transverse
distance. Such a result will enable this thesis to predict the dynamic behaviour of the
downstream cylinder. Comparing Figure 2.9 and 2.10, 2.11, it can be seen that with the
increase of the streamwise distance, the maximum lift force magnitude decreases, and the
position of maximum lift is shifted outward. This is well reflected in the Figures, and
compared to the expetiment of Price(1976), the agreement of magnitude relation between
at X=6.0, 12.0 and 18.0 is also satisfactory. For the drag coefficient, it is very clear that the
shield effect diminishes with the increase of the streamwise distance x, at the same time,
wake boundary widens with the increase of the distance x. These effects are all presented
in Figure 2.9(b) to 2.11(b). The main difference from the expetiment is that the width
where lift force is large is not as wide as the experiment at a small distance. At a large

distance, the wake width is a little underestimated in this calculation. However, bearing in
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mind that such a prediction is to serve the purpose of dynamic analysis, these discrepancies

are well acceptable.

2.4.1.1  Comparison of Pressure Distribution

The fluid force coefficients presented here are all calculated by the integration of pressure
over the cylinder surface. It is worthwhile to compare pressure distributions between
calculation and experiments. However, as stated in the base pressure discussion, the
calculation of pressure coefficients is made solely dependent on the ambient flow of the

downstream cylindet, i.e. the wake of the upstream cylinder. A transformation is needed for

the purpose of comparison.

Let
c PP
14 1 5
3 Vo

be the definition of pressure coefficients and used in the experiments, and

_P-P.
Cr=T .
5P

be the definition of pressure coefficients of the calculation.

Let C g, be the measured pressure coefficient at the stagnation point on the downstream

cylinder, The following transformation is obtained:

2
U
0
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By such a transformation, the calculated pressure coefficients can then be presented in the
same way as the experimental data. The comparson of the calculated results and
experimental results is shown in Figure 2.12. It is seen from the Figure that the drop from
maximum pressure to minimum pressure agrees very well between present prediction and
experimental result. In addition, the shift of the position at which the maximum pressure
occurs agrees well between prediction and experimental result. The faitly good agteement

for the base pressure gives support for the hypothesis set for the base pressure in section

2.2.4. Therefore, the agreement is satisfactory.
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Figure 2.12 Comparison of pressure distribution between calculation and experiments.
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24.2  Downstream Cylinder is Smaller Than Upstream Cylinder(D:D,=2:1,4:1)

Sometimes, two cylinders may have different diameters. Experiments show that reducing
the diameter ratio of leeward to windward cylinder to 1:2 will decrease the maximum lift by
40 per cent, and a further reduction in diameter ratio to 1:4 will decrease the maximum lift
coefficient by 91 per cent. On the other hand, such a difference in cylinder diameter ratio
has no significant effect on drag coefficient. Most of the arguments described in the
literature review can not explain these phenomena. It is easy to understand that if people, in
explaining the lift, fully rely on the drag coefficient, no big change of lift coefficient can be
expected due to the insensitive nature of drag coefficient to the diameter ratio which was
shown by the expetiments. However, according to the hypothesis presented in this thesis, it
is not difficult to understand that this kind of effect will happen if the cylinder diameters

are different between the upstream cylinder and downstream cylinder.

Asymmetrical separation flow around a cylinder is like the flow over an airfoil with an angle
of attack. When the cylinder in the wake is smaller, attack angle depends on the difference
of the separation positions between the outer side and inner side, due to the area it covers
being smaller, the difference in the separation position will be smaller. This is similar to the
reduced attack angle which leads to the lower lift force. Figure 2.13 to Figure 2.15 give the
prediction results which show the difference when the diameter ratios of two cylinders are
different. It can be seen that the result in Figure 2.13 is very similar to the experimental
finding. The maximum lift, when the downstream cylinder is half size of the upstream one,
is 63% of that when the two cylinders have the same diameters (experiments show 60%).
According to Figure 2.14, when X=12.0, the maximum lift of downstream small cylinder is
59% of that for same size cylinder. The experiments show that it is around 50%. While the
location of the maximum lift is shifted inwards when the downstream cylinder is small, the

drag coefficient shows there is no big difference between different diameter ratios.
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According to the comparison, when the diameter ratio is 2:1, the predicted result in this

thesis is in good agreement with the experiments.

Figure 2.15 shows the situation when the diameter of the downstream cylinder is only one-
fourth of the upstream one. The maximum lift on the downstream cylinder is 35% of that
for diameter ratio of 1:1. This result is quite a bit higher than in the experiment, which
shows only 9%. However, experiments found that the lift force will change direction near
the wake outer boundary. This phenomenon has not been reflected in the calculation. It is
considered that, if the diameter difference is significantly large, other factors may also affect
the flow around the downstream cylinder considerably. On the other hand, the drag

coefficient for such a situation is still in good agreement with the experiments. This is

because drag force is insensitive to the flow separation position.

0.6
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Figure 2.13(a) Comparison of lift force for different diameter ratios. The
downstream cylinder is smaller than the upstream one, at X=6.
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Figure 2.13(b) Comparison of drag force for different diameter ratios. The
downstream cylinder is smaller than the upstream one, at X=6.
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Figure 2.14(a) Compatison of lift force for different diameter ratios. The
downstream cylinder is smaller than the upstream one, at X=12.
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Figure 2.14(b) Comparison of drag force for different diameter ratios. The
downstream cylinder is smaller than the upstream one, at X=12.
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Figure 2.15(a) Comparison of lift force for different diameter ratios. The
downstream cylinder is smaller than the upstream one, at X=6.
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Figure 2.15(b) Comparison of drag force for different diameter ratios. The
downstream cylinder is smaller than the upstream one, at X=6.

24.3  Downstream Cylinder is Larger Than Upstream Cylinder(D,:D,=1:2)

It is not expected that the method explained here can account for the fluid force on the
downstream cylinder very well, for the situation when the downstream cylinder is larger
than the upstream one. Because in that situation, the wake will be thought to be altered
significantly due to the existence of the large downstream cylinder. Nevertheless, an
attempt is made here for the diameter ratio(D1:D2) equal to 1:2, with the result shown in
Figure 2.16. The trends of the variation of lift and drag agree well with the experiment. The
maximum lift now is increased by 27% compared to the same cylinder size situation, while
the experiment result is 63%, and the drag coefficient near the wake centre is detectably
larger than in the situation for same cylinder size in small range of Y. There is no such

difference in the experiments. However, when the downstream cylinder moves outwards,

the result is in good agreement with the experiments.
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Figure 2.16(a) Comparison of lift force for different diameter ratios. The
downstream cylinder is larger than the upstream one, at X=6.

14
)]
12
!
10
: X=6
o [ D,D=1:1
i — =~ — DDs=12
08 L . !
f m  D,D,=1:2, Experiment, Price (1876}
i | G
L . = 2
=G
! 1
- Vo
g [ ]
[ 1 1 1 { 1
) I ST R S S
0 1 2 3 4 5 (-]
Y

Figure 2.16(b) Comparison of drag force for different diameter ratios. The
downstream cylinder is larger than the upstream one, at X=6.
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2.5 Summaries

Concluding the investigation conducted in this chapter, a practical method has been
developed with a new philosophy which is able to account for the time-averaged force
exerted on the downstream cylinder. The method is based on the experimental data to
specify the separation situation for the downstream cylinder, which may bring some
difficulties. However, by the use of existing expetimental data, the calculation shows
encouraging agreement with the experiment. Also, the method predicts well the situation
when the downstream cylinder is half the diameter of the upstream one. Even for the
special cases of a very small downstream cylinder or large downstream cylinder, the present
method shows good correlation of the lift force and drag force variation. The method is
considered to be a useful tool for the dynamic analysis of the interacton between two
cylinders. Furthet, it may provide a new view on the nature of lift and drag force on the
downstream cylinder. Finally, it should be noted that the method introduced in this thesis is

mostly applicable to sub-ctitical Reynolds number region.



Chapter 111

STABILITY OF THE DOWNSTREAM CYLINDER IN TWO-
DIMENSIONAL SPACE
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3.1 General Remarks

Collision between two cylinders/risers when located in water at high flow speed has been observed
in expetiments (Bryndum & Anderson, 1999; Huse, 1993). The essential physics of the interaction
between two cylinders/risers is the problem of two cylinders interaction in fluid. It occurs in many
other engineeting applications, such as interactions between two power transmission lines in the
power industry, interaction between tubes in heat exchangers (including steam generators, boilers
and condensers) and nuclear reactors, interference of chimneys or building groups in civil
engineering, also interaction among bundle nisers. Since 1960s, substantial amounts of theoretical
and experimental research have been carried out to investigate the different fluidelastic phenomena.

Table 3.1 tries to outline the main characteristics for each of the different cylinder applications.

Each of the investigations made so far focused on its own engineering background, as enumerated
in the above table. The general approaches adopted are based on quasi-steady flow theory, which
essentially suppose that flow responds to the movement of the cylinder instantly. Often, by utilising
experimental data of the fluid forces, the stability of each dynamic system was then analysed (e.g.

Simpson 1971; Price and others 1993 etc). However, there appeats to be no published paper which
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Table 3.1 Comparison between different applications for cylinder interaction

Problem Characteristics Phenomena Representative Work
s/ D' a L/D { U,
Power Line | 10 ~ ~2000 | ~30 { Flutter (Simpson  1971; Price
~20 2x104 1975; Tsui 1977,1986)
Tube Bank 1.2~30 | 10+ 40 ~20 | Fluidelastic (Blevins, 1979
~ ~400 Instability(damping or | Lever and Weaver, 1986)
10! stiffness controlled)
Chimneys ~1.5 ~103 <10 ~2 | VIV only (Wong 1985, Sockel,H.
Groups and Kronke, 1., 1987)
Bundle Riser | <5 ~0.2 > VIV, Galloping or | (Overvik and others
500 ~2 Combined 1983; Price and others
1993)
TLP/SPAR | 10 ~0.2 2000+ ~30 | To be answered (Huse 1996; Huse 1993)
Riser ~30

has tried to correlate these fragmented investigations into a systematic study of a whole wake field
and to explore the characteristics of marine riser interaction. No paper has been published to

account for the marine riser interaction like collision by using the stability theory.

A full review of the different theoretical methods employed to investigate the fluid-elastic

behaviour is beyond the scope of this thesis, but reference can be made to Price (1995).

This thesis, takes marine riser interaction as its main background, and a through investigation
covering both near and far wake fields is made to illustrate the mathematical characteristics of the
two cylinder interaction. The analysis is based on varied forms of Morison's equation. A full Routh-
Hurwitz stability algorithm is utilised together with direct numerical eigenvalue seeking technique to
investigate the stability of the two cylinder interaction. The effects of control parameters such as
stiffness ratio, spring coupling and particularly the mass parameter, are addressed. The author does
not intend to pretend such an analysis method is original, however, due to the characteristics of
marine risers, new results are obtained. The investigation conducted here is the most

comptehensive one, covering a wide range of cylinder spacings and mass parameters. It was found

! 8 : cylinder centre to centre distance, D: cylinder diameter, g = pD* [2m, L: cylinder length, U, =V,JaD
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that there is a restriction imposed by mass parameter for the Hopf bifurcation to occut. Stationary
bifurcation is more likely to occur in riser interaction, particularly when the two risers are separated

by a fair amount of spacing. A clanified explanation of the stability and stable/unstable region

evolution with control parameter is also presented.
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32 Mathematical Formulation

3.2.1 Fluid Forces

Hils

Figure 3.1 A schematic diagram of arrangement of two cylinders, the
upstream cylinder is also supported by springs.
Figure 3.1 shows a cylinder located in the wake of another one. Both the downstream and upstream
cylinders are elastically mounted. Supposing the interaction from the downstream cylinder to the
upstream cylinder can be neglected, then the stability of the downstream cylinder is the main
concern of this chapter, which is strongly dependent on the relative position of the downstream
cylinder behind the balanced upstream one. The co-ordinate system has its origin at the centre of
the upstteam cylinder equilibrium position. The two springs for the downstream cylinder are

perpendicular to each other, with an angle of @ between the x axis and the K, spring as shown in

Figure 3.1. It is assumed that the lengths of the two springs are much larger than the small
displacements of the downstream cylinder away from its equilibium. Therefore, the angle is
assumed to be constant in present analysis. Such a co-otdinate system is mainly for the purpose of

stability analysis for the downstream cylinder. Because the displacement caused by the fluid forces
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can be significant for marine nsers, an absolute co-ordinate system fixed to the earth will be utilised

in the next chapter.

Figure 3.2 is a schematic diagram which shows the velocity triangle and the resultant fluid force

acting on the downstream cylinder. Supposing the flow responds to the movement of cylinder

Fo

Figure 3.2 A schematic diagram of velocity,
and fluid forces for quasi-steady flow model.

instantly, then fluid forces are given by:

2 —_ 2
F,=F,cosp-F,sinp-c, p7:D 5"=%pU,2D((T’pCOSﬂ—C,,sin,B)-—cm prD” o
aD? | 1 — _ 4D2 3.9)
Fy=E)sin/3+F,‘cosﬁ—cmp4 j§=EpU,zD(C,,sinﬂ+C,‘cosﬁ)_cmp’; $

Where F,,F, are fluid forces in the x,y directions, respectively;

U, (= \/(U -%)? +y? ) is the relative velocity to the downstream cylinder;
p is fluid density,

D is diameter of the cylinder,
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B is the angle of the relative velocity to the x axis;

¢, is fluid added mass coefficient due to the acceleration of the cylinder (which can be

determined by potential flow theory).

= Fou

C, K =————with Fp,F, being the drag and lift forces respectively.
D,L pUZD/2 p»f' beng g ces resp y

It is shown in Figure 3.2 that
U-x

cosf= U
| sinff=— -{}l—r (3.2)

CANCE ) + 57
Substituting Equation (3.2) into Equation (3.1), we have

1 = N D' .,
x=EPU,,D[C,)(U—X)“"'CL}/]—CM%—x (33)
2 .
£ =1 pU,D[-C,+C(U-3)]-c. 25

Essentially, this is a varied form of Morison type equation for fluid forces acting on a moving

cylinder with the considetation of transverse forces.

In otder to utilise the force coefficients obtained by Free Stream Line method, let b = U/V,. The

reference velocity for the force coefficients can then be transformed from the local wake velocity

U to the free stream velocity V, by the following relations:

El),l, = CI),I, / b’
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Fp,,

C. = DL 34
Where C) pV: D/2 (34

For small motions around an equilibrium position, ie. X/U, y/U ~o(1), the forces can be

linearised and given as

1
4 3.5
2 27 : "4 | 33)

Further as C,,, C, are position dependent, these force coefficients can also be expanded around

the equilibtium position (xy,¥,):

CD Cn C/)x CI)Y X-X 0
= + X (3.6
Cl, CL X=X, C/x CL)’ X=X, Y- Yo
Y<va ¥=Ya
where X =x/D,Y =y/D,
oC oC oC oC
Cox = 6); s Cop = _6; »Crx =‘3j s Cry =_53,["
Substituting Equation (3.6) into Equation (3.5), we have:
F; 1 Cno 1 FCI)X Cm' X- ‘Xo
=5p 4 +sp ;D
I':’ C’ 0 LCLX CI 4 Y X) (3 7)
—ZCI)O Cm -l-XD/ U X ’
| pnD’
+ "2- P Vo -C, n
~2 Cio —Cho J L YD/ U Y

Equation (3.7) is the linearised form of the fluid force acting on the downstream cylinder when the

downstream cylinder is located at the equilibrium position (X, , ), ). Because the matrix
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CI)X Cl) 14
2
E_%Q (3.8)
c, C

LY

functions like a spring stiffness matrix, which accounts for the fluid recovery force when cylinder is

deviated from equilibrium position, it is called the fluid stiffness matrix, whilst

2 e -
L’_%D— (39)
-2C,, -C

no

behaves like coefficient matrix for a damping system, which explain the consumed energy when a

cylinder moves about, it is called the fluid damping matrix in this thesis.
3.2.2  Equations of Motion

The motion of the downstream cylinder is governed by

%] |c.cos’@+c sin*@ (c,—c,)sinBcosO [ %]
ml |+

7] |(c,—¢,)sinBcosé c, sin*O+c,cos’ 0] )]

_ ] (3.10)
K cos’0+K,sin’0 (K, - K,)sinfcos [x~x,] [F

-+ -—

(K, -K,)sinfcosf K,sin*6+K cos’0|y-y,| |F

where m is the structural mass per unit length of cylinder. K,, K y are the spring stiffnesses in x, y

directions, respectively. (x,,y,) is the initial position of the downstream cylinder when no current

is present. The right hand side of the equation includes the fluid forces in (x,y) ditections, as

presented in Equation (3.7). Substituting Equation (3.7) into Equation (3.10), non-dimensionalising

x,y with the cylinder diameter and introducing 7 =t with o, =\/ K, /(m+c,pnD’[4), the

equation of motion around the equilibrium position can be re-written as:
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St

zgx(RkRgsin’9+cos’9)+zbgURCm 25,((R,‘R¢—l)sinﬁcosﬁ)—%Uka X

+ X
1 |2¢.((RR,~1)sincos 9)+-2bﬁ ULy 2€,(RR,cos’ 6 +sin’ 6) +%URC,,0 ¥
R:sin’ @+cos* 6—aUiC,, (R -1)sinfcosf@-aliC,, | [X
+i X =0
(R* -1)sinfcosf-aU;C,, R:cos’@+sin*6-alC, | |¥
(3.11)
with
7] [X-X,
¥ LY-Y
Risin’@+cos’@ (R!-1)sinfcosf| [ X, - X C,,
and X =al, (3.12)
(R ~1)sinfcos@ Ricos’O+sin’0| | ¥,-Y, C

Here, U, = 4 is reduced flow velocity.
o D

x

£ = 2
' 2
2(m +EnP7 :D )a)

x

1”2
R, = ( L ] is the stiffness ratio between two orthognal directions.

pD’

a= >
2(m+cm PE
4

> ) is often refetred as the mass parameter, which, as will be seen, is the vitally

important parameter in determing fluid elastic behaviour.
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R,=—"1s the damping ratio between two spring directions. The inclusion of this term is to identify
c

x

the role of the structural damping.

For notation convenience, the tidle bar is dropped in the following discussion. Equation (3.11)
represents a spring physically coupled system with the consideration of structural and fluid
dampings. It is the basic equation to determine the stability of the downstream cylinder. Before

delving into the stability analysis, some special forms are discussed here to show the relation

between different simplified systems.

3.2.2.1  Uncoupled, Undamped System

The simplest form of the dynamics equation (3.11) is the uncoupled and undamped system, which
is often mentioned in research into power transmission lines and often called “undamped flutter
theory”. The system neglects both the structural damping as well as the fluid damping, ie.

& aU,C,,aU,C, = 0and 8=0°.

It should be noted that such a hypothesis is tenable only when the mass parameter is small. The

system can then be simplified as,

X 1- aUlthnx "aUlthnr

+ x| =0 (3.13)
Y| | —aUXC, R!-aUC Y

LY

3.2.2.2  Uncoupled System With Fluid Damping

The form of (3.13) is simplest when the mass parameter is set as small. However, the cases, such as
matine fisers in water, do not satisfy these conditions. Therefore, a simple form with the

consideration of the fluid damping while keep the spring uncoupled is the basic form for the

consideration of riser interaction:
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X 2Cl)0 —CI,O X 1- aUlszDx _aUlze CI)Y X

+%UR x| |+ x| =0 (3.14)
Y 2C, Cy Y _aUlzeCl.x sz - aU:C Y

LY

3.2.2.3 Coupled System Without Damping
Generally, the two springs for downstream cylinder are coupled as shown in Figure 3.1. A

straightforward way to explain the effect of spring coupling is by utilising the case of an undamped
coupled system. It is seen that in Equation (3.13), fluid stiffness is coupled while the physical spring

is uncoupled. To apply this kind of result to the spring coupled system, a transformation can be

made to uncouple the physical spring system. The system can be written as.

Xl 1 o
+ -al;
#| o R{r

. . 2 . .
Cpx €08’ B+, sin’ @—(c,y +¢,y)sinbcosf ¢, cos’ 8—c,,sin’ 0+(c,, —c,, )sinOcosd
X

¢, €08’ 8-c,, sin’ G+ (c,, — ¢, )sinfcosf c,,sin’@+c,, cos’ O+(c,, +c,, )sinfcosh | ¥

(3.15)

According to Equation (3.15), the effect of a coupled spring can be understood as the uncoupled

system under the action of a transformed fluid force field.

The stability analysis in this thesis is made either via the traditional method of Routh-Hurwitz
stability algorithm, or by a direct numerical eigenvalue analysis. Routh-Hurwitz method provides
the critical state of the system with analytic solution, however, it does not show the variation of the
system stability. On the other hand, the numerical eigenvalue analysis provides detailed information
of eigenvalue variation, however, to pick up the critical state can be difficult and time consuming.
In order to obtain both the information about the critical state and the variation of the system

stability, the two methods have been used jointly. The following section presents the application of
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the Routh-Hurwitz stability algorithm. Combined with a direct numerical eigenvalue analysis

method, the numerical results will be presented systematically in Section 3.4.

3.3 Stability Analysis
3.3.1  Traditional Method: Routh-Hurwitg Stability Algorithm

By assuming

The stability of the downstream cylinder (3.11) can then be determined by the eigenvalue A4 from

the following characteristic equation:

a, 4,

(3.16)
ay, 4y

where

a, =X+ 2[;(&& sin’ 6+ cos’ 6) +%URC,,O]A + R} sin’ 6+ cos’ 6 - aU2C

DX

DY

:
a, =[2§,(R,,R£—l)sinBCOSB—%URC,‘o l+(R: —l)sinacose—aU,iC

.

a, = 2[§,(R,,R5 ~1)sinfcosd+ %URC,‘O A+(R; -1)sinfcosO-alUC,,

a, =X +[2‘f1r (R, R, cos’ 8+ sin’ 0)+%URC,)O]A + R; cos’ @ +sin’ -alUC,,
For notation convenience, following symbols are adopted heteafter: ¢, = oo »Cpp = ﬂbl

Equation (3.16) can be rearranged to give the following fourth-order algebraic equation about
eigenvalue 4,
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4
Y, =0 (3.17)
j=0

where

c, =1
¢, =3aU,Co +2£,(Ry R, +1)

C = 202U12e(cjo + Clzo) ‘aUlze(Cl)x +Cpy)+ 4RkR¢§i +R; +1
+2aUR§,[C,,0(R, R,(1+cos’ 6) +1+sin’ 0) —Cpo ReR, - 1)sin 9cos9]
o= _azuz [CJO(CI)X + 2Cl.y) +Cyo (Cu -2C,y )]
—2aU§§x[C”(R,, R, sin® 6+ cos? 6) + Cppe R, R, cos™ + sin’ §)
-C,)y(R,‘Rf - l) -Cy (R,,R{ - l) sin 60050]

+aUR[C‘,0[Rf (cos? §+1) +sin” 0+ l]— Cpo( R} - 1)sinBcos 6]

+2¢, (R} + R,R,)

¢o = @UH(CoxCyy = CoxCiy) + RE —aU [ Cipy (R} cos® 6 +sin’” 6)

+C,y(R? sin® @+ cos” ) —(Cy + C (R —1)sin & cos 0]
The downstream cylinder will become unstable if the solution of A has a positive real part.
However, seeking the solution of A directly from Eq (3.17) can be a computationally intensive task
and the identification of the critical state can be tedious. The Routh-Hurwitz stability algorithm can
release such a burden to find the stability of the system without solving the fourth-order algebraic

equation. According to the algorithm, for a stable system, the following inequalities have to be

satisfied:
(¢, >0
c,6,—¢,>0
* €,C,Cy — € — €3¢y >0 (3.18)
2
co(cicoes ¢l —€3cy) >0
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Generally, there are two possible routes for the equilibrium position to lose its stability, namely
through either Hopf or stationary bifurcation. The former corresponds, physically, to a flutter or
galloping oscillation and, mathematically, is the transverse crossing of the imaginary axis of a pair of
eigenvalues, whereas the stationary bifurcation corresponds to an unstable movement away from
the equilibrium position and, mathematically, is the crossing of the imaginary axis of an eigenvalue
at the real axis. According to this algorithm, when one of the inequalities in (3.18) is not satisfied,
the system is then unstable. The state when one of inequalities in (3.18) begins first to be violated
corresponds to the critical state of bifurcation. The two scenarios of bifurcation are discussed
separately in the following sections, and for clarity, the following analysis is first presented for the
case of uncoupled system with the structural damping neglected, the case in the simplest form

which is applicable to the marine riser interaction, as discussed in the section of 3.2.2.2.

3.3.1.1  Hopf bifurcation

Experimental measurements for the fluid forces on the downstream cylinder show that drag force
does not have to be positive, which means the fluid damping matrix can be either positive definite
or not positive definite. However, the mechanism of Hopf bifurcation for these two cases can be

different. In following analysis, we discussed these two cases separately.
3.3.1.1.1  Fluid Damping Matrix Positive Definite (FDMPD)

The fluid damping matrix positive definite area encompasses most of the wake area, where drag

force is positive. Within such an area, it is clear that ¢; is always positive. It is also found that

C,€; — €y is always positive. According to (3.18), the indicator for critical state of Hopf bifurcation is

given by:

€ ¢ c—cl—cic, =0 319)
¢, >0 S
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Equation (3.19) can be re-written as

{A, U+ AU+ 4,=0

(3.20)
¢, >0

where

aC2-A,=2(R -1)

a’Cl4, = 3[(2R: +1)[2a(C2, +C2) = (Cp + €, )] - (R +1)-[2C,, +C, - R(2C,, - C,, )]
+9(R:C,, +C,,)+2(2R; +1)[2C,, +C,, - R (2C,, - C,, )]

a*C24, = 3[2a(C2, + C3) = (Co + C, )[R (2C,y = Coy) =2C,, =Cp

2
—9(C,,XC,',, =CxCoy ) - [2C1,y +Cp — Rf(zcm' . C/x)]
Rj = Cllo/C/)o

(3.21)
If a real positive root of Up for (3.20) exists and the condition ¢, > 0 holds, the Hopf bifurcation

will occur. This loss of stability (of the downstream cylinder) is commonly referred as fluid stiffness
controlled fluidelastic instability or wake induced flutter. The existence of Uy requires that the

following condition must be satisfied:

A, =A2-44,4,5>0

(3.22)
Equation (3.22) can be re-written as:
A, =4(2R} +1)'(Cly+ ChY a* +(1- RE) [R2(2Cy - €Y -8C1Cy

(1= R Y(Co + Ch) X[ R, (2C,y — Coi 2RE ~1)+4(C,y — RIC,y o (3.23)

>0

Equation (3.23) is a necessary condition for Hopf bifurcation to occur, which imposes certain
restrictions on the mass parameter and the stiffness ratio R, . For a particular case of stiffness ratio,

a must satisfy the following conditions:
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2 —
O<a< sz ] ; [Rf (2Cny —Cx )(2R: - ]) + 4(CI‘Y - R:CDX ) -2 Sg“(RZ - l)(zAa)l/Z]
2(2R; +1) (Co + Cio)
(3.24)

When
A, = —Rf R} (2C1)y -Ciyx )2 +CxCopy (ZR: + ‘)2

H(Cpy = REC, )X [R, (2R} = 1)2C,y = €1 ) +2(Coy ~ RECx ) (3.24b)

>0
However, when
A, <0 (3.25)

The existence of real U,which makes ¢,c,c, - ¢! —clc, =0 is automatically guaranteed.

These conditions show the testriction of mass parameter on the system Hopf bifurcation. From
condition (3.23) it can be seen that stiffness ratio and mass parameter are two interrelated
parametets. It shows that for a similar system with same stiffness ratio, a system with a large mass

parameter is more stable to the fluid stiffness controlled Hopf bifurcation.

The reason can be understood in the following way. Fluid damping is proportional to aU,, while
fluid stiffness is proportional to aU;. For a fluid damping matrix positive definite case, fluid
damping consumes enetgy when the cylinder moves. The only way to bring energy into the system,
to cause instability, is via the fluid stiffness coupling. Such energy has to counterbalance with the

energy consumed by the system damping. Imagining two scenarios, one with a small mass

parameter a,and the other with a large mass parameter a,, when q,U}, = a,Uy,, the input energy

by fluid stiffness is same for two systems. However, due to a, > a,, the energy consumed by the

fluid damping for the large mass parameter case is \/d,/a, times mote than for the small mass

parameter one, which makes the Hopf bifurcation much more difficult to occut, hence the system

with a large mass parameter is more stable with regard to Hopf bifurcation.
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By solving Equation (3.20), the critical reduced velocity for the system to lose and gain its stability 1s

given by:

a3}, = {~{6a(2 R} +1)(Cly + Ch )+ (RE ~ 1R, (2, =€) +4(Cy =, )]} 2307
+2{6a(C30 + C120 )[Rf (2C1)y —Cix ) -2C, - Cnx] + ["4C1)XCLY + (4 R,:; + 9)CI,X Cpy
+R, ("2C1)x Cy +CpCix +2C,,Cppy = C 1 Cy )] + 2(C12)x + Clz,y) - R;‘ (CIZX +4C), )}

(3.26a)
together with the condition of

aU[C,y +2C,, + R, (C, —2C, )| <1+2K; (3.26b)

Discussion

From above analysis, together with the condition for stiffness ratio (3.24b), in the fluid damping
matrix positive definite area, mathematically, there are the following possibilities for A, and

A, regarding the Hopf bifurcation, ie.

(c.1) 4C,Cpyy - 2R /Cnx (2Cny - C/.x) + 2C/2)x <0 ,and

2
A= ["' R_; (2C/)r =Cix )2 +R, (2C1)y —Cix )(ZCI,Y +Cox ) + 4(C/‘x Coy =CpiCoy )]
"4[4Cl.xcnr - 2RfCI)X (2C/)y - CLX) + 2C12)x ][Cucur - RfCl,y (ZC,),, - Cu) + 2C12.Y]
<0

Which makes A, <0.

If the above conditions are satisfied, Hopf bifurcation is independent of stiffness ratio and mass

parameter.

