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SUMMARY

Murine models of graft-versus-host disease (GvHD) provide important 

information relevant to clinical bone marrow transplantation (BMT), as well as to 

other types of T cell-mediated pathology. The nature of the GvHD which develops in 

(C57BL/6 X DBA/2)Fj (BDFJ mice injected with parental lymphocytes is dependent 

on whether C57B1/6 (B6) or DBA/2 parental donor cells are used. BDFi mice injected 

with B6 donor cells (B6 => BDFJ develop an acute GvHD with early lymphoid 

hyperplasia and NK cell activation, followed by immunosuppression, activation of 

anti “host cytotoxic T lymphocytes (CTL), weight loss and early death. In contrast,

BDFi mice given DBA/2 donor cells (DBA/2 => BDFJ exhibit a chronic, stimulatory 

GvHD, characterised by B cell hyperreactivity, autoantibody production and immune 

complex-mediated glomerulonephritis (ICON).

Previous studies have shown that the distinct forms of GvHD in BDF, 

recipient mice are associated with different patterns of cytokine production. Whereas 

acute GvHD is characterised by production of high levels of Thl cytokines, chronic 

GvHD is associated with a preferential Th2 response. Therefore, it was suggested that
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the two forms of GvHD may reflect differential activation of distinct subsets of CD4^

T helper (Th) cells. However, when and why such T cell polarisation should occur 

has remained unclear, A number of recent studies have demonstrated that cytokines 

produced by cells of the non-specific immune system during the early phase of an
'

immune response can strongly influence the type of specific response which develops 

subsequently. The main aim of this thesis was to explore the role of these early 

immune mediators in determining the outcome of the GvHD in BDFi mice.

The initial series of experiments described in Chapter 3 detailed the kinetics of 

acute and chronic GvHD in order to determine at what point the cytokine response 

becomes polarised towards a preferential Thl or Th2 phenotype. I found that acute 

GvHD in B6 => BDF, mice is a biphasic disease, in which Thl cytokines and intense
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lymphoid hyperreactivity progress into a destructive disease characterised by death 

and immunesuppression. In contrast, chronic GvHD is an initailly milder, but 

ultimately more persistent disorder, which appears to involve a mainly Th2-type 

immune response. These results confirmed previous reports that differential cytokine 

production is associated with acute and chronic GvHD and extended them by showing 

that the responses elicited by B6 and DBA/2 parental donor cells diverged very 

rapidly.

IL-12, a heterodimeric cytokine produced by APCs, plays a key role in the 

early polarisation of Th cell responses in a variety of disease models by selectively 

promoting the growth and differentiation of Thl cells. In Chapters 4 -6 ,1 therefore 

examined directly the role of IL-12 in determining the outcome of the GvHD in BDFj 

mice, by investigating the effect of neutralising IL-12 in vivo. A single injection of 

neutralising anti-IL-12 antibody abrogated many of the early proliferative features of 

acute GvHD, including splenomegaly and NK cell activation, but these effects were 

transient. Neutralising endogenous IL-12 in B6 => BDF, mice for a longer period had 

a more dramatic effect on the development of acute GvHD, as repeated administration 

of anti-IL-12 during the first 8 days of the disease prevented all subsequent 

immunosuppression, weight loss and mortality. Anti-IL-12 not only conferred long

term protection from the disease, but also permitted full repopulation with donor B6 

lymphocytes. The cytokine response of anti-IL-12 treated surviving mice was 

permanently polarised towards a Th2 phenotype similar to that observed in DBA/2 ^
SBDF, mice. However, long-term survivors did not develop the autoimmune pathology 

associated with the chronic form of disease. These results show that early production 

of IL-12 plays a critical role in acute, but not chronic GvHD. In contrast, neutralising 

IL-12 had no effect on the chronic GvHD in DBA/2 => BDF, mice.

To explore further the influence of IL-12 in acute vs chronic GvHD, in 

Chapter 7 ,1 examined the effects of giving rm IL-12 to both B6 => BDF, and DBA/2

m



IL-12 over a longer period.
The principal immunomodulatory role of IL-12 is to induce IFN-y production

IV

,

=> BDF, mice. Administration of IL-12 converted chronic GvHD into a more acute ■j'
type of disease, with a characteristic pattern of early hyperplasia followed by late

:¥

immunosuppression and destruction. Exogenous IL-12 also provoked anti-host CTL
V''

activity, weight loss and mortality in DBA/2 => BDF, mice and converted the cytokine 

profile towards the Thl pattern usually seen during acute GvHD. IL-12 also 

exacerbated the systemic acute GvHD in B6 => BDF, mice. Although these results 

confirmed the important role of IL-12 in acute GvHD, enhanced levels of IL-12 were 

produced by spleen cells from both B6 => BDF, and DBA/2 => BDF, mice in 

response to LPS in vitro. However, B6 => BDF, cells produced higher amounts of

by CD4+ and CDS' T eells and NK cells. In Chapter 8 ,1 therefore examined directly 

the role of IFN-y in acute GvHD, both in unmanipulated B6 => BDF, mice and in 

DBA/2 => BDF, mice given IL-12, Depletion of IFN-y ameliorated many of the 

destructive features of both diseases, including weight loss, mortality and suppression 

of lymphoid responses, as well as reducing splenomegaly and increasing Th2 

cytokine production. In contrast, IFN-y was not required for CTL activation, |

induction of IFN-y production and inhibition of B cell activity.

The source of the different cytokines produced in GvHD were examined in 

Chapters 9 and 10. CD4+ T cells were the principal source of IL-2, IFN-y, IL-5 and 

IL-10 in both acute and chronic GvHD, although CDS' T cells and other cells also 

contributed to some of the cytokine production. In particular, during acute GvHD,

CD4', CDS' and non-CD4'CD8' populations all appear to contribute to the high levels 

of IFN-y produced by spleen cells from B6 => BDF, mice. However, the exact source 

of IFN-y appeared to vary at different times and I found evidence that several 

populations can produce or regulate the production of many of the critical cytokines 

involved in GvHD.
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Finally, since NK cells are important during other models of GvHD and are a 

source of IFN-y in various models of T cell-mediated immunity. In Chapter 10 I

examined the involvement of NK cells in polarising immune effector responses early 

in acute GvHD. Depletion of NK cells with a single injection of anti-ASGM-1 

antibody had no consistent effect on either the progression of the disease or the 

cytokines produced during its course. Thus, NK cells may not be involved in the 

initial polarisation of acute vs chronic GvHD.

My results thus extend previous findings on the distinct forms of 

immunopathology which develop in BDF, mice with acute and chronic GvHD. In 

addition, my studies have demonstrated the importance of individual cytokines in 

polarising the allogeneic T cell response and determining its pathological outcome. In 

particular, they emphasise the role of ID-12 in Thl cell activation. These studies of the 

cellular and molecular interactions involved in murine GvHD have implications for 

understanding the pathogenesis of clinical GvHD and the development of specific 

therapy following BMT. In addition, they provide an important insight into the 

regulation of immune responses during other immunologically-mediated diseases.
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CHAPTER 1: INTRODUCTION
■y.

'■■’fi.

Graft-versus-host reactions (GvHR) are initiated when mature T

lymphocytes are transferred into allogeneic recipient animals, thereby provoking

the development of a multi-organ inflammatory syndrome termed graft-versus-

host disease (GvHD). Experimental GvHD was first described by Billingham,

Brent & Medawar [1, 2], who found that newborn mice inoculated with allogeneic

lymphocytes developed a "runt disease", associated with malabsorption, growth

retardation, and damage to the liver, skin, intestinal tract and lymphoid organs.

Although initially described as a disorder of experimental animals [1-3], GvHD
.

was subsequently found to be a common and often fatal, complication of human

allogeneic bone marrow transplantation (BMT) [4-6]. Human acute GvHD closely 

resembles acute GvHD in mice, and similar pathological changes in the skin, gut

and liver are observed [3,4,7-9]. Clinical chronic GvHD can evolve directly from 

primary acute disease or develop "de novo" [10]. In either case, the clinical 

manifestations of chronic GvHD are similar to those of collagen vascular diseases, 

such as systemic lupus erythematosous (SLE) or scleroderma [11, 12].

Since BMT remains the treatment of choice for a variety of diseases, 

including aplastic anaemia, severe combined immunodeficiency (SCID) and 

leukaemia [5, 6, 13-15], GvHD presents an obstacle in the therapeutic use of 

BMT. Despite the introduction of immunosuppressive agents such as 

Cyclosporine A and more recently, FK506 and rapamycin, as GvHD prophylaxis 

[10, 16], clinically significant GvHD develops in up to 60% of patients receiving 

an HLA-matched sibling BMT [9, 13]. Conversely, the more selective approach 

of depleting T cells from the donor BM to prevent GvHD [17-19] leads to failure 

of engraftment and causes leukaemic relapse [20]. Alternative GvHD preventative 

strategies are clearly needed and a better understanding of the complex interactions 

involved in GvHD will assist their development. Several animal models have 

therefore provided experimental systems to explore the pathogenesis of clinical
y



GvHD and other forms of T cell-mediated pathology in the relevant tissues [8, 21- 

23].

EXPERIMENTAL MODELS OF GvHD

Murine models of GvHD allow experimental manipulation of effector 

mechanisms in a broad range of donor/host strain combinations of distinct genetic 

backgrounds. Furthermore, the pathological alterations of acute murine GvHD 

correlate well with those in the human disease and has provided important insights 

into its pathogenesis. The essential requirements for induction of GvHD in 

experimental animals are as follows:- 1) The donor inoculum must contain 

immunocompetent T lymphocytes, since their depletion from allogeneic bone 

marrow grafts prevents GvHD initiation [17], 2) The donor and host must be 

genetically incompatible i.e. the host must express minor or major 

histocompatibility (MHC) antigens which are lacking in the donor inoculum and 

so are recognised by the donor T cells as foreign. 3) The host mice must be 

unresponsive to the injected donor cells, either because they are 

immunocompromised, or because they are genetically tolerant to the donor.

There are two principal models of experimental GvHD:-

1). Irradiated model:- the immune system of recipient mice is deliberately 

destroyed by irradiation (or chemotherapy). The subsequent injection of bone 

marrow and low numbers of donor T cells initiate a very severe, often lethal 

GvHD.

2). Parent => Fi model:- occurs when unirradiated, immune competent Fi 

hybrid mice are given parental donor T cells. In this case, donor lymphocytes can 

respond to the non-shared host MHC antigen(s), whereas host T cells are 

genetically tolerant to the injected cells. The severity of this form of GvHD is 

dependent on factors such as the nature of the donor and host MHC disparity [21, 

24-29], the phenotype of the cell population used to induce the GvHR [30, 31], 

and the microbiological status of the host [32-35]. This was the model of GvHD



IMMUNOPATHOGENESIS OF ACUTE GvHD

The acute GvHD which develops in B6 => BDFi mice is characterised by

chosen for the studies contained in this thesis, which focuses on the events 

involved in the induction and development of GvHD in unirradiated (C57B1/6 x 

DBA/2)Fi (BDFi) recipient mice injected with either C57B1/6 (B6) or DBA/2 

parental donor spleen cells.

The BDFi model of GvHD is particularly useful because the nature of the 

disease can be modified by using either C57B1/6 (B6) or DBA/2 parental donor 

cells. B6 (H"2^) donor cells provoke an acute GvHD, with early lymphoid 

hyperplasia, followed by immunosuppression, lymphoid atrophy, activation of 

anti-host cytotoxic T lymphocytes (CTL), weight loss and early death [21, 24, 27,

28, 30, 31]. In contrast, DBA/2 (H-2^) donor cells elicit a chronic, stimulatory 

GvHD, characterised by B cell hyper-reactivity, autoantibody production and 

Immune Complex mediated Glomerulonephritis (ICGN) [23 , 24, 36-40].

Previous studies have shown that the distinct forms of GvHD which develop in 

BDFi host mice are associated with different patterns of cytokine production.

Acute GvHD is characterised by production of high levels of IFN^ and IL-2 [41-

45], while chronic GvHD is associated with production of the Th2-type cytokines,

IL-4, IL-5 and IL-10 [42, 46-48]. Thus, it has been suggested that the two forms
'

of GvHD reflect differential activation of CD4+ T helper (Th) cell subsets [42,

46]. However, the reason for this polarisation has remained unclear.
.The spectrum of pathological alterations observed in acute and chronic GvHD is 

illustrated in Fig. 1.1.

an initial period of immune stimulation, during which donor T cells expand in the 

host lymphoid organs [27, 29, 45] and enhanced NK cell activity is observed 

[49]. However, the early hyperplasia is rapidly replaced by suppressive 

manifestations, including loss of B and T cell function, hypogammaglobulinaemia 

and destructive pathology in the skin, liver, small intestine and lymphoid tissue [7,



frequency of stem cells [50], these survivors are eventually repopulated with 

donor-derived lymphohaemopoeitic cells [33, 51, 52].

The cellular requirements for initiation of acute GvHD have been studied

3
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3321,24, 27,28]. The host lymphohaemopoietic system is destroyed, severe weight
.

loss is evident and the majority of animals die from an increased susceptibility to 

secondary infection and/or shock [21]. However, a small number of mice survive
ïv:

acute GvHD and because the initial splenic donor inoculum contains a high

:'ï3:
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extensively. Optimal induction of the disease requires the presence of both CD4+ 

and CD8+ T cells in the donor inoculum [30] and incompatibility in the Fi 

recipient at both MHC class I and class II loci [25, 26, 29]. The 

immunosuppression and lethality can be inhibited by depleting either CD4+ or 

CD8+ T cells from the inoculum, [26, 30, 31] and CD8 depletion converts the 

acute disease into a chronic, stimulatory GvHD, similar to that found in 

unmodified DBA/2 => BDFi mice [31]. The use of F% mutant mouse strains 

which differ from donor mice solely at class I and/or class II MHC loci also 

shows that acute GvHD is characterised by sequential activation of class II- 

specific donor CD4+ T cells, followed by class I-specific CD8+ T cells [21, 29].

Although both CD4+ and CD8+ T cells are required for acute GvHD 

progression, the relative role of each of these populations in disease pathology is 

still not fully understood and remains very controversial. The main effector 

function of CD4+ T cells is to secrete cytokines and they can be divided into two 

subsets depending on the pattern of these mediators they secrete [53]. T helper 

type-1 (Thl) cells are responsible for cell-mediated immunity, while T helper type- 

2 (Th2) cells mediate humoral responses. Recent studies have suggested that 

during acute GvHD, activated Th cells appear to differentiate preferentially 

towards a Thl phenotype [42-44, 54]. Using semi-quantitative polymerase chain 

reaction (PCR) to detect cytokine mRNA, Allen et al. [42] demonstrated that 

spleen cells from acute GvHD mice produced much higher levels of IFN-y mRNA 

than did cells from either chronic GvHD or control mice. Furthermore, Troutt et
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al. [54] observed that up to 70% of spleen cells in B6 => BDFi mice were 

producing IFN-y mRNA compared with < 1% of normal cells. Several studies

have also suggested that acute GvHD is critically dependent on the high levels of

*
Thl cytokines produced during its development [55-57]. Administration of anti- 

IL-2 monoclonal antibody (mAb) to B6 =»- BDFi mice inhibits anti-host CTL 

cytotoxicity and prevents the destruction of host B cells usually observed [57]. 

The intestinal pathology associated with this model can also be prevented by 

neutralising IFN-y in vivo [55].

Thl cytokines could account for several features of acute GvHD. Firstly, 

IFN-y activates macrophages (m<j>s) [58] and induces the release of inflammatory 

mediators such as IL-1, IL-6, TNF-a and nitric oxide (NO) [59, 60]. Cells from 

mice with acute GvHD show an enhanced capacity to produce IL-1, IL-6 and 

TNF-a when stimulated with LPS in vitro [41, 43,61] and inhibition of IL-1 [62, 

63] or TNF-a [64, 65] in vivo reduces the severity of the disease. Similarity, 

injection of the NO synthesis inhibitor LP-monomethyl-arginine (L-NMMA) to 

mice with GvHD prevents enteropathy [66]. Further potential functions of Thl 

cytokines in acute GvHD include activating NK cells, providing help for CTL 

responses and contributing to immunosuppression. IL-2 and IFN-y act 

synergistically to trigger NK cells to secrete cytokines and develop into activated 

killer cells [67,68], while IL-2 is required for CD8+ cells to differentiate into anti

host CTL during acute GvHD [57]. The final way in which IFN-y may be 

important in the acute disease is by suppressing lymphoid cell responses. Several 

mechanisms have been implicated in GvHD-asociated immunosuppression, 

including the destruction of lymphoid tissue by CTL [23, 31] and deficient 

lymphopoiesis of new B and T cell populations secondary to GvHD-attack on the 

thymus and bone marrow [50,69,70]. However, active suppression of lymphoid 

responses, demonstrated by the ability of GvHD cells to reduce B or T cell 

responses of cocultured normal host or donor cells, also occurs [27, 28, 30] and 

has been linked consistently to the production of IFN-y [71-73]. IFN-y has



cytostatic properties in vitro [74] and anti-IFN-y has been shown to prevent much 

of the suppression by GvHD cells in vitro [71, 73]. IFN-y may act by inducing 

release of additional immunosuppressive agents such as transforming growth 

factor-p (TGF-P) [71] or NO [75] which then modulate immune responses.

Although it is not clear why IFN-y production predominates in acute GvHD, IL-

12 has been shown to be central to its induction in other systems [76-82].
CD8+ T cells are also critical for the development of acute GvHD, although

their exact role is unknown. The disease can be prevented by depleting CD8+ cells

from the donor inoculum [30,31] and CD8+ T lymphocytes from mice with acute

GvHD can lyse host alloantigen bearing target cells in vitro [24, 27, 31]. The

kinetics of this CTL response correlate with destruction of host lymphoid cells in |

vivo [31], while chronic GvHD in DBA/2 ^  BDFi mice is not associated with

either tissue destruction or detectable CTL activity [23, 24,27,31]. However, the

presence of CTL does not always correlate with tissue damage and lethality [24,

27, 83]. An alternative possibility is that allospecific CD8+ T cells act by 

producing mediators which inhibit immune function and/or cause tissue damage.

These cells were first described as "allosuppressor" T cells in both murine and 

clinical GvHD, based on their ability to inhibit the function of other lymphocyte 

populations in vitro. [27, 30, 84]. Recent studies in other systems have also 

suggested that CD8+ T cells produce IFN-y [85-88] and TGF-p [89], both with 

known inhibitory properties. Finally, it should be noted that under certain 

conditions, CD8+ cells can also produce a variety of other cytokines, including IL- 

4, IL-5 and IL-10 [90-94] and it therefore remains important to define the role(s) 

of CD8- T cells directly.

A widely described feature of murine and clinical GvHD is NK cell 

activation [7,49,95-99], although their precise role in GvHD is unclear. NK cells 

are classified as large granular lymphocytes (LGL) and like CD8+ CTL, can be 

directly cytotoxic [100]. However, in contrast to specific CTL-mediated 

cytotoxicity, the susceptibility of target cells to NK cell-mediated lysis is inversely

f
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proportional to their expression of class I MHC antigens [101]. Increased NK cell 

activity is observed early during several models of GvHD [7, 49, 95-98] and 

involves both donor and host NK cell populations [95, 102, 103]. NK cell 

depleted donor populations induce a less severe acute GvHD [102, 104, 105] and 

depletion of NK cells in recipient mice by in vivo injection of anti-ASGM-1 

antiserum [105, 106] also reduces lethal disease. NK cells are found in areas of 

epithelial cell damage [102, 107-109] and therefore may contribute to disease by 

cytotoxicity. NK cells are thought to mediate rejection of certain parental bone 

marrow grafts by Fi hybrid mice (hybrid resistance) [110, 111]. However NK 

cells may also contribute to acute GvHD by releasing pathogenic cytokines such as 

IFN-y. This possibility is consistent with current ideas that, by providing an early 

source of IFN-y, NK cells are an important component of innate defence against

pathogens, by activating phagocytic cells [112-114] and promoting Thl cell 

differentiation [115-117], NK cells are recruited and activated by IL-12 [118- 

121], a proinflammatory cytokine released by m(j)s and other APC [76, 122,123].
'

IL-12 therefore provides a link between innate resistance and T cell-dependent 

responses. The role of NK cells in polarising GvHD has not been examined 

previously, nor has the relationship between IL-12 and NK cells been explored.

IMMUNOPATHOGENESIS OF CHRONIC GvHD

DBA/2 => BDFi mice develop a chronic GvHD, characterised by 

persistent immune stimulation of mainly host B lymphocytes. This leads to 

increased levels of serum IgG and IgE [37-39, 48] and production of 

autoantibodies against nuclear antigens, double-stranded DNA (ds-DNA), 

erythrocytes and thymocytes [21, 23, 38, 39]. Unlike the acute GvHD, tissue 

destruction and early death are not features of the chronic disease. However, after 

several months, DBA/2 => BDFi mice develop immune complex-mediated 

glomerulonephritis (ICGN), as evidenced by proteinuria, ascites and deposits of



immune-complexes in renal glomeruli and usually die from kidney failure, or 

lymphoma [21,36-39].

Chronic GvHD appears to be mediated entirely by CD4+ T cells [26,30], 

which are activated by allogeneic class II MHC antigens expressed on host B cells 

and then release cytokines which activate the B cells to proliferate and produce 

autoantobodies [39, 124]. No expansion of donor CD8+ T cells is observed and 

anti-host CTL activity is not detectable [27, 28, 31]. As a result, host 

lymphohaemopoietic cells are not eliminated and instead of repopulation by the 

donor cells, mixed chimerism develops [21, 23]. Chronic GvHD can also be 

induced by the injection of purified B6 CD4+ T cells [30, 125], while depletion of 

CD8*- T cells prevents the ability of B6 cells to induce acute GvHD and promotes 

development of chronic GvHD [30,31]. Similarly, chronic GvHD is induced by 

B6 cells when the host expresses an isolated MHC class II disparity [25, 26, 29]. 

Previous studies suggest that the key-factor in chronic GvHD is the continued 

stimulation of host reactive donor CD4+ T cells by host MHC class II-expressing 

B cells [39, 124, 126, 127] and that this occurs because host B cells are not 

eliminated by the inflammatory processes which underlie acute GvHD [24, 27,

31]. Potentially autoreactive B cells exist even in normal mice [21] and when

adequate Th cell help is provided (in this case by alloreactive donor CD4+ T cells), 

these can be triggered to secrete high affinity autoantibodies [21,39,124].

Recent work has suggested that chronic GvHD may be associated with a 

Th2-type cytokine phenotype [42, 46-48, 128]. This is consistent with the fact 

that Th2 cytokines drive B cell responses [53] and recent studies have shown 

elevated levels of mRNA for IL-4 and IL-10, but not for IFN-y, in unstimulated 

cultures of chronic GvHD spleen cells [42, 46, 47]. Furthermore, the majority of

I

antibodies produced during chronic GvHD are of the IgGi and IgE subclasses 

[48], both of which are highly dependent on IL-4 production [129] and are

therefore preferentially associated with Th2 responses. Anti-IL-4 treatment in vivo

8



131], it would appear that a low pCTL frequency does not in itself prevent the 

development of acute GvHD. Furthermore, these experiments show that chronic

"1
I

has also been shown to prevent the elevated serum immunoglobulin and 

proteinuria associated with the disease, in addition to reducing mortality [48, 128].

The reasons why the same class I and class II MHC antigens cause 

different pathological outcomes depending on the donor cell origin are unclear.

Using limiting dilution analysis, it has been shown that DBA/2J mice have a nine

fold lower anti-BDFj precursor CTL (pCTL) frequency than B6 mice [31] and 

thus are unable to generate a comparable CD8+-mediated cytotoxic attack on BDFi 

recipients. However, when spleen cells from congenic DBA/2HaSmm mice are 

used to induce GvHD in BDFi mice, instead of the DBA/2J cells normally used in 

this model, a classic acute GvHD with anti-host CTL activity and 

immunosuppression develops [130]. As DBA/2HaSmm mice are also H-2^ and 

have a similarily low anti-H-2*  ̂pCTL frequency as that of DBA/2J mice [130,

a
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GvHD does not simply result from injecting H-2^ donor cells into BDFi mice and 

cells from other H-2^ strains, including C57B1 congenic B 10.D2 mice elicit acute 

GvHD normally [21]. Thus, the inherent differences in the T cell responses of B6 

and DBA/2 mice responsible for modulating GvHD remain unidentified.

Taken together, it appears that Thl cytokine production, together with 

CD8+ donor T cell engraftment provokes acute GvHD, while a preferential Th2 

cytokine response and a lack of donor CD8+ T cell engraftment, leads to chronic 

GvHD. Determining why these different T cell responses were elicited by B6 and 

DBA/2 donor cells was the main focus of my work and it is important to 

understand what factors are responsible for polarising the specific immune 

response in other systems.

I

Thl and Th2 CELL DIFFERENTIATION

The cytokine profile produced by activated CD4+ T helper (Th) cells 

determines the specialised effector function of the cell [53,132]. Thl cells secrete

I
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cytokines which provide help for cell mediated immune responses and are 

functionally defined as cells which produce IFN-y, while Th2 cells secrete 

cytokines which induce antibody production by B cells and are defined on the 

basis of their ability to produce IL-4, IL-5, IL-6, IL-10 and IL-13 [53]. The 

reason(s) why a naive or precursor CD4+ T cell (pTh) becomes polarised to 

differentiate into a Thl or a Th2-type cell are not fully understood and are the 

focus of many current studies. Recent use of TcR transgenic (TcR Tg) mice, in 

which the majority of CD# T cells express a TcR specific for known antigen/class 

II MHC molecule complexes, has strongly suggested that a single precursor cell 

may differentiate to either a Thl or Th2 phenotype, depending on the conditions 

present during its initial contact with specific antigen [76, 78, 133-135]. These 

studies have also been instrumental in showing that many factors can play a role in 

aquisition of T helper cell phenotype, including the type of APC involved [132,

136] antigen dose [137, 138] and genetic background [139, 140]. However, the 

most potent influence on Th phenotype acquisition appears to be exerted by 

cytokines themselves [76-78, 133-135, 141]. The majority of studies agree that 

differentiation towards a Th2 response is critically dependent on the presence of 

IL-4 during priming [134, 135, 141] and that mast cells, basophils and/or CD4+

NK1.1+ cells may be important IL-4-producing cell types during the early non

specific immune response [116, 142-146]. In addition, much interest has focused 

on the role of the recently described AFC-derived cytokine, IL-12, in determining 

the outcome of CD4+ T cell-mediated immune responses [76-78,147].

INTERLEUKIN-12

IL-12 (originally known as Natural Killer Cell Stimulatory Factor 

(NKSF)) is a heterodimeric cytokine consisting of a 35kD and a 40kD chain 

[123]. It is produced by phagocytic cells, particularly m<j)s, in response to 

microbial constitutents [76, 122], or when CD40 on the m(|) surface is ligated by 

CD40 ligand (CD40L) on activated T cells [148, 149]. Originally cloned from
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EBV-transformed B cell lines, IL-12 was first functionally described as a potent

1 1

inducer of IFN-y in T and NK cells and an enhancer of cytotoxic activity in CD8+ 

T cells and NK cells [118, 120, 150, 151]. It is now known that IL-12 acts at 

several different levels during T cell-mediated immune responses, as illustrated in 

Figure 1.2.

Early during the response, APC-derived IL-12 stimulates NK and T cells 

to produce IFN-y. Both resting and activated NK cells produce IFN-y in response 

to IL-12 [121, 123], alone, or in synergy with IL-1 and TNF-a [119, 152]. This 

early, T cell-independent pathway of IFN-y production may therefore be extremely 

important in determining the outcome of the specific adaptive response [112-114,

117, 152, 153]. IL-12 also induces IFN-y production by CD4+ and CD8+ T cells 

[92, 120, 121, 151], but maximal production of IFN-y by T cells also requires 

TcR/CD3 engagement and costimulatory signals delivered via the CD28 molecule 

on the T cell surface by B7 on APC [154,155]. In addition to eliciting IFN-y from 

NK cells and T cells, IL-12 also enhances their cytotoxic responses [118, 120, 

121]. IL-12 augments both NK cell-mediated and CTL-mediated cytotoxicity and 

promotes the expansion of activated NK and CD8+ T cells [123, 156, 157].

B cells and m<j)s can both produce IL-12 [76-78, 120, 122, 152, 158, 

159], but m(|)S appear to be the major producers of IL-12 under physiological 

conditions, as LPS induces similar levels of IL-12 in normal and B cell deficient 

SCID mice [152]. Although stimulation with bacteria or bacterial products (e.g. 

LPS), or signalling via the CD40 antigen can activate m (|)S to release IL-12, m(|)s 

also usually require priming with IFN-y for optimal IL-12 production [148, 160]. 

Very recently, it has been suggested that dendritic cells (DCs) can also produce IL- 

12, albeit at much lower levels than are produced by activated M<|>s [123]. The 

signals required for IL-12 production by DCs are not yet fully characterised, 

however the ability of DCs to produce IL-12 while acting as APCs may be 

important in influencing Th cell differentiation.



IL-12 is critically required for the differentiation of pTh into effector Thl 

cells [76-78, 159]. Hsieh et al. [76] were the first to demonstrate this by showing 

that the addition of heat killed Listeria monocytogenes (HKLM) to unprimed 

cultures of TcR Tg T cells augmented their subsequent IFN-y production. This 

effect was only observed if m(|)S were present in the original culture and was found 

even if the m<j)s were not recognised by T cells in a cognate fashion. This was 

prevented by the addition of anti-IL-12 mAb to the cultures. IL-12 appears to act 

directly on pTh to promote Thl differentiation, as it also enhances priming for 

IFN-y in an APC-indendent system [78], but it may also increase Thl responses 

by inhibiting priming for IL-4 production, thereby preventing Th2 cell 

differentiation.

Whether IFN-y is necessary for Thl responses induced by IL-12 is, as 

yet, unresolved [77, 78, 159, 161]. Studies in some systems, suggest that in the 

presence of neutralising anti-IFN-y antibodies, IL-12 can still promote 

differentiation of pTh towards a Thl phenotype [77, 78]. However, it is thought 

that the ability of IL-12 to inhibit Th2 differentiation is mediated by IFN-y. This 

hypothesis is supported by a number of in vivo studies [162-164], and is 

particularly well illustrated in mice treated in vivo with anti-IgD antibody to induce 

a Th2 response [163]. In such mice, recombinant IL-12 reduced IL-4 mRNA 

levels in an IFN-y dependent manner, while augmenting IFN-y production in an 

IFN-y independent fashion.

Taken together, it appears that IL-12 provides an important link between 

the early innate immune response, mediated by phagocytes and NK cells, and the 

subsequent cell-mediated response, dominated by Thl cells and CTL. It would 

therefore seem likely that IL-12 was responsible for polarising the T cell response 

during BDFi GvHD. This had not been examined before and was the principal 

aim of my thesis.
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Distinct pathological syndromes are elicited by the injection of B6 or 

DBA/2 parental cells into unirradiated BDFi recipient mice, although the factors 

responsible for this polarisation are poorly defined. Dissecting the cellular and 

molecular interactions involved in the two disease processes would lead to a better 

understanding of GvHD and other immunologically-mediated diseases and is 

essential for the development of specific therapies following BMT. The primary 

aim of this study was to examine whether differing patterns of cytokine production 

were associated with acute and chronic GvHD and to examine what factors may be 

responsible for this polarisation. Therefore, in the experiments described in 

Chapter 3 ,1 firstly characterised the kinetics of acute and chronic GvHD using in 

vitro and in vivo indices of disease progression and subsequently examined a time 

course of cytokine production during the early period of the two diseases.

The second important aim of my research was to assess the role played by

13
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the early non-specific immune response in determining the outcome of parental cell
.

injection and the role of IL-12 was assessed in Chapters 4-7. From the results of

these chapters, it was clear that IL-12 was instrumental in directing the specific 

response during GvHD and several findings suggested that the role of IL-12 was 

to induce the production of IFN-y. In Chapter 8 ,1 therefore examined directly the 

role of IFN-y in acute GvHD, both in unmanipulated B6 => BDFi mice and in 

DBA/2 =>BDFi mice given IL-12, using the parameters which I had characterised 

in previous chapters.

Finally, it was of interest to determine the cellular source of the cytokines 

produced during acute and chronic GvHD. In Chapter 9 ,1 therefore explored how 

CD4+ and CD8+ T cells contributed to cytokine production in acute and chronic 

GvHD. In addition, since NK cells are important for the pathogenesis of GvHD 

and are implicated as an important early source of IFN-y in other T-dependent

3:



models of infection, I carried out a detailed study of their involvement in the IL-12 

mediated acute form of GvHD. This is described in Chapter 10.
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ACUTE
C57BU6 
Spleen cells

(C57BL/6xDBA/2)F^
BDFi

CHRONIC

(C57BL76xDBA/2)Fi

DBA/2 
Spleen cells

BDFi

Lymphoid hyperplasia 
NK cell activity 
Tissue destruction 
Anti-host CTL 
Immunosuppression 
Weight loss 
Death

Persistent lymphoid
hyperplasia 

B cell activation 
Hypergammaglobulinaemia 
Autoantibody production 
Proteinuria 
Ascites
Immune complex

glomerulonephritis

Fig. 1.1. The Spectrum of Pathological Alterations Associated with 

Acute and Chronic GvHD.
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Key to Symbols
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■ i CD28
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Fig. 1.2. The Role of IL-12 in Cell-mediated Immune Responses.
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CHAPTER 2

MATERIALS AND METHODS

17

Animals

Female C57B1/6J (H-2b), DBA/2J (H-2<i) and (C57B1/6J x DBA/2) Fi 

(BDFi) (H-2l*^d) mice were obtained from Harlan Olac Ltd (Bicester, Oxon). 

Animals were specified pathogen-free (SPF) and were maintained under standard

animal house conditions either in the Joint Animal Facility, or the Central Research 

Facility at the University of Glasgow. Mice were normally used at 6-8 weeks of 

age.

Collection of Blood Samples

Under light anaesthesis using 5% Halothane BP (Rhone Merieux Ltd., 

Harlow, Essex), a maximum of 200pl of blood was removed from the retro- 

orbital plexus using heparinised capilliary tubes (Hawksley & Sons LtD., 

Lancing, Sussex). Serum was separated by centrifuging capillary tubes for 10 

mins at 2000 rpm and stored at -20°C until use.

Histopathological Analysis of Kidney Sections

Histopathological analysis was carried out by Dr. Robin Reid (Dept. 

Pathology, Western Infirmary, Glasgow). Mice were sacrificed by cervical 

dislocation and kidneys removed by dissection. Kidneys were then fixed in 10% 

formalin solution and embedded in paraffin wax before 4pm sections were cut and 

stained with either Haematoxylin and Eosin (H and E) or Periodic-Acid Schiff 

(PAS) reagents. Sections were analysed by light microscopy (Nikon Labophot x 

40 objective).



Electron Microscopy of Kidney Sections

Electron microscopy was performed by Mrs Jane Hare (Dept of 

Pathology, Western Infirmaiy, Glasgow). Kidneys were removed as above and 

fixed in 5% paraformaldehyde solution. Sections were then negatively stained 

with 3% phosphotungstic acid (pH6.6) and analysed on a Philips CM 10 

transmission electron microscope (TEM).

Preparation of Lymphoid Cells

Mice were sacrificed by asphyxiation in CO2. Spleens and thymi were 

removed immediately and placed in a petri dish containing 10ml RPMI 1640 

medium (Gibco BRL. Paisley, Scotland). Single-cell suspensions were prepared 

by gently rubbing the tissues through a stainless steel mesh with the plunger of a 

5ml syringe (Becton Dickinson, Cowley, Oxford) and the resultant suspension 

passed through Nitex mesh (Cadisch & Sons, London) to remove clumps and 

debris. Cells were then washed twice in RPMI by centrifuging for 7 mins at 450g 

and resuspending the cell pellet in 10ml fresh RPMI between washes. Viable cells 

were counted by phase contrast microscopy (Nikon Labophot x 40 objective) 

using an Improved Neubauer haemocytometer (Weber Scientific International 

Ltd., Teddington, Middlesex). The final cell pellets were resuspended to a 

concentration of 5 x 10  ̂cells/ml in RPMI.

Induction of GvHR

The GvHR was induced by intravenous (i.v.) injection of 10^ viable 

C57B1/6J or DBA/2J donor spleen cells, in a volume of 0.2-0.4 ml RPMI, into the 

tail vein of BDFi recipients. Control mice received 0.2ml of RPMI only.

18



Relative Spleen Weight of GvHD Mouse

Mean Relative Spleen Weight of Control Mice

A Spleen Index of greater than 1.3 was considered to be indicative of significant 

GvHD in all experiments [3].

X 10-^M 2-mercaptoethanol (2-ME, Sigma-Aldrich Company Ltd., Poole, Dorset) 

(complete RPMI). The cells were plated in quadruplicate in 96 well flat-bottomed 

microtitre plates (Costar, Northumbria Biologicals, Cramlington, 

Northumberland) at 2 x 10  ̂cells/ well in a total volume of 200pl complete RPMI 

medium, either alone, or with lOpg/ml of either Concanavalin A (Con A) or

19

Assessment of Systemic GvHR

The intensity of the systemic GvHR in BDFi mice was assessed by 

regular weighing of mice to gauge weight loss, noting the onset of mortality and 

determining splenomegaly in individual animals.

Calculation of Splenomegaly

BDFi mice were sacrificed, their spleens removed and weighed and their 

body weight noted. The relative spleen weight was expressed in mg/lOg body 

weight and the Spleen Index calculated for each GvHD mouse using the formula

Measurement of Proliferative Responses In Vitro

Spleen cell suspensions of spleens pooled from GvHD or control mice 

were prepared in RPMI as described above. After washing twice in RPMI by 

centrifuging for 7 min at 450g, viable cells were counted and the cell pellet was 

resuspended at a final concentration of 10  ̂cells/ml in RPMI medium containing 

10% heat-inactivated foetal calf serum (FCS), lOOU/ml penicillin, lOOpg/ml

streptomycin, L25pg/ml fungizone and 2mM 1-glutamine, (all Gibco BRL) and 5
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Lipopolysaccharide derived from Salmonella Enteritidis (LPS; both Sigma- 

Aldrich). Plates were sealed with ICN Titertek non-toxic platesealers (ICN 

Biomedicals, Flow Laboratories, Irvine, Scotland) and placed in a humidified 

3 7 ^  incubator with a 5% CO2 atmosphere. Either immediately, or after various 

culture periods, individual wells were pulsed with IpCi %-thymidine (West of 

Scotland Radionucleotide Dispensary, Western Infirmary, Glasgow) for 4 hours 

(spontaneous 'ex~vivo* proliferation) or 24 hours before being harvested onto 

glass fibre filters using a 1295 Betaplate 96 well harvester. DNA-^H-thymidine 

incorporation was assessed by liquid scintillation using a 1205 Betaplate 

scintillation counter (all LKB Wallac, Turku, Finland).

Induction and Measurement of Cytokine Production in vitro

Single spleen cell suspensions were resuspended at a final concentration of 

4 X ICP cells/ml and cultured in 1ml aliquots in 24 well tissue culture plates

I

(Costar) in complete RPMI. Cells were cultured in medium alone (to assess 

spontaneous production of cytokines) or with lOpg/ml Con A or LPS. 

Supernatants were harvested after 1-4 days of culture, centrifuged in a 

Microcentaur Microfuge (Scotlab) at 13000 rpm for 5 minutes to remove cellular 

debris and stored at -20®C until assayed.

Production of IL-2, IFN-y, IL-4, IL-5 and IL-10 were quantified using 

sandwich Enzyme-Linked Immunosorbent Assays (ELISA). 96-well ELISA 

plates (Immunlon 4, Dynatech Laboratories Ltd., Billingshurst, West Sussex) 

were coated with 50pl per well of monoclonal anti-cytokine capture antibody 

(mAb) at the predetermined optimal concentration (Table 1) in carbonate buffer 

(Appendix 1) and then incubated overnight in a sealed container at 4®C. The 

contents of the wells were emptied and the plates washed twice by filling the wells 

with phosphate buffered saline (PBS; Appendix 1) containing 0.05% Tween 20 

(BDH, Poole, Dorset) (PBS/Tween), leaving to stand for 1 min and emptying the 

contents again. Non-specific protein binding sites were blocked by incubation

.
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with 200^1 of PBS containing 10% FCS (PBS/FCS) for Ihr at 31^C. After 

blocking, the plates were washed twice with PBS/Tween and culture supernatants 

or standard recombinant murine cytokines at predetermined concentrations (Table

2) were added to individual wells in a volume of 50pi. Standard recombinant 

cytokines were then serially diluted to provide the range of concentrations shown
-

in Table 2 and the plates were incubated at 37®C for 3hrs. Plates were then 

washed 4 times with PBS/Tween and 50pl of biotinylated anti-cytokine detecting
'

antibody, diluted in PBS/10% FCS, was added at the concentrations shown in 

Table 1. After incubation for Ihr at 37®C, the plates were washed 6 times with 

PBS/Tween and lOOpl of extravidin-peroxidase, (Sigma), prediluted to 2pg/ml in 

PBS/10% FCS, was added to each well. Following a final incubation for Ihr at 

3 7 ^ , the plates were washed 8 times with PBS/Tween, before lOOpl 3,3'5,5- 

tetramethylbenzidine (TMB) peroxidase substrate (Dynatech) was added to each 

well. The plates were then read at 630nm using an MR5000 automatic microplate 

reader (Dynatech) using Mikrofit version 4.5 software (Mikrotek Laborsysteme
'S.-

GmbH) and the cytokine concentration in each test supernatant calculated with 

reference to a standard curve constructed using serial dilutions of recombinant 

cytokines.

I
IL-12 p75 Heterodimer Specific ELISA

Production of IL-12 was also quantified using a sandwich ELISA. 96-well 

ELISA plates (Immunlon 4, Dynatech) were coated with lOOpl per well of 

monoclonal anti-mouse p75 antibody (kindly provided by Dr. M. K. Gately,

Hoffmann-La Roche, Nutley, NJ) diluted to 5pg/ml in IL-12 coating buffer 

(Appendix 1) and then incubated overnight in a sealed container at 4^C. The plates 

were then washed three times with PBS/Tween before being blocked by the 

addition of 200pl per well of PBS containing 3% bovine serum albumin (BSA;

PBS/BSA) for Ihr at 37^0. After blocking, the plates were washed three times

with PBS/Tween and culture supernatants were added to individual wells in a
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volume of 100pl. Recombinant murine IL-12, diluted to 20ng/ml in IL-12 assay 

buffer (Appendix 1), was also added to individual wells in a volume of lOOpl and 

serially diluted to construct a standard curve of IL-12 concentrations from 20ng/ml 

- 15.6pg/ml. After incubation for 3hrs at room temperature, the plates were 

washed 4 times with PBS/Tween and 100pi of horseradish peroxidase conjugated 

(HRPO) rat anti-mouse p40 detecting mAb (Dr. M. K. Gately) was added at 

500ng/ml diluted in IL-12 assay buffer for 2hr at room temperature. The plates 

were washed a further 5 times before lOOpl TMB peroxidase substrate was added 

to each well. The plates were then read as before using an MR5000 automatic 

microplate reader (Dynatech) and the IL-12 concentration in each test supernatant 

calculated with reference to the standard curve constructed using serial dilutions of 

recombinant IL-12.

Maintenance of Cell Lines in vitro

EL4 cells [derived from a thymoma of C57B1/6 origin (H-2^)], P815 cells 

[derived from a methylcholanthene-induced mastocytoma of DBA/2 origin (H-2d)] 

and YAC-1 cells (derived from a thymoma of A strain origin) were maintained in 

RPMI containing 10% heat-inactivated FCS, lOOU/ml penicillin, lOOpg/ml 

streptomycin, 1.25pg/ml fungizone and 2mM 1-glutamine in a humidified 37% 

incubator with a 5% CO2 atmosphere. These cell lines were subcultured every 2-3 

days, by adding l-2ml of cell suspension (approximately 10  ̂ cells) to 10ml of 

fresh medium and were always subcultured 2 days before use, to ensure that the 

majority of cells would be in the log phase of growth.

Measurement of Specific and Non-Specific Cytotoxicity

EL4 and P815 target cells were used to detect anti-H-2^ and anti-H2‘* 

allospecific CTL activity respectively, while YAC-1 cells were used to detect NK 

cell activity. Aliquots of 2.5 x 10  ̂ target cells were labelled with ^^Cr by 

incubation in 1ml RPMI 1640/5% newborn calf serum (NCS, Gibco BRL)
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% Specific Cytotoxicity (Experimental cpm - Spontaneous cpm)

100%

(Maximum cpm - Spontaneous cpm)

containing either 200pg/ml anti-CD4 mAb (YTS 191.1) or anti-CD8a mAb (YTS 

169.4) (both kindly provided by Dr. Eleanor Bolton, Dept. Surgery, University of 

Glasgow) and incubated for 60 min on ice. After two washes in RPMI/5% FCS

23

containing 2 MBq Na2^%r0 4  (West of Scotland Radionucleotide Dispensary) for 

50 min at 37^C. They were then washed 5 times in RPMI/5% NCS by

centrifuging at 450g for 7 minutes and the number of viable cells counted before 

resuspending at a final concentration of 2 x 10^cells/ml. lOOpl of single cell 

suspensions of effector cells, resuspended at a final concentration of 2 x 10^ 

cells/ml in RPMI/5% NCS were added in quadruplicate to lOOpl aliquots of ^^Cr- 

labelled target cells in V-bottomed microtitre plates (Costar), giving final effector

cell : target cell (E :T) ratios of 100:1,50:1,25:1 and 12.5:1. After 4hrs incubation
■

in a humidified 37% incubator with a 5% CO2 atmosphere, lOOpl of supernatant

was removed from each well to assess ^^Cr release in a 1282 Compugamma 

counter (LKB Wallac). The cytotoxic activity was then calculated by the following 

formula:

In all assays, maximum release was obtained by adding lOOpl 10% Triton-X 100

(Sigma) to wells containing 2 x 10  ̂^%r labelled target cells. In CTL assays.

spontaneous release was calculated using spleen cells from control mice, while in 

NK cell assays, thymocytes from control mice were used.
ÿ;

Depletion of T Cell Subsets in vitro

CD4+ and CD8+ T cell subsets were depleted in vitro by complement- 

mediated lysis. Spleen cells were resuspended at 10'̂  cells/ml in RPMI/5% FCS
ft
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by centrifuging for 7 min at 450g, the cells were resuspended at 5 x 10  ̂cells/ml in 

RPMI/5% FCS containing 10% (v/v) rabbit complement (Low-Tox M, Cedarlane 

Laboratories Ltd., Hornby, Ontario, Canada) and incubated for 60 min in a 37% 

humidified incubator with a 5% CO2 atmosphere. The cells were then washed 

twice in RPMI, counted and resuspended at 4 x 10  ̂cells/ml in complete RPMI. 

