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Abstract 

Over the last decade, the transmission of zoonotic malaria from non-human 

primates to humans has emerged as a public health problem and possible threat 

to malaria elimination in Southeast Asia. A major outbreak of the macaque 

malaria parasite Plasmodium knowlesi in humans began in Malaysian Borneo in 

2004 and is now the primary cause of malaria in this region. This simian parasite 

is transmitted by mosquitoes in the Anopheles leucophyrus species complex. The 

emergence of P. knowlesi has been tightly linked to land-use change, 

particularly the widespread deforestation occurring in the state of Sabah where 

the largest focus of human infection is found. Efforts to combat this disease and 

understand its emergence and future spread in humans are hindered by limited 

knowledge of mosquito vector ecology and behaviour; and the risks of exposure 

to vectors in changing landscapes. This PhD aimed to address these knowledge 

gaps by carrying out a series of field studies near the epicentre of human P. 

knowlesi cases in Sabah, Malaysian Borneo, to elucidate P. knowlesi vector 

ecology, behaviour and transmission potential, verify associations between land-

use type and human exposure risk, and characterize the dynamics of 

transmission within reservoir macaque populations. In combination this 

information will deepen understanding of P. knowlesi transmission and 

emergence, and provide insights for the control of this and other emerging 

zoonotic malarias.  

My initial study evaluated new sampling methods for collecting resting P. 

knowlesi vectors. Resting collections are valuable for characterization of 

mosquito habitat and host species choice, however no standard methodology is 

currently available for P. knowlesi vectors. I evaluated two simple traps, resting 

buckets and sticky resting buckets, for sampling resting P. knowlesi vectors 

within two villages in Kudat District, Sabah. The performance of traps was 

evaluated, and the relative abundance and host choice of resting mosquito 

vectors was compared across eight different habitat types representing a 

gradient of deforestation. In 5748 trap days, a total of 2212 mosquitoes were 

collected in resting collections, but none were malaria vector species. Culex and 

Aedes genera dominated collections; with the former being most abundant in 

resting bucket traps and CDC aspirator catches, and the latter in sticky resting 

bucket traps. Several other vector species were collected including the sylvatic 
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dengue vector Aedes albopictus, and Culex vectors of filarasis and Japanese 

encephalitis. Consequently these simple resting traps could be effective for 

studying the ecology of a range of other important mosquito vectors in Sabah 

even if not those responsible for malaria.  

In a following study I investigated associations between habitat and human 

exposure to P. knowlesi vectors, and tested for associations between vector 

abundance and human infection risk across a broad geographic range in Sabah. 

Previous studies indicated that the primary P. knowlesi vector was An. 

balabacensis. This vector was more abundant in a village than forest site, 

conflicting with the original hypothesis that humans are at greatest risk of 

infection in forests and suggested the possibility of peri-domestic transmission. 

However this inference was drawn from a limited number of sampling sites in 

only one district, Kudat, within Sabah. To test this hypothesis over a broader 

geographical scale, I conducted extensive entomological sampling across four 

districts in Sabah. Human landing catches were performed to measure human 

biting rates in forest, farm (plantation) and peri-domestic habitats in 11 villages. 

Prior to entomological sampling survey of human sero-positivity to P. knowlesi 

was conducted in all villages, carried out as part of a larger research 

programme. Making use of this data, I tested for associations between vector 

abundance and human infection risk at the village level. The primary vector An. 

balabacensis was found in all four districts, but at much lower relative 

abundance than in pilot work from Kudat. Additionally this vector was more 

abundant in forest and farm habitats than in peri-domestic settings. Only 1 of 

the 32 An. balabacensis collected in this study tested positive for P. knowlesi; an 

individual caught in a forest site. No significant association between the mean 

abundance of An. balabacensis and human P. knowlesi sero-positivity was 

detected in this study. However the relatively small sample size of mosquitoes 

and sites used here meant there was relatively low power to detect such an 

effect. This study highlights the importance of incorporating geographical 

heterogeneity and replication when assessing mosquito-habitat associations, and 

the need for more intensive longer-term sampling to establish potential 

entomological indicators of P. knowlesi infection in humans.  

A final study was conducted to investigate the transmission dynamics of P. 

knowlesi in macaque reservoir populations. Most studies of P. knowlesi vectors 
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have been conducted in or near disturbed forest, where both humans and 

macaques are in contact. It is unknown whether the same vector species 

involved in human-macaque infection also mediate transmission between 

macaques. To investigate this and other aspects of macaque-mosquito 

interactions, I conducted a field study within the Danau Girang Field Centre in 

Sabah where there is a large population of long-tailed macaques. First I 

evaluated the use of Mosquito Magnet Independence Traps (MMIT) as a non-

invasive means to sample mosquitoes host seeking near macaque sleeping sites. 

The MMIT performed well relative to the human landing catch, with both 

methods collecting An. balabacensis and other malaria vector species. Second, 

MMITs were used to sample mosquitoes host seeking near trees where macaques 

were sleeping and at unoccupied control trees. Additionally, macaque faecal 

samples were tested for malaria as an estimate of infection rate in the reservoir 

population. Anopheles balabacensis was more abundant at macaque sleeping 

sites than control trees indicating this vector has a specific propensity for 

feeding on macaques. Approximately 37% (n = 17/46) of macaque stool samples 

tested positive for Plasmodium infection but none of these were identified as 

being P. knowlesi. Two Anopheles vectors tested positive for Plasmodium which 

was subsequently confirmed as the primate parasite P. inui. Thus P. inui is likely 

the major source of malaria infection in this primate population. This study 

indicates that not all macaque populations pose a P. knowlesi risk, but other 

malaria parasites are common and should be monitored to assess for future 

spillover.  

In combination, this research expands knowledge of P. knowlesi transmission in 

Malaysian Borneo, and has implications for planning surveillance and control.   

Notably it emphasizes the value of larger-scale surveillance of vector and 

macaque populations to assess human exposure risk, as and requirement of an 

integrated One Health approach to tackle zoonotic malaria. 
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1 General Introduction 

 Background 

Global malaria incidence has declined by 18% since 2010, but since 2014 in some 

regions, this rate has either reduced or reversed 1. The recent World Health 

Organisation (WHO) ‘Global Technical Strategy for Malaria (2016 – 2030)’ aims to 

reduce the global malaria burden by 90% by 2030 from the rates reported in 2015 

2. This was 212 million cases of malaria in 2015, which rose to 216 million cases 

by 2016 1,3. Countries in Africa account for 90% of malaria cases, with 7% 

occurring in Southeast Asia (SE) and 2% in the East Mediterranean regions 1. The 

greatest decline in malaria incidence since 2010 (48%) was reported in SE Asia 

however from 2014 to 2016, a slight increase was noted 1. The SE Asia region is 

met with specific challenges relating to the control of the malaria parasite 

Plasmodium vivax as it can cause recurring infections. For this reason, a network 

now consisting of 18 countries, called APMEN (Asia Pacific Malaria Elimination 

Network) was established to strengthen the fight towards eliminating malaria 

across the Asia Pacific Region by 2030 4. Numerous challenges threaten malaria 

elimination such as insecticide resistant mosquitoes, parasite resistance to 

artemisinin, environmental change and political instability 5. A lesser known 

obstacle is the recent emergence of new zoonotic malaria species in humans, 

namely P. knowlesi in SE Asian countries and P. brasilianum in South America. 

There is a significant lack of inclusion of these zoonotic malarias in elimination 

plans as yet, which will need more recognition if the 2030 targets set out are to 

be met. 

Plasmodium knowlesi naturally infects monkeys across SE Asia and recently has 

been recognised as the fifth species, in addition to P. falciparum, P. vivax, P. 

malariae and P. ovale, to naturally infect man 6. The global burden of malaria is 

assessed based on reports of the main human malaria species (P. falciparum and 

P. vivax) 1 however excludes infections caused by spillover from our non-human 

primate relatives. Since 2004, Malaysia has experienced a significant outbreak of 

P. knowlesi in humans but these statistics are not included within the WHO 2016 

elimination strategy 5. A decline in P. falciparum/P. vivax malaria cases from 

1092 in 2013 to 606 in 2014 is reported for Malaysia, but all that is mentioned 

about P. knowlesi is that it has been ‘increasing in recent years and may require 
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a different approach’ 5. Recent calls have been made to acknowledge P. 

knowlesi within the WHO World Malaria Report 7 so that its significance is  

recognised along with the need for improved diagnosis, case reporting and 

control. Plasmodium knowlesi infection in humans is widespread across several 

countries in SE Asia however until its significance is recognised within the World 

Malaria Report it remains an unacknowledged barrier to elimination. In the 

following sections, a general overview of the biology of P. knowlesi and its 

mosquito vectors will be given. I will start with an outline of malaria 

transmission before focussing in on current knowledge about P. knowlesi 

specifically. 

 Life cycle of Plasmodium spp. 

 

Plasmodium parasites require both a definitive and an intermediate host to 

complete their life-cycle 8. Vertebrates are intermediate hosts 8. Definitive hosts 

are blood-feeding insects and for human infecting malarias, these are female 

Anopheles mosquitoes 9. Organisms which transmit pathogens between 

vertebrates are called vectors 10 thus for malaria the vectors are mosquitoes. A 

mosquito feeds by probing host skin and injecting anticoagulants from the 

salivary glands into the vertebrate capillaries 11. Infectious parasites called 

sporozoites reside in the mosquito salivary glands and enter the host’s 

bloodstream when mosquitoes feed (Fig. 1). Sporozoites travel through the 

bloodstream to the liver where they invade hepatocytes and undergo an asexual 

period of replication to develop into schizonts 12. Schizonts mature and rupture 

releasing the next parasite form, known as merozoites, into the blood stream 12. 

Thousands of merozoites then invade red blood cells and either continue the 

cycle of asexual reproduction or differentiate into gametocytes. The asexual 

cycle of reproduction occurs inside the red blood cell where merozoites grow 

into rings, trophozoites, then schizonts which contain 16-20 identical merozoites 

8. Some merozoites differentiate into sexual stage parasites called gametocytes 

13. When a mosquito feeds on an infected host and ingests gametocytes, males 

and females fuse inside their midgut to form a zygote 9. The zygote 

differentiates into an ookinete which traverses the midgut wall forming an 

oocyst that matures over a period of 10-15 days. The oocyst develops thousands 

of sporozoites which invade the mosquito salivary glands where they remain to 
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Figure 1.1 Centres for Disease Control and Prevention: Life cycle of Plasmodium spp. 
(https://phil.cdc.gov/Details.aspx?pid=3405) 14. 
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be injected into a new host the next time the mosquito feeds 15. The interaction 

between parasite and host is highly complex and has evolved over a significant 

period of time, thus parasites are often strictly specific to their host species 8. 

 Biology and pathology of P. knowlesi 

The life-cycle of P. knowlesi follows the same general pattern as described 

above but with some specific characteristics that differ from other human-

infecting malarias. All human-specific malarias have a similar life-cycle with the 

main difference being the time taken to complete different developmental 

stages. For example P. knowlesi parasites require 5 days to complete the stage 

within the liver hepatocyte 12 whereas P. falciparum and P. vivax require 6 – 8 

days 16. The developmental time for parasites inside mosquito vectors, also 

known as the ‘extrinsic incubation period’ (EIP), is highly temperature 

dependent and varies between 10 – 18 days in human-specific malaria species 17. 

The EIP for P. knowlesi is approximately 10 days 18. Furthermore, P. knowlesi 

completes its asexual cycle of multiplication in hosts within 24 hours whereas 

other human-specific malarias require 48 to 72 hours 12. Additionally the 

development of transmission-stage gametocytes occurs much faster in P. 

knowlesi (within 48 hours after merozoites invade erythrocytes 17) compared to a 

much longer period of 7-15 days for P. falciparum 19. The consequence of P. 

knowlesi’s more rapid replication and development in hosts is that parasitaemia 

can rise quickly in vertebrate hosts, and mosquito vectors can become infectious 

in a relatively short period of time. 

The clinical symptoms associated with malaria infection stem from the asexual 

cycle of the parasite 20. In humans, uncomplicated malaria often manifests as 

periodic fevers and chills which align with the timing of parasite growth within 

the red blood cell 21. The most virulent human malaria parasite, P. falciparum, 

can also cause respiratory distress, convulsions, circulatory collapse, kidney 

injury, abnormal bleeding, severe anaemia and loss of consciousness 22 which 

can lead to death. Plasmodium knowlesi infection in people also potentially 

results in severe malaria with symptoms identical to those of severe P. 

falciparum with the exception of loss of consciousness 22. As P. knowlesi has a 

rapid intra-erythrocytic multiplication rate, the likelihood of hyper-parasitemia 

in patients with this type of malaria is high 8. The danger of hyper-parasitemia is 
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that mortality risk increases when parasite load exceeds 100 000 parasites/µl 

blood or 2.5 % parasitaemia 23. Plasmodium knowlesi has the same mortality risk 

as the most lethal human parasite species P. falciparum 24. For example in 2010 

- 2013 in Sabah, Malaysia, P. falciparum and P. knowlesi human mortality rates 

were 4.4/1,000 (95% CI 2.3-7.7/ 1000) and 4.1/1,000 (95% CI 2.1-7.2/1000) 

respectively, with those calculated for P. vivax being much lower at 0.9/1,000 

(95% CI 0.1-3.1/ 1000) 24. Accurate and early diagnosis is therefore critical to 

treat P. knowlesi infection effectively. Severe P. knowlesi malaria can be 

effectively treated with intravenous artesunate and uncomplicated P. knowlesi 

infections can be easily treated with chloroquine or artesunate-mefloquine 25. 

Therefore P. knowlesi is recognized as a significant public health problem with 

disease severity being equivalent to P. falciparum infection in humans. 

 P. knowlesi reservoir hosts 

The natural hosts of P. knowlesi are long-tailed macaques, Macacca fasicularis 

26, pig-tailed macaques, M. nemestrina 27 and some leaf monkeys Presbytis spp 

28. These two macaque species are widely distributed across SE Asia, with M. 

fasicularis being the most widespread, found in Brunei, Cambodia, Indonesia, 

Thailand, Peninsular Malaysia, Sumatra, Java, Borneo, the Philippines, Singapore 

and Vietnam 29. Macaca fascicularis are classified as least concern on the IUCN 

Red List of Threatened species 30. Long-tailed macaques live in troops of 10 – 100 

individuals 31 and survive in a variety of habitats: primary rainforests, freshwater 

swamp forests and mangrove forests 32. Ongoing human population expansion 

and encroachment on forested areas has increased the frequency of contact 

between macaques and humans 30. In response to deforestation, macaques move 

to forest fringes where they are likely to encounter people 18. In general, 

macaques have been the most successful group of monkeys to co-habit with 

humans 30. They adapt well to secondary forest habitats and can often be seen 

foraging in areas cultivated with fruit trees, rubber trees and nipah palm 30,32,33. 

Macaque-human conflict often arises due to monkeys stealing crops and raiding 

garbage in more urban areas 30. This occurs frequently in Malaysia, with M. 

fasicularis being responsible for 64 % of human-wildlife conflict complaints 33. 

The ecology of reservoir hosts is vital to P. knowlesi transmission, and here the 

main reservoir is widespread, with frequent contact with humans in urban areas, 

farmland and forest fringes. 
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In general, natural hosts have a mild long-term infection and are able to control 

parasitaemia so it is maintained at low levels 34. More detail on the current 

knowledge about P. knowlesi prevalence in wild macaque populations in 

Malaysia is given in Chapter 4. 

 The life cycle of Anopheles mosquito vectors 

Like all other malaria parasites that can infect people, P. knowlesi is 

transmitted by female Anopheles mosquitoes. Of the 400 species in the 

Anopheles genus, 30 – 40 are vectors of human malaria 35. Mosquito development 

time is highly dependent on temperature, larval density, species and food 

resources 36,37. The first three stages of the mosquito life cycle are aquatic and 

involve the development from eggs, to larvae and then pupae which usually 

takes from 10 to 14 days 17. Adults hatch from pupae and although females can 

live for one month in the lab, in nature they likely only survive for 1-2 weeks 17. 

Anopheles larvae can be distinguished from other mosquito species because they 

rest flat at the surface of the water to breathe because they lack a respiratory 

siphon that would allow them to remain deeper 17. The larvae have four stages, 

which they develop through moulting of the exoskeleton 17. Larvae feed on plant 

matter and microorganisms in water 38, whereas the relatively short-lived pupal 

stage (1-2 days) does not feed. After hatching, male and female adults mate in 

swarms at dusk then females seek out a blood source using sensory and olfactory 

cues 39. Only females blood-feed because they require protein from the host 

blood-meal to produce eggs 14. Post blood-meal, females display resting 

behaviour such as resting on walls inside houses if they are indoor feeders 

(endophagic) or amongst vegetation if they are outdoor feeders (exophagic). 

Some species may rest indoors for a brief time but leave to find a daytime 

resting habitat before morning 39. The blood-meal is typically digested and eggs 

are formed within 2-4 days; this is called the gonotrophic cycle 39. Gravid 

females then respond to species specific oviposition cues based on smell, touch, 

taste and vision to find a suitable body of water to lay their eggs 40. 

Approximately 50 - 200 eggs are laid by a female at each oviposition 17 and the 

cycle continues. Male anophelines feed mainly on nectar and do not require a 

blood meal. Males can also be found in habitats where the females rest post-

feed 39. All Anopheles follow the same general life-cycle but feeding, resting, 

mating and oviposition behaviours vary with species, and developmental times 
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and demography with environmental conditions. Vector ‘bionomics’ includes 

information about both the ecology (ie. adult and larval habitats) and behaviour 

(ie. biting and resting) of a mosquito species 41. 

 Vectors of P. knowlesi 

Mosquitoes in the An. leucosphyrus species group are responsible for 

transmission of P. knowlesi 42. The Leucosphyrus group is well distributed across 

SE Asia with 20 species being described from Indonesia, Malaysia, Thailand, 

Philippines, Brunei, Cambodia, China, Vietnam, Laos, Bangladesh, India, Taiwan 

and Sri Lanka 42. These mosquitoes are highly associated with tropical rain 

forests where they breed in partially shaded temporary pools of water 42,43. The 

Leucosphyrus group comprises three sub-groups: Hackeri, Leucosphyrus and 

Riparis 42. Mosquitoes which are confirmed to transmit P. knowlesi reside in the 

Leucosphyrus (An. balabacensis, Anopheles cracens, Anopheles dirus, Anopheles 

introlatus, Anopheles latens and Anopheles leucosphyrus) and Hackeri 

(Anopheles hackeri) sub-groups 8,18,44. The vector responsible for P. knowlesi 

transmission varies with geographic region; with different Anopheline species 

being incriminated in different settings. For example, An. cracens, An. 

introlatus and An. hackeri have been implicated in Peninsular Malaysia 18,45–47, 

An. dirus in Vietnam 48, and An. latens in Sarawak, Borneo 49. In the Malaysian 

state of Sabah in Borneo where this research is focussed, An. balabacensis has 

been identified as the likely vector of human infection 50.  

Key aspects of mosquito and parasite biology influencing malaria transmission 

are mosquito survival, parasite ‘extrinsic incubation period’ (EIP), and mosquito 

biting behaviour. These measures combine to determine “vectorial capacity”, a 

classic measure of malaria transmission defined as the ‘average number of 

inoculations with a specific parasite originating from one case of malaria in unit 

time’ 51. Malaria transmission is tightly linked to mosquito survival because after 

taking an infected bloodmeal, mosquitoes need to survive the parasite EIP which 

is the time required for gametocytes ingested in a bloodmeal to develop into 

infectious sporozoite stages in mosquito salivary glands 52. Factors which 

influence the EIP are temperature, parasite and vector genetics, and larval and 

adult mosquito nutrition 52. Even small changes in the EIP can have a large 

impact on the number of mosquitoes that become infectious and thus malaria 
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transmission 53. The effect of temperature on EIP has been widely investigated 

to understand how climate predicts malaria risk 36,54,55. This is particularly 

relevant with rising global temperatures associated with climate change and 

deforestation 53,56. The EIP for P. knowlesi is ten days 18 but as with other 

Plasmodium species, is likely to fluctuate with environmental conditions 52. 

Parous females are those that have previously produced eggs, thus parity is used 

as a measure of age through examination of the ovaries 57. Entomological studies 

in Sabah have indicated a relatively high survival rate for An. balabacensis, 

where 50 % (n = 1791) of a population collected were parous 50. Based on the 

daily survival of An. balabacensis, as estimated from parity rates (the proportion 

of mosquitoes that have laid at least one blood meal), it was estimated that ~16 

– 24 % females live long enough to transmit P. knowlesi 50. For other P. knowlesi 

vectors in Malaysia, An. cracens has been found with a higher survival rate in the 

forest (31 %) than farm (25 %) 46, whereas in another study the survival of An. 

latens was estimated to be lower in a forest (13 %) than at a longhouse or farm 

site (both 25 %) 58. Current knowledge about P. knowlesi vectors indicates that 

mosquito survival is likely to differ with habitat type, but there is a lack of 

consistency in results about what habitats are most conducive to survival, and 

how habitat variation and associated temperature changes influence the EIP of 

P. knowlesi in its primary vectors. 

In addition to vector survival and EIP length, vectorial capacity is also influenced 

by mosquito biting behaviour in terms of the number of bites on humans per 

night. This biting rate is influenced by mosquito abundance and host species 

preference. Leucosphyrus group mosquitoes tend to bite in the early evening, 

e.g. 18:00 - 20:00 hrs for An. latens, An. cracens, An. balabacensis and An. dirus 

41,46,58,59. Vectors like An. cracens, An. balabacensis and An. dirus, demonstrate 

strong outdoor biting behaviour, also known as exophagy 41,46,59–61. Anopheles 

balabacensis and An. cracens will only bite outdoors 61,62 however An. latens is 

known to enter houses at night to bite 41. The early outdoor biting activity of 

most P. knowlesi vectors coincides with the times when people are carrying out 

evening activities in the outdoor area of homes including cooking or socialising.  

Thus people are unlikely to be receiving protection from standard vector control 

measures like Long lasting Insecticidal Nets (LLINs) at the time when vectors are 

most active. The outdoor biting activity of P. knowlesi vectors is also conducive 
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to biting monkeys and picking up simian malaria infections. The exophagy and 

early biting behaviour of P. knowlesi vectors facilitate zoonotic transmission and 

are a major impediment to control with standard methods. 

The transmission of host-specific parasites is enhanced when vector feeding is 

also highly specialised 63. However zoonoses like P. knowlesi benefit from a more 

generalist vector that will regularly bite both the reservoir macaque host and 

humans. Mosquito vectors of disease often display strict host preferences, but 

information about this for P. knowlesi vectors is limited 63. Studies have 

indicated that An. latens show no preference for man or long-tailed macaques 

49, An. balabacensis favours man and monkeys over domestic animals 64,65 and 

An. hackeri feed largely on monkeys 49. Anopheles dirus is reported to have an 

overall preference for human blood 66,67, however other studies indicate it can 

be zoophiliic, biting cattle more frequently than humans 68. Anopheles 

balabacensis have also been found five times more likely to be attracted to five 

men than one buffalo, and for individuals to return to the same host species on 

their second blood meal 69. Anopheles cracens is reported to have a 2:1 

preference for feeding on humans than monkeys 45. Vectors of P. knowlesi 

demonstrate an affinity for humans and monkeys, however information about 

the frequency of human bloodmeals vs. other hosts for all species is lacking and 

is likely to differ between environments depending on host availability 63. In the 

context of P. knowlesi transmission, mosquito host preference has a crucial 

influence both on human infection but also for maintaining transmission within 

reservoir hosts. 

 History of P. knowlesi emergence 

Plasmodium knowlesi was first discovered in the 1930s in long-tailed macaques 

26. At that time, Napier and Campbell experimentally infected one M. mulatta 

(Rhesus monkey) and two M. fasicularis with P. knowlesi. While a mild infection 

resulted in the long-tailed macaques, the rhesus monkeys suffered a severe and 

uncontrolled infection 70. Also in 1930s, Knowles and Das Gupta performed 

experimental transfer of P. knowlesi infected macaque blood into a person 

which revealed that humans could be infected by this type of malaria 26. 

Although this experimental work demonstrated that it was theoretically possible 

for humans to be infected by P. knowlesi, this was considered unlikely to occur 
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in nature. The first natural human P. knowlesi infection was reported in 1965 in 

a US army surveyor who was stationed in a forest in Peninsular Malaysia 71. 

Consequent entomological investigations concluded that transmission of P. 

knowlesi to humans was not a significant public health concern. This was 

because the vectors of simian malaria, An. introlatus and An. leucosphyrus, 

were found biting man and monkeys in the forest however neither were caught 

feeding in the village 72. The only mosquito caught in both village and jungle was 

Anopheles maculatus, but it was considered to be at too low abundance to act 

as a bridge vector between monkeys and humans 72. Thus the lack of simian 

malaria vectors in the village led Warren and colleagues to dismiss P. knowlesi 

malaria as a threat to public health. 

Decades later, in 1999, reports of unusual P. malariae infections in Kapit, 

Sarawak sparked further molecular investigation into patients admitted to 

hospital 73. Typically, P. malariae infections are long-term, asymptomatic and 

parasite load is rarely higher than 5000 parasites per µl blood 73. However in that 

year, patients were referring themselves with symptoms of malaria such as fever 

and high parasitaemias of > 5000 parasites per µl blood 73. Patient slides which 

had been microscopically diagnosed as P. malariae were negative by PCR and 

instead were identified as P. knowlesi 73. Overall, P. knowlesi was confirmed as 

being responsible for 58% of 208 malaria admissions to Kapit hospital in 2000 -

2002 73. Initially, P. knowlesi infection in humans had gone largely undetected 

because the methods used to test for P. knowlesi DNA had only recently been 

designed 73,74 and molecular detection in hospitals was not yet available. Species 

identification was performed using microscopy alone however morphological 

diagnosis for P. knowlesi is unreliable as ring stage parasites cannot be easily 

differentiated from P. falciparum, and later trophozoites closely resemble those 

of the more benign P. malariae 75. Following on from the human P. knowlesi 

outbreak in Sarawak, further hotspots were identified in Malaysia 6,18,24,45, 

Kalimantan 76, Vietnam 77, Laos 78, Sumatra 79, Singapore 80, Cambodia 81, the 

Philippines 82 and Thailand 83. The advent of molecular diagnosis of hospital 

malaria cases led to the awareness of the extent of P. knowlesi in the human 

population and its emergence as a zoonotic malaria across numerous countries in 

SE Asia. 
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 P. knowlesi epidemiology 

Since the first outbreak of P. knowlesi in Malaysia 73, several countries in SE Asia 

have reported sporadic human cases of human P. knowlesi 78,80–83. However in 

Malaysia, this disease is more widespread and entrenched, occurring in 

numerous states across Peninsular Malaysia and Malaysian Borneo (Fig. 1.2) 6. All 

human malaria species are endemic to Malaysia, and historically most human 

infections were due to P. falciparum and P. vivax 24. However in 2012, P. 

knowlesi constituted the highest proportion of all human malaria infections (38.4 

%), followed by P. vivax (30.9 %), P. falciparum (19 %), P. malariae (10.3 %), P. 

ovale (0.1 %) and mixed infections (1.35 %) 6. High levels of P. knowlesi 

transmission occur in Sabah and Sarawak, Malaysian Borneo, with the highest 

percentage localised to Kudat in northern Sabah (Fig. 1.2) 6,84. Historical records 

indicate that the while the incidence of P. falciparum and P. vivax malaria 

substantially decreased during 2004 - 2013 in Sabah, the number of P. knowlesi 

cases increased from 59 to 996 between 2004 and 2013 24,85. Plasmodium 

knowlesi notifications were increasing rapidly across all divisions in Sabah from 

2001 – 2013 with the highest frequencies in the Interior, West-coast and Kudat 

Divisions 24. From 2004 to 2016, the number of P. knowlesi cases confirmed by 

PCR/sequencing in peer-reviewed articles was highest for Malaysian Borneo 

(4,553), followed by Indonesia (465) and Peninsular Malaysia (204) 86. The most 

up-to-date reports state that in 2016, P. knowlesi was responsible for 69 % of all 

malaria cases in Malaysia 87. 

Transmission to humans is primarily thought to occur in the forest, where people 

are exposed to P. knowlesi vectors which have been feeding on infected 

macaques. This view was supported by a range of risk factors identified in 

patient case studies conducted in the Kudat area in North-western Sabah 84. 

Adults (over 15 years), particularly males, were found to be at highest risk of P. 

knowlesi malaria 88. Additionally, being aware of the presence of monkeys in the 

previous 4 weeks, and farming or plantation work was also strongly associated 

with cases 88. Further to these, travel, outdoor sleeping or having homes with 

open eaves was common among patients 88. However, P. knowlesi malaria occurs 

across all age groups, and familial clustering of cases have been reported, 

suggesting transmission can also occur around the home 84. In agreement with 

the original hypothesis proposed by Warren et al 72, that only Anopheles present   
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Figure 1.2 Map of Malaysia including mainland Peninsular Malaysia and the states of Sabah 
and Sarawak in Malaysian Borneo. 
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in the forest transmit monkey malaria, it seems that most transmission to 

humans occurs in forested areas however, reports of peri-domestic transmission 

highlight that this is not always the case. 