€2 A, >0
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Mathematically, there exists a value for R, which makes A, < 0. When there is a physically sensible

R,, Hopf bifurcation is independent of mass parameters under such a condition.

©3) A, >0,A,>0

For values of R, other than (c.1) and (c.2), A, is positive. For such vales of R,, the mass parameter
has to satisfy the restricion condition of (3.24) should any Hopf bifurcation be possible. It is
further seen that when, and only when, U} > Oand (3.26b) are satisfied, the Hopf bifurcation can
occut. The traditional wake induced flutter for transmission line falls into this category. If the
solution 1s U,f > 0 while ¢, <0, it is only an indicator that the system has lost its stability before

flow velocity reaches solution of U, via stationary bifurcation. Other solutions, of negative U ,2‘,,

only show Hopf bifurcation as not being possible.

(c4 A,>0and A, <0
Such combination of A, and A, only shows that Hopf bifurcation is not possible.

Undamped Flutter Theory and the Effect of Spring Coupling Angle ©

When the damping (both structural and fluid) is neglected, as shown in (3.23), when

CixCpy <0 (3.27)

then A, >0, Hopf bifurcation becomes potential. Such an area is usually located at the outer
part of the wake. This is the conclusion of classical undamped wake induced flutter theory

(Blevins, 1990). However, the spring coupling essentially changes the characteristics of the fluid

force, as shown in Equation 3.15, and eventually it can alter the stability charactenstics

significantly.
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Considering the same undamped case, the former condition (3.27) for flutter becomes:

[C,X cos? @—C,,, sin’ 6+(C,,, - C,y)sinﬂcose]

' (3.28)
x[C,),, cos’ @—C,, sin’ +(C,y —C,y) sin9c050] <0

which makes the possibility of Hopf bifurcation increased or decreased, depending on whether the

coupling angle is smaller or larger than

1 -1 Z(CI.X + Cny )(Cn - CI,Y)
- tan 2 2
2 (CI.X + Cny) - (Cnx - CLY)

the involvement of (C o —C l,Y) makes the stability more position and coupling dependent. The

condition (3.28) can be re-written as:
[(C»x -Cy )2 - (CI.X —Cor )2 ] tan* (20) + 2(Cnx o )(Cny + Cu) tan(20) +4C,,C,, <0

(3.29)

Potentially, most part of the wake can meet the condition of (3.29), as long as coupling angle is
appropriate. Nevertheless, it should be emphasized here that the coupling angle has
demonstrated a significant role it can play in the system stability. This conclusion is drawn from
undamped flutter theory and applies mainly for small mass parameter cases. The condition for a

Hopf bifurcation to occur, when mass parameter is large, can be much more strict, which will be

seen in the later presented results.

One interesting point here is that, no matter how the coupling angle changes ot whatever the mass

patameter may be, Hopf bifurcation is unlikely to occur on the wake centreline. As for the case of



Ww. WU Stability of the downstream cylinder in two-dimensional space 95

0=0°, then A, =0, and when 8 # 0°, it is seen that (3.29) is impossible to satisfy. Therefore, the

wake centreline is always a Hopf bifurcation free area for FDMPD.

3.3.1.1.2 Fluid Damping Matrix Not Positive Definite (FDMNPD)

In such a region, the negative fluid damping can self-excite the movement of the downstream
cylinder, even for a single-degree-of-freedom system(Bokaian 1989; Bokaian & Geoola 1984), as
long as the energy brought in by the fluid damping can counter-balance the energy consumed by
the system. If structural damping is neglected, the results show that as long as the fluid drag force is
negative, the system is unstable. When structural damping is considered, by utilising condition
(3.18), it is seen that Hopf bifurcation occurs when ¢, = 0. This kind of instability is often referred

as wake induced galloping. The critical flow velocity for Hopf bifurcation is:

aU,=-4£/3C,, for R, =R, =1 (3.27)

3.3.1.2  Stationary bifurcation

Another possible scenario for losing stability is through the stationary bifurcation. It can be seen
from Equation (3.17) that when ¢, =0, then one of the eigenvalues is zero. If all other conditions

of (3.18) ate satisfied, it is a critical state for a stationaty bifurcation and the corresponding reduced
velocity is the critical reduced velocity. When the reduced velocity is larger than this critical value,

one of eigenvalues can become a positive real number. Therefore, the critical state of the stationary

bifurcation is given by:

¢ =0 (3.28)

The physical interpretation of this condition can be drawn from Equation (3.11). It is clear that the
fluid stiffness is proportional to the aU3 . As the reduced velocity increases, it is possible that the

fluid stiffness will become larger than the spring stiffness, resulting in an effective negative stiffness
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along certain directions. This would be dependent on the particlar spring coupling. Under this

circumstance the system will lose its stability as any disturbance will grow with time.

By solving Equation (3.28), the solution of the critical reduced velocity is given by:

(Rf Cpx +Ciy ) - \](133 Cpx —Chy )2 + 4RZ CixCpy

aU} = (3.292)
§ 2(Cnx CI,Y - Cu Cny)
together with condition
c,>0
¢, >0 (3.29b)
c,c,—¢,>0

(3.292) also shows that when
(R: CI)X - C/.y )2 + 4R: CI.XCI)Y <0
or

CoiCoy - C,C,x>0and R: Cy+C, <0,

there are no stationary bifurcations.

3.3.2  Direct Numerical Eigenvalue Secking
The stability of system (3.11) can be analysed directly by seeking numerical eigenvalues. Because the

matrix is of 4 x 4 size, the calculation is straightforward. By predefining the sets of control
parameters, such as stiffness ratio, mass parameter, coupling angle, structural damping coefficient,
and relative location and by varying the parameter of flow velocity, the stability can be analysed
systematically. The advantage of the method is its straightforwardness, irrespective of physical
parameter conditions. Meanwhile, the vaniation of eigenvalues can shed light on the understanding
of the process of losing or gaining stability. The shortcomings ate: the extra work needed to pick
out the critical state if it is of interest to the investigation, the effect of individual control parameter

isn't straightforward and if the system is in high order, the computation can be time consuming.
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The systematic analysis made in this thesis is 2 combination of traditional Routh-Hurwitz stability

algorithm and direct numerical eigenvalue seeking.

3.4 Numerical Results
The drag and lift coefficients on the downstream cylinder are the prerequisites for the stability
analysis. These coefficients are dependent upon the position of the downstream cylinder relative to

the upstream one. The results of calculations made in previous chapter, together with collated

expetimental data for small spacings between two cylinders (Bokaian & Geoola, 1984;

Zdravkovich, 1977 etc,) are used. The calculation of wake flow velocity U is made by the method

introduced in Chapter I1.

The stability analysis is carried out by assuming that the downstream cylinder is situated at an
atbitrary equilibrium position. This is followed by finding the critical value of the reduced velocity,
beyond which the cylinder will become unstable. The values of the mass parameter, stiffness ratio,

and coupling angle are allowed to vary within certain ranges.

The calculations show that, typically, the whole wake can be classified into four scenarios based

upon the uncoupled case:

(a) FDMPD at the wake centreline and inner part of the wake with medium or large spacings,

(b) FDMPD at outer part of the wake with medium or large spacings,

() FDMPD with A, <0,
(d) and the FDMNPD.

The results are presented according to different regions separately.
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3.4.1  Outer Wake at Medium or Large Spacing (FDMPD)

Figures 3.3 and 3.4 are stability boundary diagrams for mass parameters of 0.2 and 2x70”, at a given
equilibrium position of X, = 5 and Y, = 2. The mass parameter of 0.2 represents the case for
matine risers. The small mass parameter shown here is to give a comparison to account for the
effect of the mass parameter. The position is located at the outer part of the wake, with medium

spacing, which holds the most fluid force characteristics at large spacing, the spring coupling angle

Qis .

It is seen that for the case of marine risers, ie. large mass parameter, the most likely type of
bifurcation that will be encountered is stationary bifurcation. Mathematically, if the abscissa
R, reaches a high ratio, say 1.75 hete, it is possible that the system can become unstable via Hopf
bifurcation. Nevertheless, for the practical case of marine fisers, the spring stiffness ratio represents
the ratio of stiffness in the out-of-plane and in-plane motions, which is close to and often smaller
than 7. For this reason, the stationary bifurcation is more likely to be the case under these
conditions. On the other hand, when the mass parameter is small (ref. Figure 3.4), as with the case
of transmission lines in ait, the route for the system to become unstable is more likely via the Hopf
bifurcation. Although stationary bifurcation is theoretically possible, the critical speed is
unrealistically high. Calculations also show that, at position X;=5, Y,=2, when R, > 175, then
A, <0 (ref. Figure 3.5). This is the scenario for Hopf bifurcation being independent of mass
parameter. This is the case for (c.2), as discussed in section 3.3.1.1.1. Under such conditions, the
downstream cylinder tends to Hopf bifurcation as long as flow velocity reaches the critical state, no
matter large or small the mass parameter may be. However, according to Figure 3.5, R, <175,
A, >0, Hopf bifurcation is dependent on mass parameter and stiffness ratio, and the limitation on
mass parameter (3.24) applies. Hopf bifurcation is possible only when mass parameter is below the

ctitical line shown in the Figure 3.6. This explains the difference shown in Figure 3.3 and 3.4. These
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results are typical for the downstream cylinder located at the outer part of the wake, with medium

ot latge spacing.
uf
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Figure 3.3 Stability boundary at spacing of X,=35, Y,=2 with 4=0.2, 6=0", typical for
marine riser Cases.
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Figure 3. 4 Stability boundary at spacing of X,=5, Y,=2 with a=2 10°, =(", typical
for transmission lines case.
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Figure 3. 6 Hopf bifurcation restriction on mass parameter for position X,=5, Y,=2.



W. WU Stabilsty of the downstream cylinder in two-dimensional space 101

Figures 3.7 to 3.10 show the cases for position of X,=8, Y,=2.5 and X=70, Y,=2.5 respectively. It

is seen that all these positions share the same characteristics of the stability boundary with the case

of X,=5,Y,=2.

50
=0.2, X,=8, Y,=2.5,0=0°
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Figure 3.7 Stability boundary for position X,=8, Y,=2.5, =0.2.
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Figure 3.8 Stability boundary for position X,=8, Y,=2.5, 4=2x10"
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Figure 3.9 Stability boundary at position X,=10, Y,,=2.5, a=0.2.
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Figure 3.10 Stability boundary at position X, =10, Y,=2.5, a=2x10"
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3.4.1.1  The Effect of Mass Parameter, Structural Damping, Spring Coupling

Figure 3.11 is an alternative view of the relationship between stiffness ratio and mass parameter. It
shows the variation of the stability boundary with mass parameter at the location X,=5, Y,=2. The
stiffness ratio is set as 7.7 and there i1s no spring coupling. It is seen that for the specified stiffness
ratio, when mass parameter is small, with the increasing of flow velocity, the cylinder will lose
stability via Hopf bifurcation and gain stability when flow velocity is further increased to another
critical state. Finally, the cylinder will lose its stability via stationary bifurcation. However, when
mass parameter is large, under the specified stiffness ratio, the cylinder will lose its stability only via
stationary bifurcation. Figures 3.12 and 3.13 show the variation of eigenvalue with flow velocity for

the case of a=0.2 and a=2x10" with R,=1.1 at X,=5, Y,=2 respectively. It is seen that for the case
of a=0.2, befote the flow velocity reaches critical state, the eigenvalue pair first arrive at the real

axis. At critical state, i.e. point S labelled in the Figure 3.12, one of the eigenvalue pair gets to the
origin of the complex plane of eigenvalues. When flow velocity is further increased, one eigenvalue
will pass the imaginary axis onto the real axis and stay in the right half of the eigenvalue plane. On

the other hand, for the case of =2x70", the eigenvalue first transverse the imaginary axis at critical

state of Hopf bifurcation, i.e. H, as labelled in the Figure 3.13, and the eigenvalue pair will stay in
the right half plane for certain ranges of flow velocity. When flow velocity reaches another critical
state H,, where the system gains its stability, the eigenvalue pair transverses across the imaginary

axis and back to the left half plane. Finally, when flow velocity is further increased, the eigenvalue

will teach the real axis and pass to the right half plane through origin at S in the figure, exhibiting

stationary bifurcation.
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Figure 3.11 Effect of mass parameter on stability boundary.
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Figure 3.12 Variation of eigenvalues with flow velocity.
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Figure 3.13 Variation of eigenvalues with flow velocity.

Figures 3.14 and 3.15 show the effect of spring coupling. The relative spacing and stiffness ratio are
taken as having the same value as above. It is seen that for a large mass parameter, no matter how
the spring coupling angle changes, there is only stationary bifurcation, whilst for small mass
patameter the coupling angle can make the Hopf bifurcation disappear or vice versa. Essentially, it
can be viewed as the result of a changed fluid force field. This is in agreement with the discussion
about the effect of @ which is based on the case of the undamped condition. The result shows that
the effect of spring coupling to large mass parameter is lessened. Figure 3.16 shows the effect of
structural damping on the Hopf bifurcation boundary. As it is obvious that damping has no effect
on stationary bifurcation, however, the figute shows that Hopf bifurcation (stiffness controlled
fluidelastic stability) is insensitive to the structural damping even for small mass parameter. Only

when the structural damping is large enough, can the Hopf bifurcation be suppressed.
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Figure 3.16 Effect of structural damping on stability boundary.

3.4.2  Inner Wake and Centreline With Medium or Large Separation (FDMPD)

Figures 3.17 and 3.18 are representative cases for the downstream cylinder located near or on the
wake centreline at large spacing. It is unlikely to be Hopf bifurcation, no matter whether the mass
parameters are small or large. The variation of the stability boundary with the stiffness ratio or
coupling angle is only due to the variation of stiffness in Y direction or the coupling effect. Such a
bifurcation boundary is independent of structural damping and insensitive to the spring coupling
angle and stiffness ratio. This is a Hopf bifurcation free area. It also can be seen that the critical
speed is proportional to the root square of mass parameter as has been shown in equation 3.29. If
mass parameter is very small, the critical speed can be so unrealistically high that practically it will

not occur. However, such bifurcation is likely to happen for a latge mass parameter such as marine

tisers.
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3.4.3  Small or Medium Spacing With A, <0 (FDMPD)

When the cylinder spacing approaches the medium to small range, although the drag force is
positive, the variation of the fluid force coefficient becomes significant in such a way that
potentially it can cause the downstream cylinder to lose its stability either via Hopf bifurcation or
stationary bifurcation. Figures 3.19 and 3.20 are the cases for the location of X,=2, Y,=0.5 and
X,=2, Y,=1 with @ = 0° and stiffness ration of 7.07. It is scen that Hopf bifurcation is likely to
happen no matter how small or large the mass parameter is. The abscissa in these two figures are
structural damping coefficients, which shows that the Hopf bifurcation can be replaced by
stationary bifurcation when the damping coefficient is large enough for a small mass parameter.
However, it is hard to suppress a Hopf bifurcation for large mass parameters such as marine risers.
Such a region is located in the vicinity of upstream cylinder and the fluid drag force is positive.
Calculation shows such a region is insensitive to mass parameter and stiffness ratio and often with

A, <0 as shown in Figure 3.21, such a scenario is the case of c.2 in the discussion of section

33.1.1.1.
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Figure 3.19 Stability boundary for small spacing with R,=1.01.
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m
344  Small Spacing FDMNPD)

Figures 3.22 and 3.23 show the stability boundary when the downstream cylinder is balanced at
position of X, =2, Y,=0 and Y, =0.7 respectively. The abscissa is structural damping. Such positions
are within the region of negative fluid drag force. It is seen that, no matter whether the mass
parameter is large ot small, the downstream cylinder is prone to the Hopf bifurcation. The incipient
velocity for the Hopf bifurcation is sensitive to the structural damping when the mass parameter is
small, which explains why Hopf bifurcation can be supressed by the large structural damping.
When the structural damping is large enough, the Hopf bifurcation can be transformed into the
stationary bifurcation. On the other hand, the incipient velocity is less sensitive to the structral
damping when the mass parameter is large, as in the case of marine riser interaction, which implies
that the Hopf bifurcation is hard to supress. The difference related to the mass parameter is
essentially caused by the intetrelation of the structural and fluid damping. As can be perceived, such

a region is damping controlled, and the stability is insensitive to the spring coupling or the stiffness

ratio.
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Figure 3.22 Stability boundary for position X,=2, Y,=0, with R,=1.01.
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Figure 3.23 Stability boundary for position X,=2, Y,,=0.7 with R,=1.01.

3.5 Stable/Unstable Region Maps

Figures 3.24 to 3.41 are maps which show the stability of downstream cylinder at different
locations, under specified mass parameters, stiffness ratios and spring coupling angles. Table 3.2 is

the summary of the parameters adopted in these calculations.

Table 3. 2 Parameters for the maps.

Parameter Value
a 0.2 | 0.02 0.0002
R, 0.95, 1.0 .05 | 1.1
U, 2,3,4,5,8,10,12, 15 10, 20, 30, 40, 50, 60, 80, 100
e Ol)’ 50, 10()

The shaded circle symbol represents an unstable location caused by Hopf bifurcation. The shaded
square is an unstable location caused by stationary bifurcation. While hollow square represent stable

area, the shaded circle sign with a plus sign inside also represents an unstable position caused by
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Hopf bifurcation. The difference to the shaded circle without plus sign is that at such locations,
there is a higher flow velocity, which can make the system regain its stability. In general, it is seen
that in the vicinity of the upstream cylinder where the drag force is negative or its nearby area with
A, <0, Hopf bifurcation is likely to occur irrespective of the mass parameter and less sensitive to
coupling angle. The unstable area spreads with the increase of flow velocity. On the other hand, in
the area of medium or large spacing, stationaty bifurcation is more likely to be the cause for the
downstream cylinder to be unstable. Generally, stationary bifurcation starts from small spacing at
outer wake region and spreads towards downstream and inner wake. Particularly shown in the
figures, the spring coupling angle has no significant effect for the mass parameter of 0.02 and 0.2.

However, it is a very important factor when mass parameter is 2x10, for example, comparing

Figure 3.36 and 3.38, 3.40, the large G'has led to a significantly enlarged unstable area.

Also implied in these figures is that, at the vicinity of the upstream cylinder and when the mass
parameter is large such as with risers, there is a high chance that the fluidelastic behaviour can

interact with the vortex induced vibration. Such an implication is consistent with the experimental

observations (Bokaian, 1984).

3.6 Summaries

Based upon the work presented in this chapter, the following conclusions can be drawn:

1. In general the downstream cylinder can lose its stability and become unstable through two

different types of bifurcation, i.e. Hopf bifurcation and stationary bifurcation.

Unlike power transmission lines, where the mass parameter is generally very small, in

marine applications stationary bifurcation is the more likely scenario, particularly when two

cylinders are widely spaced.
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The value of the reduced velocity at the inception of instability is strongly influenced by the

mass parameter. For stationary bifurcation, the critical reduced velocity 1s inversely

proportional to the root square of mass parameter.

Stiffness ratio can be very important in the form of system bifurcation, howevet, a practical
system often has a stiffness ratio close to 1.0. Spring coupling angle can significantly alter
the stability chatacteristics when the mass parameter is small However, when mass

parameter is large, the role of spring coupling is insignificant.

To answer the question in table 3.1, the loss of stability is either in the way of fluid stiffness

controlled, particularly when spacing between two cylinders is large, or fluid damping

controlled, when the two cylinders are near to each other.

The systematic map of stable and unstable locations under specified flow condition and
cylinder arrangements serves as a guide to judge stability when the equilibium of two

cylinders has been identified, additionally it quantitatively explains the effect of parameters,

such as mass parameter, spring coupling angle, stiffness ratio, reduced flow velocity and

equilibrium location on the stability and bifurcation type.
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parameter 4=0.02, spring coupling angle =00, stiffness ratio R,
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Stationary Bifurcation

6=5", a=0.02, R,=0.95
Hopf Bifurcation
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Figure 3.26 Stable/unstable equilibrium locations for the downstr
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parameter 4=0.02, spring coupling angle 6=5, stiffness ratio R,=0.95 and flow velocity.
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Stability of the downstream cylinder in two-dimensional space

Figure 3.28 Stable/unstable equilibrium locations for the downstre
parameter 4=0.02, spring coupling angle 6=10°, stiffness ratio R.=

0.95 and flow velocity.

am cylinder under specified mass
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Stability of the downstream cylinder in two-dimensional Space

Stationary Bifurcation
Hopf Bifurcation
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Figure 3.29 Stable/unstable equilibrium locations for the downstream
parameter 4=0.02, spring coupling angle =10,
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Stationary Bifurcation
Hopf Bifurcation

0=0°, a=0.2, R,=0.95
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Figure 3.30 Stable/unstable equilibrium locations for the downstre
parameter 4=0.2, spring coupling angle =09, stiffness ratio R,
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Figure 3.31 Stable/unstable equilibrium locations for the downstream

10 X 15 20

parameter 4=0.2, spring coupling angle 6=0°, stiffness ratio R,=1.0 and flow velocity.

©  Stationary Bifurcation
=0° a= =
*  Hop! Bifurcation 6=0°,a=0.2, R,=1.0
44 000000000000DD00000000DDDONDDD0D00000000NN 0DDDOD0000000000000000000000000D00N00000
0D00000000D0DD00000000000000000000DD0000 0000000000000000D0DD0D0000N000000000000G
000000000D0000000000DD0D00D0D0N000000000 B000DDOONDOD00N00000000000000N0PODB00000
00000000000 00000000000000000000000D0D0D00 D00000000000000DDDOODNNONB00N00000B00000
000DD0DO00000D0000000N000N00000D000000000 0000000000N0000000000000000000000000000G
34 000000000000000000D000000000000000000000 DOO0000000000000000DD0DN0N000N0000000RAn
000D000000000000000000000000000DD0000000 00000DDODDDDO000000000000000000000R00000
0000000000 0D0D0D000000N000000000000000000 0O0DO000000000000000DD0N0000N0NODOODOA0NN
0000000000000000000000000000000DD0N000N0 00000000DDD00DND0000000000000000000000a0
00000000000000000000000N00000000N00E0000 00000000 D0000000000000DD0NDO000D0DODAN0D
24 0000000000000000000000000000000000D00D0G 00D0000000DD000D000D0000000000000a000000
0000000000000 D00000000N000000DN0N0000000 000000000DD000000000000000000NN000DO000D
000000DDD00DNND0ND000NN000000000000000N0 DODODOOO0NO00ND0DD00N0D000N0000000N00000
000000000000000000000000000D00NN00P0OD00 00000000D000000000000000000000000O00000G0
00000000000D0DDN00D0D0NDO0000000000000000 0000000000000000000000000000000000000000
1400000000000000000000000000D00DNOOODOO000O « [°990000000DODDOONDONONONNOOOOOOOODOONO0N B
00000000000000000000000000D0000000000O0 § 00000000000000000000000D00NOBOODOBO0000 W
©000000000000000000000000000000000000D00 = 00000000000000DON0000000000000000D00NA0N =
0000000000000000000N00D000D0DDB00D00D00 000000000D000000000000DN00NDNNO00N0DO0D
000000000000000000000NOO0000N0N00000000 00000000000000000DD0DNNN0000NNNO0ND0000
0
4-000000000000000000DO0000D00RONON00NODONO D0ODOO00D00D00000N000N00NON0N0NNN0N00000
00000000D00000DN00DN0NN000000D0N00D00N0D0 000000000000000000000000D00000D00000000G
00000000000D0DN000N00NN000000D00D0000D000 000000000DDD000000000000000000000000D000N
000000000000000000000000ND00DD00000000R0 00000000000N00000000N00NN000000000000D00
000D0D0DODOD0NN00O0NDN00D0ND0NON0000000D0 000000000000 0D0000000000NO0N0N0O0N0N00000
3400000000000000DDO000000000000000000D000N 00000000000D00N0000000000000DDNO000000aN
0000000000000000000000D00D00000000000000 0000000D0D000000000000000000000000000000
00D0D0000D00DD0000DDNDNO0D0000000DD00000 00000000000D000000000000000NNN000000000N
00000000000D0000000000D0D00000000DOD00000 0000000000D0D0000000000000DN00NONONONODN
00000000000 00000N0DNDN0000D0D0NDDNN00000 f00D0DDODON000000000000DN00D00000D00DNODN
24 00000000000000000CN000000000000000000000 DDDDBDGDDDDDDDDDDDDDDDDDDDDDDODDDDDDUDDD
0000000000000000000000000000000000000000 nununnuunnnunnunnuoauuuuuDmnunmuumunnnun
0000000000000 00000000000000000000D000000 ‘"DDDUDDDDDDDDDDDDDDDGDDD
000000000D0D000000000000000000000000000a0 000D0DOD0OODODODO0ODOODD
000O000000NDUON00ND0N0D000D000ND0000000D00 000000000D000000000DNNOARA
150000000000000000000O0N00000OO0OOO0000000OAN ooooooneoonnumnuuunnuDuDDDDDDDDDDDDnmmnu
©0000000000000N000000O000D0DDDOOD0000D00 Y ooonoooumnmnunnnnnununnnuDUDDDDUDDDUDDG v
000000000000000N00N0DONOD000NODDO00000O0 = ooooounnnunuuunnnmnmnuomumnnomonnDunnnu =
000000000000NN0000000N0000000000OD00000 ooonumnuuumuuonauunnunnuonunnuumDnmomum
0000000000000000NONNON00D0000DDNO0000O0 OOOBDDDDDDDUDDDDDDDDDDDDDDDDDUDDDDDDDDD
0 ,,,',,ﬁ.'.."“sv'.r....,..:‘lo...l P
] 10 X X 15 20
o Stationary Bifurcation
=0° =
*  Hop! Bifurcation 6=0°,a=0.2, R,=1.0
4-DDDDDDDUDGDUDDUUDDDDDDUDUDDDDUDDDDUDDDUD 0O00000D000D000D000000000000NDO0N0NNN0ND
DDDDDDDDDDDDDDDDUDDDDDDUDDDDUDDDDDDDDDDD DDDDUDDDDUDDUDDDDUDDDUUDDUUDDDDDDDDDDDDD
000000000DO0000N00ND00DO0N0000DON00OO00D 00000000BDD000DDDND00000000NNDOON0NOnANG
DDDDGDDDDUDUODDDDDDDDDDUDDDDDDDDDDDDDDUD UDDDDDDDDDDDDDDDDDDDDUDDDDDDDDDDDDDUDDDD
0000DODDD0DONNNOONDO0DN0OND00DONOONBO0N0 0000000000000000000000000000000000N00OnD
3-DDDDDDUDDDDDDDDUDDDDODDDGDUDDDDDDDDUUDDU DDDDOUDDUDDDDDDDDDDDUUDDDDDDDDDDDDuDunun
DDDDDDDODDDDODDDDDDGDDUDDDDDDUUDDDDDDDDU uDuDDDDDDDDUDDDDDDDDDUDDDDDDDDDDDDDDDDDD
DUDDDDDDUDDDDDDUDDUDDDDUDDDDDDDDDDDDDDDD nunDnnuuﬂuDDDDDDDDDDDUDDDDDDUDUDDDDnuuuu
DDDDDDDDUDDDDUDDUDUDDDDUUUDDODDDDDDDDDDD nonnncuonuunnnﬂnn!ﬂﬂﬂﬂﬂuﬂnnnunuouuucunnn
> 0000DOOO0O 000D0OPDDOOO00D 0opoCc ooonooo
zimn: 0D0DODDOOOOD nnnnnunnuuunnnunnnunannnnnnnuannnnnnuauu
unnunnnnuunnnunnuncnnauunnnnuunuuonuuunu oo opoooo
0oonoooonoooo Doooooo
oo B00000D0DOD000O0D ooooo ooooooo
ucnnnnnnnlnnaunauuunnuunounonunnuonncnnu 00ooooDo0onooon
1<ooooooeooonuunnnununDﬂnonunnnnnuuouuuoun 0000000000 oo 0000000000OO00 ©
oooooooonnnuﬂﬂ!ncDnunuoouonuouununnonnu ' oooooooonnunuununununuunmnmuoouunuuuonn 3
ooooonuﬂnnnuDDDUDDUDUDDDDUDUUUGQQDUDDDD = eeoooﬂunannnnuﬂunnDDDDDDDDDDUDDDUDUUUDD i
000008800000ND000000000000000000NNN00000 o.onuuﬂnnnnnnnuDDDDuDDnuonuuuuuuonnunnn >
0000008BD000000000000NDN0NBONEEOAN00O0D eooonnuunununnunnnmDuunnnouucnuuDununmn
o
4-uuounonuunnDDDDDDDDDDnuuouuunnuouuunuoun DDDDDDDDDDDDDDDDDDDDDUDDDDDDDDDDDDDDDDDD
000000000000DO0DO0O000000DD00D0D0000000000 DDUDDDDDGDDDDDDDDDDDDUDUDUDDDDDDDDUDDUDD
0000000000DDDDODODODBNO00000000N0000N00 DDDDDDDUDDDDDDDDUDDDDDDDDDDDODDDDDDDDDDD
00000000000000000000000000000DEE0N0A0D00 DDDDUDDDDDDDDDUDDDDDDUDDDDDDDDDDDDDDDBDU
000000000D00DODON0NDONDD00N000000000DO0000 DUUDDDDGDUUDCDDDDDDDDDDDDDDDDDDDDDDDDDDD
a-uounuununuoDunooomoouuuuanuDuuuunonuuuuu DuuoouDDnDDDnDDDDDDDGUUuDuDnunnconoDDuDu
DDUDDDDDDDDDDDDDDDDDDDDDDDQUDDUDDDDDDDDD DDDDOGDDUﬂUDDDDDDUDBBDBUBBDHBBDDDHDBBHBD
DDDDDDDDDDDDDDDDD!!GU!BUDDDDB.BH.DDDDDDD 00000D0DODDODDDO oo
OonopoooDoDDoBODOOD 0oo ooooooonon Do
> ooot 000000000ODODDDD ooo
2+
uunnnnnuunannunnnannunonnnnuunnnnnuuunnn D0DDDOOOODODDDODODD
oopoo o
Doooo ooo o
14000000000 00ooooo & flooooooo00 o 0w
0000000 000DDO0ODODO | 00000000 oo oo W
00000000000B0ONBBOOOO0000O00O0000000000 = 0000 000000000 o«
000B00DBOBNBEBOABOO00000000000000D00000 oo DO0DOOoBODDOOoO0nn =
©00000DDDBOBDBNNNNO000N00000NO000000000 oo 00000000000000000000
0 e g T Py e ——— v A — . T - TPy
M 5

cylinder under specified mass

122



W. WU

Stability of the downstream cylinder in two-dimensional space

Stationary Bifurcation
Hopf Bifurcation

6=5", a=0.2, R =0.95
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Figure 3.32 Stable/unstable equilibrium locations for the downstre
parameter 4=0.2, spring coupling angle 6=5', stiffness ratio R,

=0.95 and flow velocity.

am cylinder under specified mass
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Figure 3.33 Stable/unstable equilibrium locations for the down
parameter a=0.2, spring coupling angle 6=5"
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Figure 3.34 Stable/unstable equilibrium locations for the downstream cylinder under specified mass

parameter 4=0.2, spring coupling angle 6=10°, stiffness ratio R,=0.95 and flow velocity.
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Figure 3.35 Stable/unstable equilibrium locations for the downstream cylinder under specified mass

parameter a=0.2, spring coupling angle =10, stiffness ratio R,=1.0 and flow velocity.
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Figure 3.36 Stable/unstable equilibtium locations for the downstream

Stability of the downstream cylinder in two-dimensional Space

o Stationary Bifurcation

parameter 4=2.0x104, spring coupling angle 6=(00, stiffness ratio R,=1.05and flow velocity.

cylinder under specified mass

127



W. WU

Stability of the downstream cylinder in two-dimensional space

o Stationary Bifurcation

@ Hopf Bifurcation

6=0°, a=2X10*, R,=1.1
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Figure 3.37 Stable/unstable equilibrium locations for the downstream

parameter a=2.0x10, spring coupling angle =00,
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cylinder under specified mass
stiffness ratio R,=1.1 and flow velocity.
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Figure 3.38 Stable/unstable equilibrium locations for the downstre

parameter 4=2.0x10, spring coupling angle 6=5', stiffness ratio R,=1.05 and flow velocity.

am cylinder under specified mass
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parameter 4=2.0x104, spring coupling angle 0=5, stiffness ratio R,=1.1 and flow velocity.

cylinder under specified mass
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Figure 3.40 Stable/unstable equilibrium locations for the downstream cylinder under specified mass

parameter a=2.0x10, spring coupling angle #=109, stiffness ratio R,=1.05 and flow velocity.
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Stability of the downstream cylinder in two-dimensional space

o Stationary Bifurcation

Hopf Bifurcation

6=10°, a=2X10*, R =1.1
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Figure 3.41 Stable/unstable equilibrium locations for the downstream
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parameter 4=2.0x10, spring coupling angle @=10, stiffness ratio R,=1.1 and flow velocity.

cylinder under specified mass
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Chapter 1V

CONTINUATION INVESTIGATION INTO
INTERACTION OF TWO CYLINDERS
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4.1 General Remarks

In chapter III, traditional tools were used to analyse the stability of the downstream
cylinder, ie. the utilisation of Routh-Hurwitz stability algorithm. The Routh-Hurwitz
stability critetia can identify the critical state of the stability. However, the critical state does
not show detailed information about the variation of the stability and it can not answer 2
question like “In what kind of arrangement, for a specified spacing, are the two cylinders
more likely to lose stability?”. Also, the method is often limited to very small number of
degrees of freedom. In order to learn detailed information about the effect of control
parameters, such as flow velocity, cylindet arrangement etc. on the stability of the cylinder,

a numerical investigation concerning continuation has to be made.