Control cells were incubated in RPMI/5% FCS containing 10% rabbit complement 

alone.

The efficacy of the depleting antibodies was assessed by flow cytometry 

(as described below) and the percentage of residual CD4+ or CD8+ cells remaining 

after depletion was consistently < 0.2%, as shown in Fig. 9.1.

I
I
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Depletion of NK Cells In Vivo

NK cells were depleted in vivo by the i.v. injection of 30pl polyclonal 

anti-asialo-GM-1 rabbit antiserum (anti-ASGM-1; Wako Chemicals, Germany) 

diluted in 200pl PBS. Control mice received 0.2mls of normal rabbit serum 

(provided by CRF animal facility). The effect of anti-ASGM-1 treatment on
:

splenic NK cell activity in GvHD and control mice is shown in Fig. 10.2.

Phenotypic Analysis of Lymphocytes by Flow Cytometry

Aliquots of 10^ spleen cells were resuspended in 50pl staining buffer (SB; 

Appendix 1) containing the appropriate concentration of primary antibody (Table

3). The samples were incubated for 30-40min on ice in the dark and then washed 

twice in SB for 7min at 450g. For two colour analysis, biotinylated anti-H-2D‘̂ 

and anti-H-2 Db MHC Class I primary antibodies were then detected by incubating 

the cells in 50pl SB containing either 1/100 fluoroscein isothiocyanate-streptavidin 

(FITC-SAV) or 1/50 phycoerythrin-streptavidin (PE-SAV) (both from Vector 

Laboratories, Peterborough) for 30-40min on ice in the dark. The cells were then 

washed twice in SB and erythrocytes lysed by incubating the cells in 0.5ml of cold 

"Facslyse Solution" (Becton Dickinson) pre-diluted 1/10 in distilled water for 10
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minutes at room temperature. The cells were again washed twice in SB and 

resuspended in 0.5ml "Facsflow" solution (Becton Dickinson) before being 

analysed using a FACscan IV flow cytometer (Becton Dickinson) with a 488nm 

argon laser. Lymphocytes were gated on the basis of their forward and side light 

scatter properties and the data analysed using Lysis II software (Becton 

Dickinson). In all experiments, negative control samples were cells incubated with 

FITC-SAV or PE-SAV in the absence of primary antibody.

Measurement of Total Serum Immunoglobulin Levels

i) Total IgG Levels

Serum levels of total IgG were measured by radial-immunodiffusion (RID) 

using agarose gel RID kits, according to the manufacturers’ instructions (Bind A 

RID NL RN272, The Binding Site, Birmingham). Test serum samples were 

diluted 1/10 and 5pl of each sample was applied to individual wells in the agarose 

gel (which contains antibodies to mouse IgG). On each RID plate, 3 wells were 

also filled with 5pl of one of three standard samples containing known 

concentrations of IgG. The plates were then resealed, wrapped in damp tissue 

paper and incubated at 4®C for 72 hrs to allow diffusion of IgG through the 

agarose gel. After incubation, the lids were removed and the diameter of the 

precipitin ring formed for each sample was measued using a pocket focusing 

magnifier with measuring scale (Philip Harris Scientific, Clydebank, Scotland). A 

linear calibration curve was constructed by plotting the square of the diameter of 

the precipitin rings formed by the three standard samples against their specific 

protein concentration and the concentration of IgG in each test sample was then 

read off the calibration curve.
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ii) Total IgE Levels

Serum IgE levels were measured using sandwich ELISA techniques. 50pl 

purified rat IgG anti-mouse IgE monoclonal antibody (Clone R35-72, 

Pharmingen) was added to the wells of flat bottomed microtiter plates (Coming

Easy Wash, Bibby Sterilin Ltd., Newport, Gwent) at Ipg/ml in carbonate buffer.

The plates were incubated overnight at 4®C and then washed twice with 

PBS/Tween before blocking by incubation with 100 pi per well PBS/15% FCS 

for 2 hours at room temperature. lOOpl of each serum sample was added in 

duplicate to individual wells, either neat or diluted 1/50 in PBS/15% FCS.

Purified murine IgE standard (Clone IgE-3, Pharmingen) diluted to a starting 

concentration of 200ng/ml in PBS/15% FCS was added to additional wells in 

lOOpl and serial dilutions made to construct a standard curve. The samples and 

standards were incubated on the plates overnight at 4^C, after which the plates 

were washed 4 times in PBS/Tween before addition of 50pi per well of 

biotinylated rat anti-mouse IgE detecting antibody (Clone R35-92, Pharmingen) at

4pg/ml in PBS/15% FCS. After incubation for 1 hour at 31^C, the plates were
■

washed 6  times in PBS/Tween and lOOpl streptavidin peroxidase (Sigma), diluted 

1/1000 in PBS/15% FCS was added to each well. Following a final incubation for 

1 hour at room temperature, the plates were washed 8  times in PBS/Tween prior
.

to addition of lOOpl/well TMB peroxidase substrate (Dynatech). The plates were 

then read at 630nm using an MR5000 automatic microplate reader (Dynatech).

#

ill) Measurement of Antl-Double-Stranded DNA Antibodies

Serum levels of anti-double stranded DNA (ds DNA) antibodies were 

assessed using sandwich ELISAs. Flat-bottomed microtitre plates (Immulon 2, 

Dynatech) were coated with lOOpl per well of poly-l-lysine (Sigma) diluted to

50pg/ml in borate buffered saline (BBS; Appendix 1) for Ihr at 37^C, then 

overnight at 4%. The plates were washed three times with BBS containing 0.05% 

Tween 20 (BBS/Tween) and then coated with 50pl per well of ds DNA at



lOpg/ml for Ihr at 37°C. After a further three washes in BBS/Tween, non

specific protein binding sites were blocked by the addition of lOOpl per well of 

BBS containing 1% BSA, (BSA/BBS) for Ihr at room temperature. Following 

blocking, the plates were washed twice in BBS/Tween and 50pl of test serum 

samples diluted 1/100, 1/500 and 1/1000 in BSA/BBS containing 0.05% Tween 

20 (BSA/BBS/Tween) were then added to individual wells for 2hr at room 

temperature. After four more washes with BBS/Tween, 50pl of alkaline 

phosphatase conjugated anti-mouse IgG (Sigma) diluted 1/10000 in 

BSA/BBS/Tween was added to the wells for 2hr at room temperature. Finally, the 

plates were washed 6  times in BBS/Tween before the addition of lOOpl per well 

of p-nitrophenyl phosphate-disodium substrate (Dynatech) in 1% Diethanolamine 

solution (BDH) and 0.01% MgC12. The colour was allowed to develop for 30-

volume of 0.2ml PBS containing 1% homologous mouse serum. Control mice 

received 0.2ml PBS containing 1% homologous mouse serum.

27

60min and then the plates were read at 405nm using an MR5000 automatic 

microplate reader (Dynatech).

Neutralisation of IL-12 In Vivo

Endogenous IL-12 was neutralised by the i.p. injection of 0.5mg purified 

goat anti-mouse IL-12 polyclonal IgG (provided by Dr. Maurice K. Gately, 

Hoffmann-La Roche Inc., Nutley, New Jersey, USA), diluted in 0.2ml PBS. 

Control mice received 0.5mg of purified normal goat IgG (Sigma; Reagent Grade) 

diluted in PBS.

Administration of Exogenous IL-12 In Vivo

IL-12 was administered by the i.p. injection of lOOng purified recombinant 

murine IL-12 (rm IL-12; Dr Maurice K. Gately, Hoffmann-La Roche) in a total
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Neutralisation of IFN-y In Vivo

Endogenous IFN-y was neutralised by the i.p. injection of 0.5mg purified 

hamster anti-mouse IFN-y IgG mAb H22 (provided by Dr. Adrienne Morgan,

Celltech Ltd., Slough, Berkshire). Control mice received 0.5 mg of isotype 

matched hamster control antibody (also provided by Dr. Adrienne Morgan).

ft
■

Statistics

Unless otherwise stated, results were expressed as means -f/- standard 

deviations (SD) and were compared by Student's t-test. i
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TABLE 2.1

Monoclonal Antibodies used in Cytokine Sandwich ELISAs

i) Purified Capture Antibodies

Specificity Clone Isotype Concentration

(pg/ml)

IL-2 JES6-1A12 RAT IgG2a 2

IFN-y R4-6A2 RAT IgGl 2

IL-10 JES5-2A5 RAT IgGl 2

IL-4 BVD4-1D11 RAT IgG2b 2

IL-5 TRFK5 RAT IgGl 4

ii) Biotinylated Detecting Antibodies

Specificity Clone Isotype Concentration

(pg/ml)

IL-2 JES6-5H4 RAT IgG2b 1

IFN-y XMG1.2 RAT IgGl 1

IL-10 SXC-1 RATIgM 2

IL-4 BVD6-24G2 RAT IgGl 1

IL-5 TRFK4 RAT IgG2a 4

The optimal concentration of capture and detecting antibodies for use in cytokine 

ELISAs was determined by chequerboard titrations.

All of the above monoclonal antibodies were purchased from Pharmingen, San 

Diego, U.S.A.
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TABLE 2.2

Recombinant Murine Cytokine Standards used in Sandwich ELISAs

Cytokine Concentration Range Source

IL-2 200U/ml - L56U/ml Pharmingen

IFN-y 40ng/ml - 1.25ng/ml Pharmingen

IL-10 40ng/ml - 1.25ng/ml Genzyme (West Mailing, 

Kent)

IL-4 200U/ml - 1.56U/ml Genzyme

IL-5 200U/ml - 1.56U/ml Pharmingen

3 0



TABLE 2.3 

Antibodies used in Flow Cytometric Analysis

5

i) Monoclonal Antibodies

Specificity Clone Isotype Source Dilution

PE-anti-CD4 GK1.5 RatIgG2b Becton 1:16

Dickinson

FITC-anti- 53-6.7 Rat IgG2a Becton 1:16

CD8a Dickinson

Bio-anti- KH95 Balb/c Pharmingen 1:12

H-2Db IgG2b,K

Bio-anti- 34-2-12 C3H Pharmingen 1:50

H-2Dd IgG2a, K

ii) Polyclonal Antibodies

Specificity

Dilution

Bio-anti-mouse Ig

Nature & Source

Rabbit F(ab’)2 fragments 1:25

Dako Ltd., High Wycombe, Bucks

:

I
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KEY:

Bio Antibodies conjugated to biotin.

PE Antibodies conjugated to phycoerythrin.

FITC Antibodies conjugated to fluorescein isothiocyanate.
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Reagents and Solutions

Complete RPMI

Carbonate Buffer

O.IM NaHCOs in deionised, distilled water (dd H^O)

Phosphate Buffered Saline (PBS)

80g NaCl

11 .6 g Na2HP04 

2g KH2PO4 

2gKCL

dissolved in 10 litres of dd H2O

32
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RPMI medium containing-:
ft'ft

10% heat-inactivated foetal calf serum (FCS) 

lOOU/ml penicillin 

lOOpg/ml streptomycin 

1.25pg/ml fungizone 

2mM 1-glutamine 

5 X 10-^M 2-mercaptoethanol

Cell Culture Medium (for P815, EL4, YAC-1 cell lines)

RPMI medium containing-:

10% heat-inactivated foetal calf serum (FCS) 

lOOU/ml penicillin 

lOOpg/ml streptomycin

1.25pg/ml fungizone 

2mM 1-glutamine



PBS/Tween

PBS containing 0.05% (v/v) Tween-20

Facs Staining Buffer

PBS containing:

2% (v/v) FCS

0.05% (w/v) sodium azide

Borate Buffered Saline (BBS)

6 .2 g H3BO4 

19g NaB40?

9gNaCl

dissolved in 1 litre of dd H2O

33

IL-12 ELISA Coating Buffer 

IMNaHCOs

IM Na2C0  ̂in dd H2O and Ph adjusted to 9.6

IL-12 ELISA Assay Buffer

1% w/v BSA 

0.5M NaCl 

0.02M Na2HP04 

0.05% (v/v) Tween-20 

0 .0 1 % (w/v) thimerosal 

dissolved in dd H2O and Ph adjusted to 6.5

BBS/Tween

BBS containing 0.05% (v/v) Tween-20

ft:#!':
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CHAPTER 3

KINETIC STUDY OF SYSTEMIC ACUTE AND CHRONIC GvHD

34
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Introduction

Previous studies have indicated that differential activation of CD4+ T 

helper cell subsets may underlie the distinct diseases which occur in BDFi mice 

injected with either C57B1/6 or DBA/2 parental spleen cells, by demonstrating that 

a Thl-type cytokine profile was apparent during acute GvHD while Th2-type 

cytokines were produced preferentially during chronic GvHD [42, 46, 47]. 

However, these studies examined cytokine production over a limited time course 

and did not attempt to determine when T cell polarisation occurred, or address the 

underlying mechanism.

The main aim of my project was to examine the factor(s) involved in the 

polarisation of Th cell responses in acute and chronic GvHD and, in particular, to 

assess the role played by the early non-specific immune response in determining 

the subsequent pattern of the two diseases. My initial series of experiments were 

therefore designed to determine at what point the cytokine response becomes 

skewed towards a preferential Thl or Th2 phenotype by characterising the kinetics 

of acute and chronic GvHD in BDFi mice, using in vivo and in vitro indices of 

disease progression in parallel with measurements of cytokine production. For this 

study, I therefore mainly concentrated on events occurring during the first 3 weeks 

of disease.

Experimental Protocol

The GvHR was induced by i.v. injection of 10® viable C57B1/6 or DBA/2 

parental spleen cells into BDFi recipients. The intensity of the systemic GvHR in 

vivo was monitored by assessing body weight, splenomegaly and mortality. The 

effect of GvHD on the immune system was determined by counting the total
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lymphocytes in the spleen and by measuring the proportions of splenic CD4+ and 

CD8+ T lymphocytes by FACS analysis.
■'■I,

Immune function was determined by measuring the proliferative capacity 

of spleen cells from GvHD mice either 'ex-vivo\ or in response to stimulation 

with T or B cell mitogens. IFN-y, IL-2, IL-10, IL-5 and IL-4 production was 

measured by culturing spleen cells from GvHD mice either in medium alone or 

with Con A. I chose to measure these particular cytokines because they are 

characteristically associated with either Thl (IFN-y and IL-2) or Th2 (IL-4, IL-5 

and IL-10) responses. Levels of total serum IgG and anti-ds DNA antibodies were 

measured on days 10, 20 and 30 of the GvHD.

Samples of kidney were taken from GvHD mice on day 48 (which was 

when chronic GvHD showed evidence of oedema and proteinuria) and examined 

for the presence of immune complex deposition by both light and electron 

microscopy.

i) Weight Loss and Mortality

Consistent with previous studies in our own and other laboratories [7, 21, 

23, 24, 27, 55, 98], BDFi mice injected with 10® B6  parental spleen cells 

developed an acute GvHD, with progressive weight loss from day 16 of the 

GvHD, which continued until the study was terminated on day 20 (Fig 3.1). 

Mortality was also apparent on day 16, with two deaths (Fig 3.1). A further three 

deaths occurred on day 18 and one on day 2 0 , by which time an overall mortality 

rate of 80 % was observed (Fig. 3.1). In contrast, BDFi mice injected with 10® 

DBA/2 parental spleen cells showed no significant weight loss and none of these 

mice died during this phase of the disease (Fig. 3.1).
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ii) Splenomegaly and Lymphoid Populations 

a) Acute GvHD

B6  => BDFi mice exhibited significant splenomegaly by day 1 of the acute 

GvHD (Fig 3.2). This increased sharply, peaked on day 10, then returned 

towards control values, until no significant splenomegaly was observed in 

surviving mice on day 18 (Fig 3.2). A similar biphasic pattern of hyperplasia 

followed by lymphoid involution was evident when the total lymphocyte number 

in the spleens of these mice was assessed. By day 2, spleen cell numbers were 

already almost double that in control mice (Fig 3.3a and 3.3c). There was then a 

steady increase until day 10, when lymphocyte numbers began to return to control 

levels and by day 18 these were markedly reduced compared with control mice 

(Fig. 3.3a and 3.3c).

Phenotypic analysis of these spleen cell populations showed that on days 2 

and 7, the proportions of CD4+ and CD8 + T cells in B6  => BDFi spleens were 

not different from those observed in control spleens (Table 3.1). Thus, there were 

dramatic increases in the absolute numbers of both populations in acute GvHD 

mice compared with controls (Fig. 3.3a and 3.3c). By day 10 and thereafter, the 

proportions of CD4+ and CD8 + splenic T cells in B6  => BDFi mice were 

strikingly different from those in control mice (Table 3.1). On days 10 and 14, 

there was a large increase in the percentage of T cells in the spleens of mice with 

acute GvHD compared with controls (60-70 % vs 25-30 %). This consisted 

mainly of CD8 + T cells, with B6  => BDFi spleens containing up to 5 times as 

many CD8 + T cells as controls. However, the percentage of CD4+ T cells in the 

spleens of mice with acute GvHD was also higher than controls at all times up to 

the end of the study on day 18 (Table 3.1).
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b) Chronic GvHD

Splenomegaly also developed in BDFi mice with chronic GvHD, initially 

following a similar initial pattern to that observed in mice with acute GvHD (Fig.

3.2). However, by day 7 and thereafter, the splenomegaly was less intense in 

chronic GvHD and it persisted at this level for the remainder of the study. In 

parallel, spleen lymphocyte numbers increased in DBA/2 => BDFi mice during the 

first 10 days in a manner similar to that observed in B6  => BDFi mice (Fig. 3.3b).

However, after day 10, lymphocyte numbers continued to increase in mice with 

chronic GvHD, in contrast to the markedly reduced lymphocyte numbers evident 

in mice with acute GvHD after this time (Fig. 3.3a and 3.3b).

FACS analysis also revealed that the dramatic differences in the 

proportions of CD4+ and CD8 + T cells in the spleens of B6  => BDFi mice were 

not apparent in DBA/2 => BDFi mice (Table 3.1). Although the proportions of 

CD4+ and CD8+ T cells remained essentially the same as those in control mice 

throughout the GvHD (Table 3.1), the absolute numbers of splenic T cells did 

increase (Fig. 3.3b).

iii) Immune Function

I next examined how the effects of the different GvHD models in vivo 

correlated with parameters of immune function. Previous work had indicated that 

the B6  => BDFi GvHD is associated with suppressed T and B cell function in 

vitro and in vivo [24, 27, 71, 73, 165], whereas DBA/2 => BDFi GvHD is 

characterised by B cell hyperreactivity [23,36-39]. I therefore assessed the ability 

of spleen cells from GvHD mice to proliferate, either spontaneously 'ex-vivo' or 

in response to mitogenic stimulation in vitro, using Con A and LPS to stimulate 

proliferation of T cells and B cells respectively.
:ft
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a) Spontaneous Ex-Vivo Proliferative Responses

Spleen cells from B6  => BDFi mice showed significantly increased 

spontaneous proliferation by day 2 after induction of GvHD (Fig 3.4). This 

peaked on day 10 and had returned to control levels by day 18. In contrast, the 

spontaneous proliferation of spleen cells from DBA/2 => BDFi mice was only
:

modestly enhanced throughout the first 10 days after donor cell transfer, but 

continued to increase progressively thereafter (Fig 3.4). Thus, the changes in
,

splenomegaly and spleen cell numbers in the two diseases are parallelled by 

alterations in the inherent proliferative capacity of lymphocytes.

b) Proliferative Responses to Con A Stimulation

Spleen cells from B6  => BDFi mice initially also showed significantly
.

increased responsiveness to stimulation with Con A in vitro compared with control 

spleen cells (Fig 3.5). However, by day 7, these responses were significantly 

lower than those of controls and were almost negligible from day 10 onwards. In 

contrast, the Con A responses of DBA/2 => BDFi spleen cells were usually 

similar to those of control spleen cells (Fig 3.5), although a significant increase 

was observed on day 10. 1

c) Proliferative Responses to LPS Stimulation

Spleen cells from both B6  => BDFi and DBA/2 => BDFi mice initially

exhibited similarly enhanced responses to LPS compared with control cells. This 

was evident throughout the first 10 days after donor cell transfer in both models of 

GvHD (Fig. 3.6). However, the LPS response of B6  => BDFi spleen cells was 

subsequently suppressed, with complete ablation evident by day 14. This was in 

contrast to cells from DBA/2 => BDFi mice, which continued to show significant 

hyperresponsiveness to LPS throughout the chronic disease (Fig. 3.6).

Thus, both forms of GvHD are characterised by an initial period of B cell 

hyperresponsiveness, but this disappears in acute GvHD and persists in chronic

i
. a



GvHD. To explore this further, I went on to examine a number of in vivo indices 

of B cell function.

iv) In Vivo Assessment of B cell Activity in Acute and Chronic 

GvHD

a) IgG Production

On day 10, significantly increased levels of total IgG were detected in the 

serum of mice with acute GvHD compared with controls (Fig, 3.7). However, by 

day 20 and thereafter, serum IgG levels were undetectable in these mice, 

consistent with their abrogated LPS responses observed at earlier time points in 

vitro (Fig3.6). In contrast, mice with chronic GvHD showed strikingly high IgG 

levels on both days 20 and 30, further supporting the persistent B cell stimulation 

throughout this disease (Fig. 3.7).
'I

b) Anti-ds DNA Antibodies

B6  => BDFi and DBA/2 => BDFi mice both displayed high levels of anti- 

ds DNA serum antibodies on day 10, with particularly high levels apparent in mice 

with acute GvHD (Fig 3.8). However, by day 20 and thereafter, no anti-ds DNA 

antibodies were detected in the serum of mice with acute GvHD, despite their 

continued presence in mice with chronic GvHD. No anti-ds DNA antibodies were 

found in control mice at any time.
I

c) Renal Immunopathology

To assess possible pathological consequences of the B cell hyperreactivity,

I examined kidney sections for the presence of ICGN in mice surviving 7 weeks 

into GvHD, since this was when mice with chronic GvHD started to show clinical 

signs of kidney damage, such as oedema and proteinuria. At no time did mice
I

from any other group exhibit physical evidence of kidney dysfunction and in

3 9
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particular, the small number of B6  => BDFi mice which survived past day 21 of

the acute GvHD remained visibly healthy.
Kidney sections from DBA/2 ^  BDFi mice showed widespread renal

4 0

damage both by LM and EM at this time. By LM, the glomerular basement 

membrane appeared thickened, there was glomerular hypercellularity and evidence 

of focal protein casts (Fig. 3.9a). By EM, endothelial swelling was evident, 

resulting in loss of filtration space and there was ablation of the normal podocyte 

architecture (Fig. 3.10a). Numerous sub-epithelial electron-dense deposits were 

observed in most glomeruli and together these features were consistent with the 

presence of severe ICGN. In parallel with the severe kidney damage evident by 

microscopy, mice at this stage of chronic GvHD began to show progressive 

oedema and started to die on day 50 (33% mortality), with 77% mortality 

occurring by day 100 (Fig 3.11). In contrast, sections of kidney from B6  => 

BDFI mice on day 48 of the acute GvHD showed no significant changes either by 

light microscopy (LM) or electron microscopy (EM) (Figs. 3.9b & 3.10b) and 

resembled kidneys from control mice (Figs. 3.9c & 3.10c).

Thus, the brief B cell hyperplasia observed in B6  ==> BDFI mice does not 

lead to autoimmune pathology, but the persistently high levels of serum IgG and

anti-ds DNA antibodies observed in mice with chronic GvHD provoke ICGN, as 

described previously [36-39].

v) Cytokine Production During Acute and Chronic GvHD

Although both forms of GvHD are clearly associated with expansion of T 

cell numbers, the results above showed that persistent B cell responses were 

apparent in chronic, but not acute GvHD. In addition, previous work has 

suggested that activation of different CD4+ T helper cell subsets may cause the
'

distinct outcomes of the GvHD in BDFi recipient mice [42, 46]. I therefore 

compared the pattern of cytokines produced by lymphocytes from mice with acute



or chronic GvHD in vitrOy both spontaneously and in response to Con A 

stimulation.

IFN-y

High levels of IFN-y were produced spontaneously by B6  => BDFi 

splenocytes throughout the first 10 days of the acute GvHD (Fig. 3.12a). This 

was observed as early as day 2 , peaked on day 10 and was undetectable after day 

14. This was in direct contrast to cells from DBA/2 => BDFi mice, which 

spontaneously secreted similar low levels of IFN-y to control cells at all time 

points examined (Fig. 3.12a).

B6  => BDFi spleen cells also exhibited enhanced IFN-y production in 

response to Con A stimulation in vitro (Fig. 3.12b). Once again, elevated levels 

were apparent on day 2  and peaked on day 10, before falling below control levels 

at the later time points. In contrast to the lack of spontaneous IFN-y production by 

DBA/2 => BDFi spleen cells. Con A induced the production of similar or 

significantly higher levels of IFN-y by these cells compared with control cells at all 

times after day 2 of this study (Fig. 3.12b). Although these levels were never as 

high as those observed during the course of the acute GvHD, they remained 

elevated throughout the course of this study.

IL-2

IL-2 was not produced spontaneously by cells from any group (data not 

shown).

B6  => BDFi spleen cells produced significantly higher levels of IL-2 in 

response to Con A than control cells on day 2 (Fig. 3.13), but at all times 

thereafter, IL-2 levels were significantly lower than those produced by control 

cells and were negligible after day 10. In contrast, spleen cells from DBA/2 =>

BDFi mice produced similar levels of IL-2 in response to Con A stimulation to

I
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control cells on day 2 (Fig. 3.13) and significantly higher levels of IL-2 than 

control cells at all time points thereafter (Fig. 3.13).

IL-4

IL-5

Spontaneously produced IL-5 was not detected in any group during this 

study (data not shown).

B6  => BDFi cells produced significantly enhanced levels of IL-5 in 

réponse to Con A on both days 2 and 4 after donor cell transfer, compaied with 

control cells (Fig. 3.14). However, the levels in acute GvHD mice then fell below 

the level of detection after day 10. In contrast, DBA/2 => BDFi spleen cells 

produced strikingly high levels of IL-5 in response to Con A throughout the time 

course examined (Fig. 3.14). These levels were consistently several fold greater 

than those produced by either control cells or B6  => BDFi cells after day 4 of the 

GvHD.
■■1

No IL-4 production was detected by cells from any group at any of the 

time points examined (data not shown). It was unclear whether this reflected the 

fact that the levels of IL-4 produced were below the level of detection of this 

assay, or if IL-4 was produced transiently and then rapidly utilised by cells in 

culture.

IL-IO

As with IL-5, IL-IO was not detected in supernatants from unstimulated 

cells of any group (data not shown).

From days 2-10 of the acute GvHD, B6  => BDFi spleen cells produced 

similar levels of IL-IO to control cells (Fig 3.15), but at later time points, IL-IO 

production fell to below control levels. DBA/2 => BDFi cells secreted elevated

42



levels of IL-IO at all time points examined, with significant increases compared to 

both control cells and B6  => BDFi cells after day 4 (Fig. 3.15).

Summary and Conclusions

43

Thus, acute GvHD is associated with spontaneous production of IFN-y 

early in the disease, accompanied by very high levels of inducible IFN-y and 

transient priming of IL-2 and IL-5 production. However, the production of all
"S'

cytokines subsequently ceased as lymphoid atrophy developed. In contrast,
-

DBA/2 => BDFi cells produced no IFN-y spontaneously and displayed Con A 

induced IFN-y production which was similar to, or only slightly above control 

levels. Conversely, cells from these mice produced increased levels of IL-2, IL-5 

and IL-IO.

The results of this kinetic study show that the first 10 days of both acute
-i:

■i.

and chronic GvHD are characterised by an initial period of immune activation. In 

both diseases, this was manifest by splenomegaly, high levels of spontaneous 'ex~ 

vivo' proliferation and increased spleen cell numbers and both groups of mice 

showed heightened responsiveness to stimulation with B and T cell mitogens. 

However, the transfer of B6  donor cells provoked a more aggressive systemic 

GvHD than transfer of DBA/2 donor cells, since a much greater level of 

immunostimulation occurred early in acute GvHD. Furthermore, while the early 

period of immune activation in acute GvHD was rapidly replaced by involution, 

characterised by splenic atrophy, loss of T and B cell function, weight loss and 

death, mice with chronic GvHD continued to display evidence of immune 

activation throughout the study.

The pattern of early hyperplasia followed by immunosuppression in acute 

GvHD was also evidenced when I examined B cell responses in vivo. 

Accordingly, although enhanced levels of total IgG and anti-ds DNA antibodies

were found early during acute GvHD, these were both absent at the later time
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points and did not provoke renal immunopathology. This was again in contrast to 

my findings in chronic GvHD, where elevated IgG and anti-ds DNA antibodies 

were always observed and these mice developed lethal ICGN.

Phenotypic analysis of the T cell populations in the spleens of GvHD mice 

also revealed dramatic differences between the acute and chronic forms of disease. 

Thus, while DBA/2 => BDFi mice maintained normal proportions of splenic

CD4+ and CD8+ T lymphocytes, expansion of CD8 + T cells and, to a lesser
I

extent, CD4+ T cells was observed in B6  => BDFi mice from day 10 until the end 

of the study, thereby correlating with the onset of the destructive phase of acute 

GvHD.

Finally, my results confirmed that there is a dichotomy in the cytokines
■ È

produced by cells from mice with acute and chronic GvHD. Thus, while acute 

GvHD was associated with early spontaneous production of IFN-y, cells from 

chronic GvHD mice did not secrete IFN-y spontaneously, but produced 

persistently high levels of IL-IO and IL-5 and IL-2, in response to stimulation 

with Con A.

Together, these results support the view that acute GvHD in B6  => BDFi 

mice is a biphasic disease, in which Thl cytokines and generalised, intense
-I

lymphoid hyperreactivity evolve into a destructive disease characterised by death %

I

and immunosuppression. Chronic GvHD, on the other hand, is an initially milder, t i

but ultimately more persistent disorder, which appears to involve a mainly Th2-
I

mediated immune response. These findings highlight both the quantitative and 

qualitative differences between the two forms of GvHD and therefore form the 

basis for the remainder of my thesis. In the following chapters, I went on to use 

the parameters characterised here to examine the different cell types involved in the 

polarisation of the alloimmune response and how their cytokine products affect its 

outcome.



BODY WEIGHT (g)

25 -,

23

Ô-.

Acute GvHD 
Chronic GvHD 
C ontro l

t t t

* *

20168 120 4

DAY OF GvHD

Fig. 3.1. Weight loss and mortality during acute and chronic 

GvHD. BDFi mice given 10  ̂ B6  spleen cells i.v. show progressive and 

significant weight loss and death from day 16 of the acute GvHD, while BDFi 

mice given DBA/2 cells i.v. show a similar increase in weight to control mice and 

do not die during this early period. Results show the mean body weight ± 1 SD 

for 9 mice per group.

p < 0.05; ** p<  0.005 vs controls and chronic GvHD mice; f -  Death).
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SPLEEN INDEX
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Fig. 3.2. Splenomegaly during acute and chronic GvHD.

BDFi mice given 10  ̂ B6  or DBA/2 spleen cells i.v. develop significant 

splenomegaly from day 2 of the GvHD. Results show the mean spleen index of 3 

GvHD mice per group ± ISD, calculated with reference to the mean spleen 

weights of 3 control mice.

(* p < 0.05 vs chronic GvHD; ** p < 0.001 vs chronic GvHD).
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Fig. 3.3. Splenic lymphocyte numbers in mice with GvHD.

The data show the mean total lymphocyte number and the mean absolute number 

of CD4+ and CD8 + lymphocytes in the spleens of BDFi mice given either 10  ̂B6  

(Fig. 3.3a) or DBA/2 (Fig. 3.3b) spleen cells i.v. The number of splenic 

lymphocytes in control mice is also shown for comparison (Fig. 3.3c). The results 

are from pooled samples and are representative of the findings of 3 similar 

experiments.
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Fig. 3.4. Spontaneous 'ex-vivo' proliferation by lymphocytes from 

mice with acute and chronic GvHD.

The results show the spontaneous proliferative capacity of splenocytes from BDFi 

mice given either 10  ̂B6  or DBA/2 spleen cells i.v. The results are expressed as 

the mean uptake of 3H-TdR ± 1 SD after 4 hours in quadruplicate cultures, using 

spleen cells pooled from 3 mice per group. (* p < 0.05; ** p < 0.01 (acute GvHD 

vs controls); t  p < 0.05 (chronic GvHD vs controls)).
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Fig, 3.5. Con A induced proliferation by lymphocytes from mice 

with acute and chronic GvHD.

The results show the proliferative capacity of splenocytes from BDFi mice given 

10  ̂B6  or DBA/2 spleen cells i.v. in response to mitogenic stimulation with Con 

A, Data are expressed as the mean uptake of 3H-TdR ± 1 SD after 48 hours in 

quadruplicate cultures, in the presence of lOpg/ml Con A using spleen cells 

pooled from 3-4 mice per group. (* p < 0.05 ** p < 0.01 (acute GvHD vs 

controls); |  P < 0.05 (chronic GvHD vs controls).
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Fig. 3.6. LPS induced proliferation by lymphocytes from mice with 

acute and chronic GvHD.

The results show the proliferative capacity of splenocytes from BDFI mice given 

108 B6  or DBA/2 spleen cells i.v. in response to mitogenic stimulation with LPS. 

Data are expressed as the mean uptake of 3H-TdR ± 1 SD after 24 hours in 

quadruplicate cultures in the presence of lOpg/ml LPS, using spleen cells pooled 

from 3-4 mice per group. (* p < 0.001 (acute GvHD vs controls); f p < 0.001 

(chronic GvHD vs controls).
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Fig. 3.7. Total serum IgG levels in GvHD mice.

Results show the mean total IgG levels ± ISD in the serum of BDFi mice given 

1Q8 B6  or DBA/2 spleen cells i.v., as determined by RID. The IgG levels of 5-6 

mice per group were assessed at each time point. (* p<  0.001  vs controls).
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Fig. 3.8. Anti-ds DNA antibodies in the serum of GvHD mice.

The results show the mean level of anti-ds DNA specific IgG antibodies present in 

the serum of BDFi mice given 10  ̂B6  or DBA/2 spleen cells i.v., as determined 

by ELISA. The anti-ds DNA antibody levels of 6  mice per group were assessed at 

each time point and expressed as the mean OD value for positive sera at 1:50 ± 

ISD for each group at 630nm. (* p < 0.05 vs chronic GvHD).
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Fig. 3.9. Assessment of renal immunopathology in GvHD mice by 

light microscopy.

Histopathological analysis of kidneys from BDFi mice given 10* B6 or DBA/2 

spleen cells on day 48 of GvHD.

9a. Representative chronic GvHD kidney section. The glomerular basement 

membrane was significantly thickened and glomeruli appeared hypercellular 

(arrowed). Numerous protein casts were observed in the kidney tubules of these 

mice (t) (H&E x 40).

9b. Representative acute GvHD kidney section showing normal glomerular 

morphology (arrowed), with no thickening of the glomerular basement membrane. 

The tubules did not contain protein casts (H&E x40).

9c. Representative control kidney section (H&E x 40).
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Fig. 3.10. Assessment of renal immunopathology in GvHD mice by 

electron microscopy.

Histopathological analysis of kidneys from BDFi mice given 10* B6 or DBA/2 

spleen cells on day 48 of GvHD.

10a. Representative chronic GvHD kidney section. Numerous sub-epithelial 

electron-dense deposits were observed in most glomeruli (arrowed), indicating the 

presence of immune complexes. Endothelial swelling was evident and the normal 

podocyte architecture was destroyed (x 14850)

10b. Representative acute GvHD kidney section showing normal glomerular 

morphology. No electron-dense immune complex deposits were observed and the 

endothelium (arrowed) and podocyte architecture (p) appeared normal (x 11700) 

10c. Representative control kidney section (x 14875)
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Fig. 3.11. Mice with chronic GvHD die late in disease.

BDFi mice given 10* DBA/2 spleen cells develop progressive oedema and start to 

die on day 50 from ICGN. The results show the percentage survival in a group of 

9 chronic GvHD mice and are representative of the findings of 3 similar 

experiments.
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Fig 3.12, IFN-y production during acute and chronic GvHD.

Splenocytes from BDFi mice given 10  ̂B6 or DBA/2 spleen cells were cultured in 

medium (Fig. 3.12a) or in the presence of lO^g/ml Con A (Fig. 3.12b) for 48 

hours, before the supernatants were removed and assayed for the presence of 

IFN-y by ELISA. Results shown are means ± 1 SD of triplicate samples. (* p < 

0.05 ** p < 0.001 (acute GvHD vs controls); f p < 0.01 (chronic GvHD vs 

controls)).

56

I

3
I



IL-2 
(U/ml) 

40 -I
Acute GvHD 
Chronic GvHD 
C on tro l

30 -

2 0 -

* *

* ** -k

20161280 4
DAY OF GvHD

Fig. 3.13. IL-2 production during acute and chronic GvHD.

Splenocytes from BDFi mice given 10® B6 or DBA/2 spleen cells were cultured in 

the presence of lOpg/ml Con A for 24 hours, before the supernatants were 

removed and assayed for the presence of IL-2 by ELISA. Results shown are 

means ± 1 SD of triplicate samples. p < 0.05; ** p < 0.001 (acute GvHD vs 

controls); f p < 0.001 (chronic GvHD vs controls)).
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Fig. 3.14. IL-5 production during acute and chronic GvHD.

Splenocytes from BDFi mice given 10  ̂B6 or DBA/2 spleen cells were cultured in 

the presence of 10p,g/ml Con A for 96 hours, before the supernatants were 

removed and assayed for the presence of IL-5 by ELISA. Results shown are 

means ± 1 SD of triplicate samples. (* p < 0.005; ** p < 0.001 (acute GvHD vs 

chronic GvHD and controls); t  P < 0.05; t t  P < 0.001 (chronic GvHD vs acute 

GvHD and controls)).
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Fig. 3.15. IL-IO production during acute and chronic GvHD.

Splenocytes from BDFj mice given 10* B6 or DBA/2 spleen cells were cultured in 

the presence of lOpg/ml Con A for 48 hours, before the supernatants were 

removed and assayed for the presence of IL-5 by ELISA. Results shown are 

means ± 1 SD of triplicate samples. (* p < 0.05 ** p < 0.01 (acute GvHD vs 

chronic GvHD and controls); t  p < 0.001 (chronic GvHD vs acute GvHD and 

controls)).

59

1Î
%

I
I



Table 3.1

Splenic T lymphocyte Populations in Mice with 

Acute and Chronic GvHD

Day of GvHD B6 => BDFi DBA/2 => BDFi Control

(Acute GvHD) (Chronic GvHD)

2 12.4 12.7 12.4

9.7 9.6 10.5

7 14.1 12.3 17.6

11.8 7.3 11.4

10 21.8 14.7 17.9

39.1 11.9 10.5

14 26.6 13.6 15.7

45.8 7.9 8.8

18 23.2 13.9 14.2

50.0 7.5 7.2

Table 3.1 Percentages of splenic CD4+ and CD8+ T lymphocytes in 

GvHD mice.

The results show the proportions of splenic CD4+ and CD8  ̂T cells in BDFi mice 

given 10  ̂B6 or DBA/2 spleen cells i.v., assessed by flow cytometrical analysis 

and expressed as a percentage of the total gated splenic lymphocyte population. 

The upper number indicates the percentage of CD4+ lymphocytes and the lower 

number indicates the percentage of CD8+ cells.
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CHAPTERS 4-7 

ROLE OF ENDOGENOUS IL-12 IN GvHD 

General Introduction

The study of cytokine production during acute and chronic GvHD in BDFi 

mice detailed in Chapter 3 showed a clear dichotomy in the cytokine responses of 

mice with the different forms of disease. Thus, the Thl cytokine IFN-y was 

produced spontaneously by cells from mice with acute GvHD, while high levels 

of IL-5 and IL-IO could only be induced by mitogenic stimulation of cells from 

mice with chronic GvHD. In agreement with previous studies [42, 46], these 

findings suggest that differential activation of CD4+ T helper subsets may underlie 

the distinct diseases and also indicated that this polarisation of the specific 

response occurred early after transfer of the different donor cells.

In other models of T cell mediated immunity, the differentiation of Thl and 

Th2 cells from naive CD4+ T cells appears to be influenced by the early 

production of cytokines by cells of the innate immune system [115, 116]. Thus 

the presence of IL-4 during the initial period of immune stimulation promotes the 

development of a Th2 type response [133-135, 141], while IL-12 and IFN-y, 

produced by macrophages and NK cells respectively, initiate Thl cell 

differentiation [76-78, 159, 161]. Studies reported as I was performing my work 

showed that the autoimmune consequences of chronic GvHD in BDFi mice can be 

prevented by administration of rm IL-12 [166], suggesting that this non-specific 

cytokine may have an important influence on the nature of GvHD which develops 

in these animals. I therefore decided to examine the role of IL-12 in determining 

the outcome of the GvHD in BDFi mice, by investigating the effect of 

administering or neutralising IL-12 on the in vivo and in vitro parameters of acute 

and chronic GvHD characterised in Chapter 3. In addition, since IL-12 is an 

important growth factor for NK cells and specific CTL [118, 120, 121, 150] and
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disease during the early proliferative phase and at the onset of the destructive late 

phase.

i s

a

both cell types are thought to be involved in the pathogenesis of acute, but not 

chronic GvHD [30, 31, 49, 96], I also assessed the role of IL-12 in regulating 

specific and non-specific cytotoxic responses during GvHD.

The role of IL-12 in acute and chronic GvHD is described in the next four 

chapters. In the current chapter, I will show the effect of a single dose of
"'ÎÎ

neutralising anti-IL-12 antibody on the early phase of both forms of GvHD, while 

in Chapter 5 ,1 conducted a more detailed study on the effect of repeated anti-IL-12 

administration on the acute form of disease only. Chapter 6 then examines the 

long-term effects of neutralising IL-12 during acute or chronic GvHD and finally.

Chapter 7 focuses on the effect of exogenous rm IL-12 on acute and chronic 

GvHD.

1) Effect of a Single Dose of Anti-IL-12 Antibody on Acute and 

Chronic GvHD

My initial experiments examined the effect of a single injection of 

neutralising anti-IL-12 antibody given 1 day prior to induction of acute or chronic 

GvHD. I chose to administer the antibody at this time because it is well established 

that the cytokine environment in which T cell priming occurs, strongly influences 

the nature of the subsequent specific immune response [76, 78, 132-135, 159].

Furthermore, the results of Chapter 3 indicated that polarisation of the GvHD 

occurred very rapidly after the transfer of parental spleen cells, suggesting that a 

single neutralisation of IL-12 early in the disease might be sufficient to alter the

subsequent course of disease. For this series of experiments, I concentrated on 

days 2 and 10 of GvHD, since these time points give a good indication of the

I
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Experimental Protocol

The GvHR was induced by i.v. injection of 10* viable B6 or DBA/2 

parental spleen cells into BDFi recipients as before. Endogenous IL-12 was 

neutralised in vivo by i.p. injection of 0.5mg goat IgG anti-mouse IL-12 antibody 

given 1 day before induction of GvHR. Control animals received 0.5 mg of 

normal goat IgG. The intensity of the systemic GvHD was assessed by measuring 

splenomegaly. Lymphocyte proliferation and cytokine production were determined 

as descibed in Chapter 3. Levels of splenic NK cell-mediated cytotoxicity were 

measured in GvHD mice on day 2 using YAC-1 cells as targets. I

■IResults

i) Splenomegaly

As before, B6 => BDFi mice exhibited significant splenomegaly on day 2 

of the acute GvHD (Fig. 4.1a) which continued to increase up to day 10 (Fig.

4.1b). Anti-IL-12 treatment reduced the early splenomegaly on day 2 of the acute 

disease (Fig. 4.1a), but by day 10, the splenomegaly in anti-IL-12 treated B6 

BDFi mice was similar to that in unmanipulated B6 => BDFi animals (Fig. 4. lb).

DBA/2 => BDFi mice also displayed significant splenomegaly on both day 

2 and day 10 of the chronic disease (Figs. 4.1a & b), but as I found earlier, the 

splenomegaly in these mice was less marked than in B6 => BDFi mice at both 

time points. Anti-IL-12 treatment did not affect the splenomegaly evident in 

chronic GvHD mice on either day 2 or day 10 (Figs. 4. la  & b).
?

ii) NK cell activity

A characteristic early feature of several models of GvHD is enhanced NK 

cell-mediated cytotoxicity [7, 49, 95-98]. Since IL-12 was originally described as
-

a growth factor for NK cells [118, 120, 121, 150], I decided to examine whether 

neutralising IL-12 in vivo affected NK cell activity early during the GvHD in



BDFi mice. B6 => BDFi mice showed enhanced splenic NK cell activity on day 2

of the acute GvHD compared with control mice (Fig. 4.2). This was reduced to

below control levels by a single dose of anti-IL-12 antibody (Fig. 4.2).
In contrast, mice with chronic GvHD showed similar levels of NK cell

mediated cytotoxicity to control mice and anti-IL-12 treatment did not affect these

levels in either DBA/2 => BDFI or control mice (Fig. 4.2).

It should be noted that in this chapter, I only examined the effect of anti-

IL-12 on NK cell levels on day 2, since previous work had suggested that NK

cell-mediated cytotoxicity was primarily a very early feature of the disease [49].

When I subsequently examined a more detailed time course study of NK cell

activity during both diseases, I found that after day 4, mice with chronic GvHD

also showed enhanced NK cell activity (detailed in Chapter 9).

