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Abstract 

 

Strong adaptive evolutionary forces shape the interactions between pathogens 

and their hosts and typically lead to a stable co-existence. In this process of co-

evolution, mammals have developed restriction factors that limit retrovirus 

infectivity, replication or assembly and narrow the spectrum of potential host 

species. These restriction factors are either constitutively expressed, such as 

APOBEC3 proteins, cytidine deaminases that interfere with reverse transcription, 

or form part of the type I interferon-induced innate immunity, such as TRIM5, a 

member of the tripartite motif protein family that induces degradation of 

retroviral capsid, blocks reverse transcription, or tetherin (BST-2, CD317), which 

inhibits release of nascent viral particles from infected cells. Conversely, viruses 

have evolved antagonists of restriction factors or proteins that limit IFN-induced 

gene expression, thus evading immune surveillance. The interaction between 

host and viral components is delicately balanced and has a significant impact on 

disease outcome. 

Feline immunodeficiency virus (FIV), a lentivirus closely related to human 

immunodeficiency virus (HIV), is a recent introduction into domestic cats and 

causes an immunodeficiency syndrome analogous to human AIDS. Interestingly, 

non-domestic cats such as lion or pumas have co-existed with lentiviruses for 

prolonged periods of time and FIV infections are largely benign. Although plasma 

viral and proviral loads are high in both domestic and non-domestic cats, in vitro 

studies have shown that FIV infection of non-domestic cat T lymphocytes is 

significantly less efficient than that of domestic cat T cells. Thus, this thesis 

tests the hypothesis that the differential disease outcome of FIV infections in 

felids is caused by differences in lentiviral restriction factor activities or their 

sensitivities to FIV restriction factor antagonists. 

Data presented in this study show for the first time that feline APOBEC3 

proteins are expressed in tissues and cell types relevant for FIV infection. The 

APOBEC3 proteins A3H and A3CH exhibited a high antiviral activity against FIV 

lacking the APOBEC3 antagonist Vif in single-cycle replication assays, with no 

difference in activity being detected between domestic and non-domestic cat 

proteins. However, domestic cat A3CH was significantly more sensitive to 

antagonism by FIV Vif than lion or puma A3CH, which would allow efficient viral 



4 

 
 

replication in domestic cat T lymphocytes and subsequently lead to T cell loss 

and immunodeficiency.  

Furthermore, this thesis provides evidence that felid tetherins can 

prevent FIV particle release from producer cells in single-cycle replication 

assays; however, stable expression of domestic and non-domestic cat tetherins 

in feline cell lines did not abrogate FIV replication. Indeed, syncytium formation 

indicative of viral cell-to-cell spread was significantly enhanced in type I 

interferon-treated feline cells infected with CD134-independent strains of FIV 

which often arise in chronic (late) stages of FIV infections in vivo.  

Finally, this work reports the generation of a synthetic domestic cat 

TRIM5α-cyclophilin A fusion protein which was highly efficient at preventing FIV 

pseudotype and productive infection. This novel feline restriction factor 

represents a potent antiviral defence agent with very low potential for toxicity 

and could in future be used in gene therapy approaches to treat FIV-infected 

cats. 
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 Introduction 1

 

1.1 Retroviruses 

 

Viruses are obligate intracellular pathogens that are dependent on the cellular 

transcriptional machinery to replicate their genomes and on a wide array of host 

factors to express viral proteins and to assemble viral particles (virions). Virions 

are the extracellular forms of viruses that are suited for transmission to target 

cells. They are 15 to 400 nm in size and contain the viral nucleic acid enclosed in 

a capsid. In the case of enveloped viruses the capsid is surrounded by the inner 

shell of the particle, located just underneath the lipid membrane (Gomez and 

Hope, 2005). 

Viruses can employ different kinds of replication strategies dependent 

on the nature of their genomes (single or double-stranded RNA or DNA) and the 

mode of replication. However, all viral proteins are expressed through 

messenger RNA (Baltimore, 1971). Retroviruses are enveloped viruses whose 

genetic information is encoded on two single-stranded positive sense RNA 

molecules. Members of the Retroviridae virus family differ from other positive-

stranded RNA viruses by using a replication strategy termed reverse transcription 

(Abbink and Berkhout, 2007). Reverse transcription is a process catalysed by the 

viral enzyme reverse transcriptase (RT) that converts the viral RNA genome into 

a double-stranded DNA copy which is inserted into the host genomic DNA as a 

provirus. Integrated proviral DNA then serves as a template for the transcription 

of viral genes (Nisole and Saib, 2004; Wu, 2004). 

 

1.1.1 Overview 

 

Retroviruses are pathogens of vertebrates that often possess a high degree of 

specificity for their respective hosts. We distinguish between the two 

subfamilies Orthoretrovirinae and Spumaretrovirinae. They are further 

categorised into simple and complex retroviruses according to the complexity of 

their genomes. Simple retroviruses possess the three open reading frames (ORFs) 

gag (group-specific antigen), pol (polymerase) and env (envelope). Gag encodes 



23 

 
 

the structural proteins, pol RT and other enzymes indispensable for replication 

and env the envelope glycoprotein (Env) responsible for cell entry and as such a 

major determinant for host cell tropism. This group is subdivided into the genera 

Alpha-, Beta- and Gammaretrovirus. Complex retroviruses encode a variable 

number of additional regulatory and accessory genes. This group is subdivided 

into the genera Deltaretrovirus, Lentivirus and Spumavirus.  

The infectious property of retroviruses was first discovered in 1904 by 

Vallée and Carré, who showed that equine infectious anemia virus (EIAV) could 

be transmitted between horses with a filtrate (Vallee and Carre, 1904). EIAV is 

transmitted by blood-feeding insects, and clinical signs include recurrent febrile 

episodes, anaemia, thrombocytopenia, oedema, diarrhoea, and lethargy (Leroux 

et al., 2004; Craigo et al., 2005). The first oncogenic retrovirus, avian leukosis 

virus (ALV), was described in 1908 (Ellermann and Bang, 1908). Another 

oncovirus of the Alpharetrovirus genus is the Rous sarcoma virus, the causative 

agent of sarcomas in chickens, which was discovered in 1911 by Rous (Rous, 

1911). In 1936, the mouse mammary tumour virus (MMTV), a member of the 

Betaretrovirus genus, was the first virus shown to cause tumour formation in 

mammals. It can be transmitted vertically from mothers with breast cancer to 

pups in the form of a DNA provirus integrated in the DNA of milk lymphocytes 

(Bittner, 1942). Gammaretroviruses include murine leukaemia virus (MLV) and 

feline leukaemia virus (FeLV). Clinical signs of infection are diverse and include 

immunosuppression and both proliferative and non-proliferative haematopoeitic 

disorders. 

The first human retrovirus to be isolated was human T lymphotropic 

virus type 1 (HTLV-1), a deltaretrovirus, which causes leukaemias and 

lymphomas in mature T cells (Poiesz et al., 1981). Human immunodeficiency 

virus type 1 (HIV-1) was discovered by Montagnier and Gallo in 1983 (Barre-

Sinoussi et al., 1983; Gallo et al., 1984). Human immunodeficiency virus type 2 

(HIV-2) was first described in Senegal, West Africa, in 1985 (Barin et al., 1985). 

Due to the definition of HIV as the cause of human acquired immunodeficiency 

syndrome (AIDS) retrovirology became the most intensively studied field in 

virology. HIV is considered pandemic by the World Health Organization, infecting 

33.4 million people with approximately 2.7 million new infections and 2 million 

deaths per year (World Health Organization, 2008). FIV was discovered in 1987 

(Pedersen et al., 1987). FIV infection of domestic cats causes an AIDS-like 
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syndrome characterised by recurrent gingivitis-stomatitis, cachexia, 

neuropathology and increased incidence of tumour development (Pedersen et 

al., 1987; Hosie et al., 1989; Sparger et al., 1989; Yamamoto et al., 1989; 

Ackley et al., 1990; Torten et al., 1991; Callanan et al., 1992; Callanan et al., 

1996). FIV infects approximately 0.5 million cats in the UK alone and is therefore 

an important veterinary pathogen. Moreover, FIV is a valuable animal model for 

HIV infection in humans for investigating common principles of AIDS progression 

and is used for the development of vaccines for the prevention of lentiviral 

infection. Other lentiviruses of veterinary importance infect cattle (bovine 

immunodeficiency virus; BIV), goats (caprine arthritis/encephalitis virus; CAEV), 

horses (EIAV) and non-human primates (simian immunodeficiency virus; SIV). 

 

1.1.2 Genome organisation 

 

As mentioned above, the genome of simple retroviruses, such as FeLV, contains 

the three ORFs gag, pol and env (Fig. 1-1). These functional genes are flanked N-

terminally by the 5’ long-terminal repeat (5’ LTR) and C-terminally by the 3’ 

long-terminal repeat (3’ LTR). The LTRs contain transcription and regulatory 

elements (Pecon-Slattery et al., 2008a). Signals for gene expression found in 

LTRs include enhancer, promoter, transcription initiation, transcription 

termination and polyadenylation signals. Both the host cell transcriptional 

machinery and virus-encoded proteins, which enhance or modulate LTR activity 

and subsequently the expression of viral RNA and proteins, interact with the 

LTRs (Krebs et al., 2001). Gag encodes for the capsid proteins matrix (MA), 

capsid (CA) and nucleocapsid (NC). Pol encodes for the viral enzymes protease 

(PR), reverse transcriptase (RT) and integrase (IN), and env encodes for the 

envelope glycoprotein (Env), which consists of surface (SU) and transmembrane 

(TM) regions. 

Complex retroviruses, such as the feline foamy virus (FeFV), HIV or FIV 

possess additional regulatory and accessory genes. The regulatory proteins help 

achieve optimal viral replicative efficiency (Emerman and Malim, 1998) and the 

accessory proteins ensure viral persistence, replication, dissemination and 

transmission by supporting the evasion from and the manipulation of the host 
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adaptive and innate immunity or by antagonising host restriction factors (Malim 

and Emerman, 2008). 

FeFV is a member of the genus Spumavirus and encodes for three 

additional genes (Winkler et al., 1997). The two bel genes are located between 

env and the 3’ LTR of the FeFV provirus (Winkler et al., 1997). The Bel1/Tas 

protein of foamy viruses is a transactivator of LTR-directed gene expression 

(Mergia et al., 1990; Keller et al., 1991); (Rethwilm et al., 1991; Keller et al., 

1992; Lee et al., 1992; Lochelt et al., 1993; Zou and Luciw, 1996; Winkler et al., 

1997) and absolutely required for viral gene expression (Lochelt et al., 1991; 

Baunach et al., 1993; Yu and Linial, 1993; Winkler et al., 1997; Wagner et al., 

2000). Bel2 and a protein called Bet are essential for efficient virus production 

(Alke et al., 2001; Lochelt et al., 2005; Munk et al., 2008; Perkovic et al., 2009). 

Bet is generated by a splice event fusing the N-terminal shared domain of bel1 

to the coding sequence of bel2 (Muranyi and Flugel, 1991; Bodem et al., 1998). 

Bel2 is fully contained in Bet. Both bel and bet genes are expressed from an 

internal promoter (IP) located between env and the 3’ LTR (Lochelt et al., 1993; 

Lochelt, 2003). A third ORF corresponding to the human foamy virus (HFV) bel3 

gene (Weissenberger and Flugel, 1994) is not present in FeFV (Winkler et al., 

1997). 

HIV-1 possesses the most complex genome amongst the retroviruses. It 

encodes for the six regulatory/accessory proteins Tat, Rev, Vpr, Vif, Vpu and Nef 

(Emerman and Malim, 1998). Tat, Rev and Vpr are of importance to achieve an 

optimal viral replication efficiency (Emerman and Malim, 1998). Tat 

(transactivator of transcription) regulates high-level HIV-1 transcription from 

proviral DNA, which enables the virus to sustain persistent infections in vivo 

despite a very short half-life of infected cells (Wei et al., 1995; Perelson et al., 

1996). Rev (regulator of virus gene expression) (Zou et al., 1997; Lockridge et 

al., 1999; Miller et al., 2000) is a critical factor for virus replication (Pecon-

Slattery et al., 2008a) as it permits nuclear export of the unspliced viral 

transcripts in infected cells (Malim et al., 1989c; Pollard and Malim, 1998). Vpr 

(viral protein R) acts in a complementary (but mechanistically distinct) fashion 

to Rev and facilitates nuclear import of viral DNA (Emerman and Malim, 1998). 

Another function of Vpr is to delay or arrest infected cells in the G2 phase of the 

cell cycle. Because the HIV-1 LTR is more active in G2 than in any other phase 

(Goh et al., 1998) transcription is maximised which can be an important 
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selective advantage for the virus. The vif (virus infectivity factor) gene is 

present in all known lentiviruses except for EIAV. Vif enhances viral infectivity 

(Fisher et al., 1987; Strebel et al., 1987; Gabuzda et al., 1992; Kishi et al., 1992; 

Von Schwedler et al., 1993; Kao et al., 2003) and is essential for productive 

infection in cells such as primary peripheral blood lymphocytes and macrophages 

and in some immortalised T-cell lines (Gabuzda et al., 1992; Von Schwedler et 

al., 1993). Vpu (viral protein U) and Nef (negative factor) down-regulate the 

primary receptor for HIV-1, CD4. CD4 binds to nascently synthesised HIV-1 Env 

protein in the endoplasmic reticulum (ER) (Crise et al., 1990). Vpu also binds to 

CD4 in the ER and targets it for proteolysis (Schubert et al., 1998), thereby 

decreasing the ability of Env to transit to the cell surface (Willey et al., 1992b). 

 

 

 

Figure 1-1 Genome organisation of simple and complex retroviruses. Feline 

leukaemia virus (FeLV) is a simple retrovirus belonging to the Gammaretrovirus 

genus and possesses three open reading frames, as well as 5’ and 3’ long 
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terminal repeats (LTRs). Feline foamy virus (FeFV), human immunodeficiency 

virus type I (HIV-1) and feline immunodeficiency virus (FIV) belong to the complex 

retroviruses and have an additional suite of accessory genes. Gag, group-specific 

antigen; pol, polymerase; env, envelope glycoprotein; MA, matrix; CA, capsid; NC, 

nucleocapsid; PR, protease; RT, reverse transcriptase; DU, dUTPase; IN, 

integrase; nef, negative factor; orf2, open reading frame A; rev, regulator of virus 

gene expression; tat, transactivator of transcription; vif, virus infectivity factor; vpu, 

viral protein U. 

 

In contrast to Vpu, Nef acts to remove CD4 that is already located on the cell 

surface by endocytosis (Greenberg et al., 1997; Le Gall et al., 1998; Piguet et 

al., 1998). The rationale for this is that CD4-Env interactions on the cell surface 

could reduce virion release or inhibit the incorporation of Env into virions, which 

is prevented by Nef-initiated CD4 endocytosis (Lama et al., 1999; Ross et al., 

1999). Both Vpu and Nef also downregulate the expression of the major 

histocompatibility complex I (Schwartz et al., 1996; Kerkau et al., 1997; Collins 

et al., 1998; Roeth and Collins, 2006), which potentially helps to avoid host 

immune surveillance. 

Tat, Vpr, Vpu and Nef are absent from the FIV genome. However, it 

encodes for the proteins OrfA (also called Orf2) and deoxyuridine triphosphate 

nucleotidohydrolase (dUTPase). OrfA is a transactivator necessary for productive 

FIV replication in primary T lymphocytes as well as in some feline T cell lines 

(Phillips et al., 1990; Sparger et al., 1992; Tomonaga et al., 1993; Sparger et al., 

1994; Waters et al., 1996; de Parseval and Elder, 1999). OrfA deletion mutants 

have been associated with decreased viral replication and pathogenicity (Sparger 

et al., 1994; Inoshima et al., 1996; Inoshima et al., 1998b; Norway et al., 2001; 

Gemeniano et al., 2003; Gemeniano et al., 2004). In addition, it has been shown 

that OrfA induces G2 cell cycle arrest (Gemeniano et al., 2004) and down-

regulates cell surface expression of the FIV primary binding receptor, CD134 

(Hong et al., 2010). Studies also suggested that OrfA can affect later steps of 

virus replication, such as particle formation or release, and possibly early steps, 

such as binding and entry (Gemeniano et al., 2003). Overall, it seems that OrfA 

is exhibiting multiple functions homologous to HIV Vpr, Vpu, Tat, or Nef (Malim 

and Emerman, 2008). dUTPase is encoded specifically in non-primate lentivirus 

genomes and forms part of the pol gene (Payne and Elder, 2001). dUTPase 
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prevents uracil misincorporations during viral replication (Elder et al., 1998; 

Inoshima et al., 1998a) and dUTPase-defective FIV cannot replicate in feline 

macrophages (Lerner et al., 1995).  

 

1.1.3 Replication cycle 

 

In general, the retrovirus life cycle can be divided into early and late stages. The 

early stages comprise the attachment of virions to the target cell and their 

fusion with the target cell membrane, uncoating of the viral core and reverse 

transcription of viral RNA into DNA, nuclear import of the viral DNA and its 

integration into the target cellular genome. The late stages of the retrovirus life 

cycle include virus replication, assembly and egress.  

Because the HIV-1 life cycle (Fig. 1-2) has been studied in far greater 

detail than the FIV life cycle, all life cycle stages mentioned in this chapter refer 

to HIV-1 rather than FIV, unless otherwise stated. 

 

1.1.3.1 Cellular entry 

 

HIV transmission between individuals occurs mainly through exchange of blood or 

other bodily fluids but vertical transmission through breast milk has also been 

described. FIV is transmitted between cats through deep bite wounds and 

scratches caused by fighting. HIV targets T lymphocytes, macrophages and, to 

some extent, dendritic cells (DCs). Its cell tropism is determined by the cell 

surface receptors required for target cell attachment and entry. HIV uses CD4 as 

its primary cell entry receptor (Dalgleish et al., 1984; Klatzmann et al., 1984; 

Maddon et al., 1986; Clapham and McKnight, 2001; Clapham and McKnight, 2002) 

and the chemokine receptors CCR5 (Alkhatib et al., 1996; Deng et al., 1996; 

Dragic et al., 1996; Trkola et al., 1996) and CXCR4 (Choe et al., 1996; Feng et 

al., 1996; Oberlin et al., 1996; Bleul et al., 1997) as co-receptors. Co-receptor 

usage is strain-dependent. R5 strains of HIV-1 use CCR5 and are able to enter 

macrophages, DCs and T lymphocytes, whereas X4 strains of HIV-1 use CXCR4 

and can infect CD4+ T lymphocytes only (Doms and Trono, 2000). In early stages 

of infection, CCR5-tropic HIV-1 strains dominate and infect CCR5-expressing 
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immune cells of the mucosa (de Roda Husman and Schuitemaker, 1998; Clapham 

and McKnight, 2002); (Miller and Shattock, 2003; Davis and Doms, 2004; Moore et 

al., 2004; Wilflingseder et al., 2005). Mucosal macrophages and DCs migrate to 

draining lymph nodes where they infect susceptible T lymphocytes (Clapham and 

McKnight, 2002; Davis and Doms, 2004; Moore et al., 2004; Wilflingseder et al., 

2005). Mucosal DCs can capture viral particles via interactions between HIV-1 

Env and the C-type mannose binding lectins DC-SIGN (DC-specific intercellular 

adhesion molecule-grabbing non-integrin) and DC-SIGNR (DC-SIGN-related) 

(Geijtenbeek et al., 2000; Pohlmann et al., 2001) and promote HIV-1 

internalisation, allowing the virus to remain infectious until it can be presented 

to T lymphocytes (van Kooyk and Geijtenbeek, 2003). HIV-1 is capable of 

switching its co-receptors in vivo. In about 50% of untreated HIV-1 infections the 

evolution of R5X4- and X4-tropic viral variants can be observed (Connor et al., 

1997). This is accompanied by a change in target cell tropism from macrophages 

to T lymphocytes and the progression to AIDS (Nielsen et al., 1993). R4-tropic 

viruses display a broader T lymphocyte tropism than R5-tropic viruses (Bleul et 

al., 1997; Clapham and McKnight, 2002). In addition to CCR5 and CXCR4, HIV-2 

can also use CCR1, CCR2b and CCR3 as co-receptors in vitro (Maddon et al., 

1986; Sattentau et al., 1988; Alkhatib et al., 1996; Deng et al., 1996; Clapham 

and McKnight, 2002). Both HIV-1 and HIV-2 can use the chemokine receptor D6 

to infect astrocytes in the brain (Neil et al., 2005).  

FIV and HIV display a similar cell tropism; however, because feline CD4 is 

expressed only in T lymphocytes but is absent from macrophages or DCs (Ackley 

et al., 1990), CD4 was excluded as primary receptor for FIV (Willett et al., 1991; 

Hosie et al., 1993; Norimine et al., 1993). Instead, primary strains of FIV use the 

feline homologue of OX40 (CD134), a member of the tumour necrosis factor 

receptor/nerve growth factor receptor (TNFR/NGFR) superfamily (Shimojima et 

al., 2004). CD134 is expressed in activated CD4+ T lymphocytes (Paterson et al., 

1987; Mallett et al., 1990; de Parseval et al., 2004; Joshi et al., 2005) and at low 

levels in activated CD8+ T lymphocytes (Baum et al., 1994; Al Shamkhani et al., 

1996), macrophages and activated B cells (Durkop et al., 1995). CD134-

dependent infection requires co-expression of CXCR4 (Shimojima et al., 2004). 

Interestingly, during late (chronic) stages of FIV infections, CD134-independent 

strains of FIV can arise that can enter the cell via CXCR4 only, enabling them to 
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also target CD8+ T lymphocytes and B cells (Willett et al., 1997a; Willett et al., 

1997b; Hosie et al., 1998).  

The adsorption of HIV-1 to target cells prior to receptor engagement is 

aided by host cell surface molecules like heparin sulphate proteoglycan (Mondor 

et al., 1998), LFA-1 (Fortin et al., 1998) and nucleolin (Nisole et al., 1999). The 

retrovirus-receptor interactions that lead to cell entry require a series of steps 

that have been particularly well studied for HIV-1 (Nisole and Saib, 2004). HIV-1 

envelope glycoproteins are organised into trimeric spikes displayed on the 

surface of the viral particle. Each spike comprises a trimer of three 

transmembrane gp41 (TM) subunits non-covalently bound to a trimer of three 

exterior gp120 (SU) subunits (Kowalski et al., 1987). Gp120 consists of variable 

(V1-V5) and conserved regions (Starcich et al., 1986). V1 to V4 form surface-

exposed loops, and the conserved regions are involved in interactions with gp41 

and the viral receptors (Starcich et al., 1986).  

In a first step, the HIV-1 Env gp120 subunit engages CD4. The binding 

reaction induces a conformational change in gp120, namely the repositioning of 

V1/V2 and V3, which exposes the co-receptor binding site (Kwong et al., 1998; 

Rizzuto et al., 1998; Doms, 2000; Rizzuto and Sodroski, 2000). Co-receptor 

binding in turn leads to a conformational rearrangement of gp41, which triggers 

fusion of Env with the host cell membrane and entry of the viral core into the 

host cell cytoplasm (Kwong et al., 1998). In addition to receptor-mediated cell 

entry, HIV-1 uses clathrin-mediated endocytosis (McClure et al., 1988; Marsh and 

Pelchen-Matthews, 2000; Fredericksen et al., 2002; Vidricaire et al., 2003) 

(Daecke et al., 2005; Wei et al., 2005) for cell entry; however, particles entering 

by endocytosis are not infectious as they are degraded by the proteasome 

(Schwartz et al., 1998). 
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Figure 1-2 HIV-1 replication cycle. (1) Virions bind to the primary cell-entry 

receptor CD4 (CD134 for FIV) on the surface of target cells. Receptor binding 

causes a conformational change in the viral envelope glycoprotein (Env) that 

enables co-receptor binding. The main co-receptors for HIV-1 are the chemokine 

receptors CCR5 and CXCR4 (FIV uses CXCR4 only). (2) Virions enter the target 

cell by fusion between viral and cellular membranes. Viral cores are released into 

the cytoplasm. (3) The viral cores interact with the cellular microtubule and actin 

network (not shown) and are rapidly routed to the nuclear membrane where they 

bind to nuclear pore complexes. Within intact cores reverse transcription 

complexes (RTCs) are formed. These are HIV-1 complexes that undergo reverse 

transcription, the conversion of the single-stranded, positive-sense RNA viral 

genome into double-stranded DNA (Arhel, 2010). Upon completion of reverse 

transcription, uncoating of viral cores (the loss of capsid proteins) is initiated and 

RTCs mature into pre-integration complexes (PICs). (4) Nuclear localisation 

signals in integrase (IN), matrix (MA) and HIV-1 viral protein R (Vpr) and the 

central DNA flap in the viral cDNA enable PICs to enter the nucleus in the absence 

of cell division. (5) IN catalyses the integration of the viral cDNA into the host cell 

genome. (6) The integrated viral cDNA is transcribed along with host genes and 

newly synthesised viral RNA is exported into the cytoplasm with the help of the 

regulator of viral gene expression protein (Rev). (7) Viral proteins are translated in 

the cytoplasm and are, together with viral RNA, transported to lipid rafts in the host 

cell plasma membrane, where (8) assembly of viral particles and their budding 

from the host cell occur. (9) The nascent viral particles then mature and are now 

infectious for target cells. Figure adapted from Arhel et al. (2007). 

 

1.1.3.2 Uncoating and reverse transcription 

 

Once inside the cytoplasm, viral particles undergo uncoating and reverse 

transcribe their single-stranded, positive sense RNA genomes into double-

stranded cDNA capable of integrating into the host genome. In order to be 

transported from the plasma membrane to the nuclear membrane viral particles 

interact with cellular cytoskeleton components such as cortical actin 

(Bukrinskaya et al., 1998; Ploubidou and Way, 2001) or the microtubule network 

(McDonald et al., 2002).  
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 There has been a lot of controversy about the timing of uncoating (the 

rapid disassembly of the viral capsid) and reverse transcription (Arhel, 2010). It 

has been thought previously that capsid disassembly and loss of CA occurs shortly 

after cell entry (Dvorin and Malim, 2003; Bukrinsky, 2004; Lehmann-Che and 

Saib, 2004; Suzuki and Craigie, 2007) and that complete uncoating is required for 

reverse transcription complex (RTC) formation and the initiation of reverse 

transcription (Mortuza et al., 2004). RTCs are viral complexes containing MA, PR, 

RT, IN, Vif, Vpr and two copies of the single-stranded plus-sense RNA genome as 

well as numerous cellular proteins (Bukrinsky et al., 1993b; Peterlin and Trono, 

2003), in which reverse transcription occurs (Telesnitsky and Goff, 1997; Basu et 

al., 2008). However, uncoating may be a gradual process which is still ongoing 

while reverse transcription has already been initiated (Warrilow et al., 2009; 

Hulme et al., 2011). In this scenario molecular rearrangements during reverse 

transcription may trigger conformational changes and a stepwise disassembly of 

the viral capsid (Arhel, 2010). Current data suggest a third model that proposes 

that uncoating occurs in close proximity to nuclear pores in the nuclear 

membrane upon completion of reverse transcription (Dismuke and Aiken, 2006; 

Arhel et al., 2007; Schaller et al., 2011). The role of an intact capsid structure 

may be to concentrate RT enzyme near the target RNA (Klarmann et al., 1993). 

While it was thought originally that uncoating was a prerequisite for the 

initiation of reverse transcription, this third model implies that completion of 

reverse transcription is essential for uncoating to occur (Arhel, 2010).  

The regulation of the timing of reverse transcription and uncoating is 

crucial for successful nuclear import (Forshey et al., 2002; Dismuke and Aiken, 

2006; Iordanskiy et al., 2006; Arhel et al., 2007; Yamashita et al., 2007). In the 

process of reverse transcription the enzyme reverse transcriptase (RT) catalyses 

the conversion of single-stranded plus-sense RNA to double-stranded DNA. The 

first step of reverse transcription is the synthesis of minus-strand strong-stop 

DNA at the primer binding site (PBS) at the 5’ end of the RNA genome using a 

lysine tRNA (tRNALys; contained within the virion) as a primer (Wain-Hobson et 

al., 1985; Guyader et al., 1987). The minus-strand strong-stop DNA is then 

transferred to the 3’ end of the RNA genome and anneals to a complementary 

sequence in the R (repeated) region of the LTR and the synthesis of the minus-

strand DNA is completed. RNase H activity of reverse transcriptase degrades the 

RNA matrix. Plus-strand DNA synthesis is initiated from two RNA regions that are 
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resistant to RNase H digestion because they contain a unique poly purine tract 

(PPT) sequence (Charneau et al., 1992; Charneau et al., 1994; Telesnitsky and 

Goff, 1997). Lentiviruses initiate plus-strand DNA synthesis from the central and 

3’ PPT (cPPT and 3’ PPT, respectively). DNA is copied into the PBS of the lysine 

tRNA molecule, and the tRNA is degraded by RNase H. The PBS on the plus-

strand DNA is now exposed so that plus-strand DNA can anneal to the PBS at the 

3’ end of the minus-strand DNA in a second strand transfer event. This strand 

transfer leads to the formation of a circular structure. Both plus-sense and 

minus-sense DNA syntheses are completed at the central termination sequence 

(CTS) in the centre of the genome. The downstream strand is displaced over 99 

nucleotides creating the central DNA flap (Charneau et al., 1994). Reverse 

transcription generates pre-integration complexes (PICs) which contain MA, PR, 

RT, IN and Vpr (Farnet and Haseltine, 1991; Bukrinsky et al., 1993b; Miller et al., 

1997; Iordanskiy et al., 2006; Suzuki and Craigie, 2007) but are lacking CA 

proteins (Farnet and Haseltine, 1991; Miller et al., 1997). PICs also contain many 

cellular factors such as the high mobility group protein HMG-I (Y) (Miller et al., 

1997) and LEDGF/p75 (lens epithelium-derived growth factor/transcriptional co-

activator p75) (Llano et al., 2004; Maertens et al., 2004) which may aid the 

association of the PIC with chromatin or integration (Miller et al., 1997; Ciuffi et 

al., 2005; Emiliani et al., 2005).  

 

1.1.3.3 Nuclear import and integration 

 

The next step in the retrovirus life cycle is nuclear import and integration of the 

viral DNA into the host cell genome. Nuclear import of most retroviruses is cell 

cycle-dependent and requires the breakdown of the nuclear membrane during 

mitosis (Roe et al., 1993; Lewis and Emerman, 1994). Lentiviruses have the 

unique ability to replicate in metabolically active non-dividing cells (Gartner et 

al., 1986; Weinberg et al., 1991; Lewis et al., 1992) such as terminally 

differentiated macrophages or quiescent T lymphocytes as a result of active 

nuclear import of their genomes across the nuclear membrane (Bukrinsky et al., 

1992). Nuclear pore complexes (NPCs) are known to mediate transport of 

macromolecules of up to 39 nm in diameter (Pante and Kann, 2002; Tran and 

Wente, 2006) from the cytoplasm into the nucleoplasm through a central nuclear 
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pore channel (Fried and Kutay, 2003). Curiously, the stokes diameter of the HIV-

1 PIC has been determined to be 56 nm (Yamashita and Emerman, 2004) so that 

passive transport through nuclear pores cannot take place. Instead, nuclear 

localisation signals (NLS) in IN (Gallay et al., 1997; Bouyac-Bertoia et al., 2001), 

MA (Bukrinsky et al., 1993a; Bukrinsky et al., 1993b; Von Schwedler et al., 1994; 

Dubrovsky et al., 1995; Jenkins et al., 1998; Peterlin and Trono, 2003) and Vpr 

(Heinzinger et al., 1994; Fouchier et al., 1998; Popov et al., 1998; Vodicka et 

al., 1998; de Noronha et al., 2001; Le Rouzic et al., 2002) enable signal-

mediated nuclear import via interactions with nucleocytoplasmic shuttling 

receptors of the karyopherin β family. The nuclear impact factors transportin-3 

(TNPO3) (Christ et al., 2008; Goff, 2008; Lee et al., 2010), importins α, β (Fried 

and Kutay, 2003) and 7 (Zaitseva et al., 2009) as well as nucleoporins (Woodward 

et al., 2009) are required for infection of both dividing and non-dividing cells. 

Furthermore, the central DNA flap in the viral cDNA has been shown to 

enhance nuclear localisation of HIV-1 PICs (Charneau et al., 1992; Hungnes et 

al., 1992; Charneau et al., 1994; De Rijck et al., 2005). Stable integration of 

viral cDNA into the host cell genome is catalysed by IN. It was previously thought 

that HIV-1 integration would occur at random sites. Recently however, it has 

been shown that integration is influenced by chromatin structure (Pryciak et al., 

1992) and that HIV-1 prefers gene-rich regions of the genome and actively 

transcribed genes (Schroder et al., 2002; Wu et al., 2003).  

 

1.1.3.4 Transcription and translation  

 

Once integration of HIV-1 into the host genome has occurred, the provirus 

behaves like any human gene and transcription is initiated at the 5’ end of the 

proviral genomic DNA and terminated at its 3’ end (Jones and Peterlin, 1994). In 

the early stages of viral transcription, host RNA polymerase II interacts with 

cellular transcription factors and the proviral LTR. The LTR contains promoter 

elements and enhancer sequences. The core promoter contains the initiator (Inr) 

and a TATA box (Berkhout and Jeang, 1992; Jones and Peterlin, 1994). Upstream 

of Inr are three Specificity Protein 1 (SP1) transcription factor binding sites 

(Berkhout and Jeang, 1992; Jones and Peterlin, 1994). Together, these elements 

position RNA polymerase II on the proviral DNA to initiate transcription. Further 
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upstream is the enhancer, which can bind the transcription factors nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-kB) and nuclear factor 

of activated T cells (NFAT) (Jones and Peterlin, 1994), which ensure that virus 

replication proceeds at high levels. Downstream of Inr lays a regulatory element 

known as transactivation response (TAR) element. Low levels of basal 

transcription drive the synthesis of HIV-1 transcription factor Tat transcripts. Tat 

is then translated in the cytoplasm and shuttled back into the nucleus with the 

help of its NLS. In a second phase of viral transcription, Tat and its cellular co-

factor, positive transcription elongation factor B (P-TEFb), interact with TAR to 

allow RNA polymerase II to generate full-length viral transcripts (Berkhout et al., 

1989; Dingwall et al., 1989; Wei et al., 1998; Isel and Karn, 1999; Kao et al., 

2003; Raha et al., 2005) and to increase transcription from the HIV-1 LTR several 

hundred-fold (Taube et al., 1999).  

FIV lacks a tat gene and TAR but it encodes for OrfA, which transactivates 

transcription at low levels and is essential for productive FIV replication in 

primary T lymphocytes (Phillips et al., 1990; Sparger et al., 1992; Tomonaga et 

al., 1993; Sparger et al., 1994; de Parseval and Elder, 1999).  

During HIV-1 transcription, three classes of transcripts are synthesised 

that give rise to approximately 30 different viral transcripts generated by 

alternative splicing (Bohne et al., 2005). These include unspliced, 9-kb mRNA 

species that encode for the Gag/Pol polyprotein (Kim et al., 1989; Arrigo et al., 

1990; Schwartz et al., 1990; Neumann et al., 1994), singly spliced, 4-kb mRNAs 

that encode Vif, Vpr, Vpu and Env (Arrigo et al., 1990), and multiply-spliced 

mRNA species that encode for Tat, Rev and Nef (Robert-Guroff et al., 1990; 

Schwartz et al., 1990). Nuclear export of intron-containing mRNAs is inhibited by 

cellular commitment factors in the nucleus (Legrain and Rosbash, 1989; Cullen, 

2003b) and HIV-1 is dependent on Rev to transport unspliced and singly spliced 

RNA species out of the nucleus (Malim et al., 1989a; Malim et al., 1989c). Rev 

binds directly to a RNA secondary structure present within the 3’ end intron 

region of all incompletely spliced HIV-1 mRNAs called RRE (Rev Responsive 

Element) (Chang and Sharp, 1989; Malim et al., 1989b; Zapp and Green, 1989; 

Hope et al., 1990). Rev multimerises upon RRE binding which initiates a complex 

with the cellular exportin-1 (CRM-1) and the GTPase Ran (Fornerod et al., 1997; 

Askjaer et al., 1998). CRM-1 targets the complex to the nuclear pore (Fornerod 

et al., 1997; Neville et al., 1997; Cullen, 2003a). After translocation to the 
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cytoplasm, Ran-GTP is converted into Ran-GDP, and Ran, exportin-1 and Rev 

dissociate from the viral RNA. Rev is then recycled back into the nucleus by 

importin β from which it dissociates in the nucleoplasm through interaction with 

Ran-GTP (Henderson and Percipalle, 1997; Askjaer et al., 1998; Fischer et al., 

1999; Cullen, 2003a). Incompletely spliced viral RNA is now available for splicing 

and translation on ribosomes or packaging into virions.  

 

1.1.3.5 Particle assembly and egress 

 

The retrovirus life cycle is completed with the assembly of viral particles and 

their release from the producer cell. Virion assembly is driven by retroviral Gag 

precursor polyprotein (Pr55Gag) which is translated on the cytoplasm on free 

polysomes (Spearman, 2006). In fact, HIV-1 Pr55Gag expression alone is sufficient 

for the production of virus-like particles (VLPs) that are morphologically 

indistinguishable from immature viral particles (Gheysen et al., 1989).  

The HIV-1 Pr55Gag contains three major domains that play a critical role in 

the assembly process: a membrane binding domain (M), a Gag-Gag interaction 

domain (I) and a late domain (L). The M domain lays within MA and is important 

for targeting of Pr55Gag to the inner leaflet of the plasma membrane and for the 

recruitment of viral envelope glycoproteins into virions (Freed and Martin, 1995; 

Freed and Martin, 1996; Freed, 1998). HIV-1 Env precursors are synthesised on 

endoplasmic reticulum-bound ribosomes and transported to the plasma 

membrane through the secretory pathway (Spearman, 2006). In the trans-Golgi 

network, the Env precursor gp160 is proteolytically cleaved into gp41 (TM) and 

gp120 (SU) (Decroly et al., 1994) and Env trimers are incorporated into the 

forming viral particle. The membrane-targeting activity of the M domain in MA 

relies on myristoylation of the MA N-terminus and a patch of basic amino acids 

(Yuan et al., 1993; Freed et al., 1994; Spearman et al., 1994; Zhou et al., 1994; 

Hill et al., 1996; Dalton et al., 2007).  

The I domain is located in the C-terminus of CA and the N-terminus of the 

NC region of Pr55Gag and mediates Pr55Gag monomer 

interactions/multimerisation, RNA binding and formation of preassembled virion 

complexes (Rein et al., 1998; Burniston et al., 1999; Cimarelli et al., 2000) 

(Sandefur et al., 2000; Derdowski et al., 2004). Encapsidation of full-length HIV-
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1 RNA depends on binding of NC to the RNA packaging signal Ψ (Aldovini and 

Young, 1990; South and Summers, 1993; Dannull et al., 1994; Tsukahara et al., 

1996; Dorman and Lever, 2000) and coincides with packaging of Vif (Liu et al., 

1995; Karczewski and Strebel, 1996). Pr55Gag multimerisation and RNA 

recruitment is followed by the formation of Gag/Gag-Pol complexes, which are 

also targeted to the plasma membrane.  

The L domain is on the N-terminus of HIV-1 p6 (FIV p2) and is essential for 

viral budding. A PTAP (Pro-Thr-Ala-Pro) motif in p6 recruits the cellular protein 

Tsg101 (Garrus et al., 2001; Martin-Serrano et al., 2001; VerPlank et al., 2001; 

Carter, 2002; Freed, 2003). P6 binding to Tsg101 recruits the endosomal sorting 

complex required for transport (ESCRT) machinery (Babst et al., 2000; Katzmann 

et al., 2001; Bache et al., 2003; Pornillos et al., 2003). This machinery, which is 

normally involved in intracellular sorting of membrane proteins and membrane 

scission, is hijacked by retroviruses to exit infected cells (Gomez and Hope, 

2005). P6 also recruits HIV-1 Vpr into the viral particle.  

HIV-1 buds from lipid rafts in the plasma membrane. These are detergent-

resistant plasma membrane regions enriched in glycosphingolipids, 

sphingomyelin, cholesterol and glycosylphophatidylinositol (GPI)-linked proteins 

(Brown, 2002). Release of HIV-1 from infected cells can be directional with virus 

being released to sites of cell-cell contact (termed infectious synapses; (Jolly et 

al., 2004)) to facilitate infection of target cells (McDonald et al., 2003). After 

budding of the immature virion, the radially arranged Pr55Gag molecules within 

the virions are dismantled and viral protease (PR) cleaves Pr55Gag into MA, which 

coats the inner leaflet of the viral membrane; CA, which forms a cone-shaped 

core that contains two copies of genomic viral RNA; and NC, which is bound to 

genomic RNA, to create a mature, infectious viral particle. 

 

1.2 Immunology of FIV infections of the domestic cat 

 

FIV infection of domestic cats (Felis catus) leads to the development of a severe 

immunodeficiency similar to AIDS in humans. Like HIV, FIV targets and depletes 

CD4+ T lymphocytes and causes an inversion of the CD4+/CD8+ ratio. Therefore, 

FIV infections are not only studied as an important global veterinary pathogen 

but also serve as a small animal model for HIV infections. FIV was isolated in 
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1986 from a domestic cat exhibiting multiple opportunistic infections and AIDS-

like signs (Pedersen et al., 1987).  

 

1.2.1 Course of FIV infections 

 

The course of disease in FIV and HIV infections is strikingly similar (Fig. 1-3). It 

can be divided into three stages: a relatively short acute phase (four to eight 

weeks), a prolonged period of clinical latency (several years) and a terminal 

phase (several months for FIV; two to three years for HIV).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3 Schematic course of a FIV infection. The graph shows infection 

stage-dependent changes in peripheral CD4+ T lymphocyte counts, plasma 

viraemia and anti-FIV antibody concentration. Figure adapted from Weiss (1993). 

 

Following infection of a cat with FIV the primary stage of disease is 

characterised by increasing viral loads associated with mild signs such as febrile 

episodes, weight loss, lymphadenopathy and neutropenia. Because the virus 

targets CD4+ T lymphocytes the number of T lymphocytes in the peripheral blood 
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sharply decreases. This acute phase is followed by a period of clinical latency in 

which cats are usually asymptomatic. Virus production in the peripheral blood is 

limited by the onset of robust humoural and cellular antiviral immune responses 

(see Section 1.2.2) (English et al., 1993; Dean et al., 1996). However, the 

number of CD4+ T lymphocytes gradually declines (Yamamoto et al., 1988; 

English et al., 1994; Bendinelli et al., 1995). Once it falls below a certain 

threshold the feline immune system becomes severely impaired and cats suffer 

from chronic upper respiratory tract and intestinal infections, skin and ear 

diseases, neurological signs and secondary infections. Plasma viral loads increase 

(Goto et al., 2002). Moreover, the broadened FIV cell tropism in later disease 

stages (B and CD8+ T lymphocytes as well as CD4+ T lymphocytes and 

macrophages can be infected; [Novotney et al., 1990; English et al., 1993; Dean 

et al., 1996]) contributes to the immunodeficiency. 

Early after infection virus can be detected in the central nervous system, 

thymus and mesenteric lymph nodes (Toyosaki et al., 1993; Beebe et al., 1994; 

Dua et al., 1994; Rogers and Hoover, 1998; Obert and Hoover, 2002). Virus 

replication in peripheral blood mononuclear cells (PBMCs) can be observed 

several days post-infection (p.i.) (English et al., 1993; Lawson et al., 1993; Dean 

et al., 1996; Obert and Hoover, 2002). In later stages of the disease FIV 

replicates mainly in lymphoid tissue; however, infected cells can also be found 

in the bone marrow, intestine, kidneys and liver (Beebe et al., 1994; Park et al., 

1995; Bishop et al., 1996; Rogers and Hoover, 1998; Obert and Hoover, 2000a; 

Obert and Hoover, 2000b). 

 

1.2.2 Humoural and cellular antiviral immune responses 

 

The transition between acute infection and clinical latency is mediated by 

substantial humoural and cell-mediated antiviral immune responses (Bendinelli 

et al., 1995; Burkhard and Dean, 2003). Cats raise antibodies against Gag and 

Env epitopes from as early as two to four weeks p.i., which persist throughout 

the course of infection (Yamamoto et al., 1988; Egberink et al., 1992; English et 

al., 1994). Neutralising antibodies directed against the V3 loop in Env are 

produced but their presence does not correlate with virus clearance (Lombardi 

et al., 1993; Tozzini et al., 1993). However, the absence of detectable titres of 
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neutralising antibodies leads to a more rapid progression to immunodeficiency 

(Hohdatsu et al., 1993).  