Looking back at the investigation into cylinder interaction, particularly on the issue of the
stability of the cylinders, most researchers have focused solely on the stability itself. More
specifically, most attention has been given to the identification of possibility of instability
and the seeking of critical states(Simpson 1971; Price 1975, Price and Others 1993; Tsui
1986; Tsui 1977). Some investigations provided parameter effect such as structural

damping, cylinder arrangement (Price 1975; Price and others 1993) etc. However, not a
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single article has given consideration to the possible multiple equilibrium states and the
structure of bifurcation for such a non-linear system. This is partly because most of the
investigations have concentrated on the problems of power transmission lines only, which
is a particular case for very small mass parameter. Nevertheless, when the interaction
between marine risers is considered, the variation of equilibrium position with flow velocity
can be significant. As shown in Chapter III, the stability of a downstream cylinder depends

on both the relative position and flow velocity. The information about the equilibrium

position can therefore be vitally important.

To find equilibrium positions for a given system, numerical tools ate probably the most

useful, in particular when:

1) The non-linear system itself does not have analytical specification itself. For example,
in the problem expetienced here, the fluid force coefficients themselves do not provide

accurate analytical exptessions concerning the different arrangement of cylinders.

2) The problem can be extremely difficult to solve analytically.

The challenge faced by the numerical tool is the requirement to find all the possible
equilibrium states for the specified nonlinear system. It is easy to understand that the stable
state is much easier to trace, For example, by specifying an initial position for two cylinders
with a stable equilibium position, solving the dynamic system in time domain, then the
cylinder is likely to rest on those positions. To exhaust the equilibrium positions, however,

continuation and branching techniques have to be used.

The essence of continuation is based on the hypothesis that the equilibtium positions ate

continuous functions of the control parameter. Supposing one equilibrium position is

known at the beginning then, by a small variation of control parameter, the corresponding
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equilibrium position for the vatied control parameter should stay close to the first known
equilibrium position and can be obtained by solving the non-linear dynamic system. By
repeating this procedure up to the required control parameter, all the equilibrium positions
related to the first known equilibrium can then be traced. The technique to find such chain
positions is called “continuation”’. The chain of the solutions is called the “branch”. However,
the solutions explored in this way often comprise a continuous telation between
equilibrium position and control parameter, and discontinuity can occur at times. The
existence of multiple equilibrium positions implies that multiple branches can exist. The
continuation technique only sorts out the branch cotresponding to the particular first
position. However, most of the time, these branches will intersect with each other. By
identifying these intersection points, a switch of branch can be made to change the path of
continuation and to trace othet branches. Such a technique to identify intersections and
switch the branch is often called “branching’. The seeking of chained solutions by
continuation is usually irrespective of stability. To realise the stability analysis of the
solution, the technique of stability analysis will then be required. The systematic description

of the treatment method for the non-linear dynamic system can be found from references

(Seydel 1994; Kubicek and Marek 1983).

In this chapter, a full continuation investigation is launched, to try to identify the multiple
equilibrium states of the downstream cylinder. The corresponding stability for each
equilibrium position is analysed by a direct numerical eigenvalues seeking method regarding
its Jacobian matrix. It is seen that for a specified arrangement, there can be up to four
equilibrium positions for certain flow velocities. However, when flow velocity exceeds a
certain value, there can be no physical equilibrium positions. Critical state is defined in this

chapter to identify the flow velocity before the downstream cylinder loses its ultimate

equilibrium state.
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4.2 Theoretical Formulation

4.2.1  Formulation

Figure 4.1 Schematic diagram for the system to be investigated.

Figure 4.1 is a schematic diagram of the two cylinders system investigated in this chapter.
The upstream cylinder is supported by a streamwise direction spring only, while the
downstream cylinder is supported by both a streamwise and cross flow direction spring.
The co-ordinate system has its origin at the centre of the upstream cylinder’s location when
the fluid is stationary, with its x axis parallel to the flow direction and pointing towards
downstream. The initial position of the downstream cylinder is (X, Y,). The reason why
the spring coupling is neglected in this chapter has been desctibed in Chapter III
Furthermore, it is assumed here that the springs are ideal, ie. the direction of the two
springs supporting the downstream cylinder will not change with the displacement of the
downstream cylinder. For such a system, the dynamics equations concerning the

equilibrium position of both upstream and downstream cylinder are exptessed as a system

of six first-order differential equations:
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The form of X, X;, X, are expressed as:
x, =X,
x,=X,- X, 4.3)
%, =Y,-¥

X, is the position of upstream cylinder at reduced flow velocity of Ug. x,, X3, X;
represent the non-dimensional streamwise displacement of upstream cylinder, streamwise

and transverse displacement of the downstream cylinder from the initial positions,
respectively. X,,X,,Xqare their corresponding velocities in non-dimensional form. C, is

the drag coefficient for upstream cylinder. The stability analysis for corresponding
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equilibrium positions 1s made by direct numerical eigenvalue seeking for the Jacobian

matrix of system (4.1) with

~
"
|-,°’z

44

S

-~

This serves as a parallel comparison with the analysis made in Chapter 111, an alternative

statement of the investigation is presented in the Appendix A.

Equation (4.1) is a sixth-order standard autonomous system. The control parameters in the

equations include reduced flow velocity U,, stiffness ratio R,, mass parameter agand

different initial positions of (X, Y). The main issue in this chapter will be the reduced flow

velocity.

4.2.2  Continuation Procedures

As shown in the previous chapter, stationary bifurcation is most likely to be the bifurcation
type which the system will experience when it lose its stability. In order to avoid the
problem which might arise with the turning points, an arc length method (Seydel 1994) was

utilised in the analysis. The following equation serves as a complementary equation to

system (4.1).

p(y,4,8)= i(x—x,)2 +[l— A(sj)]2 ~(s- sj)2 =0 (4.5)

i=l

Here s5is the arc length along the continuation solution curve. Ais the control parameter.
In the present study, the control parameter U, is mainly investigated. Equation (4.5)

together with (4.1) constitute self-contained non-linear equations, among which the

continuation step length (S—Sj)is prescribed beforehand. Such a system is solvable by

predictor and corrector two steps method.
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4.2.2.1 Predictor Step:
Predictor is a procedure to provide an initial guess for equilibrium based on the already

known equilibium. The procedure starts from a known solution (x",l j.), which can be

sought at a small reduced flow velocity for system (4.1). In fact, the specified position of
(X;» Y, )itself is an equilibrium at zero flow velocity. By taking prescribed arc length
As=5-5,, in present investigation, the predictor is implemented by way of AKIMA
extrapolation. The AKIMA interpolation is based on a piecewise function composed of a
set of polynomials, each of degree three, at most, and applicable to successive intervals of
the given points. In this method, the slope of the curve is determined at each given point

locally, and each polynomial representing a portion of the curve between a pair of given

points is determined by the coordinates of and the slopes at the points. The formulations

of the interpolation are as follows.

Generally, the curve slope at each given point is determined by points in addition to itself.
For example, assuming thete are 5 successive points as 1,2,3,4 and 5. Their cotresponding
slopes are denoted by m,m,,m, and m, for each segment, i.e. 12, 23, 34, and 45. The
curve slope at point 3 is then determined by the following formulation:

|m4 ~ my|m, + |m2 - ml|m3

JR Py - o

Subsequently, the interpolation scheme for a point x which lies in the interval [x,, x;] is

expressed as:

y=p0+p,(x—x,)+p2(x—x,)z "'1’3("-"71)3

Whete
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Do =N

p=h
30270 o -,
__%X

D, X, — %,
t+1, 2%27 0

X, =%
P

(x,, y,)is the coordinate of point 7 Detailed introduction of the method can refer to

(Akima 1970, 1978).

4.2.2.2  Corrector Step

The objective of corrector step is to find the exact equilibrium based on the guess provided
by predictor step. In this chapter, it is made via the modified version of M.J.D. Powell’s
hybrid algorithm contained in the package of IMSL library (IMSL user manual), which is a
variation of Newton’s method. The classical Newton-Raphson iteration for solving non-
linear equations requires a2 good estimation at the start otherwise the solution may fails to
convetrge. A common strategy to resolve this trouble is to retain the iteration direction, but
to restrict the length of successive corrections. Different schemes have been produced
based on such a philosophy. The Powell’s hybrid algorithm is one of them. The Algorithm
uses a finite-difference approximation to the Jacobian and takes precautions to avoid large
step sizes or increasing residuals. For further description, (see More and others 1980). Since
a Finite Difference Method is used to estimate the Jacobian, the byproduct of the Jacobian

matrix can be used for the stability analysis in present investigation.

4.2.2.3 Branching:

The detecting of the branching is made via the test function of the real part of the

eigenvalue. When near the position where the real part of the eigenvalue sign changes, the

switch of the continuation is then made by the direct method.
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4.3 Numerical Results and Discussion

As the focus of this thesis is on marine riser interactions, additionally, the displacement
caused by flow for small mass parameter is relatively small. The present chapter sets the
control parameters as 4=0.2, R,=1.0, £=£=0, there is no spring coupling, and initial
spacing X varies from 5 to 30 and Y varies from 0 to 3. Three reptesentative areas are
investigated, i.e. the wake centreline, inner wake and outer wake respectively. For each area,
systematic calculation results about continuation and corresponding stability analysis are

presented. The control parameter in these cases is concentrated on reduced flow speed.

4.3.1 Wake Centreline
It is apparent that the cylinder on wake centreline will stay on the centreline because of the

symmetry property of the wake. There is no lift force on the wake centreline. The lift force
is directing towards it when the downstream cylinder is deviated from wake centreline.
Figure 4.2 to Figure 4.7 are continuation results for position X.=5, 8, 10, 15, 20, 30 with
Y, =0 respectively. It is seen that as the flow velocity increases, both the upstream cylinder
and downstream cylinder are pushed back as shown in the figures. Nevertheless, due to the
wake shielding effect, the displacement of downstream cylinder is not as large as that of the
upstream one. When the reduced velocity increases to certain level, two equilibtium
positions of the downstream cylinder emerge with one close to the upstream cylinder and
another further downstream. With further increase of the reduced flow velocity a state is
then reached where the two equilibrium positions converge into a single equilibrium
position and above this reduced velocity no equilibtium positions exist. Such a state when
Slow velocity exceeds this state there will be no equilibrium is defined as critical state in this
investigation, the cotresponding reduced flow velocity is defined as critical flow velocity

and the state is labelled as M. In the presented six different spacing cases, all the variation
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of the equilibrium have the same characteristics except the crtical flow velocity are

different.

The accompanying eigenvalue figures show the variation of eigenvalues with the reduced
velocity. The label S in these figures represents the position at which stationary bifurcation
occurs. D is the state at which the downstream cylindet moves far most downstream in
position. It can be seen that before the downstream cylinder moves to D, as labelled as
Range I in the Figure 4.2(b), the cylinder is always stable. In the course from D to M,
labelled as Range II in the figure, when initial spacing is smaller than or equal to 8, the
cylinder is possible to exhibit Hopf bifutcation, H is the Hopf bifurcation point. Such a
tesult is a little unexpected. As we know in most cases, the tumning point is a transition
point which change the branch stability from stable to unstable or vice-versa. In reality,
such scenatio of turning point which connects between unstable branches does exist, such
as examples given by Seydel (1994). In the meantime, when X;>8, the Hopf bifurcation
disappears. The state from M to the upstream branch of the equilibrium (the one close to
upstream cylinder), called range III here, is unstable as can be seen from the eigenvalues,
typically with one pair of eigenvalues be real number, and one of the pair is positive.
Comparing all the critical state on Figures 4.2(a) to 4.7(), it is seen that the spacing
between the two cylinders at these critical states increases with the initial spacing. When the
initial spacing is smaller than 8 diameters, examining the stability under the different flow
velocity by the use of the results of Figure 3.31 produced in Chapter III, before the flow
velocity reaches its critical value, the spacing between the two has decreased to such a state
that Hopf bifurcation becomes possible, both equilibrium are unstable if there are two
equilibium under one flow velocity. On the other hand, when the initial spacing is larger

than 8 diameters, there will always be an equilibrium which has a relative large spacing at
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which Hopf bifurcation not possible. At the critical state, the losing stability occurs by the

stationary bifurcation.
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Figure 4.2(a) Continuation for X;=5, Y;=0 with a=0.2.
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Figure 4.2(b) Variation of eigenvalues for X;=5, Y;=0, a=0.2.
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4.3.2  Inner wake position

Figures 4.8 to 4.11 are the continuation results for positions (5,1), (8,1), (10, 1) and (15,1)
and corresponding varations of eigenvalues with flow velocity respectively. These
locations are close to the wake centreline and are generally called inner wake positions here.
It is seen that the results are very similar to the cases when the two cylinders are arranged
in tandem. Both cylinders are pushed towards downstream with the increase of flow
velocity. Meanwhile, the downstream cylinder is moving towards inner part of the wake
due to the lift force. When the flow velocity reaches a certain value, which is dependent on
initial spacing, there will be two equilibrium positions, One will be located very near to the
upstream one while the other is located somewhere downstream. A critical flow velocity
exists above which there will be no equilibrium positions. Examining the accompanying
eigenvalues variation with flow velocity, it can be seen that the general trend is same as the
case on the wake centreline. When the two cylinders are initially arranged with a relative
small spacing, say less than 8 diameters, and when the flow velocity is high enough, before
reaching the critical state, the downstteam cylinder can lose its stability via Hopf
bifurcation. At critical state, stationary bifurcation occurs. For such a critical state, which is
a turning point in the continuation diagram, the stability before and after the turning point
are both unstable. Typically, before the turning point, the state corresponds to a pair of
conjugate complex eigenvalues with positive real parts whilst after the turning point, the
corresponding eigenvalues will have a pair of real number with at least one being positive.
However, when the initial spacing exceeds a certain level, typically larger than 8 diameters
(exact data depends on mass parameter), only stationary bifurcation will occur. It can be

seen from the accompanying eigenvalues, that the turning point is the critical state and also

of the stationary bifurcation.
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Such an inner wake characteristic spreads with the streamwise distance. At large streamwise
distance, at the transverse location of Y =2 or even larger, the continuation results will
b .

have the same characteristics.
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4.3.3  Outer wake position

Figures 4.12 to 4.22 show the scenario when the downstream cylinder is initially positioned

at the outer part of the wake, with the following arrangement:

Table 4. 1 Arrangement of the cylinder pair for the calculation.

Streamwise spacing X Transverse spacing Y,

5,8,10,15, 30 2,25,3

The continuation results show that, in general, with the increase of flow velocity, the
downstream cylinder is slowly pulled towards the centre of the wake and the rate of change
in the transverse location is increased with the move inwards of the downstream cylinder.
With the further increase of flow velocity, firstly one additional equilibrium point will
appear which is close to the upstream cylinder, after which a state Q, at which three
equilibrium points coexist occurs. The third equilibrium point is located between the
ptevious two equilibriom points. When the flow velocity increases further, the middle
equilibrium state is split into two equilibrium points. One is close to the downstream
equilibrium point, which constitutes a downstream pair, and the other is close to the
upstream one and forms the upstream pair. When the flow velocity is increased further,
depending on the initial transverse location, one of the two equilibium pairs will first
converge and then disappear. The remaining pair will converge at a higher flow velocity.
The maximum streamwise position that the downstream cylinder can reach is the

downstream pait convergence point. The state of the last convergence is defined as the

critical state, and after such a state, no equilibrium will exist.

The accompanying eigenvalue analysis shows that the downstream cylinder is always stable
on the path from its initial position to the downstream pair convergence position D, which

is also a stationary bifurcation point (S). From D to Q the equilibfium is unstable, which
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corresponds to the stationary bifurcation with a pair of real eigenvalues, one being positive.

From Q to another position of stationary bifurcation M, there are three possibilities:

1) It is stable in the whole path from Q to M, with both pairs of eigenvalues located

2)

within the left half of the eigenvalue plane, such as shown in Figures 4.15 to 4.22 for

X;=8, 10, 15, 20, 30. 1t is clear that when X >8, the equilibrium position located on Q

to M is always stable.

As shown in Figures 4.12, and 4.14, for initial position X;=5,Y =2, X =6, Y,=2.1,
within the path from Q to M, there is a critical state labelled as H, and from Q to H is
stable. However, H is a critical state of Hopf bifurcation, and from H up to M, the path
is unstable. Figure 4.14(c) is an enlarged figure which shows the variation of
eigenvalues around the Hopf bifurcation, and it also clearly shows that Hopf

bifurcation exists in the course from Q to M.

As can be perceived from Figure 4.12 for X,=5, Y=2.0, the whole path from Q to M

can be unstable when initial spacing is further reduced.

From the upstream pair convergence point to the upstream branch (the equilibrium close

to the upstream cylinder), all the equilibrium states ate unstable, often with a pair of real

eigenvalues, and one of the pair being positive.

Comparing to the cases when the two cylinders are arranged in tandem, all these results

show that there are two possibilities of stability change at the turning point, i.e. either a

change of stability or both branches before and after turning point are unstable. The later

scenario only occurs when the initial spacing between the two cylinders is relative small.

Figure 4.22 shows the variation of the equilibrium structure at streamwise location of 5

diameters, and with different transverse locations. It shows the emergence of multiple
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equilibrium  states when the transverse distance is large enough. Such a varnation is a

continuous process with changing transverse distance.

In order to identify the most vulnerable arrangement for specified two cylinder spacing,
Figure 4.23 shows the variation of critical flow velocity with the coming flow angles. It is
seen that the minimum critical flow velocity occurs on the wake centreline for the two
cylinders arranged by same distance. In this comparison calculation, the variable is the flow
direction. The figure also shows that the critical flow velocity does not change much when
the flow direction is close to the case of 0 degree angle. The explanation for this can be
deduced directly from the continuation diagram, as in most of the cases, the critical state
occurs near the wake centreline. Such a result is very useful to riser designers. Should the

collision between two risers has to be avoided, the tandem arrangement is the most

impottant case to examine.

Figure 4.24 shows the varation in ctitical flow velocity with the initial arrangement and
corresponding spacing under the critical state. It is seen that critical flow velocity increases
significantly with initial spacing as well as its corresponding spacing at the critical state. This
means that an appropriate increase in cylinder spacing can effectively delay the loss of
stability of the downstream cylinder. The figure also shows that when the downstream
cylinder is initially located at the outer part of the wake, the critical flow velocity is
significantly higher than the case when it is placed at inner wake. This is caused by the fact
that when there are multiple equilibria, the ultimate loss of stability occurs by the

convergence of the downstream equilibrium pair when the downstream cylinder is located

towards the wake boundary.
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4.4 Summaries

For a cylinder located in the wake of an upstream cylinder, there can exist multiple
stable/unstable equilibrium positions due to the complicated force field in the wake. On
the wake centreline and innermost wake positions, the number of equilibrium positions is

two, wheteas in the outer wake region there can be as many as four equilibrium positions.
Further, there exists a critical reduced velocity, which is defined in this chapter as

U,=Y,/0,D

Above this critical velocity, there will be no equilibrium positions. This indicates a likely
clashing between two cylinders once the critical velocity is exceeded. The numerical
computation shows that the most vulnerable arrangement for a specified spacing is when
the two are arranged in tandem form. The eigenvalue analysis shows that most of the time,
stationary bifurcation is how the downstream cylinder loses stability, particularly when
initial spacing is larger than 8 diameters. Such a quantitative conclusion is subject to the
mass parameter be close to 0.2, otherwise the exact spacing giving rise to Hopf bifurcation
may be slightly changed. This is consistent with the previous analysis. Finally, it is worth
noting that the analysis results presented in this chapter show that the critical flow velocity
is well within the range of many deepwater riser system operating conditions, which implies

that the collision between tisers is an important issue for design of risers.
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Chapter V

DYNAMICS SIMULATION OF INTERACTION OF TWO
CYLINDERS IN TWO-DIMENSIONAL SPACE
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5.1 General Remarks

For powet transmission lines, when the flow velocity exceeds the crtical flow state,
petiodical large amplitude movement with an elliptical trajectory will occur. Its motion will
be in a clockwise direction when the downstream cylinder is located in the upper half of the
wake and counter-clockwise when the downstream cylinder is located in the lower half of
the wake. Such movements usually have amplitudes of several diameters, and grow with the
increase of flow velocity (Blevins, 1990, Price, 1990, Hardy & Dyke, 1995). The
continuation and stability investigation conducted in Chapter III and IV (also cf. Wu et al,
2000, 2001a, 2001b) has shown, in general, the interaction between two cylinders in water
loses its stability through stationary bifurcation, typically when the spacing between two
cylinders is larger than 8 diameters. When the flow velocity exceeds the critical flow
velocity, any disturbance on the downstream cylinder is likely to be amplified. The dynamic
motion under such conditions is of interest to the marine riser designers and operators, in

patticular its motion trajectory and the momentum of the cylinder immediately before the

collision should it occut.

In this chapter, a comprehensive simulation is conducted to account for the dynamics after
the downstream loses its stability. Both large spaced and relatively small spaced cylinder
pairs are considered, and the scenarios before the flow velocity reaches the critical velocity

are also discussed. A collision model is attempted, in order to account for the course of
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collision when it does take place. The investigation endeavours to show the possible

motion trajectory of the downstream cylinder and its dynamic behaviour.

5.2 Theoretical Formulation

As shown in the schematic diagram Figute 5.1, both the upstream cylinder and downstream
cylinder ate supported by two orthogonal springs. The origin of the co-ordinate system is
set at the centre of the upstream cylinder when the fluid is stationary, the x axis is pointing
towards downstream in the inflow direction, and y is in the cross-flow direction.
Consideration of the cylindets in water is the main interest of this chapter. The x direction
spring is assumed to be aligned in the direction of flow, and the springs are assumed to be
ideal, so that the motion of the cylinder does not alter the arrangement of the two springs.

The stiffness of the four springs is assumed to be the same. For such a system, the equation

of motion can be written as:

X, 4 X _ F,
m!{j’;] + cl[l"f] + kl[y’] = [ Fy,] 5.1)

(i=12)

Here i =1, 2 represents the upstream and downstream cylinders respectively. m is the mass
of the cylinder per unit length, ¢ is structure damping coefficient, kis the stiffness of the
spring, (x,, y,)is the displacement by which they have deviated from their corresponding

layout positions (x,;, y,,)!. F,, F,, ate the fluid forces applied on the two cylinders. [ is

the unit matrix.

! The layout position corresponds to the arrangement when flow is stationary, with
xsl = ysl = 0’ xsZ = x.t’ y.t2 = ys
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Figute 5.1 Schematic diagram of co-ordinate system.

According to quasi-steady flow theory, the fluid forces can be expressed as:

2
F,= % U,D [El)i (Ui - %, ) + E/.,'J"i] ~Cn ,07I4D X,
1 . (i=12) (5.2)
~ . = . zD” ..
Fy,'="2'pUn‘D[—Cl)u'yl+Cl.i(U«‘—xi)]—cmp4 Yi

In equation (5.2), U, =V, for the upstream cylinder, ¢, is the fluid added mass coefficient, the

definitions of other parameters are the same as those in Chapter IIL

Such a dynamic system can be written in the standard form of the first order differential equations:

¥=f(%) (5.3)
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X, )
aUIZaCI)l =25, - x,

X,
2 Y .
~ Vyx Vox Vox Vox
D={aU2 1 1-2L4 0 4] 20110, 1 -4 |+ C,, 251 -2&, —x
f(x) a RJ( UUR) [UUR) ] 1)2( UUR) 12 UU,,_ &, —x,
x6

2 2r .
Vx V.x V.x V.x
U’"l—°‘ == | |C |1-—C4 |-C,, 26 |25, —
La k ( UUR) (UUR) I “( UUR) bz UU, | o = %s

- r
% ={x,, %, %, X, X5, X}

Here, x,, X,, X, tepresent the non-dimensional displacements deviated from the layout

position in streamwise and cross-flow directions respectively, and x,,x,,x, are their

cotresponding velocity terms.

5.2.1  The Applicability of the System

The dynamic system (5.3) is suitable when the two cylinders are separated with a fair
amount of distance and with a large reduced flow velocity. The latter condition is easy to
meet in the present applications. When the two cylinders move close to each other, the
mechanism of the interaction will become more complicated, particularly with regard to the
interaction forces applied on the downstream cylinder. In this investigation, it is considered
that the interaction comprises two parts. One is the viscous flow effect, which determines

the time-averaged force, and the other is the potential flow effect.

When the two cylinders are far apart form each other, the potential flow part of the
interaction force is negligible. This is reflected in the fluid added mass term, which is
assumed to be equivalent to the case of a solitary cylinder located in a still flow. When the
two cylinders move closer, the potential flow effect can be significantly altered. Such kind

of effect is assumed to be able to be reflected in the interaction force term and the fluid

added mass.
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Numetical computation has been carried out in the appendix B to account for this effect
through the interaction force term. As shown in the Appendix B, this kind of effect only is
significant when the two cylinders are very close to each other, such as less than 2
diameters. On the other hand, within such a small range, the collision effect can be very
important because the variation of the cylinder speed is very significant and the time
interval during which the two cylinders stay within such a small distance is very short.

Therefore, in the presentation of the numerical results, the proximity interaction is not

considered.

5.2.2  Consideration of Collision (Impact Model)

Figure 5.1 Schematic diagram showing the course of impact, (@) for upstream
cylinder, () for downstream cylinder (¢) co-ordinates transformation

The characteristics of the fluid force on the downstream cylinder and its stability implies
that a collision between downstream cylinder and upstream cylinder can occur during the
movement of the downstream cylinder. Howevet, the course of the collision can be
complicated, as it depends on different factors such as the material of the cylinder, the

detailed information on the cylinder surface etc. In this thesis, the collision is accounted for

by:

1). Momentum conservation for the radial and tangential motion respectively and
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2). energy losses for the radial and tangential motions

Although such collision models are basic, the detailed information about the impact is not

the theme of this thesis, and the sophisticated impact model can be easily incorporated into

present investigation if it is required.

Figute 5.2 is a schematic diagram showing the planar motion of two cylinders and their
impact. The contact position between two cylinders is at C and the normal and transverse

velocities for upstream and downstream cylinder are represented by u, ,,. Here, /=1, 2

denotes upstream and downstream cylinder respectively, /=7, 2 represents normal and

tangential velocities, £=7, 2 indicates before and after collision. According to the

hypothesis outlined above,

1). Conservation of momentum in radial motion

Uyt =ty Hih (5.4)

Here, the masses of the two cylinders are assumed to be equal. Therefore, they have been

left out in the equation.
2). Conservation of momentum in tangential motion

Upga Ty STy, (5.5)

3). Supposing enetgy has the following relations

2 : 2 2
u, Hiy 2 =k, (ul,l.l i )

2 1 _ 2 2 5-6)
Uppp tlyy =K, ("1,2,1 +u2,2.1)
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The coefficients k, and k, show the energy losses during the collision in radial and
tangential directions respectively. The solving of above equations leads to the motion of the

cylinders immediately after the collision. For simplicity, k, and k, are both taken as unity in

the subsequent computation cases.