I

iii) Immune function

I next went on to examine the effect of anti-IL-12 on immune function in
■■■■■

both acute and chronic GvHD, by assessing its effect on the ability of cells from 

B6 => BDFI and DBA/2 => BDFi mice to proliferate spontaneously, or in 

réponse to stimulation with either Con A or LPS in vitro.

a) Spontaneous 'ex-vivo* proliferation

As before, on both days 2 and 10, splenocytes from B6 => BDFi mice 

showed enhanced spontaneous 'ex-vivo' proliferation compared with control 

splenocytes (Figs. 4.3a & b). Anti-IL-12 treatment caused a significant reduction 

in these levels on both days 2 and 10 (Figs. 4.3a & b), although on day 10, the 

spontaneous proliferative capacity of splenocytes from anti-IL-12 treated B6 => 

BDFi mice remained higher than that of control cells.

In contrast, splenocytes from DBA/2 => BDFi mice showed a similar 

ability to proliferate 'ex-vivo' to cells from control mice on day 2 of chronic 

GvHD (Fig. 4.3a), but by day 10 their proliferation was significantly higher than
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control levels (Fig. 4.3b). Anti-IL-12 treatment did not affect the levels of 

spontaneous 'ex-vivo' proliferation of chronic GvHD spleen cells on day 2 (Fig. 

4.3a), but on day 10, spleen cells from anti-IL-12 treated DBA/2 => BDFi mice 

had significantly increased spontaneous'ex-v/vo' proliferation (Fig. 4.3b).

Anti-IL-12 antibody did not affect the ability of control cells to proliferate 

'ex-vivo' on either day 2 or day 10 (Figs. 4.3a & b).
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b) Proliferative Responses to Con A Stimulation

As demonstrated in Chapter 3, on day 2 of GvHD, spleen cells from B6 

=> BDFi mice showed significantly increased responsiveness to stimulation with 

Con A in vitro compared with control spleen cells (Fig. 4.4a). By day 10, the 

Con A induced reponses of B6 => BDFi mice were essentially the same as those 

of control mice (Fig. 4.4b). Anti-IL-12 treament of B6 => BDFi mice significantly 

reduced their heightened responsiveness to Con A on day 2 of acute GvHD (Fig.

4.4a), but this effect had disappeared by day 10, when the responses of
■■■

unmanipulated and anti-IL-12 treated B6 => BDFi mice were similar (Fig. 4.4b).

DBA/2 => BDFi spleen cells showed very similar Con A induced 

responses to control spleen cells on day 2 (Fig. 4.4a), but by day 10, these were 

significantly increased above control levels (Fig. 4.4b). Anti-IL-12 treatment did 

not significantly affect the Con A responses of chronic GvHD mice on either day 2 

(Fig. 4.4a) or day 10 (Fig. 4,4b) and similarity did not affect the Con A responses 

of control mice at either time point (Figs. 4.4a & 4.4b).

c) Proliferative Responses to LPS Stimulation

On day 2, spleen cells from B6 => BDFi mice showed significantly 

increased responsiveness to stimulation with LPS in vitro compared with control 

spleen cells (Fig. 4.5a). By day 10, the responses of these mice to LPS 

stimulation were significantly lower than those of control mice (Fig. 4.5b). Anti- 

IL-12 treatment caused a significant reduction in the enhanced LPS responses of
'N  ' A
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acute GvHD mice on day 2 (Fig. 4.5a), but by day 10, the responses of anti-IL-12 

treated B6 => BDFi mice were identical to those of unmodified B6 => BDFi mice 

(Fig. 4.5b).

In contrast, DBA/2 => BDFi spleen cells showed similar LPS responses to 

control cells on day 2 (Fig. 4.5a), but significantly increased responses by day 10 

(Fig. 4.5b) and these were unaffected by anti-IL-12 treatment. Similarly, anti-IL- 

12 did not affect the LPS responses of control mice at either time point (Figs. 4.5a 

&b).

iv) Cytokine Production

Given the critical role of IL-12 in T helper cell phenotype development 

[76-78, 161], I then examined the effect of anti-IL-12 treatment on the cytokines 

produced by cells from mice with either acute or chronic GvHD.

IFN-y

In this study, IFN-y was not produced spontaneously by cells from any
■

group (data not shown).

On both days 2 and 10, spleen cells from B6 => BDFi mice produced 

significantly more IFN-y in response to Con A stimulation than control cells (Figs.

4.6a & b). This increase was abolished on day 2 by treatment with anti-IL-12 

antibody (Fig. 4.6a), but by day 10, similarly high levels of IFN-y were produced 

by cells from both anti-IL-12 treated and unmanipulated B6 => BDFi mice (Fig.

4.6b).
.

Spleen cells from DBA/2 => BDFi mice produced significantly lower 

levels of IFN-y in response to Con A stimulation than control spleen cells on both 

days 2 and 10 (Figs. 4.6a & b). Anti-IL-12 treatment did not affect these levels at 

either time point (Figs. 4.6a & b). Anti-IL-12 treatment of control mice did not 

affect the ability of spleen cells from these mice to produce IFN-y on day 2 or 10 

(Fig. 4.6a & b).



1
IL-2

I-IL-2 was not produced spontaneously by cells from any group at any time 

during this study (data not shown).

On day 2, spleen cells from B6 => BDFi mice produced similar levels of 

IL-2 in response to Con A to control cells (Fig. 4,7a). By day 10, however, IL-2 

production by cells from B6 => BDFi mice was dramatically reduced and levels 

were severalfold lower than those produced by control cells (Fig. 4.7b). Anti-ILr 

12 treatment caused a significant reduction in the levels of IL-2 produced by 

spleen cells from B6 => BDFi mice on day 2 (Fig. 4.7a) and completely ablated 

IL-2 production in acute GvHD mice by day 10 (Fig. 4.7b).

IL-2 production by DBA/2 => BDFi spleen cells was significantly lower 

than that of control spleen cells on both days 2 and 10 (Figs. 4.7a & b). This was 

in contrast to the enhanced levels of IL-2 which these cells produced in the study 

described in Chapter 3 and may reflect altered consumption of IL-2 in vitro. Anti- 

IL-12 did not affect these levels (Figs. 4.7a & b). Similarly, anti-IL-12 treatment 

of control mice did not affect the ability of spleen cells from these mice to produce 

IL-2 on either day 2 or day 10 of this study (Figs. 4.7a & b).

IL-10

IL-10 was not produced spontaneously by cells from any group at any 

time during this study (data not shown).

On both days 2 and 10, spleen cells from B6 => BDFi mice produced 

significantly lower levels of IL-10 in response to Con A stimulation than control 

cells (Figs. 4.8a & b). Anti-IL-12 treatment restored IL-10 production to control 

levels on day 2 (Fig. 4,8a), but by day 10, spleen cells from anti-IL-12 treated and 

untreated B6 => BDFi mice produced similarly low levels of IL-10 (Fig. 4.8b).

i
Spleen cells from DBA/2 => BDFi mice produced significantly higher 

levels of IL-10 in response to Con A stimulation compared with controls on days 

2 and 10 and this was unaffected by anti-IL-12 treatment (Figs, 4,8a & b). Spleen
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cells from control mice given anti-IL-12 produced similar levels of IL-10 to 

unmodified controls on days 2 and 10 (Fig. 4.8a & b).

IL-5

IL-5 was not produced spontaneously by cells from any group at any time 

during this study (data not shown). Con A induced IL-5 production was not 

detected in cultures of cells from any group on day 2 (data not shown) and spleen 

cells from anti-IL-12 treated and unmanipulated B6 => BDFi mice did not produce 

detectable Con A induced IL-5 on day 10 (Fig. 4.9),

In contrast, on day 10, spleen cells from DBA/2 => BDFi mice produced 

significantly higher levels of Con A stimulated IL-5 than control cells (Fig. 4.9). 

Again, the levels of IL-5 produced by both control spleen cells or cells from 

DBA/2 => BDFi mice were not significantly affected by anti-IL-12 treatment.

IL-4

IL-4 production by cells from all groups was below the level of detection 

at all time points during this study (data not shown).

Summary

This study showed that a single dose of anti-IL-12 antibody abrogated 

many of the early proliferative features of acute GvHD, including splenomegaly,
!■

enhanced spontaneous and mitogen induced proliferation, elevated NK cell activity 

and increased IFN-y and IL-2 production. In parallel, anti-IL-12 increased the 

levels of IL-10. Despite these effects on the early phase of the acute disease, a 

single injection of anti-IL-12 was unable to prevent acute GvHD completely and 

by day 10, anti-IL-12 treated B6 => BDFi mice showed the same degree of 

splenomegaly and reduced responses to Con A and LPS stimulation as 

unmanipulated B6 => BDFi mice. They also exhibited the characteristic Th 1-type



cytokine pattern associated with the acute disease. This dose of anti-IL-12 was 

therefore sufficient to delay, but not to abrogate onset of acute GvHD.

In contrast anti-IL-12 treatment had no effect on the chronic form of 

GvHD. Anti-IL-12 treated DBA/2 => BDFi mice had identical splenomegaly, NK 

cell activity, and levels of mitogen induced proliferation to unmanipulated DBA/2 

=> BDFi mice on both days 2 and 10, although on day 10, the anti-IL-12 treated 

group had markedly higher levels of spontaneous 'ex-vivo' proliferation than 

unmanipulated DBA/2 => BDFi mice, perhaps indicating a subtle regulatory role 

for IL-12 at this stage in the chronic GvHD. The cytokine profile of mice with 

chronic GvHD was also unaffected by anti-IL-12 treatment and cells from both 

unmanipulated and anti-IL-12 treated DBA/2 => BDFi mice produced significantly 

lower levels of IFN-y and increased levels of IL-10 and IL-5 as cells from control 

mice.

Conclusions

These results suggest that endogenous IL-12 may be involved in the 

development of acute, but not chronic GvHD. However, the effects of anti-IL-12 

were transient. I therefore decided to extend these initial studies by neutralising 

endogenous IL-12 in B6 => BDFi mice for a longer period to determine whether 

this would have a more dramatic effect on the development of acute GvHD.

«
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Fig. 4.1. Effects of anti-IL-12 treatment on splenomegaly during 

acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 antibody on 

splenomegaly in BDFi mice given 10  ̂B6 or DBA/2 spleen cells i.v. Results 

shown are the mean spleen indices of 3 GvHD mice per group ± ISD relative to 

the mean spleen weights of 3 control mice on days 2 (Fig. 4.1a) and 10 (Fig. 

4.1b) of GvHD. (* p < 0.001 vs controls). Ab = Anti-IL-12 treated.
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Fig. 4.2. Effects of anti-IL-12 treatment on NK cell activity during 

acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 antibody on splenic NK 

cell activity in BDFi mice given 10  ̂B6 (Fig. 4.2a) or DBA/2 (Fig. 4.2b) spleen 

cells i.v. The results shown are the % cytotoxicity against YAC-1 target cells from 

quadruplicate assays measured at effector : target (E:T) ratios from 100:1 to 

12.5; 1, using spleen cells pooled from 3 mice per group on day 2 of GvHD. Ab = 

Anti-IL-12 treated.
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Fig. 4.3. Effects of anti-IL-12 treatment on spontaneous 'ex-vivo' 

proliferation during acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 antibody on the 

spontaneous proliferative capacity of splenocytes from BDFi mice given 10  ̂B6 

or DBA/2 spleen cells i.v. The results are expressed as the mean uptake of 3H- 

TdR ± 1 SD after 4 hours in quadruplicate cultures, using spleen cells pooled from 

3 mice per group on days 2 (Fig. 4.3a) and 10 (Fig. 4.3b) of the GvHD. (* p < 

0.001 vs controls; t  P < 0.01 vs unmodified acute GvHD; § p < 0.001 vs 

unmodified chronic GvHD). Ab = Anti-IL-12 treated.
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3H TdR Incorporation 
(opm/well)

20000 -I
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Acute Acute + Ab Chronic Chronic + Ab Control Control + Ab
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5000 "

Acute Acute + Ab Chronic Chronic + Ab Control Control + Ab

Fig, 4.4. Effects of anti-IL-12 treatment on Con A i n d u c e d  

proliferation during acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 antibody on the 

proliferative capacity of splenocytes from BDFi mice given 10® B6 or DBA/2 

spleen cells i.v. in response to mitogenic stimulation with 10p,g/ml Con A. The 

data are expressed as the mean uptake of 3H-TdR ± 1 SD after 48 hours in 

quadruplicate cultures, using spleen cells pooled from 3-4 mice per group on days 

2 (Fig. 4.4a) and 10 (Fig. 4.4b) of the GvHD. (* p < 0.01 vs controls; t  p < 0.01 

vs unmodified acute GvHD). Ab = Anti-IL-12 treated
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3H TdR Incorporation 
(cpnn/well)
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Fig. 4.5. Effects of anti-IL-12 treatment on LPS induced 

proliferation during acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 antibody on the 

proliferative capacity of splenocytes from BDFi mice given 10® B6 or DBA/2 

spleen cells i.v. in response to mitogenic stimulation with lOpg/ml LPS. Data are 

expressed as the mean uptake of 3H-TdR ± 1 SD after 24 hours in quadruplicate 

cultures, using spleen cells pooled from 3-4 mice per group on days 2 (Fig. 4.5a) 

and 10 (Fig. 4.5b) of the GvHD. (* p <  0.05 **p<  0.001 vs controls; f p < 0.01 

vs unmodified acute GvHD). Ab = Anti-IL-12 treated.

7 4

■'Ï

i

13?
.1

?
?:3

I

I

I
I

I
1

i
11.

i
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(ng/ml)
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20  -  
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Acute Acute + Ab Chronic Chronic + Ab Control Control + Ab

b > 60 ng/ml > 60 ng/ml

Acute Acute + Ab Chronic Chronic + Ab Control Control + Ab

Fig. 4.6. Effects of anti-IL-12 treatment on IFN-y product ion  

during acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 on IFN-y production by 

splenocytes from BDFi mice given B6 or DBA/2 spleen cells i.v. Splenocytes 

from B6 => BDFi and DBA/2 => BDFi mice were cultured with lOpg/ml Con A 

for 48 hours and the supernatants assayed for the presence of IFN-y by ELISA. 

The results shown are the means ± SD of triplicate samples on days 2 (Fig. 4.6a) 

and 10 (Fig. 4.6b) of the GvHD. (* p < 0.001 vs controls; t  P < 0.001 vs 

unmodified acute GvFQD).
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Acute Acute + Ab Chronic Chronic + Ab Control Control + Ab

Fig. 4.7. Effects of anti-IL-12 treatment on IL-2 production during 

acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 on IL-2 production by 

splenocytes from BDFi mice given B6 or DBA/2 spleen cells i.v. Splenocytes 

from B6 => BDFi and DBA/2 => BDFi mice were cultured with lOpg/ml Con A 

for 24 hours and the supernatants assayed for the presence of IL-2 by ELISA. The 

results shown are the means ± SD of triplicate samples on days 2 (Fig. 4.7a) and 

10 (Fig. 4.7b) of the GvHD. (* p < 0.001 vs controls; f p < 0.001 vs unmodified 

acute GvHD). Ab = Anti-IL-12 treated.
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IL-10
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20  -

10 -

Acute Acute + Ab Chronic Chronic + Ab Control Control + Ab

40 I

30 -

20

10  -

b

Acute Acute + Ab Chronic Chronic + Ab Control Control + Ab

Fig. 4.8. Effects of anti-IL-12 treatment on IL-10 production during 

acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 on IL-10 production by 

splenocytes from BDFi mice given B6 or DBA/2 spleen cells i.v. Splenocytes 

from B6 => BDFi and DBA/2 => BDFi mice were cultured with lOpg/ml Con A 

for 48 hours and the supernatants assayed for the presence of IL-10 by ELISA. 

The results shown are the means ± SD of triplicate samples on days 2 (Fig. 4.8a) 

and 10 (Fig. 4.8b) of the GvHD. (* p < 0.01 vs controls; f p < 0.001 vs 

unmodified acute GvHD). Ab = Anti-IL-12 treated.
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Fig. 4.9. Effects of anti-IL-12 treatment on IL-5 production during 

acute and chronic GvHD.

The results show the effect of a single dose of anti-IL-12 on IL-5 production by 

splenocytes from BDFi mice given B6 or DBA/2 spleen cells i.v. Splenocytes 

from B6 => BDFi and DBA/2 => BDFi mice were cultured with lOpg/ml Con A 

for 96 hours, and the supernatants assayed for the presence of IL-5 by ELISA. 

The results shown are the means ± SD of triplicate samples on day day 10 of the 

GvHD. (* p < 0.05 vs unmodified controls).

Ab = Anti-IL-12 treated.
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CHAPTER 5

79

ROLE OF ENDOGENOUS IL-12 IN GvHD

I '

Effects of Repeated Anti-IL-12 Administration on Acute GvHD 

Introduction

In Chapter 4 ,1 demonstrated that early production of IL-12 is important 

for the development of acute, but not chronic GvHD. My results also showed that 

while neutralising IL-12 during the afferent phase of acute GvHD abrogated many 

of the early features of the disease, it was unable to prevent its onset. In this 

chapter, I wanted to examine whether neutralising IL-12 in B6 => BDFi mice for a 

longer period could inhibit development of acute GvHD. In addition to assessing 

the effects of repeated antibody treatment on the disease on days 2 and 10 as 

before, I also examined a later time point in the disease to determine whether 

repeated doses of anti-IL-12 antibody affected parameters associated with the more 

established disease, such as immunosuppression, weight loss and mortality.

Because the supplies of neutralising anti-IL-12 antibody were limiting and 

because anti-IL-12 treatment had little effect on the chronic form of GvHD, I 

restricted this more detailed study to the acute form of the GvHD. The long-term 

effects of neutralising endogenous IL-12 on the autoimmune consequences of 

chronic GvHD are detailed in Chapter 6.

:ir

Experimental protocol

The protocol used in this chapter was similar to that in Chapter 4, except 

that neutralising anti-IL-12 antibody was given on days - 1 , 2 , 5  and 8. In 

addition, the effect of the antibody on acute GvHD was examined up to day 20 

and CTL activity was measured in the spleens of GvHD mice on day 10 using 

P815(H-2d) target cells.



I
Results

i) Weight loss and mortality

As expected, BDFi mice injected with B6 parental cells developed an acute
■

GvHD with progressive weight loss beginning on day 12 and continuing until the 

end of this study on day 20 (Fig. 5.1). Additionally, two of these mice died on 

day 17 and a further two on day 19. In contrast, B6 => BDFi mice given repeated 

doses of anti-IL-12 antibody during the first 8 days of acute GvHD showed no 

significant weight loss or mortality (Fig. 5.1).

day 20, the spleen weights of these mice were several fold greater than those of 

unmodified acute GvHD mice (Fig. 5.2).

Hi) Immune function

8 0
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ii) Splenomegaly

In parallel, unmanipulated B6 => BDFi mice with acute GvHD developed 

significant splenomegaly by day 2, which peaked on day 10 before returning 

towards control values (Fig. 5.2). Treatment with anti-IL-12 antibody 

significantly reduced the degree of splenomegaly on day 2, but, as in Chapter 4, 

on day 10 these mice had similar splenomegaly to that observed in unmodified 

mice with acute GvHD (Fig. 5.2). However, while the spleen weights of 

unmodified B6 => BDFi mice returned towards control levels by day 20, the 

splenomegaly in anti-IL-12 treated B6 => BDFi animals was prolonged and on

a) Spontaneous 'ex-vivo' proliferation

Spleen cells from unmanipulated B6 => BDFi mice showed enhanced 

levels of spontaneous 'ex~vivo' proliferation compared with control cells. This 

was apparent by day 2, peaked at day 10, but was markedly reduced by day 20 

(Fig. 5.3). Treatment with anti-IL-12 antibody did not alter the enhanced

?
I
I
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spontaneous proliferation seen on days 2 and 10, but on day 20, the proliferative 

capacity of spleen cells from anti-IL-12 treated B6 =#> BDFi mice remained 

significantly higher than both untreated acute GvHD and control levels (Fig. 5.3). 

In Chapter 4 ,1 observed that cells from B6 => BDFi mice given a single injection 

of anti-IL-12 showed significantly reduced spontaneous proliferation on both days 

2 and 10 compared with cells from unmodified B6 BDFi mice. The reason

why antibody treatment did not similarly affect proliferation in this study was 

unclear, although different batches of anti-IL-12 antibody were used in the two f

studies.

Anti-IL-12 did not significantly affect the spontaneous proliferative 

capacity of control cells at any time (Fig. 5.3).

li
:

b) Proliferative responses to Con A stimulation

In this experiment, I used Con A responsiveness as a measure of the 

immunosuppression which occurs in the established phase of the acute disease. As
■■■

anticipated, on day 20, splenocytes from B6 => BDFi mice showed significantly 

reduced responses to Con A stimulation compared with cells from control mice 

(Fig. 5.4). This defect was prevented by treatment with anti-IL-12, as spleen cells 

from anti-IL-12 treated B6 => BDFi mice had Con A responses identical to those 

in anti-IL-12 treated controls (Fig. 5.4).
■

Anti-IL-12 caused a significant reduction in the responses of control cells 

to Con A stimulation (Fig. 5.4).

c) Proliferative responses to LPS stimulation

LPS induced proliferation was also assessed on day 20, in order to 

determine whether anti-IL-12 altered the B cell suppression observed late during 

acute GvHD. As expected, splenocytes from unmodified B6 => BDFi mice 

showed significantly reduced proliferative responses to LPS stimulation compared 

with cells from control mice (Fig. 5.5). The LPS responses of spleen cells from



anti-IL-12 treated B6 ==> BDFi mice were significantly higher than those of

iv) Cytokine Production

I then went on to compare the cytokine profiles of cells from 

immanipulated and anti-IL-12 treated B6 => BDFi mice.

IFN-y

spontaneous IFN-y production (Fig. 5.6).

unmodified B6 BDFi mice (Fig. 5.5). However, they were still significantly 

reduced compared with the responses of control cells (Fig. 5.5). Splenocytes from

control mice given anti-IL-12 antibody exhibited proliferative responses to LPS 

similar to those of spleen cells from unmodified control mice (Fig. 5.5).

Spontaneous

On days 2 and 20, IFN-y was not produced spontaneously by cells from 

any group (data not shown). On day 10, however, spleen cells from

unmanipulated B6 => BDFi mice produced high levels of IFN-y spontaneously 

(Fig. 5.6). Treatment with anti-IL-12 caused a significant reduction in this

Con A

As before, on both days 2 and 10, cells from unmodified B6 => BDFi 

mice produced significantly enhanced amounts of IFN-y in response to Con A 

compared with control cells (Fig. 5.7a and b). By day 20, however, cells from

these mice produced similar levels of IFN-y to control cells (Fig. 5.7c). Repeated 

treatment with anti-IL-12 significantly reduced the levels of IFN-y produced by 

cells from B6 => BDFi mice on both days 2 and 10 (Fig. 5.7a and b). This was in 

contrast to the effect of a single dose of anti-IL-12, which reduced IFN-y levels on 

day 2, but not day 10 (see Chapter 4). Furthermore, on day 20, cells from anti-IL-

82



12 treated B6 => BDFi mice showed similar Con A stimulated IFN-y production 

to cells from unmodified B6 => BDFi and control mice (Fig. 5.7c).

Anti-IL-12 had no effect on Con A stimulated IFN-y production by control 

spleen cells at any time during this study (Figs. 5.7a-c).

83

IL-2

IL-2 was not produced spontaneously by cells from any group at any time 

during this study (data not shown).

On day 2, spleen cells from B6 => BDFi mice produced levels of IL-2 in 

response to Con A which were similar to those produced by control cells (Fig. 

5.8a), However by day 10, IL-2 production by cells from GvHD mice was 

dramatically reduced, with levels severalfold lower than those produced by control 

cells (Fig. 5.8b) and on day 20, there was no IL-2 production at all (Fig. 5.8c).

$

This paralleled the loss of Con A proliferative responses by these cells (Fig. 5.4).

In contrast, cells from anti-IL-12 treated B6 => BDFi mice produced significantly 

lower levels of IL-2 than cells from unmodified B6 => BDFi mice on day 2 (Fig.

5.8a) and by day 10, similarly reduced IL-2 production by cells from unmodified 

and anti-IL-12 treated B6 => BDFi mice was apparent when compared with 

control cells (Fig. 5.8b). Thus, the effects of repeated anti-IL-12 administration 

were similar to those of a single injection of the antibody (see Chapter 4).

However, on day 20, cells from anti-IL-12 treated B6 => BDFi mice retained the 

capacity to produce IL-2 in response to Con A stimulation, albeit at significantly 

lower levels than control cells (Fig. 5.8c).

Repeated administration of anti-IL-12 antibody to control mice resulted in 

significantly reduced IL-2 production at all time points examined (Figs. 5.8a-c), 

consistent with the lower Con A induced proliferative responses of cells from anti- 

IL-12 treated control mice compared with unmanipulated controls (Fig. 5.4).

Reduced Con A induced IL-2 levels were a common feature of anti-IL-12 treated
3 4
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GvHD and control mice, suggesting that IL-12 may play a regulatory role in IL-2 

production.

:

IL-10

IL-10 was not produced spontaneously by cells from any group at any 

time during this study (data not shown). Similarly, on day 20, Con A stimulated 

IL-10 levels were also below the level of detection for all groups. Since IL-10 

production in response to Con A was readily detectable on days 2 and 10 (see 

below), the reason for its absence on day 20 was not clear.

On both days 2 and 10, spleen cells from B6 => BDFi mice produced 

significantly lower levels of IL-10 in response to Con A stimulation compared

with control cells (Figs. 5.9a & b). Repeated anti-IL-12 treatment resulted in a
■

significant increase in the levels of Con A induced IL-10 production by B6 =>

BDFi spleen cells on both days 2 and 10 (Figs. 5.9a & b). This was in contrast to 

the effect of a single administration of anti-IL-12, which had no effect on IL-10 

production by B6 => BDFi cells after day 2 (see Chapter 4).
:

Spleen cells from control mice given repeated injections of anti-IL-12 

produced similar levels of IL-10 to cells from unmodified control mice at both time 

points examined (Figs. 5.9a & b).

IL-5

IL-5 production by cells from all groups was below the level of detection 

at all time points during this study (data not shown). Since IL-5 was detected in 

the previous studies detailed in Chapters 3 and 4, its absence in this study 

highlights the potential variability of cytokine production between experiments.

IL-4

IL-4 production by cells from all groups was below the level of detection

at all time points during this study (data not shown).

8 4
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v) Non-Specific and Specific Cell-Mediated Cytotoxicity
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a) NK cell activity

As before, B6 => BDFi mice showed enhanced splenic NK cell activity on
-If

day 2 of the acute GvHD compared with control mice (Fig. 5.10). As I found in 

Chapter 4, this increased NK cell activity was reduced to below control levels by

anti-IL-12 antibody treatment (Fig. 5.10).

b) CTL activity

Since IL-12 is also involved in facilitating specific CTL-mediated 

responses [118, 120, 121, 150], I next examined whether anti-IL-12 treatment 

also reduced the donor anti-host cytotoxicity which occurs later during acute 

GvHD.

On day 10 of acute GvHD, spleen cells from unmodified B6 => BDFi 

mice showed high levels of anti-host CTL activity (Fig. 5.11). Despite the 

dramatic effect of anti-IL-12 on early NK cell activation and its ability to 

ameliorate the associated weight loss and mortality, anti-IL-12 did not prevent the 

generation of anti-host CTL (Fig. 5.11).

Summary

These results indicate that neutralising endogenous IL-12 during the first 8 

days of acute GvHD ameliorated the disease and prevented the 

immunosuppression, weight loss and mortality which occur in established acute 

GvHD. Thus repeated neutralisation of IL-12 extended the effects of a single 

injection of anti-IL-12 antibody and also converted the characteristic Thl-type 

cytokine profile associated with acute GvHD into a more Th2 dominated response, 

as evidenced by reduced IFN-y production and increased levels of the Th2 

cytokine, IL-10. In contrast, the single dose of anti-IL-12 only altered cytokine 

production on day 2. Despite its dramatic effect on weight loss and mortality,
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however, anti-IL-12 treatment did not reduce the high levels of anti-host 

cytotoxicity in the spleens of B6 =*- BDFi mice.

Conclusions

Thus, many features of early acute GvHD such as IFN-y production and

NK cell activation are dependent on IL-12, as are the immunosuppression, weight 

loss and mortality which occur in the established disease. Initiation of acute GvHD 

is critically dependent on IL-12, supporting the view that this is a Thl-mediated 

disease. In the next chapter, I went on to examine the long-term consequences of 

neutralising IL-12.

I
I
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BODY WEIGHT (g)
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Acute GvHD

Acute GvHD + Anti-IL-12

C ontro l

20161280 4

DAY OF GvHD

Fig. 5.1. Effects of anti-IL-12 treatment on weight ioss and 

mortality during acute GvHD,

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on weight loss and mortality in BDFi mice given 10  ̂B6 

spleen cells i.v. The results shown are the mean body weights ± 1 SD for 6 mice 

per group. (* p < 0.05 vs controls; § p < 0.05 vs unmodified acute GvHD; t  

Death).
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SPLEEN INDEX

5

3 -

* *

D Acute GvHD 
■  Acute GvHD + Antî-IL-12 
E3 Control + Antî-IL-12

t  t

10

DAY OF GvHD

Fig. 5.2. Effects of anti-IL-12 treatment on splenomegaly during 

acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on splenomegaly in BDFi mice given 10® B6 spleen cells 

i.v. The results shown are the mean spleen indices of 3 GvHD mice per group ± 1 

SD relative to the mean spleen weights of 3 control mice. (* p<  0.001 vs controls; 

t  p < 0.05 f t  P < 0.001 vs unmodified acute GvHD).
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3H TdR Incorporation
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Fig. 5.3. Effects of anti-IL-12 treatment on spontaneous ^ex-vivo^ 

proliferation during acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on the spontaneous proliferative capacity of splenocytes from 

BDFj mice given 10® B6 spleen cells i.v. The results are expressed as the mean 

uptake of 3H-TdR ± 1 SD after 4 hours in quadruplicate cultures using spleen 

cells pooled from 3 mice per group. (* p < 0.001 vs controls; t  P < 0.001 vs 

unmodified acute GvHD).
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(cpm/well)
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★ *

Acute Acute + Anti-IL-12 Control Control + Anti-IL-12

Fig. 5.4. Effects of anti-IL-12 treatment on Con A i n d u c e d  

proliferation during acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on the proliferative capacity of splenocytes from BDFi mice 

given 10® B6 spleen cells i.v. in response to mitogenic stimulation with lOpg/ml 

Con A. The data are expressed as the mean uptake of 3H-TdR ± 1 SD after 48 

hours in quadruplicate cultures, using spleen cells pooled from 3-4 mice per group 

on day 20 of the disease. (* p < 0.005 ** p < 0.001 vs controls; t  P < 0,005 vs 

unmodified acute GvHD),
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Acute Acute + Anti-IL-12 Control Control + Antl-IL-12

Fig. 5.5. Effects of anti-IL-12 treatment on LPS induced 

proliferation during acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on the proliferative capacity of splenocytes from BDFi mice 

given 10  ̂B6 spleen cells i.v. in response to mitogenic stimulation with 10p,g/ml 

LPS. The data are expressed as the mean uptake of 3H-TdR ± 1 SD after 24 hours 

in quadruplicate cultures, using spleen cells pooled from 3-4 mice per group on 

day 20 of the disease. (* p < 0.001 vs controls; t  P < 0.05 vs unmodified acute 

GvHD).
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IFN-GAMMA
(ng/ml)
40 n

30 -
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10 -

Acute Acute + Anti-IL-12 Control Control + Anti-IL-12

Fig. 5.6. Effects of anti-IL-12 treatment on spontaneous IFN-y 

production during acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on spontaneous IFN-y production by splenocytes from BDFi 

mice given 10  ̂B6 spleen cells i.v. Splenocytes from B6 => BDFi mice were 

cultured in medium for 48 hours and the supernatants assayed for the presence of 

IFN-y by ELISA. The results shown are the means ± SD of triplicate samples on

day 10 of the GvHD. (t p < 0.001 vs unmodified acute GvHD).
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Fig. 5.7. Effects of anti-IL-12 treatment on Con A induced IFN-y 

production during acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on Con A induced IFN-y production by cells from BDFi 

mice given 10  ̂B6 spleen cells i.v. Splenocytes from B6 => BDFi mice were 

cultured with lOpg/ml Con A for 48 hours and the supernatants assayed for the 

presence of IFN-y by ELISA. The results shown are the means ± SD of triplicate 

samples on days 2 (Fig. 5.7a), 10 (Fig. 5.7b) or 20 (Fig. 5.7c) of the GvHD. (* 

p < 0.05 p < 0.001 vs controls; t  P < 0.001 vs unmodified acute GvHD).
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Fig. 5.8. Effects of anti-IL-12 treatm ent on IL-2 production during 

acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on Con A induced IL-2 production by cells from BDFi mice 

given W  B6 spleen cells i.v. Splenocytes from B6 => BDFi mice were cultured 

with lOpg/ml Con A for 24 hours and the supernatants assayed for the presence of 

IL-2 by ELISA. The results shown are the means ± SD of triplicate samples on 

days 2 (Fig. 5.7a), 10 (Fig. 5.7b) and 20 (Fig. 5.7c) of the GvHD. (* p <  0.005 

** p < 0.001 vs unmodified controls; t  P < 0.001 vs unmodified acute GvHD).
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Fig. 5.9. Effects of anti-IL-12 treatment on IL-10 production during 

acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on Con A induced IL-10 production by splenocytes from 

BDFi mice given 10  ̂B6 spleen cells i.v. Splenocytes from B6 => BDFi were 

cultured with lOpg/ml Con A for 48 hours and the supernatants assayed for the 

presence of IL-10 by ELISA. The results shown are the means ± SD of triplicate 

samples on days 2 (Fig. 5.9a) and 10 (Fig. 5.9b) of the GvHD. (* p < 0.01 **

0.001 vs controls; f p < 0.001 vs unmodified acute GvHD).
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% CYTOTOXICITY
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100: 50:1 25:1
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Fig. 5.10. Effects of anti-IL-12 treatment on NK cell activity during 

acute GvHD.

The results show the effect of a neutralising endogenous IL-12 during the first 8 

days of acute GvHD on splenic NK cell activity in BDFi mice given 10  ̂B6 i.v. 

The results shown are the % cytotoxicity against YAC-1 target cells from 

quadruplicate assays measured at effector : target (E:T) ratios from 100:1 to 

12.5:1, using spleen cells pooled from 3 mice per group on day 2 of the GvHD.
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Fig. 5.11. Effects of IL-12 depletion on specific CTL activity 

during acute GvHD.

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on splenic CTL activity in BDFi mice given 10  ̂B6 i.v. The 

results shown are the % cytotoxicity against P815 target cells from quadruplicate 

assays measured at effector : target (E:T) ratios from 100:1 to 12.5:1, using spleen 

cells pooled from 3 mice per group on day 10 of the GvHD.
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CHAPTER 6

ROLE OF ENDOGENOUS IL-12 IN GvHD
.,;:ï

Long-Term Effects of IL-12 Neutralisation 

on Acute and Chronic GvHD

98

Introduction:

In Chapters 4 & 5, I showed the importance of the cytokine IL-12 in 

mediating acute GvHD in BDFi mice, by demonstrating that in vivo 

administration of neutralising anti-IL-12 antibody inhibited the Thl cytokine 

production, immunosuppression, weight loss and mortality which occur during

■Î

if

the first 3 weeks of the disease. A number of important issues were raised by 

these earlier studies. Firstly, they did not address the critical question of whether 

neutralising IL-12 early in GvHD conferred long-term protection from acute 

disease, or simply delayed its onset. Secondly, I did not establish whether IL-12 

depletion impaired the development of donor haemopoietic chimerism. If so, host 

cells might remain to allow continued stimulation of donor T cells. Finally, if 

neutralising IL-12 promotes the development of a Th2 cytokine response to 

alloantigen, this may eventually result in the development of a chronic GvHD, 

comparable to that observed in DBA/2 => BDFi animals. In this chapter, I have 

addressed these issues in an extended time course of acute GvHD. To determine 

whether anti-IL-12 treated B6 => BDFi mice go on to develop chronic GvHD, I 

examined whether long-term survivors exhibit any of the features of the chronic 

disease, such as high levels of Th2 cytokine production, B cell hyperplasia 

enhanced serum immunoglobulin and anti-ds DMA antibody levels, and antibody- 

mediated kidney pathology. In addition, I investigated whether DBA/2 => BDFi

mice given anti-IL-12 antibody developed raised serum immunoglobulin and anti-



ds DNA antibody levels earlier than unmodified DBA/2 => BDFi mice and if the 

antibody treatment increased long-term mortality in chronic GvHD.

Experimental Protocol

The GvHR was induced by i.v. injection of 10^ viable B6 or DBA/2 

parental spleen cells into BDFi recipients, as usual. IL-12 was neutralised in vivo 

as described in Chapter 5.

The numbers of donor and host derived CD4+ and CD8+ T cells in the 

spleen were assessed by flow cytometry using mAbs directed against polymorphic 

determinants expressed by either H-2D^ or H-2D*). Lymphocytes expressing high 

levels of both H-2D^ and H-2 D^ were identified as host lymphocytes, while cells 

which lacked expression of H-2D^ Class 1 MHC were designated B6 donor- 

derived cells.

Immune function was determined on day 70 by assessing the ability of 

GvHD splenocytes to proliferate in response to Con A or LPS stimulation in vitro 

. Cytokine production was also measured at this time. Levels of total serum IgG 

were measured throughout the GvHD using radial immunodiffusion, while serum 

IgE and anti-ds-DNA antibody levels were both determined by ELISA.

Kidneys were harvested from GvHD mice on days 50, 70 and 130 and 

examined blind for evidence of immune complex deposition and glomerular 

damage by both light and electron microscopy.

1. Long-Term Effects of Anti-IL-12 Treatment on Acute GvHD

Results

i) Survival

Unmodified B6 => BDFi mice with acute GvHD showed the expected 

early mortality, with the first death occurring on day 16 and 78% mortality in this

99



1 0 0

:,4'

group by day 23 (Fig. 6.1). Only two out of the 8 mice in the anti-IL-12 treated 

B6 => BDF group died (one on day 19 and one on day 28 - 25% mortality). No 

further deaths were observed in either group after day 28 until the study was 

terminated on day 130. Thus, early treatment with anti-IL-12 confers long-term 

protection from mortality.

I
ii) Effect of anti-IL-12 treatment on donor cell engraftment

As expected, unmodified B6 => BDFi mice showed progressive 

repopulation by donor-derived CD4+̂  T cells (Fig. 6.2 and Table 6.1). This was 

already marked by day 9 (Fig. 6.2), had increased significantly by day 17 and was 

virtually complete in the small number of mice which survived until day 70 (Table

6.1). Engraftment of donor CD8+ T cells occurred more slowly than that of donor 

CD4+ cells and on day 9, only 4.7% of the CD8+ T cells in the spleen of B6 =>

BDFi mice were of donor origin (Fig. 6.2). The percentage of donor-derived 

CD8+ T cells in these mice increased dramatically between days 9-17 (Table 6.1), 

although no further increase was observed thereafter and in mice surviving on day
■

70, repopulation of the CD8+ T cell compartment was still incomplete (Table 6.1).

Insufficient mice were available thereafter to establish if complete repopulation by

i
donor CDS*' T cells occurred.

Anti-IL-12 treated B6 => BDFi mice showed equivalent engraftment of 

donor CD4+ T cells to that seen in unmodified B6 BDFi mice on days 9 (Fig.

6.2) and 17 (Table 6.1). However, on day 70, the percentage of CD4+ 

lymphocytes in anti-IL-12 treated B6 =>BDFi mice was markedly lower than that 

observed in unmodified B6 => BDFi mice (Table 6.1), suggesting that 

repopulation of the CD4'*' compartment occurred more slowly in anti-IL-12 treated 

mice. However, complete CD4+T cell chimerism was observed in anti-IL-12 

treated mice by day 130 (Table 6.1). Engraftment of donor CD8+ T cells occurred 

at a similar rate in untreated and anti-IL-12 treated B6 => BDFi mice (Fig. 6.2 and 

Table 6.1), but the larger numbers of surviving mice allowed me to establish that

i



On day 70, the LPS induced responses of splenocytes from both anti-IL- 

12 treated B6 => BDFi mice and unmodified DBA/2 => BDFi mice were 

significantly enhanced compared to those of control cells (Fig. 6.4). Similarily

1 0 1

by day 130, complete repopulation by donor derived CD8+ cells had occurred in 

anti-IL-12 treated mice (Table 6.1).

Thus, the long-term survival observed in anti-IL-12 treated B6 => BDFi 

mice is accompanied by complete repopulation of their CD4+ and CD8+ T cell 

compartments by engrafted donor B6 cells.

I
iii) Immune function

In Chapter 5, I demonstrated that anti-IL-12 prevented the T cell 

immunosuppression observed on day 20 of acute GvHD, although it had a less 

dramatic effect on the B cell suppression observed at this time. To establish 

whether anti-IL-12 treated mice retain immunocompetence in the long-term, I 

examined the ability of their spleen cells to proliferate in response to Con A or 

LPS stimulation on day 7 0 .1 also assessed whether these mice developed the B 

cell hyperreactivity associated with chronic GvHD by comparing the responses of

anti-IL-12 treated B6 => BDFi mice to those of DBA/2 => BDFi mice with 

chronic GvHD.

The high mortality rate of unmanipulated B6 => BDFi mice precluded 

analysis of their functional responses at this point.

a) Proliferative responses to Con A stimulation

On day 70, spleen cells from anti-IL-12 treated B6 =>BDFi mice showed 

Con A responses identical to those of spleen cells from both control and DBA/2 => 

BDFi mice (Fig. 6,3). Anti-IL-12 treatment did not affect the Con A responses of 

control mice in the long-term (Fig. 6.3).

b) Proliferative responses to LPS stimulation



enhanced responses to LPS were found in control mice treated with anti-IL-12 

(Fig. 6.4).

Administration of anti-IL-12 therefore appears to provide long-term preservation 

of T cell responses in B6 => BDFi mice, but induces a state of hyper

responsiveness to the B cell mitogen, LPS, in both acute GvHD and control 

animals. These features are similar to those observed in DBA/2 => BDFi mice 

with chronic GvHD.

iv) Cytokine production

In Chapter 5, I showed that IL-12 depletion reduced the high levels of 

IFN-y produced during the early period of acute GvHD and this was associated 

with increased IL-10 production. I now examined whether antibody treatment 

polarised the cytokine response of long-term survivors of the acute GvHD 

towards a permanent Th2 phenotype, similar to that observed in DBA/2 => BDFi 

mice with the chronic disease. Again, the high mortality rate of unmanipulated B6 

=> BDFi mice precluded analysis of their cytokine phenotype at this point.

IFN-y

IFN-y was not produced spontaneously by cells from any group on day 70 

(data not shown).

On day 70, spleen cells from anti-IL-12 treated B6 => BDFi survivors 

produced significantly lower levels of IFN-y in response to Con A than cells from 

control animals (Fig. 6.5). The levels of IFN-y produced by Con A stimulated 

cells from DBA/2 => BDFi mice were below the level of detection for this assay 

(Fig. 6.5). Anti-IL-12 did not affect the ability of control spleen cells to produced 

IFN-y in response to Con A.

1 0 2



12 treated control mice (Fig. 6.6).
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IL-2

IL-2 was not produced spontaneously by cells from any group on day 70

(data not shown).

Similar levels of IL-2 were produced by Con A stimulated cells from anti- 

IL-12 treated B6 =»- BDFi, DBA/2 => BDFi and both unmanipulated and anti-IL-

IL-10

IL-10 was not produced spontaneously by cells from any group on day 70 

(data not shown).

Cells from anti-IL-12 treated B6 => BDFi mice produced significantly 

enhanced levels of IL-10 in response to Con A, in comparison with both controls 

and DBA/2 => BDFi mice (Fig. 6.7). Control mice given anti-IL-12 also showed 

significantly enhanced IL-10 production compared to unmanipulated controls (Fig.

6.7).

IL-S

IL-5 was not produced spontaneously by cells from any group on day 70 

(data not shown).

Cells from anti-IL-12 treated B6 ==> BDFi mice produced significantly 

enhanced amounts of IL-5 in response to Con A compared with both controls 

(which did not produce any detectable IL-5) and with cells from DBA/2 => BDFi 

mice (Fig. 6.8). Control mice given anti-IL-12 also showed significantly enhanced 

Con A stimulated IL-5 production compared with unmanipulated controls (Fig.

6 .8).

IL-4

IL-4 production by cells from all groups was below the level of detection 

at all time points during this study (data not shown).



v) Serum Immunoglobulin Levels

As IL-12 depleted B6 => BDFi mice exhibited a polarised Th2 cytokine 

profile and heightened LPS proliferative responses, I next assessed whether these 

mice also had the B cell hyperreactivity characteristic of chronic GvHD. The high 

mortality rate in B6 => BDFi mice prevented analysis of their immunoglobulin 

levels after day 30. Mice with chronic GvHD also started to die from ICGN from 

day 50 onwards and insufficient numbers of these mice remained to analyse on

104

day 130.

1

a) IgG

DBA/2 B D Fi mice with chronic GvHD developed hyper-

gammaglobulinaemia, with strikingly higher than normal levels of total serum IgG 

on days 20 and 30 of the disease (Fig. 6.9). Serum IgG levels in these mice 

declined thereafter, probably due to hypoproteinanaemia resulting from severe 

ICGN [36, 37, 39, 167]. In contrast, unmodified B6 => BDFi mice with acute 

GvHD had no detectable serum IgG on days 20 and 30, reflecting their profound 

immunosuppression (Fig. 6.9). Anti-IL-12 treated B6 => BDFi mice maintained 

normal levels of serum IgG until day 130, when levels became significantly 

elevated compared with those of controls (Fig. 6.9). However, these did not reach

the strikingly high levels seen at the peak of chronic GvHD. Treatment of control
;

mice with anti-IL-12 also resulted in a transient increase in the levels of IgG on 

days 20 to 70 (Fig. 6.9), consistent with their enhanced LPS response in vitro and 

the increased production of Th2 type cytokines. However, by day 130, IgG levels 

in these mice were identical to those in untreated control mice.

b) IgE

As anticipated, DBA/2 => BDFi mice with chronic GvHD also displayed 

very high levels of total serum IgE compared with control mice. This was evident

on days 20 to 70 of the disease (Fig. 6.10). In contrast, untreated mice with acute



GvHD had no detectable serum IgE when examined on days 20 or 30 of the 

disease (Fig. 6.10). Anti-IL-12 treated B6 => BDFi mice had negligible levels of 

IgE on day 20, but levels gradually recovered and on day 70 and thereafter, their 

serum IgE levels were significantly elevated compared with control mice (Fig.