The early stages of infection are accompanied by a rapid expansion of 

circulating CD8+ T lymphocytes (Ackley et al., 1990; Tompkins et al., 1991; 

Willett et al., 1993; English et al., 1994). These CD8+ T lymphocytes mediate 

both cytotoxic (Song et al., 1992; Song et al., 1995; Beatty et al., 1996; 

Burkhard et al., 2001; Flynn et al., 2002) and non-cytotoxic antiviral activities 

(Hohdatsu et al., 1993; Bucci et al., 1998; Gebhard et al., 1999) that result in a 

reduction of viraemia (Flynn et al., 1995; Beatty et al., 1996). Anti-FIV Gag-

specific CD8+ cytotoxic T lymphocytes (CTLs) have been detected in peripheral 

blood from two weeks p.i. to about 21 weeks p.i. (Beatty et al., 1996). In the 

asymptomatic phase of disease classic CTLs disappear from the peripheral blood 

but anti-FIV Gag and anti-FIV Env precursor CTLs (pCTLs) are present in lymph 

nodes (Beatty et al., 1996; Flynn et al., 2002) and spleen (Song et al., 1992; 

Song et al., 1995; Flynn et al., 2002). In addition to cytotoxic CD8+ T cells, non-

cytotoxic CD8+ T lymphocytes can be found in blood, lymph nodes and thymus 

that suppress viral replication in CD4+ T lymphocytes in a non-cytotoxic, non-

MHC (major histocompatibility complex) restricted manner (Bucci et al., 1998; 

Hohdatsu et al., 1998; Hohdatsu et al., 2000; Flynn et al., 2002). Their activity 

can be either contact-dependent (Bucci et al., 1998; Gebhard et al., 1999) or 

contact-independent (Hohdatsu et al., 1993; Levy et al., 1996; Choi et al., 

2000). Contact-independent, non-cytotoxic CD8+ T cell activity involves the 

secretion of soluble factors such as chemokines (Hohdatsu et al., 1993; Levy et 

al., 1996; Flynn et al., 1999; Choi et al., 2000). 

 

1.2.3 FIV-induced immune dysregulation 

 

Despite these early and robust antiviral immune responses virus cannot be 

cleared and infected cats will develop a progressive immunodeficiency. The 

immunodeficiency is first characterised by the loss of response to viral antigens 

and recall antigens (anergy), followed by the loss of mitogen responses (Clerici 

et al., 1989; Barlough et al., 1991; Torten et al., 1991) and cell-mediated 

immune responses to secondary pathogens (Davidson et al., 1993; Dean et al., 

1998). While the occurrence of secondary infection can be attributed to a 
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decline in CD4+ T lymphocyte numbers and the resulting decrease in pro-

inflammatory cytokines such as interleukin-2 (IL-2) and IFN-γ, an immune 

dysfunction develops early in infection before CD4+ T cells numbers begin to 

decline (Clerici et al., 1989; Barlough et al., 1991; Torten et al., 1991; Davidson 

et al., 1993). This immune dysfunction may be induced by a range of 

mechanisms (reviewed in: Tompkins and Tompkins [2008] and Burkhard and Dean 

[2003]) such as cytokine dysregulation (Clerici and Shearer, 1993), immunologic 

anergy and increased apoptosis (programmed cell death) (Miedema, 1992) as 

well as an inappropriate activation of immune regulatory cells (Ascher and 

Sheppard, 1990).  

PBMCs of FIV-infected cats show an altered cytokine production profile in 

response to mitogen stimulation (Lawrence et al., 1995). Elevated levels of IL-

10, IL-6, TNFα (tumor necrosis factor alpha) and IFN-γ and decreased levels of 

IL-2 and IL-12 were found in macrophages (Ritchey et al., 2001; Avery and 

Hoover, 2004) and lymph nodes (Levy et al., 1998; Levy et al., 2004) of FIV-

infected cats. The increased IL-10 to IL-12 ratio in infected cats (IL-10 is known 

to suppress IL-12 production by DCs) limits their ability to mount a primary 

immune response to protozoal (Levy et al., 1998; Levy et al., 2004) and 

bacterial (Dean et al., 1998) pathogens.  

Immunologic anergy and apoptosis of CD4+ T lymphocytes in lymphoid 

tissues contribute to the progressive loss of T cell immune function observed in 

of FIV-infected cats (Guiot et al., 1993; Sarli et al., 1998). Immunologic anergy is 

defined as inability of CD4+ T lymphocytes to produce IL-2 and proliferate in 

response to recall antigens (Tompkins and Tompkins, 2008). Lack of IL-2 drives 

stimulated cells into a programmed cell death. In T lymphocytes apoptosis is 

induced by the engagement of the cell surface receptors CD28 or CTLA4 with the 

co-stimulatory molecules B7.1 (CD80) and B7.2 (CD86). Members of the B7 family 

are usually found on professional antigen-presenting cells (APCs). CD28 is 

constitutively expressed on T lymphocytes, and CTLA4 expression is upregulated 

upon T cell activation. Interaction of B7 with CD28 on T lymphocytes stimulates 

IL-2 production and T cell proliferation, whereas interaction of B7 with CTLA4 

suppresses IL-2 production (Bluestone, 1997). Because the affinity of B7 for 

CTLA4 is several logs higher than for CD28, termination of a response would 

dominate over T cell activation. In FIV infections, however, B7 is also expressed 

on activated CD4+ and CD8+ T lymphocytes due to chronic antigenic stimulation 
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(Ranheim and Kipps, 1994; Folzenlogen et al., 1997).  B7+CTLA4+ T cells were 

shown to be anergic and to undergo spontaneous apoptosis in lymph nodes and 

PBMCs of FIV-positive cats (Tompkins et al., 2002). The B7-CTLA4 induced 

downregulation of IL-2 production contributes to the cytokine dysregulation 

described earlier.  

Inappropriate activation of immune regulatory cells has also been described 

in FIV-infected cats. CD4+ T lymphocytes with regulatory function (Tregs) are 

thymus-derived and develop during T cell maturation (Bluestone and Abbas, 

2003). They are long-lived and eliminate autoimmune cells. Tregs are usually 

anergic (Maloy and Powrie, 2001). Upon activation, however, they migrate to 

peripheral lymphoid tissues (Bluestone and Abbas, 2003), inhibit the 

proliferation of activated CD4+ and CD8+ T lymphocytes and induce their 

apoptosis (Thornton and Shevach, 1998; Shevach et al., 2001), which could 

prevent an effective immune response to FIV and secondary pathogens. 

 

1.3 FIV infections of non-domestic felids 

 

FIV is endemic in nine free-ranging species of Felidae which have been shown to 

harbour antibodies reactive to FIV (Troyer et al., 2005). Species-specific FIV 

strains have been described for the domestic cat (Felis catus), African lions 

(Panthera leo), North American pumas (Puma concolor), Pallas’s cats 

(Otocolobus manul), bobcats (Lynx rufus), jaguarundi (Herpailurus 

yagouaroundi), cheetahs (Acinonyx jubatus), leopards (Panthera pardus), ocelots 

(Leopardis pardalis) and spotted hyenas (Crocuta crocuta). These FIV strains are 

termed FIV-Fca, FIV-Ple (or lion lentivirus; LLV), FIV-Pco (or puma lentivirus; 

PLV), FIV-Oma, FIV-Lru, FIV-Hya, FIV-Aju, FIV-Ppa, FIV-Lpa and FIV-Ccr, 

respectively (Rigby et al., 1993; Brown et al., 1994; Langley et al., 1994; 

Carpenter et al., 1996; Barr et al., 1997; Carpenter et al., 1998; Nishimura et 

al., 1999; VandeWoude and Apetrei, 2006; Troyer et al., 2008).  

Interestingly, while FIV infection in domestic cats leads to the 

development of a severe immunodeficiency, FIV infection of non-domestic cats 

is usually not associated with disease (Brown et al., 1994; Langley et al., 1994; 

Osborne et al., 1994; Carpenter and Obrien, 1995; Barr et al., 1997; Packer et 
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al., 1999). This resembles the correlation between pathogenic HIV infections in 

humans and asymptomatic SIV infections in non-human primates.  

 

1.3.1 Seroprevalence of FIV in the Felidae and Hyaenidae 

 

The determination of the seroprevalence of FIVs in non-domestic cats relies 

greatly on domestic cat-, lion- and puma-based Western blot analyses 

(VandeWoude et al., 2002; VandeWoude et al., 2003; Troyer et al., 2005). Anti-

FIV antibodies in other species can be detected using a multistrain-antigen 

Western blot approach (Ostrowski et al., 2003; Troyer et al., 2005). The 

seroprevalence of FIVs varies by species and geographic location (reviewed in: 

VandeWoude and Apetrei [2006]). Table 1-1 summarises the results of several 

studies that have investigated FIV seroprevalence and pathogenicity in free-

ranging animals from the nine species of Felidae and from spotted hyenas in 

which species-specific FIVs have been identified. 

In summary, African lions and leopards, pumas and Pallas’ cats show very 

high seroprevalence rates. Interestingly, FIV infection is more prevalent in 

African and American populations than in Asian populations. It can be assumed 

that population densities in Asia are too low to support effective intra-species 

transmission. Cross-species FIV transmission events are rare and have been 

documented primarily for captive non-domestic felids (Carpenter et al., 1996; 

Nishimura et al., 1999; Troyer et al., 2005). This suggests that the artificially 

close contact in captivity settings contributed to the opportunity for cross-

species transmission events to occur, strengthening the concept of species-

specific FIV strains. 
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Table 1-1 FIV prevalence in Felidae and Hyenidae species (adapted from VandeWoude and Apetrei [2006]). 

 

Common name (species) Geographic location Virus Seroprevalence (%) Pathogenicity References 

Domestic cat (Felis catus) Worldwide FIV-Fca 1-35 AIDS 

(Sukura et al., 1992; Peri et al., 1994; Lin 

et al., 1995; Carpenter et al., 1998; Dorny 

et al., 2002; Lee et al., 2002; Maruyama 

et al., 2003; Troyer et al., 2005) 

Lion (Panthera leo) 

Africa (Serengeti, 

Ngorongor Crater, Lake 

Manyara, Kruger 

National Park) 

FIV-Ple 

(LLV) 
80-90 

No association with 

increased morbidity 

in Serengeti lions 

(Olmsted et al., 1992a; Spencer et al., 

1992; Brown et al., 1994; Carpenter et al., 

1996; Hofmann-Lehmann et al., 1996; 

Troyer et al., 2004) 

 Namibia  0  (Lutz et al., 1992; Brown et al., 1994) 

 Botswana  26  (Osofsky et al., 1996) 

 Asia  0  
(Lutz et al., 1992; Spencer et al., 1992; 

Brown et al., 1994) 

Puma, mountain lion or 

cougar (Puma concolor) 

North, Central and 

South America 

FIV-Pco 

(PLV) 
25 

Possible CD4
+
 T 

lymphocyte 

depletion; no 

association with 

increased morbidity 

in Midwestern 

cougars 

(Olmsted et al., 1992b; Langley et al., 

1994; Carpenter et al., 1996; Troyer et al., 

2005) 

 Wyoming, Montana  58  (Biek et al., 2003) 
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 Washington  25  (Evermann et al., 1997) 

 Florida (Florida panther)  15-76  (Miller et al., 2006) 

Pallas cat (Otocolobus 

manus) 
Mongolia FIV-Oma >80 None detected (Barr et al., 1997; Troyer et al., 2005) 

Bobcat (Lynx rufus) California FIV-Lru 0-30 None detected (Riley et al., 2004; Troyer et al., 2005) 

Jaguarundi (Herpailurus 

yagouaroundi) 
Central/South America FIV-Hya Ca. 20 None detected (Langley et al., 1994; Troyer et al., 2005) 

Cheetah (Acinonyx jubatus) Africa FIV-Aju <10 None detected 

(Olmsted et al., 1992b; Osofsky et al., 

1996; Munson et al., 2004; Troyer et al., 

2005) 

Leopard (Panthera pardus) Botswana, Africa FIV-Ppa 16, ca. 50 None detected (Osofsky et al., 1996; Troyer et al., 2005) 

 Asia  0  (Troyer et al., 2005) 

Ocelot (Leopardus pardalis) Central/South America FIV-Lpa 10 None detected (Langley et al., 1994; Troyer et al., 2005) 

Spotted hyena (Crocuta 

crocuta) 

Masai Mara National 

Reserve (Serengeti) 
FIV-Ccr 10-30 None detected (Harrison et al., 2004; Troyer et al., 2005) 
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1.3.2 Pathogenicity of FIV in non-domestic cats 

 

The most striking observation to be made from the studies of FIV infections in 

non-domestic felids is that FIV seems to be apathogenic and infections are 

mostly benign (Lutz et al., 1992; Carpenter and Obrien, 1995; Packer et al., 

1999). This is in stark contrast to FIV infections in domestic cats, which lead to 

the development of immunodeficiency. 

FIV infections of lions and pumas have been examined both on a systemic 

and on a cellular basis. The findings have been compared to those in domestic 

cats in order to determine differences in viral cell and tissue tropism, viral 

pathogenicity and host immune responses to FIV infection. FIV-seropositive lion 

and puma populations were monitored for a potential impact of FIV infection on 

survival, fecundity or susceptibility to secondary infections (Hofmann-Lehmann 

et al., 1996; Biek et al., 2006a; Biek et al., 2006b). In free-ranging animals, no 

correlation between FIV infection and a reduction in fitness was found (Biek et 

al., 2006b; Biek et al., 2006c). However, proviral and plasma viral loads of FIV-

Pco infected pumas were comparable with those of FIV-positive domestic cats 

(Poss et al., 2008). Additionally, there are several reports that FIV infection 

causes CD4+ T lymphocyte depletion in pumas and to a larger extent in lions 

(Roelke et al., 2006; Roelke et al., 2009). In a population of Botswana lions, a 

decreased CD4+/CD8+ ratio correlated with lymphadenopathy, gingivitis and 

papillomas (Roelke et al., 2009).  

Alterations in T cell numbers may not result in terminal-stage feline AIDS 

but could render these animals susceptible to opportunistic infections. A canine 

distemper virus (CDV) outbreak has been reported in FIV-positive (but not FIV-

negative) lion populations in the Serengeti in 1994 which caused significant 

mortality (Roelke-Parker et al., 2010). Moreover, a number of FIV-positive 

Florida panthers died in a recent FeLV outbreak (M. Cunningham, unpublished 

data). 

 

1.3.3 Infectivity of lion and puma lentiviruses for domestic cats 

 

Experimental infection of domestic cats with either FIV-Ple or FIV-Pco leads to 
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the development of persistent cell-associated viraemia, transient plasma 

viraemia and lymphadenopathy, and seroconversion in the absence of disease 

(VandeWoude et al., 1997a; VandeWoude et al., 1997b; VandeWoude et al., 

2002; VandeWoude et al., 2003; TerWee et al., 2005). Moreover, CD4+/CD8+ 

ratios were unaltered compared to uninfected control animals (VandeWoude et 

al., 1997a). These findings indicate that immunodeficiency in domestic cats is 

not primarily caused by a direct viral cytopathic effect (TerWee et al., 2005). 

However, it should be noted that the FIV-Ple and FIV-Pco isolates used in these 

studies had been propagated and amplified in the feline lymphoma cell line 3201 

for a considerable length of time prior to inoculation into cats, which could have 

resulted in their attenuation. Remarkably, infection of domestic cats with non-

pathogenic FIV-Pco prevented CD4+ T lymphocyte depletion upon subsequent 

superinfection with virulent FIV-Fca (VandeWoude et al., 2002; TerWee et al., 

2008). This resistance to superinfection was not mediated by acquired immunity 

but correlated with an increase in IFN-γ expression (TerWee et al., 2008).  

 

1.3.4 Growth of lion and puma lentiviruses in feline cells 

 

To assess the cell tropism of FIV-Ple and FIV-Pco in vitro, feline cell lines and 

primary cells such as feline lymphoma 3201 cells, a feline adherent lymph node 

cell (LNC) line as well as cat, lion and puma PBMCs were infected with these 

viruses (VandeWoude et al., 1997b). Cell-free FIV-Ple was able to infect cat 

PBMCs and to a lesser extent lion PBMCs, but not LNCs. Cell-free FIV-Pco did not 

infect cat or puma PBMCs. Cell-associated FIV-Pco (PBMCs from a seropositive 

puma from British Columbia) caused a low-titre infection in cat PBMCs and a 

high-titre infection in puma PBMCs. All three viruses replicated best in 3201 cells 

(VandeWoude et al., 1997b). Interestingly, infection of cat 3201 cells and PBMCs 

with FIV-Pco imparted resistance to FIV-Fca superinfection (VandeWoude et al., 

2002). 

Similar infection assays were performed in our laboratory. The IL-2 

dependent feline T cell line Mya-1 (Miyazawa et al., 1989) and primary lion T 

lymphocytes were infected with different strains of FIV-Fca, FIV-Ple and FIV-Pco 

(Fig. 1-4).  
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Figure 1-4 FIV cell tropism. The IL-2 dependent feline T cell line Mya-1 (A) and 

primary T lymphocytes obtained from an Angolan lion (B) were infected with 

divergent FIV-Fca strains GL8, B2542 and CPG, FIV-Ple and FIV-Pco. Virus 

production was determined on day 0, 3, 5 and 10 post-infection using a lentiviral 

RT assay. Whereas virus grew readily in Mya-1 cells, lion T lymphocytes were 

resistant to virus infection.  

 

Curiously, we observed that all viruses grew readily in Mya-1 cells, whereas lion 

T lymphocytes were resistant to infection (unpublished data). The inability of 

different FIVs (including FIV-Ple) to productively infect lion T lymphocytes is 

somewhat surprising given the fact that FIV-Ple infected lions show a high 

viraemia (Poss et al., 2008). Because the FIV-Ple isolate used in our study was 

obtained from groups that had passaged the virus for a long period of time in 
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3201 cells (VandeWoude et al., 1997a; VandeWoude et al., 1997b; VandeWoude 

et al., 2002; VandeWoude et al., 2003; TerWee et al., 2005), it is possible that 

the virus was attenuated. It would be interesting to determine if primary 

isolates of FIV-Ple can indeed infect lion T lymphocytes. This would point 

towards a selective restriction of FIV-Fca growth in lion T cells. In fact, the 

study presented here aims at elucidating the molecular bases for the differential 

disease outcome seen in FIV infections of domestic and non-domestic cats and 

the differences in the susceptibility of cat and lion T lymphocytes to lentiviral 

infection. 

 

1.4 Co-evolution between the Felidae and FIV   

 

The apparent lack of pathogenicity of FIV in non-domestic cats may be a 

consequence of prolonged periods of host-virus co-evolution that resulted either 

in an increased ability of the non-domestic cat immune systems to restrict FIV 

replication or in a decreased virulence of non-domestic cat FIV strains, or both. 

In contrast, FIV may be a relatively recent introduction into the domestic cat 

lineage resulting in the absence of host-virus co-adaptation and in a fatal disease 

outcome. Evidence for this hypothesis emerges from studies on the evolutionary 

history of the Felidae and on FIV evolution dynamics in feline populations. 

 

1.4.1 Evolutionary history of the Felidae 

 

Modern felids arose from a common ancestor during the late Miocene (ca. 10.8 

MYA) in Asia (Johnson et al., 2006). They diverged within a relatively short 

period of time (10.8 MYA to 6.2 MYA) into eight distinct evolutionary lineages 

comprising a total of 38 feline species (Johnson et al., 2006). The radiation of 

modern felids began with the divergence of the Panthera lineage followed by 

the split of the bay cat (9.4 MYA), the caracal (8.5 MYA) and the ocelot (8 MYA) 

lineages from the ancestor of more recent lineages. The divergence of the lynx 

lineage (7.2 MYA) was closely followed by the emergence of the puma lineage 

(6.7 MYA) and the more recently derived leopard and domestic cat lineages (6.2 

MYA) (Johnson et al., 2006). Within-lineage species differentiations took place 
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during the late Miocene/early Pliocene (6.4 MYA to 2.9 MYA) and during the late 

Pliocene/Pleistocene (3.1 MYA to 0.7 MYA).  

Of the feline species relevant to this study the puma is the oldest species 

and arose approximately 4.5 MYA (Pecon-Slattery et al., 2004; Johnson et al., 

2006). African lion species arose 2 MYA and the domestic cat evolved as a unique 

felid lineage circa 0.99 MYA (Johnson et al., 2006). Lineage and species 

differentiation events were facilitated by multiple intercontinental migration 

movements starting from Asia. Early migration of a progenitor of the caracal 

lineage to Africa occurred around 8.5 MYA to 5.6 MYA. Another migration event 

translocated a common ancestor of the ocelot, lynx, puma, leopard and 

domestic cat lineages across the then present Bering Strait land bridge to North 

America (8.5 MYA to 8 MYA) (Johnson et al., 2006). The leopard and domestic 

cat lineages either diverged from ancestors that had remained in Asia or from 

North American ancestors that had crossed the Bering Strait land bridge back to 

Asia. Additionally, Asiatic Panthera species migrated to America (jaguars, lions) 

and to Africa (lions, leopards) during the late Pliocene/early Pleistocene 

(Johnson et al., 2006). 

The recent evolutionary history and phylogeography of North American 

pumas and African lions have been studied in detail. North American pumas were 

extirpated from North America during the last ice age of the late Pleistocene but 

re-emerged from Brazil about 10,000 to 12,000 years ago (Culver et al., 2000). 

At present, they inhabit Western continental regions of the United States of 

America including Arizona, Texas, Colorado and Wyoming (Carpenter et al., 

1996; Culver et al., 2000; Biek et al., 2006a). The most recent ancestor of 

modern lion populations arose about 325,000 years ago from Eastern and 

Southern African lions and subsequently migrated into Central and North Africa 

and into Eurasia about 100,000 years ago (Antunes et al., 2008). These 

population expansions were followed by population reductions. At present, there 

are eleven lion populations in East Africa (Uganda, Kenia, Serengeti National 

Park, Ngorongoro Crater) and South Africa (Kruger National Park, Botswana, 

Namibia) and in Asia (Gir Forest, India) (Fig. 1-5) (Antunes et al., 2008). 

Interestingly, the Serengeti National Park accommodates three distinct lion 

populations that admixed recently.  
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Figure 1-5 Geographic location of extant lion (Panthera leo) populations. 

Analysis of microsatellite and sequencing data of 357 lions from Africa and the Gir 

forest in India revealed the existence of eleven distinct lion populations that cluster 

geographically (Antunes et al., 2008). These lion population (red circles) can be 

found in East Africa (Uganda, UGA; Kenia, KEN; Serengeti National Park, SER; 

Ngorongoro Crater, NGC), in South Africa (Kruger National Park, KRU; Botswana, 

BOT; Namibia, NAM) and in India (Gir Forest, GIR). Botswana and the Serengeti 

National Park accommodate two or three distinct lion populations (BOT-I and 

BOT-II, and SER-I, SER-II and SER-III, respectively). Furthermore, Antunes et al. 

(2008) included lions from Zimbabwe (ZBW), Angola (ANG) and the Atlas 

mountains in Morocco (ATL) into their study (green squares). These lions were 

representative of isolated, endangered or depleted populations.  

 

 



53 

 

1.4.2 Phylogeny of FIV and FIV population dynamics in the 

Felidae 

  

Based on the widespread occurrence of FIV and other lentiviruses in Africa 

together with large FIV interspecies divergences, which point towards a long FIV 

residence time within these species, an ancestral origin of FIV in Africa followed 

by interspecies transmission events and a global dissemination of FIV has been 

proposed (Pecon-Slattery et al., 2008b). The global dissemination of FIV from 

Africa occurred as a consequence of felid transcontinental migration movements 

into Eurasia and the Americas. Such a migration event across the Bering Strait 

land bridge took place around 4.5 MYA and lead to the introduction of FIV into 

seven species of the ocelot lineage, into cheetahs, pumas and jaguarundi (puma 

lineage) and into four modern species of the lynx lineage (Johnson et al., 2006). 

Subsequently, FIV was disseminated from North America to Central and South 

America (Johnson et al., 2006).  

Phylogenetic analyses of the genetic variation in the conserved pol and 

gag genes and the very diverse env gene of FIV demonstrated that FIV lineages 

are highly divergent but are monophyletic and species-specific (Phillips et al., 

1990; Olmsted et al., 1992b; Carpenter et al., 1996; Carpenter et al., 1998; 

Troyer et al., 2005). FIV-Pco can be divided into two major clades (A and B) and 

eight distinct viral lineages (Biek et al., 2006a). The two clades are highly 

divergent and appear to be paraphyletic as a consequence of two separate 

introductions of FIV into the puma lineage (Troyer et al., 2008). Clade A viruses 

can be found in Florida and California and clade B viruses in other parts of North 

America, Central America and Brazil. FIV-Pco lineages lack broad geographic 

associations consistent with recent and frequent FIV-Pco transmission events 

between puma populations in different locations (Carpenter et al., 1996).  

FIV-Ple diverges into six clades (A-F) that are endemic in distinct 

geographic areas (see Fig. 1-5) (Brown et al., 1994; Troyer et al., 2004; O'Brien 

et al., 2006; Antunes et al., 2008). Subtype A is present in the Serengeti 

National Park, the Kruger National Park and Botswana. Subtype B is endemic in 

lion populations in Uganda, the Serengeti National Park, the Ngorongoro Crater 

and Botswana. Subtypes C and D can be found in the Serengeti and in the Kruger 

National Parks, respectively. Subtype E is present in Botswana and subtype F in 

Kenya (Brown et al., 1994; Troyer et al., 2004; O'Brien et al., 2006; Antunes et 
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al., 2008). The three lion populations in the Gir forest in India, in southern 

Botswana and in Namibia are not infected with FIV (Brown et al., 1994; O'Brien 

et al., 2006). Reasons for the absence of FIV in these populations may be their 

physical separation from infected populations (for example by the Kalahari 

desert) or that FIV transmission cannot occur due to too low population 

densities.  

FIV-Fca falls into the five clades A-E with a majority of viruses belonging 

to either clade A or B (Sodora et al., 1994; Kakinuma et al., 1995; Sodora et al., 

1995; Pecoraro et al., 1996; Elder et al., 1998). Clade A and B viruses show a 

worldwide distribution; however, clade A viruses are predominant in the western 

part of the United States of America, northern Japan, Germany and South Africa, 

whereas clade B viral isolates are predominant in eastern Japan, Italy, Portugal 

and in eastern and central parts of the United States of America (Sodora et al., 

1994; Nishimura et al., 1998). Clades C, D and E viruses are rarer. Clade C 

viruses are present in northern Taiwan (Sodora et al., 1994; Inada et al., 1997; 

Uema et al., 1999), clade D isolates in western Japan (Nishimura et al., 1998) 

and clade E viruses in Argentina (Pecoraro et al., 1996). 

In general, pathogenic lentiviral infections are characterised by rapid 

virus evolution, high intrahost diversity and positive selection on several virus 

genes (Coffin, 1995; Crandall et al., 1999; Rambaut et al., 2004). In non-

pathogenic lentivirus infections, however, there is purifying selection on the 

virus, which usually shows a slower rate of evolution and high interhost diversity 

(Coffin, 1995; Crandall et al., 1999; Poss et al., 2008). Phylogenetic analyses of 

the FIV-Fca, FIV-Ple and FIV-Pco genome sequences showed a greater nucleotide 

diversity within FIV-Pco and FIV-Ple than within FIV-Fca (Brown et al., 1994; 

Burkala and Poss, 2007). The divergence between FIV-Pco clades A and B is high 

(20-27%) and comparable to that observed between FIV-Ple clades and 

significantly higher than that between FIV-Fca clades (Poss et al., 2008). The 

sequence variation between FIV-Pco lineages within FIV-Pco clades A and B is 

also very high (up to 24% in clade B) and comparable to the interclade diversity 

seen for domestic cat FIV clades (13-17%) (Poss et al., 2008). However, the 

intrahost diversity of FIV-Pco per gene in pumas is lower than 1%. The genome 

diversity within and between FIV-Ple clades is large, too. In contrast, FIV-Fca 

isolates exhibit only minimal interclade and intraclade genetic variation (Poss et 

al., 2008).   
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Furthermore, FIV-Pco shows slower evolutionary rates compared to FIV-Fca 

or HIV-1 and purifying selection is the predominant force changing the gene 

sequences (Poss et al., 2008); (Biek et al., 2003). However, a significant degree 

of positive selection can be seen in the FIV-Fca genome (Burkala and Poss, 

2007). These findings suggest that FIV infection of pumas was the most ancient 

event (Pecon-Slattery et al., 2008b; Poss et al., 2008), followed by FIV 

transmission to lions (Brown et al., 1994; Carpenter and Obrien, 1995). The low 

degree of FIV-Fca divergence points towards a recent emergence in combination 

with rapid viral diversification within the domestic cat (Pecon-Slattery et al., 

2008b). It is very likely that the extended periods of endemic lentiviral infection 

in pumas and lions have improved the restrictive ability of the puma and lion 

immune system to FIV infection and reduced the pathogenicity of FIV-Pco and 

FIV-Ple (Carpenter and Obrien, 1995; Burkala and Poss, 2007). In contrast, the 

relationship between the domestic cat and FIV-Fca seems to be unbalanced, thus 

allowing disease to progress.  

 

1.5 Antiretroviral intrinsic immunity 

 

The reduced pathogenicity of FIV infections in non-domestic felids combined 

with the restriction of FIV replication seen in lion T lymphocytes can best be 

explained by the presence of potent antiretroviral immune effector molecules in 

these cells that inhibit FIV growth at a post-entry stage of the lentiviral life 

cycle. The mammalian intrinsic immunity, a specific arm of the innate 

immunity, is the first line of defence against pathogens (Bieniasz, 2004; Goff, 

2004). The intrinsic immunity acts intracellularly and comprises so-called 

restriction factors. Restriction factors are proteins that block viral replication at 

different stages of the viral life cycle. They are either constitutively expressed 

or their expression can be upregulated by pattern recognition receptor (PPR)-

mediated innate immune signalling cascades, which upon detection of viral 

genomes initiate the transcription of genes encoding for restriction factors, 

among others.. The cell-type and species-specific expression and activity of 

restriction factors control the viral host spectrum and may impose a barrier to 

cross-species transmission events (Troyer et al., 2008). Well-studied examples of 

such host restriction factors are TRIM5α, an E3 ubiquitin ligase that binds 
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incoming retroviral capsids in the cytoplasm via its C-terminal PRY/SPRY (B30.2) 

domain and targets them for proteasomal degradation (Reymond et al., 2001; 

Stremlau et al., 2004), and APOBEC3 proteins, cytidine deaminases that induce 

hypermutations and impair viral reverse transcription (Teng et al., 1993; Sheehy 

et al., 2002; Mangeat et al., 2003; Zhang et al., 2003). Tetherin (BST-2, CD317) 

is a transmembrane protein that potently inhibits the release of nascent 

retrovirus particles in single-cycle replication assays (Neil et al., 2008; Van 

Damme et al., 2008). In order to efficiently replicate and evade immune 

surveillance, retroviruses have to overcome this line of defence and, thus, have 

evolved proteins that antagonise the actions of restriction factors or mechanisms 

to avoid them. Lentiviral Vif proteins (Sheehy et al., 2002; Sheehy et al., 2003; 

Munk et al., 2008) and spumaviral Bet proteins (Lochelt et al., 2005; Russell et 

al., 2005; Perkovic et al., 2009) counteract APOBEC3 proteins whereas HIV-1 and 

certain SIV Vpus, HIV-2 and SIV Envs, and SIV Nefs counteract tetherins (Neil et 

al., 2007; Neil et al., 2008; Van Damme et al., 2008; Gupta et al., 2009b; Jia et 

al., 2009; Le Tortorec and Neil, 2009; Sauter et al., 2009; Zhang et al., 2009a; 

Yang et al., 2010). The permanent conflict between host restriction factors and 

viral restriction factor antagonists has led to a rapid positive selection on both 

groups of proteins (Sawyer et al., 2004; McNatt et al., 2009; Ortiz et al., 2009).  

 

1.5.1 Innate interferon response  

 

Restriction factors are effector molecules of the interferon immune signalling 

pathways. Interferon signalling is triggered by pattern recognition. Several 

families of pattern recognition receptors are involved in the detection of 

pathogen-associated molecular patterns (PAMPs) such as the viral genome 

(Barbalat et al., 2011). Members of the Toll-like receptor (TLR) family have been 

identified as sensors of viral nucleic acid. Signalling through TLRs results in the 

production of type I IFNs (especially IFN-α and IFN-β) and inflammatory 

cytokines such as IL-6 and IL-12, and stimulates DC maturation and the 

establishment of antiviral innate immunity (reviewed in: (Medzhitov and 

Janeway, 1997; Akira et al., 2001; Janeway and Medzhitov, 2002; Takeda et al., 

2003; Iwasaki and Medzhitov, 2004)). A second group of viral nucleic acid sensors 

are cytosolic retinoic acid-inducible gene I (RIG-I)-like RNA helicases (Yoneyama 
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et al., 2004; Yoneyama and Fujita, 2007). The expression of these two classes of 

PPRs is cell-type specific, and they induce IFN production via distinct signalling 

pathways.  

TLRs that detect the presence of viruses include TLR3, TLR7 and TLR9, all 

of which can be found exclusively in endosomal compartments. TLR3 is localised 

in intracellular vesicles in conventional DCs (cDCs) (Matsumoto et al., 2003; 

Iwasaki and Medzhitov, 2004; Sousa, 2004) and responds to viral double-stranded 

RNA (dsRNA) (Alexopoulou et al., 2001). TLR3-dependent immune signalling is 

initiated by phagocytosis of apoptotic bodies of infected or dsRNA-containing 

cells by cDCs, which induces the maturation of these cDCs and type I IFN 

production (Schulz et al., 2005). DC maturation and secreted IFN promote cross-

priming of T lymphocytes leading to antigen-specific CD4+ and CD8+ T cell 

responses (Schulz et al., 2005). TLR7 and TLR9 are highly expressed in 

plasmacytoid DCs (pDCs) (Iwasaki and Medzhitov, 2004; Sousa, 2004). They 

recognise nucleic acids of viruses that are taken up by pDCs and are subjected to 

proteolytic degradation in the endosomal compartment. TLR7 can be activated 

by single-stranded RNA (ssRNA) rich in guanosine or uridine from viruses such as 

HIV and influenza (Diebold et al., 2004; Heil et al., 2004; Lund et al., 2004). 

TLR9 recognises viral single-stranded DNA (dsDNA) containing unmethylated 

cytidine-phosphate-guanosine (CpG) DNA motifs (Hemmi et al., 2003). TLR7 and 

TLR9-dependent signalling in pDCs leads to the synthesis of large amounts of 

type I IFN, in particular of IFN-α (Liu, 2005). Upon agonist binding, TLRs signal 

via adaptor molecules to phosphorylate and activate latent transcription factors 

which then translocate to the nucleus to regulate the expression of IFNs. TLR3 

signals via TRIF (Toll/IL-1 receptor domain-containing adaptor inducing IFN-β) 

(Yamamoto et al., 2002; Yamamoto et al., 2003), which interacts with the 

kinases TBK-1 (Tank-binding kinase 1) and IKKε (IkappaB kinase epsilon) to 

phosphorylate the transcription factors IRF3 (IFN-regulatory factor 3) and IRF7 

(Fitzgerald et al., 2003). This signalling cascade leads primarily to the 

production of IFN-β. Alternatively, TRIF can activate the transcription factors 

ATF2 (activating transcription factor 2)/c-Jun and NF-κB, which stimulates 

production of type I interferon and inflammatory cytokines (Gohda et al., 2004). 

In pDCs, TLR7 and TLR9 signal via the adaptor molecule MyD88 (myeloid 

differentiation primary response gene 88), the kinase IRAK1 (IL-1 receptor-

associated kinase 1) and TRAF6 (TNF receptor-associated factor 6) to 
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phosphorylate the transcription factor IRF7 (Hoshino et al., 2002; Hemmi et al., 

2003; Akira and Takeda, 2004; Honda et al., 2004; Kawai et al., 2004; Uematsu 

and Akira, 2007). IRF7 induces type I IFN production in pDCs. In cell types other 

than pDCs this pathway is non-functional and TLR7/TLR9 stimulation couples 

TRAF6 to the activation of ATF2/c-Jun and NF-κB (Akira and Takeda, 2004). In 

this case, expression of cytokines such as IL-6, IL-12 and TNF is triggered (Akira 

and Takeda, 2004). 

RIG-I-like RNA helicases are cytosolic PPRs, which detect dsRNA produced 

during viral replication. RIG-I itself is expressed in cDCs, fibroblasts and 

epithelial cells (Kato et al., 2005; Wilkins and Gale, 2010) and can signal for 

IRF3, IRF7 (Fitzgerald et al., 2003) and NF-κB activation (Balachandran et al., 

2004), which leads to the induction of type I IFNs (Yoneyama et al., 2004; 

Onoguchi et al., 2007). ISP-1 (IFN-β promoter stimulator-1) serves as adaptor 

mediating between RIG-I and the transcription factors (Kawai et al., 2005; 

Meylan et al., 2005; Seth et al., 2005; Xu et al., 2005).  

Subsequently, secreted IFNs bind and activate the type I IFN receptor 

(IFNAR), which is a common cell-surface receptor. IFNAR is composed of two 

distinct chains, IFNAR1 and IFNAR2, which are associated with the Janus 

activated kinases (JAKs) TYK2 (tyrosine kinase 2) and JAK1, respectively 

(Silvennoinen et al., 1993). Binding of IFNs to IFNAR induces the JAK-STAT 

signalling pathway (Fu et al., 1992; Schindler et al., 1992; Silvennoinen et al., 

1993) through JAK-mediated tyrosine phosphorylation of the transcription factors 

STAT1 (signal transducer and activator of transcription 1) and STAT2. This then 

leads to the formation of STAT1/STAT2/IRF9 complexes, which are also known as 

ISGF3 (IFN-stimulated gene factor 3) complexes (Levy et al., 1988; Levy et al., 

1989; Kessler et al., 1990). These complexes translocate to the nucleus and bind 

to IFN-stimulated response elements (ISREs) (Israel et al., 1986; Levy et al., 

1988) present in promoters of certain genes (so-called IFN-stimulated genes, 

ISGs) to initiate their transcription (Der et al., 1998). ISGs have antiviral, 

antiproliferative or immunomodulatory properties. Additionally, type I and type 

II (IFN-γ) IFNs can cause the formation of STAT homodimers or heterodimers, 

which can also enter the nucleus to stimulate transcription of genes containing 

GAS (IFN-γ-activated site) elements in their promoters.  

Among the hundreds of ISGs that have been identified (Der et al., 1998) 

are the host restriction factors whose expression leads to the induction of a 
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heightened antiviral state. TRIM, APOBEC3 and tetherin genes contain ISREs in 

their promoters (Asaoka et al., 2005; Tanaka et al., 2006; Carthagena et al., 

2009). TRIM5α is expressed in the absence of IFNs but their presence increases 

TRIM5α expression (Asaoka et al., 2005; Sakuma et al., 2007; Carthagena et al., 

2008). Type I IFNs induce APOBEC3s in resting T lymphocytes, macrophages and 

DCs (Chen et al., 2006; Peng et al., 2006; Wang et al., 2008). Tetherin is 

constitutively expressed in pDCs (Blasius et al., 2006). In CD4+ T lymphocytes 

and macrophages, tetherin expression is upregulated by cellular activation and 

maturation but further enhanced by type I IFNs (Neil et al., 2008; Miyagi et al., 

2009). 

 

1.5.2 TRIM5α  

 

TRIM5α is the longest (alpha) isoform of the host protein TRIM5, a member of the 

tri-partite motif (TRIM) family of proteins (Reymond et al., 2001; Stremlau et 

al., 2004). This family is large, with at least 68 intact members in the human 

genome, which are involved in diverse cellular processes such as cell 

proliferation, differentiation, development, oncogenesis or apoptosis (Nisole et 

al., 2005). Some TRIM proteins, including TRIM1 (Yap et al., 2004), TRIM5α 

(Hatziioannou et al., 2004b; Keckesova et al., 2004; Perron et al., 2004; 

Stremlau et al., 2004; Yap et al., 2004), TRIM19 (Turelli et al., 2001) and TRIM22 

(Tissot and Mechti, 1995) form part of the host antiretroviral intrinsic immunity. 

TRIM5α was identified as the factor responsible for the previously reported Lv1 

(lentivirus susceptibility factor 1) and Ref1 (resistance factor 1) antiretroviral 

activities in rhesus monkey and human cells, respectively (Hatziioannou et al., 

2004b; Keckesova et al., 2004; Perron et al., 2004; Stremlau et al., 2004; Yap et 

al., 2004). It mediates a species-specific, early post-entry block to retroviral 

infection. 

 

1.5.2.1 Domain structure of TRIM proteins 

 

TRIM proteins typically comprise a RING domain with E3-ubiquitin ligase activity 

capable of auto-ubiquitination, a B-box 2 domain and a coiled-coil domain 
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RING Bb2 CC B30.2 

necessary for TRIM oligomerisation, referred to collectively as the RBCC 

(Reymond et al., 2001). Some TRIM proteins, including TRIM5α (Fig. 1-6), 

possess a C-terminal B30.2 (PRY/SPRY) domain that is thought to mediate 

binding of TRIM proteins to the incoming capsid of restriction-sensitive 

retroviruses (Mische et al., 2005; Sebastian and Luban, 2005; Stremlau et al., 

2006).  

 

 

 

 

 

 

Figure 1-6 Schematic representation of the TRIM5α domain topology. 

Members of the TRIM family comprise an N-terminal RING domain (RING) with 

E3-ubiquitin ligase activity, followed by a B-box 2 (Bb2) and a coiled-coil (CC) 

domain important for protein multimerisation. TRIM5α also possesses a C-terminal 

B30.2 (PRY/SPRY) domain (B30.2) involved in the binding of retroviral capsid.  

 

1.5.2.2 Mechanism of the antiretroviral activity of TRIM5α 

 

TRIM5α leads to a block in reverse transcription in most non-permissive cells 

(Stremlau et al., 2004); Keckesova et al., 2004). Evidence suggests that TRIM5α 

binds directly to the retroviral capsid lattice in the cytoplasm with the help of 

its B30.2 (PRY/SPRY) domain (Mische et al., 2005; Sebastian and Luban, 2005; 

Stremlau et al., 2006). The RING domain then catalyses the ubiquitination of the 

capsid/TRIM5α complex and targets it for a rapid proteasome-mediated 

degradation so that the virus cannot complete reverse transcription (Diaz-

Griffero et al., 2006a; Towers, 2007). While inhibition of the proteasome 

prevents degradation of the viral core and enables reverse transcription to 

proceed, virus remains non-infectious and the process of infection does not 

complete (Anderson et al., 2006; Wu et al., 2006; Campbell et al., 2008), 

indicating an additional proteasome-independent antiviral function for TRIM5α. 

Accelerated uncoating of the viral capsid from the incoming virion may underlie 
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this proteasome-independent restriction activity (Stremlau et al., 2006; Perron 

et al., 2007). 

 

1.5.2.3 Specificity of the TRIM5α-capsid interaction 

 

Human and non-human primate TRIM5α variants display significant differences in 

their specificity to lentiviral capsids which govern the species tropism of 

lentiviruses and prevent their cross-species transmission. Non-human primates 

can be grouped into apes, Old World monkeys such as guenons (Cercopithecus 

spp.), macaques (Macaca spp.), members of the genus Chlorocebus and white-

eyelid mangabeys (Cercocebus spp.), and New World monkeys such as squirrel 

monkeys (Saimiri spp.) and night or owl monkeys (Aotus spp.).  

Human TRIM5α (huTRIM5α) potently inhibits pre-integration stages of 

murine leukaemia virus N-strain (MLV-N) replication (Hatziioannou et al., 2004b; 

Perron et al., 2004; Yap et al., 2004) but shows only weak antiviral activity 

against HIV-1 and SIV of Old World rhesus macaques (Macaca mulatta; SIVmac) 

(Stremlau et al., 2004; Perez-Caballero et al., 2005; Sawyer et al., 2005; 

Stremlau et al., 2005; Yap et al., 2005). HIV-2 replication is moderately reduced 

in human cells (Ylinen et al., 2005). In contrast, Old World rhesus macaque and 

African green monkey (Chlorocebus sabaeus) TRIM5α (rhTRIM5α and agmTRIM5α, 

respectively) restrict HIV-1 and HIV-2 infectivity, but not that of MLV-N 

(Hatziioannou et al., 2004b; Keckesova et al., 2004; Stremlau et al., 2004; Yap 

et al., 2004; Ylinen et al., 2005). Moreover, agmTRIM5α is able to inhibit 

SIVmac, whereas its rhesus macaque homologue is not (Hatziioannou et al., 

2004b; Keckesova et al., 2004; Stremlau et al., 2004; Nakayama et al., 2005). 

