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Summary 

This thesis reports the results of a three year, full-time research project 

investigating the generation and communication of product descriptions within the 

conceptual phase of the engineering design process. The research pays particular 

attention to the role played by the designer's sketch in communicating new 

product ideas. 

The investigation commences with a literature review of existing design process 

models (Chapter 2), which helps to define the area under investigation while 

presenting modem views of the process in relation to classic examples from 

established design research. 

Chapter 3 presents a literature review of the methods currently used to support 

communication of product descriptions. These methods of Specification are 

assessed and particular attention is given to new computer-based recording 

methods such as DOORS and Cradle. Suggestions for improving the efficiency of 

such models are put forward and the text-only bias of such systems is identified. 

This comparison of the existing systems thus identifies the research questions. 

Having identified the possible improvement to be gained by the incorporation of 

visual material in addition to the universal text description, Chapter 4 presents a 

literature review assessing the roles of the conceptual sketch in engineering 

design. As well as presenting views of drawing from philosophical, psychological 

and scientific standpoints, this section compares attempts made to support the 

engineer's sketching activity by computer means. This chapter concludes that 

efforts made to provide effective computer support of sketching by freehand 

methods are preferred to attempts made to replicate the process with current 

computer tools. 
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The resulting research experiment, the methodology of which is described in 

Chapter 5, uses students from the final year of the Product Design Engineering 

course at Glasgow School of Art and the University of Glasgow. The main aim of 

the experiment is to identify means of including sketches within the kind of text

based support methods discussed in Chapter 3. It also observes the volume and 

pattern of information produced by sketch activity throughout the conceptual 

stages of the design process and aims to find methods which would enable 

sketches to indicate the general progress of a design. The findings are detailed in 

Chapter 6. 

From the research experiment, the use of sketches to add value to up-to-date text

based product descriptions has been assessed. A resultant model, included in 

Chapter 7, shows how the computer support of the sketching activity results in a 

database of the developing design, to and from which text and visual data can be 

inputted and later retrieved by query. This provides a detailed design record and a 

specification system which can distribute complete and up-to-date specifications 

instantly or issue partial specifications by query. Assessment analysis of inputted 

sketch material, based on methods outlined in Chapter 6, also provides an 

additional utility to management and/or the reflexive designer that will help to 

improve design efficiency through increased self-awareness. 

Chapter 8 summarises the contribution to knowledge made by this study. It then 

suggests areas for technological research and improvement to enable the 

realisation of the proposed model. It also recognises how this study may be 

extended further to provide additional detail to the findings presented here. 
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1.1 Introduction 

The present engineering design environment is typified by shortening life cycles 

and growing product complexity. These two factors among many others have 

resulted in a cumulative increase in the amount of knowledge to be considered 

during design. In addition, greater accountability in terms of product liability is 

putting pressure on engineers to change their working practices [Hollins and Pugh 

90] [Wallace 97]. 

The design research community has spent much of its effort in recent years 

developing information support systems that will capture relevant knowledge and 

experience needed in current product design and development. The emphasis has 

shifted from attempting to discover an algorithm for automated design and moved 

towards developing software to support designers [Fischer and Nakakoji 92]. The 

latter approach reaffirms the importance of the human element in design. 

For several years researchers chose to ignore the earlier stages of design including 

the conceptual phase, in favour of developing expert systems for supporting the 

latter stages [Hurst and Hollins 95]. These latter embodiment and detail phases 

utilise an enhanced quality of information [McGown and Green 95] that is more 

readily amenable to computer support than that available in the ill-defined and 

complex conceptual stages. Work has also been carried out into improving the 

evaluation of conceptual design [Green 94] [Rodgers, Patterson and Wilson 95] 

[Cziulik and Driscoll 97] [Kuhnapfel97] but effort is required that will develop 

recording mechanisms to provide conceptual synthesis input to such evaluation 

systems. 

Knoop et al agree that computer support of the later stages of design is easier to 

achieve since the product description is already well known. They contend that 

technology push coupled with a poor understanding of the design process led to 

lack of support for the conceptual designer [Knoop et al96]. Today, however, 

studies into the early stages of design are now an increasingly popular focus for 

researchers. This thesis aims to add to that growing body of work. 
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Up until the last few years the conceptual stages of design, typified by 

indeterminate knowledge and evolving priorities, have been largely excluded from 

the digital environment and thus any digital record of the evolving design. In 

essence a design record may allow for any retrospective view to unearth the long 

forgotten secrets of who did what and why. 

If looked at in a slightly negative way such a retrospective design record can find 

the cause of product failures and be used to apportion blame. When the wings fall 

off an aircraft a professionally-kept design record can go a long way to proving 

that the company were as responsible as possible in their design processes and 

looked into every possibility of failure. 

Liability aside, it is not inconceivable that the recording of decisions, personnel 

(sic) opinion, and the passage of information will yield the secrets of a design that 

eventually becomes successful. Once it is completed and ready for the market no 

product can reveal the many reasons for its design or how its design developed 

throughout the process. From [Burns and Stalker 1959]: 

'Even though the final responsibility for taking a particular action rests 

with some definite person, we shall always find ... that its various 

components can be traced through the formal and informal channels of 

communication to many individuals who have participated in forming its 

premises. ' 

Used in this way, auditing design appears positively beneficial and not just a 

useful exercise in damage limitation. 

Design records made in real time provide not only a historical viewpoint but also 

a snapshot of the present [Bucciarelli 1988]. 

'Through it all, everything appears in flux, interwoven and turbulent. 

Still, the shutter must click, images must be fixed, decisions made.' 
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From there the design evolves and moves on, and yet more snapshots are taken. 

All of the important inputs to the design must be passed on to those responsible 

for furthering it. A design record operating in the present in this way can be seen 

to actively stimulate creativity and activity as well as 'play it back'. 

The interactions between influences to the design can become complex and 

diverse and in order to combat the very finite nature of human short term memory 

the system should, whenever desired, provide a prompt to the designer, a reminder 

of 'where we are' and 'how we got here'. Enhanced quality of information 

enables more accurate externalisation of design ideas and improved subsequent 

recording of the process. 

To recap, by storing distributed updates of 'current' design information a design 

record can be built 'while design happens'. A design record would: 

- act as an aid to the designer's short term memory by prompting the designer 

trying to recall the reasons, decisions and sources behind the current design 

description; 

- help to demonstrate that the firm has gone about the task in a responsible way in 

cases of product liability; 

- help to further improve design understanding, by enabling meaningful research 

into the re-use of previous design project knowledge within new design projects. 
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1.2 Research Programme 

The research presented in this thesis is based on a three-step programme broadly 

given as: 

Research - Experiment - Generate Model 

The main activities within each phase were as follows. 

Research Phase 

The first activity within this phase was the review of existing design process 

models with the aim of identifying broad research areas. Literature review of 

current research endeavour helped identify neglected areas of concern requiring 

new research or investigation using new approaches. Novel areas of study 

complement existing or ongoing research activities. The study presented here: 

- addresses a perceived lack of research into the early stages of design; 

- addresses a perceived lack of research into conceptual design by experiment into 

working practice, complementing a body of research gained by laboratory-based 

methods; 

- links with work into the evaluation of conceptual design information, by aiming 

to improve the quality of the inputted design information. 

Two areas were next researched in parallel: 

- recent research into conceptual activity; 

- existing methods for specification and product description. 

By assessment of the shortcomings in both areas, further investigation into the 

visual aspects of communicated conceptual design activity was proposed. 
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Experiment 

An experimental study was arranged to provide data by methods of unobtrusive 

measure from a non-laboratory setting. The overall methodology was influenced 

by ethnographic approaches. The resulting data would act as input to a model for 

improved information distribution. The methodology of the experiment and 

analysis of its results are included in Chapters 5 and 6. 

Generate Model 

A model for improved information distribution was constructed based on the 

experimental results and is shown in Chapter 7. Further work identified areas for 

future research on two fronts in particular: 

- the need for technological improvements and research to make the model 

technically feasible; 

- the desire for further experiments based upon similar methodology to extend the 

work presented here into different settings. 

The final phase comprised the writing up of this thesis and in particular forming 

conclusions about the research results. These conclusions are discussed in 

Chapters 6, 7 and 8. 

1.3 Project Management 

Adhering to the general design of the research programme given in Figure 1.1, a 

work plan was constructed at the start of each calendar year. The year planners 

detailed the main tasks required for completion of the project and displayed them 

in the form of a Gantt chart. The tasks covered in each of the three years of this 

full-time project are given in Figure 1.2. A second experimental data set was 

analysed in an additional part-time fourth year. 
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2.1 A Phased Design Process 

If this study is to focus on activities within the conceptual phase of the 

engineering design process, the tenn 'conceptual phase' and the notion of a 

phased design process must fIrst be introduced. 

Since the recognition of design methodology as an emerging discipline in the 

early 1960s, researchers and practitioners have attempted to model the design 

process. As early as 1924, however, Poincare had realised what could almost be 

seen now as a proto-process model (described in [Lawson 1980, 1990]). Poincare 

described a fIve stage creative process consisting of 'fIrst insight', 'preparation', 

'incubation', 'illumination' and 'verifIcation'. 

'First insight' involves recognising that a problem exists, and accepting to tackle 

it. 'Preparation' involves much hard work in gathering infonnation about the 

problem, and Poincare emphasised that here there is much iterative movement 

between this and the previous 'stage'. 'Incubation' is the stage at which the 

designer appears to be doing nothing, but this is the gestation period for ideas, and 

it is hoped that reorganising and re-examining of the salient facts brought together 

in the 'preparation' stage will lead to the 'sudden emergence' of an idea - the 

'illumination'. The idea fonned in the 'illumination' stage will then be checked 

for perfonnance by calculations and the like in the 'verification' stage. 

Modern methodologists have created similar models of the design process within 

the engineering domain as an aid to understanding how design proceeds from 

opportunities or ideas to a fmished proposal or manufactured product. Some have 

done so in an attempt to describe the sequence of activities that typically occur in 

designing, while others have attempted to prescribe a better pattern of activities. 

Accordingly these two types are tenned descriptive and prescriptive [Cross 94]. 

Most design process models are accompanied by a diagram, typically showing the 

steps involved as boxes linked by directional arrows. One of the earliest of the 

modern diagrams was very complex, showing somewhere in the region of fifty 
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tasks, processes and outcomes involved in design [Asimow 62]. Overall, however, 

Asimow's model divided the design task into three discrete phases; feasibility 

study, preliminary design and detailed design. Only a few years later Krick's 

model for the process advocated a five step process that began with a statement of 

need and terminated with the specifications for a means of fulfilling that need 

[Krick 65] (Figure 2.1). The five stages were: 

• Problem formulation - where the problem at hand is defined in a relatively broad 

manner 

• Problem analysis - where the problem is defined in relatively detailed terms 

through the gathering of information 

• Search - where alternative solutions are sought through creative thought and 

consultation 

• Decision - during which alternative solutions are evaluated and screened until 

the best one evolves 

• Specification - the phase which results in a complete description of the physical 

and performance characteristics of the product 

Recognition of 
a problem to 

be solved 

The 
process 

of 
design 

Completely 
specified 
solution 

Figure 2.1 Krick's design process model 
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Through models such as these the notion of a sequential, linear design process 

became accepted. [Dixon 1966] describes the discrete stages of 'goal recognition' , 

'task specification', 'concept formation', 'engineering analysis', 'solution 

specification', 'production' and 'sales' (Figure 2.2). While different authors use 

different terms to name the stages of design, semantically they are largely similar. 

A list of terms used in some of the most well-known models and their relative 

position along the continuum of design from idea to manufacture is shown in 

Table 2.1. 

Define the problem 

Model formation 
--------r--------

Analytical I Experimental 

Application 
of physical 
principles 

Gathering 
data 

Figure 2.2 Dixon's design process model 

Distinction must be made however between steps referred to as 'specification' in 

the various models. The early models of Krick and Dixon both speak about a 

'Specification' (or 'Solution Specification') stage near the end of the process. 

Here this is taken to mean the finalised product description delivered to those 

responsible for its production - it is the end of the line as far as the engineers are 
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concerned and where the job of 'making the thing' is handed over to the shop 

floor. Dixon distinguishes between this finalised Specification and the 

Specification given to (and formulated by) the designers and engineers before 

concepts can be created and discussed - this latter type Dixon calls the 'Task 

Specification' stage. 

Modem models such as that of [Pugh 82] try to make engineers see the 

'Specification' as dynamic; in essence Dixon's 'Task Specification' is added to 

and evolves to become the final 'Specification' delivered to the production 

people. The two documents are the same document at different points in time. So 

it is that modem descriptions and models of the design process may talk about 

Specifications being at the start and end of the creative process. The 

manufacturing industry and its shop floor still tend to think of the specification as 

being the final delivered description of what it is that is to be manufactured. 

Another breakthrough seen in Dixon's model is the use of two-way arrows to 

indicate that in actual engineering practice the design process is not a straight 

step-by-step path. Any design solution may require a number of iterations through 

various parts of the process and much going back and forth [Dixon 66] [Jones 70]. 

[Pugh 90] states that; 

'At all stages, the design core activity is operated iteratively, yet upon 

later inspection, the stages as depicted will appear to have been gone 

through sequentially. So, the main design flow can, and does, often 

reverse at any point in the design activity and some iteration is inevitable, 

but operating within the design core rigorously and systematically will 

minimise unnecessary iteration.' 

Inherent in a desire to design should be a willingness to accept that iterative 

activity will occur but hopefully awareness of the process made possible by such 

models will limit the amount of iteration required to successfully complete the 

cycle. 
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Figure 2.3 French's design 
process model 
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A slightly later model (Figure 2.3) similarly 

recognises the feedback loops between 

apparently successive stages of the process 

[French 71]. French has omitted relationships 

with other parts of the engineering purpose for 

reasons of clarity, but notes the importance of 

the inputs of information and points out that for 

instance there is no box labelled 'Evaluation' 

because he believes that it should be going on 

continuously in all the rectangles. 

Such models are clear enough to provide a basic 

understanding of the progress through the 

design activity. As French states: 

'they express only truisms and yet they have a 

value for all that. ' 

The value has been shown in design education where models such as those 

proposed by French and [Pugh 1982] have proved useful. 

There are still limitations to thse models however. By cutting the engineers 

themselves out of the equation these traditional design process models may lead 

us to conclude that engineering design is an extra-orderly, rational process 

[Bucciarelli 1988] and that the conceptual, embodiment and detail phases are just 

simple self-contained steps to success. According to [Ferguson 92] engineering is 

always subject to unforeseen complications and influences, responded to by 

contingent strategies. To him block diagrams of process models imply a division 

of design into discrete segments, each of which can be 'processed' before turning 

to the next. Further, Ferguson feels that: 

'Design is not, as some textbooks would have us believe, a formal, 

sequential process that can be summarised in a block diagram. ' 
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More flexible, organic models respond to such criticisms and help to illustrate 

some of the process-related problems encountered by practising engineers 

[Rhodes and Smith 87][Scott 88]. Such models eschew clinical clarity in favour of 

complexity - illustrating the reality of the design task in industry. Rhodes and 

Smith illustrate the information inputs to Pugh's design core (Figure 2.4). Pugh's 

notion of an evolving PDS [Pugh 82], comprising information evolving 

dynamically through the system, is another advance in the history of design 

process models. 

INFOA><ATKlN SOJI'CES l~nON TEOINIOUES 

NON·~OEO R!3:O'lCEO 

I !iQQ(S > .-.. 
I~EAi~ > 

s,eQ4c;ot;on 

ANOARO 

I~~~ > 
I~~I!; > 
ETC. 

'"'-
r!llSO.J>!:i~ > 

I~BOOiiI'&:5N > 

I~~I > 
Elt:. 

jm!!lR~ > 
ere:. 

I INFORM!lTlON TRANSFER 

Figure 2.4 Information inputs to the design core 

Scott's 'framework for design' recognises chief players and key activities in a 

process that is driven by the communication of 'intent' by a designer or group of 

designers (Figure 2.5). Thus Scott goes some way towards recognising design as a 

social process and so concurs with [Bucciarelli 1988] in viewing the engineering 

firm as subculture. 
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There are three main ideas to be taken from this discussion. 

1) Recent models recognise the importance of the flow of infonnation throughout 

the process, from idea to manufacture. They suggest that it is effective 

communication of this infonnation that drives the activity. 

2) By agreeing with Ferguson's view of engineering design as a contingent 

process it is recognised that the activities typically associated with the 'conceptual 

design phase', or any other arbitrary phase, will also occur outside of the blurred 

edges of the process model phase. Such activity is not truly contained within the 

line edges of a box in an idealised model. 

3) To be exact then this thesis studies conceptual activity within the early stages 

of design, a stage where ideas are generated despite dealing sometimes in iU

defined infonnation. The phrase 'conceptual design phase' may still be used in 

reference to other research. 

2.2 Conceptual Activity 

As was established earlier, conceptual activity within the early stages of design is 

an area that modern design research has only recently made concerted efforts to 

examine and as such is something of a 'frontier' topic. This 'phase' is one where 

the currency of ideas is at a premium. This activity, more usually referred to as the 

'conceptual design phase' is broadly defined as a stage primarily concerned with 

the generation of solutions to meet the stated need [Pugh 90] and as involving a 

search for suitable solution principles [Pahl and Beitz 84]. Here the designer must 

fonnulate a way, a method, or a concept of how to get the task done [Dixon 66]. 

According to [French 85] the 'phase': 
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'Takes the statement of the problem and generates broad solutions to it in 

the form of schemes. It is the phase that makes the greatest demands on 

the designer and where there is the most scope for striking 

improvements. It is the phase where engineering science, practical 

knowledge, production methods and commercial aspects need to be 

brought together.' 

It is odd that the area was largely ignored by researchers for many years in favour 

of topics of improved management and so on, since conceptual activity in the 

early stages of design has long been considered the stage in the design process 

where the most important decisions are taken [French 85]. The quality of the final 

product solution is determined to a large extent by the quality of the idea or 

concept generated at this time. It is in a sense the heart of the design process 

[Dixon 66]. Within all of the models reviewed by [Green 94], it is accepted that 

the conceptual design phase is considered: 

'By far the most important of all in that the inherent reliability, cost, 

manufacturability and potential for commercial success of the product are 

largely established at this time. ' 

While conceptual activity is usually associated with ideas and creativity, the ideas 

considered need not necessarily be new. Conceptual activity usually requires that 

the engineering designer gets an idea - this can either be a new idea or an old idea 

applied in a new way to a particular problem. Sometimes this requires a great deal 

of imagination, ingenuity and inventiveness but sometimes it is quite a routine 

application or revision of an existing idea [Dixon 66]. Both approaches are valid, 

with the choice made dependent upon the context for design. Sometimes existing 

ideas can be applied in new and previously unrelated domains - this is known as 

'displacement of concepts' [Schon 63]. 

From engineering case study it appears that ideas can be borrowed from other 

company departments or 'domains' and only become relevant or important in the 

correct context [Blessing 94]. This shows the importance of recording products 
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and concepts in accessible forms. 

Conceptual activity is concerned with ideas and the generation of solutions and 

can be seen to be made up of constituent operations; it breaks down into cyclical 

major components and [Pugh 90] suggests two such components. 

1) the generation of solutions to meet the stated need 

2) the evaluation of these solutions 

It is probably more 'complete' to see the conceptual 'step' as encompassing the 

three dominant stages of design. Design is defined as a three step process by 

[Jones 80]. In general terms the process includes: 

1) Analysis - the listing of design requirements and their reduction to a set of 

performance specifications 

2) Synthesis - finding possible solutions 

3) Evaluation - evaluating the accuracy with which alternative designs fulfil 

performance requirements before selection. 

It is proposed that this model of the design process at a macro-level also extends 

to cover, in general terms, the conceptual design process at a micro-level, where it 

typifies each specific action: 

1) Conceptual Analysis - information is assessed to produce requirements 

2) Conceptual Synthesis - possible solutions are generated according to these 

requirements, typically as drawings and revisions and additions to the 

requirements presented in the previous step 

3) Conceptual Evaluation - the alternative solutions generated are evaluated and 

the most promising selected for further development. 

By iteration and combination of ideas, conceptual activity within the early phases 

should provide, by evaluation, a selected concept suitable for detailing. 
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This research aims to support and improve the efficiency of conceptual design 

activity in the early stages of design by considering each step in the three step 

process. It will aim to: 

• improve the communication of information for assessment and analysis 

• improve the efficiency of conceptual synthesis by suitable support and also 

enable the recording of the generated concepts 

• improve the communicated outcomes of the synthesis activity and thus provide 

better input to the evaluation activity 

2.3 Conceptual Synthesis - Creativity and Innovation 

Historically, creativity and innovation are described in terms that make them seem 

much like black arts. A cult of 'Great Inventors' has been created, based on the 

largely mythological representation of such diverse historical figures as Thomas 

Edison, James Watt and Archimedes. This tradition is known as the 'Great Man' 

syndrome, a tradition which imbues talented, hard-working and creative 

individuals with almost magical powers [Jewkes, Sawers & Stillerman 69]. Not 

wishing to take away from their achievements, it is more accurate and useful to 

refer to men such as Leonardo da Vinci and Orville and Wilbur Wright as 

engineers [Ferguson 92]. 

Archimedes' 'Eureka' and subsequent discovery of the principles of buoyancy 

created an image which persists today, certainly when it comes to popular 

representations of working scientists, technologists and engineering designers. 

While the promotion of 'genius' and celebration of 'chance' may continue, the 

more modem view of such achievements believes more readily in the Pasteur 

Principle: 'Chance favours the prepared mind'. In the case of engineering design 

then, preparation of mind involves the bringing together of relevant and up-to-date 

information in a controlled manner. 
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The real inspiration or insight is not in instantly creating a solution, but in 

identifying a problem. This often forgotten but crucial act can be misrepresented 

as an 'inspirational moment' but this is again perhaps based on our romantic 

archetypes of creative acts more than it is on reality. Creativity is a talent, then, 

for sifting through relevant information and from it producing something both 

new and useful - an innovation. 

More modem views also recognise the creative efforts of both individuals and 

individuals working in group settings. [McGrath 84] states that individuals 

working separately generate many more, and more creative, ideas than do groups. 

He suggests the coupling of creative individuals to decision-making groups in an 

attempt to get the best out of both approaches. [Pugh 90] agrees, believing that 

concepts are often best generated by individuals and that concept selection and 

enhancement is often best performed in groups. 

It has been observed that in modem engineering practice, there are both solitary 

and intense periods where an individual works alone, hoping to be uninterrupted, 

as well as time when small groups will get together to 'struggle to set things right' 

[Bucciarelli 94]. Today, innovative, finished products will only be manufactured 

through harnessing the group efforts of many creative individuals. Rarely is one 

mind responsible for the entirety of a product [Bucciarelli 88]. 

Design teams in modern engineering must be creative almost on demand and a 

number of recognised techniques have been developed to promote and stimulate 

such open-minded thinking [Lawson 80;90][Pugh 90]. They include: 

- brainstorming 

- analogy 

- attribute listing 

- checklists 

- inversion 

- combination 
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Such techniques must be grounded in efficient gathering of relevant information 

and the promotion of a precise understanding of the problem that can be 

commonly shared - and shaped - by all members of the design team. 

Some see creative synthesis and innovation as vital prerequisites for engineering 

success - insisting that a stream of innovative products is essential to the survival 

of all companies [Peters 94], and that successful ones will sustain sales over life 

cycles that are longer than is usual [Andrews 75]. The perfect example is the Sony 

Walkman, even more interesting as a success story, since it paid no heed to 

market research findings which wrote it off as having little consumer appeal. 

Interesting, because market research reports are often used as an information input 

within the early stages of the design process [Lorenz 86] [Morita, Reingold and 

Shimomura 87] especially in Japan in the 1970s as witnessed in the QFD method, 

discussed in the next chapter. As global recession takes hold right now, it may be 

that more extreme views - such as those that call for 'focus-group-driven' design 

approaches to be abandoned [Glancey 98] - will be accepted into mainstream 

industrial practice even if seen as desperate measures. 

The term 'creativity' is perhaps just a value judgment on the quality of the 

conceptual synthesis act - 'creativity' is good conceptual synthesis. This study 

aims to better understand how conceptual synthesis in engineering manifests 

itself. The history books that tell the stories of the great engineers often use 

drawings to illustrate the moment of 'illumination', from da Vinci's scribbled 

early sketches of his 'helicopter' onwards. In Thomas Edison's early sketches we 

are apparently witness to the very moment that he devised the basic idea for his 

cylinder phonograph (Figure 2.6). Also we can see a discarded idea for a turntable 

phonograph (Figure 2.7), an idea which would be taken up and popularised many 

years later as the record player. 