1

6.10). Again, these levels did not reach the same magnitude as those observed 

during the course of chronic GvHD.

e) Anti-ds DNA Antibodies

The increased levels of serum IgG and IgE present in mice with chronic 

GvHD was accompanied by high levels of anti-ds DNA antibodies (Table 6.2).

These antibodies were not observed in the serum of anti-IL-12 treated B6 =>

BDFi mice on days 20 and 30, but on day 70 and thereafter, anti-ds DNA 

antibody levels were similar to those seen in mice with chronic GvHD (Table 6.2).

Some of the unmodified and anti-IL-12 treated BDFi mice also had anti-ds DNA 

antibodies in their serum at later time points, which has previously been described 

in ageing mice [30].

Thus, in anti-IL-12 treated B6 ==> BDFi long-term survivors, there was
■

some evidence of B cell hyperreactivity in vivo, but this was minor in comparison 

with that observed in DBA/2 => BDFi mice with chronic GvHD.

vi) Antibody Mediated Immunopathology

Finally, it was important to determine whether the B cell hyperplasia 

evident in anti-IL-12 treated B6 => BDFi long-term survivors was accompanied 

by the antibody-dependent immunopathology characteristically seen in DBA/2 =>
■-ii-

BDFi mice. I therefore examined for evidence of ICGN at different time points 

using both light and electron microscopy.

As I found previously, in the kidneys of all DBA/2 => BDFi mice 

examined, a severe and progressive ICGN was readily detectable by 50 days and 

was still present in surviving mice on day 70 (Figs. 6.11A & B). Light

>
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microscopy revealed extensive glomerular damage and many of the renal tubules 

contained protein casts. There was thickening of basement membranes, mesangial 

prominence and hyperplasia of the epithelium of Bowman's capsule (Fig. 6.11 A). 

Electron microscopy confirmed the presence of subepithelial immune complex 

deposits and focal endothelial swelling (Fig. 6.1 IB).

In contrast, kidneys from anti-IL-12 treated B6 => BDFi mice displayed 

no evidence of ICGN at any time point examined (Fig. 6.11C & D). The 

glomeruli appeared healthy and although occasional mesangial hyperplasia was 

evident, there was no thickening of the glomerular basement membrane or 

detectable immune complex deposits. However, there was evidence of a mild to 

moderate infiltration by chronic inflammatory cells which was perivascular in 

distribution, but was not associated with tissue injury (Fig.6.11C). The 

significance of this is unclear, but has been previously described in long-term 

survivors of unmodified acute GvHD [33].

2) Long-term effects of Anti-IL-12 on Chronic GvHD

In the final part of this chapter, I went on to assess the role of endogenous 

IL-12 in chronic GvHD by examining whether neutralising IL-12 during the 

initiation of the chronic GvHD affected the mortality and enhanced serum 

immunoglobulin production. The unmodified DBA/2 => BDFi GvHD data are the 

same as those shown in the first part of this chapter.

Results

i) Survival

As described in Chapter 3, DBA/2 => BDFi mice developed severe 

oedema which became evident in the majority of mice from day 40 onwards. Mice 

started to die on day 50 and by day 72, 67% mortality was observed (Fig. 6.12). 

Anti-IL-12 treated DBA/2 => BDFi mice also began to develop oedema die by day
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ii) Serum Immunoglobulin levels

50 (Fig. 6.12) and the overall mortality in this group was eventually even higher 

than in the unmodified DBA/2 => BDFi group, with 100% mortality observed by 

day 80 (Fig. 6.12).

■ 'S '

a) IgG

As before, unmodified DBA/2 => BDFi mice with chronic GvHD showed 

strikingly higher than normal levels of total serum IgG on days 20 and 30 of the 

disease, and again, these declined by day 70 (Fig. 6.13). Anti-IL-12 treated 

DBA/2 => BDFi mice exhibited similarly high serum IgG levels to unmodified 

DBA/2 => BDFi animals on day 20 (Fig.6.13). However, these IgG levels 

appeared to decline more rapidly than in unmodified mice, consistent with more 

pronounced proteinuria and they were significantly lower than in unmodified mice 

by day 30. In addition, by day 70, IgG levels in anti-IL-12 treated DBA/2 

BDFi mice were similar to, or lower than, those of controls (Fig. 6.13).

Treatment of control mice with anti-IL-12 resulted in mildly increased 

levels of IgG on days 20 to 70, but by day 130, IgG levels in these mice were 

identical to those in untreated control mice (Fig. 6.13).

b)IgE

DBA/2 BDFi mice with chronic GvHD again displayed significantly 

higher serum IgE levels compared with control mice on days 20 to 70 of the 

disease (Fig. 6.14). Anti-IL-12 treatment of DBA/2 => BDFi mice resulted in a 

further significant increase in IgE levels on days 20 and 30, but on day 70, the 

levels of IgE in the serum of antibody treated DBA/2 => BDFi mice were similar 

to those in unmodified DBA/2 => BDFi mice (Fig. 6.14).

Anti-IL-12 did not affect the levels of IgE in the serum of control mice 

(Fig. 6.14).
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c) Anti-ds DNA Antibodies

The high levels of anti-ds DNA antibodies present in the serum of DBA/2 

=> BDFi mice on days 20 to 70 of the chronic GvHD were unaffected by anti-ILr 

12 treatment (Fig. 6.15). Both unmodified and anti-IL-12 treated control mice did 

not display detectable levels of anti-ds DNA antibodies on days 20 or 30, but by 

day 70, one mouse from each of these groups showed a high titer of these 

antibodies (Fig. 6.15).

iii) Antibody-Mediated Pathology

Kidneys were harvested from both unmanipulated and anti-IL-12 treated 

DBA/2 => BDFi mice on day 70 and examined for ICGN by electron microscopy. 

The kidneys of both groups of mice showed characteristic glomerular damage at 

both time points, which, as before was evidenced by thickening of the glomerular 

basement membrane and immune complex deposition (Figs. 6.16 A & B). The

severity of the kidney damage was not obviously different between the untreated 

and anti-IL-12 treated groups.

Summary and Conclusions

In this chapter I have shown that neutralising endogenous IL-12 for a brief 

period during the initiation of acute GvHD in B6 => BDFi mice not only confers 

long-term protection from the disease but also permits full repopulation with donor 

B6 lymphocytes. The cytokine response of surviving mice was permanently 

polarised towards a Th2 phenotype similar to that observed in DBA/2 => BDFi 

mice and long-term survivors showed B cell hyperplasia, as evidenced by 

heightened responses to the B cell mitogen LPS in vitro. However, compared with 

DBA/2 => BDFi mice, anti-IL-12 treated B6 BDFi animals displayed only 

mildly increased serum IgG and IgE levels and moderate levels of anti-ds DNA 

antibodies. Furthermore, detailed examination of the kidneys from anti-IL-12 

treated B6 => BDFi mice by both light and electron microscopy did not reveal any
■S



repeated.

109

evidence of the ICGN apparent in mice with chronic GvHD. In parallel, anti-IL-12 

treated mice did not develop oedema or die. These results therefore confirm the 

critical role of early IL-12 production in acute GvHD.

Consistent with its ability to polarise acute GvHD towards a Th2 

phenotype, neutralising IL-12 appeared to slightly exacerbate chronic GvHD in 

DBA/2 ^  BDFi mice. Although antibody treated DBA/2 => BDFi mice 

developed oedema and started to die at exactly the same time as unmodified DBA/2 

=> BDFi mice, the overall mortality rate was slightly higher in the antibody treated 

group than in the unmodified group. In parallel, IgE levels were significantly 

higher in anti-IL-12 treated DBA/2 => BDFi mice and serum IgG levels declined

I

more rapidly in antibody treated animals, perhaps suggesting a more rapid onset of 

hypoproteinaemia. However these differences were relatively subtle and only 

small numbers of mice were analysed. In addition, anti-ds DNA antibody levels 

were similar in both groups of mice. Thus, although IL-12 may play a subtle 

regulatory role in the development of the chronic GvHD, these results need
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Fig. 6.1. Effect of neutralising IL-12 on long-term survival during  

acute GvHD,

The results show the effect of neutralising endogenous IL-12 during the first 8 

days of acute GvHD on long-term survival in BDFi mice given 10  ̂B6 spleen 

cells i.v. The data show the percentage of surviving mice in each group 

throughout the acute disease.
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CONTROLS

H-2^ Expression on CD4+ T cells H-2^ Expression on CD4+ T cells

0 . 4%
4 . 6%

H-2^ Expression on CD8+ T cells H-2^ Expression on CD8+ T cells

0 . 6%

Ml

Fig. 6.2. Effect of neutralising IL-12 on donor cell chimerism in 

acute GvHD.

Donor cell chimerism was assessed throughout the GvHD by flow cytometry. The 

level of H-2fX and H-2D*) expression on gated control CD4+ and CD8+ splenic 

lymphocytes was determined and the percentage of H-2D^ and H-2D^ negative 

cells defined by Ml. These control histograms (shown in red) were then used to 

calculate the percentage of H-2D  ̂negative (donor derived) cells in GvHD mice, as 

illustrated on page 112. All histograms shown were obtained on day 9 of the 

GvHD, while the percentage of donor-derived cells at later time points are given in 

Table 6.1.
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Fig. 6.2. Effect of neutralising IL-12 on donor cell chim erism  in 

acute GvHD. The percentage of donor-derived cells is defined by region Ml.
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Fig. 6.3. Effect of neutralising IL-12 on T cell function in long

term survivors of acute GvHD.

The data show the proliferative responses of spleen cells after stimulation with 

10p,g/ml Con A on day 70 of acute or chronic GvHD and are expressed as the 

mean uptake of 3H-TdR ± 1 SD after 48 hours in quadruplicate cultures, using 

spleen cells pooled from 3-4 mice per group.
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Fig. 6.4. Effect of neutralising IL-12 on B cell function in lon g 

term survivors of acute GvHD.

The data show the proliferative responses of spleen cells after stimulation with 

lOfAg/ml LPS on day 70 of acute or chronic GvHD and are expressed as the mean 

uptake of 3H-TdR ± 1 SD after 24 hours in quadruplicate cultures, using spleen 

cells pooled from 3-4 mice per group. (* p < 0.001 vs controls).
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Fig. 6.5. Effect of neutralising IL-12 on IFN-y production in long

term survivors of acute GvHD.

The results show IFN-y production by spleen cells from mice on day 70 of acute 

or chronic GvHD after stimulation with lOpg/ml Con A for 48 hours and are the 

means ± SD of triplicate samples. (* p < 0.001 vs controls).
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Fig. 6.6. Effect of neutralising IL-12 on IL-2 production in long

term survivors of acute GvHD.

The results show IL-2 production by spleen cells from mice on day 70 of acute or 

chronic GvHD after stimulation with lOpg/ml Con A for 24 hours and are the 

means ± SD of triplicate samples.
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Fig. 6.7. Effect of neutralising IL-12 on IL-10 production in long

term survivors of acute GvHD,

The results show IL-10 production by spleen cells from mice on day 70 of acute 

or chronic GvHD after stimulation with lOpg/ml Con A for 48 hours and are the 

means ± SD of triplicate samples. (* p < 0.01 ** p < 0.001 vs controls).
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Fig. 6.8. Effect of neutralising IL-12 on IL-5 production in long

term survivors of acute GvHD.

The results show IL-5 production by spleen cells from mice on day 70 of acute or 

chronic GvHD after stimulation with lOpg/ml Con A for 96 hours and are the 

means ± SD of triplicate samples, (t p < 0.001 vs chronic GvHD).
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Fig, 6.9. Effect of neutralising IL-12 on total serum IgG levels in 

long-term survivors of acute GvHD.

The results shown are the levels of total serum IgG in 4-6 mice with acute or 

chronic GvHD and are expressed as the mean ± SD. 

p<  0.05 ** p < 0.001 vs controls). ND = Not done.
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Fig. 6.10. Effect of neutralising IL-12 on total serum IgE levels in 

long-term survivors of acute GvHD.

The results shown are the levels of total serum IgE in 4-6 mice with acute or 

chronic GvHD and are expressed as the mean O.D. at 405 nm ± SD.

(* p < 0.01 ** p < 0.001 vs controls). ND = Not done.
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Fig. 6.11. Renal Immunopathology in GvHD.

Light (A, C, E) and electron (B, D, F) microscopic appearances of kidneys on day 

70 of GvHD. (A, C, E : H &E X 400 ; B, F : X 11500 ; D : x 4000).

A, B. Mice with chronic GvHD have severe ICGN, characterised by thickening 

of the glomerular basement membrane and tubular casts (A) and subepithelial 

immune complex deposition (arrowed in B). C, D. Anti-IL-12 treated B6 => 

BDFi mice had normal kidney architecture apart from perivascular infiltration of 

mononuclear cells (C) and mild mesangial cell prominence (D). E, F. Controls.
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Fig. 6.12. Effect of neutralising IL-12 on long-term mortality in 

chronic GvHD.

Cumulative mortality in mice with chronic GvHD and treated with anti-IL-12 for 

the first 8 days of disease.
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Fig. 6.13. Effect of neutralising IL-12 on total serum IgG levels in 

chronic GvHD.

The results shown are the levels of total serum IgG in 4-6 mice with chronic 

GvHD and are expressed as the mean ± SD.

(* p < 0.05 p < 0.001 vs controls t  p < 0.01 vs unmodified chronic GvHD).
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Fig. 6.14. Effect of neutralising IL-12 on total serum IgE levels in 

chronic GvHD.

The results shown are the levels of total serum IgE in 4-6 mice with chronic 

GvHD and are expressed as the mean O.D. at 405 nm ± SD.

(* p < 0.001 vs controls; t  P < 0.05 vs unmodified chronic GvHD).
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Level of Anti-DNA Antibody 
(O.D. 630 nm)

0.3

0 .2 -

□ Chronic GvHD
■ Chronic GvHD + Anti-IL-12
□ C ontro l
H Control + Anti-IL-12

30
DAY OF GvHD

Fig. 6.15. Effect of neutralising IL-12 on anti-ds DNA antibody 

levels in chronic GvHD,

The results shown are the levels of anti-ds DNA antibodies in the serum of 6 mice 

with chronic GvHD and are expressed as the mean OD value ± ISD at 630nm at a 

1:50 dilution.
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Fig. 6.16. Renal Immunopathology in GvHD.

Electron microscopic appearances of kidneys on day 50 of GvHD. 

Kidneys from unmodified (A) and anti-IL-12 treated (B) mice with chronic GvHD 

show a similar degree of kidney damage, characterised by thickening of the 

glomerular basement membrane and subepithelial immune complex deposition (x 

11500).
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Table 6.1.

Effect of Neutralising IL-12 on Donor Cell Chimerism

in Acute GvHD.

Table 6.1. Effect of Anti-IL-12 Treatment on Donor Cell Chimerism 

in Acute GvHD.

The levels of donor-derived CD4+ and CD8^ splenic lymphocytes were 

determined in GvHD mice throughout the disease, as described in Fig. 6.2. Cells 

expressing H-2D% but not H-2D^ were designated as being of donor origin.

ND = not done.

% Donor-Derived Lymphocytes

Day of GvHD Unmodified 
B6 => BDFi

Anti-IL-12
Treated

B6 => BDFi

CD4 CD8 CD4 CD8

9 19.9 4.7 21.4 8.0

17 69.9 73.2 54.3 69.9

70 95.8 63.2 30.0 71.4

130 ND ND 100 100
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Table 6.2.

Effect of Neutralising IL-12 on Anti-ds DNA Antibody Levels in

GvHD

Experimental

Group

Day 20 Day 30 Day 70 Day 130

Unmodified 0/6 0/4 ND ND

B6 => BDFi

Anti-IL-12 treated 0/6 0/6 6/6 4/4

B6 => BDFi (0.1 ± 0.02) (0.145 ± 0.05)

DBA/2 => BDFi 6/6 6/6 5/5 ND

(0.16 ± 0.04) (0.19 ±0.07) (0.09 ± 0.002)

Control 0/6 0/6 1/6 1/4

(0.081) (0.085)

Control + Anti-IL-12 0/6 0/6 1/6 2/4

(0.12) (0.09)

The data show the number of mice/group with detectable anti-ds DNA antibody 

levels, while the results in parenthesis are the mean OD readings for the positive 

sera at a dilution of 1:50 ± ISD for each group. ND = Not done.
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CHAPTER 7

ROLE OF ENDOGENOUS IL-12 IN GvHD

Modulation of Acute and Chronic GvHD by 

Administration of Exogenous IL-12

■p.
Taken together, the results detailed Chapters 4-6 indicate a role for 

endogenous IL-12 in acute, but not chronic GvHD in BDFi mice. To explore 

further the influence of IL-12 in acute vs chronic GvHD, I next examined whether

,

giving exogenous rm IL-12 to DBA/2 => BDFi mice could convert the chronic 

form of GvHD into an acute disease. In parallel, I also examined the effects of 

exogenous IL-12 on acute GvHD and tested the hypothesis that the different 

outcomes of the two diseases were due to differences in the production of 

endogenous IL-12 during GvHD.

Experimental Protocol
.

Exogenous IL-12 was administered by i.p. injection of lOOng rm IL-12 

from day -1 to 3 and 6 to 10 of GvHD. Control mice received PBS containing 1% 

syngeneic mouse serum. The effects on GvHD were assessed as before, with EL- 

4 cells used as targets for measuring anti-host CTL activity in the spleens of 

DBA/2 BDFi mice.

IL-12 production was measured by culturing spleen cells from GvHD mice 

in medium alone, or in the presence of lOpg/ml LPS. The supernatants were then
4‘

harvested at 24,48,72 and 96 hours and levels of IL-12 assessed by ELISA. The 

results shown are for peak IL-12 production, which occuned at 48 hours.



Results
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i) Weight loss and mortality

As described in Chapter 3, BDFj mice with chronic GvHD showed no 

evidence of weight loss or mortality for the duration of this study (Fig. 7.1).

However, DBA/2 => BDFi mice injected with lOOng of rm IL-12 for 10 

consecutive days developed an acute GvHD-like syndrome, with weight loss 

evident by day 12, 50% mortality by day 14 (Fig. 7.1) and 100% mortality by day 

15 (data not shown). Due to this high mortality rate, the study was terminated at 

this point. Rm IL-12 also exacerbated the systemic consequences of acute GvHD, 

with weight loss and mortality appearing in the IL-12 treated group, but not in the 

unmodified B6 => BDFi mice by the time the experiment was terminated (Fig.

7.1). Rm IL-12 did not provoke weight loss or mortality in control animals (Fig.

7.1).

s
ii) Splenomegaly

On day 1, mice with chronic GvHD had not yet developed significant
I.

splenomegaly (Fig. 7.2a). By day 10, the spleens of mice from this group were 

significantly enlarged compared with controls, but the splenomegaly was less than 

that found in mice with the acute form of the disease (Fig. 7.2b). IL-12 treatment 

significantly increased the degree of spleen enlargement in mice with chronic 

GvHD at both days 1 and 10, reaching levels similar to those observed in mice
••

with acute GvHD (Figs. 7.2a & b). IL-12 also significantly enhanced the 

splenomegaly seen in mice with acute GvHD on both days 1 and 10 (Figs. 7.2a & 

b) and had provoked significant splenomegaly in control animals by day 10, 

perhaps reflecting the increased extrameduallary haematopoiesis observed in 

previous sudies of IL-12 treated mice [121].

I
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iii) Lymphocyte Function

a) Spontaneous 'ex-vivo' proliferation

Splenocytes from unmodified DBA/2 => BDFi mice showed significantly 

enhanced spontaneous proliferation compared with control cells on both days 1 

(Fig. 7.3a) and 10 (Fig. 7.3b) of GvHD, although this was less marked than that 

found in acute GvHD at either time point. Treatment with im IL-12 had no effect 

on the proliferation of chronic GvHD spleen cells on day 1 (Fig. 7.3a), but by day 

10, the rm IL-12 treated chronic GvHD spleen cells showed a marked increase in 

their spontaneous proliferative capacity which resembled that observed in mice 

with acute GvHD (Fig. 7.3b).

Treatment with rm IL-12 had no effect on the enhanced spontaneous 

proliferation of acute GvHD spleen cells on day 1 (Fig. 7.3a), but by day 10, the 

proliferative capacity of splenocytes from rm IL-12 treated acute GvHD mice was 

significantly reduced compared with untreated mice with acute GvHD (Fig. 7.3b). 

Rm IL-12 injected control animals exhibited significantly enhanced spontaneous 

proliferative responses on both day 1 (Fig. 7.3a) and day 10 (Fig. 7.3b).

b) Proliferative responses to Con A stimulation

To determine whether DBA/2 => BDFi mice given exogenous IL-12 

developed immunosuppression similar to that usually found in B6 => BDFi mice 

with acute GvHD, I assessed Con A responses on day 15, as this was when 

significant weight loss and mortality were evident in DBA/2 => BDFi mice given 

exogenous IL-12.

At this time, spleen cells from unmodified DBA/2 => BDFi mice showed 

Con A responses similar to those of control cells (Fig. 7.4). Conversely, the 

responses of cells from DBA/2 => BDFi mice given IL-12 were markedly 

suppressed at this time, with responses similar to those found in unmodified B6 

=> BDFi mice with acute GvHD (Fig. 7.4). Exogenous IL-12 actually slightly
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il
increased the low Con A responses of acute GvHD cells on day 15, although these

c) Proliferative repsonses to LPS stimulation

The low numbers of lymphocytes recovered from the spleeens of IL-12 

treated B6 => BDFi a^d DBA/2 => BDFi mice precluded comparison of their LPS 

responsiveness on day 15.

Spontaneous IFN-y

On days 1 and 10, spleen cells from mice with chronic GvHD produced 

similarily low levels of spontaneous IFN-y to control cells (Fig. 7.5a & b). 

Administration of rm IL-12 to DBA/2 =*> BDFi mice resulted in a large increase in

remained significantly suppressed compared with controls (Fig. 7.4 ).

The Con A responses of splenocytes from control mice were unaffected by 

rm IL-12 treatment (Fig. 7.4).

I'

I

:
J

iv) Cytokine production

I now went on to examine the effect of IL-12 on cytokine production. This 

was carried out only on days 1 and 10 of acute and chronic GvHD, as the low 

numbers of lymphocytes recovered from the spleeens of IL-12 treated B6 => 

BDFi and DBA/2 => BDFi mice precluded analysis at later times.

I

,

spontaneous IFN-y production by splenocytes at both time points and these

reached levels equal to, or above those produced by acute GvHD cells (Figs. 7.5a 

& b). IL-12 had little effect on the already high levels of IFN-y produced 

spontaneously by cells from mice with the acute form of GvHD at both time points 

(Figs. 7.5a & b). Although exogenous IL-12 had no effect on IFN-y production 

by control cells on day 1 (Fig. 7.5a), it induced the spontaneous production of 

IFN-y from control spleen cells by day 10 (Fig. 7.5b).
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Con A Induced IFN-y

On day 1, spleen cells from unmodified DBA/2 => BDFi mice produced 

similar levels of IFN-y in response to Con A to control cells (Fig. 7.6a), whereas 

by day 10, IFN-y production by DBA/2 => BDFi cells was significantly lower 

than that of control cells (Fig. 7.6b). IL-12 did not affect Con A induced IFN-y 

production by DBA/2 => BDFi cells on day 1 (Fig. 7.6a), but significantly 

increased that observed on day 10 to levels even greater than the high amounts 

produced by cells from B6 => BDFi mice (Fig. 7.6b). In contrast, IL-12 did not 

significantly increase the already high levels of IFN-y produced by Con A 

stimulated B6 => BDFi spleen cells on either days 1 or 10 (Figs. 7.6a & b). Cells 

from control mice given IL-12 produced similar levels of IFN-y in response to 

Con A to cells from unmodified controls on day 1 (Fig. 7.6a), but by day 10, 

these mice had significantly enhanced levels of IFN-y production compared with 

unmodified controls (Fig. 7.6b),

IL-2

On both days 1 and 10, spleen cells from unmodified mice with chronic 

GvHD produced significantly higher levels of IL-2 in response to Con A than cells 

from control mice (Figs. 7.7a & b). This was in contrast to cells from mice with 

the acute form of the disease, which produced higher levels of IL-2 in response to 

Con A than control cells on day 1, but by day 10 had undetectable IL-2 production 

(Figs. 7.7a), consistent with the suppressed Con A responses of these mice. 

Administration of exogenous IL-12 significantly reduced the capacity of cells from 

mice with chronic GvHD to produce IL-2 in response to Con A on day 1 (Fig. 

7.7a) and by day 10, IL-2 production by IL-12 treated DBA/2 => BDFi mice was 

abolished (Figs. 7.7b). IL-12 also reduced the early enhancement in IL-2 

production by cells from B6 => BDFi mice on day 1 (Fig. 7.7a) and by day 10, 

IL-12 treated B6 => BDF% mice did not produce any detectable IL-2 (Figs. 7.7b).
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at all time points during this study (data not shown).

134

I
Cells from IL-12 treated control mice also produced significantly lower 

levels of IL-2 on day 1 compared with cells from unmodified control mice (Fig.

7.7a). However, on day 10, both unmodified and IL-12 treated control mice 

produced similar levels of IL-2 (Figs. 7.7b).

■i:"

IL-10

IL-10 was not produced spontaneously by cells from any group at any 

time during this study (data not shown). Similarly, on day 1, IL-10 production by 

Con A stimulated cells from all groups was below the level of detection (data not 

shown).

On day 10, cells from mice with chronic GvHD produced significantly 

higher levels of IL-10 in response to Con A than cells from control mice, although 

these levels were lower than those found using chronic GvHD splenocytes in 

earlier experiments (Fig. 7.8). Treatment with exogenous IL-12 resulted in a
■

significant reduction in IL-10 production by DBA/2 =» BDFi splenocytes to 

below control levels (Fig. 7.8). However it had no effect on the levels of IL-10 

produced by cells of any other group.

I
IL-5

IL-5 production by cells from all groups was below the level of detection 

at all time points during this study (data not shown).
I

IL-4

IL-4 production by cells from all groups was below the level of detection

'Ï
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v) Non-specific and specific cell-mediated cytotoxicity

Finally, I examined whether administration of exogenous IL-12 to DBA/2 

=> BDFi mice could elicit the high levels of NK cell-mediated and specific CTL- 

mediated cytotoxicity usually associated with acute GvHD.

•I
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I
a) NK cell activity %

As before, the early phase of acute GvHD in B6 => BDFi mice was 

associated with increased NK cell activity on day 1 (Fig. 7.9a). This increase was 

not evident in mice with chronic GvHD at this time (Fig. 7.9b). Administration of 

IL-12 did not induce enhanced NK cell activity in DBA/2 => BDFi mice, (Fig.

7.9b), although it did slightly increase the levels of NK cell activity observed in 

B6 => BDFi and control mice (Fig. 7.9a).

b) CTL activity

As before, untreated mice with acute GvHD exhibited high levels of anti

host CTL activity on day 10 (Fig. 7.10a), but little or no anti-host CTL activity 

was found in mice with chronic GvHD at this time (Fig. 7,10b). Administration of 

rm IL-12 induced high levels of CTL activity in mice with the chronic form of the 

disease (Fig. 7.10b), but suppressed those observed in acute GvHD (Fig. 7.10a). 

This may have been because the peak of CTL activity had already passed in the 

highly aggressive GvHD which occurred in IL-12 treated B6 => BDFi mice (Fig. 

7.10a). No lysis of P815 or EL4 cells was induced in control mice by IL-12 

(Figs. 7.10a &b).

v̂  IL-12 production during acute and chronic GvHD

In view of evidence that manipulating the levels of endogenous and 

exogenous IL-12 modified the course of GvHD, I examined whether the different 

outcomes of acute and chronic GvHD were reflected by differences in IL-12 

production during the critical early period of disease.
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No IL-12 was detected in xmstimulated spleen cell cultures of any group at 

any time (data not shown), while control cells produced consistently low amounts 

in response to LPS throughout the study (Fig. 7.11). However, splenocytes from 

B6 => BDÉ î mice produced significantly more IL-12 in response to LPS than 

control splenocytes from day 1 of the GvHD, reaching a peak on day 7 of the 

disease (Fig. 7.11). Splenocytes from DBA/2 => BDFi mice also produced 

significantly higher levels of LPS stimulated IL-12 than controls at all time points 

examined, but these levels remained similar at all times after day 1 and did not rise 

to the same peak observed with B6 =*- BDFi splenocytes (Fig. 7.11).
jï
If 
-If
I

Summary and Conclusions

Thus, administration of exogenous IL-12 converts chronic GvHD into a
I'more acute type of disease, with a characteristic biphasic pattern of early 1

hyperplasia followed by late immunosuppression and destruction. In addition to 

increasing the early splenomegaly and spontaneous lymphocyte proliferation 

normally observed in DBA/2 ==> BDFi mice up to levels similar to those found in 

the early period of acute GvHD, exogenous IL-12 also provoked intense 

immunosuppression, anti-host CTL activity, weight loss and mortality, features

not normally associated with this form of disease. Furthermore, administering IL- -
■

12 to these mice converted the cytokine profile towards the T hl pattern usually 

seen acute GvHD, with strikingly high levels of IFN-y and reduced IL-10 

production. Finally, my results show that although cells from both B6 => BDFi 

and DBA/2 => BDFi mice produced similarly enhanced IL-12 up to day 2, B6 =>

BDFi splenocytes produced significantly higher IL-12 than DBA/2 =>BDFi cells 

thereafter.

These results confirm the findings of Chapters 4, 5 & 6 by showing that
■V.

IL-12 is critical for the development of acute, but not chronic GvHD. However, 

despite the apparent IL-12 independence of chronic GvHD, enhanced levels of IL-

i



12 were produced by spleen cells from DBA/2 => BDFi mice in response to LPS 

in vitro, albeit at lower levels than those produced by B6 =4* BDFi cells.

-'v:
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DAY OF GvHD

Fig. 7.1. Effects of exogenous IL-12 on weight loss and mortality 

in acute and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on weight loss 

and mortality in BDFi mice given 10® B6 or DBA/2 spleen cells i.v. and are the 

mean body weight ± 1 SEM for 6 mice per group. The weights of unmodified 

control mice were similar to IL-12 treated controls at all times and are not shown 

for clarity. (* p < 0.05 vs controls; t  Death).
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SPLEEN INDEX
3 a

Acute

Acute A cute + IL-12 Chronic Chronic + IL-12 Control + IL-12

A cute + IL-12 Chronic Chronic + IL-12 Control + IL-12

Fig. 7.2. Effects of exogenous IL-12 on splenomegaly during acute 

and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on splenomegaly 

in BDFi mice given 10® B6 or DBA/2 spleen cells i.v. and are the mean spleen 

indices ± 1 SD for 3 mice per group on days 1 (Fig. 7.2a) and 10 (Fig. 7.2b) of 

the GvHD. (^ p < 0.005 vs controls; t  P < 0.05 f t  p < 0.001 vs unmodified acute 

GvHD; § p < 0.001 vs unmodified chronic GvHD).
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Acute Acute+ILl 2 Chronic Chronic+ILI 2 Control Control+ILI 2

Fig. 7.3. Effects of exogenous IL-12 on spontaneous 'ex-vivo^ 

proliferation during acute and chronic GvHD.

T he results show the effect of administering exogenous rm IL-12 on the 

spontaneous proliferative capacity of splenocytes from BDFi mice given 10® B6 

or DBA/2 spleen cells i.v. The results are expressed as the mean uptake of 3H- 

TdR ± 1 SD after 4 hours in quadruplicate cultures using spleen cells pooled from 

3 mice per group on days 1 (Fig. 7.3a) and 10 (Fig. 7,3b) of the GvHD. (^ p < 

0.05 ** p < 0.001 vs controls; t  P < 0.001 vs unmodified acute GvHD; § P < 

0.001 vs unmodified chronic GvHD).
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3H TdR Incorporation
(cpnVwell)

200000
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100000

50000 -

Acute Acute+IL12 Chronic Chronlc+IL12 Control Control+IL12

Fig. 7.4, Effects of exogenous IL-12 on Con A i n d u c e d  

proliferation during acute and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on the 

proliferative capacity of splenocytes from BDFi mice given 10* B6 or DBA/2 

spleen cells i.v. in response to mitogenic stimulation with lOpg/ml Con A. The 

data are expressed as the mean uptake of 3H-TdR ± 1 SO after 48 hours in 

quadruplicate cultures, using spleen cells pooled from 3-4 mice per group on day 

15 of the GvHD. (* p < 0.001 vs controls; f  p < 0.005 vs unmodified acute 

GvHD; § p < 0.001 vs unmodified chronic GvHD).
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IFN-GAMMA
(ng/ml)
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I
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10
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Acute Acute+ILI 2 Chronic Chronlc+ILI 2 Control Control+ILI 2 I
Fig. 7.5. Effects of exogenous IL -1 2  on sp ontaneous IFN-y 

production during acute and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on spontaneous 

IFN-7 production by splenocytes from BDFi mice given 10* B6 or DBA/2 spleen 

cells i.v. Splenocytes from B6 => BDFi and DBA/2 => BDFi mice were cultured 

in medium for 48 hours and the supernatants assayed for the presence of IFN-y by 

ELISA. The results shown are the means ± SD of triplicate samples on days 1 

(Fig. 7.5a) and 10 (Fig. 7.5b) of the GvHD. (* p < 0.001 vs controls; § p < 

0.001 vs unmodified chronic GvHD).
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0 .3 -

Acute Acute+ILI 2 Chronic Chronlc+ILI 2 Control Control+IL12

Fig. 7.6. Effects of exogenous IL-12 on Con A induced IFN-y 

production during acute and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on IFN-y 

production by Con A stimulated splenocytes from BDFi mice given B6 or 

DBA/2 spleen cells i.v. Cells from B6 =» BDFi and DBA/2 => BDFi mice were 

cultured with lOpg/ml Con A for 48 hours and the supernatants assayed for the 

presence of IFN-y by ELISA. The results shown are the means ± SD of triplicate 

samples on days 1 (Fig. 7.6a) and 10 (Fig. 7.6b) of the GvHD. (* p < 0.005 vs 

controls; § p < 0.001 vs unmodified chronic GvHD). N.B. Con A induced IFN- 

y production is expressed as OD units at 405nm, since the levels for all groups 

were greater than the highest standard on the standard curve (40ng/ml).
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A cute Acute+ILI 2 Chronic Chronlc+ILI 2 Control Control+ILI 2

60  1 
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3 0  - 

20  -  

10 

0
A cute Acute+ILI 2 Chronic Chronlc+ILI 2 Control Control+ILI 2

Fig. 7.7 . Effects of exogenous IL-12 on IL-2 production during 

acute and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on Con A 

induced IL-2 production by cells from BDFi mice given 10* B6 or DBA/2 spleen 

cells i.v. Splenocytes from B6 => BDFi and DBA/2 => BDFi mice were cultured 

with lOpg/ml Con A for 24 hours and the supernatants were assayed for the 

presence of IL-2 by ELISA. The results shown are the means ± SD of triplicate 

samples on days 1 (Fig. 7.7a) and 10 (Fig. 7.7b) of the GvHD. (* p < 0.05 ** p 

< 0.001 vs controls; f p < 0.001 vs unmodified acute GvHD; § p < 0.001 vs 

unmodified chronic GvHD).
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1

Acute Acute+ILI 2 Chronic Chronic+ILI 2 Control Control+ILI 2

Fig. 7.8. Effects of exogenous IL-12 administration on I L - 1 0  

production during acute and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on Con A 

induced IL-10 production by splenocytes from BDFi mice given 10* B6 or 

DBA/2 spleen cells i.v. Splenocytes from B6 => BDFi and DBA/2 => BDFi mice 

were cultured with lOpg/ml Con A for 48 hours and the supernatants assayed for 

the presence of IL-10 by ELISA. The results shown are the means ± SD of 

triplicate samples on day 10 of the GvHD. (* p < 0.001 vs controls; t  p < 0.01 vs 

unmodified acute GvHD; § p < 0.001 vs unmodified chronic GvHD).
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Fig. 7.9. Effect of exogenous IL-12 on NK cell activity during 

acute and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on splenic NK 

cell activity during acute GvHD in BDFi mice given 10^66 spleen cells i.v. (Fig. 

7.9a) and chronic GvHD in BDFi mice given 10® DBA/2 spleen cells i.v. (Fig. 

7.9b). The results shown are the % cytotoxicity against YAC-1 target cells from 

quadruplicate assays measured at effector : target (E:T) ratios from 100:1 to 

12.5:1, using spleen cells pooled from 3 mice per group on day 1 of the GvHD.
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Fig. 7.10. Effect of exogenous IL-12 on specific CTL activity  

during acute and chronic GvHD.

The results show the effect of administering exogenous rm IL-12 on splenic CTL 

activity during acute and chronic GvHD in BDFi mice given 10® B6 or DBA/2 

spleen cells i.v. The results shown are the % cytotoxicity against EL-4 (H-2^) and 

P815 (H-2^) target cells from quadruplicate assays measured at effector ; target 

(E:T) ratios from 100:1 to 12.5:1, using spleen cells pooled from 3 mice per group 

on day 10 of the GvHD.
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Fig. 7.11. IL-12 production during acute and chronic GvHD.

Splenocytes from BDFi mice given 10® B6 or DBA/2 spleen cells i.v. were 

cultured in the presence of lOpg/ml LPS for 48 hours, before the supernatants 

were removed and assayed for the presence of IL-12 by ELISA. Results shown 

are means ± I SD of triplicate samples. Day 0 represents IL-12 production by 

GvHD splenocytes harvested 4 hours after disease induction. (* p < 0 .0 5 * * p <

0.01 *** p < 0.001 acute GvHD vs controls; t  P < 0.05 f f  p < 0.001 chronic 

GvHD vs controls; § p < 0.001 acute GvHD vs chronic GvHD).
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CHAPTER 8

I
"ÿ
ÿ-

THE ROLE OF IFN-y IN IL-12 DEPENDENT ACUTE GvHD.

Introduction
J

In Chapters 4-7,1 demonstrated that IL-12 is critical for the development 

of acute GvHD. IL-12 has a variety of potent effects on cells of the 

lymphohaemopoietic system, but its principal immunomodulatory role is to induce 

IFN-y production by CD4+ and CD8+ T cells and NK cells [118, 120, 121, 123,

147, 150, 151]. A number of aspects of my studies suggest that this may be the 

role of IL-12 in acute GvHD. IFN-y production is enhanced very early during the 

acute GvHD and its kinetics follow a similar pattern to those of IL-12.

Furthermore, the beneficial effects of IL-12 depletion in acute GvHD were 

associated with down-regulated production of IFN-y, while the acute GvHD-like 

syndrome which appeared in DBA/2 => BDFi mice given exogenous IL-12 was 

characterised by high levels of IFN-y. That modulation of IFN-y production could 

account for the beneficial effects of anti-IL-12 is suggested by previous studies 

which demonstrated that neutralisation of IFN-y in vivo prevented 

immunopathology in the small intestine of B6 =» BDFi mice [55] and by the 

involvement of IFN-y in GvHD-associated immunosuppression [71-73].

In this chapter, I therefore examined directly the role of IFN-y in acute 

GvHD, both in unmanipulated B6 => BDFi mice and in DBA/2 =4> BDFi mice 

given IL-12, using the parameters which I had characterised in previous chapters.

Experimental Protocol

The GvHR was induced by i.v. injection of 10® viable B6 or DBA/2 

parental spleen cells into BDFi recipients, as before. Endogenous IFN-y was 

neutralised in B6 => BDFi mice in vivo by i.p. injection of 0.5mg H22 mAb
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(hamster IgG anti-mouse IFN-y), given 1 day before induction of GvHR and

subsequently on days 3 and 7.
To induce acute GvHD in DBA/2 => BDFi mice, animals received lOOng

ir
of exogenous IL-12 on days -1 to 3 and 6 to 10, as described in Chapter 4. The 

effects of anti-IFN-y on this disease were examined by coadministration of 0.5mg 

H22 anti-IFN-y mAb on days -2, 1, 5 and 8. In all cases, controls received 0.5 

mg of hamster IgG isotype control antibody.

The effect of the antibody on systemic GvHD was monitored by assessing 

body weight, splenomegaly and mortality as before, while lymphocyte 

proliferation, cytokine production, NK and CTL activity were determined as

=> BDFi Mice.

ii) Splenomegaly

Unmodified B6 => BDFi mice showed the characteristic pattern of 

splenomegaly described in Chapter 3. It was evident on day 2, peaked on day 10 

and returned to control levels by day 22 (Fig. 8.2). Anti-IFN-y antibody had no

150

3

descibed in Chapters 3-7.

Results

1) Effects of Neutralising IFN-y on Acute GvHD in Unmodified B6

i) Weight Loss and mortality

Unmodified B6 =>BDFi mice displayed significant weight loss from day 

18 of the GvHD, which continued until the study was terminated on day 22 

(Fig.8.1). One of these mice died on day 18 and a further two deaths occurred on 

day 20. (The remaining 3 mice, which had all lost weight, were sacrificed on day 

22 for use in functional studies). In contrast, B6 BDFi mice which received 

anti-IFN-y antibody showed no significant weight loss or mortality (Fig. 8.1).
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effect on the splenomegaly observed on day 2, but significantly reduced the 

splenomegaly observed on day 10 (Fig. 8.2). Interestingly, splenomegaly was 

maintained in anti-IFN-y treated B6 => BDFi mice on day 22 and did not show the 

atrophy usually seen in untreated mice with acute GvHD.

Hi) Immune Function

a) Spontaneous 'ex~vivo' proliferation

Spleen cells from unmodified B6 => BDFi mice showed enhanced levels 

of spontaneous 'ex-vivo' proliferation compared with control cells on days 2 and 

10 of GvHD (Fig. 8.3). This paralleled the splenomegaly, as did the return to 

control levels by day 22.

On day 2, cells from anti-IFN-y treated B6 => BDFi mice showed 

significantly increased levels of spontaneous proliferation compared with cells 

from unmodified B6 => BDFi mice (Fig. 8.3). Although similar levels of 

proliferation were observed in both groups on day 10, the proliferative capacity of 

cells from anti-IFN-y treated mice continued to be greatly increased on day 22, 

when these cells exhibited levels of proliferation several-fold higher than those of 

any other group (Fig. 8.3).

Anti-IFN-y treatment increased the spontaneous'ex-v/vo'proliferative 

capacity of control spleen cells on days 2 and 10, but by day 22, the spontaneous 

proliferative capacity of cells from anti-IFN-y treated and immodified control mice 

were similar (Fig. 8.3).

b) Mitogen induced proliferative responses

To examine the effects of anti-IFN-y treatment on immunosuppression in 

acute GvHD, I examined the responses of spleen cells to Con A and LPS on day 

22 of disease.

As expected, splenocytes from unmodified B6 => BDFi mice showed 

significantly reduced proliferative responses to Con A (Fig. 8.4) and LPS (Fig.
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8.5) compared with controls. Cells from anti-IFN-y treated B6 => BDFi mice 

showed a significantly increased ability to respond to both Con A (Fig. 8.4) and 

LPS (Fig. 8.5) compared with cells from unmodified B6 => BDFi animals, 

although in both cases, these responses were still significantly suppressed 

compared with controls. Anti-IFN-y had no effect on the Con A or LPS responses 

of control mice (Figs. 8.4 & 8.5).

iv) Cytokine Production

IFN-y

Splenocytes from unmodified B6 => BDFi mice produced IFN-y 

spontaneously on both days 2 (Fig. 8.6a) and 10 (Fig. 8.6b) of acute GvHD. 

Neutralisation of IFN-y caused a significant increase in the levels of spontaneous 

IFN-y production in B6 => BDFi mice on day 2, but had no effect on this 

parameter on day 10. No IFN-y could be detected in unstimulated control cell 

cultures on either day 2 or day 10 and anti-IFN-y treatment did not affect this.

IFN-y production in response to Con A followed a slightly different 

pattern. On day 2, the levels produced by cells from unmodified B6 => BDFi mice 

were similar to those produced by control cells (Fig. 8.6a), but by day 10, IFN-y 

production was significantly enhanced above control levels (Fig. 8.6b). Treatment 

with anti-IFN-y in vivo significantly increased the levels of IFN-y produced by 

cells from B6 => BDFi mice in response to Con A in vitro on day 2 (Fig. 8.6a), 

but did not affect those observed on day 10 (Fig. 8.6b). Neutralisation of IFN-y 

significantly increased Con A induced IFN-y production by control cells on both 

days 2 and 10 (Fig. 8.6a and b).

152



t
!
.

IL-2

Splenocytes from both unmodified and anti-IFN-y treated B6 ^  BDFi 

mice produced IL-2 spontaneously on day 2 of GvHD (Fig. 8.7a). This was in 

contrast to my previous experiments and was not found at later times in GvHD.

IL-2 production in response to Con A was normal in unmanipulated acute 

GvHD spleen cells on day 2 (Fig. 8.7a), but was then considerably reduced 

compared with control cells (Figs. 8.7b & c). A similar pattern was seen with anti- 

IFN-y treated cells, with normal IL-2 production on day 2 (Fig. 8.7a) and
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suppression on days 10 (Fig. 8.7b) and 22 (Fig. 8.7c). However, on day 22, the 

antibody treated group produced significantly higher amounts of IL-2 than cells 

from unmodified B6 => BDFi mice (Fig. 8.7c).

Anti-IFN-y treatment significantly increased the levels of IL-2 produced by 

Con A stimulated control cells on days 2 and 10 (Figs. 8.7a and b), but on day 

22, cells from both unmodified and antibody treated control mice produced similar 

levels of IL-2 (Fig. 8.7c).

IL-5

High levels of IL-5 were produced spontaneously by cells from anti-IFN-y 

treated B6 => BDFi mice on day 2 (Fig. 8.8a), but this was transient and was not 

observed at any other time or with cells from any other group.

