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Abstract 

Dental caries remains one of the most common chronic infectious childhood 

diseases and individuals remain susceptible to the disease throughout their 

lifetime. The disease continues to inflict a substantial economic burden. 

Moreover, dental caries demonstrates considerable socioeconomic disparities 

with the lowest socioeconomic groups suffering the greatest burden of disease. 

There is an unmet need to improve prevention and therapeutics and yet there 

remain fundamental gaps in the knowledge of the interrelationships between 

caries-associated risk factors, in particular how the immune system interacts 

with the evolving cariogenic biofilm in young children. This thesis sought to 

investigate the immune response to cariogenic biofilms. Three different 

approaches were used to achieve this. Firstly, the salivary immune response and 

development of the oral biofilm in very young children were investigated prior to 

the onset of caries, as part of a pilot longitudinal clinical study, using a dental 

public health program as a platform. Secondly, the initiation of adaptive 

immune responses to S. mutans exposure were investigated using a series of In 

vitro and In vivo studies. Thirdly, a novel S. mutans In vitro biofilm model was 

developed and optimised.  

Childsmile is a dental health improvement programme for children in Scotland 

and provides children with specific dental health interventions depending on 

need, from birth and up to 16-years of age. To achieve the first and primary aim 

of this thesis, plaque and saliva samples were collected from children aged one-

year and again at age three-years.  At follow-up, dental disease scores were also 

measured. Additionally, the biological mechanisms underlying the socioeconomic 

disparities in the dental health of young children were investigated, including 

the measurement of salivary cortisol as a surrogate measure of stress.  

Sixty-three Childsmile participants aged one-year were recruited to the study at 

baseline. Twenty-three children aged three-years were successfully recalled at 

follow-up. This work demonstrated that variables hypothesised to influence the 

development of carious disease can be collected and successfully quantified in 

children aged one- to three-years. Nonetheless, it was extremely challenging to 

recruit children of this age and the data were compromised by the small sample 
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sizes. During the study period both the intensity and incidence of S. mutans 

colonisation increased in the dental plaque of children aged one- to three-years. 

Coincidentally, concentrations of salivary antimicrobial proteins increased, 

including lactoferrin, LL37, calprotectin, the HNPs 1-3 and sIgA antibody titres 

specific for oral streptococci. It could not be determined from these studies 

whether the increased colonisation with S. mutans or the concentrations of 

salivary antimicrobial proteins influenced the prevalence of dental caries. The 

major limitation of this study was the low recruitment rates which resulted in 

low power to detect statistically significant differences. As a consequence there 

was insufficient evidence to identify the potential biological pathways that may 

underlie the socioeconomic disparities of dental caries. From this pilot study a 

number of valuable lessons were learned regarding the recruitment of children 

of this age and recommendations for future clinical studies conducted within 

Childsmile are made.  

In children with high risk of developing dental caries effective salivary antibody 

responses are required to provide protection. The mechanisms leading to 

effective antibody responses remain unclear. Thus, the second aim of this thesis 

was to investigate the initiation of an adaptive immune response to S. mutans, 

in an attempt to elucidate the mechanisms that lead to effective antibody 

production. Using a novel system, In vitro evidence indicated that S. mutans 

does not elicit a robust inflammatory immune response upon colonisation of the 

host. Dendritic cells exposed to S. mutans were not functionally mature and 

failed to induce antigen-specific T cell proliferation. Furthermore, In vivo, 

dendritic cells failed to become activated in response to oral exposure to S. 

mutans. 

An In vitro S. mutans sucrose-dependent biofilm model was developed and 

optimised. Using this model an antibody fragment known as a minibody, denoted 

‘SS2’ was demonstrated to inhibit S. mutans biofilm formation. This biofilm 

model represents an important first step for examining the potential of 

therapeutic molecules to inhibit S. mutans biofilm formation, prior to their 

application in In vivo models of dental caries and possible subsequent use in 

human clinical trials. 
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Data described here indicate that S. mutans colonises the oral cavity at a time 

when children are immunologically immature. Increased colonisation by S. 

mutans coincides with the maturation of salivary immune responses. Moreover, 

In vitro and In vivo evidence suggest that S. mutans does not elicit a robust 

immune response upon colonisation of the host. Thus, early acquisition of S. 

mutans in a relatively immunologically immature host together with the absence 

of an inflammatory immune response likely aids the colonisation of S. mutans 

and its persistence within the oral biofilm and subsequent contribution to dental 

caries.  
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1.1 Epidemiology of dental caries 

Dental caries remains one of the most common chronic infectious childhood 

diseases and individuals remain susceptible to the disease throughout their 

lifetime (Edelstein and Chinn 2009; Marthaler 2004). The National Institute of 

Dental and Craniofacial Research (NIDCR) report that 42% of children aged two- 

to eleven-years have dental decay in their primary dentition and by adulthood 

92% have some experience of decay in their permanent dentition (NHANES, 1994-

2004). Oral health is a substantial component of general health and well being 

and as such dental caries has a significant impact on an individual’s quality of 

life. Dental caries is a preventable and reversible infection that if left untreated 

results in severe pain, bacteraemia and subsequent tooth loss. Moreover, dental 

caries is associated with a substantial economic burden (Casamassimo et al. 

2009). Dental caries of the primary dentition can have additional complications 

for young children, including impairment of growth and development due to 

decreased nutritional intake associated with the pain of tooth decay and speech 

disorders arising due to missing teeth can lead to subsequent development of 

psychological disorders, such as poor self esteem. The removal of teeth in young 

children can also pose additional risks associated with conscious sedation and 

general anaesthesia. In 2009/10, nearly 8000 Scottish children were admitted to 

hospital to undergo general anaesthesia for tooth extraction related to dental 

caries ((NHS:ISD) 2012).  

There have been no meaningful improvements in the prevalence of dental caries 

among young children since the late 1980s. Improvements made up to this time 

are presumed to be related to the increased use of fluoride toothpaste (Pitts et 

al. 2005). However, with significant numbers of children still experiencing caries 

there is a need for more direct and innovative methods of delivering 

preventative care if significant improvements are to be made.  

1.1.1 Aetiology 

The aetiological factors of dental caries are the presence of cariogenic bacteria 

together with a diet containing fermentable carbohydrates. Over time this 

combination can lead to the development of carious lesions (Figure 1-1). Dental 
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caries is characterised by the localised demineralisation of tooth surfaces and is 

associated with the indigenous oral flora. Dental caries arises when the balance 

of the indigenous oral flora shifts to support the growth of potentially 

pathogenic microorganisms with the ability to ferment carbohydrates.  

A diet high in carbohydrates, namely sucrose, supports the growth of acidogenic 

species that are capable of fermenting carbohydrates to produce acids, 

particularly lactic acid (Taubman and Nash 2006). Following sugar intake, acid 

metabolism by oral cariogenic species can lead to the demineralisation of tooth 

surfaces. Demineralisation is a process by which hydrogen ions dissolve the 

carbonated hydroxyapatite crystal lattice of enamel and subsequently dentin 

and eventually into the pulp. Demineralisation can be reversed in its early 

stages; however, continued demineralisation can lead to the development of 

cavitated lesions in the tooth surface (Featherstone 2008). Under healthy 

circumstances this process is balanced by remineralisation of tooth surfaces, a 

process by which calcium and phosphate ions dissolved in saliva diffuse back into 

the porous tooth surface. The cycle of demineralisation/remineralisation occurs 

following meals containing fermentable carbohydrates. Whether a lesion 

progresses, stops or reverses is determined by the balance of these two 

processes. Thus, a diet high in fermentable carbohydrates increases the acid 

metabolism of acidogenic bacteria, lowering the pH of the oral cavity and 

advancing the demineralisation process.   

1.1.2 Risk factors 

A wealth of epidemiological studies have attempted to identify biological and 

socioeconomic risk factors for dental caries in young children, some of which are 

reviewed in Table 1-1. From these studies and others, commonly risk factors for 

dental caries development in young children include the age of children, 

psychological stress, oral hygiene behaviours, previous caries experience and low 

socioeconomic status. Additional risk factors, not cited in the table include the 

misuse of nursing bottle (Robke 2008), immigrant status (Wendt et al. 1994) and 

diabetes (Siudikiene et al. 2008). Fewer epidemiological studies have attempted 

to investigate the relationship of dental caries with immunological factors that 
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may naturally protect against caries initiation in very young children (Naspitz et 

al. 1999; Parisotto et al. 2011; Parisotto et al. 2010a).  

1.1.3 Socioeconomic related gradient of dental caries prevalence 

Dental caries demonstrates a socioeconomic status (SES) related gradient of 

distribution, with those from the lowest socioeconomic groups having the highest 

prevalence of the disease (Table 1-1) (Radford et al. 2000; Radford et al. 2001; 

Shaw et al. 2009; Sisson 2007). This suggests that the position of individuals on 

the social gradient is an important determinant for oral health. This relationship 

is already apparent in children as young as three-years-old with caries 

prevalence increasing from 16% in the least deprived to 32% in the most deprived 

groups in Greater Glasgow (McMahon et al. 2010). Together with the finding that 

childhood dental health is predictive of adult dental health (Thomson et al. 

2004) this indicates a real need to develop existing methodologies in order to 

target the youngest age groups if significant improvements in dental health are 

to be made across the socioeconomic spectrum.   

1.1.3.1 Stress 

There is evidence that the relationship between low SES and caries prevalence 

may be influenced by stress (Quinonez et al. 2001; Reisine and Litt 1993). 

Activation of the hypothalamic-pituitary (HPA) axis stimulates the release of 

neuroendocrine hormones, including noradrenaline, adrenaline and cortisol 

(Raison and Miller 2003). The ‘stress response’ is activated in response to 

physical stressors, such as infection and injury, but also in response to 

psychological stress, such as social stressors related to life experiences. Under 

stress activating conditions the immune system and neuroendocrine system 

communicate continuously via neurotransmitters. Thus, in chronically stressed 

individuals their ability to mount an adequate immune response may be 

diminished (Dragos and Tanasescu 2010). Over time this has high demands on the 

body and can lead to tissue pathology and subsequently to disease (Sabbah et al. 

2007). It is now widely recognised that prolonged psychological stress can 

increase host susceptibility to inflammatory and infectious diseases (Bosch et al. 

2002; Kiecolt-Glaser et al. 2002).  
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Cortisol is a major endogenous anti-inflammatory mediator and is involved in 

regulation of innate immune responses to bacterial and viral infection (Raison et 

al. 2006; Sternberg 2006; Webster Marketon and Glaser 2008). Measurement of 

salivary cortisol is a simple, reliable, non-invasive technique that can be used to 

provide information regarding HPA-axis activity under normal and stressful 

conditions. It can, therefore, potentially be used as a surrogate measure of 

stress to assess how social inequalities can impact upon the immune response. 

Furthermore, there is evidence to suggest that salivary cortisol levels are 

associated with increased carriage of cariogenic bacteria and a higher 

prevalence of dental caries (Table 1-1) (Boyce et al. 2010). 
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Figure 1-1: Complex, multi-factorial aetiology of d ental caries 

Diagrammatic representation of the complex and multi-factorial aetiology of dental 
caries. The presence of specific microorganisms in conjunction with a cariogenic 
diet, the nature of the host immune response together with lifestyle and 
behavioural factors can all culminate in the development of dental caries.  
 



 

Table 1-1: Summary table of studies exploring the b iological and socioeconomic risk factors for dental  caries in young adults and 
children 

Study Design n (age) Clinical Examinations Findings Reference 
 

Longitudinal study to assess 
caries risk in very young children 
of low SES 

n = 128, (six- to 24-months-old 
and their primary caregivers) 

Caries examinations and MS 
levels were recorded at baseline, 
9- and 18-month intervals from 
children and their caregivers. 
Dietary and sociodemographic 
data were collected by 
questionnaire. 

Caries prevalence and MS counts 
increased over the study period (p 
< 0.05). The presence of visible 
plaque (p = 0.015), MS (p < 
0.001), consumption of sweetened 
beverages (p = 0.001) and age of 
children (p = 0.006) at baseline 
were associated with caries at 
follow-up. Sociodemographic 
variable were not found to be 
associated with caries. 

(Warren et al. 2009) 

Longitudinal study to determine 
the potential associations between 
the level of social 
deprivation/affluence and the 
frequency isolation of caries-
associated microflora in a large 
cohort of children examined 
annually. 
 

n = 1974 (one- to four-years-old). DEPCAT was used to measure 
SES. MS, LB and yeasts were 
enumerated annually from saliva 
of children aged one-, two-, three- 
and four-years. Caries was 
diagnosed at d1 and d3 threshold 
(enamel and dentine) annually. 

Caries prevalence increased with 
age and social deprivation. Social 
deprivation and LB were 
correlated, independently of caries 
status, in children aged three- and 
four-years (p < 0.017 and p < 
0.0044, respectively). Correlations 
between MS and DEPCAT were 
found in children aged two with 
enamel lesions (p = 0.011) and at 
age-three with dentine lesions (p = 
0.0034). 

(Radford et al. 2000; Radford et al. 
2001) 

Longitudinal study to assess the 
value of employing a 
multidimensional model to 
evaluate caries development.  

n = 184 (four- to five-years-old) MS levels and dmfs recorded at 
both ages. Psychosocial, cognitive 
and behavioural variables were 
evaluated by interviewing primary 
caretakers. 

Caries development at one-year 
follow up was strongly dependant 
on earlier caries experience (p = 
<0.05). Life stresses were found to 
be predictive of dmfs at baseline 
(p = <0.05). 

(Litt et al. 1995) 

Retrospective analysis to 
investigate the significance of 
social, environmental and 
biological variables in relation to 
caries status in young children.  

n = 89 (10- to 71-months-old) Data regarding fluoride status and 
sociodemographic variables were 
collected from dental records of 
children previously examined for 
salivary MS levels.  

Multivariate analysis revealed that 
detectable caries was associated 
with higher MS levels, a single 
parent household, lack of fluoride 
in drinking water and not being 
covered by dental insurance.  

Grindefjord 1995, 1996, 1991 
 



 

Study Design n (age) Clinical Examinations Findings Reference 
 

Longitudinal study to investigate 
the immunological and 
microbiological changes during 
caries development in young 
children 

n = 40 (three-to five-years-old) 
Children were selected from a 
larger study (n = 188) based on 
disease status. Children who 
developed 3 or more lesions in the 
one-year follow-up (caries-active 
group [CA, n = 17]) and caries-free 
group (CF, n = 23). 

Total sIgA and IgA specific for S. 
mutansvirulence epitopes were 
measured by Luminex assay. MS, 
LB and total plaque bacteria were 
enumerated.  

No differences in baseline MS or 
LB between CA and CF groups (p 
> 0.05). Both MS and LB were 
higher in CA group at follow-up 
compared with baseline CA group 
(p < 0.05). LB higher in CA group 
compared with CF group at follow-
up (p < 0.05). Total and specific 
sIgA increased over time in both 
CA and CF groups (p < 0.05). 
Lower baseline levels of anti-GbpB 
associated with higher caries at 
follow-up (OR 7.5).  

(Parisotto et al. 2011) 

Cross-sectional study to 
investigate the relationship 
between dental caries experience, 
SES, eating behaviours, oral 
hygiene, dental plaque 
accumulation and MS levels in 
children from two areas of 
Ulaanbaatar city, Mongolia. 

n = 670 (one- to five-years-old) MS levels and mean dmft were 
recorded for each child and their 
mothers. 
Psychosocial, SES and 
behavioural variables were 
measured by questionnaire 

Caries prevalence and mean dmft 
were high in both areas. 
Higher family income and 
education level of mothers was 
significantly associated with higher 
caries prevalence. 

(Jigjid et al. 2009) 

Cross-sectional study to 
investigate the relationship 
between the secretory immune 
response and dental caries 

n = 49 (three- to five-years-old) 
Children were grouped according 
to disease status: caries-free (I, n 
= 20), one – two decayed surfaces 
(II, n = 15), rampant caries (III, n = 
14)  

Caries prevalence was recorded 
using dmfs. MS was enumerated 
from stimulated saliva. Total sIgA, 
anti-S. mutans IgA, IgM and IgG 
were measured in unstimulated 
saliva by ELISA 

MS was lower in group I, 
compared with groups II and III (p 
< 0.005). No differences in total 
IgA or anti-S. mutans IgA, IgM or 
IgG between groups. 

(Naspitz et al. 1999) 

Cross-sectional study to 
investigate how specific maternal 
health beliefs, behaviours, and 
psychosocial factors relate to 
young children’s ECC status in a 
low-income African-American 
population. 

n = 1021 (children aged-six-years 
and their primary caretakers) 

ECC status of child based on the 
International Caries Detection and 
Assessment Criteria (ICDAS).  
Caretakers undertook interviews 
and completed questionnaires to 
provide info regarding their oral 
health beliefs, behaviour and 
psychosocial risk factors. 

One third of children had ECC of 
which 20% had S-ECC. 
Higher levels of parenting stress 
were significantly and inversely 
related with ECC incidence (p = 
<0.05) 
Higher parental education and 
income were found to be 
protective. 

(Finlayson TL 2007) 



 

Study Design n (age) Clinical Examinations Findings Reference 
 

Cross-sectional study to assess 
the relationship between 
socioeconomic factors, behaviours 
and the severity of ECC in Thai 
children. 

n = 520 (six- to 19-months-old) Demographic, SES and 
behavioural data was collected by 
questionnaire. Caries prevalence 
of mother-child pairs was 
assessed using the dmft/DMFT 
index and MS levels in saliva were 
assessed. 

Children from low-income families, 
those with low education and 
mother’s and care givers with 
decayed teeth had higher ECC 
scores (p = <0.05). 
Breast fed children and those with 
high MS counts also had higher 
ECC scores (p = <0.05). 

(Vachirarojpisan et al. 2004) 

Cross-sectional study to evaluate 
the prevalence of caries and 
associated risk factors in 
outpatients of the Pediatric 
Ambulatory Pedro Ernesto 
University Hospital 

n = 80 (zero- to 36-months-old) SES, behavioural and dietary data 
were collected from parents by 
questionnaire. Dental examination 
was assessed by a single 
investigator and included 
assessment of caries, dental 
biofilm and gingival bleeding. 

Prevalence of caries was 41.6% 
and the mean dmfs was 1.7 (± 
2.5). No significant associations 
were found between the 
prevalence of caries and 
socioeconomic status.  

(Santos and Soviero 2002) 

Cross-sectional analysis to 
investigate the relationship 
between stress-related 
psychobiological factors and high 
prevalence f dental caries among 
children of low SES in the 
Francisco Bay are of California. 

n = 94 (five- to six-years) SES was estimated using mothers 
education levels. Financial 
stressors were assessed by 
questionnaire. Basal salivary 
cortisol was measured and 
salivary MS and LB were 
enumerated. 

SES was inversely associated with 
basal salivary cortisol (p < 0.05). 
High MS and LB were associated 
with dental caries (p < 0.001). Low 
SES, high concentrations of basal 
salivary cortisol and high level of 
MS and LB were predictive of 
caries lesions in a multiple logistic 
model (p < 0.001). Children with 
the highest number of lesions had 
the highest combinations of basal 
cortisol concentrations and high 
MS and LB counts.  

(Boyce et al. 2010) 

Cross-sectional analysis to 
estimate the prevalence and 
prediction factors for dental caries 
in children in Rome.  

n = 1494 (three- to five-years-old) DMFT index was used to assess 
caries experience. Behavioural 
and socioeconomic variables were 
collected from parents by 
questionnaire. MS counts, diet and 
nutritional status were investigated 
for their association with rampant 
ECC.  

Caries prevalence was 27.3%. 
Low social class (p = 0.03) and 
high salivary MS counts (p = <0.1) 
were significantly associated with 
rampant ECC. 

Petti 2000 



 

Study Design n (age) Clinical Examinations Findings Reference 
 

Cross-sectional analysis to 
investigate the caries-related 
microflora in saliva of Turkish 
children with the prevalence of 
ECC and associations with 
mother’s SES and feeding habits.  

n = 101 (15- to 35-months-old) Saliva samples were assessed for 
the presence of LB, MS and 
Candida albicans. DMFS criteria 
were used to assess dental status 
of mother and child pairs. 
Questionnaires were used to 
collect SES and dietary data from 
mothers of participants. 

Data indicated that mother’s 
DMFS scores, low level of 
education and poor feeding habits 
were strong risk factors for 
colonisation with caries-related 
microflora and ECC.  

(Ersin et al. 2006) 

Cross-sectional analysis to 
examine the relationship among 
microbiological composition of 
dental plaque, sugar exposure and 
social factors in young children 
with different stages of caries. 

n = 169 (three- to four-years-old) 
Children were divided into three 
groups based on disease status: 
caries-free (n = 53), early caries 
lesions (ECL, n = 56), cavitated 
caries lesions (CCL, n = 60). 
 

Caries measurements included 
dmft and ECL. Visible plaque was 
recorded and collected for 
enumeration of MS, LB and total 
bacteria. Sugar consumption was 
collected by questionnaire. 

High MS, total sugar consumption 
and presence of visible plaque 
were significantly associated with 
ECL (p < 0.05). High total plaque 
bacteria, frequency of sugar intake 
and high LB were significantly 
associated with CCL (p < 0.05). 

(Parisotto et al. 2010a) 

MS: Mutans streptococci, LB: Lactobacillus spp., DEPCAT: area-based measure of deprivation category , dmft/s or DMFT/S: decayed, missing, filled teeth/surfaces in primary or 
permanent teeth, repectively , (S)ECC: (severe) early childhood caries, sIgA: salivary IgA antibodies 
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1.2 Development of the oral biofilm from birth to t hree- 

years 

Dental plaque is an oral biofilm comprised of a diverse and complex microbial 

community. Traditional culture techniques have estimated that around 700 

bacterial types exist in the human oral microbiome. Recent advances in 

molecular sequencing methods put this figure at closer to 25,000 phylotypes in 

the global oral human microbiome (Belda-Ferre et al. 2011). At the moment of 

birth the oral cavity of the newborn is a sterile environment, however, it 

immediately begins to become colonised by pioneer microbial species, which are 

quick to take advantage of this new environment (Pearce et al. 1995; Rotimi and 

Duerden 1981). These pioneer organisms attach to the mucosa of the oral cavity 

of the newborn and modify the habitat, creating an environment that supports 

the growth of new microbial species (Liljemark and Bloomquist 1996). 

Streptococcus salivarius, S. mitis biovar 1 and S. oralis are dominant pioneer 

organisms of the oral mucosa (Kononen et al. 2002). The microorganisms which 

colonise the oral cavity of newborns are thought to be largely derived from the 

primary caregiver, usually the mother (Berkowitz 2006; Liljemark and 

Bloomquist 1996; Smith et al. 1993; Smith and Taubman 1992). S. anginosus, S. 

gordonii and S. mitis biovar 2 are also present in the oral cavity at this time, but 

at lower levels than the aforementioned species (Lucas et al. 2000; Pearce et al. 

1995).  

The microbial species that colonise the oral cavity at this time persist and 

become members of the indigenous microbiota and influence the colonisation of 

subsequent populations through their metabolic activities (Kononen 2000). This 

process is influenced by environmental factors and the host immune system. The 

oral biofilm continues to evolve and with the emergence of teeth, new microbial 

habitats are provided with unique characteristics and the oral biofilm continues 

to increase in diversity and complexity (Hardie and Bowden 1975; Taubman and 

Nash 2006).  

Teeth provide unique non-shedding attachment sites for S. sanguinis and later 

Mutans streptococci in addition to numerous other species, including anaerobic 
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species belonging to the genus Prevotella, Veillonella and Neisseria and aerobic 

species, such as Actinomyces spp. (Caufield et al. 2000; Liljemark and 

Bloomquist 1996). Anaerobic species are able to survive in the oral cavity 

through their physical interactions with aerobic and facultative anaerobic 

species that metabolise the available oxygen (Kolenbrander 2000). The 

anaerobic organism Fusobacterium nucleatum is also an early coloniser (<6 

months). This organism is important for the maturation of oral biofilms. Its 

ability to co-aggregate with numerous species of the oral microbiota enables this 

organism to bridge the gap between colonisation of early and late colonisers 

(Kolenbrander 2000; Kononen 2005).  

This population succession (Table 1-2) continues until all available niches 

become colonised and the oral biofilm ecology becomes relatively stable and is 

maintained in a state of homeostasis (Marcotte and Lavoie 1998). Disruption to 

this balance can lead to disease states, such as dental caries.  

Table 1-2: Timing of oral colonisation by commensal  bacteria 
Time of 

colonisation (age) 
Aerobic/facultative aerobic 

spp 
Obligatory anaerobic spp 

 
1-2 days 

 

 
S. salivarius 

 

 
- 

 
 

0-3 months 
(predentate) 

Neisseria spp 
S. mitis biovar I and II 

S. oralis 
Actinomyces odontolyticus 

S. parasanguinis 

Veillonella spp 
Prevotella 

melaninogenica 
Fusobacterium 

nucleatum 
 

6-12 months 
(dentate) 

 
S. sanguinis 
S. gordonii 
S. anginosus 

Staphylococcus spp 

 
Corroding rods 

 
1-3 years 

 
S. mutans 
S. sobrinus 

Lactobacillus spp 

 
Spirochetes 

Peptostreptococcus spp 
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1.2.1 Mutans Streptococci and dental caries 

There is substantial evidence indicating a causative relationship between dental 

caries and the Mutans streptococci, with many studies demonstrating that the 

development of caries is preceded by increased colonisation with the Mutans 

streptococci (Hamada and Slade 1980; Loesche 1986; Tanzer et al. 2001). S. 

mutans (serotypes c, e and f) and S. sobrinus (serotypes d and g) are implicated 

as the primary aetiological agents associated with the initiation and progression 

of dental caries (Kristoffersson et al. 1985). These strains are facultatively 

anaerobic, non-motile, Gram positive cocci (van Houte 1994). Mutans 

streptococci are routinely isolated from the mouths of children and adults, 

suggesting that dental caries is the most widespread infectious disease of 

humans (Taubman and Nash 2006). Other oral bacterial species can also produce 

acids and thus be cariogenic (Carlsson et al. 1975), although the Mutans 

streptococci possess unique biochemical features that render them extremely 

efficient at developing carious surfaces. These include the ability to rapidly 

produce copious amounts of lactic acid, while at the same time tolerating 

extremes of sugar concentration, ionic strength and pH (Hamada and Slade 

1980).  

S. mutans has been associated with the initiation of carious lesions on tooth 

surfaces, while S. sobrinus is thought to enhance the progression of lesions (Law 

et al. 2007; Marchant et al. 2001). S. mutans are commonly recovered in far 

greater numbers from dental plaque than S. sobrinus (Kishi et al. 2009; Yano et 

al. 2002) and caries prevalence is commonly higher in children who are colonised 

by both S. mutans and S. sobrinus compared with children from whom only S. 

mutans or S. sobrinus can be recovered (Babaahmady et al. 1998; Hirose et al. 

1993). S. mutans has been isolated from 95% of children with dental caries and 

was found to comprise up to 30-50% of the plaque microbiota in carious lesions 

(Berkowitz et al. 1984). In contrast, only 1% of the oral microbiota was found to 

comprise S. mutans in caries free children (Law et al. 2007). Further evidence 

implicating the Mutans streptococci in the development of dental caries has 

come from animal studies, in which the development of caries was attributable 

to the presence of S. mutans (Hamada et al. 1978; Smith and Taubman 1996).  
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1.2.1.1 Acquisition of Mutans streptococci 

It is generally agreed that children acquire S. mutans from their mother or 

primary caregiver and several studies have provided evidence in support of this 

(Berkowitz 2006; Berkowitz and Jones 1985). Initial colonisation by S. mutans in 

the oral cavity of children has been reported to occur anytime between the ages 

of seven-months to three-years or older (Law et al. 2007). One study reported 

that initial colonisation by S. mutans occurs during a “window of infectivity” at a 

mean age of 26 months (Caufield et al. 1993). This finding has been reported by 

others (Alaluusua and Renkonen 1983; Carlsson et al. 1975) and coincides with 

the eruption of the primary dentition, again reported to be required for 

colonisation by S. mutans (Caufield et al. 2000). However, there have also been 

reports of mucosal colonisation by S. mutans in predentate infants (Law et al. 

2007; Wan et al. 2001, 2003). This finding is clinically significant as there is 

evidence to suggest that caries risk increases with earlier acquisition of S. 

mutans (Law et al. 2007; Nogueira et al. 2005). Moreover, S. mutans colonisation 

has been shown to increase with increased age of children (Alaluusua 1983; 

Fujiwara et al. 1991). Thus, colonisation with the Mutans streptococci is a 

critical event in the pathogenesis of dental caries and represents important 

targets for therapeutic interventions. 

1.2.1.2 Mutans streptococcal virulence factors and dental caries 

As the primary agent of caries S. mutans has developed multiple mechanisms to 

colonise tooth surfaces and become numerically significant in the dental biofilm 

(Figure 1-2). Initially, S. mutans must attach to the tooth surfaces. The salivary 

dental pellicle is a thin layer of salivary proteins, lipids and glycoproteins which 

coats tooth surfaces and is the first step in plaque formation (Taubman and Nash 

2006). Attachment of S. mutans to the salivary pellicle is mediated via an 

adhesin known as antigen I/II, and S. sobrinus via Spa A and represents an 

important first step in colonisation of the tooth surface by the Mutans 

streptococci (Hajishengallis et al. 1992; Jenkinson and Lamont 1997). Next, S. 

mutans accumulation occurs. This process is dependent on the presence of 

sucrose together with expression of glucosyltransferases (Gtfs) and glucan 

binding proteins (Gbps). S. mutans produces at least 3 known Gtfs encoded by 

the genes gtfB, gtfC and gtfD. These enzymes synthesise extracellular glucan 



39 

polymers from directly from sucrose. GtfB synthesises water-insoluble glucans, 

while GtfC synthesises a mixture of water-soluble and water-insoluble glucans 

and GtfD synthesises a water-soluble glucan (Wen et al. 2010). Each of these 

glucans are structurally distinct and thus, contribute distinct roles in the 

formation of dental plaque (Bowen and Koo 2011). As a result S. mutans 

synthesises large quantities of insoluble-glucans, conversely S. sobrinus 

synthesises primarily water-soluble glucans. Both S. mutans and S. sobrinus 

express an array of Gbps. These receptor-like proteins are distinct from Gtfs and 

specifically bind to glucans. Gtfs also have glucan-binding domains and so can 

also function as receptors for extracellular glucans. Binding of extracellular 

glucans by Gtfs and Gbps facilitates adhesion of Mutans streptococci to tooth 

surfaces and constitutes the sucrose dependent pathway which is of critical 

importance in plaque formation and development of dental caries (Banas and 

Vickerman 2003). Thus, through the synthesis of polymeric glucans together with 

expression of Gtfs and Gbps the Mutans streptococci produce an extracellular 

matrix that provides a protective environment in which the Mutans streptococci 

and other oral bacterial species are shielded from the host immune response, 

mechanical stresses and antimicrobial agents (Shemesh et al. 2010). In the final 

stage, large quantities of lactic acid are produced by S. mutans biofilms in the 

presence of sucrose as a metabolic end-product of anaerobic respiration (Banas 

2004). Accumulation of lactic acid leads to demineralisation of tooth surfaces 

and eventually leads to dental caries.  

A substantial body of literature supports the importance of the contribution of 

Gtfs and Gbps to caries development. Disruption of the genes encoding Gtfs by 

mutagenesis reduced the amount of glucans produced and the efficiency of 

sucrose-dependent adhesion to tooth surfaces and reduced cariogenicity in 

animal models (Tanzer et al. 1974).  

Another important virulence property of the Mutans streptococci is their 

acidogenicity and acidurance, allowing cariogenic bacteria to tolerate the low 

pH environment generated from the production of acids in the oral cavity, while 

non-aciduric species cannot survive (Marcotte and Lavoie 1998). This ability is 

derived from the presence of ATPase proton pumps which actively transport 

hydrogen ions from the cytoplasm (Dashper and Reynolds 1992). S. sobrinus has 

been shown to be more acidogenic than S. mutans (Kohler et al. 1995). 
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However, S. sobrinus is unable to metabolise N-acetylglucosamine, a component 

of peptidoglycan which consequently inhibits the ability of S. sobrinus to 

proliferate except in circumstances of extreme acidity and in the presence of 

high sucrose concentrations (Homer et al. 1993). This is believed to account for 

the finding that S. sobrinus is recovered only from a minority of individuals and 

is usually found in conjunction with and outnumbered by S. mutans. Overall, a 

high-sucrose diet alters the microbial ecology to support the growth of acid-

producing and acid-tolerant species associated with dental caries, such as 

Mutans streptococci and Lactobacilli spp (Beighton 2005). Thus, the dental 

biofilm associated with caries is differentially distinct from the microbial 

ecology of the healthy oral biofilm (Aas et al. 2008).  
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Figure 1-2: Mutans streptococci pathogenesis of den tal caries 

Schematic representation of the sequential formation of S. mutans biofilms on 
tooth surfaces. (a) Initial adherence and accumulation are mediated by surface 
antigen I/II and expression of Gtfs and Gbps. (b) subsequent production of water 
soluble and insoluble glucans. (c) In the presence of sucrose, significant 
accumulations of S. mutans produce large quantities of lactic acid, culminating in 
the demineralisation of tooth surfaces and development of dental caries. Image 
courtesy of Dr Martin Taubman. 
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1.2.2 The role of other bacterial species in dental caries 

Despite extensive evidence in support of the role of Mutans streptococci as the 

primary agents of dental caries, a number of studies have documented caries in 

the absence of the Mutans streptococci (Loesche and Straffon 1979), and indeed 

Mutans streptococci can be detected in the absence of caries (Belda-Ferre et al. 

2011). A variety of bacterial species can produce acids from carbohydrate 

fermentation in the oral cavity, including non-mutans streptococci such as S. 

gordonii, S. mitis, S. oralis and S. anginosus. These bacterial species outnumber 

Mutans streptococci and thus could contribute to caries initiation (van Houte et 

al. 1996). A study utilising 16s DNA checkerboard hybridisation to quantify 

numbers of oral bacteria associated with health and disease in children 

identified a strong relationship with S. mutans and caries but additionally 

identified numerous other bacterial species thought to be important in caries 

initiation and progression, including Actinomyces gerensceriae, Veillonella spp, 

S. salivarius, S. constellus, S. parasanguinis and Lactobacillus fermentum. A 

novel species of Bifidobacterium was also associated with deep caries lesions 

(Becker et al. 2002). These studies highlight the complexity of the oral microbial 

ecology associated with dental caries initiation and progression. 

In recent years, the advancement in metagenomics and next generation 

sequencing techniques has allowed investigators to apply a holistic approach to 

oral microbial ecology in health and disease. These studies provide evidence in 

support of a polymicrobial aetiology of dental caries (Alcaraz et al. 2012; Belda-

Ferre et al. 2011).  
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1.3 Development of the salivary immune response fro m 

birth to three-years 

Development of the oral biofilm is influenced by a variety of factors, including 

environmental and behavioural factors such as oral hygiene, and the host 

immune response to infection. It therefore follows that caries susceptibility can 

be influenced by host immune factors, particularly those found in saliva. The 

protective role of saliva in the maintenance of oral health is well established 

(Dowd 1999; Tabak 2006). Saliva contains a complex mixture of proteins, 

enzymes and innate and adaptive immune mediators all of which have a 

significant impact on the colonisation of microorganisms in the oral cavity. In 

excess of 70 salivary components have been described (Mogi et al. 1986a; Mogi 

et al. 1986b). These components regulate microbial colonisation by a number of 

mechanisms, including binding and promoting aggregation to enhance bacterial 

clearance, inhibiting surface mediated binding to host surfaces, inhibiting 

microbial growth and mediating direct bacterial killing (Table 1-3). Additionally, 

salivary flow rate and buffering capacity facilitate oral clearance, neutralisation 

of acid production and maintain tooth integrity (Tenovuo 1997). However, 

salivary proteins can also serve to provide attachment sites for bacterial 

adhesion, such as formation of the salivary pellicle and can provide nutritional 

substrates for microorganisms (Scannapieco 1994).  

1.3.1 Non-specific immunity 

Saliva contains numerous non-specific, protective factors such as lysozyme, 

lactoferrin, histatins, mucins and peroxidases (Table 1-3), all of which are 

present and functional in saliva from birth, although their concentrations are 

increased in adult saliva compared with saliva from infants (Hyyppa et al. 1989). 

Additionally, antimicrobial peptides provide non-specific innate immune 

defence. Antimicrobial peptides have received a great deal of attention in 

recent decades for their protective functions at mucosal surfaces and their 

potential for development of future therapeutic strategies. Antimicrobial 

peptides are natural antibiotics with broad-spectrum antimicrobial properties 

against Gram-positive and Gram-negative bacteria, yeasts and viruses. Moreover, 

antimicrobial peptides have chemotactic and immunomodulatory functions, 
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which function to bridge innate and adaptive immune responses at mucosal 

surfaces (Dale and Fredericks 2005). 

In saliva, several families of cationic antimicrobial peptides can be detected. 

These include the β-defensins (HβD 1-3), the α-defensins (also known as human 

neutrophil peptides [HNPs 1-4]), the cathelicidin LL37 and calprotectin (also 

known as calgranulin). Sources of these peptides in the oral cavity include 

constitutive and inducible expression by the oral epithelium and salivary glands, 

and infiltration of leukocytes via the gingival crevicular crevice, such as 

neutrophils (Dale and Fredericks 2005). Thus, the oral epithelium plays an active 

role in orchestrating innate immune defences in the oral cavity. Furthermore, 

antimicrobial peptides have synergistic and additive functions, enhancing the 

antimicrobial activities of each other and other salivary proteins, such as 

lactoferrin, lysozyme and sIgA antibodies. Thus, antimicrobial peptides together 

with other non-specific and specific immune mediators in saliva provide an 

effective antimicrobial barrier at mucosal surfaces.  

1.3.2 Antimicrobial proteins and their role in dental caries 

1.3.2.1 Lactoferrin 

Lactoferrin is an iron-binding protein found in exocrine secretions including 

saliva, tears and breast milk. Its non-specific antibacterial action is mediated 

primarily through its iron-sequestering properties, making iron unavailable for 

bacterial growth. In addition, apo-lactoferrin (iron-free lactoferrin) has been 

demonstrated to have direct antibacterial action (Weinberg 2003). Sources of 

lactoferrin in the oral cavity include expression and secretion by acinar 

epithelial cells and lactoferrin is a component of secondary granules of 

neutrophils (Kalmar and Arnold 1988). In young children lactoferrin can be 

detected in saliva, although at concentrations significantly lower than are 

generally detected in adult saliva (Hyyppa et al. 1989). Lactoferrin has been 

shown to have direct antimicrobial activity against S. mutans and it is functional 

even in low pH environments, such as those created by S. mutans in the 

presence of fermentable carbohydrates (Arnold et al. 1981; Berlutti et al. 2004).  
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1.3.2.2 LL37 

The human cathelicidin, LL37 is the only cathelicidin identified in humans. It is 

proteolytically cleaved from the holoprotein (hCAP18) to generate the mature 

peptide, with biological activity. It is expressed by epithelial cells of the oral 

cavity, skin and other mucosal surfaces and is also present in the granules of 

neutrophils and other immune cells, including B cells, monocytes and mast cells 

(Zanetti 2004). The antimicrobial activity of LL37 is mediated through its 

amphipathic structure, allowing it to insert into and permeabilise bacterial cell 

membranes (Henzler Wildman et al. 2003). The protective role of LL37 at 

mucosal surfaces is highlighted by diseases in which LL37 is absent, such as 

Morbus Kostmann syndrome in which LL37 is deficient in neutrophil granules and 

individuals develop early onset chronic periodontal disease (Putsep et al. 2002).  

Highly variable concentrations of LL37 have been detected in saliva of 

adolescents; however, less information is available of the levels of LL37 in saliva 

of young children (Tao et al. 2005). One study indicated that the concentration 

of LL37 in saliva increased with increased age of children and that low 

concentrations of LL37 were associated with dental caries (Davidopoulou et al. 

2012). In a separate study, S. mutans strains isolated from adolescents with 

caries were more resistant to the antimicrobial effect of LL37 compared with 

strains isolated from caries-free individuals (Phattarataratip et al. 2011). Thus, 

low concentrations of LL37 in saliva may affect an individual’s susceptibility to 

caries.  

1.3.2.3 Human neutrophil peptides 

The HNPs 1-4 are a family of structurally related peptides with antimicrobial 

activities. HNPs are expressed within the granules of neutrophils and are 

released into the oral cavity upon degranulation and participate in non-oxidative 

microbial death of metabolically active bacteria (Ganz et al. 1985). More 

recently, expression of the HNPs 1-3 was identified in salivary glands (Tao et al. 

2005). Thus, both sources contribute to the concentration of HNPs in saliva. 

Levels of HNPs in saliva have been shown to be highly variable in adults (Goebel 

et al. 2000) and adolescents (Tao et al. 2005), although no information exists in 

relation to their concentrations in the saliva of young children. Notably, 
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expression of HNPs is also defective in Morbus Kostmann syndrome (Putsep et al. 

2002). High concentrations of the HNPs 1-3 were associated with caries-free 

status in children aged 11- to 15-years (Tao et al. 2005). Additionally, 

concentrations of the HNPs 1-3 in saliva of adolescents was found to be 

significantly positively correlated with Mutans streptococci counts from plaque 

(Phattarataratip et al. 2011). Thus, low concentrations of the HNPs may 

influence the susceptibility of young children to dental caries.  

1.3.2.4 Calprotectin 

Calprotectin is a heterodimeric calcium and zinc-binding protein, also referred 

to as S100A8 and S100A9 (Nacken et al. 2003). Calprotectin is a major 

component of neutrophil granules, monocytes, macrophages and is constitutively 

expressed by the oral epithelium (Dale and Fredericks 2005). Calprotectin’s 

antimicrobial action is mediated by its ability to sequester zinc, making it 

unavailable for microbial growth (Brandtzaeg et al. 1995). Additionally, 

expression of calprotectin by the oral mucosa inhibits bacterial adherence. 

Calprotectin is upregulated in the gingival crevicular crevice during periodontal 

disease (Becerik et al. 2011). There are no reports of the concentration of 

calprotectin in the saliva of children with or without dental caries. The 

significant level of expression of calprotectin in the oral cavity may influence 

the development of the oral biofilm and thus may alter caries susceptibility.  

1.3.3 Initiation of an adaptive immune response to S. mutans 

The initiation of an adaptive immune response begins with antigen recognition. 

Cells of the innate immune system, such as neutrophils, macrophages and 

dendritic cells express a limited range of receptors that recognise conserved 

microbial motifs, known as pathogen-associated molecular patterns (PAMPs). 

The receptors which recognise PAMPs are called pattern recognition receptors 

(PRRs) and include the family of TLRs. These receptors allow the innate system 

to recognise self from non-self. Recognition of foreign antigens activates cells of 

the innate system which in turn function to initiate adaptive immune responses.  

Dendritic cells are the major antigen presenting cells. They recognise, capture, 

process and present foreign antigen to naïve T cells. These in turn perform 
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effector functions in peripheral tissues and provide help to and activate B cells 

within lymphoid tissues, promoting affinity maturation and antibody class 

switching (Banchereau and Steinman 1998). Thus, antigens present at mucosal 

surfaces must first be transported across the epithelium before they can 

stimulate an immune response.  

Both oral and intestinal mucosa dendritic cells (DCs) are strategically located to 

sample antigens from oral and intestinal fluids (Ito et al. 1998; Neutra et al. 

2001). Thus, it is likely that in oral mucosal tissues DCs fulfil functions of antigen 

capture, processing and presentation, such as occurs in intestinal lymphoid 

tissues. However, little is known about antigen capture by DCs in the oral cavity. 

Murine studies have provided evidence that buccal DCs can capture antigen and 

migrate to the lymph nodes draining the oral cavity (Aramaki et al. 2011). Upon 

arrival at DLN, DCs present antigen to T helper cells (Itano et al. 2003; Lane and 

McConnell 2001). However, T cell responses to DCs migrating from the oral 

mucosa have not been shown directly.  

Activated T cells produce a variety of cytokines, TGFβ is particularly important 

for activating B cell switching from IgM to IgA producing plasma cells 

(Brandtzaeg 2010). T cells isolated from peripheral blood of individuals with 

caries have been shown to respond to Mutans streptococcal Gtf and SA I/II, 

although it is unclear whether they have a role in protection of caries other than 

to provide help to B cells for the synthesis of IgA (Taubman and Nash 2006).  

It has long been held that initial stimulation of mucosal B cells takes place 

mainly in the mucosa-associated lymphoid tissue (MALT), particularly in the 

Peyer’s patches and other gut-associated lymphoid tissues (GALT). Thus, 

mucosal stimulation with oral antigens or Mutans streptococci that reach the gut 

via ingestion, results in the activation and migration of antigen-specific IgA-

producing B cells to effector sites, such as salivary glands. This is followed by 

their subsequent differentiation and maturation into plasma cells and secretion 

of sIgA across the epithelium into saliva. There is compelling evidence 

demonstrating the migration of activated B cells from the GALT to salivary 

glands in both animals and humans (Jackson et al. 1981; Mestecky et al. 1978). 

However, evidence also suggests that the intestinal immune response is not 

ideally configured for the induction of sIgA antibodies (Jertborn et al. 1986). 
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Thus, it remains to be established which part of the common mucosal immune 

system is most important for the induction of sIgA antibodies directed against 

oral bacteria. More recently, several studies have suggested that B cell homing 

to effector sites is more compartmentalised than previously thought and 

indicates that the nasopharyngeal-associated lymphoid tissues (NALT) may be 

more important than the GALT for the induction of B cell homing to salivary 

glands (Brandtzaeg 2007; Wu et al. 1997). Thus, the sIgA response to oral 

bacteria may be induced by two mechanisms; oral bacteria present in saliva may 

stimulate the proliferation and differentiation of B cells locally in salivary 

glands, and ingestion of oral bacteria and subsequent antigen uptake in the 

GALT is followed by the migration of activated B cell precursors to the salivary 

glands where they exert their effector functions.  

Alternative routes for immune induction in the oral cavity have been proposed 

(Cutler and Jotwani 2006). Lymphoid tissues are located within salivary glands 

and Waldeyer’s ring which consists of the tonsils and adenoids (Wu et al. 1997). 

In the intestine, specialised epithelial cells called M cells are involved in antigen 

sampling of the gut lumen (Mowat 2003). M cells have also been identified in the 

lymphoid tissues of Waldeyer’s ring and have been shown to be functionally and 

structurally similar to M cells in Peyer’s patches (Fujimura 2000). Very little is 

known about immune induction sites to orally exposed antigens. Studies 

investigating the functions of M cells in the NALT have primarily focussed on the 

induction of immune responses to inhaled antigens (Fujimura et al. 2004). NALT 

structures represent prototypical immune inductive sites and could theoretically 

transport antigen to underlying DCs. However, this has not been shown directly.  

Oral lymphoid foci, located within interdental papilla have been proposed as 

oral effector sites. These structures contain large numbers of DCs in close 

proximity to T cells (Jotwani et al. 2001). These structures are reminiscent of 

isolated lymphoid follicles identified in the murine small intestine (Hamada et 

al. 2002), but oral lymphoid foci lack germinal centres. These structures are 

believed to develop in response to chronic inflammation initiated by the 

subgingival biofilm in diseases such as gingivitis and periodontitis (Cutler and 

Jotwani 2004) and thus are likely absent in the oral cavity of very young children 

who do not typically suffer from periodontal diseases, except in rare 

circumstances (Defraia and Marinelli 2001).  
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Thus, relatively little is known about the induction of adaptive immunity in the 

oral cavity and even less is known about the induction of adaptive immunity 

directed against oral bacteria, such as the Mutans streptococci (Figure 1-3). 

However, the potential exists to raise an antibody response to S. mutans under 

certain circumstances. It will be crucial to better understand the early stages of 

the initiation of adaptive immunity, which are a prerequisite to antibody 

generation. Further characterisation of these early responses to S. mutans will 

aid development of targeted and therapeutic interventions. 
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Figure 1-3: Antigen uptake in the oral cavity 
Schematic representation of potential routes of antigen uptake in the oral 

cavity. (a) DCs are strategically placed to sample antigens from the oral mucosa 

(Ito et al. 1998) and evidence has shown DCs migrate to the DLNs upon antigen 

uptake (Aramaki et al. 2011). However, the influence DC migration on T effector 

responses to orally derived antigens has not been shown. (b) M cells located in 

NALT structures are functionally and structurally similar to M cells of the Peyer’s 

patches (Fujimura 2000). It has not been shown if they can sample bacterial 

antigens directly in the oral cavity to induce mucosal immune responses. 
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1.3.4 Secretory immunity 

Secretory or salivary IgA (sIgA) is the principle component of the adaptive 

immune system found in saliva. Salivary IgA exists as a polymeric molecule of 

two or more IgA monomers attached by a J chain and a secretory component. 

Secretory component, expressed on the basolateral surface of mucosal epithelial 

cells, is a receptor which allows for the transepithelial transport of polymeric 

IgA antibodies and subsequently protects the molecule from proteolytic 

degradation (Brandtzaeg 1995). In humans there are two subclasses of polymeric 

IgA: IgA1 and IgA2 and both can be found in saliva. IgA1 is the predominant 

subclass usually representing about 60% of IgA in saliva (Mestecky and Russell 

1986). These two subclasses differ in only 16 amino acids, located in the hinge 

region, this difference renders IgA2 resistant to cleavage by the IgA proteases 

expressed by a number of oral bacteria, including early streptococcal colonisers 

of the oral cavity (Kilian et al. 1983). Salivary IgA is secreted by plasma cells 

located in the vicinity of salivary glands. Serum IgG can also be detected in 

saliva and enters the oral cavity via the gingival crevicular crevice. Together 

these antibodies make up 5 – 15% of proteins in saliva and represent a broad 

spectrum immune defence system (Van Nieuw Amerongen et al. 2004).  

The biological functions of sIgA in the oral cavity include the inhibition of 

bacterial adherence, neutralisation of toxins and enzymes, agglutination of 

bacteria which facilitates their clearance from the oral cavity and immune 

exclusion (Table 1-3). The ability of sIgA to bind to and exclude microbial 

antigens and limit their penetration across mucosal surfaces is likely the most 

important role of sIgA and thereby limits hyper-stimulation of mucosal immune 

responses (Marcotte and Lavoie 1998). IgA is a poor activator of complement and 

complement components are absent in saliva, thus activation of complement is 

not a major biological function of sIgA. Furthermore, cell-mediated killing by 

leukocytes in response to opsonised bacteria is also not likely to be a major role 

fulfilled by sIgA. Leukocytes entering the oral cavity via the gingival crevicular 

crevice may be active short distances from the crevice but these cells cannot 

withstand the osmotic pressure of saliva. Serum-derived IgA and IgG may 

stimulate cell-mediated responses within and close to the gingival crevicular 

crevice. Nonetheless, oral bacteria have been found to be coated with sIgA 
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antibodies and this likely represents agglutination and inactivation of adhesins 

and bacterial enzymes.  

At birth the oral cavity is sterile and devoid of sIgA (Gahnberg et al. 1985). At 

this time maternally derived IgG is the major component of secretory immunity 

in the oral cavity and low concentrations of IgM and IgD have been detected 

(Cripps et al. 1987; Gleeson et al. 1987). In the first few months of life the 

numbers of IgA producing plasma B cells increase and thus, levels of sIgA 

increase to become the dominant component of secretory immunity in the oral 

cavity (Smith et al. 1993). Initially, IgA in the saliva of newborns is 

predominantly of the IgA1 subclass, but as levels increase the proportion of IgA2 

antibodies increases and may reflect the increased colonisation by IgA1 protease 

expressing early colonisers (Smith et al. 1989).  