Most New World monkey cells block SIVmac, but not HIV-1 or HIV-2 (Hofmann et 

al., 1999; Ylinen et al., 2005). Owl monkey (Aotus trivirgatus) kidney (OMK) 

cells are unusual among New World monkey cells in that they allow SIVmac 

infection but restrict HIV-1 infection (Hofmann et al., 1999). 

The antiviral specificity of TRIM5α has been mapped to residues in the 

B30.2 (PRY/SPRY) domain that are involved in lentiviral capsid recognition 

(Stremlau et al., 2004; Nakayama et al., 2005; Perez-Caballero et al., 2005; 

Sawyer et al., 2005; Sebastian and Luban, 2005; Song et al., 2005; Stremlau et 

al., 2005; Yap et al., 2005; Perron et al., 2006; Kono et al., 2009). Interestingly, 
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introduction of certain point mutations into the B30.2 (PRY/SPRY) domain of 

TRIM5αs can change their antiviral properties and their lentiviral specificities. 

For example, mutation of arginine residue 332 in the B30.2 (PRY/SPRY) domain 

of huTRIM5α to a proline present in the rhTRIM5α (Arg332Pro) enables the human 

variant to restrict HIV-1 (Stremlau et al., 2005; Yap et al., 2005). Similarly, 17 

amino acid residues and a 20 amino acid duplication in agmTRIM5α are essential 

for its ability to inhibit SIVmac (Nakayama et al., 2005). 

The retroviral determinants for susceptibility to TRIM5α lie within the N-

terminal domain of the capsid (CAN) as demonstrated by site-directed 

mutagenesis and the use of HIV-1/SIV capsid chimeras (Owens et al., 2003; 

Hatziioannou et al., 2004b; Owens et al., 2004; Song et al., 2007; Kratovac et 

al., 2008). Lentiviral capsid proteins are well conserved in terms of both amino 

acid sequence and structure. Non-conserved residues have been found to cluster 

into surface-exposed loops of CAN (Owens et al., 2003; Hatziioannou et al., 

2004b) and are the targets for inhibition by TRIM5α variants from different 

primates. One of these loops constitutes the cyclophilin A-CA binding site 

(Hatziioannou et al., 2004b) (see Section 1.5.3). Replacement of HIV-1 CA by 

SIVmac CA rendered HIV-1 sensitive to huTRIM5α and New World squirrel monkey 

TRIM5α (Owens et al., 2003; Hatziioannou et al., 2004b) and resistant to 

rhTRIM5α and owl monkey TRIM5α (Owens et al., 2003). Conversely, 

replacement of the SIVmac CA by that of HIV-1 caused SIVmac to become 

moderately sensitive to huTRIM5α, very sensitive to rhTRIM5α and owl monkey 

TRIM5α and resistant to squirrel monkey TRIM5α (Owens et al., 2003). 

 

1.5.2.4 TRIM5α in the Felidae 

 

In a previous study we have shown that domestic cat TRIM5α (feTRIM5α) bears a 

stop codon in its B30.2 (PRY/SPRY) domain (McEwan et al., 2009). This 

premature stop codon leads to a truncation of feTRIM5α, which ablates its 

antiviral activity. Interestingly, this truncation was found to be conserved among 

members of the Feliformia (McEwan et al., 2009). Because feline cells display a 

TRIM5α-null phenotype they are sensitive to infection by lentiviral pseudotype 

particles that express the vesicular stomatitis virus glycoprotein (VSV-G) to 

enable cell entry. It should be noted that FIV is highly sensitive to restriction by 
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TRIM5α proteins from rhesus macaques, African green monkeys and to some 

degree from humans (Saenz et al., 2005). These findings suggest that HIV-1 and 

FIV capsids pose similar targets for TRIM5α (Diaz-Griffero et al., 2007).  

 

1.5.3 The role of cyclophilin A in retroviral replication  

 

Another host factor, which has been implicated in early post-entry events and 

impacts on retroviral infectivity, is cyclophilin A (CypA). CypA is a 18-kDa, 

abundantly expressed cytosolic petidyl-prolyl isomerase. It is packaged into HIV-

1 virions in producer cells via an interaction with unprocessed Gag polyprotein, 

Pr55Gag (Luban et al., 1993; Franke et al., 1994; Thali et al., 1994). Target cell 

CypA also interacts with incoming HIV-1 capsid. In human cells, the specific 

binding of CypA to HIV-1 CA, especially that in target cells, is required for viral 

infectivity and disruption of the CypA-CA interaction impairs HIV-1 replication 

(Braaten et al., 1996a; Braaten et al., 1996b; Yin et al., 1998; Sokolskaja et al., 

2004; Hatziioannou et al., 2005). Paradoxically, in Old World monkey cells, 

disruption of the CypA-CA interaction leads to an enhancement of HIV-1 

infectivity and it is believed that CypA binding to HIV-1 CA renders HIV-1 more 

susceptible to Old World monkey TRIM5αs (Berthoux et al., 2005; Keckesova et 

al., 2006; Sokolskaja et al., 2006; Stremlau et al., 2006). 

 

1.5.3.1 Cyclophilin A-capsid interactions 

 

CypA is recruited to capsids of HIV-1, SIV of African green monkeys (SIVagm) and 

FIV (Luban et al., 1993; Franke et al., 1994; Thali et al., 1994; Lin and 

Emerman, 2006; Zhang et al., 2006); Diaz-Griffero et al., 2006b). In contrast, 

the capsids of most HIV-2 strains, SIVmac and MLV-N do not bind CypA (Franke et 

al., 1994,Braaten, 1996 #841; Yoo et al., 1997; Lin and Emerman, 2006). CypA 

binds to viral capsids via an interaction between its catalytic hydrophobic 

pocket, which contains aromatic residues, and a nine amino acid long, surface-

exposed proline-rich loop between alpha-helices 4 and 5 of CAN (Luban et al., 

1993; Franke et al., 1994; Thali et al., 1994; Gamble et al., 1996). Upon capsid 

binding, CypA catalyses the cis-trans isomerisation around the Gly89-Pro90 
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peptide bond within the CAN proline-rich loop (Bosco et al., 2002; Bosco and 

Kern, 2004). The CypA-CA interaction can be experimentally disrupted by 

mutational inactivation of the CypA binding site within CAN (Gly89Ala/Val, 

Pro90Ala) (Luban et al., 1993; Thali et al., 1994), by the immunosuppressive 

drug cyclosporine A (CsA) or non-immunosuppressive CsA analogues that 

compete with CA for CypA binding (Takahashi et al., 1989; Rosenwirth et al., 

1994; Ptak et al., 2008), or by knock-down of CypA using RNA interference 

(RNAi) (Berthoux et al., 2005; Keckesova et al., 2006).  

As mentioned earlier, prevention of CypA binding to CAN in target cells 

impacts negatively on HIV-1 infectivity in human cells and promotes HIV-1 

growth in Old World monkey cells. However, disruption of the CypA-CA 

interaction has no impact on SIVmac because its capsid does not bind CypA 

(Towers et al., 2003; Berthoux et al., 2005; Keckesova et al., 2006). 

 

1.5.3.2 Impact of cyclophilin A on capsid stability during viral 

uncoating 

 

The Gly89-Pro90 peptide bond in HIV-1 CA exists as a mixture of cis and trans 

isomers with 14% of CA molecules being in the cis and the remainder in the trans 

conformation (Gitti et al., 1996). CypA catalyses this cis-trans isomerisation 

(Bosco et al., 2002; Bosco and Kern, 2004). Alteration of the Gly89-Pro90 bond 

can induce conformational changes within and adjacent to the proline-rich, 

CypA-binding loop in HIV-1 CAN (Bosco et al., 2002; Bosco and Kern, 2004), which 

influence capsid stability. It has therefore been hypothesised that CypA may be 

critical for the temporal regulation of HIV-1 capsid disassembly (Braaten et al., 

1996a; Braaten et al., 1996b; Bosco et al., 2002; Howard et al., 2003; Bosco and 

Kern, 2004; Luban, 2007; Li et al., 2009; Ylinen et al., 2009).  

As discussed earlier, the regulation of the timing of uncoating is crucial 

for reverse transcription and successful nuclear import of viral cDNA. If 

uncoating is delayed or prevented, the PIC will fail to enter the nucleus. If 

instead uncoating is accelerated, reverse transcription will be inhibited. In fact, 

a decreased stability of HIV-1 CA in certain CA mutants was associated with 

defects in infectivity (Franke et al., 1994; Forshey et al., 2002; Brun et al., 

2008). It is unclear whether the enzymatic activity of CypA is essential for capsid 
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stability or if simple binding of CypA to HIV-1 CAN is sufficient to promote HIV-1 

infectivity (Luban, 2007).   

 

1.5.3.3 Modulation of Old World monkey TRIM5α activity by the 

cyclophilin A-capsid interaction 

 

The impact of CypA on HIV-1 CA stability explains the reduced HIV-1 infectivity 

in human cells upon inhibition of the CypA-CA interaction. Importantly, the 

positive effect of CypA on HIV-1 replication is independent of huTRIM5α 

(Keckesova et al., 2006; Sokolskaja et al., 2006). In the absence of CypA binding 

to CAN, the susceptibility of HIV-1 to huTRIM5α was unaltered and RNAi-

mediated knock-down of huTRIM5α did not rescue HIV-1 infectivity (Keckesova et 

al., 2006; Sokolskaja et al., 2006).  

In contrast, CypA has been shown to impact on Old World monkey (OWM) 

TRIM5α-mediated HIV-1 restriction (Berthoux et al., 2005; Keckesova et al., 

2006; Sokolskaja et al., 2006; Lin and Emerman, 2008). Prevention of CypA 

binding to HIV-1 CAN in OWM cells relieves the restriction of HIV-1 by OWM 

TRIM5αs (Berthoux et al., 2005; Keckesova et al., 2006; Stremlau et al., 2006). 

In fact, HIV-1 infectivity increased to the same extent that it increased upon 

knock-down of OWM TRIM5αs (Berthoux et al., 2005). Furthermore, CsA 

treatment did not lead to enhanced HIV-1 replication in OWM cells lacking OWM 

TRIM5αs (Keckesova et al., 2006). These data indicate that in OWM cells CypA is 

required for OWM TRIM5α activity, but to date the exact mechanism of the CA-

CypA-TRIM5α interplay is not known. It has been suggested that structural 

changes induced by cis-trans isomerisation of the HIV-1 CAN Gly89-Pro90 bond 

are better recognised by OWM TRIM5α (Berthoux et al., 2005; Keckesova et al., 

2006; Stremlau et al., 2006). Alternatively, CypA binding to CAN in the absence 

of catalysis may be sufficient to promote TRIM5α activity. Binding of CypA might 

lead to conformational changes in CAN that could expose the TRIM5α binding site 

(Berthoux et al., 2005). 
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1.5.3.4 Cyclophilin A and FIV 

 

It has been shown that FIV capsid binds to CypA (Lin and Emerman, 2006). A 

previous study in our group demonstrated that FIV CAN binds to feline CypA with 

almost the same affinity with which HIV-1 CAN binds to human CypA (dissociation 

constants of 6.2 µM and 5.3 µM, respectively) and that inhibition of the CypA-CA 

interaction reduces FIV infectivity in feline cells (McEwan, 2009). McEwan (2009) 

further solved the crystal structures of FIV CAN and feline CypA and used 

structure-guided models to hypothesise that binding between the two proteins is 

most likely mediated via a proline-rich loop in FIV CAN and a hydrophobic pocket 

in feline CypA. Mutagenesis of amino residues arginine 89 (Arg89) and Pro90 in 

FIV CAN ablated capsid binding to CypA. While in HIV-1 CAN the Gly89-Pro90 bond 

exists as cis-trans isomers, the corresponding Arg89-Pro90 bond in FIV CAN does 

not (Leo James, personal communication). Thus, cis-trans isomerisation around 

this bond cannot contribute to the effect of feline CypA on FIV core stability or 

the timing of FIV uncoating. Given the fact that feTRIM5α is non-functional, it 

can be excluded that the interaction between feline CypA and FIV CA protects 

FIV from feTRIM5α. It remains unclear what causes the reduction in FIV 

infectivity seen upon CypA inhibition. 

 

1.5.4 TRIM5-cyclophilin A fusion proteins  

 

Cells of the New World owl monkey Aotus trivirgatus restrict HIV-1 but not 

SIVmac, and the antiviral activity of owl monkey TRIM5α is overcome by 

interruption of CypA-CA binding (Towers et al., 2003; Nisole et al., 2004; Sayah 

et al., 2004). Both observations are explained by the discovery that owl monkey 

cells express a CypA-TRIM5α fusion protein (omTRIMCyp) (Nisole et al., 2004; 

Sayah et al., 2004). The CypA ORF replaces the B30.2 (PRY/SPRY) domain of 

TRIM5α and no owl monkey TRIM5α transcript could be detected in OMK cells 

(Nisole et al., 2004; Sayah et al., 2004). The CypA domain of omTRIMCyp 

specifically targets HIV-1 CA and enables the TRIM5α RING domain to 

ubiquitinate CA, which leads to its proteasomal degradation and an accelerated 

uncoating of the virus. HIV-1 determinants for sensitivity to omTRIMCyp map to 

the CypA binding site (Kootstra et al., 2003; Towers et al., 2003; Berthoux et 
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al., 2004; Hatziioannou et al., 2004a) so that disruption of the CypA-CA 

interaction affects both CypA and TRIMCyp (Sayah et al., 2004). In addition to 

HIV-1, omTRIMCyp inhibits SIVagm and FIV infection, whereas SIVmac is not 

restricted (Diaz-Griffero et al., 2006b). OmTRIMCyp has arisen by 

retrotransposon-mediated insertion of a processed CypA pseudogene within 

intron 7 of the TRIM5 gene (Fig. 1-7B) (Nisole et al., 2004; Brennan et al., 2008; 

Newman et al., 2008; Wilson et al., 2008; Ylinen et al., 2010). The CypA 

insertion generated a 15-nt duplication of the insertion site sequence (target 

site duplication; TSD) (Fig. 1-7). The CypA sequence does not contain any introns 

and is flanked by 5’ untranslated region (UTR), 3’ UTR and poly-A tail sequences. 

The 5’ UTR sequence of CypA contributes eleven amino acids to omTRIMCyp, 

which link the TRIM5α RBCC domain and the CypA domain (not shown) (Nisole et 

al., 2004).   

Soon after the isolation and characterisation of omTRIMCyp, a TRIMCyp 

protein was found in about 17% of rhesus macaques (Macaca mulatta) (Newman 

2008), which has arisen independently of omTRIMCyp (Newman et al., 2008; 

Wilson et al., 2008). In contrast to omTRIMCyp the rhesus TRIMCyp (rhTRIMCyp) 

is expressed by trans-splicing of a CypA pseudogene, which lies downstream of 

the rhTRIM5 gene locus, onto the rhTRIM5α RBCC transcript (Fig. 1-7). All rhesus 

macaques which express rhTRIMCyp are either heterozygous or homozygous for a 

G-to-T substitution in the 3’ splice acceptor site upstream of exon 7 of the 

TRIM5α gene (Newman et al., 2008). This splice site mutation (AG to AU) reduces 

(in the case of heterozygote animals) or prevents (in the case of homozygote 

animals) the splicing of exon 6 of the TRIM5α gene onto exon 7 and thereby the 

expression of full-length TRIM5α. Instead, a splice acceptor site immediately 

upstream of CypA is used to generate rhTRIMCyp. In heterozygous animals, 

RhTRIMCyp is expressed alongside a full-length TRIM5α and both proteins show 

different spectra of antiviral specificities (Wilson et al., 2008). Whereas 

rhTRIM5α can restrict M and O group HIV-1, HIV-2 and FIV, rhTRIMCyp cannot 

inhibit M group HIV-1. The activity of rhTRIMCyp is abolished upon prevention of 

the CypA-CA interaction. It is assumed that at endogenous expression levels both 

factors restrict in a co-dominant way (Wilson et al., 2008). CypA-TRIM5 gene 

fusions have further been detected in pig-tailed macaques (Macaca nemestrina) 

(Brennan et al., 2008; Newman et al., 2008; Virgen et al., 2008; Ylinen et al., 

2010) and in crab-eating macaques (Macaca fascicularis) (Ylinen et al., 2010). 
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Figure 1-7 Exon organisation and splicing of TRIM5 and TRIMCyp variants.   

Non-coding exons in the TRIM5 and TRIMCyp genes are marked by a dotted line 

and coding exons by a solid line. The colour coding indicates which of the coding 

exons encode for the RING, B-box 2, coiled-coil and B30.2 (PRY/SPRY) domains 

in rhesus macaque (Macaca mulatta) TRIM5α and the CypA domains in rhesus 

macaque and owl monkey (Aotus trivirgatus) TRIMCyps (rhTRIMCyp and 

omTRIMCyp, respectively). In rhesus macaques, a CypA pseudogene is located 

downstream of the rhTRIM5 gene locus. A percentage of animals is either 

heterozygous or homozygous for a splice acceptor site mutation immediately 

upstream of TRIM5 exon 7. In these animals, a CypA mRNA is trans-spliced 

directly onto the rhTRIM5α RBCC transcript (encoded by exons 2 to 6) to give rise 

to rhTRIMCyp. OmTRIMCyp CypA is encoded by a CypA cDNA located within 

intron 7 of the omTRIM5 gene. The CypA cDNA is flanked by a duplicated 

insertion site sequence (target site duplication; TSD), a fragment of the CypA 5’ 

untranslated region (UTR), and the CypA 3’ UTR and polyadenylation (CypA poly-

A tail) sequences. The CypA 5’ UTR contributes eleven amino acids to 
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omTRIMCyp. The CypA transcript is spliced onto the transcript encoded by exons 

2 to 7 and replaces the B30.2 (PRY/SPRY) domain of omTRIM5α in the mature 

omTRIMCyp protein. In contrast to rhesus macaques, owl monkeys do not 

express a TRIM5α with intact B30.2 (PRY/SPRY) domain. 

 

1.5.5 APOBEC3 proteins 

 

The antiviral activity of APOBEC3 (apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide-like) proteins was discovered through the study of the HIV-

1 accessory protein Vif (viral infectivity factor) (Wolf and Goff, 2008), which was 

shown to be dispensable for viral replication in certain permissive cell lines such 

as CEM-SS and SupT1, but required in non-permissive cells such as primary CD4+ 

T cells, monocyte-derived macrophages, and some T cell leukaemia lines such as 

CEM (Fisher et al., 1987; Strebel et al., 1987; Gabuzda et al., 1992; Sakai et al., 

1993; Sova and Volsky, 1993). The human APOBEC3G protein (huA3G; initially 

called CEM-15) was identified as the responsible cellular factor whose expression 

renders human cells non-permissive for infection by HIV-1 strains devoid of the 

vif gene, but not by vif-proficient HIV-1 strains (Sheehy et al., 2002).  

 

1.5.5.1 Domain structure of APOBEC proteins 

 

HuA3G belongs to a large family of cytidine deaminases (reviewed in Harris and 

Liddament [2004], Aguiar and Peterlin [2008], Goila-Gaur and Strebel [2008]) 

that catalyse the hydrolysis of cytidines to uracils. A3 proteins and other 

APOBECs possess a characteristic domain structure. A short alpha-helical domain 

is followed by a catalytic domain (CD), a short linker peptide and a 

pseudocatalytic domain (PCD) (Fig. 1-8) (Jarmuz et al., 2002). In certain A3 

proteins, such as the human A3 proteins A3B, A3DE, A3F and A3G, the entire unit 

is duplicated and adapts the form helix 1-CD1-linker 1-PCD1-helix 2-CD2-linker 2-

PCD2 (Jarmuz et al., 2002). Each catalytic domain contains the conserved 

His/Cys-X-Glu-X23-28-Pro-Cys-X2-4-Cys motif in which the histidine and cysteine 

residues coordinate zinc ions and the glutamate residue is required for proton 

shuttling during the deamination reaction (Harris et al., 2002; Jarmuz et al., 

2002). In double-deamination domain APOBECs one catalytic domain is generally 
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Single-deamination-

domain APOBEC 

Double-deamination-

domain APOBEC 

Helix CD PCD Linker 

catalytically active whereas the second catalytic domain is involved in nucleic 

acid binding and virus encapsidation (Hache et al., 2005; Navarro et al., 2005; 

Newman et al., 2005; Iwatani et al., 2006; Opi et al., 2006). 

 

 

 

 

 

 

 

 

 

 

Figure 1-8 Schematic representation of the APOBEC domain topology. The 

domain organisation of single-deamination-domain APOBECs and double-

deamination-domain APOBECs is shown. Members of the APOBEC family 

comprise an N-terminal alpha-helix followed by a catalytic domain (CD), a short 

linker peptide and a pseudocatalytic domain (PCD). In double-deamination-domain 

APOBECs this domain structure is duplicated. Each catalytic domain contains the 

conserved cytidine-deamination motif His/Cys-X-Glu-X23-28-Pro-Cys-X2-4-Cys. 

Figure adapted from Harris and Liddament (2004). 

 

1.5.5.2 Mechanism of the antiretroviral activity of APOBEC3 

proteins 

 

In order to carry out its antiviral activity, huA3G has to be packaged into Vif-

deficient virions as they are formed in producer cells (Sheehy et al., 2002; Harris 

et al., 2003; Lecossier et al., 2003; Mangeat et al., 2003; Zhang et al., 2003). 

The N-terminal, catalytically inactive catalytic domain of huA3G is able to 

interact with viral RNA (Jarmuz et al., 2002; Yu et al., 2004a; Khan et al., 2005; 

Iwatani et al., 2006; Khan et al., 2007; Tian et al., 2007; Wang et al., 2007) and 

the NC domain of Pr55Gag (Alce and Popik, 2004; Cen et al., 2004; Schafer et al., 

Helix 1 CD1 Linker 1 PCD1 Helix 2 CD2 Linker 2 PCD2 

His/Cys-X-Glu-X23-28-Pro-Cys-X2-4-Cys 
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2004; Zennou et al., 2004). HuA3G is then carried to the target cell, where, 

upon initiation of reverse transcription, it deaminates cytidine residues in 

nascent retroviral minus-strand cDNA to uracils. Subsequently, the uracils 

function as a template for the incorporation of plus-strand adenines resulting in 

guanine to adenine hypermutations in the viral genome that critically affect 

viability and infectivity of the virus (Harris et al., 2003; Zhang et al., 2003; 

Bishop et al., 2004; Liddament et al., 2004; Zheng et al., 2004).  

Recent studies propose that, in addition to deamination, deamination-

independent mechanisms of huA3G to inhibit viral replication exist (Shindo et 

al., 2003; Newman et al., 2005; Bishop et al., 2006; Guo et al., 2006; Opi et al., 

2006; Guo et al., 2007; Holmes et al., 2007; Iwatani et al., 2007; Li et al., 2007; 

Yang et al., 2007). These affect multiple reverse transcriptase-mediated DNA 

elongation reactions during reverse transcription and collectively impair the 

accumulation of reverse transcription products (Mangeat et al., 2003; Guo et al., 

2006; Guo et al., 2007; Iwatani et al., 2007; Li et al., 2007; Luo et al., 2007; 

Mbisa et al., 2007). 

 

1.5.5.3 APOBEC3-Vif interactions 

 

The primary role of HIV-1 Vif is to prevent huA3G incorporation into virions by 

targeting A3G for proteasome-mediated degradation (Conticello et al., 2003; 

Marin et al., 2003; Sheehy et al., 2003; Stopak et al., 2003; Liu et al., 2004; 

Mehle et al., 2004a; Mehle et al., 2004b). Vif bridges an interaction between 

huA3G and a ubiquitin E3 ligase complex consisting of elongins B and C, cullin 5 

and ring-box-1 (Yu et al., 2003; Mehle et al., 2004a; Yu et al., 2004b; Bergeron 

et al., 2010). The binding of HIV-1 Vif to huA3G is dependent on the presence of 

an Asp-Pro-Asp motif at amino acid sequence positions 128 to 130 in A3G (Bogerd 

et al., 2004; Mangeat et al., 2004; Schrofelbauer et al., 2004; Xu et al., 2004). A 

positively charged Asp-Arg-Met-Arg motif (residues 14-17) and a hydrophobic 

motif between residues 40-44 in HIV-1 Vif appear to be important for the 

interaction with huA3G (Mangeat et al., 2004; Xu et al., 2004; Navarro et al., 

2005; Mehle et al., 2007). A highly conserved, hydrophobic, zinc-coordinating 

His-X5-Cys-X17-18-Cys-X3-5-His (HCCH) motif and a conserved Ser-Leu-Gln-Tyr/Phe-

Leu-Ala (SLQ) motif at positions 144-149 of HIV-1 Vif are essential for interaction 
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of Vif with the ubiquitin ligase complex (Yu et al., 2003; Liu et al., 2004; Mehle 

et al., 2004b; Mehle et al., 2006; Xiao et al., 2006). Recently, the cellular 

transcription factor CBFβ has been shown to be associated with the E3 ubiquitin 

ligase complex (Hultquist et al., 2012; Jager et al., 2012; Zhang et al., 2012). 

CBFβ is required for HIV-1 and SIV Vif folding and stability, which is crucial for 

A3G degradation (Hultquist et al., 2012; Jager et al., 2012).  

The interaction between A3 proteins and Vifs is species-specific and partly 

determines the host range of a virus (Hatziioannou et al., 2006). HIV-1 and 

SIVagm Vif can inhibit the A3G proteins of their respective host species, but not 

that of other species (Simon et al., 1995; Simon et al., 1998; Mariani et al., 

2003). SIVmac Vif acts more broadly and can neutralise not only rhesus macaque 

A3G (rhA3G) but also African green monkey A3G (agmA3G) and huA3G (Mariani et 

al., 2003). HuA3G can block replication of Vif-deficient HIV-1, HIV-2 (Ribeiro et 

al., 2005), EIAV (Mangeat et al., 2003), MLV (Harris et al., 2003; Bishop et al., 

2004; Kobayashi et al., 2004) and foamy virus (Delebecque et al., 2006). 

 

1.5.5.4 APOBEC3 proteins in the Felidae 

 

Several APOBEC3 genes have recently been identified and characterised in the 

genome of domestic cats (Munk et al., 2008). The A3 gene locus encodes three 

highly similar A3C (A3Z2) genes and an A3H (A3Z3) gene. Additionally, a fifth 

transcript, which is generated by read-through alternative splicing, encodes the 

protein A3CH (A3Z2-Z3) (Munk et al., 2008; Zielonka et al., 2010). Domestic cat 

A3 proteins are overcome by FIV Vif and the FeFV Bet protein (Lochelt et al., 

2005; Munk et al., 2008; Stern et al., 2010; Zielonka et al., 2010). Similar to HIV-

1 Vif, FIV Vif recruits an E3 ubiquitin ligase complex consisting of elongin B, 

elongin C and cullin 5 to induce proteasomal degradation of A3 proteins (Wang 

et al., 2011). However, in contrast to HIV-1 Vif, FIV Vif does not possess the 

zinc-coordinating HCCH motif or the SLQ motif to interact with the E3 ubiquitin 

ligase complex (Wang et al., 2011), and it has yet to be determined which amino 

acid residues mediate the binding of FIV Vif to cullin 5. In addition to FIV Vif, 

domestic cat A3 proteins are also overcome by SIVmac Vif, but not by HIV-1 Vif 

(Stern et al., 2010). 
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The feline A3 proteins display different degrees of activity against feline 

retroviruses. Feline A3C proteins inhibit the replication of Bet-deficient FeFV 

(Lochelt et al., 2005) but do not restrict Vif-deficient FIV or FeLV. In contrast, 

feline A3H and A3CH proteins are active against Vif-deficient FIV as well as FeLV 

but not against Bet-deficient FeFV (Lochelt et al., 2005; Munk et al., 2008).  

The antiviral activities of A3 proteins from non-domestic cat resemble 

those of domestic cats (Zielonka et al., 2010). Lion, puma, tiger (Panthera 

tigris) and lynx (Lynx lynx) A3H and A3CH isoforms block replication of Vif-

deficient FIV, whereas non-domestic cat A3C proteins are sensitive to FIV lacking 

the Vif protein. FIV Vif induces degradation of all wild cat A3C, A3H and A3CH 

proteins.   

 

1.5.6 Tetherin 

 

In addition to the early post-entry blocks, restriction factors such as tetherin 

contribute to a late block to retroviral replication in that they prevent the 

release of mature enveloped viral particles from the membranes of infected 

cells. Tetherin (also called HM1.24/BST-2/CD317) was originally identified as a 

bone marrow stromal cell surface antigen selectively expressed on terminally 

differentiated normal and neoplastic human B cells and corresponding cell lines 

(Goto et al., 1994; Ishikawa et al., 1995). The antiviral activity of tetherin was 

not discovered until 2008, when it was noted that its cell-type specific 

expression matched closely the dependency of HIV-1 on the accessory protein 

Vpu for virus release from certain human cell lines (Strebel et al., 1989; 

Terwilliger et al., 1989; Klimkait et al., 1990; Varthakavi et al., 2003; Neil et 

al., 2008; Van Damme et al., 2008). Tetherin is constitutively expressed in 

human cell lines such HeLa cells (Gottlinger et al., 1993), several cancer cell 

lines (Ohtomo et al., 1999), B cells, T cells, monocytes, macrophages and 

plasmacytoid dendritic cells (Blasius et al., 2006; Miyagi et al., 2009), and its 

expression is induced or enhanced by type I and type II interferons in cell lines 

such as HOS, 293T, HT1080 cells (Neil et al., 2006; Neil et al., 2007; Neil et al., 

2008; Van Damme et al., 2008; Miyagi et al., 2009). IFN treatment renders cell 

lines Vpu-dependent that do not normally require Vpu for efficient virus release 

(Neil et al., 2007).  
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1.5.6.1 Domain structure of tetherins and intracellular 

localisation and trafficking 

 

Several studies have shown that tetherins are novel type II transmembrane 

proteins with a molecular weight of 30-36 kDa (Ishikawa et al., 1995; Ohtomo et 

al., 1999; Kupzig et al., 2003). They harbour an N-terminal cytoplasmic tail, 

followed by a transmembrane domain, an extracellular parallel, dimeric, alpha-

helical coiled-coil domain and a C-terminal GPI anchor (Fig. 1-9) (Ishikawa et al., 

1995; Ohtomo et al., 1999; Kupzig et al., 2003; Rollason et al., 2007; Hinz et al., 

2010).  

 

 

 

 

 

 

 

 

 

Figure 1-9 Schematic representation of the tetherin domain topology. 

Tetherins harbour an N-terminal cytoplasmic domain (red), a transmembrane 

domain (blue), an extracellular alpha-helical coiled-coil domain (cyan) and a C-

terminal GPI anchor (yellow). The positions of two putative N-linked glycosylation 

sites (arrows) in the extracellular domain are highlighted. The GPI-modification 

causes tetherin to partition into lipid rafts in the plasma membrane. 

 

Two potential N-linked glycosylation sites and three conserved cysteine residues 

are present in the extracellular domain (Ishikawa et al., 1995; Ohtomo et al., 

1999; Kupzig et al., 2003). Heterogeneous glycosylation of tetherin has been 

shown to be essential for efficient secretion and folding (Andrew et al., 2009; 

Goffinet et al., 2009; Kaletsky et al., 2009; McNatt et al., 2009; Miyagi et al., 

2009; Perez-Caballero et al., 2009). The cysteines take part in intra- and 

intermolecular disulfide bond formation and enable the homodimerisation of 

tetherin (Ohtomo et al., 1999; Kupzig et al., 2003; Perez-Caballero et al., 2009). 

The GPI-modification causes tetherin to partition into and cross-link cholesterol- 
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and sphingolipid-rich microdomains in the plasma membrane (Simons and 

Ikonen, 1997; Simons and Toomre, 2000; Kupzig et al., 2003). Tetherin cycles 

between these lipid rafts on the cell surface and an intracellular pool where it 

localises predominantly to the Golgi apparatus, the trans-Golgi network (TGN) 

and recycling endosomes (Kupzig et al., 2003). Internalisation from the plasma 

membrane is mediated by clathrin-dependent endocytosis (Rollason et al., 2007) 

(Masuyama et al., 2009). 

 

1.5.6.2 Mechanism of the antiviral activity of tetherin 

 

Tetherin causes the retention of fully formed mature virions on the surface of 

cells infected with Vpu-deficient HIV-1 (Neil et al., 2008; Van Damme et al., 

2008). At the expense of particle release, virions accumulate at the cell surface 

and a fraction of them are endocytosed via a clathrin-dependent mechanism and 

degraded (Neil et al., 2006; Neil et al., 2007). Current models predict that 

tetherin is present at sites of particle assembly in the cell membrane and is 

incorporated into virions (Perez-Caballero et al., 2009; Fitzpatrick et al., 2010). 

Presumably, one end of tetherin embeds in the lipid bilayer of the cell and the 

other in that of the virion, so that cell-surface tetherin homodimerises with 

virion-associated tetherin via disulfide bonds or via coiled-coil regions in the 

extracellular domain (Fitzpatrick et al., 2010). Thus, virions remain bound to the 

cell surface and are cross-linked to each other by tetherin. In addition to 

lentiviruses, tetherin blocks virion release from members of the alpharetrovirus, 

betaretrovirus, deltaretrovirus, spumaretrovirus, arenavirus (Lassa) and filovirus 

(Ebola, Marburg) families (Jouvenet et al., 2009; Kaletsky et al., 2009; Sakuma 

et al., 2009). 

 

1.5.6.3 Viral tetherin antagonists 

 

HIV-1 Vpu is an integral class I membrane phosphoprotein (Cohen et al., 1988) 

that promotes virion release from HIV-1 infected human cells that express 

tetherin (Klimkait et al., 1990; Neil et al., 2006; Neil et al., 2008; Van Damme et 

al., 2008). It has been shown to colocalise with tetherin (Neil et al., 2008; Van 
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Damme et al., 2008) and to reduce its cell-surface expression by targeting it for 

degradation (Van Damme et al., 2008; Douglas et al., 2009; Goffinet et al., 

2009; Mitchell et al., 2009; Miyagi et al., 2009). A well-studied role of Vpu is to 

mediate the proteasomal degradation of the HIV-1 receptor CD4 in the ER 

through the recruitment of the β-transducin repeat-containing protein (βTrCP) 

subunit of the Skp1-cullin1-F-box (SCF) ubiquitin ligase complex (Willey et al., 

1992a; Bour et al., 1995; Margottin et al., 1998). βTrCP is also involved in the 

antagonism of tetherin because disruption of the interaction between βTrCP and 

the βTrCP binding motif in the cytoplasmic domain of Vpu reduces the capacity 

of Vpu to promote virus release (Douglas et al., 2009; Mangeat et al., 2009; 

Mitchell et al., 2009). Vpu serves as an adapter between βTrCP and tetherin. 

Tetherin and Vpu bind to each other through their transmembrane domains 

(Iwabu et al., 2009; Rong et al., 2009). It seems that Vpu sequesters tetherin 

within the endolysosomal system either within the TGN after it has been 

synthesised or within recycling endosomes after natural endocytosis of tetherin 

from the cell surface has occurred (Dube et al., 2009; Mitchell et al., 2009). This 

intracellular sequestration is followed by partial lysosomal degradation of both 

tetherin and Vpu.   

Vpu is only encoded by a unique lineage of primate lentiviruses that 

include HIV-1 and the SIVs of chimpanzees (Pan troglodytes) (Cohen et al., 

1988), Mona monkeys (Cercopithecus mona), mustached monkeys (C. cephus) 

and greater spot-nosed monkeys (C. nictitans); SIVcpz, SIVmon, SIVmus and 

SIVgsn, respectively (Courgnaud et al., 2003). SIVmon, SIVmus and SIVgsn Vpu 

counteract tetherins of their respective host species as well as macaque 

tetherins, but, with the exception of SIVgsn, not human tetherin (huTHN) 

(Sauter et al., 2009; Yang et al., 2010). Accordingly, non-human, non-

chimpanzee tetherins are usually insensitive to antagonism by HIV-1 Vpu 

(Goffinet et al., 2009; Gupta et al., 2009a; Jia et al., 2009; McNatt et al., 2009; 

Sauter et al., 2009; Zhang et al., 2009a). SIVcpz is the immediate precursor of 

HIV-1 and its Vpu shares a common ancestry with SIVmon/mus/gsn Vpu (Sauter 

et al., 2009). However, SIVcpz Vpu is non-functional against both chimpanzee 

tetherin (cpzTHN) and huTHN. Instead, in SIVcpz the accessory protein Nef has 

adopted a Vpu-like function. It is likely that, after cross-species transmission 

from chimpanzees to humans, HIV-1 Vpu has adapted to counteract huTHN, 

because huTHN is resistant to Nef due to a deletion in its cytoplasmic tail 
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(Sauter et al., 2009; Zhang et al., 2009a). Species-specific tetherin antagonism 

by Nef is also conserved in SIVs of sooty mangabeys, rhesus macaques and 

African green monkeys, SIVsmm, SIVmac and SIVagm, respectively. Like Vpu, Nef 

also induces cell-surface downregulation of monkey tetherins (Jia et al., 2009). 

Additionally to Vpu and Nef, the HIV-2 and SIVagm.Tan (SIVagm of the Tantalus 

monkey, Chlorocebus tantalus) envelope glycoproteins possess anti-tetherin 

activities (Abada et al., 2005; Gupta et al., 2009b; Le Tortorec and Neil, 2009).  

 

1.6 Scope of the thesis 

 

FIV infection of domestic cats leads to the development of a fatal 

immunodeficiency syndrome similar to AIDS in humans; however, FIV infection of 

non-domestic cats is usually benign. It is likely that the relatively short period of 

time for which FIV has been circling in the domestic cat population was 

insufficient for host-virus co-adaptation to occur, leading to immunodeficiency. 

Non-domestic felids, on the other hand, have co-existed with lentiviruses for 

millions of years. Hence, non-domestic cat FIV strains could either be less 

virulent or less pathogenic, or spreading in species with genetic adaptations that 

confer efficient immunological defense to viral infection. 

In fact, although FIV is able to replicate in both domestic and non-domestic cats, 

in vitro studies have indicated that FIV infection of non-domestic cat T 

lymphocytes is significantly less efficient than that of domestic cat T cells. Thus, 

this thesis tests the hypothesis that non-domestic cat restriction factors are 

either more potent antagonists of lentiviral replication than domestic cat 

restriction factors or that their activity is less sensitive to viral counteraction. 

In this thesis, the activities of domestic and non-domestic cat restriction 

factors against lentiviruses are compared. Specific attention is further paid to 

the characterisation of viral accessory proteins and their ability to overcome the 

feline restriction factors. Finally, the potential of feline restriction factors for 

use in anti-retroviral therapies is explored.   

 

 Chapter 3 describes the generation of a synthetic feline-specific TRIM5α-

cyclophilin A fusion protein (feTRIMCyp). The study finds that feTRIMCyp 

is highly efficient at blocking lentiviral infection, an activity that can be 
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reversed by cyclosporine A and its derivatives. FeTRIMCyp and FIV 

infection of the cat offers a unique opportunity to evaluate TRIMCyp-

based approaches to genetic therapy for FIV and HIV infections and the 

treatment of AIDS. 

 

 In Chapter 4 domestic and non-domestic cat APOBEC3 proteins are 

characterised and their activities against FIV and other lentiviruses are 

compared. No significant differences in the antiviral potencies of these 

restriction factors against FIV lacking the viral APOBEC3 antagonist Vif are 

detected. Further analysis focuses on APOBEC3 expression levels in 

different feline cell lines, primary cells and tissues. Finally, insights in the 

evolution of lion APOBEC3 proteins in the presence or absence of FIV 

infection are provided. Surprisingly, no indication for viral selection 

pressure on the evolution of lion APOBEC3 proteins is found. 

Consequently, the activities of FIV Vif proteins against feline APOBEC3 

proteins are determined. Here, cat APOBEC3CH is significantly more 

sensitive to FIV containing Vif compared to non-domestic cat APOBEC3CH 

proteins. 

 

 In Chapter 5 felid homologues of tetherin are characterised and their 

effects on the replication of FIV are investigated. Domestic cat tetherin 

displays potent inhibition of FIV and HIV-1 particle release and no tetherin 

antagonist is found in the FIV genome. However, when stably expressed in 

feline cell lines, tetherin cannot abrogate the replication of FIV. In fact, 

tetherin expression is found to promote cell-to-cell spread of cell culture-

adapted, CD134-independent FIV strains. The study further focuses on the 

characterisation of non-domestic cat tetherins and their activity against 

feline retroviruses. No significant differences in the potencies of domestic 

and non-domestic cat paralogues are found.  
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 Materials and Methods 2

2.1 Molecular cloning 

 

2.1.1 Nucleic acid extraction 

 

Total RNA or genomic DNA were isolated from human, feline and canine cell 

lines, primary cells or cat tissue samples by homogenising 1x106 cells using 

QIAshredder Spin Columns and RNAeasy Mini Spin Columns (Qiagen, Crawley, UK) 

or the QIAamp DNA Mini and Blood Mini kit (Qiagen), respectively. Nucleic acids 

were eluted in RNase-free water (Life Technologies, Paisley, UK), quantified by 

spectroscopy at 260 nm and stored at -80°C until further use. 

 

2.1.2 cDNA synthesis 

 

First strand cDNA synthesis was performed using 1 μg total RNA and oligo(dT) 

primers and the Transcriptor High Fidelity cDNA Synthesis kit (Roche Applied 

Science, Roche Diagnostics Ltd., Burgess Hill, UK) according to manufacturer’s 

instructions. CDNA was stored at -20°C until further use.  

 

2.1.3 PCR methods 

 

 
Transcripts of interest were amplified by polymerase chain reaction (PCR) from 2 

μl cDNA using Phusion High-Fidelity DNA polymerase (Finnzymes, Hitchin, UK). 

Cycling parameters were set as per manufacturer’s instructions. The standard 

reaction mix composition used was 5x HF buffer 4 μl, dNTPs 200 μM each, gene-

specific primers 0.5 μM each, DMSO 3% v/v, Phusion High-Fidelity DNA 

polymerase 0.02 U/μl.  

PCR amplification from plasmid DNA was performed using 25-200 ng 

template DNA. PCR amplification from genomic DNA or bacterial colony 

suspensions (see below) was carried out using 100 ng genomic DNA or 2 μl of 

bacterial colony suspension as template and GoTaq Flexi DNA polymerase 
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(Promega, Southampton, UK). Cycling parameters were adjusted as per 

manufacturer’s instructions. The standard reaction mix composition used was 5x 

Green GoTaq Flexi Buffer 10 μl, dNTPs 200 μM each, gene-specific primers 0.2 

μM each, MgCl2 Solution 1.5 mM, GoTaq DNA polymerase 1.25 U/μl. Annealing 

temperature optimisation using temperature gradients was performed when 

necessary.  

Lyophilised primers were ordered from Eurofins MWG Operon (Ebersberg, 

Germany), resuspended in sterile distilled water to a stock concentration of 100 

pmol/μl and to a working stock concentration of 10 pmol/μl. Lyophilised real-

time PCR primers were resuspended in sterile distilled water to a stock 

concentration of 100 pmol/μl and to a working stock concentration of 20 

pmol/μl. Lyophilised real-time PCR probes were diluted in qPCR Probe dilution 

buffer (Eurofins MWG Operon) to a stock concentration of 100 pmol/μl and to a 

working stock concentration of 5 pmol/μl. Primers and probes were stored at -

20°C. A list of primers and probes used and a list of buffers and solutions are 

displayed in the Appendix. 

 

2.1.4 Cloning techniques 

 

PCR products were analysed and purified using agarose gel electrophoresis. TBE 

buffer containing 1% agarose was dissolved in a microwave and allowed to cool 

to 50°C. Ethidium bromide was added and the gel was cast into an 

electrophoresis chamber. It was immersed in TBE buffer prior to use. The DNA 

was loaded in 1x DNA loading buffer and fragments were separated at 80 V for 

40 minutes. 0.5 μg of 1 kb DNA ladder (New England Biolabs, Hitchin, UK) was 

loaded for product size estimation. DNA products were observed on a UV 

transilluminator and excised from the gel using a sterile scalpel. Gel extraction 

was performed using the QIAquick Gel Extraction kit (Qiagen) and PCR products 

were eluted in 35 μl distilled water. 