The velocity diagram in Figure 5.2(c) relates the polar co-ordinate velocities detived above

to their Cartesian counterparts. The transformation equations before impact, for instance,

are

X=u,,cos0+u, ,sinb

5.
y=u,,sinf+u,,cosd 5.7

5.3 Numerical Procedures

The fifth-order Runge-Kutta-Vemer integration method (Hull, et al 1976) is applied in this
investigation to seek the trajectory of the cylinder pair. The initial condition is specified
beforehand, and the integration in time domain is made step by step until a specified time
instant is reached. The collision model is embedded in the numerical integration. A detector

1s constantly monitoring the spacing between the two cylinders, and when the collision

between the two cylinders is detected, collision model is then applied.

5.4 Dynamics Simulation Results

Following the procedures outlined above, numerical simulation explores the dynamic
behaviour of a pair of cylinders under the predefined condition of flow velocity. All the

calculations have set the mass parameter of 0.2 except where otherwise specifically stated.

The typical calculation results are presented as follows.
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54.1  Wake Centreline & Inner Wake

Figures 5.2 to 5.9 show the scenarios when the pair of cylinder is arranged in such a way
that the downstream cylinder is near or on the wake centreline of the upstream cylinder. It
is seen that when the flow velocity is below the critical velocity and before any bifurcation
occurs, the downstream cylinder quickly approaches the equilibrium position irrespective of
the initial positions. Figure 5.2 shows the case for Xs=5, Ys=0 under flow velocity Ur=3.0.
Initially the two cylinders are located at the position of (0,0) and (5,0) tespectively. It is seen
that the two cylinders are both pushed downstream simultaneously by the flow. The
upstream cylinder reaches its equilibrium almost directly, wheteas the downstream cylinder
rests at its equilibrium after one cycle of oscillation. This difference is due to the relatively

smaller fluid damping on the downstream cylinder attributed to the reduced fluid drag

force.

When the spacing of two cylinders is relatively small, say less than 8, it can be seen from
Figure 5.3 that, when the flow velocity is just smaller than critical flow velocity, the quasi-
periodical movement will occur, and possibly with slight intermittent collisions. The phase
diagram shows the stable quasi-periodic nature of the motion. The velocity data (Figures
5.3(e) and 5.3(f)) show that the motions in cross-flow and flow directions atre comparable,
but the motion petiod is slight larger than the natural period of the system. Referring to the
stability analysis, this kind of movement is initiated by the loss of stability, because the
spacing between two cylinders is so small that the amplitude of the motion is large enough
already to bring two cylinders to contact with each other. Figure 5.4 shows the case when
the flow velocity has exceeded the critical flow velocity. It is seen that the cylinder moves
around, with collisions occurring from time to time. Although the motion of the
downstream cylinder is not periodical, the time interval between successive collisions is very
regular, and it has the same order of magnitude as the system’s natural period. The main

acceleration of the downstream cylinder occurs immediately before collision, Le. in the
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short time interval before the collision. The downstream cylinder is sucked towards the
upstream cylinde, and the velocity is significantly larger than the vortex induced vibration
motion can possibly show. In the above cases, the final dynamic movement of the
downstream cylinder depends solely on the flow velocity. The initial positions of the two

cylinders only contribute to the early transition movement of the cylinder.

Figure 5.5 shows the case for the same arrangement of Xs=5, Ys=0. However, the mass
parameter is set as 0.02. The flow velocity shown in the figure is 12.65, which is correlated
with case 4=0.2 by the similatity of aUr?, and exceeds the critical flow velocity. Comparing
with Figure 5.4, it is seen that although the fluid force acting on the two cylinders are the
same for the two cases, the amplitude of the downstream cylinder movement is larger than
the case of 2=0.2. Such a difference can be attributed to the reduced fluid damping. In spite
of this, the time interval between two successive collisions is close to the natural period of

the system. The general trajectory is similar: both exhibit irregular paths.

Figure 5.6 shows the case with Xs=70, Ys=0 and Ur=35.9. Although the flow velocity is
very close to the corresponding critical flow velocity, however, as there is no Hopf
bifutcation when the initial spacing between two cylinders is larger than 8 diameters, the

downstream cylinder approaches to its equilibrium directly.

Figures 5.7 to 5.9 show the cases when the flow velocity has exceeded the critical flow
velocity and the initial streamwise direction spacings between the two cylinders are 10 and
20 diameters, with transverse distance of 0 or 1 diameter. It is seen in all the cases presented
that large amplitude movement of the downstream cylindet was obsetved, with occasional
collision between two cylinders from time to time. The main motion occurs in the direction

of flow, and the amplitude of the motion is well correlated to their initial spacing.
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This amplitude can be understood in the following way: for the case of 4=0.2, which shows
the significant large fluid damping, the most upstream position the downstream cylinder
can reach is limited by the presence of the upstream cylinder, and the most downstream
position it can possibly reach is when it is not affected by the upstream cylinder. These two
extreme locations are the bounds for the movement of the downstream cylinder, and
equals the initial spacing between two cylinders. Examining the velocity of the downstream
cylinder immediately before collision, it is seen that, most of the time, it can be as high as 5,

which is a significantly high velocity when compared to 1 for the maximum lock in

amplitude for the two dimensional case.
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Figure 5.2(a) Streamwise direction displacement.
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Figure 5.2 The transition from initial arrangement to equilibrium, 4=0.2, Ur=3.0. Initially, the upstream

cylinder is located at (0,0) and the downstream cylinder at (5,0). The corresponding critical flow velocity for
this layout 1s Ug=3.48.
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Figure 5.5 A case for a=0.02, Ur=12.65, the flow velocity has exceeded the critical flow velocity.
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Figure 5.7(b) Streamwise direction motion phase diagram.
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Figure 5.7(d) Motion trajectory.

Figure 5.7 A case after flow velocity exceeds the critical flow velocity,
a=0.2, Ur=6.5, the corresponding critical flow velocity is 5.9.
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Figute 5.8(b) Streamwise direction displacement.
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Figure 5.8(f) Cross-flow direction velocity.
Figure 5.8 A case at off-wake centreline, after the critical flow velocity.
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Figure 5.9 Trajectory; a case at off wake centreline and after the critical flow velocity.
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Figure 5.10 Schematic diagram about equilibrium states.

When the downstream cylinder is initially arranged at the outer wake, there can be up to

four equilibrium states under certain flow velocities. Figure 5.10 is a schematic diagram of
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the possible equilibrium states at different flow velocities. Labels S; and S2 tepresent the
first and second convergence points of the equilibrium pairs. Not shown in the figure is
that, as well as Sy being the converging point of the downstream pair, it can also be the
convergence point of the upstream pair as well. S is the critical point of the system.

Discussion of the dynamics for such an arrangement according to different flow velocity

ranges follows.

5.4.2.1 Low Flow Velodity (V/,<V")
When the flow velocity is smaller than 1/, the downstream cylinder will approach its only

stable equilibrium state, irrespective of the initial relative positions of the two cylinders.
Although there are two equilibrium states when the flow velocity is close to 17, the other
equilibrium, which is located near the upstream cylinder, is unstable. When the initial
position of the downstream cylinder is located near the unstable equilibrium point, it only
exhibits temporary movement around the equilibium and will transit to the stable
equilibium eventually. The final state will rest at the stable downstream equilibtium
position. This process is identical to the transition for two cylinders arranged in tandem or
the case when the downstream cylinder is located at the inner wake position. Figure 5.11 is
a case for Xs=5, Ys=2 at Ug=3.0. Initially the two cylinders are placed at their layout
position. It is then seen that the two cylinders are pushed at almost the same speed towards

their equilibrium. The whole course of transition only lasts one natural period time interval.
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Figure 5.11(b) Transition motion velocity.
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5.4.22 Vebity V<V, <V
When the flow velocity is between the point Q and the first merger point of the equilibrium

pair, depending on the initial spacing between two cylinders and the initial disturbance on
the two cylinders, the downstream cylinder can exhibit different dynamic behaviour. When
the spacing between two cylinders is smaller than 8 diameters, the downstream cylinder can
either rest at its stable equilibrium or exhibit periodic movement. Figures 5.12 and 5.13
show the case for the initial arrangement of Xs=5, Ys=2. It is seen that, depending on the
initial locations (initial disturbance), the downstream cylinder can either rest at its stable
equilibrium (Figure 5.12), or exhibit stable periodical movement (Figure 5.13). When the
initial spacing between two cylinders is large enough, the downstream cylinder will rest at its
corresponding equilibrium state, due to the coexistence of two stable equilibrium points.
The final balanced position is dependent on its initial location. Figure 5.14 is a map
showing the corresponding attraction domains for the different equilibrium points for
Xs=10, Ys=2.5 at Ur=5.8. Initially, the upstream cylinder is located at its corresponding
equilibrium. The line shown in the figure demarcates the ultimate position the downstream
cylinder will go to. When the downstream cylinder is initially located above the demarcation
line, the cylinder will eventually rest at the upper stable equilibritum shown in the figure.
Otherwise, the cylinder will rest at the stable lower equilibrium state. The demarcation line

represents the attraction for the unstable equilibrium located on that line.
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Figure 5.14 Attraction domain between equilibrium sates for initial
upstream cylinder located at (8.07,0).

5423 V<V, <V

When the flow velocity is larger than the first merger point and smaller than the critical
flow velocity, the downstream cylinder is either to be attracted to its equilibrium position or
it starts to move around, depending on the initial spacing between the two cylinders. When
the initial spacing between the two cylinders is larger than 8 diameters, the downstream
cylinder 1s likely to transit to its equilibrium, in the same process as the two tandem
arranged cylinders. When the initial spacing is smaller than 8 diameters, as shown in Figures
5.15 and 5.16, the downstream cylinder tends to oscillate around its unstable equilibrium. If

the velocity is larger enough, as shown in Figure 5.16, such an oscillation can bring two

cylinders to collide with each other.
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Figure 5.15(b) Streamwise motion phase diagram.

Figure 5.15 A case when the movement of the downstream cylinder is not
enough to bring the two cylinders to collide with each other.
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Figure 5.16(b) Streamwise direction displacement.
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Figure 5.16(e) Cross-flow direction velocity.
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Figure 5.16(f) Streamwise direction motion phase diagram.

Figure 5.16 A case started by losing stability and the amplitude of the motion bring
two cylinders to collide with each other.
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5.4.2.4 Large Flow Veloaity (V/,>1V )

When the flow velocity exceeds the critical flow velocity, as revealed in the continuation
investigation, no physical equilibium points will exist. The downstream cylinder will
wander around, regardless of the initial disturbance between the two cylinders. Figures 5.17

to 5.20 show the case with streamwise spacing vatying from 5 diameters to 20 diameters.

As can be seen from these figures, when the flow velocity exceeds the critical velocity,
collision between the two cylinders is expected, on an irregular basis. The amplitude of the
downstream cylinder does not change significantly with the flow velocity, although the
velocity immediately before the collision does significantly change. The amplitude
cotresponds approximately to its initial design spacing. The time interval between
successive collisions is latger than the natural period of the system. Most of the time, the
cylinder moves at small velocity, with the main acceleration completing within a short
petiod immediately before the collision. In two-dimensional space, such a velocity can
reach 5, which is significantly larger than the vortex induced vibration amplitude.

Therefore, in the evaluation of causes of possible damage, wake induced oscillation should

be considered appropriately.
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Figure 5.17(b) Streamwise direction displacement.
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Figure 5.17(d) Streamwise direction velocity.
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Figure 5.17(¢) Cross-flow direction velocity.
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Figure 517 A case for Xs=5, Ys=2, UR=4.0 which has exceeded the
corresponding critical flow velocity.
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Figure 5.18(b) Streamwise Direction Velocity.
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Figure 5.18 A case for Xs=5, Ys=2, UR=5.0.
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Figure 5.19 A case for Xs=10, Ys=2.5, Up=6.5 which has exceeded its
corresponding critical flow velocity.
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velocity has exceeded the critical value.
5.5 Summaries
The dynamic simulation conducted in this chapter disclosed the characteristics of the

movement of the downstream cylinder under the action of the ime-averaged forces, and

can be summarised as follows:

1) When flow velocity is small, regardless of whether the two cylinders are in tandem or
staggered, and irrespective of the initial distances apart, the downstream cylinder tends

to approach its equilibrium swiftly;

2) When the layout of the two cylinders and the flow velocity are such that there are four
equilibrium states, the dynamic behaviour of the downstream cylinder is dependent on
the initial distance apart of the two cylinders. If the spacing between two cylinders is
smaller than 8 diameters, then the downstream cylinder can either exhibit periodic
movement or rest at its equilibrium, depending on the initial disturbance of the system.

If the initial spacing between two cylinders is larger than 8 diameters, the downstream
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3)

4)

5)

6)

cylinder may rest at a different equilibrium point, depending on its initial spacing. This
conclusion is based on the mass parameter of 0.2. However, the 8 diameters spacing

index varies with mass parameters.

When the flow velocity approaches the critical velocity, depending on the initial
spacing, if there is no stable equilibrium, then the downstream cylinder will exhibit
periodic movement irrespective of its initial disturbance. This movement amplitude
will depend on the flow velocity. When the flow velocity is large enough, the
amplitude of the movement can bring the two cylinders to collide with each other. If

one of the equilibrium points is stable, then the downstream cylinder ultimately

approaches its equilibrium.

When the flow velocity is higher than the critical flow velocity, regardless of the initial
spacing of the two cylinders, the downstream cylinder tends to move around, and
collision between the two cylinders is likely to occur. The duration between successive

collisions cotresponds to its natural period, although the movement can exhibit

stochastic behaviour from time to time;

The velocity of the cylinder before collision can reach as high as 5 in non-dimensional
form, which implies that the wake induced cylinder motion velocity can be much
higher than the vortex induced vibration can show. This is important for the
evaluation of the damage caused by the collision. Meanwhile, the wake induced
downstream cylinder motion mainly occurs in streamwise direction, instead of cross-

flow direction which the vortex induced vibration often exhibits.

Parameter aUj, shows similarity with the critical state for a stationary bifurcation.

Howevet, it is not simple to find the similarity of the downstream cylinder’s motion

after the flow velocity exceeds the critical flow velocity. In general, the smaller the
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mass parameter, the larger the motion velocity can occur. Such a relation is attributed

to the effect of the related fluid damping.

7) The maximum amplitude that the movement of the downstream cylinder can possibly

display is the layout distance between the two cylinders. This conclusion is consistent

with the experimental observations (Huse, 1996).

Although the model of collision utilised in this investigation is straight forward, according
to the investigation results presented in this chapter, it has been able to reflect the key
feature of the collision. It is worth noting that the results obtained in this chapter agree well

with the experimental observation conducted by DHI (Bryndum & Anderson, 1999).



Chapter VI

STATICS OF A PAIR OF MARINE RISERS
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6.1 General Remarks

So far, the interaction between two cylinders in two dimensions has been investigated
systematically, from the interaction forces to the stability analysis, followed by dynamic
analysis. The results show that under certain conditions for the specified pair of cylinders,
the downstream cylinder can exhibit different dynamic phenomena. However, most of the
time, in practical engineering the interaction between cylinders occurs in three-dimensional
space. In order to understand the practical iser interaction, following questions need to be
answered: Does the three-dimensional effect affect the riser interaction qualitatively? Can
the result in two-dimensional space be ditectly applied to the three-dimensional scenario,

or how can it be applied? In the following chapters, the interactions will be examined

comprehensively in three-dimensional space.

6.1.1  Issues Related to Statics In Marine Riser Design

A marine riser is essentially a conductor pipe in oil and gas development, which connects
the wellhead at the sea floor with the top vessel on the sea surface. It is used to convey oil
ot gas ot drilling fluid, depending on its functionality and as a guiding tool between wells
and top vessel. The key features of marine riser design, regarding statics, were defined by
Fischer & Ludwig(1966) who showed, with static analysis, the importance of tensioning the

riser to prevent buckling and to control deflection and stress.
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SKIDDABLE

However, quite often, a cluster of
PLATFORM RIG

PRODUCTION
FACILITIES i ) ) ]
risers, rather than a single nset, 1s

g

HULL used in oil and gas production.
For example, the particular type
TENDONS of TLP and Spar mnsers
investigated in this thesis is a
RISERSC;ROENU.S
cluster of ngid nsers. They are
linked between wellheads and
vessel independently. Shown as
an example in Figure 6.1 is a
DIRECT
TENDON/PILE ——=4{
CONNECTION

MARS schematic of the 24 well slots
tiser array on the platform Mars,
Figure 6.1 Schematic of TLP risers arrangement.

which is operated in the Gulf of

Mexico about 130 miles southeast of New Otleans in water depth of 2,940 feet. For such
an arrangement of marine risers, vortex induced vibration, ime-averaged force induced
riser deflection and potential oscillation are the main issues for the riser design. The vortex
induced vibration is a dynamic problem due to the high frequency vibration, which usually
determines the fatigue life of risers. These phenomena have been investigated extensively,
reference to vortex induced vibration can be found in (Sarpkaya 1979; Pantazopoulos

1994), and recent work on this topic can be found in (Trantafyllou et al 1994; Larsen et al
1996; Vandiver 1998) etc.

On the other hand, the time-averaged force is a static as well as dynamic concem. In the
past, investigation into riser statics only considered solitary risers. However, with multiple
nsers located around, and possible significant differences in deflections due to the

interactions between risers, caused by ocean currents, static analysis which investigates the
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interference effect as well as buckling effect and deflection control should be taken
seriously. The extreme scenario of the interference effect is that two marine risers collide
with each other in an ocean current. According to the investigation made into the two-
dimensional cylinder interaction, such a phenomenon is caused by the loss of stability of
the downstream riser under the action of a time-averaged force. It is not pronounced in
shallow water operations, because the deflection of risers caused by current is insignificant.
Howevet, it has been recognised that the deflection of risers is proportional to the square
of the depth of water (Huse 1993). With oil and gas exploration and development now
moving towards ever deeper waters, the deflection of the rser will be increased
significantly. Meanwhile, riser collision can play a detrimental role in oil and gas
production. All these concerns make the statics related clearance between risers to be
another important issue in riser design. In this chapter, the static deflection of risers caused

by ocean current, with the consideration of interaction between two risers will be

investigated.

6.1.2  Theoretical Approaches Used in the Riser Analysis (Statics)

The key objective for the riser interaction statics analysis is: for a pair of risers with
specified physical and geometrical parameters, to find out the geometrical shape (or
equilibrium state) and corresponding stress within riser if necessary. Further objectives are

to identify the effect of every important control parameter, which could affect the final

equilibrium state, such as top tension, riser weight, ocean current etc.

Mathematically, the statics is a system of two fourth-order differential equations with
boundary conditions defined. Due to the nonlineat nature of both the structure coupling
and fluid interaction, the classical solution to such a problem will be confined within very
limited cases, and a numerical technique is an inevitable means to find the solution. There

are a vadety of ways to solve such a system, such as multi-shooting method, finite
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difference method, finite element method, lumped method, and modal superposition
method etc. Mathematically, all the methods above are used to discretise the differential

equation into a set of simultaneous algebraic equations which are then solvable. The

difference lies in the choice of discretisation method, as described below.

¢ Finite Difference Method

First the physical domain is discretized into many finite intervals. Differential equations are
discretized by substituting derivatives with finite differences. Such a method is derived
from the definition of derivatives, i.e. when the finite difference used is fine enough, then
the approximate expression of the rate of change approaches the exact derivatives. The
partial differential equation is thus cast into a system of simultaneous equations with the
unknown at discretised positions. The boundary condition is incorporated into such a
simultaneous equation and a self-contained system is thus formed and is solvable. This
method is widely used in the numerical analysis of N-S equations in fluid dynamics as well

as in other engineering applications. Detailed explanation can be found in (Mitchell, 1980).

¢ Finite Element Method

Finite Element Method discretises the system in such a way that the fluid domain or
structure domain is divided into a lot of elements. Within each element, the solution is
approximated by shape functions, which ensures that the boundary conditions ate petfectly
defined. By assembling these element equations, a large system is thus formed and is
solvable. Such a method facilitates the detailed simulation of the element which hence is

powetful in dealing with complex structures as well as fluid dynamics, reference can be

made to Akin (1982).

¢ Lumped Method
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Lumped method is a simplified version of the Finite Element Method, which mainly
simplifies the physically continuous elements into concentrated mass elements. Due to the
reduced number of degrees-of-freedom, this means a large saving on the computing
memoty required to solve the equation. Hence the lumped method is advantageous on
computing efficiency. Such a method is often applied in the analysis of mooring lines, and

cables for complex integrated system analysis, for example (Huang, 1992).

¢ Modal Superposition Method

Modal superposition method is an implementation of Galerkin's method, where the co-
ordinate system is first transformed into the modal co-ordinate system. In such a system,
the boundary condition is perfectly defined due to the nature of the modes. Because of the
convergence characteristics of the system in the modal co-ordinate system, the modes can
be truncated to a finite number. Therefore, the system is converted into a set of finite

number of algebraic equations. This method will be applied in the subsequent analysis.

¢ Shooting Method

Shooting method is 2 classical method for systems where there is an Ordinary Differential
Equation with boundary conditions defined. By supposing boundaty value (for example,
the curvature of the riser) at one end, and integrating the ordinary differential equation (e.g:
by Runge-Kutta method), the corresponding control at the other end of the riser can be
obtained. If the resultant control can satisfy the boundary condition there, then the
solution is the one which is being sought. Otherwise, a refined initial guess at the first end
is made, and the above procedure is repeated until the solution at the other end can satisfy
the boundary condition. Such a solution technique is straightforward, for example, (Huse
1993). Mathematically, this method is very similar to the Finite Difference Method in the

normal discretization sense. The main difference lies in that the shooting method solves
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the equation by iteration, while Finite Difference Method solves the system simultaneously,

and also the shooting method can have unfixed discretized intervals.

6.1.3  Method used in the present work.

In this chapter, the theoretical model of statics for the interaction between two marine
risers is presented, followed by the modal superposition method to tackle the statics
problem. The solution procedure is detailed in this chapter. The simulation of practical
problem in the laboratory environment is also discussed. Finally, sample calculations are

provided, and effects of individual parameters are elaborated. The stability and related

dynamic behaviour will be discussed in the succeeding chapters.

6.2 Theoretical Formulation

Figure 6.2 is a schematic diagram of one riset located in the wake of another. The upstream
tiser can be either rigid or flexible. The origin of the co-ordinate system is chosen to be at
the top of the riser (which represents the top connector for marine msers), the x co-
otdinate is in the direction of the flow, yis in the cross-flow ditection while z is made
vertically downwards. The initial stream-wise distance between two risers is X, the cross-
flow distance between two risers is Y. Both of them have been non-dimensionalized by
upstream riser diameter, and capital symbols in this Chapter refer to non-dimensional
quantity. For simplicity, the two sisers have the same diameter in the present investigation,
although it is not a restriction of the investigation method used here. The unstrained riser
length is /;. The top end of the riser can be above the water surface. The distance from

riser top end to water surface is z,. The bottom end of the riser is either fully attached to

the floor ot hanging in the water, as it would be during installation of marine risers or

hang-off condition etc. The main focus in this thesis supposes that riser is fully attached to

the floor, although the later situation can be considered in a similar way.
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Top Tension Top Tension

Figure 6.2 Schematic figure of the statics for two
fiser interaction.

6.2.1  Formulation of Problem

If the case is restricted to small angles, using linear strain analysis, then an initially straight
rser can be modelled as a tensioned beam. The static equilibtium equation for lateral

displacement of a tensioned beam is (Krolikowski & Gay, 1980, Furnes, 2000):

2
El
s d:
d? d’y| d ( dy (6.1)
{—| EI§)——= |-— T .\s)— |=
= [ (=3 ] Z|76) ds) F,(2)
d (T dz ) _|-m.g+ p.gd, - p g4, bottom fully contact with floor
(ds\ “ds —m. g+ pogA, — p,gA, + P,A,H(z - z) bottom not attached to the floor
Where

Ay, A;: Outer and internal areas of riser cross section;
EI : Bending stiffness of the riser structure;

F, : Applied fluid loading in the flow direction;
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F,: Applied fluid loading in the cross-flow direction;

g : gravity acceleration;

m,: Structural mass per unit length;

s: The distance along the riser from the top end;

x: Streamwise displacement;

y: Cross-flow displacement;

2: Vertical distance downwards from top end (from origin of the co-ordinate system)

T, : Effective tension of the riser, T, =T+ B 4, - P 4,
F,: Flow static pressure around the riser,
F,=F +p,g(z-2)H(z-z,)
P, : Air pressure on water surface
H(z - z,): Heaviside function
P: Pressure inside the riser with its cross-section area of 4,
T': Tension within the riser structure;

P, : The density of the fluid outside of the riser

_ P (z<zy)
& {p,. (z22,)

228
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PPy P, : Density of air, water and inner fluid in the riser respectively;

The boundary condition for the downstream niser:

x=0
y=0
<_c£x_=0 attop z=0 (6.2)
2
d’y
&
. T=1,
[ x=0
y=0
1y atbottom z =1, (6.3)
@
ay_
| dz’

Here [, is the vertical distance between top and bottom end after deflection. Due to the
tensile property of the niser, /,, will not be the same as the vertical projection in z direction

of otiginal length of the tiser /, as this length is not known beforehand. The procedute to

tackle this will be discussed later in this section.

Due to the fact that the investigation is within the small angle hypothesis, i.e. the profile of

the riser is flat,

%,%<<1 and %Szd/dz
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'The normal requirement for such a simplification needs the ratio of maximum defection to

riser length is less than 1:8 (Irvine, 1981).
According to longitudinal balance in equation (6.1), we have
1. Bottom fully attached to floor:

T,=T+FA,-PA~T,-mgz

2. Bottom hanging in water with the distance of Z5 from top to end

T, —mgz z<z
7;=T+P0AO—'P,AIz Oe eg ( B)
T;Je - megz + (I)OAO)bmmm (Z = ZB)

Here
T, =T, +(P0A0)mp —(RA‘)'OP m, =m—pyAy +p, 4

Although the solving procedure for a tiser not attached to floor is similar to the problem of

riser bottom attached to the floor, for clarity reason, it will not be detailed heteafter. Let

x=X-l,,y=Yl,,z=2-1,

The bending stiffness is further supposed to be equal everywhere, The control equation

can be simplified as:

Eld‘'X (T, d’X ax _1

i dz* (Iz m”gz) 27t 8 gz =7 AU DG, (K (2)1(2)
|Eraty Lo mgz|Y em g9 L uine, (x(z)x( *
5 azt 1, T Jazr T ez 727 " 2)

As shown in (6.4), the de-coupling of the structure displacement between X and Y brought

by the simplification %/ ~4/, sill can not make displacement of X and Y be
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independent to each other due to the coupling by the fluid force coefficients on the right

hand side of the equation.

However, the problem to be considered for equation (6.4) is relatively uncomplicated. The
essential feature of the problem is that the fluid force is in two dimensions and they are
functions of positions themselves. This will lead to the deflected riser being in three

dimensions, so that the deflected riser will not necessarily be confined within a single plane.

6.2.2  Numerical Method Employed
Modal superposition method is used in the present analysis. By considering the mode of a

pinned-pinned beam, the solution of X,Y can be expressed as:

x@)=3ag,

r=|

- 6.5)
Y(Z)=2 b4,
r=|
Here ¢, = sin(raz), (r=1,2-.. ) is the r-th order mode shape,
Due to the orthogonal property of the modes, @, possesses the following characteristics:
1 1/2
[ 98,4z ={0 (6.6)
By substituting (6.5) into (6.4), The control equation in the x direction can be simplified to:
0 E T . ) s Teo © " © '
2 r)ag +3 (raf Lag,+3 meZag, +mg) ag,
r=l IH r=l IH r=| r=1
{ 67

= P¥2DC,(X(2)¥(2))

Expanding term of Z@) and ¢! with the modal co-ordinates, after mathematical

manipulation, equation (6.7) can be written as:
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i‘:% (’7[)4 ¢r + %'ﬂ(r”)2 ¢r - (r”‘)2 megicﬂ‘¢s + megr”i D""¢~" ]a'

r=l §=1 s=1

)
- .12_ pVEDC,(X(Z).Y(2))

Here
1

C, =2 Zsin(raZ)sin(snZ)dZ = 2 drs
’ ——————[(—1)f*“—1] r#s
”2(s2 _ r2)2

0 .
1
D"=2 Sin(S”z COS(rﬂ'Z)dz= 251 1=(=1 +§
| j" ) _7;{“—32&:7{_] r#s

Although the equation has infinite number of modes, the numerical calculation can
truncate the high order tesms and it should converge fairly quickly because the deflected
risers have some simple and smooth geometrical shapes. By applying the property of

orthogonal characteristics between individual modes to equation (6.6), multiplying by ¢, on

both sides of the equation and integrating about Z from 0 to 1, the equation for modal co-

ordinates can be changed into:

ru=l

[%I- (k)" + % (kx) ]ak - i [(rn')z m,gC, —m,g(rz)D,, ]ar = I: pV2DC,(X(Z).Y(2)W,dZ

(6.10)
The same approaches applies to the analysis of the deflection occurring in the y direction,

so the equation can be written as:

[f—z](kﬂ)‘ +%(kﬂ)’]bk -Slenym.gc, -m.gtm)D, )b, < [ oviDC, (X(2)¥(2),dz

r=|

(6.11)
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Equations (6.10) and (6.11) constitute a closed form for a, ,b, provided that [, is known.

The equation can be solved simultaneously or iterated one after another for the non-linear

coupling terms of C,C,.