On day 2, cells from unmodified B6 BDFi mice produced similar levels

of IL-5 in response to Con A as control cells (Fig. 8.8a), while on day 10, IL-5
.

production by cells from both unmodified B6 => BDFi and control mice was

below the level of detection (Fig. 8.8b). Anti-IFN-y treatment significantly 

increased the levels of IL-5 produced by cells from both B6 => BDFi and control 

mice on days 2 (Fig. 8.8a) and 10 (Fig. 8.8b).



IL-4 and IL-10

IL-4 and IL-10 production by all groups was below the level of detection 

at all times in this experiment.

v) Non-specific and specific cell-mediated cytotoxicity
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a) NK cell activity

I first attempted to assess whether the enhanced NK cell activity I had

observed early in acute GvHD in previous experiments was IFN-y-dependent.
.....

However in this experiment, all groups showed little or no NK cell activity in two

separate assays (data not shown). This appeared to be the result of technical 

problems and time did not permit me to repeat the experiment.

b) CTL activity

As before, spleen cells from unmodified B6 => BDFi mice showed high

levels levels of specific anti-host cytotoxicity on day 10 of GvHD and this was 

only very slightly reduced by anti-IFN-y treatment (Fig. 8.9).

These experiments indicate that IFN-y is responsible for many of the
'

characteristic features of acute GvHD in unmanipulated B6 => BDFi mice, 

including weight loss, mortality, and T cell immunosuppression. The effects of 

neutralising IFN-y were therefore very similar to those of neutralising IL-12.1 

therefore next investigated the role of IFN-y in the IL-12 induced acute GvHD in 

DBA/2 => BDFi mice.

'Î
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2) Effects of Neutralising IFN-y in IL-12 Induced Acute GvHD in 

DBA/2 => BDFi mice.
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i) Weight loss and mortality

As expected, unmodified BDFi mice given DBA/2 spleen cells did not lose 

weight or die during the early period of the GvHD, whereas the mice given 

exogenous IL-12 showed significant weight loss from day 10 of the disease (Fig.

8.10). These mice also started to die from this time onward, with one mouse 

dying on day 10, a further three on day 11 and the last mouse on day 14 (Fig.

8.10). In contrast, DBA/2 => BDFi mice given exogenous IL-12 together with 

anti-IFN-y did not lose weight and none of these mice had died up to the time the 

experiment had to be terminated on day 14 (Fig. 8.10).

Because of the rapid mortality observed in IL-12 treated mice, I was also 

unable to analyse splenomegaly and lymphocyte function after day 10.

ii) Splenomegaly

DBA/2 => BDFi mice showed significant splenomegaly on days 2 and 10 

of the chronic GvHD and, as before, IL-12 significantly increased this 

splenomegaly (Figs. 8.11a & b). On day 2, this increase in splenomegaly was 

reduced by neutralising IFN-y at the same time as administering exogenous IL-12
-

(Fig. 8.11a). However, on day 10, mice treated this way had a similar degree of

splenomegaly as IL-12 treated DBA/2 => BDFi animals (Fig. 8.1 la).

Control mice given IL-12 also developed splenomegaly at both time
■Ti

points, but this was not prevented by neutralising IFN-y in vivo (Figs. 8.11a &

b).
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iii) Immune function

a) Spontaneous 'ex-vivo' proliferation

On day 10, spleen cells from unmodified DBA/2 => BDFi mice showed
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significantly enhanced spontaneous proliferation compared with controls and as 1 

found previously, IL-12 significantly increased spontaneous proliferation (Fig.

8.12). Administration of anti-IFN-y resulted in a further significant increase in the 

spontaneous proliferation by cells from IL-12 treated DBA/2 => BDFi mice (Fig.

8 . 12).

Exogenous IL-12 also increased the spontaneous proliferative capacity of 

control spleen cells, but this was not affected by anti-IFN-y antibody (Fig. 8.12).

-a

b) Proliferative responses to Con A stimulation

T cell function was assessed on day 10 by determining the ability of 

splenocytes to respond to Con A stimulation. I was unable to examine the LPS 

responsiveness due to low cell yields from IL-12 treated mice with GvHD.

Unmodified DBA/2 => BDFi mice showed similar levels of Con A 

induced proliferation to control cells, but cells from IL-12 treated DBA/2 => BDFi 

mice had dramatically suppressed Con A responses (Fig. 8.13). Neutralisation of 

IFN-y had little effect on these responses. IL-12 also significantly reduced the 

responses of control cells to Con A stimulation and this was not influenced by 

anti-IFN-y (Fig. 8.13).

iv) Cytokine production
4;

IFN-y

On day 2, IFN-y was not produced spontaneously by cells from any group 

(data not shown). On day 10, cells from unmodified DBA/2 => BDFi mice also 

had no spontaneous production of IFN-y, but this was provoked by administration



in contrast, anti-IFN-y had no effect on IL-12 induced IFN-y production by

of IL-12 (Fig. 8.14a). Neutralisation of IFN-y significantly reduced, but did not 

totally ablate this spontaneous IFN-y production (Fig. 8.14a). Cells from control 

mice did not spontaneously produce IFN-y on either day 2 or day 10 irrespective 

of whether treated with anti-IFN-y or not (Fig. 8, Ida).

On both days 2 and 10, cells from DBA/2 => BDFi mice produced slightly 

higher levels of IFN-y in response to Con A than control cells (Fig. 8 .14b & c). 

IL-12 treatment resulted in a dramatic increase in the levels of Con A induced IFN- 

y production by cells from DBA/2 => BDFi mice on day 2 (Fig. 8.14b), but did 

not affect those observed on day 10 (Fig. 8.14c), perhaps because cells from IL-

12 treated DBA/2 => BDFi mice were already producing maximal levels of IFN-y 

spontaneously and could not be stimulated further with Con A. Neutralising IFN-y 

in IL-12 treated DBA/2 => BDFi mice did not significantly affect their IFN-y 

production in response to Con A on either day 2 or 10 (Fig. 8.14b &c).

IL-12 treatment significantly increased the levels of Con A stimulated IFN- 

y production by control cells on both days 2 (Fig. 8.14b) and 10 (Fig. 8.14c). 

Neutralising IFN-y significantly reduced, but did not totally inhibit the ability of 

exogenous IL-12 to increase IFN-y production on day 2 (Fig. 8.14b). By day 10,

control cells (Fig. 8.14c).

IL-2

IL-2 was not produced spontaneously by cells from any group on either
:K

day 2 or day 10 (data not shown).
'

On day 2, cells from unmodified DBA/2 => BDFi mice produced 

significantly higher levels of IL-2 in response to Con A than controls (Fig. 8.15a), 

but by day 10, GvHD cells had significantly reduced levels of IL-2 compared with 

controls (Fig. 8.15b). As I did not find this in previous experiments and because 

these mice had increased spontaneous 'ex-vivo* proliferative responses (see
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above), it is likely that this apparent reduction in IL-2 production may reflect 

increased IL-2 consumption by the DBA/2 => BDFi cells.

Administration of IL-12 significantly reduced the levels of IL-2 produced 

by DBA/2 => BDFi mice in response to Con A on day 2 (Fig. 8.15a), and 

completely ablated IL-2 production on day 10 (Fig. 8.15b). Neutralising IFN-y 

prevented the IL-12-induced suppression of IL-2 production on day 2 (Fig. 

8.15a), but not on day 10 (Fig. 8.15b).

Cells from IL-12 treated control mice produced significantly higher levels 

of Con A induced IL-2 on day 2 than cells from unmodified controls (Fig. 8.15a). 

In contrast, on day 10, the levels of IL-2 produced by cells from IL-12 treated 

control mice were significantly lower than those produced by cells from 

unmodified control mice (Fig. 8.15b). Cells from control mice which had received 

IL-12 together with anti-IFN-y mAb produced strikingly high levels of IL-2 on 

day 2, which were significantly higher than those in any other group (Fig. 8.15a). 

However, this enhancing effect of anti-IFN-y was not present on day 10 (Fig. 

8.15b).

IL-10

IL-10 was not produced spontaneously by cells from any group (data not 

shown).

Cells from unmodified DBA/2 => BDFi mice produced significantly 

higher levels of Con A induced IL-10 compared with cells from control mice on 

both days 2 (Fig. 8.16a) and 10 (Fig. 8.16b). Administration of IL-12 to DBA/2 

=> BDFi mice significantly reduced IL-10 production on day 2 (Fig. 8.16a) and 

totally inhibited it on day 10 (Fig. 8.16b). Neutralisation of IFN-y prevented the 

ability of IL-12 to reduce IL-10 production by DBA/2 BDFi spleen cells on 

day 2 (Fig. 8.16a) and animals treated in this way actually had IL-10 levels 

significantly higher than unmodified DBA/2 => BDFi mice. However anti-IFN-y
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Thus, as I found previously, exogenous IL-12 converts the pattern of 

cytokines produced by spleen cells from DBA/2 => BDFj mice from a Th2

159

had no effect on the ability of IL-12 to inhibit IL-10 production on day 10 (Fig. 

8.16b).

IL-12 did not affect Con A induced IL-10 production by control cells on 

either day 2 (Fig. 8.16aa) or day 10 (Fig. 8.16b). As in GvHD mice, 

neutralisation of IFN-y significantly increased the levels of IL-10 produced by 

Con A stimulated, IL-12 treated control cells on day 2 (Fig. 8.16a), but had no 

significant effect on day 10 (Fig. 8.16b).
a
I

IL-S

In this study, high levels of IL-5 were produced spontaneously by cells 

from unmodified DBA/2 => BDFi mice on day 2 (13.84 ± 2.02 U/ml), but not by 

cells from any other group (data not shown). Cells from unmodified DBA/2 =>

BDFi mice also produced significantly higher levels of IL-5 in response to Con A 

than control cells on day 2 (Fig. 8.17a) and similar levels of IL-5 to control cells 

on day 10 (Fig. 8.17b). IL-12 treatment totally inhibited IL-5 production by cells 

from DBA/2 => BDFi mice on both days 2 (Fig. 8.17a) and 10 (Fig. 8.17b).

Concomitant administration of anti-IFN-y mAb restored the ability of cells from

DBA/2 => BDFi mice to produce high levels of IL-5 on day 2 (Fig. 8.17a) and 

partially restored IL-5 levels on day 10 (Fig. 8.17b).

IL-12 significantly increased the levels of IL-5 produced by Con A 

stimulated control cells on day 2 (Fig. 8.17a), but not day 10 (Fig. 8.17b). 

Administration of anti-IFN-y significantly increased IL-5 production by cells from 

IL-12 treated controls on both days 2 and 10.

IL-4

IL-4 production was not detectable in this experiment.
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phenotype to a more Thl-dominated response and induces immunosppression. 

These effects are at least partially dependent on IFN-y.

V ) Non-specific and specific cell-mediated cytotoxicity

a) NK cell activity

As in the experiments described earlier in this chapter, I was unable to 

assess NK cell activity in this study, due to technical problems.

b) CTL activity

As before, there was virtually no anti-host CTL activity detectable in the 

spleens of DBA/2 => BDFi mice on day 10 (Fig. 8.18). In contrast, similar mice 

given exogenous IL-12 showed specific cytotoxicity against EL-4 target cells at all 

effector : target (E:T) ratios examined (Fig. 8.18). DBA/2 => BDFi mice which 

had received both IL-12 and anti-IFN-y mAb showed even higher levels of 

specific cytotoxicity than mice which received IL-12 alone (Fig. 8.18). Thus, the 

CTL activity in this model of acute GvHD is not dependent on endogenous IFN-y 

production.

Effects of Neutralising IFN-y on Long-Term Consequences of 

GvHD in IL-12 Treated DBA/2 => BDFi Mice.

As neutralising IFN-y prevented the development of IL-12 induced lethal 

GvHD in DBA/2 => BDFi mice and restored the levels of Th2 cytokines produced 

by cells from these mice, I thought it was important to determine whether DBA/2 

=> BDFi mice given IL-12 and anti-IFN-y developed classical chronic GvHD. I 

therefore monitored these mice throughout the following three months, to assess 

whether they developed lethal chronic GvHD, hypergammaglobulinaemia and 

anti-ds DNA antibodies. Of course, there were no surviving IL-12 treated DBA/2 

=> BDFi mice for direct comparison.

1 6 0



161

As expected, unmodified DBA/2 => BDFi mice developed oedema and 

started to die on day 80 and by day 90, 50% of this group had died (Fig. 8.19). In 

contrast, none of the DBA/2 => BDFi mice given IL-12 and anti-IFN-y mAb I

displayed oedema or died. This confirms the ability of anti-IFN-y to protect 

against the IL-12 induced acute disease and also shows that it does not provoke 

development of clinical chronic GvHD.

As described previously, unmodified DBA/2 ^  BDFi mice displayed high 

levels of total serum IgG on days 30 (Fig. 8.20a) and 60 (Fig. 8.20b) compared 

with controls. DBA/2 => BDFi mice given both IL-12 and anti-IFN-y mAb 

showed mildly elevated serum IgG levels on day 30, but on day 60, the IgG levels 

in the serum of these mice were not significantly different than control levels (Fig.

8.20b). Furthermore, at both time points, the levels were not as high as those 

observed in the serum of unmodified DBA/2 ==> BDFi mice (Fig. 8.20a and b).

Finally, all of the unmodified DBA/2 => BDFi mice had detectable anti-ds 

DNA antibodies in their serum on both days 30 (Fig. 8.21a) and 60 (Fig. 8.21b).

In contrast, anti-ds DNA antibodies were not detectable in the serum of any other 

group (Fig. 8.21a and b).

In conclusion, therefore, anti-lFN-y mAh promoted long-term survival 

from the acute lethal GvHD in DBA/2 => BDFi mice given IL-12, but did not 

provoke the consequences of classical chronic GvHD, such as progressive 

oedema and death and high levels of serum IgG and anti-ds DNA antibodies.

Thus, it would appear that IL-12 induces acute GvHD in DBA/2 => BDFi mice 

mainly by eliciting production of high levels of IFN-y.

Summary

The results of this chapter indicate that IFN-y plays an integral role in acute 

GvHD induced by B6 cells and that found in BDFi mice given IL-12 and DBA/2 

cells. Neutralising IFN-y during the early period of acute GvHD had very similar 

effects on both models of disease. Most importantly, anti-IFN-y prevented GvHD-
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associated weight loss and mortality and in the case of the extremely aggressive 

GvHD in IL-12 treated DBA/2 => BDFi mice, promoted long-term survival. 

Antibody treatment reduced the degree of splenomegaly observed in both 

unmodified B6 => BDFi and IL-12 treated DBA/2 => BDFi mice during the 

proliferative phase of the disease. However, anti-IFN-y treated B6 => BDFi mice 

showed prolonged splenomegaly and did not develop the lymphoid atrophy 

exhibited by their untreated counterparts during the final stages of acute GvHD. In 

both disease models, anti-IFN-y antibody also increased the levels of spontaneous 

'ex-vivo* proliferation exhibited by GvHD splenocytes, consistent with the known 

cytostatic properties of IFN-y in vitro. This was particularly obvious during the 

late stage of disease, when although the spontaneous responses of untreated B6 ^  

BDFi mice returned to control levels, those of anti-IFN-y treated similar mice 

remained several fold higher than controls. Once again, this highlights the ability 

of anti-IFN-y treatment to maintain the proliferative features of acute GvHD. 

Despite these beneficial effects, neutralising endogenous IFN-y had no effect on 

the high levels of anti-host CTL activity observed in either B6 => BDFi mice, or 

DBA/2 => BDFi mice given IL-12.

There were some differences between the effects of anti-IFN-y in the two 

models of acute GvHD. Whereas anti-IFN-y treatment was able to significantly 

increase Con A induced proliferative responses in unmodified B6 => BDFi mice, 

it had little effect on the suppressed Con A responses in IL-12 treated DBA/2 => 

BDFi mice. This may reflect the fact that the disease induced in IL-12 treated 

DBA/2 => BDFi mice is more aggressive than that observed in unmodified B6 => 

BDFi animals.

The effect of anti-IFN-y mAb on cytokine production by acute GvHD 

spleen cells was more complex. Anti-IFN-y treatment in vivo had little effect on 

the ability of acute GvHD cells to produce IFN-y in vitro, and, in the case of 

unmanipulated B6 => BDFi mice, actually increased early (day 2) levels. This 

may reflect a compensatory mechanism activated in the absence of biologically
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active IFN-y. The effects of anti-IFN-y mAh on IL-2 production differed slightly 

between the two models. In B6 ==> BDFi mice, anti-IFN-y had no effect on Con A 

stimulated IL-2 on either day 2 or 10, but restored the suppressed IL-2 levels seen 

at later times. In contrast, anti-IFN-y prevented the IL-12 induced reduction in IL- 

2 levels observed in DBA/2 => BDFi mice on day 2, but had no effect on day 10. 

The reason for the different effects of anti-IFN-y mAb in these two models was 

not clear and the effect on end-stage IL-2 levels was not examined in IL-12 treated 

DBA/2 => BDFi mice. Anti-IFN-y had a more pronounced effect on the level of 

Th2 cytokines produced by acute GvHD splenocytes in vitro. In particular, 

neutralising IFN-y dramatically increased Con A induced IL-5 production by cells 

from both acute GvHD groups at all times examined. This suggested that IFN-y 

may directly regulate IL-5 production during acute GvHD. IFN-y may also 

regulate IL-10 production, since anti-IFN-y prevented the IL-12 induced reduction 

in IL-10 levels in DBA/2 => BDFi mice. However, this was only observed on day 

2 and not day 10, possibly because antibody treatment was terminated on day 8 

and biologically active IFN-y will presumably be present by day 10.

Taken together, these results show that the effects of neutralising IFN-y 

during acute GvHD are broadly similar to those observed in anti-IL-12 treated 

mice. Both anti-IFN-y and anti-IL-12 antibodies reduced the early splenomegaly, 

but prolonged the proliferative period of the disease. Both antibody treatments 

reduced T cell suppression and had a less marked effect on B cell immune 

deficiency. In addition, anti-IFN-y and anti-IL-12 shared the ability to prevent 

weight loss and mortality, but did not reduce the high levels of anti-host CTL 

activity associated with the disease. Finally, it is important to note that anti-IFN-y 

shares with anti-IL-12 the ability to convert the pattern of cytokine production in 

acute GvHD mice from a Thl to a Th2 phenotype. In both cases, however, 

acquisition of a Th2 dominated response was insufficient to promote classic 

chronic GvHD with hypergammaglobulinaemia, anti-ds DNA antibodies, oedema 

and death.
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Conclusions

IFN-y is an important effector cytokine in acute GvHD. In particular, IFN- 

y appears to mediate many of the destructive features of the disease, such as

weight loss, mortality and suppression of lymphoid responses. However, it also 

contributes to the inflammatory response which results in splenomegaly and 

regulates Th2 cytokine production. The high levels of IFN-y required to elicit the 

acute GvHD are critically dependent on IL-12 and there are a variety of cell types 

which may be the source of IL-12 induced IFN-y production. This issue is 

explored in more detail in Chapters 9 and 10
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0 8 12 16 20 244
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Fig. 8.1. Effects of neutralising IFN-y on acute GvHD in B6 => 

BDFi mice.

Weight loss and mortality in BDFi mice given 10® B6 spleen cells i.v. and treated 

with anti-IFN-y mAb. The results shown are mean body weight ± 1 SD for 6 mice 

per group. (* p < 0.05 ** p < 0.001 vs all other groups; f Death).
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SPLEEN INDEX

5 1

3 -

* *

* *■

* *

□  Acute GvHD 
H  Acute GvHD +Antï-IFN-? 
0  Control +Anti“IFN“Y

V *

10

DAY OF GvHD

22

Fig. 8.2. Effects of neutralising IFN-y on splenomegaly in acute 

GvHD in B6 => BDFi mice.

Splenomegaly in BDFi mice given 10  ̂B6 spleen cells i.v. and treated with anti- 

IFN-y mAh. The results shown are mean spleen indices ± 1 SD for 3 mice per 

group. (* p < 0.05 ** p < 0.001 vs controls; t  P < 0.001 vs unmodified acute 

GvHD).
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3H TdR Incorporation 
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BB C on tro l
□  Control + Anti-IFN-Y

j  /  /  I
10

DAY OF GvHD

22

Fig. 8.3. Effects of neutralising IFN-y on spontaneous ^ex-vivo^ 

proliferative responses in B6 => BDFi mice.

Spontaneous proliferative capacity of splenocytes from BDFi mice given 10  ̂B6 

spleen cells i.v. and treated with anti-IFN-y mAh. The results shown are the mean 

uptake of3H-TdR ± 1 SD after 4 hours in quadruplicate cultures, using spleen 

cells pooled from 3-4 mice per group. (* p < 0.001 vs controls; t  P < 0.001 vs 

unmodified acute GvHD)
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3H TdR Incorporation
(cpnVweli)
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Acute Acute + Anti-IFN-Y Control Control + Anti-IFN-y

Fig. 8.4. Effects of neutralising IFN-y on T cell function in B6 => 

BDFi mice.

Proliferative capacity of splenocytes from BDFi mice given 10  ̂B6 spleen cells

i.v. and treated with anti-IFN-y mAh. The results shown are the mean uptake of 

3H-TdR ± 1 SD after 48 hours in quadruplicate cultures with 10p,g/ml Con A, 

using spleen cells pooled from 3-4 mice per group on day 22 of GvHD. (* p <

0.001 vs controls; t  P < 0.001 vs unmodified acute GvHD)
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3H TdR Incorporation
(cpm/weil)
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Acute Acute +Anti"IFN-v Control Control +Anti-IFN-Y

Fig. 8.5. Effects of neutralising IFN-y on B cell function in B6 => 

BDFi mice.

Proliferative capacity of splenocytes from BDFi mice given 10  ̂B6 spleen cells

i.v. and treated with anti-IFN-y mAh. The results shown are the mean uptake of 

3H-TdR ± 1 SD after 24 hours in quadruplicate cultures with 10p,g/ml LPS, using 

spleen cells pooled from 3-4 mice per group on day 22 of GvHD. (* p < 0.001 vs 

controls; t  p < 0.001 vs unmodified acute GvHD)
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IFN-GAMMA
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a
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10  -

Acute
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□  S p o n ta n e o u s  
■  Con A S tim ulated

Acute +Anti-IFN-Y Control Control + Anti-IFN-Y

Acute +Anti-IFN-Y Control Control + Antl-IFN-Y

Fig. 8.6. Effects of neutralising IFN-y on IFN-y production in 

acute GvHD in B6 => BDFi mice.

IFN-y production by splenocytes from BDFi mice given 10  ̂B6 spleen cells i.v. 

and treated with anti-IFN-y mAh after culture in medium alone, or with 10p,g/ml 

Con A for 48 hours. The results shown are the means ± ISD of triplicate samples 

on day 2 (Fig. 8.6a) and day 10 (Fig. 8.6b) of GvHD. (* p < 0.05 ** p < 0.001 

vs unmodified controls; t  P < 0.05 vs unmodified acute GvHD).
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Acute Acute + Antl-IFN-v Control Control + Antl-IFN-Y

Fig. 8.7. Effects of neutralising IFN-y on IL-2 production i n  acute 

GvHD in B6 =» BDFi mice.

IL-2 production by splenocytes from BDFi mice given 10  ̂B6 spleen cells i.v. 

and treated with anti-IFN-y mAb after culture in medium alone, or with lOpg/ml 

Con A for 24 hours. The results shown are the means ± ISD of triplicate samples 

on day 2 (Fig. 8.7a), day 10 (Fig. 8.7b) and day 22 (Fig. 8.7c) of GvHD. (* p <

0.001 vs unmodified controls; t  p < 0.01 vs unmodified acute GvHD).
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1 0 -

□  Spontaneous 
■  Con A Stimulated

Acute Acute +Anti-IFN-Y Control Control + Antl-IFN-Y
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Acute Acute + Antl-IFN-Y Control Control +Antl-IFN - y

Fig. 8.8. Effects of neutralising IFN-y on IL-5 production in acute 

GvHD in B6 => BDFi mice.

IL-5 production by splenocytes from BDFi mice given 10® B6 spleen cells i.v. 

and treated with anti-IFN-y mAb after culture in medium alone, or with 10p,g/ml 

Con A for 120 hours. The results shown are the means ± ISD of triplicate 

samples on day 2 (Fig. 8.8a) and day 10 (Fig. 8.8b) of GvHD. (* p < 0.001 vs 

unmodified controls; t  p < 0.001 vs unmodified acute GvHD)
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Fig. 8.9. Effects of neutralising IFN-y on CTL activity in acute  

GvHD in B6 => BDFi mice.

Splenic CTL activity in BDFi mice given 10̂  B6 spleen cells i.v. and treated with 

anti-IFN-y mAb. The results shown are the % cytotoxicity against P815 target 

cells from quadruplicate assays, using spleen cells pooled from 3 mice per group 

on day 10 of GvHD.
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BODY WEIGHT (g)
2 2  -I

20 -

* ** *

ttt * *

Chronic GvHD
Chronic + IL-12
Chronic + IL-12 + Anti-IFN-r
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Fig. 8.10. Effects of neutralising IFN-y acute GvHD in DBA/2 

=> BDFi mice given IL-12.

Weight loss and mortality in BDFi mice given 10  ̂DBA/2 spleen cells i.v. and 

treated with rm IL-12 and anti-IFN-y mAh. The results shown are mean body 

weight ± 1 SD for 6 mice per group. Control mice given IL-12 ± anti-IFN-y mAb 

did not lose weight or die and are not shown for clarity (* p < 0.01 ** p < 0.001 

vs all other groups; f Death).
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Fig. 8.11. Effects of neutralising IFN-y in acute GvHD in DBA/2 => 

BDFi mice given IL-12.

Splenomegaly in BDFi mice given 10̂  DBA/2 spleen cells i.v. and treated with 

rm IL-12 and anti-IFN-y mAh. The results shown are the mean spleen index ± 1 

SD for 3 mice per group on day 2 (Fig. 8.1 la) and day 10 (Fig. 8.1 lb) of GvHD. 

(* p < 0.001 vs unmodified controls; t  P < 0.01 vs unmodified chronic GvHD; § 

p < 0.05 vs chronic + IL-12).
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3H Tdr incorporation 
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Fig. 8.12. Effects of neutralising IFN-y on spontaneous 

proliferative responses in DBA/2 => BDFi mice given IL-12,

Spontaneous proliferative capacity of splenocytes from BDFi mice given 10  ̂

DBA/2 spleen cells i.v, and treated with rm IL-12 and anti-IFN-y mAh. The 

results shown are the mean uptake of3H-TdR ± 1 SD after 4 hours in 

quadruplicate cultures, using spleen cells pooled from 3-4 mice per group on day 

10 of GvHD. (* p < 0,001 vs unmodified controls; f  P < 0.001 vs unmodified 

chronic GvHD; § p < 0.001 vs chronic + IL-12).
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3H TdR Incorporation 
(cpnVweii)
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■  + IL-12
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Fig. 8.13. Effects of neutralising IFN-y on T cell function in DBA/2 

=> BDFi mice given IL-12.

Proliferative capacity of splenocytes from BDFi mice given 10  ̂DBA/2 spleen 

cells i.v. and treated with rm IL-12 and anti-IFN-y mAh. The results shown are 

the mean uptake of 3H-TdR ± 1 SD after 48 hours in quadruplicate cultures with 

lOpg/ml Con A, using spleen cells pooled from 3-4 mice per group on day 10 of 

GvHD. (* p < 0.005 ** p < 0.001 vs unmodified controls; t  P < 0.001 vs 

unmodified chronic GvHD; § p < 0.001 vs chronic + IL-12).
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Fig. 8.14. Effects of neutralising IFN-y on IFN-y production in 

DBA/2 => BDFi mice given IL-12.

IFN-y production by splenocytes from BDFi mice given 10  ̂DBA/2 spleen cells 

i.v. and treated with rm IL-12 and anti-IFN-y mAb. The results shown are for 

spontaneous IFN-y production on day 10 of GvHD (Fig. 8.14a) and Con A 

induced IFN-y on days 2 (Fig. 8.14b) and 10 (Fig. 8.14c) of GvHD. The results 

are the means ± ISD of triplicate samples. (* p < 0.05 ** p < 0.001 vs 

unmodified controls; t  P < 0.05 vs unmodified chronic GvHD § p < 0.001 vs 

chronic + IL-12 ).
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Fig. 8.15. Effects of neutralising IFN-y on IL-2 production in  

DBA/2 => BDFi mice given IL-12.

IL-2 production by splenocytes from BDFi mice given 10  ̂DBA/2 spleen cells 

i.v. and treated with rm IL-12 and anti-IFN-y mAb, after culture with lOfxg/ml 

Con A for 24 hours. The results shown are the means ± ISD of triplicate samples 

on days 2 (Fig. 8.15a) and 10 (Fig. 8.15b) of GvHD. (* p <  0.005 p < 0.001 

vs unmodified controls; t  P < 0.(X)1 vs unmodified chronic GvHD; § p < 0.001 

vs chronic + IL-12; ± p < 0,001 vs control + IL-12).
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Fig. 8.16. Effects of of neutralising IFN-y on IL-10 production in 

DBA/2 => BDFi mice given IL-12.

IL-10 production by splenocytes from BDFi mice given 10  ̂DBA/2 spleen cells

i.v. and treated with rm IL-12 and anti-IFN-y mAb, after culture with lOpg/ml 

Con A for 48 hours. Results shown are means ± SD of triplicate samples on days 

2 (Fig. 8.16a) and 10 (Fig. 8.16b) of GvHD. (* p <  0.01 ** p < 0.001 vs 

unmodified controls; t  P < 0.005 vs unmodified chronic GvHD; § p < 0.005 vs 

chronic + IL-12).
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Fig. 8.17. Effects of neutralising IFN-y on IL-5 production in 

DBA/2 => BDFi mice given IL-12.

IL-5 production by splenocytes from BDFi mice given 10® DBA/2 spleen cells 

i.v. and treated with rm IL-12 and anti-IFN-y mAb, after culture with lOpg/ml 

Con A for 120 hours. The results shown are the means ± ISD of triplicate 

samples on days 2 (Fig. 8.16a) and 10 (Fig. 8.16b) of GvHD. (* p < 0.05 p < 

0.001 vs unmodified controls; § p < 0.001 vs chronic + IL-12; ± p < 0.05 vs 

control 4- IL-12).
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Fig. 8.18. Effects of neutralising IFN-y on CTL activity in DBA/2 

=> BDFi mice given IL-12.

Splenic CTL activity in BDFi mice given 10® DBA/2 spleen cells i.v. and treated 

with rm IL-12 and anti-IFN-y mAb. The results shown are the % cytotoxicity 

against P815 target cells from quadruplicate assays, using spleen cells pooled 

from 3 mice per group on day 10 of GvHD.
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Fig. 8.19. Effects of neutralising IFN-y on long-term consequences 

of IL-12 induced acute GvHD.

The results show the percentage of surviving mice in each group throughout the 

disease.
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Fig. 8.20. Effects of neutralising IFN-y on long-term consequences 

of IL-12 induced acute GvHD.

Levels of serum IgG in BDFi mice given 10  ̂DBA/2 spleen cells i.v. and treated 

with anti-IFN-y mAb. The results shown are the mean total IgG levels ± ISD of 

5-6 mice per group on days 30 (Fig. 8.20a) and 60 (Fig. 8.20b) of GvHD. (* p < 

0.05 ** p < 0.001 vs unmodified controls; t  P < 0.05 vs unmodified chronic 

GvHD). ND = Not done.
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Fig. 8.21. Effects of neutralising IFN-y on long-term consequences 

of IL-12 induced acute GvHD.

Levels of anti-ds DNA antibodies in BDFi mice given 10̂  DBA/2 spleen cells i.v. 

and treated with rm IL-12 and anti-IFN-y mAb. The results shown are the mean 

OD value ± ISD at 630nm of 5-6 mice per group on days 30 (Fig. 8.21a) and 60 

(Fig. 8.21b) of GvHD.
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CHAPTER 9

THE CELLULAR SOURCE OF CYTOKINES DURING GvHD.

CD4+ AND CD8+ T CELLS

Introduction

In Chapters 3-8,1 have shown that acute and chronic GvHD are associated 

with different patterns of cytokine production, with a Thl or Th2 response 

predominating in acute or chronic GvHD respectively. These results suggest that 

the different diseases induced by B6 or DBA/2 donor cells may reflect expansion 

of distinct subsets of CD4+ Th cells in vivo. However, cells other than CD4+ Th 

lymphocytes are capable of producing several of the relevant cytokines and could 

therefore be important for the polarisation of GvHD. Two cell types which 

warrant particular attention are CD8+ T lymphocytes and NK cells.

In Chapter 3 , 1 demonstrated that CD8+ T cells expanded preferentially 

during acute, but not chronic GvHD and become a major component of the 

lymphoid tissues of B6 =*► BDFi mice. Previous studies have also highlighted the 

importance of CD8+ cells in the pathogenesis of acute GvHD, and their depletion 

from the B6 spleen cell inoculum prevents the lethality usually associated with the 

disease [30]. However, it is not known whether CD8+ T cells contribute to 

cytokine production during disease, despite their capacity to produce several 

cytokines in other systems, including IFN-y [85, 86,88], IL-4 [90, 94], IL-5 [91, 

168] and IL-10 [94].

NK cells are a further potential source of cytokines during GvHD. In other 

experimental systems they have been shown to be important early producers of 

IFN^ [112-114, 117,119, 153, 169] and are believed to promote differentiation 

towards Th 1-type responses [115-117]. Furthermore, NK cells are important for 

development of GvHD in other experimental models of the disease [97,102,104- 

106,108]. In the experiments described in Chapters 4-6, it appeared that early NK
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cells activation may be restricted to the acute form of disease, supporting the idea 

that these cells could be critical for the subsequent polarisation of acute GvHD, 

perhaps via production of IFN-y.

In the next two chapters, I have therefore examined directly the cellular 

source of the cytokines produced during acute and chronic GvHD. This chapter 

will address the involvement of CD4+ and CD8+ cells in cytokine production in 

vitro, while Chapter 9 examines the role of NK cells in both cytokine production 

in vitro and disease progression in vivo.

Experimental Protocol

As usual, the GvHR was induced by i.v. injection of 10^ viable B6 or 

DBA/2 parental spleen cells into BDFi recipients, and its intensity was monitored 

by assessing splenomegaly and mortality.

To examine the source of cytokines in vitro, CD4+ and CD8+ T cell 

subsets were depleted from pooled spleen cell suspensions isolated on days 2, 7, 

10 and 14 of GvHD by complement-mediated lysis using YTS 191.1 (anti-CD4) or 

YTS 169.4 (anti-CD8) mAbs and rabbit complement. The percentage of residual 

CD4+ or CD8+ cells remaining after depletion was consistently 0.2%. A typical 

example of the efficiency of the depleting mAbs is shown in Fig. 9.1.

IFN-y, IL-2, IL-10, IL-5 and IL-4 production was measured by culturing 

spleen cells from GvHD mice either in medium alone or with Con A.
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Results

Systemic GvHD

Splenomegaly was assessed in GvHD mice to provide an indication of 

disease progression. As before, B6 ==> BDFi mice had significant splenomegaly 

by day 2 (Fig. 9.2). This increased throughout the early period of the acute 

disease, peaked on day 10 and had returned to control levels by day 16. The first 

deaths in this group also occurred on day 16, when two of the five mice died (data 

not shown). As insufficient lymphocytes were available from the surviving B6 =>

BDFi mice for analysis of proliferation or cytokine production on day 16, the last

data point for all groups in this study was day 14.

The splenomegaly observed in DBA/2 => BDFi mice was characteristically 

less intense than that observed in B6 => BDFi mice, but as in my previous
::44-...

studies, it persisted for the remainder of the study (Fig. 9.2). Furthermore, none 

of these mice died during the period of study.
%

Role of CD4+ and CD8+ T cells in Production of IFN-y in GvHD

:>■
"4

a) Spontaneous

Unseparated spleen cells from B6 => BDFi mice produced IFN-y |
i

spontaneously at all time points examined (Fig. 9.3a). On day 2, depletion of I
.4

either CD4+ or CD8+ T cells did not affect these levels, suggesting that a non-T 

cell population was producing this early IFN-y. In contrast, by day 7, CD4+ cells 

appeared to be the main source of spontaneous IFN-y, since depletion of CD4+, |

but not CD8+ cells resulted in significantly reduced IFN-y production (Fig. 9.3a).

On day 10, removal of CD4+ cells also resulted in a significant reduction in 

spontaneous IFN-y production. At this time, depletion of CD8+ cells actually 

increased IFN-y production, suggesting that an inhibitory CD8+ population was 

present, or that removal of CD8+ cells had enriched the population of IFN-y
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producing cells in culture. On day 14, both CD4+ and CD8+ populations appeared 

to be required for spontaneous IFN-y production, since levels were totally ablated 

when either population was depleted (Fig, 9.3a).

Cells from DBA/2 => BDFi mice produced some spontaneous IFN-y on 

days 2 and 10 of the GvHD (Fig. 9.3b). Although this was in contrast to earlier 

experiments, these levels were very low compared to those produced by B6 => 

BDFi cells and were dependent entirely on CD4+ T cells at both time points.

Control cells did not produce IFN-y spontaneously at any time during this 

study and depletion of either T cell subset did not affect this (data not shown).

f.s:

b) Con A Induced

As anticipated, unseparated B6 => BDFi splenocytes produced 

significantly higher levels of Con A stimulated IFN-y than control cells at all times 

examined (Figs. 9.4a & c respectively). In contrast to the T cell-independent 

spontaneous IFN-y production during the initial phase of disease, on day 2, 

depletion of CD4+ cells from these cultures significantly reduced Con A induced 

IFN-y levels. CD8+ cell depletion had no effect (Fig. 9.4a). Depletion of either 

CD4+ or CD8+ populations on either day 7 or 14 reduced the level of Con A 

induced IFN-y production (Fig. 9.4a), suggesting that both populations were 

producing IFN-y in response to Con A stimulation at these times. However, on 

day 10, CD4+ cell depletion did not affect IFN-y levels, while depletion of CD8+ 

cells provoked a significant increase (Fig. 9.4a), consistent with the effects of 

CD4+ and CD8+ depletion on spontaneous IFN-y production at this time. Thus, a 

regulatory CD8+ T cells may be present at this stage of GvHD and a transient 

population of cells other than CD4+ or CD8+ T cells may also contribute to the 

levels of IFN-y produced spontaneously or via Con A stimulation. If time had 

allowed, this could have been confirmed by total T cell depletion or combined 

depletion of CD4+ and CD8+ populations.



& c). At all time points, both CD4+ and CD8+ populations appeared to be 

contributing to Con A induced IFN-y production by control cells and cells from 

DBA/2 => BDFi mice, as depletion of either of these cells types resulted in 

significantly reduced levels (Figs. 9.4b & c).

Role of CD4+ and CD8+ T cells in IL-2 Production
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Unseparated splenocytes from DBA/2 => BDFi mice produced similar 

levels of Con A stimulated IFN-y to control cells at all times examined (Figs. 9.4b

IL-2 was not produced spontaneously by cells from any group at any time
41
■s:;(data not shown).

On days 2 and 7, unseparated spleen cells from B6 => BDFi mice
"

produced similar levels of IL-2 in response to Con A to those found with control 

mice (Fig. 9.5a & c). By day 10, IL-2 levels were significantly lower than those 

produced by controls and by day 14, no IL-2 production was detectable (Fig.

9.5a). Depletion of CD4+ cells from B6 => BDFi cultures significantly reduced, 

or totally ablated IL-2 production at all time points examined (Fig. 9.5a). This 

procedure had no effect on the inability of total B6 => BDFi splenocytes to 

produce IL-2 on day 14. Depletion of CD8+ cells also significantly reduced IL-2 

levels on day 2, but did not affect those on days 7 and 10 (Fig. 9.5a). However, 

by day 14, depletion of CD8+ T cells revealed low levels of IL-2 production, 

when none was observed using unseparated GvHD cells (Fig. 9.5a). This may be 

because the highly activated CD8+ population were consuming any available IL-2, 

or because they act as regulatoiy cells.

Unseparated spleen cells from DBA/2 => BDFi mice produced control 

levels of IL-2 in response to Con A on days 2, 7 and 14 (Fig. 9.5b & c). 

However, on day 10, chronic GvHD cells showed reduced IL-2 production 

compared with controls, perhaps reflecting enhanced consumption of IL-2 by the 

activated GvHD cells. Depletion of CD4+ cells from DBA/2 => BDFi cultures 

significantly reduced or ablated IL-2 production at all time points examined.

I



Depletion of CD8+ cells also significantly reduced IL-2 levels on day 2, but did 

not affect those observed thereafter.

Depletion of CD4+ cells from control splenocyte cultures significantly 

reduced the levels of IL-2 produced in response to Con A at all time points 

examined, while depletion of CD8+ cells had no effect on days 2-10, but 

significantly increased the levels of IL-2 on day 14 (Fig. 9.5c).

Role of CD4+ and CD8+ T cells in IL-10 Production

IL-10 was not produced spontaneously by the cells of any group at any 

time (data not shown).

Unseparated splenocytes from B6 => BDFi mice produced levels of IL-10 

in response to Con A similar to those produced by control cells at all time points 

examined (Figs. 9.6a & c). On day 2, depletion of CD4+ cells from B6 => BDFi 

cultures significantly reduced the levels of IL-10, whereas depletion of the CD8+ 

population had no effect (Fig. 9.6a). By days 7 and 10, depletion of CD4+ cells 

from B6 => BDFi cultures totally ablated IL-10 production. Thus CD4+ cells are

the main source of IL-10 early in acute GvHD. On day 14, however, depleting 

CD4+ cells had no effect on IL-10 production, despite the clear efficacy of 

depletion and by its effects on other cytokines. Removal of the CD8+ population 

on both days 10 and 14 significantly increased IL-10 levels in acute GvHD.

As 1 found previously, unseparated splenocytes from DBA/2 => BDFi 

mice produced significantly higher levels of IL-10 in response to Con A than 

control cells at all time points examined (Figs. 9.6b & c). On days 2 and 7, 

depletion of either CD4+ or CD8+ cells from DBA/2 => BDFi cultures 

significantly reduced IL-10 levels, suggesting that both populations may be 

capable of IL-10 production in these cultures (Fig. 9.6b). However on day 10, 

while depletion of CD4+ cells totally ablated IL-10 levels, depletion of CD8+ cells 

markedly increased IL-10 production, indicating that IL-10 was now being 

produced exclusively by CD4+ cells and confirming the possible presence of
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regulatory CD8+ T cells. Similarly to my finding with B6 => BDFi cells, on day 

14, depletion of either CD4+ or CD8+ cell populations had no effect on IL-10 

production, although once again, the depletion appeared to be effective. The 

source of IL-10 at this time was therefore unclear and needs to be addressed in 

future work.

On day 2, depletion of either CD4+ or CD8+ populations did not 

significantly affect the low levels of IL-10 produced by control splenocytes in 

response to Con A (Fig. 9.6c). In contrast, on days 7 and 10, depletion of CD4+ 

cells significantly reduced IL-10 levels, while depletion of CD8+ cells had no 

effect. On day 14, depletion of CD4+ cells again significantly reduced IL-10 

levels, whereas CD8+ depletion significantly increased them.

Role of CD4+ and CD8+ T cells in IL-5 Production

IL-5 was not produced spontaneously by the cells of any group at any time 

(data not shown).

Unseparated splenocytes from B6 BDFi mice did not produce 

detectable IL-5 in response to Con A at any time point examined and this was not 

affected by depleting CD4+ cells (Fig. 9.7a). On day 2, however, depleting CD8+ 

cells from B6 => BDFi cultures revealed moderate levels of IL-5 (Fig. 9.7a), 

suggesting that CD8+ cells may be directly inhibiting IL-5 production in the 

undepleted cultures at this time. On day 7 and thereafter, depletion of CDS^ cells 

did not reveal any IL-5 production.

As before, unseparated splenocytes from DBA/2 => BDFi mice produced 

high levels of IL-5 in response to Con A throughout the period of study (Fig. 

9.7b). At all time points, these levels were totally ablated by depletion of the CD4+ 

population (Fig. 9.7b). On day 2, depletion of CD8  ̂cells did not affect the levels 

of IL-5 produced by splenocytes from DBA/2 => BDFi mice, but on day 7, CD8+ 

depletion resulted in a significant reduction in IL-5. On day 10, depletion of CD8+ 

cells significantly increased IL-5 levels, while on day 14, CD8+ depletion had no
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effect on IL-5 production in chronic GvHD. Thus, CD4+ cells appear to be the 

main IL-5 producing cell type in chronic GvHD, while CD8+ cells play a minor 

role in the production of this cytokine and are frequently regulatory.

Unseparated control splenocytes did not produce detectable IL-5 in 

response to Con A at any point during this study and depletion of CD4+ cells had 

no effect on this (Fig. 9.7c). In contrast, depletion of CD8+ cells, revealed the 

presence of IL-5 in control splenocytes cultures, again suggesting that CD8+ cells 

may play a regulatory role in IL-5 production.

IL .4

IL-4 production was below the level of detection for all groups at all time 

points examined (data not shown).

Summary and Conclusions

These results indicate that while CD4+ Th cells are clearly a major source 

of a variety of different cytokines during acute and chronic GvHD, CD8+ T cells 

and other cell types may also be important for the pattern of cytokines produced. 