Human infections are believed to occur as spillover from the monkey reservoir 

89. As yet, there is no definitive evidence of human to human transmission, 

however gametocytes have been detected in P. knowlesi patients (n = 4/10), 

suggesting that it could be a possibility 75. Studies in Vietnam detecting co-

infections of P. falciparum/P. vivax and P. knowlesi malaria in An. dirus 

mosquitoes strongly suggests that humans can infect vectors with P. knowlesi 77. 

This is because the chance of one mosquito getting first infected with P. 

falciparum or P. vivax malaria and then by a monkey infected with P. knowlesi, 

as well as surviving long enough to develop sporozoites of both, is very low. 

Asymptomatic infections have been detected in southern Sarawak 90, in addition 

to Kudat and Kota Marudu districts where 6.9 % of individuals from all age groups 

were infected 91. Human to human transmission may play a part in infection 

dynamics however the spread to humans is most likely dependent on the force of 

infection coming from macaques 92.  

 Hypotheses for the emergence of P. knowlesi in 
humans 

Several different hypotheses have been proposed for the emergence and 

expansion of P. knowlesi in humans including improved diagnosis, reduction of 

other human malaria infections and deforestation. There are varying degrees of 

evidence for each, as discussed below, which may not be mutually exclusive and 

might act in conjunction with one another. 

 Improved diagnosis 

The cheap and rapid diagnosis of malaria by microscopy makes it the most used 

technique in rural hospitals 8. In SE Asia, microscopists are adept in identifying 

the human malarias P. falciparum, P. vivax and P. malariae however because 

the attributes of P. knowlesi are reminiscent of both P. falciparum and P. 

malariae, mis-diagnosis by microscopy is commonplace 8. Numbers of P. knowlesi 

cases reported in Malaysia rose significantly following the development of 



 
 

14 
 

molecular methods for P. knowlesi diagnosis, by Singh et al. in 2004 73 using PCR 

of the small-subunit RNA gene. The increase in P. knowlesi notifications could 

partly be attributed to better diagnostic techniques however, the increase was 

so substantial (16-fold from 2004 to 2013) that it is unlikely to be attributed to 

improved diagnosis alone. 

 Reduction of other human malaria infections 

Malaria control in Malaysia over the last few decades has resulted in a notable 

decline in the incidence of P. falciparum and P.vivax 24. It has been hypothesised 

that this reduction of human malarias was a contributing factor to P. knowlesi 

emergence because it freed up humans as a host where previously there had 

been competition between malaria species 93. There is also speculation that 

declines in other human-specific malarias caused a loss of relative immunity in 

people which would have given cross-protection against P. knowlesi 85,86. 

Antibodies to some recombinantly produced P. vivax antigens are known to 

cross-react with P. knowlesi 94,95 however this gives little indication about 

protection offered by antibodies naturally generated in humans. It is unknown if 

there is competition between P. knowlesi and other malaria species within 

mammalian hosts however mixed infections have been detected in both people 

96–99 and vectors 77,100. Thus there is a lack of information about the immune 

protection to P. knowlesi provided by previous human malaria infection to know 

if the reduction in human malarias contributed to P. knowlesi emergence, but it 

was unlikely prevented previously by competition between parasite species as 

mixed infections in hosts are a common occurrence. 

 Deforestation 

A significant ecological change has been occurring in Sabah concurrently with 

the upsurge in human P. knowlesi cases. This change is the large-scale 

deforestation of land for agriculture. In 1973, 75.7 % of Borneo was covered by 

intact old growth forest, which had reduced by 30.2% by 2010 101. High rates of 

forest loss occurred in Sabah, where 39.5 % of its original forest became non-

forest by 2010 101. Of the area that was deforested across Borneo between 1973 

to 2010, 38.5 % is now occupied by oil plantation and 6.3 % by timber plantation 

industries 101. In depth study of Kudat and Kota Marudu districts in Sabah from 
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2008 to 2012 found a 4.8 % reduction in forest cover 91. Fifty-one percent of 

villages in these districts lost > 10 % forest cover in a 5 km radius in the previous 

five years 102. Thus rapid deforestation has been occurring and is still on-going in 

Sabah. 

Recent investigations have identified a significant association between incidence 

of human P. knowlesi infection in Sabah and forest loss 102. In the past, felling of 

trees in Malaysia for agriculture has resulted in malaria increases. A WHO report 

analysing P. falciparum/P. vivax malaria epidemics in Peninsular Malaysia from 

1900 to 1940 discovered a correlation between replanting of rubber crops in 

response to economic demand and rising malaria incidence, and noticed a 

decline in malaria cases at periods when trade was low 103. The situation with P. 

knowlesi is more complex however because a wild animal reservoir (macaque) is 

incorporated into transmission.  

Deforestation has been proposed to trigger P. knowlesi emergence through a 

variety of mechanisms involving humans, macaques and mosquitoes 89. With 

deforestation, people are more likely to spend more time in or around the edge 

of forests leading to increased contact with infected vectors 89. Second, 

macaques often move out of forests that are being logged into new forest 

patches (Salgado-Lynn et al, personal communication), and as a consequence 

may bring the infection into human settlements. Habitat removal and reduction 

in food availability could cause monkeys to over populate remaining forest 

patches or even forage within human settlements increasing potential for 

crossover to humans if competent vectors are present 89. Third, deforestation 

may change the abundance, species composition, behaviour and survival of 

mosquito vectors in a way that enhances their transmission potential. Currently, 

there is relatively limited understanding of the ecology of P. knowlesi vectors in 

Sabah and how they respond to changes in land use. However there are several 

potential mechanisms through which deforestation could impact vectors.  

One such mechanism by which deforestation can alter vector populations is by 

changes in microclimatic conditions. Higher temperatures have been noted in 

land which has been deforested compared to areas of forest cover 56,104–108. 

Increased temperatures act to alter vector ecology by speeding up adult and 

larval growth, shortening gonotrophic cycles and parasite EIP 56,104,107,109. 
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Clearing of land can result in poor drainage and can create a multitude of larval 

habitats 110. In turn, this can lead to higher mosquito densities, increased biting 

activity and malaria cases as shown in the Amazon with increased populations of 

the human malaria vector, An. darlingi 110. Furthermore, vector behaviour may 

be altered if monkeys leave post-deforestation as they may switch to feed on 

humans more often, leading to zoonotic transmission. When monkeys are 

present, the vectors may not bite humans as much, a concept which is known as 

‘zooprophylaxis’ 111. Due to a lack of entomological surveillance prior to the 

significant deforestation across Sabah, it is unknown how vector populations 

have been altered, however it is likely that deforestation changing 

microclimates, vector ecology and behaviour has been the main trigger for P. 

knowlesi emergence in humans. 

 An interdisciplinary approach to investigating P. 
knowlesi transmission in Sabah 

The significant outbreak of zoonotic malaria in humans in Sabah prompted the 

creation of a Medical Research Council UK-funded programme which ran from 

2012-17:  

‘Defining the biomedical, environmental and social risk factors for human 

infection with Plasmodium knowlesi; opportunities for prevention and 

control of an emerging zoonotic infection’. 

This programme, with the abbreviated title of “Monkeybar” took an 

interdisciplinary approach involving clinicians, epidemiologists, primatologists, 

entomologists and social scientists to investigate the potential determinants of 

P. knowlesi emergence. The programme focussed on two areas with very distinct 

P. knowlesi transmission: the Kudat division of Sabah, Malaysian Borneo where a 

large outbreak (hundreds per year) of human P. knowlesi infections were 

occurring, and in Palawan Island, the Philippines, where very few human cases 

are reported. Operating within the confines of the grant, Monkeybar selected 

entomological studies to establish baseline information on P. knowlesi vectors in 

Sabah. These included trap evaluation and host choice studies 112, investigating 

seasonal patterns in vector abundance and infections 50, adult and larval 

distribution across land-use types and mosquito collections at case (previous 
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infection) and control (no previous infection) houses to identify Anopheles 

species associated with P. knowlesi infection 105. However several key aspects of 

vector ecology remained to be investigated to allow design of appropriate 

surveillance and control measures against P. knowlesi infection. These were 

details on vector behaviour and habitat associations across changing landscapes 

in Sabah, and the effect these have on P. knowlesi exposure risk to humans, in 

addition to vector ecology associated with P. knowlesi transmission among 

macaque reservoir hosts. Thus this PhD was set up in conjunction with 

Monkeybar to address these additional knowledge gaps relating to the ecology 

and transmission potential of P. knowlesi vectors. 

 Aims and objectives of research 

The aim of this PhD research was to investigate the ecology of P. knowlesi within 

Sabah with a specific focus on understanding how changes in habitat and host 

distribution influence vector populations. Elucidation of this will improve 

understanding about risk factors for emergence of P. knowlesi in Sabah, and in 

other settings, and reveal important information about avenues for vector 

control. Operating in conjunction with Monkeybar, this PhD study addressed key 

knowledge gaps about vector ecology necessary for a fuller understanding about 

P. knowelsi transmission and risk to humans in Sabah. This was a four-year 

funded Biotechnology and Biological Sciences Research Council Doctoral Training 

Programme (BBSRC-DTP) that included a three-month Professional Internship for 

PhD Students (PIPS) placement. The research followed the format of three 

separate studies conducted on subsequent years, each including a period of 

fieldwork in Sabah. Each study was designed independently to address a specific 

set of objectives as outlined below. This thesis follows the same format, with 

each study written up as a separate chapter. 

Aim 1: Characterise the resting behaviour of P. knowlesi vectors. 

Objective 1.1: Test new sampling methods to collect resting P. knowlesi vectors. 

Objective 1.2: Use resting traps to assess the habitat preference of P. knowlesi 

and other mosquito vectors in Sabah province. 



 
 

18 
 

 

Objective 1.3: Use resting traps to assess the host species choice of P. knowlesi 

and other mosquito vectors. 

Aim 2: Investigate the distribution of P. knowlesi vectors over a wide 

geographical scale in Sabah. 

Objective 2.1: Determine if P. knowlesi vector-habitat associations found from 

small scale sampling are repeated at larger scales. 

Objective 2.2: Test for environmental determinants of P. knowlesi vector 

abundance. 

Objective 2.3: Use P. knowlesi vector abundance and Monkeybar human sero-

prevalence data to identify entomological indicators of infection. 

Aim 3: Elucidate malaria transmission dynamics within reservoir host 

populations. 

Objective 3.1: Evaluate methods for collecting malaria vectors host seeking near 

macaque populations. 

Objective 3.2: Determine the abundance and diversity of malaria vectors nearby 

macaque troops. 

Objective 3.3: Identify circulating P. knowlesi and other primate malaria 

infections in vectors and macaque hosts. 
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2 Evaluation of resting traps to examine behaviour 
and ecology of mosquito vectors in an area of 
rapidly changing land use in Sabah 

 Abstract  

Widespread deforestation occurring in the tropics is hypothesized to impact the 

transmission of vector-borne diseases (VBD). Predicting how environmental 

changes will impact VBD transmission is dependent on understanding the ecology 

and behaviour of potential vector species outside of domestic settings. However 

there are few reliable sampling tools for measuring the habitat preference and 

host choice of mosquito vectors; with almost none suitable for sampling recently 

blood-fed, resting mosquitoes. This study evaluated the use of two mosquito 

traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to 

CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of 

habitats representing a gradient of deforestation. Eight habitats were selected 

for sampling around two villages in Kudat District, Malaysian Borneo, to reflect 

the range of habitats available to mosquitoes in and around human dwellings, 

and nearby forest habitats where reservoir hosts are present: secondary forest 

(edge, interior and canopy); plantations (palm and rubber); and human 

settlements (inside, under and around houses). 

Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine 

mosquito genera were sampled with Aedes and Culex species being present in all 

habitats and most abundant. RB and CDC backpack aspiration were most 

efficient for sampling Culex whereas CDC backpack aspiration and SRB were 

most efficient for Aedes. Most Aedes identified to species level were Ae. 

albopictus (91%), with their abundance being highest in forest edge habitats. In 

contrast, Culex were most abundant under houses. Most blood-fed mosquitoes 

(76%) were found in human settlements; with humans and chickens being the 

only blood source.  

RB and SRB traps proved capable of sampling mosquitoes resting in all sampled 

habitats. However, sampling efficiency was generally low (c.0.1 per trap per 

day), necessitating traps to be deployed in high numbers for mosquito detection. 

None of the traps were effective for sampling zoonotic malaria vectors; 
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however, SRB collected relatively higher numbers of the dengue vector Ae. 

albopictus. The higher abundance of mosquitoes in forest edge habitats indicates 

the potential value of these traps for investigating sylvatic dengue transmission. 

This study has demonstrated the merits in application of simple resting traps for 

characterising mosquito vector resting behaviour outside of the home. 

 Introduction 

Vector-borne diseases are responsible for 17% of all infectious diseases 

contracted worldwide, impacting the public health and economic growth of 

primarily developing countries 113. Vital to the control of vector-borne disease 

(VBDs) is an understanding of the ecology and behaviour of species responsible 

for pathogen transmission 114. This is particularly crucial for tackling emerging 

VBDs where data on vector biology are scarce. One such example is the 

emergence of the primate malaria causative agent P. knowlesi in human 

populations in Southeast (SE) Asia over the past decade, with an epicentre in the 

State of Sabah in Malaysian Borneo 6,24. Plasmodium knowlesi is a simian malaria 

parasite whose primary hosts are long-tailed and pig-tailed macaques, and leaf-

monkeys 115. Human infection with P. knowlesi was previously thought to be rare 

72; however, the number of human infections reported in SE Asia has 

substantially increased in recent years 24,85. Plasmodium knowlesi now accounts 

for the largest proportion of malaria cases in people in Malaysian Borneo 6. Other 

mosquito-borne diseases are present in this area including human malaria (P. 

falciparum, P. vivax, P. malariae 6), filariasis 62,116–121, Japanese encephalitis 122, 

dengue 123–129, and chikungunya 130. Cases of Zika were also recently reported 131. 

Development of integrated vector control approaches with capacity to target 

this suite of mosquito VBDs would be of benefit in Malaysia and the numerous 

other settings where they co-occur.  

The emergence of P. knowlesi in Sabah has been associated with rapid changes 

in land use 102. From 1980 to 2010, the area of land covered by forest in Sabah 

decreased from 60% to 51% 132. This change is largely attributable to conversion 

of forest to plantation to meet the increasing demand for palm oil 132. Changes 

in land-use for agriculture have been associated with outbreaks of mosquito 

VBDs in other settings 133–135. Proposed mechanisms for these increases include 

changes in soil conditions and drainage following deforestation that alter the 
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availability of aquatic habitats for mosquito larvae 135–137. Ground and water 

temperatures are higher in cleared than in forested areas 79,107 which can speed 

up mosquito larval development and reduce the length of the adult gonotrophic 

cycle. Both these changes are expected to increase mosquito fitness and 

abundance 104,105,138. Higher temperatures can also increase the rate of pathogen 

development in mosquitoes (e.g. malaria parasite development 56,104,138 and 

dengue virus 139). Additionally, following forest removal, humans often migrate 

to new, cleared areas leading to an increase in frequency of contact between 

human and animal hosts 89. Consequently deforestation has potential to increase 

a range of mosquito VBDs of public health importance 136. This occurred in the 

Peruvian Amazon where Anopheles biting rates increased in deforested areas 

causing an upsurge in malaria cases 140 and also in Sarawak, Malaysia, where 

development of a palm oil plantation led to a reduction in malaria vectors but 

an increase in vectors of dengue virus 135. 

The increase in P. knowlesi poses a significant challenge because the mosquito 

vector species responsible for transmission are unlikely to be targeted by 

conventional control strategies. For example, the primary vector of P. knowlesi 

in Sabah is An. balabacensis 50; a species that bites almost exclusively outdoors 

(exophilic) and has a relatively high survival rate 141. Additionally, this vector 

species feeds extensively on the non-human primates that act as a reservoir for 

P. knowlesi. The two common methods of vector control in Malaysia, insecticide-

treated nets and indoor residual spraying 142,143, only provide protection from 

mosquitoes attempting to feed on people inside houses; and are thus unlikely to 

have much impact against exophilic and zoophilic species like An. balabacensis. 

These challenges are not unique to P. knowlesi. Several of the mosquito species 

responsible for other VBDs in the area are also exophilic and/or become infected 

from an animal reservoir. For example, Borneo experiences a sylvatic dengue 

transmission cycle between macaques and silver langurs 144, driven by forest 

Aedes species 145. Currently evidence suggests that sylvatic dengue transmission 

is restricted to forests; however, several spillover cases into the human 

population have occurred 146,147. Aedes niveus is expected to be responsible for 

transmission in the forests of Sarawak and spillover to humans is driven by the 

exophilic Ae. albopictus, acting as a bridge vector, spanning a wider range of 

habitats including villages, agricultural areas and forests 147. However, 
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information about key vectors transmitting sylvatic dengue in Sabah is unknown. 

The human dengue serotypes spread by Aedes aegypti and Ae. albopictus in 

urban areas are believed to have originated from sylvatic dengue strains 146 and 

although currently sylvatic strains seem to be largely restricted to the forest, 

evidence suggests that these viruses do not require any adaptation time to 

replicate efficiently in humans 146. This highlights the potential for epidemics to 

arise and stresses the need for reliable tools that can be used across a range of 

habitat types to characterise Aedes mosquito ecology and host preference to 

understand sylvatic dengue transmission in Sabah. Furthermore, both Japanese 

encephalitis (pigs, horses and donkeys 148) and filariasis (e.g. cats, dogs and leaf 

monkeys 149,150) can be spread to humans from an animal reservoir. The control 

of this group of VBDs is clearly dependent on the development of novel vector 

control tools which can target vectors in multiple habitat types outside of the 

home 151. 

The development of such control strategies is impeded by a lack of appropriate 

sampling tools for investigation of mosquito vector ecology outside of homes. 

Characterization of mosquito feeding behaviour and habitat use requires tools 

that sample both the host-seeking and resting population. However, most 

standard sampling methods can only be applied indoors. For example, host-

seeking mosquitoes are frequently sampled using CDC light traps indoors 

(malaria vectors) 152–154 or BG sentinel traps (dengue vectors) 155–157. Similarly 

resting mosquitoes are usually targeted by aspiration of mosquitoes from the 

inside of house walls (e.g. Aedes 158–160 and Anopheles 161) or pyrethrum spray 

catch indoors [60]. Whilst host-baited traps have shown some success for 

sampling mosquitoes host-seeking on animals and humans outdoors 

46,58,60,69,112,162, there are few methods for sampling mosquitoes resting in forest 

or other non-domestic habitats. Sampling resting mosquitoes is particularly vital 

for characterizing mosquito host choice. This is inferred by analysis of the blood 

meal of recently fed females to identify host preference. There are several 

methods for sampling mosquitoes resting in and around the home 161,163–166 but 

these often give biased estimates of host choice by favouring humans and peri-

domestic animals 63,167. These techniques are rarely used to sample mosquitoes 

in wilderness areas away from homes. As yet, resting collections have largely 

been used to investigate diseases transmitted around the home, not ones that 
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could be transmitted in forested habitats or that have a wild animal reservoir 

host. Recent work in Africa has evaluated standardized, portable and low-cost 

resting traps for collecting resting Anopheles in peri-domestic settings 161,166. 

These have yet to be trialled for sampling mosquitoes resting in forest and other 

non-domestic habitats. Further to defining habitat use and host choice of 

vectors, there is a need for standardised resting collection techniques to monitor 

and detect alterations in mosquito behaviour. Changes to the environment and 

use of control methods can drive adaptations and shift patterns of behaviour in 

vector populations. An example of this is the use of insecticide-treated bed nets 

in Tanzania and Papua New Guinea which resulted in shifts to outdoor biting, 

time of biting and changes in host feeding behaviour 63,168. Land-use changes 

such as deforestation for cultivating palm oil also induce changes in mosquito 

behaviour 135,140; however, in order to detect shifts in host choice or resting 

behaviour, new methods are required that can span all available habitats, such 

as those arising from deforestation, to detect any differences occurring between 

them. 

The aim of this study was to evaluate two new trapping methods for sampling 

mosquitoes resting within domestic, peri-domestic, agricultural and forest 

settings in an area of Malaysian Borneo where multiple VBDs are present. Whilst 

the study encompassed investigation of the mosquito community in general, our 

focus was on known vectors of malaria, dengue and filariasis. I trialled a simple 

bucket trap 161 and sticky trap 166 that were originally developed for sampling 

outdoor resting malaria vectors in Africa. These methods were compared with 

collections made using a CDC backpack aspirator. This is a standard method for 

sampling vectors resting inside houses 147,164 and is occasionally used to collect 

insects resting on vegetation 169. These techniques were compared across eight 

different habitat types representing a gradient of deforestation, with the aim of 

characterising the resting habitat preferences and host choice of potential 

mosquito vectors. This information will highlight the suitability of these novel 

techniques for understanding mosquito behaviour and ecology. 
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 Methods 

 Study site selection 

This study was conducted in the Kudat District of Sabah State in Malaysian 

Borneo (Fig. 2.1). Kudat was the focus of a successful community engaged and 

intersectoral approach to control P. falciparum malaria from 1987 to 1991 170. In 

recent years however, this district has experienced a high burden of human P. 

knowlesi cases 85. Dengue incidence is also high and has been increasing 

considerably in Malaysia since 2000 123. Starting in 2012, Kudat was the focus of 

an extensive, interdisciplinary research project aiming to identify the social and 

ecological drivers of P. knowlesi emergence 171. As part of this project, a 2 × 3 

km grid (Fig. 2.1) encompassing a range of habitats reflecting different land 

cover types was selected for detailed study of macaque and mosquito vector 

ecology. This study was based in two villages situated within this grid: Tuboh 

(06.76467, 116.76953) and Paradason (06.76957, 116.78618). Tuboh is a small 

village of approximately 20 houses surrounded by patches of clearing, palm 

trees, rubber trees and secondary forest. Paradason village is situated 1.5 –2 km 

from Tuboh and is also composed of approximately 20 houses. Palm and rubber 

fields comprise most of the land surrounding Paradason in addition to a large 

area of secondary forest. 

 Resting collection techniques 

Three different methods were used to sample resting mosquitoes. The first was 

the resting bucket trap (RB) 161 which is made from a 20l black plastic bucket 

lined with black linen cloth (Figure 2.2A). RBs were set by placing them 

horizontally on the ground, with a black cloth soaked in water inside to increase 

humidity. Mosquitoes were removed from RB’s using a CDC backpack aspirator 

(John W. Hock, model 1412). The performance of the RB was contrasted with 

another recently developed method for passive sampling of resting mosquitoes: 

the Sticky resting bucket (SRB) (Figure 2.2B). This trap is a modification of the 

Sticky Resting Box 166 in which the inner surface is lined with sticky surfaces to 

trap mosquitoes that land on them. The SRB is an RB with an inner lining made 

of four A4 acetate sheets coated in DeBello rat glue. This was developed as an 

improvement to the standard RB because it was hypothesized that the sticky   
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Figure 2.1 Map of Sabah Province in Malaysian Borneo with a red rectangle indicating the 
location of the study site for investigating resting mosquito behaviour in Kudat District. The 
rectangle represents a 2 × 3 km grid intensively studied for macaque and mosquito ecology 
as part of the Monkeybar programme.   
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Figure 2.2. Photo of A) Resting bucket (RB) and B) sticky resting bucket (SRB) traps. 
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surfaces would increase the catch. Mosquitoes affixed to sticky surfaces were 

removed by cutting out a small square from the acetate sheet. The same acetate 

sheet was used throughout the week but replaced when more than 5 mosquitoes 

had been cut from one sheet or if it had become dusty. Both types of resting 

traps were set up between 12:00–17:00 hrs on the first day and were re-set after 

collections each subsequent morning between 6:00–11:30 hrs.  

RB and SRB collections were made daily in all habitat types except for inside 

houses because of potential intrusion to residents. Instead, mosquitoes resting 

inside houses were collected using a CDC backpack aspirator 172–174. A CDC 

backpack aspirator was used to aspirate mosquitoes inside houses by moving the 

nozzle in a steady up and down motion along the walls. As the houses were of 

differing sizes, the time required for full aspiration varied between 3–10 min. 

Whilst CDC backpack aspiration is regularly used for mosquito surveillance inside 

houses, its value for sampling mosquitoes resting in outdoor environments, 

particularly in wilderness areas away from houses, is unknown. To evaluate this, 

we also conducted a 2-min timed aspiration of all vegetation/objects within a 2 

m radius of each RB trap. The height of aspiration was confined to the reach of 

the aspirator nozzle, i.e. c.2 m from the ground. All surfaces and features of 

vegetation were searched: plant bases, trunks, axils, dorsal sides of leaves and 

tree holes. In the forest canopy, RB and CDC backpack aspiration collections 

were not conducted because the operator could not access the forest canopy 

with the aspirator and lowering the RB traps from the canopy would cause any 

mosquitoes resting inside to fly out.  

RB and SRB traps were set up in pairs positioned 0.3–1.0 m from each other. 

Traps were placed facing opposite directions to avoid direct competition, whilst 

being close enough to be exposed to the same environmental conditions. Pairs 

were positioned 5–10 m from one another and GPS-marked. Maintaining 5 – 10 m 

between each SRB-RB pair was not always achievable when they were placed 

under small houses. Each RB, SRB and 2 min CDC backpack aspiration were single 

replicates and were used in each habitat type except inside houses and the 

forest canopy where only CDC backpack aspiration and SRB were used, 

respectively. Chicken wire mesh with wide holes of one square inch was fixed to 

the front of SRBs located under and around houses to prevent any larger animals 
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entering and getting stuck. The order in which traps were checked each morning 

was selected at random to avoid order effects; with some exceptions made to 

avoid sampling inside houses early the morning when residents were still 

sleeping. 

 Experimental design 

Surveillance of mosquitoes resting in domestic, peri-domestic and forest settings 

was carried out over an 8-week period in 2015, with the first 4 weeks spent in 

Tuboh and the following 4 weeks in Paradason. Within each village, mosquito 

surveillance was conducted in 8 different habitat types selected to reflect the 

range of habitats available to mosquitoes in and around human dwellings, and 

nearby forest habitats where reservoir hosts are present (Table S1 and Figure 

S1). These habitats also represent a gradient arising from deforestation, 

including mature secondary forest of approximately 10–15 years-old (inside 

forest, in the canopy and forest edge), palm and rubber plantations, and human 

settlements (inside, under, and immediately around houses).  

Eight households that were easily accessible by motorbike and who consented to 

participate were recruited from both Tuboh and Paradason. Within each village, 

the eight households were subdivided into one group of four houses in the north 

and one group of four houses in the south. The northerly group of houses were 

sampled on week one and three of the month and the southerly group on weeks 

two and four. Four nights of trapping were conducted per week. In some 

instances, a household sampled in the first week could not participate again, 

therefore a new house in the nearby area was substituted in its place. A total of 

19 different households took part in the study, but in each week of sampling a 

maximum of four houses were visited. Resting collections were performed under 

and in the peri-domestic area around each of the four homes totalling 12xCDC, 

12xRB and 12xSRB collections per night. Only CDC aspiration was performed 

inside homes. The nearest accessible (by foot or motorbike) forest patch and 

palm/rubber plantation to the group of homes was selected for simultaneous 

sampling. Again 12xCDC, 12xRB and 12xSRB collections per night were performed 

in plantation, forest edge and forest interior habitats. Only 12xSRB collections 

were performed in the forest canopy. Each house (n = 19), palm plantation (n = 

5), rubber plantation (n = 4) and forest patch (n = 5) sampled over the study 
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were assigned a code so that RB, SRB and CDC backpack aspiration collections 

made in the same area could be identified (Figure S2 and Figure S3). These 

different areas used for sampling were defined as ‘spatial clusters’. 

 Mosquito processing 

Mosquitoes collected from traps were transported to the central field laboratory 

in Pinawantai village (8 km from Tuboh). All specimens were then examined 

under a stereomicroscope and identified to the genus level using the illustrated 

keys by Rattanarithikul et al. 175–178. Aedes and Culex individuals were identified 

to the subgenus and species level where possible. The sex and gonotrophic stage 

(unfed, blood-fed, semi-gravid and gravid) of female mosquitoes was recorded. 

All samples were stored in 95% ethanol at room temperature in microcentrifuge 

tubes after morphological identification. 

 Blood meal analysis 

All females categorised as recently blood-fed, based on the presence of blood 

visible in the abdomen were subject to blood meal analysis by conducting PCR on 

their stomach contents, following methods of Kocher et al. 179 and Kent 180. 

Primers used were FOR (5'-CCA TCC AAC ATC TCA GCA TGA TGA AA-3') and REV 

(5'-GCC CCT CAG AAT GAT ATT TGT CCT CA-3') to amplify a 358 bp fragment of 

the vertebrate cytochrome b gene 180. 