As microorganisms begin to colonise the oral cavity sIgA antibodies with new 

specificities are directed towards them and can be detected in saliva. Salivary 

IgA antibodies specific for S. mitis and S. salivarius antigens can be detected in 

the saliva of infants as young as five-weeks-old and reflects the early 

colonisation by these species (Smith et al. 1990). Similarly, sIgA antibodies 

specific for Gtf from S. sanguinis and S. mutans can be found in the saliva of 

children aged one-year and three-four years, respectively and coincides with the 

acquisition of these bacterial species (Gahnberg et al. 1985). At this time these 

antibodies are thought to be cross-reactive with low antigenic specificity. The 

sIgA antibody response increases with age and is of a level similar to adults by 

the age of four- to five-years (Smith et al. 1998). Coincidentally, the specificity 

for bacterial antigens increases with the increased length of exposure to oral 

bacteria (Parisotto et al. 2011; Smith and Taubman 1995). Thus, bacterial 

colonisation of the oral cavity occurs in an environment that is immunologically 

responsive to microbial challenge.  

 

1.3.5 Can secretory immunity protect against dental caries? 

Salivary IgA antibodies can control the colonisation of Mutans streptococci in the 

oral cavity by a number of mechanisms (Table 1-3). As previously discussed, 

bacteria must first adhere to host tissues or to each other in order to colonise 
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the oral cavity. Salivary IgA antibodies can interfere with this process by binding 

to and blocking the action of adhesins. In vitro studies investigating the role of 

sIgA in limiting bacterial adherence have demonstrated inconsistent and 

contradictory results. In one study, S. mutans adherence was inhibited by sIgA 

antibodies specific for SA I/II (Hajishengallis et al. 1992). Conversely, a separate 

study reported no effect of sIgA antibodies on S. mutans adherence to 

hydroxyapatite (a constituent of bones and teeth) (Kilian et al. 1981). Salivary 

IgA antibodies form a significant part of the salivary pellicle and are found to 

compose up to 2% of the dry weight of dental plaque (Orstavik and Kraus 1974). 

This has lead some to hypothesise that sIgA antibodies can even promote 

adherence of some bacterial species investigated (Kilian et al. 1981). Salivary 

IgA antibodies can also function to bind to and inhibit bacterial enzymes; sIgA 

specific for Mutans streptococcal Gtfs can inhibit the production of glucans and 

reduce dental plaque formation (Klein et al. 1977). Additionally, antibodies 

directed against Mutans streptococcal Gbps are predicted to influence bacterial 

adherence to polymeric glucans synthesised in the presence of sucrose. Rats 

immunised with a Gbp-derived peptide developed sIgA and serum IgG antibodies. 

Moreover, the development of dental caries was reduced in immunised animals, 

although colonisation by Mutans streptococci was unaffected (Taubman et al. 

1995). Clinical studies have also demonstrated that topical application of 

monoclonal antibodies specific for S. mutans SA I/II prevents re-colonisation of 

the oral flora with S. mutans and the subsequent development of dental caries 

(Ma et al. 1987).  

Additional studies have attempted to correlate the levels of naturally occurring 

IgA antibodies specific for Mutans streptococci with dental caries experience. 

These studies, often cross-sectional in design, have reported conflicting data 

with some studies reporting a positive (Challacombe 1980), negative (Camling 

and Kohler 1987) or no correlation (Hocini et al. 1993). Similarly, conflicting 

correlations of levels of specific sIgA antibodies and recovery of S. mutans were 

reported in these studies.  
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Table 1-3: Overview of salivary component and their  functions in saliva 
Salivary component Activities in saliva Reference 

Salivary proteins 

 mucins 

  

  

 lysozyme 

  

 lactoferrin 

 peroxidases 

  

 proline-rich 

 proteins 

 stratherins 

  

 cystatins 

 

formation of salivary pellicle, 

bacterial aggregation, inhibition of 

bacterial adherence 

antibacterial, bacterial aggregation, 

inhibition of bacterial adherence 

iron chelator, antibacterial 

antibacterial, acid and H2O2 

neutralisation 

formation of salivary pellicle, mineral 

homeostasis 

mineral homeostasis, formation of 

salivary pellicle 

protease inhibitors 

 

(Amerongen and 

Veerman 2002; 

Bennick et al. 

1983; Gibbons et 

al. 1988; 

Scannapieco 

1994; Van Nieuw 

Amerongen et 

al. 2004) 

Antimicrobial 

peptides 

 histatins 

  

 LL37 

  

 β-defensins 

  

 α-defensins 

  

 calprotectin 

 

 

antibacterial/antifungal, formation of 

salivary pellicle 

antibacterial, chemotactic properties, 

wound repair, angiogenesis 

antibacterial, antifungal, antiviral, 

chemotactic  

antibacterial, antifungal, antiviral, 

chemotactic 

antibacterial, chemotactic, inhibition 

of bacterial adherence 

 

(Amerongen and 

Veerman 2002; 

Dale and 

Fredericks 2005; 

Nisapakultorn et 

al. 2001b; 

Ramos et al. 

2011) 

Antibodies 

 IgA, IgG, IgM 

 

bacterial aggregation, neutralisation 

of antigens, inhibition of bacterial 

adherence, salivary pellicle formation 

(Amerongen and 

Veerman 2002; 

Smith and 

Taubman 1992) 
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Additionally, a number of studies have attempted to correlate dental caries 

experience in children with IgA deficiency. These studies have also produced 

conflicting results with studies reporting higher caries rates in children with sIgA 

deficiency (Tar et al. 2008) or lower rates compared with healthy aged-matched 

controls (Fernandes et al. 1995). It is extremely difficult to delineate the 

contribution of sIgA antibodies to caries susceptibility due to compensatory 

mechanisms, such as increased expression of sIgM in IgA-deficient individuals 

(Fernandes et al. 1995; Nikfarjam et al. 2004).  

Maternally derived serum IgG specific for oral bacteria can be detected in the 

saliva of newborns (Smith and Taubman 1993). Levels of IgG antibodies rapidly 

decrease in the first months of life and become undetectable in the majority of 

infants by three- to four-months of age (Smith et al. 1989). With the eruption of 

the primary dentition serum IgG, IgM and IgA can enter the oral cavity via the 

gingival crevicular crevice. These antibodies are synthesised in response to 

microbial challenge (Smith and Taubman 1992). Serum IgG specific for S. mutans 

and S. sobrinus can be detected only in very low levels in children aged one- to 

three-years, coinciding with their acquisition in dental plaque (Luo et al. 1988). 

The protective role of serum IgG in saliva is also met with controversy, although 

an inverse relationship between the levels of serum IgG directed against S. 

mutans and their numbers in dental plaque and subsequent caries development 

have been reported (Aaltonen et al. 1987). However, the contribution of serum 

derived antibodies to secretory immunity in the oral cavity is minimal when 

compared with sIgA (Russell et al. 1999). 

These studies indicate that the potential does exist to mount a secretory IgA 

response that can inhibit processes required for Mutans streptococcal plaque 

formation, including sucrose-independent adhesion to the salivary pellicle, 

mediated by SA I/II, accumulation of Mutans streptococci mediated by glucan 

production by Gtfs in the presence of sucrose and adhesion to glucans mediated 

by Gbps. However, the cross-sectional nature of these studies complicates 

interpretation of the results, not least because caries takes months to years to 

manifest clinically. Therefore, collection of saliva at a single point in time may 

not reflect the past or present disease status. Thus, the role of sIgA in 

protection against caries remains controversial. Longitudinal studies are required 

to identify whether naturally elicited protective antibody responses can be 
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generated. Thus far the limited knowledge of the immune response to infection 

has hindered the advancement of therapeutic strategies.  

1.4 Childsmile 

The human samples obtained in the following study were from participants in 

‘Childsmile.’ Childsmile is a national dental health improvement programme for 

Scotland. The programme was initiated by the Scottish Government’s (then 

Executive) 2005 action plan for improving oral health and modernising dental 

services in Scotland (Macpherson et al. 2010a). The programme was developed in 

response to the consistently high levels of dental caries among young children in 

Scotland, with over half of Scottish five-year-olds experiencing significant levels 

of decay, with an average dmft (decayed, missing [due to caries] or filled teeth) 

of five in these caries experienced children. A significant proportion of these 

figures were attributable to those children of low SES, who suffer from the 

greatest burden of disease. Moreover, with extremely low rates (30%) of very 

young children registered with dental practitioners there is a need to access 

these young children and provide anticipatory and preventative care, 

particularly to those from deprived backgrounds who are less likely to access 

dental services (Shaw et al. 2009). Thus, the overarching aim of Childsmile is to 

improve the oral health of children across Scotland and to reduce inequalities in 

dental health and access to dental services.  

Initially two targeted demonstration programmes were established beginning in 

January 2006, one in the East and one in the West of Scotland. In the East, 

Childsmile was designed to provide additional preventative clinical care through 

NHS dental practices, specifically aimed at children aged three-years and over 

and attending nurseries or schools in the most deprived areas. In the West, 

Childsmile was set up to target children from birth and to promote oral health 

and caries prevention, in dental practice and local community settings. Newly 

born infants identified as at risk of developing dental caries by their health 

visitors are referred to dental health support workers, who visit families in their 

homes to promote attendance at Childsmile dental services, encourage good oral 

hygiene and provide additional advice as required. Extended duty dental nurses, 
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trained in oral health promotion and fluoride varnish application, provide 

additional care to families as required.  

In 2009, these demonstration phases of the Childsmile programme were rolled 

out Nationwide (Turner et al. 2010). Early evidence indicates that Childsmile 

intervention is associated with a reduction in the prevalence of dental caries 

among young children, decreasing from 26% in 2006/7 to 17% in 2009/10. 

Moreover, the reduction in decay experience was observed across the 

socioeconomic spectrum (McMahon et al. 2011).  

The Childsmile programme provides children with specific health interventions 

depending on need, from birth and up to 16-years of age. The combination of 

Childsmile’s unusually young target age group and the multiple visit 

interventions provides a unique opportunity to investigate the evolution of the 

oral biofilm coincident with the development of the salivary immune response. 

1.5 Objectives 

There are fundamental gaps in current knowledge of the interrelationships 

between caries-associated risk factors. In particular how the immune system 

interacts with the evolving cariogenic oral biofilm in young children, and how 

this may contribute to inequalities in dental caries. This study aimed to unravel 

the relationship between development of the cariogenic oral biofilm, coincident 

with the evolution of the salivary immune response, specifically: 

1. Investigate the biological caries-associated risk factors in a cross-sectional 

clinical study of one-year-old Childsmile participants. 

2. Investigate the biological caries-associated risk factors in a longitudinal 

clinical study of one- to three-year-old Childsmile participants.  

3. Investigate the initiation of the adaptive immune response to S. mutans, 

using as series of In vitro and In vivo experimental models. 

4. To develop and optimise the use of an In vitro S. mutans biofilm model.  
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2.1 Study Participants and Ethical Considerations 

Study participants were recruited from the Childsmile Initiative. Parental 

consent was obtained at baseline from parents of children aged between 12 and 

24 months and attending a Childsmile appointment within the Glasgow and Clyde 

area (Parental information sheet and consent are shown in Appendix I). Plaque 

and saliva samples were collected from children as detailed in sections 2.3.1 and 

2.3.2, respectively. Sociodemographic data was collected by questionnaire. 

Patients were recalled approximately 18 months later and invited to bring their 

child to a follow-up appointment. Ethical approval was amended to include the 

use of a validated food frequency questionnaire, for which additional parental 

consent was obtained. Plaque and saliva samples were collected and clinical 

disease data (dmft) were also recorded by a national dental inspection program 

(NDIP) calibrated dentist. In the first collection the study group comprised 63 

individuals with a median age of 16 months and at follow-up the study group 

comprised 23 individuals with a median age of 35 months. This study (Dr Shauna 

Culshaw, ‘Unraveling the relationship between the oral biofilm and the host 

immune response’ was reviewed and received ethical approval from the West of 

Scotland Research Ethics Committee (08/S0703/139, Appendix II) and NHS 

Greater Glasgow and Clyde R&D Management (YN08DN369, Appendix III).  

2.2 Reagents 

The source of reagents is given in the text. All chemicals were obtained from 

Sigma, Poole, UK and all cell culture media and supplements from Life 

Technologies, Paisley, UK unless otherwise indicated.  

2.3 Clinical sample collection 

2.3.1 Plaque 

Plaque was collected from the buccal surface of the upper molars using a sterile 

nylon elution swab and placed into 1 ml Liquid Amies transport medium (Eswab 

[Copan, Brescia, Italy]). If the deciduous molars had not erupted at time of 

examination, plaque was collected from the incisors. Samples were stored at 
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4˚C and transported to the microbiology laboratory at Glasgow Dental School 

and Hospital within hours for immediate processing. 

2.3.2 Saliva Collection 

Saliva was collected using cotton sorbettes (Salimetrics, Europe LTD), specially 

designed for the collection of saliva from infants. This product was discontinued 

prior to the follow-up sample collection and replaced with the Children’s Oral 

Swab (Salimetrics, Europe LTD). This long swab is made from a synthetic durable 

polymer and is designed to collect saliva from children under the age of six-

years. Sorbettes and oral swabs were placed in the mouth for up to 60 s, pending 

child cooperation, and allowed to absorb saliva. Saturated sorbettes and swabs 

were then placed into appropriately labelled collection tubes (Salimetrics, 

Europe LTD), stored at 4˚C and transported to the microbiology laboratory at 

Glasgow Dental School and Hospital within hours for immediate processing.  

2.4 Questionnaires 

2.4.1 Sociodemographic 

A socioeconomic demographic questionnaire (University of Glasgow Dental 

School: version 2 December 2008 [Appendix IV] was designed to collect 

information regarding the parental profile of children recruited to the study. 

Postcodes were recorded for each study participant and used to determine the 

Scottish index of multiple deprivation (SIMD) 2009. SIMD identifies small area 

concentrations of multiple deprivation across Scotland in a consistent manner. 

SIMD ranks are area based measures that provide a relative measure of 

deprivation for every postcode sector using 38 indicators across seven domains, 

including income, employment, health and education (The Scottish 

Government). SIMD ranks are often divided by deciles or quintiles. In this study 

quintiles were used to assess the relative deprivation of each postcode. The 

most deprived quintile (quintile 1) includes the most relatively deprived 20% of 

Scottish postcode areas.  
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Socioeconomic data collected by questionnaire contained multiple categories for 

some of the variables. In a change to this format, data regarding annual 

household income, the proportion of income received as benefits, the level of 

parental education and SIMD quintiles were dichotomised as illustrated in Table 

2-1. The cut-off points for the dichotomisation were arbitrarily chosen in an 

attempt to compare the most deprived families with those who were relatively 

less deprived.  

Table 2-1: Dichotomisation of measures of socioecon omic status 
Dichotomised categories Demographic measure 

Most deprived Relatively less 

deprived 

Annual household income < £10,000 ≥ £10, 000 

Proportion of income received as 

benefits 

Half - all None - about a 

quarter 

Parental education Secondary school 6th form or above 

Healthboard SIMD 2009 SIMD 1 SIMD 2-5 

 

2.4.2 Food frequency questionnaire 

A validated Scottish Collaborative Group Food frequency questionnaire (FFQ: 

version C2 for use in three- to 11-year olds [Appendix V] (Sheehy et al. 2008), 

was used to estimate non-milk extrinsic sugar (NMES) intake from three-year old 

study participants at the follow-up collection. This version lists 140 different 

foods and drinks each with a measure to represent a small portion of each item. 

Examples of portion sizes were shown in colour images on the front cover of the 

FFQ. Parents or guardians of participants were asked to estimate the frequency 

and amount of each item consumed over a typical week. The options for 

selection ranged from ‘rarely or never’ to ‘7 or more portions a day’. Data from 

completed questionnaires were entered into an ACCESS database file. Nutrient 

intakes were calculated from the FFQ using a calculation program developed by 

the University of Aberdeen.  
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2.5 Caries scores 

Caries experience for each tooth was calculated by a national dental inspection 

program calibrated (NDIP) dentist. Summary measures of d3mft (decayed into 

dentine, missing due to caries and filled teeth) were then calculated for each 

child. Dental examinations were performed in line with BASCD criteria (Hinds 

and Gregory. J 1995).  

2.6 Microbiology 

2.6.1 Plaque 

The plaque samples in 1 ml Liquid Amies were vortex mixed for 30 sec to release 

bacteria from nylon swab. A 100 µl volume of plaque suspension was removed 

and serially diluted 10-fold in sterile phosphate buffered saline (PBS). The 

CFU/ml was determined using the technique described by Miles and Misra (Miles 

et al. 1938). Aliquots of 20 µl volumes of 10-1 to 10-4 dilutions were spotted in 

triplicate, onto Columbia base agar (Oxoid, Basingstoke, UK) supplemented with 

5% defibrinated horse blood (hence referred to as blood agar, BA), for the 

enumeration of total aerobic flora; mitis salivarius agar (MSA, [Sigma]), 

supplemented with 1 ml of 1% potassium tellurite per litre (FlukaTM Analytical, 

Sigma, UK) for total oral streptococci; MSA supplemented with 0.2 units/ml 

bacitracin and 150 g sucrose per litre (MSB) for Mutans streptococci (Gold et al. 

1973); and Rogosa agar supplemented with 0.1% Tween 80 (Invitrogen, Paisley, 

UK) and 1.32 ml/L acetic acid for enumeration of total lactobacillus spp.  

BA plates were incubated at 37˚C for 24 h in an atmosphere of 95% air and 5% 

CO2 [Binder GmbH, Tuttlingen, Germany]. MSA, MSB and Rogosa plates were 

incubated at 37˚C for 48 h under anaerobic conditions, in an atmosphere of 85% 

N2, 10% CO2 and 5% H2.  

The remaining suspension of plaque bacteria in 900 µl of Liquid Amies was 

pelleted by centrifugation at 10, 000 x g for 10 min. The supernatant was 

discarded and the cell pellet was stored at -80˚C until required for quantitation 

of cariogenic bacteria by TaqMan® QPCR (section 2.6.8).   
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2.6.2 Saliva  

Saliva was harvested from sorbettes and oral swabs by centrifugation at 1, 500 x 

g for 10 min at 4˚C. Collected saliva was stored at -80˚C and retained for 

immunological investigations. The cell pellet was also retained and stored at -

80˚C until required for quantitation of cariogenic bacteria by TaqMan® QPCR 

(section 2.6.8). At this time the total volume of saliva collected from each 

patient was recorded.  

2.6.3 Colony counting 

All colonies on BA and MSA were counted and recorded for enumeration of total 

aerobic flora and oral streptococci respectively, using the formula:  

No. of colonies x dilution factor x 50 (volume to 1 ml) = CFU/ml 

All colonies with granular “frosted-glass” morphology (Figure 2-1a), 

characteristic for S. mutans on MSB agar (Emilson 1983; Gold et al. 1973) were 

counted, recorded and the CFU/ml was calculated. The minimum detection level 

was 1 x 103 CFU/ml suspended plaque. Putative S. mutans isolates were Gram-

stained and a positive staining reaction and appearance of streptococci was 

considered indicative of S. mutans. Further confirmation was carried out using 

Rapid ID 32 Strep API (BioMérieux, UK LTD), according to the manufacturer’s 

instructions (Figure 2-1b).   

All colonies growing on Rogosa were considered to be lactobacilli spp. 

Identification was confirmed with a Gram positive staining reaction and 

appearance of bacilli. 
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a 

b 

 

Figure 2-1: Identification of S. mutans 

(a) Characteristic granular “frosted glass” morphology of S. mutans colonies grown 
on MSB agar. (b) Rapid ID 32 Strep API 
 

2.6.4 Bacterial strains and culture conditions 

S. mutans NCTC 10449 and UA159, S. sobrinus NCTC 33478, S. mitis NCTC 12261 

and S. sanguinis NCTC 7863 were stored on Protect® (Technical Service 

Consultants Ltd, UK) at -80˚C at Glasgow Dental School and Hospital, Scotland, 

UK, throughout the duration of the study. Strains were maintained at 37˚C in 5% 

CO2 on BA for 24 – 48 h. For subculture, individual colonies were inoculated into 

10 ml brain heart infusion broth (BHI [Oxoid]) and cultures were grown at 37˚C 

in 5% CO2 for 24 h.  

 

S. sobrinus 6715 and S. mutans 28BE3 stock cultures were maintained in Todd 

Hewitt Broth (Difco, USA) in 10% glycerol at – 70 ˚C at the Forsyth Institute, 
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Boston, USA. Three ml of BHI broth (Difco, USA) was inoculated with a ‘scraping’ 

of stock culture and incubated anaerobically at 37˚C for 8 h. Following 

incubation, a 0.1 ml volume was transferred to 3 ml fresh BHI and incubated at 

37˚C for 8 h.  

For experiments requiring heat-killed bacteria, S. mutans UA159 were incubated 

at 60˚C for 30 min. 

All microbiological procedures were performed using aseptic technique.  

2.6.5 Sucrose-dependent biofilm formation 

Mutans streptococcal biofilm formation was assessed using 96-well peg lids in 

conjunction with 96-well polypropylene plates (Figure 2-2, [NuncTM, Fisher 

Scientific, Loughborough, UK]) with low protein-binding characteristics to ensure 

bacterial cells bound only to pegs and not to wells during the incubation stage. 

Peg lids were submerged in 248 µl BHI containing 1.5 x 107 CFU/ml of bacteria 

grown to exponential phase, 0.4% sodium azide, 0.25% sucrose in a pH adjusted 

to pH 6.8, unless otherwise indicated in figure legends. S. mutans and S. 

sobrinus biofilms (the strains used are indicated in figure legends) were formed 

over 4 h, under anaerobic conditions (80% N2; 10% H2; 10% CO2) with orbital 

shaking at 575 rpm.  

Biofilm formation was assessed in the presence of various mediators or inhibitory 

molecules as detailed in figure legends. Positive control antibodies used for 

Mutans streptococcal biofilm inhibition have been previously described 

(Taubman et al. 1995). Briefly, rat IgG anti-S. sobrinus Gtf and rat IgG anti-S. 

mutans Gtf were prepared by active immunization with S. sobrinus Gtf or S. 

mutans Gtf, respectively. Animals were injected subcutaneously in the vicinity 

of the salivary gland with 50 µg of Gtf from S. sobrinus or 25 µg of Gtf from S. 

mutans in complete Freund adjuvant. One week later animals were reinjected, 

in the same vicinity with the same antigen and dose in incomplete Freund 

adjuvant. One week after the second injection animals were bled from the 

retroorbital plexus and serum was collected. Serum IgG collected from sham-

immunized rats served as control group. SS2 was prepared by phage display, 

described in section 6.1 (Sui et al. 2008; Sui et al. 2009).  
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2.6.6 Biofilm quantification  

Following biofilm formation, pegs were washed twice in 250 µl PBS to remove 

non-adherent cells. Biofilm formation on pegs was then quantified using the 

following methods.  

2.6.6.1 Crystal violet assay 

Biofilms formed on pegs were stained in 250 µl/well of 0.2% crystal violet (w/v 

in dH20) for 10 min. Following staining, pegs were air dried for 30 min then 

washed three times in PBS before bound crystal violet was eluted from pegs in 

250 µl/well of elution solution (70% ethanol; 5% acetic acid). The eluate was 

measured with plate reader KC junior (Forsyth Institute, Boston, USA) or Omega 

Fluostar (BMG Labtech, Glasgow Dental, School and Hospital, UK) absorbance 

was measured at OD 570 nm with water blank.  

Biofilm inhibition, expressed as ‘% inhibition of biofilm formation’ was 

calculated according to the following equation: 

100 – ((Absorbance of test antibody/absorbance of no antibody control) x 100) 

2.6.6.2 CyQuant assay® 

Pegs were removed with pliers and transferred to sterile eppendorfs containing 

one ml of sterile PBS. Biofilms were disrupted from pegs by sonication for five 

min at 35 kHz. Sonication did not to affect S. mutans cell viability. Pegs were 

discarded and the resulting cell suspension was pelleted by centrifugation at 10, 

000 x g for 10 min. The cell pellet was frozen to -70˚C for 1 h and thawed to 

room temp. Next, cells were resuspended in 1 ml of CyQuant® GR dye/lysis 

buffer (Invitrogen). Simultaneously, a standard curve was prepared from 

planktonic S. mutans cells in the range of 1x106 – 1x101 CFU/ml. All samples 

were incubated with the dye for 5 min in the dark at room temperature. 

Following incubation, 200 µl volumes of cell suspensions, including standards 

were added to wells of a black fluorescent microtitre plate (Thermo Fisher 

Scientific, UK) and fluorescence of samples was measured using an Omega 
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Fluostar®. A standard curve was created using non-linear regression analysis and 

used to extrapolate the number of CFU/ml of S. mutans forming biofilms.  

2.6.6.3 TaqMan® QPCR 

Individual pegs were removed using pliers and transferred to sterile eppendorfs.  

Enzymes for cell lysis (outlined in section 2.6.7) were added and eppendorfs 

containing pegs were subjected to sonication for 5 min at 35 kHz. Therein DNA 

digestion was performed as outlined below (section 2.6.7) and TaqMan® QPCR 

using S. mutans specific primers and probe was performed as outlined in section 

2.6.8.  

2.6.6.4 AlamarBlue® Assay 

The AlamarBlue® assay (Invitrogen) incorporates a fluorometric growth indicator 

based on the detection of metabolic activity. The system incorporates an 

oxidation-reduction (REDOX) indicator that fluoresces in response to chemical 

reduction of the growth media resulting from cell growth. Following S. mutans 

biofilm formation on peg lids, pegs were washed as previously described and 

transferred to a fresh microtitre plate (Costar) containing 250 µl/well of PBS and 

1/10 dilution of AlamarBlue®. Biofilms were incubated with AlamarBlue® 

solution at 37˚C, in 5% CO2 for 4 h. Following incubation, pegs lids were removed 

and the change in fluorescence was measured using an Omega FluoStar® plate 

reader. The raw fluorescence intensity data was averaged for each condition 

with increased fluorescence intensity being indicative of an increased reduction 

of the growth media and thus represents increased metabolic activity.  
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Figure 2-2: S. mutans biofilm formation on peg lids 

S. mutans sucrose-dependent biofilm formation on peg lids, visualized with crystal 
violet incorporation.  
 

2.6.7 DNA extraction 

S. mutans NCTC 10449 and S. sobrinus NCTC 33478 cultures were grown to 

exponential phase in BHI for 8 h. Cultures were adjusted to absorbance 0.05 (OD 

570 nm), equivalent to approximately 5 x 107 CFU/ml and serially 10-fold diluted 

down to 5 x 100 CFU/ml. One ml volumes of each culture were pelleted by 

centrifugation at 10, 000 x g for 10 min. DNA extraction was carried out using 

MasterpureTM Gram positive DNA purification kit (Epicentre Biotechnologies, USA) 

in accordance with manufacturer’s instructions. Briefly, 1 ml of culture was 

pelleted by centrifugation, and resuspended in 150 µl TE buffer. For bacterial 

lysis, 1 µl Ready-Lyse Lysozyme® and an additional 20 U mutanolysin were added 

to the resuspended cell pellet and incubated for 1 hr at 37˚C. Next, 150 µl of 

Gram positive lysis solution, containing 3 µg proteinase K was added to each 

sample and incubated at 65˚C for 15 min. Samples were cooled to 37˚C and then 

placed on ice before addition of 175 µl MPC Protein Precipitation Reagent. 

Samples were vortex mixed vigorously before centrifugation at 4˚C for 10 min at 

10,000 x g (Microfuge® 22R Centrifuge; Beckman Coulter). Supernatants were 

transferred to clean Ambion® DNase-free eppendorfs, 5 µg of RNase A was added 

to each sample before 30 min incubation at 37˚C. One volume of isopropanol 

was added and tubes were inverted 30-40 times. DNA precipitate was harvested 
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by centrifugation for 10 min at 10,000 x g at 4˚C. Isopropanol was removed, 

taking care not to dislodge the DNA pellet. The pellet was then washed in 70% 

ethanol, which was removed by pipetting; remaining ethanol was allowed to 

evaporate then DNA was resuspended in 35 µl of DNase free water. The quantity 

and quality of DNA was measured using a Nanodrop spectrophotometer 

(Nanodrop 1000, Thermo Scientific). The DNA from serially diluted cultures was 

used as standards to quantify the absolute CFU/ml of S. mutans and S. sobrinus 

in saliva of clinical samples by TaqMan® QPCR. Cell pellets from clinical plaque 

and saliva samples were removed from -80˚C storage and allowed to thaw prior 

to DNA extraction performed as above. 

2.6.8 Quantitative PCR 

TaqMan® real-time QPCR was performed using an Mx3000P (Agilent Technologies 

Inc) according to the manufacturer’s instructions. The principle of the method is 

outlined below (Figure 2-3).  

Primers and fluorescent probes, previously described (Table 2-2) were purchased 

from Eurogentec, Belgium. Fluorescent probes contained a reporter dye (FAM) 

covalently attached to the 5’ end and a quencher dye (TAMRA) attached to the 

3’ end. Primers and probes were HPLC purified. Extension from the 3’ end of the 

probe was blocked by the attachment of a 3’ phosphate group. The specificity of 

primers and probes were confirmed (Table 2-3).  

Each reaction contained: 

12.5 µl Taqman® Platinum mix UDG (Invitrogen, Paisley, UK) 

200 nM each primer 

250 nm fluorescent probe 

1 µl DNA template  

total volume = 25 µl.  

Amplifications of DNA were performed in triplicate using an initial cycle of 50˚C 

for 2 min and 95˚C for 10 min followed by 60 cycles of 95˚C for 15 s and 58˚C 
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for 1 min. Data analysis was performed using MxPro QPCR Software (Agilent 

Technologies Inc) to calculate the threshold cycle (Figure 2-4a). The Ct value 

represents the PCR cycle at which fluorescence can be first detected above a 

defined threshold. DNA extracted from S. mutans and S. sobrinus cultures of 

known CFU/ml were used as standards and were amplified in duplicate alongside 

clinical samples. Standard curves were created and the linear phase of 

amplification (Figure 2-4b) was used to calculate the absolute numbers of S. 

mutans and S. sobrinus from saliva samples. For each saliva sample, the 

recorded volume of saliva originally collected was used as a multiplication factor 

to calculate the absolute number of S. mutans and S. sobrinus CFU/ml saliva.  

DNA extracted from plaque samples was used to estimate the relative amount of 

S. mutans and S. sobrinus in relation to total Gram positive plaque flora, 

estimated by 16S universal primers specific for Gram positive bacteria, using the 

∆∆CT method. Using this method the fold difference was calculated. A 

multiplication step was performed to determine S. mutans and S. sobrinus as a 

percentage of Gram positive plaque flora for each individual.  

Table 2-2: Primers and probes used to detect and qu antify absolute and 
relative numbers of S. mutans and S. sobrinus in samples 
Primers and 
Probes 

Sequence (5’-3’) Target Reference 

S. mutans-Forward 
primer 

GCCTACAGCTCAGAGATGCTATTCT 

S. mutans-Reverse 
primer 

GCCATACACCACTCATGAATTGA 

gtfB 

S. sobrinus-
Forward primer 

TTCAAAGCCAAGACCAAGCTAGT 

S. sobrinus-
Reverse primer 

CCAGCCTGAGATTCAGCTTGT 

gtfT 

S. mutans probe FAM-
TGGAAATGACGGTCGCCGTTATGAA-
TAMRA 

gtfB 

S. sobrinus probe FAM-CCTGCTCCAGCGACAAAGGCAGC-
TAMRA 

gtfT 

(Yoshida 
et al. 
2003a) 

Universal-Forward 
primer 

CAACGCGAAGAACCTTACC 

Universal-Reverse 
primer 

ACGTCATCCCCACCTTCC 

Gram +ve probe FAM-ACGACAACCATGCACCACCTG-
TAMRA 

16s DNA (Wu et al. 
2008) 
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Figure 2-3: Schematic representation of TaqMan® QPC R 

A reporter dye, FAM was covalently attached to the 5’ end of the probe (F). A 
quencher (Q), TAMRA was attached to the 3’ end. PCR product amplification 
resulted in cleavage of the probe, thus removing the inhibitory action of the 
quencher from the reporter.  
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Table 2-3: Amplification of DNA from a panel of bac terial species using 
TaqMan primers and probes 
Bacterial species (strain) S. mutans S. sobrinus 16S DNA (+ Gram 

+ve probe) 

S. mutans (UA159) + - + (+) 

S. mutans (10449) + - + (+) 

S. sobrinus (33478) - + + (+) 

S. mitis (12261) - - + (+) 

S. sanguinis (7863) - - + (+) 

S. salivarius (7366) - - + (+) 

Porphyromonas gingivalis 

(33227) 

- - + (-) 

F. nucleatum (10953) - - + (-) 

Aggregibacter 

Actinomycetemscomitans 

(11123) 

- - + (-) 

Pseudomonas aeruginosa (Pg) - - + (-) 

P. aeruginosa (PA01) - - + (-) 

P. aeruginosa (PA14) - - + (-) 

Primers and probes were assessed for their specificity against a panel of Gram-
positive (shaded grey) and Gram-negative (white) bacterial species. +/- indicates 
an amplification product or no amplification product, respectively following PCR.  
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Figure 2-4: Determination of the critical threshold  used to quantify S. mutans 
or S. sobrinus from DNA standards 

Representative images of (a) amplification plots showing the critical threshold (ct) 
at which the fluorescent signal can be detected above background fluorescence 
for duplicates of reactions with serially diluted template and (b) standard curve 
showing the linear reaction efficiency of DNA extracted from cultures of S. mutans 
containing 5 x 108 CFU/ml and subsequent ten-fold dilutions of bacteria down to 5 
x 101 CFU/ml. Thus, data confirm the linear reaction efficiency of the assay and 
the efficiency of DNA extraction.  
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2.7 ELISA 

2.7.1 Salivary antimicrobial protein assays 

The concentrations of antimicrobial proteins (Lactoferrin, LL37, calprotectin and 

the human neutrophil peptides [HNPs] 1-3) in clinical saliva samples were 

estimated by sandwich ELISAs. The antibody used to detect the HNPs does not 

discriminate between peptides 1, 2 and 3. The commercial ELISA kits were used 

in accordance with the manufacturer’s instructions (Hycult Biotech). Clinical 

saliva samples and assay standards were assayed in duplicate at an appropriate 

dilution factor as indicated in (Table 2-4). The absorbance of samples were 

measured at OD 450 nm using an Omega FluoStar® plate reader and the 

concentrations of antimicrobial proteins were determined by interpolation from 

a standard 4-parameter fit curve using Omega Data Analysis Software (BMG 

Labtech).  

2.7.2 Cortisol assay 

The concentration of salivary cortisol was estimated by competitive ELISA. The 

ELISA kit was used in accordance with the manufacturer’s instructions 

(Salimetrics, USA) (Table 2-4). Clinical saliva samples and assay standards were 

assayed in duplicate. The absorbance of samples and standards were measured 

at OD 450 nm with correction at 630 nm using an Omega Fluostar® plate reader. 

The percentage of bound cortisol for each sample, standard and control was 

calculated by dividing the average of the duplicate OD by the average OD of the 

no cortisol wells. The concentrations of samples and controls were determined 

by interpolation from a standard 4-parameter fit curve using GraphPad Prism 

version 4 for Windows (GraphPad Software, San Diego, California, USA). 
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Table 2-4: Dilution factors and sensitivity range f or commercial ELISA kits 
ELISA Supplier Dilution 

Factor 

Sensitivity Range 

LL-37 (cathelicidin) Hycult Biotech Neat 0.1 – 100 µg/ml 

HNPs 1-3  

(α-defensins) 

Hycult Biotech 1/100 41 – 10,000 pg/ml 

Calprotectin 

(S100A8/A9 complex) 

Hycult Biotech 1/100 1.56 – 100 µg/ml 

Lactoferrin Hycult Biotech 1/100 0.4 – 100 µg/ml 

Cortisol Salimetrics Neat 0.012 – 3 µg/dL 
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2.7.3 Salivary IgA 

The concentration of salivary IgA (sIgA) antibodies specific for a panel of oral 

streptococci was estimated by whole cell bacterial ELISA. 

2.7.3.1 Preparation of bacteria 

Bacterial strains: S. mutans NCTC 10449, S. sobrinus NCTC 33478, S. mitis NCTC 

12261 and S. sanguinis NCTC 7863 grown on BA as previously described were 

harvested using sterile swabs. Each strain was singularly resuspended into PBS 

containing 0.1mM disodium EDTA (PBSE). The bacterial cells were centrifuged 

for 20 min at 4,000 x g. The supernatant was discarded and the bacterial cells 

resuspended in PBSE. This process was repeated a further three times until the 

supernatant was clear. Bacteria were fixed with 10% formal saline by incubation 

at room temperature for 16 – 18 h. The fixed bacteria were washed a further 

two times in PBSE and once in coating buffer (CB:1.59 g Na2CO3 and 2.93 g 

NaHCO3 dissolved in 1L distilled water and adjusted to pH 9.6). Sodium Azide [2% 

w/v in CB] was prepared and 1/10 volume was added to the fixed cells. Cells 

were stored in CB at 4˚C for up to one month prior to use in ELISA. 

2.7.3.2 Estimation of sIgA antibodies 

Ninety-six well Immunolon I plates (Dynex Technologies, VA, USA) were used for 

their low protein binding properties. The optimal concentration of bacterial 

suspensions and detection reagents were optimised and validated prior to use. 

For coating, 200 µl CB was added to each well and incubated for 30 min, then 

discarded and the plate blotted dry by inverting and pounding on paper towels. 

Next, 100 µl of 0.25 OD 550 nm of whole bacterial suspensions in CB was added 

and incubated at 4˚C overnight on a rocking platform. All subsequent steps were 

carried out at 37˚C with reagents diluted in incubation buffer (PBS 0.05% Tween 

20 + 5% BSA). Plates were blocked with 200 µl incubation buffer for 1 h. To 

detect salivary antibody, clinical saliva samples were added to wells in 

triplicate, at two-fold dilutions ranging from 1/200 -1/6400 for 2 h. The reaction 

was developed by 1 h incubation with 1/2000 dilution of goat anti-IgA 

biotinylated detection antibody (Sigma), followed by addition of ExtrAvidin 

peroxidase conjugate (Sigma) for 1 h. Following each step plates were washed 
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four times in washing buffer (PBS 0.05% Tween 20 [PBST]). For each wash, wells 

were filled with wash buffer and allowed to stand for one minute before being 

inverted. Following the final wash, residual wash buffer was removed by 

pounding plates on paper towels. Plates were developed with 100 µl TMB 

(3,3′,5,5’-tetra-methylbenzidine substrate [R & D Systems, Minneapolis, USA]). 

The extent of colour development was determined at OD 630 nm with an Omega 

FluoStar® plate reader.  

The raw OD data was used to determine the antibody titres to each strain of oral 

streptococci in the patient’s saliva. In brief, the duplicate results for each 

dilution were averaged and the final titre was expressed as ELISA units (EU) 

(Gmur et al. 1986). The results were calculated with a regression line and 

derived equation from the serial dilutions of patient saliva. Control saliva, 

pooled using a small volume of saliva from every study participants at baseline, 

acted as a quality control and allowed for correction in day to day assay variance 

and enabled the reproducibility of the assay to be monitored.  

2.8 Animals 

C57BL/6 mice (Harlan, Bicester, UK), C57BL/6 ‘TEa’ mice with transgenic T cells 

which recognise Eα52–68-MHCII complex (obtained from S. McSorley, University of 

Minnesota, Minneapolis, USA) and C57BL/6 ‘OT-II’ mice with TCR transgenic T 

cells which recognise OVA323-339-MHCII were maintained at the Central Research 

Facility (University of Glasgow, UK) under specific pathogen free conditions. 

Female mice aged 6 – 8 weeks were used in all experiments. All procedures were 

performed according to local and UK Home Office regulations.  

2.9 Isolation and culture of bone marrow derived 

dendritic cells from C57BL/6 mice 

Mice were sacrificed by cervical dislocation prior to aseptic removal of femurs 

and tibias, which were transferred to ice cold RPMI. Muscle and epiphyses were 

removed to expose the cavim. Bone marrow was flushed through with 2 ml of 

RPMI 1640 medium using a 2.5 ml syringe and 23 G needle. Bone marrow was 

disrupted by passing through a cell strainer and the resulting cell suspension was 
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resuspended at 2 x 106 cells/ml in RPMI, supplemented with 2 mM L-glutamine, 

100 U penicillin, 100 µg/ml streptomycin, 10% foetal calf serum (complete RPMI) 

and 10% GM-CSF (obtained from X63 myeloma cells transfected with mouse 

granulocyte–macrophage colony-stimulating factor cDNA). Bone marrow derived 

cells were cultured in wells of 6-well plates (Costar, Corning) at a concentration 

of 2 - 4 x 106 cells/well under microaerophilic conditions (5% CO2) at 37˚C. Fresh 

medium was added to the cell cultures every three days and DC’s were 

harvested on day seven. Differentiation into DC’s was confirmed by staining DC’s 

with anti-CD11c (Table 2-5), on average 70% of the cells in culture were CD11c 

positive by FACS analysis. 

2.10 Isolation of murine lymph nodes and spleens 

Mice were sacrificed by exposure to a rising concentration of CO2, followed by 

cervical dislocation. Lymph nodes and spleens were removed and placed in RPMI 

on ice. Single cell suspensions were prepared by passing tissues through a 40 µm 

cell strainer using a 5 ml syringe plunger in the presence of RPMI, supplemented 

with 2 mM L-glutamine, 100 U penicillin, 100 µg/ml streptomycin (incomplete 

RPMI). For isolation of antigen specific T lymphocytes or DCs, lymph nodes were 

digested with 80 µg of LiberaseTM (Roche Diagnostics, Indianapolis, USA) for 30 

minutes and then passed through a cell strainer using a pipette.  

Splenocytes were pelleted by centrifugation at 400 x g at 4˚C and resuspended 

in 5 ml of room temperature red lysis buffer (Invitrogen, UK) for 15 min. Cells 

were pelleted by centrifugation as before and resuspended in incomplete RPMI.  

2.11 In vitro DC activation 

Bone marrow derived DCs (section 2.9, BMDCs) were washed by aspirating media 

and replaced with RPMI supplemented with 10% heat-inactivated fetal calf serum 

(HI-FCS). This was repeated once then cells were left to settle for at least 4 h. 

BMDCs were stimulated for 4, 18 or 24 h with heat-killed or live S. mutans UA159 

or their conditioned supernatants or with E. coli (DH5A), with or without ‘model’ 

antigens; either 100 µg/ml exogenous EaGFP, (EαGFP generated from the EαRFP 

fusion protein was a kind gift from Dr John Butcher of the University of Glasgow, 
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and has been previously described (Rush et al. 2009) or OVA peptide, as detailed 

in figure legends. Heat-killed or live S. mutans or E. coli or live E.coli were 

added to DCs at ratios of 10:1 or 100:1. Following stimulation DCs were scraped 

from wells using a cell scraper and transferred to 15 ml falcon tubes. DCs were 

then stained for cell surface receptors using appropriate antibodies (Table 2-5) 

and analysed by flow cytometry according to the protocol outlined below 

(section 2.13). Alternatively, DCs were co-cultured with T cells (section 2.12). 

2.11.1 Viability assay 

BMDCs were stained with anti-CD11c, followed by annexin-V AF-488 conjugate 

(Life technologies) to detect apoptotic cells, and 7-AAD (eBioscience, Hatfield, 

UK) to detect non-viable cells. Cells were washed twice in 200 µl FACS buffer 

(PBS + 2% FCS + 0.05% NaN3), pelleted by centrifugation at 350 x g and 

resuspended in 300 µl FACS buffer and analysed by flow cytometry.  

2.12 In vitro T cell proliferation 

Stimulated BMDCs were adjusted to 1 x 106 cells/ml in complete RPMI and 100 µl 

(1 x 105 cells) were added in triplicate to wells of a 96-well microtitre plate 

(Costar, Corning). One hundred µl, of approximately 1 x 105 cells/ml of 

transgenic OT-II T cells were added to wells with DCs at a ratio of 1:1. As a 

postive control 2 µg/ml of anti-CD3e was added to T cells co-cultured with DCs 

not previously stimulated with antigen. Plates were incubated for 48 h at 37˚C 

in 5% CO2. Supernatants were removed and stored at -80˚C. Spent media was 

replaced after each 24 h period. T cell proliferation was detected using Click-

iTTM EdU Flow Cytometry Assay Kit (Molecular Probes, Invitrogen). EdU 

incorporation and detection was performed as per manufacturer’s instructions. 

Cells were incubated with 10 µM EdU (AF 647 or 488) for the final 24 h of culture 

at 37˚C in 5% CO2. Cells were stained for cell surface receptors as detailed in 

section (2.13.1 and Table 2-5) and analysed by flow cytometry.  
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Table 2-5: Murine antibodies used for flow cytometr y 
Antigen Isotype Supplier (Clone) Label 

CD11c 

CD40 

CD80 

CD86 

CD4 

Ea52-68 peptide 

bound to MHCII 

Ar hamster IgG1 

Rat IgG2a 

Ar hamster IgG2 

Rat IgG2a 

Rat IgG2a 

Mouse IgG2b 

eBioscience (N418) 

BD (3/23) 

BD (16-10A1) 

BD (GL1)  

BD (RM4-5) 

eBioscience (Y-Ae) 

APC, PE 

FITC 

FITC 

FITC 

FITC, APC 

BIO 

Antibodies were used according to the manufacturer’s recommendations at 
dilutions of 1/200 per 5 x 105 cells. Biotin-conjugated Y-Ae was detected with 0.2 
µg/test streptavidin-FITC or –APC (BD Pharmingen, Oxford, UK) 
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2.13 Flow cytometry 

2.13.1 Cell surface antigen staining 

To reduce non-specific antibody binding to Fc receptors, murine cells were 

resuspended in FACS buffer containing Fc block (2.4G2 hybridoma supernatant) 

at 5 x 105 cells/100 µl for 15 min at 4˚C. Cells were transferred to polystyrene 

tubes (‘FACS tubes’ Falcon 2052, BD Pharmingen) and stained with various 

antibodies or appropriate antibody controls at 1/200 dilution (Table 2-5) for 30 

min in the dark at 4˚C. Cells were washed twice in 200 µl FACS buffer, 

centrifuging at 350 x g for 5 min. Where secondary detection reagents were 

required, cells were resuspended in 100 µl FACS buffer containing the 

appropriate secondary reagent (Table 2-5) and incubated in the dark for 30 min 

at 4˚C. Cells were washed twice in 200 ul FACS buffer, centrifuging at 350 x g 

for 5 min. Finally, cells were resuspended in 300 µl FACS buffer and passed 

through a 30 µm nitex nylon mesh (Fisher scientific, Leicestershire, UK). Cells 

were then analysed.  

2.13.2 Flow cytometry acquisition and analysis 

Cells were acquired and analysed on a Becton Dickenson FACSCalibur using 

CellQuest Acquisition software. Prior to running labeled cells, FSC (forward 

scatter) and SSC (side scatter) were adjusted so that cells of interest could be 

gated on screen. Unstained samples were used as auto-fluorescence controls, 

allowing settings to be adjusted so that auto-fluorescence background was 

roughly within the first decade of the log scale of the fluorescence intensity 

plot. Positively stained controls were used to adjust compensation settings such 

that detection of each fluorochrome was brightest using the appropriate 

detector. Data were analysed using FlowJo software (Treestar, Ashland, OR, 

USA). Results are expressed as % positive cells or mean fluorescence intensity.  

2.14 Statistical analysis 

Data were obtained from observations and measurements made on individuals 

(mice, humans, cells etc). Statistical tests were applied to evaluate how far the 
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observed evidence differed from what would be expected if the null hypothesis 

were true. From these statistics, p values were calculated and if p < 0.05 the 

null hypothesis was rejected and the difference considered statistically 

significant.  

Clinical data were investigated to determine frequency distributions prior to 

statistical analysis. Skewed data were log10 transformed to obtain a normal 

distribution. Parametric statistical tests were applied to normally distributed 

data. Independent samples student’s t-tests were applied to test whether two 

groups had the same mean. In every instance, Levene’s test for equality of 

variance was considered and the appropriate p value was reported. Analysis of 

variance (ANOVA) with Bonferroni corrections was used for clinical data or Tukey 

corrections were used for experimental data were applied to test whether three 

or more groups had the same mean and ANOVA linear was applied to investigate 

the linear trend from three or more groups. Pearson bivariate correlations or 

Linear regression analysis were applied to test correlations and associations, 

respectively between two normally distributed scale variables. 

When data exhibited skewed distribution non-parametric statistical tests were 

applied. Mann-Whitney U tests were applied to test the difference between two 

means. Kruskal-Wallis was applied to test differences between the means of 

three or more groups and Jonckheere-Terpstra test was applied to test the linear 

trend between three or more groups.  

Fisher’s exact test was applied to determine the statistical significance of an 

association between two categorical variables.  

All statistical analyses were performed using IBM SPSS software, PAWS statistics 

18 and GraphPad Prism version 4 for Windows (GraphPad Software, San Diego, 

California, USA). All graphs were produced in GraphPad Prism version 4 for 

Windows. Box plots display median, 25th and 75th percentiles and whiskers show 

the minimum and maximum values.  
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Chapter 3: Cross-sectional analysis of caries-

associated biological risk factors in one-year-old 

children 
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3.1 Introduction 

Oral health is a substantial component of general health, well being and quality 

of life. Dental caries remains one of the most prevalent chronic diseases of 

childhood, inflicting a substantial social and economic burden (Marthaler 2004). 

The WHO estimates that dental caries affects between 60-90% of school age 

children in developed countries and the vast majority of adults (Petersen 2003). 

Twenty-five percent of three-year-old children in Glasgow have some caries 

experience (McMahon et al. 2010) and caries prevalence increases with age, with 

36% of five-year-old Scottish children having obvious decay experience, rising to 

41.8% in the Greater Glasgow area (Macpherson et al. 2010b). Moreover, adult 

oral health is predicted by childhood dental health, highlighting the importance 

of epidemiological studies targeted to include the youngest age groups.  

Dental caries is a complex, multi-factorial disease known to be influenced by 

dietary factors, although the disease results from a bacterial infection and as 

such caries susceptibility may be altered by the host immune response. There is 

substantial evidence to indicate a causative relationship between caries and the 

Mutans streptococci, namely S. mutans and S. sobrinus and their presence in 

plaque and saliva has been used as an indicator of caries risk (Kristoffersson et 

al. 1985; Parisotto et al. 2010b). In children with high caries rates S. mutans is 

the predominant organism isolated from carious lesions (Marchant et al. 2001) 

and comprises 30-50% of plaque microbiota at these sites (Berkowitz et al. 

1984). In contrast, only 1% of the oral microbiota comprises S. mutans in caries 

free children (Law et al. 2007). To date there is little understanding of how 

infants and children respond to the evolution of the oral biofilm and how the 

host might influence this evolution. It is crucial to better understand this process 

if novel therapeutics and prevention strategies are to be developed.  

Previously, S. mutans was believed to colonise the oral cavity during a discreet 

‘window of infectivity’ reported to occur between 18 to 36 months of age 

(Caufield et al. 1993). S. mutans preferentially colonises tooth surfaces, 

although can be recovered from the mouths of pre-dentate infants (Wan et al. 

2001). However, S. mutans are not recovered in significant numbers in children 

until around two-years of age (Taubman and Nash 2006). Studies have shown 



   85 

that S. mutans colonisation increases with increasing age and that this increase 

is independent of socioeconomic status (Radford et al. 2001). The time of S. 

mutans colonisation is clinically significant as caries risk increases with earlier 

acquisition of S. mutans (Alaluusua and Renkonen 1983).  