From more recent times a modem great man was Alec Issigonis, the man credited 

with the development of the revolutionary Mini motor car which first appeared in 

1959. In these two small but extremely significant sketches from 1957 we can see 

the first germ of the idea of the transverse-mounted engine that gave the Mini its 
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Figure 2.6 Early sketch of cylinder 
phonograph by Thomas Edison 
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Figure 2.7 Early sketch of turntable 
phonograph by Thomas Edison 

c.18n 

Figure 2.8 (left) Early sketch of transverse-mounted 
engine by Alec Issigonis 
c.1957 

Figure 2.9 (above) Early sketch of Mini motor car 
and front engine arrangement by Alec Issigonis 
c.1957 
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reduced dimensions (Figure 2.8), and also the famous 'cheeky' look taking shape 

as Issigonis tries to configure the front engine space (Figure 2.9). It is reasonable 

to suggest that the conceptual sketch may similarly reveal the development of the 

ideas of today's engineers in a similar way. 

This thesis will pay particular attention to the drawings used by engineers, 

regarding them as a visible manifestation of conceptual synthesis activity and as a 

communicator of ideas in the early stages of design. The research aims to develop 

support that will, if suitable, record the engineer's drawings and so improve the 

drawing's capacity for communication of ideas. 
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3.1 Information Flow in the Design Process 

Modem views of engineering see the design process as being enabled by effective 

distribution of infonnation among all involved parties [Scott 88]. Working 

engineers must communicate on a daily basis, both in writing and through speech. 

Rough estimates of the engineer's time taken up in communicating with others 

range from 20 to 50 percent [Beer 92]. Written communication 'tasks' in 

engineering include the preparation of: 

- memos 

- inspection reports 

- procedures 

- proposals 

- manuals 

- drawing might also be included as a special case of 'written', non-textual 

communication that happens on paper. 

Spoken communication includes the myriad situations where conversational 

communication is important, whether it takes place over the water fountain or in a 

meeting [Beer 92] [Bucciarelli 94]. New technologies being used to handle the 

increasing amount of engineering infonnation include (written) e-mail and voice 

mail. 

One long-standing source of infonnation is the individual designer's infonnal 

notebook, something familiar to anyone with experience in the field of 

engineering design and design education. Ideally, such notebooks would contain 

every written or drawn artifact relating to a design, from concept to blueprint, with 

each entry numbered and dated [Kuffner and Ullman 91]. 

The reality is somewhat less complete and thus incoherent, even when 

complemented by artifacts such as specification drawings (typically produced at a 

stage later than the conceptual phase and so outwith the scope of this research). 

Sketches are made on the back of envelopes, groups work out ideas with marker 
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pens and wipe boards, ideas can come anywhere and at any time, decisions are 

made on the shop floor in response to previously unforeseen circumstances. 

Notes made by one designer in an 'individualised' format like this are sometimes 

unintelligible to another, particularly where handwritten notes have been made; 

the handwriting is not good enough or notes have been written in a personal fonn 

of 'shorthand'. Such notes may appear jumbled even to the original designer 

months later. The misrepresentation and misunderstanding caused in this way is 

sometimes referred to as mechanical 'noise'; adversely affecting the 

communication 'signal' [Buck 66]. 

From the above it is clear that within day to day practice in industry there is great 

need for methods which enable the distribution and recording of engineering 

communication. 

As the design process proceeds so the infonnation about the product being 

designed increases. The design process may therefore be viewed as progressing 

from an infonnation poor condition to one that is infonnation rich. The richness of 

infonnation relates not only to the quantity of infonnation but also to the quality 

of understanding of the relationship between the elements of infonnation 

[McGown & Green 95]. 

Enhanced quality of infonnation enables more accurate externalisation of design 

ideas and subsequent recording of the process. At present this is evident during 

the embodiment and detail phases of the engineering design process where 

extemalisations such as perfonnance calculations, detailed manufacturing 

drawings, simulations and prototypes are made available. 
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The early stages of design require the analysis, synthesis, evaluation and 

communication of ideas within an information poor environment. Design tools 

and methods are being made available to enhance conceptual design performance 

and to aid recording of the design process within the evaluation activity [Green 

94] but less has been done to provide methods that enable the recording of 

creative synthesis activity. The foremost work in this field is presented in this 

chapter. 

As discussed in earlier chapters, an ideal record of the design activity made 'as it 

happens' can provide useful, even essential support in making design decisions, 

be used in cases disputing patent claims or liability and also form the basis for 

subsequent similar design situations [McGown & Green 95] 

[Kuffner & Ullman 91]. 

3.2 Available Requirements-Handling Methods 

In essence, a Design Requirements List is intended as the basic communal 

reference to the current state of a product (also known as the 'product 

description') at any point in the process. As design progresses towards 

manufacture the List grows and is refined to form the final Specification given to 

the production staff. It is used to communicate the needs or intentions of one party 

or another [Hales 90]. 

[Blessing 94] uses the term 'requirement' to refer to all given and introduced 

constraints on the design, as is consistent with most prescriptive literature. 

[Ullman 95] identifies three types of constraints; those given to the designer, those 

introduced by the designer from knowledge sources and those constraints 

introduced in the course of solving the problem as a result of design decisions. 

While acknowledging the rather negative connotations of the word 'constraint' -

these constraints on the problem will nonetheless help to generate product 

solutions - this thesis shall adhere to this terminology. Among the methods of 

listing requirements discussed in this and subsequent chapters, the method of Pahl 
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and Beitz is known as the Requirements List. The term requirements list (lower 

case) in this dissertation will refer to any general method used to capture product 

descriptions and design decisions rather than this one specific method. 

Several of these models for making explicit the requirements of products have 

been proposed over the years, originating both in industry and from research 

(Table 3.1). Attempts have been made recently to record the design process by 

means of computer-based requirements-handlers - Table 3.1 illustrates the 

predominant paper-bias of models in industry, the prevailing expert systems/ 

computer support approach taken by present research and also the breakthroughs 

promised by commercial solutions like DOORS. 

The inadequacy of methods used currently to compile requirements in industry 

has been noted; the situation is reportedly endemic [Hurst and Hollins 95]. There 

is little development of the initial requirements list once a project commences and 

almost no formal documentation of any changes takes place. One study found that 

17% of companies still rely on at least part of their product requirements and 

specifications being verbal (and thus going unrecorded) [Reidel 94]. 

At least three methods of capturing product requirements have found a degree of 

acceptance in industry. 

• Quality Function Deployment (QFD) 

• the Requirements List [Pahl and Beitz 77;84] 

• the Product Design Specification or PDS [Pugh 82]. 

These three methods will be among those examined in the following sections. 

3.2.1 Yran's project brief 

Perhaps the earliest instance of a method intended to list product requirements and 

thus record design intent was instigated by Knut Yran at Philips, Eindhoven in 

1972. A formalised, printed four-page document known as the 'Project Brief' was 
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Figure 3.1 Yran's 'Project Brief' c.1972 

used to capture designers' written intentions, Yran realising that verbal (i.e. 

spoken) briefings had made it easy for varying interpretations to be put forward 

[Heskett 89] (Figure 3.1). 

A completed Project Brief comprised a range of both formal requests (from 

management) and individual responses (from designers). Most of the information 

was used by management to aid planning and time-keeping strategies. To further 

formalise this paper-based recording system Yran demanded that each designer 

keep the brief in a specially provided pocket on his or her drawing board. This 

was a great step forward in thinking, though the paper-based nature of the system 

did not lend itself to easy access, nor to furthering communication between the 

designers in a team. 

3.2.2 Axiomatic methods 

By the end of the 1970s so-called Axiomatic methods were formulated that were 

intended to enable concurrent engineering techniques. This prescriptive technique 

illustrates the progress of design and the transformations of information through it. 

The axiomatic approach [Suh, Bell & Gossard 78] attempts to bring order to 

human creativity by the application of a set of rules. This set of simple guidelines; 
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'offers a way to proceed from the very general to the very specific, rather 

than beginning with the details.' 

The method is based on the following hypothesis; 

'There exists a small set of global principles, or axioms, which can be 

applied to decisions made throughout the synthesis of a manufacturing 

system. These axioms constitute guidelines or decision rules which lead 

to 'correct' decisions, i.e. those which maximise the productivity of the 

total manufacturing system, in all cases. ' 

An axiom is a proposition which is assumed to be true without proof, for the sake 

of studying the consequences that follow from its application. Suh's axioms are 

intended to optimise products and manufacturing systems, with particular 

attention focused upon their manufacture. 

There are three general steps to the axiomatic method. The fIrst step is to specify 

the Functional Requirements of the product. These are defIned by Suh et al as 'a 

minimum set of independent specifications that completely define the problem'. 

Examples of this might include; load requirements, expected life, effIciency, input 

power. These Functional Requirements should then, according to the method, be 

ordered in a hierarchical structure from an identifIed primary Functional 

Requirement to the Requirement of least importance. 

The second step is to specify Constraints. These are defIned as 'those factors 

which establish the boundaries on acceptable solutions' , for example; acceptable 

cost, adaptability to existing systems. While Functional Requirements are 

negotiable fInal characteristics of a product, according to this method Constraints 

are not negotiable. 

The third step involves undertaking conceptual design, with the specifIed 

Functional Requirements and Constraints acting as a guide and with the axioms 

used to make decisions as design progresses. 
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The axioms can be seen then as criteria for the evaluation of design decisions 

[Green 94]. There are seven hypothetical axioms that guide the design process and 

these are stated as directives rather than as observations. For example, Axiom 1 is 

given thus; 'Minimise the number of functional requirements and constraints' 

This axiomatic approach is intended to help designers deal with issues involved in 

optimising manufacturing productivity - its main intention would seem to be the 

improvement of a product's manufacture although it is also claimed that axiomatic 

methods will help to improve the product's overall design. 

By following the step process of applying axiomatic techniques, design can be 

seen as a set of progressive transformations of information; information that is 

continuously processed between and within four distinct domains (Figure 3.2) 

[Albano and Suh 94]. 

1) The needs of the customer are established in the Consumer Domain 

2) Needs formalised as Functional Requirements (FRs) within the Functional 

Domain 

3) Functional Requirements (FRs) are then mapped to corresponding Design 

Parameters (DPs) in the Physical Domain as part of the creative synthesis phase 

4) The Design Parameters (DPs) must be satisfied by mapping the DPs to a set of 

Process Variables (PVs) within the Process Domain, which generally governs 

manufacturing issues 

User 
needs 

Consumer 
dOmain 

Functional 
domain 

Physical 
domain 

Process 
domain 

Figure 3.2 The four domains of the design world [Albano & Suh 94] 
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More recently efforts have been made to embody axiomatic techniques within a 

computational environment. This consists of a Thinking Design Machine for 

applying axioms and also a graphical display which illustrates FR, DP and PV 

hierarchies on screen. [Albano and Suh 94] recognised the need for these central 

concepts to be tested in industrial environments. 

3.2.3 Quality function deployment 

The three main aims of the Quality Function Deployment method are indicated in 

its name: 'Quality' refers to the need to meet customer requirements; 'Function' 

to addressing 'what needs to be done' and focusing efforts toward achieving 

customer satisfaction; while 'Deployment' refers to a 'broadening of activities' 

and thus aims to ascertain when and how improvements will be brought about and 

by whom. The 'Quality' statements give some sort of product description, in user 

terms, while 'Function' and 'Deployment' are more about calling into action the 

players necessary for the product'S development. QFD is a system for designing a 

product (or service) based on documented customer demands - it is 'all about 

finding out what your customers want and assuring that features are built into the 

end product' [Coopers and Lybrand Ltd c.93]. 

QFD theory first started in 1972 at the Kobe Shipyards in Japan and has remained 

a popular design tool in that country. Nissan, Toyota and Honda have all 

embraced QFD concepts. QFD was introduced to the West in the mid-80s and 

USA users have included Ford, General Motors, Chrysler, AT&T, Bell Labs and 

Xerox. The method uses a succession of matrix techniques with, most crucially, 

customer demands on the vertical axis and the means by which the needs will be 

met placed on the horizontal axis. The roof-like shape at the top of the fIrst 

Overall Customer Requirements matrix has led to the nickname 'The House of 

Quality' (Figure 3.3). 

QFD is intended then as a technique for translating customer requirements into a 

product design. Customer needs, likes and dislikes are gathered via a number of 

established research methods that produce data in 'the customer's own language'. 
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Figure 3.3 The domains of the QFD Overall Requirements Matrix 

Simpler methods used include questionnaires and interviews conducted by phone 

or face-to-face. More involved discussion techniques are preferred: clinics bring 

customers together to view a product or mock up and its competition and to 

discuss and compare them; focus groups bring together a cross section of possible 

users selected at random to discuss product use issues. 

The customer requirements derived from the surveys are then grouped in 

hierarchical categories at Primary, Secondary and Tertiary levels also sometimes 

known, respectively, as Strategic needs, Tactical needs and Operational needs. 

Most of the initial customer requirements are found at the Tertiary level, with the 

manufacturer thought generally to have identified his own Primary requirements. 

Generally-similar requirements will be grouped under convenient headings and 

then entered on the left hand side of the Quality matrix (Figure 3.4). 
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Figure 3.4 Customer requirements are mapped 
on the left hand side of the QFD chart 

The example given in Figure 3.4 charts the customer requirements for an aircraft 

seat. The customers here are considered to be the flyers who actually sit in the 

chair, the airline and the seat manufacturers. The chart is intended to encompass 

the requirements of all three. The requirements are shown considered at their 

Primary, Secondary and Tertiary levels. 
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The main aim of the chart is to match customer requirements to engineering 

characteristics and determine whether the links are strong or weak - here the 

marketing domain, including customer-driven data, tells the company what to do 

while the engineering domain tells them how to do it. Relationships and conflicts 

can be recognised in this way and this identifies areas for improvement. It is 

within the rules of the QFD that each engineering characteristic must be 

measurable so that it can be optimised. 

Within the full QFD method there are four stages of charts (with Stage 1 the 

Overall Customer Requirements matrix). The process has been criticised for 

lacking clarity as it progresses downwards to stages two, three and four 

[Sivaloganathan & Evbuomwan 97]. 

The QFD is about recognising a product's areas of poor performance as identified 

by customers and deploying resources in certain areas to change, improve, modify 

and refine the product. It should be noted that the QFD can really only deliver 

small, incremental changes suited to evolutionary rather than revolutionary 

product lines. This is due to a number of premises contained within the method. 

The discussion groups for example require competitors' products for comparative 

purposes - innovative new products without competitors cannot be evaluated in 

this way. Most requirements gained by the discussion group techniques are very 

much based on current expectation. Similarly, within the marketing domains of 

the matrix the derived target values and importance ratings can only be based on 

comparison with competitors' product performance. 

In short QFD is 'best suited to conceptually static products for which the design 

elements, target values and target directions can be established directly' 

[Sivaloganathan & Evbuomwan 97]. This is not intended as a criticism of the 

QFD method, but it is perhaps worth commenting that a policy of incremental 

product improvement may not be enough in a climate where some believe that 

companies must 'innovate or die'. More radical observers like [Peters 94] assert 

that we are in an 'Age of Innovation' where 'the order of the day is perpetual 

reinvention and revolution, constant recreation, continuous curiosity' . 



CHAFfER 3 METHODS OF RECORDING & COMMUNICATING CONCEPTIJAL DESIGN 39 

[Clausing and Pugh 91] among others identified this inability of QFD to handle 

conceptually dynamic situations. They developed EQFD - Enhanced QFD - which 

added more design methods to the matrix. Five enhancements were added in an 

attempt to improve it, including the integration of Pugh's concept selection 

method, means for supporting Multi-Level Deployment for complex products and 

static/dynamic product status checks. 

Companies using the QFD and other market-research focused methods should be 

wary of the way in which they can aggregate customer viewpoints to produce a 

'middle of the road' product solution that fails to stand out in the marketplace. 

[Peters 94] recalls the example of the Renault Twingo car which in pre-launch 

market research tests was 'actively disliked' by 40 per cent of would-be buyers 

and 'loved' by 10 per cent. The car's designers pressed Renault executives to 

listen to the 10 per cent, ignore the 40 per cent and launch. The car went on to 

become the second-best-selling in that French market. 

One of the main differences between design specifications or requirement lists and 

the QFD method is that while design requirements 'reflect the engineering 

judgement and knowledge of prior problems ... engineering targets on the other 

hand only reflect what is needed to assure customer satisfaction' [Coopers & 

Lybrand Ltd c.93]. Considering the reservations discussed above, the QFD is not 

thought at present to be an ideal model for recording product data. 

3.2.4 Comparing the P DS and the Requirements List 

The Requirements List is central to the VDI 2221 guideline for industry in 

Germany, 'Systematic Approach to the Design of Technical Systems and 

Products'. The aims of the PDS have been adopted and thus promoted by the 

SEED (Sharing Experience in Engineering Design) organisation and many of the 

PDS' main tenets have been incorporated within [British Standard 7373; 91] for 

integration into industry. 
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Figure 3.5 Classification headings within as 7373 

BS 7373 uses a hierarchical classification scheme to arrange up to 36 elements 

within various assemblages of nine sub-headings. Selections drawn from the pool 

of nine sub-headings create different kinds of requirements documents intended 

for different purposes and audiences (Figure 3.5). 

The methods proposed by Pugh and Pahl and Beitz share similar objectives and 

perform several similar functions. Some important aims which they have in 

common are as follows: 

• If updated during the course of the project they provide an accurate working 

record of the design. Both are intended to accept changes and additions which 

will later reflect the progress of a design project at anyone time. 

• Both can record the source of a particular idea in terms of its author. This makes 

it possible to go back to the 'proposer' and enquire his or her actual motives. 

• Any updates are intended to be circulated among all involved persons and 

departments. 

• Both make use of easily memorised checklist headings which are intended to 

help the designer ask the essential questions of the evolving product. The PDS 

utilises around 35 headings. Pahl and Beitz's method offers a choice of 90 

optional element headings grouped within 16 main headings. 
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The main difference is seen in the more systematic approach of the Pahl and Beitz 

method. Their approach advocates that the requirements of the product be stated 

in clear order, with the product split into identifiable sub-systems, functions and 

assemblies and this is intended to clarify the problem. 

Pahl and Beitz also give the following directions for the use of this method: 

'Once the task has been adequately clarified and the relevant departments 

are satisfied that the listed requirements are technically and economically 

attainable, the way is clear for the conceptual design phase.' 

If, as we have stated in earlier chapters, design is a contingent process, which 

happens despite (or perhaps because of) change and uncertainty then how can 

design happen if the Requirements List demands completeness before conceptual 

design? 

This systematic approach is also implicit in the request that all individual items 

added to the List be defined as Demands or Wishes. Demands are defined as 

'requirements that must be met under all circumstances' while Wishes are 

'requirements that should be considered where possible' . 

As design progresses it is common for the focus of the investigation to change, 

and for constraints to the design to tighten up or slacken. Thus a Demand in this 

case could be relaxed to a Wish - the conscious alteration of the status is 

instrumental in applying this approach correctly. In addition to this it would 

perhaps be useful to record the source of the original constraint and then in case of 

query, return to that source and ask for his or her actual intentions. 

The procedures of the Pahl & Beitz method have been criticised in the design 

world for using a problem-focused rather than a solution-focused approach. This 

is thought to run counter to the designer's traditional ways of thinking [Cross 

87;94] but is intended to improve upon them by avoiding fixation on one 

particular solution. 
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Observation of the Pahl and Beitz system in industry [Hales 90] best illustrates 

this method. In designing a gas specifier test rig, the Requirements List method 

initially produced a 20 page document containing 217 Demands and 91 Wishes. 

Once circulated among those closely involved in the project and 'corrected', 72 

Demands and 20 Wishes were modified. With the specification 'agreed' before 

conceptual design could begin only two items were changed throughout the rest of 

the process. This is not intended to overtly constrict design but to make it more 

efficient. Certainly it is not the case that no concepts were created in the above 

example. 

Whether or not to reformulate the problem and requirements throughout the 

process is a controversial issue [Blessing 94]. Descriptive studies show that 

reformulation is inherent in design but application of approaches suggested in 

prescriptive literature may help to improve the process and limit the number of 

reiterations by methodically checking that all issues have been discussed. 

If the strictures of the Demands and Wishes approach can be overcome and the 

Demands are allowed to be relaxed, replacing a policy of 'All Demands must be 

met under all circumstances' with one of 'everything is negotiable' 

[Minneman 91], then the Requirements List becomes a more attractive proposition 

for designers. Used correctly both this and the Pugh method provide flexible 

means of avoiding early fixation on a solution, recognising the ill-defined nature 

of design particularly evident within its early stages. 

Instead of starting bipartisan arguments over the respective merits of the Pugh and 

Pahl & Beitz methods it should be recognised instead that both encourage a 

systematic approach that reduces the load on memory of the designer by providing 

better access to design information. This avoids fixation on one particular solution 

and frees up mental effort to be devoted to creating solutions. 

Both might be improVed by adopting capabilities of computer processing. The 

capture of design information is presently less than dynamic and still 

predominantly paper-based, despite the huge advances in processing power and 
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availability of computing tools that have occurred in the last twenty-five years or 

so. Word Processing packages have certainly had an impact but have been less 

than revolutionary in this field. WP packages have improved the appearance of 

documents and allowed comments to be changed very quickly without the need 

for laborious re-typing. The mechanical process of reproduction on paper however 

still only provides changes as large, discrete chunks rather than distributing them 

'on-the-fly' as they are made. 

A well-known manufacturer of hi-fi products follows the Pugh method to record 

the evolution of a design. Written requirements documents are updated 'at the 

end' of each recognised phase of the design process, to produce four intermediate 

documents and a final specification 'an inch thick'. The size of this final report 

seemed a source of pride to the managing director. Accessing specific information 

from a pile of paper of any size up to an inch thick will inevitably be problematic 

and slow. Access could perhaps be improved by computer methods. Some 

attempts made to offer computer support to the listing of requirements and thus 

the recording of the design process are discussed in the following section. 

3.3 Computer-Based Requirements-Handling Methods 

Most of the experiments with computer systems for use in preliminary design 

have been a limited success [Jakobsen et aI91]. The following discusses work 

carried out into supporting the building of specifications and the recording of the 

inputs to the design process. Particular note is made of their suitability in 

supporting the early stages of design where ill-defined problems must form the 

shaky foundations for a strong project. 

In the domains of artificial intelligence and information technology, recent work 

has followed different paths. AI approaches have centred around attempts to 

create a problem-solver [Navinchandra 91], while others have expanded on frame

based knowledge representation to create relational databases recording inputs to 

the design process [Tsiotsias 95]. [Ullman 95] has proposed a decision support 
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mechanism that captures subjective opinions expressed within group design 

activity. 

DESMATE is a computer-based design environment developed using Apple's 

Hypercard software [Culverhouse, Ball and Burton 92]. Intended to remove much 

of the drudgery associated with the analysis of design protocols, this prototype 

system sets out to provide an automatic means for collecting and analysing design 

data. The authors claim it to be a rich and varied database of useful information 

relating to the design of electronic circuit networks with added facilities enabling 

rapid access and manipulation of this information. 

The building block nature of electronic design tasks, dealing in hard and fast 

certainties and parameters, is of limited scope when compared to the capture of 

more nebulous and subjective data and ideas which this project addresses. 

The GUIDE system is an almost fully functional computer tool developed through 

industrial consultation [Tsiotsias 95]. The system - whose acronym stands for 

Glasgow Utility for the Integration of Design - aims to build multi-dimensional 

product models which also enable traceability and audit of the design. It improves 

communication between proprietary computer systems and other software tools. 

GUIDE understands information expressed as stereotypes - structured pieces of 

knowledge about entities, processes and functions. These can be used to describe 

such engineering features as, for example, 'a hole', which has a certain geometry, 

diameter, depth, position and so on. Ideally GUIDE can create accurate, generic 

definitions such as these from any instances of data provided. These generic 

representations can easily be adapted or changed as the process progresses, thus 

providing a dynamic model. 