For molecular cloning, purified PCR products and vectors were digested 

with restriction endonucleases (New England Biolabs; Life Technologies, Paisley, 

UK) at a concentration of 1 U/μl for 2 hours at 37°C with the buffers 

recommended by the manufacturers. Digested DNA was purified using the 

QIAquick PCR Purification kit (Qiagen) and eluted in 35 μl distilled water. 
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Digested vector DNA was purified by agarose gel electrophoresis prior to further 

purification using the QIAquick Gel Extraction kit (Qiagen). Digested vector DNA 

was eluted in 35 μl distilled water. Digested PCR product was ligated into 

digested vector DNA using T4 DNA polymerase (New England Biolabs) at 1 U/μl 

overnight at 14°C. 30% of the ligation mix was transformed into 35 μl chemically 

competent Escherichia coli (New England Biolabs; Life Technologies) using the 

respective heat shock protocols supplied by the manufacturers. Transformed 

bacteria were plated onto Luberia Bertani (LB) broth agar plates containing 50 

μg/ml ampicillin or kanamycin (Sigma-Aldrich, Dorset, UK) and grown overnight 

at 30°C (applies to FIV envelope glycoproteins) or 37°C.  

Colonies were screened for the presence of the insert-vector combination 

of interest by colony PCR or by restriction digestion. For colony PCR, colonies 

were picked and resuspended in 20 μl distilled water. 2 μl of the bacterial colony 

suspensions and GoTaq Flexi DNA polymerase (Promega) were used per PCR 

reaction as described above. Gene-specific or vector-specific primers were 

designed to detect the presence or absence of the desired insert in the bacterial 

clones. Alternatively, colonies were grown overnight in 5 ml LB broth at 30°C or 

37°C in an orbital shaker set to 200 rpm. Plasmid DNA was extracted from the 

cultures using the QIAprep Spin Miniprep kit (Qiagen) and eluted in 35 μl distilled 

water. Plasmid DNA was subjected to restriction digestion and agarose gel 

electrophoresis as previous. Glycerol stocks of clones of interest were made by 

diluting cultures to a final glycerol concentration of 25% followed by storage at -

80°C.  

Large-scale plasmid DNA preparations were performed by inoculating 200 

ml LB broth containing appropriate antibiotics with bacterial clones. Cultures 

were grown overnight at 30°C or 37°C and plasmid DNA was isolated using the 

PureLink HiPure Filter Plasmid Maxiprep kit (Life Technologies). Maxiprep DNA 

was resuspended in sterile TE buffer and stored at 4°C. 
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2.1.5 DNA mutations 

 

Site-directed mutagenesis PCRs were carried out to insert nucleotide or amino 

acid codon changes into plasmid DNA. The QuikChange Site-Directed Mutagenesis 

kit (Agilent Technologies, Wokingham, UK) was used for plasmids of up to 8 kb in 

length and the QuikChange XL Site-Directed Mutagenesis Kit (Agilent 

Technologies) for plasmids over 8 kb in length according to the manufacturer’s 

instructions. The standard reaction mix composition used was 10x reaction 

buffer 5 μl, dNTP mix 1 μl, gene-specific primers 125 ng each, plasmid DNA 

template 25 ng, PfuTurbo DNA polymerase 2.5 U/μl. Deviating from the 

instructions, mutated and DpnI-digested DNA contained in 50 μl reaction mix was 

added to 50 μl of distilled water. The DNA was then precipitated with 200 μl 

ethanol (100%) containing sodium acetate at a concentration of 15 mM for 30 

minutes at – 80°C. The DNA was pelleted at 14,000 rpm (Eppendorf FA-45-18-11 

rotor) for 20 minutes and the DNA pellet was resuspended in 10 μl distilled 

water. The DNA was then transformed into chemically competent Escherichia 

coli strain DH5α as described above. Colonies were picked from the LB agar 

plates, plasmid DNA was prepared (QIAprep Spin Miniprep kit) and analysed by 

DNA sequencing.  

 

2.1.6 DNA sequencing 

 

Chain termination sequencing reactions were set up in house using BigDye v1.1 

(Applied Biosystems, Life Technologies, Paisley, UK) and thermally cycled 

according to manufacturer’s instructions. Template-specific primers were used 

at a final concentration of 0.16 μM. PCR reactions were ethanol-precipitated and 

the DNA pellets were resuspended in 20 μl HiDi (Applied Biosystems). Sequencing 

reactions were run on an ABI 3700 automated capillary array sequencer (Applied 

Biosystems) and sequence traces were analysed using the DNADynamo software 

(Blue Tractor Software Limited, Llanfairfechan, UK).  
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2.2 Cells and viruses 

 

2.2.1  Culture of cell lines and primary cells 

 

Adherent cells were maintained in Dulbecco’s modification of Eagle’s medium 

(DMEM) containing 10% fetal bovine serum (FBS), 2 mM glutamine and antibiotics 

(100 U/ml penicillin, 100 μg/ml streptomycin) at 37°C and 5% CO2. Suspension 

cells were grown in RPMI 1640, supplemented with 10% FCS, 2 mM glutamine, 

antibiotics (100 U/ml penicillin, 100 μg/ml streptomycin), 10% HEPES, 1 mM 

sodium pyruvate and 0.05 mM 2-mercaptoethanol at 37°C and 5% CO2. Cells were 

grown in disposable plastic tissue culture flasks (Corning, Ewloe, UK) and 

passaged when confluent. When confluent, medium was removed from the cells 

and the cell monolayer was washed with PBS. Cells were dissociated from the 

flask by incubation with 0.05% trypsin (Life Technologies) in PBS for 5 minutes at 

room temperature. Trypsin activity was stopped by resuspension of the cells in 

complete DMEM. Cells were pelleted at 1,000 rpm (Eppendorf A-4-62 rotor) for 5 

minutes and the cell pellet was resuspended in complete DMEM. New cultures 

were seeded at the desired density.  

The feline T-cell line Mya-1 and primary T lymphocytes were maintained 

in complete RPMI containing conditioned medium from a murine cell line (L2.3) 

transfected with a human IL-2 expression construct (equivalent to 100 U/ml of 

recombinant human IL-2). Primary T lymphocytes were expanded from PBMCs by 

stimulation with concanavalin A (2 μg/ml; Sigma-Aldrich). Cells were passaged at 

the required density by centrifugation at 800 rpm (Eppendorf A-4-62 rotor) for 5 

minutes and resuspension in complete RPMI.  

Cells used throughout the study are HEK-293T cells (human embryonic 

kidney cells) (Graham et al., 1977), the feline cell lines 3201 (thymic 

lymphosarcoma cells) (Snyder et al., 1978), AH927 (fibroblasts) (Rasheed and 

Gardner, 1980), Crandell feline kidney (CrFK; clone ID10; kidney epithelioid 

cells) (Crandell et al., 1973), FEA (foetal embryo fibroblast-like cells) (Jarrett et 

al., 1973) and Mya-1 (IL-2 dependent T cell line) (Miyazawa et al., 1989). 

Additionally, CLL cells (canine chronic lymphocytic leukaemia cells) (Willett et 

al., 2006), primary feline macrophages and primary lion T lymphocytes were 

used.  
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2.2.2 Infection of cells with replication-competent viruses 

 

Infection of cells with replication-competent FIVs was performed by incubating 

target cells with viral inocula. Supernatant containing clonal FIV was produced 

by transfection of 293T cells with full-length molecular clones of different FIV 

strains using SuperFect transfection reagent (see below). Three days post-

transfection, supernatant from 293T cells was harvested, cleared by 

centrifugation at 2,000 rpm (Eppendorf A-4-62 rotor) for 10 minutes and 

incubated with Mya-1 cells. FIV replication was confirmed using a lentivirus 

reverse transcriptase activity assay (see below). Supernatant from infected Mya-

1 culture was then harvested and cleared. Virus stocks were stored at -80°C.  

Prior to infection, adherent cells were seeded at a density of 2x105 cells 

per well in 6-well plates and left to adhere overnight. Cells were incubated with 

100 μl viral inoculum for 2 hours at 37°C, washed with PBS and cultured in 

complete DMEM. Typically 2x106 suspension cells per well of a 6-well plate were 

transferred to Falcon tubes (BD Biosciences, Oxford, UK) and pelleted. They 

were resuspended in 0.9 ml complete RPMI and incubated with 100 μl viral 

inoculum for 2 hours at 37°C, washed with PBS and cultured in 6-well plates in 

complete RPMI. To monitor virus growth, 100 μl aliquots of cell-free supernatant 

were collected on a daily basis and stored at -80°C for quantification by reverse 

transcriptase activity assays.  

 

2.2.3 Stable transduction of cells 

 

For stable expression, transgenes were inserted into the mammalian expression 

vector pDON-AI-2neo (Takara Bio Europe S.A.S./Clontech, Saint-Germain-en-

Laye, France). Retroviral vector transduction was performed to integrate the 

vector construct into CrFK, FEA or CLL cells. MLV pseudotypes containing the 

vector construct to be transduced were produced by seeding 1x106 293T cells in 

100-mm cell culture dishes overnight and transfecting them with pCIG3N (MLV-N 

Gag-Pol) (Bock et al., 2000), pMDG (VSV-G) (Yee et al., 1994) and the transgene-

pDON-AI-2neo construct. 72 hours post-transfection, MLV pseudotypes were 

harvested, cleared by centrifugation at 2,000 rpm (Eppendorf A-4-62 rotor) for 

10 minutes and used to infect target cells. For transduction, target cells were 
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seeded in T-25 flasks 16 hours prior to transduction at a low density. Target cells 

were incubated with the pseudotypes for 2 to 4 hours. Cells were then washed in 

PBS and resuspended in complete cell culture media. 48 hours post-transduction, 

stably-transduced cells were selected in geneticin (G418; 800 μg/ml) (Life 

Technologies). After selection the geneticin concentration was reduced to 400 

μg/ml. Certain stable cell lines used in this study, especially those expressing 

CD134, were created using the vector pDsRed2 (Takara Bio Europe/Clontech) 

instead of p-DON-AI-2 Neo. These cell lines were selected using puromycin (1 

μg/ml) (Life Technologies).  

 

2.2.4 Transient transfection of cells 

 

293T cells were seeded in 12-well plates at a density of 1x105 cells per well or in 

100-mm culture dishes at a density of 1x106 cells per dish and allowed to adhere 

overnight. Cells were then transfected using SuperFect (Qiagen) according to the 

manufacturer’s recommendations. The medium of transfected cells was removed 

4 hours post-transfection. The cell monolayer was washed with PBS and cells 

were grown in complete DMEM for 48 to 72 hours at 37°C.  

 

2.2.5 Pseudotype production and pseudotype assay 

 

In this study pseudotype assays were performed to investigate the effect of 

feline restriction factors on lentiviral egress from producer cells or on early post-

entry processes in target cells in the absence of viral spread. Pseudotypes were 

produced by three-vector transfection of 293T cells. Equal amounts of a vector 

encoding a lentiviral Gag-Pol protein, a marker protein and an Env protein were 

transfected. The gag-pol-expression construct is known as the packaging vector. 

In producer cells, gag and pol are transcribed and their mRNAs are translated. 

Env is produced from the env-expressing vector. Gag, Pol and Env assemble into 

VLPs. The marker gene-expressing plasmid contains the RNA packaging signal Ψ. 

In producer cells, the marker gene is transcribed and marker gene transcripts 

are translated. Marker gene vector mRNA is also packaged into VLPs. In target 

cells, the marker gene is reverse transcribed into DNA by RT contained in viral 
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particles. The marker gene then integrates in the host genome with the help of 

VLP-contained lentiviral integrase and is stably expressed. In contrast, viral 

particles do not contain Gag-Pol or Env-encoding RNAs so that in target cells only 

Gag-Pol and Env proteins are present. Thus, in pseudotype assays only single-

cycle lentiviral replication occurs. In pseudotyped viral particles the lentiviral 

Env protein is replaced by a foreign envelope glycoprotein. In this study the 

vesicular stomatitis virus G glycoprotein (VSV-G) was used as a surrogate Env. 

VSV-G enables high-titre VLP production and exhibits a broad cell tropism as it 

binds to phospholipids in plasma membranes (Burns et al., 1993; Yee et al., 

1994). VSV-G pseudotyped viral particles enter target cells by clathrin-mediated 

endocytosis instead of receptor-mediated uptake (Matlin et al., 1982).  

HIV-1 pseudotypes were prepared using the HIV-1-derived packaging 

plasmids p8.91 (expressing Gag-Pol, Tat and Rev) or p8.2 (expressing Gag-Pol, 

Tat, Rev, Vpr, Vpu, Vif and Nef) (Zufferey et al., 1997), SIN CSGW (GFP-encoding 

HIV-1 genome) (Naldini et al., 1996), and pMDG (VSV-G) (Naldini et al., 1996). 

SIV pseudotypes were produced using the SIVmac-derived vectors SIV4+ 

(expressing Gag-Pol, Tat, Rev) or SIV3+ (expressing Gag-Pol, Tat, Rev, Vif, Vpx 

and Vpr) (Negre et al., 2000), SIV-GFP (GFP) (Negre et al., 2000) and pMDG (VSV-

G). FIV pseudotypes were prepared using the FIV-based vectors FP93 (Gag-Pol) 

(Poeschla et al., 1998; Saenz and Poeschla, 2004), pGinSin (GFP) (Poeschla et 

al., 1998) and pMDG (VSV-G). 

In this study pseudotypes were often produced in the presence of 

restriction factor expression plasmids. In this case, 1x105 293T cells per well in 

12-well plates or 1x106 293T cells in 100-mm culture dishes were left to adhere 

overnight at 37°C. Transfections in 12-well plates were performed using 600 ng 

of each of the respective three lentiviral vectors described above and 100 ng 

(tetherin) or 200 ng (APOBEC3 proteins) restriction factor expression plasmid. 

The eukaryotic expression vector VR1012 (Vical Inc., San Diego, U.S.A.) was 

chosen in these experiments because it enables CMV promoter-driven, high-level 

expression of restriction factors in 293T cells. Transfections in 100-mm culture 

dishes were carried out using five times the amount of plasmid DNA used for 12-

well plates. Unless otherwise stated, APOBEC3 activity assays were performed in 

12-well plates with or without 500 ng FIV Vif expression construct. Tetherin 

activity assays were performed in 100-mm culture dishes using 750 ng tetherin 

expression plasmid in the presence or absence of 250 ng FIV OrfA expression 
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plasmid 1S-5RL (Pistello et al., 2003), 3 µg FIV Env expression plasmids or a 

replication-defective molecular clone of FIV (CMVG8MΔpol4). 

 48 hours post-transfection, fresh 293T cells (target cells) were seeded in 

12-well plates at a density of 2.5x104 cells per well and left to adhere overnight 

at 37°C. 72 hours post-transfection, the medium was removed from target cells 

and 1 ml pseudotype-containing supernatant from transfected 293T cells was 

used to transduce target cells. Remaining supernatant was stored at -80°C until 

further use. Transfected 293T cells were washed with PBS, harvested, pelleted 

and stored at -20°C for immunoblotting. 72 hours post-transduction, the medium 

was removed from target cells and the cells were resuspended in 1 ml PBS-BSA-

azide in 5-ml round-bottom Falcon tubes (BD Biosciences). The cells were then 

analysed for marker gene expression by flow cytometry using a BD Accuri C6 

cytometer (BD Biosciences).  

 

2.3 Quantitative techniques and immunoblotting 

 

2.3.1 Quantification of reverse transcriptase activity 

 

Reverse transcriptase activity in supernatants of virus-producing cells was 

assayed using a Lenti-RT (for FIV) or C-type RT (for FeLV and RD114) non-isotopic 

RT assay kit (Cavidi Technology, Uppsala, Sweden). The procedure consists of a 

DNA synthesis and a DNA quantification step. A reaction mixture is added to a 

96-well plate that is coated with a RNA template. The reaction mixture contains 

a primer and nucleotides (BrdUTP) both of which are used by RT in the sample to 

synthesise a DNA strand. After incubation at 33°C the plates are washed using 

the provided wash buffer and tracer reagent is added which contains alkaline 

phosphatase (AP)-conjugated anti-BrdU antibodies. These bind to the double-

stranded DNA/RNA molecule. Plates are again washed and the product is 

quantified by addition of the chromogenic AP substrate para-

Nitrophenylphosphate (pNPP). PNPP is converted into yellow para-Nitrophenol 

(pNP). AP activity is proportional to the RT activity present in the sample. 10 μl 

of sample were used for RT assay and absorbance of pNP at 405 nm was 

determined using a spectrophotometer.  
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2.3.2 Real-time PCR 

 

Real-time PCR was carried out on 1 μl cDNA template. Cycling parameters were 

1 cycle of 50°C for 2 minutes; 1 cycle of 95°C for 10 minutes; 40 cycles of 95°C 

for 15 seconds and 60°C for 1 minute. The standard reaction mix composition 

used was 2x Universal TaqMan Mastermix (Applied Biosystems) 25 μl, gene-

specific primers 0.9 μM each, dual-labelled (5’ FAM, 3’ TAMRA) probe 225 nM. 

Serially diluted (109–100 copies/μl) plasmid DNA was used as standard for real-

time PCR. 18S ribosomal RNA (rRNA) was used as housekeeping gene. Reactions 

were set up in MicroAmp Optical 96-well plates (Applied Biosystems) and results 

were analysed on an Applied Biosystems 7500 real-time PCR system. ΔCT values 

(where “CT” represents “threshold cycle”) were calculated by subtracting the 

mean CT for 18S rRNA from the CT for the transcript of interest. 

 

2.3.3 SDS-PAGE and immunoblotting 

 

Cells were pelleted and lysed in CHAPS lysis buffer supplemented with protease 

inhibitor cocktail (Complete protease inhibitor; Roche). Protein concentration of 

lysates was determined in 96-well plates using Coomassie Blue Bradford Assay 

Reagent (Thermo Scientific, Fisher Scientific, Loughborough, UK). Absorbance of 

samples was measured at 650 nm in a spectrophotometer. Virions in cleared cell 

culture supernatants were pelleted by ultracentrifugation at 28,000 rpm for 2 

hours at 4°C in a Beckman L8-70M ultracentrifuge (SW-41 rotor; Beckman 

Coulter Limited, High Wycombe, UK). Cell lysates and corresponding pelleted 

virions were combined with protein loading dye and separated using sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 12% Bis-Tris 

SDS-PAGE gels (Life Technologies) in NuPAGE MES SDS Running buffer (Life 

Technologies). Separated proteins were then transferred onto nitrocellulose 

membranes using the iBlot system (Life Technologies) and blocked with 5% dried 

milk powder in PBS containing 0.1% (vol/vol) Tween-20 for 1 hour at room 

temperature. Membranes were incubated with the appropriate primary antibody 

diluted to 1 μg/ml in PBS-0.1% Tween-20-5% dried milk powder for 1 hour at 

room temperature. Membranes were washed with PBS-0.1% Tween-20 three 

times for 5 minutes. Primary antibodies were detected with biotinylated anti-
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mouse/rabbit/goat IgG secondary antibodies (Vector Laboratories, 

Peterborough, UK) at a dilution of 1:1,000 in PBS–0.1% Tween-20 for 1 hour at 

room temperature and subsequent chromogenic development using a Vectastain 

ABC system (Vector Laboratories) and 5-bromo-4-chloro-3-indolyl phosphate–

nitroblue tetrazolium (BCIP/NBT; Vector Laboratories) as a substrate.  

 

2.4 In silico techniques 

 

2.4.1 Use of databases 

 

Nucleotide and protein sequences were retrieved from Genbank 

(http://www.ncbi.nlm.nih.gov/genbank) and aligned using ClustalW2 

(http://www.ebi.ac.uk/tools/msa/clustalw2/) (Larkin et al., 2007; Goujon et 

al., 2010). Nucleotide and protein sequence similarity searches were carried out 

using Blast (http://blast.ncbi.nlm.nih.gov/blast.cgi) (Altschul et al., 1990). The 

annotation of the 1.9x domestic cat (Felis catus) genome (GARField, 

http://lgd.abcc.ncifcrf.gov/cgi-bin/gbrowse/cat/) was used to identify genes of 

interest.  

 

2.4.2 Nucleotide and protein sequence alignments 

 

Nucleotide and protein sequence alignments and analyses of sequences obtained 

by in-house sequencing were performed using DNADynamo (Blue Tractor 

Software Limited). 

  

2.4.3 Graphs and statistics 

 

Graphs were prepared and statistical analyses (unpaired, two-tailed student’s t- 

test) were carried out using GraphPad Prism 5 software (GraphPad Software, La 

Jolla, U.S.A.). Where shown, error bars represent standard errors. 
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 Generation of a synthetic feline TRIM5α-cyclophilin A fusion 3

protein with potent antilentiviral properties 

3.1 Summary 

 

Primate TRIM5α provides an early, post-entry block to lentiviral replication. It 

contains a C-terminal B30.2 (PRY/SPRY) domain, which mediates binding to 

lentiviral capsids, and an N-terminal RING domain, which poly-ubiquitinates 

capsid proteins and targets them for proteasomal degradation. This results in a 

premature uncoating of the virus and the inhibition of reverse transcription. 

Feline (domestic cat) TRIM5α (feTRIM5α), however, bears a truncation in its 

B30.2 (PRY/SPRY) domain, which ablates its binding to lentiviral capsids and its 

antiviral function (McEwan et al., 2009). Interestingly, this truncation was found 

to be conserved among members of the Feliformia (McEwan et al., 2009) and, 

hence, cannot account for the block to FIV infection that we observed in lion T 

lymphocytes (see Fig. 1-4). However, the feTRIM5α RBCC (RING-B-box2-coiled-

coiled) domain is abundantly expressed in feline cells (McEwan et al., 2009) and 

little is known about its biological role. 

FIV is potently restricted by TRIM5α proteins from rhesus macaques and 

African green monkeys (Saenz et al., 2005) and by TRIM5α-cyclophilin A fusion 

proteins (TRIMCyps) of New World owl monkeys (Diaz-Griffero et al., 2006b) and 

of certain Old World macaques (Brennan et al., 2008; Newman et al., 2008; 

Virgen et al., 2008; Wilson et al., 2008). Moreover, it was shown that high-titre 

FIV replication in feline cells is dependent upon the interaction between 

cyclophilin A (CypA) and the FIV capsid (McEwan, 2009). The molecular basis for 

this dependency remains poorly understood but it has been hypothesised that 

CypA may regulate the timing of uncoating by stabilising capsid-capsid 

interactions. Although FIV is restricted by primate TRIMCyps and its capsid is 

able to interact with both primate TRIM5α and primate and feline CypA, no 

evidence of a feline TRIMCyp was found in domestic or non-domestic felids 

(McEwan, 2009).  

In this study a synthetic feline TRIM5α-cyclophilin A fusion protein 

(feTRIMCyp) was therefore generated by fusing feline CypA (feCypA) to the 

feTRIM5α RBCC and its antilentiviral activity was tested. As expected, feTRIMCyp 

was highly efficient at preventing infection with both HIV-1 and FIV-based 
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pseudotypes, and feTRIMCyp-expressing cells resisted productive infection with 

either FIV-Fca or FIV-Pco. The restriction of FIV infection by feTRIMCyp was 

reversed by the cyclosporine A (CsA) derivatives NIM811 and Debio-025 indicating 

that the feCypA domain mediates binding to FIV capsid and enables FIV 

restriction by the feTRIM5α RBCC domain present in feTRIMCyp.  

This feline-specific TRIMCyp represents an effective antiviral defence agent 

with very low potential for toxicity and could be used in the treatment of FIV-

positive cats. FeTRIMCyp and FIV infections of the domestic cat further offer a 

unique opportunity to evaluate TRIMCyp-based approaches to genetic therapy 

for HIV infection and the treatment of AIDS in humans (Neagu et al., 2009). 

 

3.2 Materials and Methods 

 

3.2.1 Generation of feTRIMCyp 

 

As the feTRIM5α RBCC is encoded by exons 2 to 6 of feTRIM5, the start codon of 

feCypA was fused to the last codon of exon 6 to generate feTRIMCyp. The feline 

TRIM5α RBCC was reamplified from feT5-CXCR (McEwan, 2009) using primers 

feT5a-1 (5’-GCGGATCCATGGCTTCTGAACTCCTGAAAT-3’) (BamHI restriction site 

underlined) and feT5a-2 (5’-CACGATGGGGTTGACCATTTTTTTAAAGGCTTGTATTAT 

-3’). FeCypA was amplified from cDNA derived from Mya-1 cells using primers 

directed to the predicted feCypA (GenBank AANG01610851), fCypA R69 5’ Nde 

(5’-AACATATGGTCAACCCCATCGTG-3’) (NdeI restriction site underlined) and 

feCypA 3’ Mlu (5’-AAACGCGTTTAGATTTGTCCACAGTCA-3’) (MluI restriction site 

underlined). The amplicon was cloned into the prokaryotic expression vector 

pOPTH using NdeI and MluI restriction sites and subsequently reamplified using 

primers feCypA-1 (5’-ATAATACAAGCCTTTAAAAAAATGGTCAACCCCATCGTG-3’) 

and feCypA-2 (5’-GCGTCGACTTAGATTTGTCCACAGTCAGC-3’) (SalI restriction site 

underlined). The feTRIM5α RBCC and feCypA amplification products were 

annealed and used as templates to generate a feline TRIMCyp gene fusion by 

reamplification with feT5a-1 and feCypA-2. 
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3.2.2 Stable expression of feTRIMCyp 

 

FeTRIMCyp DNA was cloned into BamHI and SalI sites of the retroviral vector 

pDON-AI-2neo (Takara Bio Europe S.A.S.), and the nucleic acid sequence of the 

feTRIMCyp fusion was confirmed by DNA sequencing (GenBank accession number 

HM246715). CrFK cells were transduced with MLV(VSV-G) pseudotypes bearing 

pDON-AI-2neo or the feTRIMCyp-pDON-AI-2neo construct to create stable cell 

lines. 

 

3.2.3 Molecular cloning of feline CD134 

 

Feline CD134 (feCD134) was amplified from cDNA derived from Mya-1 cells using 

primers directed to the predicted feCD134 transcript (GenBank AB128982), 

feCD134-Fwd (5’-TTGGATCCAGGATGAGGGTGGTTGTGGGGGCT-3’) (BamHI 

restriction site underlined) and feCD134-Rev (5’-AAGAATTCTCAGATCTTGGCCAGG 

GTGGAGT-3’) (EcoRI restriction site underlined). The amplicon was cloned into 

the eukaryotic expression vector pDsRed2 (Takara Bio Europe/Clontech) using 

BamHI and EcoRI restriction sites. 

 

3.2.4 Inhibitors of the CypA-capsid interaction 

 

The CypA antagonists cyclosporine A (CsA; Sigma-Aldrich) and its derivatives 

NIM811 (Novartis, Basel, Switzerland) and Debio-025 (Debiopharm S.A., 

Lausanne, Switzerland) were diluted to 5 mM working stock in ethanol or DMSO 

and stored at -20°C until further use. In order to inhibit the interaction between 

the CypA domain of feTRIMCyp and lentiviral capsids, control or feTRIMCyp-

expressing CrFK cells were pre-treated with CypA antagonists for 1 hour at 37°C. 

In lentiviral pseudotype cell entry assays and in FIV replication assays these 

drugs were used at final concentrations of 2 µM or 2.5 µM. In some experiments 

CypA antagonists were titrated to final concentrations of 0 µM, 0.25 µM, 0.5 µM, 

1 µM and 2 µM.  
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3.3 Results 

 

3.3.1 Generation of a synthetic feline TRIM5α-cyclophilin A 

fusion protein (feTRIMCyp) 

 

To assess whether a synthetic TRIMCyp of feline origin would display the potent 

lentiviral restriction activity observed in primate TRIMCyps, feline TRIM5α and 

feline CypA were fused experimentally (Fig. 3-1). FeTRIM5α lacks a full-length 

B30.2 (PRY/SPRY) domain due to a premature stop codon in the exon 

homologous to human TRIM5 exon 8 (McEwan, 2009). As the feTRIM5α RBCC 

domain is encoded by exons 2 to 6, the start codon of feCypA was fused to the 

last codon of exon 6 of feTRIM5. Thus, the synthetic feline TRIMCyp was 

designed to mimic the naturally occurring TRIMCyp of rhesus macaques 

(rhTRIMCyp). The feTRIMCyp transgene was then cloned into the retroviral 

vector pDON-AI-2neo, transduced into CrFK cells and stably selected. 
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Figure 3-1 Scheme for the generation of a synthetic feline TRIM5-cyclophilin A gene fusion (feTRIMCyp). Because feTRIM5 bears 

a premature stop codon in the gene region homologous to human TRIM5 exon 8, the start codon of feline CypA was fused to the last 

codon of exon 6 of feTRIM5. The nucleotide and amino acid sequence of the fusion site is shown. Non-coding exons of feTRIM5 are 

marked by a dotted line and coding exons by a solid line. The colour coding indicates which of the coding exons encode for the feTRIM5α 

RING, B-box 2 and coiled-coil domains and the feCypA domain.  
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3.3.2 Specific restriction of lentiviral replication by feTRIMCyp 

 

In primate TRIMCyp proteins the CypA domain is responsible for binding of the 

protein to retroviral capsids known to interact with cyclophilins, such as HIV-1 

and FIV CA. The TRIM5α RING domain of TRIMCyp then ubiquitinates capsid 

proteins and targets them for rapid proteasomal degradation. This leads to a 

premature uncoating of the virus, a block to reverse transcription and the 

inhibition of viral DNA integration into the host genome. To test whether 

feTRIMCyp could exert a similar early post-entry, reverse transcription block to 

lentiviral replication, FIV(VSV-G), HIV-1(VSV-G) and SIVmac(VSV-G) pseudotypes 

containing a green fluorescent protein (GFP) marker gene were titrated onto 

control or feTRIMCyp-expressing CrFK cells (Fig. 3-2). In this assay the activity of 

feTRIMCyp is inversely proportional to the number of GFP-positive cells.  

In CrFK cells expressing feTRIMCyp, infection with FIV(VSV-G) (Fig. 3-2A) 

and HIV-1(VSV-G) (Fig. 3-2B) pseudotypes was blocked completely, while 

SIVmac(VSV-G) pseudotypes infected feTRIMCyp-expressing CrFK cells with 

similar efficiency to that of control cells (Fig. 3-2C). These data indicate that 

feTRIMCyp possesses potent antilentiviral activity and that this activity is 

specific to lentiviruses whose capsids are able to interact with CypA. Because 

pseudotypes undergo a single cycle of viral entry and gene expression and thus 

distinguish entry from productive infection, it can be concluded that viral 

replication was targeted at an early stage of the viral life cycle. 
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Figure 3-2 Specific inhibition of lentiviral infection at an early post-entry step 

by feTRIMCyp. CrFK cells stably transduced with vector only (CON, circles) or a 

vector bearing feline TRIMCyp (feTRIMCyp, squares) were infected with two-fold 

serial dilutions of (A) FIV(VSV-G), (B) HIV-1(VSV-G) or (C) SIVmac(VSV-G) 

pseudotypes containing GFP as a marker gene. Infection was assessed 72 hours 

post-infection by flow cytometry. Points represent the mean of duplicate infections 

assayed in duplicate (n=2). 
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3.3.3 Reversal of the antilentiviral activity of feTRIMCyp by CypA 

antagonists 

 

The mechanism of the inhibitory effect of feTRIMCyp was further confirmed by 

the addition of specific antagonists of the CypA-capsid interaction. Control or 

feTRIMCyp-expressing CrFK cells were pre-treated with 2 µM CsA or its non-

immunosuppressive derivatives NIM811 or Debio-025 and infected with FIV(VSV-

G) and HIV-1(VSV-G) pseudotypes as before (Fig. 3-3). While CsA reversed the 

inhibition of HIV-1(VSV-G) pseudotype infection of target cells by feTRIMCyp 

modestly (Fig. 3-3D), it was unable to reverse the inhibition of FIV(VSV-G) 

pseudotype infection (Fig. 3-3A). NIM811 was slightly more effective and 

reversed the inhibition of FIV(VSV-G) modestly (Fig. 3-3B) and of HIV-1(VSV-G) 

completely (Fig. 3-3E). Finally, Debio-025 was able to block the inhibitory 

activity of feTRIMCyp against both FIV(VSV-G) (Fig. 3-3C) and HIV-1(VSV-G) (Fig. 

3-3F) pseudotype infection. These data indicate that the restriction of FIV by 

feTRIMCyp is less sensitive to antagonism by CsA and NIM811 than that of HIV-1. 

Debio-025 is the most potent of the tested CypA antagonists at the 

concentration used. 

Titrating the CypA antagonists confirmed the differential sensitivities of 

FIV(VSV-G) and HIV-1(VSV-G) pseudotypes to reversal of the feTRIMCyp 

restriction (Fig. 3-4). Restriction of HIV-1(VSV-G) was readily reversed by NIM811 

and Debio-025 (Fig. 3-4B,C), while Debio-025 alone reversed the restriction of 

FIV(VSV-G) to near control levels of infection (Fig. 3-4C). CsA displayed a low 

potency at all concentrations used (Fig. 3-4A). These findings suggest that the 

antilentiviral activity of feTRIMCyp against FIV is extremely potent, and that the 

FIV CA-feTRIMCyp interaction is less sensitive to disruption by CypA antagonists 

than the HIV-1 CA-feTRIMCyp interaction. 
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Figure 3-3 Reversal of feTRIMCyp-mediated lentiviral restriction by CypA 

antagonists. CrFK cells stably transduced with vector only (circles) or a vector 

bearing feTRIMCyp (squares) were infected with a two-fold serial dilution of 

FIV(VSV-G) (A-C) or HIV-1(VSV-G) (D-F) pseudotypes containing GFP as a 

marker gene. Infections were performed in the presence of 2 μM of the CypA 

antagonists CsA (A,D), NIM811 (B,E), or Debio-025 (C,F) (open symbols) or in the 

presence of their respective solvents DMSO (CsA and NIM811) or ethanol (Debio-

025) (filled symbols). Infection was assessed 72 hours post-infection by flow 

cytometry. Points represent the mean of duplicate infections assayed in duplicate 

(n=2). 
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Figure 3-4 Sensitivity of FIV and HIV-1 to reversal of feTRIMCyp restriction 

by CypA analogues. CrFK cells stably expressing feTRIMCyp were incubated 

with CsA (A), NIM811 (B) and Debio-025 (C) at final concentrations of 0, 0.25, 0.5, 

1.0, or 2.0 µM prior to infection with FIV(VSV-G) (circles) or HIV-1(VSV-G) 

(squares) pseudotypes containing GFP as a marker gene. Infection was assessed 

72 hours post-infection by flow cytometry. Points represent the mean of duplicate 

infections assayed in duplicate (n=2). 

 

0

20

40

60

80

100 FIV

HIV-1
A

0

20

40

60

80

100 B

P
e
rc

e
n

t 
in

fe
c
ti

o
n

0.0 0.5 1.0 1.5 2.0

0

20

40

60

80

100 C

Inhibitor concentration (M)



100 

 

3.3.4 Inhibition of productive lentiviral infection by feTRIMCyp 

and its reversal by CypA antagonists 

 

Next, the ability of feTRIMCyp to inhibit productive infection with replication-

competent feline lentiviruses was investigated. CrFK cells support the 

replication of cell culture-adapted, CD134-independent feline lentiviruses such 

as the FIV-Fca strain Petaluma isolate F14 or FIV-Pco isolate CoLV. CrFK cells 

stably transduced with vector only or a vector bearing feTRIMCyp were infected 

with F14 and CoLV (Fig. 3-5). Expression of feTRIMCyp rendered CrFK cells 

refractory to the replication of both viruses, while they replicated efficiently in 

control cells.  

Figure 3-5 Inhibition of productive replication of cell culture-adapted, CD134-

independent FIV strains by feTRIMCyp. CrFK cells stably transduced with 

vector only (circles) or a vector bearing feTRIMCyp (squares) were infected with 

FIV-Fca Petaluma strain F14 (A) or FIV-Pco strain CoLV (B). Cell culture 

supernatants were collected on days 0, 2, 4, 7 and 10 post-infection and assayed 

for RT activity by non-isotopic Lenti-RT assay. Points represent the mean of 

duplicate infections assayed in duplicate (n=2).  

 

The infection assays were then repeated in the presence of 2.5 µM NIM811 and 

Debio-025 or their solvents (DMSO or ethanol, respectively) to determine 

whether CypA antagonists could reverse the inhibitory effect of feTRIMCyp on 

productive viral replication (Fig. 3-6). Both NIM811 and Debio-025 blocked 

replication with FIV-Fca and FIV-Pco in control cells (Fig. 3-6A-D), indicating an 
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consistent with previous studies, suggesting a role for CypA in the replication of 

FIV (Lin and Emerman, 2006). In contrast, both Debio-025 (Fig. 3-6B,D) and 

NIM811 (Fig. 3-6A,C) countered the inhibition of viral growth by feTRIMCyp to a 

small extent. Moreover, whereas FIV-Fca replication in control cells was 

accompanied by the formation of prominent syncytia (Fig. 3-6E), no syncytia 

were observed in feTRIMCyp-expressing cells infected with FIV-Fca (Fig. 3-6G). 

Treatment of control cells with 2.5 µM Debio-025 prior to infection with FIV-Fca 

prevented viral growth and syncytium formation (Fig. 3-6F). However, pre-

treatment of feTRIMCyp-expressing cells with Debio-025 restored viral growth to 

a level at which small syncytia could be visualised (Fig. 3-6H, arrows) and RT 

activity could be detected (Fig. 3-6B). 
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Figure 3-6 Reversal of feTRIMCyp-mediated restriction of productive FIV 

infection by CypA antagonists. CrFK cells stably transduced with vector only 

(circles) or a vector bearing feTRIMCyp (squares) were infected with FIV-Fca 

Petaluma strain F14 (A,B) or FIV-Pco strain CoLV (C,D). Infections were 

performed in the presence of 2.5 μM of the CypA antagonists NIM811 (A,C), or 

Debio-025 (B,D) (open symbols) or in the presence of their respective solvents 

DMSO (NIM811) or ethanol (Debio-025) (filled symbols). Cell culture supernatants 

were collected on days 0, 2, 4, 7 and 10 post-infection and assayed for RT activity 

by non-isotopic Lenti-RT assay. Points represent the mean of duplicate infections 

assayed in duplicate (n=2). (E-H) Syncytium formation in CrFK cells infected with 

FIV-Fca. Cells expressing vector only (E,F) or feTRIMCyp (G,H) were infected with 

FIV-Fca in the presence of 2.5 µM Debio-025 (F,H) or its solvent ethanol (E,G). 

They were fixed and stained 10 days post-infection with 1.0% methylene blue-

0.2% basic fuchsin in methanol. The arrows indicate small syncytia, magnified in 

the inset (H). 
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It needs to be considered that, where endogenous CypA and ectopically 

expressed feTRIMCyp are coexpressed, the CypA antagonists prevent binding of 

both proteins to FIV CA. While disruption of the interaction between endogenous 

CypA and FIV CA would impact negatively on viral replication, blocking of 

binding of feTRIMCyp to FIV CA would rescue viral growth. It appears that, at a 

CypA antagonist concentration of 2.5 µM, the activity of feTRIMCyp is inhibited 

while binding of endogenous CypA to FIV CA continues to occur at low levels so 

that in total viral replication is favoured. To gain a better understanding of the 

dynamics between inhibition and restoration of viral infection in the presence of 

endogenous and exogenous CypA and CypA antagonists, the viral replication 

assay was repeated in the presence of a reduced antagonist concentration of 2 

µM (Fig. 3-7). 

While growth of FIV-Pco in control cells was suppressed efficiently by both 

NIM811 (Fig. 3-7E) and Debio-025 (Fig. 3-7F), growth of FIV-Fca was reduced 

modestly (Fig. 3-7B,C). In feTRIMCyp-expressing cells FIV-Fca replication was 

partially restored by 2 µM NIM811 and completely by Debio-025 (Fig. 3-7B,C), 

with viral replication accompanied by prominent syncytium formation. Notably, 

the CypA antagonists did not restore FIV-Pco growth in the presence of 

feTRIMCyp. 

It can be concluded that the effect of CypA antagonists on the interaction 

between endogenous and exogenous CypA with FIV CA was concentration-

dependent. Lower CypA antagonist concentrations were needed to overcome the 

inhibitory activity of feTRIMCyp than were necessary to fully block binding of 

endogenous CypA to FIV CA. Again, Debio-025 was more potent than NIM811. 

Differences between FIV strains were observed which seem to have a different 

degree of dependence on endogenous CypA. 2 µM Debio-025 restored FIV-Fca F14 

growth in feTRIMCyp-expressing cells which indicates that the number of 

endogenous CypA molecules binding to FIV CA in these cells was sufficiently high 

to support F14 growth. In contrast, endogenous CypA was insufficient to promote 

FIV-Pco CoLV replication. Thus, FIV strains may have adapted to the CypA levels 

in their natural target cells so that these levels are optimal for their growth.  
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Figure 3-7 Restoration of viral replication in feTRIMCyp-expressing CrFK 

cells by 2.0 µM NIM811 and Debio-025. CrFK cells stably transduced with vector 

only (circles) or a vector bearing feTRIMCyp (squares) were infected with FIV-Fca 

Petaluma strain F14 (A-C) or FIV-Pco strain CoLV (D-F). Infections were 

performed in the presence of 2 μM of the CypA antagonists NIM811 (B,E), or 

Debio-025 (C,F) (open symbols) or in their absence (A) (filled symbols). Cell 

culture supernatants were collected on days 0, 2, 4, 6, 8 and 10 post-infection and 

assayed for RT activity by non-isotopic Lenti-RT assay. Points represent the mean 

of duplicate infections assayed in duplicate (n=2). 
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In addition to cell culture-adapted, CD134-independent feline lentiviruses the 

activity of feTRIMCyp against the primary, CD134-dependent FIV-Fca strains 

Glasgow 8 (GL8) and PPR was assessed. CrFK cells stably expressing vector only 

or feTRIMCyp were transduced with the retroviral vector pDsRed2 or a feline 

CD134-pDsRed2 construct and stably selected. All four cell lines were infected 

with GL8 and PPR (Fig. 3-8). Replication of GL8 (Fig. 3-8A) and PPR (Fig. 3-8B) 

occurred only in the presence of feline CD134 and was completely blocked by 

the feline TRIMCyp fusion protein.  

Figure 3-8 Inhibition of productive replication of primary, CD134-dependent 

FIV strains by feTRIMCyp. CrFK cells stably transduced with vector only (circles) 

or a vector bearing feTRIMCyp (squares) were retransduced with the retroviral 

vector pDsRed2 (filled symbols) or a feline CD134-pDsRed2 construct (open 

symbols) and infected with FIV-Fca strain GL8 (A) or FIV-Fca strain PPR (B). Cell 

culture supernatants were collected on days 0, 1, 3-7 and 10 post-infection and 

assayed for RT activity by non-isotopic Lenti-RT assay. Points represent the mean 

of duplicate infections assayed in duplicate (n=2).  
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feTRIM5α to bind lentiviral capsids is compensated for by the feCypA domain of 

feTRIMCyp. FeTRIMCyp potently blocked infection with FIV(VSV-G) and HIV-1 

(VSV-G) pseudotypes at an early post-entry, pre-reverse transcription step (Fig. 

3-2). In contrast, SIVmac pseudotype replication was unaffected by feTRIMCyp 

because of the inability of SIVmac CA to interact with cyclophilins (Franke et al., 

1994; Braaten et al., 1996b; Lin and Emerman, 2006) (Fig. 3-2). Furthermore, 

feTRIMCyp completely ablated in vitro growth of all tested cell-culture adapted, 

CD134-independent (Fig. 3-5) and primary, CD134-dependent strains of FIV (Fig. 

3-8). 

The specificity of the feTRIMCyp-capsid interaction is dependent on its 

feCypA domain; thus, this interaction, like the interaction between endogenous 

feCypA and lentiviral capsid, was sensitive to disruption by CsA and its 

derivatives NIM811 and Debio-025. In control cells, CypA antagonists blocked the 

replication of FIV(VSV-G) and HIV-1(VSV-G) pseudotypes (Fig. 3-3) and of 

replication-competent FIV-Fca and FIV-Pco viral strains (Fig. 3-6 and 3-7). 