Dental caries is strongly associated with socioeconomic status (SES) with those 

from the lower socioeconomic groups having the highest prevalence of the 

disease (Levin et al. 2009; Macpherson et al. 2010b; Sisson 2007). Inequalities in 

oral health begin early in life and the SES/oral health relationship is already 

apparent in children as young as three-years-old with caries prevalence rising 

from 16% in the least deprived to 32% in the most deprived areas (McMahon et 

al. 2010). These disparities in health cannot be fully explained by differences in 

access to health care, behavioural, dietary or genetic factors. Recent evidence 

suggests that the physiological stress response may provide a link between low 

SES and chronic disease, such as dental caries (Adler and Rehkopf 2008; 

Quinonez et al. 2001).  

Thus, there are fundamental gaps in current knowledge of the interrelationships 

of caries risk factors and in particular how the immune system deals with the 

evolving oral biofilm in young children, and how this may contribute to 

inequalities in dental caries.  

The combination of Childsmile’s unusually young target age group and the 

multiple visit interventions provides a unique opportunity to investigate the 

evolution of the oral biofilm coincident with the development of the salivary 

immune response. These studies therefore sought for the first time to collect, 

process and analyse biological samples, socioeconomic data, dietary information 

and dental health status in a longitudinal clinical study of Childsmile participants 

(Figure 3.1 and 3.2).    

Initially, the cross-sectional sample of children aged approximately one-year was 

investigated. The research objectives for this study were as follows: 

1. To describe study participants in terms of their demographics, total plaque 

bacteria, carriage of S. mutans and S. sobrinus in plaque and saliva and the 
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concentrations of salivary lactoferrin, LL37, calprotectin, the HNPs 1-3 and 

sIgA antibodies specific for a panel of oral streptococci.  

2. To investigate if socioeconomic inequalities influence total numbers of 

plaque bacteria, the detection of S. mutans and S. sobrinus in plaque and 

saliva, the concentrations of salivary lactoferrin, LL37, calprotectin, the 

HNPs 1-3, sIgA antibodies specific for a panel of oral streptococci or cortisol. 

3. To investigate if salivary cortisol concentrations influence total plaque 

bacteria, the detection of S. mutans and S. sobrinus in plaque and saliva, the 

concentrations of salivary lactoferrin, LL37, calprotectin, the HNPs 1-3 or 

sIgA antibodies specific for a panel of oral streptococci  

4. To investigate if the concentrations of salivary lactoferrin, LL37, 

calprotectin, the HNPs 1-3 or sIgA antibodies specific for a panel of oral 

streptococci influence the total numbers of plaque bacteria and the 

detection of S. mutans and S. sobrinus in plaque and saliva 
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Figure 3-1: Sample collection timeline 

Schematic overview of the longitudinal sample collection. Plaque and saliva 
samples were collected from a cohort of Childsmile participants on two occasions, 
at approximately 18 and 36 months of age. The present chapter describes the 
cross-sectional analysis of microbiological and immunological investigations of 
plaque and saliva, together with demographic data collected from children at the 
first time point. The timeline for the study was designed to coincide with the 
eruption of the primary dentition, specifically the molars as these teeth are the 
preferred attachment sites of S. mutans .  
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Figure 3-2: Microbiological and immunological inves tigations of plaque and 
saliva 

Schematic overview of the measures used to investigate the microbiological and 
immunological characteristics of plaque and saliva samples collected from study 
participants. Plaque was collected using the Copan Eswab® and was investigated 
for the presence of oral bacteria by diagnostic culture to determine the CFU/ml of 
total aerobic flora (as a measure of bacterial load), total oral streptococci and 
Mutans streptococci. TaqMan® QPCR was used to determine the relative 
proportions of S. mutans and S. sobrinus as a percentage of Gram positive plaque 
flora. Saliva was collected using the Salimetrics children’s swab® and was 
investigated for the presence of cariogenic bacteria. TaqMan® QPCR was used to 
quantify the absolute numbers of S. mutans and S. sobrinus from saliva. Saliva 
was investigated by ELISA for the presence of salivary proteins: antimicrobial 
peptides (LL37, calprotectin and the HNPs 1-3), the antimicrobial protein 
lactoferrin and for salivary IgA (sIgA) antibodies specific for a panel of oral 
streptococci (S. mutans, S. sobrinus, S. mitis and S. sanguinis) and salivary 
cortisol as a surrogate measure of stress. 
 

 

 



   89 

3.2 Results 

Sixty-three children were recruited from the Childsmile programme between 

April and December 2009 for the present study. The study received approval 

from the West of Scotland Research Ethics Committee (08/S0703/139) and NHS 

Greater Glasgow and Clyde R&D Management. Signed parental consent was 

obtained for each study participant.   

3.2.1 Descriptive analysis of demographic data collected by 

questionnaire 

The age of study participants ranged from 12 to 24 months (Table 3-1). This 

encompassed the target age of 18 months, which was chosen to coincide with 

the time at which colonisation by S. mutans has been shown to increase 

(Taubman and Nash 2006). The median age of children in the study was 16 

months, with peaks at both 12 and 18 months (Figure 3-3). There was no 

significant difference in gender recruitment for the study with 47% (n = 29) 

female participants and 53% (n = 33) male participants. The gender of one child 

was not reported (Table 3-1). 

Over 85% (n = 53) of the completed questionnaires were completed by the 

mothers of study participants, the remainder were completed by fathers. The 

age of parents who completed the demographic questionnaire was variable 

ranging from 18 to 44 years with a median age of 29 years. Over 70% (n = 45) of 

parents reported that they did not smoke (Table 3-1). 

Forty-eight percent (n = 30) of parents reported that their child who 

participated in this study was their only child, while 29% (n = 18) had 2 children, 

19% (n = 12) had 3 children and 3.2% (n = 1) reported to have 4 or more children 

(Table 3-1).  

Seventy-one percent (n = 44) of parents reported that their child who 

participated in the study had not been breastfed. Of those children who were 

breastfed (n = 18) the length of breastfeeding ranged from 1 to 14 months with a 

median of 4 months.  
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Parents reported weaning their child from milk between 4 and 12 months of age 

with a median of 5 months (Table 3-1). This question asks at what age weaning 

was started. However, the responses suggest that some parents may have 

reported the age at which their child was fully weaned, around 8 to 12 months. 

This is beyond the recommended 6 months to begin weaning. 

Parents were asked to provide information regarding the level of education they 

had received. The level of parental education, particularly mother’s education 

has been used as an indicator of SES and also as an indicator of caries risk (Litt 

et al. 1995; Warren et al. 2009). In the present study parents reported that they 

received between 10 and 22 years of full time education, with a median of 12 

years (Table 3-1). Education categories were dichotomised as described in 

(Table 2-1). Thirty-five percent (n = 21) of parents received secondary school 

education, while the remaining 65% (n = 39) received education to the level of 

school or college 6th form or above (Table 3-1 and Figure 3-4).  

Income categories were dichotomised (Figure 3-5). The original data indicated 

that children had been recruited to the study from across the socioeconomic 

scale; however, the low numbers in each category were not useful for any 

meaningful statistical analyses. Over 43% (n = 23) reported annual household 

income of below £10,000 and 56.6% (n = 30) reported total income of £10,000 or 

above. The remaining percentage was divided between those who didn’t know, 

6.9% (n = 4) and one parent who refused to provide the information (Table 3-1).  

Benefit categories were dichotomised (Figure 3-6). Over 37% (n = 22) of 

households reported that they received half to all of their income from benefits, 

while the remaining 62.7% (n = 37) received none to about a quarter of their 

income from benefits (Table 3-1). This data reflects that of the income category 

in that it suggests that study participants were recruited from across the 

socioeconomic scale. Furthermore, cross-tabulation of dichotomised income 

categories against dichotomised benefit categories show a high level of 

association; as total family income increased the proportion of total income 

received as benefits decreased (p = 0.011 by Fisher’s exact).  

Postcodes were categorised according to both national and local health board 

SIMD quintiles. The spread of the data required that these categories were 
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dichotomised (Figure 3-7). By national SIMD quintiles 64.6% of study participants 

(for whom postcodes were available, n = 48) lived in postcode sectors ranked 

within the most deprived quintile (Table 3-1).  In contrast, using the local health 

board SIMD quintiles the proportion of study participants ranked within the most 

deprived quintile was 42.6% (n = 20). A higher proportion of postcodes were 

ranked quintiles 2-5 when assessed by local health board SIMD compared to 

national SIMD (Figure 3-7c & d). The data generated using national SIMD quintiles 

suggested that recruitment of study participants was highly biased towards those 

of more deprived areas. On a national level the Greater Glasgow area contains a 

high proportion of deprived postcode sectors relative to the rest of Scotland. At 

local level these same areas are relatively less, giving rise to a more even 

distribution. By local SIMD there was still a bias towards recruitment of children 

from the relatively more deprived areas of Glasgow. This was not unexpected as 

these are the families which are specifically targeted by Childsmile for 

interventional therapy.  
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Table 3-1: Descriptive analysis of demographic data  collected by 
questionnaire 
Demographics Statistics 

Participants 

 N 

 

63 

Age (months) of child 

 median, min, max, Q1, Q3 

 missing N 

 

16, 11, 24, 12, 19 

1 

Gender of child 

 Female N (%) 

 Male N (%) 

 missing N  

 

29 (46.8) 

33 (56.2) 

1 

Age (years) of parent 

 median, min, max, Q1, Q3 

 missing N 

 

29, 18, 44, 24, 37 

3 

Gender of parent to complete questionnaire 

 Female N (%) 

 Male N (%) 

 Missing N 

 

53 (85.5) 

9 (14.5) 

1 

Parents who smoke 

 No N (%) 

 Yes N (%) 

 Missing N 

 

45 (72.6) 

17 (27.4) 

1 

Number of children in families 

 1 N (%) 

 2 N (%) 

 3 N (%) 

 4 N (%) 

 5 N (%) 

 Missing N 

 

30 (48.4) 

18 (29) 

12 (19.4) 

1 (1.6) 

1 (1.6) 

1  

Children who were breastfed 

 No N (%) 

 Yes N (%) 

 Missing N 

 

44 (71) 

18 (29) 

1 
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Demographics Statistics 

Length (months) of breastfeeding 

 N 

 median, min, max, Q1, Q3 

 missing N 

 

18 

4, 1, 14, 1, 7 

1 

Age (months) of weaning 

 median, min, max, Q1, Q3 

 missing N 

 

5, 4, 12, 5, 6 

11 

Years of parental education 

 median, min, max, Q1, Q3 

 missing N 

 

12, 10, 22, 12, 13 

3 

Level of parental education 

 secondary school N (%) 

 college or above N (%) 

 missing N 

 

21, (35) 

39, (65) 

3 

Total household income 

 < £10,000 N (%) 

 > £10,000 N (%) 

 don’t know N 

 refused N 

 missing N 

 

23, (43.4) 

30, (56.6) 

4 

1 

5 

Proportion of income received as benefits 

 half - all N (%) 

 none - about a quarter N (%) 

 missing N 

 

22, (37.3) 

37, (62.7) 

4 

National SIMD quintiles 

 most deprived quintile N (%) 

 quintiles 2-5 N (%) 

 missing N 

 

31, (64.6) 

17, (35.4) 

15 

Local health board SIMD quintiles 

 most deprived quintile N (%) 

 quintiles 2-5 N (%) 

 missing N 

 

20, (42.6) 

27, (57.4) 

16 

SIMD: Scottish index of multiple deprivation.  
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Figure 3-3: Age of study participants 

Percentage distribution (n = 63) of the age of study participants (months) at the 
time of sample collection. The age range encompassed the target age of 18 
months, with the greatest proportions of children being recruited to the study at 12 
and 18 months of age.   
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Figure 3-4: Level of parental education obtained 

Percentage distribution (n = 60) of the level of parental education obtained. a) 
Distribution of education categories as collected by questionnaire. b) Dichotomised 
education categories.  
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Figure 3-5: Total household income 

Percentage distribution (n = 58) of total household income reported by parents of 
study participants. a) Distribution of income categories as collected by 
questionnaire. b) Dichotomised distribution of income categories.  
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Figure 3-6: Proportion of income received as benefi ts 

Percentage distribution (n = 59) of the proportion of income received as benefits 
reported by parents of study participants. a) Distribution of the proportion of 
benefits received by categories as collected by questionnaire. b) Dichotomised 
benefit categories.   
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Figure 3-7: National and Local SIMD quintiles 2009 

Percentage distribution of postcode sectors ranked by national (n = 48) and local 
health board SIMD quintiles (n = 48). Distribution of postcodes of study 
participants by a) national SIMD quintiles, b) local health board SIMD quintiles, c) 
dichotomised national SIMD quintiles and d) dichotomised local heath board SIMD 
quintiles. 
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3.2.2 Descriptive analysis of total plaque bacteria and cariogenic 

bacteria collected from plaque and saliva of study 

participants 

The numbers of aerobic and cariogenic bacteria were estimated by diagnostic 

culture of plaque. The study cohort had a geometric mean aerobic bacterial 

plaque count of 4.8 x 106 CFU/ml, of which approximately 1.9 x 106 CFU/ml 

were oral streptococci (Table 3-2a), suggesting Streptococci spp. comprised 

around 40% of the aerobic plaque flora. Mutans streptococci were not isolated 

from the plaque of over 70% (n = 42) of study participants. In those children who 

harboured Mutans streptococci the numbers ranged from 1.7 x 103 to 3.2 x 106 

CFU/ml with a mean count of 5.2 x 104 CFU/ml, comprising on average 3.9% of 

oral streptococci (Table 3-2a). Lactobacillus spp. were not isolated from the 

plaque of study participants.  

The relative percentages of S. mutans and S. sobrinus from plaque were 

determined by TaqMan® QPCR as a proportion of the Gram positive plaque flora. 

Both species were detected in the plaque of all children with available samples. 

The relative percentages ranged from 0.0001 to 1.12% with a mean of 0.012% for 

S. mutans and from 0.0001 to 3.7% with a mean of 0.008% for S. sobrinus (Table 

3-2a).  

Absolute numbers of S. mutans and S. sobrinus were quantified from saliva by 

TaqMan® QPCR. Both species were detected in the saliva of all children with 

measurable samples. The numbers of these organisms in saliva ranged from 204 

to 1.2 x 107 CFU/ml with a mean of 8 x 103 CFU/ml for S. mutans and 12 to 4.1 x 

106 CFU/ml with a mean of 832 for S. sobrinus (Table 3-2b).  

A Bland-Altman plot was used to determine the level of agreement between the 

use of diagnostic culture of plaque and TaqMan® QPCR of saliva to quantify 

Mutans streptococci (Figure 3-8). Overall the mean difference between both 

methods was 1.8 x 106 CFU/ml as indicated by the level of bias and suggests very 

little agreement between the two methods. Although, as Mutans streptococci 

detection in plaque increased so too did detection by TaqMan® QPCR of S. 

mutans in saliva. All culture positive samples were also QPCR positive. However, 
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the reverse was not true. A number of QPCR positive samples were not detected 

by culture. Only 14 samples (27.6%) were positive for Mutans streptococci by 

diagnostic culture of plaque, and so only these samples were available for 

comparison, thereby limiting the potential results of this test. 

The distributions of data within each microbiological data set were investigated 

using frequency histograms. The percentage distribution of aerobic plaque flora 

was negatively skewed due to lower than average bacterial counts in some study 

participants. Oral streptococci were approximately log normal, with a minor 

negative skew. These distributions are likely an effect of the relatively small 

sample size (Figure 3-9a & b, respectively). A high proportion of plaque samples 

were negative for Mutans streptococci by diagnostic culture and so the data 

were not normally distributed (Figure 3-9c). The distribution of Mutans 

streptococci counts in children from which it was isolated was log normal (Figure 

3-9d).  

The distribution of salivary S. mutans counts were positively skewed, while 

salivary S. sobrinus counts were approximately log normal (Figure 3-10a & b, 

respectively). The distributions of S. mutans and S. sobrinus as relative 

proportions of Gram positive plaque flora were approximately log normally 

distributed (Figure 3-10c & d, respectively).   
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Table 3-2a: Descriptive analysis of microbiological  data measured from 
plaque of study participants 
Microbiological measurements Statistics 

Diagnostic culture of plaque (CFU/ml) 

Total aerobic flora N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

  95% CIs (lower, upper) 

 

Total oral streptococci N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs (lower, upper) 

 

Total Mutans streptococci N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs (lower, upper) 

 

62 (1) 

0 (0) 

62 (100) 

4.8 x 106, 1 x 105, 5.5 x 107 

(3.1 x 106, 7.6 x 106) 

 

60 (3) 

0 (0) 

60 (100) 

1.9 x 106, 1 x 105, 3.4 x 107 

(1.2 x 106, 2.9 x 106) 

 

58 (5) 

42 (72.4) 

15 (27.6) 

5.2 x 104, 1.7 x 103, 3.2 x 106 

(1.6 x 104, 1.7 x 105) 

Relative quantitation by QPCR (% Gram 

positive plaque flora) 

S. mutans N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs (lower, upper) 

 

S. sobrinus N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min max 

 95% CIs (lower, upper) 

 

 

60 (3) 

0 (0) 

60 (100) 

0.0012, 0.0001, 1.12 

(0.0006, 0.0022) 

 

60 (3) 

0 (0) 

60 (100) 

0.0008, 0.0001, 3.7 

(0.0004, 0.0014) 

Geometric data generated from back transformations of log10 transformed data are 
shown.  
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Table  3-2b: Descriptive analysis of microbiologica l data measured from the 
saliva of study participants 
Microbiological measurements Statistics 

Absolute quantitation by QPCR (CFU/ml) 

S. mutans N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs (lower, upper) 

 

S. sobrinus N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs (lower, upper) 

 

 

57 (6) 

0 (0) 

57 (100) 

8 x 103, 204, 1.2 x 107,  

(3.9 x 103, 1.6 x 105) 

 

57 (6) 

0 (0) 

57 (100) 

832, 12, 4.1 x 106 

(457, 1.5 x 103) 

Geometric data generated from back transformations of log10 transformed data are 
shown.  
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Figure 3-8: Agreement between diagnostic culture of  plaque and TaqMan® 
QPCR to quantify Mutans streptococci 

A Bland-Altman plot of the level of agreement between Mutans streptococci 
(CFU/ml) by diagnostic culture of plaque and S. mutans (CFU/ml) by TaqMan® 
QPCR of saliva. Each data point represents the difference (TaqMan® QPCR of 
saliva minus culture of plaque) between the methods plotted as a function of the 
average for each study participant. The solid black line represents the level of bias 
and the dotted lines represent the 95% limits of agreement.   
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Figure 3-9: Study cohort distribution of plaque bac terial counts estimated by 
diagnostic culture 

Histograms of percentage distribution of log10 transformed bacterial counts from 
study participants. Plaque was assessed for the presence of a) total aerobic flora 
(n = 62) b) total oral streptococci (n = 60) and c) Mutans streptococci by diagnostic 
culture in all children assessed (n = 58) d) Mutans streptococci counts in children 
in whom it was detected (n = 15).  
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Figure 3-10: Study cohort distribution of bacterial  counts estimated by 
TaqMan® QPCR of saliva and plaque 

Histograms of percentage distribution of log10 transformed bacterial counts from 
study participants. Saliva was assessed for the absolute counts of a) S. mutans 
and b) S. sobrinus (n = 57), and plaque was assessed for the relative percentage 
of c) S. mutans and d) S. sobrinus (n = 60) by TaqMan® QPCR.  
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3.2.3 Descriptive analysis of salivary antimicrobial proteins 

collected from study participants 

Saliva samples collected from study participants were investigated by ELISA for 

the presence of various antimicrobial proteins. Lactoferrin was detected in the 

saliva of all study participants for whom samples were available (n = 60). The 

geometric mean concentration of lactoferrin was 1135 ng/ml, ranging from 49.4 

to 13,614.5 ng/ml (Table 3-3). 

The concentrations of antimicrobial peptides ([AMPs] LL37, calprotectin and the 

HNPs 1-3) in saliva were assessed. AMPs were detected in the saliva of all study 

participants assessed, with the exception of LL37 which was undetectable in the 

saliva of over a quarter of children (n = 12/45). In children for whom peptides 

were detected, the concentrations were highly variable with around a hundred-

fold change in the range for each. LL37 was detected in the range of 0.49 to 

40.93 ng/ml, with a geometric mean of 2.53 ng/ml. Calprotectin in the range of 

1.3 to 4365 ng/ml, with a geometric mean of 306.9 ng/ml and the HNPs 1-3 in 

the range of 0.1 to 774.5 ng/ml with a geometric mean of 37.5 ng/ml (Table 

3-3). 

Titres of sIgA antibodies specific for a panel of oral streptococci were assessed. 

Salivary IgA antibodies specific for each of S. mutans, S. sobrinus, S. mitis and S. 

sanguinis could be detected in the saliva of all children assessed (n = 51). 

Salivary IgA antibody titres were highly variable among study participants. 

However, the ranges and mean EU for each antibody specificity were relatively 

similar (Table 3-3). 

Hypotheses are beginning to emerge that chronic disease, including heart 

disease, cancers and oral diseases may be influenced by stress responses. 

Salivary cortisol levels in the saliva of study participants were assessed as a 

surrogate measure of stress. Cortisol could be detected in the saliva of all 

children from whom samples were available (n = 57). The study cohort had a 

geometric mean cortisol concentration of 0.13 µg/dL with a range from 0.02 to 

1.15 µg/dL (Table 3-3).  
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Distributions of the levels of salivary proteins measured from study participants 

were assessed using frequency histograms. Lactoferrin data were log normally 

distributed (Figure 3-11). Calprotectin and the HNPs 1-3 had an approximately 

log normal distribution (Figure 3-12a & b, respectively). In a high proportion of 

study participants LL37 was not detected and so the data were majorly 

negatively skewed (Figure 3-12c). In children in whom LL37 was detected the 

distribution remained negatively skewed (Figure 3-12d). Salivary IgA antibody 

titres were log normally or approximately log normally distributed (Figure 3-13). 

Salivary cortisol concentrations were approximately log normally distributed 

(Figure 3-14). 
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Table 3-3: Descriptive analysis of salivary protein s collected from study 
participants 
Salivary proteins Statistics 

Lactoferrin (ng/ml) N (missing) 

 mean, min, max 

 95% CIs 

60 (3) 

1135, 49.4, 13614.5 

844, 1525.8 

LL37 (ng/ml) N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs 

47 (16) 

12 (25.5) 

35 (74.5) 

2.53, 0.49, 40.93 

183, 3.50 

Calprotectin (ng/ml) N (missing) 

 mean, min, max 

 95% CIs 

60 (3) 

306.9, 1.3, 4365.2 

211.4, 444.7 

HNPs 1-3 (ng/ml) N (missing) 

 mean, min, max 

 95% CIs 

60 (3) 

37.5, 0.1, 774.5 

24.7, 57.1 

S. mutans specific sIgA (EU) N (missing) 

 mean, min, max 

 95% CIs 

51 (12) 

198.6, 59, 885.1 

169.6, 232.2 

S. sobrinus specific sIgA (EU) N (missing) 

 mean, min, max 

 95% CIs 

51 (12) 

273.5, 92.9, 981.7 

240.2, 310.8 

S. mitis specific sIgA N (EU) (missing) 

 mean, min, max 

 95% CIs 

51 (12) 

189.7, 47, 970.5 

158.6, 226.8 

S. sanguinis specific sIgA (EU) N (missing) 

 mean, min, max 

 95% CIs 

51 (12) 

188.8, 69, 1285.3 

159.4, 224.0 

Cortisol (µg/dL) N (missing) 

 mean, min, max 

 95% CIs 

57 (6) 

0.13, 0.02, 1.15 

0.11, 0.16 

Geometric data generated from back transformations of log10 transformed data are 
shown.  
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Figure 3-11: Study cohort distribution of lactoferr in 

Histogram of percentage distribution (n = 60) of log10 transformed lactoferrin 
concentrations (ng/ml) from saliva of study participants. 
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Figure 3-12: Study cohort distribution of antimicro bial peptides 

Histograms of percentage distribution of log10 transformed concentrations of 
antimicrobial peptides (ng/ml) from the saliva of study participants. a) calprotectin 
(n = 60), b) HNPs 1-3 (n = 60), c) LL37 in saliva of all children with measurable 
samples (n = 47) and d) LL37 only in children from whom LL37 was detected (n = 
35). 
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Figure 3-13: Study cohort distribution of sIgA anti bodies specific for oral 
streptococci 

Histograms of percentage distribution (n = 51) of log10 transformed titres of sIgA 
antibodies from study participants specific for a) S. mutans b) S. sobrinus, c) S. 
mitis and d) S. sanguinis. 
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Figure 3-14: Study cohort distribution of salivary cortisol 

Histogram of percentage distribution (n = 57) of log10 transformed salivary cortisol 
concentrations (µg/dL) from study participants. 
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3.2.4 Are there socioeconomic inequalities in bacterial numbers, 

salivary immune responses and salivary cortisol levels in 

young children? 

It was hypothesised that children of lower SES may have measureable 

differences in the bacterial numbers of plaque and saliva and in the 

concentrations of salivary proteins compared with children of higher SES. 

Therefore, bacterial counts and salivary protein concentrations were assessed in 

the context of each SES measure (household income, proportion of benefits 

received, parental education and SIMD). 

3.2.4.1 Bacterial counts according to total househo ld income 

There were no statistically significant differences in the numbers of bacteria 

detected by diagnostic culture of plaque from children according to the level of 

household income received. The geometric mean of S. mutans (CFU/ml) 

detected in saliva by TaqMan® QPCR was marginally higher in children from 

families earning an annual income of £10,000 or more compared with children 

from families earning less than £10,000. The difference was not statistically 

significant (p = 0.788, Table 3-4). Conversely, the geometric mean of S. mutans 

as a proportion of Gram positive plaque bacteria, detected by TaqMan® QPCR, 

was higher in children from families earning an annual income of below £10,000. 

The difference was not statistically significant (p = 0.304, Table 3-4).  

Mutans streptococci could not be detected in the plaque of a high proportion of 

study participants by diagnostic culture (n = 42/58, Table 3-2). Cross-tabulation 

revealed no difference in the proportion of children in whom Mutans 

streptococci was cultured from plaque compared to children who were culture 

negative, according to the level of household income, (p = 1, Table 3-5).  

The median values for Mutans streptococci (CFU/ml) in plaque by diagnostic 

culture were equivalent to ‘not detected’ across both income categories. The 

higher upper percentile and maximum values in children from the lower income 

category, suggest that in this group the 27.3% of children with detectable counts 

of Mutans streptococci had higher numbers compared to the 29.6% of children 
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with detectable Mutans streptococci from the higher income category (Figure 

3-15a). This difference was not statistically significant by Mann-Whitney U test 

(p = 0.112), but may have clinical relevance. Indeed the difference in Mutans 

streptococci (CFU/ml) in only those children in whom it was detected by culture 

(n = 15), compared by the level of household income was found to be 

statistically significant by Mann-Whitney U test (p = 0.028, data not shown).  

Graphical summaries of the raw data revealed higher aerobic plaque flora in 

children from the higher income category had as indicated by the median, upper 

percentile and maximum values (Figure 3-16a). This finding was in contrast to a 

higher geometric mean value in children from the lower income category (Table 

3-4), although the differences were not statistically significant in either case.  

There were no statistically significant differences in the distribution of oral 

streptococci across the income categories, or in the distribution of S. mutans or 

S. sobrinus from the saliva or plaque of children detected by TaqMan® QPCR 

(Figure 3-16b-f).  
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Table 3-4: Analysis of bacterial counts from plaque  and saliva of study 
participants with respect to total household income  

95% CIs Bacterial counts by total 

household income 

 

N 

 

Mean Lower Upper 

 

P 

Diagnostic culture from 

plaque (CFU/ml) 

Total aerobic flora 

 < £10,000 

 ≥ £10,000 

Total oral streptococci 

 < £10,000 

 ≥ £10,000 

 

 

 

22 

30 

 

22 

29 

 

 

 

4.4 x 106 

4.1 x 106 

 

2.1 x 106 

1.6 x 106 

 

 

 

1.8 x 106 

2.1 x 106 

 

1.2 x 106 

7.8 x 105 

 

 

 

1.0 x 107 

7.8 x 106 

 

3.7 x 106 

3.1 x 106 

 

 

 

0.881 

 

 

0.527 

Absolute quantitation 

from saliva by TaqMan® 

QPCR (CFU/ml) 

S. mutans 

 < £10,000 

 ≥ £10,000 

S. sobrinus 

 < £10,000 

 ≥ £10,000 

 

 

 

 

 

20 

28 

 

20 

28 

 

 

 

 

7.4 x 103 

9.2 x 103 

 

840 

882 

 

 

 

 

1.8 x 103 

3.4 x 103 

 

262 

369 

 

 

 

 

3.0 x 104 

2.5 x 104 

 

2.7 x 103 

1.7 x 103 

 

 

 

 

0.788 

 

 

0.944 

 

Relative quantitation 

from plaque by TaqMan® 

QPCR (% Gram positive 

plaque flora) 

S. mutans 

 < £10,000 

 ≥ £10,000 

S. sobrinus 

 < £10,000 

 ≥ £10,000 

 

 

 

 

 

22 

29 

 

21 

30 

 

 

 

 

 

0.0022 

0.0010 

 

0.0015 

0.0007 

 

 

 

 

 

0.0007 

0.0004 

 

0.0004 

0.0003 

 

 

 

 

 

0.0070 

0.0028 

 

0.0056 

0.0017 

 

 

 

 

 

0.304 

 

 

0.275 

Mean bacterial counts in plaque and saliva of children grouped according to the 
level of total household income were compared by independent samples t-tests. 
Geometric data generated from back transformations of log10 transformed data are 
shown.  
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Table 3-5: Cross-tabulation of Mutans streptococci detection by 
dichotomised measures of socioeconomic status 

Mutans streptococci  

Not 

Detected 

 

Detected 

 

Total 

 

P 

Income  

 < £10,000 count 

   % 

 ≥ £10,000 count 

   % 

 Total  count 

   %  

 

16 

72.7 

19 

70.4 

35 

71.4 

 

6 

27.3 

8 

29.6 

14 

28.6 

 

22 

100 

27 

100 

49 

100 

 

 

 

1.000 

 

 

Proportion of income received as 

benefits 

 Half – all  count 

    % 

 None – quarter  count 

    % 

 Total   count 

    % 

 

 

18 

85.7 

23 

69.7 

41 

75.9 

 

 

3 

14.3 

10 

30.3 

13 

24.1 

 

 

21 

100 

33 

100 

54 

100 

 

 

 

 

0.211 

Parental education 

 Secondary school count 

    % 

 6th form or above count 

    % 

 Total   count 

    % 

 

18 

85.7 

24 

70.6 

42 

76.4 

 

3 

14.3 

10 

29.4 

13 

23.6 

 

21 

100 

34 

100 

55 

100 

 

 

 

0.328 

Local SIMD quintiles (2009) 

 Most deprived count 

 quintile  % 

 Quintiles 2-5  count 

    % 

 Total   count 

    % 

 

14 

73.7 

19 

73.1 

33 

73.3 

 

5 

26.3 

7 

26.9 

12 

26.7 

 

19 

100 

26 

100 

45 

100 

 

 

 

1.000 

Cross-tabulation of Mutans streptococci detection by diagnostic culture of plaque 
of study participants, grouped according to dichotomised measures of 
socioeconomic status. P values generated by Fishers exact test 
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Figure 3-15: Mutans streptococci counts from plaque  of children grouped 
according to measures of socioeconomic inequalities  

Box plots of Mutans streptococci (CFU/ml), estimated by diagnostic culture of 
plaque and grouped according to dichotomised measures of a) total household 
income (n = 20 vs 27), b) proportion of income received as benefits (n = 16 vs 27), 
c) level of parental education obtained (n = 16 vs 31) and d) local health board 
SIMD quintiles (n = 17 vs 26). Raw data were plotted in each instance. Differences 
were not significant by Mann-Whitney U tests.  
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Figure 3-16: Bacterial counts in plaque and saliva of children grouped 
according to level of total household income 

Box plots of bacterial counts from plaque and saliva of study participants grouped 
according to the level of total household income a) total aerobic plaque flora 
(CFU/ml [n = 22 vs 30]), b) total oral plaque streptococci (CFU/ml [n = 22 vs 29]), 
c) salivary S. mutans (CFU/ml [n = 20 vs 28]) d) salivary S. sobrinus (CFU/ml [n = 
20 vs 28]), and e) S. mutans (% [n = 22 vs 29]) and f) S. sobrinus (% [n = 21 vs 
30]) of Gram positive plaque flora. Raw data were plotted in each instance. 
Differences were not significant by independent samples t-tests (Table 3-4) or 
Mann-Whitney U tests (data not shown).  
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3.2.4.2 Bacterial counts according to the proportio n of income received as 

benefits 

Independent samples t-tests revealed a significantly higher geometric mean 

bacterial load, estimated by total aerobic flora, in the plaque of children from 

families receiving a high proportion of their income as benefits (p = 0.03, Table 

3-6). This was also reflected in the geometric mean levels of total oral 

streptococci which were twice as high in children from families receiving a high 

proportion of income from benefits compared with those receiving less, although 

the difference was not statistically significant,  (p = 0.129 Table 3-6).  

The geometric means were higher for salivary S. mutans and S. sobrinus in 

children from families receiving none to about a quarter of their income from 

benefits, although these differences were not statistically significant (p = 0.263 

and 0.715, respectively). Furthermore, the geometric means for the proportion 

of S. mutans and S. sobrinus as a percentage of Gram positive plaque flora were 

also higher in children from families receiving a smaller proportion of benefits (p 

= 0.287 and 0.793, respectively Table 3-6). While these differences were not 

statistically significant they reflect the finding that a higher proportion of 

children, in whom Mutans streptococci were cultured from plaque, were from 

families who received a smaller proportion of their income from benefits (30.3% 

vs 14.3% of children from families receiving a high proportion of benefits, p = 

0.211 [Table 3-5]). Graphical summary of the raw data revealed no difference in 

the median values across the benefit categories as a high proportion from each 

category were negative for detection of Mutans streptococci (half to all [85.7%] 

and none to about a quarter [69.7%] Table 3-5). However, the higher upper 

percentile and maximum values for children from families who received a small 

proportion of their income as benefits indicates that children in whom Mutans 

streptococci was detected had higher counts than their counterparts in the high 

benefit category. The difference was not statistically significant by Mann-

Whitney U test (Figure 3-15b). 

Graphical summaries of the raw data revealed no difference in the distributions 

of aerobic flora or oral streptococci, detected by diagnostic culture of plaque 

across the benefit categories (Figure 3-17a & b). 
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Median salivary S. mutans was over three times higher in children from families 

receiving a smaller proportion of their income from benefits (p = 0.043, Figure 

3-17c). However, the median values were low (1213 and 4100 CFU/ml for high 

and low proportion of benefits received, respectively) and are unlikely to be 

biologically meaningful. Median salivary S. sobrinus was also higher in children 

from families receiving a smaller proportion of benefits, although the difference 

was not statistically significant (Figure 3-17d and data not shown). Similarly, 

median values for S. mutans and S. sobrinus as a proportion of Gram positive 

plaque flora were higher in children from families receiving a smaller proportion 

of benefits, although the differences were not statistically significant (Figure 

3-17e & f and data not shown). 
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Table 3-6: Analysis of bacterial counts from plaque  and saliva of children 
with respect to the proportion of income received a s benefits 

95% CIs Bacterial counts by the 

proportion of income received 

as benefits 

 

N 

 

Mean Lower Upper 

 

P 

Diagnostic culture from 

plaque (CFU/ml) 

Total aerobic flora 

 half - all 

 none – about a  quarter 

Total oral streptococci 

 half - all 

 none – about a  quarter 

 

 

 

22 

36 

 

22 

 35 

 

 

 

7.7 x 106 

3.1 x 106 

 

2.4 x 106 

1.4 x 106 

 

 

 

4.6 x 106 

1.6 x 106 

 

1.6 x 106 

7.2 x 105 

 

 

 

1.3 x 107 

6.0 x 106 

 

3.8 x 106 

2.6 x 106 

 

 

 

0.030 

 

 

0.129 

Absolute quantitation from 

saliva by TaqMan® QPCR 

(CFU/ml) 

S. mutans 

 half - all 

 none – about a  quarter 

S. sobrinus 

 half - all 

 none – about a  quarter 

 

 

 

 

20 

33 

 

20 

33 

 

 

 

 

4.1 x 103 

9.4 x 103 

 

690 

879 

 

 

 

 

1.1 x 103 

4.0 x 103 

 

195 

419 

 

 

 

 

1.6 x 104 

2.2 x 104 

 

2.4 x 103 

1.8 x 103 

 

 

 

 

0.263 

 

 

0.716 

 

Relative quantitation of 

plaque by TaqMan® QPCR (% 

of Gram positive plaque flora) 

S. mutans 

 half - all 

 none – about a  quarter 

S. sobrinus 

 half - all 

 none – about a  quarter 

 

 

 

 

21 

35 

 

21 

35 

 

 

 

 

0.0007 

0.0014 

 

0.0007 

0.0008 

 

 

 

 

0.0002 

0.0006 

 

0.0002 

0.0003 

 

 

 

 

0.0021 

0.0031 

 

0.0022 

0.0019 

 

 

 

 

0.287 

 

 

0.793 

Mean bacterial counts from plaque and saliva of children grouped according to the 
proportion of total income received as benefits were compared by independent 
samples t-tests. Geometric data generated from back transformations of log10 
transformed data are shown. 
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Figure 3-17: Bacterial counts in plaque and saliva from children grouped 
according to the proportion of household income rec eived as benefits 

Box plots of bacterial counts from plaque and saliva of study participants grouped 
according to the proportion of total household income received as benefits a) total 
aerobic plaque flora (CFU/ml [n = 22 vs 36]), b) total oral plaque streptococci 
(CFU/ml [n = 22 vs 35]), c) salivary S. mutans (CFU/ml n = 20 vs 33]) d) salivary 
S. sobrinus (CFU/ml [n = 20 vs 33]), and e) S. mutans (% [n = 21 vs 35]) and f) S. 
sobrinus (% [n = 21 vs 35]) of Gram positive plaque flora. Raw data were plotted in 
each instance. Differences were significant only for salivary S. mutans (*p = 0.043) 
by Mann-Whitney U test. Differences were not significant by independent samples 
t-tests (Table 3-6).  
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3.2.4.3 Bacterial counts according to the level of parental education 

There were no statistically significant differences in the geometric means of 

aerobic plaque flora or oral streptococci, measured by diagnostic culture of 

plaque or of S. mutans and S. sobrinus in plaque and saliva, quantified by 

TaqMan® QPCR, when compared by the level of parental education (Table 3-7). 

However, salivary S. mutans (CFU/ml) was over twice as high in children with a 

parent who received a 6th form education or above, the difference was not 

statistically significant (p = 0.205).  

Cross-tabulation revealed a higher proportion of children with detectable levels 

of plaque Mutans streptococci had a parent who obtained education equivalent 

to 6th form or above (29.4%) compared to children from parents with only a 

secondary school education (14.3%). The difference was not statistically 

significant by Fishers exact test (Table 3-5). The proportion of children who 

were culture negative for detection of plaque Mutans streptococci was 85.7% 

and 70.6% from the low and high parental education categories, respectively 

(Table 3-5). Therefore, there was no statistically significant difference between 

these groups by Mann-Whitney U test (Figure 3-15c). However, the high upper 

percentile and maximum value for children of parents with a 6th form education 

or above indicates that the children with detectable Mutans streptococci had 

higher counts than their respective counterparts in the low education category.  

Graphical analysis of the raw data revealed no differences in the distributions of 

aerobic plaque flora or oral streptococci across the education categories (Figure 

3-18a & b, respectively).  

The median value for salivary S. mutans in children whose parents obtained 

education equivalent to 6th form or above was twice as high as children whose 

parents received only a secondary school education (p = 0.014, by Mann-Whitney 

U test), although median values were low (4591 and 1891, respectively) and 

were unlikely to be biologically meaningful (Figure 3-18c).  

There were no statistically significant differences for salivary S. sobrinus or S. 

mutans or S. sobrinus as a proportion of Gram positive plaque flora according to 

the level of parental education (Figure 3-18d-f).  
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Table 3-7: Analysis of bacterial counts from plaque  and saliva with respect 
to the level of parental education 

95% CIs Bacterial counts by the 

level of parental 

education 

 

N 

 

Mean Lower Upper 

 

P 

Diagnostic culture from 

plaque (CFU/ml) 

Total aerobic flora 

 secondary school 

 6th form or above 

Total oral streptococci 

 secondary school 

 6th form or above 

 

 

 

21 

38 

 

21 

36 

 

 

 

5.9 x 106 

4.4 x 106 

 

1.6 x 106 

1.8 x 106 

 

 

 

2.4 x 106 

2.7 x 106 

 

7.4 x 105 

1.1 x 106 

 

 

 

1.5 x 107 

7.3 x 106 

 

3.3 x 106 

3.0 x 106 

 

 

 

0.533 

 

 

0.732 

Absolute quantitation 

from saliva by TaqMan® 

QPCR (CFU/ml) 

S. mutans 

 secondary school 

 6th form or above 

S. sobrinus 

 secondary school 

 6th form or above 

 

 

 

 

19 

36 

 

19 

36 

 

 

 

 

4.5 x 103 

1.2 x 104 

 

830 

853 

 

 

 

 

1.2 x 103 

4.8 x 103 

 

239 

410 

 

 

 

 

1.6 x 104 

3.0 x 104 

 

2.9 x 103 

1.8 x 103 

 

 

 

 

0.205 

 

 

0.968 

 

Relative quantitation 

from plaque by TaqMan® 

QPCR (% Gram positive 

plaque flora) 

S. mutans 

 secondary school 

 6th form or above 

S. sobrinus 

 secondary school 

 6th form or above 

 

 

 

 

 

19 

38 

 

19 

38 

 

 

 

 

 

0.0014 

0.0011 

 

0.0011 

0.0006 

 

 

 

 

 

0.0003 

0.0005 

 

0.0002 

0.0003 

 

 

 

 

 

0.0056 

0.0023 

 

0.0052 

0.0013 

 

 

 

 

 

0.711 

 

 

0.461 

Mean bacterial counts in the plaque and saliva of children grouped according to 
the level of parental education obtained were compared by independent samples 
t-tests. Geometric data generated by back transformations of log10 transformed 
data are shown. 
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Figure 3-18: Bacterial counts in plaque and saliva of children grouped 
according to the level of parental education obtain ed 

Box plots of bacterial counts from plaque and saliva of study participants grouped 
according to the level of parental education obtained a) total aerobic plaque flora 
(CFU/ml [n = 21 vs 38]), b) total oral plaque streptococci (CFU/ml [n = 21 vs 36]), 
c) salivary S. mutans (CFU/ml [n = 19 vs 36]) d) salivary S. sobrinus (CFU/ml [n = 
19 vs 36]), and e) S. mutans (% [n = 19 vs 38]) and f) S. sobrinus (% [19 vs 38]) of 
Gram positive plaque flora. Raw data were plotted in each instance. Differences 
were significant only for salivary S. mutans (*p = 0.014) by Mann-Whitney U test. 
Differences were not significant by independent samples t-tests (Table 3-7).  
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3.2.4.4 Bacterial counts in plaque and saliva accor ding to SIMD 

There were no statistically significant differences, with respect to SIMD, in 

aerobic flora or oral streptococci estimated by diagnostic culture of plaque, or 

of S. mutans or S. sobrinus in saliva or plaque estimated by TaqMan® QPCR 

(Table 3-8). However, the geometric mean for salivary S. mutans (CFU/ml) was 

over 10-fold higher in children living in less deprived areas, compared to those 

living in the most deprived quintile. Although, this difference was not 

statistically significant (p = 0.712) it reflects a trend from this data for higher 

Mutans streptococci counts in children from more affluent backgrounds.  

Cross-tabulation revealed equal proportions of children with or without 

detectable levels of Mutans streptococci by diagnostic culture of plaque across 

the dichotomised SIMD quintile categories (p = 1, Table 3-5). Both SIMD 

categories contained over 50% of children with no detectable numbers of Mutans 

streptococci. Therefore, there was no statistically significant difference in the 

median values by Mann-Whitney U test (Figure 3-15d and data not shown).  

Graphical summaries of the raw data revealed similar distributions of total 

aerobic flora and oral streptococci across dichotomised SIMD quintile categories 

(Figure 3-19a & b, respectively). There were no statistically significant 

differences for S. mutans or S. sobrinus in plaque or saliva, estimated by 

TaqMan® QPCR with respect to dichotomised SIMD quintiles (Figure 3-19c-f).  
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Table 3-8: Analysis of bacterial counts in plaque a nd saliva with respect to 
local health board SIMD quintiles 

95% CIs Bacterial counts by local SIMD 

quintiles (2009) 

 

N 

 

Mean Lower Upper 

 

P 

Diagnostic culture from 

plaque (CFU/ml) 

Total aerobic flora 

 most deprived quintile 

 quintiles 2-5 

Total oral streptococci 

 most deprived quintile 

 quintiles 2-5 

 

 

 

20 

27 

 

19 

26 

 

 

 

4.2 x 106 

4.5 x 106 

 

2.2 x 106 

1.6 x 106 

 

 

 

1.8 x 106 

2.2 x 106 

 

1.3 x 106 

7.2 x 105 

 

 

 

9.5 x 106 

9.4 x 106 

 

3.9 x 106 

3.4 x 106 

 

 

 

0.856 

 

 

0.490 

 

Absolute quantitation from 

saliva by TaqMan® QPCR 

(CFU/ml) 

S. mutans 

 most deprived quintile 

 quintiles 2-5 

S. sobrinus 

 most deprived quintile 

 quintiles 2-5 

 

 

 

 

19 

23 

 

 19 

23 

 

 

 

 

7.2 x 103 

9.8 x 104 

 

791 

672 

 

 

 

 

2.6 x 103 

2.4 x 103 

 

363 

284 

 

 

 

 

2.0 x 104 

4.0 x 104 

 

1.7 x 103 

1.6 x 103 

 

 

 

 

0.712 

 

 

0.776 

Relative quantitation from 

plaque by TaqMan® QPCR (% 

Gram positive plaque flora) 

S. mutans 

 most deprived quintile 

 quintiles 2-5 

S. sobrinus 

 most deprived quintile 

 quintiles 2-5 

 

 

 

 

19 

25 

 

19 

25 

 

 

 

 

0.0011 

0.0014 

 

0.0009 

0.0007 

 

 

 

 

0.0004 

0.0005 

 

0.0002 

0.0003 

 

 

 

 

0.0028 

0.0040 

 

0.0032 

0.0016 

 

 

 

 

0.742 

 

 

0.697 

 

Mean bacterial counts in plaque and saliva of children grouped according to 
dichotomised local health board SIMD quintile (2009) categories were compared 
by independent samples t-tests. Geometric data generated from back 
transformations of log10 transformed data are shown.  
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Figure 3-19: Bacterial counts in plaque and saliva of children grouped 
according to dichotomised SIMD quintile categories 

Box plots of bacterial counts from plaque and saliva of study participants grouped 
according to dichotomised local health board SIMD quintiles (2009). a) total 
aerobic plaque flora (CFU/ml [n = 20 vs 27]), b) total oral plaque streptococci 
(CFU/ml [n = 19 vs 26]), c) salivary S. mutans (CFU/ml [n = 19 vs 23]) d) salivary 
S. sobrinus (CFU/ml [n = 19 vs 23]), and e) S. mutans (% [n = 19 vs 25]) and f) S. 
sobrinus (% [n = 19 vs 25]) of Gram positive plaque flora. Raw data were plotted in 
each instance. Differences were not significant by independent samples t-tests 
(Table 3-8) or Mann-Whitney U tests (data not shown).  
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3.2.4.5 Salivary antimicrobial proteins according t o total household income 

Geometric mean concentrations of lactoferrin, calprotectin and the HNPs 1-3 

were higher in children from families receiving a total household income of 

£10,000 or more, although the differences were small and not statistically 

significant (Table 3-9). Graphical summaries of the raw data revealed that 

median concentrations of these proteins were also higher in children from 

families within the higher income category, but the differences were not 

statistically significant (Figure 3-20).  

LL37 was below the limit of detection in a high proportion of individuals (25.5%, 

n =12/45 [Table 3-3]). Cross-tabulation revealed no differences in the proportion 

of children with or without detectable concentrations of LL37 according to the 

level of household income received (p = 0.728 [Table 3-10]). Furthermore, 

graphical summary of the raw data revealed no difference in the concentrations 

of LL37 in children according to the level of household income (p = 0.879 [Figure 

3-21a]).   

There was a trend for higher geometric mean concentrations of sIgA antibodies 

specific for oral streptococci in children of families earning an annual income of 

less than £10,000 compared to children from families earning £10,000 or more. 

However, the differences were small and were not statistically significant (Table 

3-9). Graphical summaries of the raw data revealed no differences in the 

distributions of titres of sIgA antibodies specific for oral streptococci in children 

grouped according to the level of household income received (Figure 3-22). 
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Table 3-9: Analysis of salivary antimicrobial prote ins with respect to the 
level of total household income 

95% CIs Salivary proteins by total 

household income 

 

N 

 

Mean Lower Upper 

 

P 

Lactoferrin (ng/ml) 

 < £10,000 

 ≥ £10,000 

 

23 

28 

 

1061 

1257.2 

 

664.5 

817.5 

 

1693.6 

1933.3 

 

0.585 

 

Calprotectin (ng/ml) 

 < £10,000 

 ≥ £10,000 

 

23 

28 

 

254.5 

368.2 

 

141.7 

222.8 

 

456.9 

608.6 

 

0.325 

 

HNPs 1-3 (ng/ml) 

 < £10,000 

 ≥ £10,000 

 

23 

28 

 

28.4 

40.2 

 

14.7 

20.0 

 

54.8 

80.8 

 

0.465 

S. mutans specific sIgA (EU) 

 < £10,000 

 ≥ £10,000 

 

19 

26 

 

211.5 

196.3 

 

155.5 

158.6 

 

287.1 

244.3 

 

0.687 

S. sobrinus specific sIgA (EU) 

 < £10,000 

 ≥ £10,000 

 

19 

26 

 

295.7 

263 

 

231.2 

220.4 

 

378.2 

313.7 

 

0.412 

S. mitis specific sIgA (EU) 

 < £10,000 

 ≥ £10,000 

 

19 

26 

 

206.4 

171.6 

 

147.2 

137.0 

 

289.3 

214.8 

 

0.330 

S. sanguinis specific sIgA (EU) 

 < £10,000 

 ≥ £10,000 

 

19 

26 

 

221.6 

164.3 

 

172.0 

125.5 

 

285.6 

215.1 

 

0.113 

Mean concentrations of salivary antimicrobial proteins in children grouped 
according to the level of total household income were compared by independent 
samples t-tests. Geometric data generated by back transformations of log10 

transformed data are shown. 
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Figure 3-20: Antimicrobial proteins in the saliva o f children grouped 
according to the level of total household income 

Box plots of concentrations (ng/ml) of antimicrobial proteins a) lactoferrin, b) 
calprotectin and c) HNPs 1-3, in saliva of study participants grouped according to 
the level of total household income (n = 23 vs 28). Raw data was plotted in each 
instance. Differences were not significant by independent samples t-tests (Table 
3-9) or Mann-Whitney U tests.  
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Table 3-10: Cross-tabulation of LL37 detection by d ichotomised measures of 
socioeconomic status 

LL37  

Not 
Detected 

 
Detected 

 

Total 

 

P 

Income  

 < £10,000 count 

   % 

 > £10,000 count 

   % 

 Total  count 

   %  

 

5 

31.3 

6 

25.0 

11 

27.5 

 

11 

68.8 

18 

75.0 

29 

72.5 

 

16 

100 

24 

100 

40 

100 

 

 

 

0.728 

Proportion of income received as 

benefits 

 Half – all  count 

    % 

 None – quarter  count 

    % 

 Total   count 

    % 

 

 

10 

38.5 

2 

11.8 

12 

27.9 

 

 

16 

61.5 

15 

88.2 

31 

72.1 

 

 

26 

100 

17 

100 

43 

100 

 

 

 

 

0.085 

Parental education 

 Secondary school count 

    % 

 6th form or above count 

    % 

 Total   count 

    % 

 

4 

25.0 

7 

24.1 

11 

24.4 

 

12 

75.0 

22 

75.9 

34 

75.6 

 

16 

100 

29 

100 

45 

100 

 

 

 

1.000 

Local SIMD quintiles (2009) 

 Most deprived  count 

 quintile  % 

 Quintiles 2-5  count 

    % 

 Total   count 

    % 

 

4 

26.7 

4 

23.5 

8 

25 

 

11 

73.3 

13 

76.5 

24 

75.0 

 

15 

100 

17 

100 

32 

100 

 

 

 

1.000 

Cross-tabulation was used to assess the proportion of children with and without 
detectable concentrations of LL37, grouped according to dichotomised measures 
of socioeconomic status. P values were generated using Fishers exact test.  
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Figure 3-21: LL37 in saliva of children grouped acc ording to dichotomised 
measures of SES 

Box plot of LL37 concentrations (ng/ml) in study participants grouped according to 
a) total household income (n = 16 vs 24) b) proportion of income received as 
benefits (n = 26 vs 17), c) level of parental education obtained (n = 16 vs 29) and 
d) dichotomised SIMD quintile categories (n = 15 vs 17). Raw data were plotted in 
each instance. Differences were not statistically significant by Mann-Whitney U 
tests.  
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Figure 3-22: Titres of sIgA antibodies specific for  oral streptococci grouped 
according to the level of total household income 

Box plots of titres of sIgA antibodies (EU) specific for a) S. mutans, b) S. sobrinus 
c) S. mitis and d) S. sanguinis from study participants grouped according to the 
level of total household income (n = 19 vs 26). Raw data were plotted in each 
instance. Differences were not statistically significant by independent samples t-
tests (Table 3-9) or Mann-Whitney U tests. 
 