During acute GvHD, CD4+, CD8+ and non-CD4+CD8+ populations all appear to

contribute to the high levels of both spontaneous and Con A induced IFN-y 

produced by spleen cells from B6 => BDFj mice. During chronic GvHD and also 

when control cells are stimulated with Con A in vitro, both CD4+ and CD8+ cells 

seem to produce IFN-y and there was no evidence for the involvement of other 

non-T cells. In contrast, in all groups, CD4+ cells were the main population which 

produced IL-2 in response to Con A stimulation, with CD8+ cells playing little or 

no role in its production. Con A stimulated IL-10 again appeared to be derived 

from a number of cellular sources during the two diseases. While both CD4+ and 

CD8+ cells were capable of producing IL-10 during days 2-10 of acute and 

chronic GvHD, on day 14 of either disease, depletion of CD4+ or CD8+ cells did 

not affect the levels of Con A induced IL-10. Although this may indicate that the
Ï
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cell populations had not been effectively removed on day 14, FACS analysis 

showed a similar degree of depletion at this time as had been observed at the 

earlier time points. Furthermore, the levels of the other cytokines were affected by 

depletion of CD4+ or CD8+ cells at this time. Thus, IL-10 may be produced by 

cells other than CD4+ or CD8+ lymphocytes, although the nature of this Con A 

responsive cell is unclear. This phenomenon was restricted to GvHD cells, since 

the levels of IL-10 produced by Con A stimulated control splenocytes could be
■

reduced by depletion of CD4+ cells at all times. During chronic GvHD, the high 

levels of IL-5 were almost entirely produced by CD4+ cells and depletion of CD8+

T cells was required to reveal IL-5 production by acute GvHD or control cells, 

indicating that CD8+ T cells were inhibiting IL-5 production in these groups. The 

fact that this was evident at all times for control cells, but only on day 2 for B6 =>
■

BDFi cells suggests that acute GvHD cells may have lost the capacity to produce 

IL-5 at the later time points. A regulatory effect of CD8+ T cells was a frequent 

finding in these studies, in agreement with their generally suppressive role during 

immune responses [87, 91]. In particular, CD8+T lymphocytes appeared to 

inhibit Th2 cytokine production in B6 ==> BDFi cultures, since CD8+ depletion 

increased levels of both IL-5 and IL-10.

In summary, it is clear that the cellular interactions involved in cytokine 

production during acute and chronic GvHD are extremely complex. Several 

populations can produce or regulate the production of many of the critical 

cytokines involved in GvHD and the purification of these cell types may provide a 

more definitive answer as to their importance.
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Fig. 9.1. Depletion of T cell subsets in vitro,

CD4+ (Fig. 9.1 A) and CD8+ (Fig. 9. IB) splenic lymphocyte populations were 

depleted in vitro by complement mediated lysis using either YTS 191.1 anti-CD4 

or YTS 169.4 anti-CD8a mAbs together with rabbit complement.
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Fig. 9.2. Splenomegaly during acute GvHD and chronic GvHD.

The results show the splenomegaly in BDFi mice given 10  ̂B6 or DBA/2 spleen 

cells i.v., expressed as the mean spleen index of 3 GvHD mice per group ± ISD 

and calculated with reference to the mean spleen weights of 3 control mice.

(* p < 0.05 ** p < 0.001 vs chronic GvHD).
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Fig. 9.3. Effects of depleting CD4+ and CD8+ cells in vitro on 

spontaneous IFN-y production during acute and chronic GvHD.

The results show the effect of depleting CD4+ or CD8+ lymphocytes on IFN-y 

levels in unstimulated cultures of splenocytes from mice with (a) acute GvHD and 

(b) chronic GvHD. CD4+ or CD8^ cells were depleted in vitro using complement 

mediated lysis and the cells cultured in medium for 48 hours before the 

supernatants were assayed for the presence of IFN-y by ELISA. (* p < 0.05 ** p 

< 0.001 vs unseparated).
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F:g. 9.4. Effects of depleting CD4+ and CD8+ cells in vitro on Con 

A induced IFN-y production during acute and chronic GvHD.

The results show the effect of depleting CD4+ or CD8+ lymphocytes on IFN-y 

levels in Con A stimulated spleen cell cultures from mice with acute GvHD (a), 

mice with chronic GvHD (b) and control mice (c). CD4+ or CD8+ cells were 

depleted in vitro using complement mediated lysis and the cells cultured with 

lOpg/ml Con A for 48 hours before the supernatants were assayed for the 

presence of IFN-y by ELISA. (* p < 0.05 ** p < 0.001 vs unseparated).
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Fig. 9.5, Effects of depleting CD4+ and CD8+ cells in vitro on Con 

A induced IL-2 production during acute and chronic GvHD.

The results show the effect of depleting CD4+ or CD8+ lymphocytes on IL-2 

levels in Con A stimulated spleen cell cultures from mice with acute GvHD (a), 

mice with chronic GvHD (b) and control mice (c). CD4+ or CD8+ cells were 

depleted in vitro using complement mediated lysis and the cells cultured with 

lOpg/ml Con A for 24 hours before the supernatants were assayed for the 

presence of IL-2 by ELISA. (* p<  0.05 ** p < 0.005 vs unseparated).
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Fig. 9.6. Effects of depleting CD4+ and CD8+ cells in vitro on Con 

A induced IL-10 production during acute and chronic GvHD.

The results show the effect of depleting CD4+ or CD8+ lymphocytes on IL-10 

levels in Con A stimulated spleen cell cultures from mice with acute GvHD (a), 

mice with chronic GvHD (b) and control mice (c). CD4+ or CD8+ cells were 

depleted in vitro using complement mediated lysis and the cells cultured with 

lOpg/ml Con A for 48 hours before the supernatants were assayed for the 

presence of IL-10 by ELISA. (* p < 0.05 ** p < 0.001 vs unseparated).
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Fig. 9.7. Effects of depleting CD4+ and CD8+ cells in vitro on Con 

A induced IL-5 production during acute and chronic GvHD.

The results show the effect of depleting CD4+ or CD8+ lymphocytes on IL-5 

levels in Con A stimulated spleen cell cultures from mice with acute GvHD (a), 

mice with chronic GvHD (b) and control mice (c). CD4+ or CD8+ cells were 

depleted in vitro using complement mediated lysis and the cells cultured with 

lOpg/ml Con A for 96 hours before the supernatants were assayed for the 

presence of IL-5 by ELISA. (* p <  0.05 ** p < 0.005 vs unseparated).
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CHAPTER 10

THE ROLE OF NK CELLS IN GvHD

s

Introduction

I have shown in Chapters 4-8 that early production of IL-12 and IFN-y 

was required for the development of acute GvHD. There is considerable evidence 

that NK cells may be a source of IFN-y in other models of T cell-mediated 

immunity [112-114, 152, 153, 169] and I have shown that the increased IFN-y in 

acute GvHD may be derived from a non-T cell source and coincides with 

activation of NK cells. I therefore decided to carry out a detailed study of the 

involvement of NK cells in polarising immune effector responses early in acute 

GvHD. To do this, I examined whether NK cell activation was exclusively a 

feature of acute GvHD at all time points, beginning a few hours after disease 

induction. Next, I focused on the role of NK cells in the initiation of B6 => BDFi 

acute GvHD by depleting NK cells immediately before induction of disease mice 

using anti-ASGM-1 antibody treatment in vivo.

Experimental protocol

The GvHR was induced by i.v. injection of 10  ̂ viable B6 or DBA/2

parental spleen cells into BDFi recipients as before. Levels of splenic NK cell-
.

mediated cytotoxicity were measured throughout the first week of disease at 

effector : target (E : T) ratios from 100 : 1 to 12.5 : 1 using YAC-1 target cells.
i

The results shown are for an E : T ratio of 100 : 1. NK cells were depleted from 

host mice in vivo by a single i.v. injection of anti-ASGM-1 rabbit antiserum. To 

avoid a contribution from donor-derived NK cells [103-105], I also treated donor 

mice with anti-ASGM-1 one day before cell harvest. Control mice received normal 

rabbit serum (NRS).
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The intensity of the systemic GvHD in vivo was monitored by assessing 

splenomegaly, weight loss and mortality, while immune function was determined 

by measuring the proliferative capacity of spleen cells from GvHD mice either 'ex~ 

vivo', or in response to stimulation with T or B cell mitogens. IFN-y, IL-2, IL- 

10, IL-5 and IL-4 production was measured by culturing spleen cells from GvHD 

mice either in medium alone or with Con A.

Results

Kinetics of NK cell activation during the early period of acute and 

chronic GvHD

B6 => BDFi mice displayed enhanced splenic NK cell activity from 4 

hours after induction of the GvHR and this remained elevated throughout the 

period examined (up to day 7 of the GvHD) (Figs. 10.1). In contrast, enhanced 

splenic NK cell activity was not detectable in DBA/2 => BDFi mice before day 4 

and this was markedly lower than that found in acute GvHD mice (Fig. 10.1). NK

subsequently does occur in chronic GvHD.

203

cell activity then remained enhanced to a similar extent on day 7 in chronic GvHD. 

Thus, early NK cell activation is mainly a feature of acute GvHD, although it

Effects of depleting NK cells on progression of GvHD

To determine whether the enhanced NK cell activity observed in B6 => 

BDFi mice is critical for disease progression, I examined the effect of NK cell 

depletion on acute GvHD.

Anti-ASGM-1 treatment in vivo ablated the levels of resting NK cell 

activity in normal BDFi mice and dramatically reduced, but did not ablate those

observed on day 2 of acute GvHD in B6 => BDFi mice (Fig. 10.2).

f
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i) Weight loss and mortality

In comparison to the previous experiments I have described in my thesis, 

the acute GvHD in this experiment was much less aggressive. Thus, weight loss 

was exhibited by only 1 of the 5 unmanipulated B6 ^  BDFi mice, was not 

apparent until day 20 and continued until day 24, when the mouse died. The 

remaining 4 mice showed no weight loss and did not die during the period of the 

experiment (12 weeks). However, 3 of 6 NK cell depleted B6 => BDFi mice lost 

weight from day 18 onwards. One of these mice died on day 21 and a further one 

on day 28. The third mouse which had lost weight recovered and there were no 

other deaths in this group.

ii) Splenomegaly

Despite the reduced morbidity and mortality observed in this experiment, 

unmodified B6 => BDFi mice showed splenomegaly on both days 2 (Fig. 10.3a) 

and 10 (Fig. 10.3b) which was comparable to that seen in previous experiments.

Treatment with anti-ASGM-1 antiserum significantly reduced the splenomegaly on 

day 2 of the disease (Fig. 10.3a), but by day 10, treated mice showed significantly 

greater splenomegaly than untreated animals (Fig. 10.3b). Anti-ASGM-1 

antiserum had no effect on the size of control spleens at either time point (Fig.

10.3a & b).

ill) Immune function

a) Spontaneous 'ex-vivo' proliferation

In parallel with the splenomegaly observed in unmanipulated B6 => BDFi
■V;.

mice, spleen cells from these animals displayed an enhanced ability to proliferate 

spontaneously 'ex-vivo' on both day 2 (Fig. 10.4a) and day 10 (Fig. 10.4b).

Treatment with anti-ASGM-1 significantly reduced the spontaneous proliferation
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observed on day 2 (Fig. 10.4a) and significantly increased that observed on day 

10 (Fig. 10.4b).

On both days 2 and 10, spleen cells from control mice which had received 

anti-ASGM-1 anti-serum showed significantly increased levels of spontaneous 

proliferation compared with cells from unmodified control mice (Figs, 10.4a and 

10.4b).

b) Proliferative responses to Con A stimulation

On day 10, spleen cells from unmanipulated B6 => BDFi mice showed 

similar proliferative responses to Con A stimulation to control cells (Fig. 10.5). 

This was in contrast to my findings in previous experiments, where the day 10 

Con A responses of B6 => BDFi mice were suppressed and again highlighted the 

less aggressive GvHD in this experiment. Anti-ASGM-1 treatment significantly 

reduced the Con A responses of these mice, although it did not affect those of cells 

from control animals (Fig. 10.5).

c) Proliferative responses to LPS stimulation

As in previous experiments, on day 10, spleen cells from unmanipulated 

B6 => BDFi mice showed significantly reduced proliferative responses to LPS 

stimulation compared with control cells. This immunosuppression was enhanced 

further by treatment with anti-ASGM-1, but the antibody did not affect the LPS 

responses of cells from control animals (Fig. 10.6).
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10.8a). By day 10, however, the levels produced by cells from B6 => BDFi mice 

were similar to those of controls (Fig, 10.8b). At both times, this IFN-y

produced by Con A stimulated control cells on either day 2 (Fig. 10.8a) or day 10 

(Fig. 10.8b).

2 0 6

iv) Cytokine production 

IFN-y

a) Spontaneous

Cells from unmodified B6 => BDFi mice spontaneously produced high 

levels of IFN-y on days 2 (Fig. 10.7a) and 10 (Fig. 10,7b). Treatment with anti- 

ASGM-1 did not significantly affect this at either time point (Figs. 10.7a & b). 

However, the results on day 2 were rather difficult to interpret, as spleen cells 

from both unmodified and anti-ASGM-1 treated control mice produced IFN-y 

spontaneously at levels much higher than usually seen (Fig. 10.7a). The reasons 

for this are unclear and it did not occur on day 10 (Fig. 10.7b).

b) Con A stimulated

On day 2, cells from unmodified B6 => BDFi mice produced significantly 

enhanced levels of IFN-y in response to Con A compared with control cells (Fig.

*

production was unaffected by anti-ASGM-1 antiserum treatment (Figs. 10.8a &

b). Furthermore, anti-ASGM-1 treatment did not affect the levels of IFN-y

IL-2

IL-2 was not produced spontaneously by cells from any group (data not 

shown).

On both days 2 and 10, cells from untreated B6 => BDFi mice produced 

significantly lower levels of IL-2 in response to Con A stimulation than control 

cells (Fig. 10.9a & b). At both time points, treatment with anti-ASGM-1
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antiserum significantly lowered IL-2 production by B6 => BDFi cells even further 

(Fig. 10.9a & b) and also reduced the levels of IL-2 produced by Con A
'3:;:

stimulated control cells (Fig. 10.9a & b).
'S:

%
IL-10

IL-10 was not produced spontaneously by cells from any group (data not 

shown).

On both days 2 and 10, cells from untreated B6 => BDFi mice produced 

significantly higher levels of IL-10 in response to Con A stimulation compared 

with control cells (Fig. 10.10a & b). Once again, this was in contrast to my 

previous findings, since in other experiments B6 => BDFi cells and control cells
1 '

produced similar levels of Con A stimulated IL-10. The reason for this disparity

was unclear, but it should be noted that the levels of IL-10 produced by both 

groups in this study were very low. At both time points, treatment with anti- 

ASGM-1 antiserum did not affect IL-10 levels produced by either group (Fig.

10.10a &b).

IL-5

IL-5 was not produced spontaneously by cells from any group (data not 

shown).

On day 2, cells from untreated B6 => BDFi mice produced significantly 

higher levels of IL-5 in response to Con A stimulation compared with control cells #

(Fig. 10.11a). Anti-ASGM-1 treatment did not significantly affect this (Fig.

10.1 la). On day 10, the level of IL-5 produced by cells from both untreated and 

anti-ASGM-1 treated B6 => BDFi mice were below the level of detection (Fig.

10.11b).

Anti-ASGM-1 treatment significantly increased the levels of IL-5 produced 

by Con A stimulated control cells on day 2 (Fig. 10.1 la), but had no effect on the 

levels observed on day 10 (Fig. 10.11b).
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v) CTL Activity

As before, untreated B6 => BDFi mice showed high levels of splenic CTL 

activity on day 10 of acute GvHD (Fig. 10.12). This was consistently reduced at 

every E:T ratio by anti-ASGM-1 treatment, but it should be noted that these treated 

mice still showed marked anti-host CTL activity (Fig. 10.12).

Summary and Conclusions

The results detailed in this chapter confirm that NK cell activation is a 

particular feature of the early stages of acute GvHD. Increased splenic NK cell 

activity was observed within 4 hours of the induction of acute GvHD in B6 => 

BDFi mice and this remained elevated throughout the first week of disease. In 

contrast, although increased NK cell activity was also observed in DBA/2 => 

BDFi mice with chronic GvHD, this was not evident until day 4 of the disease 

and was less marked than the levels observed in mice with acute GvHD. The exact 

role of NK cells in the development of acute GvHD was not straightforward and

several effects were left unclear by my study, particularly since the GvHD was

less aggressive than normal. Weight loss and mortality in B6 => BDFi GvHD 

were not dependent on increased NK cell activity early in the disease. Indeed, my 

results suggested that NK cell depletion may slightly increase the intensity of 

systemic GvHD since weight loss and mortality were higher in the treated group, 

as was the degree of T and B cell suppression. In contrast, anti-ASGM-1 reduced 

the early (day 2) lymphoid hyperplasia in B6 => BDFi mice, but this effect was 

transient. Anti-ASGM-1 treatment had a limited effect on immune function in 

control mice, although it increased the spontaneous proliferation of control cells on 

both days 2 and 10. The reason for this increase was not clear, but was consistent 

with reports suggesting ASGM-1 is expressed on a population of cells with 

'suppressor-activity' [170]. However, anti-ASGM-1 treatment did not affect the 

Con A or LPS responses of control cells.

208



!
I

Anti-ASGM-1 treatment had very little effect on cytokine production by 

either B6 => BDFi or control cells. In particular, it did not affect the levels of 

IFN-y produced by cells from B6 => BDFi mice either spontaneously, or in 

response to Con A. Anti-ASGM-1 did not affect IL-10 or IL-5 production by cells 

from B6 => BDFi mice at either time point and similarily, did not affect IL-10 

production by control cells. It did however cause a striking increase in control IL- 

5 levels on day 2. The reason for this was unclear and by day 10 it was no longer 

evident. Finally, consistent with previous reports that anti-ASGM-1 antibody

treatment prevents the full development of alloreactive CTL in vitro [171], I found 

that B6 => BDFi mice given anti-ASGM-1 in vivo showed somewhat reduced
■|

CTL activity compared with NRS treated B6 => BDFi mice. However, it should 

be noted that there was residual NK cell activity in the spleens of anti-ASGM-1 

treated B6 => BDFi mice.

In conclusion, a single injection of anti-ASGM-1 antiserum on day -1 of 

acute GvHD had little consistent effect on either the progression of the disease or 

the cytokines produced during its course. Most importantly, my results suggested 

that NK cells did not seem to be a major source of IFN-y during acute GvHD.

Although there was residual NK cell activity in anti-ASGM-1 treated B6 => BDFi 

mice, these findings suggest that NK cells are not involved in the initial 

polarisation of acute vs chronic GvHD.
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Fig. 10.1. Kinetics of NK cell activation in acute and ch ron ic  

GvHD.

Splenic NK cell activity in BDFi mice with acute or chronic GvHD. The results 

are shown as the % cytotoxicity against YAC-1 target cells from quadruplicate 

assays measured at an E : T ratio of 100: 1, using spleen cells pooled from 3 mice 

per group.
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Fig, 10.2. Effects of anti-ASGM-1 treatment on splenic NK cell 

activity

The results show the effects of a single injection of anti-ASGM-1 antiserum on 

NK cell activity in control BDFi mice and BDFi mice given 10  ̂B6 spleen cells 

i.v. The results are shown as the % cytotoxicity against YAC-1 target cells from 

quadruplicate assays measured at E : T ratios from 50 : 1 to 12.5 : 1, using spleen 

cells pooled from 3 mice per group on day 2 of GvHD.
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SPLEEN INDEX 
4-1

a

2 -

0
Acute GvHD 

+ NRS
Acute GvHD + Anti-ASGM-1 Control + Anti-ASGM-1

8-1
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0

b

Acute GvHD 
+ NRS

Acute GvHD + Anti-ASGM-1 Control + Anti-ASGM-1

Fîg. 10.3. Effects of anti-ASGM-1 treatment on splenomegaly in 

acute GvHD.

The results show the effects of a single injection of anti-ASGM-1 antiserum on 

splenomegaly in BDFi mice given 10  ̂B6 spleen cells i.v. and are the mean 

spleen indices ± 1 SD for 3 mice per group on day 2 (Fig. 10.3a) and day 10 (Fig. 

10.3b) of disease. (* p < 0.05 vs unmodified acute GvHD)
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A cute GvHD C o n tro l

Fig. 10.4. Effects of anti-ASGM-1 treatment on spontaneous 'ex-

viva' proliferation in acute GvHD.

The results show the effect of a single injection of anti-ASGM-1 antiserum on the 

spontaneous proliferative capacity of splenocytes from BDFi mice given 10  ̂B6

spleen cells i.v. and are the mean uptake of 3H-TdR ± 1 SD after 4 hours in

quadruplicate cultures using spleen cells pooled from 3 mice per group on day 2 

(Fig. 10.4a) and day 10 (Fig. 10.4b) of disease. (* p < 0.001 vs unmodified 

controls; t  P < 0.005 t t  P < 0.001 vs unmodified acute GvHD)
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Fig. 10.5. Effects of anti-ASGM-1 treatment on Con A induced 

proliferation in acute GvHD.

The results show the effect of a single injection of anti-ASGM-1 antiserum on the 

proliferative capacity of splenocytes from BDFi mice given 10  ̂B6 spleen cells 

i.v. in response to stimulation with lOpg/ml Con A. The data are the mean uptake 

of 3H-TdR ± 1 SD after 48 hours in quadruplicate cultures, using spleen cells 

pooled from 3 mice per group on day 10 of acute GvHD. (t p < 0.005 vs 

unmodified acute GvHD)
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Fig. 10.6. Effect of anti-ASGM-1 treatment on LPS induced 

proliferation in acute GvHD.

The results show the effect of a single injection of anti-ASGM-1 antiserum on the 

proliferative capacity of splenocytes from BDFi mice given 10® B6 spleen cells 

i.v. in response to stimulation with lOpg/ml LPS. The data are the mean uptake of

3H-TdR ± 1 SD after 24 hours in quadruplicate cultures, using spleen cells pooled 

from 3 mice per group on day 10 of GvHD. (* p < 0.001 vs unmodified controls; 

t  p < 0.001 vs unmodified acute GvHD)
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Fig. 10.7. Effects of anti-ASGM-1 treatment on spontaneous IFN-y 

production in acute GvHD.

The results show the effect of a single injection of anti-ASGM-1 antiserum on 

spontaneous IFN-y production in mice given 10  ̂B6 spleen cells. Splenocytes

were cultured in medium for 48 hours on day 2 (Fig. 10.7a) and day 10 (Fig. 

10.7b) of acute GvHD before the supernatants were assayed for the presence of 

IFN-y by ELISA. The results shown are means ± SD of triplicate samples. (* p < 

0.05 vs unmodified controls).
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Fig. 10.8. Effects of anti-ASGM-1 treatment on Con A induced 

IFN-y production in acute GvHD.

The results show the effect of a single injection of anti-ASGM-1 antiserum on 

IFN-y production in BDFl mice given 10® B6 spleen cells i.v. Splenocytes were 

cultured with lOpg/ml Con A for 48 hours on day 2 (Fig. 10.8a) and day 10 (Fig. 

10.8b) of acute GvHD before the supernatants were assayed for the presence of 

IFN-y by ELISA. The results shown are means ± SD of triplicate samples. (* p < 

0.001 vs unmodified controls)
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Fig. 10.9. Effects of anti-ASGM-1 treatment on IL-2 production in 

acute GvHD.

The results show the effect of a single dose of anti-ASGM-1 antiserum on IL-2 

production in BDFi mice given 10® B6 spleen cells i.v. Splenocytes were cultured 

with of lOpg/ml Con A for 24 hours on day 2 (a) and day 10 (b) of acute GvHD 

before the supernatants were assayed for the presence of IL-2 by ELISA. The 

results shown are means ± SD of triplicate samples. (* p < 0.001 vs unmodified 

controls; t  P < 0,001 vs unmodified acute GvHD)
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Fig. 10,10. Effects of anti-ASGM-1 treatment on IL-10 production 

in acute GvHD.

The results show the effect of a single dose of anti-ASGM-1 antiserum on IL-10 

production in BDFi mice given 10® B6 spleen cells i.v. Splenocytes were cultured 

with lO^ig/ml Con A for 48 hours on day 2 (Fig. 10.10a) and day 10 (Fig. 

10.10b) of acute GvHD before the supernatants were assayed for the presence of 

IL-10 by ELISA. The results shown are means ± SD of triplicate samples. (* p < 

0.(X)5 ** p < 0.001 vs unmodified controls)
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Fig. 10.11. Effects of anti-ASGM-1 treatment on IL-5 production in 

acute GvHD.

The results show the effect of a single dose of anti-ASGM-1 antiserum on IL-5 

production in BDFi mice given 10® B6 spleen cells i.v. Splenocytes were cultured 

with lOpg/ml Con A for 96 hours on day 2 (Fig. 10.11a) and day 10 (Fig. 

10.11b) of acute GvHD before the supernatants were assayed for the presence of 

IL-5 by ELISA. The results shown are means ± SD of triplicate samples. (* p < 

0.005 ** p<  0.001 vs unmodified controls)
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Fig. 10.12. Effects of anti-ASGM-1 treatment on CTL-activity in 

acute GvHD.

The results show the effect of a single injection of anti-ASGM-1 antiserum on 

splenic CTL activity in BDFi mice given 10  ̂B6 i.v. and are the % cytotoxicity 

against P815 target cells from quadruplicate assays measured at effector : target 

(E:T) ratios from 100 ; 1 to 12.5 : 1, using spleen cells pooled from 3 mice per 

group on day 10 of GvHD.

2 2 1



CHAPTER 11

DISCUSSION

The results presented in this thesis have confirmed and extended previous 

findings on the distinct forms of immunopathology which develop in BDFi mice 

with acute and chronic GvHD induced by B6 or DBA/2 parental cells respectively. 

In addition, my results have demonstrated the importance of individual cytokines 

in polarising the allogeneic immune response and determining its pathological 

outcome. These studies of the cellular and molecular interactions involved in 

murine GvHD have implications for understanding the pathogenesis of clinical 

GvHD and the development of specific therapy following BMT. Furthermore, 

they provide an important insight into the regulation of immune responses during 

other immunologically-mediated diseases.

KINETICS OF ACUTE AND CHRONIC GvHD

The results described in Chapter 3 showed that both acute and chronic
.,.:S

forms of GvHD were characterised by an early period of immune activation. 

However, this stimulatory activity persisted throughout chronic GvHD, but in

acute GvHD was replaced rapidly by a destructive, suppressive phase.
ï?3..

culminating in weight loss and death in the majority of animals. My results also 

showed that the distinct outcomes of the GvHR were parallelled by different 

patterns of cytokine production, with high levels of IFN-y produced 

spontaneously by cells from B6 =«> BDFi mice, while enhanced IL-5 and IL-10 

were produced by Con A stimulated DBA/2 => BDFi cells. Although the different 

forms of pathology which occur in this model of GvHD have been described 

previously [21,23,24, 27], my study was the first to examine such a wide variety 

of in vivo and in vitro indices of disease over a detailed period of time. In
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addition, this was the first study to correlate systemic features of acute and chronic 

GvHD with cytokine production.

223
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Systemic Features of GvHD

The early proliferative period of both diseases was characterised by 

splenomegaly, increased numbers of splenic lymphocytes and enhanced 

spontaneous proliferative responses of GvHD cells 'ex-vivo\ B6 cells induced a 

more aggressive hyperplastic phase than DBA/2 cells, particularly between days 7 

to 10, when the splenomegaly and spontaneous proliferative response of acute
!■

GvHD mice reached a peak and was 2-3 fold higher than that of mice with chronic 

GvHD. Although 1 did not determine the phenotype and origin (donor vs host) of

the proliferating cell populations, previous work implicates the involvement of a 

variety of cell types including donor CD4+ and CD8+ T cells [30], host B cells

1

[124] and possibly haemopoietic stem cells. Of particular note was the fact that the
r

most striking differences between the spontaneous proliferation of B6 ==> BDFi 

and DBA/2 => BDFi cells occurred on day 10, when there was a marked 

expansion of donor CD8+ T cells in the former group. Thus at this time in B6 =>

B D F l mice, the spontaneous response may be dominated by proliferating donor 

CD8+ T cells.

This was also the time after which mice with acute GvHD exhibited 

lymphoid involution, dramatically reduced lymphocyte numbers and suppressed 

proliferative responses. This association between destructive GvHD and the |

preferential expansion of donor CD8+ T cells during acute, but not chronic GvHD, 

has been described in numerous previous studies [24, 27-29, 31]. However, the 

role of CD8+ T cells in the consequences of acute GvHD is controversial. Acute

i 
-
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GvHD is critically dependent on the presence of donor CD8+ T cells in the donor 

inoculum [30] and the differences between acute and chronic GvHD have been 

attributed to the fact that DBA/2 mice have low numbers of CD8+ T cells and
%

exhibit a particularly low anti-BDFi precursor CTL (pCTL) frequency compared



with mice of the B6 background [31]. Although my finding that CTL only 

appeared in acute GvHD was consistent with this idea, other studies suggest that 

this is unlikely to be the only factor accounting for the different capacities of 

DBA/2 and B6 CD8+ T cells to expand and elicit anti-host CTL activity in BDFi 

mice [130, 131]. In addition, as I discuss below, acute GvHD-associated tissue 

destruction is not always associated with anti-host CTL activity [24, 27, 83].

When T cell function was assessed by examining the ability of GvHD 

spleen cells to proliferate to the T cell mitogen Con A, 1 found that chronic GvHD 

mice showed normal Con A responses throughout the course of disease and no 

loss of function was evident. In contrast, cells from acute GvHD mice showed 

slightly elevated proliferation until day 4 and then rapidly lost responsiveness. 

This indicated that while the spontaneous response of acute GvHD cells was 

reaching a peak on days 7-10, the Con A response was already suppressed below 

control levels. This may be explained by the fact that in other in vitro assays of T 

cell function, previously activated T cells have been shown to undergo activation- 

induced cell death (or 'apoptosis’) when the TcR is crosslinked by polyclonal 

stimuli such as Con A [172]. Why a similar phenomenon was not observed when 

DBA/2 => BDFl cells were stimulated with Con A in vitro, was not clear, but may 

be related to the lower level of spontaneous proliferation exhibited by these cells. 

Enumeration of GvHD cells following Con A stimulation in vitro, or examining 

GvHD cultures for evidence of apoptosis would help confirm this possibility.

The loss of Con A responsiveness exhibited exclusively by B6 => BDFi 

mice has been described previously [51,71, 73, 84, 165] and has been attributed 

to various mechanisms including deletion of host reactive T cells [50], defective 

lymphopoiesis [51, 52, 173-175] and active suppression mediated by anti

proliferative cytokines such as IFN-y [71, 73]. Although defining the interactions 

underlying immune deficiency was beyond the scope of this inital study, it was 

interesting to note from my results that elevated IFN-y production correlated with 

the abrogated Con A responses of B6 => BDFi cells in vitro (see below).
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However, the fact that during the latter stages of disease, reduced T cell numbers 

were recovered from B6 => BDFi spleens compared with either DBA/2 => BDFi 

or controls, may also indicate a role for T cell deletion in vivo. Recent studies in 

GvHD suggest that host-reactive T cells may be killed by apoptosis [50, 51] and 

that both Fas/Fas ligand and perforin-dependent cytotoxic pathways are involved 

in the disease [176]. However, TNF-a can also cause T cell apoptosis [177,178] 

in synergy with IFN-y [179]. Since both are produced preferentially during acute 

GvHD [41, 61], it is therefore also possible that a cytokine-mediated killing 

pathway may contribute to T cell deletion in B6 => BDFi mice.

■ I»

Role of Cytokines In Acute and Chronic GvHD

When 1 started this work, several studies had been published which 

indicated that distinct patterns of T cell-derived cytokines were produced during 

acute and chronic GvHD in BDFi mice [42,46]. These experiments showed that 

levels of Thl cytokines were elevated during acute GvHD [41-43, 54], while Th2 

cytokine production was preferentially associated with the chronic form of disease
-

[42,46, 47]. However, these studies did not determine when polarisation of the T 

cell response occurred and more importantly, did not attempt to correlate cytokine 

production with individual aspects of the diseases. A critical finding of Chapter 3 

was therefore that the pattern of cytokines produced by acute and chronic GvHD 

mice had already started to diverge within the first 2 days of GvHD and by day 

10, when the two diseases were distinct entities, they were also characterised by 

completely different cytokine profiles.

By day 2 and throughout the first 10 days of acute GvHD, B6 BDFi 

cells produced elevated IFN-y both spontaneously and in response to stimulation

Î
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with Con A in vitro. Spontaneous and Con A induced cytokine levels in vitro 

provide different information regarding production in vivo. While spontaneous 

cytokine production indicates active secretion in vivo, Con A induced production 

provides a measure of lymphocyte priming [44]. It was therefore notable that in



my experiments, IFN-y was the only cytokine which could be detected in
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unstimulated cultures, where it was produced exclusively by B6 => BDFi cells.
:■

This is consistent with the observation of Troutt et al. that up to 70% of lymph

node cells from mice with acute GvHD contain IFN-y mRNA [54].

The elevated levels of IFN-y secretion were associated primarily with the 

early hyperplastic phase of systemic acute GvHD (days 0-10), an observation 

which has been confirmed in recent work by Rus et. al. [180]. Peak IFN-y levels 

in vitro were detected on day 10, which was when the acute GvHD progressed 

into the later destructive period of the disease. Together with the results of Chapter

8, these findings indicate a potential role for IFN-y in triggering the later 

pathological events characteristic of B6 => BDFi GvHD. Nevertheless, in 

common with production of other cytokines and the immune deficiency manifest

in B6 => BDFl mice, IFN-y was severely reduced late in acute GvHD.

Although IFN-y was the predominant cytokine secreted by B6 => BDFi 

cells, enhanced levels of IL-2 and IL-5 were also produced by Con A stimulated 

cells on day 2 of acute GvHD. The priming of these cytokines was lost rapidly 

however and after day 4, levels were either similar to, or below, control levels. 

The early and transient increase in Con A stimulated IL-2 production has been 

described previously by others [23, 45, 181] and, consistent with the role of IL-2 

as a T cell growth and survival factor [182], corresponded to the early activation 

and expansion of T cells in my study. In parallel, abrogated Con A induced IL-2 

levels occurred on day 7, when these cells began to show reduced Con A driven 

proliferative responses. Although these observations may be attributed to classical 

acute GvHD-associated immunosuppression, they are difficult to interpret 

definitively since it was also possible that increased IL-2 consumption by highly 

activated cells in vitro led to reduced IL-2 levels. This would be consistent with 

the fact that B6 => BDFi cells continued to show high levels of spontaneous

proliferation until day 10. Addition of soluble anti-IL-2 receptor (IL-2R) mAb to
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GvHD cell cultures would help differentiate between reduced production vs 

increased production.

On days 2 and 4, B6 => BDFi cells produced enhanced levels of the Th2 

cytokine, IL-5, as well as the Thl cytokine, IFN-y when stimulated with Con A in 

vitro. This was an important finding as it suggested that early in the disease, the 

immune response of B6 => BDFi mice was not completely polarised towards a 

T hl phenotype. IL-5 priming was lost from day 7 onwards, at the time when 

IFN-y levels were maximal, suggesting that the production of these cytokines is 

coordinately regulated in established acute GvHD. This is consistent with current
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views of Thl/Th2 cell development [132] and my later findings that neutralising 

IFN-y in vivo increased IL-5 levels during the early period of B6 => BDFi GvHD 

supports the view that the high levels of IFN-y actively suppress Th2 responses in

these mice. Despite the increase in IL-5 in acute GvHD, I did not find priming of 

the other Th2-associated cytokines IL-10 and IL-4. Although studies published 

when I was carrying out my research reported elevated levels of IL-4 mRNA in 

acute GvHD [180], these workers were also unable to detect IL-4 cytokine 

product in vitro. This may reflect rapid in vitro consumption of transiently 

produced cytokine [183, 184], and/or the relative insensitivity of the assays 

employed.

In contrast to the Thl-dominated response found in acute GvHD, a more 

mixed pattern of cytokine production was seen during the initial phase of chronic 

GvHD. Although there was no spontaneous production of any cytokine by DBA/2 

=s> BDFl cells at any time, from day 4 onwards, these cells were primed to 

produce high levels of IL-2, IL-5 and IL-10 when stimulated with Con A in vitro. 

In addition, there was some priming of IFN-y production in the first 16 days of 

chronic GvHD, although the levels were markedly lower than those associated 

with the acute disease. Thus, the cytokine response of chronic GvHD mice was 

not completely polarised towards a Th2 phenotype at this time. However, it 

should be noted that the level of IFN-y priming exhibited by DBA/2 => BDFi cells

f



was considerably lower than that shown by B6 => BDFi cells, and clearly 

insufficient to provoke the immunosuppression and destructive pathology
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associated with acute Thl-mediated GvHD.
In parallel with the persistent lymphoid stimulation in DBA/2 => BDFi 

mice, cells from these mice were primed to produce enhanced levels of IL-2 when 

stimulated with Con A in vitro at all time points. This contrasts with the 

suppressed IL-2 production in B6 => BDFi mice and correlated with my finding 

that the Con A induced proliferative response of chronic GvHD mice was normal 

at all time points examined. Furthermore, this is consistent with IL-2 being a 

product of precursor Th cells, rather than Thl cells [132].

The chronically elevated levels of the Th2 cytokines IL-5 and IL-10 

correlated with the persistent B cell activation and increased imunoglobulin levels 

which I observed in DBA/2 => BDFi mice. However, once again, I was unable to 

detect any IL-4. This was somewhat surprising given that Th2 responses are 

critically dependent on the presence of IL-4 [134, 135, 141] and appears to 

contrast with studies showing that the high levels of serum immunoglobulin, 

elevated proteinuria and death observed during chronic GvHD can be reduced by 

anti-IL-4 antibody in vivo [48,128]. Although others have also been unable to 

detect IL-4 production in chronic GvHD cultures using ELISA [180], the

upregulation of MHC class II on chronic GvHD spleen cells has been shown to be 

IL-4-dependent [46]. I decided to examine cytokine protein production rather than 

mRNA, since mRNA expression does not necessarily correlate with secretion. 

However, my results show that ELISA may not be the most appropriate means of 

assessing IL-4 production in vivo, and in future studies, I would utilise alternative 

detection systems such as ELISPOT, immunohistochemistry, or intracellular 

cytokine staining to detect IL-4.
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B Cell Activation in GvHD

Between days 1-10 of GvHD, I found that spleen cells from both B6 =>

BDFl mid DBA/2 => BDFi mice exhibited enhanced responsiveness to the B cell 

mitogen, LPS. At this time, both groups of mice also showed markedly increased 

levels of serum IgG and exhibited anti-ds DNA antibodies. From these results, B 

cell activation appeared to be an event common to the early period of both forms of 

disease, in agreement with studies showing that host B cell numbers initially 

increased in the lymphoid tissue of both acute and chronic GvHD mice [23]. After
.. i

day 10, however, I found that B cell function in acute and chronic GvHD mice

•Idiffered dramatically. The LPS response of B6 => BDFi cells was virtually absent 

by day 14, as were levels of serum IgG and anti-ds DNA antibodies.

Furthermore, there was no evidence of oedema or antibody-mediated kidney 

pathology in the few long-term surviving B6 => BDFi mice, consistent with 

previous reports [33]. Thus the brief B cell hyperplasia in these mice was 

insufficient to provoke ICGN. In contrast, the hyperresponsiveness of DBA/2 =>

BD Fl cells to LPS persisted for the duration of the study, their serum 

immunoglobulin levels continued to increase and several of these mice developed 

oedema and died from ICGN.

The reason why B cell activation and antibody production persisted during
■

chronic GvHD, yet declined after day 10 of the acute disease, is the subject of 

much debate. Early studies showed that the B cell population of DBA/2 => BDFi 

mice continued to expand, whereas host B cell numbers were dramatically reduced 

during the latter stages of acute GvHD. This removes the source of pathogenic 

antibodies and risk of autoimmunity [23,31]. Because anti-host CTL activity was 

readily detectable in B6 => BDFi mice, but not DBA/2 => BDFi mice at this time, 

it was assumed that CTL destroyed B cells during acute GvHD. In agreement with 

this, I found that the onset of B cell suppression coincided with expansion of 

CD8+ T cells during acute GvHD. However, it is also possible that the loss of B 

cell function during acute GvHD reflected the polarised cytokine response. It is
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now well established that while Th2 cytokines support the development of 

humoral immunity, Thl cytokines actively inhibit antibody responses by reducing 

priming for Th2 cytokine production [132,1851. Thus, the persistently high levels 

of IL-5 and IL-10 found in chronic GvHD correlated with B cell hyperplasia and
-

immunoglobulin production. In contrast, although acute GvHD mice initially 

showed B cell hyperplasia and enhanced production of IL-5, B cell function and 

priming for IL-5 was lost when IFN-y levels became maximal. The kinetics of 

these events suggests that IFN-y plays a role in suppressing B cell responses 

during B6 => BDFi GvHD. Further support for IFN-y as a regulator of B cell 

responses during GvHD is provided by the work of Umland et ai which shows 

that elevated serum IgG and IgE, proteinuria and death from chronic GvHD can be 

reduced by exogenous IFN-y [128]. Although my later results showed that 

neutralising either IL-12 or IFN-y had little effect on the reduced LPS responses of 

B6 => BDFl mice, the possibility of incomplete cytokine neutralisation cannot be 

excluded. Therefore, whether CTL, or cytokines such as IFN-y and TN F-a 

mediate B cell death in acute GvHD could be addressed directly by examining the 

effect of using either IFN-y gene Knockout (KO) mice as a source of donor cells, 

or inducing GvHD in IFN-y or TNF-a receptor KO recipients.

Therefore this initial study confirmed previous reports that differential 

activation of CD4+ Th subsets may mediate the distinct systemic features of acute 

and chronic GvHD [42, 46]. However, I also found that the polarisation of the 

cytokine response occurred very rapidly after transfer of donor cells and I went on 

to examine how this might occur.

1

THE ROLE OF IL-12 IN GvHD

As IL-12 has been shown to be important in regulating Thl/Th2 cell
.

development, I focused on its role in polarising GvHD. In my first series of 

experiments, I examined the effect of a single dose of neutralising anti-IL-12 

polyclonal antibody given one day before induction of acute and chronic GvHD.



inflammatory cells [58], reduced early priming for IFN-y may be responsible for

The rationale for this limited treatment period was that in a variety of systems, Th 

cell responses could be modified by manipulating the cytokine environment in 

which initial priming occurs [78, 82, 134, 135, 164]. My results indicated that 

although early depletion of IL-12 reduced the intensity of the initial period of acute 

GvHD, it did not affect subsequent disease progression.

Acute GvHD

A single injection of anti-IL-12 antibody reduced the splenomegaly, 

elevated NK cell activity and enhanced spontaneous and mitogenic responses 

observed on day 2 of acute GvHD. It also dramatically reduced the early priming 

of IFN-y and IL-2 on day 2 of disease and increased priming of the Th2 cytokine 

IL-10. These effects were all consistent with the role of IL-12 as an enhancer of 

NK cell-mediated cytotoxicity [118, 120, 121, 150] and with its ability to induce 

IFN-y production by T and NK cells [121, 151]. However, the reason why anti- 

IL-12 reduced the early splenomegaly in B6 =» BDFi mice was less clear and may 

be related to the down-regulated IFN-y levels observed in antibody treated mice.

Since IFN-y plays an important role in the recruitment and activation of

lowering the level of splenomegaly. This hypothesis was supported by my studies 

on the role of IFN-y in acute GvHD (Chapter 8), which showed that the IL-12 

induced increase in splenomegaly during GvHD in DBA/2 => BDFi mice, could 

be reduced by coadministration of neutralising anti-IFN-y antibody. Furthermore, 

in the present study, when IFN-y priming subsequently returned in anti-IL-12 

treated B6 BDFi mice on day 10, a simultaneous increase in spleen size was 

observed. Alternatively, since a noted biological effect of IL-12 in vivo is to 

provoke extramedullary haemopoiesis in the liver and spleen, resulting in 

splenomegaly [121], anti-IL-12 may inhibit this effect during acute GvHD.

Despite these findings early in disease, the effects of anti-IL-12 had
■

disappeared by day 10. This was unexpected as IL-12 is usually held to be critical
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for the permanent differentiation of Thl-type responses from uncommitted 

precursor CD4 T cells [78, 186]. The most likely explanation for my results is 

that the temporal window for Th cell phenotype comittment in acute GvHD 

exceeded the pêriod of IL-12 neutralisation afforded by antibody treatment. I 

therefore went on to examine whether repeated administration of anti-IL-12 during 

the first week of acute GvHD had a more dramatic effect on disease progression.

Administration of anti-IL-12 to B6 => BDFi mice until day 8 after donor cell 

transfer not only down-regulated several of the early proliferative features of acute 

GvHD, but also produced a marked reduction in the later pathological 

consequences of the disease. As with mice given a single injection of anti-IL-12, 

these mice had reduced levels of NK cell activity, IFN-y production and 

splenomegaly compared with unmanipulated B6 => BDFi mice early in disease.

However, anti-IL-12 had no effect on spontaneous proliferation and the degree of 

splenomegaly was unaltered after day 10, suggesting that anti-IL-12 may have 

prolonged the prolferative phase of disease. This was supported by the fact that 

anti-IL-12 treated mice did not show the lymphoid involution and reduced 

spontaneous and Con A proliferative responses evident in unmodified acute 

GvHD mice during the latter stages of disease.

Mice surviving after repeated neutralisation of IL-12 had consistently 

reduced IFN-y production and increased IL-10 and IL-5 levels both at the early 

time points and later in the study. This contrasted with the temporary effects of a 

single injection of anti-IL-12 and indicates that the presence of IL-12 is required 

throughout the first week of disease for maximal production of IFN-y. Some IFN- 

y production remained in mice given anti-IL-12 repeatedly, although it was not 

clear if this reflected IL-12-independent IFN-y, or the transience of the antibody 

effect. Although the residual levels of IFN-y were insufficient to provoke lethal 

pathology, they may explain why these mice retained some of the proliferative 

alterations of acute GvHD.
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Anti-IL-12 treatment prevented weight loss and mortality for up to 18 

weeks and permitted full repopulation with donor B6 lymphocytes. However, 

engraftment of donor CD4+ T cells appeared to occur more gradually in anti-IL-12 

treated B6 =» BDFi mice than in unmodified GvHD mice. This was particularly 

evident on day 70 of the GvHD, when only 30% of the CD4+ T cell population in 

anti-IL-12 treated GvHD mice was donor-derived, compared with 96% in 

unmodified B6 => BDFi animals. Since IL-12 synergises with cytokines such as 

IL-3 and steel factor to stimulate the proliferation and differentiation of early 

lymphohaemopoietic progenitors [187,188], blockade of IL-12 may have reduced 

the rate of donor stem cell haemopoiesis and therefore slowed down the 

repopulation process. However, anti-IL-12 did not adversely affect repopulation 

by donor CD8+ T cells and both T cell compartments were fully replaced by 

donor-derived cells by day 130. Complete repopulation of the recipient immune 

system by donor cells in the absence of overt pathology would be consistent with 

the development of tolerance to host alloantigen, as previously described in 

survivors of acute GvHD [33, 52]. This explanation seems more likely than the 

alternative possibility that there was complete destruction of host MHC expressing 

tissues, as anti-IL-12 treated mice did not display major pathology at any time.