Interestingly, the CypA antagonists displayed different degrees of potency to 

inhibit lentiviral replication with CsA having the lowest and Debio-025 having the 

highest activity at the antagonist concentrations used. These findings indicate 

that the CypA antagonists bind CypA with different affinities. In fact, the Ki 

values (a measure of the binding affinity of an inhibitor) of CsA, NIM811 and 

Debio-025 for human CypA inhibition have been measured to be 9.8, 2.1 and 

0.35 nM, respectively (Ptak et al., 2008). Binding affinities of the CypA 

antagonists to feCypA have not been determined. In feTRIMCyp-expressing cells, 

the antilentiviral activity of feTRIMCyp was modestly reversed by Debio-025 and 

partially by NIM811, but not by CsA (Fig. 3-4, 3-6 and 3-7). As mentioned before, 

in cells stably expressing feTRIMCyp, endogenous and exogenous feCypA are co-

expressed and influence viral replication in opposite manners. Whereas the 

presence of endogenous feCypA is essential for viral replication (McEwan, 2009), 

feTRIMCyp acts as a viral restriction factor. CypA antagonists negatively affect 

the activities of both forms of feCypA. Hence, the overall effect of CypA 

antagonists on viral replication is determined by the affinity of feCypA for the 

respective lentiviral capsid and on the dependence of the virus on endogenous 

feCypA. Indeed, it was observed that HIV-1 replication was more susceptible to 

CsA and its derivatives than FIV replication (Fig. 3-3 and 3-4). Because the 

binding affinities of FIV and HIV-1 CA for feline and human CypA lie within the 
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same range (McEwan, 2009) it is unlikely that FIV CA binding to feCypA and 

feTRIMCyp is stronger than that of HIV-1 CA. Thus, it can be concluded that HIV-

1 replication is dependent on higher endogenous feCypA levels than FIV 

replication. Moreover, 2 μM NIM811 and Debio-025 inhibited FIV-Pco CoLV growth 

in control cells completely and FIV-Fca F14 growth only modestly (Fig. 3-7). In 

feTRIMCyp-expressing cells infected with FIV-Fca F14, Debio-025 was able to 

overcome feTRIMCyp and to restore infection to control cell levels while the 

drug showed no activity against feTRIMCyp in FIV-Pco CoLV-infected cells. Again, 

because the FIV CA proline-rich feCypA binding loop is conserved across different 

FIV strains (McEwan, 2009) the more likely explanation for these results is that 

FIV-Pco strain CoLV requires higher endogenous feCypA levels for its replication 

than FIV-Fca F14.   

Although this study has confirmed the requirement of feCypA for efficient 

FIV replication, the mechanism by which feCypA promotes FIV growth is still 

unknown. The FIV feCypA binding site within FIV CAN differs from the HIV-1 CypA 

binding site in that the proline-rich loop is considerably shorter which results in 

a reduced region of contact with CypA (McEwan, 2009). Furthermore, the HIV-1 

CAN Gly89-Pro90 bond exists as cis-trans isomers. Cis-trans isomerisation is 

mediated by human CypA and it has been proposed that this enzymatic reaction 

in combination with structural changes in HIV-1 CA contributes to capsid stability 

which prevents premature uncoating of viral particles (Braaten et al., 1996a; 

Braaten et al., 1996b; Bosco et al., 2002; Howard et al., 2003; Bosco and Kern, 

2004; Luban, 2007; Li et al., 2009; Ylinen et al., 2009). In FIV CAN, however, the 

glycine in position 89 is replaced by an arginine (Arg89) and the Arg89-Pro90 

bond is not cis-trans isomerised by feCypA (Leo James, personal 

communication). The glycine to arginine change is structurally important as 

Arg89 comes in close proximity with feCypA residues Phe60 and Phe113. Cation-

π interactions between these residues may contribute to the affinity of the 

interaction between FIV CAN and feCypA (McEwan, 2009). In the absence of 

feCypA enzymatic activity simple binding to FIV CAN may be sufficient for 

promoting FIV infectivity (Luban, 2007). 

Additionally, the data presented here indicate that the feTRIM5α RBCC 

domain possesses the ability to target lentiviral capsids for proteasome-

mediated degradation. Although feTRIM5α lacks a capsid-binding B30.2 

(PRY/SPRY) domain and therefore an antiviral activity, it is abundantly 
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expressed in feline cells. Recent studies have provided evidence that human 

TRIM5α is involved in innate immune signalling (Pertel et al., 2011; Tareen and 

Emerman, 2011). TRIM5α bound to the lentiviral capsid lattice has been shown 

to interact with the heteromeric, ubiquitin-conjugating enzyme UBC13–UEV1A 

(UBE2N-UBE2V1) and to synthesise unattached K63-linked ubiquitin chains that 

activate the TAK1 protein kinase complex and stimulate AP-1 (activator protein-

1) and NF-κB signalling (Pertel et al., 2011). Thus, TRIM5α is both an 

antiretroviral restriction factor and a pattern recognition receptor for the viral 

capsid lattice. Because of the inability of feTRIM5α to bind lentiviral capsids, it 

is important to note that human TRIM5α also signals in the absence of capsid but 

that binding to capsid greatly enhances signalling and expression of 

inflammatory chemokines and cytokines (Pertel et al., 2011). Capsid-

independent signalling is mediated by the TRIM5α RING domain rather than the 

B30.2 (PRY-SPRY) domain and activates AP-1 and NF-κB (Pertel et al., 2011; 

Tareen and Emerman, 2011). Thus, a critical role in immune signalling may 

explain why the expression of the TRIM5α RBCC domain remains high in felids. 

Given the high potency of feTRIMCyp to block lentiviral replication, 

feTRIMCyp would be an excellent candidate for use in gene therapy in FIV-

infected cats. Treatment of the lentivirus-infected host using feTRIMCyp may be 

achieved by transduction of bone marrow-derived haematopoietic progenitor 

stem cells and repopulation of the host immune system following bone marrow 

ablation. However, transduction of peripheral blood-derived CD4+ T cells and ex 

vivo expansion of the transduced cells prior to repopulation of the host immune 

system may be sufficient to provide a pool of FIV-resistant T lymphocytes to 

overcome the immunodeficiency associated with feline AIDS. Accordingly, in 

addition to the successful in vitro studies described here in vivo analyses should 

be performed to examine the effects of feTRIMCyp expression on the function 

and development of feline haematopoietic stem cells and T lymphocytes and to 

exclude any detrimental effects that may manifest following ectopic expression 

of feTRIMCyp in primary cells.  

An insight into the likely therapeutic utility of TRIMCyp fusions in humans 

has been provided by Neagu et al. (2009) in their study on the effect of stable 

expression of a synthetic human TRIMCyp on human T cell function. Human CD4+ 

T lymphocytes stably transduced with human TRIMCyp (hT5Cyp) proliferated at 

the same rate, produced similar levels of IL-2 and expressed comparable levels 
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of cell surface CD4, CXCR4 and MHC class I as cells transduced with an empty 

vector (Neagu et al., 2009). Human CD4+ T cells stably expressing hT5Cyp were 

then transplanted into Rag2-/-/γc-/- mice, a mouse strain that lacks B, T and NK 

cells and which does not reject xenografts (Mazurier et al., 1999). Following 

challenge of the engrafted mice with HIV-1 they resisted infection, as evidenced 

by reduced plasma viral load and maintenance of CD4+ T lymphocyte numbers in 

peripheral blood and in lymphoid tissues (Neagu et al., 2009). Rag2-/-/γc-/- mice 

were also transplanted with hT5Cyp-transduced CD34+ haematopoietic 

progenitor cells. The mean viraemia following HIV-1 challenge was less than 30% 

of that observed in mice reconstituted with a non-functional TRIMCyp construct 

(HT5CypHis126Gln) (Neagu et al., 2009). Thus, initial studies with a synthetic 

human TRIMCyp offer great hope for the use of TRIMCyp as an approach to gene 

therapy for lentiviral infections. TRIMCyp-based lentiviral gene therapies have 

significant advantages over other approaches. By targeting viral entry the virus is 

denied the opportunity to replicate and thus, escape mutants cannot be 

generated. Moreover, as TRIMCyp does not target the function of an 

endogenously expressed molecule, it is unlikely to have side effects that are 

detrimental to the host. In addition, the generation of synthetic TRIMCyp fusion 

proteins using endogenous TRIM5α and CypA circumvents the potential pitfall of 

the host mounting an immune response against xenoantigens.  
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 Investigation into the role of APOBEC3 cytidine deaminases in 4

the Felidae 

4.1  Summary  

 

APOBEC3 (A3) proteins are cellular cytidine deaminases that catalyse cytidine-

to-uracil changes in nascent viral minus-strand cDNA during reverse 

transcription. Viral uracil-containing cDNAs that escape degradation by host DNA 

repair enzymes give rise to viral cDNAs containing guanine-to-adenine 

hypermutations (Harris et al., 2003; Lecossier et al., 2003; Mangeat et al., 2003; 

Mariani et al., 2003; Zhang et al., 2003; Bishop et al., 2004; Liddament et al., 

2004). A low number of proviruses will survive; however, the hypermutations 

lead to an increased number of alternate splicing and premature termination 

events of the viral transcripts. Non-functional proteins are produced and the 

virions are defective and non-infective (Zheng and Peterlin, 2005). Deamination-

independent mechanisms of A3 proteins to block viral replication have also been 

reported. It has been shown that both wild-type forms and catalytically inactive 

mutants of human APOBEC3G and APOBEC3F interfere with individual steps of 

reverse transcription, such as minus- and plus-strand DNA synthesis, and cDNA 

transfer and elongation, which consequently leads to a reduction of viral cDNA 

transcript levels being produced (Newman et al., 2005; Holmes et al., 2007; 

Iwatani et al., 2007). Human, simian and feline A3s are overcome and targeted 

for proteasomal degradation by lentiviral Vif proteins in a species-specific 

manner (Conticello et al., 2003; Marin et al., 2003; Sheehy et al., 2003; Stopak 

et al., 2003; Yu et al., 2003; Mehle et al., 2004b; Munk et al., 2008; Stern et al., 

2010; Zielonka et al., 2010). Feline A3C proteins are counteracted by the FeFV 

Bet protein (Lochelt et al., 2005; Munk et al., 2008).  

A3 proteins belong to a large family of cytidine deaminases that have 

arisen to protect vertebrate genomes from mobile endogenous retroelements, 

the ancestors of modern exogenous retroviruses (Mangeat and Trono, 2005; 

Goila-Gaur and Strebel, 2008). During their evolution A3 genes have undergone a 

series of gene duplications and positive selection (Sawyer et al., 2004; Zhang 

and Webb, 2004; Conticello, 2008). A3s are unique in their ability to restrict 

retroviruses and their presence is limited to placental mammals (Conticello, 

2008). All species possess two ancestral A3 genes from which different 
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repertoires of A3 genes have evolved through gene duplications and fusions, 

ranging from only one double deaminase domain A3 gene in rodents, pigs and 

cattle to seven single and double catalytic domain A3 genes in primates 

(Conticello et al., 2005; Munk et al., 2008). The domestic cat genome possesses 

four single deaminase domain A3 genes that give rise to a fifth, double catalytic 

domain A3 protein (A3CH) by read-through alternative splicing using exons from 

both A3C and A3H genes (Munk et al., 2008). 

In the absence of a functional TRIM5α in felids and no evidence for a 

naturally occurring feline TRIMCyp, differences in the antiretroviral activities of 

A3 proteins may be responsible for the inability of FIV to grow efficiently in lion 

T lymphocytes (see Fig. 1-4) and to establish immunodeficiency in lions. Studies 

on the phylogeny of feline lentiviruses and felids have indicated that lions have 

been harbouring lentiviruses for a considerably longer time than domestic cats 

(Johnson et al., 2006; Antunes et al., 2008; Poss et al., 2008). Thus, we 

hypothesise that lion A3 proteins are more potent against FIV than cat A3s, or, 

alternatively, that the anti-A3 activity of FIV-Ple Vif has decreased over time 

resulting in host-virus adaptation and a lower pathogenicity of FIV infections in 

lions.  

In this study lion A3 cDNAs were amplified, cloned and characterised. The 

organisation of the lion A3C gene locus was determined and found to resemble 

that of domestic cats. Furthermore, the activities of lion A3 proteins against FIV 

lacking Vif (FIVΔvif) and FIV harbouring Vifs of different feline lentiviruses were 

compared to those of domestic cats and pumas in single-cycle replication assays. 

While all felid A3C isoforms showed only modest activity against FIVΔvif and FIV 

wild-type, all felid A3H and A3CH isoforms restricted FIVΔvif completely. 

Differences were observed between the activities of cat and lion A3CH (FcaA3CH 

and PleA3CH, respectively) against FIV containing FIV-Fca Vif and FIV-Pco Vif, 

with PleA3CH being more potent than FcaA3CH. It should be noted that the 

expression of particular FIV Vifs in 293T cells, which were used in A3 activity 

assays, was inefficient so that the activity of FIV-Ple E Vif and FIV-Oma Vif 

against feline A3s could not be studied.  

Furthermore, expression levels of domestic cat and lion A3 genes in 

several cat cell lines and cat tissues as well as primary lion PBMCs were 

quantified. Domestic cat and lion A3C and A3H genes were expressed modestly 

and their expression was upregulated by interferons only in certain cell lines. 
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Interestingly, A3C gene expression was higher than that of A3H in cat cell lines 

and tissues, whereas the opposite trend was found in lion PBMCs. FcaA3CH and 

PleA3CH expression levels were low in all samples tested.  

Surprisingly, an investigation into the long-term evolution of lion A3 

proteins in the presence or absence of FIV infection revealed no evidence for 

selection pressure by FIV on A3 proteins. 

The data presented here confirm the important role of A3 proteins in the 

protection of mammalian genomes against DNA mutators and support the 

hypothesis of A3-FIV Vif coadaptation in lions that may prevent 

immunodeficiency from occurring. 

 

4.2 Materials and Methods 

 

4.2.1 Amplification and molecular cloning of feline APOBEC3 

cDNAs 

 

Cat (Felis catus, Fca), lion (Panthera leo, Ple) and puma (Puma concolor, Pco) 

A3s were amplified from cDNA derived from Mya-1 cells, Angolan lion PBMCs or 

puma PBMCs using primers directed to their predicted sequences. FcaA3Ca and 

FcaA3H (GenBank AY971954, EU011792) (Munk et al., 2008) were amplified using 

the primer pairs FeA3Ca F (5’-ACTGGTCGACACCATGGAGCCCTGGCGCCCCAGCCCA 

AGAAACCCAATGG-3’) and FeA3Ca R (5’-ACAGCGGCCGCTCACCTAAGGATTTCTTGA 

AGCTCTGCAGCC-3’), and FeA3H F (5’-ACTGGTCGACACCATGAATCCACTACAGGAA 

GTCATATTC-3’) and FeA3H R (5’-ACAGCGGCCGCTCATTCAAGTTTCAAATTTCTGAA 

GTCATTC-3’), respectively. The FcaA3H cDNA sequence obtained differed in two 

positions from the GenBank entry (G193T and G231C), resulting in two changes 

at the amino acid level (Ala65Ser and Met77Ile). These changes may represent 

nucleotide polymorphisms in the different cell lines used for amplification (CrFK 

compared to Mya-1 cells). FcaA3CH (GenBank EF173021) (Munk et al., 2008) was 

amplified using primers FeA3Ca F and FeA3H R. PleA3C1 and PleA3H (GenBank 

EU007543, EU007549) were obtained using primers LiA3C1 F (5’-

ACTGGTCGACACCATGGAGCCCTGGCGCCCCAGCCCAAGAAACCCAATGC-3’) and 

LiA3C1 R (5’-ACAGCGGCCGCTCACCTAAGGATTTCTTGAAGCTCTGCAGCC-3’), and 
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LiA3H F (5’-ACTGGTCGACACCATGAATCCACTACAAGAAGACATATTC-3’) and LiA3H 

R (5’-ACAGCGGCCGCTCATTCAAGTTTCAAATTTCTGAAATCATTC-3’), respectively. 

PleA3CH (GenBank GU097662) (Zielonka et al., 2010) was amplified using 

primers LiA3C2 F (5’-ACTGGTCGACACCATGGAGCCCTGGCGCCCCAGCCCAAGAAACC 

CAATGG-3’) and LiA3H R. PcoA3C and PcoA3H (GenBank EU007545, EU007552) 

were amplified using primers LiA3C2 F and LiA3C1 R, and primers LiA3H F and 

LiA3H R, respectively. PcoA3CH (GenBank GU097659) (Zielonka et al., 2010) was 

amplified using primers LiA3C2 F and LiA3H R. All forward primers contained SalI 

restriction sites and all reverse primers NotI restriction sites (restriction sites 

underlined). The amplicons were cloned into the eukaryotic expression vector 

VR1012 (Vical Inc.) using SalI and NotI sites.  

 

4.2.2 Characterisation of the lion A3C gene locus 

 

The domestic cat genome contains an A3 gene locus (GenBank EU109281) on 

chromosome B4 in which three A3C genes (A3Cc, A3Ca and A3Cb), which have 

arisen by two gene duplication events and thus share high nucleotide similarity, 

are aligned in a head-to-tail orientation (Munk et al., 2008). The A3C genes 

consist of four exons (E1-E4) and three introns (I1-I3). A3Cc and A3Ca and A3Cb, 

respectively, are separated from each other by a stretch of genomic sequence. 

Downstream of A3Cb lies A3H. In order to determine the number and order of 

PleA3C genes in the lion genome primers were designed based on the published 

sequences of PleA3C1 and PleA3C2 (GenBank EU007544) and fragments between 

exons were amplified using GoTaq Flexi DNA polymerase (Promega). Domestic 

cat A3Cc can be distinguished from A3Ca and A3Cb by shorter I1 and I2. Primers 

used to amplify the fragment between PleA3C E1 and E2 were LiA3C-Ex1-Fwd 

(5’-ATGGAGCCCTGGCGCCCCA-3’) and LiA3C-Ex2-Rev (5’-CCGAAAAACTCCCCAGTC 

GCTGTCATT-3’) (primers were designed to bind to both PleA3C1 and PleA3C2). 

Primers used to amplify the fragment between E2 and E3 were LiA3C-Ex2-Fwd-1 

(5’-CCTTCCATTTCCAGTTTCCA-3’) and LiA3C-Ex3-Rev-1 (5’-GTCACGGAACCAAAAG 

AGGA-3’) (primer pair designed to bind specifically to PleA3C1) and LiA3C-Ex2-

Fwd-2 (5’-TGGGCGGAAACTCTGTTATC-3’) and LiA3C-Ex3-Rev-2 (5’-ACGGATACTG 

GTTACGGAAC-3’) (primer pair designed to bind specifically to PleA3C2). 

Alternative reverse primers used to bind to E3 were LiA3C-Ex3-Rev-3 (5’-
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TATTCATCACGGCATGGATAC-3’) (specific to PleA3C1) and LiA3C-Ex3-Rev-4 (5’-

TCCTCATCACGGTACGGATAC-3’) (specific to PleA3C2). Fragments between E3 of 

one PleA3C gene and E1 of the following PleA3C gene were amplified using 

primer pairs LiA3C-Ex3-Fwd-1 (5’-GTATCCATGCCGTGATGAATA-3’) and LiA3C-

Ex1-Rev-1 (5’-TGGGGCGCCAGGGCTCCAT-3’) (specific to PleA3C1) or LiA3C-Ex3-

Fwd-2 (5’-GTATCCGTACCGTGATGAGGA-3’) and LiA3C-Ex1-Rev-1 (specific to 

PleA3C2). Amplified gene fragments were cloned into the vector pCR2.1-TOPO 

(Life Technologies) and sequenced. In this study a previously uncharacterised 

PleA3C was discovered which differs from PleA3C1 in one nucleotide position in 

E3 (A499G) and in four nucleotides in E4 (G515A, A539G, A561G, G575A). This 

new PleA3C was named PleA3C3, amplified with primers LiA3C1 F and LiA3C3-

Rev (5’-ACAGCGGCCGCTTACCTAAGGATTTCCTG-3’) (NotI restriction site 

underlined) and cloned into VR1012 (Vical Inc.) using SalI and NotI restriction 

sites. 

 

4.2.3 Amplification and molecular cloning of FIV Vifs 

 

All FIV Vifs used in this study were tagged with a C-terminal haemagglutinin (HA) 

tag. FIV-Fca Vif was amplified from the GL8Mya molecular clone (Hosie et al., 

2002) of FIV-Fca isolate GL8 using primers GL8 Vif F (5’-ACTGGTCGACACCATGAG 

TGACGAAGATTGGCAGG-3’) and GL8 Vif Rev HA (5’-ACAGCGGCCGCTCAAGCGTAA 

TCTGGAACATCGTATGGGTATAGTTTTCCCGACCATAACAG-3’). FIV-Ple E Vif was 

amplified from cDNA derived from Mya-1 cells infected with a primary isolate of 

FIV-Ple E obtained from serum of a wild, 8 year old male lion (Sangre) from the 

Moremi reserve in the Okavango Delta, Botswana (McEwan, 2009). Primers were 

designed based on the available FIV-Ple E 1027 sequence (GenBank EU117992) 

(Pecon-Slattery et al., 2008a): LLV-E Vif F (5’-ACTGGTCGACACCATGAGTGGTGAA 

GATATAAGTCAGG-3’) and LLV-E Vif Rev HA (5’-ACAGCGGCCGCTCAAGCGTAATCT 

GGAACATCGTATGGGTAGCCACCTTTCCCTATTAAATATAG-3’). FIV-Pco Vif was 

amplified from cDNA derived from Mya-1 cells infected with FIV-Pco strain PLV-

14 (GenBank U03982) using primers PLV Vif F (5’-ACTGGTCGACACCATGGCTTCAA 

TCAGACAGACAGAACAG-3’) and PLV Vif Rev HA (5’-ACAGCGGCCGCCTCAAGCGTAA 
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TCTGGAACATCGTATGGGTAGAATGATAATGTTAAATCCATCCA-3’). FIV-Oma Vif 

was amplified from FIV-Oma molecular clone pOma3 (GenBank AY713445) using 

primers FIV-Oma Vif F (5’-ACTGGTCGACACCATGAGTGGTGAAGAGGATTGGCAGGT 

AAG-3’) and Oma3 Vif Rev HA (5’-ACAGCGGCCGCTCAAGCGTAATCTGGAACATCGT 

ATGGGTAACTCTTCATCCGATATAACACTTCATAGGGTACA-3’). All forward primers 

contained SalI restriction sites and all reverse primers NotI restriction sites 

(restriction sites underlined). The HA tag coding sequence in the reverse primers 

is marked in bold. The amplicons were cloned into the eukaryotic expression 

vector VR1012 (Vical Inc.) using SalI and NotI sites.  

FIV-Fca GL8 Vif was also cloned into the FIV-Fca Gag-Pol-expressing 

construct FP93 (Saenz and Poeschla, 2004) in order to express vif in cis to other 

viral genes and to achieve higher vif expression levels in 293T cells. FP93 is 

based on the FIV-Fca strain Petaluma (molecular clone 34TF10) (GenBank 

M25381) (Talbott et al., 1989) and bears deletions in vif, orf2 and env, among 

others. To delete large parts of vif, a unique SalI restriction site near the 5’ end 

of vif has been introduced into FP93 (nucleotide positions 5390-5395) (Saenz and 

Poeschla, 2004). FP93 also possesses a unique BclI restriction site between 

nucleotides 6782 and 6787. Untagged FIV-Fca GL8 Vif was amplified with primers 

GL8Mya Vif-Fwd (5’-ACTGGTCGACATTGGCAGGTAAGTAGAAGACT-3’) (SalI 

restriction site underlined) and GL8Mya Vif-Rev (5’-ACATGATCAGTGGGATTTGTA 

ATGGGTCTGTAC-3’) (BclI restriction site underlined). FP93 was propagated in 

Escherichia coli SCS110 cells (dam methylation-negative; Stratagene, LaJolla, 

U.S.A.). GL8 Vif was then cloned into FP93 using SalI and BclI restriction sites. 

The construct was sequenced using primers GL8MyaVifSeq-Fwd (5’-

GTGTCTTAGGAACTCACCTCCA-3’), GL8MyaVifSeq-F_1 (5’-TGAGACTATAACAGGAC 

CATTAG-3’) and GL8MyaVifSeq-Rev (5’-ATCTCTAGTATGAAAGCTCCAT-3’). Site-

directed mutagenesis was performed to delete one nucleotide near the 5’ end of 

vif to shift the vif sequence after the SalI restriction site into frame with the vif 

start codon. Mutagenesis primers used were GL8MVifMut-Fwd (5’-

CCTGAAGGGGATGAGTGATCGACATTGGCAGGTAAGTAG-3’) and GL8MVifMut-Rev 

(5’-CTACTTACCTGCCAATGTCGATCACTCATCCCCTTCAGG-3’). The new construct 

(GL8Mya Vif-FP93) expresses FIV-Fca GL8 Vif in the background of FIV-Fca 

Petaluma 34TF10 gag and pol. Vif bears two amino acid changes compared to 

the original GL8Mya Vif (Glu4Arg, Asp5His). 
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4.2.4 Quantification of feline APOBEC3 mRNAs by quantitative 

real-time reverse transcription PCR 

 

Quantitative real-time reverse transcription PCR (RT-qPCR) was employed to 

determine the expression levels of domestic cat and lion A3 genes in the feline 

cells lines FEA, CrFK, AH927 and 3201, in Mya-1 cells, in primary lion PBMCs and 

in different cat tissues. Lion full blood samples for isolation of PBMCs were 

obtained from Bojnice Zoo, Slovakia. Cat tissues included bone marrow, lymph 

nodes, ovarian tissue, spleen, thymus and tonsils, which were isolated from 

three FIV-negative cats that had been enrolled in a previous study (Kraase et al., 

2010). Before RNA isolation, feline cell lines and lion PBMCs were either left 

untreated or were stimulated with 103 IU/ml recombinant feline IFN-α (R&D 

Systems Europe Ltd, Abingdon, UK) or 103 IU/ml recombinant feline IFN-ω 

(Virbac Limited, Bury St Edmonds, UK), respectively, for 24 hours. All RNAs were 

treated with DNAse I (Life Technologies) prior to cDNA synthesis. 1 µg or 450 ng 

of domestic cat cell line and lion PBMC or domestic cat tissue RNA, respectively, 

was used for cDNA synthesis.  

All three FcaA3C isoforms were detected using primers qPCR-FcA3C-Fwd 

(5’-GGACAGGATAGATCCTAACACC-3') and qPCR-FcA3C-Rev (5'-CCACTTGGAAGCAG 

AGATAAC-3') and probe qPCR-FeA3C-Pro (5'FAM-TTCCACTTTCCAAACCTGCTCTATG 

CTTCT-3'TAMRA). FcaA3H was amplified with primers qPCR-FeA3H-Fwd (5'-

CAAGATCAAGGCACTGACGC-3') and qPCR-FeLiA3H-Rev (5'-ACAAACGCAACCAGTTC 

C-3') and probe qPCR-FeLiA3H-Pr (5'FAM-CGAAATCATCTGCTATATCACATGGAGCCC 

CT-3'TAMRA). FcaA3CH and PleA3CH were detected using primers qPCR-FcA3CH-

Fwd (5’-TCCTGGCTGCAAAGCTTCAAG-3’) and qPCR-FcA3CH-Rev (5’-

TCTGGGCAAGAGGAAGGAAACC-3’) and probe qPCR-FeLiA3CH-P (5'FAM-

CAGGAGGTGACAGAGCCTGGGATAAACACCAGA-3'TAMRA). All three PleA3C 

isoforms were detected using primers qPCR-LiA3C-Fwd (5'-GATCCTAAGACCTTCCA 

TTTCC-3') and qPCR-LiA3C-Rev (5'-ACCTTGTTCCGAAAAACTCC-3') and probe 

qPCR-LiA3C-Pro (5'FAM-GTTTCCAAACCTGCGCTACGCTTCT-3'TAMRA). PleA3H was 

amplified with primers qPCR-LiA3H-Fwd (5'-CAAGATCAAGTCACTGACGC-3') and 

qPCR-FeLiA3H-Rev and probe qPCR-FeLiA3H-Pr. Domestic cat 18S rRNA was used 

as housekeeping gene and was amplified with primers rDNA 343F cat (5'-

CCATTCGAACGTCTGCCCTA-3') and rDNA 409 R (5'-TCACCCGTGGTCACCATG-3') 

and probe rDNA 370Pcat (5'FAM-CGATGGTAGTCGCCGTGCCTA-3'TAMRA). 
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Because specific A3C and A3H primer and probe sets could not be 

designed, A3CH copy numbers were subtracted from A3C and A3H copy numbers. 

With the help of the standard curve equations copy numbers were then 

converted back into CT values (where “CT” represents threshold cycle) and 

expression levels between A3 genes in different samples were compared using 

the ΔCT method. ΔCT values were calculated by subtracting the mean CT for the 

abundant 18S rRNA from the CT for A3 mRNAs.  

 

4.2.5 Genetic APOBEC3 diversity in African and Asian lion 

populations 

 

A total of eight lion whole blood samples were obtained from Angola (kindly 

provided by Pieter Kat and Rodrigo Serra of the Investigacao Veterinaria 

Independente, Lisbon, Portugal), from the Moremi reserve in the Okavango Delta 

(Botswana), from the Serengeti National Park (Tanzania; kindly provided by 

Sarah Cleaveland, University of Glasgow, UK), from Lahore Zoo and Lahore Safari 

Park (Pakistan) and from Bristol Zoo (UK). Genomic DNA was prepared using the 

PAXgene Blood DNA kit (Qiagen) or the QIAamp DNA Mini and Blood Mini kit 

(Qiagen).  

To determine the geographical origin of the lions from which the samples 

had been taken, the genetic variation of their 12S-16S mitochondrial DNA 

(mtDNA) genes was investigated. Fragments of the 12S-16S mtDNA genes were 

amplified using GoTaq Flexi DNA polymerase (Promega) and primer pair 12S-UP-F 

(5’-AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT-3’) and PAN-16S-Cy-R (5’-

CAGAACTCAGATCACGTAG-3’) or L12S-Cy-F (5’-CTTAAGTGACTAGCCCCTA-3’) and 

PAN-16S-Cy-R (Antunes et al., 2008). Cycling parameters were 1 cycle of 94 °C 

for 3 minutes; 1 touch-down cycle of 94 °C for 30 seconds, 52 °C for 1 minute 

decreased by 1 °C in the next cycle for 10 cycles, 72 °C for 2 minutes; then 35 

cycles of 94 °C for 30 seconds, 52 °C for 1 minute, 72 °C for 2 minutes; then 1 

cycle of 72 °C for 5 minutes. The fragments were cloned into pCR2.1-TOPO (Life 

Technologies) and five clones of each fragment per animal were sequenced. The 

sequences were aligned to twelve lion 12S-16S mtDNA gene sequences (GenBank 

FJ151641-FJ151652) corresponding to different haplotypes specific for the 
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geographic location of African and Asian lion population habitats (Antunes et al., 

2008).  

PleA3C genes were amplified, cloned and sequenced as described in section 

4.2.3. Sequences were compared to the sequences of PleA3C1 (GenBank 

EU007543), PleA3C2 (EU007544) and PleA3C3 (this study). PleA3H genes were 

amplified using primers LiA3H F and LiA3H R (see section 4.2.1), cloned into 

pCR2.1-TOPO and sequenced. Sequences were compared to that of PleA3H 

(GenBank EU007549).  

 

4.3 Results 

  

4.3.1 Amplification of feline APOBEC3 cDNAs 

 

In addition to the well-characterised domestic cat APOBEC3 transcripts (Munk et 

al., 2008), puma and lion A3C and A3H transcripts were amplified from cDNA 

derived from puma and Angolan lion PBMC RNA, respectively, using primers 

directed against their predicted sequences (GenBank EU007545 and EU007552, or 

EU007543 and EU007549, respectively) (Fig. 4-1). Amplification of PleA3C2 cDNA 

(GenBank EU007544) was attempted, but proved unsuccessful due to the high 

nucleotide similarity to PleA3C1. Puma and lion A3CH transcripts (PcoA3CH and 

PleA3CH) were amplified using primers LiA3C2 F and LiA3H R. Their sequences 

were determined and were found to resemble the recently published sequences 

(GenBank GU097659 and GU097662, respectively) (Zielonka et al., 2010). 

Domestic cat, lion and puma A3C amplicons were cloned into the eukaryotic 

expression vector VR1012 (Vical Inc.).  

 

 

 

 

 

 

 

 



119 

 

1.0 kb 

  0.5 kb 

1.6 kb 

A3C     A3H     A3CH  A3C1     A3H     A3CH 

Puma concolor (Pco) Panthera leo (Ple) 

Marker 

 

 

 

 

 

 

 

 

 

Figure 4-1 Amplification of puma and lion A3 transcripts. Puma and lion A3 

transcripts were amplified from puma or lion PBMC-derived cDNA using primers 

directed against their predicted sequences. PcoA3C, PcoA3H, PleA3C1 and 

PleA3H transcripts encode for single deaminase domain A3s, whereas PcoA3CH 

and PleA3CH give rise to double deaminase domain A3s.  

 

4.3.2 Genomic organisation of the lion A3 gene locus  

 

The domestic cat A3 gene locus (GenBank EU109281) on chromosome B4 spans 32 

kb and contains three A3C (A3Cc, A3Ca and A3Cb) and one A3H gene, which are 

aligned in a head-to-tail orientation (Munk et al., 2008) (Fig. 4-2A). A3Cc is the 

most ancient of the A3C genes and duplicated to give rise to an A3Ca/b 

precursor gene that further duplicated to create A3Ca and A3Cb (Munk et al., 

2008). Due to the common origin of the three domestic cat A3C genes, they 

share the same exon-intron structure and their nucleotide sequences are highly 

similar (Munk et al., 2008). The A3C genes each consist of four exons (E1-E4) and 

three introns (I1-I3) (Fig. 4-2B). A3Cc possesses 97.8% and 97.1% nucleotide 

identity with A3Ca and A3Cb cDNAs, respectively, whereas there is 98.8% 

identity between A3Ca and A3Cb cDNAs. This results in 96.3 to 96.5% amino acid 

sequence identity between the various A3C proteins (Munk et al., 2008). 
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Figure 4-2 Schematic representation of the domestic cat A3 gene orientation 

and their exon/intron organisation. (A) The domestic cat A3 gene locus is 

situated on chromosome B4 and spans 32 kb. It contains the three A3C genes 

A3Cc, A3Ca and A3Cb as well as an A3H gene. A fifth A3 protein, FcaA3CH, is 

expressed by read-through alternative splicing using exons of FcaA3Ca, FcaA3Cb 

and FcaA3H. (B) Each FcaA3C gene consists of four exons (E1-E4) and three 

introns (I1-I3) of indicated lengths (nt). 

 

In order to determine the number and order of PleA3C genes in the lion genome 

primers were designed that bound specifically within the exon regions of either 

PleA3C1 or PleA3C2 (GenBank EU007543 and EU007544, respectively). PleA3C1 

and PleA3C2 showed 97% nucleotide and 94% amino acid identity. Fragments 

between exons E1 and E2, E2 and E3, E3 and E1 of the following PleA3C gene 

were amplified from lion genomic DNA, cloned and sequenced (Fig. 4-3).  

Domestic cat A3Cc can be distinguished from A3Ca and A3Cb by shorter I1 

and I2 (Fig. 4-2B). Thus, if the lion genome contained an A3C gene that 

resembled the oldest domestic cat A3C gene (A3Cc), the shorter intron 

sequences between E1 and E2 and between E2 and E3 could be used to identify 

its presence. Also, possible amplification of longer fragments between E1 and 

E2, and E2 and E3 would indicate the existence of at least one other A3C gene in 
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the lion genome analogous to FcaA3Ca/b. Finally, successful product 

amplification between E3 of both the lion A3C genes that resembled FcaA3Cc 

and FcaA3Ca/b and E1 of any PleA3C gene would confirm the presence of a third 

PleA3C gene and would provide an insight into the order in which the lion A3C 

genes are arranged in the lion A3C gene locus.  

Firstly, the genomic DNA (gDNA) fragment between E1 and E2 of both 

PleA3C1 and PleA3C2 was amplified using primers LiA3C-Ex1-Fwd and LiA3C-Ex2-

Rev. Only one fragment of about 1.3 kb in length was obtained (Fig. 4-3A), 

similar to the short intron I1 of FcaA3Cc. A fragment of 3.2 kb in length 

resembling the longer intron I1 of FcaA3Ca or FcaA3Cb could not be amplified 

despite repeated attempts at further optimisation of the PCR.  

Next, the gDNA fragment between E2 and E3 of either PleA3C1 (primers 

LiA3C-Ex2-Fwd-1 and LiA3C-Ex3-Rev-1) or PleA3C2 (primers LiA3C-Ex2-Fwd-2 and 

LiA3C-Ex3-Rev-2) was amplified. Both PCR reactions yielded two fragments of 

approximately 1.6 kb and 2.5 kb in length (Fig. 4-3B), indicating that the primer 

combinations used could not discriminate between PleA3C1 and PleA3C2, but 

that there are two species of I2, similar to FcaA3Cc and FcaA3Ca/b I2. The PCR 

was repeated using primer sets LiA3C-Ex2-Fwd-1/LiA3C-Ex3-Rev-3 and LiA3C-

Ex2-Fwd-2/LiA3C-Ex3-Rev-4 that were specific for PleA3C1 and PleA3C2, 

respectively (Fig. 4-3C). The first primer pair enabled amplification of a 2.5 kb 

fragment, which confirms that PleA3C1 is homologous to FcaA3Ca/b. Use of the 

second primer pair led to amplification of a 1.6 kb fragment, which indicates 

that PleA3C2 is homologous to FcaA3Cc. Furthermore, the gDNA fragment 

between E3 of one PleA3C gene and E1 of the one downstream was amplified 

using forward primers LiA3C-Ex3-Fwd-1 (specific for PleA3C1) or LiA3C-Ex3-Fwd-

2 (specific for PleA3C2) and reverse primer LiA3C-Ex1-Rev-1. In both cases, PCR 

products of 3.5 kb were obtained (Fig. 4-3D), showing that both genes lay 

upstream of a distinct PleA3C gene. However, upon sequencing of the PleA3C1 

E3-E1 fragment multiple nucleotides were identified in the E4 region that 

differed from the E4 sequence of PleA3C1. Thus, not PleA3C1 but a similar 

PleA3C gene is situated upstream of another PleA3C gene. The newly identified 

PleA3C was termed PleA3C3 and the corresponding cDNA was amplified using 

specific primers LiA3C1 F and LiA3C3-Rev (Fig. 4-3E), cloned into VR1012 (Vical 

Inc.) and sequenced. PleA3C3 differs from PleA3C1 at two nucleotide positions in 

E3 (C412G, A499G) and in four nucleotides in E4 (G515A, A539G, A561G, G575A), 
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which result in the amino acid changes Arg138Gly, Arg167Gly, Arg172Lys and 

Asp180Gly. 

 

 

Figure 4-3 Identification of lion A3C genes by intron lengths and 

determination of A3C gene order within the lion A3 gene locus. PleA3C 

genomic DNA fragments between E1 and E2 (A), E2 and E3 (B,C) and E3 and the 

E1 of the following PleA3C gene (D) were amplified with specific primers based on 
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the published PleA3C1 or PleA3C2 cDNA sequence as indicated. (E) The 

PleA3C3 transcript was amplified from Angolan lion PBMC-derived cDNA.  

 

This study provides evidence for the presence of three PleA3C genes in the lion 

genome. Because both PleA3C2 and PleA3C3 lay upstream of a PleA3C and 

because PleA3C3 was similar to PleA3C1 in its intron lengths and exon 

sequences, the most likely order of the three genes in the lion genome is 5’-

PleA3C2-PleA3C3-PleA3C1-3’ (Fig. 4-4). It can be assumed that these genes have 

arisen in a comparable fashion to the domestic cat A3C genes, namely from an 

ancestral A3C gene undergoing two sequential gene duplication events.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 Schematic representation of the lion A3C gene locus as 

determined by PCR amplification of genomic DNA fragments and binding 

sites of primers used in the study. According to data obtained by PCR 

amplification of genomic intron and exon sequences within the lion A3 gene locus, 

the lion genome contains three A3C genes that are aligned in a head-to-tail 

fashion in the order 5’-PleA3C2-PleA3C3-PleA3C1-3’. PleA3C1 and PleA3C2 

cDNA sequences have been previously described (GenBank EU007543 and 

EU007544, respectively). PleA3C3 has been identified in this study. The binding 

sites of primers used in this study are indicated. Primer pair (PP) 1 consisted of 

primers LiA3C-Ex1-Fwd and LiA3C-Ex2-Rev and was used to amplify a 1.3 kb 

genomic DNA (gDNA) fragment between PleA3C3 exons 1 and 2 (E1-E2) (Fig. 4-

3A). PP2 (LiA3C-Ex2-Fwd-1/LiA3C-Ex3-Rev-3) mediated amplification of a 2.5 kb 

gDNA fragment between exons 2 and 3 (E2-E3) of PleA3C3 and PleA3C1 (Fig. 4-

3C). PP3 (LiA3C-Ex2-Fwd-2/LiA3C-Ex3-Rev-4) bound specifically to PleA3C2 
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exons 2 and 3 (E2-E3) and PCR amplification yielded a 1.6 kb gDNA fragment 

(Fig. 4-3C). To amplify the gDNA fragment between exon 3 of PleA3C2 and exon 

1 of PleA3C3 (E3-E1) or exon 3 of PleA3C3 and exon 1 of PleA3C1 (E3-E1), PP5 

(LiA3C-Ex3-Fwd-2/LiA3C-Ex1-Rev-1) or PP4 (LiA3C-Ex3-Fwd-1/LiA3C-Ex1-Rev-

1) were used. Both PCR fragments obtained were 3.5 kb in length (Fig. 4-3D). 

 

4.3.3 Antilentiviral activity of feline APOBEC3 proteins 

 

In order to identify possible differences in the anti-lentiviral activities of 

domestic cat and non-domestic cat A3 proteins that may offer an explanation for 

the resistance of lion T lymphocytes to FIV infection, lentiviral single-cycle 

replication assays in the presence of A3 proteins were performed. Wild-type or 

vif-deleted, GFP-labelled HIV-1, SIVmac and FIV-Fca pseudotypes were produced 

in cells co-expressing either empty VR1012 vector or domestic cat A3 proteins 

(FcaA3Ca, FcaA3H, FcaA3CH), lion A3 proteins (PleA3C1, PleA3C3, PleA3H, 

PleA3CH) or puma A3 proteins (PcoA3C, PcoA3H, PcoA3CH). Pseudotypes were 

then used to infect target cells. Activity of A3s was assessed by flow cytometry 

and assumed to be inversely proportional to the percentage of transduced, GFP-

expressing cells. 

Firstly, the activities of domestic cat and lion A3 proteins against HIV-

1Δvif, HIV-1 wild-type, SIVmacΔvif and SIVmac wild-type were investigated (Fig. 

4-5). Whereas FcaA3Ca and PleA3C1 showed no activity against HIV-1Δvif and 

very little activity against HIV-1, FcaA3H, FcaA3CH, PleA3H and PleA3CH were 

able to strongly inhibit replication of HIV-1Δvif and HIV-1 (Fig. 4-5A,B). A similar 

trend was observed for SIVΔvif and SIV, against which FcaA3Ca and PleA3C1 were 

slightly more potent than against HIV-1Δvif and HIV-1 (Fig. 4-5C,D). These data 

indicate that domestic cat and lion A3 proteins are functional restriction factors, 

which block the replication of primate lentiviruses and are not counteracted by 

the HIV-1 or SIVmac Vif proteins. 
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Figure 4-5 Domestic cat and lion A3 proteins block primate lentivirus 

pseudotype infection. VSV-G-pseudotyped, GFP-expressing HIV-1 (A,B) and 

SIVmac (C,D) wild-type and vif-deleted particles were produced in 293T cells co-

transfected with empty vector only (CON), domestic cat (FcaA3) (A,C) or lion 

(PleA3) (B,D) A3 expression constructs. Pseudotype-containing cell supernatant 

was then used to transduce 293T target cells and activity of A3 proteins was 

assessed by measuring GFP-expression in target cells by flow cytometry. Single-

cycle replication assays were performed in triplicate (n=3; results shown as mean 

± S.E.). Statistically significant differences relative to the empty vector only control 

are indicated by asterisks (*, P<0.05, Dunnet’s t-test), non-significant differences 

by ‘ns’.  

 

Next, the activity of domestic cat, lion and puma A3 proteins against FIVΔvif and 

FIVΔvif provided with either vector only (CON), FIV-Fca GL8Mya Vif-HA, FIV-Ple E 

Vif-HA, FIV-Pco Vif-HA or FIV-Oma Vif-HA in trans was studied (Fig. 4-6B,D,F). 

Firstly, the expression levels of the FIV Vif proteins in 293T cells were assessed 

(Fig. 4-6A). For that, 2x106 cells in 100-mm cell culture dishes were transfected 

with 5 µg of each FIV Vif-HA expression construct and cell lysates were blotted 

with an anti-HA antibody. Immunoblotting confirmed that only FIV-Pco Vif was 

expressed in 293T cells at detectable levels, whereas all other FIV Vifs were not 

expressed at detectable levels and could not be used in A3 activity assays. Thus, 

FIV-Fca GL8Mya Vif was then also expressed in cis to FIV-Fca Petaluma gag and 

pol (GL8Mya Vif-FP93). Expression of GL8Mya Vif in the FP93 backbone could not 

be assessed by immunoblotting due to the lack of appropriate antibodies. 