 Data analysis 

Statistical analyses were conducted in R version 3.4.2, with the packages 

glmmADMB and multcomp. Analyses were performed for specific taxonomic 

groups that are associated with disease transmission: (i) Aedes mosquitoes 

(including vectors of dengue, chikungunya and Zika virus: Ae. albopictus and Ae. 

aegypti); and (ii) Culex mosquitoes (including vectors of JE and filariasis: Cx. 

quinquefasciatus, Cx. fucocephala and Cx. sitiens). GLMMs with a binomial 

distribution were used to test whether the probability of detecting a mosquito 

(presence/absence) varied between habitat and trap types. Here the response 

variable was binary with 0 indicating mosquitoes were absent, and 1 that they 

were present (> 1 individual) in the trap. Fixed explanatory variables fitted 



 
 

30 
 

habitat and trap type, with additional random effects for sampling date and 

spatial cluster.  

The significance of variables were tested by backward elimination using 

likelihood ratio tests. A similar approach was taken to model how the abundance 

of mosquitoes varied between trap and habitat type. Here, the response variable 

was the number of mosquitoes caught in a single trapping event, with a negative 

binomial model used to account for the overdispersion in count data.  

 Results  

 General trends in resting mosquito abundance 

Over 31 nights of sampling, 5748 trapping events were conducted from which 

2243 mosquitoes were collected (Table 2.1, Table S1). Resting mosquitoes were 

found in all habitat types, with Culex spp. (n = 1666) and Aedes spp. (n = 483) 

being the most abundant (Table 2.1). Only a few individuals from other genera 

were collected (n = 94, Table 2.1). These were Tripteroides (n = 38), Armigeres 

(n = 20), Uranotaenia (n = 9), Lutzia (n = 5), Hodgesia (n = 2), Anopheles (n = 1), 

Toxorhynchites (n = 1) and unidentified specimens (n = 18). Both male and 

female mosquitoes were found in resting collections, with the proportion of 

females being highest in SRB collections (69.6% of 381 specimens) and lowest in 

RB (29.6% of 1067) and CDC collections (30.9% out of 795). Of the 483 Aedes 

mosquitoes, only 264 could be morphologically identified to species level. Of 

these, 90.9% were identified as Ae. albopictus (n = 240) and 9.1% Ae. aegypti (n 

= 24) (Table S2). The remaining specimens were missing key diagnostic features 

such as scales which prohibited identification. Assuming the species composition 

was similar in the sample that could not be morphologically identified, the 

majority of remaining Aedes were likely to be Ae. albopictus. The proportion of 

Aedes specimens that could be identified to the species level was highest in SRB 

(n = 140, 81.9%), then RB (n = 45, 56.3%) and lowest in CDC backpack aspiration 

collections (n = 79, 34.1%); indicating that aspiration methods were more likely 

to damage specimens during collection.  

Only a small proportion (122/1666) of Culex mosquitoes were identifiable to the 

subgenus level; 14.9% of those that were trapped with RB were distinguishable 
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to subgenus, 21.2% for SRB and 6.9% for CDC (Table S3). Thus, the trapping 

methods followed a similar trend for enabling Aedes species identification and 

Culex subgenus identification, with SRB allowing greatest accuracy, followed by 

RB and then CDC. Within the group of specimens that could be identified to 

subgenus, the medically important subgenus Culex was highly represented 

(45.1% of those that could be identified). Species within this subgenus were Cx. 

quinquefasciatus (n = 29); Cx. fuscocephala (n = 3) and Cx. sitiens (n = 3; Table 

S4). Members of the subgenus Culex were found in all trapping methods (SRB: n 

= 20; RB: n = 22; CDC: n = 13) and in most habitat types (underneath houses: n = 

32; around houses: n = 9; rubber plantations: n = 6; forest at ground level: n = 4, 

inside houses: n = 3; palm plantation: n = 1) except for the forest canopy and 

edge (Table S3).  

Only one anopheline mosquito, An. umbrosus, was collected (in the forest 

interior). Pooling across habitat types, SRB collections sampled mosquitoes of a 

higher number of genera (n = 8) than those made by CDC (n = 7) or RB (n = 5) 

(Table 2.1). As a result of low sample sizes of other mosquito genera, statistical 

analysis was restricted to the genera Aedes and Culex. Mosquitoes were analysed 

at the level of genus, given that species identification was only possible for part 

of the sample.  
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Table 2.1 Abundance of nine genera of resting mosquitoes (males and females combined) 
collected using CDC backpack aspiration (CDC), Resting bucket (RB) and Sticky resting 
bucket (SRB) methods over 8-week sampling period in 8 habitat types. 

Trap Genus Inside 
house 

Under 
house 

Around 
house 

Palm 
plantation 

Rubber 
plantation 

Forest 
edge 

Forest 
ground 
level 

Forest 
canopy 

RB Culex × 636 163 52 10 13 94 × 

Aedes × 8 20 0 14 18 20 × 

Tripteroides × 1 1 1 0 2 1 × 

Armigeres × 1 0 0 0 0 2 × 

Uranotaenia × 0 1 1 2 0 1 × 

Lutzia × 0 0 0 0 0 0 × 

Hodgesia × 0 0 0 0 0 0 × 

Anopheles × 0 0 0 0 0 0 × 

Toxorhynchites × 0 0 0 0 0 0 × 

Unknown × 0 2 1 0 1 1 × 

SRB Culex × 31 69 16 5 9 33 12 

Aedes × 8 6 10 33 67 33 14 

Tripteroides × 7 1 0 2 1 3 2 

Armigeres × 1 0 0 0 0 1 1 

Uranotaenia × 0 0 0 0 1 1 0 

Lutzia × 2 0 0 0 0 2 0 

Hodgesia × 1 0 0 1 0 0 0 

Anopheles × 0 0 0 0 0 0 0 

Toxorhynchites × 0 0 0 0 0 0 1 

Unknown × 3 0 1 0 1 1 1 

CDC Culex 63 336 79 5 12 9 19 × 

Aedes 3 22 48 9 31 58 61 × 

Tripteroides 0 2 3 0 1 2 8 × 

Armigeres 0 3 1 1 0 4 5 × 

Uranotaenia 0 0 0 0 2 0 0 × 

Lutzia 0 1 0 0 0 0 0 × 

Hodgesia 0 0 0 0 0 0 0 × 

Anopheles 0 0 0 0 0 0 1 × 

Toxorhynchites 0 0 0 0 0 0 0 × 

Unknown 1 1 1 0 3 0 0 × 

Total  67 1064 395 97 116 186 287 31 
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 Aedes spp. 

The probability of collecting an Aedes mosquito using each of the three trapping 

methods was very low (0.01) and differed with trap type (Dev = 58.3, df = 2, P < 

0.001) but not habitat (Dev = 13.76, df = 7, P = 0.06). Aedes were most likely to 

be trapped using CDC, then SRB and least likely with RB (Table 2.2). The mean 

abundance of Aedes per trap was low (< 0.05 mosquitoes/trap), and varied with 

trapping method (Dev = 43.92, df = 2, P < 0.001) and habitat (Dev = 17.94, df = 

7, P = 0.01). It was not possible to test for interactions between trap and habitat 

type in the full data set as only 1 trap type was used in two of the habitat types 

(e.g. CDC backpack aspiration - inside houses; SRB - forest canopy). However, a 

second round of analysis was conducted on the subset of data where all 3 

collection methods were used. Here, the abundance of Aedes was significantly 

influenced by an interaction between trapping method and habitat (Dev = 

187.10, df = 8, P < 0.001). The mean abundance of Aedes collected in RB and 

CDC did not vary between habitats (Table 2.3); however, SRBs placed in forest 

edge habitats collected significantly more than those placed around houses (P = 

0.01). 

 Culex spp.  

As with Aedes, the probability of collecting a Culex mosquito was low on each 

trapping event (c.0.01). Analysis of data collected from all 8 habitat types 

indicated that the probability of capturing Culex differed with trap type (Dev = 

68.34, df = 2, P < 0.001) and habitat (Dev = 39.58, df = 7, P < 0.001). Here the 

probability of sampling a Culex mosquito was significantly influenced by an 

interaction between trapping method and habitat (Dev = 175.60, df = 8, P < 

0.001). Culex were most likely to be trapped using RB than CDC and SRB (Fig. 

2.3). All three trap types followed the same trend of having the highest 

probabilities of collecting Culex underneath and around houses, and inside the 

forest, and the lowest in the forest edge and plantations. The probability of 

sampling Culex was similar across all habitats for both CDC and SRB traps. RB 

positioned underneath homes were more likely to collect Culex than those 

placed at the forest edge (P < 0.05).  
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Table 2.2 Probability of encountering a resting Aedes mosquito per CDC 

backpack aspiration (CDC), Resting bucket (RB) and Sticky resting bucket (SRB) 

trap as predicted by binomial generalised linear mixed models (GLMM). 

Trap Predicted 
probability of 
Aedes presence 

Lower 95% 
CI 

Upper 95% 
CI 

Tukey’s test 
between means 

CDC 0.029 0.016 0.053 RB vs CDC, 
 P < 0.001 

RB 0.009 0.004 0.018 SRB vs CDC, 
 P < 0.001 

SRB 0.017 0.008 0.033 SRB vs RB, 
 P = 0.01 
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Table 2.3 Abundance of resting Aedes mosquitoes per CDC backpack aspiration (CDC), 
Resting bucket (RB) and Sticky resting bucket (SRB) traps as predicted by negative 
binomial generalised linear mixed models (GLMM) for 6 habitat types. 

Habitat CDC 
(95% CI) 

RB 
(95% CI) 

SRB 
(95% CI) 

Around house 0.033 
(0.011–0.095) 

1.944 × 10-2  
(7.095 × 10-3–5.328 × 10-2) 

0.006  
(0.002–0.021) 

Under house 0.017  
(0.005–0.059) 

9.329 × 10-3 

(2.010 × 10-3–4.145 × 10-2) 
0.010  
(0.002–0.047) 

Palm 0.020  
(0.002–0.179) 

1.880x10-7  
(5.880 ×10-108–6.012 × 1093) 

0.016  
(0.002–0.136) 

Rubber 0.051  
(0.005–0.521) 

2.924 × 10-2  
(4.478 × 10-3–1.910 × 10-1) 

0.057  
(0.008–0.415) 

Forest edge 0.022  
(0.002–0.212) 

1.611 × 10-2  
(1.092 × 10-2–2.375 × 10-2) 

0.071  
(0.011–0.463) 

Forest ground 0.026  
(0.003–0.253) 

1.955 × 10-2  
(1.413 × 10-2–2.704 × 10-2) 

0.037  
(0.005–0.246) 
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Figure. 2.3 The probability of catching a resting Culex mosquito with CDC backpack 
aspiration (CDC), Resting bucket (RB) and Sticky resting bucket (SRB) methods as 
predicted by binomial generalised linear mixed models (GLMM). *P < 0.05 (post-hoc Tukey’s 
test).  
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The abundance of resting Culex collected per trap was low (0.1) and differed 

substantially between habitat (Dev = 60.76, df = 7, P < 0.001) and trap types 

(Dev = 60.24, df = 2, P < 0.001). Analysis of the subset consisting of data from 

habitats in which all 3 traps were tested (6 out of 8 habitats) indicated there 

was a significant interaction between trapping method and habitat (Dev = 

246.92, df = 8, P < 0.001). All three trapping methods followed the same general 

trend with mean Culex abundance being highest in traps placed underneath 

houses, and lowest in plantations and at the forest edge (Fig. 2.4). In domestic 

settings, more Culex were found in collections made underneath than around 

houses with all three trap types (CDC: P <0.001; RB: P < 0.01; SRB: P < 0.05). 

More Culex were collected in RB placed under houses than those at the forest 

edge (P < 0.05). Additionally, more Culex were collected from RB placed in the 

forest interior at ground level than at the edge of the forest (P < 0.05).  

 Physiological status and blood meal identification 

Resting collections are typically used to sample female mosquitoes that have 

recently blood-fed so that blood meal identification can be performed to 

confirm host choice. Of the 846 female mosquitoes sampled in this study, 833 

were in acceptable condition to assign a feeding status. The majority of these 

females were unfed (63.3%, n = 527/833), with only 15.2% (n = 127) appearing to 

have recently blood-fed. Similar proportions of blood-fed females were obtained 

with SRB (16.1%, n = 43/266), CDC (15.1%, n = 38/251) and RB (14.6%, n = 

46/316) (Table S5). However SRB traps collected more gravid female mosquitoes 

(23.3%, n = 62/266) than CDC (14.7%, n = 37/251) and RB (13.6%, n = 43/316). 

Most blood-fed females (both Culex and Aedes) were found in collections made 

under and around houses (Figure S4 (Aedes) and Figure S5 (Culex)).  

Vertebrate DNA was amplified in only thirty percent of the blood fed mosquitoes 

that were tested (n = 38/127). The majority of these were Culex mosquitoes, 

with most collected around and underneath houses. Blast searches using 

assembled forward and reverse sequences matched 36 Culex with Gallus gallus 

(jungle fowl), 1 Culex and 1 Aedes (Stegomyia) with human DNA (Table S6). 

Blood meals of specimens caught in the forest and plantations did not amplify.  
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Figure 2.4 The predicted abundance of resting Culex mosquitoes collected using CDC 
backpack aspiration (CDC), Resting bucket (RB) and Sticky resting bucket (SRB) methods in 
six habitat types. Predicted values obtained with negative binomial generalised linear mixed 
models (GLMM). *P < 0.05, **P < 0.01, *** P < 0.001 (post-hoc Tukey’s test).  
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 Discussion  

This study represents the first evaluation of two novel methods for sampling 

mosquitoes resting in a range of domestic, agricultural and forest habitats. 

Overall these trapping methods had a relatively low probability of detection 

(c.0.1), with mosquitoes being found in < 10% of collections. All resting 

collection techniques however were successful at trapping mosquitoes in the full 

range of habitats sampled. Aedes and Culex mosquitoes were the most abundant 

and included the known vector species (Ae. albopictus, Cx. quinquefasciatus, 

Cx. fuscocephala and Cx. sitiens). However none of the methods showed promise 

for collecting malaria vectors, including those responsible for transmitting P. 

knowlesi. Our results provide useful proof-of-principle of the value and 

limitations of these tools for sampling mosquito vectors and characterizing their 

resting habitat preferences.  

Previous studies had warned of the challenges of collecting outdoor resting 

blood-fed anophelines in Malaysia 32,50,181. In a previous study in Paradason 

village where mosquitoes were sampled by Human Landing Collections, An. 

balabacensis was the dominant Anopheles and found at a mean rate of 7.84 per 

person per night 50. In trapping methods such as HLC, mosquitoes are actively 

seeking the host thus commonly collected much higher numbers than passive 

collection methods such as resting collections. Although the sampling efficiency 

of the resting traps here was quite low, a substantial number of mosquitoes (n = 

2243) were collected because traps were deployed at high sampling effort (5748 

trapping events). Although these trapping methods were unsuccessful for 

sampling malaria vectors, genera containing other important vector species 

(Culex and Aedes) were caught at comparatively high frequency. Members of 

these genera were widely distributed and found within all habitat types. More 

Aedes were collected in SRBs placed in forest edge habitats than in SRBs placed 

around houses. Significantly higher abundances of Culex were found in 

collections made under houses than around houses. It is common for the space 

below houses in Sabah to be utilised by livestock or domestic pets which could 

explain the higher numbers of mosquitoes resting under houses. Due to the high 

variability in mosquito catch rates within habitat types, few other clear 

statistical differences between habitats were detected. A much greater sampling 

effort and larger sample sizes would likely be required for a robust test of 
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differences between habitats. However, the generally wide distribution of 

resting mosquitoes across all habitats sampled indicates that there is no single 

location where most of the resting population could be targeted (e.g. through 

the spraying of insecticides).  

Whilst differences in mosquito abundance between trap types were modest, the 

three trapping methods compared here did have some differences in efficiency. 

RB traps and CDC backpack aspiration were more efficient than SRB for sampling 

Culex, whereas more Aedes were collected with CDC backpack aspiration and 

SRB than RB traps. It is unclear why the SRB were not consistently better than 

the other methods, as we hypothesized the sticky surfaces used in this trap may 

give it an advantage. In summary, our results indicate that the suitability of 

specific resting traps differs between mosquito genera, though generally, resting 

bucket traps and CDC collections caught more mosquitoes than SRB. 

One explanation for the differential performance of trapping methods is that 

they target different sections of the vector population. Here we found that the 

proportion of gravid mosquitoes (Aedes and Culex) was higher in SRB than RB or 

CDC backpack aspiration collections. A previous study in Tanzania also found 

that the proportion of Culex mosquitoes that were gravid was higher in sticky 

traps than resting buckets (outdoors) and backpack aspiration (indoors) 161. The 

authors hypothesized that this may be because the polybutylene-based adhesive 

mimicked an oviposition odour cue. The glue used in SRBs here was also 

composed of polybutylenes and polyisobutylenes, and may also have acted as an 

oviposition cue. The choice of trap therefore likely depends on the target 

species and required physiological state in certain settings. Further examination 

of the data gathered in this study on the physiological status of resting 

mosquitoes trapped, particularly Culex specimens due to the large sample size 

generated, could be performed to identify preferred habitat types for blood 

fed/gravid/unfed mosquitoes. 

All three trapping methods were relatively quick and easy to set up and operate. 

The SRB involved minimal manual labour to retrieve specimens (as mosquitoes 

were affixed to a sticky sheet) but required slightly more set-up time for 

preparation of the glue and acetate. An advantage of the SRB is that they can be 

left for longer periods of time which is beneficial when placing in difficult to 
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reach habitats such as a forest canopy. RB performed similarly to fixed bursts of 

two minutes of CDC backpack aspiration in most habitat types. The RB method is 

more convenient than CDC because only the resting bucket needs to be aspirated 

instead of a two-minute search by CDC backpack aspiration which is more time-

consuming and less standardized.  

In making decisions on mosquito trap choice, it is also important to consider the 

quality of specimens obtained from different methods, and whether they meet 

requirements for further processing. This study relied on morphological features 

to identify mosquito species. Scales and hairs are crucial traits for morphological 

identification to species level. However, we noted that many of these were lost 

during the trapping process, with a high proportion of Culex specimens collected 

from all three methods being unidentifiable (> 80%). Aedes specimens generally 

remained in better condition, but with notable differences in the proportion that 

could not be identified between trapping methods. SRB generally kept 

mosquitoes in a better condition for morphological identification. 

The low amplification success of mosquito blood meal hosts was a limitation for 

the study. A likely explanation could be that the quality of the host DNA was 

compromised before extraction and amplification. Mosquitoes were examined 

upon return to the central field station after all resting collections were 

performed, therefore blood-fed mosquitoes were preserved in 95% ethanol 

several hours after being collected. There is the possibility that host DNA could 

have been damaged in this time, thus we recommend to alternatively store 

immediately in the field upon collection. Previous studies noted that an increase 

of eight hours after blood meal ingestion significantly reduced the proportion of 

hosts that could be successfully identified (less than 50% at 15 hours) 182. Our 

collections were performed daily, thus exceeding this very short period. As a 

result, there is a high chance that host DNA in some mosquito blood meals was 

partially digested in advance of mosquitoes being trapped. Additionally, 

different habitats may influence blood meal amplification success due to host 

availability. Around homes there was a notable abundance of blood meal sources 

e.g. humans, chickens and dogs, therefore mosquitoes collected in those areas 

would have had the opportunity to feed more recently than mosquitoes 

collected in areas away from the home such as plantations or forest where there 
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were fewer hosts available. Blood meals of mosquitoes collected further away 

from the home were more likely to be advanced in digestion which was 

confirmed with no amplification of blood meals from mosquitoes collected in the 

plantations and forest. Minor technical issues may have caused low amplification 

success in our study however mosquito digestion of host DNA within the blood 

meal is a more prominent concern. Several medically important mosquito vector 

species were found in this study. This included known vectors of filariasis and 

Japanese encephalitis 148,150 (e.g. Cx. quinquefasciatus, Cx. fuscocephala and 

Cx. sitiens) which are known to be circulating in the study area. These Culex 

species were mainly collected under and around homes, and in palm plantations. 

In the nearby Ranau District, the most abundant Culex species were Cx. 

quinquefasciatus and Cx. pseudovishnui 124. Culex vishnui, Cx. tritaeniorhynchus 

and Cx. gelidus were also common and all have been incriminated as vectors of 

JE in Peninsular Malaysia 124. In Bengkoka Peninsula, neighbouring the Kudat 

District, Cx. pseudovishnui, Cx. quinquefasciatus and Cx. tritaeniorhynchus are 

abundant 149,183. In Sarawak, Kunjin virus was isolated from Cx. pseudovishnui 184 

and JE virus was isolated from Cx. tritaeniorhynchus and Cx. gelidus 185. The 

variation in Culex species between districts may be explained by local ecology 

and differences in agriculture between regions, e.g. rice fields in Bengkoka.  

The majority of Aedes mosquitoes that could be identified were Ae. albopictus, 

a suspected vector of dengue virus 147 and also of Zika virus in Singapore 186. This 

species was found at highest abundance in forest edge and plantation habitats, 

possibly due to the availability of both natural shaded breeding sites and 

artificial containers used for rubber tapping 187. The increase in availability of 

domestic breeding habitats such as artificial water containers was previously 

related to the substantial increase in the abundance of host-seeking Ae. 

albopictus females recorded between the cultivation (1993) and maintenance 

(1994) stages in an oil palm estate in Sarawak 135. A further study in Sarawak 

reported Ae. albopictus to be more abundant in agricultural fields (black 

pepper, cocoa and banana) than in forest sites 147. Our finding differs from a 

previous study in Southern Sabah where surveys with oviposition traps found Ae. 

albopictus to be present only near houses, and absent from old growth forest 

and oil plantations 188. Similarly, low numbers of host-seeking Ae. albopictus 

were reported in hilly areas covered by primary and secondary forests with 
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alternating areas of scrub and open grass in Bengkoka Peninsula east of Kudat 

District 183. Aedes albopictus is known to use vegetation for resting 189, and 

prefer cool, shaded areas for breeding 190. In combination, this highlights the 

relatively plastic and exophilic nature of Ae. albopictus 150, which allows it to 

exploit a range of domestic, agricultural and forest settings. Whilst data on 

sylvatic dengue transmission is not available for this area, it has been reported 

in other areas of Borneo in patients with a shared history of forest activities 

(trekking or tree clearance) 147. More investigation is required to confirm the 

extent of sylvatic dengue transmission in this area; however, our finding that Ae. 

albopictus is abundant in forested areas flags up its role as a likely vector. 

This study has potential implications for vector control. First, it demonstrates 

that a range of vector species rest underneath houses thus vector control 

programmes should target these areas with peri-domestic insecticide spraying. 

Secondly, we conclude that resting catches are insufficient for examining 

malaria vector populations in this area. Resting traps should therefore be used 

as a supplementary tool in conjunction with host-seeking methods. Lastly, 

important vector species such as Ae. albopictus can be found in a range of 

habitats away from the immediate domestic area. Therefore, efforts to control 

sylvatic dengue transmission for example would benefit by including habitats 

away from the home. 

 Conclusions 

This study demonstrated the new resting buckets and sticky resting buckets can 

be used to sample a taxonomically diverse range of mosquitoes in a variety of 

different habitats. However, a limitation of these methods is that they have 

relatively low sampling efficiency, meaning that they must be deployed at large-

scale to generate robust data on mosquito vector resting behaviour and habitat 

choice. These sampling methods were not successful in trapping malaria vectors 

but were effective for some Culex and Aedes mosquitoes. In particular, the 

sticky resting buckets hold promise for future studies characterising sylvatic 

dengue transmission. Despite the relatively small numbers of mosquitoes found 

in these traps, sample sizes were sufficient to indicate that a substantially 

higher number of Culex rest underneath than around homes in this area. Local 
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vector control programmes should consider also targeting these areas with IRS to 

improve success.  
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3 Investigating associations between vector 
habitat and human P. knowlesi exposure risk 
over a wide geographic range in Sabah 

 Abstract 

Current understanding of the bionomics (ecology and behaviour) of mosquito 

vectors responsible for P. knowlesi transmission in Malaysian Borneo comes from 

investigations near the epicentre of human cases in Kudat district of Sabah. 

Previous investigations in this district identified An. balabacensis as the vector 

likely responsible for transmission to humans; with infection risk being highest in 

forest environments. However, these findings are based on sampling at a limited 

number of sites with little spatial replication, generating uncertainty about how 

generalisable these findings are to wider geographical regions where humans 

may be exposed to P. knowlesi. Establishing how these predictions about risk 

withstand over a wider geographic area is necessary to plan any region-wide 

control activities. Additionally, so far the relationship between vector bionomics 

and human infection has been investigated only on the basis of entomological 

outcomes such as vector abundance and infection rate, but it is unclear how well 

these variables predict clinical infection risk.   

To characterise the transmission of P. knowlesi over a wider geographic area and 

investigate potential entomological indicators of human infection risk, 

entomological surveillance was conducted across four districts of Malaysian 

Borneo. In conjunction with this study, a large cross-sectional survey of human 

P. knowlesi infection was performed in the same area. Human-landing catches in 

peri-domestic, farm and forest sites in a subset of 11 villages selected for a large 

epidemiological survey of human P. knowlesi exposure. The putative P. knowlesi 

vector, An. balabacensis, was found in all districts and 6/11 villages sampled. 

The abundance of An. balabacensis was low (< 0.01 per person per night); but 

significantly more were collected in farm (0.094) and forest (0.082) habitats 

than in peri-domestic areas (0.007). Only one An. balabacensis was infected with 

P. knowlesi (infection rate: n = 1/32). Controlling for habitat variation, there 

was no significant association between the abundance of An. balabacensis and P. 

knowlesi sero-positivity rates among residents at the village-level . 
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Whilst this study confirms An. balabacensis is still the most likely vector of P. 

knowlesi in Sabah, its overall abundance was considerably lower across this 

wider study area than found in previous focal studies in Kudat district. This 

demonstrates that caution should be taken before extrapolating findings on 

vector ecology from a geographically limited area to wider regions. Whilst some 

associations between An. balabacensis abundances and habitat type detected 

here matched those inferred from smaller studies in Kudat, overall vector 

densities and infection rates were much lower making it difficult to confirm 

which habitat poses the highest P. knowlesi exposure risk to humans. More 

investigation is required to establish the role of An. balabacensis abundance as a 

useful indirect indicator of predicting P. knowlesi sero-positivity in humans and 

thus human infection risk. 

 Introduction 

Malaria transmission in forested areas worldwide is highly sensitive to 

anthropogenic alterations in land-use 191. In recent years Malaysia has 

experienced a shift in the predominant species of Plasmodium infecting humans 

from P. vivax and P. falciparum to a simian malaria species, P. knowlesi 85. 

Plasmodium knowlesi typically infects macaques and leaf monkeys with 

Anopheles mosquitoes in the Leucosphyrus complex being responsible for 

transmission 8. The emergence of P. knowlesi in humans has coincided with a 

significant change in land-use due to the conversion of primary and secondary 

forest to palm oil plantations 192. Recently, investigations within a major focus of 

human infection in the Sabah province of Malaysian Borneo concluded that P. 

knowlesi incidence was significantly associated with forest cover and historical 

rates of forest loss 193. The mosquito An. balabacensis was also confirmed as the 

primary vector of P. knowlesi within this focal area, with the survival and P. 

knowlesi infection rate in this mosquito vector being significantly higher at a 

forest and farm site in this district than around people’s houses 50. These 

observations support the hypothesis of P. knowlesi primarily being a forest-

associated malaria; with human exposure occurring when people are working 

outside of their homes 88.  

Identification of the habitats and vector species responsible for P. knowlesi 

transmission to humans is a crucial first step for planning control measures. 
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However, most of our current understanding of P. knowlesi ecology comes from 

intensive study of one location. Specifically in Sabah, human P. knowlesi cases 

have been reported in all regional divisions 24, but detailed study of vector 

ecology has been restricted to a 2x3 km intensive study site in one district 

(Kudat, Fig. 3.1) and two sites on the neighbouring Bangii island. Investigations 

in this area have focussed on An. balabacensis abundance, survival and seasonal 

dynamics, malaria infection rates, and larval ecology in relation to land-use. 

While useful for understanding the current hotspot of transmission centred in 

Kudat 50, it is unclear how generalizable these findings are to other areas of 

Sabah, Malaysia or SE Asia in general where P. knowlesi is emerging. For 

example, the landscape in Kudat is a fragmented mix of forest, farm and 

deforested areas, but is relatively similar in altitude, with no major 

urbanization. Longitudinal sampling at three sentinel sites in this area 

demonstrated that An. balabacensis is the dominant Anopheles species (95.1%) 

50. However, other members of the Leucosphyrus complex have been implicated 

in P. knowlesi transmission in different parts of Malaysia 18,45–47,50,58,194 and in 

different Asian countries 48,195–197, and the relationship between vector 

abundance and human exposure risk is poorly understood. Analysis of 

entomological risk factors and their association with human exposure across 

larger spatial scales is required to understand the drivers of P. knowlesi 

emergence both within and beyond Sabah. 