The determination of fluid force coefficients C,,C, is directly based on the two-
dimensional result by applying strip theory. It is assumed that the fluid force coefficient at a
patticular location depends on its position relative to its counterpart upstream riser. The
validity of such a hypothesis could be argued. Basically, the fluid force possesses a random
nature and has a component of periodical force related to the vortex shedding. Such a time
variant force has a certain correlation along the riser length. This cotrelation factor is an
important reason for causing expetimental data scatter from one tesearcher to
another(Pantazopoulos 1994). However, it is only the time-averaged force which is of
interest to the present investigation. The flow velocity investigated here is well outside of
the range of lock in phenomena. Even for the vortex induced forces, the correlation along
the diser is weak. Therefore, the time-averaged force at different location is assumed to be

independent of neighbouring positions.

So far, the condition on the /, has not been addressed. This is a variable which can not be
known beforehand, according to the constraint of the Hooke's law, with which the elastic

riset should comply. The vertical length [, and unstrained length /, should obey the

following relation:
L E4
ly, PEA+T,-mgZl, —PA,+PA,

(6.12)

} \l[iak (kﬂ)cos(an)]z {i b, (kzr)cos(kn'Z)]z ez

kol k=l
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To solve the equations (6.10), (6.11) and (6.12), iterations have to be made. The procedure

is as follows:
1. Assume a value of [, ;
2. Find the solution of deflected niser according to (6.10) and (6.11);

3. Find the cotresponding unstrained length by (6.12), which normally will not be exactly

the same as the given original length.

4. According to the available assumed [/, and the corresponding unstrained length,

modify the value of /, . Then repeat the above procedure steps 2 to 4, untl the

solution satisfies the condition that the corresponding unstrained length is equal to the
original length. Then the solution of final X,Y is the deflection which was being

sought.

6.2.3  Consideration of Similarity

Similarity is an important rule when tests need to be conducted. It is also vitally impottant
for the analysis of the results. Considering the similatity requirement for hydrodynamics

and structure statics, it is seen that the deflection of the riser depends mainly on the

following parameters:

X,y D El T P

—_— = —’Re’_—_, €0 .o | .
b’ (1 T gl T, o)

Among these parametets, D/ simply represents the geometrical similarity,
R, is Reynolds number, which is the basic requirement for hydrodynamic similarity;

EI/T,J’ reflects the relative importance of bending stiffness and top tension;
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—€_is the top tension factor which is the ratio of effective tension on top to the riset’s

m,gl

weight in water;

V,l is called as flow tension factor in this thesis and is represented by H, ,
€0

H2xC,, reflects the relation between transverse loading and the top tension. The

application of parameter H_ will be further discussed in the next chapter.

It is easy to show that within these non-dimensional parameters in equation (6.13),
contradictions persist which prevent simulation. For example, the third and fourth
parametets make a pair of conflicting parameters. Also, trying to meet the requirements of
the structure dynamics will violate the requirements of the fluid dynamics similarity,
particulaly the condition of Reynolds number similarity. Therefore a compromise has to
be made and favour has to be given to more important parameters. Table 6.1 gives two

possible plan options to choose from, for similarity parameters when expetiments are

conducted.

It is seen that both plans violate Reynolds number similarity for the fluid dynamics.

Additionally, for the scale plan 1, EI/TO jp can not be simulated, and for the plan 2, 7, /m g/
is violated. Theoretically, the plan 1 is better than 2, because for very long risers, E% pisa
el

very small quantity which simply means the bending stiffness is not important when
compared to the tension effect in determining the deflection. Furthermore, such a plan can
keep the top tension propottional to the net weight of risers in water, which is a practical

situation for nisers. However, the shortcoming for such a simulation is the difficulty in the

control of the flow velocity, which is scaled down to /4 If the scale ratio is 30, for a full
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scale case with current velocity of 7.0 m/s, the test current velocity can only be 0.2 m/s,
which is too small a quantity to be controlled even in the laboratory. Another shortcoming
is the violation of the Reynolds number in plan 1, which is much worse than plan 2. The
Reynolds number for the model is only 7/900 of that for full scale if the scale rato is 30.
Such a Reynolds number in plan 1 is so small that it makes the flow dynamics significantly
different from that for full scale. For practical considetations, the scale plan 2 would be a
better selection. Although the similarity law of T, /m,gl is violated, however, it is a rather

less sensitive parameter in controlling the fiser deflection. This will be demonstrated in the

numerical results.

Table 6. 1 Experimental similarity parameter for static deflection.

PARAMETERS SCALEPLAN1 | SCALE PLAN 2
Diameter, Length etc. Geometrical Parameters A A
Flow Velocity ¥, JA 1
Tension at the Top T 2 A
Bending Stiffness EJ/ A A
Fluid outside and inside of the riser 1 1
Violated Parameters EI s Re T,/mgl,Re
e0

tHere A (= — ﬁ,,) is the model dimension scale ratio.
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6.3 Numerical Results
6.3.1  Benchmark Test of the Program

Before any prediction is made about the riser statics, the program is first checked against
the results published by the American Petroleum Institute(American Petroleum Institute,
1992). In 1992, 14 organisations participated in a numerical compatison organised by API
committee to find out the degree of agreement among their riser analysis computer

programs and to present data which could then be used to validate other such programs.

OFFSET

Top of Riser

r 50" (Riser Support Ring)

AAA A-AJ ~n S Mean Water Level
(MWL)
M

Cutrent Direction

T Height

Low Ball Joint Angle

l Lower Ball Joint (LBJ)
J‘o ' BOP Stack Figure 6.3 A schematic diagram

of 1l i

o Sca Floor the 'dﬂllm'g Riser used for
e b present investigation.

T Connected

The model used was a drilling riser with one choke line and one kill line. The drilling line is

filled with drilling mud and the choke line and kill line are filled with sea water. Figure 6.3

is a schematic diagram of the model used. The definitions of the parameters used in the
calculation are listed in table 6.2,
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The compatison of present calculation results against the results published by API is
shown in tables 6.3 and 6.4. It is seen that the results agree very well with the results
provided by the AP], including the deflection angle at top connector and Lower Ball Joint,

maximum bending moment and their locations. This gives confidence in the subsequent

calculation for the interaction between two risers
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Table 6. 2 Sample calculation data (API, 1992).

Vertical Distance
Mean Water Level to Riser Tensioner Ring, (Feer) 50.0
Sea Floot to Lower Ball Joint(Feez) 30.0
Riser Data
Diameters, Inches
Riser Pipe Outside Diameter 21.0
Riser Pipe Inside Diameter 20.0
Choke Line and Kill Line Outside Diameter 4.0
Choke Line and Kill Line Inside Diameter 3.0
Buoyant Material Outside Diameter 38.0

Modulus of Elasticity of Riser Pipe, E, (psix10% 30

Densities, (pounds/cubic foot)

Seawater 64.0
Drilling Mud 89.8
Hydraulic Force Constants
Cy» Drag Coefficient 0.7
D,, Effective Diameter for Current and Wave
Unbuoyed Riser (inches) 29.0
Buoyed Riser 38.0

Weight (pounds), of 50-foot Joint, Complete With
ALl Associated Lines, Couplings, and Buoyant

Materal, If Any
Wa, Wp,
in air in seawater

Unbuoyed, 21-in 8800 7660

Buoyed, 21-in (3000-ft water depth) 14740 2950

Current:

A. Linear, Y2 knot at mean
water level, zero at lower ball
joint

B. Linear, 2 knot at mean water
level, 0.4 knot at lower ball
joint

Riser Length (feet) 1520 3020

Top Tension (Kips) 370 500
600 650

Static Offset (feet) 45 90
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Table 6. 3 Compatison of calculation result with API published data (1500 ft Case).
Tension Tension 1 Tension 2
Current Current A | Current B | Current A | Current B
Max Bending Stress | Cal. 391 5.81 0.76 1.04
(Kips) Literature® | 3.91 6.04 0.71 1.00
Location of Max | Cal.(ft) 106.4 121.6 91.2 91.2
Bending Stress () | Literature | 122.45 125.12 118.15 121.35
Angle From | Cal.(LB)) 4.53 6.53 2.51 3.12
Vertical () Literature | 4.57 6.63 2.52 3.12
Angle From | Cal.(Top) | 0.65 0.77 1.15 0.36
Vertical () Literature | 0.64 0.77 1.14 0.36
Table 6. 4 Comparison of calculation result with API published data (3000 ft Case).
Tension Tension 1 Tension 2
Current Current A | Current B | Curtent A | Current B
Max Bending | Cal. 1.01 1.94 0.45 0.98
Stress (Kips) Literature 1.03 2.11 0.44 0.96
Location of Max | Cal.(ft) 151.00 151.00 160.06 2838.80
Bending stress(f) | Literature 150.70 158.41 140.72 2839.91
Angle From | Cal.(LBJ) 3.33 571 259 4.01
Vertical () Literature 345 6.22 2.64 4.14
Angle From | Cal.(Top) 0.76 1.72 1.09 0.82
Vertical () Literature | 0.80 1.85 1.06 0.87
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The riser data for the following systematic investigation is presented in table 6.4. They are
taken from a riser model data. Both risers are filled with fluid from top to bottom end. The
top end of the nser is located at the mean water level, and the current has a uniform

profile. The results are presented mainly in the form of geometrical shape of the tisers.

Table 6.5 Parameters chosen for sample calculation (with model and prototype parameters
for the convenience of comparison).

Parameter’ Model Prototype
Diameter of riser D, 0.01 (m) 0.30 (m)
Thickness of wall ¢ 0.001 (m) 0.03(m)
Unstrained length /, 44.4 (m) 1332.0 (m)
Material Stainless Steel
Mass(Include Added Mass) 317.87 (Kg/m)
Young's module E 2.1x10"' (N /m?) 21x10"(N/m?)
Bending stiffness E/ 60.86 (N*m?) 4.93x10'(N*m?)
Top Tension T, 2.709x10°(N)
4.12 (KN) 3.708x10°(N)
8.24 (KN) 7.416x10°(N)
Weight of riser W in water 1.88 (N/m) 1.695 (KN/m)
Flow velocity ¥, 0.5~ 1.5 (m/s) 0.5~1.5 (m/s)

6.3.2  Comparison Between a Free-Stand Riser and One Stand on the Wake Centreline of a Rigid
Riser

Figure 6.4 is a geometrical shape comparison between a free-stand riser and one stand in

the wake of a rigid riser. The riser in the wake is located on the wake central line with initial

streamwise separation of 70 diameters.

2 AP1 data presented here is the mean result of the data provided by the different partics.

3 The parameters selected here are chosen from a cluster of riser models (HTusc 1996).
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Figure 6.4 Comparison between free-stand riser and one sitting in wake,with 4=1332 (m), T)=7.416x106

(N); (@) Vo=0.5m/s, (b) Vo=1.0 m/s.
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The figute shows that the streamwise deflection in the wake differs significantly from the
free-stand riset. The difference amounts to 45 and 38 percent for the calculated scenario
for flow velocities of 0.5 and 1.0 (/) tespectively. The deflection of the free stand riser
here can be regarded as the scenatrio of an upstream riser as well. On the other hand,
although the streamwise deflection reaches mote than 10 diameters, the variation in vertical
length is very small and can be neglected should the displacement of the top end be
considered. The elongation of the riser only amounts to 0.03 petcent of the original length
for this particular case. This implies that the top end can be simplified as fixed when the
dynamics of the riser are to be considered, especially when the displacements related to
dynamic terms are much smaller than those related to the static terms. Also shown in
figure 6.4 is the effect of the flow velocity. It is seen that the difference between a free-
stand riser and riser in the wake is more significant for the low flow velocity. Such an effect
is a reflection of the nonlinear nature of the problem. When flow velocity is lower, the
wake shield effect is more pronounced because the spacing is relatively small, compared to

the large flow velocity situation in present calculated scenarios.

6.3.3  Effect of Un-Strained Length of Riser On the Deflection

Table 6.6 shows the effect of different un-strained riser lengths on the deflection of the
riser. The comparison of the effect of the un-strained riser length can be difficult due to
the similarity issues. Here, in all these comparison calculations, the pretension is kept as
same ratio of the total weight of tisers in water. All other parameters are chosen according
to full scale parameters shown in table 6.2, with flow velocity of 1.0 m/s and top tension

factor 3.28. In order to facilitate the calculation, the comparison is made for the free-stand

riser only.

It is seen that, when the length is large enough, the maximum deflection is increased

lineatly with the un-strained length. When the length is significantly small, the effect of
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bending stiffness on the deflection is significant, and the above linear relation is not

complied with. For the case presented, when the riser length reaches over 100 meters, ie.
EI/T, I’ is smaller than 10?, the role of tension begins to take over, and the deflection
becomes solely dictated by tension. This is the case for deepwater risers. In fact, under

such conditions, the very long dser can be simplified as a string case. It should be noted

here that in all these comparisons, the tension of the riser is kept linearly varied with riser
length in otder to ensure the constant top tension factor. If the tension is kept as constant,

which is possible by utilising buoyancy attaching to marine risers, then the deflection varies

proportionally to the square of the riset length (Huse 1996).

Table 6. 6 Maximum deflection for different unstrained

length.
unstrained length (m) deflection (x/D)

25 0.05
50 0.45

100 1.46

500 8.01

1000 16.00

1500 24.04

The above result implies that when the length is relatively small, for a steel riser, the
deflection in the streamwise direction is negligible due to the rigidity of the riser. With the
increase in length, the deflection becomes more and more noticeable and important. This

is the driving force causing interaction between risers that should be considered in today’s

deepwater offshore oil and gas developments.
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6.3.4  Comparison When the Upstream Riser is Rigid and Flexable.

The difference between the free-stand riser and the riser sitting in wake is significant. In
fluidelastic expetiments, when a two risers interaction is studied, sometimes the upstream
riser is simplified by using a rigid riser. Questions are raised here about the effect of an
ups&eam riser when it is flexible. By adopting the foregoing parametets for the both risers,
a comparison is made for the downstream riser located on the wake centreline. The
upstream riser is either rigid or flexible. The current velocity is 0.5 m/s and 0.6 m/s
respectively. As shown in Figure 6.5, the difference is reduced with the dectease of flow
velocity. Figure 6.5 also shows that when the upstream niser is flexible, the deflection of the
downstream riser is smaller than that when the upstream riser is rigid. This contradicts the
intuitive feeling that when the upstream riser is pushed downstream by the flow, the

downstream riser might be pushed further by the flow to keep up the spacing between two

risers. The reason is that when the upstream riser
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Figure 6.5 Effect of rigid and flexible upstream tiset, /h=1332m, Ty=7.436x10¢ (N).



W. WU Statics of a pair of marine risers 246

moves downstream, the drag forces acting on the downstream riser are reduced. Therefore
the deflections become smaller, and this is the factor which causes the two nsers
potentially to clash with each othet. Such an effect becomes more significant with the

increase of flow velocity, which moves the upstream riser towards downstream and

increases the interaction.

In order to make a comparison with the two-dimensional theory, the state of the flow is
checked to estimate the reduced flow velocity. Neglecting the bending stiffness, the first
mode frequency of 7332 meter riser with top tension factor of 1.5 is about 0.023Hx.
Therefore, even for the flow velocity of 0.5(m/s), the reduced velocity reaches 72, which is

a significantly high value and more than enough to bring two tisers into interaction and to

lose stability under certain arrangements.
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6.3.5  Three-Dimensional Geometrical Shape of the Riser in Wake
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Figure 6.6 Three dimensional shape of a pair of risers. The upstream riser is either rigid or flexible.

Figure 6.6 shows the three-dimensional geometrical shape of a riser located in the wake.

The comparison is also made with an upstream riser that is either rigid or flexible. The

physical parameters adopted here are as follows:

D=0.30 (meter)
L=1332 (meter)
TTF=3.28

Va=0.5 (m/s)
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The downstream tiser is chosen at the transverse location of 7.5 diameters when at rest.
The figure demonstrates that when the upstream riser is flexible, the transverse deflection
of the downstream riser is much larger than that for the rigid scenario. This is because if
the upstream riser is flexible, the downstream riser at equilibrium position has a small
spacing with the upstream riser, which makes the lift force much larger than that for the
rigid riser and leads to a large deflection in the transverse direction. Probably the most
interesting feature of this figure is that no matter whether the upstream riser is rigid or
flexible, the deflection angle is neatly a constant along the riser. The deflection angle is
defined as the angle between the line which connects the displaced position and original
position and the x axis of the co-ordinate system. The results show that the deflected riser
is neatly within a plane. This supports the two-dimensional simplified model (using two
orthogonal springs to simulate the in-plane and out-of-plane stiffness). However, evidently,
the angle varies depending upon whether the upstream riser is rigid and flexible. Care must
be taken to address the problem related to the inclined spring arrangement angle when the

problem is sensitive to the angle arrangement.

6.3.6  Comparison of Risers Sitting at Different Transverse Locations in the Wake

Comparison is made to illustrate the effects of staggered arrangement, by varying the
transverse location. In the presented example, the streamwise spacing is chosen at 10
diameters. Three different cross-flow distances are selected, ie. 1, 1.2 and 2 times of
diameters respectively. Figures 6.7 and 6.8 show the transverse displacement at different
cross-flow locations, and Figures 6.9 and Figure 6.10 give the comparison for the

streamwise direction displacement. Figures 6.11 and 6.12 show the comparison of the

deflection angle at different locations.

The compatison of the deflection angle (Figure 6.11 for rigid upstream riser and Figure

6.12 for flexible upstream riser) shows that, although for a given initial separation and flow
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velocity the deflection is strongly dependent on these conditions, the deflected riser is
generally within a plane and the fluid force always acts in three-dimensions. Also it is clear
that the deflection corresponds well to the lift force magnitude. The deflecton is largest
when the riser is located at the transverse location of about 2 diameters. It should be noted
that the deflection angle can be significantly different for different arrangements, which

again implies that the spring coupling angle varies significantly should the two-dimensional
model be applied.

FXY[ 20 Apr 2000 | Front Fisdbis X=10,V=0.5m/s

0% g4/ 0
025 - - 0.25
N 05} os
0.78 -:- -‘i 075

1 0 e :£1

Figure 6.7 Transverse deflection comparison for different transverse initial locations,
upstream riser is flexible, the design streamwise spacing is 10 diameters.
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Figure 6.8 Transverse deflection comparison for different transverse initial locations,
upstream riser is rigid, the design streamwise spacing is 10 diametets.
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Figure 6.10 Streamwise deflection comparison for different transverse initial locations,

upstream riser is rigid, the design streamwise spacing is 10 diameters.
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Figure 6.11 Comparison of deflection angle for different transverse locations when

upstream riser is flexible, the design streamwise spacing is 10 diameters.

251



W. WU Statics of a pair of marine nisers 252

(XY) | 20 Apr 2000 [Front Rigid, X=10.V=0.5 mvs

-8 -7 -6 -5 -4 -3 -2
0 T T T T l T 1 L T ' T T T T r"ﬁ 1 T T l 1 T T T ' T T T T 0
L —— Y=10
0.25 |- —a—— y=15 =10.25
I -—p— Y=20
N 05 - 05
075 -1 0.75
1 [ M M B v 1 | - 1
-8 -7 -8 -15_ -4 -3 2

Figure 6.12 Comparison of deflection angle for different transverse locations downstream
of a rigid riser, design streamwise spacing is 10 diameters.

6.3.7  Effect of Top Tension (EI/T,o1* ,m,gl/T.., H,,)

Top tension is a key factor in the design of marine risers. It determines the deflection of
the riser and the bottom joint angle. Too high top tension will sacrifice effective payload
on the floating production vessel. Sometimes, therefore, the buoyancy module is used to
reduce the tension. On the other hand, too low tension can lead to buckling of the riser.
According to the non-dimensional parameter listed in equation (6.13), the top tension is

reflected in three parameters, among which top tension factor is an important parameter in
riser design practice. As has been indicated here before, EI/T,* shows the relation
between bending stiffness and tension, when EI/T, /> <<1, the bending stiffness can be
negligible and top tension will takes dominant role in determining the deflection of the
tiser. On the other hand, parameter H reflects the amplitude of the flow forces, which

determines the amplitude of the deflection. In order to examine the role of the TTF (Top
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Tension Factor), a sample calculation for the constant parameter of EI [T, I’ (<<1)and

H, is made. Figure 6.13 shows that when tension is much larger than weight, the

deflection distribution along the riser is neatly symmetrical, corresponding to a taut string.
When the top tension factor is lower, the location at which the maximum deflection occurs
moves towards to the lower part of the riser, due to the effect of weight, and the lower ball

joint angle is significantly increased. The TTF determines the geometrical shape of the

deflected niser.

Figure 6.14 shows the riser pair with constant weight. The only varying parameter is the
top tension, i.e. all the three non-dimensional patameters related to top tension are varying,
It is seen that the effect of the top tension is very significant, and the small tension not only
gives a larger deflection, its maximum deflection location has also moved downwards due
to its lowered TTF. Therefore, top tension plays a most significant role in the deflection of

tisers. High top tension can reduce the deflection and the deflection angle at lower ball

joint angle.
XY) | 20 Apr 2000 V=10 mis

—0
o025
o5
-4
o7
50°

Eigute 6.13 Effect of top tension factor on deflection of the riser downstream of a nigid
riser.
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Nearly all the sample investigations presented here so far are for a streamwise spacing of

10 diameters. Obviously, the interaction varies with the initial spacing. The closer the

Statics of a pair of marine risers

XY) | 26 May 2000 | COMPARISON BETWEEN TOP TENSION, X, =30, ¥, =0, V=0.5(M/S)

0 L L T T 10 L] T Al T 20 T T T T 500

:‘ig ' —-.—! Upstream, Top Tension 1 ]

0t Fe \\\L — Top Tenalon 2 4 0.1
I T W § —9—  TopTeson3 ]

02F @ \A\ '\\ @ Ocmneveum, Top Tension 1 Jo2
q . ‘A "‘_ R Top Temsion 2 1

03fF @ N\ Sae—  ToTewns do3
F ® LY '\\ ]

04F @ \ w 404
. '3 » w, ]

N OSE @ A p) Jos
1 ® A Y ]

Y] S i b Jos
: ¢ 4 ) .

(31 S i # do7
: ¢ ,/ Ve 3
o8f ¢ A - Jos
. | & e ]
0ofFs 7 - q o9
g a7 l" . ]

1 T I 50'

Figure 6.14 Effect of top tension on the deflection of risers, Xs=30, Ys=0, Vp=0.5 (m/s).

The three top tension factor refers to data in Table 6.5.
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Figure 6.15 Effect of initial spacing between upstream and downstream riser.
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spacing, the stronger the interaction. Figure 6.15 shows the scenario at flow velocity of 0.6
m/s. With both risers sitting on the wake centreline downstream of a flexible riser. One is
at spacing of 70 diameters and the other is at 20 diameters. It is cleatly to be seen that the
deflection of the far downstream tiser is very much similar to the upstream riser, which
means a weaker interaction than the smaller spaced riser. This spacing difference will lead

to mainly quantitative differences for the interaction. The detailed quantitative effect will

be identified in the following chapter.

6.3.9  Effect of Transverse Force

Transverse force is a factor easily overlooked during the design of marine risers and study
of riser interactions. This is partly because the relative small amplitude of the transverse
displacement and also the difficulty in the identification of transverse force magnitude.
However it will give wotries to engineers, especially when interaction between risers is an
important concern. In the power transmission industry, it is 2 major factor, togethet with
the drag forces that produce the phenomena of wake induced flutter. The analysis in the
two-dimensional case also shows that stationary bifurcation is usually a combination of the
contributions of both lift and drag force. A comparison is made here to clarify the role of
the lift forces. Figures 6.16 and 6.17 show the difference between taking lift into

consideration under flow velocity of 0.57/s5. The comparison is made at X,=10, Y,=7 and

2 respectively.
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Clearly, the deflection in the y direction is different, as there is no y direction displacement
if no lift force is considered. On the other hand, if the lift force is considered, then the y
direction displacement is of the order of 7 diameter. For a flow velocity of around 0.5 7/,
there is a noticeable difference in the deflection in x ditection. For the velocity considered
here, the difference is again of the order of 7 diameter, and the difference will be enlarged
with the increase of flow velocity. The case which did not take the lift force into
consideration, has a larger x direction displacement. This is because the effect of lift force
pulls the riser towards wake centreline and the corresponding drag force is smaller.
Inherently, this is a nonlinear behaviour related to the nature of the fluid force. As with the
importance of the transverse location in the determination of the critical state, so also the

consideration of the transverse force plays an important role in the investigation of riser

interaction.

6.3.10  Discussion of Test Similarity

The discussion of the laboratory simulation of the statics of very latge scale models has
shown that plan 2 (as shown in table 6.2) is more feasible than the theoretically better plan
1. Inevitably, the violation of top tension factor will bring a deviation effect on the
simulated statics of long riser interaction. Numerical comparison is carried out here to
show the quantitative difference brought by such an un-simulated parameter. The
hydrodynamic situation is also simulated. Figures 6.18 and 6.19 show the difference
between the model result and full scale result for a riser sitting in the wake of a rigid riser

and a flexible riser at velocity of 1/,=1.0 (/) respectively.

From the figure it is seen that the difference between model and full scale behind the rigid
riset is about 70 percent. However, when the upstream riser is flexible, the difference for

the downstream riser is much smaller. It should be noted that when the interactions
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between two tisers are the main interest of the experiment, the relative spacing between
two risers can be a primary interest. As shown in Figure 6.19, for the presented case, the
difference is less than 10 percent. Such a deviation is acceptable for the experimental

requirement. The model scale of present comparison is made based on 7:30 as listed on

table 6.2, which is a significant large ratio.

Before closing the parametric study, it should be noted that throughout the present
investigation, the small sag length ratio hypothesis has been constantly checked. It has been
shown that the ratio of maximum deflection to the length of riser is well within the range

of 1/8, in fact it is of the order of 10”. Therefore the simplification is fully justified within

the present investigation.
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Figure 6.18 Comparison between model and full scale for both in rigid niser wake, Vy=1.0

(m/s), scale ratio 1=1:30, model: 4=44.4 (m), To=8.24 (KN), full scale: 4=1332 (m),
To=7.416X106 (N).
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Figure 6.19 Comparison between model and full Scale for both in flexible riser wake

(Vo=0.6 m/s). model: h=44.4 (m), To=8.24 (KN), full scale: ,=1332 (m), T=7.416x10¢
N).

6.4 Summaries
Numerical computation for two matine risers under time-averaged force action has been
carried out by the modal superposition method. The program produced here was validated

against the published API data. Based upon parametric study about two marine risers,

conclusions are drawn as follows:

1. Effect of wake is important in determining the deflection of the downstream risers,

particularly when the risers ate getting longet as oil and gas development is moving

into deeper waters. The amplitude of riser deflection is comparable with the normal

design clearance between risers.

2. To appropriately account for the effect of an upstream riser is very important when the
downstream riser is under static analysis. Where the upstream riser is rigid, the

deflection of downstream riser differs significantly from when there is a flexible
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upstream riser. Care must be taken in conducting tser interaction experiments if

simplifying the upstream riser as rigid.

3. Even when the streamwise displacement reaches mote than 10 diameters for a tiser of

2000 diameters long, the vanation in the vertical distance between top and bottom is

small and negligible.

4. Even though the fluid forces are three-dimensional, the deflected tiser is neatly within

a plane. The angle of the deflection is strongly dependent on the location of the riser in

the wake.

5. The effect of the top tension factor is a very important factor in determining the

amplitude and shape of the deflection. Bending stiffness is negligible in identifying the

amplitude of deflection for deepwater risers.

6. Parameter H, reflects the relation between hydrodynamic transverse loading and the

axial tension, it is an important similarity parameter in determine the riser displacement.

7. The model experiment to simulate the interaction of two vety long risers is difficult.
The similarity plan to use full scale flow velocity while neglecting the top tension factor

(Plan 2 as listed in table 6.1) could be a better option.
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7.1 Introduction
7.1.1  General Remarks

The interaction between two cylinders in two-dimensional spaces shows that under certain
flow conditions for specified two cylinders arrangements, there can be mote than one
equilibrium point for the downstream cylinder. Following on from the previous chapter,

the following questions need to be answered for the investigation of interaction between

twO matine tisets:

How many equilibrium states are there for a specified arrangement of two disers and

flow conditions?
e Are all the equilibrium states stable?
When and how can two sisets collide with each othet if it is possible?

What is the effect of top tension factor, initial spacing, flow velocity etc. on the

equilibrium state?
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To answer these questions, continuation and stability analysis is required. As shown in
Chapter IV, the continuation can identify the multiple equilibtium states. However,
because the analysis has moved from two-dimensional space to three-dimensional space,
ordinary differential equations have been replaced by partial differential equations to
describe the dynamics of the system. Necessary numerical procedures need to be taken to

change the partial differential equations into a multiple finite degree of freedom system, so

that the continuation can be implemented.

No previous investigations into the interaction between two marine risers have
systematically adopted the approach of continuation, although possible collisions between
marine tisers have been recognised (Huse 1993). It is the view of this thesis that, to explain
the mechanism of possible collision between two risers and to accurately identify critical
states, such a specialised analysis is needed. This chapter deals with the identification of

multiple equilibrium states and the critical state before collision.

7.1.2  Method Used in This Work

Continuing with the modal superposition method, the dynamic system for a tiser located in
the wake of another is investigated by the continuation method together with stability
analysis. The continuation is based on the control parameter of pseudo arc length, and
stability is analysed using the discretised system in a modal co-ordinate system through
eigenvalue evaluation at individual equilibrium states. Because of the implication of the

engineering applications, stability analysis was focused on the first and second mode

eigenvalues.

7.2 Theoretical Formulation
7.2.1  Problem specification

Compared to Chapter VI, the objective here is to seek all the equilibrium states of the

specified system, and to analyse the stability of the cotresponding dynamic system.
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Thetefore, the system for the equilibrium states is the same as the one used in Chapter VI.

Additionally, a lineatised dynamic system around the above equilibrium states is

supplemented for the stability analysis.