However, it would have been interesting to determine directly whether the T cells 

which had repopulated anti-IL-12 treated B6 => BDFi mice were tolerant to Fi
:

alloantigen in the long-term by examining the ability of T cells from these mice to 

respond to BDFi stimulator cells in an MLR in vitro. Nevertheless, the fact that 

chimeric mice had normal proliferative responses to Con A and did not succumb to 

opportunistic infections while housed in standard animal house conditions, shows 

that short-term IL-12 blockade allows full and long-term recovery of immune 

function.

Despite inhibiting the lethal outcome of the disease, anti-IL-12 was unable 

to significantly reverse the suppressed B cell responses or reduce the anti-host 

CTL activity normally found in B6 => BDFi mice. These findings may be related.
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as others have suggested that the profound B cell immune deficiency during acute 

GvHD is at least partially due to CTL-mediated destruction of host B cells [23, 

31]. My results also indicate that the mechanisms of B and T cell suppression 

during acute GvHD may be distinct, since IL-12-dependent Thl cytokines appear 

to be important in abrogating T cell responses, but are less involved in B cell 

suppression. Similar results have been obtained by others [71] and are consistent 

with the more dramatic effect of anti-IFN-y mAb on T cell function, compared 

with B cell function, I found in Chapter 8. My observation that anti-IL-12 treated 

B6 ==> BDFl mice survived in the presence of high levels of specific cytotoxic 

activity also raises important questions about the mechanisms of tissue pathology 

and mortality in acute GvHD, as previous reports have suggested that mortality in 

B6 => BDFl mice is dependent on activation of CD8+ anti-host CTL [31]. 

Instead, my results agree with studies in which there was no correlation between 

anti-host CTL activity and mortality or intestinal damage in acute GvHD [24, 27, 

83] and suggest that anti-IL-12 may prevent immunopathology by down- 

regulating IFN-y production and/or by promoting preservation of T lymphocyte 

function in these animals, hence reducing their susceptibility to secondary 

infections. Furthermore, although exogenous IL-12 facilitates antigen-specific 

CTL responses in normal mice [121], the results of my study showed that IL-12 

was not essential for anti-host cytotoxicity during acute GvHD. The fact that IL-12 

KG mice have also recently been reported to mount normal allogeneic CTL 

responses [189], supports my finding that IL-12 is not critical for this aspect of 

cell-mediated immunity.

The reduced levels of IFN-y and increased IL-10 and IL-5 production 

observed in anti-IL-12 treated B6 => BDFi mice, suggested that anti-IL-12 may be 

mediating its protective effect during acute GvHD by polarising the CD4+ 

alloresponse towards a Th2 phenotype, similar to that observed during chronic, 

autoimmune GvHD. Furthermore, despite a limited capacity to reverse the 

suppressed LPS responses of B6 => BDFi mice early in acute GvHD, anti-IL-12
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treated B6 => BDFi mice then had enhanced LPS responses in the longer term. 

Previous reports showed that mice which recover from unmodified acute GvHD 

develop a mild stimulatory disorder termed "secondary chronic GvHD", which is 

characterised by a degree of lymphoid stimulation and autoantibody production 

[28, 58]. Taken together, these observations raised the possibility that anti-IL-12 

treated long-term survivors might develop the B cell hyperreactivity and antibody- 

mediated kidney pathology associated with chronic GvHD. Although my anti-IL- 

12 treated mice had mildly elevated total serum IgG and IgE, these levels were 

severalfold lower than those associated with chronic GvHD in DBA/2 BDFi 

mice. Anti-IL-12 treated animals also remained healthy and neither light nor 

electron microscopy revealed evidence of the antibody-mediated renal pathology 

apparent in mice with chronic GvHD. The heightened response of B cells from 

anti-IL-12 treated animals when stimulated in vitro with LPS may therefore simply 

reflect the fact that these cells were resident in a milieu rich in Th2 cytokines and 

were therefore primed to respond avidly to B cell mitogens. However, this was 

clearly insufficient to provoke the consequences of a classical chronic GvHD in 

vivo. This may be because the anti-IL-12 treated acute GvHD mice had full donor 

chimerism, whereas in DBA/2 => BDFi mice there is persistence of host B cells 

and other lymphohaemopoietic cells. Allorecognition of host B cells by donor 

CD4+ T cells thus stimulates polyclonal B cell activation and the production of 

high levels of autoantibodies [39, 124, 126]. Although I did not confirm the 

absence of host B cells directly by assessing MHC expression on B cells in 

surviving anti-IL-12 treated B6 ==> BDFi mice, studies in unmodified B6 => BDFi 

mice show that newly generated donor-derived B cells appear in the spleens of 

recovering unmodified B6 ==> BDFi mice after 6-8 weeks and replace host cells 

[51].

In conclusion, the results from this study demonstrated that IL-12 

blockade is an effective therapy for murine acute GvHD. Anti-IL-12 antibody 

prevented lethal immunopathology whilst allowing the survival of sufficient
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donor-derived haemopoetic cells to permit full repopulation of the host by a 

functioning immune system. Although anti-IL-12 therapy prevented T hl- 

dependent lethality by permanently polarising the alloimmune response towards a 

Th2 phenotype, this did not result in the development of chronic GvHD-associated 

glomerulonephritis. In future studies, it would be important to directly assess the 

role of IL-12 in GvHD target organs such as the small intestine, liver and bone 

marrow by histological examination. In addition, since TNF-a causes cachexia 

during acute GvHD [65], IL-12 could indirectly enhance TNF-a release from 

activated m<j)S by increasing IFN-y levels. Whether increased serum TNF-a levels 

paralleled the increased weight loss and death in IL-12 treated B6 => BDFi mice 

would again be a subject for future studies.

Further support for the central role of IL-12 during acute GvHD was that 

administration of exogenous IL-12 exacerbated virtually all of the features of the 

systemic disease. Thus, IL-12 increased the level of splenomegaly and NK cell 

activity early in the disease and accelerated the onset of immunosuppression, 

weight loss and mortality found in established GvHD. One rather surprising effect 

of exogenous IL-12 was that it increased IL-10 levels in B6 => BDFi mice. Since 

IL-10 is a product of Th2 cells [53, 190, 191] and was initially defined as an 

inhibitor of Thl responses [192, 193] this result was difficult to explain. However 

others have also shown that i.p. injection of IL-12 can cause increased IL-10 gene 

expression [163, 194, 195] and have suggested that this serves as a homeostatic 

function to control an excessive Thl response. IL-12 did not increase either IFN-y 

production or CTL activity in B6 => BDFi mice, possibly because these responses 

were already maximal and the peaks may already have passed.

Chronic GvHD

In contrast to my findings in acute GvHD, neutralising IL-12 had little 

effect on the early phase of chronic GvHD. However, it did slightly augment 

several of the Th2-mediated aspects of the disease in the long-term. Thus, anti-IL-
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12 caused a further increase in the elevated serum IgE levels observed in treated 

DBA/2 => BDFl mice and increased the overall mortality rate associated with the 

chronic disease. In addition, the characteristic decline in serum IgG levels 

observed during the late stages of chronic GvHD, occurred more rapidly in anti- 

IL-12 treated DBA/2 => BDFi mice than in similar untreated animals. The ability 

of IL-12 to regulate Th2 responses has also been described in murine models of 

candidiasis, schistosomiasis, and toxoplasmosis [79, 152, 153, 194-196]. 

However, since others have shown that anti-IFN-y antibody also decreased serum 

immunoglobulin levels during chronic GvHD [128], anti-IL-12 may act indirectly 

to reduce Th2 cytokines via IFN-y down-regulation.

Administration of exogenous IL-12 induced an acute GvHD in DBA/2 = >  

BDFl mice identical to that found normally in B6 ==> BDFi recipients, with a
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characteristic biphasic pattern of early hyperplasia progressing to activation of 

CTL, immunosuppression and death. Furthermore, IL-12 converted the Th2 

cytokine profile associated with chronic GvHD into a Thl dominated response. 

The systemic disease provoked in DBA/2 BDFi mice given IL-12 was more 

aggressive than that observed in B6 => BDFi animals, with earlier and higher 

mortality rates. This may have reflected the effect of giving repeated high doses of 

exogenous IL-12, as opposed to the possibly lower, physiological levels induced 

in unmanipulated B6 => BDFi mice. However, it is important to note that the dose 

of IL-121 used was not toxic per se in control mice. One aspect of acute GvHD

I

not induced in DBA/2 => BDFi mice by IL-12 was enhanced NK cell activity on 

day 1. This was surprising in view of the reported stimulatory effect of IL-12 on

NK cell-mediated cytotoxicity [121]. The dose of IL-12 used was also insufficient 

to induce more than a slight increase in NK cell activity in either B6 BDFi or 

normal mice at this time, suggesting that the wrong time point was examined and 

more kinetic studies are indicated. The ability of exogenous IL-12 to elicit high 

levels of anti-host CTL activity in DBA/2 => BDFi mice contrasted with my own 

and other findings [189] that endogenous IL-12 is not required for allogeneic CTL

I



responses. Again, this may reflect differences between administration of

cell types produce IFN-y in response to IL-12 [121, 151]. As discussed above, I 

did not observe an increase in NK cell mediated cytotoxicity in IL-12 treated
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pharmacological doses of IL-12 vs the physiological function of the cytokine.

The acute GvHD induced in IL-12 treated DBA/2 => BDFi mice was, as 

expected, accompanied by a shift in the cytokine profile from a Th2 to a Thl 

phenotype, with extremely high levels of IFN-y production. A similar switch in 

cytokine pattern has been observed in other models of Th2 immunity modified by 

exogenous IL-12 [81, 194-196]. In DBA/2 => BDFi GvHD, this could reflect the 3#
S t im u la to r y  e f f e c t  o f  IL-12 o n  CD4+, CD8+ a n d /o r  NK c e l l s ,  s i n c e  e a c h  o f  t h e s e

DBA/2 => BDFl mice, suggesting that, at least on day 1 of GvHD, NK cells were 

not the source of the IL-12-induced IFN-y. However, it was important to note that 

on day 1, while IL-12 had a pronounced effect on spontaneous IFN-y levels in 

DBA/2 => BDFl mice. Con A induced IFN-y production was not significantly 

increased. A possible explanation for this was that T cells were not yet primed to 

produce increased IFN-y on day 1 of disease and a non-T cell was the main source 

of the cytokine at this time.

The differential role of IL-12 in acute and chronic GvHD was supported 

by the finding that although spleen cells from both groups produced enhanced 

levels of IL-12 p75 heterodimer when stimulated in vitro with LPS, this 

continued to increase for up to 10 days only in B6 => BDFi mice. The kinetics of 

IL-12 priming in GvHD thus closely resembled those of IFN-y production. I
Although I did not determine the source of IL-12 during the course of these 

studies, the main IL-12-producing cells in vivo are believed to be m<j)S [76, 122,

152], although other AFC types are emerging as alternative IL-12 producers e.g.

B cells and DCs [118, 158, 197]. It will therefore be very important for future 

studies to explore the source of IL-12 in acute GvHD using either 

immunohistochemistry, or by enriching different cell populations and examining 

their IL-12-producing potential. Furthermore, the relative contribution of host and
' 1



donor-derived cells to IL-12 production could be assessed in vivo by utilising 

appropriate combinations of IL-12 deficient and wild-type host and donor animals. 

Since both foims of GvHD are initiated by recognition of alloantigen,
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presumably expressed on the same host APC, the similar levels of IL-12 produced 

initially during acute and chronic GvHD were not surprising. The difference in the 

persistence of IL-12 production may therefore be secondary to differences in T cell 

IL-12 responsiveness between the two donor strains, as has been suggested in

Î

studies of genetic susceptibility to L. major infection in BALB/c and B10.D2 mice 

[139, 140, 198]. Here, T cells from the two strains are equally capable of 

initiating antigen specific T hl responses, but BALB/c T cells become 

unresponsive to IL-12 and acquire a Th2 phenotype, whereas B10.D2 T cells 

maintain IL-12 responsiveness and produce the IFN-y required for eliminating the 

parasite. The Th2 phenotype default which BALB/c mice exhibit can also be 

reversed by early administration of rm IL-12 [80,82,139]. Whether T cells from 

DBA/2 and B6 mice also have intrinsic differences in their ability to sustain IL-12 

responsiveness to BDFi alloantigen has not been investigated directly. There are, 

however, a number of pieces of circumstantial evidence which suggest that a 

similar genetic bias could be operative during BDFi GvHD. Firstly, it is known 

that DBA/2 mice preferentially elicit Th2-type responses [79, 140, 199], while B6 

mice are biased towards making Thl responses to a variety of stimuli [200, 201]. 

In addition, an inability to retain IL-12 responses would explain why DBA/2 => 

BDFl mice did not produce high levels of IFN-^, despite exhibiting some early 

IL-12 production. A disparity at the level of the donor T cells is also supported by 

studies which have attributed the dichotomy between acute and chronic GvHD in 

BDFl mice to differences in the ability of the donor CD8+ T cells to engraft and

generate CTL responses [23, 31]. Although my results show that CTL activity 

itself does not appear to be responsible for the lethal consequences of acute

GvHD, other aspects of CD8+ T cell function, such as IFN-y production, may 

also differ between B6 and DBA/2 mice and could be a manifestation of inherent



differences in the ability of these T cells to respond to IL-12. A final similarity 

between the BDFi model of GvHD and susceptibility to L. major is that the 

putative default Th2 response exhibited by BALB/c mice (in the case of L. major) 

and DBA/2 donor cells (in GvHD) could be overcome when rm IL-12 is given at 

the time of antigen contact, but not if IL-12 treatment was delayed [81, 82, 139, 

166].

If time had allowed, it would have been interesting to further examine the 

genetic basis for Th subset development during BDFi GvHD. T cells from B6 and 

DBA/2 mice could be analysed directly to determine whether they are genetically 

predisposed to mount preferential Thl and Th2 responses to in vitro stimulation 

with BDFl alloantigen respectively. In addition, the hypothesis that B6 and 

DBA/2 donor cells show differential responsiveness to IL-12 could be tested using 

a similar system as that utilised by Guler et al [139], in which T cells were 

stimulated with antigen for several days under neutral conditions in vitro and then 

restimulated in the presence or absence of IL-12. T cells which retained IL-12 

responsiveness during primary culture were thus primed to produce high levels of 

IFN-y when restimulated, whereas cells which lost IL-12 responsiveness did not 

show such priming.

My finding that IL-12 plays a pathological role in acute GvHD contrasts 

with recent work which shows that anti-IL-12 treatment can actually reverse the 

protective effect of combined CD80 and CD86 blockade in irradiated mice with 

acute GvHD [202]. However, this study used irradiated mice and the requirement 

for IL-12 in haemopoiesis [188, 203] may conflict with its enhancing effect on 

Thl-mediated immunopathology. Furthermore, the blockade of costimulatory 

pathways may exaggerate any immunosuppressive effect of anti-IL-12 in these 

mice. Others have also suggested that IL-12 was protective during certain models 

of GvHD [204]. Thus, a single, high dose injection of IL-12 was found to inhibit 

GvHD in lethally irradiated mice receiving allogeneic bone marrow. Although the 

mechanism of protection was not defined, it was suggested that this dose of IL-12
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may exhaust host-reactive CD8+ T cells and induce their deletion. A similar IL-12- 

induced phenomenon has also been described in murine viral models [205]. Why

lower doses of IL-12, as used in my studies may not lead to clonal deletion and its 

associated protection. Dose-response studies of IL-12 effects in B6 => BDFi mice 

would help address this possibility. However, most reports support my

potential therapeutic use of IL-12 blockade would therefore be to prevent Thl-

ROLE OF IFN-y IN XL-12-DEPENDENT ACUTE GvHD
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IL-12 did not similarly ameliorate acute GvHD in B6 => BDFi mice is unclear, 

although one possible critical difference may be the different dosing protocols
;

Utilised in my experiments compared to those of Sykes et al [204]. Thus, repeated,

demonstration that Thl cytokines, such as IFN-y, play a pathogenic role in B6 =>

BDFi mice [55, 57, 180]. Furthermore, as in the studies by Saito et al described 

above [202], in irradiated models, the requirement for IL-12 in haemopoiesis 

[188, 203] may be greater than in unirradiated mice. An important concept for the

mediated pathology, without preventing donor BM engraftment.
Î

The principal role of IL-12 is to regulate IFN-y production [123, 147] and 

the effects of anti-IL-12/rm IL-12 were paralleled by changes in IFN-y production. 

However, it is currently controversial as to how much of the effects of IL-12 in 

immune responses are secondary to IFN-y. I therefore examined the effects of
I!.a

neutralising IFN-y both during IL-12-dependent acute GvHD in B6 => BDFi mice 

and in IL-12 treated DBA/2 => BDFi mice with acute GvHD. My results showed 

that IFN-y played a significant role in many of the characteristic features of acute 

GvHD, including splenomegaly, immunosuppression, lymphoid involution, 

weight loss and mortality. Furthermore, IFN-y appeared to be involved in the 

regulation of the cytokine response during acute GvHD.

Overall, anti-IFN^ mAh treatment had similar beneficial effects on both 

forms of GvHD and the results supported a role for IFN-y both during the early 

proliferative phase and also later, when tissue destruction, weight loss and

I
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mortality were evident. In both models, anti-IFN-y mAb ameliorated the acute 

GvHD without reducing anti-host CTL activity, further indicating that CTL 

activity does not necessarily correlate with mortality. One difference between the 

effects of anti-IFN-y on the two models of acute GvHD, was that anti-IFN-y 

reduced the level of T cell suppression in unmodified B6 =>BDFi mice, but not in 

IL-12 treated DBA/2 =>BDFi mice. This may be because IL-12 treated DBA/2 => 

BDFi mice have a more aggressive GvHD, with higher mortality and IFN-y 

production. In addition, others have reported that immunosuppression in B6 => 

BDFi mice with acute GvHD may not be solely due to IFN-y and may also 

involve other factors such as TGF-p [71, 73], or deletion of host-reactive 

lymphocytes [50] and deficient lymphopoiesis [173-175]. These additional factors 

may therefore be more important in IL-12 treated DBA/2 ==>BDFi mice.

An interesting finding was that neutralisation of IFN-y in vivo did not 

reduce the stimulation of IFN-y production by GvHD. Indeed, IFN-y levels may 

even have been increased. This may reflect a compensatory mechanism activated 

in the absence of biologically active IFN-y, since similar over-production of IFN-y 

is observed in mice which are defective in the gene coding for the IFN-y cytokine 

receptor [206]. In addition, these findings suggest that the IL-12 induced IFN-y 

production during acute GvHD does not require endogenous IFN-y. This is in 

agreement with other in vitro [78] and in vivo [163,164] studies of Th phenotype 

development, which have demonstrated that IL-12 exerts its effects directly on T 

cells. However, this contrasts with the findings of other recent in vitro and in vivo 

studies suggesting that significant IL-12 production requires priming of m<|)s by 

IFN-y [148, 160]. The possibility that the antibody did not competely neutralise 

IFN-y in vivo cannot be excluded, however, and studies using either IFN-y 

receptor or gene knockout mice would help to rule this out.

Despite exerting little influence over Thl cytokine production, anti-IFN-y 

mAh treatment dramatically increased priming for IL-5 production by acute GvHD 

cells, suggesting that IFN-y directly regulates IL-5 production during the disease.
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This finding is consistent with recent work showing that IFN-y directly inhibits 

Th2 cytokine production [162, 163, 194, 196]. Whether IFN-y exerted a similar 

regulatory influence over production of the other Th2 cytokine, IL-10, was less 

clear from my studies. IL-10 production by B6 => BDFi cells was below the 

level of detection and although anti-IFN-y increased IL-10 production by IL-12 

treated DBA/2 => BDFi cells on day 2, a similar effect was not evident on day 10, 

when biologically active IFN-y would presumably be present.

Overall, I found that the effects of neutralising IFN-y and IL-12 were very 

similar. Both treatments prevented the weight loss and mortality observed during 

the first 3 weeks of acute GvHD and prolonged the early proliferative features of 

disease. In addition, both anti-IFN-y and anti-IL-12 treatment reduced the T cell 

immunosuppression observed late in the acute disease, although there was a less 

marked effect on the abrogated B cell responses in GvHD mice. Despite these 

effects, both antibodies failed to reduce the high levels of anti-host CTL activity. 

Anti-IL-12 and anti-IFN-y also increased the levels of IL-5 and IL-10 production. 

A final critical finding was that although DBA/2 => BDFi mice given IL-12 and 

anti-IFN-y showed increased levels of Th2 cytokine production, they did not 

exhibit any of the symptoms of classical chronic GvHD. Thus, I found IL-12- 

mediated inhibition of chronic GvHD-associated autoimmunity to be IFN-y- 

independent, in agreement with other recent studies [166]. As in anti-IL-12 treated 

B6 => BDFi mice with acute GvHD, this may be because anti-IFN-y treated 

DBA/2 => BDFi mice given IL-12 retained anti-host CTL activity which could 

destroy host B cells. In support of this, others recently showed that DBA/2 => 

BDFI mice given IL-12 and anti-IFN-y mAh had profoundly reduced B cell 

numbers [166].

Taken together, my results show that many of the effects of IL-12 in 

GvHD are IFN-y dependent including; lymphoid involution, T cell immune 

deficiency, regulation of Th2 cytokine production, weight loss and mortality,
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whereas others, such as CTL activity, induction of IFN-y production and possibly 

B cell destruction/suppression are IFN-y-independent.

CELLULAR SOURCE OF CYTOKINES DURING GvHD

An important finding of my T cell subset depletion studies was that since 

depletion of CD4+ or CDS*- T cells did not affect the eaily spontaneous IFN-y 

production by B6 => BDFi cells, it appeared to be non-T cell-derived. NK cells 

are an important source of IFN-y early during other T cell-dependent immune 

responses [112-114, 152, 153]. However, when I examined whether NK cells 

were involved in IFN-y production during acute GvHD, I found that NK cell 

depletion did not affect either spontaneous or Con A induced IFN-y production at 

any time during the disease. However, this work needs to be repeated as control 

mice given either NRS or anti-ASGM-1 produced uncharacteristically high levels 

of spontaneous IFN-y on day 2 of this study. Furthermore, the dose of anti- 

ASGM-1 used to deplete NK cells did not completely inhibit NK cell activity in 

B6 => BDFi mice, making it impossible to exclude NK cells as IFN-y producers 

in acute GvHD.

A more complex picture was found at the later time points in the acute 

disease, when I could not identify any single population that was responsible for 

IFN-y production. Both CD4+ and CD8+ T cells and possibly non-T cell 

populations all appeared to contribute to the high levels of spontaneous and Con A 

induced IFN-y at different times, in agreement with studies which highlight the 

potential of each of these cell types to produce IFN-y [53, 86, 87, 180, 207]. 

CD4+ and CD8+ T cells also contributed to the lower levels of Con A induced 

IFN-y which were found in chronic GvHD,

CD4+ T cells appeared to be the main source of IL-2, IL-10 and IL-5 

during both acute and chronic GvHD, although there were a few exceptions. On 

day 2 of chronic GvHD, for example, CD8 depletion also reduced IL-2 levels, 

presumably because the highly activated CD4+ T cells in these cultures were
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utilising IL-2. Furthermore, on day 14 of both acute and chronic forms of disease, 

neither CD4+ nor CD8+ T cells appeared to be responsible for IL-10 production.

An alternative source of IL-10 are activated m<()s [190,191, 208]. IL-10 was only 

induced in Con A stimulated cultures and m<j)s would not be expected to respond
■

directly to a T cell mitogen. However it is possible that m<|)S were activated 

secondary to T cell stimulation with Con A. Some IL-10 production during 

chronic GvHD also appeared to be CD8+ T cell-derived, IL-lO-producing CD8+ T 

cells have been described in other systems [94] and since IL-10 inhibits Thl 

differentiation [192, 193], this may be important to the preferential Th2 response 

in DBA/2 =>BDF% mice. Paradoxically, there was also evidence that CD8+ T cells 

were responsible for down-regulating IL-10 levels during chronic GvHD, since

i

.,;ï;

on day 10, CD8+T cell depletion caused a severalfold increase in IL-10. Depleting 

CD8+ cells also increased IL-10 levels in B6 => BDFi cultures at all times during

the disease. Similarly, CD8 depletion revealed some IL-5 production on day 2 of 

acute GvHD. These observations raised the possibility that CD8+ T cells down- 

regulated Th2 cytokine production during acute GvHD. A similar phenomenon 

has been observed in other experimental systems in which CD8+ T cells inhibited 

Th2 development [87,209, 210], at least in part through their production of IFN-y 

[87, 210]. This was also consistent with my own and other [180, 207] findings 

that CD8+ T cells were primed to produce IFN-y production during acute GvHD. 

The absence of IFN-y-mediated inhibition of Th2 cytokine production by CD8+ T 

cells could explain the uncontrolled Th2 response in chronic GvHD. Also, recent

i:

studies have demonstrated that BDFi mice given DBA/2 donor cells which had 

been enriched with either total T lymphocytes [211] or purified CD8+ T cells [180] 

developed features typical of acute GvHD, together with a small increase in IFN-y 

levels [180].

The results detailed above indicated that cytokines produced by both CD4+

and CD8+ T cells may be important in determining the outcome of GvHD. 

However, the pattern was very complex and negative depletion may not be the
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ideal wasy to assess the source of cytokines. If time had allowed, I would 

therefore have used alternative strategies to determine the cell types involved. 

Positively selecting individual cell populations using magnetic beads may have 

provided more information than depletion, since in the absence of one population, 

other cell type(s) may compensate. In order to study the possible interactions 

between cells, however, it may be advantageous to adopt an in vivo approach such 

as immunohistochemistry or the recently developed intracellular cytokine staining 

[183, 184, 186].

Finally, my studies did not attempt to assess whether the T cell populations 

involved in cytokine production during acute and chronic GvHD were of host or 

donor origin. Because the GvHR in parent => Fi mice is unidirectional, 

alloreactive donor T cells should be the main cytokine producing cells during the 

disease. However, the local production of high levels of T cell growth factors 

such as IL-2 may also lead to bystander host T cell activation and cytokine 

production. If time had allowed, I would have utilised Thy-1 congenic mouse 

strains in order to examine the contribution of host cells. Thus, by using donor 

cells and host cells which expressed different forms of the T cell-specific Thy-1 

marker, it would be possible to specifically purify or deplete cells of donor/host 

origin before culture and examine the effect on cytokine levels.

THE ROLE OF NK CELLS IN GvHD

A notable feature of my studies was that, during the first week of GvHD, 

B6 donor cells induced earlier and higher levels of NK cell activity in BDFi mice 

than DBA/2 cells. The greater enhancement of NK cell activity evident after 

injection of B6 cells correlated with the high levels of IFN-y in these mice, 

implicating NK cells as a source of IFN-y production during acute GvHD. 

Although I did not examine the reason for differential NK cell activation during 

acute versus chronic GvHD, the augmented NK activity observed in B6 ==> BDFi 

mice, correlated with the known ability of H-2  ̂ parental cells to provoke Fi
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resistance to donor haemopoietic cells [49, 110, 111, 212, 213]. This "hybrid 

resistance” is elicited when NK cells of appropriate Fi mice recognise 

haemopoieitic histoincompatibility antigens (Hh) on the homozygous parental cells 

and is induced by H-2^, but not H-2^ strains such as DBA/2 [110, 111, 212].

However, previous work in our laboratory found no evidence that the activation of 

NK cells during acute GvHD was associated with in vivo host resistance to 

parental cells and instead suggested that both donor and host NK cells are non

specific effector cells recruited into lymphoid tissues by cytokines such as IL-2 

and IFN-y produced during the anti-host inflammatory response [95]. Thus the 

higher levels of NK cell activity observed in B6 => BDFi vs DBA/2 => BDFi 

mice probably reflect the superior ability of B6 cells to induce IL-12-dependent 

IFN-y production and recruit and activate inflammatory cells. Unfortunately, I was 

unable to directly examine whether neutralising IFN-y reduced NK cell activity.

When NK cells were depleted by injection of anti-ASGM-1 antiserum, 

there was a transient reduction in the degree of lymphoid hyperplasia early in the 

disease and a slight reduction in CTL levels. However, I found little effect on 

other aspects of systemic GvHD. If anything, NK cell depletion slightly 

exacerbated acute GvHD, as higher numbers of anti-ASGM-1 treated mice lost 

weight and died than equivalent NRS treated GvHD controls. Furthermore, on 

day 10, anti-ASGM-1 treated GvHD mice showed lower T and B cell proliferative 

responses than GvHD mice given NRS. Although most studies suggest a 

pathogenic role for NK cells during GvHD by showing that NK cell depletion 

prevents tissue pathology and death [102, 104-106], some evidence also exists 

which supports a protective role for NK cells in GvHD [214, 215]. However, my 

results were rather inconclusive, perhaps because of the unusually mild acute 

GvHD that occurred in NRS treated B6 => BDFi animals. It would be important 

to repeat these studies using both untreated and NRS treated recipients to exclude 

the possibility that giving foreign immunoglobulin to GvHD mice affects disease 

progression. There should also be similar reservations about the effect of depleting
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NK cells on IFN-y production, as control mice given either NRS or anti-ASGM-1 

antiserum produced uncharacteristically high levels of spontaneous IFN-y on day 

2 of this study. In addition, as noted above, the dose of anti-ASGM-1 used in this 

study did not completely inhibit NK cell activity in B6 => BDFi mice and it was 

not possible to rule out NK cells as a potential source of IFN-y during the disease.

Anti-NKl.l treatment in vivo may provide an alternative, more efficient method of
,

depleting NK cells for future studies. In addition, if time had allowed, I would 

have repeated this study and also examined IFN-y production by NK cells purified 

from the spleens of B6 => BDFi mice using magnetic beads.

THE ROLE OF CYTOKINES IN THE PATHOGENESIS 

OF MURINE GvHD

The results which I have presented in this thesis have extended previous 

work on the distinct forms of GvHD which develop in BDFi mice given different

parental donor splenocytes. I have shown that cells and cytokines of the early non

specific immune response may be important in determining the outcome of the 

alloresponse and in particular, my studies have highlighted the importance of the 

proinflammatory cytokine, IL-12, in polarising the specific T cell response. 

Furthermore on the basis of my findings, it is tempting to hypothesise that 

targetting IL-12 may be an effective and specific therapy for GvHD following 

BMT.

Murine models of GvHD are useful tools for examining the complex 

cellular interactions which lead to GvHD following clinical BMT and other forms 

of tissue-specific immunopathology [7, 8, 21-23, 37, 83]. An advantage of the 

parent =*• Fi model employed in this thesis is that a predominantly cell-mediated 

immune response or a predominantly humoral response can be elicited in the same 

Fi hybrid mouse depending on the genotype of the injected parental cells [24, 27]. 

This allowed me to trace the development of these distinct diseases from the 

common starting point of parental donor cell transfer, in order to determine when
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polarisation of the alloimmune response occurred and what caused its divergence. 

Taken together, the findings detailed in this thesis agreed with previous reports 

suggesting that differential activation of CD4+ T helper cell subsets may underlie 

the distinct forms of GvHD in BDFi mice [42, 46]. However, other cell types, 

particularly APC, CD8+ and possibly NK cells are inextricably involved in the 

development and regulation of the anti-host response.

The responses elicited by B6 and DBA/2 parental cells diverged rapidly, 

since as early as 4 hours after donor cell transfer, enhanced NK cell activity was 

observed only in B6 => BDFi mice and within two days, increased spontaneous 

and primed IFN-y production were evident in acute, but not chronic GvHD mice. 

These distinguishing features of early acute GvHD were IL-12 dependent, which 

strongly suggested that the first critical events in B6 => BDFi GvHD involved 

interactions between APC, NK cells and CD4+ T cells. The possible events 

occurring in acute and chronic GvHD in BDFi mice are illustrated in Figs. 11.1A 

& B. These clearly proceed more efficiently in acute GvHD. After injection of 

parental donor cells, donor CD4+ T cells recognise alloantigen expressed on the 

surface of host dendritic cells (DC). As with responses to nominal antigen [216- 

218], engagement of the TcR by host alloantigen results in T cell activation and 

CD40 ligand (CD40L) expression on the T cell surface. Expression of CD40L 

allows donor T cells to bind to and activate host m<f>s via CD40 : CD40L 

interactions [216, 217, 219, 220], provoking IL-12 release by the m<j> population 

[148, 149]. IL-12 then exerts a number of effects on a variety of different cell 

types to induce the symptoms of acute GvHD. Because DBA/2 cells exhibit 

defective IL-12 responses, the manifestations of acute GvHD are not induced. In 

the absence of IL-12-dependent effects, a default Th2 response and autoimmune 

pathology are elicited as oulined below.

IL-12 stimulates IFN-y production by CD4+ and CD8+ T cells and 

possibly NK cells during acute GvHD. The initial IFN-y production then induces 

more IL-12 production from m<j>s, followed by even greater levels of IFN-y,
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which will eventually provoke many of the pathological alterations associated with 

acute GvHD, including immune deficiency and pathology in target tissues like the 

gut, weight loss and mortality. In addition, as my results suggested, IFN-y may 

also directly inhibit Th2 cytokine production, thus preventing the B cell 

hyperplasia and autoimmunity which accompany chronic GvHD, The high levels 

of anti-host CTL activity found in B6 => BDFi mice may also preven t 

autoimmunity by directly destroying host B cells [23, 31], although this was not 

examined directly in these studies.

Several additional elements may contribute to this basic pathway and 

warrant future study. Firstly, although I showed that IFN-y was not essential for 

IL-12 to appear, I did not examine directly if IFN-y was required for optimal IL- 

12 production, as suggested by other work [148, 152, 160]. This could be 

determined by examining if IL-12 production occurs normally during GvHD in B6 

=> BDFi host mice which are deficient in the gene coding for the IFN-y receptor. 

It will also be important to determine the kinetics of IFN-y and IL-12 production 

during acute GvHD in unmanipulated B6 => BDFi mice using a more sensitive 

method such as PCR. In addition, the source of IFN-y and in particular, whether 

NK cells are involved, needs to be explored directly. One conflicting aspect of my 

studies was the inability of anti-IL-12 to prevent CTL activation despite induction 

of CTL by exogenous IL-12. This was possibly due to incomplete neutralisation 

of IL-12 by the antibody and could be better examined in appropriate combinations 

of IL-12 deficient donor and host mice.

A further focus for future studies is the source of IL-12. In the model 

above I cite host m<()S as the major IL-12-producing population. Although m<j)s 

purified from mice undergoing acute GvHD produce high levels of mRNA for the 

inducible p40 subunit of IL-12 [221], activated m<j>s are not the only cell type 

capable of IL-12 production in vivo. In particular, DCs have also been described 

as potential IL-12-producers [123], suggesting that the initial host DC-donor

CD4+ T cell interaction could potentially elicit some IL-12 production. Future
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whether donor T ceils from B6 and DBA/2 mice show an inherent predilection to

251

studies should explore the role of m<J)S in IL-12 production by enriching them from 

spleen cell cultures and measuring IL-12 production. Furthermore, given the 

potent cytokine environment which acute GvHD elicits, it is likely that donor- 

derived m(j)S may also be stimulated to produce IL-12. The relative contribution of 

host and donor-derived cells to IL-12 levels could again be assessed using 

appropriate combinations of IL-12 gene knockout and replete host and donor 

mice.
The simplest explanation for the fact that chronic GvHD in DBA/2 => 

BDFi mice was largely unaffected by IL-12 blockade, but could be converted into 

an acute Thl-mediated GvHD by the administration of exogenous IL-12, would 

be that DBA/2 donor cells cannot elicit IL-12 production in BDFi recipients. Since 

IL-12 is essential for T hl differentiation [76-78], the Th2 response which 

develops in DBA/2 => BDFi mice may therefore be a default which occurs in the 

absence of a Thl polarising signal. However, despite the absence of early IL-12 

dependent effects such as NK cell activation and enhanced IFN-y production, I 

found that DBA/2 => BDFi mice had equivalent initial priming of IL-12 

production as B6 => BDFi animals. It would be useful to study the full kinetics of 

IL-12 p40 mRNA expression in vivo using a senstive method such as PCR. Time 

did not permit me to do this.

An alternative explanation is that there are genetically controlled differences 

in the IL-12 responsiveness of B6 and DBA/2 donor cells, as reported in other 

models [139, 140]. According to this idea, T cells from both strains induce similar

'/I

initial levels of IL-12, but only the B6 cells can respond by producing IFN-y and 

then inducing more IL-12. This is consistent with studies of L. major and with my 

finding that initial IL-12 priming was similar in both acute and chronic GvHD. In 

addition, DBA/2 mice preferentially elicit Th2 dominated responses in other 

systems [79, 140, 199], while B6 mice tend to make strong Thl responses to a 

variety of stimuli [200, 201]. It would therefore be important to assess directly
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produce Thl and Th2 cytokines in response to allostimulation and to assess 

whether regulation of the IL-12 signalling pathway differed between the two 

strains of mice. The inability of DBA/2 donor T cells to respond to IL-12 could 

explain why the high levels of IFN-y released by IL-12 stimulated CD4+ and 

CD8+ T cells during acute GvHD, are not observed. As a result, the feed-back 

loop which operates between IL-12 and IFN-y production in B6 => BDFi GvHD 

is eliminated and IFN-y-dependent immunopathology will not occur. 

Furthermore, since IFN-y regulates Th2 cytokine production during GvHD, a 

preferential Th2 response is allowed to develop. The high levels of Th2 cytokines 

then provide help for host B cells, already activated due to their recognition by 

donor T cells [124], provoking autoantibody production and ICGN. The defective 

IL-12 response of DBA/2 CD8+ T cells could also explain why CD8+T cell 

engraftment is not observed during chronic GvHD and why potentially 

autoreactive B cells are not eliminated by anti-host CTL.

I-

Therapeutic Potential of IL-12 Neutralisation in GvHD

Acute GvHD remains a major obstacle for the use of BMT to treat 

leukaemia and many congenital immunodeficiencies and the results presented in 

this thesis have practical implications for the development of specific therapy 

during GvHD. Traditional approaches to GvHD prophylaxis depend on

immunosuppressive drugs such as methotrexate and cyclosporine which often 

have to be used in combination, resulting in severe side effects [10]. Recent 

attempts to use the more selective approach of depleting T cells from the donor 

BM have been largely unsuccessful, since clinical trials showed that T cell

.«■

depletion led to an increased incidence of leukaemic relapse and failure of 

engraftment [20]. An ideal strategy for GvHD prophylaxis would therefore be to 

prevent anti-host immunopathology, while allowing the survival of sufficient 

donor-derived haemopoetic cells to permit full repopulation of the host. Recent 

approaches have therefore included selective depletion of individual donor T cell
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subsets from the donor inoculum [18, 19], or blocking T cell activation in vivo by 

inhibiting the CD28/CTLA4 : B7/BB1 or CD40 : CD40L T cell costimulatory 

pathways [202, 222-225], This latter approach has been moderately effective in 

reducing GvHD lethality, but in many cases the disease was not completely 

prevented and recurred when treatment was ceased [222, 223]. Furthermore, in 

one study [225] the use of high doses of CTLA4-Ig (a chimeric fusion protein 

with high affinity for B7 molecules on APC) largely prevented donor cell 

engraftment. Although combined blockade of several costimulatory pathways was 

more effective in alleviating lethality [226], this type of therapy may also be

accompanied by deficits in T cell function. Neutralising individual effector
'Ï :

cytokines in vivo has therefore become an attractive alternative to inhibiting 

lymphoid responses during GvHD [55, 57, 64, 65, 227]. My results show that

■■■•SI

IL-12 blockade was particularly useful in treating murine GvHD and may be of 

therapeutic use following clinical BMT. Most importantly, neutralising 

endogenous IL-12 for a brief period during the initiation of acute GvHD conferred 

long-term protection from the pathological outcome of the disease. Because IL-12
“■t

was critical for the afferent phase of GvHD, selective targetting of this cytokine 

prevented the cascade of events which culminates in lethal immunopathology.

Importantly, IL-12 blockade did not prevent engraftment of donor cells, but 

permitted full repopulation with donor B6 lymphocytes and long-term survivors 

showed normal T cell function and remained visibly healthy for over four months 

after withdrawal of antibody treatment. Finally, although anti-IL-12 therapy 

prevented Thl-dependent lethality in B6 => BDFi mice by permanently polarising 

the alloimmune response towards a Th2 phenotype, this did not result in the 

development of autoimmune pathology in the kidney, which might otherwise limit 

its application. In order to fully capitalise on the beneficial effects of IL-12 

blockade, future studies will have to compare different strategies for neutralising 

IL-12 in vivo. Possible candidates are polyclonal and monoclonal anti-IL-12 

antibodies, soluble IL-12 receptor-Fc fusion protein or recombinant IL-12 p40
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protein. These latter agents may be particularly useful since they can block IL-12 

binding to its receptor at very low concentrations [123] and may thus avoid 

hypersensitivity reactions provoked by heterologous antibodies.
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Fig. 11.lA. Model of the Cellular and Molecular Interactions 

Involved in the Pathogenesis of Acute GvHD
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Fig. ll.B , Model of the Cellular and M olecular Interactions 

Involved in the Pathogenesis of Chronic GvHD

Donor
CD8+
Tcell

IL-12

Donor/Host 
NKcell

Host Mij)
Activation

Donor
CD4+
Tcell

Activation

IL-10
IL-13

AutoAbs

ANTIBODY-MEDIATED
PATHOLOGY

Key to Symbols
MHC II-pep #
MHC I-pep © > TcR/CD3

CD40 m k ^  CD40-L 
—y j / — Inhibition

256

1
■

:

1

:
I



ï
REFERENCES

1. Billingham, R.E., L. Brent, and P.B. Medawar, Acquired tolerance o f  

skin homografts. Annual of the New York Academy of Sciences, 1955. 59: p. 

409-498.

2. Billingham, R.E., L. Brent, and P.B. Medawar, Quantitative studies on 

tissue transplantation immunity. III. Actively acquired tolerance. Philosophical 

Transactions of the Royal Society, London (Ser B), 1956. 239: p. 357.

3. Simonsen, M., Graft Versus Host Reaction. Their natural history, and 

applicability as tools of research. Prog Allergy, 1962. 6: p. 349-67.

4. Billingham, R.E., The biology o f graft-versus-host reactions. Harvey 

Lectures, 1967. 62: p. 21-79.

5. Deeg, H.J. and R. Storb, Graft-versus-host disease: Pathophysiological 

and clinical aspects. Annual Review of Medicine, 1984.35: p. 11-24.

6. Thomas, E.D., R.A. Clift, and R. Storb, Indications for marrow 

transplantation. Annual Review of Medicine, 1984. 35: p. 1-9.

7. Mowat, A.M. and M.V. Felstein, Experimental Studies o f  

Immunologically Mediated Enteropathy. V. Destructive Enteropathy During an
■4i

Acute Graft-versus-Host Reaction in Adult BDFI Mice. Clinical & Experimental 

Immunology, 1990. 79: p. 279-284.

8. Mowat, A., Intestinal graft-versus-host disease, in Graft-vs.-Host 

Disease, J.L.M. Ferrara, H.J. Deeg, and S.J. Burakoff, Editors. 1997, Marcel 

Dekker, Inc.: New York. p. 337-384.

9. Ringden, O. and H.J. Deeg, Clinical Spectrum of graft-versus-host 

disease, in Graft-vs.-host disease., J.L.M. Ferrara, H.J. Deeg, and S.J.

Burakoff, Editors. 1997, Marcel Dekker, Inc.: New York. p. 525-559.

10. Chao, N.J. and H.J. Deeg, In vivo prevention and treatment of GVHD, in
'

Graft-vs.-host disease, J.L.M. Ferrara, H.J. Deeg, and S.J. Burakoff, Editors.

1997, Marcel Dekker, Inc.: New York. p. 639-666.

257

.......



258

11. Sûmes, M.A., E. Johansson, and J. Rapola, Scleroderma-like graft- 

versus-host disease as late consequence of bone-marrow grafting. Lancet, 1977. 

2: p. 831-832.

12. Sullivan, K.M., et al.. Chronic graft-versus-host disease in 52 patients: 

Adverse natural course and successful treatment with combination 

immunosuppression. Blood, 1981. 57: p. 267-276.

13. Storb, R., et al., Graft-versus-host disease and survival in patients with 

aplastic anaemia treated by marrow grafts from HLA-identkal siblings; Beneficial 

effect of a protective environment. New England Journal of Medicine, 1983. 6: p. 

302-307.

14. Rheinherz, E.L., et al.. Reconstitution after transplantation with T 

lymphocyte-depleted HLA haplotype-mismatched bone marrow for severe 

combined immunodeficiency. Proceedings of the National Academy of Sciences

(USA)., 1982. 79: p. 6047-6051.
'

15. Powles, R.L., Bone marrow transplantation and graft-versus-host disease.

Current Opinion in Immunology, 1990. 2: p. 870-875.

16. Storb, R., et al.. Methotrexate and cyclosporine alone for prophylaxis of 

graft-versus-host disease in patients given HLA-identical marrow grafts for

leukaemia. Blood, 1989. 73: p. 1729-1734.

17. Sprent, J., H. Von Boemer, and M. Nabholz, Association o f immunity
'

and tolerance to host H-2 determinants in irradiated FI hybrid mice reconstituted 

with bone marrow cells. Journal of Experimental Medicine, 1975. 142: p. 321- 

331.

18. Cobbold, S., G. Martin, and H. Waldmann, Monoclonal antibodies for 

the prevention o f graft-versus-host disease and marrow graft rejection. 

Transplantation, 1986. 42: p. 239-247.

19. Knulst, A.C., et al.. Prevention of lethal graft-vs.-host disease in mice by

monoclonal antibodies directed against T cells or their subsets. I. Evidence for the

M"



induction o f a state o f tolerance based on suppression. Bone Marrow 

Transplantation, 1994. 13: p. 293-301.

20. Martin, P.J.M. and N.A. Kernan, T cell depletion for GVHD prevention 

in humans,, in Graft-vs.-host disease, J.L.M. Ferrara, H.J. Deeg, and S.J. 