At earlier stages in the design activity product definition will be weak, and 

GUIDE aims to support this by allowing the specification of relaxable constraints, 

bounding values and performance criteria. GUIDE does not seem geared to 

defining the problem as opposed to defining the product. GUIDE's primary utility 
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is the way in which it adds value to CAD models of the product. While it 

demonstrates an affmity with dimensionally-defined CAD models, GUIDE shows 

no real possibility of linking to requirements lists at the conceptual stage and as 

such is more suited to dealing with reasonably well-defined representations of 

component assemblies and geometric solid models such as are found within the 

embodiment and detailing stages of design. This is of limited use with reference to 

the earliest stages of design and the handling of raw ideas and opinion without 

physical form and parametric data which, most important of all, is happening 

outside of the CAD workspace. 

While it is easy to imagine systems that are amenable to the capture of numerical 

data, it is more difficult to find a system that sets out to capture subjective, textual 

descriptions and data that contain uncertainty and may produce conflict. EDSS 

software (Engineering design Decision Support System), an interface and 

database constructed in a PC Windows platform, recognises that design groups 

will often encounter problems which require subjective interpretation in the 

absence of hard information, especially in the early stages of a project [Ullman 

95]. 

Interface windows allow a group of designers to enter their feelings on each 

particular problem. Their suggested alternative solutions can then be discussed 

within the computer environment. Criteria for evaluation can be entered by the 

designers but, most innovatively, each designer can also admit their particular 

'knowledge' on the subject and their relative 'confidence' in their own solution. 

The criteria are given relative weights by the design group and probability 

techniques are then used by the computer to operate on the input provided. 

Though this may seem rather convenient in its reducing a complex problem to 

numbers, the system 'does not tell the team what decision to make'. 
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Each change made is recorded in the developing database, thus providing a 

complete record of the evolution of the device; each entry is 'time stamped' for 

later historical use in a design history or design intent system. Ullman recognises 

the need to extend this research to tackle the following issues: 

- The system currently works only on single issue design problems: it will need to 

be extended further in order to link inter-dependent problems. If this were possible 

decisions could be made by recourse to linked requirements list data. 

- The inputs made by the designers is exclusively textual at present (i.e. 

information is represented by word strings) and Ullman recognises the need to 

extend EDSS to capture design sketches and graphical work. This is an important 

issue which this thesis discusses at length. 

Ullman's system, now running in its early testing stages on a laptop computer in 

industrial design situations, is one of the most obviously useful prototypes 

intended to support the conceptual stage of the design process. 

PROS US (PROcess-Based SUpport System) is another computer-based system, 

which is intended to document both the design process (design rationale) and the 

product by combining the two approaches in a design matrix [Blessing 94]. The 

Design Matrix maps activities to issues and so represents the design process as a 

structured set of problem-oriented issues and activities. The Design Matrix is the 

workspace for the designer and suggests possible avenues for design by 

structuring and documenting their activities. The structure of the matrix and the 

steps it suggests are expected to increase awareness of the process and encourage 

the various steps to be addressed. 

The system comprises of the Design Matrix, a Strategy Matrix (the control level) 

and a Procedure Matrix (support level). PROSUS claims to be able to document 

any type of project data anywhere in the system - this includes text, calculations 

and sketches. In recognising the importance of sketches and attempting to include 

them within the system, PROSUS is unique among the sample discussed here. 
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PROS US captures sketches using an ingenious low-tech hardware solution. A 

ballpoint pen is connected to an electronic tablet drawing system and so works 

both as an ink pen and as an electronic stylus. The designer sketches onto a sheet 

of paper placed over the tablet surface and in this way the designer can sketch as 

normal, while the PROS US system retains the impression as a rough digital copy. 

If possible this thesis aims to give added value to sketches inputted to digital 

systems in similar ways. 

It is important to note how these and other computer-based support tools largely 

reflect the software designer's underlying understanding of the design activity. A 

model like the EDSS system (a so-called descriptive model), based on protocol 

studies, seems more plausible than those which are merely prescriptive and 

operate on stereotypical representations of design. As [Dorst 95] commented: 

'A better insight into the cognitive behaviour of designers is widely seen 

as a prerequisite for developing effective and efficient design support 

tools.' 

The following section examines protocol research into the apparent structure of 

the design task and assesses the bearing this research may have upon the structure 

of a computer-based method or model intended to improve design communication 

and enable the recording of the process. 

3.4 Structuring the Specification and the Design Task 

A design specification and recording system based within a computer will require 

some kind of structure, since computers work in logical ways. [Kuffner & Ullman 

91] propose an intelligent system be developed to capture, structure and re-play 

information inputted to the design specification and record. They suggest that 

such a system could automatically store relevant design information and, 

furthermore, structure it in a useful manner. 
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This structure must be subservient, however, to the structure of the activities 

performed by designers, rather than imposing an unrealistic, inflexible structure 

upon them. The genuine structure is best found through studies made of designers 

at work solving problems. [Davies 95] and [Dwarakanath & Wallace 95] have 

carried out research into the initial approach used to tackle a set engineering 

design problem. 

[Owen 92] believes that a problem is understood via the collection of detailed 

information and the success with which the problem is tackled can be gauged by 

how thoroughly it seeks out the functions which the solution will perform. Thus a 

top-down analysis is performed, establishing a function structure and breaking 

down the solution into three hierarchical levels of operation (Figure 3.6). At the 

highest level are modes of operation and Owen considers typical modes to be; 

production, distribution, specification, transport, sale, use, storage, maintenance, 

repair, adaptation, retirement. If each of these could be clearly defined and 

understood then this would act as a classification scheme - a stereotypical way of 

categorising something in order to make it easier to store compartmentally. Unlike 

the system of [Pugh 90], which allows entries to be made within horizontally 

distributed element fields, Owen's system also deals in vertical decomposition. Do 

such top-down decompositions of the problem match the way in which designers 

tackle a problem? 
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Figure 3.6 Design as a three-level process [Owen 92] 
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The description of [Davies 95] discusses decomposition of a design problem, and, 

like Owen, sees the problem as being tackled and thus understood at different 

hierarchical levels. Figure 3.7 illustrates the sequence of thinking for an observed 

individual designer: the circled numbers represent the temporal sequence in which 

the design was 'decomposed'. The fact that the high level segment 'Schedule' is 

numbered (6) demonstrates an opportunistic mode of thinking - the designer has 

felt that he can go to a lower level of abstraction (further decomposing (3) the 

'Movement of the Monitor') before returning to (6) at a higher level of 

abstraction. Thus Davies disagrees with any simplistic notion that designers tackle 

problems using a strictly top-down approach. If the top-down decomposed 

structure of the problem is seen as a tree, then perhaps the metaphor could be 

extended to let us think of the designer as a monkey playing in that tree, swinging 

and leaping from one 'branch' to another? 

[Dwarakanath & Wallace 95] make use of protocol studies to illustrate such a 

hierarchical approach. Their examples deal with the same problem - that of 

designing a carrying rack for mountain bikes - tackled by both an individual 

designer and by a three person group. The authors believe that the designers will 

first identify the issues involved, select the issue that they consider most 

important, generate alternatives for its solution and then develop and evaluate 

them through argument and discussion, either with themselves or with the other 

members of the group. 

In utilising the breakthrough concept of recording the activity in real time, the 

decision path can be followed directly (Figure 3.8). The example of the single 

designer working on the problem shows again how in several instances he or she 

will jump from certain issues without resolving them and address other issues 

before returning to 'where they left off'. In addition Dwarakanath and Wallace 

make explicit the 'decision points' in the activity (marked 'D' in Figure 3.8). Like 

the work of Davies, the research shows how designers tackle problems in an 

opportunistic manner which is never truly top-down. [Nanard & Nanard 95] also 

view the design process as an opportunistic activity with 'erratic' switching 

between top-down and bottom-up thinking processes. Dwarakanath and Wallace, 



CHAPfER3 MErnODS OF RECORDING & COMMUNICATING CONCEPTUAL DESIGN 51 

from their studies of design in groups, believe that groups are more systematic and 

less opportunistic than individuals. 

Groups then can follow the problem-oriented approach better while individuals 

tend to be more solution focused. A top-down problem system structured using 

hierarchical, linked principles should not be imposed upon the designer, but if 

suggested could help guide the designer away from fixating on solutions. 

Because of this apparent mismatch, a free problem space is proposed. The 

structure which the computer uses to capture, store and 'play back' inputted 

information should be suggested to the user, who is nevertheless free to use any 

'entry point' to the problem that they wish while being reminded of important 

linked issues that may affect the part of the problem which they are currently 

working on. The PDS of [Pugh 90], with its horizontally-distributed, non

decomposed and open classification scheme provides a visible memory aid to the 

designer which may, if suitably adapted to a computer-based model, prove useful 

to a designer wishing to input problem insight and design information. Thus we 

have a structured problem that the designer can be made aware of if need be, 

operating behind the open problem interface which the designer uses to access the 

problem. 

If it is true that the Requirements List is problem-focused and the PDS product

focused then it may be that the former is required to undergo a transition or 

mapping to the latter. That is to say that the design record evolves from the 

Requirements List at the earliest stages to the PDS at a later phase. 

Contrary to this Pugh always intended, however, that the PDS could be used to 

enshrine the problem and the product: his belief that 'in total design terms design 

must never be started without a PDS' [Pugh 90] illustrates the intended utility of 

the PDS at all phases of design. Among a variety of alternative titles the PDS has 

been known as the 'Statement of Requirements' [Hollins and Pugh 90] and this 

demonstrates the similar intentions between this and the Requirements List 
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It may be that in practice both carry virtually the same kind of information - that 

the product is an answer mapped exactly and seamlessly to the problem. If not 

then an ideal solution may involve matrices for each superimposed to map 

problem-focused to product-focused information. In summary, the important fact 

is that both methods have the potential to enable the recording of design intent and 

this is what matters most within the context of this thesis. 

3.5 Use of Requirements-Handling Systems in 
Industry Today 

3.5.1. Paper-based systems 

The onus for formal information delivery during engineering design has, to date, 

fallen upon the PDS [Pugh 91]. Now common practice in industry, the PDS and 

its variations [British Standard 7373; 91] evolve in discrete stages with revisions 

distributed as the design progresses [McGown & Green 95]. BS 7373 describes 

the ideal specification as including numerical statements, algebraic equations, 

drawings, graphics, charts, tables or methods of computation. 

In practice most companies using the PDS method will use a paper-based PDS 

which may on completion include a few illustrations of the proposed final 

arrangement of a product and some tables of quantitative data targets besides plain 

text material. However the mechanical methods of PDS compilation currently 

employed render it too static to allow for change. This lack of dynamism may be 

acceptable to firms which deal largely with incrementally-changing products 

rather than innovative products and open-ended problems. Nevertheless, the 

document is still complex and laborious to assemble and the onus of editorship is 

often placed upon one Product Manager. (Figures 3.9 - 3.11) are examples of 

pages from a PDS used by a vacuum cleaner manufacturer. Note that these are 

from the near finished Specification document presented to the manufacturing 

facility, rather than from the earlier stages of the project. 
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Figures 3.9 & 3.10 
Examples of pages from a 
PDS document produced 
by aUK vacuum cleaner 
manufacturer 
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3.5.2. Commercial software systems 

Figure 3.11 
Example of a PDS document 
produced by a UK vacuum 
cleaner manufacturer 

Commercial software solutions made available in the last few years may at last 

offer a replacement for paper-based systems and could signal the end of these 

attendant problems. The two front-runners at present are; 

• DOORS (Dynamic Object Oriented Requirements System) by Quality Systems 

& Software 

• Cradle by 3SL 

DOORS is described by its makers as a requirements management and 

information traceability tool and aims to keep requirements simple by expressing 

the information as a hierarchically-organised set of text and tables [Quality 

Systems & Software 98]. DOORS is based on 'object-oriented' organisational 
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polymorphism, re-use, association, relationships and inheritance. This approach is 

thought to offer an improvement on relational database approaches. 

DOORS does not impose a set design methodology but instead comes with a 

choice of many structured specification systems and standards, such as the 

software engineering standard PSS-05. While there are many templates, any 

company can repro gramme and replace them with their own method using the 

DXL scripting language on which DOORS is based. 

The functionality of DOORS is based on the following identified needs of a 

modem requirements handling system; 

• Creation of individual structured requirements 

• Linkages between structured requirements 

• Publishing of requirements documents 

• Connectivity to tools for design, development and testing 

• Linkages to descriptive documents 

The first three of these are possibly the most important aspects of requirements 

handling. DOORS is intended to fulfil these needs by providing for document 

management, handling requirements, handling traceability and providing design 

histories, linking to other computer tools and providing input to decision-making 

situations. There are, then, five main functional aspects to the DOORS tool; 

• Document Manager: DOORS aims to present requirements as objects in 

documents, rather than as records in a database. Requirements can be changed as 

if typing into a word processor and the system is geared to producing published 

versions for distributing to team members. Published versions can be tailored to 

different audiences, producing shorter or longer documents from a consistent data 

set. 
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.. Handling Requirements: Users can navigate through requirements documents by 

way of a graphical view which illustrates the document's structure of links and 

associations. DOORS also claims to be able to create links to unstructured 

documents such as letters and descriptive text written in a word processor. It does 

this via automatic parsing routines intended to extract all requirements . 

.. Handling Traceability: DOORS provides complete history back up of every 

change to every object; any set can be selected by date or any other of the system 

attributes . 

.. Links to other computer tools: DOORS can handle input from many other 

applications, particularly WP programs like Word. The add-on product 

DOORSNet allows DOORS documents to be accessed over the World Wide Web . 

.. Decision-Making facilities: Teams of designers can view each others work and 

suggestions and the system allows for the management of complex, structured 

decision nets via a hierarchical network of decisions stored as DOORS data. The 

graphical visualisation tool allows decision-making designers to quickly assess 

the impact of certain choices. 

3SL's Cradle tool likewise aims to provide a 'clear and simple means of gathering 

and refining requirements' within an all-encompassing systems engineering 

environment [3SL 98]. Designed to suit the needs of the software development 

process it handles requirements through the use of five main functional aspects: 

.. Requirements Management tool: dealing with source documents this facility can 

identify differences between versions of documents and automatically produce 

impact analysis reports. With its links to other applications Cradle can store 

graphs, spreadsheets, tables and diagrams within requirements lists . 

.. Systems Modelling tool: By object-oriented methods Cradle can produce 

requirements in terms of function block diagrams and behaviour diagrams; 

methods used are switchable at different points in the process. 
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• Document Management tool: Cradle includes two thousand report formats while 

templating tools allow replication of company standard formats if preferred. 

Cradle can be linked to DTP packages such as Word and FrameMaker. 

• Core Linkage: Cradle brings together externally-generated information such as is 

contained in CAD, spreadsheet and DTP files. 

• Software Engineering tools: These domain-specific tools support vital software 

engineering operations, supporting code generation and handling C, C++ and 

other programming languages. 

Initially-designed for use within the software engineering industries, the benefits 

that Cradle and DOORS promise will prove hard for those involved in the product 

and manufacturing industries to resist. Research efforts will hopefully soon assess 

the effectiveness of such commercially-available packages within the engineering 

design domain. 

3.5.3 Shortfalls of current systems 

According to a recent study [Nijhuis and Roozenburg 97] design engineers 

recognise the PDS as having five main functions in the following order of 

importance: 

1) It is a tool for communication between design group members as well as with 

third parties; 

2) It is a means for delineating ideas, helping to demarcate the boundaries of the 

solution space; 

3) It provides guidance for the design process, determining whether the project is 

still on the right track; 

4) It acts as a contract - either an internal agreement or occasionally a legally 

binding document between consultancy and client; 

5) It provides criteria for evaluation and decision making - the PDS is the basis for 

determining the value or quality of design proposals. 
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The importance levels imply that the PDS is used as a catalyst for design change 

and is too inflexible to be used as a recording device to allow evaluation. Ideally it 

should allow designers to perform both roles equally well, leading to as complete 

a final document as possible. 

[Hurst and Hollins 95] contend that the main reasons for failure of product in the 

market are inadequate market research and inadequate specifications. Their case 

study contends that commonly there is little development of any form of 

requirements or specifications once the project commences and that there is no 

formal documentation of any changes made. 

The same study also contends that the two main reasons for a poor specification 

are omissions and misleading requirements. If a specification is considered 

complete only when it includes comprehensive requirements for all areas of 

concern then the use of checklists of relevant criteria has been shown to prevent 

the overlooking of important aspects. Pugh's method and BS 7373 both use 

checklist-type ontologies. BS 7373 gives some common sense guidance on the 

layout and preparation of specifications. It tries to ensure that all aspects of design 

are covered via a suggested ontology consisting of three major headings, nine sub

headings and thirty-five or so elements under one-word titles. 

Misleading requirements are common - each person involved in the design 

process must have a clear and unequivocal understanding of each statement so it is 

important that the properties prescribed have the same meaning to all [Bucciarelli 

94]. BS 7373 can only suggest that 'double meanings should be eliminated' and 

stresses that 'clarity is essential'. The ambiguity of natural language is widely 

recognised [Goel 95]. 

Additionally, 'non-entries' are commonly made under element headings. 

Agreement on performance requirements is easily reached if participants focus on 

self-evident, easily accomplished features rather than specifications of substantive 

content requiring more serious negotiation [Bucciarelli 1994]. 
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Such bad practice should not be confused with the exploratory nature of 

conceptual design. Iterative processes are often founded by necessity on 'weak' 

infonnation and while BS 7373 asks that attributes should be defined in purely 

objective or quantitative tenns, it should be recognised that conceptual design 

often deals in qualitatively expressed ideas and infonnation. 

At least two of the drawbacks inherent in current specifications - misleading 

requirements and ambiguous statements - stem from the almost exclusive use of 

text-based infonnation. Bearing in mind the experimental finding that 67% of the 

marks made on paper during conceptual activity are sketches [Hwang and Ullman 

90] then the PDS and other methods of collecting design infonnation could be 

improved by more readily accommodating visual material in addition to textual 

infonnation. 

Long-standing problems in capture and reproduction compared with that of 

written and typed material seems to have led to a belief that only text can be used 

in compiling design records. If, as the old saying goes, 'a picture could be worth a 

thousand words' then new technologies may now make it possible to handle both 

visual as well as written work and the use of drawings could help to alleviate 

some of the problems caused by text omissions. 

3.6 Discussion 

This chapter has studied the methods used to list product requirements for 

communicating and recording design infonnation and makes the following 

conclusions. 

• The need for improved communication of infonnation within industry has been 

identified. A lack of robust recording methods has also been noted. 
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.. The dynamic nature of Pugh's PDS or Pahl and Beitz's Requirements List and 

their inherent provision for updating will allow for the distribution of up-to-date 

product descriptions and also build to provide a record of the evolving design. 

• The paper-based nature of compiling requirements lists has so far reduced their 

dynamic potential and made retrieval of historical information time-consuming. 

New computer-based requirements-handling systems developed for software 

engineering may, however, solve many of the problems associated with paper

based systems . 

.. From the literature, protocol studies have identified the opportunistic behaviour 

of the designer with regard to problem-solving tasks. A decomposed problem 

structure can help guide away from fixation on narrow product solutions. The 

horizontal distribution of the classification scheme in Pugh's PDS has been 

identified as a possible method for recording the designer's thinking on the 

product. Its checklist of requirements is thought to guard against omission and in 

addition a Requirements List reminds the designer of aspects of the problem. Both 

methods offer systematic frameworks within which design information can be 

recorded. 

• The limitations of text-only information have been identified and it is suggested 

that a specification system will be improved by the inclusion of visual design data 

in addition to written data. New digital technologies may now make visual 

material easier to handle than in the past. 

In response to the final conclusion given above, the following chapter examines 

the use of visual descriptions in engineering design, and in particular the 

conceptual sketch. 



CHAPTER 4 
THE ROLES OF SKETCHING IN CONCEPTUAL DESIGN 
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The designer's sketch is an integral part of the early phases of product design 

engineering. The majority of designers appear to have adopted freehand sketching 

as an invaluable part of the process [Lawson 94] [Pipes 90]. Drawings are still lost 

and thrown away without much care or thought for future use however [Pipes 90] 

[Bucciarelli 94]. In recent years attempts have been made to support aspects of the 

sketching process using computer methods [Lakin 89] [Hwang and Ullman 90] 

[van Dijk 95] [Gross 96] [Tovey 97]. 

4.1 Functions and Types of Sketching Activity 

Visual representations are omnipresent throughout the design process, from early 

sketches to CAD-rendered general arrangement drawings. Cross uses drawings 

from each stage to illustrate the type of work that goes on as a design progresses 

[Cross 87;94]. The example concerns the design of a small cement mixer. In the 

order shown these drawings illustrate increasing degrees of concretisation and 

detailing [Andreasen 94] (Figures 4.1 - 4.3). 

Within the earliest stages of design the sketchpad is used to express ideas and has 

been referred to as the medium of reflection-in-action [Schon 83]. Schon suggests 

that through drawing, designers construct a 'virtual world' where the drawing 

reveals qualities and relations unimagined beforehand. Sketches are 

representations which will often allow the designer to 'try out' a new idea on 

paper, quickly and cheaply. Schon also notes that while drawing can be rapid and 

spontaneous, its residual traces are stable and can be subsequently examined by 

the designer at his or her leisure. 

Despite its importance in the design process, the sketch has a perceived low status, 

its true value hidden by the modesty of the designers [Lawson 94] [Pipes 90]. 

Though it is one of the most tangible artifacts produced directly by conceptual 

activity [McGown and Green 97], Schon's 'stable traces' may not be kept for 

subsequent use. When a project is over, early exploratory drawings are often 

destroyed and cleared away to make room for the next job [Pipes 90] [Bucciarelli 
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Figure 4.1 Drawings from the conceptual design phase, of three alternative solutions 
(Hawkes and Abinett 84) 

Figure 4.2 Drawing from the embodiment phase (Hawkes and Abinett 84) 
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Figure 4.3 Two drawings from the detail design phase (Hawkes and Abinett 84) 
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94]. The pennanence of the sketch has perhaps been overlooked in favour of its 

spontaneity. The sketch may possess the potential to act as both facilitator and 

recorder of creative acts [Temple 94] presenting opportunities for improved 

evaluation and the re-stating of problems. 

The flexibility of freehand methods mean that there are many different types of 

sketch, even within the conceptual phase. Some are of particular interest within 

the scope of this paper, others less so. 

[Ferguson 92] sees the designer as using sketches to try out new ideas, to compare 

alternatives and - most importantly to his mind - to capture 'fleeting ideas' on 

paper. He identifies three kinds of sketch: 

1) The thinking sketch which engineers use to focus and guide nonverbal thinking; 

2) The prescriptive sketch made by an engineer to direct a draftsman in making a 

finished drawing; 

3) The talking sketch, produced during exchanges between technical people in 

order to clarify complex and possibly confusing parts of the drawing. Ferguson 

recounts how a sociologist of his acquaintance observed designers actually taking 

the pencil from one another as they talked and drawing together on the same 

sketches. The talking sketch is a shared graphical setting which enables 

discussion. 

The second kind of sketch does not concern us here as it is used almost 

exclusively within the latter detailing (pre-manufacture) phases of the design 

process. 

Furthennore, a sketch is likely to be made for one of three reasons [Temple 94] 

and from one of three sources: 
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1) To communicate the physical nature of an entity conceived in the imagination; 

2) To visually recall the physical nature of objects or environments from memory; 

3) To make a quick visual representation of entities or environments exposed to 

the naked eye. 

The ability of the sketch to somehow make real an imagined object is of prime 

importance. The ability to communicate remembered objects is also of interest. In 

engineering this utility can often help to explain mechanisms like cams and gears 

to oneself or to another. This function is broadly similar to that of Ferguson's 

'talking sketch'. 

Figures 4.4 and 4.5 are from a speculative futures project carried out by 

professional designers and illustrate what a conceptual sketch may look like. The 

lines are crude and hasty, the hurried and indefinite quality expressing what is 

perhaps a necessary indecision. 

4.2 The Cognitive Psychology of Sketching 

A number of studies in the field of psychology have explored the possible 

workings of the mind with respect to processing and understanding visual 

information. A few have attempted to explain the production of visual 

representations from the 'mind's eye'. From this body of work there is some 

consensus between theories of the processing of visual information in the human 

mind and the underlying processes behind creating visual representations of ideas 

on paper. 

First we must understand that seeing is not the same as understanding. 

Understanding, or the visual percept, is something above and beyond the more 

mechanical recording of the 'patterns of light' viewed by the eyes and projected 

onto the retina. The perception of qualities such as shape is the grasping of 

structural features found in, or imposed upon, the stimulus material [Amheim 69]. 