The transmission of other malaria species in Southeast Asia exhibits significant 

heterogeneity characterized by high variation in Anopheles populations at a 

range of spatial scales 198–203. Notable differences in vector diversity and 

abundance exist between  198,199,202 and within countries 201,203, and even 

between villages 2km distance from each other 201. Such heterogeneity in vector 

abundance and diversity has been associated with environmental factors such as 

land-cover, type of agriculture, availability of breeding sites, temperature, 

topography and elevation 202,203. Across the state of Sabah, there is substantial 

variation in elevation, the size and distribution of forest areas, and type of local 

agriculture. Thus it is likely that the snapshot of P. knowlesi vector ecology 

obtained from Kudat district may not fully represent the state as a whole. 

Figure 2. Map of Northern Sabah marked with eleven villages sampled in Kudat, Pitas, Ranau and Kota 
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Figure 3.1 A) Location of Sabah in Malaysian Borneo B) Map of Northern Sabah indicating the eleven villages across 4 districts where entomological 
sampling was conducted in this study between March to June 2016. 



 
 

49 
 

It is unknown whether general predictions about associations between habitat 

and P. knowlesi vectors made from a limited geographic area hold true over 

larger areas of Sabah and Malaysia in general. In Sabah, An. balabacensis 

abundance was high and variable in a peri-domestic site 50, whereas in Sarawak, 

the primary vector associated with P. knowlesi transmission, An. latens, was 

most abundant in the forest 58. Studies conducted in Western Malaysia found An. 

cracens, another member of the An. Leucosphyrus group implicated in 

transmission for that area, was most abundant in the fruit orchard in comparison 

to village and forest habitats 46. Thus studies conducted outwith Sabah indicate 

vector-habitat associations can vary between geographical settings. 

Furthermore, previous work on P. knowlesi vectors have focussed primarily on 

the impact of landcover on abundance and transmission potential 46,50,204–206, 

with little consideration of additional environmental factors that could explain 

or modify these impacts. For example, studies of malaria vectors often find a 

strong association with altitude 163,207–209. Therefore, altitudinal variation was 

specifically incorporated into the study design to examine how this may affect 

vectors and expected relationships with habitat. 

Understanding environmental drivers of vector ecology is useful but may not 

directly translate to predicting human infection risk. Vector abundance and 

sporozoite infection rates are key entomological indicators frequently 

investigated as proxies of human exposure risk 210–212. These entomological 

indicators however may not always be good predictors of risk, particularly when 

investigating zoonotic malaria transmission where vectors may be highly infected 

but only bite monkeys instead of humans. Previously there have been some 

attempts to link P. knowlesi vector bionomics and human cases. For example, 

species incriminated as vectors are often the dominant Anopheles species in 

mosquito collections made in the vicinity of human cases (e.g. An. cracens in 

Peninsular Malaysia 45,46,213, An. balabacensis in Sabah 50,194, An. latens in 

Sarawak 58 and An. dirus in Vietnam 48). These studies are limited because no 

collections were performed concurrently in areas where no malaria cases were 

reported, thus are lacking suitable controls. Additionally, as yet none have been 

performed at a large enough spatial scale to be able to link vectors to 

population-level epidemiological risk factors. In other malaria systems, there has 

been more success in defining good, robust entomological indicators of clinical 
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incidence or prevalence arising from studies assessing the impact of vector 

control methods during randomised control trials. Vector density often 

correlates with EIR 214–216 and parasite prevalence 214 or malaria incidence 215,217. 

However higher vector abundances don’t always mean more malaria cases 218 or 

higher frequencies of parasite detection in people 216. Studies may fail to detect 

any association between entomological indices and epidemiological outcomes 

due to lack of variation in human parasite prevalence or vector densities 

between treatment groups 218–220. Additionally, there may be cases when no 

sporozoite infected mosquitoes are trapped or sporozoite infections are too low 

to detect changes after vector control is implemented 217,218. However, in 

general strong predictions can be made about malaria risk with information on 

vector densities and sporozoite rates but as yet this has not been established for 

P. knowlesi malaria. 

Definition of entomological indicators of human malaria infection requires high 

resolution, spatially and temporally concurrent data on human malaria exposure 

and/or infection and vector bionomics. As yet, it has not been possible to do this 

within the context of P. knowlesi transmission due to a lack of large scale data 

on human P. knowlesi incidence. This would be difficult to achieve with P. 

knowlesi because typical measures of human population-level malaria incidence 

or prevalence are not viable because infection rates are so low. Therefore, 

encountering active infections is likely to be rare and instead a focus on serology 

as a more indirect measure of previous infection is appropriate. Recently a large 

interdisciplinary MRC project ‘Monkeybar’ (UK MRC ESEI Grant #G1100796) 

conducted a mass epidemiological survey to estimate human prevalence and 

antibody responses to P. knowlesi in Sabah. The overall aim of Monkeybar was to 

define the biomedical, environmental and social risk factors for human infection 

of P. knowlesi malaria. As part of this project, a cross-sectional survey for P. 

knowlesi was conducted in communities, from 135 villages distributed across 4 

districts in Sabah: Kudat, Pitas, Ranau and Kota Marudu (September to December 

2015). The occurrence of this large-scale epidemiological survey provided a 

unique opportunity to set up complimentary entomological surveillance 

throughout the four districts to assess the environmental determinants of P. 

knowlesi vectors across a wider region and to test their association with human 

infection. Other mosquito-borne diseases are common in this area of Malaysia, 
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with dengue being the most important. Thus in addition to collecting data on 

malaria vectors, this study also aimed to contribute to knowledge about dengue 

transmission around human settlements by simultaneously collecting data on 

dengue vectors. 

The goal of this study was to investigate environmental determinants of P. 

knowlesi vector abundance and infection rates across wider spatial scales in 

Sabah. Key aims were to identify associations with habitat type and test whether 

results from small-scale sampling in one district (Kudat) are generalizable across 

the state. In addition, this study set out to test for associations between 

entomological variables and human exposure to P. knowlesi as measured in the 

Monkeybar sero-prevalence study. This was done through intensive study of 

mosquito vector ecology and biting behaviours in eleven villages representing 

four districts of Sabah in the year following a large human malaria sero-

prevalence study. 

 Methods 

 Study sites 

Entomological surveillance, especially in areas like Sabah where mosquito 

densities are low and dispersed, is time consuming and expensive, thus difficult 

to implement on the same scale as an epidemiological survey. Therefore, a 

subset of villages investigated in Monkeybar’s cross-sectional survey in 

September to December 2015 were selected for follow-up entomological 

sampling. The intention was to select sites of a wider spatial range, 

encompassing more ecological diversity than sites where vectors have been 

previously studied in Sabah, such as Kudat and within this subset, test for 

associations between community prevalence of P. knowlesi and mosquito vector 

abundance and diversity. The 135 villages investigated in the Monkeybar cross-

sectional survey were divided into district and arranged in order of increasing 

altitude. Three villages were then selected to span the elevation range available 

within each district. In advance of arranging sampling, the villages were visited 

to assess suitability based on ease of access. At this stage, some villages had to 

be replaced as terrain was too challenging to cross at night, however care was 

taken to ensure villages exchanged represented the altitudinal range available 
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within that district. Entomological sampling took place six months after the 

human survey from March to June 2016 (Fig. 3.1). One village in Pitas was 

missed as the village leader was not available at the proposed time thus overall, 

eleven villages were visited for entomological sampling. 

 Mosquito collection 

Mosquitoes were collected using the Human Landing Catch (HLC) technique. 

Volunteers were positioned in teams of two with their lower legs exposed, and 

trapped mosquitoes which landed on them to feed using 30ml plastic screw-top 

vials. One mosquito was trapped per vial and the hour and habitat of collection 

were recorded on each. Catches were performed between 18:00 – 00:00 to 

include the peak biting time of Sabah’s primary P. knowlesi vector, An. 

balabacensis 50,221. All HLC took place outdoors because P. knowlesi vectors are 

known to exhibit exophilic biting behaviour 46.  

 Experimental design 

Mosquito sampling was conducted to investigate associations between habitat 

type (farm, forest or peri-domestic areas), altitude, forest cover, and P. 

knowlesi sero-prevalence rates in village residents. To achieve this, all 11 

villages were consecutively sampled over a 3-month period (21/03/16 - 

16/06/16). One village was sampled per week, with mosquito collections being 

conducted over four consecutive nights. The research team attempted to visit a 

village from a different district on each week, so that district-level differences 

were not confounded by seasonality. However this was not always logistically 

possible (see Table 3.1 for sampling dates). 

Villages were accessible by tertiary or dirt track roads. All villages were rural, 

with small populations of < 750 residents. These were generally structured into a 

group of houses surrounded by a mosaic of crops (usually largely palm oil and 

rubber trees) and secondary forest patches. Thus there was a range of domestic, 

farm and forest environments available at each village. Within each village, 

mosquitoes were collected in three habitat types: forest patch, farm and peri-

domestic environment (e.g. as shown in Fig 3.2) to replicate the sampling design 

used in Kudat previously 50. The peri-domestic environment was defined as the 
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Table 3.1  Description of eleven villages in which mosquito vectors were sampled in this 
study. “Crops” describes the dominant types of subsistence farming occuring in the village. 
”Approximate area of forest patch” refers to the size of the forest patch (estimated from 
map) in which mosquito collections were conducted within the forest habitat type. 
“Population size“ refers to the estimated number of residents derived from household 
enumeration conducted as part of the Monkeybar cross-sectional survey in September to 
December 2015. 

 District Village Elevation 
(m) 

Crops Approximate 
area of 
forest patch 
(m2) 

Population Date of 
first 
sampling 
night 

Kudat Barankason 
(BAR) 
 

128 Rubber NA 84 23/05/16 

Kudat Sungai Pupu 
(SUN) 
 

57 Rubber 10 000 75 19/04/16 

Kudat Suvil  
(SUV) 
 

9 Rubber, 
palm 

500 77 25/04/16 

Kota 
Marudu 

Kotud 
(KOT) 
 

543 Rubber, 
palm 

75 245 30/05/16 

Kota 
Marudu 

Patiu 
(PAT) 
 

260 Rubber 250 000 231 03/05/16 

Kota 
Marudu 

Sorinsim 
(SOR) 
 

180 Rubber 10 000 000 158 05/04/16 

Pitas Perpaduan 
(PER) 
 

14 Palm 1 600 284 09/05/16 

Pitas Sinangip 
(SIN) 
 

218 Rubber, 
palm 

500 375 11/04/16 

Ranau Gondohon 
(GON) 
 

1275 Rubber, 
cabbage 

500 000 460 13/06/16 

Ranau Lipasu 
Lama  
(LIP) 
 

897 NA 250 000 311 16/05/16 

Ranau Siba Bundu 
Tuhan  
(SIB) 

1084 Cabbage, 
lettuce 

10 000 000 737 21/03/16 
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outdoor garden area immediately surrounding a house (outside, < 5m from a 

house). Farm sites were located in small plantations and forest sites were in 

patches of secondary forest comprising non-agricultural trees. Due to the wide 

geographical range of our sampling, the farm habitat varied between villages 

depending on what was locally cultivated (Table 1). Forest was distributed 

patchily throughout the area with patch sizes varying significantly between 

villages (0.075 - 10km², Table 3.1).  

Mosquito sampling sites were selected by walking in and around each village at 

the start of each visit to identify all accessible locations within each of the 3 

habitat types. One location per habitat type was haphazardly selected based on 

the following stipulations: peri-domestic- consent from household residents, 

farm- a point at least 25m from the nearest house so as to differentiate from 

peri-domestic sites, forest- minimum patch size of 10x10m, site 20m from forest 

edge (if not possible, then centre of forest patch). On each night of sampling, 

one team of two people performed HLC in each of the 3 habitat types, then the 

teams rotated between habitats on subsequent nights. Across all four sampling 

nights, a different sampling point was selected within each of the 3 focal habitat 

types. Each sampling point was at least 25 m from the location used the previous 

night. Only three nights of collections were performed for Sungai Pupu and Patiu 

villages due to heavy rainfall and fogging (for dengue control) taking place. 

 Mosquito processing 

At the end of each 6-hour sampling period, mosquitoes trapped inside the vials 

were transported to the central field station by vehicle and put in a -20˚C 

freezer. Mosquitoes were killed by storing at -20˚C overnight and identified to 

genera the following day using the Rattanarithikul et al (2005) key to the 

mosquitoes of Thailand 175. Anopheles were further identified to species level 

using the Rattanarithikul et al (2005) key to the Anopheles mosquitoes of 

Thailand 178 and species belonging to the Leucosphyrus group were identified 

using the Leucosphyrus group of Anopheles key 222. All identifications were 

performed under a field stereomicroscope. Specimens were kept at -20˚C until 

further processing.  
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Figure 3.2 Photos showing examples of typical peri-domestic, farm and forest habitats 
where mosquito collections were conducted in this study.  
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 Plasmodium detection in Anopheles 

DNA was prepared from all Leucosphyrus group Anopheles, Anopheles donaldi 

and An. maculatus (human malaria vectors) following removal of the ethanol 

preservative. DNA was extracted using the QIAGEN DNeasy Blood and Tissue Kit 

following the manufacturer’s instructions with the following minor 

modifications. Specimens were initially ground in 180 µl buffer ATL using a 

pestle and hand held homogenisor, and lastly eluted in a volume of 25 µl TE 

buffer. Extracted DNA was stored at -20 °C until further processing. Nested PCRs 

were conducted to screen samples for Plasmodium DNA using the method of 

Snounou and Singh 223, which identifies DNA of any species within the 

Plasmodium genus.  

Two μl of genomic DNA was subjected to an outer amplification reaction with 

0.4 μM of each of the SSU-rRNA Plasmodium genus specific primers rPLU1 and 

rPLU5, 200 μM dNTPs, 3 mM MgCl2, and 1.7 U GoTaq Flexi DNA polymerase 

(Promega) with 1 x Green GoTaq Flexi Reaction Buffer in a total volume of 25 μl. 

The nested reaction was identical except for substitution of the primers with 

rPLU3 and rPLU4, and the use of 2 μl of outer PCR product instead of genomic 

DNA. PCR conditions for both reactions were: initial denaturation at 95 oC for 5 

min; followed by 35 cycles of denaturation at 94 oC for 1 min, annealing for 1 

min and extension at 72 oC for 1 min; and a final extension at 72 oC for 5 min. 

The annealing temperature was modified from 223 to 55 oC in nest 1 and 62 oC in 

nest 2. PCR products were run on 1.5 % agarose gel in 1x TAE buffer and samples 

which yielded a band at 235 bp were subjected to a further PCR to identify the 

species of Plasmodium present.  

Nine separate reactions were set up following the method of Ta et al 224 (to 

detect P. falciparum, P. vivax, P. malariae and P. ovale), Lee et al 225 (P. 

coatneyi, P. inui and P. cynomolgi) and Imwong et al 226 (P. knowlesi). 2ul 

product from rPLU1/rPLU5 (nest 1) PCR was subjected to an alternative nest 2 

reaction with 0.4 μM of each of the species-specific primer pairs (Table 2), 200 

μM dNTPs, 3 mM MgCl2, and 1.7 U GoTaq Flexi DNA polymerase (Promega) with 1 

x Green GoTaq Flexi Reaction Buffer in a total volume of 25 μl. PCR conditions 

were as in nest 1 with different annealing temperatures for each species-specific 
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reaction (Table 3.2). PCR products (see Table 3.2 for sizes) were run on 1.5 % 

agarose gel in 1x TAE buffer. 

 Dengue detection in Aedes  

All Ae. albopictus and Ae. aegypti were screened for dengue virus using the SD 

Bioline NS1 antigen strip test following the methods of Lau et al 227. Here, 

mosquito specimens were placed on ice to keep samples cool during 

manipulation. Mosquito heads were separated from abdomens using sterile 

scalpels. The abdomens of five individuals were ground in 250 ul PBS using a 

hand-held homogenisor then pipetted onto an NS1 Ag strip. 

 Plasmodium knowlesi sero-prevalence in humans 

Data on malaria prevalence in humans within the study area was obtained during 

a large cross-sectional study conducted by the Monkeybar project in the districts 

of Kudat, Kota Marudu, Pitas and Ranau in September to December 2015. This 

was a study of 135 clusters of 20 households in which all individuals who had 

resided in the selected households for the previous month were tested for 

current infections (via blood smears and PCR) and previous exposure to malaria 

through serology (Fornace et al, in prep). The number of P. knowlesi PCR 

positive samples were too low (4/2503 active infections) to use as a measure of 

human prevalence 228. Thus, serological measures of previous P. knowlesi 

exposure were used to examine associations with the abundance of Leucosphyrus 

group Anopheles (vectors of P. knowlesi) caught in the study. Serology is 

considered an appropriate alternative to PCR for detection of previous malaria 

infection, in low transmission settings 229 and has been shown to correlate with 

entomological inoculation rates 230,231. The maximum duration of P. knowlesi 

specific humoral responses is unknown, however IgG for the newly developed 

PkSERA3 antigen 2 can be detected in 63.8 % patients at 28 days post infection 

232. Antibodies for PkSSP2 antigen peaked on day 7 post infection and were 

detected in only 33.3 % patients 232. Consequently, the serological indicators 

measured here can be used to estimate the presence of P. knowlesi infection 

within the previous month. 
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Following the protocol developed by Herman et al 232, Fornace et al (in prep) 

screened human samples by ELISA using P. knowlesi specific antigens: SERA3 

antigen 2 and SSP2 232. Measures of village level sero-positivity (the proportion of 

individuals from the total screened per village that were IgG positive for P. 

knowlesi) were estimated for all of the 11 villages in which entomological 

surveillance was conducted.  

 Data analysis 

 Anopheles diversity across habitat types 

Data were analysed using the R statistical programming software, version 3.4.2. 

The “vegan” package was used to measure four species diversity indices: species 

richness, rarefied species richness, Simpson’s index and the Shannon index. 

These measures were used to estimate and compare Anopheles diversity across 

habitat types (peri-domestic area, farm and forest). Species richness is the total 

number of different Anopheles species collected in each village. The rarefied 

species richness is the species richness if collections had the same Anopheles 

abundance (ie. set to the group with the lowest total abundance). Rarefaction is 

a method used to standardise unequal sampling sizes 233,234. The Simpson’s index, 

λ= n/n-1 x ∑ ps (1-ps) 235, where  

n = total Anopheles abundance  

ps = each species count/n, 

 
measures the probability that two individuals randomly sampled from the 

dataset will be of the same species 236. The Simpson’s Index is noted to be 

sensitive to abundant species 237, thus the Shannon Index was also calculated as 

a comparison. The Shannon index, 

H = -∑ (ni/N) log (ni/N) 236, where 

N = total Anopheles abundance  
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ni = each species count, 

measures the uncertainty in predicting the species of an individual randomly 

sampled from the dataset 237. Confidence intervals for Simpson’s Diversity Index 

were calculated following Zhang 235. 

 Analysis of environmental variables 

Percentage forest cover in a 100m buffer (circle of radius 100m) around each 

sampling location for HLC was calculated using the Hansen global forest cover 

2014 map 238. GLMMs were constructed in R using the lme4 package to extract 

the mean elevations and proportion of forest cover at mosquito collection sites 

for each habitat type. A negative binomial model was used to predict mean 

elevation and a model with a binomial distribution was used for percentage 

forest cover. Elevation or percentage forest cover were the response variables 

and habitat was the explanatory variable, with date and village set as random 

effects.  

3.3.8.2.1 Mosquito presence and abundance analyses 

Statistical analysis was performed on two sets of mosquito data: 1) An. 

balabacensis only, and 2) All Leucosphyrus group Anopheles. The second group 

was inclusive of An. balabacensis (n = 32), An. latens (n = 7) and mosquitoes (n = 

2) which were either of these two but could not be designated to one species 

due to loss of fragile scales on the wings necessary for morphological 

identification. Both An. balabacensis or An. latens are implicated in the 

transmission of P. knowlesi in Malaysian Borneo 50,58 thus were analysed as a 

whole. The packages lme4 and multcomp were used to analyse mosquito 

presence and abundance. GLMMs were constructed to test for associations 

between the two response variables of mosquito presence (binary outcome, 0 = 

absent, 1= present) and abundance (mean number caught per site per night), 

and the following explanatory variables: elevation, habitat type and forest 

cover. To relieve issues with scaling, elevation was converted from a continuous 

to a categorical variable by splitting into three elevation ranges: low (0 – 375m), 

medium (376 – 750m) and high (751 – 1125m). Models were fit with a negative 

binomial distribution for mosquito abundance and a binomial distribution for 

mosquito presence. In all models, random effects were included for village and 
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date. The significance of explanatory variables in each of the models was tested 

by backward elimination using likelihood ratio tests. A Tukeys’ post hoc test was 

performed to assess differences between each of the 3 habitat types. GLMMs 

were tested in a similar way to examine the abundances of Aedes mosquitoes (of 

which 90.3 % (n = 383) were Ae. albopictus and Ae. aegypti, vectors of dengue 

virus).  

3.3.8.2.2 Biting rates of malaria vector species 

The lme4 package was used to construct generalised linear mixed models 

(GLMM) in R to extract hourly biting rates of different malaria vector species 

caught. Only An. balabacensis, An. donaldi and An. maculatus were examined 

because the overall abundance of An. latens (n = 7) was too low to analyse in 

this way. The number of mosquitoes of each species caught per hour throughout 

the night was examined, with the first hour as 18:00 – 19:00 and the last as 

23:00 – 00:00. Hourly mosquito abundance was treated as the response variable 

with the main fixed effect being biting hour. A negative binomial distribution 

was used with date and village set as random effects. A Tukey’s post-hoc test 

(package multcomp) was used to assess differences in biting rates between hours 

within each species.  

  Associations between vector abundance and human P. knowlesi 
exposure 

GLMMs were constructed to test for associations between mosquito presence and 

abundance for 1) An. balabacensis only and 2) Leucosphyrus group Anopheles 

(An. balabacensis/An. latens) and village-level P.knowlesi sero-positivity. Using 

data only for each village, models were constructed to obtain mean mosquito 

abundance and predicted probabilities of detection for each village. A GLMM 

with negative binomial distribution was used to predict mean mosquito 

abundance from each village where mosquito abundance per night was the 

response variable and habitat and date were fit as random effects. A binomial 

GLMM was used to predict the probability of detecting a mosquito in each village 

where mosquito presence (1) or absence (0) per night was the response variable 

and habitat and date were fit as random effects. 
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Then, village specific predicted mean mosquito abundances and probabilities of 

detection were used to test for associations with the proportion of individuals 

sero-positive for P. knowlesi antigens in each village. A binomial GLM was used 

with village sero-positivity as the response variable and mosquito presence or 

abundance as the fixed effect. A further binomial GLM was used with village 

sero-positivity as the response variable and mosquito presence or abundance as 

the fixed effect fit as a quadratic function (eg. abundance +I(abundance^2)). 

Entomological collections began ~ 6 months after the cross-sectional survey thus 

did not run in parallel with human sampling. However, an assumption of this 

analysis is that entomological measures were assumed to be reflective of general 

differences between villages at the time the cross-sectional survey took place. A 

power analysis was conducted to assess whether the lack of association between 

village level human P. knowlesi sero-positivity rates and P. knowlesi vector 

abundance was due to the low overall sample size. For this, data gathered for 

the 11 villages was repeated (x1, x2, x3…. x14) and the new datasets analysed 

using the binomial GLM with village sero-positivity as the response variable and 

mosquito presence or abundance as the fixed effect until a significant 

relationship (P < 0.05) was detected. 

 Ethics 

This project was approved by the Malaysian Ministry of Health (NMRR-12-786-

13048) and by the research ethics committees of the London School of Hygiene 

and Tropical Medicine (Ref. 6302). All volunteers who carried out mosquito 

collections signed informed consent forms and were provided with antimalarial 

prophylaxis during participation. One month after performing HLC, volunteers 

were screened for malaria parasites by giemsa stained thick and thin blood 

smears. Participants were to immediately report if feeling ill or feverish and 

would be taken to the nearest medical facility for check-up and treatment. 
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Table 3.2 Primer pairs used in nested PCR to detect parasites from Plasmodium genus and specific human and simian malaria species. 

Target PCR Primer Sequence (5’ - 3’) 
Annealing 
temp. 

Product size  

Plasmodium genus 1/ 2 
rPLU1 TCAAAGATTAAGCCATGCAAGTGA 55oC 1.6-1.7kb 

rPLU5 CCTGTTGTTGCCTTAAACTCC 

Plasmodium genus 1 
rPLU3 TTTTTATAAGGATAACTACGGAAAAGCTGT 62oC 235bp 

rPLU4 TACCCGTCATAGCCATGTTAGGCCAATACC 

P. coatneyi 2 
PctF1 CGCTTTTAGCTTAAATCCACATAACAGAC 62oC 504bp 

PctR1 GAGTCCTAACCCCGAAGGGAAAGG 

P. inui 2 
PinF2 CGTATCGACTTTGTGGCATTTTTCTAC 60oC 479bp 

INAR3 GCAATCTAAGAGTTTTAACTCCTC 

P. fieldi 2 
PfldF1 GGTCTTTTTTTTGCTTCGGTAATTA 66oC 421bp 

PfldR2 AGGCACTGAAGGAAGCAATCTAAGAGTTTC 

P. cynomolgi 2 
CY2F GATTTGCTAAATTGCGGTCG 60oC 137bp 

CY4R CGGTATGATAAGCCAGGGAAGT 

P. knowlesi 2 
PkF1140 GATTCATCTATTAAAAATTTGCTTC 50oC 424bp 

PkR1550 GAGTTCTAATCTCCGGAGAGAAAAGA 

P. falciparum 2 
NewPLFshort CTATCAGCTTTTGATGTTAG 53oC 370bp 

FARshort GTTCCCCTAGAATAGTTACA 

Table 2 continued on next page 
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Table 3.2 continued. Primer pairs used in nested PCR to detect parasites from Plasmodium genus and specific human and simian malaria species. 

Target PCR Primer Sequence (5’ - 3’) 

Annealing 

Temp. 

Product size  

P. vivax 2 
NewPLFshort CTATCAGCTTTTGATGTTAG 53oC 476bp 

VIRshort AAGGACTTCCAAGCC 

P. malariae 2 
NewPLFshort CTATCAGCTTTTGATGTTAG 53oC 241bp 

MARshort TCCAATTGCCTTCTG 

P. ovale 2 
NewPLFshort CTATCAGCTTTTGATGTTAG 53oC 407bp 

OVRshort AGGAATGCAAAGARCAG 
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 Results  

 General trends in mosquito vector abundance and diversity 

In 42 nights of sampling, a total of 5588 mosquitoes belonging to eight genera 

were collected (Table 3.3). The majority of specimens were from the Culex and 

Armigeres genera, with only a small percentage made up by potential malaria 

(Anopheles 4 %) and dengue vectors (Aedes 8 %). Five genera were found in the 

peri-domestic habitat, six were found in the farm and seven genera were found 

in the forest (Fig. 3.3). Known malaria vector species (An. balabacensis, An. 

latens, An. donaldi and An. maculatus) comprised 2.5 % of the total catch and 

68 % of all Anophelines. Six species of Anopheles were collected (Table 3.4) with 

An. maculatus and An. barbumbrosus being the most abundant. Two previously 

described vectors of P. knowlesi were detected, An. balabacensis and An. 

latens. Four known vectors of the human malaria parasites, P. falciparum and P. 

vivax, were also found: An. balabacensis, An. donaldi, An. latens and An. 

maculatus. Known dengue vector species (Ae. albopictus and Ae. aegypti) 

comprised 6.9 % of mosquitoes collected. The majority of Aedes specimens, 

were Ae. albopictus (~90%) with only a few Ae. aegypti (~1%). The remaining 

Aedes specimens could not be identified to species level. 

Anopheline species diversity was lower in peri-domestic and farm sites than the 

forest sites (Table 3.5). Both the rarefied species richness, Shannon and Simpson 

Indexes estimated similar trends with forest sites having higher Anopheles 

species diversity, followed by farm sites and then peri-domestic sites (Table 

3.5). 

The mean elevation of the mosquito collection sites was ~350-480m across peri-

domestic, farm and forest habitats (Table 3.6). There was no significant 

association between habitat type and altitude, meaning that the impacts of 

these two variables could be evaluated independently (Table 3.6; P > 0.05). In 

general, there was more tree cover at farm and forest sites than at peri-

domestic sites but still at peri-domestic sites there some degree of tree cover 

(Table 3.6). 
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Figure 3.3 Proportional representation of different mosquito genera within collections made in peri-domestic, farm and forest habitats across 11 villages in 
this study.  
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Table 3.3 Relative frequencies of eight mosquito genera caught in eleven villages within the four districts: Kudat, Kota Marudu, Pitas and Ranau in Sabah, 
sampled from March to June 2016.  