Based on the assumption of small lateral displacement both in streamwise direction and

cross-flow direction compared to the riser length, the linearised dynamic system for a

three-dimensional riser sitting in the wake of another at equilibrium X = X,(Z),

Y =Y,(Z) is written as (Krolikowski & Gay, 1980, Furnes, 2000):
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Here,

u, v:

Inline and cross-flow displacement deviated from the equilibrium position

respectively, which has been non-dimensionalised by the riser length

m=m, +m,: Mass per unit length, including m_, the mass of structure and the fluid inside

the riser and m, , the fluid added mass

¢: Structural damping
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t : Time
The definitions of other parameters are the same as in previous Chapter.

At the equilibrium state, X = Xo(Z), Y = ¥;(Z), the following conditions hold,

ElId*Xx d ax
‘1—2"'22,_4‘ —'JZ'{(Tw —megZIH)_c—iE:‘ =F,-1ly

H 2)
EId'Y d g

ay
'E"&'ZT—EZ\:(Teo —mengH)-JZ_] = Fyo Iy

Here, Fq, F,o: Fluid loading in x and y directions when the riser is located at its

equilibrium of (X,, Y,).

The boundary conditions of the system are defined as both ends of the riser being

supported in a pinned-pinned way, i.e.

X=Y=u=v=0

X &Y _ du _ov _ (7.3)
0Z* 8z o8z7* o8Z*

(atZ=0and 2=1)
7.2.2  Solution Procedures

The modal superposition method is used in this chapter to catry out the continuation and

stability analysis, by introducing the modal shape function,

X@=Yas, UC,=S1d  UC,=3 .4

r=1 r=1 r=1

Y2)=Ybd,  UCh=3fob, UCy=3fud,

] : = 7.4)
= Zcr¢r UCyy = ZfDY,r¢r U'c,, = ZfLY.,¢r

r=l ru]

L?»:id,gt, $, = sin(rnz)

rm=1

r=)

r=l
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Substituting (7.4) into (7.1), multiplying ¢_on both sides of the equation, and integrating

(7.1) both sides for Z from 0 to 1, after some mathematical manipulation, the dynamic

system can be written as:

pD (&
+_(ch fl)“ ks +dr-fl))’,kwr,lx,.w

h
>
N’

m-(g
+;—§(Z’—(sn)zcﬂc,—f(sn)Dﬁ ,) (ml B

H

2)2 [El(sn)z o7 ]c

D N N
2m (rzﬂkzlcr-flx k r.k.s +drfl,)’,kwr,k.:)
. (7.5)
m <8 (s7) | EI(sn)’
+—=Y'| £ (sn)C,
- ;(IH (sm)C,d, - L (sﬂ)D d) o 7 +T;o]dx
sk + sk
{ mlz2 e (p € +4.d
Here
1 k
2 —
Cy =2 [Zsin(knZ)sin(s22 )iz = |2

e hre (R kes
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0 k=s
D,=2 Isin(sn z)cos(kmz)dz =4 25 {1 —(-1 }
. = =5 k#s
nl s -k
0 (k +r +s) is even number
Weks = _l( 1 + L1 1 ) (k +r+s) is odd number
a\k+r+s k-r-s k+r—-s k-r+s
”4 N N N N N N N N
gy =—ke,Yma,\ Yra+ Yra+ Yra- dra- dra- Yra-~ Yra
4 m=l :;l—m+k-.t :;{lﬂ-ﬁ«ht :;:n—h-s :;{-pnhs ::‘—m-kn :;;n—k—s :;{nﬂ-s

-—mtk-g ram+k+s ram-k+s re—mik+s re-m-k+s ram—k-s ram+k-s
rat r2l r21 r21 r2!

N N
hT’wZ( Srbe Srhs Yobe Tobo B S S,

rzl r2l

=l ru—mik-3 rem+k+s ram-k+s re-m+k+s re-m-k+s ram—k-

3 S ram+k-s
r21 r2l ra\ rzl rz\ r21 rzl

4 N N N N N N N N
p,,,=chkzmzbm Yora,+ Yra+ Yra- S ra, - >ra, - Yra,— Yra,

ra-m+k-s ram+k+s ream—k+s re—mik+s re-m-k+s ram~k-s ram+k—s
r2i r2l r2i r2l r2t r2i r2t

N N N N N N N
=—kc Zm [ Zrb,+ Zrb,+ Zrb,— Zrbr— Zrb’-— Z’br‘ Z’br

Equation (7.5) is the dynamic system for the downstream riser in the modal co-ordinate
system. Although the modal co-ordinates are in infinite numbers, based on the quick
convergence characteristics of the system, normally only the lowet otder mode co-
ordinates are important and need to be analysed. So is the eigenvalue of the dynamic
system. In practical calculation, the summation over the modes can be truncated at N-th
order, which makes the system into 4N-dimensional first-order ordinary differential
equations. Expetience in previous chapter show that N takes 6 is enough for statics.

However, N needs to take 15 to 20 when stability analysis is conducted.
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7.2.3  Continuation

The existence of multiple equilibrium states is the basic characteristic of nonlinear dynamic
systems. According to the results found in Chapter IV, in two-dimensional space there can
be more than one equilibrium state for a given condition of initial arrangement and flow
velocity. In order to seek the multiple equilibrium states, the continuation technique has
been applied. The given system is a2 4N non-linear equations where N is the total mode
number in the calculation. The parametric strategy will heavily rely on the method of arc
length, because turning points are likely to occur. A weighted pseudo arc length strategy is

used in this numerical analysis. The pseudo arc length is represented by the displacement of

the mid-point of the riser and the flow velocity, expressed as follows:

ds = || flax* + dy* ]+ (1- p)dV? (7-6)
Here f is the weight coefficient, which takes the value from 0 to 1.

In the expression in modal co-ordinate system, the arc length is expressed as:

ke J ;{(z( o)) +( 300,500, ﬂm v o

Such an expression is physically intuitive, which gives the result for the position of the

downstream riser at the middle point.

The selection of parameters S is the key to the success of the continuation process. The
value of f reflects the relative importance of the flow velocity parameter ot the
displacement of the middle point of the riser. The experience of continuation in two-
dimensional space shows that when the equilibrium point is near its maximum streamwise

displacement, it is very sensitive to the streamwise deflection. At such states, more weight
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should be given to the flow velocity, and § should take a small value. When the
equilibrium is near its critical state, on the other hand, f should adopt a large value to
avoid the sensitive relation to flow velocity that can cause the failure of the continuation.

The numerical analysis in a three-dimensional space shows that extra care should be taken

to realise a successful continuation.

In this investigation, again, the continuation is implemented by the predictor and
correction two steps method. The difference from the two-dimensional investigation is
that the present continuation is conducted in a higher dimensional space. A detailed
description may found in Seydel (1994). The Akima interpolation has been applied in the
predictor step, which provides a 3" order spline curve along the control parameter of the
arc length. The carrying out of such a method is straightforward, and the estimation
provided by such a predictor is good enough for the corrector step to converge with the
equilibium point. The modified Powell hybrid algorithm and a finite-difference

approximation to the Jacobian are used to solve the nonlinear system (More and others

1980).

7.2.4  Stability Analysis
For the differential equation(7.5), there are two ways to determine the stability of the

equilibrium state.

One is the method of stability testing, literally to simulate the dynamic behaviour of the

system, starting from a predefined state, which is near the equilibrium state, and to observe

the behaviour over a long period of time. If the state is close enough to, or reaches, the

equilibrium state, then the state is called stable. Such a method is always time consuming.

Another method is to cast the system into a discretised system, i.e. transform a continuous

system into a multiple degrees-of-freedom system, such as from (7.1) to (7.5) denived
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above. Such a system is an ordinary differential equation system. This makes it possible to
use the concept of an eigenvalue system to investigate the stability of the system. This is

the method applied in this investigation. The cotresponding Jacobian matrix for the

dynamic system (7.5) is shown in equation (7.9).

7.2.5  Continuation Procedure and ldentification of Critical State

The continuation can be started from the statics analysis under a specified low flow
velocity. Experience shows that the corresponding equilibrium state is often stable.
Increasing the flow velocity along the arc by a prescribed arc length, the next equilibrium
state is first estimated by the interpolation technique. For the very first step of the
continuation, the first equilibrium is used directly as the estimated equilibrium in the
predictor. The cotrector is then used to seek the exact equilibrium. Step by step, the full
chain of the equilibrium can be realised. At certain steps, adjustment of arc length weight
factor is utilised if necessary. When the critical state (turning point) is met during the

continuation, it is identified by solving an additional equation. The supplementaty equation

for the critical state is given by:

7 (7.8)

Here X directly takes the streamwise co-ordinate difference between the downstream riser

and upstream tiser, V) is the free stream velocity.
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7.3 Numerical Results

The marine riser data taken for the investigation carried out in this chapter is mainly
adopted from table 6.2, The 12” riser pair have length of 1332 meters and a top tension of
7.416x10° N (with top tension factor 3.28) unless otherwise explicitly stated. The analysis is

carried out for the downstream mser located both on wake centreline and off-wake

centreline.

7.3.1 Wake Centreline

Figures 7.1 to 7.3 show the continuation and stability analysis results for the two marine
risers separated with X =8, 10 and 15 diameters respectively. Among these, Figures 7.1(a),
7.2(a) and 7.3(a) show the positions of middle point of the two risers, i.e. the displacement
at Z=0.5. Figures 7.1(b, c), 7.2(b, c) and 7.3(b, c) are the results of the eigenvalues showing
the stability at the corresponding equilibrium states, and the rest show the geometrical
shape of the two risers under corresponding flow velocity. It is seen that both upstream
riser and downstream riser move towards downstream with the increase of the flow speed,
because of their increased drag force in the direction of flow. However, the varation of
movement of the upstream riser, which is almost proportional to the square of the flow
speed, is larger than the downstream one. Such a difference in the variation of deflection
with flow velocity brings the two risers closer. When the flow speed reaches a certain level,
depending on the top tension and initial spacing of the two risets, two equilibrium states
start to exist. One is located downstream and the other is very close to the upstream riser.
The latter is usually unstable. When flow velocity is increased further, the downstream riser
first reaches 2 maximum downstream position D, after which the downstream riser begins
to move towards upstream if the flow speed is further increased. Eventually, the two

equilibrium states merge at an increased flow velocity. Such a position, M, is unique at
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which only one equilibrium exists, and is defined as the critical state for the riser pair

interaction. There will be no equilibrium if the flow velocity is further increased.

Examining the variation of eigenvalues with the flow speed, Figure 7.1(b) gives the first
mode eigenvalues while Figure 7.1(c) shows the second mode eigenvalues. It is seen that
when the flow velocity is zero, the pair of the eigenvalues has no real parts when the
damping of the system is neglected. When velocity is increased until it reaches the state H,
the first mode starts to turn into an unstable state, via a Hopf bifurcation. Such a
characteristic depends on the initial spacing and the riser’s top tension. Although the details
of the variation of eigenvalues differ from situation to situation, the qualitative trends for
every case discussed here are same. The existence of a Hopf bifurcation point H only
occurs when spacing between two nisers is relatively small, and it disappears when spacing
becomes large. On the other hand, under this situation, for 10 diameters spacing, even here
there is a2 Hopf bifurcation. The state is very close to the critical state, which implies that
the Hopf bifurcation is not important practically. The vanation of second mode
eigenvalues shows that, often, the cigenvalue pair transverse the imaginary axis through the
Hopf bifurcation at point H,, Nevertheless, H, always occurs at a higher flow velocity than
the corresponding flow velocity for the point at which the first mode loses its stability.
Such 2 result shows that the first mode of the nser is the most vulnerable to the wake
induced instability. This is consistent with the experimental observation that the wake-
induced oscillation is a low frequency motion. Also, the results shown here are consistent
with the two-dimensional results. Figures 7.2(d) and 7.3(d) are the deflected geometrical
shape of risers at flow velocity close to the critical speed. It can be seen that the two
coexisting equilibrium states can both bend towards downstream. Figures 7.1(d), 7.2(¢) and
7.3(e) show the geometrical shape of the two risers when flow velocity is just above the

state Where the additional equilibrium states start to appear. Often the two equilibrium
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states have two different deflection directions, one towards downstream which is stable.

The other one has its middle part bent towards the upstream riser because of the negative

drag force, and the latter one 1s unstable.

0.2 03 0.4 05 0.8
172 ——————————————— — 12
d10
-8
X 6p P
«F 44
[ Upstream Cylinder ]
2k -2
Xy=8,Y,=0, T ;=7 416X10°(N) 1
0 i i A i 1 L " " . | i L . ; 1 . i n — 0
02 0.3 04 0.5 0.6

Figure 7.1(a) Displacement of the middle point of the riser.
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Figure 7.1 Continuation for the riser pair with design spacing of Xs=8,
Ys=0, To=7.416X10¢ (N)
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Figure 7.2 Continuation for the siser pair with design spacing of X5=10, Ys=0,
To=7.416x106 (N)
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7.3.1.1  Explanation of Double Equilibrium States

The continuation analysis for two tandem arranged risers shows that there is a critical state.
When flow velocity is larger than the critical state, there will be no equilibrium, which
implies that two disers are likely to collide with each other when flow velocity is high

enough. The understanding of the critical point M can be made via the two-dimensional

case by the following sketches 7.4.

Figure 7.4(a) shows that, when the flow velocity is low, there is only one equilibrium state,
which is stable. The linear relation between displacement and mechanical force represents
the recovery force of the riser and the slope of the line represents the stiffness of the
spring in two dimensions. Such a slope will not change, as long as the non-linearity of
spring stiffness is not introduced into the present analysis. Figure 7.4(b) shows that with
the increase of flow velocity, two equilibrium states begin to emetge, with one stable and
the other unstable. When the flow velocity is increased further, a critical state with only one
equilibrium state emerges which highlights the M point in the three-dimensional case. At
this point, not only the mechanical spring force balances the fluid force, but the stiffness of
the spring is equal to the equivalent fluid force spring stiffness. When the flow velocity is
larger than this critical flow velocity, there may not be any physical equilibrium states,
which simply means that the downstream niser can not find balanced positions. It is
envisaged that after this flow velocity, the collision between the downstream riser and
upstream riser will be inevitable. From these figures and the interpretation from the two-
dimensional case, when flow velocity exceeds the one corresponding to the critical position
M, collision between the two risers is likely to occur. Further referring to figure 7.4, the
slope of the linear spring recovery force reflects the relationship of the tension within riser
and the riser displacement in three-dimensional case. A change in the tension will alter the
slope and hence the critical point of the intersection between the linear line and the drag

force cutve. Also because the magnitude of the fluid force changes with the flow velocity,
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the initial spacing difference will eventually change the critical points as well. Thus the
critical state is closely related to the tension of the riser as well as the initial spacing. The

quantitative relationship will be explored in a later section.
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7.3.1.2  Discussion of API Recommendation and Huse’s Work

The most recognised criteria to date regarding the onset of two tisets to collide were
proposed by Huse (1993) as recommended by API (1998). Compared to the method
utilized in present study, Huse only account for the streamwise drag force while take no
account of the cross flow forces. In the meantime, Huse only studied the situation when
two sers are arranged in tandem. According to Huse’s explanation of riser collision
ctiteria, collision statts when the spacing between two risers is equal to the riser diameter.
In other words, the two tisers alteady contact with each other at critical state. Figure 7.5 is
a redrawing of the sketch of the collision between two nisers (Huse, 1993). According to
the present analysis, the recommendation is only a special case when the spacing
corresponding to the critical state is equal to one diameter. According to the present study,
the critical state is directly related to the stability change and reflected by a turning point on
the continuation diagram. Therefore, the conclusion of the API recommendation is

inaccurate. The drawback of such a recommendation lies in the following;

1. The inaccuracy of the identification of critical state. The recommended critical state
corresponds to the state when an additional equilibrium state starts to appear. The
new emerged equilibrium state is in fact unstable. The real critical state occurs at a
significantly higher flow velocity. For example, in Figure 7.3(a), the critical flow
velocity identified by Huse’s method would be 0.84 m/s rather than present 0.91
m/s. The difference is about 10 percent for this case. Such a difference can be even

larger depending on the top tension factor and design spacing between the two

tisers.

It is misleading on the understanding of the dynamics at the post-critical state.

According to the recommendation, it is easily speculated that if collision occurs,
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the intermittent collision is caused by vortex-induced vibration, such as in the
recent research conducted by (Halse, 2000; Kaasen et al, 2000; Magne et al, 2001).
All of these assumed the vortex-induced vibration is the main contribution to the
nser collision. They do not account for the real impact effect when two risers

collide, neither do they explain the large amplitude low frequency movement of the

downstream riser as observed in the experiment.

Therefore, their recommendations have not shed any light on the real possible effects after
the critical states. From the present analysis it is seen that after collision starts, further
contact is unavoidable. Rather than vortex induced vibration, the non-stop intermittent
collision is essentially caused by the disappearance of equilibrium states. For these reasons,
the present analysis presents a much clearer picture of the mechanism between two risers’

collision, and can identify more accurately the critical state just before the collision occurs.

LA EL A SN S B s

AX (Spacing)

Downstream Cylinder =

Z (Vertical Position of Cylinder)

X (Flow Direction Position)

Figure 7.5 Schematic of the mechanism of siser collision (Sketch redrawn from Huse,
1993), when AX=D, riser collision occurs.
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7.3.2  Off Wake Centreline Scenarios
7.3.2.1  Inner Wake Position

Figutes 7.6 to 7.7 are results for the downstream riser, initially located off the wake
centreline. The results presented here are for a typical streamwise spacing of 70 diameters,
with the transverse location of 0.5 to 2.0 diameters respectively. The top tension factor 1s
taken as 3.28. It is seen that due to the effect of the transverse force, with the increase of
flow velocity, the downstream niser is pulled towards the wake centreline while it moves
towards downstream. When the flow velocity reaches a certain level, similar to the situation
on the wake centreline, the downstream nser will have two equilibrium states, with one
located downstream and the other close to the upstream niser. Further increase in the flow
velocity means that the downstream riser will reach a2 maximum deflection state D, after
which the downstream riser’s deflection will be decreased if flow velocity is further
increased. A critical state exists under which two equilibrium states merge. This is a turning

point on the continuation curve of deflection with regard to the control parameter of flow

velocity. When the flow velocity is larger than the critical flow velocity, there will be no

physical equilibrium.

Figures 7.6(a), 7.7(a) show the details of such variation. The stability analysis shows that the
variation of eigenvalue is similar to that when the downstream mniser is located on the wake
centreline. Also, for the case of streamwise spacing of 10 diameters, there is a Hopf
bifurcation point H, immediately before the critical state M. However, the two states H and

M are so close to each other that the existence of Hopf bifurcation is hardly distinguishable.
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Figure 7.6(b) Geometrical shape of two risers at flow velocity of Vo=0.6 (/).
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Figure 7.6(c) Geometrical shape of 12” tiser pair at critical state (Only one equilibrium state).
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Figure 7.6(d) Variation of first mode eigenvalue with the flow velocity.
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Figure 7.6(c) Variation of second mode eigenvalue with flow velocity.

Figure 7.6 continuation analysis for the riser pair with Xs=10, Ys=0.5,

TTF=3.28.
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Figure 7.7(a) Displacement of the middle point of the upstream and downstream risers.

289



W, WU Continuation and stabiity anakysis for a pair of marine risers

V=0.65 (m/s)

Figure 7.7(b) Geometrical shape of two risers at flow velocity of V4=0.650 (m/s).

V=0716 (m/s)

Figure 7.7(c) Geometrical shape of two risers at flow velocity of V,=0.716 (m/ ), critical state.
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Figure 7.7 continuation analysis for the riser pair with Xs=10, Ys=2, TTF=3.28 .
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7.3.2.2  Outer Wake Position

Figures 7.8 Figure 7.9 are results for streamwise location of 10 diameters, with transverse location
of 2.5 and 3.0 diameters, which are the locations for the wake induced flutter that can often occur
in power transmission lines. In all these cases, the top tension factor is kept as 3.28. It is seen from
figure 7.8(a, b) and 7.9(a, b) that, with the increase of flow velocity, the downstream riser is pulled
towards the wake centreline while it moves towards downstream. However, when the flow velocity
reaches a certain value, depending on the top tension and initial arrangement, the downstream riser
will have two, three and four equilibrium states respectively, depending on the flow velocity.
Nevertheless, there will be no equilibrium at all ultimately when the flow velocity is high enough.
In the course of the variation from four equilibrium states to none, the process of equilibrium pair
merger is the same as occurred in two-dimensional space, i.e. the downstream pair and upstream
pair converged one after another, the order depending on the initial arrangement. Figures 7.8(c, d)
also show the variation of different mode coordinates with flow velocity, the definition of modal
co-ordinates is shown in equation (7.4). It shows that all the individual mode coordinates have the
same vatiation course as the riser middle point displacement. All of them have monotonic variation
with regard to flow velocity. Figure 7.8(e) shows the geometry of each individual equilibrium state
when the flow velocity is 0.685 m/s. Under such a flow velocity, there are four equilibrium states
altogether for the downstream riser, only two of which are stable, i.e. the most downstream one
and the second to the most upstream one shown in Figure 7.8(e). Figure 7.9 shows a case when the
downstream riser is located near the wake boundary initially. As in the case shown in Figure 7.8,
there is 2 maximum of four equilibrium states. The critical state is located at the merger point of
the downstream equilibrium pair, which is significantly larger in flow velocity than the merger point
of upstream equilibrium pair. Figure 7.10 shows the varation of the equilibrium for different initial
arrangements. It is seen that for the same streamwise spacing of 10 diameters, with the increase of

initial transverse distance, the maximum number of equilibrium states is increased from two to

four. All the variations are continuous with regard to flow velocity and transverse distance. Figure
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7.10(c) shows the variation of critical velocity with the transverse distance. It shows that the critical
flow velocity is smallest on wake centreline for the same streamwise design spacing, and that the
variation of critical flow velocity with transverse spacing is insensitive when the downstream riser 1s
placed near the wake centerline. Rapid increase of the critical velocity occurs when the downstream

riser is located near wake boundary, a location where multiple equilibrium states exist for certain

flow velocity.
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Figure 7.8(a) Streamwise displacement of riser

middle point with flow velocity for a pair of 12”
Riser Pair, Xs=10, Ys=2.5, TTF=3.28 .
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Figure 7.8(b) Transverse displacement of riser middle point with flow velocity for a pair of 12”
Riser Pair, Xs=10, Ys=2.5, TTF=3.28 .
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Figure 7.9(a) Streamwise displacement of riser middle point with flow velocity for a pair of 12”
riser pair, Xs=10, Ys=3.0, TTF=3.28 .
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Figur'c 7.9(b) transverse displacement of riser middle point with flow velocity for a pair of
12” nser pair, Xs=10, Ys=3.0, TTF=3.28 .
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Figure 7.10(a) Transition of equilibrium states from inner wake to outer wake at
Xs=10, TTF=3.28, the streamwise displacement.

Figure 7.10(b) Transition of equilibrium states from inner wake to outer wake at
Xs=10, TTF=3.28, the transverse displacement.
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Figure 7.10(c) Critical Flow Velocity for Xs=10, with top tension of 7.416x10¢ (N),
ie. TTF=3.28 .

7.3.3  Cniical State Against Design Spacing

For marine riser designers, if collision between risers is to be avoided, they need to know the
critical flow velocity above which collision starts to occur for the specified top tension factor and
clearance. Alternatively, for a specified ocean current, designers need to know the minimum top
tension factor and clearance to keep two risers away from each other. Comparison between
tandem and staggered arrangements has indicated that the critical flow velocity is smallest when the
two tisers are arranged inline. Accordingly, calculations were catried out to examine the critical
state when the two risers are arranged inline. Figures 7.11 to 7.13 show the ctitical flow velocity
and the corresponding middle iser position spacing variation with the riser clearance for three
different top tension factors. It is seen that critical flow velocity and corresponding spacing
increase with the increase of initial spacing, which reflects the increasing of clearance between
risers, is a simple way to delay the possibility of tiser collision. From the figure, it also can be seen
that the effect of initial spacing is significant on the critical spacing. When the design spacing
between two nisers is larger, the corresponding spacing between two risers at critical state is

significantly larger than 1 diameter. In fact, it has reached 8 diameters for the 30 diameters of
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design spacing. Such a result shows a significant difference between present calculations and the

recommendations provided by APL
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Figure 7.11 TTF=1.2, critical flow velocity and corresponding riser middle position spacing.
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Figure 7.13 TTF=3.28, critical flow velocity and corresponding riser middle position spacing,

Table 7. 1 Parameters for a pair of 8" gas riser

Parameters | Vvalue | Unit
Outer Diameter 0.2032 m
Internal pressure 34487055.0 N/m’
'\Wall thickness 0.0130 m
Internal Diameter 0.1772 m
Internal fluid gas
Specific gravity 0.0
lcngth 1332.0 m
mass (steel) 60.88 kg/m
mass internal 0.0 kg/m
mass (added) 33.24 kg/m
mass 94.12 kg/m
mass parameter 0.2248
weight in water 271.14 N/m
total weight 361157 N
[Top Tension Factor 15

2.0

2.5
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In order to examine the effect of different kinds of tisets, and to provide more comprehensive data

regarding the different top tension factor, two additional calculations ate made. One is for a pair of

8 inch gas risers which has the parameters shown in Table 7.1.

The other is a pair of 10 inch production risers with one small tube located within the larger outer

side one, which has the parameters as listed in Table 7.2.

Figures 7.14 to 7.17 show the variation of critical flow velocity with specified top tension factor
and design clearance. It is seen that all the data ate consistent with each other regarding the
relationship between critical flow velocity and the initial spacing although quantitatively such a

relationship is dependent on the top tension and riser types.

7.3.4  Comparison With Two-Dimensional Results

When the two cylinders interact in two-dimensional space, it has been shown that the non-
dimensional parameter aUy” reflects the balance between fluid stiffness and the structural stiffness.
It is the indicator for the stationary bifurcation. In three-dimensional space, the definition of a
similar parameter can be difficult because of the existence of multiple mode frequency. However,
as observed in the experiments (Huse, 1996), the wake induced oscillation is a kind of low
frequency motion. The deflection of the riser is most significant in its first mode as shown in
Figure 7.8. In addition, the first mode is the mode to lose its stability first should any instability

occut. Therefore, an attempt is made to define the reduced flow velocity as:

Whete @, is the first mode frequency when the riser is in still water. By using such a non-

dimensional parameter, the effect of the top tension factor is investigated for the 8” riser pair with
design spacing as Xs=15, Ys=0. Figure 7.18 shows the variation of 4U,” at critical state with the

top tension factor. It can be seen that the critical 4U,? increases with top tension factor and
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approaches a constant when top tension factor is large enough (larger than 2.0 for the presented
case). Also depicted in the figure is a reference line for the critical aU,? for two-dimensional case.
The discrepancy between two-dimensional and three-dimensional results is attributed to the three
dimensional effects. If the risets are assumed to be deflected in a perfect first mode shape,
according to the statics control equations (6.11) and (6.12), because when the riser is under the
critical state, the spacing along the tiser is not constant, and the fluid loading is not constant along
riset, which means that it is impossible for parameter 4U,’ to match the two dimensional case. This
explains the similar results observed by Tsui(1986) in power transmission lines. Figure 7.19 shows
the calculated critical sate results in non-dimensional form. As can be seen, even though the risers
have different geometrical parameters, the critical 4U;* mainly depends on top tension factor and
the design spacing. When the top tension is vety large, the results tend to converge with each

other. On the other hand, the larger the design spacing, the larger the discrepancy which exists
between 2D results. Such an increased 3D effect is because of the increased varation of fluid force

along the riser at the critical state.

7.3.5  Relation of Critical State H , with TTF and Design Spacing

In Chapter VI, it has been pointed out that the displacement of the riser is a function of Top

tension factor TTF, flow tension factor H . Therefore, it is possible to relate the critical state by

theses non-dimensional parameters. Figure 7.20 shows the relation of the critical H, for three
different riser pairs with the same constant top tension factor of 2.0, the design spacing is set as 10
diameters. It is clearly seen that for deep water tisers, the critical H , is neatly constant for the same

top tension factor and design spacing. As a result, graph can be drawn to show the relation
between the critical H, and the top tension factor and design spacing. Such a graph will be
applicable to the general deepwater designs. Figure 7.21 can work as a general guide for riser design

to predict collisions. From this figure, it can be seen that for deepwater tisers over 1000 meters, the

critical flow velocity which bring the two risers to collide will be under 1 m/s.
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Table 7. 2 Parameters for a pair of production risers

Parameter Value Unit
Length 1032 m
Quter Pipe
Outer Diameter 0.2445 m
Wall Thickness 0.0138 m
Internal Diameter 0.2169 m
Inner piper
Outer Diameter 0.1143 m
Wall Thickness 0.00688 m
Internal Diameter 0.10054 m
Mass
Riser 78.5138 kg/m
Tubing 18.2261 kg/m
Annulus 27.3826 kg/m
Internal fluid 7.1451 kg/m
Added mass 48.1251 kg/m
Total mass 179.3927 kg/m
Mass parameter 0.1708
Riser weight in water 815.6287 N/m
Total weight in water 841728.8 N
Top Tension Factor 1.5
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Figure 7.14 TTF=1.5, critical flow speed and corresponding middle riser position spacing,
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Figure 7.15 TTF=2.0, critical flow speed and corresponding middle riser position spacing.
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Figure 7.16 TTF=2.5, critical flow speed and corresponding middle riser position spacing,
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Figure 7.17 TTF=1.5, critical flow speed for different design clearance.
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Figure 7.18 Varation of critical value of 4Ug? for a pair of 8” gas risers
against different top tension factors (Xs=15, Ys=0).
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Figure 7.21 Critical H , for different design spacing and top tension factor.
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7.4 Summaries

The continuation in conjunction with stability analysis about interaction between two marnne risers
is implemented in this chapter. The numerical calculations show that great care should be taken in
the implementation of continuation strategy, particularly for the predictor step. An inappropriate
chosen continuation strategy can lead to failure. The numerical calculation results show that

qualitatively, it agrees with those finds in the two-dimensional study. The following conclusions are

drawn from the investigation:

1. When the two tisers are arranged in tandem, there can be either: no equilibrium state, one
ot two equilibrium states, depending on the initial spacing, top tension, and flow velocity
etc. The state immediately before the disappearance of the equilibrium state corresponds
to the critical state above which collisions between two risets are likely to occur. Also the
critical state is corresponds to a stationary bifurcation state and is a turning point on the

continuation diagram.