Burakoff, Editors. 1997, Marcel Dekker, Inc.: New York. p. 615-637.

21. Gleichmann, E., et al., Graft-versus-host reactions: clues to the 

etiopathology o f a spectrum of immunological diseases. Immunology Today, 

1984. 5: p. 324-332.

22. Goldman, M., P. Druet, and E. Gleichmann, Th2 cells in systemic 

autoimmunity: insights from allogeneic diseases and chemically induced 

autoimmunity. Immunology Today, 1991. 12: p. 223-227.

23. Via, C.S. and G.M. Shearer, T cell interactions in autoimmunity: insights 

from a murine model o f graft-versus-host disease. Immunology Today, 1988. 9: 

p. 207-213.

24. van Elven, E.H., et al.. Capacity of genetically different T lymphocytes to 

induce lethal graft-versus-host disease correlates with their capacity to generate 

suppression but not with their capacity to generate anti-Fl killer cells. A non-H~2 

locus determines the inability to induce lethal graft-versus-host disease. Journal of 

Experimental Medicine, 1981. 153: p. 1474-1488.

25. Moser, M., et al., Graft-versus-host reaction limited to a class II MHC 

difference results in a selective deficiency in L3T4+ but not in Lyt-2+ T helper cell 

function. Journal of Immunology, 1987. 138: p. 1355-1362.

26. Moser, M., S.O. Sharrow, and G.M. Shearer, Role ofL3T4+ and Lyt-2+ 

donor cells in graft-versus-host immunodeficiency induced across a class I, class 

II, or whole MHC difference. Journal of Immunology, 1988. 140: p. 2600-2608.

27. Rolink, A.G., et al., Allosuppressor and allohelper T cells in acute and
" 4

chronic graft-vs-host disease. I. Alloreactive suppressor cells rather than killer T  

cells appear to be the decisive effector cells in lethal graft-vs-host disease. Journal 

of Experimental Medicine, 1982. 155: p. 1501-1522.

2 5 9



I
28. Pals, S.T., T. Radaszkiewicz, and E. Gleichmann, Allosuppressor - and

2 6 0

Allohelper-T cells in Acute and Chronic Graft-versus-Host Disease. IV. Activation 

o f Donor Allosuppressor cells is Confined to Acute GvHD. Journal of 

Immunology, 1984. 132: p. 1669-1678.

29. Rolink, A.G., S.T. Pals, and E. Gleichmann, Allosuppressor and
'

allohelper-T cells in acute and chronic graft-versus-host disease. H. FI recipients 

carrying mutations at H-2K andlor I-A. Journal of Experimental Medicine, 1983.

157: p. 755-771.

30. Rolink, A.G. and E. Gleichmann, Allosuppressor and allohelper T cells in 

acute and chronic graft-vs-host (GvH) disease. III. Different lyt subsets of donor 

T cells induce different pathological syndromes. Journal of Experimental 

Medicine, 1983. 158: p. 546-558.

31. Via, C.S., S.O. Sharrow, and G.M. Shearer, Role o f cytotoxic T 

lymphocytes in the prevention of lupus-like disease occurring in a murine model

of graft-versus-host disease. Journal of Immunology, 1987. 139: p. 1840-1849.

32. Cray, C. and R.B. Levy, The presence o f infectious virus but not 

conventional antigen can exacerbate graft-versus-host reactions. Scandinavian 

Journal of Immunology, 1990. 32: p. 177-182.

33. Pals, S.T., H. Gleichmann, and E. Gleichmann, Allosuppressor and 

allohelper T cells in acute and chronic graft-vs-host disease. V. FI mice with 

secondary chronic GvHD contain FI reactive allohelper but no allosuppressor T 

cells. Journal of Experimental Medicine, 1984. 159: p. 508-523.
Î

34. Van Bekkum, D.W., et ah. Mitigation of secondary disease o f allogeneic 

mouse radiation chimeras by modification of the intestinal microflora. Journal of 

the National Cancer Institute, 1974. 52: p. 401-404.
,;k

35. van Bekkum, D.W. and S. Knaan, Role o f bacterial microflora in 

development of intestinal lesions from graft-versus-host reaction. Journal of the 

National Cancer Institute, 1977. 58: p. 778-789.

J



production levels. International Immunology, 1993. 5(4): p. 399-407.

261

36. Gleichmann, H., et al., Chronic allogeneic disease. III. Genetic 

requirements for the induction o f glomerulonephritis. Journal of Experimental 

Medicine, 1972. 135: p. 516-521.

37. Gleichmann, E., E.H. van Elven, and J.P.W. van der Veen, A systemic 

lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell 

cooperation. Preferential formation o f autoantibodies characteristic o f SEE. 

European Journal of Immunology, 1982. 12: p. 152-156.

38. van Elven, E.H., et al.. Diseases caused by reactions of T lymphocytes to 

incompatible structures o f the major histocompatibility complex. V. High titers o f 

IgG autoantibodies to double-stranded DNA. Journal of Immunology, 1981.127: 

p. 2435-2438.

39. Rolink, A.G., H. Gleichmann, and E. Gleichmann, Diseases caused by 

reactions o f T lymphocytes to incompatible structures o f the major 

histocompatibility complex. VII. Immune-complex glomerulonephritis. Journal of 

Immunology, 1983. 130: p. 209-215.

40. Pals, S.T., et al.. Chronic progressive polyarthritis and other symptoms of 

collagen vascular disease induced by graft-vs-host reaction. Journal of 

Immunology, 1985. 134: p. 1475-1482.

41. Garside, P., et al.. Differential cytokine production associated with distinct 

phases of murine graft-versus-host reaction. Immunology, 1994. 82: p. 211-214.

42. Allen, R.D., T.A. Staley, and C.L. Sidman, Differential cytokine 

expression in acute and chronic murine graft-versus-host disaese. European 

Journal of Immunology, 1993. 23: p. 333-337.

43. Smith, S.R., et al., A study of cytokine production in acute graft-versus- 

host disease. Cellular Immunology, 1991. 134: p. 336-348.

44. Troutt, A.B. and A. Kelso, Lymphokine synthesis in vivo in an acute 

murine graft-versus-host reaction: mRNA and protein measurement in vivo and in 

vitro reveal marked differences between actual and potential lymphokine



4î;

45. Via, C.S., Kinetics of T cell activation in acute and chronic forms o f 

murine graft versus host disease. Journal of Immunology, 1991. 146: p. 2603- 

2609.

46. De Wit, D., et al.. Preferential Activation ofTh2 Cells in Chronic Graft- 

Versus-Host Reaction. Journal of Immunology, 1993. 150(2): p. 361-366.

47. Garlisi, C.G., et al.. Cytokine gene expression in mice undergoing 

chronic graft-versus-host disease. Molecular Immunology, 1993. 30: p. 669-677.

48. Doutrelepont, J.M., et al.. Hyper IgE in stimulatory graft-versus-host 

disease: role of interleukin 4. Clinical and Experimental Immunology, 1991. 83: 

p. 133-136.

49. Kuboto, E., H. Ishikawa, and K. Saioto, Modulation o f FI cytotoxic 

potentials by GvHR. Host and donor-derived cytotoxic lymphocytes arise in the 

unirradiated FI host spleens under the condition o f GvHR-associated 

immunosuppression. Journal of Immunology, 1983. 131: p. 1142-1148.

50. Hakim, F.T. and C.L. Mackall, The Immune System: Effector and target 

of graft-versus-host disease., in Graft-vs.-host disease., J.L.M. Ferrara, H.J.

Deeg, and S.J. Burakoff, Editors. 1997, Marcel Dekker: New York. p. 257-289.

51. Hakim, F.Y., et al.. Repopulation of host lymphohematopoietic systems 

by donor cells during graft versus host reaction in unirradiated adult FI mice 

injected with parental lymphocytes. Journal of Immunology, 1991.146: p. 21 OS- 

2115.

52. Hakim, F.T., S. Payne, and G.M. Shearer, Recovery o f T cell 

populations after acute graft-versus-host reaction. Journal of Immunology, 1994.

152: p. 58-64.

53. Mosmann, T.R, and R.L. Coffman, THI and TH2 cells: Different patterns 

of lymphokine secretion lead to different functional properties. Annual Review of 

Immunology, 1989. 7: p. 145-173.

■Î

262 ■s

I



54. Troutt, A.B. and A. Kelso, Enumeration o f lymphokine-mRNA 

containing cells in vivo in a murine graft-versus-host reaction using the PCR. 

Proceedings of the National Academy of Sciences (USA), 1992. 89: p. 5276-

5280.

55. Mowat, A.M., Antibodies to IFN-y prevent immunologically mediated 

intestinal damage in murine graft-versus-host reaction. Immunology, 1989. 68: p.

18-23.

56. Fowler, D.H., et al.. Cells o f Th2 cytokine phenotype prevent LPS-

induced lethality during murine graft-versus-host reaction. Regulation of cytokines

and CD8+ lymphoid engraftment. Journal of Immunology, 1994. 152: p. 1004- 

1013.

57. Via, C.S. and F.D. Finkelman, Critical role o f interleukin-2 in the 

development o f acute graft-versus-host disease. International Immunology, 1993. 

S: p. 565-572.

58. Pace, J., et al.. Recombinant mouse y IFN induces the priming step in 

macrophage activation for tumor cell killing. Journal of Immunology, 1983. 130:

p. 2011-2016.

59. Mannel, D.N., R.N. Moore, and S.E. Mergenhagen, Macrophages as a 

source of tumoricidal activity (tumor necrotizing factor). Infection and Immunity,
,

1980. 30: p. 523-530.

60. Stuehr, D.J. and C.F. Nathan, Nitric Oxide: A macrophage product 

responsible for cytostasis and respiratory inhibition in tumor target cells. Journal 

of Experimental Medicine, 1989. 169: p. 1543-1555.

61. Nestel, F.P., et al., Macrophage priming and lipopolysaccharide-triggered 

release of tumor necrosis factor alpha during graft-versus-host disease. Journal of 

Experimental Medicine, 1992. 175: p. 405-413.

62. McCarthy, P.L.J., et al.. Inhibition o f interlekin-1 by interleukin-1 

receptor antagonist prevents graft-versus-host disease. Blood, 1991. 78: p. 1915- 

1918.

263

'



63. Mowat, A.M., et al,, A role for interleukin l a i n  immunologically 

mediated enteropathy. Immunology, 1993. 80: p. 110-115.

64. Shalaby, M.R., et al. Prevention of graft-versus-host reaction in newborn 

mice by antibodies to tumour necrosis factor alpha. Transplantation, 1989. 47: p. 

1057-1061.

65. Pi guet, P.P., et al.. Tumour necrosis factor/cachectin is an effector o f skin 

and gut lesions o f the acute phase of graft-vs-host disease. Journal of Experimetal 

Medicine, 1987. 166: p. 1280-1289.

66. Garside, P., et ah. Nitric oxide mediates intestinal pathology in graft-vs- 

host disease. European Journal of Immunology, 1992. 22: p. 2141-2145.

67. London, L., B. Perussia, and G. Trinchieri, Induction o f proliferation in 

vitro o f resting human natural killer cells: IL-2 induces into cell cycle most 

peripheral blood NK cells but only a minor subset of low density T cells. Journal 

of Immunology, 1986. 137: p. 3845-3854.

68. Trinchieri, G. and D. Santoli, Antiviral activity induced by culturing 

lymphocytes with tumor-derived or virus-transformed cells: Enhancement o f 

human natural killer activity by interferon and antagonistic inhibition o f 

susceptibility o f target cells to lysis. Journal of Experimental Medicine, 1978. 

147: p. 1314-1333.

69. Desbarats, J. and W.S. Lapp, Thymic selection and thymic major 

histocompatibility complex class II expression are abnormal in mice undergoing 

graft-versus-host reactions. Journal of Experimental Medicine, 1993. 178: p. 

805-814.

70. Fukushi, N., et al, Thymus: A direct target tissue in graft-versus-host 

reaction after allogeneic bone marrow transplantation that results in abrogation of 

induction of self-tolerance. Proceedings of the National Academy of Sciences 

(USA), 1990. 87: p. 6301-6305.

2 6 4



I s

71. Huchet, R., et aL, Involvement o f IFN-gamma and transforming growth 

factor beta in graft-vs-host reaction-associated immunosuppression. Journal of 

Immunology, 1993. 150: p. 2517-2524.

72. Klimpel, G.R., et al.. Immunosuppression and lymphoid hypoplasia

265

Ï

associated with chronic graft versus host disease is dependent on IFN-y 

production. Journal of Immunology, 1989. 144: p. 84-91.

73. Wall, D.A., et al.. Immunodeficiency in graft-versus-host disease. I. 

Mechanism o f immune suppression. Journal of Immunology, 1988. 140: p. 

2970-2976.

74. Symington, F.W., Lymphotoxin, tumor necrosis factor and gamma 

interferon are cytostatic for normal human kératinocytes. Journal of Investigative 

Dermatology., 1989. 92: p. 798-807.

75. Hoffman, R.A., et al.. Characterization of the immunosuppressive effects 

o f nitric oxide in graft vs host disease. Journal of Immunology, 1993. 151; p. 

1508-1518.

76. Hsieh, C.S., et al.. Development o f Thl CD4+ T cells through IL-12 

produced by Listeria-induced macrophages. Science, 1993. 260: p. 547-549.

77. Manetti, R., et al.. Natural killer cell stimulatory factor (Interleukin 12) 

induces T helper type 1 (THI) -specific immune responses and inhibits the 

development ofIL-4 producing Th cells. Journal of Experimental Medicine, 1993. 

177: p. 1199-1204.

78. Seder, R.A., et ah. Interleukin 12 acts directly on CD4-\- Tcells to enhance 

priming for interferon y production and diminishes interleukin 4 inhibition of such 

priming. Proceedings of the National Academy of Sciences (USA), 1993. 90: p. 

10188-10192.

79. Romani, L., et al., IL-12 is both required and prognostic in vivo for T 

helper type 1 differentiation in murine candidiasis. Journal of Immunology, 1994. 

152: p. 5167-5175.



266

:::Ê

80. Sypek, J.P., et al.. Resolution of cutaneous leishmaniasis: interleukin 12 

initiates a protective T helper type 1 immune response. Journal of Experimental 

Medicine, 1993. 177: p. 1797-1802.

81. Wang, Z.-E., et al.. Interferon g dependent effects o f interleukin 12

Î

administered during acute or established infection due to Leishmania major.

Proceedings of the National Academy of Sciences (USA), 1994. 91: p. 12932-
"i

12936.

82. Heinzel, P.P., et al., Recombinant interleukin 12 cures mice infected with 

Leishmania major. Journal of Experimental Medicine, 1993.177: p. 1505-1509.

83. Mowat, A.M., Felstein, M.V., Borland, A., Parrott, D.M.V.,

Experimental Studies of Immunologically Mediated Enteropathy. Development of 

Cell Mediated Immunity and Intestinal Pathology During a Graft~versus~Host 

Reaction in Irradiated Mice. Gut, 1988. 29: p. 949-956.

84. Hurtenbach, U. and G.M. Shearer, Analysis o f murine T  lymphocyte 

markers during the early phases of GvH-associated suppression o f cytotoxic T 

lymphocyte responses. Journal of Immunology, 1983.130: p. 1561-66.

85. Klein, J.R., et al.. Cytotoxic T lymphocytes produce immune interferon in 

response to antigen or mitogen. Journal of Experimental Medicine, 1982.155: p.

1198-1203.

86. Fong, T.A.T. and T.R. Mosmann, Alloreactive murine CDS+ T cell 

clones secrete the Thl pattern of cytokines. Journal of Immunology, 1990. 144: 

p. 1744-1752.

87. Kemeny, D.M., et al.. Immune regulation: a new role for the CD8+ T cell.

Immunology Today, 1994. 15(3): p. 107-110.

88. Morris, A.G., Y.-L. Lin, and B.A. Askonas, Immune interferon release 

when a cloned cytotoxic T cell line meets its correct influenza-infected target cell.

Nature, 1982. 295: p. 150-152.

89. Weiner, H.L., et al.. Oral Tolerance: immunologic mechanisms and 

treatment o f animal and human organ specific autoimmune diseases by oral
;

1



I
administration o f autoantigens. Annual Review of Immunology, 1994. 12: p.

809-837.
.

90. Seder, R.A., et al., CD8+ T cells can be primed in vitro to produce IL-4.

Journal of Immunology, 1992. 148: p. 1652-1656.

91. Seder, R.A. and G.G. Le Gros, The functional role o f CD8-\- T helper 

type 2 cells. Journal of Experimental Medicine, 1995. 181: p. 5-7.

92. Croft, M., et al.. Generation of polarized antigen specific CD8 effector 

population.reciprocal action o f interleukin (IL)-4 and IL-12 in promoting type 2 

versus type 1 cytokine profiles. Journal of Experimental Medicine, 1994. 180: p.

1715-1728.

93. Actor, J.K., et al.. Helminth infection results in decreased virus specific
'

CD8+ cytotoxic T cell and Thl cytokine responses as well as delayed virus 

clearance. Proceedings of the National Academy of Sciences USA., 1993. 90: p.

948-952.

94. Erard, R, et a l. Switch o f CD8+ T cells to noncytolytic CD8-CD4- cells 

that make TH2 cytokines and help B cells. Science, 1993. 260: p. 1802-1805.

95. Mowat, A.M., A. Borland, and D.M.V. Parrott, Augmentation of Natural 

Killer cell activity by anti-host delayed-type hypersensitivity during the graft- 

versus-host reaction in mice. Scandinavian Journal of Immunology, 1985. 22: p.

389-399.

96. Ghayur, T., T.A. Seemayer, and W.S. Lapp, Kinetics o f natural killer cell 

cytotoxicity during the graft-versus-host reaction. Relationship between natural 

killer cell activity, T and B cell activity and development o f histopathological 

alterations. Transplantation, 1987. 44(2): p. 254-260.

97. MacDonald, G.C. and J.G. Gartner, Natural Killer(NK) cell activity in 

mice with acute graft-versus-host reactions: Characterisation of a Thy-1+ NK-like 

cell with a broadened spectrum of lytic activity in the spleen and lymph nodes.

Scandinavian Journal of Immunology, 1991. 33: p. 553-565.

267 -s
,



98. Borland, A., A.M. Mowat, and D.M.V. Parrott, Augmentation o f  

intestinal and peripheral natural killer cell activity during the graft versus-host- 

reaction in mice. Transplantation, 1983. 36: p. 513-519.

99. Jennings, C.D., et al., Immunophenotyping o f peripheral blood 

lymphocytes in the diagnosis of acute graft-versus-host disease. Transplantation 

Proceedings, 1989. 21: p. 2999-3003.

100. Y okoyama, W.M., The Ly-49 and NKR-Pl gene families encoding lectin- 

like receptors on natural killer cells: the NK gene complex. Annual Review of 

Immunology, 1993.11: p. 613-635.

101. Moretta, L., et al., Allorecognition by NK cells: nonself or no self? 

Immunology Today, 1992. 13: p. 300-306.

102. Ghayur, T., et al., Graft-versus-host reactions in the beige mouse: An 

investigation o f the role of host and donor natural killer cells in the pathogenesis of 

graft-versus-hostdisease.lmmpl^ntsiiion, 1987. 44: p. 261-267.

103. MacDonald, G.C. and J.G. Gartner, The host/donor origin o f cells 

mediating NK and NK-like cytotoxic activity in FI mice with acute graft-versus- 

host reactions. Transplantation, 1991. 52(1): p. 141-143.

104. MacDonald, G.C. and J.G. Gartner, Prevention o f acute lethal graft- 

versus-host disease in FI hybrid mice by pretreatment o f the graft: with anti- 

N K l.l and complement. Transplantation, 1992. 54: p. 147-151.

105. Ghayur, T., T.A. Seemayer, and W.S. Lapp, Prevention o f murine graft- 

versus-host disease by inducing and eliminating ASGM-1+ cells o f donor origin. 

Transplantation, 1988. 45: p. 586-590.

106. Charley, M.R., et al.. Prevention of lethal, minor-determinate graft- 

versus-host disease in mice by the in vivo administration o f anti-Asialo GMl. 

Journal of Immunology, 1983. 131(5): p. 2101- 2103.

2 68



152: p. 1873-1882.

2 6 9

107. Guillen, F.J., J. Ferrara, and W.W. Hancock, Acute cutaneous graft- 

versus-host disease to minor histocompatibility antigens in a murine model: 

Evidence that large granular lymphocytes are effector cells in the immune 

response. Lab Investigations, 1986. 55: p. 35-42.

108. Ghayur, T., T.A. Seemayer, and W.S. Lapp, Association between the 

degree of thymic dysplasia and the kinetics of thymic NK cell activity during the 

graft-versus-host reaction. Clinical Immunology and Immunopathology, 1988. 

48: p. 19-30.

109. Ellison, C.A., et al., y6 T cells in the Pathobiology of Murine Acute Graft- 

versus-Host Disease. Evidence that yd T cells mediate Natural Killer-like 

cytotoxicity in the host and that elimination of these cells from donors significantly 

reduces mortality. Journal of Immunogy, 1995. 155: p. 4189-4198.

110. Kiessling, R., et al.. Evidence of a similar or common mechanism for 

natural killer cell activity and resistance to haemopoietic grafts. European Journal 

of Immunology, 1977. 7: p. 655-663.

111. Cudkowicz, G. and P.S. Hochman, Do natural killer cells engage in 

regulated reaction against self to ensure homeostasis? Immunology Reviews, 

1979. 44: p. 13-41.

112. Bancroft, G.J., R.D. Schreiber, and E.R. Unanue, Natural immunity: a T 

cell-independent pathway o f macrophage activation defined in the scid mouse.
,:JK;

Immunological Reviews, 1991. 124: p. 5-24.

113. Sher, A., et al.. Toxoplasma gondi induces a T-independent IFN-y 

response in natural killer cells that requires both adherent accessory cells and 

Tumor Necrosis Factor-a. Journal of Immunology, 1993. 150: p. 3982-3989.

114. Teixeira, B.C. and S.H.E. Kaufman, Role o f NKl.l^- cells in 

experimental listeriosis. NKl-^ cells are early IFN-y producers but impair 

resistance to Listeria monocytogenes infection. Journal of Immunology, 1994.



115. Garside, P. and A.M. Mowat, Polarisation o f Th-cell responses: a 

phylogenetic consequence of non-specific immune defence ? Immunology Today,

1995. 16: p. 220-223.

116. Romagnani, S., Induction of Thl and Th2 responses: a key role for the 

'natural immune response ?'. Immunology Today, 1992.13; p. 379-381.

117. Scharton, T.M. and P. Scott, Natural killer cells are a source o f interferon
'■I

gamma that drives differentiation of CD4+ T cell subsets and induces early 

resistance to Leishmania major of mice. Journal of Experimental Medicine, 1993.

178; p. 567-577.

118. Kobayashi, M., et al.. Identification and purification of natural killer cell 

stimulatory factor (NKSF), a cytokine with multiple biologic effects on human 

lymphocytes. Journal of Experimental Medicine, 1989. 170: p. 827-846.

119. Tripp, C.S., S.F. Wolf, and E.R. Unanue, Interleukin 12 and tumor 

necrosis factor a are costimulators of interferon y production by natural killer cells

in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a 

physiologic antagonist. Proceedings of the National Academy of Sciences (USA),

1993. 90: p. 3725-3729.

120. Schoenhaut, D.S., et al., Cloning and expression o f murine IL-12. 

Journal of Immunology, 1992. 148: p. 3433-3440.

121. Gately, M.K., et al.. Administration of recombinant IL-12 to normal mice 

enhances cytolytic lymphocyte activity and induces production o f IFN-y in vivo. 

Intemationl Immunology, 1994. 6: p. 157-167.

122. D'Andrea, A., et al.. Production o f natural killer cell stimulatory factor 

(NKSF/IL-12) by peripheral blood mononuclear cells. Journal of Experimental 

Medicine, 1992. 176: p. 1387-1398.

123. Trinchieri, G., Interleukin-12: a proinflammatory cytokine with  

immunoregulatory functions that bridge innate resistance and antigen-specific 

adaptive immunity. Annual Review of Immunology, 1995. 13: p. 251.

1

2 7 0



1
■

124. Morris, S.C., a l, Autoantibodies in chronic graft versus host disease 

result from cognate T-B interactions. Journal of Experimental Medicine, 1990,

171: p. 503-517.

125. Saito, T., M. Fujiwara, and H. Asakura, L3T4+ T cells induce hepatic 

lesions resembling primary biliray cirrhosis in mic with graft-versus-host reactions 

due to major histocompatibility complex class II disparity. Clinical Immunology 

and Immunopathology, 1991, 59: p. 449-461.

126. Morris, S.C., et al.. Allotype-specific immunoregulation of autoantibody
■r-

production by host B cells in chronic graft-versus-host disease. Journal of 

Immunology, 1990. 144: p. 916-922.

127. Rozendaal, L., et al.. Persistence of Allospeciflc Th Cells is Required for 

Maintaining Autoantibody Formation in Lupus Like GVHD. Clinical and 

Experimental Immunology, 1990. 82: p. 527-532.

128. Umland, S.P., et al,. Effects of in vivo administration of interferon (IFN)- 

y, anti-IFN-y, or anti-interleuldn-4 monoclonal antibodies in chronic autoimmune 

graft-versus-host disease. Clinical Immunology and Immunopathology, 1992. 63: 

p. 66-73.

129. Coffman, R.L., et al.. The role o f helper T cell products in mouse B cell 

differentiation and isotype regulation. Immunological Reviews, 1988. 102: p. 5- 

28.

130. Fast, L.D., DBAI2J and DBA/2Ha lymphocytes differ in their ability to

IV":

induce graft-versus-host disease. Journal of Immunology, 1989. 143: p. 2489- 

2493.

131. Fast, L.D., Identification of a single non-H-2 gene regulating graft-versus- 

host response. Journal of Immunology, 1990. 144: p. 4177-4182.

132. Seder, R.A. and W.E. Paul, Acquisition o f lymphokine-producing 

phenotype by CD4+ T cells. Annual Review of Immunology, 1994. 12: p. 635- 

673.

271

, . . .



272

133. Hsieh, C.S., et al.. Differential regulation o f T helper phenotype 

development by interleukins 4 and 10 in an alpha beta T-cell receptor transgenic

system. Proceedings of the National Academy of Sciences (USA), 1992. 89: p. f

6065-6069.

134. Seder, R.A., et al.. The presence o f Interleukin 4 during in vitro priming 

determines the lymphokine-producing potential o f CD4+ T cells from T cell 

receptor transgenic mice. Journal of Experimental Medicine, 1992. 176: p. 1091-

1098.
«

135. Swain, S.L., et al., IL-4 directs the development o f Th2-like helper

effectors. Journal of Immunology, 1990. 145: p. 3796-3806.

136. Duncan, D.D. and S.L. Swain, Role of antigen presenting cells in the 

polarised development o f helper T cell subsets: evidence for differential cytokine 

production by ThO cells in response to antigen presentation by B cells and 

macrophages. European Journal of Immunology, 1994. 24: p. 2506-2514.

137. Hosken, N.A., et al.. The effect of antigen dose on CD4+ T helper cell 

phenotype development in a T cell receptor ap transgenic model. Journal of 

Experimental Medicine, 1995. 182: p. 1579-1584.

138. Constant, S., et al., Extent of T cell receptor ligation can determine the 

functional differentiation o f naive CD4+ T cells. Journal of Experimental 

Medicine, 1995. 182: p. 1591-1596.

139. Guler, M.L., et al.. Genetic susceptibility to Leishmania: IL-12 

responsiveness to T(H)1 cell development. Science, 1996. 271: p. 984-987.

140. Hsieh, C. S., et al., T cell genetic background determines default Thelper 

phenotype development in vitro. Journal of Experimental Medicine, 1995. 181: p.
..I

713-721. I
Î::'

141. Le Gros, G., et al.. Generation of Interleukin 4 (IL-4)-producing cells in 

vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4- 

producing cells. Journal of Experimental Medicine, 1990.172: p. 921-929.



142. Hayakawa, K., B.T. Lin, and R.R. Hardy, Murine thymic CD4+ T cell 

subsets: A subset (ThyO) that secretes diverse cytokines and overexpresses the 

VpS T cell receptor gene family. Journal of Experimental Medicine, 1992.176: p. 

269-274.

143. Ben-Sasson, S.S., et al., IL-4 production by T cells from naive donors. 

IL-2 is required for IL-4 production. Journal of Immunology, 1990. 145: p. 

1127-1136.

144. Brown, M.A., et al., B cell stimulatory factor-1/interleukin 4 mRNA is 

expressed by normal and transformed mast cells. Cell, 1987. 50: p. 809-816.

145. Plant, M., et al.. Mast cell lines produce lymphokines in response to 

cross-linkage o f Fc epsilon FI or to calcium ionophores. Nature, 1989. 339: p. 

64-67.

146. Yoshimoto, T. and W.E. Paul, CD4pos, NKl.lpos T cells promptly 

produce Interleukin 4 in response to in vivo challenge with anti-CD3. Journal of 

Experimental Medicine, 1994. 179: p. 1285-1295.

147. Trinchieri, G. and P. Scott, The role o f interleukin 12 in the immune 

response, disease and therapy. Immunology Today, 1994.15: p. 460-463.

148. Kennedy, M.K., et al., CD40/CD40 ligand interactions are required for T 

cell-dependent production o f interleukin-12 by mouse macrophages. European 

Journal of Immunology, 1996. 26: p. 370-378.

149. Shu, U., et al.. Activated T cells induce interleukin 12 production by 

monocytes via CD40-CD40 ligand interaction. European Journal of Immunology, 

1995. 25: p. 1125-1128.

150. Wolf, S.E, al.. Cloning of cDNA for natural killer cell stimulatory 

factor, a heterodimeric cytokine with multiple biologic effects on T and natural 

killer cells. Journal of Immunology, 1991. 146: p. 3074-3081.

151. Chan, S.H., ef al.. Induction of IFN-y production by NK cell stimulatory 

factor (NKSF): characterization of the responder cells and synergy with other 

inducers. Journal of Experimental Medicine, 1991. 173: p. 869-879.

273



152. Gazzinelli, R.T., et al,. Interleukin 12 is required for the T-lymphocyte 

independent induction o f interferon-g by an intracellular parasite and induces 

resistance in T-deficient hosts. Proceedings of the National Academy of Sciences 

(USA), 1993. 90: p. 6115-6119.

153. Gazzinelli, R.T., et al.. Parasite-induced IL-12 stimulates early IFN-y 

synthesis and resistance during acute infection with Toxoplasma gondii. Journal 

of Immunology, 1994. 153: p. 2533-2543.

154. Kubin, M., M. Kamoun, and G. Trinchieri, Interleukin 12 synergises 

with B7 and CD 28 interaction in inducing efficient proliferation and cytokine 

production by human T cells. Journal of Experimental Medicine, 1994. 180: p. 

211-222.

155. Murphy, E.E., el al., B7 and Interleukin 12 cooperate for proliferation and 

IFN-y production by mouse T helper clones that are unresponsive to B7 

costimulation. Journal of Experimental Medicine, 1994. 180: p. 223-231.

156. Gately, M.K., et al.. Regulation o f human lymphocyte proliferation by a 

heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). Journal 

of Immunology, 1991. 147: p. 874-882.

157. Perussia, B., et al.. Natural Killer cell stimulatory factor or IL-12 has 

differential effects on the proliferation ofTCR a/3+, TCR yd+ T lymphocytes and 

NK cells. Journal of Immunology, 1992. 149: p. 3495-3502.

158. Mengel, J., et al.. An activated murine B cell lymphoma line (A-20) 

produces a factor-like activity which is functionally related to humoral natural 

killer cell stimulatory factor. European Journal of Immunology, 1992. 22: p. 

3173-3178.

159. Macatonia, S.E., et al.. Dendritic cells and macrophages are required for 

Thl development o f CD4+ T cells from ap  TCR transgenic mice: IL-12 

substitution for macrophages to stimulate IFN-y production is IFN-y-dependent. 

International Immunology, 1993. 5: p. 1119-1128.

274



subsets separated by lectins. Journal of Immunology, 1980. 125: p. 1928-1936.

275

' 1

160. Flesch, I.E.A., et al.. Early interleukin 12 production by macrophages in 

response to mycobacterial infection depends on interferon g and tumor necrosis 

factor a. Journal of Experimental Medicine, 1995.181: p. 1615-1621.

161. Schmitt, E., et al., T helper type 1 development of naive CD4+ T cells 

requires the coordinate action of interleukin-12 and interferon-y and is inhibited by 

transforming growth factor p. European Journal of Immunology, 1994. 24: p.

793-798.

162. Reiner, S.L. and R.A. Seder, T Helper Cell Differentiation in Immune 

Response. Current Opinion in Immunology, 1995(7): p. 360-366.

163. Morris, S.C., et al.. Effects ofIL12 on cytokine gene expression and Ig 

isotype selection. Journal of Immunology, 1994. 152: p. 1047-1056.

164. McKnight, A.J., et al.. Effects o f IL-12 on helper T cell-dependent 

immune responses in vivo. Journal of Immunology, 1994. 152: p. 2172-2179.

165. Shand, F.L., Analysis o f immunosuppression generated by the graft- 

versus-host reaction. II. Characterisation of the suppressor cell and its mechanism 

of action. Immunology, 1976. 31: p. 943-948.

166. Via, C.S., et al., IL-12 stimulates the development o f acute graft-versus- 

host disease in mice that would normally develop chronic, autoimmune graft- 

versus-host disease. Journal of Immunology, 1994. 153: p. 4040-4047.

167. Lewis, R.M., et al.. Chronic allogeneic disease. I. Development o f 

glomerulonephritis. Journal of Experimental Medicine, 1968.128: p. 653-663.

168. Salgame, P., et al.. Differing lymphokine profiles offuncional subsets of 

human CD4 and CDS T cell clones. Science, 1991. 254: p. 279-282.

169. Denkers, E.Y., et al.. Emergence of NKL1+ cells as effectors o f IFN- 

gamma dependent immunity to Toxoplasma gondi in MHC class I-deficient mice.

Journal of Experimental Medicine, 1993. 178: p. 1465-1472.

170. Nakano, T., et al.. Characterization of mouse helper and suppressor T cell



171. Stein, K.E., G.A. Schwarting, and D.M. Marcus, Glycolypid markers of 

murine lymphocyte subpopulations. Journal of Immunology, 1978. 120: p. 676- 

681.

172. Kabelitz, D., T. Pohl, and K. Pechhold, Activation-induced cell death 

(apoptosis) o f mature peripheral T lymphocytes. Immunology Today, 1993. 14: 

p. 338-339.

173. Seddick, M., T.A. Seemayer, and W.S. Lapp, The graft versus host 

reaction and immune function: TV. B cell functional defect associated with a 

depletion o f splenic colony-forming units in marrow of graft-versus-host reactive 

mice. Transplantation, 1986. 41: p. 242-247.

174. Garvy, B.A., et al.. Suppression o f B cell development as a result of 

selective expansion o f donor T cells during the minor H  antigen graft-versus-host 

reaction. Blood, 1993. 82: p. 2758-2766.

175. Iwasaki, T., H. Fujiwara, and G.M. Shearer, Loss o f proliferative 

capacity and T cell immune development potential by bone marrow from mice 

undergoing a graft-versus-host reaction. Journal of Immunology, 1986. 137: p. 

3100-3108.

176. Baker, M.B., et al.. The role of cell-mediated cytotoxicity in acute GVHD 

after MHC-matched allogeneic bone marrow transplantation in mice. Journal of 

Experimental Medicine, 1996. 183: p. 2645-2656.

177. Wang, J., S.A. Stohlman, and G. Dennert, TCR crosslinking induces 

CTL death via internal action o f TNF. Journal of Immunology, 1994. 152: p. 

3824-3832.

178. Laster, S.M., J.G. Wood, and L.R. Gooding, Tumor necrosis factor can 

induce both apoptotic and necrotic forms of cell lysis. Journal of Immunology, 

1988. 141: p. 2629-2634.

179. Janeway, C.A., Jr. and P. Travers, T cell mediated immunity, in 

Immunobiology. The immune system in health and disease. 1996, Current 

Biology Ltd./Garland Publishing Inc.: New York. p. 7:32-7:33.

276



180. Rus, V., et al.. Kinetics o f Thl and Th2 cytokine production during the 

early course of acute and chronic murine graft-versus-host disease. Regulatory 

role o f donor CD8-\- T cells. Journal of Immunology, 1995.155: p. 2396-2406.

181. Ferrara, J.L., S. Abhyankar, and D.G. Gilliland, Cytokine storm o f graft- 

versus-host disease: a critical effector role for interleukin 1. Transplantation 

Proceedings, 1993. 25: p. 1216-1217.

182. Nabholz, M. and H.R. MacDonald, Cytolytic T lymphocytes. Annual 

Review of Immunology, 1983. 1: p. 273.

183. Openshaw, P., et al.. Heterogeneity o f intracellular cytokine synthesis at 

the single-cell level in polarized T helper 1 and T helper 2 populations. Journal of 

Experimental Medicine, 1995. 182: p. 1357-1367.

184. Bucy, R.P., et al.. Heterogeneity of single cell cytokine gene expression 

in clonal T cell populations. Journal of Experimental Medicine, 1994. 180: p. 

1251-1262.

185. Gajewski, T.F., E. Goldwasser, and F.W. Fitch, Anti-proliferative effect 

o f IFN-y in immune regulation. II. IFN-y inhibits the proliferation o f murine bone 

marrow cells stimulated with IL-3, IL-4, or granulocyte-macrophage colony- 

stimulating factor. Journal of Immunology, 1988. 141: p. 2635-2643.

186. Murphy, E., et al.. Reversibility of T helper 1 and 2 populations is lost 

after long term stimulation. Journal of Experimental Medicine, 1996.183: p. 901- 

913.

187. Jacobsen, S.E., O.P. Veiby, and E.B. Smeland, Cytotoxic lymphocyte 

maturation factor (interleukin 12) is a synergistic growth factor for hematopoietic 

stem cells. Journal of Experimental Medicine, 1993. 178: p. 413-418.

188. Hirayama, F., et al.. Synergistic interaction between interleukin 12 and 

steel factor in support of proliferation of murine lymphohematopoietic progenitors 

in culture. Blood, 1993. 83: p. 92-98.

189. Magram, J., et al., IL-12 deficient mice are defective in IFN-y production 

and type 1 cytokine responses. Immunity, 1996. 4: p. 471-481.

277



190. Howard, M. and A. O'Garra, Biological properties o f interleukin 10. 

Immunology Today, 1992. 13; p. 198-200.

191. Howard, M., et al.. Biological properties of interleukin 10. Journal of 

Clinical Immunology, 1992.12: p. 239-247.

192. Fiorentino, D.F., et al., IL-10 acts on the antigen-presenting cell to inhibit 

cytokine production by Thl cells. Journal of Immunology, 1991. 146: p. 3444- 

3451.

193. D'Andrea, A., et al.. Interleukin 10 (IL-10) inhibits human lymphocyte 

interferon y production by suppressing natural killer cell stimulatory factor/lL-12 

synthesis in accessory cells. Journal of Experimental Medicine, 1993. 178: p. 

1041-1048.

194. Finkelman, F.D., et al.. Effects o f interleukin 12 on immune responses 

and host protection in mice infected with intestinal nematode parasites. Journal of 

Experimental Medicine, 1994. 179: p. 1563-1572.

195. Oswald, I.P., et al., IL-12 inhibits Th2 cytokine responses induced by 

eggs o f Schistosoma mansoni. Journal of Immunology, 1994. 153: p. 1707- 

1713.

196. Wynn, T.A., et al.. Endogenous interleukin 12 (IL-12) regulates 

granuloma formation induced by eggs of Scistosoma mansoni and exogenous IL- 

12 both inhibits and prophylactically immunizes against egg pathology. Journal of 

Experimental Medicine, 1994. 179: p. 1551-1561.

197. Smith, T.J., L.A. Ducharme, and J.H. Weis, Preferential expression of 

interleukin-12 or interleukin-4 by murine bone marrow mast cells derived in mast 

cell growth factor or interleukin-3. European Journal of Immunology, 1994. 24:

p. 822-826.

198. Reiner, S.L., et al., Leishmania promastigotes evade interleukin 12 (IL- 

12) induction by macrophages and stimulate a broad range of cytokines from 

CD4+ T cells during initiation o f infection. Journal of Experimental Medicine,

1994. 179: p. 447-456.

278



199. Romani, L., et al., CD4+ subset expression in murine candidiasis. Journal 

of Immunology, 1993. 150: p. 925-931.

200. Heinzel, F.P., et al.. Reciprocal expression of interferon y or interleukin 4 

during the resolution or progression o f murine leishmaniasis. Journal of 

Experimental Medicine, 1989. 169: p. 59-72.

201. James, S.L., C. Salzman, and E.J. Pearce, Induction o f protective 

immunity against Schistosoma mansoni by a non-living vaccine. Parasite 

Immunology, 1988. 10: p. 71-76.

202. Saito, K., et al.. Effect ofCDSO and CD86 blockade and anti-interleukin- 

12 treatment on mouse acute graft-versus-host disease. European Journal of 

Immunology, 1996. 26: p. 3098-3106.

203. Bellone, G., et al.. Regulation of haematopoiesis in vitro by alloreactive 

natural killer cell clones. Journal of Experimental Medicine, 1993. 177: p. 1117- 

1125.

204. Sykes, M., et al.. Interleukin-12 inhibits murine graft-versus-host disease. 

Blood, 1995. 86: p. 2429-2438.

205. Orange, J.S., S.F. Wolf, and C.A. Biron, Effects o f IL-12 on the 

response and susceptibility to experimental viral infections. Journal of 

Immunology, 1994. 152: p. 1253-1264.

206. Swihart, K., et al.. Mice from a genetically resistant background lacking 

the interferon y receptor are susceptible to infection with Leishmania major but 

mount a polarised T helper cell 1-type CD4+ T cell response. Journal of 

Experimental Medicine, 1995. 181: p. 961-971.

207. Kelso, A., Frequency analysis of lymphokine secreting CD4+ and CD8+ 

T cells activated in a graft-versus-host reaction. Journal of Immunology, 1990. 

145(7): p. 2167-2176.

208. Moore, K.W., et al.. Interleukin-10. Annual Review of Immunology, 

1993. 11: p. 165-190.

2 7 9



209. Noble, A., et ah. Elimination ofIgE regulatory rat CD8+ T cells in vivo 

increases the co-ordinate expression of Th2 cytokines lL-4, IL-5 and IL-10. 

Immunology, 1993. 80: p. 326-329.

210. Renz, H., et al.. Inhibition oflgE production and normalization of airways 

responsiveness by sensitised CDS T cells in a mouse model o f allergen-induced 

sensitization. Journal of Immunology, 1994.152: p. 351-360.

211. Rozendaal, L., et al.. Protection from lethal graft-vs-host disease by donor 

stem cell repopulation. European Journal of Immunology, 1992. 22: p. 575-579.

212. Cudkowicz, G. and J.H. Stimpfling, Deficient growth o f C57BL marrow 

cells transplanted in FI hybrid mice. Immunology, 1964. 7: p. 291-295.

213. Yu, Y.Y., V. Kumar, and M. Bennett, Murine natural killer cells and 

marrow graft rejection. Annual Review of Immunology, 1992. 10: p. 189-213.

214. Azuma, E., H. Yamamoto, and J. Kaplan, Use o f lymphokine-activated 

killer cells to prevent bone marrow graft rejection and lethal graft-versus-host 

disease. Journal of Immunology, 1989. 143: p. 1524-1529.

215. Waer, M., A. Salam, and M. Vandeputte, Protective role ofasialo GM/+ 

NK 1.1- cells in the occurrence of graft-versus-host disease after total lymphoid 

irradiation. Transplantation, 1993. 56(4): p. 1049-1051.

216. Armitage, R.J., et al.. Molecular and biological characterization o f a 

murine ligand for CD40. Nature, 1992. 357: p. 80-82.

217. Banchereau, J., et al.. The CD40 antigen and its ligand. Annual Review of 

Immunology, 1994. 12: p. 881-922.

218. Roy, M., et al.. The regulation o f the expression o f gp39, the CD40 

ligand, on normal and cloned CD4+ T cells. Journal of Immunology, 1993. 151: 

p. 2497-2510.

219. Clark, E.A. and P.J.L. Lane, Regulation o f human B cell activation and 

adhesion. Annual Review of Immunology, 1991. 9: p. 97-127.

2 8 0



220. Alderson, M.R., et al., CD40 expression by human monocytes: regulation 

by cytokines and activation o f monocytes by the ligand for CD40. Journal of 

Experimental Medicine, 1993. 178: p. 669-674.

221. Kichian, K., et al., IL-12 p40 messenger RNA expression in target organs 

during acute graft-versus-host disease. Journal of Immunology, 1996. 157: p. 

2851-2856.

222. Blazar, B.R., et al.. In vivo blockade o f CD28/CTLA4 : B7/BB1 

interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across 

the major histocompatibility complex barrier in mice. Blood, 1994. 83(12): p. 

3815-3825.

223. Wallace, P.M., et al., CTLA-4Ig treatment ameliorates the lethality o f 

murine graft versus host disease across the major histocompatibility complex 

barriers. Transplantation, 1994. 58: p. 602-609.

224. Durie, F.H., et at.. Antibody to the ligand o f Cd40, gp39, blocks the 

occurrence o f acute and chronic forms o f graft-versus-host disease. Journal of 

Clinical Investigation, 1994. 94: p. 1333-1338.

225. Hakim, F.T., et al.. Acute graft-versus-host reaction can be aborted by 

blockade o f costimulatory molecules. Journal of Immunology, 1995. 155: p. 

1757-1766.

226. Blazar, B.R., et al.. Co-blockade o f the LFA:ICAM and CD28JB7 

pathways is a highly effective means o f preventing acute lethal graft-versu-host 

disease induced by fully MHC disparate donor grafts. Blood, 1995. 83: p. 3815- 

3821.

227. Holler, E. and J.L.M. Ferrara, Antagonists o f inflammatory cytokines: 

prophylactic and therapeutic applications, in Graft-vs.-host disease, J.L.M, 

Ferrara, D.H. J., and S.J. Burakoff, Editors, 1997, Marcel Dekker, Inc.: New 

York.

2 8 1