 District of sampling  

 Kudat (villages) Kota Marudu (villages) Pitas (villages) Ranau (villages)  

Mosquito genera SUV SUN BAR SOR PAT KOT PER SIN LIP SIB GON Total (%) 

Aedes sp. 6 17 14 20 46 72 86 56 19 34 54 424 (7.6) 

Anopheles sp. 3 34 1 34 8 33 2 43 19 31 4 212 (3.8) 

Armigeres sp. 162 64 313 124 19 97 581 612 34 14 1 2021 (36.2) 

Culex sp. 115 78 1663 55 118 354 172 16 54 142 14 2781 (49.8) 

Mansonia sp. 46 0 0 0 2 0 31 0 3 0 0 82 (1.5) 

Orthopodomyia sp. 0 0 0 0 0 0 3 0 0 0 0 3 (0.1) 

Uranotaenia sp. 0 0 0 1 0 0 0 9 0 0 0 10 (0.2) 

Verrallina sp. 0 0 2 0 0 0 41 0 0 0 0 43 (0.8) 

Unknown 2 1 2 0 1 1 2 1 0 2 0 12 (0.2) 

Total 335 195 1999 236 196 558 917 736 129 225 73 5588 
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Table 3.4 Anopheles species caught in eleven villages within the four districts: Kudat, Kota Marudu, Pitas and Ranau in Sabah, sampled from March to 
June 2016.  

 District of sampling  

 Kudat (villages) Kota Marudu (villages) Pitas (villages) Ranau (villages)  

Mosquito genera/ species SUV SUN BAR SOR PAT KOT PER SIN LIP SIB GON Total (%) 

Leucosphyrus gp. 0 1 0 8 1 1 0 10 19 0 0 41 (19.3) 

An. balabacensis*# 0 1 0 3 1 1 0 7 12 0 0 32 (15.1) 

An. latens* 0 0 0 0 0 0 0 0 7 0 0 7 (3.3) 

An. balabcensis or An. 
latens* 

0 0 0 1 0 0 0 1 0 0 0 2 (0.9) 

Barbirostris gp 3 33 1 19 3 3 0 23 0 1 3 89 (42.0) 

An. barbumbrosus 0 16 1 14 3 3 0 22 0 0 2 61 (28.8) 

An. donaldi# 3 16 0 2 0 0 0 0 0 1 1 23 (10.9) 

An. maculatus# 0 0 0 8 3 29 0 10 0 29 1 80 (37.7) 

An. tesselatus 0 0 0 0 0 0 2 0 0 0 0 2 (0.9) 

Total Anopheles sp. 3 34 1 34 8 33 2 43 19 31 4 212 
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Table 3.5 Anopheles diversity measures across different habitat types sampled in eleven 
villages in Sabah from March to June 2016.  

Habitat Anopheles 
abundance 

Species 
richness 
(vegan) 

Rarefied 
species 
richness 
(vegan) 

Shannon 
index 
(vegan) 

 

Simpson’s 
index 
(vegan) 

 

Simpson’s 
index ± 95% 
confidence 
intervals 
(manual) 

Peri-
domestic 

22 4 2.380 0.969  0.5 0.52 ± 0.22 

Farm 85 4 2.858 1.276  0.694 0.73 ± 0.05 

Forest 98 5 3.139 1.477  0.750 0.79 ± 0.04 
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Table 3.6 Mean values of elevation and percent forest cover within each of the 3 habitat 
classes where mosquito sampling occurred in this study.   

Habitat Mean elevation (m) 
(range) 

Mean 
percentage 
forest cover (%) 
(range) 

Predicted 
mean 
percentage 
forest cover  

Peri-domestic 427.1 (14 – 1109) 10.2 (0 – 70.5) 3.8  

Farm 358.5 (13 – 1107) 17.3 (0 – 62.5) 14.3 

Forest 478.1 (15 – 1125) 24.2 (0 – 61.4) 8.8  
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 Vector abundance and distribution 

 Anopheles 

3.4.2.1.1 Analysis of probability of detection 

The probability of collecting An. balabacensis was approximately 0.1 % and did 

not differ with habitat (X2 = 5.33, df = 2, P = 0.07), percentage forest cover (X2 = 

3.16, df = 1, P = 0.08) or elevation (X2 = 0.21, df = 2, P = 0.90). The probability 

of collecting an Anopheles from the Leucosphyrus group differed with habitat (X2 

= 7.42, df = 2, P = 0.02) but not forest cover (X2 = 3.31, df = 1, P = 0.07) or 

elevation (X2 = 0.34, df = 2, P = 0.85). Leucosphyrus group mosquitoes were 

more likely to be caught in farm (P = 0.02) and forest (P = 0.02) sites than in the 

peri-domestic environment (Fig. 3.4). 

3.4.2.1.2 Analysis of mean abundance 

The abundance of An. balabacensis varied with habitat (X2 = 9.82, df = 2, P < 

0.01) but not with elevation of HLC site (X2 =0.13, df = 2, P = 0.93) or 

percentage forest cover (X2 = 3.16, df = 1, P = 0.08). Anopheles balabacensis was 

significantly more abundant in farm (P < 0.01) and forest (P < 0.01) habitats than 

in peri-domestic areas (Fig. 3.5A). 

The mean abundance of the Leucosphyrus group did not vary with forest cover 

(X2 = 4.12, df = 1, P = 0.04) or elevation of HLC site (X2 =1.64, df = 1, P = 0.20). 

Habitat was found to be a significant predictor of Leucosphyrus group abundance 

(X2 = 12.92, df = 2, P < 0.01); with their density being significantly lower in peri-

domestic environments than at farm (P < 0.001) or forest (P < 0.001) habitats 

(Fig. 3.5B). 

 Aedes 

The probability of collecting an Aedes mosquito did not vary with habitat (X2 = 

5.51, df = 2, P = 0.06), forest cover (X2 = 1.45, df = 1, P = 0.23) or elevation (X2 = 

5.97, df = 2, P = 0.05). However Aedes abundance was positively associated with 

forest cover (X2 = 4.36, df = 1, P = 0.04) (Fig. 3.6). Aedes abundance did not vary 

with habitat (X2 = 3.51, df = 2, P = 0.17) or elevation (X2 = 1.66, df = 2, P = 

0.44). 
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Figure 3.4 Predicted probability of catching Leucosphyrus group Anopheles in farm, forest 
and peri-domestic habitats sampled in this study. Error bars represent 95% confidence 
intervals. 
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Figure 3.5 Predicted mean abundance of different vector groups within 3 different habitats in this study: A) An. balabacensis and B) Leucosphyrus group 
Anopheles. Error bars represent 95% confidence intervals. 
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Figure 3.6 Influence of proportion of forest cover in 100m buffer around trapping site on the 
mean abundance of Aedes collected per night. Error bars represent 95% confidence 
intervals. 
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 Biting patterns of malaria vector species 

The hourly rates of malaria vector species were generally very low (~0.005 – 

0.038 per species per hour), and higher in An. maculatus than An. donaldi or An. 

balabacensis. Biting activity was slightly higher during the early evening hours 

(18:00 – 20:00 hrs) but there was large variability making it difficult to detect 

clear peaks (Fig. 3.7). No Tukey’s test comparison of mean biting rates between 

hours for each species were significant 

 Malaria and dengue infection rates 

Of the 144 female mosquitoes that were potential malaria vector species, only 

one tested positive for any malaria parasite species. This was an An. 

balabacensis collected in a forest patch in Sinangip village, Pitas, which was 

infected with P. knowlesi. This represents an infection rate of n = 1/32 An. 

balabacensis (Table 3.4) collected during the study. All Aedes specimens (n=424) 

were negative for the dengue NS1 antigen.  

 Association between malaria vector abundance and human 
P. knowlesi exposure 

Seroprevalence rates of P. knowlesi in people across the study area are reported 

in detail in (Fornace et al, in prep). Within the subset of 11 villages where 

entomological surveillance was conducted here, sero-positivity rates ranged 

from a low of 0 % (Sib and Sun) to a high of 13.9 % (in Sor). The probability of 

trapping An. balabacensis per village per night was 0.11 – 0.42 (Fig. 3.8A), and 

0.11 – 0.50 for the Leucosphyrus group overall (Fig. 3.8B). The abundance of An. 

balabcensis per village per night ranged from 0.11 to 0.73 mosquitoes (Fig. 3.9A) 

and for the Leucosphyrus group this was 0.11 to 0.91 (Fig. 3.9B). No significant 

relationship (P > 0.05) was detected between the probability of detection and 

abundances, for both An. balabacensis and Leucosphyrus group Anopheles, and 

human P. knowlesi sero-positivity rates. The power analysis indicated that this 

may have been due to the low number of villages and mosquitoes sampled in the 

study. A minimum number of 160 An. balabacensis and 164 Leucosphyrus group 

Anopheles would be required to detect a positive significant relationship (P < 

0.05) between the presence of P. knowlesi vectors and human P. knowlesi sero-

positivity rates (Table 3.7). To detect a significant positive relationship (P < 
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0.05) between the abundance of P. knowlesi vectors and human P. knowlesi 

sero-positivity rates, a minimum sample size of 192 An. balabacensis and 574 

Leucosphyrus group Anopheles would be required (Table 3.7). 
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Figure 3.7 Predicted mean number of A) An. balabacensis, B) An. donaldi and C) An. maculatus biting per hour between 18:00- 24:00 hrs, pooled across all 
sites and habitat types. Error bars are 95% confidence intervals. 
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Figure 3.8 Association between the proportion of individuals in a village sero-positive for P. 
knowlesi antigens and the detection of A) An. balabacensis and B) Leucosphyrus group 
Anopheles in the village per night. Error bars are 95% confidence intervals.  

 

Figure 3.9 Association between the proportion of individuals in a village sero-positive for P. 
knowlesi antigens and the abundance of A) An. balabacensis and B) Leucosphyrus group 
Anopheles caught in the village per night. Error bars are 95% confidence intervals.  
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Table 3.7 Results of power analysis to indicate sample size required to pick up an association between the proportion of 
individuals in a village sero-positive for P. knowlesi antigens and the detection and abundance of An. balabacensis or 
Leucosphyrus group Anopheles in the village per night. 
 

Number of 
replicates of 
original dataset 

Number of  
An. balabacensis 
mosquitoes  

Number of 
Leucosphyrus 
gp. mosquitoes  

Relationship between human P. 
knowlesi sero-positivity and detection 
of P. knowlesi vectors  

Relationship between human P. 
knowlesi sero-positivity and 
abundance of P. knowlesi vectors 

An. balabacensis Leucosphyrus group 
Anopheles 

An. balabacensis Leucosphyrus 
group Anopheles 

1  32 41 P > 0.05 P > 0.05 P > 0.05 P > 0.05 

2 64 82 P > 0.05 P > 0.05 P > 0.05 P > 0.05 

3 96 123 P > 0.05 P > 0.05 P > 0.05 P > 0.05 

4 128 164 P > 0.05 P = 0.049 P > 0.05 P > 0.05 

5 160 205 P = 0.049 P = 0.027 P > 0.05 P > 0.05 

6 192 246 P = 0.031 P = 0.015 P = 0.039 P > 0.05 

7 224 287 P = 0.019 P = 0.008 P = 0.025 P > 0.05 

8 256 328 P = 0.012 P = 0.005 P = 0.017 P > 0.05 

10 320 410 P = 0.005 P = 0.001 P = 0.007 P > 0.05 

12 384 492 P = 0.002 P = 0.001 P = 0.003 P > 0.05 

14 448 574 P = 0.001 P = 0.0002 P = 0.001 P = 0.042 

 



79 
 

 Discussion 

Following a large outbreak of the macaque malaria P. knowlesi in humans in the 

Kudat district of Malaysian Borneo, a wider programme of entomological 

sampling throughout the state of Sabah was conducted. Through this, I 

demonstrated that the primary vector responsible for transmission, An. 

balabacensis, is relatively widespread but occurs at considerably lower density 

than estimated in focal studies around Kudat. This wider geographical sampling 

also indicated that An. balabacensis abundance is significantly higher in farm 

and forest habitats than in peri-domestic sites. This contrasts with earlier work 

based on sampling of single sites in Kudat that indicated vector abundance was 

slightly higher in peri-domestic habitats. Only one malaria-infected mosquito 

was found across the study area, an An. balabacensis infected with P. knowlesi 

caught in a forest patch. Whilst this is in line with the expectation that P. 

knowlesi infection rates are highest in An. balabacensis found in forests 50, the 

sample size of infected mosquitoes was too low to draw any significant 

conclusions about habitat-dependent mosquito infection rates. In collaboration 

with a large epidemiological survey of P. knowlesi infection in humans, a 

positive association between mean An. balabacensis density and sero-prevalence 

for P. knowlesi in people was demonstrated at the village-level. Overall these 

findings indicate that P. knowlesi risk is relatively low and heterogeneous 

throughout the region, and that studies from just one area (Kudat) may not be 

universally representative of P. knowlesi vector ecology. 

On the basis of study at a few sites around Kudat, the primary P. knowlesi 

vector, An. balabacensis, was previously reported to be the dominant 

Anopheline biting humans 50. This finding was based on longitudinal surveillance 

of mosquitoes at 3 sites (1 village, farm and forest area). In contrast, I sampled 

mosquitoes over a considerably wider geographical range, spanning 11 villages 

from 4 districts, and incorporating replication of forest, farm and peri-domestic 

habitats within and between villages. Here mosquitoes were sampled at only one 

4-day time point, rather than across a year as in 50. Using this study design, An. 

balabacensis comprised only 15.1% of Anophelines, in contrast to the 95.1% 

previously reported for Kudat 50. As part of a P. knowlesi case-control study 194, 

An. balabacensis was shown to represent 86.7% of Anophelines within peri-

domestic areas at households where cases had been reported in the Kudat 
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district (73.0% at control houses) 194. These high proportions of An. balabacensis 

in Anopheles collections may be specific to the Kudat district, with the relative 

abundance of this vector being much lower when measured over a wider spatial 

scale. Results here demonstrate substantial spatial heterogeneity in vector 

community structure; with vector densities in Kudat being significantly higher 

than elsewhere. This could explain why high incidences of human P. knowlesi 

infections were reported from Kudat and that P. knowlesi cases contribute the 

largest proportion of malaria cases in this district 44,85,239,240.  However even 

within Kudat, our results suggest a considerably lower relative abundance of An. 

balabacensis (2.6 %) than previously reported 50,194. It is unknown why this is the 

case, but possibilities include both the non-random selection of sites in early 

work to target areas with particularly high An. balabacensis density; and/or 

differences in the temporal scale of sampling. Here mosquitoes were sampled 

for only 3-4 nights per site (in 2016), whereas previous work sampled mosquitoes 

over 12 months (3 nights/month, 2013-2015). It is  possible that the reduction in 

An balabacensis may reflect a longer-term temporal change occurring in the 

mosquito community or failure to capture seasonal dynamics in the current 

study.  

Habitat type was a major predictor of Anopheles presence and abundance in this 

study. Both An. balabacensis and the Leucosphyrus group, were found at 

significantly higher abundances in farm and forest habitats than in the peri-

domestic environment. This differs from a previous study conducted in a single 

farm, forest and peri-domestic site in Kudat; where An. balabacensis was most 

abundant in the village 50. Studies in Kapit, Sarawak 58, and in Peninsular 

Malaysia 46 reported higher abundances of Leucosphyrus group vector species in 

forest or farm habitats than in peri-domestic sites. Differences reported in Wong 

et al 50 may have been due to site specific factors rather than habitat, 

highlighting the need for replicated sampling over wide geographical areas for 

robust habitat prediction 241. Similar levels of detection and abundances for An. 

balabacensis and Leucosphyrus group Anopheles were found for farm and forest 

sites indicating that these mosquitoes thrive in agricultural areas as well as 

forests as others have shown 46,58. Thus people are as likely to encounter a P. 

knowlesi vector when working in the farmland as in the forest. Recent 

epidemiological studies have identified forest and agricultural-related work 
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activities as risk factors for P. knowlesi risk in Sabah 88,228. Forest cover and 

historical forest loss have also been significantly associated with the occurrence 

of human cases of P. knowlesi in this area 193. People in rural villages in Sabah 

commonly practice small-scale subsistence farming, thus are at high risk for 

malaria transmission around villages where malaria vectors are present. 

Altitude has long been recognized as a significant predictor of malaria 

transmission because as elevation increases, temperature decreases causing a 

reduction in mosquito densities and parasite developmental success and survival 

242–247. In the current study, elevation was not a significant predictor of 

Anopheles presence and abundance. This may be due to the significant 

additional environmental heterogeneity introduced by sampling over such a wide 

geographical range which could have swamped any more modest impact of 

elevation. All sites sampled may also have been within the 

altitudinal/temperature range suitable for An. balabacensis. It could be that this 

vector can survive a wide range of temperatures associated with an elevation 

range of 13 – 1125m and that an effect would only be detected if mosquito 

collections had been performed at the extremes (minimum and maximum) 

elevations. A modified study design based on sampling vectors across a transect 

of wider altitudinal gradient may be required to more thoroughly investigate the 

effect of elevation. After accounting for the effect of habitat, variation in the 

proportion of forest cover around each sampling site (within 100 m radius) did 

not further explain any additional variation in vector abundance and 

distribution. A modelling study indicated that there was a higher risk of human 

P. knowlesi cases in areas of > 65% forest cover in a 2 km radius 193. Here, 

percentage forest cover was considered only within a 100m radius of each 

sampling site, and did not exceed 30%. The lack of association between 

percentage forest cover and vector abundance here may be reflective of the 

relatively small spatial scale over which it was considered; with mosquito 

populations potentially being more dependent on the habitat composition at 

larger scales.   

To test for associations between exposure to vectors and P. knowlesi infection 

risk in humans, the relationship between the presence and mean abundance of 

An. Leucosphyrus group mosquitoes and human P. knowlesi sero-positivity was 
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assessed. Typically, studies investigating entomological indicators of malaria 

infection in humans use infection incidence or parasite prevalence in blood 

samples as a primary epidemiological endpoint 212. It was not possible to use 

either of these disease indicators here because the rate of P. knowlesi infection 

in the human population is so low that there is limited chance of detecting a 

new or ongoing infection through random surveillance. Consequently, sero-

positivity was measured as an indicator of either current or previous infection; 

with P. knowlesi. The assay used here is able to detect ~60% of P. knowlesi 

infections that occurred within 28 days prior to testing 232. It is unknown how 

long the antibodies to P. knowlesi used in this assay (SERA3 antigen 2) persist 

post 28 days however it is unlikely that they are long-lived due to the low 

prevalences of P. knowlesi in the human population 228. No significant 

association between the abundance of mosquito vectors (An. balabacensis and 

all An. Leucosphyrus group mosquitoes) and human sero-positivity for P. 

knowlesi at the village-level was detected here. This may have been due to the 

relatively short window in which previous P. knowlesi infection could be 

detected. Few other studies have used sero-prevalence as an indicator of 

malaria infection in humans. Of these, a study in Tanzania showed that sero-

prevalence to P. falciparum antigens (MSP1, 2 and AMA1) was positively 

associated with entomological inoculation rate (EIR) 231. Similarly, results for P. 

falciparum were obtained in Papua New Guinea 248, and in Senegal a progressive 

reduction in human IgG antibody response to P. falciparum schizont antigens was 

documented in response to declines in EIR, in a longitudinal study (2000 - 2012) 

249. 

 

 Thus our results dictate that further study is required to determine if sero-

prevalence could be a useful indicator of variation in malaria exposure; 

particularly in low transmission and elimination settings. 

The majority of studies investigating potential entomological indicators of 

human malaria infection use parasite prevalence or incidence as a primary 

endpoint 212,214–217,219,220. Generally entomological variables such as vector 

density, sporozoite rate and entomological inoculation rates are estimated as 

potential correlates of infection risk 250. The relationship between these 
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entomological indicators and human infection is not always consistent 216,217. For 

example, while vector abundance, sporozoite rates and EIR are positively 

correlated with parasite prevalence in humans in many cases (69–71), sometimes 

there is a poor association (e.g EIR and prevalence 216,251). A notable limitation 

of our study design was that entomological sampling was performed six months 

after human data was collected. Therefore there was a temporal mismatch in 

the timing of human and entomological sampling which could have limited the 

strength of any association. The entomological data was only conducted for a 

few days thus may not have been accurate representation of vector conditions at 

the time of human sampling. Further to this, the sero-positivity assay was 

limited to a short window for detecting previous P. knowlesi infections (~1 

month) and fails to detect ~40% of infections. These limitations may have 

prevented the detection of a strong relationship between vector density and 

human exposure here, and an improved study design may have provided more 

conclusive evidence of entomological predictors of human P. knowlesi risk. 

Through mosquito sampling over a wide geographical area in Sabah, this study 

established that An. balabacensis constitutes a lower proportion of Anopheles in 

collections than previously thought. This vector was detected in four districts 

but found in only 6/11 villages. The results highlight the careful need in making 

assumptions on vector ecology based on small scale sampling and that wider 

geographical sampling is preferred. Highest abundances of An. balabacensis 

were detected in farm and forest habitats suggesting that human risk to P. 

knowlesi is greater in these habitats than in peri-domestic areas however too 

few malaria infections in mosquitoes were detected to make a robust conclusion 

on this. Furthermore, investigation including a longer range of sampling or 

incorporation of more villages is required to establish if the abundances of An. 

balabacensis in villages can be used as entomological indicators of P. knowlesi 

exposure in humans.
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4 Malaria transmission in macaque reservoir 
populations in Malaysian Borneo  

 Abstract 

A significant outbreak of the macaque malaria species, P. knowlesi, across SE 

Asia in the last decade triggered investigations into the vector ecology 

associated with its transmission. More recently, the natural transmission of a 

second species found in macaques, P. cynomolgi, to humans in Malaysia has 

highlighted the potential for further emerging zoonotic malarias. Until now, 

most studies have focussed on vectors responsible for P. knowlesi transmission to 

humans and have largely been done in areas where both primates overlap. Study 

is lacking into the vectors responsible for the maintenance of malaria parasites 

within wild macaque reservoir populations which is crucial to understand the 

infections circulating in monkeys and to identify their potential for spillover and 

risk to humans. 

To examine the abundance and diversity of potential vector species, we 

evaluated the use of the Mosquito Magnet Independence Trap (MMIT) to passively 

collect malaria vectors host seeking in the vicinity of macaque sleeping sites. 

The study site was the Lower Kinabatangan Wildlife Sanctuary of Sabah, 

Malaysia, an area of protected secondary forest supporting a large macaque 

population and very few humans. Over 38 nights, one MMIT was placed at trees 

where macaques were roosting and another at control trees where macaques 

were absent. Thermal imaging was used to estimate macaque abundance, and 

temperature and rainfall data were collected to characterise environmental 

determinants of malaria vector abundance. Malaria vectors and macaque stool 

samples were screened to measure the diversity and prevalence of primate 

malaria parasites present. 

The MMIT proved to be a reliable method for non-invasive sampling of malaria 

(also Japanese encephalitis and filariasis) vectors host seeking near macaque 

sleeping sites. The primary vector of P. knowlesi in Sabah, An. balabacensis, was 

caught in low abundances (n = 15) but significantly more were trapped at long-

tailed macaque sleeping sites than at control trees (P = 0.02) indicating a 

propensity for feeding on this host species. Screening of macaque faecal samples 
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noted a high Plasmodium prevalence within macaque populations however no P. 

knowlesi malaria was detected here. Additionally, no P. knowlesi was found in 

vectors but two An. balabacensis had P. inui infections. These results indicate 

that P. inui may be circulating at high prevalence in macaques at LKWS and that 

there is heterogeneity in P. knowlesi prevalence across macaque populations in 

Sabah. Currently, it is unknown whether natural transmission of P. inui can occur 

to man but due to the infections detected here, and in An. balabacensis trapped 

around human settlements in previous studies, this provokes an awareness of its 

potential for future spillover into humans.  

 Introduction 

There are over 200 species of Plasmodium, infecting numerous animal species, 

including birds, reptiles and mammals, as well as humans 252. Many malaria 

parasites are known to infect non-human primates, including those in the 

Plasmodium and Haemosporid genera 252. There has been a long-standing 

interest in studying primate malarias both for use as model systems to 

understand human malaria 34,253–255 and for assessing the potential for zoonotic 

spillover from primates. Notably, primate malaria was used in the treatment of 

neurosyphilis patients in 1935 and primates are used to this day in efficacy 

testing of new malaria vaccines 256,257. The first malaria parasite discovered to  

infect only non-human primates was Plasmodium pitheci which was isolated 

from an orangutan in the early 20th century 258. Subsequent identification of non-

human primate malarias were P. inui and P. cynomolgi, both described in 1905 

infecting the long-tailed macaque in Borneo, Macaca fasicularis 259. In the 

following 70 years, a further 5 simian parasite species (P. fieldi, P. simiovale, P. 

knowlesi, P. coatneyi and P. fragile) were discovered in Asian macaques and 

another in orangutans (P. silvaticum 258). Malaria parasites have also been found 

in New World monkeys including (e.g P. brasilianum in cacajaos and P. simium in 

howler monkeys) and in African gorillas, chimpanzees and mangabeys 258. A total 

of 27 Plasmodium species infecting non-human primates have been described 258, 

with several showing evidence of spillover into human populations 71,224,260. This 

potential for zoonotic transmission of simian malaria in addition to its impacts 

on primate health merits further investigation.    
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The pathogenic effects of Plasmodium infections in monkeys are relatively 

unknown. There is evidence to suggest that malaria causes fever and anaemia in 

naïve apes 261. However as is the case with humans, apes can develop a 

protective immunity to prevent against malaria-related death in areas of intense 

transmission 261. In Asia, five species of macaques have been identified as being 

natural hosts of two malaria parasites which can also be transmitted and cause 

disease in humans: P. knowlesi and P. cynomolgi 195. These parasite species 

appear to be benign in macaque hosts and cause few clinical symptoms other 

than a decrease in hematologic indices 195. There is little correlation between 

the outcome of simian malaria in macaques and humans. Plasmodium knowlesi 

infection in macaques is thought to have minimal impact on macaques whereas 

this parasite infecting humans can result in severe disease and even death 262. 

The distribution and prevalence of Plasmodium infections in non-human 

primates is reported to be high 263. For example, wild chimpanzee and gorilla 

populations in Africa have high prevalences (24 – 40 %) of Laverania and P. vivax 

261. Historical studies of macaque populations in west Malaysia (1932 - 1993) 

indicated a moderate malaria prevalence of 21.5 % in M. fasicularis and 20 % in 

M. nemestrina (pig-tailed macaques) 195. More recently, investigations in 

Peninsular Malaysia noted an overall malaria prevalence of 97.3 % in 145 M. 

fasicularis; with 13.7 % of those harbouring the species P. knowlesi 45. A further 

study in Peninsular Malaysia found 50 % of wild M. fasicularis were infected with 

malaria 264. Thus there is evidence of heterogeneity in malaria infection within 

and between macaque populations. 

Despite growing interest in the distribution and impact of malaria infection on 

non-human primates 259, until recently there has been limited investigation of 

transmission ecology. In particular, relatively little is known about the vectors 

responsible for the transmission of primate malarias. Competent vectors for 

African ape malaria and South American primate malaria were only identified 

through experimental infection studies in the 1960s 265. The natural mosquito 

vectors of Amazonian primate malaria were discovered through field studies in 

the late 1980s 266,267. However only in the last five years have investigations 

begun to incriminate vectors for African ape malaria in nature 268. Malaria 

parasites are widespread in Asian monkeys and more information is available on 
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their transmission 28,48,100,265,269, particularly in Malaysia due to significant 

epidemics of zoonotic malaria in people 45,46,49,58. However, most work has 

focussed on incriminating the vectors responsible for transmitting primate 

malaria to humans (48,50,194, Chapter 2), with much less known about the  natural 

transmission dynamics within macaque populations. An understanding about 

vectors responsible for transmitting malaria between non-human primates is 

crucial to identify parasites circulating in monkey populations and to be aware 

of their potential to cause disease in humans. 

The epidemiology of monkey malaria has relevance for public health due to the 

potential for spillover into human populations. Most notably, the macaque 

malaria parasite P. knowlesi has been documented to infect people in Cambodia 

81, Indonesia 76,79, Laos 78, Peninsular Malaysia 6,18,45, Malaysian Borneo 24,262,270, 

Myanmar 271, Philippines 228, Singapore 80, Thailand 83,272 and Vietnam 98. 

Additionally, the first human case of another macaque malaria parasite, P. 

cynomolgi, was reported in Malaysia in 2014 224; with 5 further infections 

documented this year 273. Outbreaks of the monkey malarias P. brasilianum 260 

and P. simium 274 have also occurred in people in South America. On account of 

these recent examples of spillovers of primate malaria into humans, zoonotic 

malaria is increasingly viewed as a public health risk with potential to 

compromise malaria elimination efforts. A comprehensive understanding of the 

dynamics of malaria transmission in macaque reservoir populations will be 

required to tackle the threat of zoonotic malaria and limit spread to humans.   

The investigation of primate malaria transmission has been hindered by several 

logistical and ethical constraints. First, there are numerous challenges to 

sampling blood from primates, and mosquito vectors attempting to bite them. 