Figure 4.4 In~emet table: si(etch from speculative flltures project in industry 
(sketch courtesy of Philips, Eindhoven) 

Figure 4.5 Multimedia kiosk: sketch from speculative futures project in industry 
(sketch courtesy of Philips, Eindhoven) 
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Arnheim's is one of the earliest studies into the psychology of producing visual 

images, in this particular case paintings and other such 'works of art'. He 

acknowledges the difficulties in studying the processes that allow the unseen to 

become the seen, suggesting that such processes may even occur below the level 

of conscious thought. Seventeenth Century artist and intellectual Frederico 

Zuccari distinguished between inner design, the disegno interno seen in the mind 

and the disegno esterno rendered on the canvas. Of drawings Arnheim says; 

'At best mental images are hard to describe and easily disturbed. 

Therefore, drawings that can be expected to relate to such images are 

welcome material.' 

Arnheim also suggests that; 

, [Drawings]. .. cannot be faithful replicas of mental images but are likely 

to share some of their properties. ' 

Arnheim adds that drawings, unlike mental imagery, are mediated and determined 

by material conditions (the availability of drawing tools) and also tempered by 

some sort of aptitude or ability on the part of the 'artist'. 

Arnheim's early study focuses on the visualising of emotional content in painting 

and other fields of artistic endeavour and while it borrows from the sciences is not 

a truly scientific study. It does however make some interesting observations. One 

such observation is that; 

' ... there [is] much evidence that truly productive thinking in whatever 

area of cognition takes place in the realm of imagery. ' 

By the mid-1980s studies of cognition were based on scientific approaches and 

computational theories of mind. The study of visual cognition was divided by this 

time into two subtopics; visual recognition and visual imagery. The first studies 

'the representation of information concerning the visual world currently before a 
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person' [Pinker 84]. Visual recognition is the process which allows us to 

determine, on the basis of retinal input, that particular objects and scenes are in 

front of us. The second subtopic of visual imagery is what concerns us here. This 

is the process of; 

, ... remembering or reasoning about shapes or objects that are not 

currently before us but must be retrieved from memory or constructed 

from a description. ' 

Pinker concedes that imagery is a more difficult topic to study than recognition 

and consensus is more rare. The scientific study of imagery is mostly concerned 

with the 'more pedestrian' spatial abilities such as memory for literal appearance 

and matching of images against visual stimuli. Nonetheless the study of these 

areas is hoped to contribute towards greater understanding of how imagery is, in 

Pinker's words, 'tied to scientific and literary creativity, mathematical insight and 

relations between cognition and emotion'. There is consensus on some imagery

related issues. Presented here are some of the more popular coinciding theories. 

Many writers in the field posit types of operations that take as input array-like 

data structures created by sensory receptors (eyes and retina) and it may be 

possible to extend this to claim that the same processes could access such data 

structures generated from memory rather than from the eyes. 

Perhaps the major scientific discussion centres on the following question: does 

imagery consist of the processing of pixels in an array with properties similar to 

the 2-and-a-half Dimensional sketch or does it consist of the processing of 

structural descriptions? Some theories have attempted to answer this. 

Some definitions are required for the above question. In an 'array-like' formation 

images are patterns of activation in a structure consisting of units or cells that 

represent, by being on or off, the presence or absence of a part of a surface of an 

object at a particular disposition in space [Pinker 84]. For a technological analogy 

one need only think of a CCD chip in a video camera, placed behind the lens. 
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The 2-and-a-half dimensional sketch (despite the given tenninology of 'sketch' do 

not confuse this with anything produced on paper) is one of three levels of 

imagery postulated by [Marr and Nishihara 78]. The fIrst representation is called 

the 'primal sketch' and is a two-dimensional array that makes explicit the 

intensity changes and two-dimensional properties of the retinal image, in line with 

that described in the previous paragraph. The second level of representation is the 

'2 1(1 D sketch' and this represents the depths and orientations of each point on the 

visible surfaces of objects relative to the viewer's vantage point. Their third level 

representation is called the '3-D sketch' and in this format objects are represented 

as a set of volumetric shape primitives within a three-dimensional co-ordinate 

system. 

For a number of given reasons Pinker disagrees with these three representations in 

favour of more flexible systems [Pinker 80]. The 21(1 D sketch is discounted since 

Pinker believes that people can form images that display two-dimensional 

distances as they would appear from a different vantage point, not actually seen 

by the viewer. 

The main tenet of these more flexible theories is that; 

' ... the long term memory representations of objects' shapes and surface 

properties ... are assumed to have the format of a structural description 

augmented with whatever information is necessary to reconstruct the 

appearance of the surfaces of the object.' [Kosslyn 80;83] 

If it could be pennissable to add 'construct the appearance from the imagination' 

as well as 'reconstruct [from memory]' then we could clearly see the relevance of 

this theory to the design of products/objects. 

Kosslyn's theory is illustrated schematically in Figure 4.6. Figure 4.7 illustrates 

the theory of [Hinton 79a;79b]. Like Kosslyn, Hinton's model suggests that 

imagery consists of information appended to a structural description of the 

object's shape although in his diagram the infonnation attached is not provided via 
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Figure 4.6 Kosslyn's model of the image generation process [Kosslyn 80;83] 
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Figure 4.7 Hinton's model of the image generation process [Hinton 79] 

by a system rather more like that of Marr and Nishihara's '3-D sketch'. 

Broadly speaking [Seymour 79] is also in agreement with these representational 

models saying that; 

, .. .it is reasonable to distinguish between a level of picture processing 

which is broadly perceptual ... being concerned with the construction of a 

two or three dimensional description of an object and a [second] level 

which is more obviously semantic, involving isolation of attributes of 

objects [and] their assignment to classes.' 

The difference between these different levels of mental representation is 

illustrated by the following example: to answer the question 'does a bee have a 

dark coloured head?' requires recourse to the use of imagery but the question 

'does a bee have a stinger?' or 'does a bee have wheels?' would instead be 
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answered by accessing the mind's store of structural knowledge about bees 

[Kosslyn 80]. 

If mental imagery, by way of this combination of pictorial and structural 

description, can be subjected to transfonnations such as rotation and scaling then 

imagery can be used to solve problems that involve objects and spatial relations. 

[Pinker 84] illustrates how mental imagery is used in such problem-solving 

activities; 

, ... certain abstract problems could best be solved by translating their 

entities into imagined objects, transforming them using available image 

transfonnations, detecting the resulting spatial relations and properties 

and translating those relations and properties back to the problem 

domain.' 

[Shepard and Cooper 82] note how imagery, thus used, is effective in the solving 

of mathematical and scientific problems. This use of mental imagery to produce 

tentative solutions to abstract problems for further subsequent operations ought 

easily, from Pinker's above description, extend to include problem-solving within 

the engineering design domain. In problem-solving situations; 

'imagining a concrete analogue of an entity, transforming it, and then 

translating it back to the original domain could make explicit certain 

properties and equivalences in that domain that were only implicit 

beforehand [Shepard and Cooper 82].' 

The theory of Shepard and Cooper suggests how drawing might enable design, 

particularly conceptual design, at a psychological level; by acting as a concrete 

analogue. Through the relevant motor programmes controlling hand and eye, 

drawing allows us to transfonn in many ways the mind's store of semantic 

attributes. 
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[Fish 90] notes the incompletion, distortion and ambiguity visible within artists' 

sketches. He proposes that such drawings exploit mental processes which evolved 

in early man. Sketches today are 'visual stimuli [used] to improve and stabilise 

mental imagery'. Fish concludes that; 

'skilfully used, ambiguous or incomplete sketch attributes may amplify 

imagination by stimulating the visual system to generate a stream of 

spatially superimposed mental imagery.' 

To summarise, from the work conducted in the field of psychology we find that 

there is a generally agreed set of theories which propose that the mind attaches 

structural descriptions to 'flat' visual imagery and is thus able to transform and 

operate upon the images in many ways within three-dimensional space. Drawings 

on paper, though mediated by the ability of the person drawing them, are fair 

representations of such mental images and when made provide concrete feedback 

which allows the artist and viewer to further manipulate the mental image. 

4.3 Scientific Study of Sketching 

One of the most detailed studies of the act of sketching was conducted by [Goel 

95]. He identifies two types of operation occurring between successive sketches in 

the problem-solving phases; lateral transformations and vertical transformations. 

In a lateral transformation, movement is from one idea to a slightly different idea. 

In a vertical transformation, movement is from one idea to a more detailed and 

exacting version of the same idea. Like the experiment and subsequent description 

of [Dwarakanath and Wallace 95] this theory illustrates the opportunistic nature of 

designers. Designers will solve specific problems progressing downwards to more 

exacting levels of detail for a while but may suddenly switch to a different 

problem, sometimes with the previous problem left unsolved to any level of 

completion. 
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Figures 4.8 - 4.10 Sketches of a plan for a post office counter [GoeI95] 
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Figures 4.8 - 4.10 are sketches made as part of the architectural design of a post 

office counter. Figure 4.9 is a lateral transformation from Figure 4.8; three booths 

retain their location but have been internalised into the main core square. Figure 

4.10 however is a vertical transformation from Figure 4.9. There is no 

modification of the idea of the booths in the central core; there is only the 

clarification of neater lines and the addition of dimension detail. 

Goel concludes that freehand sketches - by virtue of being syntactically and/or 

semantically dense and/or ambiguous - play an important role in the creative, 

explorative, open-ended phase of problem solving. He believes that the properties 

of the freehand sketch facilitate lateral transformations and prevent early fixations. 

Lawson [Lawson 97] supports the above, maintaining that the computational 

theory of mind which underpins much of cognitive science falls some way short 

of being able to communicate the richness and diversity of thinking implied by 

freehand sketching activity. 

4.4 Attempts to Support Sketching Activity 

Warburton assesses the use of available digital design tools during the design 

process, with particular attention paid to their appropriateness in modelling 

activities as compared with 'traditional' methods like sketching and modelmaking 

from card and foam [Warburton 96]. She concludes that at present: 

• there are no apparent reasons why digitally-based communication media should 

be used for their own sake during the conceptual activity; 

• digital and non-digital methods are equally appropriate in the development 

stages; 

• computer support becomes more important during the latter stages. 
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Efforts have been made to affect the transition from paper-based, conceptual stage 

sketching to a digital environment. In the main these follow two main schools of 

thought. Firstly there are those that transform selected freehand-sketched concepts 

to digital input, via scanning or other methods. Secondly, there are those that 

attempt to mimic the natural sketching activity with computer-based methods. 

4.4.1 Bridging paper and digital domains 

The Fast Shape Designer (FSD) system [van Dijk 95] is used for making quick 3D 

sketch models from, and in addition to, 2D sketches. It does not try to replace 

traditional sketching. The system produces 'three-dimensional' sketch models 

from 2D sketches. The resultant model can then be milled to obtain a physical 

hardcopy. 

Tovey's prototype system [Tovey 97] attempts to link freehand sketches to CAD 

models and is intended as a quick and convenient way of moving from concept 

sketches to a computer model. The system concentrates on the stage in the process 

that Tovey believes overlaps engineering design and CAE. He feels that CAD has 

much more application at this stage of the process than in attempting to support 

sketch activity directly. 

Blessing's PROS US support tool facilitates the capture and storage of early 

sketches [Blessing 94]. It utilises a tablet/stylus interface to input freehand 

sketches to the system. Most notably, the stylUS in use is an adapted nib-type pen. 

A thin sheet of paper can be placed between stylus and tablet and allows the user 

to see marks on paper, as in true freehand sketching. The output (on paper) is not 

one step removed from the input, via a monitor device for example, and it is this 

immediate response that is psychologically important to the designer. The 

secondary, electronic input is saved via the tablet as a bitmap image and entered to 

PROSUS' design matrices (this system is also discussed in Section 3.3). 



CHAPTER 4 THE ROLES OF SKETCHING IN CONCEPTUAL DESIGN 76 

These systems demonstrate some of the utility of adapting paper-based sketches to 

computerised forms. A fully working system would mean that even early concepts 

could be linked to proprietary computer tools. 

4.4.2 Sketching in a digital environment 

Possibly the fIrst study into drawing freehand on computer was published as far 

back as 1963 [Sutherland 63]. More recently Lakin's [Lakin 89] VMACS system 

helps provide recognition routines which identify graphic 'pieces' as expressions 

in notational symbol systems. VMACS recognises such diagrammatic 

representations as rigid body diagrams, bar charts and finite state automata to 

allow for more meaningful processing. Hwang and Ullman's Design Capture 

System (DCS) [Hwang and Ullman 90] is similar in that it is a draw-to-computer 

set up that does not use paper and pen. 

The Electronic Cocktail Napkin system [Gross 96] adopts a 'paper and pen'-like 

interface. The Electronic Cocktail Napkin has capabilities for recognition and 

parsing of visual expressions and this is probably its most outstanding feature. 

Parsed diagrams are compared with diagrams already stored in the index and 

those that match can be pulled from the database and displayed. The system is 

intended to augment the architectural, case-based design aid ARCHIE [Domeshek 

& Kolodner 92]. Case-Based Reasoning (CBR) systems apply experience stored 

in computerised form to solve similar problems in slightly different contexts. The 

electronic cocktail napkin's ability to query by diagram is added to ARCHIE's 

concept-related and keyword processing capabilities. 

Recently there has been an apparent shift from the established Artificial Intelligence 

approach towards one supporting directed exploration through the design case base. 

This reflects a shift from automating design towards supporting design through better 

access to knowledge and information [Wood & Agogino 96]. 
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[Hwang and Ullman 90] have talked of 'back-of-the-envelope' sketches while 

Gross talks of his 'cocktail napkin'. Both invoke the immediacy of such 'whatever 

is to hand' media, an immediacy which current methods of computer capture are 

unlikely to offer. The systems of Lakin, Gross and Hwang and Ullman all offer 

optional support to designers and their freehand methods. None really intend to 

completely replace freehand sketching at the conceptual stage. 

4.5 Attitudes to Computer-Aided Drawing 

[Tovey 97] suggests that there is little point in mimicking the sketch activity by 

computer methods unless the designer gains something over the traditional 

method. Sketching by conventional means is extremely quick and effective. 

Research indicates that the poor response and 'fee1' of current computer tools are 

a source of annoyance and frustration for designers [Temple 94] [van Dijk 95]. In 

an investigation by Temple, all of the designers involved stated that to interact 

with mouse and screen at an early stage would be 'inhibiting and unproductive'. 

As part of an experiment by van Dijk, subjects commented that sketching with a 

mouse is slow, 'unwieldy and inaccurate' with 'unpredictable' results. The 

cognitive processes will be limited by the poor response and 'feel' given by a 

computer mouse. Approaches which instead use stylus input may yield better 

results as they are improved via research and as designers grow accustomed to 

commercial solutions like Alias Studio. 

Goel recognises the expressive properties within early and intermediate sketches. 

He explains that they: 

'not only denote but also exemplify such labels (properties) as 'shape', 

'relative size', 'relative location', 'fluid', 'rigid', 'elegant' and so on. 

They also express such labels as 'bold', 'uncertain', 'hurried' and the 

like.' 



CHAPTER 4 THE ROLES OF SKETCIDNG IN CONCEPTIJAL DESIGN 78 

Only freehand media can express that much in a language understood by those 

involved in design. The response of the marks made on paper to the varying 

weight and pressure put by the hand onto the pen, pencil, marker (or whatever is 

'to hand') is instantaneous. A mouse will always lag. One only has to think how 

infuriating it can be if you are forced to sketch with a 3H pencil when what you 

really want is a soft B. 

The production of sketches has been described as free-flowing, involving a kind 

of visual stream of consciousness which depends for its effectiveness on complete 

freedom [Temple 94]. 

Freehand sketches are thought to possess the following advantages over computer 

sketch systems: 

• greater speed 

• greater ease of use 

• greater immediacy 

• better quality of response 

• more expressive qualities 

• they are constrained only by the designer's imagination 

A new generation of computer-based drawing tools are however finding 

acceptance in leading design companies around the world. Packages such as those 

produced by Alias Wavefront - a division of Silicon Graphics - are making 

inroads into the motor industry for example. Their Studiopaint 3D tool is intended 

to allow intuitive sketching via pressure sensitive light pen and board input and 

gives additional value by allowing drawn shapes to be 'converted' from 2D to 3D. 

Despite this, even Alias Wavefront's own publicity material shows how designers 

at Nissan Design International Inc will take freehand sketches of a part such as a 

car seat and then work them up into 3D computer files in the Studio package. Files 

from Studiopaint 3D can be sent 'over the wall' into Studio and similarly Studio 
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files can be linked to 'hard-engineering' packages such as Pro-Engineer, to enable 

manufacturing and production or the creation of rapid prototyping models. 

There follows a quote made in 1997 by a designer at a internationally-known, 

London-based electronics fIrm: 

'But the only thing you will never replace is sketching. We still do that, 

get the pads out in a meeting and sketch out ideas. I don't know if it's 

cultural or psychological. Some people can't handle that because all they 

know is the computer. But you will never replace paper sketching.' 

Lawson's accounts from practising designers provide typical reactions. One senior 

architect is personally unenthusiastic about the idea of computer-aided design, of 

which he makes no use himself. He considers that the directness with which he 

can alter a drawing is missing when mediated by a computer and something which 

he calls the 'feeling' is lost. The same architect recognises however the 

advantages of computer-aided drafting systems, widely used in his company. The 

use of computer based drafting demonstrates that designers are not anti

technology for its own sake and will use suitable technology when it is considered 

appropriate. 

Traditional CAD systems only allow for specific geometry entities of exact 

dimensions and these are specified through textual menus or icon selects. Such 

precision features, coupled with the need to break the train of thought for the 

menu interface, work against early stage design capture [Hwang and Ullman 90] 

[van Dijk 95]. 

The recognisable frameworks of CAD systems lead to a situation where the tail is 

wagging the dog - there is a tendency for users to design only what the system 

allows them to. Computational interfaces not only provide tools and a medium for 

drawing but also help reinforce a symbol system. They facilitate certain marks and 

operations and discourage or even disallow others [Goel 95]. 
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Thus, at present, there seems little reason to attempt to replicate freehand 

sketching by computer methods. Conversely, computer support of sketching 

activity can provide desirable features not offered by traditional 'paper-based' 

methods: 

• storage facilities 

• faster search for material held in storage, via meaningful processing techniques 

• durability and permanence; sketches held on computer are not easily lost 

• direct links to proprietary computer tools and networks 

4.6 Discussion 

This chapter has attempted to demonstrate the all-pervasive influence and general 

importance of drawing to design. The designer's sketch has been described as a 

medium allowing ideas to be investigated quickly and cheaply on paper, as seen 

both from descriptive study and supported by evidence gathered by cognitive 

psychology approaches. Sketches allow ideas to be made concrete on paper and 

this in itself further stimulates exploration of those ideas or helps generate new 

ideas. 

A discrepancy has been noted between the importance of drawing at the 

conceptual stages as recognised by designers and the actual retention of those 

drawings. With freehand sketching at present excluded from the computer 

revolution, computer methods of capture would improve the storage and re-use of 

drawings and various attempts have been made to effect this by research. The 

conclusion here is that those approaches which attempt to capture freehand 

sketching by digital means are more likely to be adopted by designers within the 

earliest stages of design, in preference to those that try to make the designer 

sketch within digital environments and constructs. 
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The research experiment described in the next section observes a period of 

sketching within the early stages of design projects and from the observation aims 

to find areas that will enable freehand sketch activity to be included within 

computer support models which intend to encompass and record the entire design 

process. The research also aims to fmd whether sketches are indicative of the 

general progress of the design project and tries to determine the volume and 

pattern of information produced by sketch activity throughout the conceptual 

stages of the design process. 



CHAPTER 5 
EXPERIMENTAL WORK 
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5.1 Methodological Approaches for Design Research 

If researchers wish to support design activity with improved techniques and 

computer tools, then it stands to reason that fIrst some research must be carried 

out to determine and defIne what design activity actually is. 

In the past few years some work has been done in providing computer-based tools 

to support engineering and design at the conceptual phase [Hennessey 94] 

[Ullman 95] [Scrivener et aI93], with the most credible of these based on 

descriptive research rather than set prescriptive notions of design. It is difficult to 

predict the validity of developed tools without a firm basis in descriptive research 

methods. Tools developed using prescriptive models that do not match designers' 

working practices and expectations may fail to gain their confIdence and this will 

only serve to discredit the design research community. 

[Scrivener et a193] attempted to conduct conceptual design meetings between 

Australia and England using electronic conferencing technologies which utilised 

many promising advances in design hardware. Though the team then gathered 

many items of subjective and positive feedback from subjects testing the hardware 

prototype it remains difficult to predict the system's validity and acceptance in 

practice. 

The need for more detailed knowledge of design activity has led to the adoption 

and development of various research techniques and methods. Close study of the 

designer's actions will, it is hoped, lay bare the thought processes underlying 

intellectual activities such as cognition, problem-solving and creative thinking. 

5.1.1 Protocol Studies 

Engineering design research has often placed credence in data taken from 

observation of designers working in laboratory conditions on set tasks. The 

number of so-called protocol studies has grown steadily since the beginning of the 

1980s, but such programmes have tended to happen in scattered pockets of 



CHAPTERS EXPERIMENTAL WORK 84 

activity so that protocol analysis is some way off being recognised as a coherent 

discipline [Dorst 95]. Protocols involve observation of designers at work. Almost 

all of these studies are based on what we might call 'experimental data', gleaned 

from a 'laboratory' set up: a designer or group of designers will be put into a 

room, with given tools and a given problem. While there is no reason for the 

designer to be dishonest in such an experiment, responses from a designer may be, 

for whatever reason, what the designer thinks the examiner wants to hear. Ad-hoc 

rationalisation of the activity, whether spoken aloud in lab settings or given in 

retrospective interviews, is probably the most pernicious aspect of conducting 

such research. 

Much design protocol research is concerned with constraining or equalising 

'variables of the research equation' [Dorst 95]. When designers work 'for real' 

such rational constructs do not apply. [Dwarakanath & Wallace 95] recognise the 

shortcomings of such experiments in saying that it is 'less representative for 

analyses of how design actually takes place in practice'. Acknowledgement of this 

caveat helps to bolster the credibility of their protocol studies, and their claim that 

a laboratory environment 'usefully restricts the influences on the design process' 

[my italics]. 

Christiaans' and Cross' protocol analysis workshop at the Delft University of 

Technology in September 1994 represented the first coming together of leading 

researchers in this field [Dorst 95]. All of the analysts worked from the same set 

of source data; each group of researchers were given the same two sets of 

videotapes, one recording an individual designer at work and another observing a 

three-person team of designers. 

The resulting range of papers reveals that even though they might be based on 

evidence gained in 'controlled laboratory environments', there are still many ways 

of seeing. Some papers focused on analysing the verbalisations of the subjects, 

taking them to be a more or less faithful reflection of their thoughts. Others 

concentrated on drawings made by the designers and one even studied their 

gestures. 
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Research gathered by protocol methods could be greatly devalued however by a 

failure to acknowledge the 'influences on the design process'. Dorst admits that 

the experimental set-up heavily influences the protocol data, but goes on to say 

that; 

'conclusions and generalisations drawn on the basis of protocol research 

will only be valid if and when we have a coherent picture of the influence 

of the experimental technique and situation.' 

Such protocols feel they are observing a true central activity by creating an 

'artificial' environment devoid of distractions, social and otherwise. One 

participant in the Delft workshop exercises caution, making the observation that 

protocol tapes 'work like Rorschach blots' in which case 'we have been looking at 

ourselves the whole time' . 

5.1.2 Ethnographic observation 

The protocol method, with a seemingly scientific basis, has been readily accepted 

as a way of studying engineering design activity. More recently, and with the 

growing recognition of engineering as essentially a human activity, it has been 

proposed that the field research techniques developed in the social sciences could 

prove useful in helping to understand how and why design happens [Wallace and 

Hales 89] [Kennedy 97]. 

One such social science technique is ethnographic observation. The ethnographic 

approach seeks to provide a written description of the implicit rules, traditions and 

behavioural patterns of a group. The intention is to provide a rich or 'thick' 

description which interprets the experiences of the group observed [Robson 93]. It 

differs from a protocol approach, most obviously, by observing an activity 

without having 'created' that activity. 
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The researcher can take various observational stances. The participant observer 

enters the culture they are observing; becomes a part of the community under 

observation. In an engineering context, participant observation would involve 

researchers gaining access to companies and working as designers or with 

designers to get an inside view of their activities. Observation can be more or less

structured; the study can become more structured as hypotheses emerge from the 

investigation [Kennedy 98]. 

