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S U M M A R Y

The thesis describes a new method for measuring the viscosity of liquids 
in a pressure vessel capable of reaching 14 000 bar, and results are 
presented for six liquids at 30°C, up to viscosities of 3000 P.

The technique is based on the well-tried principle of a cylindrical 
sinker falling in a viscometer tube. It departs from earlier systems 
in that the sinker is retrieved electromagnetically rather than by 
rotating the whole pressure vessel, and the sinker is held by a 
semi-permanent magnet before a fall time measurement is made. The 
sinkers do not have guiding pins, but rely on self-centering forces to 
ensure concentric fall. Another novel aspect is that a sinker with a 
central hole to produce faster fall times has been introduced for the 
first time. An analysis for such a sinker is presented, and when the 
diameter of the hole is mathematically reduced to zero, the equation of 
motion for the solid sinker is obtained. The solution for the solid 
cylinder is compared with earlier approximate analyses. The whole cycle 
of operation - retrieval, holding, releasing, sinker detection, and 
recording is remotely controlled and entirely automated.

With unguided falling weights it is essential that the viscometer tube 
is aligned vertically. The effects of non-vertical alignment are 
assessed both experimentally and theoretically. An original analysis is 
presented to explain the rather surprising finding that when a viscometer 
tube is inclined from the vertical, the sinker falls much more quickly.
The agreement between experiment and theory is to within one per cent.

From the analysis of sinker motion, appropriate allowances for the change 
in sinker and viscometer tube dimensions under pressure are calculated; 
these are substantially linear with pressure. The viscometer was cali­
brated at atmospheric pressure with a variety of liquids whose viscosities 
were ascertained with calibrated suspended-level viscometers. Excellent 
linearity over three decades of viscosity was found for both sinkers. A 
careful analysis of errors shows that the absolute accuracy of measure­
ment is to within ±1.8 per cent.

(i)



The fall time of the sinker is also a function of the buoyancy of the 
test liquid. Therefore a knowledge of the liquid density is required, 
both at atmospheric pressure and at elevated pressures. The linear dif­
ferential transformer method for density measurement formed the basis of 
a new apparatus designed to fit into the high pressure vessel. Up to 
pressures of 5 kbar measurements are estimated to be within ±0.14 per 
cent, and above this pressure uncertainty could be as high as 0.25 per 
cent.

The last chapter deals with empirical and semi-theoretical viscosity- 
pressure equations. Two significant contributions are offered. The 
first is a new interpretation of the free volume equation in which 
physically realistic values of the limiting specific volume, v0 , are 
derived by applying viscosity and density data to the equation iso- 
barically, not isothermally as most have done in the past. This led to 
a further simplification of the free volume equation to a two constant 
equation.

The second contribution is a purely empirical equation which describes 
the variation of viscosity as a function of pressure:

ln(n/rio)t = A(eBP - e KP)

where q is the viscosity at atmospheric pressure, and A, B and K are 
constants. This ’double-exponential’ equation is shown to describe data 
to within experimental error for viscosities which vary by as much as 
four decades with pressure. It also describes the different curvatures 
which the logarithm of viscosity exhibits when plotted as a function of 
pressure: concave towards the pressure axis, convex, straight line, or 
concave and then convex. The many other equations in existence cannot 
describe this variety of behaviour.

(ii)
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C H A P T E R  1

INTRODUCTION

1.1 The Importance of the Variation of Viscosity with Pressure

Viscosity is one of the fundamental transport properties of a fluid, and 
as such it has been the subject of considerable interest, both experi­
mental and theoretical, since the nineteenth century. Early studies 
involved the measurement of viscosity under ambient conditions, but 
gradually the range of measurement has been extended to include high and 
low temperatures and increasing hydrostatic pressures.

The behaviour of liquid viscosity is of importance in many fields of 
engineering. One such area of interest is that of lubrication where 
liquids are often highly stressed, such as in gears, roller bearings, and 
other applications. In such situations an elastohydrodynamic rdgime 
prevails, and now that the thickness of lubricant in a contact zone can 
be predicted, a knowledge of its viscosity must be known to enable the 
friction of contact to be calculated. When gear teeth mesh, or when the 
surfaces of roller bearings meet, the hydrostatic pressure on the thin 
film of lubricating fluid separating the moving parts can be as high as 
300 000 lbf in-2 (-20 kbar)^1 ,̂ according to Galvin, Jones and 
Naylor (1968) and Trachman (1975). At such pressures the viscosity 
of the lubricant increases by several orders of magnitude, and it is 
thus self-evident that under such conditions this property of the lubri­
cant is of dominant interest.

Viscosity is also of intrinsic scientific interest being one of the 
physical property variables in different theories of liquid behaviour.
One such recent subject of study has been the effect of pressure on the

^Conversion factors for pressure are tabulated at the end of 
Chapter 7.

(2)In this thesis references are listed in alphabetical order.



viscoelastic properties of liquids, and experimental results from this 
work have been used for testing viscoelastic models such as that of 
Barlow, Erginsav and Lamb (1967) .

1.2 Review of High-pressure Viscometry

Since the early work of Flowers (1914) many techniques have been devised 
for the measurement of the viscosity of liquids under hydrostatic pres­
sure. The choice of method used is determined mainly by the maximum 
pressure involved and the viscosity range required. The upper limit of 
viscosity measurement of liquid under pressure was until recently about 
3000 P ^ .  The extension of this limit to about 107 P is discussed 
later. For viscosities up to 3000 P, weights falling or rolling under 
gravity are usually employed, the position of the weight and hence the 
time of fall being determined electrically by simple electrical contact 
or inductive methods.

The method that has been used most frequently for measuring liquid 
viscosity under pressure is the falling cylinder; it is based on a 
fundamental concept and thus has the advantage of simplicity, and in 
addition it permits operation in an entirely closed apparatus. The 
first recorded apparatus was that used by Lawaczeck (1919) . He used 
guiding pins on the cylinder to ensure concentric fall, but it was not 
until 1943 that an unguided cylinder - a falling needle - was used by 
Seeder for measuring water and superheated steam viscosities.

Apart from the falling body, other methods have been developed, particu­
larly in recent years. For example, there is the falling plate viscometer 
of Wilson (1967) and a capillary viscometer by Jones, Johnson, Winer, and 
Sanborn (1974) for use up to pressures of 5.4 kbar. Falling ball or 
rolling ball viscometers have also been widely used but the latter have 
the disadvantage that at higher viscosities there may be uncertainty as 
to whether the ball is rolling or sliding down the viscometer tube.

^^Viscosity units with conversion factors are in section 1.6 of this 
Chapter.

3



The falling cylinder type of viscometer for measurements under pressure 
has proved to be the most successful, and this type of apparatus has 
provided two outstanding sources of viscosity-pressure data. The first 
is Bridgman of Harvard who was the pioneer of high-pressure techniques 
and a prolific author. He made measurements up to 12 kbar on many 
liquids, Bridgman (1926). The second is the ASME (American Society of 
Mechanical Engineers) who published data on forty-four liquids in 1953 
at pressures up to 10 kbar covering a wide temperature range from 32 to 
425°F.

1.2.1 Falling cylinder viscometers

The fall time of a cylinder in a closely fitting viscometer tube is 
related to fluid viscosity by the relationship

= KT (1.1)(P i “ P i )

where K is a constant, and p^ and P2 are the densities of the cylinder 
and the fluid through which it falls. The constant K which is a term 
dependent upon the geometry can be calculated (c.f. Chapter 3), but is 
usually found by calibration. Provided that the sinker and liquid 
densities are known, it is a straightforward operation to derive dynamic 
viscosity q from a fall time measurement.