2. When the downstream riser is located in the inner wake position, the continuation results

are very similar to the case for two tisets artanged in tandem, except that the critical state

occurs at a larger flow velocity than in a tandem arrangement.

3. When the downstream riser is located at the outer part of the wake, there may be up to
four equilibrium states, with one or two which are stable. Nevertheless, when the flow
velocity is large enough, there will be a critical state above which there will be no
equilibrium states.

4.

The comparison between the three-dimensional investigation and the two-dimensional

results shows that the critical parameter 4U?, defined by first mode frequency, increases

with the increase of top tension factor. When the top tension factor is large enough, it
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approaches a constant, which is smaller than the value found in the two dimensional

investigation.

5. The critical parameter 4U,’ depends mainly on the top tension factor and design spacing.
For general purpose of riser design, the guide curve can be made for the specified top

tension factor, and design spacing, to check its critical parameter of aU,’.

6. A general purpose riser design guide graph has been obtained which can be used to predict

the critical flow velocity before the niser collision occurs at specified design spacing and

top tension factors.



Chapter 11X

DYNAMICS SIMULATION FOR A PAIR OF MARINE RISERS
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8.1 Introduction
8.1.1  General Remarks

Marine risers are rarely at rest since their deployment in ocean. Time varying ocean
currents, together with harsh waves are often constant companions of the risers. Such an
ocean environment can excite the marine riser directly via wave force and vortex shedding
induced forces, or indirectly via top vessel motion. Apart from these, as indicated in the
foregoing analysis, the time-averaged force caused by riser interaction in ocean current can
ultimately also lead risers to move around. The importance of riser dynamics in their design
has been long recognised (Fish & Ludvig, 1966, Bemitsas, 1982). One of the direct
consequences of such dynamics is the fatigue life of the risers. In the recent four to five
decades, concerted efforts have been made to understand the mechanism of vortex-
induced vibration and to predict such an effect. The most recent work can be seen from
Bokaian, 1994; Vandiver, 1997; Furnes, 1999; Willden et al, 2001; Moe et al, 2001. When
the oil and gas development companies started to operate in deepwater, for example,
3000ft to 10,000 ft or even deepet, the response of riser structure became an increasing
concem. In such deep water, the TLP like risers behave virtually like string in the ocean

current. For vortex-induced vibration, multiple modes can be excited simultaneously, as
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indicated by Vandiver (1996) e Rajabi (1989), Duggal e a/ (1993) investigated pairs of
tendons/risers under wave excitation, and demonstrated potential collisions between
individual tendons/risers. However, so far, nothing has been published which account for
riser dynamics with the consideration of risers interaction caused by ocean current,
particularly via the time-averaged forces. The direct, perceptible effect of such dynamics is
the intermittently collision between individual riser as observed by (Huse, 1993, 1996;
Bryndum and Andersen, 1999). In this chapter, a systematic investigation into time-
averaged force induced tiser dynamics has been made. As much effort has been made on

the predicting of riser dynamics, a brief overview of the existing work is stated at the

outset.

8.1.2  Ouverview of Existing Work on Riser Dynamics
8.1.2.1  Systems Covered

Because different researchers have different research objectives, the riser system has been
investigated in different levels of complexity. The eatliest investigations were focused on
the solitary riser’s statics and dynamics (Fisher & Ludvig 1966; Gosse & Barksdale 1969)
etc. Now, different integrated systems have been looked into, such as the coupled system
of top vessel and riser (or mooring lines), and also consideration of the sea bed effect
(O'Brien & McNamara 1989; Heurtier et al, 2001). Multiple riser effect without direct fluid
interaction was also included in some of the researches (Ormberg et al 1999). Some studies
have focused on the detailed investigation of top joint effect and the dynamics under the
condition of riser installation and hang-off (Watters et al 1998; Sattamini & Ferranti 1993;
Patrikalakis & Yoon 1990; Teigen et al 1990). The high performance of modem computets
has made it possible to consider even more complicated and detailed structure systems.
However, study into risers affected by flow is mostly confined within the scope of small
spacing between risers, such a study, targeted on the bundle risers, was carried out by

Vlahopoulos & Bernitsas 1991. The dynamics of TLP like riser pair ot group remains un-
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explored, although the significance of riser interaction has been recognized in recent years

(Huse, 1996).

8.1.2.2  Numerical Method Employed

It was shown that differences in riser deflection due to non-linearity can be as high as 28
percent in the maximum displacement (Bernitsas & Kokarakis 1988). Because of such a
non-linearity in the nature of the problem, both in structural dynamic terms and
hydrodynamic forces terms, to obtain a classical solution is not generally possible.
Recourse to numetical technique has to be made. In the numerical investigation of riser
dynamics, the fluid forces are usually assumed to be known beforehand (the Morison’s
equation is often employed), which means the interaction of the structural dynamics to
flow is not considered. Mathematically, it is required to solve a fourth-order partial
differential equation in time and space domain. The boundary conditions are often defined
at both ends of the risers, with the bottom end fixed and top end fixed or with a prescribed
movement. The problem in time domain is either steady state or transient. For steady-state
problems, there is no specific condition need to be defined (such as static problem or

steady state vibration concern). Otherwise, the problem needs to specify the initial

conditon for the niser.

The objective of the numerical technique is to discretise the partial differential equation

into solvable simultaneous equations. According to different methods of the discretisation

in space domain, the numerical technique is usually classified into:

1) Finite Difference Method, such as (Burke 1973, Morgan 1975, Huagui, 1994),

2) Finite Element Method (for example, Gardner & Kotch 1976),

3) and also Modal Superposition Method (Modi et al 1994, Furnes, 1999) etc.
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The clarifications of these methods were provided in Chapter V1.

According to the discretisation method in time domain, the approaches are classified into
time history analysis and steady-state frequency domain analysis (Bernitsas, 1989). The time
history analysis method starts from the transient state and obtains the solution in time
history until a steady state solution is achieved or some specified time instant has been
reached. The frequency domain analysis solves the partial differential equation in frequency
domain by supposing the solution has steady state form solutions. The frequency domain
method has the advantage of high efficiency while it has to linearise the control equation.
The time domain solution usually calls for much more computation time and most of such
computations have been spent on the transient state when the ultimate state to be sought is

steady. The preference between above two methods is largely dependent on the

requitement of the investigation.

8.1.3  Present investigation

In this chapter, by using the modal superposition method, a three-dimensional tiser
interaction code in time domain is implemented. The code is validated against published
API data about the riser dynamics. Subsequently, a detailed parametric study on the
interaction was carried out. The dynamics of riser interaction has been examined
systematically. The results show that wake-induced oscillation is a low frequency, large
amplitude movement. The quick motion mainly occurs when two risers are close to each
other, ie. immediately before and after the collision. The motion speed of riser before
imminent collision is significant and comparable to the possible maximum amplitude of
the high order vortex induced-vibration motion. Such a result suggests that a rethink is
needed for the investigation of collisions between two risers in which most investigations

have assumed the vortex-induced vibration is the main contributor towards collision effect,

such as Halse, 2000; Kaasen et al, 2000; Magne et al, 2001 etc.
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8.2 Theoretical Formulation

8.2.1  Mathematical Definition of the Problem

Top Tenslon Top Tension

Figure 8.1 Sketch of two flexible riser system.

8.2.1.1  Structural Dynamic System

Compared to the statics and continuation investigation conducted in the previous two
chapters, the riser dynamics in this chapter focuses on risers’ time domain behaviour
particularly under specified high current. Therefore, unlike the dynamic system treated in
stability analysis, the structural displacement in this Chapter is treated as a whole, which
literally is the sum of the static displacement investigated in Chapter 6 and the dynamic
displacement discussed in the Chapter 7, though small displacement hypothesis will be still
applicable to such a system because the displacement is small when compared to riser
length. Additionally, the top connector of the riser can move with the top vessel as will be

reflected in the specification of the boundary conditions.

Figure 8.1 redraws the co-otdinate system used in Chapter 6. For simplicity, let the two

risers have the same uniform geometrical property and mechanical performance. The
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linearised structural dynamic response of the tisers to the fluid excitation are expressed as

(Krolikowski & Gay, 1980, API, 1998)

o'x ox & o*x 0 ax)
PGy LS WA )
" e ot 622( oz} ] 62( “ Bz X 1)
4 .
&y, oy, & o'y 6( ) .
Lpeip N EI—=L |- 2| T Z|=F =12
"o a T\ e T w e )T (i=1.2

Here, subscript i=1,2 denotes the upstream and downstream riser respectively. The
movement of upstream riser in the transverse direction is also included in order to

generalise the problem, the definitions of other parameters are the same as before. F,

xi? F yi
are fluid forces applied on the niser in X,y direction respectively, which is a function of
time as well as depth. The source of this kind of fluid loading can be time-averaged force

as well as wave force or vortex-induced force depending on the focus of the research. In

this Chapter, the time-averaged force is the main concern, while the wave force has been

used to validate the computer code.

8.2.1.2  The definition of boundary condition

Let the bottom of the riser at the lower ball joint be pinned, and the top connector at the

riser support ring be simulated by a spring with stiffness of k,. The boundary condition

can be written as

[x,(z=0)=x,(1); x(z=1y,)=0,
2
9xl g
aZ 7=0,1,,
Wi(z=0)=y,() y(z=1,)=0 8.2)
2
99 2o
az z=0,ly
(AT (1) =k, AL, (¢)
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Here, AT is the variation of the top tension. /,;, (i =1.2) is the vertical distance between
riser support ring and lower ball joint, Al,, is the vertical displacement of top riser support

ring. x,, y, are excursions in X, y directions respectively which are related to the top vessel

motion.

8.2.1.3  Non-dimensional form of the system

Let
_zlt)
Z= L (t) (8.3)
| x,(z,,t)—[l.O-— Iz—‘)x,(t)
X(Z,)= ) =
’ 8.4)
1 y,(z,,1)- [l()———)y ("
LX(ZI ’t) IH: (1 (l = 1’ 2)

As the movement of the riser in vertical direction is assumed to be small when compared
to that in transverse and streamwise directions, the non-dimensional form of the structural

dynamic system and its corresponding boundary condition are then transformed into the
following form:

azx,+£ax,+ El 38X T, X, 1 oT,ax,

o ma ml, 02" m, 02 wml, 0Z oz,

X,, oT X oX,, F,
8 ey (1-2) 2 L (1-z) En = D
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&y cov E Y &Y 1 T, oY
o mot mil oz* ml,’ﬂ 0Z> ml:, 0z, oz 85)
% o, 2y, , 3%, F, . '
I,’,, z +(1-2Z)—= 5t (1 z)—L =m (i=1,2)

Here,
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: Hi IHI
4 2X
X", = 0; aazz' =0
'Y,
4}:=0;‘a7;'=0 (86)
at Z,=0,1 (i=1,2)

AT, (‘) =k, Al, (t)

The boundary condition in 8.6 is homogeneous. For such a system, the Hooke’s law can be

expressed as:

2 2
I, . EA ax,Y (or
! = 1+] —1 +]| = dz, 8.
Ji +di+d’ j°EA+T,,*rZI’,,fi,,-Zi",A.\] (62.) (62-) ’ D

Here [, is the riser original length, E is Young’s modulus, Ais the cross section area of
the riser, F,is the static pressure outside the riser, P, is the static pressure inside the riser.
A, and A, are outer and internal cross section areas respectively, and the summation is

made when the riser consists of multiple tubes.

In the above structural dynamic equations, the displacement of x,y , the distance between
riser ends /,, and the top tension are unknowns. Equation 8.5 to 8.7 form a self contained

system should the external excitation of fluid force is known. The standard first-order

differential equations are expressed in the following form,
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and p = {p‘, P25 Pss Py Dss Dgs D pa}T, P1s P3s Ps, Pystand for the displacement of

upstream and downstream riser in x and y direction respectively, p,, p,, Pq» Ps ate their

corresponding velocity terms.

319

(8.8)
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8.2.2  Hydrodynamic Forces
The hydrodynamic force in equation 8.5 can be both space and time dependent. In the

investigation made in this chapter, both wave forces and time-averaged forces are
considered, the inclusion of wave force being mainly for the purpose of validating the

computing program.

8.2.2.1 Time-averaged Force
The time-averaged force is further applied by the two dimensional approach. By supposing

the averaged effects at different depths of the niser are independent of each other, the time-
averaged fluid force is only dependent on the relative position between two risers at the
specified depth. When the ocean cutrent is non-uniform along the water column, a linear

interpolation scheme is applied at the desired riser depth position. For a specified water

depth, the time-averaged force is expressed as:

r

qu = ';’/"Vo; —-’Eul(Vo; "’.‘u)DCm

F, =0
1 89)
F, =%pU,2‘,(Z})D[(U} _x.lj)Cl)Z +j’z,C1,2]

LFﬁ/ - %pU’U(ZJ)D{(UJ —% )C"2 —y 21C”2]

The subscript j represents the different riser depth.

8.2.2.1.1 Wape forve, inline movement only
In the presence of waves, the fluid forces applied on the risers can be represented by

Mortison’s Equation as follows,
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It should be noted that the transverse force caused by vortex shedding is not the content

of the investigation in this chapter.

8.2.3  Solution Procedures

Equation 8.3 is solved by the modal superposition method, together with time domain

Runge-Kutta integration. The methodology behind is the same as that for statics analysis.

The solution procedure is as follows:

1. Specify an initial state of the two risers at given flow condition for specified riser pair.

The initial state can be design position' or any other specified state;

2. Solving the dynamic system at a given time step by Runge-Kutta integration. Implicitly,
double iteration scheme is applied, with one similar to that used in statics analysis to
comply with the Hooke’s law and the other for the consideration of top tension
variation;

3.

Utlising the above time step as the initial state, find the next time step state, such a

time marching continues until the specified time reached.

! Design position represents the state for two risers when the fluid flow is stationary and there ace no disturbances.
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8.3 Numerical Results
8.3.1  Dynamics of a Solitary Drilling Riser

In order to validate the present numerical programs, a calculation was made to check
against the published data by API (API, 1992). The chosen case is for a solitary dnlling
riset, 10 inches in diameter and 1520 ft in length. The specifications of the riser, with its kill

line and choke line ate provided in table 6.2, Chapter V1. The operation condition is

specified as follows:

Table 8. 1 Flow excitation specification.

Parameter Value Unit
Top Tension 370 Kips
600
Static Offset at the Top 90 Feet
Vessel surge amplitude (peak to 26.7 Feet
peak)

Vessel sutge phase angle relativeto -9
the wave crescent

Vessel surge period 12.8 Sec.
H, wave height, peak to trough 40 Feet
T, wave period 12.8 Sec.
Current profile Linear,
2 Knot at Mean Water Level,
0.4 Knot at lower ball joint

Figure 8.2 and Figure 8.3 show the calculated results, compared to the API published data,
for the deflection envelope and bending stress for the case of top tension of 370 Kips and
600 Kips respectively. The right hand side envelope is the maximum deflection or bending
stress varying with depth, while the left hand side envelope denotes the minimum
deflection or bending stress. The API results shown in the figure are composed of two
curves for each specific envelope line, which itself shows the variation of the results
supplied to the API by different institutions. It is seen that both geometrical shape and
bending stress agree very well with the API published results. This gives the confidence in

the subsequent calculations for the dynamics of two tisers interaction. Additionally, in
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order to examine the convergence of the numerical calculation, compatison is made for
computation using different mode numbers. Shown in Figure 8.4 is a comparison of
deflection and bending stress envelope between mode number of 20 and 40. It is seen that
in Figure 8.4, the geometrical figure has converged very satisfactorily when the total mode
number participated in the calculation is taken as 20. However, for detailed information
such as bending stress, the calculation with mode number of 40 shows a slight difference
to the mode number of 20 although, generally speaking, both results have neatly converged
with each other. This is due to the relative slow convergence for terms of bending stress.

Based on such a comparison, in the subsequent computation, the mode number is

generally taken as 20 in order to make the calculation more efficient.
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Figure 8.2 Comparison of present calculation and API published result for a

solitary drilling riser. Top tension 370 Kips. (a) Displacement; (b) Bending
stress.
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Figure 8.3 Comparison of present calculation and API published result for a
solitary drilling riser. Top tension 600 Kips. (a) Displacement; (b) Bending

stress.
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Figure 84 Compasison of displacement and bending stress by using
different mode numbers. Top tension 370 Kips, riser length: 1520 feet, wave
height: 40 feet. (a) Displacement, (b) Bending stress.
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8.3.2  Transition of A Pair of Risers Under Steady Current Only

In the subsequent systematic analysis of the dynamics of a pair of matine risers, the

specification of the riser taken in the analysis is as follows:

Table 8. 2 Specification of the riser pair.

7416 x10°

Geometrical Data Value Unit

Outer Diameter (m) 0.30 m

Internal Diameter (m) 0.24 m

Riser Length (m) 1332.0 m

Depth of Mean Water Level (m) 1332.0 m

Property of Riser

Young’s Modulus E 2.10x10" N/wf

Bending Stiffness EI 4.93x10° Nt

Mass of Riser

Weight in Water (KN /m) 1.695 KN/m

Density of Water (Kg/m”) 1025.0 Kg/n’

Hydrodynamic Loading

Current Profile and Velocity (m/s) Uniform Profile m/s
05 ~1.5

Added Mass Coefficient 1.0

Drag Coefficient in Free Stream 1.2

Top Tension (N) 2.709x10° N
3.708x10
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8.3.2.1 Tandem Arrangement

Figure 8.5 shows that the nser pair experienced a transition from the design position to,
and finally rested at, their corresponding equilibrium states. The pair is initially separated by
10 diameters and in tandem arrangement, located at their corresponding design position,
and only the time-averaged forces are considered. Under the sudden increase of the flow
velocity, the downstream riser is pushed downstream. Due to the inertial effect, the
downstream riser passed its equilibrium in the first place, then recovered immediately to its
equilibrium. Shown in Figure 8.5(a) is the deflection at different positions of the riser. It is
seen that different parts of the riser move almost in phase with each other. The figure
shows that the fluid damping is significant as the riser approaches to its equilibrium state so
quickly. Figure 8.5(b) is the final equilibrium geometry of the riser pair. As indicated in
Chapter 7, the above 12" pair riser under 0.5 m/s current is stable at their equilibrium state.

The results here are consistent with the foregoing analysis.

14

X=10, Y, =0, TTF=3.28, V,=0.5 mis

Z=0.5

Z=0.78
Z=0.28

t(Sec)

Figure 8.5(a)
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Figure 8.5 12” Riser pair transit from initial design position to
final equilibium under current velocity of 0.5 m/s. (a)

Transition of different parts of the riser. (b) Geometry of the
equilibrium.

8.3.2.2 Staggered Arrangement

Figures 8.6 and 8.7 show the case when the tiser pair is in a staggered arrangement. The
streamwise direction separation is set as 10 diameters, with cross flow direction spacing of
2 and 2.5 diameters respectively. The flow velocity is 0.5 m/s. As shown in Chapter VII,
the equilibrium of the riser pair is stable under such an ocean current condition. In this
case also, the niser pair is initially located at their corresponding design position. Figures 8.6
and 8.7 show the whole transition coutse of the middle point of the riser. It is very similar
to the tandem arrangement. Initially, the riser is pushed towards downstream quickly, as

shown in the velocity figure, meanwhile, the riser is pulled towards the wake centreline.
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Very swiftly, the velocity of the downstream riser dies out and it rests at its equilibrium.
Under such a flow velocity, even for the case of transverse location of 2.5 diameters, there

is only one equilibrium state. Therefore, Figure 8.7 is similar to Figure 8.6.

However, for the case of transverse spacing with 2.5 diameters, when the flow velocity is
further increased, as shown in Figure 8.8 where flow velocity is 0.67 m/s, more than one
equilibrium state can be reached depending on the initial state. The initial position 1
corresponds to the state of design position. Under such a condition, the upstream niser is
also located at its corresponding design position initially, and it is seen that finally the
downstream riser rests at final equilibrium position 1 (called as stable outer equilibrium in
this Chapter). As indicated in the Figure 8.8(b), after an acceleration in stream wise
direction and attraction towards wake centreline, the movement of the downstream riser
dies out rapidly when near the equilibrium. The second initial arrangement is made as such
that the upstream riser is close to its equilibrium whilst the downstream riser is close to its
equilibrium in streamwise direction. However, transversely the downstream riser is located
towards the wake centreline. Presumably the downstream riser has a symmetrical parabolic
deflection with its centre point located at (20, 0.5) and, as can be seen from figure 8.8(a),

the downstream riser is attracted to the second equilibrium state, i.e. stable inner

equilibrium.

Figure 8.9 shows the boundary between which the different initial conditions leads to
different equilibrium states. The upstream riser is assumed to have the same initial state
near its equilibrium with the streamwise displacement of its midpoint of 10 diameters. The
initial position of the downstream riser varies from 15 diameters to 22 diameters in
streamwise location, and from wake centreline to the 5 diameters in the transverse location.
It is shown in the figure that there is a boundary, when the initial position is above the

boundaty, where the downstream riser will ultimately rests on the outer equilibrium.
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Alternatively, when the initial position is located underneath the boundary, the downstream
tiser will approach and rest on the inner equilibrium. When the initial location of the

downstream riser is on the boundary, it leads to an unstable equilibrium, which is located

between the two stable equilibrium states.
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Figure 8.6 Transition from design position to equilibtium for arrangement of (10,
2) under current of Vy=0.5 m/s. (a)Trajectory of upstream and downstream riser
middle point, (b) Velocity history of the downstream riser middle point.
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Figure 8.7 Transition from design position to its equilibrium for arrangement of
(10, 25) under current of Vo=0.5 m/s. (a)Trajectory of upstream and

downstream riser middle point, (b) Velocity history of the downstream riser
middle point.
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Figurg §.8 Ttansitipn to different equilibrium from different initial position. (a)
Transition of the riser middle point to equilibrium for different initial condition,

(b) The velocity history of the downstream riser middle point when transition
occurred from the design position.
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Figure 8.9 Attraction domain for two equilibrium, with Xs=10, Ys=2.5,

TTF=3.28, Vy=0.67 m/s, the upstream riser is initially located near its
equilibrium.

8.3.3  Riser Pair in High Curvent (Post Loss of Stability)
8.3.3.1 Tandem Arrangement

‘The dynamic behaviour is examined when the current speed exceeds the critical state.
Figure 8.10 shows the case when two tisers are arranged in tandem with spacing of 10
diameters, and initially the two risers are located at their design positions. As shown in the
figure, the downstream riser initially moves towards downstream. However, because there
is no equilibrium state in the downstream, it moves back to the upstream and ultimately it
collides with the upstream riser. Here, for simplicity, the effect of the upstream riser has
been replaced by the effect of the wake force field. Therefore, the detail of the collision
ptrocess has not been accounted for. Similarly to the scenario in the two-dimensional case,
the downstream riser tends to be quickly pushed towards downstream after the collision.
There is a process of slow recovery towards upstream and then a quick push back towards
downstream. The time interval for a single process is about 26 Seconds in this particular
case, which is in the same order of the first mode frequency. For such a case, the vortex

shedding frequency is around 20 times higher than the first mode natural frequency. The
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amplitude of the movement of the downstream nser is more than 10 diameters.
Distinctively, the trajectory is different from the vortex-induced vibration. Figures 8.2(c) to
(f) show the course of the movement at different time instants. As shown in the figures,

when the middle position of the upstream riser is nearest to the downstream riser, the first

contact will be most likely to occur near the middle position of the risers.
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Figure 8.10 The motion of the downstream riser after the flow velocity
has exceeds the critical state, current speed: 0.8 m/s. (a) Streamwise
direction displacement of the downstream riser middle point; (b)
Streamwise direction velocity of the downstream riser middle point; (c)
to (f) Varation of geometrical shape at different time instant. t=95,

110, 111 and 111.8 seconds respectively.
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Further calculations are made to account for the effect of different design spacings, flow
velocities and top tension factors on the movement amplitude, velocity and time intervals
between successive collisions. The comparisons are shown in Tables 8.3 to 8.5. The
movement range of the downstream riser is defined as the distance between the two
extreme positions that the middle part of riser can reach. The maximum velocity of the
downstream riser is defined as the peak velocity of the riser middle part moving towards
upstream. In the comparison of different top tension factors and design spacing, the flow
velocity is chose as such that it is close to and above the critical state. The calculation
results show that when the flow velocity exceeds the critical state, the wandeting around of
the downstream tiser will have the magnitude of more than 10 diameters, collisions
between two risers will occur from time to time, and that the time interval between
successive collisions is dependent on the flow velocity and design spacing. On the other
hand, for the same design spacing, the motion amplitude of the downstream riser does not
vary significantly with the flow speed, nor with the top tension factor. Such a result is not

reflected in the two-dimensional simulation, and it is likely to be due to the unaccounted

collision effect.

Table 8. 3 Comparison between different top tension factors (Xs=10, Ys=0).

Top Tension Factor 120 | 1.64 | 3.28
Natural Period (Sec) 38.50 | 29.83 | 18.99
Critical velocity (m/3) 0.305 | 0.415 | 0.663
Flow Velocity (/3) 035 | 042 | 0.70
Maximum Velocity Towards Upstream | 141 | 096 | 1.49
(m/9)

Motion Amplitude (xD) 180 | 182 | 182
Time Interval (Sec) 59.2 | 887 | 364
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Table 8. 4 Comparison between different designing spacing (TTF=3.28).

Design Spacing 10D | 20D 30D
Critical velocity (m/ ) 0.663 | 1.107 | 1.473
Flow Velocity (m/ s) 0.70 1.12 1.55

Maximum Velocity Towards Upstream (/s) 1.49 1.36 2.72

Motion Amplitude (xD) 18.2 16.7 10.0

Time Interval (Sec.) 364 | 1015 | 451

Table 8. 5 Comparison between different flow speed (Xs=10, Ys=0, TTF=3.28).

Flow Velocity (m/s) 070 | 075 | 0.80

Maximum Velocity Towards Upstream (/s) 149 | 148 |} 231

Motion Amplitude (xD) 182 | 182 | 184

Time Interval (Sec) 364 | 285 | 255

The maximum motion velocity of the downstream riser towards upstream increases with

the flow velocity. In order to make a comparison with the vortex-induced vibration, the

maximum velocity of the VIV motion is estimated as follows:

Consider the case of flow velocity of 0.7 m/s, the corresponding vortex shedding

frequency is 0.47 Hz should the Strouhaul number be taken as 0.2. If “lock in” occurs and,

assuming the maximum motion amplitude to be 1 diameter, the correspond motion

velocity is about 0.88 m/s.

According to the results presented in the tables, the motion caused by the wake-induced

oscillation is clearly more significant than the vortex-induced vibration. Additionally, the
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collision related to vortex-induced vibration occurs locally, while the wake-induced motion
caused collision is often with all parts of the riser moving together, as shown in Figure

8.10, and hence, with much more energy participated in. Therefore, the wake-induced

motion plays a very significant role in the collision.

8.3.3.2  Staggered Arrangement

Figures 8.11 to 8.14 show the cases when the two risers are in a staggered arrangement,
with X;=70, 20 and Y,=1, 2.5 respectively. The current velocity is close to and above the
cotresponding critical flow velocity for each individual case. The motion trajectories
(Figure 8.11, 8.12, 8.13 and 8.14(c)) show that the characteristics of all the presented cases
are similar. The motions are always in a clockwise direction, with the main acceleration
course occurring when two risers are in inline positions. Such a motion shows that within
the whole cycle of the movement, the streamwise fluid drag force tend to input energy to
the riser’s motion, as the drag force tends to be larger when the riser is located at outer part
of the wake. This energy absorption of the downstream riset’s motion is balanced by the
energy dissipation caused by the fluid damping effect. The biggest acceleration occurred
for two risers immediately before the collision, as seen from Figure 8.14(d). The process of
the push back by current is much quicker than the recovery. The amplitude of the
movement is generally larger than 10 diameters. Tables 8.6 to 8.8 show the effects of top

tension factor, initial spacing, and flow velocity on the motion amplitude and velocity.
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Figure 8.14 Dynamics of a riser pair with top tension of 7.416x106 (N)
under the 0.8 (m/s) current. All parameters in the figures are for the riser
middle point position; (a) streamwise displacement (b) transverse direction
displacement (c) trajectory of the middle point, (d),(e) streamwise and
transverse direction velocity.
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Table 8. 6 Comparison between different top tension factors for X5=710, Ys=1.

i . 1.64 | 328
Top Tension Factor 1.20

Flow Velocity (7/ s) 035 | 042 | 0.70

. . 1.50 1.45
Maximum Velocity Towards Upstream (/s 1.7

Motion Amplitude (xD) 127 | 133 | 122

i 609 | 58.7 | 36.2
Time Interval (Sec.)

Table 8. 7 Comparison between different design spacing for the same top tension,
TTF=3.28, Ys=1.

Design Spacing (xD) 10 20 30

Flow Velocity (/3) 070 | 1.15 | 155

Maximum Velocity Towards Upstream (/ s) 145 | 223 | 1.06

Motion Amplitude (xD) 122} 161 | 99

Time Interval (Sec) 362 | 612 | 625

Table 8. 8 Comparison between different flow speed TTF=3.28, X=10, Y;=1 .

Flow Velocity (/) 0.70 | 0.75 | 0.80

Maximum Velocity Towards Upstream (m/ | "+ | 183 | 197

Motion Amplitude (xD) 122 | 120 | 119

Time Interval (Sec) 362 | 275 | 239

It is seen that, as with the cases of tandem arrangement, the movement amplitude is
insensitive to the flow velocity once the critical flow velocity has been exceeded. This also

applies to the relationship between movement amplitude and the top tension factor.
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However, the amplitude varies significantly with the design spacing. The time interval
between two successive collisions changes considerably with the flow velocity, and the

motion speed before the collision is considerably high when compared to the vortex-

induced motions. Such results are the same as the tandem arrangement.