In the design research field [Bucciarelli 94] has carried out a non-participant 

ethnographic study of an engineering firm making photo-voltaic cells. It 

demonstrates how the resource, time and budget constraints within the firm and 

the social interaction between designers and management have a bearing upon the 

activity in real life situations. 

5.1.3 Multiple Method Approaches 

Quantitative data deals in numbers and statistics obtained by enumerative 

induction while qualitative data expresses concepts and ideas. Protocol studies 

deal in reducing qualitative source data to quantifiable data while an ethnographic 

approach yields purely qualitative results. The two approaches, then, have their 

associated data analysis methods. 

The divide illustrates the two main traditions within research. These occasionally 

'warring' factions are labelled as positivist, natural-science based, quantitative or 

'scientific' on one hand and interpretive, ethnographic or qualitative on the other. 

Some see the differences as purely technical however and while recognising the 

differences between approaches also play down those differences [Bryman 92] 

[Robson 93]. 

Research that produces essentially qualitative r~sults or essentially quantitative 

results need not be seen as opposing, incompatible disciplines. Indeed [Cross and 

Cross 95] and [Bucciarelli 94] both reach the same conclusion - that design is a 

social process - by taking, respectively, protocol and ethnographic approaches. 
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Some advocate a multiple methods approach. Multiple methods can be used in a 

complementary fashion to enhance interpretability. In a primarily quantitative 

study for example, the interpretation of statistical analyses may be enhanced by a 

qualitative narrative account [Robson 93]. This could explain trends and 

contradictions in the statistical data. Protocol studies can be seen as plausible 

explorations of designers' thought processes, but it must be realised that rarely are 

they complemented by studies of environment and social context. A mixture of 

the two approaches may form a reliable trace of the design activity. 

The use of multiple methods in the study of the same phenomena is known as 

triangulation, a phrase fIrst used by [Denzin 89] meaning' getting a fIx from two 

or more places', and is intended to neutralise bias in anyone approach [Cresswell 

94] [Kennedy 98]. Denzin formulated that it was possible to triangulate in terms 

of multiple and different sources (e.g. informants), methods, investigators or 

theories. 

'Method triangulation' is simply the use of multiple methods. Method 

triangulation is described as being either between-methods or within-methods. A 

within-method approach involves the same method being used on different 

occasions (repeating the same experiment at different times of year for example) 

and a between-method approach uses different methods in relation to the same 

object of study. 
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5.2 Methods Used 

From the discussions and conclusions made in the previous three chapters, the 

experiment aims are defined as follows: 

1) To find areas that will enable freehand sketch activity to be included within 

computer support models which intend to encompass and record the entire design 

process. 

2a) To find whether sketches can in any way be indicative of the general progress 

of the design project and as a corollary to this 

2b) To determine the volume and pattern of information produced by sketch 

activity throughout the conceptual stages of the design process. 

In order to answer these research questions this study focuses on the act of 

drawing in particular as a means of describing the design process. The research 

studies these visual artifacts of the design process and uses quantitative encoding 

methods of analysis to interpret the act of designing. Observation made of the 

design tasks being performed is added to this data to build a comprehensive 

picture of conceptual design activity. 

This study is interested in the use of visible surface externalisations used by the 

designer, not in attempting to deduce the cognitive activities underlying the design 

task. It attempts to find out what is produced, how, when and in what quantity and 

most important of all what there might be within these prevalent externalisations 

that will enable a design record to usefully capture and store them. By studying 

the resulting artifacts of design, the experiment can be said to utilise the 

unobtrusive measure method. Such methods are given this name due to their 

unobtrusive and non-reactive relationship with the activity under scrutiny. The 

enquirer does not have to be in direct contact with the subjects as they produce 

these observable traces. 
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Difficulties can arise in linking cause and effect - it is assumed here and from our 

literature review that the visual traces under analysis are almost direct traces of the 

proceeding design activity. It must be appreciated that there are serious drawbacks 

to the unobtrusive measure method if used as the sole method of investigation. 

Unobtrusive measures can have great usefulness as a complement to other 

methods and here they are considered part of a multiple method investigation. 

In the first iteration of the experiment the researcher is placed in the participant

as-observer role. This form of participant observation makes clear to the subjects 

that the observer is an observer and the researcher performs the dual role of 

observer and participator to establish close relationships with the group subjects 

[Robson 93]. In this case the observer is perceived by a wider classful of 

'subjects' as fulfilling a 'tutor' role. As to the nature of the observer's 

investigation, the four subjects selected are only informed that the study focuses 

'on how they go about their work'. One additional request to the subjects was that 

they keep their sketchbooks in 'good order' and try and keep all of their 

'working'. This was not thought to give any specific hints that the study was most 

interested in the subjects' conceptual sketches. 

5.3 The Observational Experiment 

The same experiment was carried out twice with two different sets of four 

subjects. The first subjects were drawn from the pool of final year students of the 

Product Design Engineering course, session 1996-97 and the second set from the 

final year students of the same course, session 1997-98. 

5.3.1 First experimental iteration 

The initial iteration of the study observed student designers in the final year of the 

M.Eng/B.Eng Product Design Engineering course at the University of Glasgow/ 

Glasgow School of Art between November 1996 and February 1997 and 



CHAPrER5 EXPERIMENfAL WORK 90 

concentrated upon the sketching part of the design activity. The production of 

sketches was regarded as a measure of ideas and information produced. 

Four students were selected from a class of twenty-two by teaching staff. The 

selection was intended to illustrate a range of activity and varying scales of 

product. The students were not given specific tasks to do, nor strict time limits in 

which to do them. The students were observed at work on their individual, self

motivated projects. It is crucial to appreciate that these projects would have been 

carried out whether the experiment had been set up or not; this observation of a 

non-laboratory activity is more in keeping with an ethnographic rather than 

traditional protocol stance. The projects constitute a major part of the eight-month, 

final year curriculum though they were interrupted by complementary core 

engineering lecture material and study. There are no intermediary submission 

dates in the project; only a final hand-in around May/June of the second session 

(for this first iteration of the experiment, this was May/June 1997). The window 

for study was set to cover the conceptual phase period; reckoned to consist of up 

to fifteen weeks beginning in the fifth week of term. From staff experience the 

first four weeks are generally thought to consist of the search for a suitable 

problem area and initial background research. 

Most of the material for encoding and subsequent quantitative analysis came from 

the students' sketchbooks, but qualitative observation was thought necessary to 

explain both trends and contradictions in quantitative results. Anecdotal material 

and assessments of the working habits of the subjects was obtained by placing the 

researcher in the participant-as-observer role (in this case taking the role of a part

time tutor available to all twenty-two students). The working environment is 

shown in Figures 5.1 and 5.2. 
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Figures 5.1 and 5.2: Observational working environment 

The four subjects worked on a wide range of products varying in many ways, 

most obviously in size. The subjects chose the following projects: 

• computer hard drive swap system 

• ski-tow 

• mobile grandstand 

• mobile electricity substation 

SubjectW 

Subject S 

Subject A 

SubjectL 

5.3.2 Second experimental iteration 

After the fIrst set of results had been logged and initial conclusions made it was 

thought wise to strengthen any initial fIndings by repeating the experiment and 

thus obtaining a second data set from another four subjects. On this second 

occasion the four subjects were drawn from the fInal year group of PDE students 

in session 1997-8. This second run uses an approach that can be described as 

within-methods but not within-subjects, since it involves four subjects different 

from the four chosen to take part in the fIrst experimental iteration but analyses 

their work using the same measures. 

Due to time constraints, carrying out regular observation on the new set of 

subjects at work for a second session was thought impractical. Instead, 

Unobtrusive Measure was the sole method of investigation used. Sketches were 

analysed retrospectively at the end of the session without observing the designers 
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or the circumstances of the drawings' production. Bearing in mind the similar 

environment and population to that of the first study group, it was thought 

adequate to observe only the direct traces of conceptual design. Essentially, 

second time around it was assumed that the sketches 'could speak for themselves' . 

The new four subjects' work displayed a wide range of product areas and product 

scales, as had been the case with the fIrst experiment: 

• disposable instant picture camera Subject 2DK 

• desktop three-dimensional scanning device Subject 2HK 

• small-scale investment casting oven Subject 2L 

• canal cruiser Subject 2C 

The second iteration possibly benefited from improved analysis techniques since 

the same observer was now more practised in determining the various qualities of 

the sketches. Two refinements were made to the analysis methods for the second 

experiment and were expected to improve the accuracy of the results: 

• the refinement of the encoding sketch scale, discussed in 5.4.3, and the 

tightening of defInitions reached through practical experience; 

• the recognition of the importance of the Duplication transformation mode from 

the fIrst iteration leading to a subsequent remodelling of the Transformation 

analysis scheme. 

The retrospective gathering of the sketch material was not entirely straightforward 

however. In the first iteration of the experiment the subjects were advised to try 

and keep their sketchbooks tidy and to date all work. As the study intended to 

shed light upon the episodic and chronological qualities of sketching, this dating 

and ordering of work was crucial. In the second iteration no instruction was given, 

thus the work produced was only dated at the discretion of the individual subjects. 

With the resulting variance in the order and completeness of the retained sketch 

work it was by a simple process of elimination that the observer selected those 

taken for analysis; the four sets of work chosen were those which had dates 
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clearly marked on each piece of work. It should be noticed that although there 

were many sets of quality sketch material to choose from, only the four selected 

were clearly dated and ordered. 

The observer acknowledges that there is still a slight chance that some work may 

be missing. Conversely, it should be noted however that the artifacts gathered to 

provide this second set of results can be guaranteed to be free from any 

experimental influence. 

5.4 Analysis of Sketch Work: Rules and definitions 

To answer the stated research questions it is necessary to analyse the sketches 

obtained using a variety of encoding methods. Through the combination of these 

methods it is hoped that the study can provide insight into the issues of 

production, utility and design record inclusion. The following rules should 

provide a set of consistent results. 

5.4.1 Conceptual sketches 

The Conceptual Sketch is different from the other types of drawing employed by 

designers: the Presentation Drawing and the Drawing for Manufacture. Concept 

sketches and presentation drawings are sometimes confused since genuine concept 

sketches often perform a secondary function. They can be used to present ideas to 

clients and to those involved in a product's eventual manufacture, providing a kind 

of work-in-progress report. 

Figures 5.3 and 5.4 are taken from one subject's project. Figure 5.3 is a conceptual 

sketch that allows the designer to try out an idea on paper. It is just less than 

lOOmm by lOOmm seen in its original size. Figure 5.4 is a refined presentation 

drawing, originally about the size of an A4 sheet, made to give a quick impression 

of the product in use to a wider audience which differs little from that shown in 

Figure 5.3. 
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Figure 5.3: conceptual sketch from 
sketchbook of subject 2HK 
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Figure 5.4: presentation drawing of same 
concept 

Presentation drawings are merely laboured reworkings of conceptual sketches, 

traced or more carefully rendered, perhaps with detailed graphics and text but not 

furthering the design. Such presentation drawings, while fairly rare, were 

disqualified from analysis. 

5.4.2 Individuating sketches 

Figure 5.5 shows a typical page from the sketchpad of one of the students 

involved in the experiment In analysing these pages each page must first be 

broken down into constituent sketches. The observer fIrst identifIes separate 

(though still connected) sketching episodes. Goel talks of 'individuating' when 

analysing sketches [Goel 95]. In his experimental work the subjects themselves 

were instructed to individuate the output by drawing rectangles around each 

separate drawing and in some cases would number them in sequence. 

The retrospective method of unobtrusive measure involves a degree of 

interpretation and the analytical process takes longer than if the student was asked 

to individuate and number each sketch in the fIrst instance. From study of the 

sketchbook material it is obvious that the students do not do such a thing as part of 

their own practice - such a demand would have been an additional requirement 

over 15 weeks, with possible intrusive influence on the experiment's outcomes. 
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Figure 5.5: Individuated sketches on one page from student 
A's sketchbook 

The seven individuated sketches in Figure 5.5 are shown by the overlapping 

rectangles on the sketchbook page, added by the observer. 

5.4.3 Encoding: quantifying qualitative difference 

To be able to appreciate the pattern of infonnation flow in the conceptual 

sketching activity, some quantitative measure of the activity is required. In order 

to obtain this a qualitative judgement of some attribute of the sketch needs to be 

encoded; that is to say, classified in order to give some quantitative measure. 

Each sketch on each sheet of the sket.chbook was assessed for a measure of the 

infonnation it communicated to the observer. To classify the level of information 

content within each drawing a simple scale of what has been termed 'Complexity' 

was constructed. 

Complexity here was eventually defined to be a measure of the detail in each 

drawing - the intricacy of the mechanisms shown, the exactness of textures and 

such like. In initial analyses of the drawings there was perhaps a slight tendency to 

confuse the measure of detail with a measure of the level ofJinish in a drawing. 

The presentation drawing in Figure 5.4 is well rendered to show a degree of 

'photo-realistic' three-dimensional form, and the edges are neat. A similarly well-
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rendered drawing of a 3D cube, despite containing highlights shadows, colours 

and tones could in fact contain as litte information as that contained in a hastily 

line-drawn 'black box', conveying little in the way of ideas. 

In assessing the kind of sketching used by automotive stylists [Tovey 92] notes 

the use of 'artistic devices [used] to enhance the "desirability" of the sketch, based 

on preconceived "auto" enthusiasms', devices he also refers to less prosaically as 

'bullshit'. Essentially, when analysing sketches to measure the level of ideas and 

exploration contained in each one, the observer must look beyond the sketcher's 

ability to produce beautifully rendered 'three dimensional' objects on paper and 

instead try to assess the amount of thinking going on at the structural level 

[Hinton 79a;79b] [Kosslyn 80;83]. Qualities to look for include 'detail' and 'busy

ness'. The density of lines is probably more important than the quality of shading 

to represent form. 

The scale used in the fIrst experimental iteration was revised to produce the more 

refIned guidline that is given here, as used in the second experimental iteration 

(for subjects 2C, 2DK, 2HK and 2L). For this reason, results in the second 

iteration are expected to provide a slightly more accurate reflection of the qualities 

of the sketches. The most simple of sketches typically found in the students' 

sketchbooks was rated a 'One' and the most complex and detailed rated a 'Five'. 

The scale was created by interpolating between the two extremes. 

Figures 5.6 (a-e) give examples to illustrate the definitions which allow for the 

classifIcation of each sketch. 
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The qualities to look for in each drawing are given by the following scale: 

Complexity level One (Least complex) 

Monochrome* line drawing. These drawings are the least dense, typified by 
large empty areas of white space. No shading to suggest 3D form. No text 
annotations are used nor are numerical dimensions. Motion arrows may 
indicate moving parts . 

.. If a single colour is used then this also counts as monochrome (e.g. a drawing 
made in blue biro pen) 

Complexity level Two 

Monochrome line drawing. More detailed and thus more dense than that in (1). 
One or two brief annotations may appear though they will probably not more 
than one ot two words each. As in (1) motion arrows may be allowed. 

Complexity level Three 

Monochrome, again more dense than in (2) with rough shading perhaps used to 
give suggestion of form. The drawing may be briefly annotated to describe 
certain aspects of the idea. Dimensions might be apparent. 

Complexity level Four 

Drawings at this level will be very dense, with very little white page showing 
through. The drawing will almost certainly be annotated, with some longer 
explanations included. Colour, or gradation of monochrome 'colour' may be 
used to illustrate certain concepts or arrangements, but not to suggest the true 
colours of parts. Subtle shading may be used to suggestive 3D form. 

Complexity level Five (Most complex) 

Generally a very busy drawing - many lines will be used in its construction. 
There will be more marks on paper than white page. Colour may be used to 
represent the actual colours of parts of the product. Lengthy annotations will be 
used to ask questions of the idea or to explain it. 

Since the drawings have been marked with the date of their production, the 

qualities can be assessed chronologically to produce an information pattern of 

conceptual sketch activity in the early phases of design. 

The amount of information is not only dependent upon the complexity of the 

sketch. That is to say the bigger a drawing becomes, the greater the space for 

discussion. Thus, an assessment of the amount of information in a drawing should 

include a factor of size. 
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Figure 5.6 (a): Example of Complexity Level (1) sketch 
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Figure 5.6 (b): Example of Complexity Level (2) sketch 
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Figure 5.6 (c): Example of Complexity Level (3) sketch 
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Above - Figure 5.6 (d): Example of Complexity Level (4) sketch 
Below - Figure 5.6 (e): Example of Complexity Level (5) sketch 
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With an A3 sketchbook the largest sketch (size factor 5) must be considered a full 

page or near full page sketch, extremely rare as they may be. The smallest sketch 

was a thumbnail sketch - this was assessed from study of the students' material to 

be anything up to 50mm by 50mm. The other levels in the scale were assessed by 

interpolating. 

SIZE FACTOR SCALE 

1 - thumbnail sketch up to 50mm x 50mm 

2 - up to lOOmm x lOOmm 

3 - up to 150mm x 150mm 

4 - very large - up to an A4 page 

5 - full page - drawing covers most of the A3 page. 

Now let: c = complexity of a sketch (1::; c::;5) 

s = size factor of a sketch (1::; s ::;5) 

I = Infonnation held in an individual sketch, where 
ps 

I = (c.s) ps 

and let: Ipw = the average infonnation total per week 

n = the number of sketches made in a week 

so that; 

pw 

n 

I = ~c.s. 
pw L I I 

i= 1 

n 
pw 

A note was also made of the media used to produce each sketch. Particular interest 

was focused upon whether sketches were freehand or were drawn by computer 

methods and pasted in to the sketchbooks. It was felt that it might be useful to 

analyse the kinds of tools used and how the choice of tools changed with time, if 

at all. 



CHAPfER5 EXPERIMENfAL WORK 101 

5.4.4 Qualifying transformations 

The work of [Goe! 95] was considered in the previous chapter's discussion of 

studies of sketching and drawing and sketching in engineering and was thought to 

suggest an interesting method for considering sketch output. For this reason the 

obseIVer looked at every successive sketch produced during the two experimental 

iterations to decide which transformation had taken place in each case. An 

obvious change in thinking is lateral transformation while if the change is instead 

to a more detailed version of the same idea then a vertical transformation has 

occurred. A fuller definition is given in Section 4.3 and Figures 4.8 - 4.10. 

The obseIVer found it difficult to sequence the drawings within a page, and this 

made it hard to determine which drawings were successive. To this end 

'successive' was extended to mean 'corning after' rather than 'consecutive' which 

it is apparently taken to mean in Goel's work. Jumping opportunistically from one 

idea to a second different idea and then on to an expansion of the first idea can 

only be realistically defined to be a vertical transformation from the earlier idea, 

whether consecutive or not. 

Again it was important that what was being considered was the underlying 

structural make-up of the sketch and not the way in which it was drawn. If a 

sketch is drawn a slightly different way but is structurally identical to a previous 

sketch then it is termed a Duplication Transformation. This mode was identified 

after the first iteration of the experiment and is explicitly included in the method 

for the second. 

Figure 5.7 shows a concept sketch from the book of Subject 2HK. Figure 5.8 

illustrates how designers will occasionally redraw an item even if this performs no 

particular apparent function in terms of advancing the design. From study of the 

sketchbooks, its main purpose appears to be to consolidate a concept selection or 

to return to a previous concept for further development but it also seems just as 

common that it indicates a 'rut' in which the designer is stuck. This may appear 

similar to the reasoning behind the disqualification of presentation drawings, as 
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Figure 5.7: a concept sketch by Subject 2HK 
(in pencil) 

Figure 5.8: this later concept sketch by 
Subject 2HK (in ink and marker) is defined to 
be a duplicate transformation, since it is 
structurally identical to the concept in Fig 5.7 

both are merely reworked copies of original concepts. In the case of duplication 

however, the sketch is not aimed at a wider audience - it is still a part of the 

designer's discourse with hirn/herself. 

5.5 Discussion 

This chapter has outlined the experimental methodology which is based on a 

combination of protocol methods with the extended time period of observation 

more typically associated with social science approaches. This chapter also 

outlines the experimental aims which are, broadly, to seek ways of incorporating 

visual material in predominating text-based records and also to discover ways in 

which sketch work might act to track the progress of a design project. The 

methods and rules employed in the two iterations of the experiment are given 

here, and the methods of the second are thought to be refined from those of the 

first. The next chapter presents the results of these experiments. 



CHAPTER 6 
EXPERIMENTAL REsULTS 
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6.1 Introduction 

In line with the research questions identified and stated in Chapter 5, the results of 

the experiment, presented and discussed here: 

• identify one possible way in which drawings can be linked to what are currently 

text-only records of design activity; 

• illustrate the patterns of design as carried out by our subject group of novice 

designers; 

• recognise ways in which the analysis of designers' sketch material can provide a 

useful track of the progress of design activity, informing the reflexive designer 

and thus the design process itself. 

Different aspects of the experimental analyses will illustrate each of these points 

in turn. 

Firstly, the experiment attempted to verify the presence of freehand sketching in 

the early stages of design. Table 6.1 illustrates that three of the four students 

involved in the initial iteration of this study use almost exclusively freehand 

techniques for drawing. The table also illustrates that each student has a preferred 

medium of choice, with around 70% of drawings being made with one or two 

Student 

Drawing media A (0/0) L(O/O) S(%) W(%) 

Hard pencil 40 3 

Soft pencil 11 69 4 69 

Ballpoint pen 6 78 6 

Fineliner pen 18 18 2 

Colour marker 4 <1 

Mixed fhand Media 31* 3 16 6 

Computer generated 16 

• Subject A produced 2B% of 
drawings w~h a mix of fineliner 
and monochrome marker 

Table 6.1 : Media used for drawing in the conceptual phase 
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specific media. Note that Student W produced some computer-generated material 

- the print-outs pasted into his sketchpad meant it could be included in this 

analysis. It is acknowledged that once drawing has moved on to computer it is 

difficult to track the 'number of sketches' produced, since the computer model is 

singular and dynamic and leaves no direct trace of its development. 

Table 6.1 confirms that for early stages of the process, freehand methods of 

drawing are used - the experiment can thus be confirmed as studying freehand 

sketching activity. 

6.2 Including Sketch Activity in the Computer-based 
Design Record 

Records of design in current usage and the knowledge bases they constitute are, as 

we have identified, exclusively textual. While we might previously have 

considered sketches to be exclusively visual descriptions, in this experiment it was 

observed that the sketch work produced also included annotations - textual cues 

added to the drawing (Figure 6.1). These have also been observed by others such 

as [Tovey 92] but are largely ignored elsewhere. This study recognises their 

potential use in providing links between visual product descriptions and the text

only handling ability of current design records. 

It was observed that the updating and revision of the PDS records used by the 

subjects during this project was slow and made in a few discrete stages, 

sometimes as much as six weeks apart. This highlights the shortcomings of what 

is still, despite the use of computers, very much a paper-based format. It appears 

that major amendments are made to the PDS before and after periods of sketch 

activity - updating of the PDS was observed in Weeks 3 and 6 for Subject Land 

Weeks 3 and 5 for Subject W for example. Reference to Figure 6.4 demonstrates 

this trend. It was also noted that especially large increases in the amount of text 

information produced tended to coincide with the end of the first peak of sketch 

activity (around Week 6 in most cases for the first iteration of the experiment). 
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Figure 6.1 This sketch, by Subject 2l, has three annotations, 
marked on this figure 

This apparent lack of dynamism and resistance to change perhaps indicates how 

separate the design 'sketching' and 'writing' tasks have become. The recognition 

of sketch annotations and the call for their acceptance into the knowledge base 

could encourage the two activities to become parallel and simultaneous, thus 

speeding up the communication of continuous change to the product description 

and design record. In this way the record can become a fuller representation of 

design as it happens. 

6.2.1 Annotations - an experimental observation 

An Annotation or Image-Associated Attribute is defined here, then, to be a written 

note added to a conceptual sketch. Since any annotation may provide an anchor 

for processing and inclusion in the design record, the Image-Associated Attribute 

is defined as including the naming of parts (e.g. 'housing', 'lever', 'caterpillar 

tracks') and also extends to include explanations and questions appended to a 

drawing (called 'Full Annotations' in Table 6.2). This definition does not include 
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Total No. of No. of 'Full' No. of Annotations %8geof 
Number of Annotated Annotations 'Parts' Totals sketches 
Sketchas Sketches Annotations annotated 

SUBJECT 

A 179 29 53 13 66 16.2 

l 232 21 29 4 33 9 

S 375 83 107 71 178 22.1 

W 88 27 44 9 53 30.6 

2C 28 17 35 9 44 60.7 

2DK 180 42 46 34 80 23.3 

2K 157 81 120 11 131 51.6 

2l 88 54 92 20 112 61.4 

Table 6.2 Measure of textual annotations to sketches 

dimensional values drawn on the sketch without English language qualifiers as 

such a figure is unlikely to match any kind of engineering case base enquiry. All 

of these definitions have been used as it is thought that if these annotations exist 

in sufficient numbers, they would need to match typical engineering database 

queries. 