In Table 1.1 there is a list in chronological order of those who adopted 
the falling cylinder viscometer with guiding pins or other protuberances 
to ensure concentric fall within the viscometer tube.

4
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There is some doubt as to whether Hawkins et al (1935) did have guiding 
pins on their sinkers. In their paper they state that a ’Lawaczeck 
viscometer was selected’, but do not state if there were guiding pins 
as there were on the original cylinders of Lawaczeck. The paper illus­
trates five different cylinder shapes but does not show any pins. If, 
however, there were no guiding pins, it is surprising that specific 
mention of this fact was not made because this would have been the 
first instance of unguided sinkers, and would have pre-dated the falling 
needle viscometer of Seeder (1943).

The second class of falling cylinder viscometer is where the sinker does 
not have guiding pins, but relies on the flow round the cylinder to 
produce self-centering. Provided the viscometer tube is truly vertical 
and the ratio of sinker to tube diameters is large (greater than about 
0.95), then concentric fall occurs. The advantage is that the uncer­
tainty due to turbulence and drag effects caused by guiding pins is 
eliminated, as are the difficulties in manufacturing the guiding pins to 
the required high precision.

In Table 1.2 there are three who used the falling needle viscometer.
This is a particular case of the falling cylinder, where a sinker in 
the shape of a gramophone needle (Fig. 1.1) falls freely in a tube of 
about 1 mm diameter. It differs from the more usual falling cylinder 
in that the sinker is sharply pointed, and in that the viscometer tube 
is much narrower.
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Sinker shapes

A wide variety of shapes have been used in falling body viscometry. T 
original viscometer of Lawaczeck (1919) had a sinker with flat ends as 
illustrated in Fig. 1.1(A), with the edges chamferred to reduce the 
rapidity of constriction of the fluid as it enters the narrow annulus 
between the sinker and tube. This flat-ended type of sinker was also 
used by Scott (1959), and by Kozlov and Yakolev (1966). One of the 
several sinker designs employed by Swift and his co-workers was a 
flat-ended magnesium cylinder with a 0.0005 inch taper, Swift, Lohrenz 
and Kurata (1960) .

X 7
E
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Fig 1.1 Sinker designs used in falling body viscometers



Bridgman (1926) was the first to use a sinker with hemispherical ends 
as shown in Fig. 1.1(B). This design has been copied by a large number 
of workers, namely Hawkins et al (1935), Mason (1935), Steiner (1949), 
Jobling and Lawrence (1951), ASME (1953), Heiks and Orban (1956),
Cappi (1964), Gabibov and Tsaturyants (1968), Galvin et al (1968), and 
Chaudhuri et al (1968). This type of sinker is symmetrical and usually 
measurements were made with the sinker falling in both directions after 
alternate inversion of the viscometer tube. The fall time invariably 
differed in either direction because it is very difficult to machine a 
sinker so that both ends are identically hemispherical. Bridgman, for 
example, found a directional difference of 1 per cent.

A novel design of sinker was introduced by Stakelbeck (1933) who placed 
centering guides outside the annulus of the cylinder, type C in Fig. 1.1. 
This was an excellent improvement since the velocity of the fluid around 
the stabilizers is less than in the annulus where guiding pins are 
usually placed. Thus drag is less in this new configuration. It is 
surprising that this type of design was allowed to lie dormant for 
almost thirty years until Lohrenz and Kurata introduced a similar one 
in 1962 as shown schematically in Fig. 1.1(H). One possible reason for 
this omission is that Stakelbeck published in a lesser-known German 
j ournal.

The next type of sinker, D in Fig. 1.1, differs from the first three in 
that it is not symmetrical; it has a hemispherical nose but has a flat 
upper surface. This too constitutes a significant contribution to sinker 
design because this sinker is inherently stable since its centre of 
gravity is below the centre of action of the viscous forces in the 
annulus, whereas the symmetrical sinkers are more prone to irregular fall 
because they are in neutral equilibrium. The type D design was used by 
Hawkins et al (1935), Bessouat and Elberg (1964), Isdale and Spence (1975), 
and was adopted in this work.

The pointed, asymmetrical sinker, E, is one of the several designs tried 
by Hawkins et al (1935). It causes a sudden constriction of fluid on 
entry to the annulus, and is not so good as those sinkers with curved 
profiles which cause a gradual acceleration of fluid.

9



The falling-needle viscometer found favour with Dutch workers such as 
Seeder (1943), and Boelhouwer and Toneman (1957). It was used briefly 
by Galvin, Naylor and Wilson (1963/4). The needle, shown in Fig. 1.1(F), 
is like a gramophone needle both in shape and size. One advantage of 
its small size is that the needle can be brought to the top of the 
viscometer tube by means of an external magnet.

Swift et al (1960) made glass sinkers with conical noses and hemispherical 
upper ends for measuring liquid methane, ethane, and propane, G in 
Fig. 1.1. Not only did they have stabilizing lugs, they also were of 
hollow construction. From the practical point of* view these must have 
been difficult to make.

Several sinker designs emanated from the University of Kansas and among 
these are type H and J. These are ones where the guiding pins are out­
side the annulus, to minimise frictional drag on the pins by placing 
them away from the area of high fluid velocity. Lohrenz and Kurata (1962) 
were able to show that frictional forces on the guiding pins are neg­
ligible when they are mounted away from the annulus. The first type (H) 
was by Lohrenz and Kurata, and the second (J) by Lescarboura and 
Swift (1968). The latter was specially made with pins of adjustable 
lengths to enable the sinker to be forced to fall eccentrically. This 
is an interesting facet of falling body viscometry, and is investigated 
in depth in Chapter 5.

The last type of sinker was designed during this research programme. It 
has an axial central hole as shown in Fig. l.l(K). This design is to 
allow fluid to pass through the central hole to reduce the resistance to 
the fall so that viscous liquids can be measured. By having a hole 
rather than enlarging the gap between sinker and tube wall it is found 
(Chapter 4) that stable, repeatable fall times can be recorded without 
having to use guiding pins. McDuffie and Barr (1969) also had a sinker 
with a narrow axial hole, but did not mention the reason for it.
Recently Mclachlan (1975) has developed this type of falling body design 
to enable viscosities up to 107 P to be measured.

10



Sinker material and construction

Many different materials have been used in the manufacture of sinkers 
such as glass, aluminium, magnesium, chromium plated steel, brass, mild 
steel, and stainless steel. The choice of material depends upon the 
fluids to be studied, the method of detection, and the method of 
retrieval. Ideally the viscometer tube and the sinker should be of 
the same material to avoid differential compressibilities or coefficients 
of expansion.

In the previous section the shape of sinkers was discussed, that is the 
outline, but many of them are of hollow manufacture. There are two main 
reasons for this; firstly, a hollow sinker enables it to be loaded with 
materials of varying densities such as tungsten or gold in the case of 
Bridgman. This means that the same sinker can be used over different 
viscosity ranges. Clearly the heavier the ballast, the greater the 
viscosity that can be measured in a given fall time. Cappi (1964) used 
two sinkers in his viscometer, one of high and the other of low density 
so that measurements of both fluid density and viscosity could be made. 
The second reason is because detection methods sometimes require a 
particular material in the sinker. Several workers used an induction- 
type of detector system which required a magnetic core such as ferrite, 
and in the single case of Heiks and Orban (1956) a core of radioactive 
cobalt-60 was employed. Jobling and Lawrence (1951) used a tungsten 
ballast as well as an Alnico magnet, in a brass casing.