 

 

 



   135 

3.2.4.6 Salivary antimicrobial proteins according t o the proportion of income 

received as benefits 

There were no statistically significant differences in the geometric mean 

concentrations of lactoferrin, calprotectin or HNPs 1-3 in the saliva of children 

according to the level of income received as benefits (Table 3-11). This was 

confirmed from the graphical summaries of the raw data (Figure 3-23). 

Cross-tabulation revealed a higher proportion of children with detectable 

concentrations of LL37 came from families receiving a small proportion of their 

income as benefits, compared to those receiving half to all of their income from 

benefits (88.2% vs 61.5%, p = 0.085 [Table 3-10]). 

Graphical summary of the raw data revealed higher median, lower and upper 

percentiles and maximum values for LL37 concentrations in saliva of children 

from families receiving a large proportion of their income from benefits, 

although the difference was not statistically significant (p = 0.132 [Figure 

3-21b]).  

There were no statistically significant differences in the geometric means of sIgA 

antibodies in the saliva of children according to the proportion of income 

received as benefits (Table 3-11). This was supported by analysis of the raw data 

which revealed no differences in the distributions of sIgA titres in children 

according to the proportion of benefits received (Figure 3-24).  
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Table 3-11: Analysis of salivary antimicrobial prot eins with respect to the 
proportion of household income received as benefits  

95% CIs Salivary proteins by the 

proportion of income received 

as benefits 

 

N 

 

Mean Lower Upper 

 

P 

Lactoferrin (ng/ml) 

 half - all 

 none – about a quarter 

 

22 

34 

 

1197.3 

1002.5 

 

739.3 

660.1 

 

1938.7 

1522.3 

 

0.577 

 

Calprotectin (ng/ml) 

 half - all 

 none – about a quarter 

 

22 

34 

 

244.2 

324.1 

 

133.5 

188.8 

 

446.8 

556.7 

 

0.487 

 

HNPs 1-3 (ng/ml) 

 half - all 

 none – about a quarter 

 

22 

34 

 

32.3 

35.0 

 

16.1 

19.5 

 

64.9 

62.7 

 

0.859 

S. mutans specific sIgA (EU) 

 half - all 

 none – about a quarter 

 

19 

30 

 

180.8 

209.2 

 

135.4 

171.3 

 

241.4 

255.4 

 

0.380 

S. sobrinus specific sIgA (EU) 

 half - all 

 none – about a quarter 

 

19 

30 

 

266.8 

272.0 

 

211.7 

232.0 

 

336.2 

321.2 

 

0.865 

 

S. mitis specific sIgA (EU) 

 half - all 

 none – about a quarter 

 

19 

30 

 

168.3 

203.6 

 

119.2 

162.6 

 

237.6 

254.9 

 

0.321 

S. sanguinis specific sIgA (EU) 

 half - all 

 none – about a quarter 

 

19 

30 

 

198.9 

178.6 

 

151.5 

140.2 

 

261.1 

227.4 

 

0.554 

Mean concentrations of salivary antimicrobial proteins in children grouped 
according to the proportion of household income received as benefits were 
compared by independent samples t-tests. Geometric data generated from back 
transformations of log10 transformed data are shown.  
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Figure 3-23: Antimicrobial proteins in the saliva o f children grouped 
according to the proportion of income received as b enefits 

Box plots of concentrations (ng/ml) of antimicrobial proteins a) lactoferrin, b) 
calprotectin and c) HNPs 1-3 in the saliva of study participants grouped according 
to the proportion of household income received as benefits (n = 22 vs 34). Raw 
data were plotted in each instance. Differences were not statistically significant by 
independent samples t-tests (Table 3-11) or Mann-Whitney U tests. 
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Figure 3-24: Titres of sIgA antibodies specific for  oral streptococci grouped 
according to the proportion of income received as b enefits 

Box plots of titres (EU) of sIgA antibodies specific for a) S. mutans, b) S. sobrinus 
c) S. mitis and d) S. sanguinis in study participants grouped according to the 
proportion of household income received as benefits (n = 19 vs 30). Raw data 
were plotted in each instance. Differences were not statistically significant by 
independent samples t-tests (Table 3-11) or Mann-Whitney U tests. 
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3.2.4.7 Salivary antimicrobial proteins according t o parental education 

There were no statistically significant differences in the geometric mean 

concentrations of lactoferrin, calprotectin or the HNPs 1-3 in the saliva of 

children grouped according to the level of parental education obtained (Table 

3-12).  

Graphical summaries of the raw data revealed higher median concentrations of 

lactoferrin, calprotectin and the HNPs 1-3 from the saliva of children whose 

parents received a relatively higher level of education. The differences were 

small and not statistically significant by Mann-Whitney U test (Figure 3-25 and 

data not shown).  

There was no difference in the proportion of children with or without detectable 

concentrations of LL37 across the parental education categories by cross 

tabulation (p = 1, Table 3-10). There were no differences in the concentrations 

of LL37 in children whose parents obtained a school or college 6th form 

education or above (p = 0.386 [Figure 3-21c]). 

Geometric mean titres of sIgA antibodies specific for S. mutans, S. sobrinus and 

S. mitis were higher in children whose parents fell in the higher education 

category. This was statistically significant only for S. mutans specific sIgA (p = 

0.048) by independent samples t-test. There was no difference in the mean 

levels of S. sanguinis sIgA antibody titres (p = 0.999 [Table 3-12]).  

Graphical summaries of the raw data confirmed a higher median titre of sIgA 

antibodies specific for S. mutans in children whose parents received education 

equivalent to school or college 6th form or above. The difference remained 

statistically significant by Mann-Whitney U test (p = 0.032, Figure 3-26a). There 

were no statistically significant differences in the median titres of sIgA 

antibodies specific for S. sobrinus, S. mitis or S. sanguinis (Figure 3-26a-c).  
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Table 3-12: Analysis of salivary antimicrobial prot eins with respect to the 
level of parental education 

95% CIs Salivary proteins by level of 

parental education 

 

N 

 

Mean Lower Upper 

 

P 

Lactoferrin (ng/ml) 

 Secondary school 

 6th form or above 

 

20 

37 

 

818.8 

1326.5 

 

465.6 

924.5 

 

1440.1 

1903.3 

 

0.129 

Calprotectin (ng/ml) 

 Secondary school 

 6th form or above 

 

20 

37 

 

264.7 

322.9 

 

137.2 

194.4 

 

510.6 

536.5 

 

0.631 

HNPs 1-3 (ng/ml) 

 Secondary school 

 6th form or above 

 

20 

37 

 

35.2 

33.1 

 

17.2 

21.2 

 

71.8 

68.4 

 

0.865 

S. mutans specific sIgA (EU) 

 Secondary school 

 6th form or above 

 

16 

33 

 

159.6 

224.1 

 

125.0 

181.9 

 

203.8 

276.1 

 

0.048 

S. sobrinus specific sIgA (EU) 

 Secondary school 

 6th form or above 

 

16 

33 

 

257.3 

286.0 

 

206.0 

240.8 

 

321.4 

339.5 

 

0.459 

S. mitis specific sIgA (EU) 

 Secondary school 

 6th form or above 

 

16 

33 

 

167.5 

202.1 

 

122.8 

158.9 

 

228.4 

257.0 

 

0.347 

S. sanguinis specific sIgA (EU) 

 Secondary school 

 6th form or above 

 

16 

33 

 

190.0 

189.9 

 

148.3 

148.9 

 

243.3 

242.2 

 

0.999 

 

Mean concentrations of salivary antimicrobial proteins in children grouped 
according to the level of parental education obtained were compared by 
independent samples t-tests. Geometric data generated from back transformations 
of log10 transformed data are shown. 
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Figure 3-25: Antimicrobial proteins in the saliva o f children grouped 
according to the level of parental education obtain ed. 

Box plots of concentrations (ng/ml) of antimicrobial proteins a) lactoferrin, b) 
calprotectin and c) HNPs 1-3 in the saliva of study participants grouped according 
to the level of parental education obtained (n = 20 vs 37). Raw data were plotted in 
each instance. Differences were not statistically significant by independent 
samples t-tests (Table 3-12) or Mann-Whitney U tests (data not shown).  
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Figure 3-26: Titres of sIgA antibodies specific for  oral streptococci grouped 
according to the level of parental education obtain ed 

Box plots of titres (EU) of sIgA antibodies specific for a) S. mutans, b) S. sobrinus 
c) S. mitis and d) S. sanguinis from study participants grouped according to the 
level of parental education obtained (n = 16 vs 33). Raw data were plotted in each 
instance. Statistically significant difference for S. mutans specific sIgA by Mann-
Whitney U test. Non-significant differences by Mann-Whitney U tests are not 
shown.  
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3.2.4.8 Salivary antimicrobial proteins according t o SIMD 

There were no statistically significant differences in the geometric mean 

concentrations of lactoferrin, calprotectin or the HNPs 1-3 in the saliva of 

children grouped according to dichotomised SIMD quintiles by independent 

samples t-tests (Table 3-13). This was supported by graphical summaries of the 

raw data, which did not reveal any differences in the concentrations of these 

antimicrobial proteins in the saliva of these children (Figure 3-27). 

There was no difference in the proportion of children with or without detectable 

concentrations of LL37 across SIMD categories (p = 1 [Table 3-10]). Furthermore, 

no difference was identified in the concentrations of LL37 in the saliva of 

children with respect to SIMD quintiles (p = 0.705 [Figure 3-21d]).  

There was a tendency for higher geometric mean titres of sIgA antibodies 

specific for oral streptococci in children living in the most deprived areas, 

although the differences were small and were not statistically significant (Table 

3-13).  

Similarly, graphical summaries of the raw data revealed higher median values of 

titres of sIgA antibodies specific for oral streptococci in children living in the 

most deprived areas, although the differences were not statistically significant 

by Mann-Whitney U tests (Figure 3-28). 
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Table 3-13: Analysis of salivary antimicrobial prot eins with respect to 
dichotomised local health board SIMD quintiles (200 9) 

95% CIs Salivary proteins by local SIMD 

quintiles (2009) 

 

N 

 

Mean Lower Upper 

 

P 

Lactoferrin (ng/ml) 

 most deprived quintile 

 quintiles 2-5 

 

20 

24 

 

1023.5 

1096.5 

 

639.7 

655.5 

 

1637.9 

1833.6 

 

0.793 

Calprotectin (ng/ml) 

 most deprived quintile 

 quintiles 2-5 

 

20 

24 

 

369.7 

255.9 

 

272.0 

118.0 

 

502.7 

554.8 

 

0.399 

HNPs 1-3 (ng/ml) 

 most deprived quintile 

 quintiles 2-5 

 

20 

24 

 

33.0 

35.5 

 

17.2 

15.0 

 

63.0 

84.0 

 

0.890 

S. mutans specific sIgA (EU) 

 most deprived quintile 

 quintiles 2-5 

 

15 

22 

 

230.6 

188.8 

 

162.0 

147.3 

 

328.2 

242.0 

 

0.841 

S. sobrinus specific sIgA (EU) 

 most deprived quintile 

 quintiles 2-5 

 

15 

22 

 

339.6 

261.3 

 

260.8 

211.8 

 

442.0 

322.3 

 

0.321 

S. mitis specific sIgA (EU) 

 most deprived quintile 

 quintiles 2-5 

 

15 

22 

 

203.0 

176.7 

 

137.5 

139.6 

 

299.6 

223.8 

 

0.108 

S. sanguinis specific sIgA (EU) 

 most deprived quintile 

 quintiles 2-5 

 

15 

22 

 

220.0 

170.3 

 

142.5 

133.1 

 

339.6 

217.7 

 

0.500 

Mean concentrations of salivary antimicrobial proteins in children grouped 
according to local health board SIMD quintiles (2009) were compared by 
independent samples t-tests. Geometric data generated from back transformations 
of log10 transformed data are shown.  
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Figure 3-27: Antimicrobial proteins in saliva of ch ildren grouped according 
to dichotomised SIMD quintiles. 

Box plots of concentrations (ng/ml) of antimicrobial proteins a) lactoferrin b) 
calprotectin and c) HNPs 1-3 in the saliva of study participants grouped according 
to dichotomised local health board SIMD quintile categories (n = 20 vs 24). Raw 
data were plotted in each instance. Differences were not statistically significant by 
independent samples t-tests (Table 3-13) or Mann-Whitney U tests.  
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Figure 3-28: Titres of sIgA antibodies specific for  oral streptococci grouped 
according to dichotomised SIMD quintile categories 

Box plots of titres (EU) of sIgA antibodies specific for a) S. mutans, b) S. sobrinus, 
c) S. mitis and d) S. sanguinis in study participants grouped according to 
dichotomised SIMD quintile categories (n = 15 vs 22). Raw data were plotted in 
each instance. Differences were not statistically significant by independent 
samples t-tests (Table 3-13) or Mann-Whitney U tests. 

 

 
 

 

 



   147 

3.2.4.9 Salivary cortisol concentrations according to measures of 

socioeconomic status 

It was hypothesised that children of lower SES may have measureable 

differences in the concentrations of salivary cortisol compared with higher SES 

children. 

There were no statistically significant differences in the geometric mean 

concentrations of salivary cortisol in children grouped according to measures of 

socioeconomic status (Table 3-14).  

Graphical summaries of the raw data revealed marginally higher median levels of 

cortisol in children from families with a total household income of below 

£10,000, while there were little or no differences in median cortisol levels in 

children according to the proportion of benefits received, parental education or 

SIMD quintiles (Figure 3-29).  
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Table 3-14: Analysis of salivary cortisol levels wi th respect to measures of 
socioeconomic status 

95% CIs  

Demographic variables 

 

N 

 

Mean Lower Upper 

 

P 

Household income 

 < £10,000 

 ≥ £10,000 

 

21 

28 

 

0.15 

0.12 

 

0.12 

0.08 

 

0.19 

0.17 

 

0.346 

Proportion of income received 

as benefits 

 Half – all 

 None – about a quarter 

 

 

20 

33 

 

 

0.13 

0.13 

 

 

0.10 

0.10 

 

 

0.17 

0.17 

 

 

0.931 

Level of parental education 

 Secondary school 

 6th form or above 

 

19 

35 

 

0.12 

0.14 

 

0.09 

0.10 

 

0.16 

0.18 

 

0.191 

Local SIMD quintiles 

 Most deprived quintile 

 Quintiles 2-5 

 

19 

22 

 

0.12 

0.14 

 

0.09 

0.09 

 

0.16 

0.20 

 

0.227 

Mean levels of salivary cortisol concentrations (µg/dL) in children grouped 
according to dichotomised measures of socioeconomic status were compared by 
independent samples t-tests. Geometric data generated from back transformations 
of log10

 transformed data are shown.  
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Figure 3-29: Salivary cortisol in children grouped according to dichotomised 
measures of socioeconomic status 

Box plots of salivary cortisol concentrations (µg/dL) in study participants grouped 
according to dichotomised measures of socioeconomic status. a) Total household 
income (n = 21 vs 28), b) proportion of income received as benefits (n = 20 vs 33), 
c) parental education (n = 19 vs 35) and d) local SIMD quintiles (n = 19 vs 22). 
Raw data were plotted in each instance. Differences were not statistically 
significant by independent samples t-tests (Table 3-14) or Mann-Whitney U tests. 
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3.2.5 Do salivary cortisol concentrations influence total bacterial 

numbers or the detection of cariogenic bacteria? 

It was hypothesised that life stresses may indirectly impact upon the bacterial 

load of plaque or the detection of cariogenic bacteria. Salivary cortisol was used 

as a surrogate measure of stress to investigate this hypothesis.  

Bacterial load of plaque, estimated using total aerobic flora or total oral 

streptococci, showed no associations with salivary cortisol (Figure 3-30) or 

ranked salivary cortisol tertiles (Figure 3-31a and b). Mean Mutans streptococci 

(CFU/ml) were higher in the plaque of children ranked in the high cortisol 

tertile, than those in the low or medium tertiles, although the differences 

between groups were not statistically significant (Figure 3-31c). Somewhat 

contrary to this finding, there were three children with particularly high salivary 

cortisol concentrations in whom Mutans streptococci could not be detected by 

diagnostic culture of plaque. Overall, there was no difference by Mann-Whitney 

U test in salivary cortisol concentrations between the children who were culture 

positive for Mutans streptococci compared with children who were culture 

negative (p = 0.492 [Figure 3-32]).  

Visual inspection of scatter plots of S. mutans and S. sobrinus absolute or 

relative numbers in saliva and plaque, respectively, with salivary cortisol did not 

reveal any associations (Figure 3-33). Mean numbers of salivary S. mutans and S. 

sobrinus were investigated further by ranked tertiles of salivary cortisol. There 

was a trend for increased mean salivary and plaque S. mutans and S. sobrinus 

with each increasing cortisol tertile, although neither the differences between 

groups nor the linear trends reached statistical significance by ANOVA (Figure 

3-34a-d). 
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Figure 3-30: Associations between bacterial load of  plaque and salivary 
cortisol 

Scatter plots of salivary cortisol concentrations (µg/dL) and a) total aerobic flora 
(CFU/ml) and b) total oral streptococci (CFU/ml) from the plaque of study 
participants, estimated by diagnostic culture. Raw data were plotted and the line of 
best fit is shown for each graph.  
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Figure 3-31: Associations of plaque bacterial count s and ranked tertiles of 
salivary cortisol 

Data are mean and 95% confidence intervals of the mean of a) total aerobic flora, 
b) total oral streptococci and c) total Mutans streptococci, estimated from plaque of 
study participants by diagnostic culture and grouped according to ranked cortisol 
tertiles (n in groups are shown on graph). Raw data were plotted in each instance. 
Differences between groups were not statistically significant for (a & b) by ANOVA 
of log10

 transformed parametric data or c) Kruskal-Wallis of raw data.  
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Figure 3-32: Salivary cortisol in children grouped according to detection of 
Mutans streptococci 

Scatter plots of salivary cortisol concentrations (µg/dL) in study participants 
grouped according to detection of Mutans streptococci (n = 36 vs 16), estimated 
by diagnostic culture of plaque. Each data point represents a mean cortisol value 
for an individual study participant. The horizontal bars indicate the group median. 
Raw data were plotted in each instance. The difference was not statistically 
significant by Mann-Whitney U test.  
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Figure 3-33: Associations between salivary cortisol  and Mutans streptococci 
from plaque and saliva 

Scatter plots of salivary cortisol concentrations (µg/dL) and a) salivary S. mutans 
(CFU/ml) b) salivary S. sobrinus (CFU/ml), and c) S. mutans (%) and d) S. 
sobrinus (%) as a proportion of Gram positive plaque flora. Raw data were plotted 
and the line of best fit is shown for each graph.  
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Figure 3-34: Associations of bacterial counts from plaque and saliva and 
ranked tertiles of salivary cortisol 

Data are mean and 95% confidence intervals of the mean of a) salivary S. mutans 
(CFU/ml), b) salivary S. sobrinus (CFU/ml), and c) S. mutans (%) and d) S. 
sobrinus (%) of Gram positive plaque flora grouped according to ranked tertiles of 
salivary cortisol (n for each group are shown on graph). Raw data were plotted. 
Differences between groups were not statistically significant by ANOVA of log10 
transformed data.  
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3.2.6 Do salivary cortisol concentrations influence salivary 

immune responses? 

It was hypothesised that life stresses may indirectly influence the concentrations 

of salivary proteins involved in innate and adaptive immune responses. Salivary 

cortisol concentrations were used as a surrogate measure of stress to investigate 

this hypothesis.  

Visual inspection of scatter plots of salivary cortisol levels with salivary 

antimicrobial proteins did not reveal evidence of any associations (Figure 3-35). 

As LL37 was undetectable in a high number of participants, salivary cortisol 

concentrations were investigated with respect to the presence or absence of 

detectable LL37. There was no statistical difference between these two groups 

by Mann-Whitney U test (p = 0.492 [Figure 3-36]). 

Further inspection of associations of salivary antimicrobial protein levels with 

ranked cortisol tertiles revealed marginal trends for changes in mean 

concentrations of antimicrobial proteins with ranked cortisol tertiles (Figure 

3-37). Mean lactoferrin was highest in children ranked in the lowest cortisol 

tertile, and was similar across the medium and high cortisol tertiles. Mean 

concentrations of calprotectin were highest in children with cortisol ranked in 

the high tertile. Mean concentrations of the HNPs 1-3 marginally decreased with 

each increased cortisol tertile. Mean concentrations of LL37 increased with each 

increased cortisol tertile. There was a trend for increased mean titres of sIgA 

antibodies with increased cortisol tertiles (Figure 3-37e - h).  None of the linear 

trends for changes in mean antimicrobial proteins or salivary antibodies with 

cortisol tertiles reached statistical significance by ANOVA.  
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Figure 3-35: Associations between salivary antimicr obial proteins and 
salivary cortisol 

Scatter plots of a) lactoferrin, b) calprotectin, c) HNPs 1-3, and titres (EU) of sIgA 
antibodies specific for d) S. mutans e) S. sobrinus f) S. mitis and g) S. sanguinis, 
with salivary cortisol concentrations (µg/dL). Raw data were plotted and the line of 
best fit is shown for each graph.  
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Figure 3-36: Salivary cortisol in children accordin g to detection of LL37 

Scatter plot of salivary cortisol concentrations (µg/dL) in study participants grouped 
according to detection of LL37 (n = 12 vs 35). Each data point represents a mean 
value for an individual study participant and the horizontal lines indicate the group 
median. Raw data were plotted. The difference was not statistically significant by 
Mann-Whitney U test. 
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Figure 3-37: Associations of salivary antimicrobial  proteins and ranked 
tertiles of salivary cortisol. 

Data are mean and 95% confidence intervals of the mean of a) lactoferrin b) 
calprotectin c) HNPs 1-3 d) LL37; and titres (EU) of sIgA antibodies specific for e) 
S. mutans f) S. sobrinus g) S. mitis and h) S. sanguinis by ranked cortisol tertiles 
(n in each group indicated on graph). Raw data were plotted in each instance. 
Differences between groups were not statistically significant by ANOVA of log10 
transformed data.  
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3.2.7 Do salivary antimicrobial proteins impact on bacterial load 

or the detection of cariogenic bacteria? 

It was hypothesised that differences in the concentrations of salivary 

antimicrobial proteins may influence the bacterial load of plaque or the 

detection of cariogenic bacteria. 

3.2.7.1 Salivary antimicrobial proteins and carioge nic bacteria cultured from 

plaque? 

Visual inspection of scatter plots of total aerobic plaque flora by titres of sIgA 

antibodies did not reveal evidence of any linear associations. However, in every 

instance a group of six children with the highest bacterial counts, ranging from 

3.9 x 107 – 5.4 x 107 CFU/ml, had some of the lowest antibody titres (Figure 

3-38). There was no association of aerobic plaque flora with ranked tertiles of 

sIgA antibodies specific for oral streptococci (data not shown).  

There were no linear associations of total aerobic plaque flora with 

antimicrobial proteins (Figure 3-39). Median levels of aerobic plaque flora were 

statistically significantly higher by Mann-Whitney U test in children in whom LL37 

could be detected (p = 0.021, Figure 3-40a). Median levels of oral streptococci 

were similar in both groups (Figure 3-40b). 

Investigations of aerobic plaque flora by ranked tertiles of antimicrobial proteins 

revealed trends for increased mean aerobic plaque counts with increasing 

tertiles of lactoferrin, calprotectin, the HNPs 1-3 and LL37 (Figure 3-41). The 

difference in bacterial numbers between the low and high groups for the HNPs 1-

3 and LL37 were statistically significant by Bonferroni post hoc tests following 

ANOVA (p = 0.015 and p = 0.050 [Figure 3-41c & d, respectively]). The linear 

trends for increased mean aerobic plaque flora with each increased tertile of 

antimicrobial proteins was statistically significant for the HNPs 1-3 (p = 0.005) 

and LL37 (p = 0.017) and did not reach statistical significance for lactoferrin (p = 

0.103) or calprotectin (p = 0.085) by ANOVA linear.  

Visual inspection of scatter plots of total oral plaque streptococci with titres of 

sIgA antibodies did not reveal evidence of any linear associations (Figure 3-42). 



   161 

There was no association of oral streptococci with ranked tertiles of titres of 

sIgA antibodies (data not shown). 

No associations between total oral streptococci and antimicrobial peptides were 

identified by scatter plot analysis (Figure 3-43). No associations were identified 

between total oral streptococci and ranked tertiles of antimicrobial proteins 

(data not shown).  

A large proportion of children were culture negative for Mutans streptococci in 

plaque; therefore concentrations of salivary antimicrobial proteins in these 

children were investigated according to the presence or absence of detectable 

Mutans streptococci in plaque. There were no statistically significant differences 

in the titres of sIgA antibodies specific for oral streptococci according to 

detection of Mutans streptococci by diagnostic culture of plaque (Figure 3-44). 

Median levels of antimicrobial proteins were marginally higher in children in 

whom Mutans streptococci was detected by diagnostic culture of plaque (Figure 

3-45). The differences were not statistically significant.  

There was a trend for increased mean Mutans streptococci with each increasing 

lactoferrin tertile. The differences between groups were not statistically 

significant by Kruskal-Wallis test (Figure 3-46a). Also, the linear trend was not 

statistically significant as assessed by the non-parametric Jonckheere-Terpstra 

test (data not shown). 

Mean Mutans streptococci were highest in the third tertiles for both calprotectin 

and LL37 but the differences between the groups and the linear trend were not 

statistically significant (Figure 3-46b and d, respectively). There was no 

association of Mutans streptococci (CFU/ml) with ranked tertiles of the HNPs 1-3 

(Figure 3-46c). 
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Figure 3-38: Associations between bacterial load of  plaque and sIgA 
antibodies 

Scatter plots of total aerobic plaque flora (CFU/ml) and titres (EU) of sIgA 
antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) S. sanguinis. 
Raw data were plotted and the line of best fit is shown for each graph.  
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Figure 3-39: Associations between bacterial load of  plaque and antimicrobial 
proteins 

Scatter plots of total aerobic plaque flora (CFU/ml) by concentrations (ng/ml) of a) 
lactoferrin, b) calprotectin and c) HNPs 1-3. Raw data were plotted and the line of 
best fit is shown for each graph.  
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Figure 3-40: Bacterial load of plaque according to detection of LL37 

Scatter plots of bacterial load, estimated by diagnostic culture of plaque of a) total 
aerobic flora (CFU/ml [n = 11 vs 35]) and b) total oral streptococci (CFU/ml [n = 11 
vs 33]) and grouped according to detection of LL37 in the saliva of study 
participants. Raw data were plotted in each instance. Each data point represents a 
mean value for an individual participant and the horizontal bars indicate the group 
median. P values were generated by Mann-Whitney U tests.  
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Figure 3-41: Associations of bacterial load of plaq ue and ranked tertiles of 
antimicrobial proteins 

Data are mean and 95% confidence intervals of the mean of total aerobic flora 
(CFU/ml) estimated by diagnostic culture of plaque and grouped according to 
ranked tertiles of a) lactoferrin, b) calprotectin, c) HNPs 1-3 and d) LL37. Raw data 
were plotted in each instance (n in each group are shown on graphs). Statistically 
significant differences between groups as indicated were obtained using a 
Bonferroni post hoc test following ANOVA of log10 transformed data.    
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Figure 3-42: Associations of bacterial load of plaq ue and sIgA antibodies 

Scatter plots of total oral streptococci (CFU/ml), estimated by diagnostic culture of 
plaque and titres (EU) of sIgA antibodies specific for a) S. mutans, b) S. sobrinus 
c) S. mitis and d) S. sanguinis. Raw data were plotted and the line of best fit is 
shown for each graph.  
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Figure 3-43: Associations of bacterial load of plaq ue and antimicrobial 
peptides 

Scatter plots of total oral streptococci (CFU/ml), estimated by diagnostic culture of 
plaque and concentrations (ng/ml) of a) lactoferrin, b) calprotectin and c) the HNPs 
1-3. Raw data were plotted and the line of best fit is shown for each graph.  
 



   168 

 

Figure 3-44: Titres of sIgA antibodies according to  detection of Mutans 
streptococci 

Scatter plots of titres of sIgA antibodies specific for a) S. mutans, b) S. sobrinus, c) 
S. mitis and d) S. sanguinis grouped according to detection of Mutans streptococci 
by diagnostic culture of plaque. Raw data were plotted in each instance (n = 35 vs 
11). Each data point represents a mean value for an individual study participant 
and the horizontal lines indicate the group median. Differences were not 
statistically significant by Mann-Whitney U tests.  
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Figure 3-45: Antimicrobial proteins according to de tection of Mutans 
streptococci 

Scatter plots of a) lactoferrin (n = 42 vs 15), b) calprotectin (n = 42 vs 15), c) HNPs 
1-3 (n = 42 vs 15) and d) LL37 (n = 33 vs 12) grouped according to detection of 
Mutans streptococci by diagnostic culture of plaque. Raw data were plotted. Each 
data point represents a mean value for an individual study participant and 
horizontal bars indicate the group median. Differences were not statistically 
significant by Mann-Whitney U tests.  
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Figure 3-46: Associations of Mutans streptococci an d ranked tertiles of 
antimicrobial proteins 

Data are mean and 95% confidence intervals of the mean of Mutans streptococci 
(CFU/ml) estimated by diagnostic culture of plaque and grouped according to 
ranked tertiles of a) lactoferrin, b) calprotectin, c) HNPs 1-3 and d) LL37. Raw data 
were plotted in each instance (n in each group are shown on graphs). The 
differences between groups were not statistically significant by Kruskal-Wallis test 
of non-parametric raw data.  
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3.2.7.2 Salivary antimicrobial proteins and QPCR of  cariogenic bacteria from 

saliva 

Absolute numbers of S. mutans (CFU/ml), estimated by TaqMan® QPCR of saliva, 

were not associated with titres of sIgA antibodies (Figure 3-47).  

Salivary S. mutans was further investigated by ranked tertiles of sIgA antibodies 

(Figure 3-48). There was no association of mean salivary S. mutans with sIgA 

antibodies specific for S. mutans, S. sobrinus, S. mitis or S. sanguinis specific 

sIgA antibodies. Neither the differences between groups nor the linear trends 

were statistically significant by ANOVA.   

Visual inspection of scatter plots of salivary S. mutans (CFU/ml) by antimicrobial 

protein concentrations did not provide evidence of linear associations (Figure 

3-49).  

LL37 was undetectable in a high number of participants; therefore the absolute 

and relative numbers of cariogenic bacteria in saliva and plaque were assessed 

with respect to the presence or absence of detectable LL37. Median salivary S. 

mutans, salivary S. sobrinus and S. mutans (% of Gram positive plaque flora) 

were slightly higher in children in whom LL37 could be detected compared to 

those in whom LL37 could not be detected although the differences did not 

reach statistical significance by Mann-Whitney U test (Figure 3-50a-c). Relative 

S. sobrinus (% of Gram positive plaque flora) was statistically significantly higher 

in children in whom LL37 was below the limit of detection in saliva (p = 0.014, 

Figure 3-50d).  

Salivary S. mutans was further investigated by ranked tertiles of antimicrobial 

proteins (Figure 3-51). There were trends for increased mean salivary S. mutans 

CFU/ml with each increased tertile of lactoferrin, HNPs 1-3, LL37 and 

calprotectin. The differences between tertiles were not statistically significant 

by ANOVA. The linear trend was statistically significant for salivary S. mutans 

grouped by lactoferrin tertiles (p = 0.046) but did not reach statistical 

significance for calprotectin (p = 0.095), the HNPs 1-3 (p = 0.132) or LL37 (p = 

0.083) by ANOVA linear.  
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Visual inspection of scatter plots of absolute numbers of salivary S. sobrinus 

(CFU/ml), estimated by TaqMan® QPCR, with titres of sIgA antibodies suggested 

a mild negative association with titres of sIgA antibodies specific for oral 

streptococci (Figure 3-52). However, there were many samples with very low 

counts lying on the axis that did not pass through the lines of best fit.  

Salivary S. sobrinus counts were investigated by ranked tertiles of sIgA antibody 

titres (Figure 3-53). There was a trend for lower mean salivary S. sobrinus with 

each increasing tertile of S. sobrinus, S. mutans and S. mitis specific sIgA. 

Neither the differences between the groups, nor the linear trends were 

statistically significant by ANOVA or ANOVA linear respectively.  

Scatter plots demonstrated no association between salivary S. sobrinus counts 

and concentrations of antimicrobial proteins from the saliva of study 

participants (Figure 3-54). Salivary S. sobrinus were investigated according to 

ranked tertiles of antimicrobial proteins (Figure 3-55). Mean salivary S. sobrinus 

increased with each increasing tertile of lactoferrin and calprotectin, although 

differences between the groups were not statistically significant. The linear 

trend for increased mean salivary S. sobrinus with each increased lactoferrin 

tertile was statistically significant by ANOVA linear (p = 0.020). Mean salivary S. 

sobrinus showed no association with tertiles of the HNPs 1-3 or LL37.  
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Figure 3-47: Associations between salivary S. mutans and sIgA antibodies 

Scatter plots of S. mutans (CFU/ml) estimated by Taqman® QPCR of saliva and 
titres of sIgA antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) 
S. sanguinis. Raw data were plotted and the line of best fit is shown for each 
graph.  
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Figure 3-48: Associations of salivary S. mutans and ranked tertiles of sIgA 
antibodies 

Data are mean and 95% confidence intervals of the mean of S. mutans (CFU/ml) 
estimated by TaqMan® QPCR of saliva grouped according to ranked tertiles of 
sIgA antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) S. 
sanguinis. Raw data were plotted in each instance (n in each group are shown on 
graphs). The differences between groups were not statistically significant by 
ANOVA of log10 transformed data.  
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Figure 3-49: Association of salivary S. mutans and antimicrobial proteins 

Scatter plots of S. mutans (CFU/ml) estimated by TaqMan® QPCR of saliva with 
a) lactoferrin, b) calprotectin and c) HNPs 1-3. Raw data were plotted and the line 
of best fit is shown for each graph.  
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Figure 3-50: Cariogenic bacteria in plaque and sali va by detection of LL37 

Scatter plots of cariogenic bacteria estimated by TaqMan® QPCR of saliva a) S. 
mutans (CFU/ml) and b) S. sobrinus (CFU/ml), and c) S. mutans and d) S. 
sobrinus as a proportion (%) of Gram positive plaque flora, grouped according to 
detection of LL37. Raw data were plotted in each instance. Each data point 
represents a mean value for an individual study participant and the horizontal bars 
indicate the group median. In some cases the median values lie close to or on the 
x axis. P values were generated by Mann-Whitney U tests.  
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Figure 3-51: Associations of salivary S. mutans and ranked tertiles of 
antimicrobial proteins 

Data are mean and 95% confidence intervals of the mean of S. mutans (CFU/ml), 
estimated by TaqMan® QPCR of saliva of study participants, grouped according to 
ranked tertiles of a) lactoferrin, b) calprotectin, c) HNPs 1-3 and d) LL37. Raw data 
were plotted in each instance. Differences between groups were not statistically 
significant by ANOVA of log10 transformed data. The linear trend was statistically 
significant for (a) by ANOVA linear (p = 0.046).  
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Figure 3-52: Associations of salivary S. sobrinus and sIgA antibodies 

Scatter plots of S. sobrinus (CFU/ml), estimated by TaqMan® QPCR of saliva, and 
titres of sIgA antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) 
S. sanguinis. Raw data were plotted in each instance. The lines of best fit are 
shown for each graph.  
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Figure 3-53: Associations of salivary S. sobrinus and ranked tertiles of sIgA 
antibodies 

Data are mean and 95% confidence intervals of the mean of S. sobrinus (CFU/ml), 
estimated by TaqMan® QPCR of saliva, grouped according to ranked tertiles of 
titres of sIgA antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) 
S. sanguinis. Raw data were plotted in each instance (n in each group are shown 
on graphs). The differences between groups were not statistically significant by 
ANOVA of log10 transformed data.  
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Figure 3-54: Associations of salivary S. sobrinus and antimicrobial proteins 

Scatter plots of associations of S. sobrinus (CFU/ml), estimated by TaqMan® 
QPCR of saliva, and a) lactoferrin, b) calprotectin and c) HNPs 1-3. Raw data 
were plotted and the line of best fit is shown for each graph.  
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Figure 3-55: Associations of salivary S. sobrinus and ranked tertiles of 
antimicrobial proteins 

Data are mean and 95% confidence intervals of the mean of S. sobrinus (CFU/ml), 
estimated by TaqMan® QPCR of saliva, grouped according to ranked tertiles of a) 
lactoferrin, b) calprotectin, c) HNPs 1-3 and d) LL37. Raw data were plotted in 
each instance (n in each group are shown on graphs). The differences between 
groups were not statistically significant by ANOVA of log10 transformed data. The 
linear trend for (a) was statistically significant by ANOVA linear (p = 0.020).  
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3.2.7.3 Salivary antimicrobial proteins and QPCR of  cariogenic bacteria from 

plaque 

Visual inspection of scatter plots revealed no associations of S. mutans (%) of 

Gram positive plaque flora with sIgA antibodies specific for oral streptococci 

(Figure 3-56). S. mutans (%) of Gram positive plaque flora were investigated 

according to ranked tertiles of sIgA antibody titres. The differences between 

groups and the linear trends were not statistically significant (Figure 3-57b-d and 

data not shown).  

S. mutans (%) of Gram positive plaque flora was not associated with lactoferrin, 

calprotectin or the HNPs 1-3 (Figure 3-58). S. mutans as a proportion (% of Gram 

positive plaque flora) was also investigated by ranked tertiles of antimicrobial 

proteins. Mean S. mutans (% Gram positive plaque flora) increased with each 

increased tertile of lactoferrin, although the differences between groups and the 

linear trend were not statistically significant (Figure 3-59a and data not shown). 

There were no associations of S. mutans (% Gram positive plaque flora) with 

ranked tertiles of calprotectin, the HNPs 1-3 or LL37 and the differences 

between groups were not statistically significant (Figure 3-59b-d).  

Visual inspection of scatter plots revealed no associations of relative S. sobrinus 

as a proportion (% of Gram positive plaque flora) with titres of sIgA antibodies 

(Figure 3-60). S. sobrinus (% of Gram positive plaque flora) was investigated for 

associations with ranked tertiles of titres of sIgA antibodies (Figure 3-61). Mean 

S. sobrinus (%) decreased with each increased tertile of titres of S. mutans 

specific sIgA, with a statistically significant difference between the low and high 

tertile (p = 0.047, Figure 3-61a), and statistically significant linear trend by 

ANOVA linear (p = 0.016). Conversely, mean S. sobrinus (% Gram positive plaque 

flora) increased with each increased tertile of titres of S. sobrinus and S. mitis 

specific sIgA, although the differences between groups and the linear trend were 

not statistically significant (Figure 3-61b and c). There was no association of S. 

sobrinus (% Gram positive plaque flora) with ranked tertiles of S. sanguinis 

specific sIgA antibody titres (Figure 3-61d).  
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Scatter plots of relative S. sobrinus as a proportion (%) of Gram positive plaque 

flora with concentrations of antimicrobial proteins did not provide any linear 

associations (Figure 3-62).  

S. sobrinus as a proportion (%) of Gram positive plaque flora was investigated for 

associations with ranked tertiles of antimicrobial proteins. Mean S. sobrinus (%) 

decreased with each increased tertile of lactoferrin and calprotectin, although 

the differences between groups and the linear trends were not statistically 

significant (Figure 3-63a & b, and data not shown). There was no association of 

relative S. sobrinus (%) with ranked tertiles of the HNPs 1-3. Mean S. sobrinus 

was statistically significantly higher in children with LL37 concentrations ranked 

in the low tertile, compared with LL37 concentrations in the medium and high 

tertiles (p = 0.004 and p = 0.039, respectively Figure 3-63d). The trend for 

decreased mean S. sobrinus (%) with each increased LL37 tertile was also 

statistically significant (p = 0.017) by ANOVA linear.  
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Figure 3-56: Associations between S. mutans as a proportion of Gram 
positive plaque flora and sIgA antibodies 

Scatter plots of S. mutans (%) of Gram positive plaque flora, and titres of sIgA 
antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) S. sanguinis. 
Raw data were plotted in each instance. The line of best fit is shown for each 
graph.  
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Figure 3-57: Associations of S. mutans as a proportion of Gram positive 
plaque flora and ranked tertiles of sIgA antibodies  

Data are mean and 95% confidence intervals of the mean of S. mutans (%) of 
Gram positive plaque flora, grouped according to ranked tertiles of titres of sIgA 
antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) S. sanguinis. 
Raw data were plotted in each instance (n in each group are shown on graphs). 
The differences between groups were not statistically significant by ANOVA of 
log10 transformed data.  
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Figure 3-58: Associations between S. mutans as a proportion of Gram 
positive plaque flora and antimicrobial proteins 

Scatter plots of S. mutans (%) of Gram positive plaque flora and a) lactoferrin, b) 
calprotectin and c) the HNPs 1-3. Raw data were plotted in each instance. The line 
of best fit is shown for each graph.  
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Figure 3-59: Associations of S. mutans as a proportion of Gram positive 
plaque flora and ranked tertiles of antimicrobial p roteins 

Data are mean and 95% confidence intervals of the mean of S. mutans (%) of 
Gram positive plaque flora, grouped according to tertiles of a) lactoferrin, b) 
calprotectin and c) the HNPs 1-3. Raw data were plotted in each instance (n in 
each group are shown on graphs). The differences between groups were not 
statistically significant by ANOVA of log10 transformed data.  
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Figure 3-60: Associations of S. sobrinus as a proportion of Gram positive 
plaque flora and titres of sIgA antibodies 

Scatter plots of S. sobrinus (%) of Gram positive plaque flora and titres of sIgA 
antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) S. sanguinis. 
Raw data were plotted and the line of best fit is shown on each graph.  
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Figure 3-61: Associations of S. sobrinus as a proportion of Gram positive 
plaque flora and ranked tertiles of sIgA antibodies  

Data are mean and 95% confidence intervals of the mean of S. sobrinus (%) of 
Gram positive plaque flora grouped according to ranked tertiles of titres of sIgA 
antibodies specific for a) S. mutans, b) S. sobrinus, c) S. mitis and d) S. sanguinis. 
Raw data were plotted in each instance (n in each group are shown on graphs). 
Statistically significant difference obtained from Bonferroni post hoc test following 
ANOVA of log10 transformed data. The linear trend for (a) was statistically 
significant by ANOVA linear (p = 0.016).  
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Figure 3-62: Associations of S. sobrinus as a proportion of Gram positive 
plaque flora and antimicrobial proteins 

Scatter plots of S. sobrinus (%) of Gram positive plaque flora and a) lactoferrin, b) 
calprotectin and c) the HNPs 1-3. Raw data were plotted and the line of best fit is 
shown on each graph.  
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Figure 3-63: Associations of S. sobrinus as a proportion of Gram positive 
plaque flora and ranked tertiles of antimicrobial p roteins 

Data are mean and 95% confidence intervals of the mean of S. sobrinus (%) of 
Gram positive plaque flora, grouped according to ranked tertiles of a) lactoferrin, b) 
calprotectin, c) HNPs 1-3 and d) LL37. Raw data were plotted in each instance (n 
in each group are shown on graphs). Statistically significant differences between 
groups obtained by Bonferroni post hoc test following an ANOVA of log10 
transformed data. The linear trend for (d) was statistically significant by ANOVA 
linear (p = 0.017). 
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3.3 Discussion  

This study demonstrates that Childsmile’s unusually young target age group 

combined with the multiple visit interventions integral to the program are a 

useful opportunity to investigate the oral biofilm coincident with the salivary 

immune response. Variables hypothesised to influence the development of 

carious disease can be collected and successfully quantified in one-year-old 

children. The investigations of whether socioeconomic status or life stresses 

influence bacterial load, the detection of cariogenic bacteria or the immune 

response were complex and the data interrogating the impact of the immune 

response on bacterial load or the detection of cariogenic bacteria reveal 

potentially interesting findings. This was an ambitious pilot project and one of 

the main limitations was the sample size.  

Based on previous epidemiological data of dental caries prevalence in three-

year-old children of 26%, allowing a confidence interval of 5% and a confidence 

level of 95% it was estimated that around 300 children would have been required 

to provide adequate power for the present study. However, this was primarily a 

pilot study with the aim of defining the distribution of the parameters under 

investigation in this age group. Therefore, it was hypothesised that N = 100 

children would be sufficient to identify trends and possible associations within 

the data in the present study and would also reflect a realistic target with 

respect to patient recruitment, sample analysis, time frame and budget of the 

project.  

Sixty-three children with usable samples were recruited. Childsmile dental 

health nurses who operated Childsmile clinics in community settings in three 

areas of Glasgow recruited the majority of children to this study. The refusal 

rate was extremely low, with only one parent who did not provide consent for 

their child to participate. Therefore, all children of the correct age attending 

clinics staffed by the two Childsmile dental nurses between April and December 

2009 were recruited to this study. In an attempt to increase recruitment, 11 

dental practices participating in the Childsmile programme were invited to 

provide samples. Those accepting were provided with training in the sample 

collection procedures and a small payment for each recruited child. In spite of 
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apparent enthusiasm from the staff of the Dental Practices, only 16 children 

were recruited, of which only four were accompanied with usable samples. 

Thus, there appeared to be significant limitations to extending this study into 

the General Practice setting.  

The first aim of this study was to provide a detailed description of the study 

participants in terms of the demographic, microbiological and immunological 

data obtained. From these data a number of observations were made and a 

detailed discussion of these follows here.  

Childsmile now encompasses the national NHS dental improvement programme 

across the whole of Scotland. At the time of the study Childsmile interventions 

were targeted towards children living in the most deprived communities across 

the West of Scotland (Macpherson et al. 2010a). It was hypothesised that this 

study would therefore be biased towards recruitment of children from the most 

deprived areas, especially since it was in these communities that Childsmile 

dental nurses operated Childsmile clinics. It was expected that this bias would 

be reflected in the demographic data collected from parents by questionnaire. 

The data collected regarding total household income demonstrated that 

participants were recruited from across the income categories. However, 40% of 

families received a total household income of £10,000 or less, compared with 

the Scottish Government’s figure of £22,000 for average household income in 

Glasgow (The Scottish Government 2010).  Furthermore, over one third (37%) of 

families reported that all of their household income was received as benefits 

and data from both the national and local SIMD quintiles demonstrated that the 

largest proportion of families lived in areas ranked the most deprived SIMD 

quintile. This data, suggest that recruitment to this study was biased towards 

those from the most deprived areas.  

Detection of Mutans streptococci in the youngest age groups is important to 

identify children who are at increased risk of developing caries. Caries 

prevalence increases with earlier acquisition of Mutans streptococci and the 

presence of Mutans streptococci in both plaque and saliva has been used as an 

indicator of caries risk (Fujiwara et al. 1991; Parisotto et al. 2010b). However, 

few studies have looked for the presence of Mutans streptococci in children as 

young as one-year-old. Studies of this design are of added importance as it has 



   194 

been demonstrated that the presence of Mutans streptococci in the saliva of 

one-year-old children is high risk for caries development by age three-years 

(Grindefjord et al. 1995).  

The isolation frequency of Mutans streptococci by diagnostic culture of plaque 

was 26% with a minimum detection level of 103 CFU. These results are in broad 

agreement with previous studies reporting 6.3% - 20% isolation rates of Mutans 

streptococci in children aged 12 – 18 months (Fujiwara et al. 1991) , rising to 

29.7% in children aged 18 – 24 months (Fujiwara et al. 1991). The observed 

variation may be due to sampling and culture differences between studies.  

DNA detection methods are increasingly used to detect Mutans streptococci due 

to their rapidity and sensitivity compared with conventional culture techniques. 

In this study S. mutans and S. sobrinus were detected in the saliva of 100% of 

children by TaqMan® QPCR. By this method, 35% of children had S. mutans 

counts greater than 105 CFU per ml saliva, which is reported to be associated 

with higher caries risk (Leal and Mickenautsch 2010). Furthermore, by PCR S. 

sobrinus was also detected in all individuals, although 60% were found to have 

below 103 CFU per ml saliva, while 12.3% harboured numbers greater than 105 

CFU per ml saliva. S. mutans counts were on average 10-fold greater than those 

for S. sobrinus. This is in agreement with previous studies using both culture and 

PCR (Kishi et al. 2009; Yano et al. 2002). Additionally, Pearson bivariate analysis 

revealed a moderate to high level of correlation (R = 0.556, p < 0.001, data not 

shown) between salivary S. mutans and S. sobrinus CFU per ml saliva by 

TaqMan® QPCR, indicating that numbers of S. sobrinus increased with increasing 

numbers of S. mutans. This is of clinical significance as children who harbour 

both S. mutans and S. sobrinus show higher caries prevalence (Okada et al. 

2012; Okada et al. 2002).  

To standardise S. mutans and S. sobrinus across plaque samples the results were 

normalised to the copy number of the 16S rRNA gene, specifically the 16S rRNA 

gene of Gram-positive bacteria using the comparative threshold cycle method 

(∆∆Ct). Using this assay, the proportion of S. mutans in plaque was found to 

range from 0.0012 – 1.12% and S. sobrinus from 0.0008 – 3.7% of Gram-positive 

plaque flora. Surprisingly, in one participant, S. sobrinus was detected at a 

higher proportion than S. mutans.   
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It is important to note that the relative percentages of S. mutans and S. sobrinus 

as a proportion of Gram positive plaque flora may be underestimated because 

the copy number of the 16S rRNA gene is higher than that of gtfB or gtfT (the 

genes used to detect S. mutans and S. sobrinus, respectively). In this study it 

was not logistically possible to accurately weigh the plaque. The method 

described here for normalising data between plaque samples is an accepted 

technique when the weight of plaque cannot be determined (Yoshida et al. 