However, because expression of lentiviral Vif protein is Rev-dependent (Garrett 

et al., 1991; Schwartz et al., 1991), it can be assumed that expression of FIV vif 

in cis to other FIV genes, as opposed to vif expression in trans, improved Vif 

protein expression to a level where an anti-A3 effect, if present, could be 

observed.  

FIV p24 Gag expression in producer cells was investigated to rule out a 

negative impact of A3 or Vif expression on particle production (Fig. 4-6C,E,G). 
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Figure 4-6 Activities of domestic cat, lion and puma A3 proteins against FIV-

Fca pseudotype infection in the presence and absence of FIV Vifs. VSV-G-

pseudotyped, GFP-bearing FIV-FcaΔvif particles were produced in 293T cells co-

transfected with empty vector only (CON), domestic cat (FcaA3) (B), lion (PleA3) 

(D) or puma (PcoA3) (F) A3 protein expression vectors in the presence or absence 

of different FIV Vif-HA expression constructs. Pseudotype-containing cell 

supernatant was then used to transduce 293T target cells and activity of A3 

proteins was assessed by measuring GFP-expression in target cells by flow 

cytometry. Single-cycle replication assays were performed in triplicate (n=3; 

results shown as mean ± S.E.). Statistically significant differences relative to the 

empty vector only control are indicated by asterisks (*, P<0.05, Dunnet’s t-test), 

non-significant differences by ‘ns’. (A) Expression of FIV Vifs in 2x106 293T cells 

transfected with 5 µg of either of the FIV-Vif expression constructs was assessed 

by immunoblotting using a rabbit anti-HA antibody (Sigma-Aldrich). (C,E,G) FIV-

Fca Gag (p24) expression in transfected 293T producer cells was assessed by 

immunoblotting using mouse anti-FIV p24 antibody (vpg50) to exclude a negative 

effect of A3 expression on Gag production.  

 

As observed for primate lentivirus pseudotypes, feline A3C isoforms could limit 

FIVΔvif pseudotype infectivity of target cells only modestly, if at all (Fig. 4-

6B,D,F). Co-expression of different FIV Vifs did not result in an increase of 
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pseudotype infectivity. In contrast, feline A3H and A3CH proteins were able to 

block FIVΔvif replication significantly (Fig. 4-6B,D,F). FcaA3H and FcaA3CH 

reduced FIVΔvif infectivity 47- and 119-fold, PleA3H and PleA3CH 27- and 28-

fold, and PcoA3H and PcoA3CH 13.2- and 42-fold, respectively. Interestingly, 

FIV-Pco Vif and GL8Mya Vif expressed in cis with FIV-Fca Petaluma gag and pol 

(GL8Mya Vif-FP93) were able to antagonise feline A3H and A3CH proteins to 

different degrees. FcaA3CH was more sensitive to counteraction by FIV-Pco and 

FIV-Fca Vif than FcaA3H (Fig. 4-6B). FIV(VSV-G) pseudotype infectivity in the 

presence of PleA3H was rescued slightly when either of the two Vifs was co-

expressed. However, Vif expression had no negative effect on the activity of 

PleA3CH and even augmented restriction (Fig. 4-6D). Finally, PcoA3H and 

PcoA3CH were equally sensitive to the Vif proteins (Fig. 4-6F). 

The data presented here indicate that domestic cat, lion and puma A3H 

and A3CH proteins potently restricted not only primate but also feline lentivirus 

replication in single-cycle replication assays. However, in contrast to primate 

lentivirus Vif proteins, which do not show any activity against feline A3s, FIV Vifs 

were able to overcome feline A3 proteins in an A3-specific, non-species specific 

manner. Due to the lack of expression of some FIV Vifs in 293T cells and the low 

expression of others it was difficult to evaluate their maximum potency against 

feline A3 proteins. Because the activity of FIV-Pco Vif and FIV-Fca GL8 Vif in 

FP93 rescued viral infectivity to a significant degree, future work should include 

the insertion of FIV-Ple Vif and FIV-Oma Vif into the FP93 backbone for use of 

these constructs in A3 activity assays.  

 

4.3.4 Quantification of feline APOBEC3 expression 

 

This study has shown that feline A3 proteins function as anti-lentiviral restriction 

factors in vitro. However, information about their expression in vivo, which may 

give an insight into their role in limiting viral infection, is sparse. Thus, RT-qPCR 

was performed to generate feline A3 expression profiles in domestic cat cell 

lines and tissues and in lion PBMCs. Moreover, the effect of type I interferon on 

A3 expression was determined.  

Cat and lion A3C and A3H were modestly expressed in all samples tested 

(Fig. 4-7A-C). Cat and lion A3CH, however, were expressed only at low levels in 
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most samples and were not expressed in three domestic cat tissue samples (Fig. 

4-7B). Interestingly, in cat cell lines and tissues FcaA3C expression was higher 

than FcaA3H expression whereas the opposite trend was observed in lion PBMCs. 

Interferon treatment upregulated A3 expression in 3201, CrFK and Mya-1 cells, 

but had no effect on A3 expression in AH927 or FEA cells (Fig. 4-7A). 

The data indicate that A3 genes have a broad expression profile in 

domestic cat cells and tissues. Importantly, expression levels of A3H and A3CH, 

whose gene products have been shown to possess the highest anti-lentiviral 

activity (Fig. 4-5 and 4-6), were lower than that of the three A3C isoforms 

together. However, a small number of A3H and A3CH proteins per cell may 

suffice to elicit a potent antiviral response.  

Moreover, expression levels of lion A3 genes were comparable between 

PBMCs of African and Asian lion origin, indicating that A3 expression did not 

increase in the process of long-term host-FIV co-evolution that took place in 

African, but not in Asian lion populations.  
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Figure 4-7 Quantification of domestic cat and lion mRNA by real-time reverse 

transcription PCR and effect of interferon treatment. A3 expression in the 

domestic cat cell lines 3201, AH927, CrFK (ID10) and FEA as well as in IL-2-

dependent CD4+ T cells (Mya-1) (A), in tissues of three FIV-negative cats (B; cats 

labelled C1-C3) and in African and Asian lion PBMCs (C) was quantified by RT-

qPCR. Domestic cat cell lines were cultured overnight with or without IFN-α at 103 

IU/ml prior to RNA extraction, cDNA preparation, and A3 cDNA quantification. Lion 

PBMCs were cultured overnight with or without IFN-ω at 103 IU/ml prior to RNA 

extraction, cDNA preparation, and A3 cDNA quantification. Real-time PCR was 

performed using 1 µl cDNA (1/20) or standard plasmid DNA once in triplicates 

(n=1). CT values (where “CT” represents threshold cycle) for A3C, A3H and A3CH 

transcripts were determined and converted into copy numbers with the help of the 

standard curve equation. Because A3C and A3H primer and probe sets non-

specific and could also detect A3CH transcripts, A3CH copy numbers were 

subtracted from A3C and A3H copy numbers. Copy numbers were then converted 

back into CT values. Results are expressed as ΔCT values, which were calculated 

by subtracting the mean CT for the abundant 18S rRNA from the CT for A3 

mRNAs.  

 

4.3.5 Analysis of APOBEC3 diversity in African and Asian lion 

populations 

 

Currently, a total of eleven distinct lion populations exist across Africa and in 

the Gir forest in India (see Fig. 1-5). Of these lion populations, only the three 

populations in the Gir forest in India, in southern Botswana and in Namibia are 

FIV-negative (Brown et al., 1994; O'Brien et al., 2006), whereas in other lion 

populations in Africa the FIV seroprevalence can be as high as 90% (see Table 1-

1). In order to investigate whether long-term FIV prevalence in African lions and 

host-virus co-evolution has led to an adaptive evolution of A3 proteins that may 

have altered their anti-lentiviral activity, the genetic diversity of African lion 

A3s was compared to that of Asian lion A3s.  

Antunes et al. (2008) found that maternal inherited (mitochondrial DNA, 

mtDNA) sequence variation in lions is generally low. Only twelve 12S-16S mtDNA 

haplotypes (H1-H12) were identified, which cluster into four distinct mtDNA 
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lineages (I-IV). Interestingly, their pairwise genetic distances among the eleven 

lion populations showed a significant relationship with geographic distances 

between lion populations (Antunes et al., 2008). MtDNA lineage I is present in 

East Africa and includes haplotype 4 (H4) which can be found exclusively in 

Kenya (KEN) (Fig. 1-5). MtDNA lineage II comprises haplotypes H1 to H3 which 

are present in the southern African lion populations in northern Botswana (BOT-

II), Kruger National Park in South Africa and Mozambique (KRU) and Namibia 

(NAM), respectively. MtDNA lineage III includes haplotypes present in northern 

and central African (H5 and H6) and in Asian lion populations (H7 and H8). H5 

and H6 can be found in Morocco (ATL), Angola (ANG) and Zimbabwe (ZBW), and 

H7 and H8 can be found solely in the Gir forest in India (GIR) (Fig. 1-5). Finally, 

mtDNA lineage IV is predominant in southern and East Africa and comprises 

haplotypes H9 to H12. H9 is limited to BOT-II and H10 to KRU. H11 is the most 

prevalent mtDNA haplotype and exists in lion populations in southern Botswana 

(BOT-I), KRU, in the Ngorongoro Crater in Tanzania (NGC), in the Serengeti 

National Park in Tanzania (SER-I, SER-II, SER-III) and in Uganda (UGA) (Fig. 1-5). 

H12 can be found in SER-I. Hence, mtDNA haplotypes can be used to identify 

geographic origins of individual lions.  

In this study mtDNA haplotypes of eight lion samples were determined in 

order to link possible A3 gene sequence variations with geographic origin of 

lions. It was of particular importance to distinguish African from Asian lion 

samples, as cross-breeding regularly takes place in captive settings, which leads 

to the generation of genetic hybrids. Table 4-1 summarises mtDNA haplotypes 

and geographic origins of the samples used. One sample was of Angolan origin 

(ANG; H5; “ANG1”). Three samples possessed mtDNA haplotype H1 and hence 

originated from Northern Botswana (BOT-II; “Chianti”, “Clairette”, “Krystal”). 

Two samples mapped to haplotypes H2 and thus, originated from lions from the 

Kruger National Park (KRU; “KRUA1”, “KruA4”). One sample came from the 

Serengeti National Park (SER; H11; “SER 156.04”). Finally, one sample was of 

Asian origin (GIR; H7; “BRISTOL 9971”). Thus, lion samples from different African 

and Asian lion populations were used to investigate the diversity of lion A3 

genes.  
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Table 4-1 Analysis of geographic origins of lion whole blood samples by 

mtDNA haplotyping. Genomic DNA from eight lion whole blood samples obtained 

from different sources was isolated. In order to determine the geographic origin of 

the lions, a 1882-nt fragment of 12S-16S mtDNA was amplified from the gDNA, 

cloned and sequenced. This fragment contains variable sites, which allows 

classification of sequences into twelve lion mtDNA haplotypes (H1-H12) and four 

mtDNA lineages (I-IV) (Antunes et al., 2008). Haplotype and lineage affiliation 

correlates with geographic origin of samples (see Fig. 1-5). Samples used in this 

study originated from Angola (ANG), northern Botswana (BOT-II), Kruger National 

Park (KRU), the Serengeti National Park (SER) and the Gir forest (GIR). 

 

 

 

A3C gene fragments from individual lion gDNAs were amplified, cloned and 

sequenced as described in Section 1.3.2. Additionally, the full-length PleA3H 

gene was amplified, cloned and sequenced. Sequences were aligned to the 

known PleA3C1 (GenBank EU007545), PleA3C2 (GenBank EU007544), PleA3C3 

(this study) and PleA3H (GenBank EU007552) cDNA sequences. The reference 

Sample name Source 
MtDNA 

haplotype 

MtDNA 

lineage 

Geographic 

origin 

ANG1 Angola H5 III ANG 

Chianti 

Moremi reserve, 

Okavango Delta, 

Botswana 

H1 II BOT-II Clairette 

Krystal 

KRUA1 
Lahore Zoo, 

Pakistan 
H2 II KRU 

KRUA4 
Lahore Safari Park, 

Pakistan 

SER 156.04 

Serengeti National 

Park, Gol Kopjes, 

Shinyanga, 

Tanzania 

H11 IV SER 

BRISTOL 9971 Bristol Zoo, UK H7 III GIR 
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sequences had originally been obtained from an Angolan lion (H5) (Munk et al., 

2008). Unexpectedly, none of the tested lion samples contained any nucleotide 

changes in the PleA3C or PleA3H coding region compared to the reference 

sequences. Thus, it can be concluded that FIV, and in particular the FIV Vif 

protein, did not exert a selection pressure on A3 proteins during extended 

periods of host-virus co-evolution.  

 

4.4 Discussion 

 

The data presented here suggest that the number and nature of A3 transcripts is 

conserved between domestic and non-domestic cat genomes and that A3 genes 

are broadly expressed in various feline cell types and tissues. Feline A3H and 

A3CH proteins were shown to be potent anti-FIV restriction factors in the 

absence of the FIV Vif protein. In contrast, feline A3C proteins displayed only a 

low antiviral activity. Although FIV Vif is an A3 antagonist, no evidence was 

found to support the hypothesis that Vif has shaped the functions of A3 proteins 

during long-term host-virus co-adaptation. 

The activities of feline A3 proteins and their susceptibility to FIV Vifs have 

also been investigated in other recent studies (Munk et al., 2008; Stern et al., 

2010; Zielonka and Munk, 2011). In agreement with our findings, feline A3C 

isoforms did not reduce the infectivity of FIVΔvif or FIV. However, because the 

A3 activity assay used in this study relies heavily on mutation of the reporter 

protein GFP by deamination of GFP minus-strand cDNA during reverse 

transcription, deamination events outwith the cDNA sequence that encodes for 

the fluorophore active site or deamination-independent A3 activities may have 

been missed. 

Production of FIVΔvif(VSV-G) pseudotypes in the presence of FcaA3H or 

FcaA3CH led to an inhibition of viral replication by five- or ten-fold, 

respectively, and was accompanied by an increased G-to-A mutation rate of viral 

genomes (Munk et al., 2008). Likewise, A3H and A3CH proteins of non-domestic 

felids decreased FIV infectivity in the absence of Vif (Zielonka and Munk, 2011). 

In contrast, in this study and in the study by Stern et al. (2010) significantly 

higher fold reductions in FIV infectivity by feline A3H and A3CH proteins were 
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observed that could be explained by differences in A3 expression from the 

various expression constructs used (data not shown).  

Notably, FIV-Fca Vif not only suppressed the activities of domestic cat A3s 

and induced their depletion from producer cells, but also counteracted lion and 

puma A3 proteins (Zielonka and Munk, 2011). In comparison, our results indicate 

that there are indeed differences in the sensitivity of feline A3 proteins to FIV 

Vifs (Fig. 4-6B,D,F). Whereas the antiviral activity of FcaA3CH was partially 

overcome by FIV Vifs, Vif proteins were less potent against FcaA3H. Similarly, Vif 

modestly counteracted PleA3H, PcoA3H and PcoA3CH. Paradoxically, FIV Vifs 

enhanced the PleA3CH-mediated reduction of FIVΔvif infectivity. The inability of 

FIV Vifs to suppress PleA3CH may be caused by impaired Vif-PleA3CH binding, 

which has been shown to be essential for Vif-mediated A3 degradation (Stern et 

al., 2010). Future research should thus focus on the identification of amino acid 

residues that are essential for the FIV Vif-feline A3 interaction. Importantly, the 

resistance of PleA3CH to FIV Vif may contribute to the inability of FIV to 

replicate in lion T lymphocytes. Other feline A3 proteins do not seem to play a 

major role in limiting FIV replication and interspecies transmission.   

No differences in activity against feline A3 proteins were observed 

between FIV-Pco Vif (in VR1012) and GL8Mya Vif (in FP93), which suggests that 

FIV Vif is not specific for A3 proteins of a particular felid species. In contrast, 

HIV-1 Vif degrades human A3G but not non-human primate A3Gs (Marin et al., 

2003). However, FIV-Fca Vif is non-functional against human A3G (Munk et al., 

2008; Zielonka et al., 2010). The expression of FIV-Ple E Vif and FIV-Oma Vif was 

attempted but proved unsuccessful (Fig. 4-6G). Codon usage optimisation of 

these FIV Vifs could be performed to improve their expression in 293T cells.  

The data presented here show that feline A3H and A3CH proteins possess 

a broad anti-lentiviral activity that extends to HIV-1 and SIVmac (Fig. 4-5). In 

agreement with the work of Stern et al. (2010), HIV-1 Vif was non-functional 

against feline A3 proteins and even augmented domestic cat A3C-mediated 

restriction (Fig. 4-5A). Surprisingly, Stern et al. (2010) reported that SIVmac Vif 

counteracts FcaA3CH while increasing the restriction of SIV by FcaA3Ca and 

FcaA3H. In contrast, in this study no evidence for activity of SIV Vif against 

FcaA3CH was found (Fig. 4-5C). However, our data confirm the augmentation of 

feline A3H activity by SIV Vif. No differences between the potencies of domestic 

and non-domestic cat A3s against primate lentiviruses were detected. 
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Because A3 and Vif proteins are highly overexpressed in the in vitro 

single-cycle replication assays commonly used to determine their activities, the 

results obtained may not reflect the situation in natural lentiviral target cells. 

To gain a better insight into the role of feline A3 proteins in FIV restriction it 

was important therefore to link in vitro A3 restriction potentials with A3 

expression levels in relevant feline cell lines and tissues.  

A recent study has investigated the human A3 mRNA expression profile in 

human lymphocytes (T cell lines and leukocytes) and tissues (Refsland et al., 

2010). The data showed that multiple A3 genes were expressed constitutively in 

most cell types and tissues and that the expression of some of them could be 

enhanced by T-cell activation and interferon treatment. As would be expected, 

genes encoding human A3G and A3F, the cytidine deaminases known to inhibit 

HIV-1 replication (Sheehy et al., 2002; Liddament et al., 2004; Zheng et al., 

2004), were highly expressed in non-permissive cell lines such as CEM and H9, 

but not in permissive cell lines like CEM-SS or SupT1 (Refsland et al., 2010). High 

A3G expression levels were also found in un-stimulated primary PBMCs. In 

comparison, A3F expression levels were approximately 10-fold lower in these 

cells (Koning et al., 2009; Refsland et al., 2010). IL-2 and mitogen 

(phytohaemagglutinin, PHA) stimulation of the CD4+ T lymphocyte fraction led to 

upregulation of A3G, but not A3F expression (Refsland et al., 2010). Treatment 

of PBMCs or CD4+ T cells with leukocyte interferon resulted in an upregulation of 

A3G expression in PBMCs, but not in CD4+ T lymphocytes. Other recent reports 

have shown that A3 expression is only IFN-responsive in CD14+ phagocytic cells 

such as monocytes and macrophages (Peng et al., 2006; Koning et al., 2009).  

Lastly, A3G and A3F expression was very low in tissues such as brain, 

heart, kidney, skeletal muscles or small intestine and low in bone marrow, liver, 

thymus and tonsils. Tissues with high A3G and A3F expression were lung, lymph 

node, ovary and spleen (Koning et al., 2009; Refsland et al., 2010). With the 

exception of ovarian tissue, high A3G and A3F expression levels correlated with 

high expression levels of the lymphocyte marker CD3 suggesting that the 

lymphocyte content of a particular tissue was a major determinant of the 

A3G/A3F expression level (Koning et al., 2009). 

In the current study, differences between the FcaA3C, FcaA3H and 

FcaA3CH expression levels in feline cell lines were observed. Feline thymic 

lymphosarcoma cells (3201) and kidney epitheliod cells (CrFK) showed higher 
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basal expression levels of all domestic cat A3 genes than fibroblasts (AH927), 

foetal embryo fibroblast-like cells (FEA) and feline T lymphocytes (Mya-1) (Fig. 

4-7A). A3 gene expression was inducible by IFN-α treatment in 3201, CrFK and 

Mya-1 cells. In all cell lines expression of FcaA3C was higher than that of FcaA3H 

and significantly higher than that of FcaA3CH. Expression of PleA3C, PleA3H and 

PleA3CH was comparable between un-stimulated and un-stimulated, IFN-ω-

treated African and Asian lion PBMCs (Fig. 4-7C). However, PleA3H expression 

was higher than PleA3C and significantly higher than PleA3CH expression. 

One possible explanation why FcaA3C expression in domestic cat cells was 

higher than that of FcaA3H, while PleA3H was expressed at higher levels in lion 

PBMCs than PleA3C may be that domestic cat FcaA3C expression has responded 

to the presence of other retroviruses that have a significantly higher prevalence 

in domestic cats than in lions, such as feline foamy virus (FeFV) (Lutz et al., 

1994). Indeed, FcaA3Ca has been shown to possess potent antiviral activity 

against FeFVΔbet (Lochelt et al., 2005). 

A3 expression levels in eleven different tissues from three FIV-negative 

cats were quantified. In accordance with A3 expression data in human tissues 

(Refsland et al., 2010), bone marrow and tonsils had lower A3 mRNA contents 

than different species of lymph nodes, spleen and thymus. A3 expression in 

ovarian tissue closely resembled those in bone marrow and tonsils and was, 

therefore, lower than expected. Apart from ovaries all tissues used in this study 

were lymphoid tissues and thus rich in lymphocytes, which should have high A3 

gene expression levels. It can be assumed that, similar to the study by Koning et 

al. (2009), there are differences in the lymphocyte content of these tissues that 

may explain the observed variation in A3 gene expression. 

A3 proteins are single-stranded DNA-editing enzymes that protect hosts 

from viral infection. Lentiviral Vif proteins, in return, target A3 proteins for 

ubiquitination and proteasome-mediated degradation. The Vif-A3 interaction is 

mostly species-specific as Vif of a particular lentivirus will only counteract A3 

proteins of the lentivirus’ host species, but not that of other hosts. Thus, to 

constantly escape from or enhance interactions, respectively, both A3 and vif 

genes are expected to engage in adaptive co-evolution (Zhang and Webb, 2004), 

a concept known as the red queen hypothesis (Van Valen, 1973). 

Indeed, multiple A3 and lentiviral vif genes have been shown to be under 

positive (diversifying) selection (Yang et al., 2003; Sawyer et al., 2004; Zhang 
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and Webb, 2004; Munk et al., 2008; Compton et al., 2012). In felids, A3C genes 

were found to be under positive selection, whereas A3H genes evolve under 

negative (purifying) selection (Munk et al., 2008). It was proposed that feline 

A3C genes may be under high selective pressure from FeFV, given that FcaA3C 

proteins possess potent anti-FeFV activity (Lochelt et al., 2005; Munk et al., 

2008). In contrast, feline A3H genes do not evolve adaptively, although feline 

A3H proteins can counteract FeLV and FIV (Munk et al., 2008).  

Here, we tested the hypothesis that the long-term presence of FIV in 

African lion populations has driven adaptive evolution of African lion A3 genes 

and has shaped the activities of lion A3 proteins through the continuous activity 

of Vif. For that, fragments of A3C and A3H genes were amplified from different 

African lion gDNAs and their sequences were compared to that of Asiatic lion 

A3C and A3H genes. Currently, only one Asian lion population exists, namely in 

the Gir forest in India, which is FIV-negative (Lutz et al., 1992; Spencer et al., 

1992; Brown et al., 1994) and can thus serve as a control for A3 evolution in the 

absence of FIV Vif. Unexpectedly, no differences in the sequences of African and 

Asiatic lion A3C and A3H gene exons were identified, indicating that FIV Vif has 

not been a driving force in feline A3 gene evolution.  

One reason for the apparent lack of Vif selection pressure on African lion 

A3 genes may be that FIV-positive African and FIV-negative Asian lion 

populations have not been separated from each other for sufficient amounts of 

time in order for adaptive evolution to take place. The most recent ancestor of 

modern lion populations dates back to only 325,000 years ago. Starting from 

Eastern and Southern Africa, lions migrated into Central and North Africa and 

finally into Eurasia about 100,000 years ago (Antunes et al., 2008). 

Unfortunately, it is not clear when lions first became infected with FIV. 

Interestingly, other groups have investigated the impact of HIV-1 Vif on 

human A3G evolution and found that, although A3G has been subject to strong 

diversifying selection throughout primate evolution, the selection pressure 

driving this evolution predates the emergence of modern lentiviruses about 1 

MYA (Sawyer et al., 2004; Zhang and Webb, 2004). This indicates the presence of 

more ancient genetic conflicts involving A3G (Sawyer et al., 2004). Such 

conflicts may have taken place not only in lymphocytes but also in the germline 

and may have involved LTR-bearing human endogenous retroviruses (HERVs) or 

retrovirus-like eukaryotic mobile elements (Sawyer et al., 2004). Furthermore, 
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in agreement with our findings, Zhang and Webb (2004) found no difference in 

selective pressure on A3G between hosts and non-hosts of HIV-1 or SIV (Zhang 

and Webb, 2004), demonstrating again that lentiviral Vif proteins are not likely 

to have a major impact on A3 selection.  

Conversely, A3 proteins may well be the driving force for the positive 

selection of lentiviral Vifs, especially given the high mutation rate of lentiviruses 

that would allow for rapid adaptation (Sawyer et al., 2004; Zielonka et al., 2010; 

Compton et al., 2012). 

It is plausible that positive evolution of feline A3C genes is also not 

influenced by FIV Vif, especially given its low anti-FIV activity, and that it may 

predate the presence of FIV. Similar to human A3G, feline A3H may be under 

negative selection because A3H may protect against endogenous retroelements 

(Munk et al., 2008). Alternatively, the current A3H amino acid sequence and 

activity may be optimal to target highly conserved viral structures of FeLV or 

FIV. Although A3H alone has only intermediate activity against lentiviruses, its 

combination with exons of A3C genes has created a potent lentiviral restriction 

factor (A3CH). Lastly, apart from innate immune defence, A3H may also be 

required for other, currently unknown processes. 
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 The role of BST-2/tetherin in feline retrovirus infection 5

5.1 Summary 

 

The findings presented in Chapter 4 indicate that, with the exception of 

PleA3CH, which potently restricted FIV even in the presence of FIV Vif, feline A3 

proteins do not contribute significantly to the prevention of FIV replication and 

its interspecies transmission. 

In addition to TRIM5α and A3 proteins a third restriction factor against 

HIV-1 has been characterised. BST-2/tetherin/CD317 exerts a late block to 

retroviral replication in that it prevents the release of mature enveloped viral 

particles from membranes of viral producer cells, an activity that is 

counteracted by Vpu of HIV-1 and certain SIVs, HIV-2 and SIV Envs, and SIV Nef 

proteins (Neil et al., 2007; Neil et al., 2008; Van Damme et al., 2008; Gupta et 

al., 2009b; Jia et al., 2009; Le Tortorec and Neil, 2009; Perez-Caballero et al., 

2009; Sauter et al., 2009; Zhang et al., 2009b; Goffinet et al., 2010; Yang et al., 

2010). Tetherin is a specific cell surface marker of type I IFN-producing 

plasmacytoid dendritic cells (pDCs); however, its expression can be upregulated 

in many different cell types by stimulation with type I IFN and IFN-γ (Blasius et 

al., 2006). The antiviral activity of tetherin has been studied almost exclusively 

in single-cycle replication assays using lentiviral pseudotypes but information on 

its potency to block viral spread is sparse.  

In this study a gene encoding the feline homologue of tetherin was 

identified in the domestic cat genome. Alignment of the coding sequence of this 

feline tetherin with cDNAs of other bona fide tetherins revealed significant 

homology between them on both nucleotide and amino acid levels. Interestingly 

though, the feline tetherin cDNA was predicted to lack the otherwise conserved 

initiation codon. Hence, the full-length protein was likely to possess a shorter N-

terminus than other tetherins. However, because the tetherin 5’ region was still 

encoded in the domestic cat genome and would contain a double tyrosine motif 

shown to be important for tetherin endocytosis from the cell surface (Rollason et 

al., 2007; Iwabu et al., 2009; Masuyama et al., 2009) we initially decided to 

amplify the feline tetherin cDNA with a forward primer that contained an 

initiation codon followed by the tetherin 5’ sequence naturally present in the 

domestic cat genome and feline tetherin cDNA. The protein encoded by this 561 
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nt long feline tetherin cDNA is referred to as ”FcaTHN” in this thesis. Later 

during the course of this study the 504 nt long feline tetherin cDNA, whose 

translation is initiated at a downstream ATG, was amplified and characterised. 

To our current knowledge, this cDNA encodes for the wild-type feline tetherin, 

which is referred to as “FcaTHN-WT”. The term “feline tetherin” is used when 

reference is made to both FcaTHN and FcaTHN-WT.  

Feline tetherin was found to be expressed in many feline cell lines, and 

expression was IFN-inducible. Like human tetherin, FcaTHN displayed potent 

inhibition of FIV and HIV-1 particle release; however, this activity resisted 

antagonism by either HIV-1 Vpu or the FIV Env and OrfA proteins. Interestingly, 

stable expression of FcaTHN in feline cell lines did not abrogate the replication 

of FIV. Indeed, syncytium formation was significantly enhanced in FcaTHN-

expressing cells and in type I interferon-treated CrFK cells infected with cell 

culture-adapted, CD134-independent strains of FIV. Thus, while tetherin may 

prevent the release of nascent viral particles, its expression seems to facilitate 

viral transmission by inducing a shift from a cell-free to a cell-to-cell 

transmission mode.  

In the second part of the study, the activity of FcaTHN against other feline 

retroviruses was determined. Most notably, the replication of RD114, an 

endogenous feline retrovirus, was severely affected by FcaTHN. Furthermore, 

tetherins of non-domestic felids were characterised and their potential to limit 

retroviral replication was tested. Lion and puma tetherins (PleTHN and PcoTHN, 

respectively) were amplified using the same strategy as described for FcaTHN 

and resembled FcaTHN in their inability to block viral spread.  

Finally, the activity of FcaTHN-WT to limit FIV particle release in the 

presence or absence of different FIV Envs and to prevent FIV spread was 

assessed. FcaTHN-WT was slightly more potent in blocking FIV particle release 

than FcaTHN, but again, this activity was not overcome by FIV Envs. Importantly, 

like FcaTHN, FcaTHN-WT was not able to control FIV spreading infection.  

In summary, these data suggest that while felid tetherins prevent particle 

release, they do not play a significant role in the suppression of retroviral 

replication in vivo. 
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5.2 Materials and Methods 

 

5.2.1 Amplification, molecular cloning and stable expression of 

feline and human tetherin cDNAs 

 

The genomic sequence of the prospective domestic cat homologue of tetherin 

was identified by blasting the sequences of human (HsaTHN; GenBank 

NM_004335) and dog (Canis lupus familiaris) tetherins (CluTHN; GenBank 

XM_847295, XM_860510) against the 2X domestic cat genome using megaBLAST 

(Zhang et al., 2000). A candidate domestic cat tetherin gene was identified on 

Felis catus c430601298.contig1 (GenBank ACBE01053987). This gene showed a 

high degree of nucleotide and amino acid homology to other known tetherin, but 

was lacking an otherwise conserved initiation codon at the 5’ end of its first 

coding exon. To determine the initiation site of the coding sequence of feline 

tetherin, 5’RACE PCR was performed using the 5’/3’ RACE kit (Roche Applied 

Science) and gene-specific primers FcTHN-SP1 (5’-GAAGCCAACAGGGTTACCAA-3’) 

and FcTHN-SP2 (5’-GACACCGTGACACTCCTCCT-3’) according to manufacturer’s 

instructions. A feline tetherin cDNA fragment (referred to as FcTHN-WT; 504 nt; 

DDBJ [Data Base of Japan] AB564550), that would encode for a tetherin with a 

shortened N-terminus compared to other tetherins, was identified as full-length 

transcript and amplified using primers FcTHN-delCT-Fwd (5’-ACTGGTCGACACCAT 

GGTGCCAGGTCGGAGTCTT-3’) (SalI restriction site underlined) and FcTHN-Rev-1.  

A longer cDNA containing an engineered  5’ initiation codon and the naturally 

present feline tetherin 5’ cDNA sequence (FcaTHN; 561 nt; GenBank 

HM461970/NM_001243085) was amplified from Mya-1-derived cDNA with primers 

FcTHN-Fwd-2 (5’-ATCGGTCGACACCATGGCACCTGCTTTTTTACCAC-3’) (SalI 

restriction site underlined) and FcTHN-Rev-1 (5’-ACAGCGGCCGCTCAGGCCAGCAG 

AGCAACGAA-3’) (NotI restriction site underlined). The sequence of FcaTHN has 

been deposited in GenBank under accession number HM461970. The same primer 

set as for FcaTHN was used to amplify lion tetherin (PleTHN) from Angolan lion 

PBMC cDNA and puma tetherin (PcoTHN) from puma PBMC-derived cDNA. 

HsaTHN was amplified from 293T cell-derived cDNA using primers HuTHN-Fwd-1 

(5’-ACTGGTCGACACCATGGCATCTACTTCGTAT-3’) (SalI restriction site 
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underlined) and HuTHN-Rev-1 (5’-ACAGCGGCCGCTCACTGCAGCAGAGCGCTG-3’) 

(NotI restriction site underlined). 

All tetherin cDNAs were cloned into VR1012 (Vical Inc.) using SalI and NotI 

restriction sites to generate constructs FcaTHN-VR1012, PleTHN-VR1012, 

PcoTHN-VR1012, HsaTHN-VR1012 and FcaTHN-WT-VR1012.  

Furthermore, site-directed mutagenesis was performed to delete a 

putative endocytosis motif at the N-terminus of FcaTHN. At first the mutation 

Tyr8Ala was created using FcaTHN-VR1012 as template and mutagenesis primers 

FcTHN-Y8A-Fwd (5’-GCACCTGCTTTTTACCACGCGTGGCCTGTGCCCAGGAC -3’) and 

FcTHN-Y8A-Rev (5’-GTCCTGGGCACAGGCCACGCGTGGTAAAAAGCAGGTGC-3’). 

Another mutation (Tyr6Ala) was then introduced into FcaTHN-Y8A-VR1012 using 

mutagenesis primers FcTHN-Y6/8A-Fwd (5’-GCACCTGCTTTTGCGCACGCGTGGCCT 

GTGCCCAGGAC-3’) and FcTHN-Y6/8A-Rev (5’-GTCCTGGGCACAGGCCACGCGTGCG 

CAAAAGCAGGTGC-3’) to generate construct FcaTHN-Y6/8A-VR1012. 

For stable expression in CrFK, FEA and canine CLL cells, all tetherins were 

cloned into pDON-AI-2neo (Takara Bio Europe S.A.S./Clontech) using NotI and 

BamHI restriction sites. For confocal microscopy experiments, FcaTHN was 

labeled with an internal haemagglutinin (HA) tag by amplification of two 

fragments by the use of primer pair FcTHN-Fwd-3 (5’-ATCGGCGGCCGCATGGCAC 

CTGCTTTTTACCAC-3’) (NotI restriction site underlined) and FcTHN-HA-Rev-1 (5’-

GACGTAGTCTGGGACGTCGTATGGGTATTCCTTTTTCTTGCTCGAG-3’) and primer 

pair FcTHN-HA-Fwd-1 (5’-TACCCATACGACGTCCCAGACTACGTCGTCGCGTCTGCCA 

GCTCCTTGA-3’) and FcTHN-Rev-2 (5’-ACAGGATCCTCAGGCCAGCAGAGCAACGAAG-

3’) (BamHI restriction site underlined), with the construct FcaTHN-VR1012 used 

as template. The products were then purified, combined, and used as a 

template for a second round of amplification using primers FcTHN-Fwd-3 and 

FcTHN-Rev-2. The product (FcaTHN-HA) was then cloned into pDON-AI-2 Neo 

using NotI and BamHI restriction sites and transduced into CRFK cells. 

 

5.2.2 Quantification of domestic cat tetherin mRNA by real-time 

reverse transcription PCR 

 

Quantitative real-time reverse transcription PCR (RT-qPCR) was performed to 

determine the expression levels of the domestic cat tetherin gene (THN) in the 
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feline cells lines FEA, CrFK, AH927 and 3201, in Mya-1 cells and in primary feline 

macrophages. Before RNA isolation, feline cell lines and macrophages were 

either left untreated or were stimulated with 103 IU/ml feline IFN-α, feline IFN-γ 

(both from R&D Systems Europe Ltd, Abingdon, UK) or recombinant feline IFN-ω 

(Virbac Limited, Bury St Edmonds, UK), respectively, for 24 hours. All RNAs were 

treated with DNAse I (Life Technologies) prior to cDNA synthesis.  

Feline tetherin mRNA was detected using primers qPCR-FcTHN-Fwd (5’-

GAGAAGGCCCAGAGCCAGGAG-3') and qPCR-FcTHN-Rev (5'-GCAACGAAGGCCAGGA 

GCAG-3') and probe qPCR-FcTHN-Pro (5'FAM-TGCAGAACGCTTCGGTGGAGGTGGAA 

AGACTGAGAAA-3'TAMRA). Domestic cat 18S rRNA was used as housekeeping gene 

and was amplified with primers rDNA 343F cat (5'-CCATTCGAACGTCTGCCCTA-3') 

and rDNA 409 R (5'-TCACCCGTGGTCACCATG-3') and probe rDNA 370Pcat (5'FAM-

CGATGGTAGTCGCCGTGCCTA-3'TAMRA). Feline tetherin gene expression levels 

were analysed using the ΔCT method. ΔCT values were calculated by subtracting 

the mean CT for the abundant 18S rRNA from the CT for feline tetherin mRNA.  

 

5.2.3 Amplification, molecular cloning and detection of lentiviral 

tetherin antagonists 

 

In order to identify putative lentiviral tetherin antagonists, FIV OrfA (Orf2), 

various FIV envelope glycoproteins (Envs) and HIV-1 Vpu were amplified, cloned 

and expressed in conjunction with HIV-1(VSV-G) and FIV(VSV-G) pseudotypes in 

the presence or absence of feline tetherins in single-cycle replication assays as 

described under 2.2.5. 

HIV-1 NL-43 Vpu in pCDNA3.1 (Life Technologies) was a kind gift of Greg Towers, 

University College London, UK. FIV-Fca GL8 OrfA was amplified from GL8Mya 

molecular clone (Hosie et al., 2002) using primers GL8 orf2 Fwd (5’-

ACTGGTCGACACCATGGAAGAAATAATAGTATTATTC-3’) (SalI restriction site 

underlined) and GL8 orf2 Rev (5’-ACAGCGGCCGCCTAAGCAGTACGATGGATAATGTA 

-3’) (NotI restriction site underlined) and cloned into VR1012. In addition, codon-

optimised FIV OrfA was expressed from construct 1S-5RL (kindly provided by 

Mauro Pistello, Università di Pisa, Italy). FIV-Fca GL8 Env (GenBank X69496) was 

amplified from GL8Mya molecular clone using primers GL8 Env-Fwd (5’-ACTGGTC 
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GACACCATGAATGAAGAAGGGCCACTA-3’) (SalI restriction site underlined) and 

GL8 Env-Rev (5’- ACAGCGGCCGCTCATTCCTCCTCTTTTTCAGA-3’) (NotI restriction 

site underlined). C8.1 (CrFK-adapted GL8) Env was amplified using the same 

primer set. FIV-Fca strain Petaluma clone F14 and clone 34TF10 Envs (GenBank 

NC_001482) were amplified with primers PET Env-Fwd (5’-ACTGGTCGACACCATG 

GCAGAAGGATTTGCAGCCA) (SalI restriction site underlined) and GL8 Env-Rev. All 

FIV-Fca Env cDNAs were cloned into VR1012 using the SalI and NotI restriction 

sites. Furthermore, FIV-Fca Petaluma KKS Env (Env of in vivo readapted FIV-Fca 

Petaluma; [Bendinelli et al., 2001; Pistello et al., 2003]) was expressed from the 

mammalian expression vector pEE14 (Lonza Biologics, Slough, UK). The construct 

pEE14-Env (Pistello et al., 2010) was a kind gift of Mauro Pistello, Università di 

Pisa, Italy. FIV-Ple E Env was amplified from cDNA derived from Mya-1 cells 

infected with a primary isolate of FIV-Ple E obtained from serum of a wild, 8 

year old male lion (Sangre) from the Moremi reserve in the Okavango Delta, 

Botswana (McEwan, 2009). Primers were designed based on the available FIV-Ple 

E 1027 sequence (GenBank EU117992) (Pecon-Slattery et al., 2008a), LLV-E Env-

Fwd (5’-ACTGGTCGACACCATGGCAGAAGGAGGAAGAGTA -3’) (SalI restriction site 

underlined) and LLV-E Env-Rev (5’-ACAGCGGCCGCTTAGGTATTAGACTCATCATTCA 

C-3’) (NotI restriction site underlined). FIV-Ple B Env was amplified from cDNA 

derived from Mya-1 cells infected with a FIV-Ple B 458 using primers directed to 

the published FIV-Ple B sequence (GenBank EU117991), LLV-B Env-Fwd (5’-

ACTGGTCGACACCATGGCGGAAGGAGGAAGAGTA-3’) (SalI restriction site 

underlined) and LLV-B Env-Rev (5’-ACAGCGGCCGCTCAAAGATCCTCATCAGACTCCC 

T-3’) (NotI restriction site underlined). Both Env cDNAs were cloned into VR1012.  

FIV-Fca GL8 Env and OrfA were also expressed from CT5G8MΔpol4, a 

derivative of pCT5b (Poeschla et al., 1998) in which a PacI-NdeI fragment was 

exchanged with the equivalent fragment from the GL8 Mya molecular clone. The 

resulting clone, CT5-G8M, was then modified by deleting a fragment of pol by 

PacI/SanDI digestion followed by treatment with the Klenow fragment of DNA 

polymerase I prior to religation. CT5G8MΔpol4 thus produces all FIV-encoded 

proteins under the control of a cytomegalovirus (CMV) promoter but is not 

replication-competent. 

Immunoblotting was performed to confirm expression of FcaTHN-HA and 

FIV-Fca Envs. FcaTHN-HA was detected using a rabbit anti-HA antibody (Sigma-
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Aldrich). FIV-Fca Env expression was verified using mouse anti-FIV Env antibody 

(vpg71.2). 

 

5.2.4 Confocal microscopy 

 

CrFK cells stably expressing FcaTHN-HA were seeded onto 13 mm-diameter glass 

coverslips in 24-well plates and incubated overnight. Cells were then infected 

with FIV-Fca F14 for 72 hours. Cells were fixed with 4% paraformaldehyde in PBS 

(pH 7.4) for 15 minutes and neutralised with 0.1 M glycine in PBS for 5 minutes. 

Where appropriate, cells were then permeabilised with 0.2% triton-X100 in PBS 

for 20 minutes. Cells were blocked by incubation with 2% FCS in PBS for 20 

minutes before incubation with a mixture of primary antibodies comprising 

mouse anti-FIV Env (vpg71.2) and rabbit anti-HA (Sigma-Aldrich) antibodies in 1% 

FBS in PBS for 1 hour at room temperature. Cells were then washed three times 

with PBS, incubating for 5 minutes with each wash. Secondary antibodies were 

then added (Alexa-Fluor 594-conjugated F(ab')2 fragment of goat anti-rabbit IgG 

[Life Technologies/Molecular Probes] and fluorescein isothiocyanate [FITC]-

conjugated F(ab')2 fragment of goat anti-mouse IgG [Abd Serotec, Oxford, UK]) 

and incubated in 1% FBS in PBS for 45 minutes at room temperature. Cells were 

washed three times with PBS, incubating for 5 minutes with each wash, removed 

from the 24-well plate, mounted onto glass slides in mounting medium 

containing DAPI (4',6’-diamidino-2-phenylindole; Vectashield, Vector 

Laboratories). Slides were analysed on a Leica TCS SP2 confocal microscope. 

 

5.2.5 Electron microscopy 

 

Electron microscopy was performed with the help of David Bhella, University of 

Glasgow. Monolayer cultures of FIV-infected CrFK cells were fixed in situ for 2 

hours at room temperature with 4% paraformaldehyde–0.1 M sodium phosphate 

buffer (pH 7) and stored at 4°C in 0.2% paraformaldehyde. Prior to processing 

for electron microscopy, the cells were exposed to 2.5% glutaraldehyde 

overnight at 4°C. The cells were then scraped and pelleted by centrifugation 

followed by 1% osmium tetroxide fixation. Fixed cells were then resuspended 
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and pelleted through 1% SeaPlaque agarose (Lonza, Slough, UK). The cell pellets 

were dehydrated through a graded alcohol series and embedded in EPON 812 

resin. Sections approximately 120 nm in thickness were cut with an UC6 

ultramicrotome (Leica Microsystems, Germany) and stained with saturated 

uranyl acetate (in 50% ethanol) and Reynolds lead citrate (Reynolds, 1963). 

Sections were observed and photographed with JEOL 1200 EX and JEOL JEM-

2200FS transmission electron microscopes, and images were recorded on a Gatan 

Ultrascan camera. 