1.2.2 Methods of detection

Falling body or rolling ball viscometers usually use electrical detection 
such as simple contact or induction methods. For pressures up to about
3.5 kbar the availability of non-magnetic pressure tubing makes possible 
very simple viscometers, since the detection system may be mounted out­
side the high-pressure region (McDuffie and Barr 1969). At higher 
pressures such methods are precluded by restrictions imposed by material 
strength and the large ratio of wall thickness to internal diameter of 
pressure vessels.

11



The contact method was used by Bridgman (1926), Stakelbeck (1933), and 
by the team who produced the ASME Report (1953). When the sinker comes 
to rest after its fall, it comes into contact with an insulated metal 
contact and the timing device is triggered as soon as the circuit is 
completed between the contact and the wall of the viscometer through
the sinker. The guiding pins assist rapid completion of the circuit.
One disadvantage of this method is that electrically conducting liquids 
cannot be measured. Chaudhuri et al (1968) adopted the same method with 
unguided cylinders using ’modified electrical contacts’. Timing com­
mences as soon as the sinker moves from the top contact in the tube, and 
this means that during the first moments the sinker is accelerating to 
its terminal velocity which produces uncertainty, especially for a 
rapidly falling sinker.

The induction method has been used by the majority of workers. It offers 
the advantage that the coils are wound round the outside of the viscometer 
tubes, sometimes in specially machined grooves, so there is no contact 
with the test fluid. The coils can be placed along the tube where uniform 
velocity is assured. The earliest application of induction for detection 
was by Hawkins, Solberg, and Potter (1935) and it has been used for
falling body and rolling ball applications alike, and is still prevalent,
Isdale and Spence (1975) .

Other detection methods have been tried, such as radioactive devices.
Heiks and Orban (1956) placed a cobalt-60 source inside their sinker, and 
Rowe (1966) used a 2 mm diameter cobalt falling ball. The Geiger detection 
tubes were placed outside the pressure vessel in both cases. To determine 
the position of his flat falling plate Wilson (1967) used a capacitance 
method which had the main disadvantage that he had to measure the effect 
of pressure upon the dielectric constant of the test liquid as well.

More recently McDuffie and Barr (1969) and Mclachlan (1975) have used a 
linear differential transformer for sinker detection. In the first case 
the transformer was mounted outside the pressurised viscometer tube, and 
could be moved to allow several measurements to be made during one descent 
of the sinker. Mclachlan’s transformer was situated inside the pressure

12



vessel and was able to detect very small sinker movements, thus enabling 
high viscosity determinations without unduly long fall times.

1.3 Description of the Viscometer

The viscometer described here was designed to allow measurements to be 
made in a fixed pressure vessel capable of being pressurised to 14 kbar.
It is of the simple falling cylinder type in which the time of fall 
under gravity is determined over a fixed distance by the induction 
method. Successive measurements are obtained without rotation or dis­
connection of the pressure system. After falling, the sinker is 
retrieved electromagnetically and held at the top of the viscometer tube 
by a semi-permanent magnet. The sequence of operations is automated and 
remotely controlled, so that once temperature and pressure are set, any 
number of measurements may be made and recorded without further attention.

The only moving part in the system is the sinker itself. The pressure 
vessel required to be static because its bulk made rotation an impracti­
cable proposition and the wall thickness of over 4 inches made external 
magnetic lifting impossible. Another design constraint was that the 
closure of the vessel carries only four connections into the high-pressure 
chamber. The viscometer comprises a brass viscometer tube surrounded by 
nine lifting coils, connected in three staggered sets of three in series. 
One set of these coils is also used for detecting the fall of the iron 
sinker. A tenth coil, on top of the lifting/detection stack of coils is 
used to magnetise a semi-permanent holding magnet, and to demagnetise it 
to initiate a fall time measurement after thermal equilibrium has been 
reached. Two types of sinker are used. The first is a solid cylinder 
with a hemispherical end; the second has a similar shape but with a 
central hole. The viscosity ranges are 0.01-10 P and 10-3000 P with 
maximum fall times of about 100 minutes.

The viscometer, the control system, and the mode of operation are des­
cribed in Chapter 3.
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1.4 Additional Papers

MAn automatic high-pressure viscometer".
J. B. Irving, A. J. Barlow. J. Phys E, (1971) 4_, 232-236.

"The effect of non-vertical alignment on the performance of a falling 
cylinder viscometer".
J. B. Irving. J. Phys D, (1972) _5, 214-224.

Copies of the above papers are submitted with this thesis.

"The effect of pressure on the viscoelastic properties of liquids".
A. J. Barlow, G. Harrison, J. B. Irving, M. G. Kim, J. Lamb, and 
W. C. Pursley.
Proc. R. Soc. Lond. A, (1972) 327, 403-412.

The author has also published two papers on the viscosity of binary 
liquid mixtures.

"Viscosities of binary liquid mixtures: a survey of mixture equations". 
J. B. Irving, National Engineering Laboratory (1977), NEL Report No 630, 
pp 27.

"Viscosities of binary liquid mixture: the effectiveness of mixture 
equations".
J. B. Irving, National Engineering Laboratory (1977), NEL Report No 631,
pp 86.

14



1.5 Explanatory Note

This project was begun on 1 October 1964 and all experimental work 
was completed by 31 December 1968. It is evident that a considerable 
time has elapsed up to the submission date of this thesis. During the 
intervening period, the two main papers referred to in section 1.4 were 
published, so the new viscometry technique, results, double-exponential 
equation etc do have a priority date, 1971.

Mclachlan (1975), also working in the Electrical Engineering Department 
of Glasgow University extended the viscosity range of measurements to 
107 P by reducing the length over which the fall of a sinker with a 
central hole is measured. Isdale and Spence (1975) discarded sinkers 
with guiding pins in favour of the unguided variety on a private 
recommendation by the author. The viscometer has been duplicated by a 
group of Russian workers, (Golik, Adamenko, and Varetskii, 1976), who 
have published results up to 2.5 kbar for n-paraffins in the temperature 
range 20 to 140°C.
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1.6 Conversion Factors for Viscosity

For convenience, dynamic viscosity n is commonly referred to as 
’viscosity’. This convention is adopted throughout this thesis. The 
practical viscosity unit of poise (P), and sometimes the centipoise (cP) 
is adhered to because it is the unit which predominates the literature 
and it is more easily written and more readily comprehended by the reader 
in its abbreviated form than the SI units of Newton per second per metre 
squared (N s/m2} or pascal second (Pa s)t

The table below gives conversion factors for the .more commonly used 
units.

dyne s/cm2 P cP N s/m2 Pa s

dyne s/cm2 = 1 1 100 0.1 0.1
poise (P) = 1 1 100 0.1 0.1
centipoise (cP) 0.01 0.01 1 0.001 0.001
N s/m2 = 10 10 1000 1 1
pascal second (Pa s) = 10 10 1000 1 1

These are force units of viscosity. Occasionally mass units are used, 
such as the g cm” 1 s”1 which is the mass-equivalent unit of the dyne s/cm2 .