2003a; Yoshida et al. 2003b).  

This is the first study to report S. mutans and S. sobrinus as a proportion of 

Gram positive plaque flora, making comparisons with other studies difficult. One 

study conducted in children aged 71 months or younger reported detection of S. 

mutans and S. sobrinus at 0.04% and 0% of total bacteria, respectively in caries 

free children. This rose to 0.9% for S. mutans and 0.3% for S. sobrinus in children 

with early childhood caries, rising again to 8% for S. mutans and 1.6% for S. 

sobrinus in children with severe early childhood caries (Choi et al. 2009). Caries 

measurements were not recorded for this study and so direct comparisons 

cannot be made. However these results suggest S. mutans comprised on average 

2.98% of total bacteria and S. sobrinus 0.8% of total bacteria. While, this 

represents higher proportions than the current study, the higher rate of 

detection in six-year-old children likely reflects increased numbers of Mutans 

streptococci carriage with increasing age (Fujiwara et al. 1991).  

Extensive microbiological data were collected for this pilot study which allowed 

for comparison of the practicalities and usefulness of microbiological analysis of 

plaque versus saliva by both culture and TaqMan® QPCR. Unfortunately, the 

volume of saliva obtained was not sufficient to allow diagnostic culture, which 

was performed using plaque samples only.  

This study confirmed TaqMan® QPCR to be a more sensitive and specific method 

for detection of Mutans streptococci than traditional culture techniques and 

even standard PCR techniques (Okada et al. 2002). Both S. mutans and S. 

sobrinus were detected in 100% of plaque and saliva samples, although there 

were vast differences in the numbers detected across samples. Furthermore, the 

ability to discriminate between S. mutans and S. sobrinus and to quantify their 

numbers independently is advantageous. It has been reported that S. sobrinus 
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may be more cariogenic than S. mutans. Studies using PCR to detect S. sobrinus, 

including the present study, suggest that S. sobrinus may be present in higher 

numbers than previously indicated by culture studies (Beighton 2005).  

The use of saliva to estimate the level of Mutans streptococci, although easier to 

perform, has been reported to have a smaller predictor value for subsequent 

caries development than plaque (Sanchez-Perez and Acosta-Gio 2001). Mutans 

streptococci have been detected in the saliva of pre-dentate infants, although it 

is generally agreed that Mutans streptococci primarily colonise tooth surfaces 

and their numbers increase in both saliva and plaque as teeth continue to erupt 

(Parisotto et al. 2011). It has also been reported that the bacterial species 

present in plaque can be detected in saliva, although their numbers in un-

stimulated saliva are not representative of those in plaque. Moreover, the 

bacterial species present at specific sites can vary extensively and the length of 

time since teeth were last brushed is an important consideration (Simon-Soro et 

al. 2012b). In the present study Pearson bivariate analysis revealed a statistically 

significant positive correlation between the numbers of S. mutans detected in 

saliva and plaque by TaqMan® QPCR (p = < 0.0001). Thus, both these data sets 

provided reliable information for this study. However, it is generally agreed that 

plaque is the most reliable and clinically relevant specimen for detection of 

Mutans streptococci.  

Lactobacillus spp. are acidogenic and aciduric and therefore have also been 

attributed to caries risk (Kanasi et al. 2010). In the current study Lactobacillus 

were not detected in plaque of children by diagnostic culture. This was not 

perhaps surprising as Lactobacilli are reported to be associated with more 

complex biofilms than are found in children of this age range (Badet and 

Thebaud 2008). One study of 40 children aged three- to four-years reported very 

low levels of detection of lactobacillus at 0.1 x 10-6, rising to 1.5 x 10-6 (percent 

of total plaque flora) one-year later (Parisotto et al. 2011). While, another study 

reported lactobacilli are generally not found in the mouths of children until at 

least two years of age and then only transiently (Carlsson et al. 1975). The 

presence of Lactobacillus spp. in saliva was not assessed due to insufficient 

volume.  
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Antimicrobial proteins are innate immune factors that have broad spectrum 

antimicrobial activity against a wide range of microorganisms, including S. 

mutans (Chung et al. 2007). Several families of AMPs are found in saliva, 

including the cathelicidins, human neutrophil (alpha) peptides and calprotectin, 

indicating their presence in the oral cavity is important for the maintenance of 

oral health (Dale and Fredericks 2005). Low levels of the HNPs 1-3 (Tao et al. 

2005) and LL37 (Davidopoulou et al. 2012) have been attributed to increased 

caries risk in children.  

This is the first study to report the concentrations of antimicrobial proteins in 

children aged one-year. Each antimicrobial protein was detected in the saliva of 

all children assessed, with the exception of LL37, which was not detected in the 

saliva of 12 children. The high level of variability reported in these studies is in 

agreement with a previous study which found highly variable levels of the HNPs 

1-3, LL37 and the human-beta defensin 3 in a population of children aged 

between 11 and 15 years (Tao et al. 2005). However, the concentrations 

reported were higher than found in the present study. Another study also 

reported higher concentrations of the HNPs 1-3 and calprotectin in the saliva of 

three– to five-year-old children (Toomarian et al. 2011). Together these findings 

support a role for the continuing development and maturation of salivary glands 

and immune responses during early childhood.  

Concentrations of salivary proteins are often normalised to total salivary protein 

due to differences in stimulation or salivary flow rates. However, it has been 

reported that this practice may give rise to misleading results due to differences 

which exist in the control of secretion of salivary proteins by individual salivary 

glands (Brandtzaeg 2007). The peptides measured here are expressed from 

multiple sources in the oral cavity, including the salivary glands, oral epithelium 

and neutrophils (Nisapakultorn et al. 2001a; Tao et al. 2005). For this reason 

whole, un-stimulated saliva was collected for this study and concentrations of 

salivary proteins were reported per ml of saliva. Furthermore, the levels of 

antimicrobial proteins previously reported remained highly variable among the 

study populations even when normalised to total salivary protein levels 

(Phattarataratip et al. 2011; Tao et al. 2005).  
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Of interest was the finding that the concentrations of antimicrobial proteins 

were correlated within individuals. Pearson bivariate analysis (data not shown) 

using log10 transformed data revealed moderate correlation between 

concentrations of lactoferrin and calprotectin (r = 0.50, p < 0.001) and the HNPs 

1-3 (r = 0.48, p < 0.001). LL37 was moderately correlated with concentrations of 

calprotectin (r = 0.34, p < 0.05) and the HNPs 1-3 (r = 0.33, p < 0.05). 

Calprotectin was also moderately correlated with concentrations of HNPs 1-3 (r = 

0.32, p < 0.05). This is in agreement with findings from a previous study that 

also reported statistically significant correlations between the levels of 

antimicrobial peptides in saliva (Phattarataratip et al. 2011). Interestingly, 

antimicrobial proteins are known to have synergistic effects in their role of 

innate immune defence (Nagaoka et al. 2000). Furthermore, in addition to their 

direct antimicrobial activity, antimicrobial peptides have other important roles 

in the oral cavity, including tissue repair and bridging innate with adaptive 

immune responses through their chemoattractant properties (Dale and 

Fredericks 2005).   Thus, the antimicrobial activity of saliva of children with high 

concentrations of multiple antimicrobial proteins is likely to be far greater than 

children with low concentrations. It would have been of interest to measure the 

antimicrobial activity of saliva samples by incubation of saliva with S. mutans 

biofilms in vitro. However, the volume of available saliva negated this 

investigation which was not a primary aim of the study.  

The effect of sIgA antibody responses on initial colonisation by oral bacteria in 

children remains poorly understood. In the current study sIgA antibodies specific 

for cariogenic species S. mutans and S. sobrinus and commensal species S. mitis 

and S. sanguinis, were detected in the oral cavity of children aged one-year, 

presumably indicating previous or current exposure to these or closely related 

species. Similarly variable levels of sIgA antibodies were documented in a 

previous study of sIgA in infants aged three to 20 weeks (Smith et al. 1989).  

Pearson bivariate analyses revealed strong, statistically significant correlations 

for the levels of sIgA antibodies specific for different oral streptococci among 

individuals (r = 0.56 – 0.69, p < 0.001, data not shown). This may indicate the 

presence of cross-reactive antibodies of low specificity as has been previously 

reported in children of this age (Cole et al. 1999).  
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The investigations of life stresses were based on the hypothesis that low SES 

associates with stress. Salivary cortisol concentrations were estimated to provide 

a surrogate biological measure of stress. Salivary sampling is a well established 

technique for cortisol measurement in children and is relatively stress free 

(Woolston et al. 1983). Cortisol expression follows a circadian rhythm; however 

levels rise independently of the circadian rhythm in response to stress (Miller et 

al. 2007). In the current study cortisol was detected in the saliva of all children 

and the concentrations are in broad agreement with those reported by other 

studies for children of this age (Watamura et al. 2004). There were no 

statistically significant differences in salivary cortisol concentrations with 

respect to gender (data not shown). This is in agreement with a study which 

investigated the circadian rhythm of cortisol in young healthy children of the 

same age (Groschl et al. 2003).  

The second aim of this study was to investigate the relationship of 

socioeconomic status with bacterial counts, the salivary immune response and 

stress. Dental caries is strongly associated with low SES (Sisson 2007) and 

measures of SES are routinely used to identify caries risk (Reisine and Psoter 

2001). In the present study it was hypothesised that children of lower SES may 

have measurable differences in bacterial numbers of plaque and saliva compared 

with children from affluent backgrounds. The relationships between bacterial 

numbers and SES were limited with few statistically significant differences 

identified between the measures assessed. One obvious reason is likely due to 

low numbers of study participants, which resulted in low power to detect 

statistically significant differences. Furthermore, because numbers of study 

participants were low the measures used to estimate SES were dichotomised. As 

a result the SES measures were broad and this likely resulted in a diluting effect.  

Using the data identified in the present study it was possible to perform a power 

calculation to identify the sample size that would have been required to identify 

statistically significant differences in the carriage of S. mutans and the 

concentrations of antimicrobial proteins according to the socioeconomic position 

of children, using the dichotomised SIMD quintiles. In order to detect a 

difference of 0.25 SD in S. mutans or antimicrobial proteins with 80% power at 

the 5% significance level would require 253 individuals in each SIMD category. A 
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difference of 0.5 SD would require 64 individuals in each group, 0.75 would 

require 29 in each group and 1 SD would require 17 individuals in each group.  

Occupational information was also collected from parents by demographic 

questionnaire and could have been used to assign a socioeconomic position to 

each family using the National Statistics standard occupational classification 

(www.ons.gov.uk 2010). However, this classification system consists of nine 

major groups and would have given rise to broad measures with low numbers of 

participants in each group. The decision was taken not to include this analysis in 

the current study. 

In contrast to the original hypothesis there was a trend for higher numbers of S. 

mutans in the saliva and plaque of children from more affluent backgrounds 

compared to those from relatively more deprived backgrounds. The difference 

was statistically significant for salivary S. mutans according to the proportion of 

benefits received. However, post hoc tests were not performed during this 

exploratory pilot study and it is likely this relationship would not remain 

statistically significant following these corrections. Thus, the low power of this 

study was insufficient to provide reliable evidence to indicate a relationship 

between SES and the carriage of S. mutans.  

Given that dental caries is so routinely and strongly associated with low SES, 

even in young children it was surprising that no evidence for an association with 

caries risk factors was identified here. One reason may be due to the fact that 

these children are enrolled within an oral health improvement programme and 

samples were collected during the child’s Childsmile appointment. As a result 

oral health behaviours, such as regular tooth-brushing may have been modified. 

Indeed, the aim of Childsmile is to improve oral health related behaviours and 

there is evidence to suggest that Childsmile is associated with an improvement 

in the oral health of children. In a recently published paper dental decay 

experience of three-year-olds in Glasgow was reduced from 26% in 2006/7 to 17% 

in 2009/10. Moreover, this improvement in dental health was evident across the 

SES spectrum (McMahon et al. 2011). If parents had ensured children brushed 

their teeth prior to their Childsmile appointment to demonstrate compliance 

with the programme this would inevitably limit the microbiological findings 
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reported here. It would have been unethical to discourage tooth-brushing under 

any circumstances in this study group.  

Dental caries is an infectious disease and as such the host response may play an 

important role in defining caries susceptibility. It was hypothesised that immune 

responses may be altered in children from lower SES backgrounds and that this 

may ultimately influence caries susceptibility. Associations of salivary 

antimicrobial proteins with measures of SES were limited. No statistically 

significant relationships were identified with regard to the concentrations of 

antimicrobial peptides in the saliva of children grouped according to measures of 

SES.  

Children of parents who received a relatively higher level of education were 

found to have statistically higher levels of S. mutans specific sIgA than children 

of parents who received a lower level of education. This finding may be a 

response to the higher numbers of salivary S. mutans that were found in these 

same children. Conversely, sIgA titres for oral streptococci tended to be higher 

in children from the relatively more deprived category for the remaining SES 

measures, which may reflect higher or more frequent exposure to these 

bacterial species.  

In the present study salivary cortisol concentrations were assessed to investigate 

differences in children according to their relative SES. Although not apparent in 

this study, associations between low SES and increased salivary cortisol levels in 

children and adults have been demonstrated in other studies (Boyce et al. 2010; 

Chen et al. 2010; Cohen et al. 2006). Additionally, positive associations have 

been reported between the concentrations of salivary cortisol and the increased 

prevalence of dental caries in children aged five- to six-years (Boyce et al. 2010) 

and the severity of periodontal disease in adults (Genco et al. 1998; Hilgert et 

al. 2006; Rosania et al. 2009).  

In very young children circadian regulation of the HPA-axis is still undergoing 

maturation (Watamura et al. 2004). It may be that the children assessed here 

were too young to respond to psychological stressors in the same way as older 

children or adults. Additionally, results reported here are likely limited by 

potential biases associated with collection of salivary cortisol at a single time 
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point. Accurate quantification of cortisol would usually involve numerous 

measurements taken throughout the day to determine the circadian rhythm and 

to establish a basal cortisol measurement. Ideally, this would be repeated over 

consecutive days. Basal cortisol levels would then be used to identify differences 

among the study population. Moreover, the time of sample collection is 

important. The circadian rhythm of cortisol secretion dictates that 

concentrations differ significantly in children according to the time of day 

samples are collected (Groschl et al. 2003). The majority of samples were 

collected from children in the morning. However, it was not possible in this 

study to collect saliva on numerous occasions over consecutive days or to 

accurately define the time of sample collection. However, future studies should 

ideally incorporate multiple saliva collections at specified intervals into the 

study design to allow more accurate quantification of salivary cortisol 

concentrations.  

The third aim of this study was to investigate if salivary cortisol concentrations 

influenced the numbers of cariogenic bacteria detected in plaque or saliva or 

the concentrations of salivary antimicrobial proteins. Numerous pathogenic 

bacteria possess the ability to recognise and respond to host hormones (Lyte 

1993). It was hypothesised that differences in salivary cortisol concentrations 

may influence the composition of the oral biofilm. There were trends for 

increased mean numbers of S. mutans cultured from plaque or detected in 

plaque and saliva with increasing cortisol tertiles. These trends were not 

statistically significant, but are interesting. A previous study reported differing 

growth responses by oral bacteria, including S. mutans in the presence of 

adrenaline and noradrenalin in vitro (Roberts et al. 2002). This, study provided 

evidence to suggest that stress hormones may have the potential to directly 

modulate the composition of the oral biofilm. Further investigations are required 

to determine if higher concentrations of salivary cortisol can influence the 

carriage of S. mutans in dental plaque. 

Cortisol is an anti-inflammatory molecule involved in the regulation of innate 

and adaptive immune responses to bacterial and viral infections (Raison et al. 

2006; Webster Marketon and Glaser 2008). Glucocorticoid regulation of 

antimicrobial peptides in response to psychological stress has been documented 

in a murine model. Increased severity of Streptococcus pyogenes infection was 
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accompanied by increased expression of glucocorticoids and down regulation of 

antimicrobial peptide expression (Aberg et al. 2007). In the present study no 

associations of salivary cortisol with concentrations of innate salivary 

antimicrobial proteins were identified. Future investigations using basal cortisol 

concentrations will be required to elucidate this relationship.  

Evidence has shown that chronic stress can result in lower levels of detection of 

antigen-specific sIgA antibodies following vaccination (Cohen et al. 2001). 

Synthesis and secretion of sIgA is regulated by antigenic stimulation and is under 

neuroendocrine control (Cohen et al. 2001; Teeuw et al. 2004). It therefore 

follows that biochemical changes in neuroendocrine regulation can alter sIgA 

levels within the oral cavity. Intriguingly, the gene encoding the secretory 

component of sIgA, a protein responsible for its translocation across the 

epithelium, contains a putative androgen/glucocorticoid response element 

(Verrijdt et al. 1997). This suggests that cortisol may play a role in the 

regulation of expression of secretory component and therefore indirectly 

modulate levels of sIgA in the oral cavity by regulating its translocation across 

the epithelium. In the present study, there was a statistically significant trend 

for increased mean titres of S. sanguinis specific sIgA antibodies with each 

increased cortisol tertile (p = 0.018). This trend was also evident for sIgA 

antibody titres specific for S. mutans, S. sobrinus and S. mitis although they did 

not reach statistical significance. Whether these differences reflect regulation 

by cortisol remains unclear. 

The fourth aim of this study was to investigate the relationship between the 

cariogenic oral biofilm and the concentrations of salivary antimicrobial proteins. 

Data reported here suggest that concentrations of innate antimicrobial proteins 

increased non-specifically with increased numbers of oral bacteria. This is 

consistent with their role for innate immune defence and inducible expression in 

response to local inflammatory stimuli. 

Several studies have indicated that the presence of S. mutans specific antibody 

can modify the course of carious disease. In one study the presence of S. mutans 

specific sIgA in the saliva of 12– to 18-month-old children were negatively 

correlated with S. mutans infection (Nogueira et al. 2007). While other studies 

have reported a positive correlation (Smith and Taubman 1995) or no correlation 
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(Camling and Kohler 1987). Data reported here found no association between 

numbers of S. mutans in plaque or saliva with specific sIgA antibody titres in 

young children. This was consistent with findings reported from a previous study 

(Koga-Ito et al. 2004) which additionally reported a correlation between 

increased S. mutans specific sIgA and caries-free status in young adults but not 

among children.  

Experimental studies conducted in animal models have demonstrated that 

infection with S. mutans can give rise to salivary antibodies directed towards 

mutans specific virulence proteins (Nogueira et al. 2008; Smith et al. 1998). 

Furthermore, clinical studies conducted in young children have shown that the 

ability to mount a broad immune response to specific Mutans streptococcal 

antigens, such as glucan binding protein B are important for caries resistance 

(Parisotto et al. 2011).  

Difficulties arise in the interpretation of the sIgA antibody responses to oral 

bacteria, particularly with regard to cross-sectional studies since the stage of 

development of the salivary immune response to antigenic challenge at the time 

of sampling is not known. Moreover, the levels of sIgA antibodies within 

individuals vary over time (Gahnberg and Krasse 1981) and it cannot be 

determined whether the presence of specific antibody reflects present or past 

exposure to bacterial antigens. The saliva of children recently colonised by S. 

mutans was reported to contain higher levels of specific sIgA antibody than 

saliva from children who had been colonised with S. mutans for greater than 24 

months (Camling and Kohler 1987), suggesting that the salivary antibody 

response is influenced by age and the length of exposure to bacterial antigens. 

Longitudinal studies are better placed to investigate the development of the 

salivary antibody response coincident with development of the oral biofilm and 

clinical disease scores.  

In this study antibody specificities to whole bacterial antigens were assessed. It 

is likely that the use of intact whole bacteria to investigate the contribution of 

sIgA to Mutans streptococcal colonisation is a less reliable method than the use 

of purified antigens. However, further investigations of sIgA antibody 

specificities to purified antigens were not possible due to an insufficient volume 

of saliva.  
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The high correlation of antibody titres within individuals suggests the presence 

of cross-reactive antibodies of low specificity. It would perhaps have been of 

interest to also investigate the avidity of sIgA antibodies to oral streptococci in 

order to identify antibodies that strongly bind to their antigen and as a result 

may provide a higher degree of protection against cariogenic bacteria. Once 

again the volume of saliva was a limiting factor for additional investigations. 

Moreover, it has been reported that the amount of S. mutans specific sIgA 

antibody and not the presence of high avidity antibodies is important for caries 

resistance (Lehtonen et al. 1984).  

Serum IgG enters the oral cavity through gingival crevicular fluid (Challacombe 

et al. 1978) and there is evidence to show that high titres of serum IgG 

antibodies specific for Mutans streptococci are associated with protection 

against caries in children aged 2.6 – 4.9 yrs (Aaltonen et al. 1987). However, 

while the synthesis of sIgA antibodies in young children is equivalent to the 

concentrations produced in adults by one-year of age, serum IgG concentrations 

remain low in children up to three-years of age (Luo et al. 1988). For this 

reason, serum IgG antibodies specific for cariogenic bacteria were not 

investigated in the present study. 

3.4 Conclusion 

This work demonstrated that variables hypothesised to influence the 

development of carious disease can be collected and successfully quantified in 

one-year-old children. The collection of saliva is an easy, relatively stress free 

and reliable collection technique for use in young children and is a highly 

valuable specimen from which numerous investigations can be performed. It 

would have been advantageous to collect a larger volume of saliva from the 

children to allow for additional investigations. However, this would be difficult 

in children of this age and would likely involve multiple collections which in 

itself would lead to difficulties. Careful consideration should be given to 

decisions regarding the salivary assays to perform in order to achieve the highest 

quality analysis with the resources available.  
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The major limitation for this pilot clinical study was the small sample size. 

Childsmile can provide an important platform from which to recruit young 

children to clinical studies. However, the difficulties associated with the 

recruitment of children of this age should not be underestimated. Clearly, the 

current incentive for dental practice participation was not sufficient to engage 

their full support. However, in future studies dental practice participation will 

likely be required if sufficient numbers of children are to be recruited. This 

would require the current incentives to be addressed and would likely involve a 

more rigorous training programme regarding the sample collection procedures. 

The data did not provide evidence of an association of low SES with the 

detection of cariogenic bacteria or salivary immune responses. Moreover, the 

use of salivary cortisol did not represent a reliable surrogate measure of stress in 

children of this age. However, basal cortisol levels may provide a more reliable 

biological measure of stress. The suggestion that increased numbers of 

cariogenic bacteria may be associated with increased concentrations of salivary 

cortisol warrants further investigation. The concentrations of innate 

antimicrobial proteins were associated with increased numbers of oral bacteria, 

although it remains unclear whether the levels of innate antimicrobial proteins 

are associated with numbers of cariogenic bacteria. It remains unclear the 

extent to which specific sIgA antibodies provide protection against colonisation 

with Mutans streptococci. Longitudinal analyses are required to identify how oral 

biofilm development coincides with the development of the salivary immune 

response. 
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4.1 Introduction 

The previous study documented cross-sectional analysis of caries-associated 

biological risk factors. The present longitudinal study sought to address a 

fundamental gap in current knowledge of how the immune system deals with an 

evolving oral biofilm in young children and to identify factors that may naturally 

protect against dental caries.   

There is a scarcity of studies, particularly longitudinal studies, conducted in very 

young children to investigate the biological risk factors for caries. Young 

children are difficult to recruit as they do not regularly attend for dental 

examinations, with only around 30% of Scottish children aged zero- to two-years 

registered with a dentist, rising to 70% in three- to five-year-olds (Shaw et al. 

2009). Thus, young children are not readily accessible for examination. On a 

practical basis the collection of samples and dental examinations can prove 

difficult. In order to better understand the caries process and to identify factors 

which may naturally protect against caries it is crucial that studies are targeted 

towards the youngest age groups at the time when S. mutans colonisation 

coincides with the development of a naive immune system. Lifestyle behaviours 

are established at a young age (Shaw et al. 2009) and adult oral health can be 

predicted by childhood oral health (Thomson et al. 2004). These phenomena 

further highlight the importance of strategies targeted towards the youngest age 

groups if significant improvements in dental health are to be made.   

Previous studies have demonstrated that colonisation by the indigenous oral 

flora gives rise to secretory immunity (Cole et al. 1999; Nogueira et al. 2008). 

However, these responses are heterogeneous and their contribution to caries 

resistance remains unclear. Some studies have reported that the presence of 

anti-S. mutans antibodies are associated with increased incidence of dental 

caries (Koga-Ito et al. 2004), while others have suggested that they are 

protective (Kirtaniya et al. 2009). Furthermore, salivary antimicrobial proteins, 

such as antimicrobial peptides are known to be important for oral health and 

there is evidence to suggest they may influence the course of carious disease 

(Dale and Fredericks 2005). However, little is known about the concentrations of 
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antimicrobial proteins or their relationship with the oral biofilm in young 

children. 

This study therefore sought to collect, process and analyse biological samples, 

socioeconomic data, dietary information and dental health status in a 

longitudinal clinical study of Childsmile participants. The overarching aim of this 

study was to investigate the acquisition of cariogenic bacteria coincident with 

the development of salivary immune responses in young children.  

The research objectives for this study were as follows: 

1. To determine whether the children who returned for follow-up were 

representative of the study group at baseline. 

2. To provide a descriptive analysis of the total plaque bacteria, carriage of 

S. mutans and S. sobrinus in plaque and saliva, the concentrations of 

salivary lactoferrin, LL37, calprotectin, the HNPs 1-3 and sIgA antibodies 

specific for a panel of oral streptococci, dietary and dental disease scores 

of three-year-old children at follow-up. 

3. To investigate effect of non-milk extrinsic sugar consumption on the 

detection of cariogenic bacteria in plaque and saliva of three-year-old 

children.  

4. To investigate how the cariogenic oral biofilm and concentrations of 

salivary antimicrobial proteins change over time. 

5. To investigate the evolution of the cariogenic oral biofilm coincident with 

changes in the concentrations of salivary antimicrobial proteins. 

6. To investigate if salivary antimicrobial proteins and/or the presence of 

cariogenic bacteria relate to clinical disease scores. 

7. To investigate if socioeconomic inequalities and salivary cortisol 

concentrations influence changes in the concentrations of salivary 

antimicrobial proteins and the carriage of cariogenic bacteria. 
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4.2 Results 

Twenty-three of the 63 children (37%) who provided samples at baseline 

participated at follow-up between January and April 2011 for the present study. 

Recall appointments were arranged for 63 children who participated at baseline. 

Contact details proved incorrect or out of date for 17 participants. Appointments 

were made for children to attend local health centres and in excess of 60 

appointments were made in three different health centres over four different 

days. Of the appointments offered only 17 participants attended. In an attempt 

to collect samples from children who missed health centre appointments, 

domiciliary appointments were made for seven children, of whom six were 

available on the day of the visit. The study’s ethical approval was amended from 

the original application to include a food frequency questionnaire. The 

amendment was approved from the West of Scotland Research Ethics Committee 

and NHS Greater Glasgow and Clyde R&D Management (08/S0703/139). Parental 

consent was obtained for each study participant.  

4.2.1 Comparison of baseline data for children who were 

followed-up versus those who were lost to follow-up 

Prior to longitudinal analysis, data obtained from the children who returned for 

follow-up was assessed to investigate if these children were representative of 

the original study group. Baseline demographic and biological data from the 

children who returned for follow-up were compared with data from the children 

who were lost to follow-up. There were no differences with respect to age, level 

of parental education or area of relative deprivation for the 23 children who 

participated at follow-up compared with the 40 children who were lost to 

follow-up ( 

Table 4-1). A higher proportion of boys (n = 14) than girls (n = 8) were followed 

up, although this was not considered significant as there were no differences in 

the biological measurements between girls and boys at baseline (data not 

shown). Additionally, there were no statistically significant differences between 

baseline counts of bacteria in plaque or saliva (Figure 4-1 and Figure 4-2), 

baseline concentrations of salivary antibodies and antimicrobial proteins (Figure 
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4-3 and Figure 4-4) or salivary cortisol (Figure 4-5). However, a proportion of 

children with the highest baseline concentrations of lactoferrin were lost to 

follow-up. This difference was of borderline statistical significance (p = 0.061, 

Figure 4-3). Taken together these data suggest that baseline data from children 

who were followed up were representative of baseline data from original study 

group. 
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Table 4-1: Demographic descriptive analysis of chil dren who returned for 
follow-up sample collection versus children who wer e lost to follow-up 
Demographics Study participants 

followed-up 

Study participants 

lost to follow-up 

Participants 

 N 

 

23 

 

40 

Age (months) of child 

 median, min, max, 

 Q1, Q3 

 missing N 

 

35, 26, 45 

32, 38 

0 

 

35, 31, 41 

31, 38 

0 

Gender of child 

 female N (%) 

 male N (%) 

 missing N 

 

9 (39.1) 

14 (60.9) 

0 

 

20 (50) 

20 (50) 

0 

Level of parental education 

 secondary school N (%) 

 sixth form or college N (%) 

 missing N 

 

8 (36.4) 

14 (63.6) 

1 

 

13 (34.2) 

25 (65.8) 

2 

Local authority SIMD quintiles 

 most deprived quintile N (%) 

 quintiles 2-5 N (%) 

 missing N 

 

10 (47.6) 

11 (52.4) 

2 

 

10 (37) 

17 (63) 

13 

Age (months) is the age of children at the time of each child’s allocated follow-up 
appointment.  
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Figure 4-1: Baseline plaque bacterial counts accord ing to follow-up status of 
children 

Scatter plots of baseline bacterial counts (CFU/ml) of a) total aerobic flora, b) total 
oral streptococci and c) Mutans streptococci, estimated by diagnostic culture of 
plaque and grouped according to follow-up status of children. Raw data were 
plotted in each instance. Each data point represents a mean value for an individual 
study participant and the horizontal lines indicate the group mean. Differences 
were not statistically significant by a) and b) independent samples t-tests of log10 
transformed data or c) Mann-Whitney U test of raw data.  
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Figure 4-2: Baseline Mutans streptococcal counts fr om plaque and saliva 
according to follow-up status of children 

Scatter plots of baseline bacterial counts of a) salivary S. mutans (CFU/ml), b) 
salivary S. sobrinus (CFU/ml), and c) S. mutans (%) and d) S. sobrinus (%) of 
Gram positive plaque flora estimated by TaqMan® QPCR and grouped according 
to follow-up status of children. Raw data were plotted in each instance. Each data 
point represents a mean value for an individual study participant and the horizontal 
line indicates the group mean. Differences were not statistically significant by 
independent samples t-tests of log10 transformed data.  
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Figure 4-3: Baseline concentrations of salivary ant imicrobial proteins 
according to follow-up status of children 

Scatter plots of baseline concentrations (ng/ml) of a) lactoferrin, b) LL37, c) 
calprotectin and d) the HNPs 1-3 grouped according to follow-up status of children. 
Raw data were plotted in each instance. Each data point represents a mean value 
for an individual study participant and the horizontal line indicates the group mean 
for parametric data (a, c & d) or the group median for non-parametric data (b). 
Differences were not statistically significant for (a, c & d) by independent samples 
t-tests of log10 transformed data or for (b) by Mann-Whitney U test of raw data.  
 

 



   216 

 

Figure 4-4: Baseline sIgA antibody titres specific for oral streptococci 
according to follow-up status of children 

Scatter plots of baseline sIgA antibody titres (EU) specific for a) S. mutans, b) S. 
sobrinus, c) S. mitis and d) S. sanguinis grouped according to follow-up status of 
children. Raw data were plotted in each instance. Each data point represents a 
mean value for an individual study participant and horizontal lines indicate the 
group mean. Differences were not statistically significant by independent samples 
t-tests of log10 transformed data.  
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Figure 4-5: Baseline salivary cortisol concentratio ns according to follow-up 
status of children 

Scatter plots of baseline salivary cortisol concentrations (µg/dL) grouped according 
to follow-up status of children. Each data point represents a mean value for an 
individual study participant and the horizontal lines indicate the group means. Raw 
data are plotted. The difference was not statistically significant by independent 
samples t-test using log10 transformed data.  
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4.2.2 Descriptive analysis of biological data collected from plaque 

and saliva of three-year-old children 

4.2.2.1 Bacterial counts from plaque and saliva of three-year-olds 

Assessment of plaque by microbial culture revealed the study group had a 

geometric mean aerobic bacterial count of 1.2 x 107 CFU/ml, of which on 

average 4.0 x 106 CFU/ml were oral streptococcal spp, representing around 

33.3% of the aerobic plaque flora. Mutans streptococci were below the limit of 

detection by culture in the plaque of over 52% (n = 12/23) of children. In 

children whose plaque was culture positive (n = 11/23) for Mutans streptococci, 

numbers ranged from 3.8 x 103 to 1.0 x 106 CFU/ml with a geometric mean count 

of 4.0 x 104 CFU/ml and comprised on average 1% of the total oral streptococcal 

flora (Table 4-2a). Lactobacillus spp were cultured from the plaque of only three 

children with a mean count of 5.6 x 103 CFU/ml.  

By TaqMan® QPCR, S. mutans and S. sobrinus were assessed as a proportion of 

Gram positive bacteria in the plaque of 22 of 23 children with usable samples 

(no DNA was obtained from the plaque of one child). The relative percentages 

ranged from 0.0001 to 3.8% with a geometric mean of 0.006% for S. mutans and 

from 0.0002 to 0.9% with a geometric mean of 0.0005% for S. sobrinus (Figure 

4-1a). In saliva, S. mutans DNA was detected in all 23 children, while S. sobrinus 

DNA was detected in the saliva of 21 of 23 children. The absolute number of S. 

mutans in saliva of children ranged from 34 to 3.0 x 106 CFU/ml with a 

geometric mean of 8.3 x 103 CFU/ml. Numbers of S. sobrinus ranged from not 

detected to 1.4 x 104 CFU/ml with a geometric mean of 112 CFU/ml (Table 

4-2b).  
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Table 4-2a: Descriptive analysis of microbiological  data collected from 
plaque of three-year-old children 
Microbiological measurements Statistics 

Diagnostic culture of plaque (CFU/ml) 

Total aerobic flora N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

  95% CIs 

 

Total oral streptococci N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs 

 

Mutans streptococci N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs 

 

23 (0) 

0 (0) 

23 (100) 

1.2 x 107, 2.3 x 106, 5.3 x 107 

8.5 x 106, 1.7 x 107  

 

23 (0) 

0 (0) 

23 (100) 

4.0 x 106, 6.2 x 105, 5.3 x 107 

2.5 x 106, 6.2 x 106 

 

23 (0) 

12 (52.2) 

11 (47.8) 

4.0 x 104, 3.8 x 103, 1.0 x 106 

7.9 x 103, 2.1 x 105 

Relative quantitation from plaque by 

QPCR (% of Gram positive flora) 

S. mutans N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs 

 

S. sobrinus N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min max 

 95% CIs 

 

 

22 (1) 

0 (0) 

22 (100) 

0.0058, 0.0001, 3.77 

0.0012, 0.028 

 

22 (1) 

0 (0) 

22 (100) 

0.0005, 0.0002, 0.87 

0.0002, 0.0012 

Geometric data generated from back transformations of log10 transformed data are 
shown.  
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Table 1-2b: Descriptive analysis of microbiological  data collected from saliva 
of three-year-old children 
Microbiological measurements Statistics 

Absolute quantitation from saliva by 

QPCR (CFU/ml) 

S. mutans N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs 

 

S. sobrinus N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs 

 

 

 23 (0) 

0 (0) 

23 (100) 

8.3 x 103, 34, 3.0 x 106 

2.5 x 103, 2.8 x 104 

 

23 (0) 

2 (9) 

21 (81) 

112, ND, 1.4 x 104 

30, 418 

Geometric data generated from back transformations of log10 transformed data are 
shown. ND: not detected. 
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4.2.2.2 Mutans streptococci in plaque and saliva of  three-year-old children 

according to the location of recall visit 

As an incidental finding, marked differences were observed in the microbiology 

of children attending health centre appointments compared with those seen by 

domiciliary visit. Analysis of the numbers of Mutans streptococci in plaque and 

saliva of children grouped according to the location of their recall visit revealed 

stark differences. Mean numbers of Mutans streptococci cultured from plaque 

and S. mutans as a proportion of Gram positive plaque flora were over six-fold 

higher in plaque samples collected from children at domiciliary visits compared 

with those collected at health centre appointments. Additionally, salivary S. 

mutans (CFU/ml) was two-fold higher in children from the domiciliary visit group 

compared with those recruited through health centre appointments (Table 4-3). 

These differences were not statistically significant (Figure 4-6) but suggest that 

the domiciliary visits are an important recruitment method for children who 

failed to attend health centre appointments.  
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Table 4-3: S. mutans counts from plaque and saliva of three-year-olds 
according to location of recall visit 

95% CIs of the 

mean 

 

Quartiles 

 

 

Bacterial count 

 

 

N 

 

 

Mean lower upper 

 

 

Median Q1 Q3 

Diagnostic culture 

of plaque 

S. mutans (CFU/ml) 

 HC 

 domiciliary 

 

 

 

17 

6 

 

 

 

4.5 x 104 

2.9 x 105 

 

 

 

-1.6 x 104 

-1.8 x 105 

 

 

 

1.1 x 105 

7.6 x 105 

 

 

 

ND 

1.2 x 104 

 

 

 

ND 

503 

 

 

 

4.5 x 104 

7.9 x 105 

Relative 

quantitation from 

plaque 

S. mutans (%) Gram 

positive flora 

 HC  

 domiciliary 

 

 

 

 

 

16 

6 

 

 

 

 

 

0.0034 

0.0234 

 

 

 

 

 

0.0005 

0.0005 

 

 

 

 

 

0.0222 

1.0406 

 

 

 

 

 

0.0010 

0.0128 

 

 

 

 

 

0.0002 

0.0007 

 

 

 

 

 

0.0943 

1.3586 

Absolute 

quantitation from 

saliva 

S. mutans (CFU/ml) 

 HC 

 domiciliary 

 

 

 

 

17 

6 

 

 

 

 

6.9 x 103 

1.4 x 104 

 

 

 

 

1.6 x 103 

619 

 

 

 

 

2.9 x 104 

3.3 x 105 

 

 

 

 

6.4 x 103 

1.3 x 104 

 

 

 

 

1.3 x 103 

893 

 

 

 

 

1.7 x 104 

3.2 x 105 

S. mutans counts from plaque and saliva of three-year-olds according to the 
location of recall visit (health centre or domiciliary). S. mutans (CFU/ml) by 
diagnostic culture of plaque are raw data. S. mutans (% of Gram positive plaque 
flora) and (CFU/ml) in saliva (relative and absolute quantitation, respectively) are 
geometric data generated from back transformations of log10 transformed data. In 
some instances the large 95% confidence intervals of the mean have resulted in 
negative values. 
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Figure 4-6: S. mutans in plaque and saliva of three-year-olds according to 
the location of recall visit 

Box plots of a) Mutans streptococci (CFU/ml), estimated by diagnostic culture of 
plaque, b) S. mutans (%) of Gram positive plaque flora and c) salivary S. mutans 
(CFU/ml), estimated by TaqMan® QPCR and grouped according to the location of 
recall visit (health centre or domiciliary). Differences were not statistically 
significant by a) Mann-Whitney U test of raw data, or b) and c) independent 
samples T-test of log10 transformed data. 
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4.2.2.3 Salivary protein concentrations in three-ye ar-old children 

Lactoferrin was detected in the saliva of all children (n = 23). There was a high 

degree of variability in the concentrations detected between children, which 

ranged from 200 to 5129 ng/ml, with a geometric mean concentration of 856.1 

ng/ml (Table 3-3).  

LL37 was below the limit of detection in 61% (n = 14) of children. In children in 

whom LL37 was detected the geometric mean was 6.3 ng/ml, ranging from 0.43 

to 95.5 ng/ml (Table 3-3).  

Calprotectin and the HNPs 1-3 were detected in the saliva of all children (n = 

23). Calprotectin concentrations were less variable between children, ranging 

from 224 to 1122 ng/ml with a geometric mean of 612 ng/ml. The 

concentrations of HNPs 1-3 were highly variable between children, ranging from 

11 to 1513 ng/ml with a geometric mean of 299 ng/ml (Table 3-3).  

Titres of sIgA antibodies specific for a panel of oral streptococci were assessed. 

Salivary IgA antibodies specific for S. mutans, S. sobrinus, S. mitis and S. 

sanguinis were detected in the saliva of all children (n = 23). The titres were 

variable among the study group, although the geometric mean titres for S. 

mutans, S. sobrinus and S. sanguinis specific sIgA were similar, while titres of S. 

mitis sIgA antibodies were less variable with a higher geometric mean titre than 

was observed for S. mutans, S. sobrinus and S. sanguinis specific sIgA (Table 

3-3).  

Salivary cortisol was detected in all children (n = 23). Concentrations ranged 

from 0.08 to 3.98 µg/dL, with a geometric mean concentration of 0.22 µg/dL 

(Table 3-3).  
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Table 4-4: Descriptive analysis of salivary protein  concentrations in three-
year-old children 
Salivary proteins Statistics 

Lactoferrin (ng/ml) N (missing) 

 mean, min, max 

 95% CIs 

23 (0) 

856.1, 199.5, 5128.6 

579.7, 1264.2 

LL37 (ng/ml) N (missing) 

 not detected N (%) 

 detected N (%) 

 mean, min, max 

 95% CIs 

23 (0) 

14 (60.9) 

9 (39.1) 

6.3, 0.43, 95.5 

1.6, 24.4 

Calprotectin (ng/ml) N (missing) 

 mean, min, max 

 95% CIs 

23 (0) 

615.7, 223.9, 1122.0 

503.2, 753.5 

HNPs 1-3 (ng/ml) N (missing) 

 mean, min, max 

 95% CIs 

23 (0) 

299.2, 11.0, 1513.6 

169.0, 529.9 

S. mutans specific sIgA (EU) N (missing) 

 mean, min, max 

 95% CIs 

23 (0) 

339.0, 141.3, 1412.5 

259.1, 443.5 

S. sobrinus specific sIgA (EU) N (missing) 

 mean, min, max 

 95% CIs 

23 (0) 

347.5, 134.9, 1949.8 

261.6, 461.7 

S. mitis specific sIgA N (EU) (missing) 

 mean, min, max 

 95% CIs 

23 (0) 

551.3, 204.2, 831.7 

466.3, 651.9 

S. sanguinis specific sIgA (EU) N (missing) 

 mean, min, max 

 95% CIs 

23 (0) 

355.3, 120.2, 2041.7 

249.0, 506.9 

Cortisol (µg/dL) N (missing) 

 mean, min, max 

 95 % CIs 

23 (0) 

0.22, 0.08, 3.98 

0.17, 3.64 

Geometric data generated from back transformations of log10 transformed data are 
shown.  
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4.2.2.4 Salivary antimicrobial protein concentratio ns according to the 

presence of Mutans streptococci in plaque 

Baseline cross-sectional analysis revealed trends for increased concentrations of 

antimicrobial proteins with increased bacterial load of plaque and increased 

numbers of S. mutans in plaque and saliva (Section 3.2.7). 

Pearson bivariate correlation revealed moderate (r 0.3 – 0.4) to moderately 

strong (r 0.5 – 0.8) positive correlations between the concentrations of salivary 

antimicrobial proteins with bacterial counts from plaque and saliva of three-

year-olds (Table 4-5). Graphical summaries of the association of S. mutans (% 

Gram positive plaque flora) with the concentrations of salivary antimicrobial 

proteins are shown (Figure 4-7). The moderate correlations between S. mutans 

(% Gram positive plaque flora) with the concentrations of the HNPs 1-3 and 

calprotectin appear to be independent of the numbers of total plaque flora since 

there appears to be no correlation of total plaque bacteria with the HNPs 1-3 or 

calprotectin. Conversely, the correlations between S. mutans (% Gram positive 

plaque flora) with concentrations of lactoferrin and LL37 may be partly 

mediated by the correlations with the total numbers of aerobic plaque flora. 

However, it is noteworthy that the correlation between the detectable 

concentrations of LL37 with cariogenic bacteria in plaque and saliva were 

stronger than the correlations observed with the total number of aerobic plaque 

flora. This appears to suggest that LL37 concentrations in saliva are influenced 

by the numbers of S. mutans in plaque and saliva (Table 4-5). 

Furthermore, concentrations of the HNPs 1-3 and LL37 were found to be 

statistically significantly higher in the saliva of children in whom Mutans 

streptococci could be cultured from plaque, compared with children who were 

culture negative (p = 0.017 and p = 0.006, respectively [Figure 4-8c and d]). 

Differences in the concentrations of lactoferrin and calprotectin were of 

borderline statistical significance (p = 0.066 and p = 0.055, respectively [Figure 

4-8a and b]). 
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Table 4-5: Associations of salivary antimicrobial p roteins with bacterial 
counts in three-year-old children 
Microbiological measurement lactoferrin calprotectin HNPs 1-3 LL37  

(detected 

only) 

Diagnostic culture of plaque 

(CFU/ml) 

 aerobic flora N 

  r 

  R2 

 oral streptococci N 

  r 

  R2 

 

 

23 

0.370 

0.137 

23 

0.005 

0.074 

 

 

 

23 

-0.011 

>0.001 

23 

0.153 

-0.392 

 

 

23 

-0.093 

0.009 

23 

0.079 

-0.281 

 

 

 

9 

0.569 

0.323 

9 

0.039 

-0.196 

 

Relative quantitation from 

plaque by TaqMan® QPCR (% 

Gram positive flora) 

 S. mutans N 

  r 

  R2 

 S. sobrinus N 

  r 

  R2 

 

 

 

22 

0.369 

0.136 

22 

0.292 

0.085 

 

 

 

22 

0.366 

0.134 

22 

0.321 

0.103 

 

 

 

22 

0.454 

0.206 

22 

0.226 

0.051 

 

 

 

9 

0.798 

0.637 

9 

0.819 

0.670 

Absolute quantitation from 

saliva by TaqMan® QPCR 

(CFU/ml) 

 S. mutans N 

  r 

  R2 

 S. sobrinus N  

  r 

  R2 

 

 

 

23 

0.365 

0.133 

23 

-0.183 

0.033 

 

 

 

23 

0.268 

0.072 

23 

0.057 

0.003 

 

 

 

23 

0.312 

0.097 

23 

0.128 

0.016 

 

 

 

9 

0.702 

0.493 

9 

0.740 

0.548 

Pearson correlation coefficient (r) of the relationship between log10 transformed 
bacterial counts with log10 transformed salivary antimicrobial proteins, R2 is also 
shown. LL37 associations include only those children in whom LL37 was detected 
in saliva. Grey shading indicates mild to moderate associations.  
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Figure 4-7: Associations of S. mutans in plaque with salivary antimicrobial 
proteins 

Scatter plots of the association of log10 transformed S. mutans (% Gram positive 
plaque flora) with log10 transformed concentrations (ng/ml) of salivary a) lactoferrin 
(n = 23), b) calprotectin (n = 23), c) the HNPs 1-3 (n = 23) and d) LL37 (detected 
only [n = 9]). Each data point represents an individual study participant. The 
regression line (solid black line), 95% confidence intervals (dotted line) and R2 are 
shown for each graph. 
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Figure 4-8: Salivary antimicrobial proteins accordi ng to culture of Mutans 
streptococci 

Scatter plots comparing the concentrations (ng/ml) of a) lactoferrin, b) calprotectin, 
c) the HNPs 1-3 and d) LL37 in the saliva of children grouped according to the 
detection of mutans streptococci from plaque: not detected (n = 12), detected (n = 
11). Each data point represents a mean value for an individual study participant 
and the horizontal lines indicate the group mean. Raw data are plotted in each 
instance. Differences were compared by independent samples t-tests of log10 
transformed data.  
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4.2.2.5 Frequency of NMES consumption in three-year -old children 

Successfully completed food frequency questionnaires were available for 96% of 

the study group (n = 22/23). Analysis of the data revealed large variability with 

respect to the consumption of non-milk extrinsic sugars (NMES). The mean intake 

of NMES was 62.2 g/day, which on average comprised 15.2% of total food 

calories (Table 4-6).  

4.2.2.6 Dental disease scores in three-year-old chi ldren 

The dmft (decayed, missing and filled teeth) was recorded for each study 

participant at the time of sample collection by a national dental inspection 

calibrated dentist according to BASCD standards. Measurement of dental caries 

in a non-clinical setting, without the tools required to clean and dry teeth, does 

not allow for the detection of white spot enamel lesions. As a result, using only 

the BASCD criteria, only dentine caries is recorded and thus the true extent of 

caries experience in the population is likely to be underestimated. Ninety-one 

percent (n = 21/23) of three-year-old children were recorded as caries free 

(dmft = 0). Two children were recorded as having evidence of caries, with a 

dmft of two and five, respectively. 
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Table 4-6: Descriptive analysis of NMES consumption  in three-year-old 
children 
Sugar Statistics 

NMES (g/day) 

 N (missing) 

 mean, min, max 

 95% CIs 

 

22 (1) 

62.2, 16.8, 183.2 

44.9, 79.5 

NMES (% daily food calories) 

 N (%) 

 mean, min, max 

 95% CIs 

 

22 (1) 

15.2, 4.6, 43.6 

11.7, 18.5 

Average sugar consumption of three-year-old children. Data was collected from 
parents of children by use of a validated food frequency questionnaire. NMES: 
non-milk extrinsic sugars. 
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4.2.3 Does NMES consumption influence the detection of 

cariogenic bacteria?  

There were no associations for the consumption (g/day) of NMES with counts of 

cariogenic bacteria in plaque or saliva of three-year-old children. There were 

mild associations of S. sobrinus (% Gram positive plaque flora) and S. sobrinus 

(CFU/ml) in saliva with NMES (% daily food calories, R2 = 0.106 and 0.147 [Table 

4-7]). There was insufficient evidence that the consumption of NMES influenced 

the detection of cariogenic bacteria the plaque or saliva of this group of three-

year-old children.  
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Table 4-7: Association of NMES consumption with the  detection of 
cariogenic bacteria in three-year-old children 

NMES (g/day) NMES (% food 

calories) 

Cariogenic bacteria 

N R2 N R2 

Diagnostic culture of plaque (CFU/ml) 

 mutans streptococci  

   

 

22 

 

 

<0.001 

 

22 

 

0.001 

Relative quantitation from plaque by 

TaqMan® QPCR (% Gram positive flora) 

 S. mutans 

  

 S. sobrinus 

   

 

 

21 

 

21 

 

 

>0.001 

 

0.011 

 

 

21 

 

21 

 

 

0.039 

 

0.106 

Absolute quantitation from saliva by 

TaqMan® QPCR (CFU/ml) 

 S. mutans  

 

 S. sobrinus 

 

 

 

22 

 

22 

 

 

0.001 

 

0.002 

 

 

22 

 

22 

 

 

0.013 

 

0.147 

Linear regression analysis (R2) of NMES (non-milk extrinsic sugars) consumption 
(g/day and % of daily food calories) with log10 transformed cariogenic bacterial 
counts from plaque and saliva. Grey shading indicates mild associations.  
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4.2.4 How does the cariogenic oral biofilm and concentrations of 

salivary antimicrobial proteins change over time? 

4.2.4.1 Mutans streptococci counts at baseline and follow-up according to 

age groups of study participants  

The time points for sample collection for this longitudinal study were chosen to 

coincide with reported increased colonisation of Mutans streptococci on tooth 

surfaces. Therefore, it was of interest to investigate if the numbers of Mutans 

streptococci increased in children with increased age. 