A count of the Image-Associated Attributes made in each Student's sketchbook 

over the observation period was carried out Table 6.2 shows that the amount of 

sketches possessing associated text annotations ranged between 9% and 61 %. Of 

these, many contained multiple annotations explaining and labelling different 

aspects of the product, as can be seen if the columns for 'Number of Annotated 

Sketches' and 'Annotations Totals' are compared. Overall these sets of figures 

display a general ratio of two annotations to one sketch. 
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The lowest percentage of sketches annotated was the 9% shown by the work of 

Subject L. It is interesting to note that in the course of the initial observation this 

subject admitted to having suffered from dyslexia. This may have produced a 

tendency to 'explain' concepts in pictures rather than words and thus the low 

annotation rate. 

The next lowest score was the 16% recorded by Subject A. This subject was 

judged to be a very skilful sketcher, able to represent concepts convincingly and 

expressively on paper. Conversely, the subject judged to perhaps have the best 

drawing ability of all eight was Subject 2L, who displayed the highest score for 

annotating - 61 %. From consideration of the results of A alone it might have been 

presumed that annotations are only used to 'make up' for deficiencies in the 

sketching abilities of the designer and are not needed by those with better drafting 

skills. The high usage of annotations by Subject 2L would tend to disprove such a 

notion. Annotations can add much additional information which sketches alone 

could not show; material qualities, clarification of certain mechanisms, the 

questions of the designer. A transcript of every annotation made is given in 

Appendix I. Again, the drawing ability of a designer should not be confused with 

his or her ability to think in three dimensions - we must always try to consider the 

underlying ideas being explored, those structural entities that underpin the two

dimensional sketch on paper. 

From the results given in the far right column of Table 6.2, on average 34.4% of 

sketches were annotated for these subjects. It is thought that the ability to anchor 

what amounts to one third of all sketches to text-based design records would be a 

useful advance in design management. 

6.2.2 The utility of annotations within the design record 

It is thought that the recognition of the common occurrence of these annotations to 

sketches might enable the inclusion of sketches in the design record. The text

based nature of the annotations observed here means they can easily be included 
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within current systems and knowledge-bases in the same way as such systems 

accept more typical text information in requirement list and specification type 

formats. The annotations can be used to provide responses to textual design 

queries, as with conventional textual design information. The textual response 

given by the annotation then activates the retrieval of the associated sketch from 

the visual digital design record (or 'sketchbase'). In essence then any sketch 

which is annotated textually becomes a useful part of the design record, able to be 

accessed by text-based query. 

Examples given in Section 7.1.5 show how the above theory may be used in 

practice as part of the proposed computer support system to provide a worthwhile 

tool for the designer. 

6.3 Sketches Tracking the Progress of Design 

6.3.1 Transformation Modes 

[Goel 95] identified that in the main there are two different types of design 

thinking, lateral and vertical, and suggested that they could be recognised in the 

sketches which designers produce to help them think. [Cross 89;94] also discusses 

these two predominating thinking modes and their roles within the overall 

process. The overall aim of any design-project is to converge onto a final, detailed 

design proposal. Within the broadly convergent pattern of design however there 

will be times when it is necessary and appropriate to diverge; the overall design 

process is convergent but it will contain periods of deliberate divergence (Figure 

6.2). 

Divergent thinking is associated with widening the search for possible solutions to 

find new ideas or starting points [Cross 89;94]. It is about 'extending the 

boundary of a design situation so as to provide a large and fruitful search space in 

which to seek a solution' [Jones 70;80]. Cross associates convergent thinking with 

detail design, evaluation and selection tasks. Divergent thinking is thought to be 
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Figure 6.2: The overall process is convergent but it includes 
periods of both convergence and divergence [Cross 89;94]. 

important when attempting concept design and trying to generate many 

alternatives. 

eSolution 

These convergent and divergent thinking styles may be seen as two halves of a 

dichotomy and this dichotomy is observed in other work. The distinction is 

apparent in the linear and lateral thinking styles discussed by [de Bono 70]. 

Linear thinking is said to proceed quickly to a perceived goal but may involve 

getting 'stuck in a rut' somewhere along the way. Lateral thinking involves an 

ability to shift the entry point to a problem so as to restructure it, coupled with a 

readiness to see other possibilities that this may open up. 

These styles ought to be directly equivalent to the thinking styles implicit within 

Goel's Lateral and Vertical Transformations. Lateral transformations are 

necessary for 'widening the problem space' while vertical transformations 

'deepen the problem space' [Goe195]. The thinking styles discussed in the 

literature are thought then to be equivalent; 

Convergent 

Linear 

Vertical 

Divergent 

Lateral 

Lateral 



CHAPTER 6 EXPERIMENfAL REsULTS 111 

Psychologists have suggested that some people are more naturally convergent 

thinkers and some are more naturally divergent thinkers. Thus some designers 

may be happier with one strategy than they are the other. Despite this preference 

no-one is thought to be limited to one or other style of thinking. Cross states that it 

is important to be able to change from one style to another in the course of a 

design project. He advocates above all the need for; 

' ... a more flexible, strategic approach to designing, which identifies and 

fosters the right kind of thinking at the right time and within the context 

of the particular design project. ' 

There does not appear to be an overall best thinking style, only styles appropriate 

at a given time or in a given situation. Thus reflexive designers and their 

management ought to be aware which thinking mode they are predominantly 

involved in at any point in time. This awareness should help them to consciously 

decide which thinking mode will be most appropriate to apply next, so that design 

progresses efficiently. As Cross believes; 

' ... clearly both kinds of thinking are necessary for successful design' 

This thesis proposes that design will be improved by an awareness of the thinking 

mode currently employed and that this awareness can be gained by regular 

analysis of the transfonnation modes displayed in the designers' sketch work. This 

experiment, broadly speaking, studies the 'conceptual phase' and, while the 

literature suggests this phase is strongly linked to divergent thinking and lateral 

transfonnation, we may expect our subjects to exhibit periods of both convergent 

and divergent thinking over the fifteen weeks. 

6.3 .1.1 First experimental iteration 

For the first iteration of the experiment each successive sketch was assessed to be 

the result of either a lateral or vertical transfonnation. Table 6.3 shows the 

sketches evaluated to be percentages of either lateral or vertical transfonnations in 



SUBJECT A SUBJECTL SUBJECTS 

Week No. L (%) V (%) No. L (%) V (%) No. L (%) V (%) 

1 32 53 

2 12 66 33 

3 6 66 33 

4 33 52 48 16 88 12 173 31 

5 13 77 23 35 43 57 

6 

7 7 29 71 

8 6 100 0 

9 

10 9 66 33 

11 9 89 11 3 33 66 36 42 

12 10 30 70 8 38 62 58 31 

13 12 0 100 68 66 33 31 48 

14 11 73 27 38 37 63 33 42 

15 37 70 30 34 41 59 10 50 

Overall total 165 59 41 202 48 52 373 36 

Lateral-biased Activity is highlighted in RED 
Vertical-biased Activity is highlighted in AQUA 
Balanced Activity (within + or - 4%) is given in BLACK 

No. column gives the actual number of t ransformations 
between sketches in each weekly episode 

47 

69 

58 

69 

52 

58 

50 

64 

SUBJECT W 

No. L (%) V (%) 

4 75 25 

15 47 53 

5 100 0 

21 47 53 

12 50 50 

8 38 62 

16 44 56 

7 57 43 

88 51 49 

Table 6.3 Lateral and vertical bias in t ransformations: 1st iteration 
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comparison to earlier work, as well as the number of transformations between 

sketches, for each week of the observation period. It should be noticed how the 

tendency of students to produce work that is either laterally or vertically inclined

or an even balance of the two - can be seen at a glance from this chart and this 

ought to very quickly give some insight into the thinking mode of the subject. 

We can assess the switching between ways of thinking over the period of 

observation by looking at the results for each subject in turn. 

Subject A, who produced a reasonably large number of sketches over the 15 

weeks, displays an initial tendency to produce lateral work. Between Weeks 2-5, 

three weeks show considerable lateral bias, although Week 4 shows an almost 50-

50% split. Work done in the Christmas break weeks (7-8) shows a brief vertically

biased episode followed by a laterally-biased one. When A returns to his 

sketchbook in Weeks 10-11 there is another burst of laterally-biased activity. This 

is followed by a two week spell of very much vertically-biased work however. 

Another two week spell of lateral activity comes at the end of the observation 

period. Overall, Subject A's work displays a predominantly lateral start with 

alternate switching of lateral and vertical spells thereafter. 

Subject L opens her account with a slightly late start but a spell of predominantly 

lateral work (Week 4), immediately followed by a week of slightly vertically

biased activity (Week 5). A large spell without sketching ends with two weeks of 

vertical activity in Weeks 11-12. There is a switch to a period of intense lateral 

activity (68 transformations) in Week 13 which is followed by a switch back to 

vertical thinking for Weeks 14-15. The week oflateral activity in Week 13 tends 

to make the overall activity look as though it is typified by alternate switching 

between thinking modes. There could be some concerns, however, that the 

opening spell of lateral sketch work was too quickly overtaken by vertical 

thinking - this may suggest a slight early fixation. 

It should immediately become clear that the work of Subject S shows no single 

week where lateral activity dominates. Within the conceptual design phase, where 

the search for ideas is thought to be all-important, this can only be a discouraging 
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sign. Though not clear from the results, on many occasions - perhaps as often as in 

20% of cases - vertical transformations were so close to previous sketches as to be 

almost identical repeats. The observation of this phenomenon of duplication led to 

a refinement in the method within the second iteration of the experiment 

Subject W opens with what is a possibly too brief a spell of lateral activity (Week 

2). This is followed by a spell of balanced activity and another short spell of 

lateral activity in Weeks 4 and 5. Subject W's work is typified by a very balanced 

approach overall - even those weeks where there is a notable bias towards one 

type of thinking it is only very slight (e.g. a 44-56% split in Week 14). The overall 

progress shown here is Slight lateral - Balanced - Vertical - Slight lateral, showing 

a dominant tendency towards very 'mild' alternating episodes. This might indicate 

very consistent if unspectacular work, considering that the period observed is the 

conceptual phase. Looking at the pattern, the final product outcome could be 

durable but is unlikely to be particularly innovative. This indication is qualified by 

the end result; for this well-defined problem the resultant hard drive casing 

arrangement was largely similar although within these parameters was 

incremental change in the form of some innovative new mechanisms. 

The overall total figures illustrate that Subject A displays a slight lateral bias 

while Subject L and Subject W are split almost 50-50 between lateral and vertical 

transformations, in line with findings from a recent similar study of architects 

[Suwa and Tversky 97]. The sketch traces of Subject S give the clearest cause for 

concern by exhibiting a considerable vertical transformation bias within the 

conceptual phase - a phase thought to be typified by lateral thinking. 

6.3 .1.2 Second experimental iteration 

As a result of the misleading figures thought to have been caused by the 

duplicating effect of extreme vertical transformation, the Duplication 

transformation was explicitly recognised as a separate transformation type during 

analysis of the second experimental data set Figures giving a measure of 

duplication mode activity are included in Table 6.4. 



SUBJECT2C SUBJECT2DK 

Week No. L (%) V (%) 0 (%) No. L (%) V (%) 0 (%) 

1 

2 

3 

4 

5 4 75 25 0 

6 18 50 50 0 

7 

8 

9 

10 4 25 75 0 

11 25 20 52 28 

12 14 29 36 36 

13 

14 33 25 45 30 

15 96 6 85 9 

Overall total 26 50 50 0 168 14 68 18 

Lateral-biased Activity is highlighted in RED 
Vertical-biased Activity is highlighted in AQUA 
Balanced Activity (within + or - 4%) is given in BLACK 

No. column gives the actual number of transformations 
between sketches in each weekly episode 

The figures for Subject 2L: Week 11 have been given above 
in grey. These figures relate to just ONE single sketch - this 
is thought to have a distorting effect and so has been 
ignored elsewhere but is included here in the interests of 
completeness. 

SUBJECT2HK SUBJECT2L 

No. L (%) V (%) 0 (%) No. L (%) V (%) 0 (%) 

13 46 38 15 9 44 56 0 

6 83 17 0 

6 50 33 17 

10 30 70 0 5 20 80 0 

20 15 85 0 7 14 71 14 

9 0 88 12 '"i D 100 t~ , ,.., 

34 15 85 0 11 18 73 7 

18 22 78 0 

21 14 86 0 

19 32 68 0 54 41 41 18 

156 24 73 3 87 34 52 14 

Table 6.4 Lateral, vertical and duplication bias in transformations: 2nd iteration 
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Subject 2C begins with a lateral spell (Week 5) followed by a balanced spell 

(Week 6) with a later vertical spell (Week 10). These observations are rendered 

almost irrelevant however by a late start and alarmingly low number of sketches 

produced over the period. Nonetheless, the utility of recording sketch work and 

the ability of sketch evidence alone to pinpoint work that is lacking should be 

made clear by this example. 

Subject 2DK appears another case for concern. No drawings could be found to 

have been produced in the first ten weeks of the period. What work there is all 

occurs within the last five-week period of the window. There is an alarming 

tendency to produce duplicate transformations - in Week 14 the count is 

calculated as 30% of the total. Overall, these figures suggest very few early 

concepts being generated and a project that is short on ideas. Thus the vertical 

activity seen in Weeks 11, 14 and 15 is on very shaky ground; it is unlikely that 

there are any good ideas to further develop by vertical investigation. 

Subject 2HK begins with an encouraging, predominantly lateral episode (Weeks 

3 and 4). This gives way to a vertical trend which crops up in Week 6 and then 

occurs continuously from Weeks 10 to 15. The consistent work rate is a good 

sign, but over the period the pattern suggests early fixation and thus raises some 

minor concerns that the search for innovative solutions has again been curtailed 

too early. 

SUbject 2L demonstrates undoubtedly excellent sketching skills. This ability to 

represent objects as convincing 2D pictures may be deceptive however. The 

analysis method applied here tries at all times to consider the structural aspects of 

the product that underpin the sketch that appears on paper. Examining the work 

produced using Goel's methods seems to show that in fact, like the work of 

Subject 2HK, there are too few ideas generated in the earliest stages with possible 

early fixation as a result. The mid-period is predominantly of a vertically-biased 

nature although the intense period of activity in Week 15 is encouraging, 

suggesting a considerable amount of work of a balanced type and perhaps a late 

burst of near-lateral activity. 
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6.3 .1.3 Discussion - utility of results 

In view of the assessments of individual design perfonnance on a week-to-week 

basis that could quickly be made from consideration of the results in Tables 6.3 

and 6.4 it is proposed that a sophisticated parsing function able to distinguish 

between the three modes of lateral transformation, vertical transformation and 

duplication in the designer's sketches, checked against those already held in a 

design record, would be advantageous in providing a status report to the reflexive 

designer. Ultimately, parsing of visual material, such as suggested by [Gross 96], 

may be able to recognise and differentiate between the same-ness of duplication 

and the similarity of vertical transfonnations. Current systems would be likely to 

confuse the two, so more work is needed in optical identification. Lateral 

transfonnation would be defined as a much lesser degree of same-ness between 

sketches. 

While this method of identifying transformation type can provide a useful input to 

enable the management of the design process it should be noted that this thesis 

does not make claims that such a system can predict the final outcome of a 

particular project. After all there is 'many a slip 'twixt cup and lip' - encouraging 

results one week do not necessarily mean that the next week will be as good, 

much less that the project as a whole will succeed. What the system can provide is 

a useful meter of the current state of a project. It gives quality feedback which 

management or the reflexive designer can use to determine their next move. It can 

provide reassurance that design is progressing to previously identified targets, or it 

can be used to help set new targets. 

The experiment presented here analysed sketch activity using an arbitrary, 

convenient scale of Weekly activity. Thus data is considered in blocks of weekly 

sketching activity. It is envisaged that an automatic system developed in line with 

the guidelines given in this thesis would be able to analyse separate task-specific 

'sketching episodes' which are thought to occur in industrial settings. This 

episodic study approach was not taken in this particular experiment due to the 

length and detail of in-depth observation which that would require. Such an 
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approach would be possible with short one or two hour, laboratory-type 

experiments. 

The episodic nature of designing is described in Bucciarelli's ethnographic 

account of day-to-day working at an American mechatronics company 

[Bucciarelli 94]. He talks of 'Beth's job' at several points - in this context 

Bucciarelli is referring to the tasks given to individuals to work at alone. These 

tasks, which Bucciarelli terms as taking place in 'the object world', involve 

designing for 'specific aspects, instrumental parts, subsystems and subfunctions' 

and typically involve sketching and notemaking. He describes these episodes as 

'usually a solitary and intense experience'. These necessary episodes are a vital 

part of design and the issues raised by individual, in-depth investigation are 

resolved at various intervals by having 'all of the individuals involved join 

together to plan, decide, critique and integrate their efforts'. 

From Bucciarelli's observations we can imagine that once the team has come 

together at each design meeting and discussed their individual reports and 

findings, new sub-problems will be formulated and each participant given their 

own new part of the design to investigate. Within the early stages of design, 

management may find it useful to consult instant, at-a-glance analysis of a 

particular 'design episode' carried out by an individual. By providing an initial 

indication of the kind of thinking exhibited by the designer - either lateral or 

vertical - as revealed by their sketches, the system is giving an insight into .the 

progress of design. Management can immediately see that the episode fits or does 

not fit the thinking mode most appropriate at that particular time in the overall 

process and so make suitable efforts to redirect current thinking. In this way such 

a system can be seen to improve the efficiency of the design process. 
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6.3.2 Patterns of complexity 

As discussed in Chapter 4, design theory predicts that drawing will proceed 

through advancing and increasing levels of 'concretisation and detailing' 

[Andreasen 94] as design progresses [Cross 87;94]. If this theory is considered 

alongside those discussed in Section 6.3.1 then we should be able to propose a 

typical or 'ideal' theoretical pattern of sketch infonnation handling for the early 

stages of conceptual design. 

The early stages, or conceptual design phase, should broadly speaking be typified 

by divergent, lateral thinking although this phase will contain both episodes of 

both convergent and divergent thinking within it The complexity or detailing of 

the sketch work needs to increase as time passes and the design progresses from 

an infonnation-poor state to one that is infonnation-rich. These basic tenets are 

included in the 'ideal' pattern of the sketch infonnation totals over the 15-week 

period (Figure 6.3). The 'ideal' model ought also to apply in an industrial setting 

although it should be noted that the gradient of increasing complexity is likely to 

be far steeper due to compressed time schedules. 

'Ideal' Pattern 

8 ~---------------------------. 

6~----------------------------i 

4~----------------~--~~~~ 

2 +---~--~~----~~~~~~~ 

O+""',......,...-.,...-.,........-,--,---.,.........,........~r""'-l---.,r""'-l..-., 

123456789101112131415 

I_IDEAL I 

Figure 6.3 Ideal pattern of average information in sketches at the conceptual stages 

At first there is greatly divergent thinking and the need to generate solutions leads 

to the production of many quick, simple sketches. Occasional early problems may 

lead to isolated episodes of more detailed investigation and thus slightly increased 

complexity levels may appear on the graph (Week 3). As design progresses, 
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design investigation becomes more detailed and so too do sketches. There may 

still be the need to make quick investigations of uncovered problems and 

alternative solutions and information levels may drop briefly as a result (Weeks 

11 and 14 in this example). The graph is typified by gradually increasing levels of 

complexity and detail. The overall level of complexity ought never to reach very 

high levels - such detailed investigations are not thought to be required at this 

stage of the process. 

Consideration of the experimental results ought to demonstrate whether the 

sketches produced by our sample are of suitable complexity levels for the 

appropriate stage in the process and are thus good examples of efficient design. 

6.3.2.1 First Experimental Iteration 

The four traces produced by the subjects studied in the first experimental iteration 

failed to show any real common shape, bar the empty space around the Christmas 

break weeks where work appeared to cease (except in the case of Subject A - the 

reason for the break weeks' inclusion). 

Subject A clearly has the most consistent work rate of the four subjects, with few 

gaps visible on the graph (Figure 6.4a). In Weeks 2 and 3 is the initial low 

complexity work expected from our idealised model, but this is quickly followed 

by an unexpected spell of high complexity work (seen in Weeks 4 and particularly 

Week 5). The complexity level of the sketch work seems to peak in the middle of 

the conceptual stage rather than at the end. Another unexpected result was that the 

spell in Weeks 12 and 13, which by study of the transformations therein was 

reckoned to be vertically-biased, actually had a low complexity level. While there 

is undoubtedly a close relationship between vertical transformations and detailed, 

complex work it is perhaps not as direct as at fIrst thought. It is worth noticing 

that, overall, the sketch work of Subject A is at rather high levels. 
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Figure 6.4 (a-d) Weekly Average Information Totals for first iteration of experiment 
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For Subject L the initial activity is perhaps of a higher complexity level than is 

needed. The average results overall are high, except for the lateral episode 

identified for Week 13. It would perhaps be preferred to see lower levels of 

complexity spread more gently over the available weeks than the rather more 

intense concentration of activity in short bursts that seems to be displayed by the 

graph. This style is observed in several of the other results. Subject L's graph trace 

seems to suggest that activity is occurring at slightly too high a level for effective 

lateral generation of concepts and this matches the observations made after 

consultation of the Transformation scores. 

At first Subject S's trace may appear an efficient one, with many low complexity 

scores displayed. When the lack of lateral transformations previously observed 

over the piece are considered however, attention turns to the low complexity 

activity shown in Weeks 11, 12 and 14. These were observed to exhibit vertical 

bias and yet they are low scoring in terms of complexity (the same contradiction 

as was observed in Weeks 12 and 13 for Subject A). In light of the examiners' 

decision (completely independent from this study) to award a low mark for this 

project overall, with regards to all aspects of the subject's design process, we 

should expect this trace (Figure 6.4c) to exhibit poor design practice. In view of 

this, perhaps work that is typified by both low complexity and vertical bias 

simultaneously is a contradiction in terms which reflects and indicates bad 

practice and so should be avoided. 

The analysis of the transformations in the work of Subject W seemed to indicate 

a balanced activity with a lack of concerted lateral activity. Knowledge of the 

problem being solved, from information gathered by the observer, would seem to 

suggest a well-defined problem and a resultant narrow search space, which would 

explain the lack of variation in the activity. There is no real discernible shape to 

the activity but the overall noteworthy aspect is the consistently high complexity 

scores and these would be consistent with the narrow search space and reduced 

need for alternative solutions. 
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6.3.2.2 Second experimental iteration 

With the refinements made to the definitions of the Complexity scale before 

analysis of the second data set, the second set of results are thought to provide a 

slightly more accurate picture of the information content of sketches. 

The graph for Subject 2C (Figure 6.5a) is as disheartening as the conclusions 

reached by consultation of the transformation results. There are too few weeks of 

activity and what there is appears far too high to be appropriate at this stage in the 

process - certainly when not preceded by any spell of low complexity lateral 

activity. This peak of activity appears far too early in the process and as such is 

wasteful and a cause for concern. 

The graph for Subject 2DK exhibits those troublesome low complexity/vertically

biased episodes which raised questions in the traces of Subject S. The high 

complexity level of Week 12 is thought to be unsuitable following only one week 

of low complexity, vertically-biased work. At a glance, the lack of sketch work in 

the first ten weeks gives great cause for concern. 

The possible early fixation upon one design by Subject 2HK has already been 

commented on after analysis of the transformation modes within the sketches. 

Overall the low complexity over the period is promising, but the periods of low 

complexity, vertically-biased work (in Weeks 12-15) may indicate that the design 

has 'stalled'. If a design option has been selected (too early or otherwise) then the 

complexity of the drawings should increase to reflect the increasing depth of 

investigation. 

The straight line gradient which can be drawn between the levels apparent in 

Weeks 2, 6 and 11 of the results for Subject 2L is the closest any of these graphs 

come to matching the idealised model for increasing average complexity levels. 

Unfortunately the result in Week 11 should be ignored however, as the average 

figure is in fact related to one single sketch. This is thought to produce a distortion 

effect on the figures. The complexity level shown in Week 13 is slightly higher 
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than that in Week 6 but is probably less than a manager would like to see if using 

the idealised model. The relatively low complexity levels exhibited by 2L overall 

(between 1.5 and 4) are thought to be suitable for the early stages of design. 