Kinematic viscosity, v, often used in the oil industry, is found by 
dividing.dynamic viscosity by the fluid density,

v = p/p.
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C H A P T E R  2 

THE THEORY OF THE FALLING-BODY VISCOMETER

Of the workers who used the falling-cylinder method of viscometry, 
some have produced laws of motion which show remarkable differences 
in form. These differences are due to the methods adopted to solve 
the equations of fluid flow. An early approximate solution by 
Lawaczeck (1919) was based on the assumption that the flow through the 
annulus is equivalent to the flow between rectangular parallel plates.
A further expression is quoted in the American Society of Mechanical 
Engineers Report (hereafter referred to as the ASME Report) of 1953, 
although the derivation is not given. Boelhouwer and Toneman (1957) gave 
another original expression, and in 1964 Bessouat and Elberg quoted an 
approximate form of Lawaczeck's equation. In the thesis of Cappi (1964) 
another equation appears which is in error. The treatment adopted by 
Smith (1957) provides what is now the accepted law of motion. The 
equation has been frequently derived subsequently: Swift, Lohrenz, and 
Kurata (1960)j Huang (1966), Klinzel (1969), and Chee and Rudin (1970).
The different equations are compared in section 2.2.

All the known solutions to date are for a solid cylinder falling in a 
vertical viscometer tube. The following analysis is for a cylinder with 
an axial hole through the centre of the cylinder. This novel arrangement 
allows the cylinder to fall more rapidly through liquids of high 
viscosities such as those encountered at high pressures so that fall 
times are not excessively long without sacrificing stability which 
happens when sinker diameter is reduced to produce faster velocities of 
fall. By mathematically reducing the radius of the central hole to zero 
the solution reduces to the accepted law of motion for a solid cylinder 
already referred to.
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2.1 Analysis for a Sinker with Central Hole

To obtain a law of flow of a Newtonian liquid round a falling cylinder 
with a central hole, the same assumptions are made as for flow in a 
capillary. That is, the flow is Poiseuille (fully developed laminar 
flow), and is parallel with the axis.

The Navier-Stokes equation which is the momentum equation for a 
continuous material, is solved to provide the required law of flow.
A condition of the Navier-Stokes equation is that there is no relative 
motion between a solid surface and the contacting fluid particles, and 
the effects of fluid entering and leaving the annulus are assumed to be 
negligible. The momentum equations for a liquid of negligible compress­
ibility when expressed in cylindrical coordinates are as follows:

In the r-direction

u, v, w are the particle velocities in the r, 0, and z directions and 
v is the kinematic viscosity. The density of the fluid is p and 3p/3r 
is the pressure gradient, where p is the pressure due to fluid motion 
and includes the pressure due to differences in fluid levels. The term 
3(gh)/3r takes the direction of gravitational force into account, and 
for the present will remain in this general form.

The flow in the annular region where flow is parallel with the z-axis 
is considered in the analysis, and therefore there are no tangential or 
radial velocity components. Thus the left-hand side of equation 2.1 
is zero. For the same reason v(V2u - u/r2 - 2/r2 3v/30) on the right- 
hand side of the equation is also zero. Thus

where

3u J 3u , v 3u ,
- —  +  u  - —  +  —  - rrr  +  1

This means that (p/p + gh) is independent of r
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In the 6-direction

3v . 3v v 3v 3v uv-—  + u ——  + ----- + w —  + —3t 3r r 30 3z r •ft* ghr30 ̂ p

By similar reasoning it is evident that

_ i_f£ + gh30 lp 8 .

Therefore (p/p + gh) is also independent of 0.

+ v V2v v2 3u 
r2” 30 r

(2 .2)

= 0.

In the z-direction

3w 3w + v 3w 3w 3
3t U 3r r 30 W 3z 3z —  + ghl + vV2w. 

P
(2.3)

In the steady state the fluid velocity in the z-direction, w, is a function 
of r alone, and since u is zero it follows that

£ + gh + V V w  1 3w 1_ ̂  + 32̂ '
d r 2- r 3r r 2 (2.4)

fc 0 £=0
Therefore the Navier-Stokes equation reduces to the following equation 
for which a solution is required

fs2w 1 3w' 
V (3r2 + r 3r,

d_
dz ip + sh

(2.5)

(p/p + gh) is a function of z only, since it is independent of both r and 
0 .

Consider a cylinder falling concentrically in a vertical tube as shown 
in Fig. 2.1. Because of the fall of the cylinder a pressure is exerted 
on the fluid causing it to flow up through the annulus and the central 
hole; this pressure, along with the hydrostatic pressure due to the 
difference in fluid levels is included in p of equation 2.5. On re­
arrangement of this equation one has

3 2 w  _1 8w
3r2 + r 3r

dp
= - &  + P28' (2.6)

The dynamic viscosity q equals the product of kinematic viscosity and 
fluid density, p2. d(gh)/dz becomes equal to g as the cylinder is 
falling vertically under the force of gravity, and a negative sign is 
ascribed to dp/dz to indicate that the pressure differential acts in
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FIG 2.1 Sinker with central hole
with cylindrical coordinates
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opposition to the downward gravitational force.

The end effect due to the finite length of the tube has been considered 
by Barr (1931) who found that it could be neglected if the velocity of 
fall was measured at a point removed several lengths of the falling body 
from the lower end of the containing vessel. In the analysis which 
follows end effects are ignored because his condition is met in the 
viscometer which is described ,in the following chapter.

Let the radii of cylinder, tube, and central hole be a, b, and c 
respectively. The cylinder is long compared with its diameter and the 
width of the annulus is small. Let the densities of the cylinder and 
fluid be pi and p2 respectively. The cylinder falls with a terminal 
velocity of -V.

Integrating equation 2.6 one has

=  -  Ar + C (2 7)
dr 2n r ’ K ’

where A = dp/dz - p2g is introduced for ease of manipulation, C is a 
constant of integration and is a function of r only, dw/dr is the 
velocity gradient or rate of shear at point r in the fluid.

Integrating again one has

At 2
w = - y=— + C In r + D. (2.8)

D is a further constant of integration, and w is the fluid velocity at 
any point in the areas under consideration.

The flowrate of fluid past the sinker equals the flowrate through the
annulus plus the flowrate through the central hole.

i The annulus

The volume of fluid passing through the annulus in unit time is
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«a =

2tt b

o a 

b
=  2tt

w r dr d0

A- ^  + C In r + D4.n - r dr. (2.9)

On integration, and imposition: of the boundary conditions which are 
that at r = b the fluid velocity is zero, and that at r = a the fluid 
velocity is -V, the terminal velocity of the cylinder, the following 
expression is obtained

0 = 7Ta
— (b4 - a h ) - A (b2 ~ a2) - V(b2 ~ a2) + 2 
8ri 8ri In b/a 2 In b/a (2.10)

l i The central hole

The volume of liquid passing through the central hole in unit time is
2tr c

Qk = w r dr d0

=  2tt Ar2
4n + C In r + D r dr. (2.11)

Due to symmetry the velocity gradient at r = o is zero. Thus by 
equation 2.7 it is evident that C equals zero. The second boundary 
condition is that at r = c, the fluid velocity is -V. By integrating 
equation 2.11 and imposing these boundary conditions one obtains the 
following identity

=  7TC‘ f - i - v l .  8n VJ (2.12)
Now the total flowrate past the sinker in unit time relative to the tube is 
the volume of liquid displaced by the sinker in unit time, that is,

VTr(a2 - c2).