8.4 Summaries

As a result of the analysis conducted in this chapter, following conclusions can be drawn.

p—
.

With only time-averaged force considered, when the flow velocity is lower than the
critical flow velocity, the downstream risets tend to approach their equilibrium quickly
should there be any disturbance. When there is more than more equilibrium then,

depending on the initial state of the riser, it can approach to different equilibrium state.

2. When the flow velocity exceeds the critical state corresponding to the specific
arrangement and top tension, the downstream riser will start to wander around. This

kind of movement is a low frequency, large amplitude motion, which can ultimately

bring the two risers to collide with each other intermittently.

3. The frequency of the collision (the inverse of the time interval between two successive
collisions) is dependent on flow velocity, which generally is in the same order of
magnitude as the first mode frequency. Relative to the vortex-induced vibration, such a
movement is very low in frequency.

4. The amplitude of the movement is dependent on the design spacing and insensitive to
the top tension factor and flow speed.

5.

Because the motion mainly occurs in the streamwise direction, the collision caused by

such wake-induced motion mainly occurs in the direction of flow. It is significantly
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more important in the contribution towards the collision than the vortex-induced

vibration regarding its synchronised motion and high movement speed.

6. The minor discrepancy to the two-dimensional simulation may be attributed to the
unaccounted collision course during the movement of the two risers. The detailed

explanation calls for a proper collision model to be incorporated into the analysis.
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9.1 General Remarks

As set out in the beginning of this thesis, this investigation focuses on finding the
mechanism of the interaction between two risers and providing effective tools to identify
the critical state of the interaction. It also aims to provide information about the dynamic
behaviour when tisets lose their equilibrium. This thesis started with the fotce ptrediction
for the downstream cylinder located in the wake, which forms the basis for the subsequent
analysis. This was followed by stability analysis, continuation study and dynamics
simulation, with the investigations further extended into the three-dimensional. These

ultimately addressed the real scenarios for riser design and operation. Various calculation

examples have been presented throughout the thesis.

9.2 Contributions of the Thesis

The following are the main contributions of this thesis to the body of knowledge:

9.2.1 Time-Awraged Forve Prediction

The application of free streamline theory to account for the fluid forces exerted on the
wake located downstream cylinder gives a new insight into the mechanism of the fluid

forces on the downstream cylinder, which is morte intuitive and acceptable than the
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previous arguments. Although the importance of such efforts will be lessened with the
further enhancing of CFD power in the near future, it still will be very helpful in the

construction of a dynamics model and understanding the dynamics related phenomena. In

addition, it will be beneficial to the understanding of CFD tesults.

9.2.2  Mechanism of Riser Collision

The present investigation is the vety first one endeavoured solely on the investigation of
the stability of the TLP/Spar riser interaction and identification of the critical state by
continuation analysis. The study disclosed the collision mechanism of two risers, a

phenomenon which has been recognized in recent years but never be appropriately

addressed.

In parallel with this investigation, there is wotk conducted in industry such as that by
Marintek and MCS. Both of them set out to identify the critical state of riser interaction.
The former used a shooting method to seek the equilibrium state and the latter used the
available commercial “Flexcom” software package. Neither method can explain accurately
the mechanism of the collision, nor can they identify the critical state accurately and
unproblematically. Both can easily mislead users to the conclusion that the two risers are
brought into contact gradually, because of the progressive closing of the two risers with the
increase of the current velocity. Furthermore, their explanations can distort the
contribution of collision energy, should it be investigated. In this sense, the present

investigation clarifies the mechanism of riser collision and provides effective tools to

identify the critical state.

9.2.3  Dynamics Simulation

The dynamics simulation conducted in this thesis portrays the wake-induced dynamic
behaviour of the cylinders, both in two-dimensional and three-dimensional space. The

analysis provides an approximate energy description for the risers immediately before the
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collision, which clearly shows that it is at least in the same order of magnitude as the
vortex-induced vibration. In the past, neatly all the work on collision investigation was
based on the vortex-induced vibration, the results of this investigation reinforces the

importance which the wake-induced oscillation has in participating in the riser collision.

9.24  Riser Statics

The statics analysis revealed the non-negligible effects of the wake on the interaction in a
very concrete and quantitative way. The parametrical investigation shows the importance
of the wake effects in different perspectives. In addition, the difficulties of the laboratory
simulation of very large scale marine riser interactions were addressed. The contribution of

such an analysis lies in the provision of a quantitative knowledge to the riser engineers

rather than theoretical one.

9.2.5  Comparison Between Different Cylinder Interactions

The present investigation, in two-dimensional space, is the most comprehensive and
fundamental research into the interaction between two cylinders ever conducted. It not
only covers a much wider area of wake field than has been tried before elsewhere, but also
addresses the issue on the mass parameter, which is a topic that has been neglected in the
past research. The investigation identified the peculiarities of marine riser interaction. Such

a study is beneficial to marine riser engineers as well as researchers in other engineering

disciplines.

9.2.6  Multiple Equilibrium States

The first identification of multiple equilibrium states can be significant to the further
understanding of multiple riser interactions. Although the importance of multiple

equilibrium states or possible disturbances caused by unsteady flow ot vortex-induced

vibration have not been elaborated upon in this thesis, further investigation could result in

an exciting chapter on riser dynamics.
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9.3 Applications of the Research
9.3.1  Riser Design

This investigation provides important guidelines on how to avoid riser collision, based
on the prediction of the critical states provided in the continuation analysis. Hence,
riser designers can identify the necessary top tension and design spacing, under
specified design ocean current. Further negotiations can then be made within the

integrated system design, based on such predictions, during the riser designing process.

9.3.2  Ruser Operation

This thesis shows how to predict the possibility of riser collision under specified ocean
currents. Therefore, should severe weather occur, the riser operator can know

beforehand whether the riser operation should continue or be suspended.

9.3.3  Damage evaluation

The dynamics simulation provides important information on the possible damage that
can occur should collision between risers happen. Based on such data, it can not only
guide the riser operators to take sensible measure under severe weather, but also, it

provides a valuable reference to aid in identifying the cause of the damage should any

such damage emetge.

9.4 Recommendations for Further Studies

As the offshore industry seems determined to move towards deep and ultra deep
watet, the riser interaction issue demands that even more questions be answered. Based

on the present investigation, the following areas would be of interest and important to

the further understanding of riser interaction,

1. The role of vortex-induced vibration to the timer-averaged force induced collision,
both on the critical state identification and the contribution to the collision. The

vortex-induced vibration constitutes a significant distutbance to the rser
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equilibium. Particularly as identified in the continuation investigation, there can be
multiple equilibrium states coexisting under certain riser arrangements and flow
conditions. The interaction between vortex-induced vibration and the timer-
averaged force effect, and also the interaction between multiple equilibrium states

can be important and interesting to the investigation of the dynamics of the tisers.

The dynamic simulation on the riser collision. The collision between two risers
depends on many factors, such as wall surface characteristics, the material of the
two tisers, and the contacting point during the collision and many othets. The
detailed investigation using an appropriate model can ultimately identify more

accurately the damage to the riser and the dynamic behaviour of the riser after

collision.

The extension from two risers to multiple riser interaction. The ultimate objective
of the investigation into riser interaction is to understand the mechanism of riser
cluster interaction, such as for TLP and Spar risers. Based upon the present
investigation, further investigations could be started into three-tiser intetaction,
with one located in the wake formed by the other two tisers. By using same
methodology as in this thesis, investigations can be made into understanding the

effects of the additional risers, and ultimately lead to the understanding of the

multiple riser interaction.

Due to the deepwater challenges identified in the first chapter, the interaction
between the risers and the whole system is also a key issue in deepwater
development. An understanding of the effects of the whole system dynamics on

the inter-riser interaction (the interaction studied in this thesis) is important to the

further understanding of the inter-riser interaction mechanism.
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Based on the investigations described in this thesis, the following conclusions can be

drawn:

The application of the free streamline theory to account for fluid forces exerted on the
wake-located downstream cylinder is successful. When lacking the necessary fluid force

information, it is an effective tool to provide the data necessary for the investigation of

the dynamics of the two cylinders interaction.

The present investigation in two dimensional space is the most comprehensive and
fundamental research on the interaction between two cylinders conducted so far,
which not only covers a much wider area of the wake field that has not been tried
before elsewhere, but also addresses the issue on the mass parameter which is a topic
has been neglected in the past research. Combining the stability analysis and
continuation investigation, the study disclosed the mechanism of the cause of the two
cylinder potential collision, a phenomenon which has been recognised in recent years
and has never been appropriately addressed. The present continuation is the very first

exercise in accurately identifying the critical state of the two cylinder collision. The
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dynamic simulation explains the phenomenon of the two cylinder interaction in time
domain, which is helpful to the understanding of the experimental observations and

for the further estimation of the possible damage incurred should collision occur.

The three dimensional investigation is an extension of the two dimensional study.
However, from the perspective of quantitative study, it is essential part of the
investigation of the two risers interaction. Starting from the statics investigation, the
examination of the interaction effects reveals the non-negligible effects of the wake on
the interaction. The parametrical investigation shows the importance of the wake effect
in different ways. The difficulties of the laboratory simulation of the very large scale
marine riser interaction were also addressed. The continuation investigation cross-
confirms the two dimensional investigation results, and, more practically, the
investigation provided some general data regarding the critical state to avoid the riser
collision. It is hoped that this can work as a design guideline for riser clearance. The
dynamics simulation in three-dimensional space clarified the dynamic behaviour of the

two misers interaction, and presents some valuable information on the riser collision

investigation.
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Without specific explanation, the symbols used in this thesis are referred to as follows:

2
a: Mass parameter (= pD );
2m

A, Ay, A,: Cylinder cross section area, the whole area and the inner area

b : Wake velocity ratio (= LVJ—) ,

0

or half wake width, where the wake velocity deficit is half of the magnitude on wake

centreline at same streamwise location.

C,,,C, : Drag and lift coefficients for downstream cylinder respectively | = ) Fo, .
~ pVID
5 PV
C,,,C, : Drag and lift coefficient referenced by the wake velocity | = _I_F_m_ :
~ pU?*D

2

C5,C,o: Drag and lift coefficients for downstream cylinder respectively at equilibrium

position;

C,. C,.: Pressure coefficients based on free stream flow velocity and wake flow velocity

respectively
D : Diameter of cylinder;

E': Young’s modulus;
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F,F Vi Fluid force in X, y direction respectively;

g : Gravity acceleration speed;

H _: Flow tension factor.

I : Cross section atea momentum,;

k : Unit vector along cylinder axis pointing towards readers

k,: Stiffness of tensioner system

K (qm ,q") : Induced velocity at g, by vortex located at g, with unit strength

K., K, : Spring stiffness in x, y direction respectively

I : Length of the cylinder;

ly,1,4,Al, : Unstrained length, vertical distance between top connector and bottom

connector and the deviation of the vertical distance with the existence of dynamic

movement.

m : Mass, including mass of cylinder per unit length and fluid added mass (= mg +m, );
m : Structure mass of the cylinder in air

m,: Fluid added mass of the cylinder

11 : Local normal unit vector of the sutface on cylinder or wake boundary

P, R, F, P,: Pressute, static pressure outside the cylinder, inner pressure insider the

cylinder, and pressute on the surface of water respectively

q,> 4, Locations of elements on cylinder surface and wake boundary

¥ : The ratio between the lift coefficient and drag coefﬁcient[= &]

D
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R(qm,qn)z vector from ¢, to q,

N -

. . L K
R, : stiffness ratio between y direction and x direction in two dimensional case = [—y—

X

s: Co-ordinate along the cylinder length

S: cylinder centre to centre spacing

T : Tension within cylinder;

T, : Effective tension within riser

(u, v,): Induced flow velocity at location of (x,.»)
u: Wake velocity deficit

(4,,v,): local flow velocity at j-th element

U : Wake flow velocity;

U, : Wake flow velocity deficit on the wake centreline

U, :Resultant velocity (= \/(U - ch)2 + yz )

V.
U ,: Reduced velocity (= —a_)LD—)

U, : inflow velocity to the cylinder (used in the free stream line theory illustration)

Vy : Free incoming flow velocity;
(x,» ¥,): Co-ordinate of i-th element on wake boundary

(x5, ¥o): Co-ordinate of the flow separation point
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x,, X, : distance between the virtual source and real cylinder in the wake consideration,

modified streamwise location of the downstream cylinder

(x, y): Co-ordinate of the downstream cylinder

(X,Y): Non-dimensionalised co-ordinates of the downstream cylinder;
Z : Vertical co-ordinate for a three dimensional case

o: Azimuth angle on the cylinder;

S : The deviation angle of flow velocity induced by the movement of the cylinder

p : Density of flud

7 : Nondimensionalised time variable (= a)xt);

: Spring coupling angle.

T'(q »): Vortex strength at position ¢,

& : Structure damping coefficient;

@, ,0 ,: Natural circular frequency in x and y direction respectively
Al : Element length on wake boundary

(Ax 5 Ay j): Correction of the position of wake boundary due to the modification of

induced flow velocity

(%),(¥) : Upper dot and upper dot dot represent first and second order derivatives with

respect to time t or 7 respectively.

subsript:

1, 2 :upstream and downstream cylinder
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Appendix A

BIFURCATION STRUCTURE AT LOSING STABILITY

A Continuation Analysis Based on the System in

Parallel With Chapter I11
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A1 General Remarks

A systematic continuation investigation has been presented in Chapter IV regarding the
variation of equilibrium positions with the flow velocity and their cotresponding stability
for a prescribed initial arrangement. However, the specification of the system provided
therein is different from that in Chapter II1. In order to give a parallel explanation for the
bifurcation structure in the analysis made in Chapter III, an alternative specification of the

dynamic system is presented in this appendix.

If the co-ordinate system is originated at the centre of upstream cylinder, and assuming the

downstream cylinder is always in an equilibium position under any prescribed flow

velocity, then the dynamic system for the downstream cylinder can be written in the

following standard form,

%= f(%)

(A1)
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Where x,, X, denote the streamwise and transverse displacements of the cylinder from

the equilibrium position (X, Y,),1e.

x, =X~
x;=Y-h

X

(A3)

and C,,, C,, are fluid drag and lift coefficients at equilibrium position (Xo, Y;)) The

definitions of othet parameters are the same as in Chapter III. The Jacobian matrix of

system (A.2) is
Y
iy Ex— (19.’ = 13 29 3’ 4)

f

A4

Which is the matrix for stability analysis and it is exactly the same as the one utilised in

Chapter I11.

Let cylinder mass parameter be set as 0.2, stiffness ratio set as 7.07 and supposing there is

no spring coupling, the streamwise position varies from 5 to 75 and transverse position
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varies from 0 to 2. The whole wake field is investigated systematically. The results are

presented according to wake centreline, inner wake position and outer wake position

respectively as follows:

A.2 Wake Centreline

Figure (A.1) to (A.4) are continuation results for the equilibrium positions of (5,0), (8,0),
(12,0), (15,0). It is seen that for all four cases, there is a bifurcation point, which is called the
“ctitical state”. When flow velocity is under the critical value, the presctibed position is
always stable. However, there is an unstable equilibrium position accompanying the
prescribed one located somewhete upstream. When the critical velocity is reached, a
transcritical stationaty bifurcation occurs, with an exchange of stability. The prescribed
position begins to lose stability, whilst the stability is gained at the other branch, which is
located somewhere downstream. If the eigenvalue characteristics of corresponding
equilibria in one dimensional space are checked, then the stable position is found to be a
stable node and the unstable position is a saddle point as depicted on Figures (A.2). Figure
(A.5) and (A.6) show the variation of eigenvalues with the different flow velocities (The
flow velocity is not shown in the figure here). It is seen that with the increase of flow
velocity, for the branch from A, to T to B,, one pair of the eigenvalues landed on the real
axis before losing stability, with one moving toward the positive real axis and the other
towards the negative direction. At critical state of T, the eigenvalue reaches the orgin. If
there is a further increase of flow velocity, the eigenvalue transverses the imaginary axis and

lands on the right half of the eigenvalue plane. The other branch of A4, to T to B, on the

other hand, does the same, but in the reverse order.

Compared with the analysis made in Chapter 1], the variation of eigenvalues along 4, to T
to B,conforms to the critical state of stationary bifurcation. Meanwhile, the results show a

downstream stable equilibrium position that has a corresponding unstable equilibrium
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position located upstream when near the critical state. At critical state, the two positions

converge with each other, which is the result shown in Chapter IV.

A.3 Inner Wake Position

Figures A.7 to Figure A.16 show the continuation for the equilibrium position at transverse
location of Y,=7 while X, varies from 5 to 75. It is clear that there are two turning points
and one transctitical bifurcation point in the results. The path of A, to T, to B, is the
stability variation route that was investigated in Chapter II], and the state of transcritical
bifurcation T, is the critical state, which was defined in Chapter III. Checking the
eigenvalues varation depicted in Figure A.9, clearly T, is a stationary bifurcation point.
Meanwhile, there are other three equilibrium positions when the flow velocity is close to

the critical state T),, among which two are unstable. Refetring to Figure A.10, both two

turning points correspond to the stationary bifurcation.

Checking the results against the analysis made in Chapter I, the transcritical bifurcation
point Tj, cotresponds to the state of Q in Chapter I1”. This implies that the loss of stability
investigated in Chapter III does not necessarily cause the two cylinders to collide with each
other, because there are other equilibrium positions at which the cylinder can be stable.

The two turning points T, and T, correspond to the two turning points D(§) and M(D) in
Chapter IV,

A.4 Outer Wake Position

Figures A.17 to A.22 show the cases when the equilibrium positions are located at Y,=2.
They show that characteristics of the bifurcation are the same as the cases for Y,=1.
Generally there are two turning points and one transcritical bifurcation point. The minor
difference is that two turning points ate all located somewhere further in than the

prescribed equilibrium position. At a large flow velocity, the stable equilibrium position is
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located well outside of the wake. Such a solution is caused by the parameters of the
dynamic system. Because the prescribed position is presumably the equilibrium position,
which may include those cases where the downstream cylinder 1s initially located outsider
the wake, the unstable position here can be considered to be accidentally entrapped into
the equilibrium position in the wake. The results also exhibit a much smaller region of flow
velocity when there are four equilibrium positions. This suggest that the region for multiple

equilibria is getting smaller at outer wake, conforming to the result of Chapter I1/.

Figures A.23 and A.24 are two special cases for demonstrating eigenvalue variation for a
small mass parameter a=2x70"at X,=5. For two different stiffness ratios, R,=7.5 and 2.0,
to choose such a high R, is purely for the convenience of illustrating how the eigenvalue
varies with the flow velocity. It is seen that with the increase of flow velocity, Hopf
bifurcation can be regained at a certain velocity, and ultimately, the cylinder will lose
stability via stationary bifurcation. Nevertheless, when the stiffness ratio is high, the

stability after Hopf bifurcation may not be able to be regained.

A.5 Remarks

The analysis presented in this appendix is fully consistent with the conclusion drawn in
Chapter III and Chapter IV. It also provides an alternative insight into the structure of
possible bifurcation which the system can show. This appendix also shows the
imperfection of the traditional stability analysis described in Chapter III, for example the
difficulty in explaining behaviour after loss of stability. The bifurcation structure for the

case investigated in this appendix for #=0.2 confirms that it is mainly a stationary

bifurcaton.
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Appendix B

FLUID ADDED MASS COEFFICIENT AND INTERACTION FORCE
WHEN ONE CYLINDER IS NEAR TO ANOTHER AND WITH
DIFFERENT MOVING VELOCITY

Potential flow interaction
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B.1 General Remarks

According to that potential flow theory, when one cylinder is moving at constant velocity in
a reservoir of otherwise stationary fluid, there is no force acting on the cylinder (d’Alembert
Paradox, the net force on a single body without circulation in a steady ideal flow is zero).
When the cylinder is accelerating in such fluid, however, one force (which is proportional

to the acceleration of the cylinder) is applied by the flow. Such a force is defined as the fluid

added mass force, which acts to oppose the cylinder’s acceleration.

In general, added mass can be associated with both translation and rotation of the body.
The added mass force on a rigid three-dimensional body accelerating from still in a

reservoir of stationary fluid is the sum of added mass forces associated with all six possible

rigid body accelerations (Blevins, 1990),

L —t 1
i=l " dt ®.1)

Here, m; is the fluid added mass term, 4, denote three translation and three rotation

velocity. For the case of one circular cylinder in two-dimensional flow, then the only

nonzero terms in (B.1) are
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m,, =my, =p7m2'

Here, ais the radius of the cylinder and pis the fluid density.

Howevet, when there are other objects in the flow, especially when they are close to each

other, the fluid added mass will be position dependent because the nearby objects will
affect the disturbed flow.

In two-dimensional flow, assuming there are two cylinders located nearby and they are
labelled as 1 and 2 respectively, the fixed to earth co-ordinate system is used to identify the
moving direction by x and y. The definition of the interaction force and the fluid added

mass force, caused by acceleration of the two cylinders, can be defined as:

[ du, |
(R, ] ) My Mk ml2xy-‘ dcff]y
By o™ My Maw Moy | |\ g 52
F, My My My, My, ii_@r_
LFIZy_ [ Maye My My My, dz:y
| dt

Here, u,,u,, u,, u,, represent the x and y direction velocities of cylinder 1 and 2

respectively. m,,.,m, ,m, . m, ate added masses caused by cylinder’s own acceleration,

Myes My, s My s My, ate interaction forces caused by the acceleration of the cylinder

nearby. The determination of these terms has to be found by solving the fluid flow.

In this appendix, numerical computation is carried out to explain the variation of fluid
added mass of the cylinder in the presence of another cylinder neatby. The computation is

based on the potential flow theory with the complex potential method(Dalton and

Helfinstine 1971). The investigated individual cylinder is moving at different speed.
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B.2 Solitary Cylinder
For the convenience of explanation, it is better to start with the case of a solitary cylinder. If
a solitary cylinder with radius 4 is moving in an unbounded stationary fluid with velocity U

at an angle of abetween moving direction and x axis (ref. Figure B.1), then the complex

potential can be described as

Figure B.1 Schematic diagram for treatment of solitary
cylinder.

Uazela
- 3
Z-7 B.3)
Here wis the complex potential,
w=g9+iy

(B.4)
¢ is the velocity potential function and i is the stream function

Z is the complex variable with

Z=x+iy B.5)

the co-ordinate system is earth-fixed, and
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Z,=x, +1y, ®.6)

is the instantaneous position of the cylinder which varies with time.

Expression (B.3) denotes the flow field at any given position Z, disturbed by the motion of

the cylinder at position Z. The effect of the disturbance is equivalent to a doublet.

The flow velocity in the flow field can be represented as

V(Z)=

aw(z .
2 - u(z2)-m2) ®7)
Where uand vare the x and y direction components of the flow velocity in Cartesian co-

ordinate system.

In order to find the fluid forces acting on the moving cylinder, the Bernoulli equation is

utilised, which is

gﬁ+(p—po)+ V:-U? '-'-‘g(t) (B.9)
ot P 2

Here p is the pressure in the flow field, if fluid forces on the cylinder is of concern, the
pressure is then taken at the surface of cylinder. p, is the pressure in undisturbed fluid,

g(#)is an arbitrary function of time (assumed to be zeto in this case).

The fluid force acting on the cylinder per unit length can be obtained by integrating

pressure around the cylinder as follows,

=4, (o= pis=-pf Fis-24 (-3 ®)
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Where ds = (Z -—Zo)dﬂ , and ¢, represents the circumference of the cylinder. By

substituting expressions (B.7), (B.8) into (B.9), the fluid force can be written in the

following way
du
=-pma’ — 10
F=-pma’— (8.10)

Such a force is the fluid added mass force, and if the definition of (B.1) is applied, the
added mass is equal to the amount of fluid expelled by the cylinder ( pm?). It represents

the mass of fluid entrained by the cylinder when the cylinder is accelerating. This is also

called virtual mass ot hydrodynamic mass.

B.3 Two Cylinders

2,=22,

z,‘,.,=z,+a’/z,,

o

Figure B.2 Schematic diagram of two cylinder interaction for
added mass evaluation.
When one cylinder is moving in the stationary fluid, with another cylinder neatby, or when
two cylinders move in a stationary fluid at their own velocity, the methodology is similar.

However, because of the interaction between two cylinders, extra expressions are needed to

account for such an interaction.
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As shown in Figure B.2, two cylinders are labelled as 1 and 2 respectively. They are located
at position Z and Z, in complex co-ordinate system. The moving velocities for two
cylinders are U, and U,, with angles of @ and @, between x axis and the direction of

movement respectively. Without considering interaction, the disturbances caused by two

individual cylinders’ movement can be represented by

Ua’e”
=- =1,2 11
w=-——r (P12 (B.11)

/

However, the total flow velocity disturbed by the two cylinders can not satisfy the

impenetrable condition on the cylinders, which is the essential boundary condition for flow

field, i.e.

(v-U,)

/

A,=0  (=1,2

(B.12)

Here, 71, is the unit normal vector of cylinder ;. If the boundary conditions for two

cylinders are treated separately, and only cylinder 2 is considered, because cylinder 1 is
equivalent to a doublet, by arranging a mitror doublet within cylinder 2, the boundary
condition on cylinder 2 can be automatically satisfied. The mirror doublet is denoted by
number index of (2,1,1), which means at position of cylinder 2 caused by source doublet

within cylinder 1, and it is the first mitror doublet, then the complex potential can be

expressed as:

w - anz e PR N}
wa = =Bs Ui —— 7 (B.13)
Whete
a2
ﬁz,l,l =
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2
ZZ|I=ZZ+—_—£'_.—' (B14)
A (Z| _ 2)
o, =7 +2n, -, (B.15)

However, the aforementioned 3 doublet can not satisfy the boundary condition for cylinder
1. In order to satisfy the boundary condition for cylinder 1, mirror doublets have to be

arranged within cylinder 1 for the two doublets located at cylinder 2. They are numbered as

2,1,1) and (2,1,2), which are the images of Z, and (1,2,1) respectively. Their complex

velocity 1s

w. =-B Ua e (B.16)
1.2 1,212 Z—' Zl'z.|

!

e — BT

12,1 ‘Zz _ Zl‘
.

2., =2 +—=-= (B.lB)
12,1 1 (Z2 _ ‘)

Qa, = nr+2n, -Q, (B.19)

e"an.u

Wi = _ﬂ|.2,2U|a2 Z"Zl,z,z

Bz = a B (B.20)
e |ZZ.I.I - Zn‘ ! ‘

Z|_2,2 = Zl +__—a—'__— .21

(Z1.|.l - ZI) ®.21)

(B.22)
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The above additional two mirror doublets violated the boundary condition for cylinder 2
again, so further mirror doublets are needed. Such a process will continue infinitely. The

general complex potential of the mirror doublet can be written as:

e (U, (k=1,3,5..2n+1) .
= — a X .
Wl._/.k ﬂl./.l Z - Zr.j.ﬁ Ui (k = 2, 4’ 6. ._2n)
a2
B=i———— B (B.24)
! |Z;.r.k—l - Zl\
a2
Zi/ = ZI ‘=< (BZS)
“‘ (Zj.t.lz-l - Zi)
al‘j.‘ =n+ 2"]1 - aj‘n,k—l (B26)

Here,i=1,j=20ti=2,j=1with k=12,...

However, it is seen that the strength of the mirror doublet is diminishing, as shown in

equation (B.24), B, , < B, ,,.,» and the whole flow complex potential is 2 summation of the

complex potential caused by all these singularities which will converge. The final flow

complex potential can be expressed as:

o

w=w +w, +iwl.2.k +sz|.k

k=1 k=1 ' (B.27)

The flow velocity is,
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B-10
L_d¥
u-iv=—p
__Uaz- e N zm: ﬂ eiale N i ﬂ e"az_u W (BZS)
S (E-z) S T(z-2,,) R (2-2,)
+U , eia| R ® e"az.u N B e’al.z.k
“ (z-2) .E‘,.p""* (z-2,,) 7 p *(z-2.,,)
The Bernoulli equation (B.9) is used to determination of fluid force.
-0 Lus-L§ (v -v2)a 29
F=4 (p—po)ds—-PiJ 5 558 (V1 -U)ds (B.29)

Here c,is the circumference of the jth cylinder. It can be seen that, when two cylinders

move at different velocities, the fluid forces can not be expressed as a linear summation of
two dynamic head, because of the coupling between two velocity in the dynamic head.
Such a component represents the potential flow interaction force when two cylinders are
moving at constant velocity. On the other hand, the force 1s a linear functon of the two

cylinders acceleration. As fluid added mass is the main interest hete, assuming the two

cylinders started from still, by applying the definition of (B.2), all the coefficients can then

be obtained.

B.4 Computation Results and Discussion

When two cylinders are arranged in tandem layout, Figures B.3 to B.6 show the different
added mass terms. It is seen when the two cylinders are separated by more than two
diameters, all the added mass coefficients approach to the case for solitary cylinder, i.e. the
interaction effect diminishes. When the two cylinders are close to each other, e.g. less than

1.5 diameters, the interaction increases dramatically with the further decrease in the spacing,

Such an effect applies both to the interaction term like My, My, (i # j) and the added
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mass term as M, ,m, . As the result of flow symmetrical characteristics, the term of

m,and m, are null.

Figures B.7 and B.8 show the interaction force terms when the two cylinders are arranged
in a staggered layout. The data shown in the figures are the fluid force acting on the
cylinder 1 caused by the acceleration of cylinder 2 in x direction. It is seen that when the
spacing between two cylinders is larger than 2 diameters, the effect of the interaction is
small. The interaction force is pronounced only when the spacing between two cylinders is

very small. The interaction term is largest when 7=45".

Based on the above calculation results, it can be concluded that the interaction effect due to
the fluid force, caused by the acceleration of the two cylinders, is not prominent when the
two cylinders are separated with more than 2 diameters. Only when the spacing is very
small, can the effect then be significant. If the time domain simulation for the two cylinders
interaction is considered, when the two cylinders are very close to each other, the collision
will be likely to occut, and the collision effect will be much mote significant than the fluid

added mass force terms. The above analysis justified the insignificance of the interaction

effect due to the added mass force terms in the dynamics simulation.
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