6.3.2.3 Discussion 

If the 'ideal' model proposed is agreed to be a reasonable model of efficient 

design then it would appear that the use of appropriate sketch complexity at the 

right time in the process is one area in which these novice designers could take 

advice. From the results it would appear that far too often time is being wasted in 

producing sketches that are more detailed than they need be when in fact what is 

needed is the generation of concepts via simple, quick sketches. Sketches that are 

detailed may even hamper lateral investigation. The conclusion for the subjects 

studied here, that too many detailed sketches are being made at the wrong time, 

fits with the conclusion from Section 6.3.1.3 that there were too few lateral 

episodes in the 'conceptual phase'. 

Again, the judgements which can quickly be made from consultation of the 

resultant sketch analyses traces could provide additional utility to management 

and the reflexive designer. If it is identified, by study of the transformation modes, 

that lateral activity is the most appropriate course of action to take at a particular 

time in the process, then an accompanying low complexity rating ought to result. 

If it does not then there is the possibility that the number of alternative solutions 

proposed may be reduced. Complexity scores rising to medium levels should be 

sought near the end of the initial phases. 

It has been identified that low complexity/vertically-biased episodes may occur 

and these are thought to have negative influence on the success of the project. 

More detailed real time analysis of such periods may be worthwhile in 

ascertaining exactly what is happening in these seemingly contradictory episodes. 
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It is worth noting that, from the results of Subject A in particular, some sketchers 

may work at a 'naturally' high complexity level. This may either be permissible, 

as long as the levels increase when design progresses, or should be 'trained out' of 

such designers in the interests of speeding up the process. 

In conclusion it is proposed that a system able to automatically ascertain the level 

of complexity of a sketch - perhaps initially by calculating the density of lines -

would be a useful tool for design management, providing corroborative evidence 

to be used in tandem with the results provided by the analysis of the 

transformation modes prevalent in the designer's sketch. 
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7.1 System Description 

The experimental study has observed the production of sketches within the early 

stages of design and as a result: 

• has observed the common presence of the textual annotation made to the 

freehand sketch within the early stages of design. Further, the study identifies 

the potential of the annotation to anchor processing and thus enable the 

inclusion of freehand sketches within searchable text-based design records; 

• suggests the usefulness of a mechanism to recognise the transformation mode 

(lateral, vertical or duplication) observable within a designer's sketch over short 

periods within the early stages of the design process, matched to management's 

desired mode of design investigation; 

• has formulated a method to give a general indicator of the work rate of designers 

calculated from their conceptual drawings over short periods of time. 

These results provide the following basis for a proposed computer-based support 

model. A database and processing system accepts text in a specification format 

framework (such as the PDS or Requirements List). Meanwhile freehand sketch 

input from the designer is split into a visual and, where included, a textual 

component. All textual design data is held in the 'textbase' section of the database 

and all sketch material within what has been called the 'sketchbase'. Resultant 

hard copy facilities and a query-retrieval system allow quick access to all inputted 

information. Automatic assessment of the inputted sketch information provides 

additional assessment utility for management in tracking the design project. By 

matching the designer's natural working processes as observed by experiment it is 

suggested that the system will find favour with the design community while 

improving designer efficiency. 

This section next looks at each of the system's important constituent parts in 

detail. Their general arrangement is shown in Figure 7.1 and the system detail in 

Figure 7.2. The system can be considered as possessing six important parts and 

these are now discussed in turn. 
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Figure 7.1 System model overview 

1) Sketch input handling facilities 

2) Text input handling facilities 

3) Processing routines on text and visual input 

4) Hard copy capability 

5) Query and Retrieval facilities linked to the 'sketchbase' 

6) Project Track facility, assessing qualities of material in the 'sketchbase' 

7.1.1 Sketch input 

The system is intended to accept two-dimensional, freehand sketch input via a 

suitable grabbing device. 

As a sketch is entered in digital format two tags are activated automatically and 

assigned to each image. The first, the Author tag, identifies the 'ru1ist'; the author 

of the sketch. This is easily enabled through initial password entry to the system 

or through logging on. The second, the Date tag, is linked to the system's intemal 

clock and allows for the chronological and historical filing of inputted material in 

the system database. 

Visual input is filtered in three ways, to assess various qualities of the sketch; 

firstly there is a measure of the drawing Size (done by pixel counting of the sketch 
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at its original ratio), secondly an assessment of the relative Complexity of the 

sketch and thirdly the determination of the Transformation Mode by comparison 

between each inputted sketch and those already held in the system database. These 

three measures provide input to the Project Track utility. 

Processed sketches are also held in the system database for subsequent Query and 

Hard Copy utilities. This system regards freehand sketches as containing both a 

visual component and a text component (although for a percentage of sketches the 

text field will be blank, as predicted by the results in Table 6.2). It is intended that 

through the application of optical character recognition routines, handwritten 

information included in the freehand sketch will be converted into recognised 

ASCII text strings. The attached annotations, or Image Associated Attributes, will 

enable sketches to be included in the database and will allow them to later be 

retrieved by query (this operation is detailed in Section 7.1.5). 

7.1.2 Text input 

The system accepts a 'set of verbal phrases' [Ulrich and Seering 88] whether in 

discursive natural language or in more terse four-or-five word phrases, since both 

have been identified in this study as common forms of textual information 

produced by designers. 

The text information is submitted via the designer's selected specification or 

requirement list framework format. Users choose an Element in which to enter 

their material. Category schemes will reduce the specification to more 

cognitively-appealing forms. Preferably these will be created in line with the 

identified limitation that only seven pieces of information can be 'buffered' in 

human short term memory at anyone time [Mero 90]. Interface formats can be 

chosen and changed by management or the designer. In the interests of design 

efficiency, entries to the system may be supported by a structured problem prompt 

held in a form of design matrix. 
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All entered pieces of infonnation are automatically tagged with the relevant 

Specification Fonnat Tag denoting the Element heading under which the entry has 

been made. The Author's identity and the Date of submission are also tagged 

automatically as outlined above. 

Natural Language Processing techniques [Samad 86] can be used to reduce the 

discursive infonnation to its constituent parsed phrases, each containing one 

clause or 'unit' of meaning. Each of these is called a Text Attribute [T]. Individual 

Text Attributes are then processed and stored within the database. 

7.1.3 Processing of inputted information 

The central processing heart of the system sorts and stores inputted textual and 

visual infonnation for subsequent query/retrieval and hard copy purposes. 

The parsing function produces parsed Text Attributes that will build to fonn the 

full product description. All submitted phrases can be held in their full submitted 

English fonn or reduced to their essential Text Attribute fonn, typically a four-or

five word clausal phrase that mayor may not include numerical, quantitative data. 

These are given by [T] in Figure 7.2. 

Text processing also extends to deal with the annotations added to visual sketch 

descriptions. These Image-Associated Attributes [Ia] can be parsed if necessary 

for storage in the database. Sketches without annotations, not directly associated 

with text attributes of type [T] or [Ia], are also held in the database. 

The visual component of each freehand sketch input is examined, by means of a 

visual parsing function, to assess the complexity level of the drawing. This 

measure is then held in the system and used to provide input to the Project Track 

function. 
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Additionally, visual parsing examination and the comparison of incoming images 

with those in the database allows the system to specify whether an image is a 

lateral, vertical or duplicate transformation. Again, this information is passed to 

the Project Track Utility to provide a measure of progressing design. 

7.1.4 Distributed hard copy 

While the system is intended to work in a distributed, faster electronic on-screen 

format the system still enables the automatic building of a product description 

hard copy print out at any desired time using the entered attributes. 

By reactivating the Specification Format Element tags applied to submitted text 

attributes, a print-out of all submitted, parsed attributes can be obtained, formatted 

under their Element and Category headings. 

By reactivating the Author tags in addition to the Specification Format Element 

tags, an author-specific PDS can be obtained. This allows an individual designer 

to retrieve only their own submitted material if desired. 

By reactivating the Date tags, a hard copy print-out of all submissions to the PDS 

over a specified period can be obtained. This can be used in addition to the 

Specification Format Element tags and the Author tags. 

Sketches are not automatically included in specification documents, since they 

cannot logically be entered via an interface element and thus possess no 

Specification Format Element tag. A chronological hard copy of all sketches, both 

annotated and non-annotated, by Author or Date is available via the appropriate 

visual tags, which adds to the effectiveness of the distributed product description. 

In addition the system can provide hard copy print-out of material retrieved by 

query, which extends to text material and annotated sketches. 
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7.1.5 Query and retrieval from the 'sketchbase' 

Most importantly the system provides a query facility which allows access to all 

of the textual material stored in the database (textbase) and also to the visual 

material stored in the database (sketchbase) via textual annotation cues. This 

allows a designer to refresh their memory of the current description with regards 

to particular aspects of the design. It also allows for speedy retrieval of relevant 

infonnation required by a researcher investigating a product retrospectively. The 

matching Text Attributes [T] and Image-Associated Attributes [Ia], along with 

their accompanying images, are displayed in a windows-type menu fonn, and can 

be printed by conventional hard copy means. 

Queries are entered, ideally in natural language tenns. These queries are then 

parsed using natural language processing techniques to retrieve relevant Text 

Attributes and Image-Associated Attributes (and their accompanying images) for 

the perusal of the designer or researcher. 

An alternative and more readily achievable method, given current processing 

technology, enables retrieval using simple matching techniques. Entered 

'keyword' queries look for matching words within the stored attributes and 

display the matched entries. A direct example of this method is given in this 

section. 

As discussed in earlier chapters, sketches are the lingua franca of conceptual 

design. They can supplement stores of textual attributes held in requirements lists 

and such like, which can sometimes be inadequate within the earlier stages of 

design. Both types of data produced at the stage of the design process observed in 

this experiment can be best summed up as dealing in the exploration of ideas. The 

intentional switching between lateral and vertical thinking in sketches leads to a 

split between the creation of original ideas and the further detailing of those ideas. 
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Thus any search through the knowledge base of textual and sketch infonnation 

produced in these early stages is assumed to be a search for ideas. The examples 

given here show the envisaged use of a computer-based support tool presaged by 

the results of the experiment. This study sees retrospective searches through the 

'textbase' and 'sketchbase' of conceptual design as a useful tool in the event of 

failure or rejection of selected design options further 'down the line' in the design 

process. The examples here detail the use and utility of such a sketch search 

system. 

It is assumed that from the body of ideas suggested and explored in the early 

stages of conceptual design several key ideas will be selected for evaluation by 

systematic methods. Those successful ideas that fulfil the criteria stated at the time 

of evaluation will then proceed to further detailing, engineering and successive 

evaluations. Within the principals of contingent design however it must be 

accepted that as well as the product description or 'design' evolving and changing 

dynamically throughout the process, it is quite possible that the constraints and 

boundaries upon the design and the resulting criteria for evaluation may also 

change as design progresses. In such situations where constraints evolve so as to 

make a previously viable design solution redundant, designers may wish to refer 

back to previously rejected concept ideas. Such concepts may now be viable under 

a different set of constraints. 

Let us take as our example the small-scale investment casting device designed by 

Subject 2L and as observed in the experiment. The real sketchbase provided by 

this data set will illustrate the use of a query-retrieval system including sketches. 

Imagine that a casting machine based upon a rotary feeding system has been 

selected after the initial conceptual design phases. Upon further investigation of 

this concept or with a change in the set of constraints defining the design, the 

rotary feeder system has proved to be problematic or simply not feasible. Rather 

than scrapping the work completely and beginning conceptual design again with 

the new constraints set identified, bearing in mind the associated time penalties 

that may incur, the designer can make recourse to previously rejected concepts 

and test their suitability for further development. 
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Figure 7.3 (808): Sketches retrieved as 
a result of the text query "ROTARY" 
(work of subject 2L) 
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The textbase can be accessed using text queries and, through the identified utility 

of textual annotations to drawings, so can the sketchbase. Figure 7.3 shows the 

five sketches retrieved from the conceptual design record as a result of the 

submitted Query statement 'ROTARY'. These concepts all involve some sort of 

rotary component and have been retrieved through the occurrence of the word 

'rotary' within their associated text attributes. Any of these might, upon closer 

inspection, reveal an application of rotary feeding different from that of the now 

rejected concept and this can be taken forward and developed. 

Figure 7.4 shows how the text query and subsequent retrieved sketch can act as an 

entry point allowing comprehensive navigation through the sketchbase. Figure 7.3 

(a) is selected in this example; any sketch can be chosen for further searching. The 

Rotary Feeder is an entry point that allows searches to be made chronologically or 

by transformation type. Here sketches held 'before' and 'after' in the time

stamped record of inputted sketches can be accessed. The two sketches previous 

to the text-query-retrieved sketch show an axial feeder solution - a subsequent 

search on 'AXIAL FEEDER' can reveal all previous information pertaining to 

this concept. The axial feeder concept can now be reconsidered in the light of the 

changed design constraints. Note that the chronology of the design record means 

that via searches for annotated sketches the designer can also access non

annotated sketch material such as shown by 'ADJACENT (-1)' in Figure 7.4. 

The above example shows how sketches could now be accessed using text-based 

query-retrieval methods similar to the kind currently utilised within commercially 

available software solutions such as DOORS. A second possible method could use 

a less familiar type of query - matching drawings in the 'sketchbase' to an 

inputted sketch query. In this type of query the inquirer will draw a sketch of the 

sort of thing they wish to fmd in the sketchbase - all similar stored instances can 

then be retrieved by means of various image-recognition algorithms. 

Work is ongoing in matching hand-drawn sketches to hand-drawn queries 

although a reliable, working system seems some way off. An experimental system 

attempted to match 25 sketch queries to 25 sketches in a database [Lopresti, 
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Tomkins, Zhou 96]. A typical sketch query and the matching sketch the system is 

supposed to find are shown in Figure 7.5. Some queries suggested multiple 

matching database entries by way of response. Of the 25 queries, three provided 

three matches, nine suggested two possible matches while the remaining thirteen 

found a single matching sketch. The creators concluded that the algorithms used 

sometimes performed impressively but on other occasions the intended match was 

ranked much lower than obviously dissimilar sketches in the database. It should 

be noted that this type of query is less familiar than the typed-in query and it may 

be more difficult for designers to adapt to such a method in the short term. 

Query Intended Match 

Figure 7.5: Example of a query and its intended match in the database. 
[Lopresti, Tomkins, Zhou 96] 

7.1.6 Project Track: assessment utility 

Through the application of visual parsing routines to inputted sketch material the 

system provides an additional utility to management and designers. This utility 

tracks the progress of the design and the designers' inputted work and gives some 

measure of the work produced. 

By quantifying a measure of the complexity of each inputted sketch, via visual 

parsing routines (inititially based on the recognition of line density) and an 

assessment of size by pixel-counting, the system calculates the information held 

within each sketch. By comparing these totals with the amount of sketches 
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produced, the ratio of individual or collective work rate or sketch effort is 

calculated. These ratios may be calculated on a weekly basis or for a specified 

DATE-DATE period and display to management a measure of sketch activity. 

By visual parsing of inputted sketch input and comparison with previously 

inputted images now held in the database, the system assesses the level of 

sameness between new and old drawings. Suitably different drawings represent 

lateral transformations, relatively similar drawings are vertical transformations, 

while near-identical successive drawings are regarded as duplicate 

transformations. By assessing the percentage of each mode (lateral, vertical, 

duplicate), the system can identify the dominant mode of transformation at any 

time in the process. 

The lateral and vertical modes may be dominant or balanced at any given time in 

the process. It may be useful for management to have some indication of mode 

since they may prefer a certain mode to be dominant for particular sketching 

episodes. If, for example, management requires a more expansive sketching 

episode at a certain point in the design process then they can check to see if the 

sketches currently being produced contain a lateral bias, indicating the creation of 

many concept options. When a chosen concept is being developed and engineered 

a vertical bias may be preferred. Over long periods and many episodes of 

sketching in the conceptual phase an equal balance of the two is expected. Using 

this method the system can identify the current status for consultation by 

management or flag a warning to a designer tending towards the inappropriate 

thinking mode. 



CHAPTER 8 
CONCLUSIONS & RECOMMENDATIONS FOR FUTURE WORK 
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8.1 Conclusions 

This thesis reports the results of a research project which has aimed to investigate 

the early stages of the design process and improve the communication at this 

stage. It proposes that this is achieved through including any visual material 

produced within a suitable recording mechanism. This research is novel in its 

focus and in some ways in its approach. 

The experimental approach is novel since it prefers the use and unobtrusive 

measure of artifacts produced as part of a real design problem investigated over a 

long period of time instead of the more typical laboratory-based protocol methods. 

The study recognises the technology push that has led to the creation of computer

based support tools which do not match designers' processes in the early stages 

and instead advocates the observation and study of designers at work, to provide 

quality input that enables the generation of suitable models for support. 

The research has focused upon a particular stage in the design process, rather than 

try, in a prescriptive manner, to suggest a universal solution to the entire design 

cycle, from ideas to manufacture. It is believed that a piecemeal approach to 

research of various stages and problems within the design process will form an 

improved cumulative picture of design across the research community by 

providing complementary models of design and design support. 

In conclusion then, this study identifies the artifacts produced by a selection of 

individual designers within the early stages of design and assesses their rate of 

production. It then suggests the preservation of these intuitive methods, while 

recognising inefficiencies within them. The study recognises the benefits of 

traceable design in an area traditionally unsupported by such strategies and 

suggests that means be devised to enable the recording and storage of these 

recognised, intuitive artifacts. Recording of the inputs and artifacts of early-stage 

design has other benefits; the research also suggests that a track of design work 

rate can be provided by the analysis of the recorded intuitive sketch work only. 
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This study builds on the work of [Goel 95] suggesting that effective design, within 

its early stages, depends upon the careful and intentional use of lateral and vertical 

transfonnations at appropriate times and that guidance in choosing the suitable 

approach can be made from the analysis of the designer's sketches. Further to the 

work of Goel, this study recognises the importance of the duplication mode of 

transfonnation and the negative effect it has upon progressing design. 

This research has as its main deliverable a suggested suitable model which 

harnesses computer capabilities while recognising the intuitive processes 

exhibited by the observed designers. In preference to trying to solve the problems 

using existing - and in some cases unsuitable - technology, this study proposes an 

idealised system that uses the next generation of today's technologies. To enable 

the development of this next wave of support technologies, the following section 

of this chapter identifies 'weak' areas which will require future technological 

research to make the system realisable. 

It is hoped that by its approach and through its main findings, the research has 

identified a system model that will lead to more efficient use of designer effort, 

improved, shorter timescales and better design results in engineering by 

improving communications between all those involved in the early stages of 

design. 
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8.2 Areas for Technological Research 

Within the proposed model, areas for technological research can be identified that 

will make the system outline feasible. 

8.2.1 Annotation processing techniques 

For the systems described in Chapter 7 to be made practicable, methods of capture 

will be required that can convert handwritten annotations (Figure 8.1) to ASCII 

text strings both recognisable to and compatible with a digital design record. 

• b ac.Lc.AA o.r-:t-
- K.eep .sI-€eA!/ rk-r I~ fl)J.;" 

-~ ~6dlgV\ , 
- ~~oV\,(<.~ .s.vr..bcvtt..V"~ rAecf( 

(a) (b) 

Figure 8.1 Examples of subjects' handWritten annotations (both at same 1:1 scale): 
a) by subject 2l; b) by subject 2C 

Within the computing science research field, work is ongoing in handwriting 

recognition. Research investigates topics such as alphanumeric character model 

recognition [Favata 96], complete word recognition (both in terms of lexical 

understanding and identification of complete word segments) [Kim 96] and 

English language phrase-recognition [Kim, Govindaraju, Srihari 96]. As a result 

there have been considerable advances in terms of both speed and accuracy. This 

research continues, driven largely by the need for the electronic sorting of letters 

by the recognition of handwritten postal addresses. Such techniques would make 

feasible the analysis and storage of textual annotations made by hand on paper. 

Commercial solutions currently available offer the recognition of text written by 

hand on electronic tablet devices using stylUS tools. Microsoft use the Jot 

handwriting recognition system within their handheld PC devices and digital 
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workbooks. Jot features a choice of two character sets for best matching to 

handwritten input. It also uses a zonal approach to distinguish between upper and 

lower case letters; characters written below a line on the tablet workspace will be 

identified as lower case, with those that cross the line identified as upper case. 

Recognised character strings can then be sent to a variety of Microsoft 

applications. 

IBM handheld workpads and 'Palm Pilot' devices meanwhile use 'Graffiti Power 

Writing Software'. For text recognition, users must write characters to match the 

Graffiti alphabet (Figure 8.2) with defined shapes, starting points and a desired 

vertical orientation. 

II\IBlclblE:lrIGlhlrIJI~ILI[Y)INlolplol 
space backSjlace return capshifl caplock 

!Rlslllul\rltJlxltrlzll-I--.I/1 1 illi 
101 r IZI31LI51GIll51g I 

( .) Heavy dot Indicates llartlng point. 

Figure 8.2 Graffiti handwriting alphabet (IBM 1998) 

Both of these readily available approaches enable the recognition of handwritten 

annotations within electronic design environments accepting input from tablet 

workpads. The limitations of 'electronic sketching' however, as discussed in 

previous chapters, also limits the usefulness of the Graffiti and Jot approaches. In 

view of this, this thesis recognises the importance of research into the recognition 

of handwritten text on paper. 

8.2.2 Visual parsing techniques 

Work is required to improve the parsing of the inputted sketch material. This 

would provide for the assessment tracking utility of the project. Particular work is 

needed to better identify similarity and difference between incoming sketch 
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material and images already held in the database. This is required so as to identify 

the type of transformation occurring. 

8.23 Non-intrusive sketch capture 

Work is required to identify a device capable of transforming two-dimensional 

images drawn freehand on paper into a digital format in a speedy, non-intrusive 

way. This is a key factor in the step towards successful integration of the proposed 

system into design practice. 

8.3 Recommendations for Future Work 

This work is as up to date as possible in recognising areas of current research, 

uses up to date experimental source material and includes near-realisable 

technological solutions in its suggestions for the proposed system model. It must 

be recognised however that unforeseen technological developments may impact 

upon the area of study. One area of possible change concerns the capture of 

conceptual artifacts. While the non-intrusive capture of 2-Dimensional sketch 

material seems a logical step away from the intrusive methods of digital sketch 

capture available today, something like the capture of low-tech (i.e. non-CAD) 

3-Dirnensional work may be a possibility in the near future. To prepare for such a 

development will involve the recognition, through observation, of the 3D models 

produced by practising designers. 

Future research directly linked to the study presented here could extend to cover 

the use of sketches in group settings within our academic sample group in order to 

discover how the communication links would be improved by the use of an 

approximation of the system suggested here and to test the theory of linked but 

individual 'episodes'. The next step would be to transfer this work to an industrial 

setting, which is characterised by greater sources of 'experimental noise' and 

greater amounts of exchanged information. 
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The system model presented in this thesis provides a method for capturing 

conceptual design in forms suitable for the improved evaluation of those products, 

within systems suggested by the likes of [Rodgers, Patterson and Wilson 95]. This 

is the uppermost limit of the system in terms of its coverage of the total design 

process. It does not provide support for the transition from intuitive models to 

computer-built models at the next stage of design definition. A linking movement 

into this area is perhaps the next logical progression from the study presented 

here. The activities undertaken within this transitional stage constitute almost 

certainly the most under-researched part of the process and to understand these 

activities is one of the greatest challenges facing the design research community at 

present 

Research in this transitional phase will involve going beyond the identification of 

intuitive design techniques, as have been presented in this study, to understanding 

the underlying cognitive processes. This will require the input of both 

psychologists and engineers and will perhaps lead to the creation of wholly new 

digital technologies and tools which will match exactly the intuitive processes of 

design engineers. 
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APPENDIX I 

RECORD OF TEXTUAL ANNOTATIONS TO SKETCHES 

1.1 Subject A 
1.2 SubjectL 
1.3 Subject S 
1.4 SubjectW 
1.5 Subject 2C 
1.6 Subject2DK 
1.7 Subject2HK 
1.8 Subject 2L 



Annotations - Subject A APPENDIX 1.1 

SUBJECT A 

Page No. Sketch No. Quote Annotations Parts Annotations 

1 1 adjustable support 

7 6 tiers of 7 each - with (1.4m wide) 
gangway. Roughly 42 seats. 

3 3 loading part [???] 