23



Thus

therefore

Vir(a2 - c2) = Qa + Qt

A_
8n

(b1* - a4 + c1̂  _ A(b2 - a2) _ V(b2 - a2) =
8n In b/a 2 In b/a ( 2 . 1 3 )

This equation relates viscosity with terminal velocity, tube and sinker 
dimensions, and the constant A which is as yet unknown. A is determined 
by consideration of the forces on the sinker.

The rate of shear at the outer sinker surface is given by equation 2.7 
with r = a:

3w
,3r u -*r = a

A a  C 

2 n  a *

The constant C is already defined by the boundary conditions described 
between equations 2.9 and 2.10. The shear force on the outer surface of 
the sinker is the surface area, 2iral (where 1 is the sinker length),

Thus the shear force ismultiplied by shear stress 7i(3w/3r) _r — s

• 2 - r r a l  =  2 tt1
Aa2 ^-(b2 - a2) + Vri/■In b/a ( 2 . 1 4 )

The rate of shear at the inner surface of the sinker is given by 
equation 2.7 with r = c. Since the constant of integration C is zero in 
this region the shear rate is

3w
3r r = c

Ac
2rT

Therefore the shear force on the inner surface of the sinker is given 
by

3w
3r ̂ -*r = c

• 2 ttc1 =  - ttI A c 2 . (2.15)

In physical terms these shear forces both oppose the downward motion of 
the sinker. The shear forces are proportional to the rates of shear at 
the surfaces, that is, to the velocity gradients. Because the reference 
axis is along the central hole the velocity gradient at the outer surface 
is positive, but negative at the-inner surface with respect to radius r.
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Because of the axis position not being in the solid part of the cylinder, 
the shear forces appear in opposing directions. To avoid this contra­
diction the sign of inner shear force must be altered so that both shear 
forces act upwards to oppose the downward gravitational force on the 
sinker.

The upward forces acting upon the sinker are the two shear forces and 
the forces due to the pressure gradient which, for steady flow conditions, 
are balanced by the gravitational force on the sinker. The pressure 
gradient term includes the buoyancy of the cylinder. Thus

[outer surface force] + [inner surface force] + [pressure difference]

= [gravitational force], and so

2̂irl j- + ^-(b2 - a2) + V p ^ l n  b/ajj - — rrlAc

+ |^-17T (a2 - c2) it (a2 - c2 )lp1g (2.16)

Since dp/dz = A  + p£g this equation yields

2A  = (pi “ P2)(a2 ” c2)g ln b /a ~ 2Vrl(b2 - az)

On substituting A into equation 2.13 the final expression is obtained.

(2.17)

= (Pi ~ P 2) (a c2 )g|(b4 - a4 + c4)ln b/a - (b2 - a2)
2V(b4 - a1* + c*0 

By equations 2.13 and 2.17 A  may alternatively be expressed as

a _ (Pi ~ P?)(a2 ~ c2 )(b2 - a2)g
(bit - ait + C4)

(2.18)

(2.17a)

All the quantities in equation 2.18 may be determined experimentally; 
the fluid viscosity is thus defined in terms of sinker and tube 
dimensions, the densities of fluid and sinker, and the terminal velocity 
of the sinker.

The equation for a solid sinker is obtained by reducing radius c to zero. 
Equation 2.18 then becomes

_ (pi - p?)a2g[(b2 + a2)In b/a - (b2 - a2)] 
2V(b2 + a2) (2.19)
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This equation is identical to the accepted solution obtained by Smith (1S57), 
Swift et al. (1960), Huang (1966), KUnzel (1969), and Chee et al. (1970) 
which applies to a solid sinker.

For convenience, the above two equations may be written as follows

_ (Pi - p?)(a2 - C2)ge' (2 18a)
n 2V(bl+ - a^ + c^) * U.loa;

where 0# * [ (b^ - a** + c4)ln b/a - (b2 - a2) ] ,

and n = ̂ V C b ^ + ^ a Z )  * (2.19a)

where 0 = [(b2 + a2)In b/a - (b2 - a2)].

2.1.1 Velocity profile

The velocity of the fluid at any point in the annulus or in the central 
hole can be readily obtained from the analysis.

i The annulus

The velocity in this region is described in general terms by equation 2.8. 
By applying the boundary condition stated between equations 2.9 and 2.10 
and eliminating A by equation 2.17, the following expression for fluid 
velocity is obtained:

(b2 - a2) (b2 - r2) - (b^ - a4 + c^)ln b/r (2.20)
The profile described by this is approximately parabolic in nature with 
velocity zero at r = b, and velocity -V at r = a. The profile is shown 
diagrammatically in Fig. 2.2(a). The point of maximum velocity occurs 
at r = /(b - a 4 + ctf)/2(b2 - a2). This is where dw/dr = 0, where the 
shear rate is zero.

li The central hole

By imposing the boundary conditions stated between equations 2.11 and 
2.12 upon the general velocity equation, the velocity in the central, 
hole is similarly obtained.

(b2 ~ a2 )(c2 ~ r2)w  = V - 1 (2.21)
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This profile is parabolic with the velocity on the inner sinker 
surfaces at -V. The velocity profile, which is drawn by computer, is 
also shown in Fig. 2.2 where it is clear that the point of maximum 
velocity is at r = o.

i n The solid sinker

The velocity in the annular space between a solid sinker and the tube 
walls is obtained by reducing c to zero in equation 2.20. Thus

(b2 + a2)In b/r - (b2 - r2)w = -V (2 .22)

The maximum velocity is at r = / (b2 + az)/2.

2.1.2 Shear rate (velocity gradient)

The shear rate at any point in the fluid is given by the equation

( 2 - 7 )dr 2q r

The constant A may be eliminated by equation 2.17, and C is obtained from
the boundary conditions appropriate to the regions under consideration as
already described.

The annulus

(b1* - a1* + c4) - (b2 - a2 )2r2dw = V 
dr r (2.23)

This shear rate is zero at r = /(b4 - a 4 + c4 )/2(b2 - a2), and is greatest 
at r = a.

ii The central hole

dw _ _ 2Vr(b2 - a2) ,ndF-----e5---• (2-24)
Here the shear rate is linear and is zero at r = o. It is at its greatest 
magnitude at r = c.

iii The solid sinker

The shear rate in the annulus of a solid sinker is given by
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dw = V(b2 + a2 - 2r2) ( .
dr r0 *

Its numerical value varies with increase of r from V(b2 - a2 )/a0 at the 
sinker surface, through zero at r = /(bz + az)/2, to -V(b2 - a2 )/b0 at the
tube wall. Thus the maximum rate of shear is at the surface of the sinker.

The shear rates are shown diagrammatically in Fig. 2.2(b). The broken 
lines show the shear rate described by equations 2.23 and 2.24 where it 
is negative by virtue of the chosen datum position of the radius r.
That the shear forces act upwards on the surfaces is shown by mirror image 
of these broken lines.

It is pertinent to mention here that for a given geometry, namely with 
fixed values of a, b, and c, that the shear forces acting on the sinker 
and tube surfaces are constant no matter what viscosity of liquid. This 
is because that at any surface the shear rate is dw/dr = Vf(a,b,c), and 
since shear force is t  x  (surface area) which equals qdw/dr x (surface
area), then shear force equals nVf(a,b,c) x (surface area). But qV is
constant as shown by equation 2.18, and therefore shear force, or shear 
stress, is independent of the viscometer liquid.