For example, many primate species are protected such that obtaining blood 

samples from wild populations is prohibited 258. Some degree of sampling is 

possible for less threatened species such as macaques; but only under highly 

regulated conditions (43,44). Historically, blood samples were obtained from 

macaques by shooting and killing them; methods that are rightly now considered 

unethical 276,277. There is a strong interest in finding alternative non-invasive 

methods for malaria detection in primates. Recently, there has been good 

progress with the development of molecular approaches to test for parasite DNA 



 
 

88 
 

in primate faecal samples 278–284. These approaches are promising but are yet to 

be widely applied and optimized. Similar ethical and logistical constraints make 

it difficult to sample mosquito vectors attracted to macaques. In the (1960-

1970s) this was done using “Monkey Baited Traps” in which macaques were 

placed in a small cage inside a net with some gaps to allow mosquitoes attracted 

to enter the net but not escape 27,45,46,58. Now restrictions on the minimum size 

and nature of housing for captive primates make such approaches unfeasible. 

Alternative less invasive approaches such as “e-nets” in which macaques are 

held in larger cages and have their odour collected to attract mosquitoes have 

been trialled and show some promise 112, but remain logistically challenging. 

Additionally, these techniques have been primarily used to sample primate 

malaria vectors in areas near human settlements 45,46,112,205, with the primary 

aim of identifying which mosquitoes are responsible for human infection. This 

may not be reflective of the vectors that sustain transmission between 

macaques. A better understanding of the dynamics of monkey to monkey 

transmission is required to identify if and how transmission could be disrupted in 

the reservoir population. This necessitates reliable non-invasive methods for 

sampling mosquitoes and parasites within macaque populations. 

In the last decade, there has been a substantial outbreak of the macaque 

malaria P. knowlesi in humans within Sabah province, Malaysian Borneo (Chapter 

2) 6,24. Most human cases have occurred within the Kudat District of Sabah. Here, 

the primary mosquito vector of P. knowlesi is An. balabacensis, a mosquito that 

can also transmit many other primate malarias including P. coatneyi, P. 

cynomolgi, P. fieldi and P. inui 50,194, and the human malarias P. falciparum and 

P. vivax 118,153. This mosquito was incriminated as the P. knowlesi vector in 

studies using Human Landing Catches (HLC); a standard method used to sample 

Asian malaria vectors 18,50,59,112,194. This technique has been used to sample An. 

balabacensis in the Kudat district, and elucidate its time of biting, malaria 

infection rate and seasonal dynamics 50,194. Thus, our understanding of the role 

of An. balabacensis in P. knowlesi transmission is largely based on its 

predominance within samples of vectors attracted to humans. This may give a 

biased perspective of the range of vectors involved in maintaining transmission 

within the large non-human reservoir population.   
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Understanding malaria transmission dynamics in primate-only habitats is 

essential to understanding the stability of P. knowlesi. Here I tested a 

commercially available Mosquito Magnet Independence Trap (MMIT) to passively 

sample malaria vectors host seeking in the vicinity of long-tailed macaques 

within a large wildlife protected area in Malaysia. The MMIT lures mosquitoes 

using the combination of non-specific mammalian odour bait (CO2 and octenol), 

heat and water vapour 285,286. Here traps were placed in the proximity of 

sleeping sites used by macaque troops within the Lower Kinabatangan Wildlife 

Sanctuary. This area has a large population of long-tailed macaques, which 

typically live in groups of 10 - 100 across a home range of 25 - 200 hectares 31. 

Troops roost overnight in trees such as Ficus and Colona sp. near river banks 31. 

Ficus (fig) trees also provide an important food source for macaques 287. 

Relatively few studies have been published describing the use of Mosquito 

Magnet traps for malaria vectors 285,286,288–291, and the only one trial in Asia has 

been published 292. These studies used the MMIT with the aim of sampling human 

malaria vectors, but here I test it for zoonotic malaria vectors for the first time.  

Here I evaluated the MMIT for sampling mosquito vectors attracted to macaque 

populations within a protected area of secondary forest within Sabah where 

there are few humans and a high abundance of long-tailed macaques. This work 

was combined with sampling of macaque faeces to estimate the prevalence of 

malaria within host populations using a recently developed, non-invasive method 

283,284. These sampling methods were further used to investigate the transmission 

dynamics of P. knowlesi and other primate malarias within macaque populations 

in undisturbed forest habitats. Specific goals were to 1) examine the abundance 

and diversity of potential vector species within macaque populations, 2) 

characterise environmental determinants of primate malaria vector abundance 

3) measure the diversity and prevalence of primate malaria parasites in vectors 

and macaque faeces. 

 Methods 

 Study site 

This study was conducted at the Danau Girang Field Centre located in Lot 6 of 

the Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah, Malaysian Borneo  
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(5°24'49.93" N, 118°02'18.58" E) (Fig. 4.1). The Lower Kinabatangan area was 

used for commercial logging from 1950s to 1987, which was followed by the 

conversion of 60000 hectares of land to palm and cocoa plantations 293. In 2005, 

the Sabah State Government announced the protection of 26000 ha (ten lots, 

Fig. 4.1) of remaining forest areas in the Lower Kinabatangan to establish a 

corridor linking 15000 ha of virgin forest reserves 294. Most forests in the 

Kinabatangan area have been logged at least once, thus the age of the 

secondary forest ranges from 10 to 60 years old 295. The LKWS is a protected 

secondary disturbed forest area that contains a range of habitat types including 

primary to secondary lowland dipterocarp forest, floodplains, mangrove and oil 

palm plantations 295,296. The sanctuary spans 400km2, and hosts a wide diversity 

and abundance of wildlife including ten species of primates: long-tailed 

macaque (Macaca fasicularis), pig-tailed macaque (Macaca nemestrina), 

proboscis monkey (Nasalis larvatus), Bornean orangutan (Pong pygmaeus morio), 

red-leaf monkey (Presbytis rubicunda), Hose’s langur (Presbytis hosei), white 

silvered langur (Presbytis cristata), Muller’s Bornean gibbon (Hylobates 

muelleri), tarsier (Tarsius bancanus) and slow loris (Nycticebus coucang). A 

section of Sabah’s largest river, the Kinabatangan (560km, Fig. 1), is located 

within the Sanctuary. Trees lining this river bank are a key habitat component 

for several primate species 31,297. In 2002, an expedition estimated primate 

population sizes (per km2 ) as 16.82 for M. fasicularis and 3.30 for M. nemestrina 

31. Preferred primate sleeping trees can be easily recognised by field staff and 

accessed from the river by boat. 

 HLC vs MMIT trap comparison 

An initial trap evaluation study was performed to establish whether the Mosquito 

Magnet Independence Trap (Mosquito Magnet, model: MM3200, supplier: Syarikat 

Thiam Siong Sdn Bhd, Sabah) was capable of detecting Anopheles in the area 

(Fig. 4.2). As there is no existing reference method for sampling vectors 

attracted to macaques, this evaluation was based on comparisons with the 

standard HLC method which has proven efficient for sampling An. balabacensis 

in other parts of Malaysia 46,50,205. The MMIT was modified before use to run off 

batteries rather than mains electricity, and on the gas locally available in 

Malaysia (LPG cooking gas tank, 30% propane and 70% butane). A combustion 

chamber converts this gas mixture to CO2, heat and water vapour which is blown
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Figure 4.1 Map of Sabah indicating the location of the Danau Girang Field Centre (red) along 
the Kinabatangan river (blue). Green areas indicate boundaries of the Lower Kinabatangan 
Wildlife Sanctuary (Lots 1 - 10) and black lines show administrative districts. 



92 
 

 

Figure 4.2 A Mosquito Magnet Independence Trap (MMIT, left) and a view of the mosquito 
collection net within the MMIT (right). 
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out via a fan through an additional synthetic attractant called Lurex3. The 

active ingredient of Lurex3 is R-octenol, a compound found in mammalian and 

bovine breath and sweat which in addition to the CO2, heat and water vapour, 

attracts mosquitoes to the trap 298–301. When mosquitoes approach the attractive 

emissions, they are pulled inside by a reverse current and caught in a net. 

 Initial comparisons of the HLC and MMIT were conducted on three walking trails 

within the LKWS (Kingfisher, Ficus and Kayu Malam, Fig. 4.3) which were 

representative of different ecotypes (wet, wet and dry lowland forest, 

respectively) surrounding the main building of the research facility. Ten nights 

of simultaneous HLC and MMIT collections were performed. On each night, two 

sites were selected 100m apart on one of the three trails (Fig. 4.3). One site was 

allocated for HLC and the other for MMIT collection. On the following night, 

trapping methods were rotated between sites in a cross over design. Two 

rotations (four nights) were completed on the Kingfisher and Ficus trails and one 

rotation (two nights) on Kayu Malam. Hourly collections were conducted from 

18:00 – 00:00 hrs each night to coincide with the peak biting time of An. 

balabacensis (18:00 - 20:00 hrs). One person performed the HLC by exposing the 

lower legs and trapping mosquitoes which landed to feed in 30 ml plastic 

specimen vials. They were accompanied by an assistant who noted the collection 

time on each vial. Each hour comprised 45 minutes of trapping followed by 15 

minutes of break to provide a rest period for the individual performing HLC. 

During this time, the MMIT was switched off and the net removed, stored in a 

plastic Tupperware then replaced with a new one.  

 Experimental design 

Mosquito sampling using MMIT was conducted to characterize the abundance and 

diversity of potential vector species within the reserve, and investigate the 

impact of macaque presence, abundance and environmental factors 

(temperature, rainfall) on the nightly abundance of potential vectors. A 20km 

stretch of the Kinabatangan River was selected as the study site. This transect 

included a range of potential microhabitats including various tree species such 

as Colona, Bonkol, Bayur, Tangat and Ficus. The 20km was divided into ten 2km 

transects with the Danau Girang Field Centre (DGFC) situated approximately in 

the middle (Fig. 4.4). A minimum of 20 m of riparian forest was on either side of
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Figure 4.3 Map of forest trails surrounding the main building of Danau Girang Field Centre 
in the Lower Kinabatangan Wildlife Sanctuary. Boxes indicate the sites used on Ficus (wet 
lowland forest), Kingfisher (wet lowland forest) and Kayu Malam (dry lowland forest) for 
human-landing catch (HLC) and Mosquito Magnet Independence Trap (MMIT) evaluation of 
collecting Anopheles. Blue lines depict bodies of water. 
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Figure 4.4 The 20km stretch of the Kinabatangan River surrounding Danau Girang Field 
Centre where macaque roosting sites and control trees were selected for mosquito 
collection. Purple dots indicate the boundary of each 2km transect that could be randomly 
selected for mosquito sampling on each night. 
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 the river 302 and the nearest human settlement was at least 15 km downstream 

from DGFC. The home range of long-tailed macaques in this reserve was 

estimated as 1.25km2 in a previous survey 31. Therefore sampling mosquitoes 

within different 2km transects each night was considered appropriate to avoid 

repeated sampling near the same macaque troop. Each transect was visited once 

every ten nights and was selected by random number generation using the 

android app: Random UX. Sampling was conducted in blocks of five nights with 

one night break culminating in a total of 38 sampling nights between September 

to November of 2017. Thus each block was sampled 3 - 4 times, once every 10 

days, with traps placed on alternate sides of the river on each visit.  

 MMIT to sample Anopheles host seeking near macaques 

On each night of sampling, two mosquito magnet independence traps (MMIT) 

were used to collect host seeking adult mosquitoes. One trap was positioned at a 

tree identified as having sleeping macaques and another at an uninhabited tree 

acting as a ‘control’ to differentiate mosquitoes specifically attracted to 

macaques.  

We arrived at the selected transect by boat at 17:30 hrs each day. A thermal 

imaging camera was used to scan river banks to identify potential macaque 

troops by driving slowly up and down the river. Previous use of thermal imaging 

systems for wildlife studies have conducted aerial surveys 303–305, therefore this 

was the first to apply a hand-held technique operating at ground level. When the 

camera indicated presence of a troop, trees were inspected using binoculars to 

determine if they were long-tailed macaques (Macaca fasicularis). If confirmed, 

a MMIT was placed near the bottom of the sleeping tree if the bank was 

accessible (steady incline from the river, level area to position the trap and 

penetrable vegetation). Macaques would generally move from the selected tree 

to higher up in the canopy or deeper inside the forest as the boat approached 

but return after the trap was placed. The position of the MMIT was recorded, 

and a Tiny Tag data logger (Gemini UK) was fixed to the trap base for hourly 

temperature recording (Fig. 4.5). Due to the high density of macaques in the 

LKWS, there was no occasion where groups were not detected within the 

sampling transect. A tree of similar structure and species, but uninhabited by 

macaques and other primates, was selected as the control site each night. The 
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Figure 4.5 The Mosquito Magnet Independence Trap (MMIT) in position on the river bank at 
the base of a Ficus (fig) tree to be used by a long-tailed macaque troop as their overnight 
resting place. 
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distance between the test and control MMIT was at least 100m. MMITs were in 

place and operating by 18:00 hrs each night. 

Mosquitoes were collected at macaque sleeping and control sites each night 

from 18:00 – 06:00 hrs. Before sunrise and movement of macaques from the 

sleeping site (~ 05:30 hrs), the number of macaques sleeping in the tree where 

the MMIT was placed were counted using the thermal camera. Daily rainfall data 

(recorded from a rain gauge) during the study period was provided by DGFC. 

 Mosquito processing 

In the trap evaluation study, mosquitoes caught in the HLC were trapped in 30ml 

plastic screw-top vials. In the MMIT, mosquitoes were trapped in nets which 

were then were placed into plastic Tupperware containers. On return to the 

field laboratory, collection vials and boxes containing the MMIT nets were stored 

at -20˚C for ~12 hrs to kill mosquitoes. Specimens were then morphologically 

identified to genera and where possible, species using Rattanarithikul et al 

(2005) 175–178. Anopheles belonging to the Leucosphyrus group were further 

identified using the Sallum et al (2005) Revision of the Leucosphyrus group of 

Anopheles key 306. All identified mosquitoes were stored in 95% ethanol in 1.5ml 

eppendorfs. Anopheles were screened for Plasmodium infections as described in 

Chapter 2. 

  Macaque Faecal collection 

On each morning following mosquito collections, trap sites were visited at 06:00 

hrs. After emptying traps, the ground within a 20m radius of sleeping trees was 

inspected for the presence of fresh macaque stools. Here two people conducted 

a twenty-minute search of the forest floor and canopy (within reach). Efforts 

were made to ensure each faecal sample corresponded to a different individual 

based on variation in the colour, consistency and distance of sample from other 

faeces. As many samples as possible were taken within these limitations, 

however there were some cases where no faeces could be found. Wearing gloves 

and a N95 disposable respirator face-mask, a 2 cm3 faecal sample was deposited 

into a 50 ml falcon tube and sealed in a zip-lock plastic bag. Tubes were then 

immediately transported to the laboratory and filled with RNAlater solution. The 
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sample was homogenized immediately using a sterile chopstick until completely 

broken. Tubes were then stored at -20˚C until further processing. 

DNA was extracted from 200 µl of each macaque stool solution using the QIAamp 

DNA Stool Mini Kit following the manufacturer’s instructions. DNA was eluted in 

100 µl buffer AE and stored at -20 °C until further processing. Nested PCRs were 

conducted to screen samples for Plasmodium DNA firstly using the method of 

Siregar 283, which identifies DNA of any species within the Plasmodium genus. 2μl 

of genomic DNA was subjected to an outer amplification reaction with 0.4 μM of 

each of the SSU-rRNA Plasmodium genus specific primers PfF4595 

(GATTACAGCTCCCAAGCAAAC) and PfR5019 (GTTTAGCCAGGAAGTCAGCGTC), 100 

μM dNTPs, and 0.5 U Phusion High Fidelity DNA polymerase (New England Biolabs 

M0530) with 1 x High Fidelity buffer in a total volume of 25μl. The nested 

reaction was identical except that only 1µl PCR product from nest 1 was used for 

nest 2. PCR conditions were: initial denaturation at 94 oC for 5 min; followed by 

30 cycles of 94 oC for 15 seconds, 60 oC annealing for 15 seconds and 72 oC for 45 

seconds; and a final extension at 72 oC for 5 minutes. 1µl of PCR product from 

nest 1 was used for nest 2. Nest 2 was an exact replicate of nest 1 but with 16.5 

µl dH2O. PCR products were run on 3 % agarose gel in 0.5x TAE buffer. Samples 

with a 424 bp band were positive for Plasmodium genus. 

After initial screening for Plasmodium, all positive samples went through another 

round of PCR to test for the specific presence of P. knowlesi following the 

method of Kawai et al 284. Here 2μl of genomic DNA was subjected to an outer 

amplification reaction with 0.5 μM of each of the cytochrome b P. knowlesi 

primers PCBF (ATGCTTTATTATGGATTGGATGTC) and PCBRed 

(ACATAATTATAACCTTACGGTCTG), 100 μM dNTPs, and 0.5 U Phusion High 

Fidelity DNA polymerase (New England Biolabs M0530) with 1 x High Fidelity 

buffer in a total volume of 25μl. The nested reaction was identical except for 

substitution of the primers with PkCBF (TATTCTTCTTTAGTGGATTATTTA) and 

PkCBRed (GTATTGTTCTAATCAGTGTA), and the use of 1 μl of outer PCR product 

instead of genomic DNA. PCR conditions were initial denaturation at 98 oC for 1 

min; followed by 35 cycles of 98 oC for 10 seconds, 50 oC annealing for 30 

seconds and 72 oC for 30 seconds; and a final extension at 72 oC for 5 minutes. 
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PCR products were run on 3 % agarose gel in 0.5x TAE buffer. A 131bp band 

indicated that the sample was positive for P. knowlesi DNA.  

 Statistical analysis 

Data were analysed using the R statistical programming software, version 3.4.2 

with the packages lme4 and multcomp. Generalized Linear Mixed Models 

(GLMMs) were used to compare the sampling ability of the two trapping 

techniques (HLC and MMIT) for mosquitoes and Anopheles in particular. These 

Generalised Linear Mixed Models (GLMMs) were constructed with a negative 

binomial distribution to account for overdispersion in mosquito count data 307. 

The response variable was the mean abundance of mosquitoes in general or just 

Anopheles per night or hour. The main fixed effect of interest was trap type 

with random effects fit for date and trail (eg. Kayu Malam, Ficus or Kingfisher). 

A post hoc Tukeys’ test was used to assess differences in mosquito abundances 

between traps. 

Sampling of mosquitoes near trees where macaques were sleeping was 

conducted for 38 nights. On each night an unoccupied control tree was selected, 

but on a few occasions, macaques or other primates were present at the control 

site in the mornings or the traps stopped working overnight due to failure of gas 

supply or batteries.  Excluding these scenarios, data was available from 33 nights 

of sampling at control trees and 34 nights at trees with sleeping macaques 

(Table 4.2). With this data, GLMMs were constructed to test for differences in 

the response variables of 1) Anopheles abundance 2) An. balabacensis 

abundance and 3) An. donaldi abundance between macaque sleeping sites and 

control trees. A negative binomial distribution was used with date and river 

transect set as random effects. Models tested for associations between mosquito 

abundance and macaque presence and abundance, and rainfall on the day of 

sampling. The significance of each variable was tested by backward elimination 

using likelihood ratio tests. Post-hoc Tukey’s tests were performed to assess 

differences in mosquito abundance between sleeping sites and control 

collections. 

On nine sampling nights, the datalogger failed to record the average nightly 

temperature. Thus a subset of data (28 nights at control trees and 29 nights at 
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sleeping sites) for which mean nightly temperatures were available was used to 

test for associations between temperature and mosquito abundance. Here the 

impact of temperature on 3 different groups of mosquito data was investigated: 

Anopheles only, An. balabcensis and An. donaldi abundances. Negative binomial 

GLMMs were constructed with the presence/absence of macaques, number of 

macaques present, mean nightly temperature and daily rainfall were fixed 

effects, and date and river transect set as random effects. The significance of 

each variable was tested by backward elimination using likelihood ratio tests. 

Post-hoc Tukey’s tests were performed to assess differences in mosquito 

abundance between sleeping sites and control collections. 

 Ethics 

This project was approved by the College of Medical, Veterinary and Life 

Sciences Ethics Committee at the University of Glasgow (Application number: 

200160160) and the Medical Ethics Committee of Universiti Malaysia Sabah 

(Application number: JKEtika 1/16 (3)). 

  Results 

 HLC vs MMIT trap comparison 

Both HLC and MMIT collected mosquitoes belonging to the same eight genera 

(Table 4.1). In general, more Aedes, Anopheles, Culex and Verrallina were 

collected with MMIT than with HLC. The only genus where more mosquitoes were 

collected with HLC than with MMIT was Mansonia. All mosquitoes were identified 

to species level where possible, however due to time constraints, the genera 

with medically important species detected were prioritized: Anopheles, Culex 

and Mansonia. Aedes and Uranotaenia mosquitoes were mostly identified to 

subgenus. The Aedes genus contains vectors of dengue (Ae. albopictus and Ae. 

aegypti) that are usually detected in mosquito collections in Sabah however the 

subgenus detected in this area were not of medically important species. 

Coquillettidia, Orthopodomyia and Verrallina mosquitoes were only classified to 

genus. In general, mosquitoes trapped by HLC were in better condition for 

morphological identification than those trapped in the MMIT nets because key 

characteristics necessary for species determination such as hairs and scales were 
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better preserved. The Aedes, Anopheles, Culex, Mansonia and Uranotaenia 

specimens that could not be assigned to at least a subgenus represented 5.3 % 

for HLC and 12.0 % for MMIT. Only 0.3 % of the total catch for HLC and 0.6 % for 

MMIT were not in a suitable condition for placing to a genus. 

With respect to potential malaria vectors, almost all Anopheles caught in the 

HLC could be identified to species, except for one individual that was missing 

features to distinguish between An. barbirostris or An. donaldi. Two Anopheles 

from MMIT collections (3.2 % of total caught by MMIT) could not be placed to a 

subgenus. Five different Anopheles species were collected by HLC compared to 8 

species with MMIT (Table 4.1). Both methods trapped the known P. knowlesi 

malaria vector, An. balabacensis, and An. donaldi; with a higher proportion of 

these species in the Anopheles caught by HLC (80.5 %, n = 29) than MMIT (72.6 %, 

n = 45).  

Although there was a tendency towards higher numbers of mosquitoes in MMIT 

than HLC collections, overall there was no statistically significant difference in 

the mean abundance caught per night (Tukey’s test: P = 0.39, Figure 4.6A). 

Similarly, the mean number of Anopheles per night was not significantly 

different between trap types (Tukey’s test: P = 0.210, Figure 4.6B). There was 

no significant difference in the mean number of mosquitoes (P =0.212, Figure 

4.7A) or Anopheles (P = 0.299, Figure 4.7B) caught per hour between HLC and 

MMIT trapping methods. 

Anopheles balabacensis and An. donaldi were caught in all hours between 18:00 

hrs and 23:00 hrs (Fig.4.8) with most activity for An. donaldi noted in the first 

two hours of sampling (18:00 – 20:00). 

 MMIT to sample Anopheles host seeking near macaques  

Overall mosquitoes from eight genera were collected (Table 4.2). Mansonia 

made up over half of mosquito collections, followed by Culex 25 %, Verrallina 10 

%, Anopheles 4 %, Aedes 3 %, Uranotaenia 1 % and Coquillettidia 0.5 %. A total 

of 9 Anopheles species were collected: 125 individuals from 6 species near 

macaque sleeping sites, and 218 individuals from five species at control trees. 

Anopheles epiroticus, An. gigas and An. tesselatus were caught only at sleeping
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Figure 4.6 Mean abundance of A) all mosquito genera and B) all Anopheles caught per night 
by Human landing catch (HLC) and Mosquito Magnet Independence Trap (MMIT) as 
predicted by negative binomial generalised linear mixed models (GLMM). Error bars 
represent 95% confidence intervals. 
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Figure 4.7 Mean abundance of A) all mosquito genera and B) all Anopheles caught per hour 
by Human landing catch (HLC) and Mosquito Magnet Independence Trap (MMIT) as 
predicted by negative binomial generalised linear mixed models (GLMM). Error bars 
represent 95% confidence intervals.
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Figure 4.8 A) An. balabacensis and B) An. donaldi trapped per hour by human-landing catch (HLC) and Mosquito Magnet Independence Trap (MMIT). 
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Table 4.1 Mosquitoes caught by Mosquito Magnet Independence Trap (MMIT) and human-
landing catch (HLC) over ten nights of trap comparison study in Lower Kinabatangan 
Wildlife Sanctuary, Sabah. 

Mosquito genus/ subgenus/ 
species 

Human-landing 
catch (HLC) 

Mosquito Magnet 
Independence Trap (MMIT) 

Aedes 87 151 
Aedimorphus 2 8 
Am. Caecus 2 2 
Ayurakitia 0 1 
Downsiomyia 1 0 
Edwardsaedes 3 1 
Finlaya 2 12 
Paraedes 67 81 
Pr. Ostentato 10 0 
Ochlerotatus 3 10 
Unknown Aedes spp.  9 38 

Anopheles 36 62 
An. balabacensis 2 5 
An. barbirostris 0 2 
An. barbirostris/donaldi 1 5 
An. barbumbrosus 0 2 
An. cellia subgenus 0 1 
An. donaldi 27 40 
An. kochi 0 1 
An. montanus 2 1 
An. roperi 1 1 
An. tesselatus 3 2 
Unknown Anopheles spp. 0 2 

Coquillettidia 2 23 

Culex 278 532 
Cx. brevipalpis/phangngae 1 0 
Cx. foliates 21 5 
Cx. fuscocephala 13 13 
Cx. gelidus 1 6 
Cx. hutchisoni 25 37 
Cx. malayi 3 0 
Cx. perplexus/Cx. whitei 0 2 
Cx. pseudosiniensis 9 5 
Cx. quinquefasciatus 8 4 
Cx. siniensis 1 2 
Cx. sitiens 5 1 
Cx. tenuipalpis sub 47 97 
Cx. vishnui/ pseudovishnui 31 179 
Cx. whitmorei 78 30 
Unknown Culex spp. 35 151 

Table 4.1 continued on next page 
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Table 4.1 continued. Mosquitoes caught by Mosquito Magnet Independence Trap (MMIT) 
and human-landing catch (HLC) over ten nights of trap comparison study in Lower 
Kinabatangan Wildlife Sanctuary, Sabah. 

Mosquito genus/ subgenus/ 
species 

Human-landing 
catch (HLC) 

Mosquito Magnet 
Independence Trap (MMIT) 

Mansonia 396 300 
Ma. annulate 122 98 
Ma. annulifera 3 3 
Ma. bonnae 13 3 
Ma. dives 10 15 
Ma. dives/ bonnae 105 63 
Ma. Indiana 86 63 
Ma. uniformis 48 29 
Unknown Mansonia spp. 9 26 

Orthopodomyia 3 3 

Uranotaenia 4 9 
Ur. Longirostris 0 2 
Ur. species 3 1 2 
Unknown Uranotaenia spp. 3 5 

Verrallina 237 746 

Unknown genera 3 11 

Total 1049 1846 
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Table 4.2 Mosquitoes caught with Mosquito Magnet Independence Trap (MMIT) at trees with 
and without sleeping macaques (control trees) within the Lower Kinabatangan Wildlife 
Sanctuary, Sabah. 

Mosquito genus/ subgenus/ 
species 

Macaque sleeping sites 
(34 nights) 

Control trees 
(33 nights) 

Aedes 193 169 
Ae. laniger 1 0 
Aedimorphus 0 1 
Ayurakitia 0 1 
Edwardsaedes 29 1 
Finlaya 1 0 
Paraedes 142 130 
Ochlerotatus 15 22 
Scutomyia albolineata 1 0 
Stegomyia 0 1 
Unknown Aedes spp.  4 13 

Anopheles 144 265 
An. balabacensis 13 2 
Barbirostris gp 122 251 
An. barbirostris 0 2 
An. donaldi 106 211 
An. epiroticus 1 0 
An. gigas 1 0 
An. kochi 0 0 
An. montanus 2 2 
An. roperi 0 1 
An. tesselatus 2 0 
An. umbrosus gp 1 2 
Unknown Anopheles spp. 2 5 

Coquillettidia 37 23 
Coq. Nigrosignata 19 18 
Unknown Coquillettidia spp. 18 5 

Culex 1581 1213 
Cx. baileyi 0 1 
Cx. brevipalpis/phangngae 23 2 
Cx. cinctellus 21 13 
Cx. foliatus 4 3 
Cx. fuscocephala 0 1 
Cx. gelidus 42 27 
Cx. hutchisoni 399 350 
Cx. infantulus 0 1 
Cx. infula 1 8 
Cx. mammifer/ wilfredi 2 26 
Cx. nigropunctatus 189 132 
Cx. pseudosinensis 43 21 
Cx. pseudovishnui/vishnui 277 209 
Cx. quinquefasciatus 2 1 
Cx. scanloni 1 0 
Cx. siniensis 5 1 

Table 4.2 continued on next page 
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Table 4.2 continued. Mosquitoes caught with Mosquito Magnet Independence Trap (MMIT) at 
trees with and without sleeping macaques (control trees) within the Lower Kinabatangan 
Wildlife Sanctuary, Sabah. 