5 5 side of caravan flips down to pull out 

6 inflatable seating 

6 2 a) pushed out by hydraulically-powered 
pumps 
b) two pieces here to fall down from side 

S 4 problem with flat bits not fitting over joints 

9 2 a) problem with number of seats and 

b) guard rails set in 

c) flipping seats mean easier access 

d) folding mechanisms for floor 

e) no litter bins 

f) no steps 

g) no disabled access 

10 1 a) could have seats 

b) could just be steps 
c) if there are only steps need bigger pitch 

2 a) There is a mixture of seating - leaning post, 'bucket' 

conventional 'bucket' seats, benches, seats, benches 

leaning posts and seating on tiers 
b) people sitting on tier 

c) stand has fences, larger tiers 

d) steering position 

11 1 pads to show where people can sit flip seats 

4 circular seating allowing people to turn bench seating, bucket 
seating 

12 1 a) standing part fits behind seats 

b) seating may [???] fence 

2 folding mechanism 

3 bench seating allows basic user 

7 same sort of umbrella mechanism 

14 4 a) free-standing area 

b) fold up table 
c) people standing - these bits are too small 
to lean on 

5 looks a bit tight 



Annotations - Subject A APPENDIX 1.1 

16 1 snack bar, male toilet, 
female toilet 

2 a) circular snack bar arrangement 

b) large serving hole 

c) problems with ease of [???] 
3 a) need to find out info about size required table, tOilet, storage 

for portable toilet 
b) snack bar probably doesn't have cooking 
facilities 

17 1 a) misused space at back 

b) I don't like the look of this 

18 1 a) problem with wind - need to find info on 
tent 
b) 'free form area' - sit, lie, do whatever you 
want 
c) bench for people only staying for a short 
time 

19 3 may need extra member to stop failure for 
buckling 

20 4 I seem to be stuck in a rut - all the drawings 
are the same 

24 1 a) don't overload 

b) weakest part - rigid seating 

c) strong - allow a lot of people to sit on 
benches 

2 a) linking things for fences 

b) widening stairwell - impressive feeling 
plus allows easier access 

5 a) standing area benches 

b) seating gets narrower as gets lower 

29 7 flap which falls on bar and covers other 
hinges 



Annotations - Subject L 
APPENDIX 1.2 

SUBJECT l 

Page No. Sketch No. Quote Annotations Parts Annotations 

1 

2 

6 

7 

8 

9 

1 

1 

3 

Two separate rooms - one for switchgear, 
one for control room 

a) Hydraulic feet that allow unit to be lifted 
off the ground - this also allows wheels to 
be removed 
b) roof is able to blow off in the event of a 
fire 
c) back of this comes off to get at cable end 
boxes i.e. where the termination takes 
a) Extendable unit. Roof moves up and 
walls move out. 
b) This allows room for height to work in 
and room better - also room for end boxes 
for the termination of cables. 

4 make-off box 
5 roof action i.e. think of camper vans 
6 edges of unit: something that sticks and 

could be more difficult to vandalise 

2 

2 

3 

4 

1 

Extendable unit: extendable side; both 
panels are removable 0 the long sides. This 
allows access to the back of the cubicles. 

lights could be used at night to light up the 
walls 
slide off walls - the shape makes it difficult 

to vandalise and makes the door hidden 
thickest part of wall 

2 however roof needs to come off totally in 
the event of a blow-up 

3 Roof is not attached once unit is landed. Is 
secure in transit. 

1 a) end boxes that have to be terminated 

b) hole in the undemeath so jointer can get 
room to terminate 
c) Trench is dug away before the mobile 
unit arrives. Unit is parked over trench. 
d) cable that has been terminated 

extendable sides, 
switchgear panels, control 
equipment, removable 
panel 

2 a) The termination box is too near the side -
this could lead to problem when all the 
switchboard panels have been bolted 
together 
b) 3 core cable not very flexible (polymeric 
material) 



Annotations - Subject l 
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13 3 a) rigid structure is pulled out this way from 
the unit to support the weight of the 
switchgear 
b) supporting leg is lowered so side 
expansion is stable and will take the weight 
of switchgear 
c) structure that switchgear is bolted to is 
moved out on to expanded structure 

14 5 pull structure out from side of unit to 
support unit to allow heavy switchgear to 
be pulled out 

6 No use - no access to bottom of 

7 flexible structure that pulls out (rigid 
structure) 

15 8 growth lengthways rather than wide? 

30 4 two wheels or four wheels? 



Annotations - Subject S 
APPENDIX 1.3 

SUBJECT S 

Page No. Sketch No. Quote Annotations Parts Annotations 

1 2 ski pulled up by motor and wire 

12 Transport by car to site: unload; take to 
slope; set up at top of slope; start up, use 

once or continuous 

2 1 car luggage rack 

2 hand winch, like fishing reel 

4 pulled up hill; motor knocked out of gear 

5 power needed 

3 1 bench on skis 

7 bungie ski-ing 

4 2 parachute up slope 

3 propeller 

4 not suited to snow boarding 

5 a) bazooka? 
b) spring recoil; explosive; air/compress9d 

CO2 
7 

pulley, winch, wire, gun 

8 works on principle of [???] line 

5 6 a) spider tow winch, casing 

b) legs held in snow 

8 magic carpet 

6 5 like fishing reel 

11 self-propelled vehicle 

12 mat 

13 chain 

8 1 looped rope 

9 2 How is it going to be transported? 
Rucksack; sled; self-propelling 

10 1 a) taught rope 

b) slack rope 

12 5 a) buried in snow or store rope pulleys, motor 

b) plastic mould 

14 9 
motor, pulley 

17 9 a) carry on back 

b) light or heavy 

2 drag - takes advantage of snow 

4 carry between two 

5 
stretcher, sled/sledge, 
luggage rack 



Annotations - Subject S 
APPENDIX 1.3 

6 skidoo 

20 3 slow moving device 

21 1 a) outer shell fuel, pulleys/rollers 

b) rope store 

c) spike sticks in snow 

d) need space here 

2 size? electric motor, battery 

24 4 fuel tank, handle 

26 2 store rope when not in use 

27 1 set up and go 

7 engine at bottom of rope 

28 2 Pull up rope, attach anchor to snow, 
engage winch, set up sled, go down and 
round with rope, set up bottom tripod, start 

5 take product up slope 

6 a) product climbs up - caterpillar tracks or 

pulled up by its winch 
b) skidoo & ski tow 

29 1 moulding 

2 disengable gear to retrieve spool of rope spool for rope, main 
engine crank, motor, 
cooling vents & exhaust, 
handle, pulleys, handle, 
moulding/sled 

31 1 need tension in rope if motor is at bottom of motor 

the slope 

2 slack: slippage of motor shaft against rope 

33 1 a) force of person pulling motor 

b) force on spring = 1 person pulling 

c) direction of rope 

2 a) not moving 

b) motor ticking over 

6 if it gets knocked, automatic cut off 

34 5 a) flat surface for snow 

b) plastiC construction 

c) spikes for ground/snowlice 

10 spongy/rope covers 

35 1 motor 

2 a) plate digs into snow motor, anchor, spool, rope 

b) plastic moulding/glassfibre 



Annotations - Subject S 
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c) motor at foot of hill - 4 stroke 
HondaiBrigg & Stratton 
d) spool to store rope 

e) sled can be pulled or driven 

3 pulleys pivot to take up slack when person anchors 

pulls on rope 
4 motor, spool, anchor 

36 1 fix person to rope briton hook, bar 

2 button 

3 Poma button 

4 skier 

5 snowboarder 

6 a) something you can hold 

b) has to be comfortable 

c) has to come off of rope 

7 sledger belt 

37 4 a) lightweight 

b) elegant 

c) easy to maintain 

d) no weather protection 

38 4 motor, rope spool 

7 frame - steel or aluminium 

39 5 motor, spool 

40 1 Transport device - skidoo motor, spool of rope 

2 a) on snow - drag controls, footstep, spool, 
motor 

b) on grass - carry 

4 get out of car, use to travel to slope, set up 
(deploy) 

5 stop; walk up hill with fine rope; plant stake; 
set machine on; put up anchor; go 

41 1 rope, chain 

3 pulley guard 

7 motor, spool unit 

42 2 winds thin rope in 

43 3 mount in rope spool 

44 2 could take apart easily for easy servicing motor, spool rope, 
controls, pulleys, 
anchor/pulley 

5 a) tubular frame end plates 
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b) plastic moulding sandwich 

46 1 a) slides up and down spool, anchor 

b) extruded plastic handles soft to touch 

c) aluminium frame 

d) minumum structure; strong; light; 
corrosion resistant; relatively easy for low 
level manufacture 
e) no weather protection for engines 

f) no insulation 

g) no guards 

4 a) aluminium tubing 

b) soft plastic extrusion 

5 aluminium frame - TIC weld anchors 

6 spikes go into ground/deep into snow 

47 1 a) could add guard to sensor fuel 

b) height adjust 

c) plastiC formed body or glass fibre body 

2 a) mesh allows air to cool anchor, pulley 

b) weather proof 

c) insulation 

d) aesthetic appeal 

e) identity 

f) no safety problem 

4 need space for bipodltripod 

5 a) formed by two separate parts 

b) vacuum form or injection mould - like 
topper [???J but need to produce lots 



Annotations - Subject W 
APPENDIX 1.4 

SUBJECTW 

Page No. Sketch No. Quote Annotations Parts Annotations 

1 1 control, data store, server, 
terminals 

2 Alarm: corrupt hard file 

3 maintenance identify the faulty drive by 
waming LED 

2 1 push to lock; pull + button to unlock (like 
car door). May be spring loaded 

2 push to lock; push to reject. Must be spring 
loaded (like retractable pen) 

3 1 a) push to release 
b) springs by elasticity of ABS 

3 a) hinge without springiness 

b) ABS 

4 1 push push switches - click-click 

5 2 a) assembly alignment poles 

b) curve in at rear to help location (up, 
down, backwards) 

3 moulded spring at front 

4 a) moulded springs? 
b) for better action use swing gates at front 
too - but must be tracked to control 
movement. Limits also Req's 
[ReqUirements?] 

6 1 a) Looking at moulding springs into ABS: 
simplifies assembly and reduces parts 
b) complex inj. moulding req'd 

c) low adjustability after manufacture 

9 3 IDEA: use lever release instead of button 

4 a) fewer parts 

b) easier cheaper assembly 

10 1 a) electromagnetic absorption 

b) permanent magnet interface 

c) electromagnetic/permanent magnet 

interface 
d) need mechanical lock for drop test 

e) could buy software controller 

f) Load hard file - permanent magnets - on 
drawer and cage. Lock in place - pulse 
signal to electromagnets to release and 
eject (»Force) 

12 2 force components 

12 7 low resistance, high resistance 

13 1 a) spring force 
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b) spring lever 

c) snap fit 

d) handle 

3 Spring support; lever can only move up and 
down in the gap, thus holding the spring in 
place 

14 1 use plunger to make conductive contact steel plunger, steel spring, 

between drive and cage hard file, EMC shield 

24 1 carrying drawer with finger through handle 

hook 

25 1 handle forms 

26 1 more handles 

27 1 What is it like to hold? Sharp? Knobbly? 
Slippery? 

2 a) grip surface (finger pads?) 

b) sharp bits - dutch bends 

28 1 a) fillet edges 

b) distinct button 

c) smooth handle 

30 1 steel PCB 
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APPENDIX 1.5 

SUBJECT 2C 

Page No. Sketch No. Quote Annotations Parts Annotations 

1 1 water into canal - to gearing - to generator -
to electric motor 

2 solar panels 

2 1 power 

3 2 a) roof slides back 

b) dining/lounging space 

c) walls fold down to provide more 
floorspace 
d) walking on walls? 

4 2 a) sunbathing deck 

b) extended window 
c) smooth curves - more elegant, cruiser-
like style 

5 2 a) back canopy keeps steerer dry in rain 

b) provides sunbathing deck 

6 1 a) water flow 

b) lock gates 
c) large mass of water could provide 
energy every time lock gates are opened 

7 1 retractable roof - more light, more sunshine 

2 a) open air saloon 
b) traditional tiller steering 

8 2 a) towing section - 2 berths, kitchen, saloon 

b) 2 berth carriage - toilet, storage 

c) steering position 
d) playpen carriage - 3/4 small children play 
softly 
e) larger saloon - common area. storage 

10 1 open-air dining and lounging 

2 a) top slides back 

b) sides fold out 

c) table rises 
d) steps disappear Bond style, steps 
appear Bond style 

3 a) open air dining 

b) sliding roof 

c) folding out sides 

11 2 a) perspex dome 

b) steerer's view 



12 1 

2 

13 1 

Annotations - Subject 2C 

pivoting platforms - more lounging space, 
walkway between boat & water. One on 
both sides to balance the boat. 
platforms fold down from sides so as to not 
exceed width limit 

APPENDIX 1.5 

tiller, interface, solar 
panels, lighting, batteries, 
water level, nozzle, gears, 
electric motor 



Annotations - Subject 2DK 
APPENDIX 1.6 

SUBJECT 2DJK 

Page No. Sketch No. Quote Annotations Parts Annotations 

3 1 lens extends ??? of camera as door opens 

3 a) flash on light 

b) knobs on back? 

5 closed position - shutter ??? - cannot take 
??? 

6 a) close up lens view finder, lens cover, 
MORE 

b) close up knob (embedded) 

7 open position - flash on - take a pic 

6 1 fits in briefcase 

2 left hand 

3 a) closed for storage 

b) lens (closed to protect) 

4 open for use 

6 pull to open 

7 viewfinder, pic counter, 
MORE 

10 1 possible control positions 

11 2 flash tube assembly & 
boards, S 12 flex lead, 
MORE 

14 2 a) v. cheap plastic with cardboard 
securative [sic] cover 
b) keep light out instructions 

4 serrated cardboard cover - comes off 
for storage ??? 

15 1 folded storage position 

2 should flash go somewhere else 

3&4 does it need to fold - this would increase 
the cost of production - is it justified? 

16 1 solid - off shelf!??? in plastic pack - ??? -
??? 

2 serrated cardboard 

3 a) no close up flash, view, shutter button, 
MORE 

b) possible shutters ??? 

4 aluminium back protects from ??? and ??? 

5 battery pack as power source when 

6 ripped card edge 

7 pre-printed film 

8 a) double use 
b) cheap & throwaway 

c) not concerned by package 

d) sold in '10· ·20' sizes 

e) different themes - party, birthday, 
Christmas 
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19 1 a) simple box 

b) how to raise unit 

9 mirror - what angle? - 45deg. 

24 1 curved front - to protect lens 

47 1 As flash unit is raised, view finder raises viewfinder, flash unit, 
automatically by gears. May involve MORE 
bellows. 

48 7 make the camera compact/simple/reliable 

51 1 a) viewfinder raises automatically 

b) lens folds up as flash unit raises 

2 lens fully raised 

52 1 possible shape for front (make it as 
appealing as possible) 

2 use bellows that Hugh gave me mirror, pies, MORE 

56 1&2 worked out positions of each module 

57 1 bellows, mirror, shutter, 
MORE 

2 mirror & bellows, shutter, 
MORE 

58 1 viewfinder raises automatically as ??? 
raises 
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SUBJECT 2K 

Page No. Sketch No. Quote Annotations Parts Annotations 

1 1 a) pad: all points known 

b) when wrapped, points pick up in key 
areas 

2 a) wrap object sensors 

b) laser scans pad - sensors pick up in 
appropriate pos[ition] 

3 a) pad emits laser 

b) sensors pick up relating positions 

4 object rotates 

2 1 user interface probe 
laser deflection sensor 

2 a) sensor rotate around object 
b) put sensors on key parts of object -
rotation of laser pinpoints pos[ition] of 
object 

3 moves down, scanning layers of object 

4 a) start flat to zero 

b) all points relative to centre 

5 sensor pad wraps object 

3 1 a) takes up too much room 

b) rotates around object 

c) scans in one pass - hopefully quicker 

3 rotating mirror 

4 creates sheet laser 

4 1 as scanner moves down object rotates 

5 1 dome scanner moves around object -
maybe have to flip object for full 3D image 

2 a) scanner circles object and moves up and 
down 
b) rotary feeder 

6 1 manual scanner handheld ... already exists 

2 a) beacons triangulate position of 
handheld scanner 
b) resistance heating 

7 1 a) dual camera 

b) manually scan image 

c) sensor to define position in space 

d) camera on top of computer if distance 
has to be 1.75m 

8 1 Beacons which triangulate position maybe 
not accurate enough. Sensorltransmitter on 
scanner would have to be in the right place. 

2 a) ceiling has sensorsltargets so camera 
can see and determine position 
b) scanner has vertical camera/sensor so 
wherever you scan it knows position 
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9 1 targets in positions around objects so 
camera can see objects and targets -
defines position in space 

2 a) scanner like a camera 

b) 3D images stored 
c) take images from different sides/angles 

d) keep data 'til later - manipulate on 
computer to match wireframe to create 
whole 3D image 

10 1 a) use tripod - keep steady and easier to 
calibrate 
b) use externallightsltexture map 

c) rotating stand, easier for whole object 
scanning - angles of images all the same -
makes it easier to make whole 3D image 
on computer 

2 a) to scan cup: 6 positions minimum 

b) bottom positions capture outside 
features 

11 5 what's minimum distance between object 
and camera? 

12 1 distance between cameras - can it be 
constant? 

13 1 transparent casing 

14 1 camera movements: distance between 
cameras/distance between camera and 
turntable 

16 5 metallic, silver, futuristic finish 

18 1 with flap 

2 without flap 

19 2 Object not in centre of turntable - what 
happens? Best if roughly in middle. 

21 1 have to work out optimum distance 

3 Also work out angle of cameras. Best to 
point at centre of turntable. 

22 1 a) 2 digital cameras - colourlhigh resolution 

b) 1 projector - interchangeable slide 
(whiteltexture) 

2 fixed vol[ume] 

23 1 fixed vol[ume] 

24 1 a) fixed vol[ume] 

b) pad positions 
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25 1 3 zoom positions 

26 1 a) focal length distance changes 

b) 50mm (lens) and wide angle 

c) 55mm - £150 

27 1 lens, slide, glass 
protector, consenser 
lenses, bulb reflector 

2 texture slide 

3 a) to 200m for different objects 

b) servo motor - computer-controlled 

28 1 a) optimum angle so all sizes of object will projection unit 

be seen 
b) optimum distance between cameras 

2 a) screw thread adjusts focus 

b) May be necessary to change focal 
length? Maybe not? Depends if blurred 
texture pattern is OK. 

29 1 a) ??? 

b) less reliable 

c) larger shape 

2 if turntable moves at an angle less no. of 
pods, greater reliability, smaller casing 
(height) 

30 1 3 pods or 3 movements with simple 

2 2 pods or 2 movements with angled 
turntable - higher reliability 

33 1 slide mechanism 

34 1 slide scanner apart to openltum on: saves 
space; keeps cameras untouchable; 
provides opening; clear access for turntable 

35 1 vents to release heat from projector 

2 removeable back section for technician, not 

user 
5 once extended, click into position: holds 

turntable in fixed position 

6 attached to back section, fixed, pre- cameras/projector 

cal[ibrated] 

37 1 hinged bars hold in position 

2 how do you slide? 

38 1 extended bar - better than hinge 

4 a) slides open 

b) side panel pops into position 

40 5 a) motor in/connected to hinge? 
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b) also need motot in arm for turntable -
has to be fairly flat 

41 1 hinged - more reliable, less space 

42 1&2 Two fixed positions 

43 2 same width as depth of computer tower 

44 1 a) sunk in 

b) on bearings - stronger, balanced, 
smoother 
c) maybe have 'clicky' set positions 1 deg. 
intervals 

2 hinged section 

49 1 underneath sensor feels position (angle) 

2&3 like Braille 

50 1 a) SV input 

b) maybe have transfomerfor 
encoder/projector 

51 1 a) Pod - digital cams (soundvision). Stored 
positions/zooms in comp[uter] 
b) Projector - low voltage, small watt bulb, 
wide angle lens, focus on middle object 
c) texturelwhite slide, mechanism to 
change slides 
d) hinge - solid, accurate positioning Odeg, 
20deg, fine tune 
e) turntable - solid/secure, shaft encoder 
(RS) 

52 1 a) simple hinge 

b) use stand to hold at 20deg. 

2 use relay/solenoid (2 positions/computer 
controlled) 

53 3 for transportation easier to carry (2 people) 

54 1&2 Stand to support turntable at 20deg. when 
scanning larger object detail. Won't be used 
often. 

55 1 solenoid - computer-controlled, 
whiteltexture 

2 a) for stand opening mechanism same as 
computer monitor controls 
b) push & click to close, push & unclick to 
open 
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56 1 a) spring force 

b) rim on outside of turntable 

c) use special supports/attachments to hold 
object on turntable 
d) temporary adhesives - permanent if 
cheap tumtable 

2 a) for locking in position 

b) solenoid under ball bearing/spring useful 
if object is big/heavy and turntable is at an 
angle 

57 1 a) clicks from degree to degree 

b) ball bearings at edges of tumtable [for] 
stability 
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SUBJECT2L 

Page No. Sketch No. Quote Annotations Parts Annotations 

1 4 emf motors positioning 
5 block moulding 
6 rotate in 3D 
7 wax ??? ??? 
9 mould same temperature as tank 

2 1 a) extractor power source 

b) feeding access closed 

c) user interface 

3 feed pattern in machine 
5 a) operator feed in/out 

b) rubber mould marking 

3 1 Claws system: as the common features of 
items to handle are their bases for pouring 
the metal 

7 1 To fix base of tree (sprue) - to enable 
moving tree through various operations 

8 1 Danger: mass of tree may snap when 
rotating 

2 Inertia force very big 

3 Centroid far from rotating axis 

9 1 Best if moment of inertia of tree as close as 
possible to rotating axis 

10 1 manual feed 

2 drain to recover wax 

11 3 a) axial feeder 

b) spring-loaded 

5 rotary feeder 

12 1 air suction 

2 a) resistance heating 

b) surface to not stick to wax once hot 

c) add a small quantity of wax to melt and 
stick 

13 2 a) rotary 3600 to pivot wax even upside 
down 
b) distance from centre adjustment 

c) height adjustment 

3 a) approach the wax element above the 
investment bath 
b) rotary 3600 around centre 

5 dip wax component into investment 
14 1 a) manual refill 

b) investment plaster tank 
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c) rotary blades 

d) homogenous mixture 

e) on/off pouring 

f) gravity to pour plaster in flask 

g) flask & mounted wax pattern inside 

4 when flask in position pour investment 
plaster 

5 investment plaster reservoir 

6 release plaster when trigger is pushed 

15 1 a) extract fumes 

b) recycle wax 

2 feed in and out CHECK HERE 

3 a) rotary continuous firing refractor bricks, recycled 
wax container 

b) slow rotating plate 

c) hollow base to allow wax to run into 
centre? 

4 a) inclined plate 

b) linear continuous firing 

c) holes to let liquid wax to fall onto inclined 
plate 
d) slow rolling 

e) recycle wax 

16 1 metal grains crucible 

2 a) feed in and out 

b) melting furnace 

3 Option 1 - single crucible furnace 

4 a) Option 1 - single crucible furnace 

b) avoid manual handling of red hot stuff 

c) feed out crucible 

5 tilt crucible for pouring 

17 1 sealed lid 

2 crucible confined in a refractory chamber 

3 a) hinged 

b) resistance induction or gas heating 

4 a) tracks/rail bearings 

b) too much space taken by lid once in 
open position 

18 1 2 halves lid (2 hinges) 

2 a) 1st - rotate at hinge 

b) 2nd - slide down 

5 aperture - as camera 

19 1 rotating axis (to tilt crucible) flask, sprue base, gear 
box, extractor MORE 

2 a) mount crucible in a plate with hole 

b) plate: refractory materials - ceramics, 
metals 

3 mount (tilt) crucible in fabricated holder 
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20 1 a) direct pouring 

b) manual to tilt crucible 

c) runner from inside to outside 

d) flask independent (outside) 

e) swan neck 

21 1 semi built in flask 
2 hood, extractor 
3 a) semi built in flask 

b) hood to cover fumes during pouring -
fixed or mobile 
c) window to follow and control pouring 

d) pull lever to pour metal 

e) temperature panel display (furnace 
extractor) 

22 1 action - to bring up the sprue base and sprue base, refractory 
flask into furnace base, refractory walling, 

extractor hood, etc 
2 a) fixed point 

b) foot lever system to bring flask up into 
the furnace 

23 4 a) fix flask on mobile base 

b) base to slide along 2 rails 

5 pneumatic 
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