2.2 Comparison with Other Equations

The equations of motion derived by workers for this type of viscometry 
relate to a solid cylinder in a viscometer tube. The equations fall 
naturally into a common form in which the difference is determined by 
a dimensionless term which is a function of the cylinder and viscometer 
tube radii only. For example, the equation for the solid cylinder which 
is derived in the preceding analysis is

h - (Pi ~ P?)a2g[(b2 + a2)In b/a - (b2 - a2)] (t> 1Q .
2V(b2 + a2) * U.iyaj

This may be put in the form

q«q'f(ic) (2.26)

where q' = (pi ~ P2)a2g/2V which has the dimensions of dyne sec cm”2 
(Poise). f(i<) = [(b2 + a2)In b/a - (b2 - a2)]/(b2 + a2). This equals 
[(1 + K2)ln 1/k - (1 - k2)]/(1 + k2), where k is dimensionless: k = a/b
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where k < 1.

Therefore
/ [(1 + K2)ln 1/k - (1 - k2)] 

11 ” 11 (1 + K2) ( 2 . 2 6 a )

In comparing the equations of others, it is sufficient to produce f(<) 
as follows

>

1 Lawaczeck (1919)

Lawaczeck considered the flow to be taking place ‘between parallel plates
to obtain an approximate solution

f ( K )  =  k ( 7 ( 1 ( +  k * ) 5 -  2 k ] '  ( 2 - 2 7 )

The equation of Lawaczeck is incorrectly quoted by Heiks and Orban (1956).

2 Bessouat and Elberg (1964)

The solution is an approximation of Lawaczeck1s equation

f o o  = 3 I-1
K

(2.28)

ASME (1953)

f(K) = (13k2K)3[1 " j U  " - M (1 ' K)2 " Z § (1' " K)3 " •' ]• (2>29)

The derivation of this equation is not given. 

4 Boelhouwer and Toneman (1957)

f go = 3 ’l  - k 2 1
JL + k 2_ ( 2 . 3 0 )

The equation quoted by the authors is in error by a factor of four due a 
diameter term in the numerator which should be (radius)2 . Equation 2.30 
is in the correct form.

Cappi (1964) 

f(K) _ (1 + K2)ln 1/k - (1 - K2) 
(3 - *2) (2.31)
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The difference between this equation and equation 2.32 is due to Cappi’s 
assumption that the flowrate through the annulus is Vrb2 . This is, however, 
the flowrate relative to the moving sinker. The frame of reference for the 
analysis is the fixed tube, and the flowrate is in fact Vtra2 .

6 This work

The geometric function has already been shown to be

f O c )  =  ( 1  *  k 2 )1 ( ;  l1̂  ( 1  ~  k 2 ) .  ( 2 . 3 2 )

This is obtained from the analysis for a sinker with a central hole where 
the radius of the central hole is reduced to zero. This is identical to 
the version of Smith (1957).

7 Smith (1957)

The numerator of equation 2.32 occurs as the difference between two
relatively large quantities which are nearly equal.- For ease of
calculation, Smith obtained the following approximation:

f/K) - 1 . (1 k2) (1 ~ K)2 (2 33)
U  '  3  k ( 1  +  k 2 )  K }

2.2.1 Evaluation of the equations

Although the seven equations differ widely in mathematical form, on 
substitution of a value for k , they show very close agreement, especially 
those of the ASME Report, Boelhouwer, this work and Smith. A value of 
k = 0.95 is typical in falling body viscometry. The values of f(<) for 
each equation are compared below

Table 2.1 
Comparison of f(«) for k = 0.95

Equation tto

1 Lawaczeck
2 Bessouat & Elberg (approximation of 1)
3 ASME Report
4 Boelhouwer & Toneman
5 Cappi
6 This work (equation 2.32)
7 Smith (approximation of 6 )

4.6097 x 1CT5
4.8598
4.4939
4.4866
4.1704
4.4937
4.4955
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k = a/b where a is the radius of the sinker and b the radius of the 
viscometer tube. Special care must be taken in evaluating the functions, 
particularly equations 5 and 6 which involve the difference between two 
large but almost equal quantities. Seven figure logarithmic tables are 
not sufficiently accurate (especially in the case of a very narrow annulus 
when k approaches unity) and a digital computer with double length number 
storage for extra precision was therefore used to ensure accurate 
calculation.

The agreement among the ASME equation, equation 2.32, and Smith's 
approximation of the latter is very close, as shown in Table 2.1. The 
agreement between the ASME equation and equation 2.32 suggests that the 
ASME equation is also an approximation of equation 2.32.

2.3 Reynolds Number

In.fluid flow two types of flow exist: one, at relatively low 
velocities in which the flow is Poiseuille; and the second, at relatively 
higher velocities in which particles execute a sinuous and then finally 
a nearly random fluctuating motion about a mean velocity. The two types 
of motion are called laminar and turbulent respectively. Reynolds pointed 
out that the existence of the two flow types depend not just on the 
velocity but rather on a dimensionless parameter called the Reynolds 
number.

For flow in a pipe, the Reynolds number is defined as VD/v where D is the 
diameter of the pipe, v is kinematic viscosity, and V the average fluid 
velocity. When Reynolds number exceeds about 2000 turbulent flow is 
encountered in a pipe.

It is our concern to design the falling body viscometer so that the 
flow will be laminar and not turbulent. If turbulence is present then a 
linear calibration of viscosity as a function of fall time is no longer 
possible since fall times become larger than would be predicted.

The Reynolds number for a falling cylinder in a tube cannot be readily 
defined since ambiguity arises in the diameter to be used. The definition 
of diameter is arbitrary provided that a corresponding critical Reynolds
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number Recrit is known. Several definitions of equivalent diameter and 
corresponding critical Reynolds numbers have been used in this type of 
viscometry.

2.3.1 Equivalent diameter definitions for the solid sinker

VD V pD
Re = — —  = --- (2.3 5)v x n

The equivalent diameter D , has been variously defined as follows.ill

i Swift, Christy and Kurata (1959)

For the falling-cylinder viscometer a modified Reynolds number used by 
Hubbard and Brown (1943) for a rolling ball viscometer, was employed 
from which one obtains

d e  ■  o M o "  ( 2 - 3 6 >

Swift et a l . established from experiment that the critical Reynolds number 
was about 280 on the basis of this definition.

ii Lohrenz and Kurata (1962)

De  = 2a /2[ln b/a - (bz - az)/(bz + az)]. (2.37)

The critical Reynolds number corresponding to this definition of D isE
0.2 for cylinders with guiding pins. For uninterrupted flow, howTever,
the value Re . is stated to be about 10. c n t

iii Trombetta (1971)

De = 2 (b - a). (2.38)

For an annulus the author uses the term 'hydraulic diameter1. No value 
for Recr^t is offered. This equivalent diameter is twice the annular gap. 
The general law for obtaining the hydraulic diameter is defined as 
follows

D  =  4 x (area of flow)
E wetted perimeter

For annular flow, therefore,
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_ 47r(b2 ~ a2) 
E 27r(b + a)

Thus D * 2 (b - a) .

The ’hydraulic diameter1 definition has also been used by Mitsuishi and 
Aoyagi (1973) in a study of fluid flow in an eccentric annulus.

\

The compatibility of definitions (i) and (ii) can be examined by virtue 
of the re-arranged definition of Reynolds number,

Re _ V
i q - v

It is evident that Re/D^, should be constant, since the right-hand sidehi
of the equation must be fixed for a given set of conditions. Table 2.2 
shows a comparison of D^, Recr^t > an^ their ratio for the three definitions. 
Dimensions a and b are arbitrarily set at 0.3711 cm and 0.4 cm respectively.