At baseline the age of children ranged from 12 to 24 months and at follow-up 

from 26 to 45 months. Children at each time point were grouped according to 

age and the mean S. mutans counts (estimated by both culture and TaqMan® 

QPCR) in each group were compared. There was a trend for increased mean 

numbers of Mutans streptococci cultured from plaque with increasing age of 

children at baseline. However, the differences between groups did not reach 

statistical significance (p = 0.086 [Figure 4-9a]). This trend was not evident from 

culture data of children at follow-up (p = 0.662 [Figure 4-9b]).  

There was a statistically significant linear trend for increased mean numbers of 

S. mutans as a proportion of Gram positive plaque flora with increased age of 

children at baseline (p = 0.045) by ANOVA linear. However, the differences 

between groups were not statistically significant (p = 0.098) [Figure 4-9c]). At 

follow-up the mean numbers of S. mutans as a proportion of Gram positive 

plaque flora, by TaqMan® QPCR increased with age but neither the linear trend 

nor the differences between groups (p = 0.219) reached statistical significance 

(Figure 4-9d). 

There were trends for increased numbers of salivary S. mutans in children with 

increasing age (Figure 4-9e and f). The differences between baseline age groups 

were statistically significant (p = 0.015). A Bonferroni post hoc test identified 

the statistically significant difference was between the youngest and oldest age 

groups at baseline (p = 0.011). Additionally, the baseline linear trend was 

statistically significant (p = 0.007) by ANOVA linear. Neither the linear trend nor 

the differences between groups reached statistical significance at follow-up. 
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Taken together this data support the hypothesis of increased colonisation by 

Mutans streptococci with increased age of children.  
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Figure 4-9: S. mutans counts at baseline and at follow-up according to a ge 
group of study participants 

Scatter plots of baseline and follow-up bacterial counts: (a & b) Mutans 
streptococci (CFU/ml) estimated by diagnostic culture of plaque, (c & d) S. mutans 
(%) of Gram positive plaque flora and (e & f) salivary S. mutans (CFU/ml), 
estimated by TaqMan® QPCR and grouped according to age group of children 
(months). N in each group is shown on axis and raw data were plotted in each 
instance. Each data point represents a mean value for an individual study 
participant and the horizontal lines indicate the group median (a & b) for non-
parametric raw data, statistically analysed using Kruskal-Wallis test, and the group 
mean (c – f) of log10 transformed parametric data, statistically analysed using 
ANOVA. P values shown are the overall differences between groups. The linear 
trend was statistically significant for (c & d [p = 0.045 & p = 0.007, respectively]) by 
ANOVA linear. 
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4.2.4.2 Longitudinal changes of bacterial counts fr om plaque and saliva 

To investigate how the oral biofilm changed over time within individuals, 

baseline bacterial counts were compared with follow-up bacterial counts. There 

were 22 children with culture counts from both time points (Table 4-8). There 

were no statistically significant differences in aerobic or oral streptococci 

cultured from plaque over time (p = 0.884 and 0.456 [Figure 4-10a and b, 

respectively]).  

Changes in Mutans streptococci cultured from plaque were variable, numbers 

increased in some children, while in others numbers decreased. Overall there 

was no statistically significant difference in the numbers of Mutans streptococci 

cultured from plaque at baseline compared with follow-up (p = 0.778 [Figure 

4-10]). Due to the small numbers of participants in this study, there was 

insufficient evidence for changes in Mutans streptococci cultured from plaque 

over time.  

There were 21 children with longitudinal data for both salivary S. mutans and 

salivary S. sobrinus (CFU/ml) by TaqMan® QPCR. Mean numbers of salivary S. 

mutans and S. sobrinus (CFU/ml) were higher in children at baseline, compared 

with follow-up (Table 4-8). Similarly, the median value for salivary S. mutans 

was eight-fold higher at baseline compared with follow-up. Changes in salivary S. 

mutans and S. sobrinus over time were not statistically significant (p = 0.339 and 

0.289 [Figure 4-11a and b, respectively]).  

There were 21 children with longitudinal data for the proportion of S. mutans 

quantified from plaque. The proportion of S. mutans detected in plaque of 

children by TaqMan® QPCR at follow-up increased in most children. Mean S. 

mutans (% Gram positive plaque flora) was over 1000-fold greater at follow-up 

compared with baseline (Table 4-8). The difference was highly statistically 

significant (p = < 0.001 [Figure 4-11c]).  

There were 20 children with longitudinal data for the proportion of S. sobrinus 

quantified from plaque. Mean S. sobrinus (%) was higher at baseline compared 

with follow-up (Table 4-8). The difference was not statistically significant (p = 

0.896, Figure 4-11d).  
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Of the 23 children recalled at follow-up, only two children had clinical evidence 

of caries. Therefore, no meaningful statistical analysis could be performed on 

such a small number. However, a number of observations of the longitudinal 

changes in the oral biofilm of these two children could be made.  

There was a large decrease in the numbers of aerobic plaque flora at follow-up 

compared with baseline in both children with measurable caries (Figure 4-10a). 

There was little or no change in the oral streptococci cultured from the plaque 

of either of the children with caries (Figure 4-10b). Longitudinal changes in 

Mutans streptococci cultured from plaque were variable. The child with a dmft 

of two had fewer Mutans streptococci cultured from plaque at follow-up 

compared with baseline, conversely numbers increased at follow-up in the child 

with a dmft of five (Figure 4-10c).  

There was a 10-fold and 1000-fold decrease in the numbers of salivary S. mutans 

in the children with dmft of two and five, respectively. Incidentally, these two 

children had the highest baseline salivary S. mutans counts of all the children 

who were followed-up. The dramatic decrease observed in these two children 

likely accounts for the decrease in mean salivary S. mutans at follow-up. There 

was also a dramatic decrease in the numbers of S. sobrinus in saliva for the child 

with a dmft of two, which was the highest baseline salivary S. sobrinus count of 

all the children who were followed-up. While numbers of S. sobrinus in the 

saliva of the child with dmft of five increased 10-fold at follow-up compared 

with baseline (Figure 4-11a and b). 

Longitudinal changes in the proportion of S. mutans detected in the plaque of 

children with caries mirrored the changes in Mutans streptococci cultured from 

plaque. Interestingly, both children with caries had the highest proportion of S. 

mutans detected in plaque at baseline of all the children who were followed-up 

(Figure 4-11c). The proportion of S. sobrinus detected in plaque increased 

dramatically in the child with a dmft of five (Figure 4-11d). 
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Table 4-8: Longitudinal changes of bacterial counts  from plaque and saliva 
of young children  

95% CIs of the 

mean 

 

Quartiles 

 

 

Bacterial count 

 

 

N 

 

 

Mean lower upper 

 

 

Median Q1 Q3 

Diagnostic culture 

of plaque (CFU/ml) 

Aerobic flora 

 time 1 

 time 2 

Oral streptococci 

 time 1 

 time 2 

Mutans streptococci 

 time 1 

 time 2 

 

 

 

22 

22 

 

22 

22 

 

22 

22 

 

 

 

1.7 x 107 

1.5 x 107 

 

6.3 x 106 

6.9 x 106 
 

2.0 x 105 

9.2 x 104 

 

 

 

8.8 x 106 

9.5 x 106 

 

2.5 x 106 

2.1 x 106 

 

-9.9 x 104 

-2.1 x 104 

 

 

 

2.5 x 107 

2.1 x 107 

 

1.0 x 107 

1.2 x 107 

 

5.1 x 105 

2.0 x 105 

 

 

 

1.1 x 107 

1.1 x 107 

 

3.8 x 106 

4.2 x 106 

 

ND 

ND 

 

 

 

3.3 x 106 

5.7 x 106 

 

1.1 x 106 

1.7 x 106 

 

ND 

ND 

 

 

 

2.4 x 107 

1.9 x 107 

 

8.2 x 106 

7.3 x 106 

 

8.8 x 103 

3.5 x 105 

Absolute 

quantitation from 

saliva (CFU/ml) 

S. mutans 

 time 1 

 time 2 

S. sobrinus 

 time 1 

 time 2 

 

 

 

 

21 

21 

 

21 

21 

 

 

 

 

8.1 x 105 

2.2 x 105 

 

2.0 x 105 

1.7 x 103 

 

 

 

 

-3.6 x 105 

-7.8 x 104 

 

-2.1 x 105 

45 

 

 

 

 

2.0 x 106 

5.2 x 105 

 

6.1 x 105 

3.3 x 103 

 

 

 

 

1.3 x 104 

1.6 x 103 

 

368 

261 

 

 

 

 

1.5 x 103 

1.6 x 103 

 

186 

34 

 

 

 

 

1.9 x 105 

9.6 x 104 

 

6114 

838 

Relative 

quantitation from 

plaque (%) 

S. mutans  

 time 1 

 time 2 

S. sobrinus 

 time 1 

 time 2  

 

 

 

 

21 

21 

 

20 

20 

 

 

 

 

0.0015 

2.6613 

 

0.0091 

0.0059 

 

 

 

 

-0.0369 

-0.0090 

 

-0.0074 

-0.0032 

 

 

 

 

0.2173 

0.8592 

 

0.0256 

0.0150 

 

 

 

 

0.0017 

1.0077 

 

0.0005 

0.0004 

 

 

 

 

0.0002 

1.0006 

 

0.0001 

0.0001 

 

 

 

 

0.0050 

1.5170 

 

0.0015 

0.0011 

Comparisons of mean and median bacterial counts estimated from the plaque and 
saliva of young children at baseline and follow-up. In some instances the large 
95% confidence intervals have resulted in negative values. ND: not detected. 
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Figure 4-10: Longitudinal changes of bacterial coun ts from plaque of young 
children 

Scatter plots of bacterial counts (CFU/ml) of a) total aerobic plaque flora (n = 22), 
b) total plaque streptococci (n = 22) and c) Mutans streptococci (n = 22, including 
eight children with no detectable Mutans streptococci at both time points), 
estimated by diagnostic culture of plaque collected from children at baseline and 
follow-up. Each data point represents a mean value for an individual study 
participant and connecting lines show the change over time for each participant. 
Red lines indicate children with detectable caries. Raw data are shown in each 
instance. Differences were compared using Wilcoxon signed ranks tests.  
 

 

 

a 

b 

c 
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Figure 4-11: Longitudinal changes of Mutans strepto cocci counts from 
plaque and saliva of young children 

Scatter plots of a) salivary S. mutans (CFU/ml [n = 21]), b) salivary S. sobrinus 
(CFU/ml [n = 21]) and c) S. mutans (% [n = 21]) and d) S. sobrinus (% [n = 20]) of 
Gram positive plaque flora, estimated by TaqMan® QPCR of plaque and saliva 
collected from children at baseline and follow-up. Each data point represents a 
mean value for an individual study participant and the connecting lines show the 
change over time for each participant. Red lines indicate children with detectable 
caries. Raw data are plotted in each instance. Differences were compared by 
Wilcoxon signed ranks test.   
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4.2.4.3 Longitudinal changes in the concentrations of salivary proteins  

There were 21 children with longitudinal data for lactoferrin, calprotectin, the 

HNPs 1-3 and 18 children for LL37 (Table 4-9). There was no difference in the 

mean concentrations of lactoferrin of LL37 in the saliva of children at baseline 

compared with follow-up. Longitudinal increases in the mean concentrations of 

salivary proteins were statistically significant for calprotectin and the HNPs 1-3 

(p = 0.03 and p = 0.008 [Figure 4-12]).  

There were 17 children with longitudinal data for sIgA antibody titres specific for 

oral streptococci. Salivary IgA antibody titres specific for oral streptococci either 

remained constant or increased longitudinally in most children. Therefore, mean 

titres of sIgA antibodies specific for S. mutans, S. sobrinus, S. mitis and S. 

sanguinis were all higher at follow-up compared with baseline (Table 4-9). The 

differences were statistically significant for each of the antibody specificities 

with the exception of S. sobrinus specific sIgA (Figure 4-13). Together this data 

indicate that the expression of salivary proteins increased with increased age of 

children. 

Of all the children who were followed up both children with caries had amongst 

the highest concentrations of lactoferrin and calprotectin at baseline. 

Additionally, the child with a dmft of five had the highest baseline 

concentrations of LL37 and the HNPs 1-3. The concentrations of salivary proteins 

increased over time in both children and remained the highest detected 

concentrations of lactoferrin, calprotectin and LL37 in the saliva of any of the 

children who were followed-up. The HNPs 1-3 decreased at follow-up in the 

child with a dmft of five but increased dramatically in the saliva from the child 

with a dmft of two (Figure 4-12). Antibody titres specific for oral streptococci 

increased longitudinally in the saliva of both children with caries. The child with 

a dmft of five had amongst the highest follow-up antibody titres of all the 

children who were followed-up (Figure 4-13).  
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Table 4-9: Longitudinal changes in the concentratio ns of salivary 
antimicrobial proteins in young children 

95% CIs of the 

mean 

 
Quartiles 

 

Salivary protein 

 

N 

 

Mean 

lower upper 

 
Median 

Q1 Q3 

Lactoferrin (ng/ml) 

 time 1 

 time 2 

 

21 

21 

 

1347.9 

1321.6 

 

634.4 

653.9 

 

2061.4 

1989.2 

 

895.3 

653.5 

 

523.2 

653.5 

 

1467.5 

1675.1 

Calprotectin (ng/ml) 

 time 1 

 time 2 

 

21 

21 

 

504.2 

676.4 

 

379.5 

545.4 

 

629.0 

807.5 

 

479.4 

670.7 

 

237.5 

428.1 

 

690.5 

978.0 

HNPs 1-3 (ng/ml) 

 time 1 

 time 2 

 

21 

21 

 

108.8 

499.0 

 

41.2 

251.4 

 

176.5 

746.6 

 

49.7 

218.6 

 

16.7 

137.4 

 

139.1 

1172.7 

LL37 (ng/ml) 

 time 1 

 time 2 

 

18 

18 

 

5.3 

7.5 

 

0.4 

ND 

 

10.2 

18.7 

 

ND 

ND 

 

2.1 

ND 

 

4.9 

6.3 

S. mutans specific 

sIgA (EU) 

 time 1 

 time 2 

 

 

17 

17 

 

 

246.2 

381.8 

 

 

149.2 

207.6 

 

 

343.1 

556.0 

 

 

217.0 

295.0 

 

 

134.5 

188.0 

 

 

281.0 

385.5 

S. sobrinus specific 

sIgA (EU) 

 time 1 

 time 2 

 

 

17 

17 

 

 

323.7 

444.7 

 

 

240.3 

218.2 

 

 

407.2 

671.1 

 

 

288.0 

242.0 

 

 

199.0 

190.0 

 

 

429.5 

628.0 

S. mitis specific sIgA 

(EU) 

 time 1 

 time 2 

 

 

17 

17 

 

 

265.1 

603.6 

 

 

129.3 

500.5 

 

 

401.0 

706.7 

 

 

166.0 

653.0 

 

 

117.0 

472.0 

 

 

254.0 

753.0 

S. sanguinis specific 

sIgA (EU) 

 time 1 

 time 2 

 

 

17 

17 

 

 

248.6 

483.8 

 

 

131.4 

237.7 

 

 

365.8 

730.0 

 

 

189.0 

372.0 

 

 

120.5 

159.5 

 

 

279.0 

669.5 

Comparisons of concentrations of salivary proteins measured from young children 
at baseline and at follow-up. In some instances the large 95% confidence intervals 
have resulted in negative values. ND: not detected.  
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Figure 4-12: Longitudinal changes in the concentrat ions of salivary 
antimicrobial proteins in the saliva of young child ren 

Scatter plots of concentrations (ng/ml) of a) lactoferrin (n = 21), b) calprotectin (n = 
21), c) HNPs 1-3 (n = 21) and d) LL37 (n = 18, including three children with 
undetectable concentrations at both time points), measured from the saliva of 
young children at baseline and follow-up. Each data point represents a mean 
value for an individual study participant and connecting lines show the change 
over time for each participant. Red lines indicate children with detectable caries. 
Raw data are shown in each instance and differences were compared by Wilcoxon 
signed ranks test. 
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Figure 4-13: Longitudinal changes of sIgA antibody titres specific for oral 
streptococci in young children 

Scatter plots of sIgA antibody titres (n = 17) specific for a) S. mutans, b) S. 
sobrinus, c) S. mitis and d) S. sanguinis measured at baseline and follow-up. Each 
data point represents a mean value for an individual study participant and 
connecting lines show the change over time for each participant. Red lines 
indicate children with detectable caries. Raw data are plotted in each instance. 
Differences were compared using Wilcoxon signed ranks test.  
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4.2.5 How do changes in the cariogenic oral biofilm evolve with 

changes in the concentrations of salivary antimicrobial 

proteins. 

It was hypothesised that changes in the oral biofilm may reflect changes in the 

developing salivary immune response, or indeed vice versa.  

4.2.5.1 Changes in the oral biofilm coincident with  changes in the salivary 

immune response 

To investigate longitudinal changes of bacterial counts coincident with changes 

in salivary antimicrobial proteins the longitudinal fold change was calculated for 

each biological measure in each study participant (Table 4-10). In summary of 

data already reported the fold changes in bacterial counts demonstrated the 

most variability overall. However, for individual children the direction of fold 

change tended to be consistent between variables using the same method (i.e. 

culture or QPCR). There was also a general trend for fold increases in salivary 

proteins. 

It was hypothesised that changes in the bacterial load of plaque or the numbers 

of cariogenic bacteria in plaque and saliva over time may correlate with changes 

in the expression of salivary antimicrobial proteins.  

There was a mild to moderate positive correlation between the longitudinal fold 

changes in aerobic plaque flora with longitudinal fold changes in calprotectin (r2 

= 0.342 [Table 4-11 & Figure 4-14a]). Longitudinal fold increases in Mutans 

streptococci cultured from plaque were positively correlated with longitudinal 

fold increases in calprotectin and the HNPs 1-3 (r = 0.360 and 0.404, respectively 

[Table 4-11 & Figure 4-14b & c]). This finding was mirrored by fold increases in 

S. mutans (% Gram positive plaque flora), which was positively correlated with 

longitudinal fold changes in calprotectin and the HNPs 1-3 (r = 0.401 and 0.429, 

respectively [Table 4-11 & Figure 4-14d & e]).  

A negative correlation was observed between the longitudinal fold increases in 

salivary S. sobrinus (CFU/ml) with longitudinal fold decreases in LL37 (r = -0.326 

[Table 4-11]). However, the LL37 data set remained non-parametric following 
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log10 transformations (data not shown). Spearman rank correlations revealed no 

association for longitudinal fold changes of LL37 with salivary S. sobrinus (Rho = 

-0.045) or any of the remaining microbiological data sets (data not shown).  

Longitudinal fold decreases in aerobic plaque flora, Mutans streptococci cultured 

from plaque, S. mutans (% Gram positive plaque flora) and salivary S. sobrinus 

(CFU/ml) were all negatively correlated with longitudinal fold increases in S. 

mitis specific sIgA antibody titres (Table 4-12 and Figure 4-15).  

Longitudinal fold increases in S. sobrinus (% Gram positive plaque flora) were 

moderately positively correlated with longitudinal fold increases in S. sobrinus 

specific sIgA antibody titres (r = 0.612 [Table 4-12 and Figure 4-16]). 

Longitudinal fold increases in salivary S. sobrinus (CFU/ml) were not correlated 

with increases in S. sobrinus specific sIgA antibody titres. 

Longitudinal fold increases in salivary S. mutans (CFU/ml) were moderately 

positively correlated with changes in S. mutans, S. sobrinus and S. sanguinis 

specific sIgA (r = 0.439, 0.488 and 0.586, respectively [Figure 4-16]). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 4-10: Longitudinal fold changes in bacterial counts and salivary proteins in young children 
Code AF OS MS Mut 

saliva 

Sob 

saliva 

Mut % 

plaq 

Sob % 

plaq 

lacto LL37 calp HNPs mut 

IgA 

sob 

IgA 

mit 

IgA 

sang 

IgA 

cort 

025 0.3 0.7 <0.1 <0.1 <0.1 <0.1 11.0 2.2 6.3 1.4 19.1 3.3 1.4 4.3 3.8 5.5 

031 30.7 1.6 <0.1 0.7 <0.1 4.9 2.6 0.9 1 1.8 1.6 1.9 2.7 5.8 2.4 4.4 

037 2.3 1.2 670.0 17.2 1.2 5.8  1.1  0.8 6.7 9.3 4.5 3.1 11.7 9.7 

039 128.0 11.8 4x103 6.1 0.3   0.8 1 2.6 73.0 0.8 1.2 1.1 5.9 0.6 

041 0.2 0.1 <0.1 509.5 1.7 566.8 2.3 0.3 1.2 1.4 18.1     2.3 

047 0.8 0.1 7x105 2.0 0.1 6x103 0.1 3.0 1 1.2 53.6 3.0 1.3 2.2 2.2 1.9 

059 2.3 2.8 3.3 14.3 1.0 2x104 165.6 11.6  5.2 916.4     1.4 

060 9.7 1.1 0.1 0.1 <0.1 <0.1 <0.1 0.9 6x103 1.2 14.9 1 0.4 1.7 0.5 0.6 

064 14.2 12.8 <0.1 <0.1 0.3 0.3 0.2 2.8 <0.1 2.2 1.6     16.5 

067 2.7 23.4 1 4.1 0.2 0.1 <0.1 0.7 <0.1 2.3 0.2     1.2 

076 0.5 1 7.69 0.1 2.8 1.8 32.6 2.1 2.4 1.1 0.7 2.8 1.2 3.4 2.6 1.3 

078 0.2 0.1 1 9.8 1.1 10.0 0.8 0.3 <0.1 2.0 0.9 0.7 0.9 4.5 1.2 0.1 

079 0.2 1.1 1 1.7 0.1 0.1 <0.1 0.8 1x103 1.5 3.9 1.4 1.1 7.1 1.8 3.8 

081 0.7 0.9 2x103 2.3 0.2 1.6 0.1 1.8  1.7 87.8 1.7 0.8 6.6 2.8 3.0 

084 2.7 2.6 1 2.9 5.6 1.5 5.5 1.0 <0.1 1.5 7.6 2.4 1.2 5.4 1.1 2.3 

086 1.4 3.2 <0.1 0.1 <0.1 <0.1 0.1 0.5 <0.1 0.6 6.8 0.7 1.1 4.2 1.0 2.9 

092 0.3 4.4 <0.1 0.4 <0.1 <0.1 0.1 0.2 <0.1 0.5 0.3 1.3 0.5 5.6 2.3 4.4 

093 0.4 0.8 1 <0.1 <0.1 7.7 3.7 1.1 <0.1 1.4 3.2 1.4 0.8 4.6 0.6 1.1 

126 1.9 0.3 8x104 <0.1 450.0 352.7 2.3 0.7 0.5 6.4 4.4 0.3 0.5 0.7 0.5 2.0 

128 0.4 0.4 1 0.4 1x104 269.2 680.0 0.2 <0.1 0.5 0.4 1.1 2.0 0.9 1.1 2.6 

129 1.5 109.3 1 1.4 6x103 2.4 9.0 0.7 <0.1 0.7 7.5 1.4 1.8 1.2 1.3 1.1 

133 1.5 106.6 1              

139      148.0 0.1          

Longitudinal fold changes of biological measures from plaque and saliva of study participants at baseline relative to follow-up. Pink boxes 
indicate a fold decrease, blue boxes indicate a fold increase, lilac boxes (1) are not detected at both times, yellow boxes (1) no change over 
time, black boxes indicate at least one data point missing and orange boxes indicate children with dmft ≥ 1. AF: aerobic flora, OS: oral 



 

streptococci, MS: mutans streptococci, Mut and Sob saliva: salivary S. mutans and salivary S. sobrinus, Mut and Sob %: S. mutans and S. 
sobrinus % Gram positive plaque flora, lacto: lactoferrin, calp: calprotectin, HNPs: HNPs 1-3, Mut, Sob, Mit, Sang IgA: S. mutans, S. 
sobrinus, S. mitis and S. sanguinis salivary IgA, respectively.  
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Table 4-11: Association of longitudinal fold change s in bacterial counts with 
longitudinal fold changes in salivary antimicrobial  proteins 
 Antimicrobial protein 

Microbiological measurement lactoferrin calprotectin HNPs 1-3 LL37 

Diagnostic culture of plaque 

(CFU/ml) 

 aerobic flora N 

  r 

  R2 

 oral streptococci N 

  r 

  R2 

 mutans streptococci N 

  r 

  R2 

 

 

21 

0.232 

0.054 

21 

0.101 

0.010 

21 

0.260 

0.068 

 

 

21 

0.342 

0.117 

21 

-0.075 

0.006 

21 

0.360 

0.130 

 

 

21 

0.207 

0.043 

21 

-0.069 

0.005 

21 

0.404 

0.163 

 

 

18 

0.106 

0.011 

18 

-0.242 

0.059 

18 

0.270 

0.073 

Relative quantitation from 

plaque by TaqMan® QPCR (% 

Gram positive flora) 

 S. mutans N 

  r 

  R2 

 S. sobrinus N 

  r 

  R2 

 

 

 

20 

0.270 

0.073 

19 

0.150 

0.023 

 

 

 

20 

0.401 

0.161 

19 

0.041 

<0.001 

 

 

 

20 

0.429 

0.184 

19 

0.106 

0.011 

 

 

 

17 

0.006 

<0.001 

17 

-0.080 

<0.001 

Absolute quantitation from 

saliva by TaqMan® QPCR 

(CFU/ml) 

 S. mutans N 

  r 

  R2 

 S. sobrinus N  

  r 

  R2 

 

 

 

21 

-0.137 

0.019 

20 

-0.311 

0.097 

 

 

 

21 

-0.132 

0.017 

20 

-0.108 

0.012 

 

 

 

21 

0.268 

0.072 

20 

-0.135 

0.018 

 

 

 

18 

0.077 

0.001 

17 

-0.326 

0.106 

Pearson correlation coefficient (r) of the relationship between longitudinal fold 
changes in log10 transformed bacterial counts with longitudinal changes in log10 
transformed innate antimicrobial proteins. R2 is also shown. Grey shading 
indicates low to moderate associations which are shown graphically in Figure 
4-14.  
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Table 4-12: Associations of longitudinal fold chang es in bacterial counts 
with longitudinal fold changes in sIgA antibodies  
 Specific sIgA antibody 

Microbiological measurement S. mutans  S. sobrinus  S. mitis  S. sanguinis  

Diagnostic culture of plaque 

(CFU/ml) 

 aerobic flora N 

  r 

  R2 

 oral streptococci N 

  r 

  R2 

 mutans streptococci N 

  r 

  R2 

 

 

17 

-0.106 

0.011 

17 

0.011 

>0.001 

17 

0.074 

0.005 

 

 

17 

0.154 

0.024 

17 

0.165 

0.027 

17 

0.025 

0.001 

 

 

17 

-0.320 

0.102 

17 

-0.124 

0.015 

17 

-0.428 

0.183 

 

 

17 

0.178 

0.032 

17 

0.250 

0.063 

17 

0.171 

0.029 

Relative quantitation from 

plaque by TaqMan® QPCR (% 

Gram positive flora) 

 S. mutans N 

  r 

  R2 

 S. sobrinus N 

  r 

  R2 

 

 

 

16 

-0.004 

<0.001 

14 

0.148 

0.022 

 

 

 

16 

0.245 

0.060 

14 

0.612 

0.374 

 

 

 

16 

-0.478 

0.228 

14 

-0.275 

0.076 

 

 

 

16 

-0.071 

0.005 

14 

0.054 

0.003 

Absolute quantitation from 

saliva by TaqMan® QPCR 

(CFU/ml) 

 S. mutans N 

  r 

  R2 

 S. sobrinus N  

  r 

  R2 

 

 

 

17 

0.439 

0.191 

16 

-0.309 

0.095 

 

 

 

17 

0.488 

0.238 

16 

0.130 

0.017 

 

 

 

17 

0.227 

0.052 

16 

-0.526 

0.277 

 

 

 

17 

0.586 

0.344 

16 

-0.245 

0.060 

Pearson correlation coefficient (r) of the relationship between longitudinal fold 
changes in log10 transformed bacterial counts with longitudinal fold changes in 
log10 transformed salivary IgA antibodies (S. mitis specific sIgA is raw data). R2 is 
also shown. Grey shading indicates low to moderate associations which are 
shown graphically in (Figure 4-15 and Figure 4-16).  
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Figure 4-14: Associations of longitudinal fold chan ges in bacterial counts 
with longitudinal fold changes in salivary antimicr obial peptides 

Scatter plots of longitudinal fold changes in log10 transformed a) aerobic plaque 
flora (b & c) S. mutans (%) of Gram positive plaque flora and (d & e) Mutans 
streptococci cultured from plaque with longitudinal fold changes in log10 
transformed calprotectin (a, b & c) and the HNPs 1-3 (d & e). Each data point 
represents an individual study participant. The regression line (solid black line), 
95% confidence intervals (dotted line) and R2 are shown for each graph.  
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Figure 4-15: Associations of longitudinal fold chan ges in bacterial counts 
from plaque and saliva with longitudinal fold chang es in S. mitis specific 
sIgA antibody titres 

Scatter plots of associations of longitudinal fold changes in S. mitis specific sIgA 
antibody titres with longitudinal fold changes in log10 transformed a) aerobic plaque 
flora, b) plaque Mutans streptococci c) S. mutans (%) of Gram positive plaque 
flora and d) salivary S. sobrinus. Each data point represents an individual 
participant. The regression line (solid black line), 95% confidence intervals (dotted 
line) and R2 are shown for each graph.  
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Figure 4-16: Associations of longitudinal fold chan ges in cariogenic bacteria 
from plaque and saliva with sIgA antibody titres sp ecific for oral 
streptococci 

Scatter plots of associations of longitudinal fold changes in log10 transformed a) S. 
sobrinus (%) of Gram positive plaque flora and (b, c &d) salivary S. mutans with 
longitudinal fold changes in log10 transformed sIgA antibody titres specific for (a & 
b) S. sobrinus, c) S. mutans and d) S. sanguinis. Each data point represents an 
individual participant. The regression line (solid black line), 95% confidence 
intervals (dotted line) and R2 are shown for each graph. 
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4.2.6 Do changes in the concentrations of salivary antimicrobial 

proteins and the cariogenic oral biofilm relate to clinical 

disease scores in young children? 

Of the 23 children recalled at follow-up, only two children had clinical evidence 

of caries, therefore negating any meaningful statistical analysis of the influence 

of the salivary immune response or oral biofilm on dental disease outcomes. For 

this reason a descriptive analysis of the longitudinal changes in the oral biofilm 

and salivary immune response in the children with detectable caries was 

included in the previous section.  

4.2.7 Does SES influence the development of the cariogenic oral 

biofilm and the concentrations of salivary antimicrobial 

proteins in young children? 

It was hypothesised that SES may influence the development of the oral biofilm 

or the evolution of the salivary immune response.  

4.2.7.1 The impact of SES on bacterial counts in pl aque and saliva  

The longitudinal fold changes in bacterial numbers from both plaque and saliva 

were investigated according to baseline measures of SES. The influence of 

gender on oral biofilm development was first investigated. There were no 

statistically significant differences for longitudinal fold changes in bacterial 

counts from plaque or saliva according to the gender of children (data not 

shown). 

Due to the low numbers of study participants there was insufficient evidence to 

indicate differences of the longitudinal fold changes in any bacterial measure 

with respect to the level of family income, parental education or SIMD (Table 

4-13 & Table 4-14).  
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Table 4-13: Longitudinal fold changes in bacterial counts cultured from 
plaque with respect to SES of children at baseline 

Aerobic plaque flora Oral streptococci Mutans streptococci SES 

N mean fold 

change 

P N mean fold 

change 

P N mean fold 

change 

P 

Income 

<£10,000 

≥£10,000 

 

8 

11 

 

9.7 

2.1 

 

0.551 

 

8 

11 

 

1.0 

2.4 

 

0.356 

 

8 

11 

 

4.6 

0.6 

 

0.521 

Education 

Secondary school 

6th form or above 

 

7 

14 

 

0.3 

2.2 

 

0.267 

 

7 

14 

 

1.5 

2.2 

 

0.689 

 

7 

14 

 

0.5 

2.8 

 

0.571 

SIMD 

Most deprived 

quintile 

Quintiles 2-5 

 

 

10 

10 

 

 

1.9 

1.3 

 

 

0.642 

 

 

10 

10 

 

 

1.3 

1.6 

 

 

0.807 

 

 

10 

10 

 

 

1.8 

1.4 

 

 

0.927 

Longitudinal fold changes in bacterial counts cultured from plaque and grouped 
according to baseline measures of SES were compared by independent samples 
t-tests. Geometric mean fold changes generated from back transformations of 
log10 transformed data are shown.  
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Table 4-14: Longitudinal fold changes of cariogenic  bacteria quantified by 
TaqMan® QPCR from plaque and saliva with respect to  SES of children at 
baseline 

S. mutans %  Gram 

positive plaque 

flora 

S. sobrinus %  Gram 

positive plaque 

flora 

salivary S. mutans salivary S. 

sobrinus 

SES 

N mean 

fold 

change 

P N mean 

fold 

change 

P N mean 

fold 

change 

P N mean 

fold 

change 

P 

Income 

<£10,000 

≥£10,000 

 

8 

11 

 

7.3 

2.1 

 

.539 

 

7 

10 

 

2.0 

0.4 

 

.233 

 

8 

11 

 

0.7 

0.7 

 

.962 

 

8 

10 

 

0.3 

0.4 

 

.876 

Education 

Secondary 

school 

6th form or 

above 

 

 

8 

12 

 

 

2.3 

4.7 

 

 

.717 

 

 

6 

12 

 

 

1.1 

1.2 

 

 

.949 

 

 

7 

13 

 

 

0.6 

0.3 

 

 

.677 

 

 

6 

13 

 

 

<0.1 

1.5 

 

 

.103 

SIMD 

Most 

deprived 

quintile 

Quintiles 

2-5 

 

 

 

10 

9 

 

 

 

2.6 

14.8 

 

 

 

.383 

 

 

 

8 

9 

 

 

 

0.6 

1.4 

 

 

 

.587 

 

 

 

10 

9 

 

 

 

0.4 

1.1 

 

 

 

.523 

 

 

 

9 

9 

 

 

 

0.2 

1.4 

 

 

 

.277 

Longitudinal fold changes in bacterial counts quantified by TaqMan® QPCR from 
plaque and saliva and grouped according to baseline measures of SES were 
compared by independent samples t-tests. Geometric mean fold changes 
generated from back transformations of log10 transformed data are shown.  
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4.2.7.2 The impact of SES on the development of sal ivary immune 

responses 

The effect of gender on the development of the salivary immune response was 

investigated. Statistically significant differences were found with respect to 

longitudinal increases in the concentrations of lactoferrin (p = 0.014), the HNPs 

1-3 (p = 0.006) and S. mutans specific sIgA antibody titres (p = 0.027), all of 

which were found to be greater in females (Table 4-15).  

Due to the low numbers of study participants there was insufficient evidence to 

indicate differences in the longitudinal fold changes of salivary antimicrobial 

proteins or sIgA antibody titres according to baseline measures of SES (Table 

4-16 and Table 4-17).  

 

 

 

 

 

 

 

 

 

 

 



  259 

Table 4-15: Longitudinal fold changes in salivary p rotein concentrations with 
respect to gender of study participants 
Salivary antimicrobial 

proteins by gender of child 

N Mean fold change P 

lactoferrin 

 female 

 male 

 

9 

12 

 

1.7 

0.6 

 

0.014 

calprotectin 

 female 

 male 

 

9 

12 

 

1.4 

1.5 

 

0.884 

HNPs 1-3 

 female 

 male 

 

9 

12 

 

22.6 

2.0 

 

0.006 

LL37 

 female 

 male 

 

6 

12 

 

0.1 

< 0.1 

 

0.622 

S. mutans specific sIgA 

 female 

 male 

 

8 

9 

 

2.3 

1.0 

 

0.027 

S. sobrinus specific sIgA 

 female 

 male 

 

8 

9 

 

1.2 

1.1 

 

0.670 

S. mitis specific sIgA 

 female 

 male 

 

8 

9 

 

3.6 

3.7 

 

0.950 

S. sanguinis specific sIgA 

 female 

 male 

 

8 

9 

 

1.8 

1.7 

 

0.834 

cortisol 

 female 

 male 

 

9 

12 

 

2.0 

2.0 

 

0.971 

Longitudinal fold changes in salivary protein concentrations grouped according to 
gender of study participants were compared by independent samples t-tests. 
Geometric data generated from back transformations of log10 transformed data are 
shown (S. mitis specific sIgA is raw data).  
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Table 4-16: Longitudinal fold changes in concentrat ions of salivary 
antimicrobial proteins with respect to baseline mea sures of SES 

lactoferrin calprotectin HNPs 1-3 LL37 SES 

N mean 

fold 

change 

P N mean 

fold 

change 

P N mean 

fold 

change 

P N mean 

fold 

change 

P 

Income 

<£10,000 

≥£10,000 

 

8 

11 

 

1.3 

0.8 

 

.373 

 

8 

11 

 

1.9 

1.3 

 

.231 

 

8 

11 

 

8.2 

5.9 

 

.743 

 

6 

10 

 

1.9 

<0.1 

 

.103 

Education 

Secondary 

school 

6th form or 

above 

 

 

7 

13 

 

 

1.4 

0.8 

 

 

.303 

 

 

7 

13 

 

 

1.5 

1.4 

 

 

.879 

 

 

7 

13 

 

 

8.1 

4.3 

 

 

.541 

 

 

5 

12 

 

 

<0.1 

<0.1 

 

 

.975 

SIMD 

Most 

deprived 

quintile 

Quintiles 

2-5 

 

 

 

10 

9 

 

 

 

1.1 

0.7 

 

 

 

.312 

 

 

 

10 

9 

 

 

 

1.8 

1.3 

 

 

 

.298 

 

 

 

10 

9 

 

 

 

8.1 

3.3 

 

 

 

.389 

 

 

 

7 

9 

 

 

 

0.3 

<0.1 

 

 

 

.328 

Longitudinal fold changes in the concentrations in salivary antimicrobial proteins 
grouped according to baseline measures of SES were compared by independent 
samples t-tests. Geometric mean fold changes generated from back 
transformations of log10 transformed data are shown.  
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Table 4-17: Longitudinal fold changes in sIgA antib ody titres with respect to 
baseline measures of SES 

S. mutans specific 

sIgA 

S. sobrinus specific 

sIgA 

S. mitis specific 

sIgA 

S. sanguinis 

specific sIgA 

SES 

N mean 

fold 

change 

P N mean 

fold 

change 

P N mean 

fold 

change 

P N mean 

fold 

change 

P 

Income 

<£10,000 

≥£10,000 

 

5 

10 

 

2.0 

1.4 

 

.572 

 

5 

10 

 

1.1 

1.1 

 

937 

 

5 

10 

 

2.6 

4.4 

 

.138 

 

5 

10 

 

2.0 

1.9 

 

.976 

Education 

Secondary 

school 

6th form or 

above 

 

 

5 

12 

 

 

2.1 

1.3 

 

 

.247 

 

 

5 

12 

 

 

1.4 

1.0 

 

 

.368 

 

 

5 

12 

 

 

4.7 

3.3 

 

 

.216 

 

 

5 

12 

 

 

2.2 

1.6 

 

 

.506 

SIMD 

Most 

deprived 

quintile 

Quintiles 

2-5 

 

 

 

8 

7 

 

 

 

1.4 

1.5 

 

 

 

.858 

 

 

 

8 

7 

 

 

 

1.1 

1.1 

 

 

 

.937 

 

 

 

8 

7 

 

 

 

1.5 

2.0 

 

 

 

.416 

 

 

 

8 

7 

 

 

 

2.2 

1.7 

 

 

 

.534 

Longitudinal fold changes in the titres of sIgA antibodies specific for oral 
streptococci grouped according to baseline measures of SES were compared by 
independent samples t-tests. Geometric mean fold changes generated from back 
transformations of log10 transformed data are shown (S. mitis specific sIgA are raw 
data).  
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4.2.8 Do changes in salivary cortisol concentrations influence the 

development of the cariogenic oral biofilm or the 

concentrations of salivary antimicrobial proteins in young 

children? 

Previous cross-sectional analysis revealed no association of salivary cortisol 

concentrations with measures of socioeconomic status. A similar cross-sectional 

analysis was performed at the second time point and similarly no association of 

salivary cortisol concentrations with baseline measures of socioeconomic status 

were identified in three-year-old children. Nonetheless, cortisol has been shown 

to impact on the immune system and it was decided to investigate the 

longitudinal changes in salivary cortisol concentrations for correlations with 

longitudinal changes in the oral biofilm and salivary immune response.  

Longitudinal salivary cortisol data was available for all children who were 

followed-up (n = 23). Salivary cortisol concentrations significantly increased 

longitudinally from 0.18 µg/dL at baseline to 0.27 µg/dL at follow-up (p = 0.009 

[Figure 4-17]). There were no correlations between longitudinal fold changes in 

bacterial counts from plaque or saliva of young children with longitudinal fold 

changes in salivary cortisol concentrations (Table 4-18). Longitudinal fold 

changes in salivary antimicrobial proteins (lactoferrin, calprotectin, the HNPs 1-

3 and LL37) were not correlated with longitudinal fold changes in salivary 

cortisol concentrations (Table 4-19). There were mild to moderate correlations 

for longitudinal changes in sIgA antibody titres with longitudinal changes in 

salivary cortisol concentrations, suggesting that as cortisol concentrations 

increased longitudinally so to did the titres for sIgA antibodies specific for oral 

bacteria (Table 4-19 and Figure 4-18). 

Salivary cortisol concentrations increased longitudinally in both children with 

caries. In one child there was over a five-fold increase in the concentration of 

salivary cortisol at follow-up. The concentration of cortisol in this child was over 

double that of any other child at follow-up. 
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Figure 4-17: Longitudinal changes of salivary corti sol concentrations in 
young children 

Scatter plot of salivary cortisol (µg/dL) measured at baseline and follow-up (n = 
23). Each data point represents a mean value for an individual study participant 
and the connecting lines show the change over time for each participant. Red lines 
indicate children with detectable caries. Raw data were plotted. The difference 
was statistically significant by Wilcoxon signed ranks test. 
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Table 4-18: Associations of longitudinal fold chang es in bacterial counts 
with longitudinal fold changes in salivary cortisol   
Microbiological measurement Cortisol 

Diagnostic culture of plaque (CFU/ml) 

 aerobic flora N 

  r, R2 

 oral streptococci N 

  r, R2 

 mutans streptococci N 

  r, R2 

 

21 

0.053, 0.003 

21 

0.169, 0.029 

21 

-0.248, 0.062 

Relative quantitation from plaque by 

TaqMan® QPCR (% Gram positive flora) 

 S. mutans N                   

  r, R2 

 S. sobrinus N 

  r, R2 

 

 

20 

-0.173, 0.030  

18 

-0.009, >0.001 

Absolute quantitation from saliva by 

TaqMan® QPCR (CFU/ml) 

 S. mutans N 

  r, R2 

 S. sobrinus N    

  r, R2 

 

 

21 

-0.261, 0.068 

20 

-0.197, 0.039 

Pearson correlation coefficient (r) of the relationship between longitudinal fold 
changes in log10 transformed bacterial counts with longitudinal fold changes in 
log10 transformed salivary cortisol concentrations. R2 is also shown.   
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Table 4-19: Associations of longitudinal fold chang es in salivary 
antimicrobial proteins with longitudinal fold chang es in salivary cortisol 
concentrations 
Salivary antimicrobial proteins Cortisol 

lactoferrin    N 

    r, R2 

21 

0.202, 0.041 

calprotectin    N 

    r, R2 

21 

0.176, 0.031 

HNPs 1-3    N 

    r, R2 

21 

0.032, 0.001 

LL37     N 

    r, R2 

18 

0.007, >0.001 

S. mutans specific sIgA  N 

    r, R2 

17 

0.521, 0.271 

S. sobrinus specific sIgA  N 

    r, R2 

17 

0.370, 0.137 

S. mitis specific sIgA  N 

    r, R2 

17 

0.283, 0.080 

S. sanguinis specific sIgA  N 

    r, R2 

17 

0.416, 0.173 

Pearson correlation coefficient (r) of the relationship between longitudinal fold 
changes of log10 transformed salivary antimicrobial proteins with longitudinal fold 
changes of log10 transformed salivary cortisol concentrations. R2 is also shown. 
Grey shading indicates mild associations and are shown graphically in Figure 
4-18.  
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Figure 4-18: Associations of longitudinal fold chan ges of sIgA antibody 
titres with longitudinal fold changes of salivary c ortisol 

Scatter plots of associations of longitudinal fold changes of log10 transformed sIgA 
antibody titres specific for a) S. mutans, b) S. sobrinus, c) S. mitis (raw data) and 
d) S. sanguinis with longitudinal fold changes of log10 transformed salivary cortisol 
concentrations. Each data point represents an individual participant. The 
regression line (solid black line), 95% confidence intervals (dotted line) and R2 are 
shown for each graph.  
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4.3 Discussion 

In this study caries-associated biological risk factors were investigated as part of 

a pilot longitudinal clinical study. This work demonstrates that it is extremely 

challenging to follow-up children of this age and in this setting within the 

Childsmile programme. Nonetheless, repeated samples were obtained from a 

proportion of the original study population at specified intervals and longitudinal 

changes in biological variables were assessed.  

The overwhelming limitation of this study was the small sample size. The effect 

of the small sample size was evident throughout the study with respect to the 

constraints of identifying statistically significant differences between groups of 

individuals. As a consequence, this study did not have the power to identify true 

population differences based on the statistical analysis. Thus, in many instances 

the only conclusion must be that there was insufficient evidence to identify any 

differences or changes over time.  

The first and second aims of this study, to determine whether the children who 

returned for follow-up were representative of the study group at baseline and to 

provide a descriptive analysis of the microbiological, immunological, dietary and 

dental disease data of three-year-old children at follow-up were fulfilled. The 

children who returned for follow-up were found to be broadly representative of 

the study group at baseline and descriptions of the microbiological, 

immunological, dietary and dental disease data were presented. 

The third aim of this study was to investigate the effect of NMES consumption on 

the detection of cariogenic bacteria in plaque and saliva. Frequent consumption 

of sugary foods is a well established risk factor associated with increased S. 

mutans colonisation and development of dental caries in young children 

(Habibian et al. 2001; Milgrom et al. 2000). In the present study no association 

was found with regard to the consumption of NMES (of which on average greater 

than 90% comprised sucrose) with the detection of cariogenic bacteria in three-

year-old children. However, it is noteworthy that in 86% (n = 19/22 of children 

with available NMES consumption data) the percentage of daily calories 

represented by NMES exceeded the national guidelines of 10%. It is likely that 
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the data reported here were compromised by the small sample size. The FFQ 

used in this study is designed to estimate differences in the eating behaviours of 

populations of greater than 100 individuals and thus, there was insufficient 

power to detect real differences with regard to NMES consumption in this study. 

Furthermore, the low caries rate in the study population (only two children with 

measurable caries, for one of which there was no data for NMES consumption) 

negated even a descriptive analysis of the influence of NMES consumption on 

dental decay experience.  

The fourth aim of this study was to investigate how the oral biofilm changes over 

time. Assessment of the bacterial load of plaque by microbial culture of the 

total aerobic flora revealed no change in the bacterial load of plaque over time, 

indicating that total numbers of aerobic and facultative anaerobic bacteria in 

the dental plaque of children remained constant from one to three-years of age. 

This was perhaps unexpected as during the sampling period the primary 

dentition continued to erupt in these children, providing new attachment sites 

and would have presumably contributed to increased bacterial colonisation. This 

is most likely explained by the sampling techniques employed in this study. The 

reduction in the proportion of total oral streptococci from 40% at baseline to 33% 

at follow-up likely reflects an increase in the diversity and maturation of the 

oral biofilm from one- to three-years of age. With the exception of Lactobacillus 

spp. anaerobic plaque bacteria, associated with mature oral biofilms, were not 

investigated within the present study. The numbers and diversity of anaerobic 

bacteria in the oral biofilm are known to increase with increased age (Kononen 

2000; Sutter 1984). It is possible and likely that the numbers of anaerobic plaque 

bacteria increased during the sampling period, commensurate with previous 

reports in three-year-old children (Kononen et al. 1994). Indeed, consistent with 

this notion, Lactobacillus were undetectable by culture of plaque at baseline but 

were detected in three of 23 children at follow-up. 

There were trends for increased colonisation by S. mutans with increased age of 

children. However, the data in support of this were compromised by the small 

follow-up rates. The complete eruption of the primary dentition by around 

three-years of age, specifically the molars provides new attachment sites for 

microbial adherence and presumably would contribute to increased S. mutans 

colonisation. The finding that the bacterial load of plaque did not change 
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longitudinally, together with the increase in S. mutans as a proportion of Gram 

positive plaque flora suggest that the proportion of S. mutans in dental plaque 

increased in the study group over time. This is in agreement with a previous 

study which reported longitudinal increases in S. mutans as a proportion of total 

oral flora in children aged three- to four-years (Parisotto et al. 2011).  

Differences in the culture data compared to TaqMan® QPCR data were evident 

at both time points. Longitudinal fold changes in S. mutans cultured or detected 

from plaque were statistically correlated with each other (r = 0.561, p = 0.01), 

indicating that as detection of Mutans streptococci by culture increased over 

time so too did detection of S. mutans in plaque by TaqMan® QPCR. However, 

changes in salivary S. mutans did not correlate with changes in Mutans 

streptococci cultured from plaque or with S. mutans detected in plaque by 

TaqMan® QPCR. This study indicates that the tooth-associated dental plaque is a 

more clinically relevant and reliable method for the detection of S. mutans. 

Additionally, data reported here confirm TaqMan® QPCR to be a more sensitive 

method for enumeration of S. mutans in dental plaque.  

Recent molecular studies describing the oral metagenome have indicated caries 

activity does not necessarily correlate with the presence of S. mutans. In one 

study 10% of children with rampant caries in the permanent dentition did not 

have detectable S. mutans by molecular techniques (Aas et al. 2008). A separate 

study utilising 454 pyrosequencing reported almost a complete absence of S. 

mutans in carious lesions, although other species such as Veillonella and 

Corynebacterium were found to be present (Belda-Ferre et al. 2011). Another 

recent study used Roche pyrosequencing to estimate the bacterial diversity of 

different carious lesions. In this study it was demonstrated that S. mutans was 

commonly associated with enamel caries but was undetected in dentine and 

deep dentine lesions (Simon-Soro et al. 2012a). Thus S. mutans appear to be 

most commonly associated with childhood caries which once established 

progresses into dentine and bacterial species other than S. mutans become 

important. Incidentally, in the present study the BASCD criteria used to estimate 

caries experience only detects caries into dentine and not white spot enamel 

lesions.  
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Future population-based studies of the oral metagenome and transcriptome 

associated with health and disease, particularly in young children are required to 

elucidate the role of other bacterial species, particularly the uncultivatable 

species in the development of dental caries. Childsmile’s young target age group 

and multiple visit interventions could provide a platform from which to 

longitudinally investigate the development of the oral metagenome in children 

through to adolescence and all stages of disease. As oral health has been related 

to cancer and cardiovascular diseases (Aida et al. 2011), such a study could have 

far reaching implications beyond those specifically related to oral health.  

A further aim of this study was to investigate changes in the oral biofilm 

coincident with the evolution of the salivary immune response. It was 

hypothesised that changes in the salivary immune response would influence the 

development of the oral biofilm. This is the first study to document changes in 

the concentrations of lactoferrin, LL37, calprotectin and the HNPs 1-3 in 

children of this age. The median concentrations of the HNPs 1-3 and LL37 were 

lower than reported in a study of children aged 11- to 15-years (Tao et al. 2005). 