Mosquito genus/ subgenus/ 
species 

Macaque sleeping 
sites 

Control trees 

Cx. sitiens 24 16 
Cx. tenuipalpis 277 198 
Cx. whitmorei 133 53 
Cx. whitmorei/gelidus 0 3 
Cx. whitei 0 1 
Unknown Culex spp. 138 146 

Mansonia 3151 3036 
Ma. annulate 468 467 
Ma. annulifera 254 265 
Ma. bonnae 220 153 
Ma. dives 695 416 
Ma. dives/bonnae 186 232 
Ma. Indiana 300 588 
Ma. uniformis 191 148 
Unknown Mansonia spp. 837 767 

Orthopodomyia 2 4 

Uranotaenia 48 63 
Uranotaenia 11 19 
Pseudoficalbia 30 33 
Unknown Uranotaenia spp. 7 11 

Verrallina 631 523 

Total 5787 5296 
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sites, whereas An. barbirostris and An. roperi were only caught at control trees 

(Table 4.2). Both malaria vector species, An. balabacensis and An. donaldi were 

trapped at sleeping sites and control trees.  

One An. barbirostris, a known vector of human malaria in Sri Lanka, Bangladesh, 

Timor Leste and Thailand 41,308, was caught at a control tree however it is 

unknown whether this species plays a role as a malaria vector in Borneo.   

Combining over all species in the genera, the mean abundance of Anopheles 

mosquitoes caught per night was not dependent on the presence (X2 = 0.45, df = 

1, P = 0.50) or number of macaques (X2 = 0.62, df = 1, P = 0.43), or daily rainfall 

(X2 = 0.67, df = 1, P = 0.41) (Fig. 4.9A, B and C). Based on the subset of data for 

which full temperature recordings were available, a strong positive association 

was detected between mean nightly Anopheles abundance and temperature (X2 

= 6.46, df = 1, P = 0.01, Fig. 4.10). 

The primate malaria vector An. balabacensis, however, was significantly 

impacted by the presence of macaques at sampling sites (X2 = 8.25, df = 1, P < 

0.01). The mean abundance of An. balabacensis was significantly higher near 

macaque roost sites than at control trees (Tukey: P = 0.02, Fig. 4.11A). 

Anopheles balabacensis abundance did not vary with the number of macaques 

present (X2 = 1.28, df = 1, P = 0.26) or daily rainfall (X2 = 0.42, df = 1, P = 0.52, 

Fig. 4.11 B and C). Analysis of the subset of data for which full temperature 

recordings were available indicated that the abundance of An. balabacensis was 

not strongly associated with mean nightly temperature (X2 = 3.75, df = 1, P = 

0.05, Fig. 4.12). 

Fewer of the human malaria vector An. donaldi were caught at macaque 

sleeping sites (n = 106) than control trees (n = 211, Table 4.2). This difference in 

mean abundance between macaque sleeping sites and control sites was only 

marginally significant (Tukeys: P = 0.052). After accounting for other sources of 

variation, the abundance of An. donaldi was not dependent on the presence or 

absence of macaques (X2 = 0.92, df = 1, P = 0.34) (Fig. 4.13A). The abundance of 

An. donaldi was unrelated to the number of macaques present (X2 = 0.13, df = 1, 

P = 0.72) or the daily rainfall (X2 = 0.23, df = 1, P = 0.63) (Fig. 4.13B and C). 

Based on the subset of data for which full temperature recordings were
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Figure 4.9 Predicted relationship between the mean nightly abundance of Anopheles mosquitoes caught in MMIT collections and A) macaque 
presence/absence at sampling trees, B) number of macaques present at a tree and C) daily rainfall. Points indicate observed data in panels B and C, with 
the line indicating the predicted association. Error bars and dashed lines are 95% confidence intervals. 
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Figure 4.10 Predicted relationship between mean Anopheles abundance collected by 
Mosquito Magnet Independence Traps (MMIT) and average nightly temperature (from the 
subset of 28 sampling nights at control trees and 29 sampling nights at macaque sleeping 
sites for which environmental data were available). Points indicate observed data, with the 
line indicating the predicted association. Dashed lines represent upper and lower 95% 
confidence intervals. 
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Figure 4.11 Influence of A) macaque presence/absence, B) number of macaques present and C) daily rainfall on the mean nightly An. balabacensis 
abundance collected by Mosquito Magnet Independence Traps (MMIT). Points indicate observed data in B and C, with the line indicating the predicted 
association. Error bars and dashed lines are 95% confidence intervals and * represents P < 0.05. 



114 
 

 

 

Figure 4.12 Predicted relationship between mean An. balabacensis abundance collected by 
Mosquito Magnet Independence Traps (MMIT) and average nightly temperature from a 
subset of 28 sampling nights at control trees and 29 sampling nights at macaque sleeping 
sites for which environmental data were available. Points indicate observed data, with the 
line indicating the predicted association. Dashed lines represent upper and lower 95% 
confidence intervals. 
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Figure 4.13 Influence of A) macaque presence/absence, B) number of macaques present and C) daily rainfall on the mean nightly An. donaldi abundance 
collected by Mosquito Magnet Independence Traps (MMIT). Predicted mean An. donaldi abundance based on data from sampling 33 nights at control trees 
and 34 nights at macaque sleeping sites. Points indicate observed data in B and C, with the line indicating the predicted association. Error bars and dashed 
lines are 95% confidence intervals. 

.
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Figure 4.14 Predicted relationship between mean An. donaldi abundance collected by 
Mosquito Magnet Independence Traps (MMIT) and average nightly temperature from a 
subset of 28 sampling nights at control trees and 29 sampling nights at macaque sleeping 
sites for which environmental data were available. Points indicate observed data, with the 
line indicating the predicted association. Dashed lines represent upper and lower 95% 
confidence intervals.
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available, the abundance of An. donaldi was positively associated with mean 

daily temperature (X2 = 5.86, df = 1, P = 0.02, Fig. 4.14 

 Plasmodium infections in mosquitoes and macaque stools 

Eighty-one Anopheles collected in the initial HLC versus MMIT trap comparison 

were tested for malaria (An. donaldi = 61, An. balabacensis = 7, An. 

barbirostris/donaldi = 5, An. tesselatus = 5, An. celia gp = 1, An. unknown = 2).  

Of these, one tested positive for Plasmodium infection (n = 1/81). From the 

larger study of mosquito abundance at macaque sleeping sites and control trees, 

398 Anopheles were tested for malaria (Barbirostris gp = 373 (including An. 

barbirostris (2) and An. donaldi (317)), An. balabacensis = 15, An. epiroticus = 1, 

An. tesselatus = 2 and unidenitifed Anopheles species = 7, Table 2). Of these, 

one tested positive for Plasmodium (n = 1/398). The Plasmodium infections were 

identified to species-level by subsequent primate-species specific PCR. Both 

were P. inui infections (Fig. 4.15) found in An. balabacensis (one trapped by HLC 

and the other caught at a control tree by MMIT), representing an overall 

infection rate of n = 2/22 in this vector species. No P. knowlesi infected 

mosquitoes were found in either component of this study. 

Of the 46 long-tailed macaque faecal samples collected, 17 (37%) tested positive 

for Plasmodium (Fig. 4.16). However in the subsequent round of PCR analysis to 

test for P. knowlesi, none were positive. Samples were not screened for other 

specific malaria species in this analysis, thus the identity of Plasmodium 

infections remains unknown. 
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Figure 4.15 Example gel electrophoresis of PCR products from Plasmodium screening of 
An. balabacensis specimen. Lane 1 = P. knowlesi positive control (Plasmodium genus PCR), 
lane 2 = An. balabacensis specimen (Plasmodium genus PCR), lane 3 - 11 = An. 
balabacensis specimen (Plasmodium species PCR) for P. coatneyi, P. inui, P. fieldi, P. 
cynomolgi, P. knowlesi, P. falciparum, P. vivax, P. malariae and P. ovale, lane 12 = Negative 
control. 
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Figure 4.16 Example gel electrophoresis of PCR products from Plasmodium screening of 
macaque faecal samples. Lane 1 = PCR negative control, lanes 2-4 = extraction negative 
controls, lanes 5 – 28 = macaque faecal samples, lanes 29 – 32 = PCR Plasmodium positive 
control. Stars indicate Plasmodium positive faecal samples. 
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 Discussion 

This study represents the first evaluation of the use of MMIT for mosquito vectors 

of primate malaria. In an initial step, this tool was shown to be capable of 

detecting a similar range and abundance of mosquito species and Anopheles as 

the HLC which was previously demonstrated as the most effective collection 

method in Sabah 112. Through using the MMIT in the vicinity of trees where 

macaques roosted; several potential monkey and human malaria vector species 

were identified (An. balabacensis, An. donaldi and An. barbirostris). While 

Anopheles density was not higher overall at trees with than without macaques; 

the abundance of the confirmed primate vector, An. balabacensis, was 

significantly increased near sleeping sites. This is an indication of An. 

balabacensis actively host seeking on macaques. Although macaque density was 

very high and analysis of their faecal samples indicated significant rates of 

Plasmodium infection; no P. knowlesi was detected in either vector or macaque 

samples here. The only malaria detected was P. inui; another known primate 

parasite that has not yet been documented in humans. Therefore it should not 

be assumed that all macaque populations are infected with P. knowlesi and 

present a risk of zoonotic transmission in Sabah. 

Overall MMIT collections were comparable to HLC in total mosquito abundance 

and in the range of genera caught. With respect to Anopheles, MMIT and HLC 

collected similar abundances but some differences arose in the species 

composition between trapping methods, where MMIT caught 8 species and HLC 

caught only 5. The MMIT is more likely to trap generalist rather than host-

specific mosquito species due to the non-specific mammalian R-octenol bait. The 

concentration of R-octenol emitted and how this equates to that which is 

released from one mammalian host is unknown. It may be that the concentration 

of R-octenol emitted by the MMIT is much higher than a single host thus attracts 

a wider range of species than the scent of one human in the HLC. There may be 

some additional ‘human-specific’ odour cues available in HLC not produced by 

the MMIT, which lure more anthropophilic species. In this case there was only 

one individual performing HLC and because volatile emissions from humans vary 

within the population 309, a fairer test would be to incorporate additional people 

to carry out collections. Specific mosquito species are known to be sensitive to 

plume structures of carbon dioxide emissions from Mosquito Magnet traps 310 
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however in this case, there were no Anopheles species trapped by HLC that were 

not found in the MMIT. With the advantages of not requiring a real host and the 

ability to operate in a passive collection style, the MMIT proved to be as reliable 

as HLC in collecting host seeking Anopheles, including specific malaria vector 

species. 

In addition to Anopheles, the MMIT demonstrated ability to trap other mosquito 

species of medical importance including vectors of Japanese encephalitis (176; 

Mansonia spp), and filariasis (e.g Cx. quinquefasciatus and Cx. sitiens177.  

Mansonia uniformis, Ma. annulifera, Ma. dives, Ma. bonnae and Ma. indiana are 

known vectors of the filarial worm Brugia malayi in Malaysia where leaf-monkeys 

(Presbytis spp) have been identified as reservoirs of infection 150. No Aedes 

vectors of arboviruses were trapped despite confirmation of sylvatic populations 

of the dengue vector Ae. albopictus in other secondary forest areas in Sabah 

(Chapter 2, 121). The MMIT is a less invasive method of mosquito sampling, with 

fewer ethical implications than putting monkeys in cages as bait and has shown 

to be effective for examining multiple vector groups host seeking near 

macaques. 

Following confirmation of the MMIT’s sampling ability, it was used to 

characterize the community of mosquitoes host seeking near macaque troops 

sleeping in trees. Paired collections were also made at similar but unoccupied 

“control trees” to help distinguish mosquitoes specifically attracted to macaques 

from the general host seeking population. The primary P. knowlesi vector 

species in Sabah, An. balabacensis 50, was detected in low densities in this study, 

but occurred at significantly higher densities near trees with than without 

sleeping macaques. The increased abundance of An. balabacensis near macaques 

indicates a specific propensity to feed on this host type. Host choice and 

preference may be impacted for An. balabacensis with the availability of human 

hosts; as indicated in village settings in Sabah where higher abundances were 

found biting humans than monkeys 112,153. A host choice experiment conducted in 

the Cambodian forest also found at ground level An. balabacensis were more 

attracted to men (n =203) compared to monkeys (n = 12), whereas high in the 

canopy in the absence of men, a large proportion of An. balabacensis were 

trapped (n = 295) 311. Here I have shown that in a relatively undisturbed forest 
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with a high density of monkeys, An. balabacensis were significantly attracted to 

feed on macaques. However, this feeding behaviour is likely to vary in different 

ecological settings depending on the availability of other host species. 

The abundance of An. balabacensis was significantly associated with macaque 

presence, but not the overall number sleeping near the collection point. The 

size of macaque troops varied across sampling nights over a range of 2 – 47 

individuals (average ~14 macaques), thus incorporating a substantial variability 

for testing an association with mosquito density. The lack of association between 

vector abundance and macaques may be the result of the odour plume of even 

one macaque being sufficient to lure An. balabacensis with no additional 

response with more hosts. Alternatively, it could be that the trees selected by 

macaques are themselves an attractive site for mosquitoes. Groups of long-

tailed macaques are known to revisit trees used for sleeping 31, possibly due to  

favourable characteristics such as an abundance of fruits, clear view of 

predators and comfortable wide branches for sleeping. Macaque odour cues may 

build up around repeatedly used trees and signal a reliable location for vectors 

to find a bloodmeal. Additionally, there could be additional environmental 

characteristics not measured here that contributed to higher An. balabacensis 

abundances at macaque sleeping sites. For example, this study did not assess the 

availability of suitable larval habitats and as yet, the resting behaviour for this 

species is unknown. Other studies examining the influence of host density on 

malaria vector density indicate little correlation between adult Anopheline 

density and the density of cows or humans 312. The potential for transmission of 

primate malaria will therefore be high within groups of macaques if the 

abundance of An. balabacensis does not depend on the number of macaques 

present. 

Temperature and rainfall have been widely demonstrated to influence mosquito 

vector abundance 313. Here, the average nightly temperature had a significant 

influence on the number of mosquitoes trapped by the MMIT. Temperature is 

known to impact several mosquito development and parasite fitness traits 

36,104,242,245,314,315. Here, higher daily temperatures were associated with an 

increase in Anopheles and An. donaldi abundances. Higher temperatures may 

have caused odour plumes from MMITs to disperse further or could reflect 
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increased mosquito flight activity on warmer nights. No effect of temperature on 

An. balabacensis was detected likely due to the small sample size for this 

malaria vector species. Here, daily rainfall did not impact primate malaria 

species abundance which also may be because of the low statistical power in this 

study. Investigations have found a negative correlation with mosquito abundance 

and rainfall on the day of sampling because mosquitoes are less likely to fly in 

heavy downpours 316. Whilst higher mosquito densities are usually found with a 

time-lag after heavy rainfall, due to the generation of novel larval habitats 316–

318, this could not be investigated here as it was a short study. To investigate 

seasonal fluctuations in vector abundance with rainfall, sampling across a full 

season would be required. A prior study sampling over a one year period in 

Sabah indicated no clear seasonal patterns in An. balabacensis abundance in the 

forest 50. At this stage, further investigation including a longer sampling period is 

required to establish how vector abundance fluctuates seasonally and how this 

impacts malaria risk to forest dwelling macaques. 

The original aim of this study was to investigate the transmission of P. knowlesi 

within its primary macaque reservoir in undisturbed forest. Despite the presence 

of known mosquito vectors around macaque sleeping sites, no P. knowlesi 

infection was found in either mosquitoes or macaque faecal samples. Only two 

malaria infected mosquitoes were found in the study; an An. balabacensis 

trapped in an MMIT (control tree) and another in an HLC which both tested 

positive for P. inui. Plasmodium inui is a common primate malaria species found 

in macaques 255. This indicates there was active transmission of monkey malaria 

in the area, but contrary to expectation from other work in Sabah, there was no 

P. knowlesi 50,319. Plasmodium inui can be experimentally transferred to people 

through blood transfusion and by mosquitoes in the lab 115 however it is unknown 

whether humans can be infected naturally. Relatively high rates of P. inui and 

other primate malaria species (e.g. P. cynomolgi, P. fieldi and P. coatneyi) have 

been detected in An. balabacensis within village settings where P. knowlesi 

human cases were reported in Sabah 194. Thus P. inui infected mosquitoes are 

relatively widespread and can be present at relatively high prevalence in peri-

domestic as well as forest settings. Thus P. inui could post a significant risk for 

zoonotic spillover if it becomes adapted to infecting people naturally.   
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A high proportion of malaria infections (37%, n = 17/46) were detected in PCR 

screening of fresh macaque stools. However these samples tested negative for P. 

knowlesi in a further analysis with a parasite specific probe. Unfortunately it 

was not possible conduct further analyses to confirm which malaria parasite 

species was infecting these macaques. Given its presence in mosquitoes, we 

hypothesise that the infection could be P. inui. Previously, the prevalence of P. 

knowlesi within macaque populations has been reported as 6.9 % and 30 % in 

Peninsular Malaysia 45,264, and 20 % and 86.6 % in Sarawak 225,320. These studies 

identified infections from screening of macaque blood samples which may have 

greater sensitivity to low density infections than the faecal screening method 

used here 321. However, similarly low prevalences of P. knowlesi in macaques 

was found in other studies (e.g. 0.4 % P. knowlesi prevalence 322); indicating 

macaque infection rates are heterogeneous. Plasmodium knowlesi parasites may 

just be absent from the macaque population in the LKWS perhaps due to 

population isolation from other infected macaque groups in Sabah. It was 

assumed that the force of P. knowlesi infection coming from macaques in Sabah 

was high because out of nine wild long-tailed macaques sampled in Kudat, a 

hotspot of human infection in 2013 - 2014, eight were blood positive for 

Plasmodium with six confirmed as being P. knowlesi (Salgado-Lynn, personal 

communication). Thus there are likely differences in the species of Plasmodium 

infecting macaques across different populations and regions in Sabah. Macaques 

in general may not be an overall risk factor for P. knowlesi transmission as there 

could be significant heterogeneity in the malaria parasite community. In light of 

this, recent analyses generating P. knowlesi risk maps 89,204,323 based on macaque 

distribution may have reduced accuracy because of failure to incorporate 

underlying variation in infection prevalence within macaque populations.  

The absence of P. knowlesi was the most unexpected result of this study. I can 

speculate that the absence of P. knowlesi in the vector population and macaque 

samples could be due to the relatively low abundance of An. balabacensis in the 

LKWS compared to other studies. Here the mean abundance of An. balabacensis 

was 0.02 – 0.17 per night; in contrast to nightly rates of 6.8 – 8.8 reported 

elsewhere 50. In contrast to studies in other parts of Sabah where An. 

balabacensis was the dominant Anopheles species 50,194, here An. donaldi was 

the most prevalent (77.5% of Anopheles). Compared to An. balabacensis, An. 
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donaldi is thought to be a less efficient vector of malaria 62. Anopheles donaldi 

can be experimentally infected with P. falciparum and P. vivax 324 in the lab and 

has been found with sporozoites morphologically similar to human malaria in 

nature (although the exact parasite species was not identified 221). It is unknown 

what role it plays, if any, in primate malaria transmission in Sabah 221. In 

experimental infections, An. donaldi developed oocyst stage infections of the 

monkey parasites P. cynomolgi and P. fieldi 28, but monitoring was not continued 

to confirm whether development continued to transmission-stage sporozoites. 

Anopheles donaldi is zoophilic 221,325 with a preference for bovine over human 

bloodmeals 64. This relatively generalist behaviour is backed up by the 

observation that the abundance of this species was not higher at either macaque 

or control trees and may account for lack of infection. Alternatively, regardless 

of vector behaviour P. knowlesi may simply be absent or in low prevalence in the 

reservoir population at LKWS.   

This study has also given insights into mosquito diversity, ecology and vector-

borne disease risk within undisturbed forest areas of Sabah as compared to sites 

of human disturbance. I note a similar range of mosquito genera were collected 

here as found in and around villages in other parts of Sabah; particularly Ranau 

district (Chapter 2). However some of the most abundant vector species caught 

in LKWS (Ma. dives, Ma. annulata and Ma. indiana) were less dominant in 

domestic, forest or agricultural settings near villages. Other vector species of 

zoonotic pathogens including Japanese encephalitis and filariasis were also 

trapped. This study was the first to report An. epiroticus, An. gigas, An. 

montanus and An. roperi in Sabah. These species may have been missed in 

previous studies because most of them are based on sampling in and around 

human settlements; with the diverse ecotypes and multitude of blood-meal 

wildlife species found at LKWS likely sustaining a different range of mosquitoes. 

These findings reflect the value of wider ecological sampling of mosquitoes in a 

range of ecological settings to fully assess the potential for spillover of vector-

borne zoonotic diseases. 

To conclude, by performing mosquito collections in an area hosting a high 

frequency of long-tailed macaque groups, this study has demonstrated the 

suitability of MMIT for catching vectors of primate malaria and other zoonotic 
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pathogens nearby macaque sleeping sites. The MMIT performed well in 

comparison to the gold standard HLC technique that is most commonly used to 

investigate the ecology and behaviour of Asian Anophelines and here we propose 

it as a reliable alternative to studying these mosquitoes with the advantages of 

not requiring users to be exposed to infectious bites, or holding macaques 

captive to act as baits. The primary P. knowlesi vector in Sabah, An. 

balabacensis, was found at relatively low density in this study area but was 

significantly associated with macaque sleeping sites indicating a preference for 

these hosts. Absence of P. knowlesi from mosquitoes and macaques suggests 

that not all macaque groups in Sabah can be assumed to be infected and pose an 

infection risk to people. 
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5 General discussion 

 Principal findings 

The significant human outbreak of the zoonotic malaria P. knowlesi that started 

in Malaysian Borneo ~ 2004 sparked the research conducted in this thesis. While 

early work in Malaysia focussed on detection and characterization of clinical 

infections in humans 6,8,24,73,85,96,239,326,327, there was relatively little 

understanding of the ecology and drivers of transmission in this area. In 

particular, there were substantial knowledge gaps regarding the mosquito 

vectors responsible for transmission, and how changes in land use occurring 

throughout the region would impact their ability to infect humans. In the 

absence of an effective vaccine, vector control is the only effective way to 

reduce malaria transmission. Consequently detailed understanding of the 

ecology and behaviour of P. knowlesi vectors is crucial for both predicting 

human exposure risk and planning control strategies. To address these 

knowledge gaps, a large interdisciplinary research programme on P. knowlesi 

emergence in Malaysia (Monkeybar) was initiated in 2012 with the main goals of 

defining the biomedical, environmental and social risk factors for human 

infection. Monkeybar incorporated a substantial work package on entomology 

with the aim of improving on the understanding about P. knowlesi vector ecology 

and surveillance methods. Research in this thesis was designed to complement 

and expand upon initial findings of the Monkeybar programme by filling in 

additional gaps related to vector surveillance methods, testing hypotheses about 

the effect of land-use on human exposure risk, and elucidating the force of 

transmission coming from the macaque reservoir. These topics were investigated 

across three independent yet interlinked field studies conducted between 2015 – 

2017 in the state of Sabah, Malaysian Borneo. Key findings from these studies are 

summarized briefly below. 

 Resting bucket traps are an effective means of sampling 

non-malaria vector species 

Vector surveillance requires monitoring of both host seeking and resting 

mosquito populations. Sampling of resting mosquitoes in particular provides 

important information about vector habitat and host preferences. I focussed on 
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evaluating simple, low cost, flexible traps for sampling P. knowlesi vectors in a 

range of habitats representing a gradient of deforestation. This study confirmed 

the challenging nature of sampling resting malaria vectors, particularly in 

tropical forested regions of Southeast Asia. Of the more than 2000 mosquitoes 

that were collected, only one was an Anopheles and it was not a malaria vector 

species. However, these resting traps proved effective for sampling a number of 

other locally important mosquito vector species including those implicated in 

dengue and filariasis transmission. In particular, I showed these vectors can be 

found in a range of domestic, agricultural and forest settings; but are 

particularly abundant resting underneath homes in Sabah, which are typically 

built on stilts. This highlights the potential value of improving the impact of 

vector control programmes by extending the spraying of residual insecticides to 

cover the area underneath as well as inside of houses.  

 Vector density and habitat use across Sabah is not 
accurately predicted from pilot studies in Kudat 

Subsequently, larger-scale sampling of host-seeking mosquitoes was conducted 

across 4 districts and 11 villages in Sabah with the aim of testing associations 

between habitat and P. knowlesi vector abundance. Pilot studies conducted in a 

small number of sites in Kudat district indicated that contrary to expectation, P. 

knowlesi vectors may be at higher abundance in village than farming or forested 

settings. However this inference was based on study of only three sites in one 

district of Sabah. I conducted entomological sampling over a large geographic 

scale, incorporating substantial habitat replication, to test this hypothesis. I 

found that the distribution and abundance of the confirmed P. knowlesi vector, 

An. balabacensis, was highly variable between villages and districts. Overall, this 

vector species was not the dominant member of the anopheline community as 

was observed in pilot work within Kudat district. The findings of this study reject 

the original hypothesis by showing that An. balabacensis density was significantly 

higher in forest and farm habitats compared to village settings. Furthermore, 

the mean abundance of An. balabacensis across all 4 districts in Sabah was 

considerably lower than found around the epicentre of human cases in Kudat. 

This highlights the risk of over extrapolating results from small studies to larger 

geographical areas and the crucial value of replication in studies of vector 

ecology. Although the abundance of An. balabacensis was lower in village than 
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forest settings, it was routinely found in the peri-domestic area around homes.  

This suggests that the original hypothesis that P. knowlesi malaria is only a risk 

to humans when they are deep in the forest is not true. 

 Vector abundance and human P. knowlesi infection risk 

In collaboration with Monkeybar, it was possible to investigate entomological 

indicators of human infection risk by using data on human P. knowlesi exposure 

gathered in a large cross-sectional survey. This type of large-scale 

epidemiological data is difficult to obtain, requiring a large amount of funds and 

personnel. These challenges are even more pronounced for P. knowlesi because 

it’s relatively low prevalence in humans means a large number of people need to 

be tested to detect infection. Given the demands of large-scale epidemiological 

sampling, it would be of great value to have robust entomological indicators of 

human infection risk. Here I investigated whether the general abundance of 

Anopheles, and/or the Leucosphyrus group in particular was predictive of P. 

knowlesi seropositivity rates in people at the village level. Unfortunately, no 

significant association was detected between village-level vector abundance and 

human P. knowlesi sero-positivity rates. Despite the lack of significant 

association in this study, it would be premature to dismiss the existence of 

entomological correlates of P. knowlesi risk. This study had several limitations 

which could have confounded or obscured potential relationships between vector 

abundance and human infection risk. First, the low abundance of vectors and 

small number of sites meant there was low power to detect an effect. Second, 

there was a six-month lag between human survey and entomological sampling. 

Third, ~ 40 % of P. knowlesi respondents may have been missed in the sero-

prevalence assay. This study can provide useful pilot data on mosquito vector 

abundance and infection rates, which could be used to guide the design or 

larger-scale epidemiological studies based on simultaneous sampling of vector 

and human populations, over more villages and trapping nights. 

 MMIT is a good method for non-invasive sampling of 
vectors host seeking on primates in the forest 

Until now, investigation of P. knowlesi vectors has largely focussed on those with 

potential to transmit parasites between monkeys and humans; based on sampling 
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in areas where humans and monkeys co-exist. The third study in this thesis 

aimed to characterise P. knowlesi transmission within macaque populations, 

with the aim of testing whether the vectors responsible for transmission to 

humans also mediate transmission between monkeys. This required finding a way 

to sample mosquitoes biting macaques. Previous work attempted to do this using 

monkey-baited traps or electrocuting nets, but both of these methods require 

the capture and handling of wild primates, had moderate performance and were 

logistically challenging. I aimed to find a less-invasive method for assessing 

mosquitoes attracted to wild macaque populations, that could reliably detect 

malaria vector species. For this purpose, I evaluated the use of Mosquito Magnet 

Independence Traps (MMIT) as a tool for collecting malaria vectors host seeking 

near macaque sleeping sites. The MMIT performed well relative to the human-

landing catch, the best reference method of collecting host seeking P. knowlesi 

vectors. Both methods collected An. balabacensis and other malaria vector 

species. Additionally, the MMIT proved suitable for sampling over medically 

important vectors species such as Japanese encephalitis and filariasis vectors. 

Overall the study demonstrated the suitability of the MMIT for non-invasive 

mosquito sampling of multiple vector groups host-seeking near macaques. 