Table 2.2

Critical Reynolds numbers and equivalent diameter

d e Re c n t Re -J^vc n t  E

i Swift 0.357 '285 798
ii Lohrenz 0.0124 10 806
iii Hydraulic 0.0578

Taking as 800, the critical Reynolds number for the third
definition is therefore approximately 46.

Since the definitions of equivalent diameter are arbitrary, the hydraulic 
diameter definition as used by Trombetta will be used since it is the 
most easily calculated.

Thus the design criterion is according to the definition that

Re = ~̂ -2 (b - a), (2.39)
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and Re < 46 for laminar flow.

The average velocity is given in terms of the solid sinker velocity by

a2VV = (b2 - a2) *

2.3.2 Critical Reynolds number for sinker with central hole

With a sinker with a central hole there exist two separate areas of flow.
The flow regimes in the annulus and in the central hole can be examined 
separately for the onset of turbulence. For the annulus

Re = ^ ̂ --- — , where Re . = 46. (2.39)ri crit

For the central hole which may be regarded as a pipe

Re = — ^C , where Re . = 2000. (2.40)r\ crit

In the annulus the average fluid velocity is relative to the fixed 
viscometer tube, while in the central hole the average fluid velocity is
relative to the falling sinker since the sinker itself is the pipe
through which flow takes place.

In practice most of the fluid passes through the central hole as shown
in the velocity profile of Fig. 2.2(a). The average fluid velocity in
the central hole, relative to the sinker is by equation 2 .1 2 .

V = § £  (2.41)

where the constant A is given by equation 2.17(a).

The average velocity in the annulus is given by

• ■
where Q„ is defined in equation 2.9.8L

These formulae for Reynolds number are an aid to the calculation of 
dimensions of a sinker which will allow a given viscosity to be measured 
without turbulence. Or alternatively, the minimum viscosity and the
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corresponding sinker velocity can be calculated for a given set of 
dimensions.

The latter procedure is illustrated. The dimensions of a, b, and c are 
those of the only sinker with a central hole which was used for measure­
ments.

Let

a = 0.29555 cm 
b = 0.31525 cm 
c = 0.12340 cm

therefore a/b = 0.9375 = k

P i  = 7 g cm"3, 
p2 = 1 g cm" 3 

assume that p = 1000 P.

and

Therefore constant A = 4121.0, dyne cm" 3 
Sinker velocity, V = 0.001 297 cm sec" 1 

Flowrate through annulus, Q a = -0.000 0190 cm3 sec" 1 
Therefore average annular velocity = -0.000 501 cm sec" 1
Therefore in the annulus Re = 0.613 x 10-6

(equation 2.17) 
(equation 2.18) 
(equation 2.9) 
(equation 2.42) 
(equation 2.39)

Flowrate through central hole Q = ttc^A/Sti = 0.000 375 cm3 sec" 1 
Therefore average velocity in hole = 0.007 84 cm sec" 1 (equation 2.41)
Therefore in central hole Re = 1.93 x 10" 5 (equation 2.40)

For a fixed geometry it may be shown that (q2Re) is constant. Thus the
critical viscosity, n . , whid J crit
encountered, may be calculated.
critical viscosity, ncr£t > which is the viscosity at which turbulence is

For the annulus,

n2Re
IT crit Re

thus ncrit

crit

_ 0.613 xlQ~ 6 x 106 
46

= 0.1154 P.
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For the central hole,

2 = 1.93 x IQ-6 x 106
n crit 2000

thus ri . = 0.031 P.crit

The results show that turbulence is encountered in the annulus at 0.1154 P,
\

before turbulence is reached in the central hole. Thus the minimum 
viscosity which can be measured with the stipulated fixed geometry is 
0.115 P.

The corresponding maximum sinker velocity is

V = VlTl1 
ncrit

= 0.001 297 x 1000 
0.1154

= 11.24 cm/sec.

Thus for the sinker with the central hole, turbulence is first encountered 
in the annulus at the comparatively high sinker velocity of about 11 cm sec-1 
This is outwith the range of velocity measured in practice (not greater than 
0.5 cm sec"1) .

It is of interest to note that for this geometry the flowrate, and 
consequently the average velocity, in the annulus is negative with respect 
to the viscometer tube. This is because the annular gap is small compared 
with the central hole.

2.4 The Effects of Pressure

The viscometer geometry is affected by pressure in two ways. Firstly, 
the diameters of both tube and sinker are reduced thus narrowing the 
annulus, and secondly, the length of the viscometer tube is shortened. 
The effect of narrowing the annulus is to restrict fluid flow thus 
causing a greater fall-time, while the effect of shortening the tube 
length is to decrease the time of fall. The two effects of pressure are 
therefore self-cancelling to a certain extent. The annular effect is,
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however, predominant as can be seen from the equation

n  -  ( P I  f  ( k )  ( 2 . 2 6 )

= f(K),

where T is the measured fall-time over tube distance L. In terms of 
geometrical dimensions the expression on the right-hand side has a2/L — 
length, which is reduced under pressure.

The effect of pressure on f(i<) is zero only if the tube and sinker are of 
the same material, since k = a/b. In this work design criteria require 
that the tube and sinker be of different materials, namely brass and iron 
respectively. The correction for pressure effects on the viscometer 
performance is applied to the general case, that is to the sinker with a 
central hole. The general equation is

_ (Pi ~ P?)(a2 ~ c2 )g[(blf - a^ + c ^ l n  b/a - (b2 - a2) ]T , .
n 2L(b4 - a** + c*0 * (2.18)

This may be expressed as

7 — ----N = KT. (2.43)
( P i  "  P 2 )

The constant of proportionality at atmospheric pressure is K. Under 
pressure, this constant is multiplied by the quotient of

(a2 - c2)[(bl+ - a4 + c ^ l n  b/a - (b2 - a2) ^ L C b 1* - a4 + c4) (2.44)

at a given pressure and its value at atmospheric pressure. For this 
calculation the compressibilities of brass and iron are required.

2.4.1 Compressibilities of brass and iron

The relative decrease in length of a material is - A£/£ = e. The value 
of e may be calculated from

=  (1 - 2y)P
£ E ’ (2.45)

where E is Young's modulus, P is pressure, and y is Poisson's ratio.
It is common practice to define linear compressibility 3 as 3- = e/P

38



so that length under pressure is given by % = I _ ^ (1 - 3P ) . 

Calculated values of e are shown in the following table:

Table 2.3

Elastic constants of brass and Swedish iron

Material Young1s 
modulus

Poisson’s 
ratio

£ = -bl/l

E (N/m2) y per N/m2 per bar

Brass 10.4 x 1 0 10 0.374 2.42 x 1 0 " 12 2.42 x K T 7

Iron 21.2 x 1 0 10 0.29 1.98 x n r 12 1.98 x H r 7

The data are from the American Institute of Physics Handbook (1957). 
Measurements show that bl/% is not precisely a linear function of 
pressure. The deviation from the straight line relationships for iron 
is about 0.000 25 per cent at 10 kbar, and is negligibly small, The 
value of AIjl for iron was found by Bridgman (1940) to be 1.98 x 10~ 7 
per bar, and by Vaidya and Kennedy (1970) to be 1.95 x 10” 7 per bar.

2.4.2 Calculation of pressure corrections

The changes in dimensions in a, b, c and L are calculated, and by 
equation 2.44 the corrections for pressure obtained. Viscometer 
dimensions b and L, being of brass, are reduced more than the sinker 
dimensions a and c.