Additionally, previous studies have reported increased sIgA levels with increased 

age in older children (Childers et al. 2003; Parisotto et al. 2011). Together this 

data support a role for the ongoing maturation and development of salivary 

immune responses during early childhood. 

Previous cross-sectional analysis in one-year-old children indicated that the 

concentrations of antimicrobial proteins in saliva increased non-specifically in 

response to increased numbers of oral bacteria. However, longitudinal data 

presented here indicate some association of increased concentrations of the 

HNPs 1-3 with increased numbers of S. mutans in dental plaque that is 

independent of the numbers of total aerobic plaque flora. This finding is in 

agreement with a cross-sectional study in 13-year-old children which reported a 

significant correlation of the HNPs 1-3 with numbers of S. mutans in dental 

plaque (Phattarataratip et al. 2011). 

Longitudinal increases in LL37 were not associated with longitudinal increases in 

S. mutans detected from plaque or saliva. However, detectable concentrations 

of LL37 were positively correlated with the proportion of S. mutans detected in 

plaque of three-year-old children and were significantly higher in three-year-old 
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children in whom Mutans streptococci were cultured from plaque. Low 

concentrations of the HNPs 1-3 (Tao et al. 2005) and LL37 (Davidopoulou et al. 

2012) have previously been attributed to increased caries risk in young children. 

These antimicrobial proteins are genetically encoded and differences in their 

concentrations in saliva have been attributed to gene copy number and genetic 

polymorphisms (Dale et al. 2006). Thus, individuals with a reduced ability to 

produce adequate concentrations of antimicrobial proteins in the context of 

increased colonisation by S. mutans may become more susceptible to caries 

initiation. However, further studies are required to adequately determine 

whether low concentrations of antimicrobial proteins are a risk factor for caries 

in young children.  

Sources of HNPs 1-3 and LL37 in the oral cavity include neutrophils, which enter 

the oral cavity via the gingival crevicular crevice and both peptides are released 

from submandibular glands, which are a major source of unstimulated saliva 

(Tao et al. 2005). This would suggest that the presence of these peptides in 

saliva is due to constitutive, non-specific immune mechanisms. However, 

longitudinal data reported here indicate some association with numbers of S. 

mutans in the dental plaque of young children. One concern with this finding is 

that the partial eruption of teeth is a source of inflammation with associated 

increases in neutrophil influx and concentrations of antimicrobial proteins in 

saliva. The presence of partially erupted teeth was not controlled for in this 

study and thus could confound the data reported here.  

Neutrophils continuously enter the oral cavity via the gingival crevicular crevice 

and increased numbers of neutrophils are associated with increased severity of 

periodontal disease (Bhadbhade et al. 2012). However, there is no evidence that 

neutrophils are important for caries resistance since individuals with neutrophil 

deficiencies are not subject to higher prevalence of dental caries, except in rare 

circumstances (Antonio et al. 2010).  

Other sources of HNPs 1-3 and LL37 include expression by salivary duct cells 

(Dale et al. 2006). Additionally, LL37 is expressed within the oral epithelium and 

its expression is inducible by bacterial stimulation. Expression of human beta-

defensin 2 (hBD2) is also induced in response to bacterial stimulation (Dale and 

Fredericks 2005). The oral epithelium is capable of distinguishing between 
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commensal and pathogenic organisms via the use of differential signalling 

cascades in response to bacterial stimulation (Chung and Dale 2008). It is 

possible that LL37 expression by the oral epithelium may be regulated through a 

similar mechanism. This has yet to be investigated but could potentially provide 

a mechanism through which LL37 concentrations are associated with numbers of 

S. mutans in dental plaque. 

The association for longitudinally increased sIgA antibody titres specific for S. 

mutans and S. sobrinus with increased numbers of S. mutans detected in saliva, 

suggests that specific sIgA antibodies increased in response to the presence of 

cariogenic bacteria in saliva. This association was not evident for S. mutans in 

dental plaque. One reason for this apparent dichotomy may be due in part to the 

mechanism of induction of the sIgA antibody response. Firstly, migration of 

antigen-sensitised B cells from the gut-associated lymphoid tissue to the salivary 

glands is an important route of antibody induction (Brandtzaeg 1996). Secondly, 

bacterial antigens stimulate the proliferation and differentiation of plasma cells 

locally in salivary glands (Marcotte and Lavoie 1998). In both instances oral 

bacteria present within dental plaque are not readily accessible for sIgA 

antibody induction by these routes, while bacteria present in saliva are. 

Furthermore, sIgA antibodies absorbed to bacteria makes them unavailable for 

measurement using the techniques employed here. Moreover, sIgA antibody 

responses are subject to significant circadian variation with higher levels at 

night compared with during the day (Dimitriou et al. 2002). Therefore, the time 

of day at which samples were collected, specifically the time since tooth-

brushing, which disrupts the oral biofilm and releases bacterial cells into saliva, 

presumably making them available for sIgA induction and absorption, is likely 

important for the measurement of salivary proteins and should be considered for 

future clinical studies.  

A recent study demonstrated that the breadth of the sIgA antibody response to 

different S. mutans epitopes within individuals is important for caries-resistance 

(Parisotto et al. 2011). Glucan-binding protein B (GbpB) is involved in 

accumulation and aggregation of S. mutans into the dental biofilm (Stipp et al. 

2008) and it was reported that children with low levels of sIgA reactive with 

GbpB at baseline had a 7.5 higher chance of developing caries during the study 

period. Furthermore, antibody responses in children from the caries-free group 
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increased significantly to a greater number of S. mutans peptides compared with 

the caries active group. In the present study sIgA antibody titres were assessed 

using whole fixed bacterial cells. The use of purified antigens derived from 

cariogenic bacteria to assess sIgA responses are likely a more reliable indicator 

of caries susceptibility. Insufficient volume of saliva negated these investigations 

in the present study.  

These data suggest that S. mitis specific sIgA antibodies may have some limited 

effect on the accumulation of S. mutans in dental plaque. This perhaps indicates 

the presence of antibodies directed against shared streptococcal antigens and 

may be one method that commensal species use to persist within the oral cavity. 

In support of the notion of cross-reactive antibodies was the finding that 

antibody titres within individuals were statistically, positively correlated with 

each other (data not shown). This could have been further investigated by prior 

absorption of saliva against each of the bacterial species to be tested but 

insufficient volume of saliva negated this analysis.  

The inverse association of S. mitis specific antibodies with decreased S. mutans 

accumulation in dental plaque may also be explained indirectly through 

increased numbers of S. mitis. S. mitis is an early coloniser of the oral cavity 

and remains numerically significant throughout life (Hohwy et al. 2001). S. mitis 

successfully colonises numerous habitats in the oral cavity including the oral 

mucosa and dental plaque. Studies have demonstrated that the presence of S. 

sanguinis in dental plaque negatively correlates with the presence of S. mutans, 

thereby providing direct protection against S. mutans colonisation (Caufield et 

al. 2000). It therefore follows that increased S. mitis specific antibodies may 

result from greater accumulation of S. mitis in dental plaque and thus provides 

protection against S. mutans colonisation through competition. Due to the costs 

associated with running TaqMan® QPCR only the cariogenic species were 

quantified in the present study. Future studies of the oral metagenome and 

transcriptome could help to elucidate the role of non-cariogenic bacterial 

species and potentially identify bacterial species whose presence may protect or 

delay against caries initiation.  

The sixth aim of this study was to investigate if the composition of the oral 

biofilm and the nature of the salivary immune response influence dental disease 
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outcomes in young children. This study was designed to measure clinical disease 

scores only at follow-up, as this is the time when tooth decay becomes more 

clinically relevant. Three-year-old national dental inspections are performed as 

part of the Childsmile evaluation and the same criteria was used for the present 

study. These inspections are not performed in dental surgeries. The BASCD 

criteria define the standards by which these inspections should be performed. 

However, the resources available in these settings are limited and thus a 

thoroughly detailed examination cannot be performed. White spot enamel 

lesions cannot be measured with consistency and so only dentine caries are 

recorded. Based on previous national dental inspection data for the prevalence 

of tooth-decay in Scottish three-year-olds and given the demographics of study 

participants, the caries rate for this study was anticipated to be between 25% to 

40% (McMahon et al. 2010). Of the 23 children successfully recalled at follow-up, 

only two children had dental decay, representing less than 9% of the study group 

at follow-up. This negated any statistical analyses to investigate the effect of 

cariogenic bacteria or the salivary immune response on clinical disease scores.  

A descriptive analysis of the changes in the composition of the oral biofilm and 

the salivary immune response in both children with caries was performed. While 

the merit of data from only two children is questionable some interesting trends 

were identified. Both of the children with measureable caries at age three-years 

had the highest baseline levels of S. mutans detected in saliva and plaque of all 

the children who returned for follow-up and amongst the highest of all the 

children who were recruited at baseline. This finding is consistent with previous 

reports that high numbers of S. mutans at an early age are a risk factor for 

caries development in the primary dentition (Alaluusua and Renkonen 1983). At 

follow-up the numbers of S. mutans detected in both plaque and saliva in both 

children decreased substantially, consistent with reports that S. mutans are less 

important in lesion progression (Simon-Soro et al. 2012a). Furthermore, both 

children had amongst the highest baseline concentrations of innate antimicrobial 

proteins of all children who were followed-up, which remained amongst the 

highest concentrations detected at follow-up.  

Of additional interest was the finding that both children with measurable caries 

were followed-up via domiciliary visits. This suggests perhaps that the parents of 

children with caries opted out of bringing their child along to follow-up 
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appointments in a clinical health centre setting. Thus, causing a bias in the 

caries rates reported here and could account for the lower than expected caries 

rates in this cohort. However, whether parents actively opted out of the study or 

simply just did not respond or show up for follow-up appointments is not known. 

A recent study which investigated the use of positive consent on participation 

rates of caries studies in Wales concluded that parents of children with caries 

experience were more likely to opt out their child from dental surveys if positive 

consent was used than parents with caries-free children. Positive consent was 

obtained from parents of all children at baseline who participated in the present 

study.  

A major limitation of the present longitudinal study was the poor follow-up 

rates, which were only 37% of the original study group at baseline. The use of 

domiciliary visits, although resource intensive, were productive for successful 

follow-up participation of those who failed to attend health centre 

appointments. Moreover, there were measurable differences in the levels of S. 

mutans detected in the plaque and saliva of children according to the 

recruitment method used. One reason for this may be due to tooth-brushing 

habits. Parents who brought their child along to their allocated appointment in 

the health centre and therefore actively engaged with the study may have been 

more likely to ensure the child brushed their teeth on that morning compared 

with the ‘hard to reach’ parents who participated with minimal effort on their 

part.  

The final aim of this longitudinal study was to investigate if socioeconomic 

inequalities or life stresses associated with changes in the salivary immune 

response or oral biofilm development. Children from families with a relatively 

poor income at baseline demonstrated the greatest increases in S. mutans in 

plaque over the study period. Conversely, the greatest increases in plaque S. 

mutans were found to be in children living in relatively less deprived areas or 

from parents with a higher level of education. This finding seems to indicate an 

underlying disparity within the data for assessing socioeconomic status in this 

study. Indeed, living in a deprived area was statistically associated with parents 

who obtained a secondary school education (p = 0.005, by Fisher’s exact) but not 

with an annual income of £10, 000 or less (p = 0.748, by Fisher’s exact). The cut 

off point for the dichotomisation of annual income received was arbitrarily 
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chosen in an attempt to compare the most deprived families with those who 

were relatively less deprived. Figures from the Scottish Government suggest the 

annual income for a family living in Glasgow is £22, 000. Thus, a cut off point 

closer to this figure may have more successfully reflected the socioeconomic 

position of families as indicated by the other measures. Moreover, the finding 

that children from a relatively more affluent background (as indicated by a 

higher level of parental education and living in a less deprived area) were 

associated with greater increases in the proportion of S. mutans in dental plaque 

reflects previous cross-sectional data which demonstrated that these children 

also had higher numbers of S. mutans cultured and detected in plaque and saliva 

at baseline. Despite these disparities the overwhelming limitation with regard to 

assessing the effect of socioeconomic status and life stresses on biological risk 

factors of caries in the present study is most likely due to the small sample size 

and insufficient power to detect statistically significant differences.  

There was no evidence to suggest that salivary cortisol concentrations were 

influenced by the socioeconomic status of children. As previously discussed the 

findings reported here are likely limited by potential biases associated with the 

measurement of salivary cortisol at a single time point and the small sample 

size. Future studies should ideally look to measure salivary cortisol at numerous 

times throughout the day in order to determine a basal cortisol level for each 

individual.  

Salivary cortisol concentrations increased significantly over the study period. 

This is consistent with a previous study (Watamura et al. 2004) and indicates 

that circadian regulation of the hypothalamic-pituitary axis continues to mature 

during early childhood. There was no evidence that salivary cortisol 

concentrations influenced the development of the oral biofilm or the 

concentrations of salivary innate antimicrobial proteins. However, increases in 

salivary cortisol were associated with increases in sIgA antibody titres specific 

for oral bacteria. This was surprising given previous studies have documented 

lower levels of antigen specific sIgA antibodies following vaccination under 

conditions of chronic stress (Cohen et al. 2001). However, the longitudinal 

findings reported here reflect previous cross-sectional observations of higher 

sIgA antibody titres in children with higher concentrations of salivary cortisol. 

Whether increases in specific sIgA antibody titres truly reflect regulation by 
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cortisol remains unclear. Both salivary cortisol and sIgA antibodies are subject to 

circadian regulation, although their patterns of expression are opposing and thus 

unlikely to result in the observed longitudinal associations. It is likely these 

associated longitudinal increases in reflect the normal development and 

maturation of immune and stress responses in young children.  

4.4 Conclusion 

Work reported here demonstrates that it is extremely challenging to follow-up 

children of this age and in this setting. However, by the methods employed here, 

variables hypothesised to influence dental caries were obtained and successfully 

measured in young children. These studies were performed during the early 

development of the Childsmile programme, which has now expanded to become 

part of a national dental service for all children in Scotland. Thus, provided 

lessons are learned from the recruitment methods used here, the potential to 

perform large-scale clinical studies within the Childsmile programme has 

increased. In particular, dental practice participation will likely be crucial to 

recruit substantial numbers of very young children from within the Childsmile 

programme. Additionally, given the demographics, domiciliary visits proved 

successful for the recruitment of ‘hard to reach’ children. Alternatively, the 

collection of samples from three-year-old children undergoing national dental 

inspections within nurseries could provide a useful opportunity for sample 

collection and would allow access to a large cross-section of children from across 

the socioeconomic spectrum. Thus, Childsmile’s young target age group and 

multiple visit interventions could provide a valuable platform from which to 

perform large-scale longitudinal clinical studies with enormous potential related 

to both systemic and oral diseases.  

The frequency of detection and relative proportion of S. mutans in dental plaque 

increased over time. Coincidentally, the salivary immune response continued to 

mature and develop as indicated by increases in both innate and adaptive 

immune mediators. Data reported here suggest that increased concentrations of 

the HNPs 1-3 and LL37 may be partly influenced by increases in the proportion of 

S. mutans in dental plaque and low concentrations of these antimicrobial 

proteins in saliva may be a risk factor for caries development. These findings 
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warrant further investigation in a larger study, particularly in relation to dental 

disease scores. The role of sIgA antibodies in limiting the accumulation of 

cariogenic bacteria in dental plaque remains unclear. Assessment of sIgA 

antibodies to whole bacterial cells likely includes the detection of and is 

confounded by the presence of cross-reactive antibodies of low-specificity. 

Studies investigating sIgA antibody responses to specific S. mutans epitopes 

involved with their adherence and persistence within the oral biofilm may have 

more merit. Moreover, future studies should ideally collect samples at specified 

times and the time since tooth-brushing should be known. The dental data 

reported here were compromised by a high drop out rate and obvious recall bias. 

However, the limited data available support previous reports that caries 

development is associated with high levels of S. mutans in dental plaque at one-

year of age. Given recent evidence from oral metagenomic studies indicating the 

importance of S. mutans in the initiation of white spot enamel lesions it may be 

more important for future studies to accurately measure caries initiation, since 

by the time caries enters into dentine the aetiology of the disease changes to 

become less mineral and more tissue dependent. Thus, factors such as the 

concentrations of antimicrobial proteins may have limited protective effect once 

the disease is established. Future studies of the oral metagenome and 

transcriptome in young children are required to identify the important processes 

involved with disease initiation. There was insufficient evidence to indicate 

whether salivary cortisol concentrations were associated with socioeconomic 

status or oral biofilm development. Future studies should ideally aim to assess 

basal cortisol levels from children across the socioeconomic spectrum.  
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Chapter 5: The adaptive immune response to 

Streptococcus mutans 
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5.1 Introduction 

The adaptive immune response can offer protection against colonisation by S. 

mutans and ultimately against the development of dental caries. Transient 

protection against S. mutans is offered by topically administered anti-S. mutans 

monoclonal antibodies (Ma et al. 1987). Active immunisation stimulates 

protective IgA production in response to streptococcal protein antigens and 

confers protection in animal models (Culshaw et al. 2007; Taubman and Nash 

2006) Moreover, greater peripheral blood mononuclear cell proliferation and 

higher levels of sIgA were observed in caries resistant compared to susceptible 

individuals, suggesting protective immunity may be generated (Hocini et al. 

1993; Parkash et al. 1993). These studies remain somewhat controversial and the 

mechanisms driving this apparent protective immunity are unknown. The 

potential exists for individuals to raise an antibody response against S. mutans. 

However, to date, this has proved challenging to effectively manipulate. 

Rationale design of therapeutic strategies may be aided by further 

characterisation of the early interactions between the host immune system and 

S. mutans that are prerequisite to protective antibody generation.     

Dendritic cells (DCs) are critical in the initiation of pathogen-specific adaptive 

immune responses through T cell activation (Banchereau and Steinman 1998). 

Immature DCs residing within peripheral tissues, are highly endocytic and 

express low levels of major histocompatability complex class-II (MHCII) and co-

stimulatory molecules. Upon antigen encounter, DCs up-regulate MHCII and co-

stimulatory molecules and migrate to secondary lymphoid tissue, a process 

known as DC maturation. Once arriving in the lymph node mature DCs present 

antigen in the context of MHCII to T helper cells. Antigen-specific T helper 

responses culminate in effector responses and subsequent B cell activation and 

specific antibody production (Figure 5-1). Thus, DCs play an important role 

bridging innate and adaptive immune responses and represent a critical step in 

the induction of protective immunity. Crucially, following DC activation 

decisions regarding the nature of the immune response are made rapidly (Itano 

et al. 2003). Co-stimulatory signals and the cytokine environment elicited by 

activated DCs at the time of T cell polarisation have a powerful influence on the 

nature of T cell proliferation and effector functions (O'Garra 1998).  
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In the current study a novel system was employed to dissect the early immune 

response in the context of S. mutans infection (Ravindran et al. 2007; Rush et al. 

2009). The peptide designated Eα was expressed together with green fluorescent 

protein (GFP) and recombinant EαGFP was created. Uptake of exogenous EαGFP 

and subsequent antigen processing and presentation by DCs results in the 

expression of Eα-MHCII peptide complexes on the surface of activated DCs. The 

monoclonal antibody recognises Eα-MHCII peptide complexes and can thus be 

used to detect and quantify antigen presentation in the context of S. mutans 

infection (Figure 5-2). Furthermore, transgenic TCR TEa T cells also recognise 

Eα-MHCII peptide complexes and can be used to detect T cell responses to 

presented antigen (Figure 5-2).  

In an attempt to detect native bacterial antigen presentation by DCs, attempts 

were made to insert the EαGFP peptide construct into the Streptococcal plasmid 

pAYBG854S (Yoshida and Kuramitsu 2002) and to transfect this plasmid vector 

into S. mutans. However, after repeated attempts the expression of EαGFP could 

not be stably maintained in S. mutans. Thus, exogenous EαGFP in conjuction 

with S. mutans was used in the current studies. Using this system the key initial 

stages of the adaptive immune response following S. mutans exposure were 

characterised.  

These studies aimed to characterise the In vitro and In vivo phenotype of DCs in 

response to S. mutans.  
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Figure 5-1: Schematic overview of the adaptive immu ne response 

Dendritic cells (DCs) are the major antigen presenting cells. They capture antigen 
in peripheral tissues which promotes their maturation via induction of MHCII and 
co-stimulatory molecules and migration to secondary lymphoid tissues where they 
present antigen to naïve CD4 T cells. Upon recognition of their cognate antigen 
CD4 T cells proliferate and migrate to effector sites. Some activated T cells 
migrate to the B cell compartment where they interact with and provide help to B 
cells, promoting affinity maturation and antibody production.  
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Figure 5-2: Schematic of the EaGFP system 

A peptide designated ‘Eα’ was expressed with green fluorescence protein (GFP) 
and recombinant EαGFP was created. Eα peptide binds I-Ab MHC class II. The 
MHC class II-Eα peptide complex is recognised by the monoclonal antibody YAe, 
allowing for detection and quantification of antigen presentation. The T cell 
response to DC antigen presentation was investigated using C57BL/6 mice 
expressing the T cell receptor transgenic TEa T cell, which also recognises the 
MHC class II-Eα peptide complex. Thus, addition of exogenous EαGFP to S. 
mutans and DC co-cultures allows for detection of antigen presentation and 
subsequent incubation of peptide pulsed DCs with TEa T cells allows for 
quantitation of T cell proliferation in the context of S. mutans infection.  
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5.2 Results 

5.2.1 In vitro dendritic cell activation and maturation following 

exposure to S. mutans 

The initiation of an adaptive immune response to S. mutans was first 

investigated by assessing the ability of bone-marrow-derived DCs (BMDCs) to 

phagocytose S. mutans. After 4 h co-culture, chains of green fluorescent S. 

mutans were visible within the BMDC (Figure 5-3a). Following 24 h exposure a 

significant accumulation of S. mutans were visible within the BMDC (Figure 

5-3b). The images shown were kindly provided by Dr John Butcher.  

To elucidate the effects of phagocytosis of S. mutans on DC activation, BMDCs 

were co-cultured with live or heat-killed (HK) S. mutans, stained with antibodies 

specific for cell surface receptors and analysed by flow cytometry. It was 

observed that a ratio of 1 DC to 100 HK S. mutans stimulated optimal activation. 

Excessive bacterial proliferation in the culture medium starved the DC of 

nutrients, resulting in a statistically significant reduction in DC viability. It was 

observed that a reduced ratio of 1 DC to 10 live S. mutans allowed the bacteria 

to proliferate and ensured the survival of the DC (Figure 5-4). Thus, heat-killed 

S. mutans was co-cultured with DCs at a ratio of 100:1 and live S. mutans at a 

ratio of 10:1 for all subsequent investigations.  

Cell surface expression of co-stimulatory molecules: CD40, CD80, CD86 and MHC 

class II by CD11c positive cells in response to S. mutans was assessed by the 

mean fluorescent intensity (MFI). There was a general trend to up-regulation of 

co-stimulatory molecules. The intensity of CD40 staining increased after 4 h and 

by 24 h the intensity increased 10-fold in response to both live and heat-killed S. 

mutans. At 4 and 24 h there was a three-fold increase in CD80 staining and 

increased CD86 staining. MHC class II staining was only modestly increased 

following 24 h exposure to both heat-killed and live S. mutans (Figure 5-5a). 

Representative histograms demonstrating minimal background staining and 

increased MFI of co-stimulatory molecules are shown (Figure 5-5b).  
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The percentage of CD11c positive cells expressing co-stimulatory molecules was 

also assessed to determine whether the proportion of cells expressing co-

stimulatory molecules was altered in response to co-culture with S. mutans 

(Figure 5-5c). The percentage of cells expressing CD40, CD80 and CD86 increased 

following exposure to S. mutans, although this did not reach statistical 

significance. Commensurate with the constitutively high expression of MHC class 

II on BMDCs, the percentage of CD11c positive cells expressing MHC class II 

remained unchanged in response to S. mutans exposure.  

Taken together this data demonstrate that BMDCs become activated and 

undergo maturation as indicated by the up-regulation of co-stimulatory 

molecules in response to the phagocytosis of S. mutans In vitro.  
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Figure 5-3: Phagocytosis of S. mutans-activated dendritic cells 

Bone marrow derived DCs (BMDCs) were generated from C57BL/6 mice and co-
cultured with green fluorescent S. mutans (pDM15). DC membranes were stained 
with Alexa-fluor 647 (red), and nuclei stained with DAPI (blue). S. mutans are 
visible within BMDCs after (a) 4 h and (b) 24 h of co-incubation. Inset panels 
demonstrate views of x, y and z axis, confirming the intracellular location of S. 
mutans (630x magnification, 7x digital zoom). Images courtesy of Dr John Butcher.  
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Figure 5-4: DC viability following S. mutans co-culture 

Seven day old BMDCs were co-cultured with media only control, live S. mutans 
UA159 (Sm) at a ratio of 100 or 10 bacterial cells per DC or heat-killed (HK) S. 
mutans at a ratio of 100 bacterial cells per DC for 18 h. Cells were harvested and 
stained with anti-CD11c and analysed for incorporation of Annexin V (FITC) and 7-
AAD by flow cytometry. (a) Representative flow cytometric dot plots showing the 
proportion of CD11c cells positive for annexin V and 7-AAD. (b) Bar chart showing 
the percentage of viable (7AAD negative, annexin V negative and CD11c positive) 
cells. Data are mean and SEM of a single experiment performed in duplicate and 
analysed by ANOVA (** p < 0.01 compared with DC only media control).  
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Figure 5-5: Up-regulation of co-stimulatory molecul es by DCs in response to 
S. mutans  

BMDCs were co-cultured with either live or heat-killed S. mutans UA159 for 4 and 
24 h, then stained with CD11c and CD40, CD80, CD86 or MHC II specific 
antibodies and analysed by flow cytometry. (a) Mean fluorescent intensity (MFI) of 
BMDCs after 4 or 24 h of co-culture. Data are representative of three independent 
experiments. (b) Representative histograms of cell surface staining of CD11c 
positive cells, as in (a) demonstrating minimal background staining. (c) Percentage 
of BMDCs stained positive for co-stimulatory molecules after 24 h of co-culture. 
Data are mean and SEM of three independent experiments.  
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5.2.2 In vitro antigen presentation by dendritic cells following 

exposure to S. mutans 

Antigen presentation by BMDCs co-cultured with live or heat-killed S. mutans 

was investigated using the EαGFP system (Figure 5-2). The addition of exogenous 

EαGFP to the co-culture system allowed for the detection and quantification of 

antigen presentation in the context of S. mutans infection using the monoclonal 

antibody, Y-Ae, which recognises MHCII-Eα peptide complexes. There was an 

increase in the cell surface expression of MHCII-Eα complexes as indicated by an 

increase in the MFI of Y-Ae staining when BMDCs were cultured with exogenous 

EαGFP. This was further increased in response to simultaneous stimulation with 

heat-killed or live S. mutans (Figure 5-6b). There was a statistically significant 

increase in the percentage of CD11c positive cells expressing MHCII-Eα 

complexes when BMDCs were cultured with exogenous EαGFP alone (27%) 

compared with the media only control (6%). The percentage of CD11c positive 

cells expressing cell surface MHCII-Eα complexes was further increased by the 

addition of heat-killed S. mutans (39%) or live S. mutans (31%). In each case the 

increased percentage of CD11c positive cells expressing cell surface MHCII-Eα 

complexes was statistically significant compared with the appropriate negative 

control (i.e. without EαGFP). The addition of heat-killed S. mutans together with 

exogenous EαGFP modestly increased the percentage of cells presenting MHCII-

Eα complexes, which reached only borderline statistical significance (p = 0.051, 

by Student’s t test) compared with EαGFP alone. Addition of live S. mutans 

together with exogenous EαGFP also increased the percentage of CD11c positive 

cells expressing MHCII-Eα complexes but this did not reach statistical 

significance compared with EαGFP alone (Figure 5-6c). Representative flow 

cytometric plots demonstrate the gated populations for each condition and the 

isotype controls confirm minimal background staining (Figure 5-6a). Thus, these 

data demonstrate that in addition to the ability to become activated, BMDCs are 

capable of processing and presenting antigen in the context of S. mutans 

infection In vitro.  

As a specificity control, antigen presentation by BMDCs co-cultured with live or 

heat-killed E. coli was investigated using the EαGFP system. Cell surface 

expression of MHCII-Eα peptide complexes was increased by BMDCs co-cultured 
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with live E. coli and exogenous EαGFP simultaneously compared with heat-killed 

E. coli and EαGFP or exogenous EαGFP alone (Figure 5-7b). In agreement with 

previous data, a statistically significant increase in the percentage of CD11c 

positive cells presenting MHCII-Eα peptide complexes was observed when BMDCs 

were co-cultured with exogenous EαGFP alone (40%) compared with the media 

control (5% [Figure 5-7c]). The percentage of CD11c positive cells presenting 

MHCII-Eα peptide complexes was statistically significantly increased when BMDCs 

were co-cultured simultaneously with live E. coli and exogenous EαGFP (38%) 

compared with live E.coli only (2%). The percentage CD11c positive cells 

presenting MHCII-Eα peptide complexes increased when BMDCs were co-cultured 

simultaneously with heat-killed E.coli and EαGFP (43%) compared with heat-

killed E.coli alone (13%), although the difference did not reach statistical 

significance. Representative flow cytometric plots demonstrate the gated 

populations for each condition and the isotype controls confirming minimal 

background staining are shown (Figure 5-7a). Together these data confirm the 

EαGFP system is a useful model to investigate antigen presentation in the 

context of bacterial infection. Moreover, antigen presentation was not 

compromised by the presence of either S. mutans or E. coli.  
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Figure 5-6: Antigen presentation by BMDCs cultured with live S. mutans  

BMDCs were cultured with exogenous EαGFP alone, heat-killed or live S. mutans 
UA159 with and without exogenous EαGFP for 18 h. Cells were then harvested 
and stained with CD11c and Y-Ae specific antibodies. (a) Representative flow 
cytometric scatter plots showing the proportion of cells positive for CD11c and Y-
Ae. Isotype controls demonstrating minimal background staining are also shown. 
(b) MFI of Y-Ae staining representative of three independent experiments. (c) 
Percentage of Y-Ae positive CD11c positive cells; data are mean and SEM from 
three independent experiments. (* p < 0.05, p = 0.051 and ns: not significant by 
Student’s t test compared with indicated control).  
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Figure 5-7: Antigen presentation by BMDCs cultured with live E. coli  

BMDCs were cultured with exogenous EαGFP alone, heat-killed or live E. coli 
DH5A with and without exogenous EαGFP for 18 h. Cells were then harvested and 
stained with CD11c and Y-Ae specific antibodies. (a) Representative flow 
cytometric scatter plots showing the proportion of cells positive for CD11c and Y-
Ae. Isotype controls demonstrating minimal background staining are also shown. 
(b) MFI of Y-Ae staining representative of two independent experiments. (c) 
Percentage of Y-Ae positive CD11c positive cells; data are mean and SEM from 
two independent experiments. (* p < 0.05 by Student’s t test compared with 
indicated control).  
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5.2.3 In vitro cytokine secretion by dendritic cells following 

exposure to S. mutans 

Culture supernatants from BMDCs exposed to live or heat-killed S. mutans were 

assessed for the presence of cytokines IL-10, IL-12 and the chemokine CCL20. 

BMDCs co-cultured with live or heat-killed S. mutans expressed greater 

concentrations of IL-10, IL-12 and the chemokine CCL20 compared with the 

media only control (Figure 5-8). The difference reached statistical significance 

only for CCL20 (p < 0.05). The concentration of IL-10 was higher (900 vs 355 

pg/ml), while IL-12 was lower (19.6 vs 35.9 ng/ml) in the supernatants of BMDCs 

co-cultured with live S. mutans compared with heat-killed S. mutans, although 

these differences did not reach statistical significance. There was however, a 

statistically significant reduction in the concentration of CCL20 in the 

supernatant from BMDCs co-cultured with live S. mutans compared with heat-

killed S. mutans (52.6 vs 127.4 pg/ml, p < 0.05).   
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Figure 5-8: Cytokine secretion by BMDCs in response  to live S. mutans 

BMDCs were cultured with media only, heat-killed and live S. mutans UA159 for 
18 h. Culture supernatants were collected and investigated for concentrations 
(pg/ml) of secreted (a) IL-10, (b) IL-12 and (c) CCL20 by LuminexTM. Data are 
mean and SEM from two individual experiments. (* p < 0.05 by Tukey comparison 
vs control). 
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5.2.4 In vitro T cell proliferation by dendritic cells following 

exposure to S. mutans 

In order to elucidate the functional impact of these observations, T cell receptor 

transgenic TEa T cells specific for MHCII-Eα peptide complexes were co-cultured 

with BMDCs previously pulsed with antigen as previously described. Subsequent T 

cell proliferation was measured by incorporation and detection of EdU (5-

ethynyl-2’-deoxyuridine) into the DNA of proliferating cells. Representative flow 

cytometric scatter plots of gated populations of proliferating CD4 positive cells 

are shown (Figure 5-9a). There was statistically significant (p < 0.001 by 

Student’s t test) antigen-specific T cell proliferation in response to BMDCs 

exposed to exogenous EαGFP or heat-killed S. mutans together with exogenous 

EαGFP. Interestingly, antigen-specific T cell proliferation did not occur in 

response to live S. mutans with exogenous EαGFP (Figure 5-9).  

To confirm that T cell proliferation in response to live S. mutans had not 

occurred prior to the incorporation of EdU, the experiment was repeated at an 

earlier time point. At this time, TEa mice were unavailable. T cell receptor 

transgenic OT-II C57BL/6 mice contain CD4+ T cells that express a TCR specific 

for chicken OVA323-339 peptide bound to the MHCII molecule I-Ab (Barnden et al. 

1998). Thus, to further investigate T cell proliferation in the context of S. 

mutans infection, BMDCs (derived from C57BL/6 mice) were co-cultured with 

OVA peptide under the same activation conditions as previously described, and 

subsequent T cell proliferation was quantified by EdU incorporation. 

Representative flow cytometric contour plots are shown (Figure 5-10a). There 

was statistically significant antigen-specific T cell proliferation in response to 

BMDCs pulsed with heat-killed S. mutans together with OVA peptide (39%) 

compared with heat-killed S. mutans only (2%, [p < 0.001, Figure 5-10b]). The 

percentage of antigen-specific proliferating T cells at this earlier time point was 

greater than following 96 h co-culture with antigen pulsed BMDCs. However, 

even at this earlier time point there was no antigen-specific T cell proliferation 

in response to live S. mutans with exogenous OVA peptide.  
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Figure 5-9: In vitro T cell proliferation following exposure to live S. mutans 

BMDCs derived from C57BL/6 mice were co-cultured with exogenous EαGFP 
alone, heat-killed or live S. mutans with and without exogenous EαGFP for 18 h. 
BMDCs were harvested, washed and co-cultured with TEa T cells in vitro. T cell 
proliferation was analysed by flow cytometry after 96 h, staining for CD4 and EdU 
incorporation. (a) Representative flow cytometric contour plots demonstrating EdU 
incorporation into proliferating CD4 positive cells. (b) Percentage of proliferating 
CD4 positive cells following challenge. Data shown are mean and SEM (* p < 0.05, 
** p < 0.005 by Student’s t test compared with indicated control). 
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Figure 5-10: In vitro T cell proliferation following exposure to live S. mutans 
at an earlier time point 

BMDCs derived from C57BL/6 mice were co-cultured with exogenous OVA 
peptide alone, heat-killed or live S. mutans with and without exogenous OVA 
peptide for 18 h. BMDCs were harvested, washed and co-cultured with TEa T cells 
in vitro. T cell proliferation was analysed after 72 h by flow cytometric staining for 
CD4 and EdU incorporation. (a) Representative flow cytometric contour plots 
demonstrating EdU incorporation into proliferating CD4 positive cells. (b) 
Percentage of proliferating CD4 positive cells following challenge. Data shown are 
mean and SEM of a single experiment performed in triplicate (*** p < 0.001 by 
Student’s t test compared with indicated control). 
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5.2.5 In vitro cytokine secretion by DC/T cell co-culture following 

S. mutans exposure 

Culture supernatants from BMDCs and T cell co-cultures were assessed for 

cytokines released in response to exposure to live or heat-killed S. mutans 

(Figure 5-11). The concentrations of IL-2, IL-10, IL-12, IFN-γ and IL-17 were 

significantly increased in the culture supernatants in response to exposure to 

heat-killed S. mutans compared with the media only controls. The 

concentrations of IL-2, IL-12, IFN-γ and IL-17 were significantly decreased in the 

culture supernatants in response to live S. mutans compared with heat-killed S. 

mutans exposure. The concentration of IL-10 was significantly increased in the 

culture supernatants in response to live S. mutans compared with the media only 

control (1648 pg/ml vs not detected, p < 0.001) and was also found to be 

significantly higher when compared with exposure to heat-killed S. mutans (380 

pg/ml, p< 0.001 [Figure 5-11b]). There was no difference in the concentrations 

of the chemokine CCL20 in the culture supernatants following exposure to heat-

killed or live S. mutans. These data indicate that cytokine profiles elicited by 

BMDC/T cell co-cultures in response to heat-killed or live S. mutans differ 

significantly. The cytokine milieu at the time of T cell polarisation is important 

for the determination of T cell effector function and thus, likely influenced the 

abrogated T cell response following live S. mutans exposure described earlier.   
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Figure 5-11: Cytokine secretion by DC/T cell co-cul tures in response to live 
S. mutans exposure 

BMDC/T cell co-cultures were exposed to media only, heat-killed or live S. mutans 
UA159 for 72 h. Culture supernatants were collected and investigated for 
concentrations (pg/ml) of secreted (a) IL-2, (b) IL-10 and (c) IL-12 (d) IFN-γ, (e) IL-
17 and (f) CCL20 by LuminexTM. Data are mean and SEM from two individual 
experiments each measured in triplicate. (* p < 0.05, ** p < 0.01, *** p < 0.001 by 
Tukey comparison vs media only control or indicated group). 
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5.2.6 In vivo dendritic cell recruitment in response to S. mutans 

The effect of oral exposure to S. mutans on dendritic cell recruitment in vivo 

was investigated. Cells from the draining lymph nodes (DLNs) of the oral cavity 

were collected 6, 24 and 48 h following intra-oral exposure to S. mutans or 

carrier only control. R848, an imidazoquinoline compound that activates DCs via 

TLR7 (Chaperot et al. 2006) was administered orally as a positive control. Total 

numbers of cells in the DLN increased only modestly in animals 6 and 24 h 

following oral exposure to S. mutans, compared with the carrier-only control 

(Figure 5-12a and b, respectively). By 48 h following oral exposure total cell 

numbers decreased and were equivalent to numbers in the carrier control group 

(Figure 5-12c). There were no differences in the numbers or percentage of 

CD11c positive cells recruited to the DLN of animals 6, 24 or 48 h following oral 

challenge with S. mutans (Figure 5-12d-i). In contrast, total cell numbers in the 

DLN of R848-treated animals (1.9 x 106 cells) markedly increased 24 h post-

treatment compared with the carrier-control (6.8 x 105 cells, p < 0.05 [Figure 

5-12b). This was partly mediated by a statistically significant increase in the 

number of CD11c positive cells recruited to the DLN (1.2 x 105 cells) compared 

with the carrier control (4.4 x 104 cells, p < 0.05 [Figure 5-12e). However, the 

percentage of CD11c positive cells 24 h following R848 was no different 

compared with the carrier control (Figure 5-12h) suggesting the proportion of 

CD11c negative cells also increased. By 48 h, R848-treated animals showed a 

statistically significant decrease in the percentage of CD11c positive cells in the 

DLN compared with the carrier control (p < 0.05 [Figure 5-12i]). 
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Figure 5-12: Dendritic cell recruitment to the DLN in response to oral 
exposure to S. mutans 

C57Bl/6 mice were orally exposed to S. mutans UA159. Cervical lymph nodes 
were harvested 6, 24, and 48 h following oral exposure to carrier-only control, S. 
mutans UA159 or R848. Single cell suspensions were prepared and strained for 
CD11c and analysed by flow cytometry. (a-c) Total number of cells in cervical 
lymph nodes. (d-f) Total number of CD11c+ cells in the DLN. (g-i) Percentage of 
CD11c positive cells in the DLN.  Data shown are mean ± SEM of data from two 
independent experiments (24 h), or a single experiment (6 h and 48 h). In each 
experiment, n = 3 mice per group. * p < 0.05 vs. control by Turkey comparison.  
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5.2.7 In vivo dendritic cell activation in response to S. mutans 

CD11c positive cells from the DLNs of animals orally challenged with S. mutans 

showed no difference in the expression of co-stimulatory molecules (CD40, CD80 

and CD86) or MHCII compared with carrier-only control animals at any time point 

(Figure 5-13a). Additionally, the proportion of CD11c positive cells expressing co-

stimulatory molecules also remained unchanged in S. mutans exposed animals at 

all time points, with the exception of the proportion of CD11c positive cells 

expressing CD40 which was significantly higher 24 h following oral exposure 

compared with control animals (p < 0.05, Figure 5-13b). Cell surface expression 

of co-stimulatory molecules by CD11c positive cells from the DLNs of R848 

challenged animals was statistically significantly increased at 6 and 24 h 

compared with control animals (Figure 5-13a). Furthermore, the proportion of 

CD11c cells stained positive for CD80 at 6 h and CD40 and CD86 24 h following 

oral exposure to R848 were statistically significantly higher compared with 

control animals (Figure 5-13b). Representative histograms of CD11c positive cells 

expressing co-stimulatory and MHCII molecules with minimal background staining 

at 24 h following oral exposure are shown.  
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Figure 5-13: In vivo dendritic cells fail to become activated in respon se to S. 
mutans 

C57Bl/6 mice were orally exposed to S. mutans. Cervical lymph nodes were 
harvested 6, 24 and 48 h following oral exposure to S. mutans UA159, PBS or 
R848. Single-cell suspensions were prepared and CD11c+ cells were assessed 
for expression of CD40, CD80, CD86 and MHCII by flow cytometric analysis. (a) 
Mean fluorescent intensity (MFI) of cells expressing CD40, CD80, CD86 or MHCII 
6, 24 or 48 h following challenge. (b) Percentage of CD11c+ cells stained positive 
for CD40, CD80, CD86 or MHCII. Data are mean ± SEM of data from two 
independent experiments (24 h), or a single experiment (6 and 48 h). In each 
experiment n = 3 mice per group. * p < 0.05, ** p < 0.005 vs. control by Tukey 
comparison. (c) Representative histograms of CD11c+ cell expression of CD40, 
CD80, CD86 and MHCII at 24 h post-exposure to S. mutans or R848.  
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5.3 Discussion 

DC uptake, processing and presentation of bacterial antigens to T-cells represent 

ill-defined yet key stages in the development of adaptive immunity to oral 

pathogens. Work described here used a novel system to dissect the early immune 

responses following oral exposure to S. mutans. Up-regulation of MHCII and co-

stimulatory molecules by BMDCs In vitro demonstrated their ability to become 

activated in the context of S. mutans infection. Furthermore, BMDCs effectively 

processed and presented administered antigen in the presence of live and heat-

killed S. mutans. When cultured with heat-killed S. mutans and antigen, BMDCs 

drove antigen-specific T cell proliferation. However, BMDCs exposed to live S. 

mutans did not. Consistent with this finding, CD11c positive cells from the DLN 

of mice orally challenged with live S. mutans failed to become activated as 

indicated by a failure to up-regulate co-stimulatory molecules and MHCII. The 

cytokine profiles elicited by BMDCs and T cells following exposure to live S. 

mutans may provide clues to explain the abrogated T cell proliferation in 

response to live S. mutans.  

Interleukin 2 (IL-2) is secreted by most T cells immediately following antigenic 

stimulation and induces the proliferation of antigen-specific T cells (Gaffen and 

Liu 2004). Moreover, DCs also secrete IL-2 in the initial stages following bacterial 

stimulation to promote antigen-specific T cell stimulation (Granucci et al. 2001).  

The failure of DC/T cell co-cultures to produce IL-2 following in vitro exposure 

to live S. mutans could account for the failure of BMDCs to induce antigen-

specific T cell proliferation. Furthermore, a significant reduction in the ability of 

BMDCs to secrete IL-12 in response to live S. mutans indicates that despite the 

detection of significant up-regulation of co-stimulatory molecules and 

detectable antigen presentation, BMDCs were not functionally mature. The 

effector cytokine profile elicited in response to heat-killed S. mutans (high 

concentrations of IL-12, IFN-γ and IL-17 together with low concentrations of IL-

10) suggests a robust immune response along the Th1 and Th17 lineages were 

generated. The failure of live S. mutans to promote IL-12 secretion by activated 

BMDCs could explain the failure of BMDCs to induce antigen-specific T cell 

proliferation, and could thus account for the subsequent reduction in IL-2, IFN-γ 

and IL-17 production by T cells. The enhanced production of IL-10 by BMDC/T 
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cell co-cultures exposed to live S. mutans indicates that the cells actively 

responded to the presence of live S. mutans albeit with a distinctly un-

inflammatory cytokine profile compared with exposure to heat-killed S. mutans. 

Interleukin-10 is associated with Th2-type responses; it would have been of 

interest to investigate other Th2 cytokines, such as IL-4, IL-6 and IL-13. 

However, it seems unlikely that live S. mutans induced a Th2-type response as 

there was a complete failure of T cells to proliferate along any lineage. The lack 

of T cell proliferation suggests that live S. mutans are capable of modulating or 

suppressing T cell priming by DCs.  

Antigen targeting to DCs in the absence of inflammation is known to induce 

tolerogenic T cells (Finkelman et al. 1996). A semi-mature tolerogenic DC subset 

expressing high levels of MHCII and co-stimulatory molecules, low level 

expression of pro-inflammatory cytokines and IL-12 together with enhanced 

production of IL-10 have been identified and are consistent with the In vitro DC 

phenotype described here (Lutz and Schuler 2002). Moreover, tolerogenic DCs 

can promote antigen-specific T cell unresponsiveness by converting naïve T cells 

into Treg cells in the absence of T cell proliferation (Rutella et al. 2006). The T 

cells in BMDC/T cell co-cultures were not investigated phenotypically beyond the 

production of cytokines in the co-culture media. Future studies may look to 

characterise the T cells from such co-culture experiments to determine whether 

they are CD4+ CD25+ FoxP3+ Treg cells that produce TGF-β (Chen 2006).  

The mechanisms driving this anti-inflammatory response to S. mutans are not 

known. Previous studies of oral bacteria have demonstrated the ability of 

bacterial pathogens to suppress protective immunity by inhibiting the 

maturation and migration of DCs from the site of infection to the draining lymph 

nodes. In one study uptake of the oral pathogen Porphyromonas gingivalis by DCs 

lead to suboptimal DC maturation that was dependent on the expression of 

major fimbriae (Fim A), a bacterial adhesin associated with the ability of P. 

gingivalis to induce periodontal disease (Jotwani and Cutler 2004). In two 

separate studies it was demonstrated that lipopolysaccharide (LPS) from P. 

gingivalis stimulates DCs to secrete IL-10 but not IL-12 both in vitro (Jotwani et 

al. 2003) and in vivo (Pulendran et al. 2001). Thus, down-regulating antigen 

presentation and subsequent T cell responses.  
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A number of studies have identified the ability of the immune system to 

distinguish between pathogenic and commensal bacteria and thus these data 

reported here raise the question as to whether S. mutans can be considered a 

member of the commensal oral flora? Commensal bacteria have developed 

mechanisms to suppress the immune response. Fusobacterium nucleatum 

stimulates the release of the pro-inflammatory cytokines IL-6 and IL-8 by 

epithelial cells, but S. gordonii fails to trigger an immune response (Hasegawa et 

al. 2007). It has been demonstrated that the bacterial enzyme enolase expressed 

on the cell surface of S. sobrinus stimulated the release of IL-10. It was also 

shown that pre-treatment of mice with recombinant enolase from S. sobrinus 

failed to stimulate a primary immune response against T-cell dependent 

antigens. Interestingly, S. sobrinus enolase shares 90% homology with enolase 

from S. mutans (Veiga-Malta et al. 2004).  

It seems unlikely that the lack of co-stimulation caused the abrogated T cell 

response as the molecules investigated were all up-regulated in response to both 

heat-killed and live S. mutans. The induction of semi-mature DCs giving rise to T 

cell unresponsiveness appears more likely. Further in-depth study is required to 

unravel the exact mechanisms involved in vivo. 

Adoptive transfer of either Eα or OVA-peptide transgenic TCR T cells can be used 

to investigate antigen-specific T cell proliferation in the context of S. mutans 

infection In vivo. Thus, in the context of either model, oral challenge with S. 

mutans in conjunction with Th2/Th1 biasing adjuvants, such as the potent 

mucosal adjuvant cholera toxin may further elucidate the context to which S. 

mutans may modulate effector T-cell responses In vivo. Furthermore, the 

influence of such responses on the B-cell and antibody responses would be of 

particular interest given the suggestion that a poor specific antibody response 

may correlate with increased colonisation with oral pathogens (Hocini et al. 

1993; Parkash et al. 1993).  

Interestingly, despite the high bacterial exposure following oral challenge with 

S. mutans, there were no detectable changes in the expression of co-stimulatory 

molecules by CD11c positive cells. The appearance of activated DCs in the DLN 

of R848-treated animals within 6 to 24 h of bacterial exposure indicates that DC 

activation and migration from the oral mucosa to the DLN can be observed. 
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Moreover, DC migration to the DLN in response to subcutaneous bacterial 

challenge has been shown to occur within 24 h of exposure (Ravindran et al. 

2007). The apparent absence of DC activation and migration to DLNs In vivo may 

be related to the finding that In vitro BMDCs failed to produce CCL20 in response 

to S. mutans exposure. CCL20 is highly chemoattractive for lymphocytes and 

immature DCs and is rapidly secreted in response to inflammatory stimuli 

(Schutyser et al. 2003). Thus, the failure to produce CCL20 in response to S. 

mutans exposure would result in reduced lymphocyte and monocyte influx to the 

site of infection and subsequent DC migration to the DLN. Alternatively, low 

numbers of DCs migrating to DLN are difficult to differentiate from resident 

cells. It would be of interest to investigate DCs resident within the oral mucosa 

to determine if the local activation followed by migration occurs (Cutler and 

Jotwani 2004). Such studies would likely require enrichment of DCs from 

mucosal tissues or DLNs in order to accurately define their phenotype in 

response to pathogen exposure.  

It is possible that the DC subsets involved in S. mutans uptake and antigen 

presentation In vivo are not CD11c positive and were thus overlooked in these 

studies. However, previous reports have indicated that the majority of DCs in 

the mouse are CD11c positive (Banchereau and Steinman 1998). One study 

investigating the migration of CD11c positive DC subsets in murine oral mucosal 

tissues in response to inflammatory stimuli clearly identified the presence of 

three different subsets of CD11c positive DC residing in oral mucosal tissues, all 

of which were found to migrate to the DLNs under inflammatory conditions 

(Nudel et al. 2011). Thus, it seems unlikely that CD11c negative cells present in 

the oral cavity would be solely responsible for S. mutans specific antigen 

presentation, although this cannot be ruled out.  

Previous reports have demonstrated rapid antigen presentation in the DLNs after 

infection and immunisation (Itano et al. 2003). Indeed, in the present study 

activated DCs appeared rapidly in the DLNs of R848-treated animals. However, 

the timing of antigen presentation to orally exposed antigens remains unclear. In 

the aforementioned study investigating the migration of CD11c positive DC 

subsets in murine oral mucosal tissues, antigen presentation could be detected 

days and weeks following challenge under local inflammatory conditions (Nudel 
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et al. 2011). Thus, the route of challenge and chronicity of infection are 

important considerations.  