 

5.2.6 Feline foamy virus replication assays 

 

Feline foamy virus (FeFV) molecular clones were kind gifts of Martin Löchelt, 

German Cancer Research Center, Heidelberg, Germany. Wild-type FeFV was 

expressed from construct pCF-7 (Schwantes et al., 2002). FeFV devoid of bel2 

and bet (FeFVΔbel/bet) was expressed from construct pCF-7-BBtr (Alke et al., 

2001). Single-cycle replication assays were performed in 293T cells by co-

transfecting FcaTHN and FeFV expression constructs in molar ratios of 0:1, 0.1:1, 

0.25:1, 0.5:1, 1:1 and 2:1. Transfections were set up in 60-mm cell culture 

dishes using constant amounts of FeFV expression plasmids (5 µg DNA) and 

increasing amounts of FcaTHN-VR1012 (0 µg, 0.2 µg, 0.5 µg, 1 µg, 2 µg or 4 µg 

DNA). Where appropriate, the total amount of transfected DNA was adjusted to 

9 µg using VR1012. FeFV titres were determined 48 hours post-transfection by 

titration of cell supernatants onto FeFAB reporter cells in 24-well plates (Zemba 

et al., 2000). FeFAB cells are genetically modified CrFK cells, which stably carry 

the β-galactosidase gene (lacZ) under transcriptional control of the FeFV LTR 

promoter in their genomes. Upon transduction of these cells with bel1-

expressing FeFV vectors, Bel1 transactivates the FeFV LTR promoter which leads 

to expression of lacZ. LacZ expression in cell nuclei was visualised 72 hours post-

transduction by LacZ staining and light microscopy. Briefly, cell medium was 

removed, cells were washed with 1 mM MgCl2 in PBS and fixed with 1% 

formaldehyde/0.2% glutaraldehyde/1 mM MgCl2 in PBS for 5 minutes. Cells were 

then stained with 4 mM K4[Fe(CN)6] (II)/4 mM K3[Fe(CN)6] (III)/4 mg/ml X-Gal/1 

mM MgCl2 in PBS overnight at 37°C. Staining solution was removed and the 
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staining reaction was stopped with ddH2O. FeFV titres were expressed as focus 

forming units per ml of cell supernatant (FFU/ml). 

 

5.3 Results 

 

5.3.1 Identification of a feline homologue of BST-2/tetherin 

 

A genomic sequence with significant homology to canine (Canis lupus familiaris) 

(GenBank XM_860510) and human (GenBank NM_004335) BST-2/tetherin was 

identified by screening the 2X domestic cat genome. The predicted associated 

cDNA was 504 nt in length. However, the genomic sequence upstream of the 

putative start codon shared high similarity with 5’ termini of known tetherin 

cDNAs but was missing a thymidine in its start codon. Because of this high 

similarity and because only the longer cDNA (561 nt) would encode for a double 

tyrosine motif important for tetherin endocytosis from the cell surface (Rollason 

et al., 2007; Iwabu et al., 2009; Masuyama et al., 2009) we initially decided to 

amplify the longer cDNA of domestic cat tetherin (FcaTHN) and engineered the 

forward primer to contain a complete start codon.  

FcaTHN (GenBank HM461970) possesses 65% nucleotide and 38% amino 

acid sequence identity to human tetherin (HsaTHN), and 79% nucleotide and 57% 

amino acid sequence identity to canine tetherin (Fig. 5-1). Secondary structure 

prediction softwares NetSurfP (Petersen et al., 2009) and TMHMM Server 2.0 

(http://www.cbs.dtu.dk/services/TMHMM-2.0/) indicated that the 184 amino 

acid long protein contained an N-terminal cytoplasmic domain, followed by a 

transmembrane domain, an extracellular loop with three conserved cysteines 

(C59, C69, and C97) involved in tetherin dimerisation via disulfide bond 

formation, and a coiled-coil domain. The big-π predictor software (Eisenhaber et 

al., 2000) revealed a potential attachment site for a glycosylphosphatidylinositol 

(GPI) anchor at serine 161 followed by a C-terminal hydrophobic domain (Fig. 5-

1). Thus, FcaTHN adopts the same protein topology described for other tetherins 

(Ishikawa et al., 1995; Ohtomo et al., 1999; Kupzig et al., 2003). 
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Figure 5-1 Identification of a feline homologue of tetherin.  Predicted amino 

acid sequences of feline (FcaTHN), human, murine (rat) (GenBank NM_198134), 

equine (GenBank XM_001915091) and canine tetherins were aligned. Black bars 

denote N-terminal cytoplasmic domain (CP), transmembrane (TM) and 

extracellular, α-helical coiled-coil regions (coiled coil). An arrow marks a predicted 

site for glycosylphosphatidylinositol (GPI) anchor attachment. Amino acid residues 

are colour-coded as follows: light gray, hydrophobic FILMPV; dark gray, 

amphiphilic AGW; green, hydrophilic neutral CNQST; light blue, slightly basic H; 

blue, basic KR; pink, slightly acidic Y; red, acidic DE. 

 

In the mouse, tetherin is expressed constitutively in B cells and plasmacytoid 

dendritic cells, however, expression may be upregulated in many cell types 

following exposure to both type I (Ohtomo et al., 1999; Blasius et al., 2006; Neil 

et al., 2007; Kawai et al., 2008; Miyagi et al., 2009) and type II (Blasius et al., 

2006) interferons. Four feline cell lines, 3201, AH927, CrFK and FEA, and two 

primary cell cultures (IL-2-dependent CD4+ T cells [Mya-1] and monocyte-derived 

macrophages) were treated with type I (α and ω) and type II (γ) interferons and 
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tetherin mRNA expression levels were examined by RT-qPCR (Fig. 5-2A). The cell 

lines showed various levels of basal tetherin mRNA expression, with the lowest 

levels in FEA cells. 3201, AH927 and CRFK cells expressed broadly similar levels 

of tetherin. The highest level of basal expression was seen with the IL-2-

dependent CD4+ T Mya-1 cell line. Treatment of feline cells with the type I 

interferons IFN-α and IFN-ω increased tetherin expression for all of the cell 

types examined. A similar increase in tetherin expression was also noted with 

the AH927, CrFK and FEA cells treated with IFN-γ. A more modest induction of 

tetherin expression was observed with 3201 cells following treatment with IFN- α 

and IFN-ω, while IFN-γ did not have a significant effect on 3201 tetherin 

expression. Mya-1 cells and monocyte-derived macrophages responded to IFN-α 

and IFN-ω treatment by increasing expression of tetherin, whereas IFN-γ had a 

modest effect on CD4+ T cells and no effect on macrophages. Treatment of 

AH927, CrFK, FEA and Mya-1 cells with INF-ω for either 48 or 72 hours led to a 

significant upregulation of tetherin expression within 24 hours post-stimulation 

(Fig. 5-2B). Therefore, as with previous observations with human tetherin, feline 

tetherin expression may be induced by both type I and type II interferons and is 

expressed on the known in vivo cellular targets for FIV, activated T cells and 

macrophages. 
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Figure 5-2 Quantification of feline tetherin mRNA by real-time reverse 

transcription PCR and effect of interferon treatment on tetherin expression. 

(A) IL-2-dependent CD4+ T cells (Mya-1), macrophages (Mac), and the feline cell 

lines 3201, AH927, CrFK and FEA were cultured overnight in the presence or 

absence of feline IFN-α, IFN-ω, and IFN-γ at 103 IU/ml prior to RNA extraction, 

cDNA preparation, and tetherin cDNA quantification by RT-qPCR. (B) AH927, 

CrFK, FEA and Mya-1 cells were stimulated with 103 IU/ml IFN-ω and feline 

tetherin gene expression was monitored over 48 (AH927 and FEA cells) or 72 

hours (CrFK and Mya-1 cells) by RT-qPCR. Results are expressed as mean ΔCT 

values ± S.E. as determined in three independent experiments (n=3), with three 

replicate experiments per analysis. 

 

5.3.2 Inhibition of lentiviral particle release by FcaTHN 

 

In order to assess the ability of FcaTHN to prevent lentiviral particle release 

from infected cells, single-cycle replication assays were performed using 

FIVΔvif(VSV-G), HIV-1(VSV-G) or HIV-1Δvpu(VSV-G) pseudotypes in the presence 

or absence of FcaTHN (Fig. 5-3). FcaTHN reduced the titre of the FIVΔvif(VSV-G) 

pseudotypes significantly (Fig. 5-3A), suggesting inhibition of particle release 

from the transfected cells. In agreement with this notion, viral p24 released into 

the culture supernatant was reduced by tetherin expression, whereas virus 
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production in the transfected cells was largely unaffected (Fig. 5-3D). Similar 

activity of FcaTHN against HIV-1 lacking a functional Vpu (HIV-1Δvpu) was 

detected (Fig. 5-3B). Furthermore, FcaTHN prevented the release of wild-type 

HIV-1 encoding an intact vpu open reading frame (Fig. 5-3C) indicating that, 

unlike human tetherin, the activity of FcaTHN was not overcome by HIV-1 Vpu.  

 

 

 

 

 

 

 

 

 

Figure 5-3 FcaTHN restricts FIV and HIV-1 particle release and is not 

overcome by the HIV-1 accessory protein Vpu. VSV-G-pseudotyped, GFP-

expressing FIVΔvif (A), HIV-1Δvpu (B) or HIV-1 (C) particles were produced in 

293T cells co-transfected with empty vector only (VR1012) or indicated amounts of 

FcaTHN expression vector. Pseudotype-containing cell supernatant was then 

used to transduce 293T target cells and activity of FcaTHN was assessed by 

measuring GFP-expression in target cells by flow cytometry. Single-cycle 
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replication assays were performed in triplicate (n=3; results shown as mean ± 

S.E.). (D) FIV and HIV-1 Gag (p24) expression in lysates and in pelleted virions 

from supernatants of transfected 293T producer cells were assessed by 

immunoblotting using mouse anti-FIV p24 (vpg50) and 183-H12-5C anti-HIV-1 CA 

(NIH AIDS Research and Reference Reagent Program) antibodies, respectively. 

 

5.3.3 Characterisation of putative tetherin antagonists in the FIV 

genome 

 

In the absence of an open reading frame with significant homology to HIV-1 vpu 

in the FIV genome, we asked whether the FIV env or orfA gene products were 

able to counteract the activity of domestic cat tetherin (FcaTHN), in analogy to 

the activities ascribed to HIV-2 Env and the SIV Nef and Env proteins (Neil et al., 

2007; Gupta et al., 2009b; Jia et al., 2009; Le Tortorec and Neil, 2009; Zhang et 

al., 2009a). Co-expression of a replication-defective molecular clone of FIV 

(CT5G8MΔpol4) in which expression of the entire FIV molecular clone is 

enhanced by a cytomegalovirus (CMV) promoter, thus increasing expression of all 

FIV proteins, had no effect on the ability of FcaTHN to counteract FIV release 

from transfected cells (Fig. 5-4A). Similarly, co-transfection of codon-optimised 

FIV OrfA expression vector 1S-5RL (Pistello et al., 2003), or of a GL8 orfA 

expressed from VR1012 (data not shown), had no effect on the activity of 

domestic cat tetherin against the release of FIVΔvif from transfected cells (Fig. 

5-4B). Thus, no evidence for a tetherin-counteracting activity was found in the 

FIV genome.  
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Figure 5-4 Absence of a feline tetherin countermeasure in the FIV genome. 

VSV-G-pseudotyped, GFP-expressing FIVΔvif particles were produced in 293T 

cells co-transfected with empty vector only (CON) or FcaTHN expression vector 

(FcaTHN) in the presence or absence of (A) a replication-defective molecular 

clone of FIV, CT5G8MΔpol4 (+ FIVΔpol) or (B) a codon-optimised FIV OrfA (+ 

OrfA). Pseudotype-containing cell supernatant was used to transduce 293T target 

cells and activity of FcaTHN was assessed by measuring GFP-expression in 

target cells by flow cytometry. Single-cycle replication assays were performed in 

triplicates (n=3; results shown as mean ± S.E.). Expression of FIV Env from 

CT5G8MΔpol4 was confirmed by immunoblotting with mouse anti-FIV Env 

antibody (vpg71.2). FIV Gag (p24) expression in lysates and in pelleted virions 

from supernatants of transfected 293T producer cells was assessed by 

immunoblotting using mouse anti-FIV p24 (vpg50) antibody. 
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5.3.4 Effect of FcaTHN on replication of cell culture-adapted, 

CD134-independent strains of FIV 

 

Given the high potency of FcaTHN in preventing the release of FIV in a single-

cycle replication assays and the absence of tetherin-counteracting activity in the 

FIV genome, it was of interest to investigate the ability of FcaTHN to inhibit 

spreading infection of FIV. Thus, CrFK cells stably expressing FcaTHN were 

infected with cell culture-adapted, CD134-independent strains of FIV-Fca (F14; 

Fig. 5-5A) and FIV-Pco (CoLV; Fig. 5-5B), and virus spread was monitored by a 

reverse transcriptase activity assay of the culture supernatant. Interestingly, in 

contrast to the marked inhibitory effect of tetherin on lentiviral pseudotype 

release, ectopic expression of tetherin did not inhibit virus production from FIV-

infected CrFK cells. In fact, syncytium formation following FIV-Fca F14 infection 

was enhanced significantly in the tetherin-expressing cells (Fig. 5-5D) compared 

with control cells (Fig. 5-5C).  

To confirm tetherin expression in the stably transduced CrFK cells, RT-

qPCR was performed. This analysis indicated that the cells expressed abundant 

tetherin mRNA (ΔCT = 8.95 ± 0.25) compared with the vector-only containing 

control cells (ΔCT = 16.68 ± 0.34). Thus, the stably transduced cells achieved 

levels of tetherin expression that exceeded those attained following IFN-ω 

treatment of control CrFK cells (ΔCT = 11.17 ± 0.17) (Fig. 5-2A). In comparison, 

when 293T cells were transfected transiently with either vector only or FcaTHN 

(see Fig. 5-3 and 5-4), expression increased from a ΔCT value of 23.43 ± 0.43 

(CON) to 5.97 ± 0.39 (FcaTHN), representing an order of magnitude higher than 

the level achieved in stably transduced CrFK. 

This observation suggests that, although functional levels of tetherin are 

expressed, available tetherin molecules on the cell surface of infected cells 

become limited as viral particle production increases. The antiviral tethering 

activity of FcaTHN is thus overcome by high viral loads and viral replication is 

able to continue. The findings presented here are also consistent with the 

presence of trapped virions at the cell surface promoting cell-to-cell spread, a 

phenomenon proposed recently for HIV-1 (Jolly et al., 2010).  
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Figure 5-5 Effect of stable expression of FcaTHN on replication of cell 

culture-adapted strains of FIV. CrFK cells were stably transduced with an empty 

retroviral vector (CON) or a retroviral vector bearing domestic cat tetherin 

(FcaTHN). Cells were infected with the cell culture-adapted, CD134-independent 

strains of FIV-Fca (F14; A) or FIV-Pco (CoLV; B), and virus replication was 

monitored by RT assay of the supernatant (means [n=2]). (C,D) Representative 

fields (light microscopy) displaying enhanced syncytium formation in tetherin-

expressing cells (D) following FIV-Fca F14 infection compared with control cells 

(C). Cell monolayers were fixed and stained six days post-infection with 1.0% 

methylene blue-0.2% basic fuchsin in methanol. 

 

5.3.5 Effect of interferon-ω on FIV production and syncytium 

formation 

 

Enhanced syncytium formation following increased tetherin expression would be 

detrimental to the host and counterintuitive with respect to the idea of a role 
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for tetherin in restricting viral growth. We therefore asked whether such a 

scenario would occur following upregulation of endogenously expressed tetherin 

by interferon. CrFK cells were either left untreated or were treated with IFN-ω 

either 24 hours prior to infection or 24 hours post-infection with FIV-Fca strain 

F14. As expected, treatment of cells with IFN-ω either pre- or post-infection 

suppressed virus production (Fig. 5-6), which is consistent with the pleiotropic 

antiviral activities of type I interferons inhibiting viral growth.  
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Figure 5-6 Effect of IFN-ω on FIV production and syncytium formation. (A) 

CrFK cells were infected with FIV-Fca F14, and virus production was monitored by 

RT assays. Cells were left untreated (CON), were pre-treated with 103 IU/ml IFN-ω 

24 hours prior to infection or 24 hours post-infection. (B) FIV-Fca Gag expression 

(p24) was monitored in lysates of infected cells and in culture supernatants at day 

four post-infection by immunoblotting using mouse anti-FIV p24 antibody (vpg50). 

Induction of tetherin expression was confirmed by RT-qPCR (THN ΔCT). (C-E) 

Representative images (phase-contrast microscopy) of syncytium formation at day 

three post-infection. (C) Untreated and FIV-Fca F14-infected CrFK cells. (D) FIV-

Fca F14-infected CrFK cells treated with IFN-ω 24 hours post-infection. (E) CrFK 

cells treated with IFN-ω 24 hours pre-infection with FIV-Fca F14. 

 

As expected, the reduction in virus replication was more pronounced in cells 

pre-treated with IFN-ω compared to cells stimulated post-infection (Fig. 5-6A). 

IFN-ω led to a decrease in viral production within cells, which also resulted in a 

reduction of particle release into the cell culture supernatant (Fig. 5-6B). As 

qRT-PCR analysis of tetherin transcripts confirmed that tetherin expression had 

been induced following IFN stimulation (Fig. 5-6B), syncytium formation in the 

presence of IFN-ω was examined. Indeed, a marked enhancement of syncytium 

formation was noted in F14-infected CrFK cells treated with IFN-ω (Fig. 5-6D,E), 

irrespective of whether the interferon was added before or after viral infection. 

These data suggest that the results observed in cells stably expressing tetherin 

are recapitulated in cells in which tetherin expression is induced by IFN-ω. 

 

5.3.6 Effect of FcaTHN on replication of a primary, CD134-

dependent strain of FIV 

 

It is theoretically possible that the stably modified cell lines expressed only low 

levels of tetherin on the cell surface, which were insufficient to block viral 

release and consequently spreading FIV infection. To control for this possibility, 

we took advantage of the fact that the primary FIV-Fca isolate GL8 cannot 

replicate in CrFK cells in the absence of the FIV receptor CD134. Transfection of 

CrFK cells with GL8 therefore does not lead to a spreading infection but allows 

particle release into the cell culture supernatant to occur.  
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CrFK cells or CrFK cells stably expressing FcaTHN were transfected with 

either FIV-Fca GL8 (Fig. 5-7A) or FIV-Fca F14 as control (Fig. 5-7B). In CrFK cells 

expressing FcaTHN, release of GL8 was blocked, whereas viral particles were 

released in control cells (Fig. 5-7A), which is consistent with tetherin preventing 

virus release. As reported above, spreading infection of CD134-independent FIV-

Fca F14 was not inhibited by tetherin expression in these cells (Fig. 5-7B), but 

was accompanied by enhanced syncytium formation in FcaTHN-expressing cells 

(Fig. 5-7D) as compared to control cells (Fig. 5-7C).  

To test the effect of FcaTHN on spreading infection of CD134-dependent 

FIV-Fca GL8, control or FcaTHN-expressing CrFK cells were transduced with a 

vector expressing CD134. CD134 expression rendered CrFK cells permissive for 

GL8 infection, whether or not tetherin was co-expressed (Fig. 5-7E). Tetherin 

expression reduced replication by about two-fold, leading to a delay of 

approximately one day in achieving peak virus loads, but tetherin was unable to 

block replication in a manner analogous to that seen with feTRIMCyp (Fig. 3-8). 

This effect was confirmed by analysis of the degree of syncytium formation at 

the end of the experiment (day 6). While the absolute numbers of syncytia in the 

GL8-infected cells were similar, the syncytia in the tetherin-expressing cells 

were smaller (Fig. 5-7F), which is consistent with a partial retardation of viral 

growth. 

Thus, two contrasting outcomes of spreading FIV infection in the presence 

of FcaTHN were observed. Whereas GL8 replication was partially retarded and 

syncytium formation was proportionally reduced, F14 infection was unaffected 

and syncytium formation was enhanced. 
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Figure 5-7 Effect of stable expression of FcaTHN on release and spread of a 

primary strain of FIV. CrFK cells stably transduced with an empty retroviral 

vector (CON) or a retroviral vector bearing domestic cat tetherin (FcaTHN) were 

transfected with molecular clones of FIV-Fca GL8 (A) or FIV-Fca F14 (B). Virus 

release into the cell culture supernatant was monitored by RT assays (means ± 

S.E. [n=3]). (C,D) Representative fields (light microscopy) displaying enhanced 
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syncytium formation in tetherin-expressing cells (D) following FIV-Fca F14 

transfection compared with control cells (C). Cell monolayers were fixed and 

stained six days post-infection with 1.0% methylene blue-0.2% basic fuchsin in 

methanol. (E,F) Control or FcaTHN-expressing CrFK cells were transduced with 

CD134-pDsRed2 and infected with FIV-Fca GL8. Virus release was monitored by 

RT assays of supernatant (means [n=2]) (E), while syncytium formation was 

examined macroscopically following staining (as described above). Representative 

syncytia are indicated (white arrows) (F). 

 

5.3.7 Intracellular localisation of FcaTHN 

 

In order to examine the cellular localisation of FIV and domestic cat tetherin 

(FcaTHN) in infected cells, CrFK cells were stably transduced with a retroviral 

vector expressing FcaTHN tagged in the extracellular domain with an internal HA 

tag. Confocal analysis of Env expression on intact (non-permeabilised) cells 

demonstrated enrichment of Env staining along the entire perimeter of syncytia 

(Fig. 5-8A). While tetherin expression was detected with the majority of single 

cells, where expression appeared punctate (Fig. 5-8B), expression on the 

perimeter of syncytia followed a pattern similar to that seen with Env, and in 

several regions, marked overlap of Env and tetherin was noted (Fig. 5-8C). In 

permeabilised cells, Env expression was diffuse throughout the cytoplasm of the 

cells (Fig. 5-8D) whereas tetherin expression appeared largely punctate (Fig. 5-

8E). It was notable that, in some Env-expressing cells, tetherin appeared to be 

concentrated at the periphery of the cell (Fig. 5-8F, lower left), whereas in cells 

lacking Env, tetherin appeared to be perinuclear (Fig. 5-8E, top centre). 

Occasionally, syncytia contained regions of co-localisation of tetherin and Env, 

possibly indicating the presence of intracellular bodies rich in both Env and 

tetherin (Fig. 5-8F, inset). 
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Figure 5-8 Intracellular localisation of FcaTHN. CrFK cells stably expressing 

FcaTHN incorporating an internal HA tag (FcaTHN-HA) were infected with FIV-Fca 

F14, fixed and stained for expression of FIV-Fca Env (FITC [green]) (A,D) or 

FcaTHN-HA (Alexa Fluor 594 [red]) (B,E). In merged images (C,F), nuclei were 

also visualised with DAPI (blue). Cells were stained either in intact form (A-C) or 

following detergent permeabilisation (D-F). Images are representative of at least 

five separate fields; arrows indicate regions where Env and tetherin expression 

coincided. 
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5.3.8 Electron microscopic analysis of tetherin-mediated FIV 

particle retention 

 

FIV-Fca F14-infected tetherin-expressing CrFK cells were analysed by electron 

microscopy for evidence of the retention of virus particles on the cell surface 

(electron microscopy was performed with the help of David Bhella, University of 

Glasgow). Infected cells produced abundant microvilli in the presence or 

absence of tetherin (Fig. 5-9A) with morphologies similar to that described 

previously for HeLa cells (Fisher and Cooper, 1967). While 0.1-µm-diameter 

particles were noted in the regions rich in microvilli, the resolution of the CrFK-

derived images made it difficult to distinguish conclusively electron-dense virus-

like particles from a cross-section through the tip of a microvillus (Fig. 5-9A). 

Previous reports have described mouse mammary tumour virus budding from the 

tip of microvilli in CrFK cells (Lasfargues et al., 1976). However, aggregates of 

0.1-µm-diameter particles aligned on the surface of cells were unique to the 

F14-infected tetherin-expressing cells (Fig. 5-9B,C), a feature that could not be 

identified in F14-infected control cells. The uniformity and alignment of these 

particles on the cell surface were consistent with the presence of trapped 

virions. 
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Figure 5-9 Electron microscopy of CrFK cells infected with FIV. (A) 

Microvillus-rich regions in FIV-Fca F14-infected control cells with occasional 0.1-

µm-diameter particles (inset, two particles [arrow] adjacent to a cross-section of a 

microvillus for comparison). (B,C) Aggregates of 0.1-µm-diameter particles aligned 

on the surface of FcaTHN-expressing cells infected with F14. Arrows indicate 0.1-

µm-diameter particles associated with the cell surface. 

 

5.3.9 Activity spectrum of FcaTHN 

 

It has been shown that human tetherin does not only limit the release of HIV-1 

particles from infected cells but also blocks virion release from members of the 

alpharetrovirus, betaretrovirus, deltaretrovirus, spumaretrovirus, arenavirus 

(Lassa) and filovirus (Ebola, Marburg) families (Neil et al., 2008; Van Damme et 

al., 2008; Jouvenet et al., 2009; Kaletsky et al., 2009; Sakuma et al., 2009). 

Thus, human tetherin exhibits a broad spectrum activity and specificity. 

The data presented here show that domestic cat tetherin (FcaTHN) 

prevents FIV, HIV-1 and SIV particle release from viral producer cells. However, 

expression of tetherin has little effect on FIV spread. In order to characterise its 

activity spectrum, control and tetherin-expressing cells were transfected with 

molecular clones of the gammaretroviruses FeLV-A and RD114 (Fig. 5-10) and 

viral growth in the presence or absence of FcaTHN was assessed by C-type RT 

assays. Furthermore, infections of the same cell lines with the spumaretrovirus 

FeFV (Fig. 5-11) were performed and FeFV growth was monitored by titration 

onto FeFAB reporter cells and LacZ staining. 

Firstly, CrFK (Fig. 5-10A) and FEA (Fig. 5-10B) cells stably transduced with 

an empty vector control or a vector encoding FcaTHN were transfected with a 

FeLV-A molecular clone. As observed for FIV-Fca GL8 (Fig. 5-7E), in the presence 

of tetherin, FeLV-A growth was initially reduced by up to two-fold resulting in a 

growth delay of about 24 hours in CrFK cells and 36 hours in FEA cells compared 

to the control. However, peak viral loads were comparable in the presence and 

absence of FcaTHN, indicating that FcaTHN is unable to exert a potent block to 

FeLV-A spread. Next, the stably transduced CrFK (Fig. 5-10C) and FEA (Fig. 5-

10D) cells were transfected with a molecular clone of the endogenous feline 
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gammaretrovirus RD114. RD114 did not grow in FEA cells but, notably, tetherin 

expression prevented RD114 replication in CrFK cells completely. 

 

Figure 5-10 Effect of stable expression of FcaTHN on replication of 

gammaretroviruses. CrFK (A,C) or FEA (B,D) cells stably transduced with an 

empty retroviral vector (CON) or a retroviral vector bearing domestic cat tetherin 

(FcaTHN) were transfected with molecular clones of FeLV-A (A,B) or RD114 

(C,D). Virus release into the cell culture supernatant was monitored by RT assays 

(means ± S.E. [n=3]).  

 

Finally, the ability of FcaTHN to prevent spumaretroviral release and spread was 

investigated (Fig. 5-11). FeFVΔbel/bet (devoid of bel2 and bet) and a wild-type 

FeFV molecular clone were transfected into 293T cells in the presence or 

absence of FcaTHN (Fig. 5-11A). Whereas the amount of virus-encoding plasmid, 

that was transfected, was kept constant, the amount of FcaTHN-encoding 

plasmid was varied. Virus-containing supernatants were titrated onto FeFAB 

reporter cells, which express lacZ in the presence of FeFV Bel1 (Zemba et al., 

2000). Bel1 is a transactivator of the FeFV LTR, which is stably integrated into 
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the genome of the reporter cells and drives expression of lacZ. Viral titres were 

determined by LacZ staining.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11 Effect of FcaTHN on release and spread of FeFV. (A) 

FeFVΔbel/bet and FeFV wild-type particles were produced in 293T cells co-

transfected with empty vector only (VR1012) or FcaTHN expression vector. 

Whereas the amount of transfected virus-encoding plasmid DNA was kept 

constant at 5 µg, the amount of FcaTHN expression plasmid DNA was varied. 48 

hours post-transfection, cell supernatant was titrated onto FeFAB reporter cells 

and the activity of FcaTHN was assessed by measuring FeFV Bel1-driven lacZ 

expression in target cells by LacZ staining. Viral titres are expressed as mean 

focus forming units per ml cell supernatant (FFU/ml) from duplicate wells (n=1). (B) 

FeFVbel/bet and FeFV wild-type virus stocks were prepared by transfection of 

293T cells with respective molecular clones. 100 µl of virus stocks were used to 

transduce CrFK cells stably expressing a control (CON) or domestic cat tetherin 

(FcaTHN). Viral growth was monitored by titration of cell supernatants onto FeFAB 

reporter cells and LacZ staining. Viral titres are expressed as mean FFU/ml ± S.E. 

from triplicate wells (n=1). 
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FcaTHN blocked FeFV particle release in a dose-dependent manner. When low 

amounts of FcaTHN plasmid DNA were co-transfected, FcaTHN prevented release 

of FeFVΔbel/bet and wild-type FeFV to a comparable degree; however, at high 

amounts of FcaTHN wild-type FeFV titres remained up to one log higher than 

FeFVΔbel/bet titres. The data points towards a role of FeFV Bet, which has 

previously been shown to prevent dimerisation of feline A3C proteins and their 

incorporation into viral particles (Lochelt et al., 2005), in FcaTHN antagonism. 

Therefore, single-cycle replication assays using FeFVΔbel/bet in the presence of 

FcaTHN and FeFV Bet were performed. Bet expression did not rescue 

FeFVΔbel/bet titres if tetherin was co-expressed (data not shown). So far, the 

product of bel2 has not been identified.  

In order to investigate the activity of FcaTHN to block not only FeFV 

release but also spread, control CrFK cells or CrFK cells stably expressing 

FcaTHN were infected with FeFVΔbel/bet or FeFV wild-type (Fig. 5-11B). 

Independent of tetherin expression, titres of FeFVΔbel/bet were about 4.5 logs 

lower than that of FeFV. Indeed, the bel2/bet mutation has been shown to 

result in reduced particle release and possibly in reduced infectivity of viral 

particles (Alke et al., 2001). Tetherin expression reduced titres of FeFVΔbel/bet 

in the first 72 hours of infection by a maximum of one log. At later time points, 

FcaTHN had no effect on FeFVΔbel/bet replication. In contrast, in the presence 

of FcaTHN a constant decrease in wild-type FeFV titres of up to 1.5 logs was 

observed. Thus, domestic cat tetherin efficiently blocks FeFV particle release 

and partly limits FeFV spread. 

 

5.3.10 Identification and characterisation of non-domestic cat 

tetherins 

 

In addition to domestic cat tetherin (FcaTHN), non-domestic cat tetherin 

homologues were identified and characterised, and their antiviral activities were 

compared to that of FcaTHN. African lion tetherin (PleTHN) shares 95% 

nucleotide and 89% amino acid identity with FcaTHN (Fig. 5-12). Puma tetherin 

(PcoTHN) possesses 97% and 94% nucleotide and amino acid identity, 

respectively, with FcaTHN. Both PleTHN and PcoTHN adopt the same protein 

topology as described for FcaTHN (see Fig. 5-1). The double tyrosine endocytosis 
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motif at amino acid positions 6 and 8, the three cysteines involved in tetherin 

dimerisation at positions 59, 69 and 97 and the GPI anchor attachment site at 

serine 161 are conserved among felid tetherins.   

 

 

 

 

 

Figure 5-12 Identification of non-domestic cat homologues of tetherin. 

Alignment of the amino acid sequences of feline (FcaTHN), lion (PleTHN) and 

puma (PcoTHN) tetherins. Amino acid residues are colour-coded as follows: light 

gray, hydrophobic FILMPV; dark gray, amphiphilic AGW; green, hydrophilic neutral 

CNQST; light blue, slightly basic H; blue, basic KR; pink, slightly acidic Y; red, 

acidic DE. 

 

To assess the potential of felid tetherins to limit viral particle release from 

infected cells, single-cycle replication assays were performed using FIVΔvif(VSV-

G) pseudotypes in the presence or absence of FcaTHN, PleTHN or PcoTHN (Fig. 

5-13). Human tetherin (HsaTHN) was used as positive control for restriction of 

FIV particle release (Jouvenet et al., 2009). Pseudotypes were produced in the 

presence or absence of FIV Envs to determine whether they are able to 

counteract non-domestic cat tetherins. As shown for FcaTHN and HsaTHN, 

PleTHN and PcoTHN potently restricted FIVΔvif(VSV-G) pseudotype release from 

293T cells. Neither FIV-Fca GL8 Env, nor FIV-Ple B or FIV-Ple E Envs antagonised 

the felid tetherins or HsaTHN.  
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Figure 5-13 Felid tetherins restrict FIV particle release and are not overcome 

by FIV Envs. (A) VSV-G-pseudotyped, GFP-expressing FIVΔvif particles were 

produced in 293T cells co-transfected with empty vector only (CON) or tetherin 

(FcaTHN, PleTHN, PcoTHN, HsaTHN) expression vectors. Assays were 

performed in the presence of empty vector only (CON) or FIV-Fca GL8 Env, FIV-

Ple B Env or FIV-Ple E Env. Pseudotype-containing cell supernatant was then 

used to transduce 293T target cells and tetherin activity was assessed by 

measuring GFP-expression in target cells by flow cytometry. Single-cycle 

replication assays were performed in triplicate (n=3; results shown as mean ± 

S.E.). Statistically significant differences relative to the empty vector only control 

are indicated by asterisks (*, P<0.05, Dunnet’s t-test). (B) FIV Gag (p24) and Gag 
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precursor polyprotein Pr55Gag (p55) expression in lysates of transfected 293T 

producer cells was assessed by immunoblotting using mouse anti-FIV p24 (vpg50) 

antibody. (C) FIV-Fca GL8 Env expression in lysates of transfected 293T producer 

cells was confirmed by immunoblotting using mouse anti-FIV Env (vpg71.2) 

antibody. 

 

Because of the clear difference seen between the ability of FcaTHN to prevent 

FIV particle release and spread, CrFK and canine CLL cells stably expressing lion 

or puma tetherins were infected with different strains of FIV and virus growth 

was monitored (Fig. 5-14). CrFK and CLL cells stably transduced with a construct 

bearing a FcaTHN mutant lacking the double tyrosine motif (FcaTHN-Y6/8A) or 

HsaTHN were also included in the study. 

All CrFK cell lines were first infected with the cell culture-adapted, 

CD134-independent FIV strains FIV-Fca F14 (Fig. 5-14A) and FIV-Pco CoLV (Fig. 5-

14B). In agreement with our findings for domestic cat tetherin (FcaTHN; see Fig. 

5-5), none of the tetherins was able to prevent productive FIV replication, with 

PleTHN and HsaTHN being the most effective tetherins at limiting viral F14 and 

CoLV spread. CoLV growth was in fact enhanced by expression of FcaTHN, 

FcaTHN-Y6/8A and PcoTHN compared to the empty vector control (CON) (Fig.5-

14B). This enhancement is especially noteworthy in the case of FcaTHN-Y6/8A 

because it indicates that prevention of tetherin endocytosis from the cell 

surface and hence increased tetherin surface expression did not increase the 

antiviral activity of FcaTHN.   

Moreover, tetherin-expressing cells were transduced with a construct 

encoding feline CD134 and infected with the primary, CD134-dependent strains 

of FIV-Fca GL8 (Fig. 5-14C) and PPR (Fig. 5-14D). Interestingly, similar to our 

data obtained for FcaTHN (Fig. 5-7E) all tetherins modestly limited FIV-Fca GL8 

growth. This effect was less pronounced for PPR. Expression of FcaTHN-Y6/8A 

and HsaTHN led to the highest reduction in viral growth. 

Next, CrFK cells stably transduced with felid and human tetherins and 

CD134 were infected with FIV-Ple E, which, like FIV-Fca, uses CD134 as primary 

receptor (McEwan, 2009). FIV-Ple E growth was not affected by tetherin 

expression with the exception of HsaTHN, which reduced viral growth 

significantly (Fig.5-14E).  
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Lastly, FIV-Fca GL8 (Fig. 5-15F) and FIV-Ple E (Fig. 5-15G) growth was also 

assessed in canine CLL cells stably expressing tetherins and CD134. Again, none 

of the felid tetherins were able to prevent viral spread. These data indicate that 

the inability of felid tetherins to restrict FIV spreading replication was not 

limited to CrFK cells and seemed to be cell type-unspecific. 

Infections of both CrFK and CLL cells with FIV-Ple B were attempted, but 

the virus grew only to very low titres, insufficient to draw reliable conclusions 

about the antiviral activities of tetherins.  
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Figure 5-14 Effect of stable expression of felid tetherins on replication of cell 

culture-adapted and primary strains of FIV. CrFK cells (A-E) and canine CLL 

cells (F,G) were stably transduced with an empty retroviral vector (CON) or  

retroviral vectors bearing domestic cat (FcaTHN), lion (PleTHN), puma (PcoTHN) 

or human (HsaTHN) tetherin or a FcaTHN mutant lacking its N-terminal double 

tyrosine motif (FcaTHN-Y6/8A). To enable growth of CD134-dependent FIV 

strains, cells were further transduced with the construct CD134-pDsRed2 (C-G). 

Cells were infected with the cell culture-adapted, CD134-independent strains of 

FIV-Fca (F14; A) or FIV-Pco (CoLV; B), with the primary FIV-Fca strains GL8 (C,F) 

and PPR (D) or with FIV-Ple E (E,G), and virus replication was monitored by RT 

assay of the supernatant (means [n=2]). 
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5.3.11 Characterisation of the feline tetherin N-terminal region 

 

In this study a domestic cat homologue of feline tetherin was identified and 

characterised. Its genome locus and the sequence of the corresponding cDNA 

were analysed. This cDNA was predicted to be 504 nt in length; however, the 

genomic sequence upstream of its start codon shared significant homology with 

known tetherins. Interestingly, the upstream sequence encoded for the double 

tyrosine motif involved in tetherin endocytosis from the cell surface and tetherin 

turn-over in cells, but was missing the thymidine in its start codon. Thus, a form 

of tetherin 561 nt in length was amplified from Mya-1 and CrFK cDNA with a 

forward primer containing an intact start codon. This tetherin (FcaTHN) was 

used throughout this study. 

Recently, two groups have independently performed 5’ RACE (rapid 

amplification of cDNA ends) PCR to characterise tetherin’s 5’ terminus and 

identified the shorter cDNA starting from the downstream, intact start codon as 

the coding sequence (Fukuma et al., 2011; Celestino et al., 2012). In agreement 

with our observations, Fukuma et al. (2011) found that domestic cat tetherin, 

which was termed FcaTHN-WT in this study, was indeed IFN-inducible and was 

able to restrict RD114 particle release. Surprisingly, Celestino et al. (2012) found 

that, although both forms of tetherin were able to dimerise and were correctly 

expressed on the cell surface, neither of them prevented FIV wild-type particle 

release in single-cycle replication assays. However, FIVΔenv particle release was 

blocked by the short form of tetherin and rescued by expression of FIV Env in 

trans, identifying FIV Env as an antagonist of domestic cat tetherin. 

Due to the conflicting data on FIV Env antagonism of feline tetherin, 

5’RACE PCR was performed. Moreover, the downstream start codon was verified 

for both domestic cat tetherin and lion and puma tetherins. The upstream 

sequence resembling the 5’ end of known tetherin cDNAs formed part of the 

domestic cat tetherin transcript, but was lacking an ATG start codon. Then the 

domestic cat tetherin cDNA (501 nt), which encodes for a protein with a shorter 

cytoplasmic tail (wild-type domestic cat tetherin; FcaTHN-WT) than FcaTHN 

(Fig. 5-15), was amplified and cloned.  
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Figure 5-15 Amino acid sequence alignment of domestic cat tetherins. A 561 

nt long domestic cat tetherin cDNA was amplified from Mya-1 and CrFK cell cDNA 

with a forward primer engineered to contain a functional start codon. This cDNA 

(FcaTHN) encodes for a tetherin with a cytoplasmic tail that resembles those of 

other known tetherins (see Fig. 5-1). A 501 nt long domestic cat tetherin cDNA 

was amplified from Mya-1 and CrFK cell cDNA that encodes for a tetherin with a 

shortened cytoplasmic tail (FcaTHN-WT). Amino acid residues are colour-coded 

as follows: light gray, hydrophobic FILMPV; dark gray, amphiphilic AGW; green, 

hydrophilic neutral CNQST; light blue, slightly basic H; blue, basic KR; pink, 

slightly acidic Y; red, acidic DE. 

 

5.3.12 Comparison of FcaTHN and FcaTHN-WT antiviral activities 

 

In order to identify possible differences in the abilities of FcaTHN and FcaTHN-

WT to limit FIV particle release from producer cells, single-cycle replication 

assays were performed in the presence or absence of both proteins (Fig. 5-16). 

Both FcaTHN and FcaTHN-WT were able to block FIV(VSV-G) pseudotype release 

from 293T cells (Fig. 5-16A). In agreement with the findings of Celestino and co-

workers, restriction by FcaTHN-WT was more pronounced than restriction by 

FcaTHN (Celestino et al., 2012).  

Next, the replication assays were repeated in the presence of the FIV-Fca 

GL8, C8.1 (CrFK-adapted GL8), Petaluma clone F14 and 34TF10 Envs provided in 

trans or in the presence of KKS Env (Env of in vivo readapted FIV-Fca Petaluma) 

expressed from construct pEE14-Env. The latter construct is identical to that 
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used by Celestino et al. (2012). Expression of all Envs was confirmed by 

immunoblotting (Fig. 5-16B). In stark contrast to the observations by Celestino 

et al. (2012), neither FcaTHN nor FcaTHN-WT was counteracted by FIV Envs, 

confirming that FIV Env is not a functional tetherin antagonist.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-16 FcaTHN and FcaTHN-WT restrict FIV particle release and are not 

overcome by FIV Envs. (A) VSV-G-pseudotyped, GFP-expressing FIVΔvif 

particles were produced in 293T cells co-transfected with empty vector only (CON) 

or tetherin (FcaTHN, FcaTHN-WT) expression vectors. Assays were performed in 

the presence of empty vector only (CON) or envelope glycoproteins (Envs) of FIV-

Fca GL8, C8.1, Petaluma clones F14 and 34TF10 or Petaluma clone KKS Env 

expressed from construct pEE14-Env. Pseudotype-containing cell supernatant 

was then used to transduce 293T target cells and tetherin activity was assessed 

by measuring GFP-expression in target cells by flow cytometry. Single-cycle 

VR1012 FcaTHN FcaTHN-WT

0

20

40

60

80

A VR1012

FIV-Fca GL8 Env

FIV-Fca C8.1 Env

FIV-Fca F14 Env

FIV-Fca 34TF10 Env

pEE14-Env

*

*

*

*

*

* *

*

*

*

*

 I   II  III  IV  V  VI  I   II  III  IV  V  VI  I   II  III  IV  V  VI

VR1012

 I   II  III  IV  V  VI

B

Cells

FcaTHN

  I   II  III  IV  V  VI

FcaTHN-WT

 I   II  III  IV   V  VI

*

Env

p24

Virions

p55

p24

P
e
rc

e
n

t 
in

fe
c
ti

o
n



177 

 

replication assays were performed in triplicate (n=3; results shown as mean ± 

S.E.). Statistically significant differences relative to the empty vector only control 

are indicated by asterisks (*, P<0.05, Dunnet’s t-test). (B) FIV Gag (p24) and Gag 

precursor polyprotein Pr55Gag (p55) expression in lysates and p24 expression in 

pelleted virions from supernatants of transfected 293T producer cells were 

assessed by immunoblotting using mouse anti-FIV p24 (vpg50) antibody. FIV Env 

expression in cell lysates was confirmed by immunoblotting using mouse anti-FIV 

Env (vpg71.2) antibody. 

 

Furthermore, it was of interest to assess whether FcaTHN-WT, unlike FcaTHN, 

would be able to prevent FIV spreading infection. For this, CrFK cells stably 

expressing FcaTHN or FcaTHN-WT were infected with cell culture-adapted, 

CD134-independent strains of FIV-Fca (F14; Fig. 5-17A) and FIV-Pco (CoLV; Fig. 

5-17B), and virus spread was monitored by reverse transcriptase activity assay of 

the culture supernatant. Importantly, ectopic expression of FcaTHN-WT did not 

inhibit virus production from FIV-infected CrFK cells. These data validate the 

findings obtained with FcaTHN and indicate that its prolonged N-terminus did 

not interfere with its ability to limit FIV spread (compare Fig. 5-5). 