 Malaria risk from macaque populations: heterogeneity in P. 
knowlesi infections  

I conducted the first investigation of P. knowlesi transmission in a wild macaque 

population in Sabah. This was done by sampling vectors and macaques in a 

protected area inhabited by a large population of long-tailed macaques, and no 

humans other than a small number of research staff. The primary P. knowlesi 

vector An. balabacensis was found host seeking near macaque roosts in this 

setting, but at relatively low density compared to areas of disturbed forest in 

Kudat District, Sabah. Contrary to expectations, no P. knowlesi infections were 

found in vectors in this forest. Furthermore, indirect estimation of Plasmodium 

infection rates from faecal samples indicated malaria prevalence in macaques 

was relatively high (~37%), but none of these infections were identified as being 

P. knowlesi. The most likely cause of infection was P. inui, another primate 

malaria that was found in vectors. This highlights that there is heterogeneity in 

P. knowlesi infections across macaque populations in different regions in Sabah, 

and that not all are sources of infection. The large focus of human P. knowlesi 
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malaria occurring around Kudat may therefore be due to a uniquely high 

prevalence within the local macaque population. Some evidence for this was 

obtained in the Monkeybar project, where six of the nine macaques trapped in 

the Kudat area tested positive for P. knowlesi. Together, these findings indicate 

that not all macaque populations across Sabah pose a P. knowelsi risk to humans 

and that outbreaks of human infection are likely dependent on P. knowlesi 

prevalence in the local macaque population. 

 Malaria risk from macaque populations: other species 
posing a threat to humans 

Plasmodium knowlesi was absent from long-tailed macaques and vectors within 

the protected area. However, Plasmodium infection was commonly found in 

macaque stool samples (~37%), and another primate malaria species, P. inui, 

was found in vectors. Plasmodium knowlesi therefore is not the only parasite 

species posing a risk to humans. Currently it is unknown if P. inui can infect man 

under natural conditions, but as it appears to be circulating at high frequency in 

macaques and has been detected in vectors biting in human settlements, there 

is a high risk of spillover into humans if the parasite adapts to natural 

transmission. This study has therefore highlighted the need for awareness and 

surveillance of additional emerging zoonotic malaria species in Sabah. 

 Limitations of the study 

This PhD study has advanced methods for vector surveillance, identified key 

relationships between habitat and P. knowlesi vector abundance, vector 

abundance and P. knowlesi infection at the community-level, and elucidated 

aspects of malaria transmission in macaque populations in Sabah. These will 

contribute to improved understanding of zoonotic malaria transmission, but 

there were several notable limitations of the study which could have impacted 

results. 

 Evaluation of resting traps for collecting vectors of P. 
knowlesi 

First, the conclusion that simple resting traps are not effective for sampling 

malaria vectors in Sabah was based on a relatively short study of only 2 months, 
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at 2 sites. Some vector control activities (spraying) occurred during the study 

period which may have impacted mosquito numbers. Additionally it is possible 

that sampling took place during a relatively low density season for mosquitoes.  

Little is known about seasonality in P. knowlesi vector populations, but it is a 

characteristic feature of most tropical anophelines. Consequently, greater 

success may have been obtained from longer term evaluation of traps over ~ 1 

year to allow for seasonal fluctuations in mosquito abundance. Additionally, this 

study did not investigate all of the techniques described for collecting resting 

mosquitoes, including those such as pit traps or clay pots which have proved 

effective in African settings 163,165,328–331.  

A significant limitation to this study was that during the fourth week of 

collections, the two study villages were visited by government personnel for the 

bi-annual spraying of the insecticide, lamda-cythalothrin332, as part of a vector-

borne disease control programme. Insecticide was sprayed underneath, on the 

outside walls of houses and on vegetation surrounding the home. No insecticide 

was sprayed in any of the other habitats selected for resting mosquito 

collections. Whilst this presented a major obstacle, the study was performed to 

completion, continuing the sampling for the full two months.  

A further limitation of this study was the relatively low success in successfully 

amplifying DNA from bloodmeals in mosquitoes caught in resting collections.  

Bloodmeal identification is a standard technique for estimating host choice in 

mosquitoes 63. This identification can be done using PCR-based methods that 

amplify DNA from blood in the mosquitoes that have recently fed (~24 - 48 

hours). DNA amplification rates from bloodmeals can be as high as 81 % 333, but 

in this study were only 30 %. This was likely due to poor quality of host DNA in 

mosquito bloodmeals; either because it had degraded prior to storage or had 

been partially digested by the mosquito. In future, this event could be mitigated 

by performing more frequent collections from the resting traps, such as 2-3 

times per night, coupled by immediate preservation of bloodmeals in the field. 
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 Investigating associations between vector habitat and 
human P. knowlesi exposure risk over a wide geographic 
range 

The relationship between vector abundance and human P. knowlesi exposure 

was investigated in the second study however no significant association was 

detected. Collections were performed six months after human sampling, thus 

may not have been reflective of the true picture of vector populations at the 

time of human survey. Further to this, P. knowlesi prevalence in humans was not 

based on detection of active infection at the time of sampling, but of indication 

of prior exposure through sero-positivity.   

Current understanding is that there is only a short window of detection for 

antibodies to P. knowlesi (within 1 month of infection) and the sero-prevalence 

assay only detects ~ 60 % of infections. Thus our measure of P. knowlesi 

infection in humans was not very sensitive, and introduced a further time lag 

between the epidemiological data and the timing of mosquito collections. An 

improved design would be simultaneous collection of entomological sampling 

and epidemiological data, and more sensitive estimates of exposure in humans. 

Gathering of longer term data over a wide geographic area would also 

strengthen the power of the study but would require a significantly larger team 

and resources. 

 Understanding dynamics of transmission in macaque 
populations  

Identification of Plasmodium infections in macaques in the third study could 

have been enhanced by screening blood instead of stool samples. Previous 

investigations of malaria in long-tailed macaques in Malaysia have been based on 

analysis of blood samples 45,225,264,320, which is known to be more sensitive than 

based on faecal samples 283. The Siregar et al 283 method used here yielded 

several PCR products as indicated by the high number of bands on some gels.  

This made it difficult to clearly define Plasmodium positive and negative 

individuals. The non-specific banding was likely due to the higher rate of DNA 

degradation in stool samples. Analysis based on blood samples would have likely 

have been more precise and yield higher estimates of prevalence, but would 

have required capture and tranquilisation of macaques, necessitating veterinary 
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staff and limiting the number of animals that could be sampled at one time. 

Despite the poorer specificity, faecal sampling offered a less invasive method of 

sampling multiple individuals.  

An additional limitation to this study was that it was only performed with one 

macaque population, thus the findings would be strengthened by replication in 

other macaque populations in other areas. Furthermore, it is unknown if other 

monkey species are contributing to zoonotic malaria transmission in Sabah. This 

study may have been limited by restricting analysis to long-tailed macaque 

populations, and future work should examine pig-tailed macaques and leaf-

monkey populations to understand the complete picture. 

 General implications for understanding emergence 
and control of zoonotic malaria 

The total body of work presented here has several implications for 

understanding the emergence and spread of P. knowlesi in Malaysian Borneo, 

and the approaches that could be taken to control it. The key implications 

arising from this PhD study are described below. 

 Human exposure to P. knowlesi  

The work provides a deeper understanding of where and when humans are most 

likely to be exposed to P. knowlesi. The trapping work performed in peri-

domestic, farm and forest habitats across a wide geographical area in Sabah 

indicated that P. knowlesi vectors are at highest abundance in farm and forest 

habitats, but also present to a limited degree in peri-domestic settings. The 

chance of receiving a bite from a P. knowlesi vector was similar in farm and 

forest settings, indicating that these mosquitoes can thrive in human-altered 

habitats. Significant changes to P. knowlesi vector ecology have therefore 

occurred since early studies in the 1970s which concluded vectors do not migrate 

out of the forest. Despite occurring at lower abundance, P. knowlesi vectors 

were also found biting people around the home, stressing that peri-domestic 

transmission is also possible. These results add to the growing body of evidence 

that transmission to humans is not restricted to forests. To investigate how the 

findings from this study are applicable across the whole of Sabah and beyond, 
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future work should include entomological surveillance in different land-use types 

with broad spatial replication.  

 Control of P. knowlesi transmission 

Classical methods of vector control exploit key aspects of mosquito vector 

behaviour 114. For example, Indoor Residual Spraying relies on mosquitoes 

choosing to rest inside houses, and insecticide treated bed nets rely on vectors 

biting indoors during sleeping hours. These are the main components of vector 

control in Malaysia 1. The research was not successful in identifying where P. 

knowlesi vectors rest but confirmed they actively host seek in in peri-domestic, 

farm and forest settings. An option for preventing transmission to humans 

around houses could be the use of outdoor spatial repellents which act to create 

a ‘safe-space’, clearing an area of host seeking vectors 334. In contrast to 

previous work, I found higher densities of vectors in forests and in farmland than 

around the home, therefore people may need to be protected in those habitats 

to control P. knowlesi transmission. Attractive toxic sugar baits could be 

appropriate here, and/or people working in forest or farm areas where exposure 

is anticipated to be high could be protected by repellent clothing 335.  

Furthermore, there is the hypothesis that P. knowlesi could be controlled by a 

broad-brush approach of removing macaques. However, P. knowlesi parasites 

were not circulating in the macaques that I studied in Sabah suggesting that not 

all present a risk to humans. Culling of monkeys therefore would not be a very 

ethical or targeted approach to reducing transmission. A more effective 

approach would be to incorporate surveillance in macaques to identify 

populations which pose a risk of spillover. Future work evaluating the use of 

spatial repellents and toxic baits in habitats posing a P. knowlesi risk to humans 

is necessary to establish if these will be effective methods of vector control. 

 Implications of P. knowlesi for malaria elimination 

The emergence of P. knowlesi has provided a significant challenge in the face of 

malaria control in Malaysia. The country has made great progress in the 

substantial decline of P. falciparum and P. vivax malaria and has been assigned 

to the ‘pre-elimination’ phase by WHO. The National Malaria Elimination 
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Strategic Plan set out in 2011 aimed for malaria to be eliminated from 

Peninsular Malaysia by 2015 and Malaysian Borneo by 2020 6. However, the 

increase in P. knowlesi cases has hindered these goals. Currently, only P. 

falciparum and P. vivax are acknowledged in the annual World Malaria Report 

and there is not yet consensus about whether this should include P. knowlesi. 

Plasmodium knowlesi infections are frequently misdiagnosed as P. falciparum or 

P. vivax malaria thus scientists stress that an increased awareness of this 

parasite will lead to more accurate estimation of incidence and progress towards 

control 7. The research presented in this PhD study indicates that P. knowlesi 

malaria is a threat to the human population over a wide geographic region in 

Sabah due to the widespread distribution of competent vectors. Whilst P. 

knowlesi remains circulating in the macaque reservoir host population, the risk 

of transmission to humans is present.  

Due to the more complex nature of zoonotic malaria transmission, involving wild 

animal reservoir hosts, it is obvious that a change in the approach to control is 

required for this type of malaria. Treatment and control of the parasite within 

the human population will reduce the number of cases but until more focus is 

made on infection dynamics within the reservoir host, the potential for ongoing 

outbreaks remains. There is a need to understand the force of infection coming 

from macaques to identify what parasite species are circulating and their 

prevalence. Recently in Peninsular Malaysia an example of the type of study 

necessary for deducing this was performed where 781 long-tailed macaques from 

77 locations were sampled to identify hotspots of infection. Plasmodium 

knowlesi was present in 13.6 % of the macaques, 26.4 % were infected with P. 

inui, 17.7 % with P. cynomolgi, 12.8 % with P. coatneyi and 11.8 % had P. fieldi. 

Examination of suburban and urban populations revealed that infections are not 

only restricted to macaques living in the forest 87. There is an additional need to 

understand the potential of parasite transfer from humans back to monkeys in 

Malaysia. This has been observed in Africa with human P. malariae, P. ovale and 

P. vivax infections in wild chimpanzees 336 and P. falciparum in gorillas 337,338. 

The P. knowlesi outbreak has introduced a novel challenge for malaria 

elimination in Malaysia but with adequate reporting (P. knowlesi malaria now 

registered as a notifiable disease by the Ministry of Health 87) and incorporation 
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of the macaque reservoir in surveillance, the country will be in a good position 

to conduct an evidence-based approach to control. 

 Other primate malarias posing a spillover risk to humans 

Plasmodium knowlesi is the first primate malaria parasite to emerge in the 

human population in Sabah but there is evidence to suggest that people in this 

area are regularly exposed to a wide range of other primate malarias.  

Entomological studies conducted around human settlements in Kudat by 

Monkeybar demonstrate that people are routinely exposed to vectors infected 

with other primate malarias including P. cynomolgi, P. inui, P. coatneyi and P. 

fieldi 50,194. Natural human P. cynomolgi cases have recently been reported in   

Peninsular Malaysia 339 and Sarawak 273, indicating that this simian species may 

also be emerging as a public health threat. Whilst no reports of natural 

transmission of P. inui have been made 115, there is still a risk that this could 

occur. Both P. cynomolgi and P. inui are morphologically similar to the human 

malaria species P. vivax and P. malariae, thus may be misdiagnosed by 

microscopy. In addition, these parasites tend to be more benign thus infected 

people may not display symptoms as severe as P. knowlesi infections allowing 

the parasites to go undetected. Thus it would be valuable to incorporate 

molecular diagnostics for these parasite species in routine surveillance.  

Plasmodium knowlesi may have been the first simian parasite to cause a 

substantial human outbreak in Sabah, but there is potential for spillover of other 

simian species in the future. 

Considering the variety of other simian parasite species circulating in macaque 

and mosquito populations, it is unknown why P. knowlesi was the only species to 

make the jump into humans. This could be due to differences in the life-cycles 

of simian species. Plasmodium cynomolgi, P. coatneyi and P. fieldi are tertian 

parasites with a 48 hour asexual replication cycle; and P. inui is quartan, 

replicating every 72 hours 32. Plasmodium knowlesi is the only quotidian parasite 

with the shortest schizogonic cycle of 24 hours which may have made it easier to 

replicate in humans. Another suggestion for the success of P. knowlesi in the 

human population may be that human to human transmission is happening. It is 

currently assumed that human infection is only a result of spillover from the 

macaque population, however it is known that P. knowlesi patients harbour the 
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gametocyte stage and the competent vector, An. balabacensis, can be found 

host seeking in peri-domestic areas. Transmission models indicate very low 

probabilities of human to human transmission (1 in 1500 simulations or 10 in 

2000 simulations) therefore even if the event is possible, it is still only likely to 

be rare 87. Then again, higher diversities in PkMSP1 and PkAMA1 sequences from 

human isolates vs monkey isolates from Thailand and Malaysia has given an 

indication that this may be possible 340,341. Further studies are required to 

establish if this is occurring. Scientists defined the evidence deemed to be 

acceptable at the recent 2016 WPRO (WHO Western Pacific Region) meeting: 

presence of mixed human malaria and P. knowlesi infections in mosquitoes, 

human blood in P. knowlesi infected mosquitoes, P. knowlesi patients without a 

history of simian exposure, development of drug resistance genes in P. knowlesi 

isolates, or distinct genetic haplotypes in humans not found in monkeys 87. It is 

unknown as to why P. knowlesi is so successful in infecting humans under natural 

conditions and it is clear that more investigation is required to establish if 

human to human transmission is a contributing factor. 

 Remaining questions 

There are key elements still missing which are necessary to fully understand P. 

knowlesi transmission dynamics and risk to humans. Firstly, establishing the host 

preference of An. balabacensis is crucial to know the frequency of human or 

monkey bloodmeals. Studies have noted An. latens as having an overall 

preference for humans over macaques 205 and An. cracens having a higher 

preference for humans than monkeys 46. However the degree of An. balabacensis 

preference for humans or monkey, as well as other Leucosphyrus group species, 

is yet to be established. Within vector populations it should be identified if there 

are mosquitoes only feeding on monkeys, only feeding on humans and what 

proportion of vectors have generalist feeding. Advancements have been made in 

recent years to define aspects of P. knowlesi transmission in Sabah relating to 

human risk such as land-use 102, human demographics 88 and vector bionomics 

50,194 but future studies examining human competency under natural conditions, 

vector host preference and how this is impacted by host density will make 

further additions to the field. 
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 Conclusions 

The global effort to achieve malaria elimination has made significant progress in 

many areas but has also been faced with several challenges and complexities 

making elimination difficult to achieve in some settings. Zoonotic malaria is an 

example of this, although its overall impact on global malaria elimination may 

be hard to assess now. However it is clear that climate change and rapid rates of 

deforestation can radically alter vector-borne disease systems, potentially 

exposing humans to a wider range of pathogens. Understanding the risk posed by 

this and how to control it will require a One Health approach based on detailed 

understanding of the ecology of both vector and reservoir populations. 
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Additional files 

Table S1. Description of habitat types, number of traps and collections made to investigate 
mosquito resting behaviour in study area. 

  

Habitat type Description Traps per sampling 
night 

Resting collections 
made per week 

Inside house All interior walls of every 
room in the home  

4 x backpack 
aspiration 

16 x backpack 
aspiration 

Under house Houses were raised on 
stilts ~0.5-1m above the 
ground, thus collections 
were performed in the 
gap between the ground 
and the house floor 

12 x backpack 
aspiration 
12 x resting buckets 
12 x sticky resting 
buckets 

48 x backpack 
aspiration 
48 x resting buckets 
48 x sticky resting 
buckets 

Around 
house  

The peri-domestic garden 
area, within 10m of the 
home 

12 x backpack 
aspiration 
12 x resting buckets 
12 x sticky resting 
buckets 

48 x backpack 
aspiration 
48 x resting buckets 
48 x sticky resting 
buckets 

Plantations 
(palm or 
rubber)  

Farming areas of 100-
200m2 where oil palm 
trees are being 
cultivated 

12 x backpack 
aspiration 
12 x resting buckets 
12 x sticky resting 
buckets 

48 x backpack 
aspiration 
48 x resting buckets 
48 x sticky resting 
buckets 

Forest edge The forest fringe at the 
join between forest 
patch and area of other 
land-use 

12 x backpack 
aspiration 
12 x resting buckets 
12 x sticky resting 
buckets 

48 x backpack 
aspiration 
48 x resting buckets 
48 x sticky resting 
buckets 

Forest 
ground level 

20m inside the forest 
patch on the forest floor 

12 x backpack 
aspiration 
12 x resting buckets 
12 x sticky resting 
buckets 

48 x backpack 
aspiration 
48 x resting buckets 
48 x sticky resting 
buckets 

Forest 
canopy 

20m inside the forest 
hanging in trees at 2.5-
9m above ground level 

12 x sticky resting 
buckets 

48 x sticky resting 
buckets 
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Table S2. Total number of resting Aedes mosquitoes collected using CDC, RB and SRB trapping methods in eight habitats.  

 

 

 

 

 

 

 

 

 

   Table S2 continued on next page 

 

  
Habitat type  

Trap Aedes species 
Inside 
house 

Under 
house 

Around 
house 

Palm 
plantation 

Rubber 
plantation 

Forest 
edge 

Forest 
ground 
level 

Forest 
canopy 

 
Sum 

RB 

Ae. albopictus F × 4 3 0 0 2 3 × 
12 

Ae. albopictus M × 0 7 0 4 7 6 × 
24 

Ae. aegypti F × 0 3 0 0 0 1 × 
4 

Ae. aegypti M × 0 4 0 0 1 0 × 
5 

Unknown Aedes 
F × 4 2 0 2 1 4 × 

13 

Unknown Aedes 
M × 0 1 0 8 7 6 × 

22 

Total × 8 20 0 14 18 20 × 
80 

SRB 

Ae. albopictus F × 7 3 5 16 27 15 9 
82 

Ae. albopictus M × 0 1 4 13 22 7 2 
49 

Ae. aegypti F × 1 0 0 0 4 2 1 
8 

Ae. aegypti M × 0 0 0 0 1 0 0 
1 

Unknown Aedes 
F × 0 2 1 4 6 6 2 

21 

Unknown Aedes 
M × 0 0 0 0 7 3 0 

10 

Total × 8 6 10 33 67 33 14 
171 
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Table S2 continued. Total number of resting Aedes mosquitoes collected using CDC, RB and SRB trapping methods in eight habitats.  

 

 

 

 

 

 

 

  

  
Habitat type  

Trap Aedes species 
Inside 
house 

Under 
house 

Around 
house 

Palm 
plantation 

Rubber 
plantation 

Forest 
edge 

Forest 
ground 
level 

Forest 
canopy 

 
Sum 

CDC 

Ae. albopictus F 0 6 4 3 1 4 5 × 
23 

Ae. albopictus M 0 2 11 1 3 18 15 × 
50 

Ae. aegypti F 0 0 1 0 0 3 0 × 
4 

Ae. aegypti M 0 0 0 0 0 1 1 × 
2 

Unknown Aedes 
F 3 10 16 1 5 5 12 × 

52 

Unknown Aedes 
M 0 4 16 4 22 27 28 × 

101 

Total 3 22 48 9 31 58 61 × 
232 

 Overall sum 3 38 74 19 78 143 114 14 
483 
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Table S3. Total number of resting Culex mosquitoes collected using CDC, RB and SRB trapping methods in eight habitats. 

  Habitat type  

Trap Culex subspecies 
Inside 
house 

Under 
house 

Around 
house 

Palm 
plantation 

Rubber 
plantation 

Forest 
edge 

Forest 
ground 
level 

Forest 
canopy 

 
Total 

RB 

Culex F × 5 3 0 0 0 0 × 8 

Culex M × 10 1 0 1 0 2 × 14 

Culiciomyia F × 0 0 0 0 1 0 × 1 

Culiciomyia M × 0 0 0 0 2 0 × 2 

Eumelanomyia F × 2 1 0 0 1 2 × 6 

Eumelanomyia  M × 2 1 0 0 0 2 × 5 

Lophoceraomyia 
F × 2 0 0 0 1 0 × 

3 

Lophoceraomyia 
M × 9 5 0 2 0 0 × 

16 

Oculeomyia F × 0 0 0 0 0 0 × 0 

Oculeomyia M × 0 0 0 0 0 0 × 0 

subgenera 
unknown F × 27 46 19 3 5 41 × 

141 

subgenera 
unknown M × 44 72 16 4 3 34 × 

173 

Total × 101 129 35 10 13 81 × 369 

SRB 

Culex F × 9 2 1 4 0 1 0 17 

Culex M × 2 1 0 0 0 0 0 3 

Culiciomyia F × 0 1 0 0 1 0 0 2 

Culiciomyia M × 0 0 0 0 0 0 0 0 

Eumelanomyia F × 1 0 0 0 1 0 1 3 

Eumelanomyia  M × 1 0 0 0 1 1 0 3 

 
Lophoceraomyia 
F × 0 0 0 0 0 0 0 

0 

Table S3 continued on next page 
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Table S3. continued Total number of resting Culex mosquitoes collected using CDC, RB and SRB trapping methods in eight habitats. 

  Habitat type  

Trap Culex subspecies 
Inside 
house 

Under 
house 

Around 
house 

Palm 
plantation 

Rubber 
plantation 

Forest 
edge 

Forest 
ground 
level 

Forest 
canopy 

 
Total 

SRB 

Lophoceraomyia 
M × 0 0 0 0 0 1 0 

1 

Oculeomyia F × 0 1 0 0 0 0 0 1 

Oculeomyia M × 0 0 0 0 0 1 0 1 

subgenera 
unknown F × 10 36 7 1 4 17 9 

84 

subgenera 
unknown M × 4 7 4 0 2 12 2 

31 

Total × 27 48 12 5 9 33 12 146 

CDC 

Culex F 
3 3 1 0 1 0 1 × 

7 

Culex M 0 3 1 0 0 0 0 × 4 

Culiciomyia F 0 1 0 0 0 0 0 × 1 

Culiciomyia M 0 1 0 0 0 0 0 × 1 

Eumelanomyia F 0 1 1 0 0 0 1 × 3 

Eumelanomyia  M 0 1 0 0 0 0 0 × 1 

Lophoceraomyia F 0 6 1 0 0 3 1 × 11 

Lophoceraomyia 
M 0 4 0 0 1 1 0 × 

6 

Oculeomyia F 0 0 0 0 0 0 0 × 0 

Oculeomyia M 0 0 0 0 0 0 0 × 0 

subgenera 
unknown F 16 47 28 4 1 3 10 × 

109 

subgenera 
unknown M 44 269 47 1 9 2 6 × 

378 

Total 63 336 79 5 12 9 19 × 523 

Overall sum 63 464 256 52 27 31 133 12 1038 
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Table S4. List of medically important Culex species collected using CDC, RB and SRB trapping methods in eight habitats. 

 
    Habitat type 

Trap Culex vectors of 
medical importance 

Inside 
house 

Under 
house 

Around 
house 

Palm 
plantation 

Rubber 
plantation 

Forest 
edge 

Forest 
ground 
level 

Forest 
canopy 

RB Cx. quinquefasciatus × 5 1 3 0 0 0 × 
 

Cx. fuscocephala  × 0 0 0 0 0 0 × 

  Cx. sitiens  × 0 0 1 0 0 0 × 

SRB Cx. quinquefasciatus × 0 3 7 0 0 0 0 
 

Cx. fuscocephala  × 0 3 0 0 0 0 0 

  Cx. sitiens  × 0 0 1 0 0 0 0 

CDC Cx. quinquefasciatus 0 1 0 9 0 0 0 × 
 

Cx. fuscocephala  0 0 0 0 0 0 0 × 

  Cx. sitiens  0 1 0 0 0 0 0 × 
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Table S5. Total number of blood-fed female resting mosquitoes obtained throughout the study.  

 
 

Genera of blood-fed females   
Habitat 
type 

Culex Aedes Uranotaenia Armigeres Tripteroides Lutzia Unknown Total 

 
 
 
 
RB 

Under 
House 

13 3 0 0 0 0 0 16 

Around 
House 

18 2 0 0 0 0 0 20 

Palm 5 0 1 0 0 0 0 6 
Rubber 2 0 0 0 0 0 0 2 
Forest 
edge 

1 0 0 0 0 0 0 1 

Forest 
interior 

1 0 0 0 0 0 0 1 

 
 
 
 
 
SRB 
  

Under 
House 

5 2 0 1 2 1 1 12 

Around 
House 

22 0 0 0 0 0 0 22 

Palm 4 0 0 0 0 0 0 4 
Rubber 0 0 0 0 0 0 0 0 
Forest 
edge 

0 0 0 0 0 0 0 0 

Forest 
interior 

3 1 0 0 0 0 0 4 

Forest 
canopy 

0 1 0 0 0 0 0 1 

 
 
 
CDC 
  

Inside 
House 

5 1 0 0 0 0 0 6 

Under 
House 

8 3 0 0 0 0 0 11 

                                                             Table S5 continued on next page 
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Table S5 continued Total number of blood-fed female resting mosquitoes obtained throughout the study.  

  Genera of blood-fed females  

 Habitat 
type 

Culex Aedes Uranotaenia Armigeres Tripteroides Lutzia Unknown Total 

 Around 
House 

7 2 0 0 1 0 0 10 

 Palm 2 0 0 0 0 0 0 2 
CDC Rubber 2 1 0 0 0 0 0 3 
 Forest 

edge 
1 0 0 0 0 0 0 1 

 Forest 
interior 

1 3 0 0 1 0 0 5 

 Overall 
sum 

100 19 1 1 4 1 1 127 
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Table S6. Blood meal hosts of engorged female mosquitoes. Hosts were identified using PCR and sequencing of the vertebrate cytochrome b 
mitochondrial gene. 

Genera Subgenera or species Habitat Trap 
Blood-meal 
host 

Number of 
mosquitoes 

Culex Unknown 
Around 
house 

CDC Gallus gallus 4 

Culex 
Culex (1), Cx. 
quinquefasciatus (1) 

Around 
house 

RB Gallus gallus 10 

Culex Unknown 
Around 
house 

SRB Gallus gallus 9 

Culex Culex (2), Oculeomyia (1) Under house CDC Gallus gallus 3 

Culex Unknown Under house RB Gallus gallus 2 

Culex Cx. quinquefasciatus (2) Under house SRB Gallus gallus 2 

Armigeres Arm. moultoni Under house SRB Gallus gallus 1 

Lutzia Lt. vorax Under house SRB Gallus gallus 1 

Culex 
Unknown (1), Cx. 
fuscocephala (1) 

House 
indoor 

CDC 
Homo 
sapiens, 
Gallus gallus 

2 

Culex Unknown Palm RB Gallus gallus 1 

Culex Unknown Palm SRB Gallus gallus 2 

Aedes Stegomyia Rubber CDC 
Homo 
sapiens 

1 
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Figure S1. Habitats selected to represent a gradient of different microhabitats arising from deforestation. Resting mosquito collections were performed A: 
inside houses; B: under houses; C: in the peri-domestic area around houses; D: palm plantations; E: rubber plantations; F: forest edge; G: forest interior at 
ground level; and H: forest canopy.  
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Figure S2. Map of Tuboh village. Icons indicate sampling areas of different habitat types: 
yellow pentagons-houses; orange stars-palm plantations; purple squares-rubber 
plantations; blue triangles-forest patches. Each symbol signifies a different sampling area 
and habitat, and thus was assigned an individual spatial cluster in analysis. 

.
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Figure S3. Map of Paradason village. Icons indicate sampling areas of different habitat 
types: yellow pentagons-houses; orange stars-palm plantations; purple squares-rubber 
plantations; blue triangles-forest patches. Each icon signifies a different sampling area and 
habitat, thus was assigned an individual spatial cluster in analysis. 
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Figure S4. Physiological status of female Aedes collected. 
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Figure S5. Physiological status of female Culex collected. 
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