Investigating the initiation of an immune response to S. mutans is complex. The 

acquisition of S. mutans to the oral biofilm of young children is not met with the 

inflammation characteristic of plaque-induced gingivitis or other pathogenic oral 

pathogens and data reported here support a lack of inflammatory stimuli 

following oral challenge of mice with S. mutans. And yet, studies have 

demonstrated that colonisation with S. mutans is correlated with the 

appearance of salivary IgA antibodies specific for S. mutans, suggesting that a 

secretory immune response can be generated (Gahnberg et al. 1985; Smith et al. 

1998; Smith and Taubman 1992). Whether or not protective immunity is 

generated remains controversial, although these data clearly indicate that at 

least under certain circumstances antigen presentation of S. mutans antigens 

must occur in order to subsequently generate secretory immunity. A repeated 

challenge, chronic infection model may aid identification of activated DCs in the 

DLN several days or weeks following infection.  

Another possibility is that antigen presentation of oral bacterial antigens occurs 

in the mesenteric lymph nodes following indigestion of oral bacteria, leading to 

the induction of plasma B cells which migrate from the gut to the salivary glands 

and produce S. mutans specific antibodies locally in the oral cavity (Brandtzaeg 

and Johansen 2005).  

Understanding the initiation of adaptive immunity in the oral cavity will provide 

insights and potential interventions for oral infectious diseases and potentially 

further our understanding of the impact of oral disease on systemic conditions. 

The observations reported here detail intriguing events, and these models could 

be used to further our understanding of oral adaptive immune responses.  
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Chapter 6: S. mutans In vitro biofilm model 
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6.1 Introduction 

Previous data suggest that natural infection with S. mutans is not met with an 

inflammatory response that is characteristic of pathogenic microorganisms. 

Therefore, studies investigating the potential for passive vaccination strategies 

may have great therapeutic potential for preventing dental caries, particularly 

among young children.   

In the presence of dietary sucrose numbers of Mutans streptococci in plaque 

increase and they have the ability to cause caries (Rolla 1989). A substantial 

body of literature supports the importance of the contribution of Gtfs and Gbps 

to caries development, and there is evidence that immunisation with Gtfs and 

Gbps can reduce caries development upon subsequent challenge with Mutans 

streptococci in animal models. Moreover, immunisation gives rise to antibody 

that can interfere with the production of glucans by Gtfs (Taubman et al. 1995, 

2001). Passive immunisation with monoclonal antibodies raised against 

streptococcal antigen (SA) I/II reduced re-accumulation of Mutans streptococci 

in humans (Ma et al. 1987). Additionally, passive immunisation with monoclonal 

antibodies raised against S. mutans Gtf inhibited re-colonisation by S. mutans 

and significantly decreased caries development in rats (Hamada et al. 1991). 

Thus, oral administration of Gtf specific antibody, timed to coincide with 

colonisation by Mutans streptococci, could block their integration into the 

developing oral biofilm. However, passive administration of partially humanised 

monoclonal antibodies caries the risk of aberrant immune responses and thus are 

not always considered the most appropriate vaccine candidates for use in 

humans (Khazaeli et al. 1994). The production of monoclonal antibodies is time 

consuming and laborious, involving repeated animal immunisations and 

hybridoma generation. The advancement of technologies has allowed for the 

identification of single chain variable fragments (ScFv). ScFvs represent a fusion 

of the variable regions of heavy and light chains of immunoglobulin molecules, 

linked by a small peptide linker. Thus, the antigen binding domain of antibodies 

are expressed as a single peptide. This technology aids rapid and easy 

identification of antibody fragments in a form that is suitable for genetic 

manipulation and can readily be applied to large-scale production for 

therapeutic uses.  
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Previously, an ScFv fusion protein with activity towards S. mutans Gtf was found 

to significantly reduce the development of dental caries in a rat model (Kruger 

et al. 2006). However, the ScFv Gtf specific fragment was identified in llama and 

thus may not be considered the most appropriate vaccine candidate for use in 

humans (Szynol et al. 2004).  

Human phage display libraries were recently constructed from B cells harvested 

from 57 donors. This library was screened against purified S. sobrinus Gtf-coated 

surfaces to select human ScFv specific for Gtf. Specific ScFv were then linked in 

frame with Fc of human IgG1 to produce antibody fragments known as 

“minibodies” (Figure 6-1). These minibodies have the advantage in that they are 

fully humanised and thus eliminate the risk of generating aberrant immune 

responses. Moreover, the small size allows for faster delivery and better 

penetration into tissues, which may be particularly relevant for access to the 

oral biofilm (Abiko 2000). These Gtf specific minibodies were further screened 

for Gtf binding activity by ELISA. Minibodies with the ability to inhibit Gtf 

mediated glucan synthesis from sucrose could provide a potential passive caries 

vaccine (Sui et al. 2008). A minibody with the ability to bind to Gtf was 

identified and denoted ‘SS2’. Preliminary data revealed SS2 could significantly 

inhibit the ability of S. mutans Gtf mediated glucan synthesis from sucrose and 

S. mutans biofilm formation was significantly reduced in an in vitro sucrose-

dependent biofilm model (p < 0.03) (Sui et al. 2009). Thus, the in vitro sucrose-

dependent biofilm model was optimised and validated in order to determine the 

inhibitory capacity of SS2 on Mutans streptococcal biofilm formation.  

Despite, the apparent low immunogenicity of S. mutans infection, the potential 

does exist to mount a natural immune response to S. mutans. Secretory 

immunity can be generated, namely through IgA and IgG, which comprise the 

functional arm of the adaptive immune system in the oral cavity (Taubman and 

Nash 2006). Antimicrobial peptides comprise an important innate response to 

bacteria present at mucosal surfaces. Antimicrobial peptides are released from 

numerous sources within the oral cavity in response to bacterial colonisation and 

are thought to have an important role in the maintenance of oral health (Dale 

and Fredericks 2005).  
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In vitro studies of antimicrobial peptides have attempted to investigate the 

antimicrobial properties of these peptides and others on the growth of S. mutans 

(Ouhara et al. 2005; Phattarataratip et al. 2011). However, the majority of these 

studies have investigated the antimicrobial effects only on planktonic cultures of 

S. mutans. Furthermore, these studies have used concentrations of antimicrobial 

peptides that are far higher than those found in the saliva of young children 

(Table 4-4). Several clinical studies have identified that low concentrations of 

antimicrobial peptides in the saliva of young children, such as LL37 

(Davidopoulou et al. 2012) and the human neutrophil peptides (HNPs 1-3) (Tao et 

al. 2005) may be associated with increased risk of dental caries. Previous data 

reported in this thesis suggested a correlation between the recovery of S. 

mutans in dental plaque and increased concentrations of LL37 in the saliva of 

young children (Figure 4-8). Therefore, it was of interest to investigate the 

antimicrobial activity of LL37 on biofilm formation by S. mutans.  

An intriguing study previously demonstrated increased planktonic growth 

responses of S. mutans in response to the presence of the stress hormones 

adrenaline and noradrenaline (Roberts et al. 2002). This report, together with 

the suggestion that increased concentrations of cortisol in the saliva of one-year-

old children were associated with increased numbers of S. mutans in saliva and 

dental plaque (section 3.2.5), warranted further investigation. Thus, the In vitro 

sucrose-dependent S. mutans biofilm model was employed to further elucidate 

this response.  

The aim of this chapter was to optimise and validate the use of an in vitro 

sucrose-dependent biofilm model. Once optimised this model was used to 

investigate the ability of the minibody SS2 to inhibit Mutans streptococcal 

biofilm formation, to investigate S. mutans growth responses to cortisol and 

investigate the minimum inhibitory concentration of the antimicrobial peptide 

LL37 required to inhibit biofilm formation by S. mutans. 
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Figure 6-1: Diagrammatic representation of recombin ant minibody 

Single-chain variable fragments (depicted in light blue are linked in frame with Fc 
portion (heavy chain constant domains [CH2 and CH3 domains]) of human IgG1 
(depicted in dark blue).  
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6.2 Results 

6.2.1 Sucrose-dependent S. mutans biofilm formation 

Morphological changes in S. mutans biofilms grown with or without sucrose were 

investigated by visualising by scanning electron microscopy. S. mutans grown in 

the presence of sucrose on Thermonox™ cover slips demonstrated clearly visible 

production of extensive extracellular matrix, which was absent from S. mutans 

biofilms grown in the absence of sucrose (Figure 6-2a and b). Similarly, biofilm 

mass, quantified by crystal violet incorporation, was significantly greater in the 

presence of sucrose (p < 0.005, Figure 6-2c). 

An In vitro sucrose-dependent biofilm model was developed, optimised and 

validated. The conditions investigated included sucrose concentration, number 

of bacteria used as the initial inoculum and the pH of starting media. Modifying 

sucrose concentration demonstrated that biofilm formation did not increase with 

sucrose above 0.25%, suggesting this was sufficient for growth (Figure 6-3). 

Altering the starting inoculum demonstrated that S. sobrinus biofilm formation 

increased with each increased initial inoculum (Figure 6-3). 

Changing the pH of the growth medium demonstrated that sucrose-dependent 

biofilm formation was significantly greater when grown in a medium adjusted to 

a starting pH 6.5 compared with pH 6.8 (Figure 6-4, p < 0.005) or pH 7 (p > 

0.001). These data suggest that S. sobrinus biofilm formation is optimal at pH 

6.5.  

From the optimisation experiments it was decided to use an initial inoculum of 

1.5 x 107 CFU/ml with sucrose at 0.25% in a media with a pH adjusted to 6.5 for 

all subsequent experiments.  
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Figure 6-2: Sucrose dependent S. mutans biofilm formation 

Biofilm formation by S. mutans ATCC 10449 in the presence or absence of 
sucrose was assessed. Scanning electron microscopy images of S. mutans grown 
on Thermanox® cover slips (a) without sucrose (x 7000 mag) and (b) with 1% 
sucrose (x 4500 mag), at 37˚C, in 5% CO2 for 24 h. (c) Biofilms grown on peg lids 
at a starting inoculation of 1.5 x 107 CFU/well S. mutans with or without 0.25% 
sucrose at 37˚C, 5% CO2 for 4 h were quantified by crystal violet incorporation. 
Data are mean and SEM of absorbance (OD 570 nm), measured in triplicate. ** p 
< 0.005 by independent samples t-test.  
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Figure 6-3: Increased S. sobrinus biofilm formation with increased initial 
inoculation 

S. sobrinus biofilm formation using different starting inoculums (CFU/well) and with 
different sucrose concentrations (%) were assessed. Biofilms were grown on peg 
lids using starting inoculations of S. sobrinus 6715, ranging from 0 – 4.5 x 107 
CFU/well, with concentrations of sucrose, ranging from 0 – 3.5%, at 37˚C, in 5% 
CO2 for 4 h. Biofilm formation was quantified by crystal violet incorporation. Data 
are mean absorbance (OD 570 nm) of two independent experiments measured in 
triplicate. 

 
 

 

 

 

 

 



  317 

 

Figure 6-4: Increased S. sobrinus biofilm formation with increasingly acidic 
starting pH 

S. sobrinus biofilm formation at different starting pH of culture media. Biofilms 
inoculated with 1.5 x 107 S. sobrinus 6715 (CFU/well) grown on peg lids in 0.25% 
sucrose, at 37˚C, in 5% CO2 for 4 h in media of different starting pH were 
quantified by crystal violet incorporation. Data are mean and SEM of absorbance 
(OD 570 nm), measured in triplicate (*** p < 0.001, ** p < 0.01 by ANOVA).  
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6.2.2 Inhibition of Mutans streptococcal biofilm formation 

To investigate inhibition of biofilm formation, conditions for the In vitro biofilm 

assay were optimised and validated. As a positive control rat IgG anti-S. sobrinus 

Gtf was prepared by active immunisation of Sprague Dawley rats with S. sobrinus 

Gtf (outlined in section 2.6.5) (Taubman et al. 1995). S. sobrinus was used for all 

optimisation and validation experiment. Once optimised the conditions were 

then used to investigate S. mutans biofilm inhibition using rat IgG anti-S. mutans 

Gtf as a positive control. Due to the ratio of water-soluble versus water-

insoluble Gtfs produced by S. sobrinus and S. mutans it was more economical 

and time efficient to extract the primarily water-soluble Gtfs from S. sobrinus. 

Serum IgG from sham-immunised rats was used as control antibody (Taubman et 

al. 1995).  

Inhibition of biofilm formation was expressed as a percentage relative to no 

antibody controls. 

6.2.2.1 Optimisation of biofilm inhibition assay 

Inhibition of S. sobrinus biofilm formation by rat IgG anti-S. sobrinus Gtf was 

assessed with two different concentrations of antibody and different starting 

inoculations of S. sobrinus (Figure 6-5). Using a high concentration (4.2 µg/ml) of 

antibody, inhibition of S. sobrinus biofilm formation ranged from 92% – 62% and 

was highly statistically significant at each starting inoculation assessed (p < 

0.001, Figure 6-5a). A lower antibody concentration (2.1 µg/ml) demonstrated 

50% inhibition of biofilm formation with a starting bacterial inoculum of 1.5x107 

CFU/well. At higher starting inoculums, the antibody demonstrated reduced 

efficacy but still caused statistically significant inhibition of biofilm formation 

(Figure 6-5b). Based on this data it was decided to use a starting inoculation of 

1.5 x 107 CFU/well and rat IgG anti-S. sobrinus Gtf at a concentration of 2.1 

µg/ml for all subsequent experiments as 50% inhibition of biofilm formation by 

rat IgG anti-S. sobrinus Gtf was considered optimal for use a positive control.  

Previous data suggested 0.25% sucrose was suitable for growth (Figure 6-3). 

However, it was unclear from this data if inhibition of biofilm formation could be 

affected by the percentage of sucrose used. Therefore, using a starting 
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inoculation of 1.5 x 107 CFU/well, the effect of different sucrose concentrations 

on antibody-mediated inhibition of biofilm formation was investigated (Figure 

6-6). Inhibition of biofilm formation demonstrated a dose response relationship, 

with greater inhibition at increased sucrose concentrations. Inhibition of biofilm 

formation was significant at all sucrose concentrations assessed (p < 0.005 

compared to sham IgG control antibody). Based on these data it was decided to 

proceed with sucrose at 0.25% for all subsequent experiments as sufficient 

inhibition of biofilm formation in conjunction with adequate biofilm formation 

was observed. 

Biofilm growth was optimal at a starting pH of 6.5 (Figure 6-4). The effect of 

starting pH on inhibition of biofilm formation by rat IgG anti-S. sobrinus Gtf was 

investigated. Inhibition of biofilm formation was statistically significant at all 

starting pH assessed although was markedly reduced at pH 6.5 compared to pH 

6.8 or pH 7 (Figure 6-7). This data suggest that while biofilm formation is 

optimal at pH 6.5, inhibition of biofilm formation by rat IgG anti-S. sobrinus Gtf 

is optimal at a starting pH closer to neutral. Following 4 h sucrose-dependent 

biofilm formation the pH of the growth medium can fall to approximately pH 5.5 

(data not shown). Such a drop in pH may modify the activity of the antibody. 

From these data it was decided to perform subsequent biofilm experiments in a 

growth medium adjusted to pH 6.8.  

The In vitro biofilm model was optimised using S. sobrinus. However, S. mutans 

is the most frequently isolated of the Mutans streptococci and is the primary 

agent associated with dental caries, particularly among young children 

(Kristoffersson et al. 1985). Therefore, it was important to determine the 

optimum conditions for assessing inhibition of S. mutans sucrose-dependent 

biofilm formation. The conditions optimised for S. sobrinus were used and 

inhibition of biofilm formation was assessed at different concentrations of rat 

IgG anti-S. mutans Gtf (Figure 6-8). Inhibition of S. mutans biofilm formation 

was dose-dependent over the range of antibody concentrations assessed.  
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Figure 6-5: Inhibition of S. sobrinus biofilm formation by rat IgG anti- S. 
sobrinus Gtf 

Inhibition of S. sobrinus biofilm formation, at different starting inoculations of S. 
sobrinus 6715 (CFU/well) by rat IgG anti-S. sobrinus Gtf were assessed. Biofilms 
grown on peg lids with 0.25% sucrose at 37˚C in 5% CO2 for 4 h were quantified 
by crystal violet incorporation. Data are mean and SEM of percentage inhibition of 
S. sobrinus biofilm formation by rat IgG anti-S. sobrinus Gtf at a concentration of 
(a) 4.2 µg/ml and (b) 2.1 µg/ml, measured in triplicate and relative to no antibody 
controls with and without sucrose. *** p< 0.001, ** p< 0.005 by independent 
samples t-tests compared to sham IgG control antibody.  
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Figure 6-6: Inhibition of S. sobrinus biofilm formation by rat IgG anti-Gtf at 
different sucrose concentrations 

Inhibition of S. sobrinus biofilm formation by rat IgG anti-S. sobrinus Gtf was 
assessed at different sucrose concentrations. Biofilms were grown on peg lids and 
inoculated with S. sobrinus 6715 at 1.5 x 107 CFU/well, at sucrose concentrations 
ranging from 0.125 – 0.5%, with 2.1 µg/ml rat IgG anti-S. sobrinus Gtf, and grown 
at 37˚C, in 5% CO2 for 4 h. Biofilm formation was quantified by crystal violet 
incorporation. Data are mean and SEM of percentage inhibition of S. sobrinus 
biofilm formation, measured in triplicate and relative to no antibody controls with 
and without sucrose. *** p < 0.001, ** p< 0.005 by independent samples t-tests 
compared to sham IgG control antibody. 
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Figure 6-7: Inhibition of S. sobrinus biofilm formation is optimal at neutral 
pH 

Inhibition of S. sobrinus biofilm formation by rat IgG anti-S. sobrinus GTF was 
assessed under different pH environments. Biofilms inoculated with 1.5 x 107 S. 
sobrinus 6715 (CFU/well) with 2.1 µg/ml rat IgG anti-S. sobrinus Gtf grown on peg 
lids in 0.25% sucrose, at 37˚C, in 5% CO2 for 4 h in media of different starting pH 
were quantified by crystal violet incorporation. Data are mean and SEM of 
percentage inhibition of S. sobrinus biofilm formation by rat IgG anti-S. sobrinus 
Gtf at different pH, measured in triplicate and relative to no antibody controls with 
and without sucrose. *** p < 0.001, ** p < 0.01 by independent samples t-tests 
compared to sham IgG control antibody.  
 

 

 



  323 

 

Figure 6-8: Inhibition of S. mutans biofilm formation by rat IgG anti- S. 
mutans Gtf 

Inhibition of S. mutans biofilm formation at different concentrations of rat IgG anti-
S. mutans Gtf was assessed. Biofilms inoculated with 1.5 x 107 S. mutans 28BE3 
CFU/well and grown on peg lids at 37˚C, in 5% CO2 with a starting pH of 6.8 for 4 
h were quantified by crystal violet incorporation. Data are mean and SEM of 
percentage inhibition of S. mutans biofilm formation by rat IgG anti-S. mutans Gtf, 
measured in triplicate and relative to no antibody controls with and without 
sucrose. * p < 0.05, by independent samples t-tests compared to sham IgG control 
antibody (data not shown) assessed under respective conditions.  
 

 

 

 

 

 

 

 



  324 

6.2.2.2 Inhibition of Mutans streptococcal biofilm formation by minibody 

SS2 

The assay conditions optimised above, a starting inoculation of 1.5 x 107 

CFU/well, with 0.25% sucrose in a starting media at pH 6.8, were used to 

investigate the ability of the minibody SS2 to inhibit Mutans streptococci 

sucrose-dependent biofilm formation.  

Inhibition of S. sobrinus biofilm formation was dose-dependent over the range of 

minibody concentrations assessed, decreasing with each two-fold dilution of the 

minibody (Figure 6-9a). Inhibition of biofilm formation by SS2 was highly 

statistically significant over the range 16.6 - 132.5 µg/ml (p < 0.001) and 

remained significant at the lowest minibody concentration assessed 8.2 µg/ml (p 

< 0.05).  

S. mutans sucrose-dependent biofilm formation was inhibited by SS2 in a dose-

dependent manner over the range 7.8 µg/ml – 62.5 µg/ml (Figure 6-9b). 

Increasing the minibody concentration above 62.5 µg/ml did not further inhibit 

of S. mutans biofilm formation. Inhibition of S. mutans biofilm formation by SS2 

was not significant at minibody concentrations below 31.3 µg/ml, almost four 

times the minibody concentration that was required for statistically significant 

inhibition of S. sobrinus biofilm formation.  

These data indicate that the minibody SS2 has the ability to inhibit sucrose-

dependent biofilm formation by Mutans streptococci.  
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Figure 6-9: Inhibition of Mutans streptococcal biof ilm formation by Sc Fv 
SS2 

Inhibition of Mutans streptococcal biofilm formation by the minibody Sc Fv SS2 
was assessed. Biofilms inoculated with 1.5 x 107 CFU/well were grown on peg lids 
in 0.25% sucrose at 37˚C, in 5% CO2 at pH 6.8 for 4 h, were quantified by crystal 
violet incorporation. Data are mean and SEM of percentage inhibition of biofilm 
formation of (a) S. sobrinus 6715 and (b) S. mutans 28BE3, relative to no antibody 
controls with and without sucrose. Each data set is representative of two 
independent experiments, measured in triplicate. *** p < 0.001, ** p < 0.005 and * 
p < 0.05 by independent samples t-tests compared with sham IgG control 
antibody.  
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6.2.3 Mutans streptococci growth responses to cortisol 

Data from a cross-sectional study into caries-associated risk factors in children 

aged one-year indicated that increased concentrations of salivary cortisol were 

associated with increased numbers of S. mutans recovered from both plaque and 

saliva of one-year-old children. These data were intriguing, and together with 

the suggestion that S. mutans is capable of modulating its growth response in 

the presence of the catecholamines adrenaline and noradrenaline (Radford et al. 

2000), warranted further investigation to determine if S. mutans is also capable 

of modulating growth responses to cortisol.  

6.2.3.1 Planktonic growth response to cortisol 

The planktonic growth kinetics of S. mutans in the presence or absence of 

cortisol, with and without sucrose were assessed over time by measuring the 

absorbance of cultures every hour over a 24 hour period. Cultures were grown in 

half strength BHI to provide a minimal media that ensured growth responses 

were related to cortisol and sucrose supplements and not due to the nutrients 

present within the original growth media. S. mutans cultures supplemented with 

cortisol only (10, 50 and 100 nmol) entered logarithmic growth quicker than 

cultures containing both cortisol and sucrose or sucrose only (Figure 6-10a). 

Commensurate with these findings, after 24 hours of culture, the greatest 

numbers of S. mutans came from cultures supplemented with cortisol only. The 

CFU/ml were statistically significantly higher in cultures supplemented with 

either 100 or 50 nmol cortisol (p < 0.001 and p < 0.05, respectively) compared 

with the no supplement control (Figure 6-10b). There were no differences in the 

CFU/ml of S. mutans cultures supplemented with sucrose only compared with 

those supplemented with both sucrose and cortisol. S. mutans cultures 

supplemented with sucrose had significantly lower counts compared with the no 

supplement control, irrespective of the presence of cortisol. It was hypothesised 

that S. mutans cultures grown in the presence of sucrose switched from a 

planktonic free-living phenotype to a biofilm forming phenotype, characterised 

by the expression of Gtfs and Gbps. Thus, the growth responses in the presence 

of sucrose differed significantly from the growth responses in the presence of 

cortisol. To elucidate these growth responses, S. mutans biofilms grown in the 
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presence and absence of sucrose and with varying concentrations of cortisol 

were further investigated using the sucrose-dependent biofilm model.  
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Figure 6-10: Planktonic growth responses of S. mutans to cortisol 

Cultures of S. mutans grown in 1/2 strength BHI in the presence or absence of 
cortisol at varying concentrations, with or without 0.25% sucrose were assessed. 
Cultures were incubated at 37˚C in 5% CO2 for 24 h. (a) Growth kinetics of S. 
mutans cultures over time. Data are mean of triplicates of absorbance at 570 nm 
(OD units) of S. mutans culture supplemented with 10, 50 and 100 nmol of cortisol. 
(b) Planktonic S. mutans CFU/ml after 24 h incubation. Results are from two 
independent experiments, each measured in triplicate. *** p < 0.001, * p < 0.05, by 
independent samples t-tests, compared with no supplement control.  

 

.  
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6.2.3.2 S. mutans biofilm growth response to cortisol 

The biomass of S. mutans biofilms grown on pegs lids in the presence or absence 

of sucrose with different concentrations of cortisol were assessed by 

quantification of crystal violet incorporation after 4 and 24 h growth. After 4 and 

24 h, the biomass of S. mutans biofilms grown with cortisol (10, 50 and 100 

nmol) did not differ significantly from S. mutans control biofilms grown in media 

alone (Figure 6-11a and b). Furthermore, S. mutans biofilms grown in the 

presence of cortisol and 0.25% sucrose did not differ significantly from the 

sucrose only controls. S. mutans biofilms grown with sucrose had significantly 

greater biomass compared with biofilms grown in the absence of sucrose (p < 

0.001, by Tukey comparison). The biomass of S. mutans biofilms grown in the 

absence of sucrose (i.e. no supplement or with cortisol only) did not increase 

from 4 to 24 h. In contrast, the biomass of S. mutans biofilms grown with sucrose 

(with or without cortisol) continued to increase from 4 to 24 h (p < 0.001, by 

Tukey comparison). Together these data confirm that sucrose is important for S. 

mutans biofilm formation and suggests cortisol does not influence S. mutans 

biofilm formation. However, given the enhanced planktonic growth of S. mutans 

in the presence of cortisol, and given that S. mutans biofilm formation in the 

presence of sucrose is characterised by the expression of large amounts of 

extracellular polymeric glucans (Figure 6-2b), it was hypothesised that the 

CFU/peg may be greater in S. mutans biofilms supplemented with sucrose and 

cortisol compared with the sucrose only control and that differences in cell 

number may have been masked by the expression of extracellular glucans using 

the crystal violet assay.  

The CFU/peg of 24 h S. mutans biofilms grown under the conditions outlined 

previously were quantified by different techniques. Initially, culture techniques 

were used to quantify the number of S. mutans CFU/peg. There were no 

significant differences in the number of S. mutans CFU/peg from biofilms grown 

with cortisol compared with the no supplement control (Figure 6-12a). S. mutans 

CFU/peg were greater when biofilms were grown with sucrose but the difference 

was not statistically significant compared with the no supplement control. 

Furthermore, S. mutans CFU/peg were found to be marginally lower in biofilms 

grown with both cortisol (100 and 50 nmol) and sucrose compared with sucrose 

alone, although the differences were not statistically significant. The culture 
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data were highly variable and this was likely related to the phenomenon that S. 

mutans biofilms grown with sucrose are extremely adherent to the biofilm 

matrix (polyethylene peg). To remove the biofilm from the peg and allow 

quantification of S. mutans, biofilms were subjected to sonication. It was 

previously observed that sonication of planktonic S. mutans cultures did not kill 

bacterial cells but disrupted the bacterial chains and gave rise to higher CFU/ml 

compared with cultures that were not subjected to sonication (data not shown). 

Thus, although considered unlikely, it was possible that sonication of S. mutans 

biofilms variably killed the bacterial cells and thus gave rise to the inherent 

variation in the CFU/peg data. Moreover, there was potential variation 

introduced from an inability to remove all of the biofilm from the pegs. To 

further investigate the CFU/peg, S. mutans biofilms grown under these same 

conditions were quantified by estimating amount of DNA instead of CFU/ml, 

using a CyQuant® assay. Although still reliant on sonication to remove the 

biofilm from the pegs, this method was selected to overcome the potential 

variation in viability following sonication.  

The CyQuant® assay allows for the quantification of relative cell numbers by use 

of a dye that emits a strong fluorescence signal when bound to cellular DNA and 

thus quantifies the total number of cells. In agreement with the culture data, 

there were no statistically significant differences in the CFU/peg of S. mutans 

biofilms grown with cortisol (100 and 50 nmol) compared with the no supplement 

control (Figure 6-12b). The CFU/peg was greater for S. mutans biofilms grown 

with sucrose, although the differences were not statistically significant. 

Furthermore, there were no statistically significant differences in the CFU/peg 

from S. mutans biofilms grown with both cortisol and sucrose compared with 

sucrose only.  

In an attempt to ensure complete removal of S. mutans cells from biofilms 

formed on peg lids, enzymatic digestion in conjunction with sonication was used, 

rendering the sample suitable for TaqMan® QPCR. Pegs were incubated with a 

mixture of lysozyme and mutanolysin, followed by sonication. DNA was 

extracted and purified from the supernatants and S. mutans CFU/peg was 

quantified by TaqMan® QPCR using S. mutans specific primers and probe (cross-

refence methods). In agreement with previous observations using culture and 

CyQuant, there were no statistically significant differences in the CFU/peg from 
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S. mutans biofilms grown in the presence of cortisol (10, 50 and 100 nmol), 

compared with the no supplement control (Figure 6-12c). S. mutans CFU/peg 

were greater in biofilms grown with sucrose but the differences were not 

statistically significant. There was an increase in the CFU/peg for S. mutans 

grown with 100 nmol cortisol and 0.25% sucrose compared with sucrose only but 

the difference was not statistically significant. Furthermore, there were no 

differences in S. mutans CFU/peg in biofilms grown with 50 or 10 nmol cortisol 

together with 0.25% sucrose compared with S. mutans biofilms grown with 

sucrose only.  

The use of the CyQuant® assay and TaqMan QPCR to quantify S. mutans CFU/peg 

by detecting DNA were found to be more sensitive with respect to the number of 

CFU/peg detected, with TaqMan QPCR being the most sensitive compared with 

the culture data. Both CyQuant® and TaqMan QPCR detect the total number of 

cells and thus cannot discriminate between live and dead bacteria in the 

biofilm. To determine whether the metabolic activity of S. mutans biofilms 

grown with cortisol with or without sucrose differed, a REDOX indicator was 

included in the growth media. Cortisol had no effect on the metabolic activity of 

S. mutans biofilms. S. mutans biofilms grown with sucrose both with or without 

cortisol were statistically significantly more metabolically active as indicated by 

a greater reduction of alamarBlue® compared with S. mutans biofilms grown in 

the absence of sucrose (p < 0.001, by Tukey comparison). However, S. mutans 

biofilms grown with both cortisol and sucrose were significantly less 

metabolically active compared with sucrose only (Figure 6-13).  

Together this data indicate that cortisol modulates the growth response of 

planktonic cultures of S. mutans, although has little or no influence on S. 

mutans biofilms.  
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Figure 6-11: S. mutans biofilm biomass in the presence of cortisol and 
sucrose 

S. mutans biofilm formation with cortisol at varying concentrations, with or without 
0.25% sucrose was assessed. Biofilms grown on peg lids in 37˚C, 5% CO2 for 
were quantified using crystal violet incorporation. Data are mean and SEM of 
absorbance (OD 570 nm) of (a) 4 h and (b) 24 h biofilms, measured in triplicate on 
three independent occasions. ns = not significant by Tukey comparison, compared 
with indicated control.  
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Figure 6-12: Quantification of S. mutans cell numbers in biofilms grown with 
sucrose and cortisol 

S. mutans biofilms were grown on peg lids in the presence or absence of cortisol 
at 100, 50 and 10 nmol, with or without 0.25% sucrose for 24 h and quantified by 
(a) culture, data are mean and SEM of CFU/peg from two independent 
experiments, measured in triplicate (b) CyQuant® assay, data are mean and SEM 
from two independent experiments, measured in triplicate and (c) TaqMan® 
QPCR, data are mean and SEM of CFU/peg, measured in triplicate. ns = not 
significant by Tukey comparison with indicated controls. 
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Figure 6-13: Metabolic activity of S. mutans biofilms with sucrose and 
cortisol 

S. mutans biofilms grown on peg lids with cortisol, with or without 0.25% sucrose 
for 24 h were assessed for metabolic activity by alamarBlue® reduction. Data are 
mean and SEM of triplicate fluorescent intensity data, where increased 
fluorescence intensity indicates higher reduction of alamarBlue®. ns= not 
significant, *** p < 0.001 by Tukey comparison with indicated controls. 
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6.2.4 Inhibition of S. mutans biofilm formation by LL37 

The ability of the antimicrobial peptide LL37 to inhibit the formation of S. 

mutans biofilms was assessed using the sucrose-dependent In vitro biofilm 

model. Using a starting biofilm inoculation of 1.5 x 107 CFU/well, S. mutans 

biofilm formation with LL37 was reduced at all concentrations assessed 

compared with the no LL37 control. The percent inhibition was statistically 

significant at LL37 concentrations of 32 and 64 µg/ml (p < 0.05 and p < 0.001, 

respectively [Figure 6-14a]). The inhibitory effect of LL37 appeared to be dose-

dependent. At a starting inoculation of 3 x 107 CFU/well, S. mutans biofilm 

formation was not inhibited at concentrations of LL37 below 32 µg/ml and the 

percent biofilm inhibition was statistically significant only at a concentration of 

64 µg/ml (p < 0.001, Figure 6-14b).  

This data suggest that LL37 is capable of inhibiting S. mutans sucrose-dependent 

biofilm formation.  
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Figure 6-14: S. mutans biofilm inhibition by LL37 

Inhibition of S. mutans biofilm formation using concentrations of LL37 (a kind gift 
from Dr Donald Davidson of the University of Edinburgh) at two-fold dilutions 
ranging from 64 – 0.125 µg/ml was assessed. Biofilms were grown on peg lids with 
0.25% sucrose at 37˚C for 24 h with a starting inoculum of (a) 1.5 x 107 CFU/well 
and (b) 3.0 x 107 CFU/well. Biofilm formation was quantified by crystal violet 
incorporation. Data are mean and SEM of percent biofilm formation relative to no 
LL37 control. *** p < 0.001, * p < 0.05, by Tukey comparison relative to no LL37 
control.  
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6.3 Discussion 

Work presented here described an optimised sucrose-dependent S. mutans 

biofilm model that can be used to investigate novel molecules for their 

antimicrobial and potentially therapeutic properties. The use of a sucrose-

dependent biofilm model, in which the bacterial cells actively form biofilm on 

inverted pegs is arguably more representative of In vivo biofilm formation than 

the commonly used microtitre plate assays that allow cells to settle in the 

bottom of the well with gravity assisted bacterial accumulation aiding biofilm 

formation (Ahn et al. 2012; Wang et al. 2012). Furthermore, Gtf-mediated 

adherence and accumulation in the presence of sucrose represents the major 

mechanism contributing to the ability of the Mutans streptococci to initiate 

dental caries (Banas and Vickerman 2003). Nonetheless, this single species 

biofilm model does not represent the complex microbial community found in 

dental plaque.  

Using this model, it was identified that the minibody denoted SS2 had the ability 

to significantly inhibit Mutans streptococcal biofilm formation, presumably due 

to its ability to bind Gtf and thus block Gtf mediated glucan production from 

sucrose. Interestingly, the single chain variable fragments used to develop SS2 

were identified by their ability to bind Gtf isolated from S. sobrinus. However, 

unsurprisingly given that there is greater than 50% homology between the S. 

mutans and S. sobrinus Gtfs (Russell et al. 1988), SS2 was able to inhibit the 

formation of both S. mutans and S. sobrinus biofilms, albeit using higher doses 

to achieve inhibition of S. mutans biofilm formation. Moreover, S. mutans 

produces greater quantities of insoluble-glucans than S. sobrinus, which may 

render the biofilm harder to penetrate. Given that S. mutans are more 

numerically significant in the dental biofilm than S. sobrinus, and S. mutans is 

the primary aetiological agent associated with dental caries initiation in young 

children, the development of minibodies with activity specifically targeted 

against S. mutans Gtf would likely yield better results.   

Development of human monoclonal antibodies with the ability to inhibit Gtf 

activity may have potential for passive antibody application to children. Topical 

application of antibody would likely have limited effect on bacteria already 
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established within the oral biofilm. However, oral administration of antibody 

timed to coincide with or precede the acquisition of S. mutans may block their 

integration into the developing oral biofilm. Earlier acquisition of S. mutans is 

associated with the increased prevalence of dental caries (Alaluusua and 

Renkonen 1983). Thus, delaying or blocking the entry of S. mutans into the 

developing oral biofilm would potentially reduce the burden of dental caries in 

young children. The therapeutic potential of the minibody SS2 is currently being 

investigated In vivo using a rodent model of dental caries. If SS2 protects against 

the development of dental caries in this model the next stage would be to enter 

SS2 into human clinical trials as a passive vaccine candidate for dental caries.   

Having established a biofilm model, this was employed to investigate the effect 

of cortisol on S. mutans growth responses. A number of pathogenic organisms 

possess the ability to recognise and respond to host hormones (Lyte 1993). The 

release of stress hormones such as adrenaline, noradrenaline and cortisol can be 

detected in saliva and could act as environmental cues to alter the growth of 

oral bacteria. A previous study documented significantly increased planktonic 

growth responses by S. mutans in response to noradrenaline and adrenaline 

(Roberts et al. 2002). Data reported here demonstrate that the planktonic 

growth of S. mutans in the presence of cortisol was significantly increased. In 

contrast, cortisol did not have any discernable influence on S. mutans biofilm 

formation, both in terms of biomass and the recoverable cell numbers. Reasons 

for this may be related to the determination of CFU/ml of S. mutans cultures 

and biofilms grown in the presence of sucrose. Expression of Gtfs and Gbps 

together with the synthesis of extracellular polymeric glucans in the presence of 

sucrose results in highly aggregated clusters of cells. Thus, cultures 

supplemented with sucrose are ‘stickier’ and so it is less likely that one cell is 

equivalent to one CFU even after sonication to disrupt cell aggregates. It is likely 

therefore, that the determinations of the CFU/ml of planktonic cultures grown 

in the presence of sucrose were highly underestimated and subsequently the 

effects of cortisol on planktonic growth responses were overestimated. This 

effect also influenced the quantitative determination of recoverable numbers 

from S. mutans biofilms grown in the presence of sucrose by culture, which gave 

rise to variable results. The use of CyQuant® and TaqMan® QPCR assays 

confirmed no detectable differences in the number of S. mutans cells forming 
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biofilms in the presence of cortisol. The prevalence of dental caries follows a 

socioeconomic status related gradient of distribution (Sisson 2007). However, 

these disparities cannot be fully explained by differences in access to health 

care, genetic disposition or health damaging behaviours. In recent decades 

evidence has emerged that the physiological stress response may provide a 

common link between low socioeconomic status and chronic disease, including 

dental caries (Quinonez et al. 2001; Reisine and Litt 1993). Thus, oral bacteria 

with the ability to respond to host hormones and modulate their growth 

responses accordingly could disrupt the homeostasis of the oral biofilm and 

influence disease. While the formation of S. mutans biofilms remained 

unchanged in response to cortisol, it cannot be determined from these 

investigations whether the gene expression profiles were altered. It would be of 

interest to perform functional gene expression analysis on S. mutans biofilms in 

the presence of cortisol. The use of TaqMan® QPCR to quantify the number of S. 

mutans CFU/peg demonstrated that it is possible to extract DNA from these 

biofilms which could be used for functional gene expression analysis. These 

studies would provide a more comprehensive understanding of host-

microbiological interactions in the oral cavity and could provide clues as to why 

individuals from deprived backgrounds are subject to a higher prevalence of oral 

diseases.  

The sucrose-dependent S. mutans biofilm model was also used to determine the 

minimum concentration (MIC) of LL37 that was required to inhibit S. mutans 

biofilm formation. Unsurprisingly, the minimum inhibitory dose of LL37 required 

to inhibit biofilm formation was dose-dependent according to the number of S. 

mutans used in the initial inoculum. The concentrations of LL37 required to 

significantly inhibit S. mutans sucrose-dependent biofilm formation were found 

to be far higher than the mean concentrations reported in this thesis in children 

aged one-year (2.53 ng/ml) and three-years (6.3 ng/ml) and by others in 

children aged 13-years (15.8 ng/ml) (Phattarataratip et al. 2011) and 11- 13-

years (3.07 µg/ml) (Tao et al. 2005). Thus, data reported here suggest that LL37 

has little or no influence on the inhibition of S. mutans biofilm formation at 

concentrations found in the saliva of young children. However, notably the MIC 

reported here to inhibit S. mutans sucrose-dependent biofilm formation is 

considerably lower than MIC concentrations of LL37 previously reported to 
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inhibit planktonic cultures of S. mutans and other oral streptococci (Ji et al. 

2007; Ouhara et al. 2005).  

In conclusion, the In vitro sucrose-dependent S. mutans biofilm model described 

here is a useful model for investigating the inhibitory potential of a given 

molecule of interest. And thus represents an important first stage in the analysis 

of molecules with potentially therapeutic potential prior to application in In vivo 

and clinical studies.  
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The primary aim of this thesis was to investigate the biological risk factors 

associated with dental caries experience in children aged one- to three-years as 

part of a pilot clinical study of Childsmile participants. These studies 

documented for the first time the longitudinal increases in the concentrations of 

lactoferrin, calprotectin, LL37 and the HNPs 1-3 in the saliva of children of this 

age. There was some suggestion that the concentrations of these salivary 

antimicrobial proteins were positively correlated with numbers of S. mutans in 

dental plaque. Whether the concentrations of salivary antimicrobial proteins 

influenced the susceptibility of dental caries experience could not be 

determined in these studies. The low rates of caries prevalence most likely 

reflected the low follow-up rates. However, Childsmile intervention has been 

associated with a reduction in caries prevalence among young children (McMahon 

et al. 2011), and it cannot be ruled out that this influenced the low caries rates 

in three-year-old participants reported here. 

An important aim of these studies was to investigate the potential biological 

mechanisms underlying socioeconomic disparities in the dental health of young 

children. No evidence was identified to indicate an immunological or 

microbiological profile associated with socioeconomic status. Additionally, these 

were the first studies to attempt to investigate salivary cortisol concentrations 

as a surrogate measure of stress in children of this age. No evidence was 

identified for an association of salivary cortisol concentrations with 

socioeconomic status of children. The major limitations of these investigations 

were the small sample sizes, which resulted in low power to detect statistically 

significant differences. A much larger study is required to begin to delineate the 

important biological mechanisms which underlie socioeconomic disparities in 

dental health. 

Since its establishment in 2006, Childsmile has since been rolled out as part of a 

national dental health service for all children in Scotland. The programme now 

encompasses a much larger target population and thus the potential to conduct 

large-scale studies has increased. Moreover, with the lessons learned from these 

studies, future clinical studies conducted within Childsmile have the potential to 

delineate the important biological mechanisms which lead to dental caries.  
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The methods used to collect both plaque and saliva samples from young children 

proved successful. The most important aspect to address in order to increase the 

potential of future Childsmile clinical studies is the recruitment methods. 

Childsmile dental practices would likely be an important resource for the 

recruitment of very young children to future studies. However, in the current 

studies dental practice participation was minimal. The reasons for this are 

unclear. The practices were selected from general Dental Practitioners who 

expressed an interest in the study and volunteered to participate. The incentives 

were agreed with the practices and deemed reasonable. Thus, successful future 

dental practice participation requires further investigation and perhaps a 

revision of the incentives and training. The most successful recruitment was 

obtained by extended duty dental nurses and the continued participation of 

these key staff will be required. Additionally, given the high rate of children who 

failed to attend clinic appointments and the relative success of domiciliary visits 

in this study, dental health support workers within Childsmile, will likely be 

instrumental in recruiting children who do not attend dental practices and those 

who encompass ‘hard to reach’ children. Using this approach it should be 

possible to recruit substantial numbers of children from across the 

socioeconomic spectrum. Additionally, the recruitment of three-year-old 

children from Childsmile nurseries participating in the NDIP programme as part 

of Childsmile monitoring could provide an excellent opportunity to longitudinally 

follow-up children. Indeed, previous large scale caries studies have been 

successfully performed in this age group and in this setting (McMahon et al. 

2010). Moreover, there is immense potential for longer term follow-up via the 

NDIPs carried out in schools when children are aged five- and 11-years. Thus, the 

ability to simultaneously collect plaque and saliva samples for microbiological 

and immunological investigations may be feasible.  

Another important aspect to consider for future studies is the study design. The 

detection of S. mutans in dental plaque is a valuable and accepted technique to 

identify children at increased risk of developing dental caries. However, recent 

metagenomic studies have provided evidence in support of a polymicrobial 

aetiology for dental caries. These studies have so far been performed only with 

small numbers of participants and studies conducted in young children are 

lacking (Aas et al. 2008; Alcaraz et al. 2012; Belda-Ferre et al. 2011). The 
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advancement of these technologies and the subsequent reduction in running 

costs makes this technology more accessible for use in large-scale population 

studies. A population-based study of the oral metagenome or transcriptome 

associated with health and disease in young children would likely yield important 

insights into the initiation of dental caries, and could also have far-reaching 

implications for associated diseases such as cancer, metabolic and 

cardiovascular diseases (Aida et al. 2011; Tremblay et al. 2011). Childsmile’s 

young target age group and multiple visit interventions could provide a platform 

from which to longitudinally investigate the development of the oral 

metagenome in children through to adolescence and all stages of disease. 

In the present studies salivary cortisol concentrations were measured only at a 

single time point. Ideally a basal cortisol measurement would be established for 

every study participant. In a recent study, basal cortisol measurements were 

found to be associated with an increased prevalence of dental caries and lower 

SES in children aged five- to six-years old (Boyce et al. 2010). This was the first 

study to provide evidence of the potential biological mechanisms which may 

underlie socioeconomic disparities in dental health. However, further research is 

required to corroborate these results and to identify the microbiological and 

immunological pathways involved. The collection of multiple saliva samples over 

consecutive days would likely be unattainable in a large-scale study of 

Childsmile participants. However, careful selection of a sub-sample of 

participants using a matched-case control design would likely yield important 

insights.  

Further research is required to investigate whether the concentrations of 

salivary antimicrobial peptides influence the susceptibility to dental caries. As 

natural antibiotics, antimicrobial peptides are currently under intense 

investigation for their use as potential therapeutic agents for a myriad of 

diseases (Liu et al. 2010) Furthermore, there has been some suggestion that low 

concentrations of antimicrobial peptides, such as the HNPs 1-3 may provide an 

indicator of caries risk in young children (Tao et al. 2005). A large-scale clinical 

study of Childsmile participants, using a matched case-control design could 

identify whether the HNPs 1-3 have potential as therapeutic agents for the 

protection against dental caries. Furthermore, the data reported here indicated 

that sIgA antibodies specific for oral streptococci increased in children from one-
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to three-years of age. It could not be determined from these studies whether 

increased antibody titres influenced the susceptibility of dental caries in young 

children and there was no evidence to support a role for sIgA antibodies 

influencing colonisation with Mutans streptococci. Thus, further research is 

required to elucidate the role of sIgA antibodies in dental caries aetiology. In 

this regard, understanding how the host initiates an adaptive immune response 

to S. mutans is crucial.  

An additional aim of these studies was to investigate the initiation of adaptive 

immune responses to S. mutans using a series of In vitro and In vivo studies. The 

data reported in this thesis indicate that upon acquisition in the host, S. mutans 

does not elicit an inflammatory immune response and indeed may subvert 

immune responses to promote its persistence within the oral biofilm. However, 

additional studies have indicated that protective immunity can be generated and 

that the breadth of the secretory immune response to S. mutans is important 

(Nogueira et al. 2005; Parisotto et al. 2011). Further in depth investigations to 

establish the mechanisms which lead to the development of a protective 

immune response in some individuals are required. In this respect, the use of In 

vivo animal models of dental caries could provide important insights into the 

kinetics of antigen uptake and presentation in the oral cavity with the 

identification of the location of effector immune responses and the cells 

involved. These studies could have significant implications, for both 

understanding the immune response in the oral cavity and for identifying the 

components required to establish neutralising immunity to dental caries.  

The final aim of this thesis was to develop and optimise the use of an In vitro S. 

mutans biofilm model. This biofilm model is arguably more representative of S. 

mutans biofilm formation In vivo compared with commonly used microtitre plate 

assays. The sucrose-dependent biofilm model described here represents a useful 

model to investigate potentially therapeutic molecules for their ability to inhibit 

Gtf-mediated adherence and accumulation of S. mutans. Using this model, the 

minibody denoted ‘SS2’ was demonstrated to have inhibitory activity against the 

formation of S. mutans biofilms. Thus this study represented an important first 

step in characterising the potential of SS2 for therapeutic intervention prior to 

its application in In vivo models of dental caries and possible subsequent use in 

human clinical trials. The In vitro biofilm model described here could represent 
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an important first stage in investigations of naturally occurring molecules, which 

may potentially be identified from future clinical Childsmile studies to inhibit S. 

mutans biofilm formation.  

7.1 Conclusions 

This thesis has documented evidence to suggest that S. mutans colonises the oral 

cavity of young children at a time when they are immunologically immature. As 

colonisation with S. mutans increases, salivary immune responses undergo 

maturation as indicated by increases in the concentrations of antimicrobial 

proteins and sIgA antibodies specific for oral streptococci in children aged one- 

to three-years. Additionally, In vitro and In vivo evidence suggest that S. mutans 

does not elicit an inflammatory immune response upon colonisation of the host 

(Figure 7-1). This was despite using infective doses of S. mutans far higher than 

would likely be encountered naturally. Thus, the early acquisition of S. mutans 

in a relatively immunologically immature host together with the absence of an 

inflammatory immune response likely aids the colonisation of S. mutans and its 

persistence within the oral biofilm and subsequent contribution to dental caries. 

Further in depth studies building on the observations reported here will 

significantly advance our understanding of the host-pathogen interactions within 

the oral cavity. These studies would ultimately provide a platform from which to 

investigate other common oral infections and thus, create an opportunity for 

novel therapeutic interventions.  
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Figure 7-1: Initiation of an immune response to S. mutans 

With increased microbial colonisation of the oral cavity from one- to three-years of 
age, salivary immune responses undergo considerable maturation as indicated by 
increases in salivary antimicrobial proteins and sIgA antibodies (panel A). S. 
mutans can become detached from the oral biofilm via the sheer mechanical 
forces of saliva, natural dissemination from the oral biofilm and from disruption 
through tooth-brushing. Once in saliva, S. mutans can presumably be detected by 
DCs, either in the gut or oral mucosa. However, the exact mechanisms of antigen 
uptake in the oral cavity have yet to be elucidated (panel B). Studies have shown 
that upon antigen uptake, DCs migrate to the draining lymph node where they 
direct effector immune responses. In vitro data indicated that DCs in the presence 
of S. mutans upregulated cell surface expression of Eα-MHCII peptide complexes 
and co-stimulatory molecules (CD40, CD80 and CD86). This was accompanied by 
high level expression of the anti-inflammatory cytokine IL-10 and low levels of pro-
inflammatory IL-12 and the chemokine CCL20, which suggested that DCs were 
not functionally mature. Subsequently, T cells failed to proliferate in response to 
DCs activated in the presence of S. mutans. Once again this response occurred in 
an environment with high levels of IL-10 coincident with low level expression of 
pro-inflammatory markers, IL-12, IL-2 and CCL20 and an absence of IFN-γ or IL-
17 (panel C). Furthermore, In vivo DCs failed to mature and migrate in response to 
S. mutans exposure. Despite these observations, sIgA responses directed against 
S. mutans can be generated and detected. The ultimate outcome of secretory 
immunity on S. mutans natural infection remains to be fully elucidated but is likely 
shaped by the chronicity of infection, antigenic load, the nature and potentially 
location of DC responses.  
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Appendix IV: Sociodemographic Questionnaire 

 

 
 
 
 
 
 
 



354 

 
 
 
 
 
 
 
 
 



355 

Appendix V: Food frequency questionnaire 
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