Figure 5-17 Effect of stable expression of FcaTHN and FcaTHN-WT on 

replication of cell culture-adapted strains of FIV. CrFK cells were stably 

transduced with an empty retroviral vector (CON) or a retroviral vector bearing 

either FcaTHN or FcaTHN-WT. Cells were infected with the cell culture-adapted, 

CD134-independent strains of FIV-Fca (F14; A) or FIV-Pco (CoLV; B), and virus 

replication was monitored by RT assay of the supernatant (means [n=2]). 
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5.4 Discussion 

 

In addition to FIV, domestic cats harbour gammaretroviruses such as exogenous 

and endogenous feline leukaemia viruses (FeLVs) or RD114, as well as the 

spumaretrovirus feline foamy virus (FeFV) (Reeves and O'Brien, 1984). Whereas 

FIV is highly prevalent in felids with 21 of the 37 known species of felids 

harbouring antibodies to FIV (VandeWoude and Apetrei, 2006; Troyer et al., 

2008), gammaretroviruses are, with the exception of sporadic cross-species 

transmission events, restricted to domestic cats (Benveniste and Todaro, 1975; 

Reeves and O'Brien, 1984). This suggests that they entered the Felis genus after 

it diverged from the main lineage of the Felidae approximately 6.2 MYA (Johnson 

et al., 2006). The high abundance of different retroviruses in cats necessitates 

the presence of potent and broadly specific anti-retroviral restriction factors. 

However, as discussed in previous chapters, feline TRIM5α is non-functional 

(McEwan et al., 2009) and feline A3 proteins are, at least partially, overcome by 

FIV Vif and FeFV Bet proteins (Lochelt et al., 2005; Munk et al., 2008; Stern et 

al., 2010; Zielonka et al., 2010).  

In this study a homologue of tetherin has been identified in the domestic 

cat genome. Its coding sequence and predicted protein structure shared high 

similarity with known tetherins (Fig. 5-1). For the main part of this work, a 

protein termed FcaTHN with an N-terminus, which resembled that of other 

tetherins, was used. During the course of the project, however, it was 

discovered that wild-type domestic cat tetherin (FcaTHN-WT) most likely 

possesses a shorter cytoplasmic tail than FcaTHN. Consequently, the activities of 

both proteins to limit FIV release in single-cycle replication assays and to block 

FIV spreading infection were compared and were found to be similar. 

Feline tetherin has been shown to be IFN-inducible in different feline cell 

lines, Mya-1 T lymphocytes and primary macrophages (Fig. 5-2). In agreement 

with studies on human tetherin, FcaTHN prevented FIV(VSV-G) and HIV-1(VSV-G) 

pseudotype release from infected cells in a dose-dependent manner (Fig. 5-3).  

Primate lentiviruses have evolved diverse mechanisms to evade the 

antiviral activities of tetherin. Pandemic HIV-1 M strain isolates as well as SIVs of 

Mona monkeys (Cercopithecus mona), mustached monkeys (C. cephus) and 

greater spot-nosed monkeys (C. nictitans) (SIVmon, SIVmus and SIVgsn, 

respectively) encode Vpu proteins with potent anti-tetherin activities 
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(Courgnaud et al., 2003; Neil et al., 2007; Neil et al., 2008; Sauter et al., 2009; 

Yang et al., 2010). In contrast, SIV of chimpanzees (Pan troglodytes; SIVcpz), the 

nearest ancestor of HIV-1, uses Nef to counteract tetherin (Sauter et al., 2009), 

a feature it shares with SIVagm of African green monkeys (Chlorocebus sabaeus), 

SIVmac of rhesus macaques (Macaca mulatta), SIVsmm of sooty mangabeys 

(Cercocebus atys) and SIVsyk of Sykes’ monkeys (Cercopithecus albogularis) (Jia 

et al., 2009; Sauter et al., 2009; Zhang et al., 2009a). Furthermore, HIV-2 and 

SIVagm.Tan (SIV of Tantalus monkeys [Chlorocebus tantalus]) Envs antagonise 

tetherins (Abada et al., 2005; Gupta et al., 2009b; Le Tortorec and Neil, 2009). 

This diversity of tetherin countermeasures points towards an ongoing struggle 

between hosts and lentiviruses. In search of a tetherin antagonist encoded in the 

FIV genome, FIV pseudotypes were produced in the presence of domestic cat 

tetherin (FcaTHN) and either FIV OrfA or FIV Envs (Fig. 5-4) neither of which 

rescued FIV particle release from producer cells.  

In contrast to particle release, tetherin was unable to limit spreading 

infection of cell culture-adapted, CD134-independent strains of FIV (Fig. 5.5 and 

5-14A). Indeed, tetherin expression promoted enhanced syncytium formation in 

CrFK cells by a mechanism that is likely to involve trapped virions on the cell 

surface. Rather than being released into the cell culture supernatant, their 

enrichment on the cell surface may trigger cell-to-cell spread, leading to 

syncytium formation. Interestingly, enhanced syncytium formation was also 

observed upon infection of IFN-treated CrFK cells with the CD134-independent 

F14 strain of FIV-Fca (Fig. 5-6). These data indicate that IFN stimulation 

upregulated tetherin expression favouring cell-to-cell rather than cell-free virus 

transmission and leading to syncytium formation.  

There is evidence that suggests that Vpu-deficient HIV-1 can replicate in 

cell culture with the same kinetics as wild-type virus (Strebel et al., 1989; 

Terwilliger et al., 1989; Klimkait et al., 1990) by shifting from a cell-free to a 

cell-to-cell mode of transmission. As a consequence of this shift, viral replication 

was not inhibited, in direct contrast to the effect of tetherin on viral release. 

Furthermore, it has recently been shown that in T lymphocytes infected with 

Vpu-defective HIV-1, but not wild-type HIV-1, virus envelope glycoproteins 

accumulated on the cell surface due to the action of tetherin, promoting the 

formation of virological synapses (VS) and direct cell-to-cell spread of virions 

(Jolly et al., 2010). Depletion of tetherin using small interfering RNAs (siRNAs) 
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impaired cell-to-cell transmission (Jolly et al., 2010). Strikingly, prior to the 

discovery of tetherin, studies reported an increase in the size of syncytia in 

HeLa-CD4+ cells transfected with HIV-1 devoid of Vpu (Klimkait et al., 1990), 

while enhanced cell-to-cell spread and the formation of giant syncytia in Jurkat 

cells infected with a mutant virus bearing a frameshift in vpu were noted 

(Gummuluru et al., 2000). 

What is the significance of the enhanced syncytium formation seen with 

cell culture-adapted strains of FIV? Cell culture-adapted strains of FIV are similar 

to, and are frequently derived from, CD134-independent strains of FIV that arise 

during chronic infection in vivo. They may be considered to be analogous to the 

X4 strains of HIV-1 that emerge in the later stages of infection. Initially, these 

viruses were thought to be the consequence of cell culture adaptation, a 

selection for adaptation for growth in CD134-negative cell lines such as CrFK. 

Indeed, FIV-Fca Petaluma clones F14 and 34TF10, the prototypic molecular 

clones of FIV, bear mutations in their V3 loops consistent with CrFK adaptation 

and CD134-independent infection. However, it has also been shown that CD134-

independent viral variants of primary isolates of FIV-Fca can arise, either during 

culture in CD134-positive peripheral blood mononuclear cells or in vivo in 

infected cats (Kraase et al., 2010). Thus, it appears that there is selective 

pressure in vivo for the generation of CD134-independent strains of virus. Such 

selective pressure may be exerted either by the humoural immune response 

(Willett et al., 2010) or indeed by tetherin, both of which impact on virus-

receptor interaction and receptor usage. While IFN-induced tetherin expression 

may prevent particle release from infected cells, it may also, as an unintended 

consequence of its antiviral activity, enable efficient viral cell-to-cell spread.  

It is noteworthy that infection of CrFK cells stably expressing FcaTHN with 

the primary, CD134-dependent GL8 strain of FIV-Fca led to a modest viral growth 

delay and a proportionate reduction in the size, but not number of syncytia that 

were formed (Fig. 5-7 and 5-14C). 

How can the discrepancy between enhanced syncytium formation seen 

with F14 and reduced syncytium formation observed with GL8 be explained? It is 

likely that the switch to CD134-independence facilitates a more efficient cell-

cell fusion mediated by use of the abundant co-receptor CXCR4 alone. Assuming 

that CD134-dependent strains of FIV rely more heavily on cell-free transmission 

than CD134-independent strains, it is notable that a mutant of FcaTHN that lacks 
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the N-terminal double tyrosine motif involved in tetherin recycling from the cell 

surface (FcaTHN-Y6/8A) reduced GL8 replication significantly (Fig. 5-14C). 

Deletion of this double tyrosine motif has been shown to increase tetherin 

surface expression (Hauser et al., 2010). It is therefore likely that FcaTHN-Y6/8 

is more effective at inhibiting particle release than FcaTHN, which leads to the 

observed reduction in GL8 growth in FcaTHN-Y6/8-expressing cells.   

In addition to FIV, the ability of tetherin to limit gammaretroviral and 

spumaretroviral release and spread was investigated (Fig. 5-10 and 5-11). 

FcaTHN was able to reduce FeLV-A growth modestly. Moreover, RD114 

replication was completely blocked by tetherin. The high potency of tetherin to 

block RD114 spread may be facilitated by low viral loads or a strong dependence 

of RD114 on cell-free transmission. FeFV release was inhibited and its spreading 

replication in tetherin-expressing cells was reduced in comparison to control 

cells. Although RD114 and FeFV infect cats without causing apparent disease, 

their expression and replication could sequester available tetherin and limit its 

activity against FeLV and FIV, thereby potentially contributing to disease 

progression.   

In order to compare tetherin sequences and antiviral activities within the 

Felidae, lion and puma tetherin homologues were amplified, cloned and 

expressed transiently in single-cycle replication assays or stably for use in 

productive retroviral infection studies. Both tetherins resemble FcaTHN with 

respect to sequence, predicted structure and their ability to restrict viral 

particle release and spread (Fig. 5-12 to 5-14).  

The final part of this study focused on the characterisation of the 5’ 

terminus of domestic cat tetherin. In recent publications, a tetherin cDNA 

encoding for a protein with a shortened N-terminal cytoplasmic tail (see Fig. 5-

15) was identified as the naturally occurring homologue of domestic cat tetherin 

(Fukuma et al., 2011; Celestino et al., 2012). In disagreement with our data, 

Celestino et al. (2012) found that FIV-Fca Petaluma Env is a potent antagonist of 

cat tetherin. To rule out differences in activity and susceptibility to FIV Envs 

between the tetherin used in this study (FcaTHN) and the tetherin used by other 

groups (here called FcaTHN-WT), single-cycle replication assays were repeated 

in the presence or absence of different FIV-Fca Envs (Fig. 5-16). Under our 

experimental conditions we found no evidence of an activity of FIV Envs against 

either FcaTHN or FcaTHN-WT and were thus unable to confirm the key finding of 
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Celestino and co-workers (Celestino et al., 2012). Interestingly, FcaTHN-WT 

restricted FIV(VSV-G) pseudotype release more potently than FcaTHN. As 

discussed above, deletion of tetherin’s N-terminal double tyrosine motif leads to 

enhanced tetherin surface expression (Hauser et al., 2010) and possibly to a 

more efficient restriction of particle release. However, despite its higher 

activity in single-cycle replication assays, FcaTHN-WT was, like FcaTHN, unable 

to prevent FIV spreading infection of cell culture-adapted, CD134-independent 

strains of FIV (Fig. 5-17). As discussed above, these viruses are capable of cell-

to-cell spread, thereby overcoming the action of tetherin. It can be assumed 

that FcaTHN-WT will behave like the tetherin mutant FcaTHN-Y6/8A in retroviral 

growth assays with primary, CD134-dependent strains of FIV (see Fig. 5-14C,D).  

In this study we showed that felid tetherins inhibit virus release but not 

spreading infection. Thus, there may be other roles for tetherin that do not 

involve the inhibition of viral growth, in particular that of a regulator of innate 

immunity. Tetherin has been identified as a specific marker of type I IFN-

producing cells (IPCs) or plasmacytoid dendritic cells (pDCs) (Blasius et al., 

2006). These cells circulate through the blood and infiltrate lymph nodes that 

drain sites of infection. While they were initially thought to have a primary role 

in immunomodulation resulting from the secretion of large amounts of type I 

interferon, subsequent studies indicated that pDCs were capable of presenting 

antigen to both CD4+ and CD8+ T cells and might have a potential role in antigen 

capture, processing, and presentation to T cells at sites of infection and in 

lymph nodes (reviewed in (Villadangos and Young, 2008)]).  

Viruses trigger Toll-like receptor (TLR) 7/9-induced production of type I 

IFN and proinflammatory cytokines that activate antiviral intrinsic, innate and 

adaptive immune responses (Colonna et al., 2004; Liu, 2005). A chronic 

activation of pDCs and continuous IFN production caused by lentivirus infection 

leads to immune dysregulation, T cell anergy and apoptosis (Tompkins and 

Tompkins, 2008). Tetherin has been shown to interact with the orphan receptor 

immunoglobulin-like transcript 7 (ILT7), which is expressed exclusively on pDCs 

(Cao et al., 2009). This interaction induces a negative feedback loop on the 

production of type I IFN and proinflammatory cytokine production and adjusts 

the magnitude of immune activation upon viral infection (Cao et al., 2009).  

By trapping virions on the cell surface tetherin may mark infected cells 

for destruction by antibody-dependent cellular cytotoxicity. Moreover, virions 
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tethered on the surface of dendritic cells may facilitate interactions with B cells 

bearing compatible surface immunoglobulin. Finally, tetherin is known to target 

virions for endocytosis and degradation, and internalised virions may be 

processed for antigen presentation in conjunction with MHC (Major 

histocompatibility complex) class II to CD4+ T lymphocytes.  

The elucidation of the role of feline tetherin in controlling replication of 

feline retroviruses in vivo and in regulating the antiviral immune response may 

lead to the development of promising new approaches for the prevention and 

treatment of viral infections. 
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 Concluding remarks 6

 
Throughout the course of evolution, lentiviruses have invaded a broad range of 

mammalian species. However, their host spectrum is limited and successful viral 

transmission events are rare, even between closely related host species. Cross-

species transmission is dependent on the compatibility between the virus and 

host factors that are either beneficial for viral replication (viral host dependency 

factors) or that protect the host from viral infection (restriction factors). Thus, 

transmission often requires adaptive changes in the viral genome to occur. 

Newly established lentiviral infections are characterised by high viral virulence 

leading to apparent pathology and rapid genetic diversification of the virus in 

the new host. During prolonged periods of host-virus co-evolution, the host-virus 

relationship eventually becomes balanced resulting in reduced viral virulence 

and/or improved host antiviral immune responses.  

The HIV-1 M (main) group pandemic in the human population started in 

the early 20th century and was caused by a single successful zoonotic 

transmission event of SIVcpz of West African chimpanzees to humans (Gao et al., 

1999; Korber et al., 2000). This transmission was, among others, facilitated by 

molecular and functional changes in the SIV accessory proteins Nef, Vif and Vpu 

(Mangeat et al., 2004; Schrofelbauer et al., 2004; Sauter et al., 2009), known 

restriction factor antagonists. Because of the as yet unbalanced host-virus 

relationship, HIV-1 infection in the susceptible human population leads to a fatal 

immunodeficiency syndrome. In contrast, natural SIV infections of non-human 

primates such as sooty mangabeys, African green monkeys, mandrills, 

chimpanzees and others are mostly benign due to host-virus adaptation (Silvestri 

et al., 2007; Pandrea et al., 2008).   

The non-primate lentivirus FIV infects a wide range of non-domestic felids 

as well as domestic cats. Similar to lentivirus infections in primates, a difference 

in the pathogenicity of FIV infections can be observed between non-domestic 

cats and domestic cats. FIV has been endemic in non-domestic cats such as 

pumas or lions for hundreds of thousand or maybe several million years (Antunes 

et al., 2008; Pecon-Slattery et al., 2008b; Poss et al., 2008; Troyer et al., 2008) 

and infection is not usually associated with disease. However, FIV is a relatively 

recent introduction into domestic cats and infection leads to the development of 

feline AIDS.   
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Restriction factors form part of the mammalian antiviral intrinsic 

immunity, a form of cellular innate immunity that allows for a rapid restriction 

of viral infection and replication. It has been shown that the genes encoding the 

well-known restriction factors TRIM5α, APOBEC3G and tetherin evolve unusually 

fast (Sawyer et al., 2004; Sawyer et al., 2007; McNatt et al., 2009). Their 

diversifying selection is undoubtedly driven by frequent encounters with 

infectious agents such as viruses. Alterations in the specificity and potency of 

restriction factors, in return, necessitate adaptive changes in the virus genome 

to occur in order to ensure sufficiently high levels of viral replication. 

Because of the apparent importance of restriction factors in limiting host 

susceptibility to viral infection and in preventing cross-species transmission 

events we hypothesised that differences in restriction factor activities may 

account for the differential disease outcome seen between FIV infections of non-

domestic and domestic cats. These differences may have arisen as a 

consequence of long-term co-adaptation between non-domestic cat restriction 

factors and FIV restriction factor antagonists on one side and the lack of 

adaptation between restriction factors of domestic cats and their only recently 

acquired lentivirus FIV-Fca on the other side.  

In this study felid restriction factors were characterised and their 

activities against FIV strains of non-domestic and domestic cats were compared.  

As previously shown, feline TRIM5α bears a deletion in its B30.2 (PRY/SPRY) 

domain essential for lentiviral capsid binding and hence does not contribute to 

FIV restriction in felids (McEwan et al., 2009). Here, a synthetic domestic cat 

TRIM5α-cyclophilin A fusion (feTRIMCyp) was generated based on naturally 

occurring simian TRIMCyps. FeTRIMCyp was able to potently restrict FIV(VSV-G) 

pseudotype and FIV productive infection, indicating that the feline TRIM5α RBCC 

(RING-B-box-coiled-coil) domain has indeed retained its functionality in the 

absence of capsid binding.  

No significant differences in the activities of domestic cat, lion and puma 

APOBEC3C (A3C), APOBEC3H (A3H) and APOBEC3CH (A3CH) proteins against 

FIVΔvif(VSV-G) were detected. However, especially feline A3CH proteins differed 

in their susceptibility to FIV Vifs. Whereas cat A3CH was potently counteracted 

by FIV-Fca Vif and FIV-Pco Vif, lion and puma A3CH proteins were largely 

resistant to these FIV Vifs. These differences in the susceptibility of A3 proteins 
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to FIV Vifs may be a result of disparate degrees of host-virus co-adaptation that 

has taken place between domestic or non-domestic cats and FIV.  

Felid tetherins were shown to block FIV(VSV-G) pseudotype particle 

release from transfected cells efficiently. Unexpectedly, they were unable to 

restrict FIV spreading infection. In fact, we found that domestic cat tetherin 

enhanced syncytium formation in CrFK cells upon infection with the cell culture-

adapted, CD134-independent FIV-Fca strain F14. These data indicate that 

tetherins may force lentiviruses to change their mode of replication from cell-

free to cell-to-cell transmission in order to circumvent the block to particle 

release posed by tetherin. As an unintended consequence of restriction, viral 

propagation may thus be facilitated. 

Differences in the feline APOBEC3-FIV Vif interactions seem to offer the 

most likely explanation for the sensitive phenotype of Mya-1 T cells and the 

restrictive phenotype of primary lion T lymphocytes with respect to FIV infection 

described in Section 1.3.4. It has been shown that A3 genes have been evolving 

under diversifying selection since long before the emergence of modern day 

retroviruses (Sawyer et al., 2004; Zhang and Webb, 2004). Here, we compared 

the coding sequences of A3C and A3H isoforms of African lions, in which FIV-Ple 

is endemic, and Asian lions, which are FIV sero-negative. In agreement with the 

ancient origin of cytidine deaminases, we found no evidence to suggest that FIV 

Vif poses a selective pressure on A3 genes. Thus, it appears more likely that 

lentiviral Vif proteins have to adapt to A3 proteins for the virus to be able to 

successfully replicate in a new host species. This adaptation may then lead to 

the observed host species-specificity of lentiviral Vifs (Mariani et al., 2003; 

Hatziioannou et al., 2006). Given that cat, lion and puma A3 proteins were 

equally potent at restricting FIVΔvif infection in single-cycle replication assays 

and that FIV Vif was able to counteract cat A3H and A3CH, but not lion A3 

proteins, it would be justified to propose a scenario in which A3 proteins 

generally possess a high anti-lentiviral activity in the absence of Vif. In contrast, 

Vif proteins may be very potent in a new host but over time adapt to allow some 

degree of restriction to occur. Incomplete neutralisation of A3 antiviral activity 

by Vif may be beneficial for the virus because a low, optimal level of viral 

genome mutation could enable viral escape from host immune defences (Simon 

et al., 2005; Harris, 2008; Jern et al., 2009; Kim et al., 2010). Notably, within 

human and non-human primate populations, some degree of variation exists in 
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A3 coding sequences, activity and expression levels that can modulate natural 

lentivirus infections (Jin et al., 2005; Biasin et al., 2007; Land et al., 2008; 

Ulenga et al., 2008; Zielonka et al., 2010; Cagliani et al., 2011; Compton et al., 

2012). In principle, increased A3 activity and expression correlated with a lower 

viral load and preserved CD4+ T cell numbers, but not necessarily with higher 

levels of A3-mediated hypermutations in proviral sequences in vivo (Jin et al., 

2005; Pace et al., 2006; Land et al., 2008; Mussil et al., 2011; Kourteva et al., 

2012). This indicates that deaminase-independent rather than deaminase-

dependent A3 activities may be responsible for the inverse relationship between 

A3 expression levels and viral loads (Kourteva et al., 2012). 

Conversely, there is natural variation in Vif function in infected 

individuals that can result in partial neutralisation of A3 protein activity, 

thereby promoting viral sequence diversification, or host control of viral 

replication (Alexander et al., 2002; Farrow et al., 2005; Simon et al., 2005). 

Interestingly, inactivating mutations in the form of premature stop codons in the 

Vif coding sequence occur at higher frequencies in individuals with lower viral 

loads (long-term non-progressors or patients receiving anti-retroviral treatment) 

than in patients with high viral loads, where viral replication selects for active 

vif alleles (Simon et al., 2005). Again, these observations point towards a direct 

correlation between A3 activity, viral loads and levels of vif hypermutation. 

There are also polymorphisms in non-hypermutated vif sequences, but these are 

rarely associated with a reduction in Vif function (Pace et al., 2006).  

A recent study has investigated SIVagm.Ver (SIVagm of vervet monkeys 

[Chlorocebus pygerythrus]) vif evolution in individual infected sabaeus monkeys 

(C. sabaeus) harbouring either of two naturally occurring APOBEC3G (A3G) 

variants, Asp130 or Asp130His (Compton et al., 2012). Variant Asp130 was 

sensitive to all SIVagm Vifs, whereas mutant Asp130His was resistant to 

SIVagm.Ver and SIVagm.Tan (Compton et al., 2012). During the course of 

infection an adaptation of SIVagm.Ver to Vif-resistant A3G Asp130His was 

observed. The Vif adaptation enhanced viral infectivity significantly compared to 

an unadapted control. All virus isolates obtained from the sabaeus monkey 

expressing the A3G Asp130His variant shared a common mutation in Vif 

(Tyr46Cys) that is not present in naturally adapted SIVagm.Sab (SIVagm of 

sabaeus monkeys) Vif (Compton et al., 2012). These findings demonstrate that 

Vif evolution is driven by naturally occurring A3 variants. Vif adaptation can take 



188 

 

place very rapidly and can occur via different evolutionary routes (Compton et 

al., 2012). Overall, the A3-Vif relationship seems to be delicately balanced and 

may be a crucial determinant of the outcome of lentiviral infections.  

Genome-wide screens have been performed to identify additional host 

factors that act as inhibitors of lentiviral replication. Particular attention has 

been paid to interferon-stimulated genes (ISGs). ISGs are genes whose expression 

is upregulated upon induction of the innate type I interferon response (see 

Section 1.5.1) and whose products exhibit antiviral, anti-proliferative or 

immunomodulatory properties. HIV-1 single-stranded RNA has been shown to 

induce IFN-α production in plasmacytoid dendritic cells (pDCs) (Heil et al., 2004; 

Beignon et al., 2005; Meier et al., 2007) and expression of several hundred ISGs 

in primary human PBMCs and macrophages (Woelk et al., 2004; Solis et al., 2011; 

Berg et al., 2012). However, the validation of ISG product antiviral activity has 

proven difficult due to their high number, their possibly selective expression in 

certain cell types and the fact that they may inhibit viral replication at different 

stages of the viral life cycle. In addition to TRIM5α, APOBEC3 proteins and 

tetherin, ISG products with confirmed anti-HIV-1 activity are IFITM (interferon-

induced transmembrane) proteins, IRF1 (interferon regulatory factor 1), ISG15, 

PKR (protein kinase R) and TRIM22, among others. IFITM proteins interfere with 

HIV-1 cellular entry and affect viral Gag expression (Lu et al., 2011). IRF1 is a 

transcription factor of the interferon pathway that regulates expression of ISGs 

(Schoggins et al., 2011). ISG15 is an ubiquitin-like molecule that inhibits HIV-1 

release by blocking the ubiquitination process that normally enhances HIV-1 Gag-

mediated release of infectious virus (Okumura et al., 2006). PKR reduces HIV-1 

production by suppressing protein translation (Nagai et al., 1997) and TRIM22 

disrupts Gag assembly (Barr et al., 2008). The apparent wealth of (potentially 

yet undiscovered) ISGs with antiviral function raises the possibility that 

restriction factors other than APOBEC3 proteins are, at least in part, responsible 

for the inability of FIV to infect lion T lymphocytes.  

So far, this study has taken into account two explanations for the 

observed difference in disease outcome following FIV infection of domestic and 

non-domestic cats, namely higher antiviral activities of non-domestic cat 

restriction factors compared to domestic cat restriction factors and reduced 

pathogenicity of non-domestic cat FIVs compared to FIV-Fca, both a 

consequence of prolonged periods of host-virus co-evolution in wild cats.  
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An intriguing third possible explanation has emerged in recent years and 

looks at differences in overall levels of immune activation between host species 

in which lentiviral infection is pathogenic and those in which it is non-

pathogenic. A feature that distinguishes pathogenic lentiviral infections (HIV-1 

infection of humans and FIV infection of domestic cats) from benign lentiviral 

infections (SIV infection of non-human primates) is the high level of chronic 

immune activation, which is positively associated with disease progression 

(Giorgi et al., 1999; Sousa et al., 2002; Silvestri, 2005). In contrast, limited 

immune activation, in particular during chronic stages of infection, seems to be 

the key factor protecting natural SIV hosts from simian AIDS (Silvestri, 2005). 

The immune dysfunction seen in HIV-1 infected patients and FIV-infected 

cats comprises cytokine dysregulation (Clerici and Shearer, 1993), immunologic 

anergy and increased apoptosis of CD4+ T lymphocytes (Miedema, 1992), and 

inappropriate activation of immune regulatory cells (Ascher and Sheppard, 1990) 

(see Section 1.2.3). Because the high state of T cell activation is associated with 

enhanced levels of viral replication, viral loads are usually high in treatment-

naïve patients and an indicator for progression to AIDS. Exceptions are long-term 

non-progressors who show low levels of immune activation, preserved numbers 

of CD4+ T cells and can control viral replication (Silvestri et al., 2007). Immune 

activation also induces ISGs and leads to the expression of high levels of 

restriction factors. However, high-level ISG transcription is positively correlated 

with viral burden (Sedaghat et al., 2008; Rotger et al., 2010), indicating that 

restriction factors cannot prevent viral replication in vivo. Notably, elevated 

tetherin expression in untreated patients was reported to contribute to disease 

progression (Mous et al., 2012). In agreement with our findings, tetherin was 

unable to control viral replication by cell-to-cell spread (Coleman et al., 2011). 

Indeed, accumulation of tethered virus particles on the cell surface may also 

enhance levels of immune activation (Tokarev et al., 2009). 

Curiously, in natural, non-pathogenic lentiviral infections (SIV infections 

of sooty mangabeys [SIVsmm] and African green monkeys [SIVagm]) the levels of 

viral replication and CD4+ T cell depletion during acute infection are similar to 

that of HIV-1 infection of humans (Gordon et al., 2007; Pandrea et al., 2007). In 

fact, one study reported that 10-15% of SIV-infected sooty mangabeys showed 

significant T cell depletion, but these animals remained completely 

asymptomatic for more than five years (Milush et al., 2007). In addition, 
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humoural and cellular immune responses are either similar or weaker in natural 

SIV infections (that excludes experimental infection of rhesus macaques with 

SIVmac) compared to pathogenic lentiviral infections (Hirsch, 2004; Dunham et 

al., 2006). However, T lymphocyte proliferation and turnover rates are normal, 

immune cell functions are preserved and levels of pro-inflammatory cytokines 

are not elevated (Kirchhoff, 2009). Thus, despite high viral loads and some 

degree of CD4+ T cell loss, simian SIV hosts can prevent immune hyperactivation 

and its deleterious effects. It is important to note that type I interferon 

production was shown to be transiently induced in pDCs from sooty mangabeys 

and African green monkeys during early stages of infection (Diop et al., 2008). 

However, this interferon response quickly diminished and T cell activation levels 

and expression levels of ISGs returned to normal (Bosinger et al., 2009; 

Jacquelin et al., 2009). 

FIV replicates to high titres in domestic cats and elevated viral loads are 

associated with progression to feline AIDS (Diehl et al., 1996; Goto et al., 2002). 

FIV-Pco proviral and plasma viral loads in naturally infected pumas were 

reported to be comparable to FIV-Fca viral loads in domestic cats (Blake et al., 

2006). These findings indicate that the benign nature of FIV infection in pumas is 

not due to an efficient control of virus replication (Blake et al., 2006). Moreover, 

CD4+ T cell depletion occurred in a proportion of FIV–infected lions and pumas, 

but was not associated with severe clinical disease (Roelke et al., 2006).  

Immune activation is not only dependent on host factors but is also 

influenced by viral determinants. Specifically, the ability of viruses to reduce 

the level of T cell activation and depletion and to suppress innate immune 

responses may help the host to prevent chronic immune hyperactivation.  

In this regard, the differential expression and activity of the two lentiviral 

proteins Vpu and Nef in HIV-1 and SIVsmm/SIVagm are of particular importance.  

As discussed in Section 1.5.6.3, HIV-1 belongs to a primate lentiviral lineage that 

has acquired vpu (Cohen et al., 1988; Courgnaud et al., 2003; Sauter et al., 

2009) in addition to nef, which is present in all primate lentiviral lineages 

(Sauter et al., 2009). SIVsmm, SIVagm and other non-human primate lentiviruses 

use Nef to counteract tetherin (Jia et al., 2009; Sauter et al., 2009; Zhang et 

al., 2009a). The switch of pandemic HIV-1 group M strain from Nef to Vpu to 

antagonise tetherin was most likely forced by a deletion in the cytoplasmic 

domain of human tetherin that has been shown to confer resistance to Nef 
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(Sauter et al., 2009; Zhang et al., 2009a). In primate lentiviruses that do not 

encode vpu, Nef is multifunctional and acts as a regulator of host immune 

activation (Arien and Verhasselt, 2008; Kirchhoff et al., 2008; Kirchhoff, 2009). 

It down-regulates CD3, a component of the T cell receptor (TCR) complex 

(Schindler et al., 2006). This blocks activation, migration and apoptosis of 

infected T lymphocytes, and prevents formation of the immunological synapse 

between infected CD4+ T lymphocytes and DCs or macrophages (Kirchhoff, 2009). 

Additionally, it reduces cell surface expression of CD4, CD28 and CXCR4 (T cell 

surface glycoproteins involved in T cell activation, the induction of cell 

proliferation and cytokine production), and down-modulates major 

histocompatibility complex class I (MHC I) (Bell et al., 2001; Swigut et al., 2001; 

Schindler et al., 2006; Kirchhoff, 2009). 

The presence of a functional Nef is not always sufficient to prevent 

chronic immune activation. Whereas SIVsmm is non-pathogenic in sooty 

mangabeys, it is highly virulent in rhesus macaques (Silvestri, 2005). Hence it 

seems that the lack of host adaptation to a virus results in disease progression. 

In HIV-1 the acquisition of vpu has resulted in the loss of the protective function 

of Nef. In fact, HIV-1 Nef is a virulence factor (Kirchhoff et al., 1995) because it 

increases the responsiveness of infected T lymphocytes to TCR-mediated 

stimulation and enables effective viral transcription and production (Schrager 

and Marsh, 1999; Wang et al., 2000; Fortin et al., 2004; Fenard et al., 2005). 

These data indicate that lentiviruses play an important role in the 

regulation of host immune responses. Although FIVs neither encode for vpu nor 

nef, there are differences in the levels of immune activation that FIVs of 

domestic and non-domestic cats trigger in their respective hosts. What causes 

these differences is incompletely understood and requires further investigation. 

Overall, the clinical outcome of lentiviral infections appears to be determined 

by a complex interplay between host and viral factors.  

The observation that in natural SIV hosts efficient viral replication and 

depletion of infected CD4+ T lymphocytes generally does not correlate with a 

negative disease outcome poses a serious challenge to any vaccine development 

efforts that aim at controlling viral replication. It seems that the disease 

outcome of newly established lentivirus infections is rather related to the nature 

and magnitude of the host response to infection (Silvestri et al., 2007). 

However, if viral replication was blocked early in infection, induction of chronic 



192 

 

immune hyperactivation could be prevented. Further research should thus focus 

on the development or improvement of therapies that avert immune 

hyperactivation and progression to immunodeficiency. 
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APPENDIX 1 List of Primers 

 

Primer name Primer sequence (5‘-3‘) 

Chapter 3  

feT5a-1 GCGGATCCATGGCTTCTGAACTCCTGAAAT 

feT5a-2 CACGATGGGGTTGACCATTTTTTTAAAGGCTTGTATTAT 

fCypA R69 5’ Nde AACATATGGTCAACCCCATCGTG 

feCypA 3’ Mlu AAACGCGTTTAGATTTGTCCACAGTCA 

feCypA-1 ATAATACAAGCCTTTAAAAAAATGGTCAACCCCATCGTG 

feCypA-2 GCGTCGACTTAGATTTGTCCACAGTCAGC 

feCD134-Fwd TTGGATCCAGGATGAGGGTGGTTGTGGGGGCT 

feCD134-Rev AAGAATTCTCAGATCTTGGCCAGGGTGGAGT 

Chapter 4  

FeA3Ca F 
ACTGGTCGACACCATGGAGCCCTGGCGCCCCAGCCCAAGAA

ACCCAATGG 

FeA3Ca R ACAGCGGCCGCTCACCTAAGGATTTCTTGAAGCTCTGCAGCC 

FeA3H F ACTGGTCGACACCATGAATCCACTACAGGAAGTCATATTC 

FeA3H R ACAGCGGCCGCTCATTCAAGTTTCAAATTTCTGAAGTCATTC 

LiA3C1 F 
ACTGGTCGACACCATGGAGCCCTGGCGCCCCAGCCCAAGAA

ACCCAATGC 

LiA3C1 R ACAGCGGCCGCTCACCTAAGGATTTCTTGAAGCTCTGCAGCC 

LiA3H F ACTGGTCGACACCATGAATCCACTACAAGAAGACATATTC 

LiA3H R ACAGCGGCCGCTCATTCAAGTTTCAAATTTCTGAAATCATTC 
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LiA3C2 F 
ACTGGTCGACACCATGGAGCCCTGGCGCCCCAGCCCAAGAA

ACCCAATGG 

LiA3C-Ex1-Fwd ATGGAGCCCTGGCGCCCCA 

LiA3C-Ex2-Rev CCGAAAAACTCCCCAGTCGCTGTCATT 

LiA3C-Ex2-Fwd-1 CCTTCCATTTCCAGTTTCCA 

LiA3C-Ex3-Rev-1 GTCACGGAACCAAAAGAGGA 

LiA3C-Ex2-Fwd-2 TGGGCGGAAACTCTGTTATC 

LiA3C-Ex3-Rev-2 ACGGATACTGGTTACGGAAC 

LiA3C-Ex3-Rev-3 TATTCATCACGGCATGGATAC 

LiA3C-Ex3-Rev-4 TCCTCATCACGGTACGGATAC 

LiA3C-Ex3-Fwd-1 GTATCCATGCCGTGATGAATA 

LiA3C-Ex1-Rev-1 TGGGGCGCCAGGGCTCCAT 

LiA3C-Ex3-Fwd-2 GTATCCGTACCGTGATGAGGA 

GL8 Vif F ACTGGTCGACACCATGAGTGACGAAGATTGGCAGG 

GL8 Vif Rev HA 
ACAGCGGCCGCTCAAGCGTAATCTGGAACATCGTATGGGTA

TAGTTTTCCCGACCATAACAG 

LLV-E Vif F ACTGGTCGACACCATGAGTGGTGAAGATATAAGTCAGG 

LLV-E Vif Rev HA 
ACAGCGGCCGCTCAAGCGTAATCTGGAACATCGTATGGGTA

GCCACCTTTCCCTATTAAATATAG 

PLV Vif F ACTGGTCGACACCATGGCTTCAATCAGACAGACAGAACAG 

PLV Vif Rev HA 
ACAGCGGCCGCCTCAAGCGTAATCTGGAACATCGTATGGGT

AGAATGATAATGTTAAATCCATCCA 

FIV-Oma Vif F 
ACTGGTCGACACCATGAGTGGTGAAGAGGATTGGCAGGTAA

G 

Oma3 Vif Rev HA 
ACAGCGGCCGCTCAAGCGTAATCTGGAACATCGTATGGGTA

ACTCTTCATCCGATATAACACTTCATAGGGTACA 
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GL8Mya Vif-Fwd ACTGGTCGACATTGGCAGGTAAGTAGAAGACT 

GL8Mya Vif-Rev ACATGATCAGTGGGATTTGTAATGGGTCTGTAC 

GL8MyaVifSeq-Fwd GTGTCTTAGGAACTCACCTCCA 

GL8MyaVifSeq-F_1 TGAGACTATAACAGGACCATTAG 

GL8MyaVifSeq-Rev ATCTCTAGTATGAAAGCTCCAT 

GL8MVifMut-Fwd CCTGAAGGGGATGAGTGATCGACATTGGCAGGTAAGTAG 

GL8MVifMut-Rev CTACTTACCTGCCAATGTCGATCACTCATCCCCTTCAGG 

qPCR-FcA3C-Fwd GGACAGGATAGATCCTAACACC 

qPCR-FcA3C-Rev CCACTTGGAAGCAGAGATAAC 

qPCR-FeA3C-Pro FAM-TTCCACTTTCCAAACCTGCTCTATGCTTCT-TAMRA 

qPCR-FeA3H-Fwd CAAGATCAAGGCACTGACGC 

qPCR-FeLiA3H-Rev ACAAACGCAACCAGTTCC 

qPCR-FeLiA3H-Pr FAM-CGAAATCATCTGCTATATCACATGGAGCCCCT-TAMRA 

qPCR-FcA3CH-Fwd TCCTGGCTGCAAAGCTTCAAG 

qPCR-FcA3CH-Rev TCTGGGCAAGAGGAAGGAAACC 

qPCR-FeLiA3CH-P 
FAM-CAGGAGGTGACAGAGCCTGGGATAAACACCAGA-

TAMRA 

qPCR-LiA3C-Fwd GATCCTAAGACCTTCCATTTCC 

qPCR-LiA3C-Rev ACCTTGTTCCGAAAAACTCC 

qPCR-LiA3C-Pro FAM-GTTTCCAAACCTGCGCTACGCTTCT-TAMRA 

qPCR-LiA3H-Fwd CAAGATCAAGTCACTGACGC 

rDNA 343F cat CCATTCGAACGTCTGCCCTA 
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rDNA 409 R TCACCCGTGGTCACCATG 

rDNA 370P cat FAM-CGATGGTAGTCGCCGTGCCTA-TAMRA 

12S-UP-F AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT 

PAN-16S-Cy-R CAGAACTCAGATCACGTAG 

L12S-Cy-F CTTAAGTGACTAGCCCCTA 

Chapter 5  

FcTHN-Fwd-2 ATCGGTCGACACCATGGCACCTGCTTTTTTACCAC 

FcTHN-Rev-1 ACAGCGGCCGCTCAGGCCAGCAGAGCAACGAA 

HuTHN-Fwd-1 ACTGGTCGACACCATGGCATCTACTTCGTAT 

HuTHN-Rev-1 ACAGCGGCCGCTCACTGCAGCAGAGCGCTG 

FcTHN-SP1 GAAGCCAACAGGGTTACCAA 

FcTHN-SP2 GACACCGTGACACTCCTCCT 

FcTHN-delCT-Fwd ACTGGTCGACACCATGGTGCCAGGTCGGAGTCTT 

FcTHN-Y8A-Fwd GCACCTGCTTTTTACCACGCGTGGCCTGTGCCCAGGAC 

FcTHN-Y8A-Rev GTCCTGGGCACAGGCCACGCGTGGTAAAAAGCAGGTGC 

FcTHN-Y6/8A-Fwd GCACCTGCTTTTGCGCACGCGTGGCCTGTGCCCAGGAC 

FcTHN-Y6/8A-Rev GTCCTGGGCACAGGCCACGCGTGCGCAAAAGCAGGTGC 

FcTHN-Fwd-3 ATCGGCGGCCGCATGGCACCTGCTTTTTACCAC 

FcTHN-HA-Rev-1 
ACGTAGTCTGGGACGTCGTATGGGTATTCCTTTTTCTTGCTC

GAG 

FcTHN-HA-Fwd-1 
TACCCATACGACGTCCCAGACTACGTCGTCGCGTCTGCCAGC

TCCTTGA 
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FcTHN-Rev-2 ACAGGATCCTCAGGCCAGCAGAGCAACGAAG 

qPCR-FcTHN-Fwd GAGAAGGCCCAGAGCCAGGAG 

qPCR-FcTHN-Rev GCAACGAAGGCCAGGAGCAG 

qPCR-FcTHN-Pro 
FAM-TGCAGAACGCTTCGGTGGAGGTGGAAAGACTGAGAAA-

TAMRA 

rDNA 343F cat CCATTCGAACGTCTGCCCTA 

rDNA 409 R TCACCCGTGGTCACCATG 

rDNA 370Pcat FAM-CGATGGTAGTCGCCGTGCCTA-TAMRA 

GL8 orf2 Fwd ACTGGTCGACACCATGGAAGAAATAATAGTATTATTC 

GL8 orf2 Rev ACAGCGGCCGCCTAAGCAGTACGATGGATAATGTA 

GL8 Env-Fwd ACTGGTCGACACCATGAATGAAGAAGGGCCACTA 

GL8 Env-Rev ACAGCGGCCGCTCATTCCTCCTCTTTTTCAGA 

PET Env-Fwd ACTGGTCGACACCATGGCAGAAGGATTTGCAGCCA 

LLV-E Env-Fwd ACTGGTCGACACCATGGCAGAAGGAGGAAGAGTA 

LLV-E Env-Rev ACAGCGGCCGCTTAGGTATTAGACTCATCATTCAC 

LLV-B Env-Fwd ACTGGTCGACACCATGGCGGAAGGAGGAAGAGTA 

LLV-B Env-Rev ACAGCGGCCGCTCAAAGATCCTCATCAGACTCCCT 
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APPENDIX 2: List of Buffers and Solutions 

 

 
 
 
  

Name Composition 

CHAPS lysis buffer 
30 mM Tris-HCl, 150 mM NaCl, 1% CHAPS (w/v), pH 

7.5 

DNA loading dye (6x) 
30% glycerol (v/v), 0.25% bromophenol blue (w/v), 

0.25% xylene cyanol FF (w/v) 

LB agar 
10% Bacto-Tryptone (w/v), 5% yeast extract (w/v), 

85 mM NaCl, 1.5% (w/v) agar, pH 7.5 

LB broth 
10% Bacto-Tryptone (w/v), 5% yeast extract (w/v), 

85 mM NaCl, pH 7.5 

PBS 
137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 2 mM 

KH2PO4, pH 7.4 

PBS-BSA-azide 

137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 2 mM 

KH2PO4, 1% bovine serum albumin (w/v), 0.1% 

sodium azide (w/v), pH 7.4 

SDS-PAGE loading dye 

0.25 M Tris-HCl, 2.5% SDS (w/v), 10% glycerol (v/v), 

1% β-mercaptoethanol (v/v), 0.02% bromophenol 

blue, pH 6.8 

TBE buffer (10x) 890 mM Tris base, 890 mM Boric acid, 2mM EDTA 

TE 10 mM Tris-HCl, 0.1 mM EDTA, pH 7.6 
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