By reducing the sinker hole diameter to zero the correction for a solid 
sinker is obtained. The corrections for one of the sinkers used for 
measurements, sinker 1, are shown in Table 2.4. This table also shows 
the change of dimensions and the variation of f(i<).
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Table 2.4
Pressure corrections for solid sinker (sinker 1)

p/bar a / cm b/cm c / cm Ratio Gap-thou f(K) Corr.

0 0.303 76 0.315 25 0.000 00 0.963 55 4.52

x 10“ 6 

1.5733 1.0000
2000 0.303 64 0.315 10 0.000 00 0.963 64 4.51 1.5616 0.9926
4000 0.303 52 0.314 94 0.000 00'0.963 72 4.50 1.5500 0.9852
6000 0.303 40 0.314 79 0.000 00 0.963 81 4.49 1.5385 0.9779
8000 0.303 28 0.314 64 0.000 00 0.963 89 4.47 1.5270 0.9706

10000 0.303 16 0.314 49 0.000 00 0.963 98 4.46 1.5156 0.9633
12000 0.303 04 0.314 33 0.000 00 0.964 06 4.45 1.5042 0.9561
14000 0.302 92 0.314 18 0.000 00 0.964 15 4.43 1.4928 0.9489

The correction at 14 kbar is 0.949, which means that the sinker takes 
about 5 per cent longer to fall due to the narrowing of the gap between 
the tube and sinker. The table shows that the gap changes 0.0009 inch, 
that is from 0.004 52 to 0.004 43 inch. In practice the viscosity range 
of.the sinker is such that it is not used above 3 kbar, and consequently 
the maximum correction applicable to sinker 1 is about 0.99 or 1 per cent.

Table 2.5 contains the corrections for the hollow sinker used for 
measurements.

Table 2.5

Pressure corrections for hollow sinker (sinker 2)

p/bar a/cm b/cm c/cm Ratio Gap-thou f ( 0 Corr.

0 0.295 52 0.315 25 0.123 40 0.937 41 7.77
x 10-^ 
4.4126 1.0000

2000 0.295 40 0.315 10 0.123 35 0.937 50 7.75 4.4111 0.9997
4000 0.295 29 0.314 94 0.123 30 0.937 58 7.74 4.4097 0.9993
6000 0.295 17 0.314 79 0.123 25 0.937 66 7.73 4.4083 0.9990
8000 0.295 05 0.314 64 0.123 20 0.937 75 7.71 4.4068 0.9987

10000 0.294 93 0.314 49 0.123 16 0.937 83 7.70 4.4054 0.9984
12000 0.294 82 0.314 33 0.123 11 0.937 91 7.68 4.4039 0.9980
14000 0.294 70 0.314 18 0.123 06 0.937 99 7.67 4.4025 0.9977

The correction terms due to pressure are small, 0.23 per cent at 14 kbar. 
This is because the annular gap is comparatively large, and thus changes 
in the gap have a smaller effect than in the previous case, but mainly
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because most of the flow is through the central hole of which the area 
is reduced only slightly.

The variation of the correction factors is substantially linear with 
pressure as illustrated in Fig. 2.3. The correction for a sinker with 
the same annular gap as sinker 2 , but without the central hole is also 
shown in Fig. 2.3. This illustrates, that a sinker with a central hole 
has the advantage that the correction term is greatly reduced.

The effect of temperature is similar to the effect of pressure, but 
produces an increase rather than a decrease of the dimensions in the 
correction formula given by equation 2.44. Therefore the correction 
term is greater than unity for measurements made at higher temperatures.

#
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FIG 2.3 Viscometer constant correction as a function of
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pressure
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C H A P T E R  3

VISCOMETER DESIGN AND CONTROL

3.1 General Description

This falling cylinder viscometer is unique in that the only moving part 
in the entire cycle of measurement and retrieval is the sinker itself.
Before making a measurement the sinker is lifted electromagnetically 
by a series of coils along the viscometer tube. After the sinker is 
released its fall time is detected inductively by the same coils. The 
operating cycle is remotely controlled, and a predetermined number of 
measurements at a given pressure may be made automatically. One sinker 
is used in the viscosity range 0.01 to 10 P, and a second sinker with a 
central hole is used to extend the upper limit to 3000 P.

3.2 Viscometer Assembly

A  diagram of the viscometer is given in Fig. 3.1. The liquid under test 
is contained in tube 1 , which is closed at the top by an 0-ring seal and 
the screw 2, and at the bottom by the flexible bellows 3, again with an
0-ring. The test liquid is thus separated from the pressure transmitting 
fluid, and the pressure difference is minimized by using an extra flexible 
grade of bellows. The viscometer is of precision bore hard-drawn brass.
Two types of sinkers are used, both of soft iron. The first type is a 
solid cylinder with a hemispherical end; the second has a similar shape 
but with a central hole, as illustrated in Fig. 3.1. The first sinker 
covers the range 0.01 to 10 P, the second 10 to 3000 P, with maximum fall 
times of about 100 minutes. The sinkers are unguided, since it was found 
during preliminary experiments that coaxial fall occurs if the sinker and 
tube are cylindrical and the tube is vertical. The upper and lower 
centering rings, 4 and 5, which are soldered on to tube 1, are sliding 
fits in the pressure vessel; vertical alignment of the vessel bore therefore 
ensures correct positioning of the viscometer.

Before being released, the sinker is held by a semi-permanent magnet 6 , 
and at the end of the fall it rests on the brass spacer which is supported
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SINKERS

Fig 3.1 High pressure viscometer.
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by a bar 8 . A thin brass tube surrounds the viscometer tube, and carries
ten nylon coil formers 9 which are separated by soft iron discs 1 0 ,
forming parts of the magnetic circuits for the coils. The coils are 
clamped in position by two collars 1 1 , and the whole coil assembly is 
surrounded by an iron sleeve of iron of high permeability.

Each of the lower nine coils is wound with 600 turns of 34 SWG DSC (double 
silk covered) copper wire. These coils are used both to lift the sinker 
and to determine its position. To minimise the number of leads taken 
through the cap of the pressure vessel, the coils are connected in three 
sets of three coils in series. The top coil is wound with 500 turns of 
30 SWG DSC wire and is used to magnetize and demagnetize the holding 
magnet 6 . Each set of three coils and the top coil have a common earth 
return through the body of the vessel.

A  photograph (Fig. 3.2) shows the components of the viscometer, including
the two sinkers in the foreground. Also shown is a brass tube addptor 
into which the viscometer assembly is inserted when measurements are to 
be made in the 3000 bar pressure vessel.

3.2.1 Sinkers

The sinkers are made of soft iron. The two sinkers were turned on a lathe, 
the surface finish being achieved by successively finer grades of emery 
cloth, then polished with successively finer carborundum paste, and the 
final finish being made with metal polish. Considerable care was taken 
to achieve roundness and a smooth, mirror-like surface finish. The sinkers 
were measured for roundness and parallelism at the National Engineering 
Laboratory (NEL), East Kilbride, in the Metrology Division. The sinker 
dimensions are shown in the following table.
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Table 3.1 
Dimensions of sinkers

Sinker
(solid)

1 Sinker 2 
(central hole)

Mean diameter at flat end 0.2390i in -

Maximum diameter at flat end 
Minimum diameter at flat end 
Mean diameter at round end

0.23912
0.23894
0.2393^ 0.23269 in

Maximum diameter at round end 
Minimum diameter at round end

0.239.45
0.23927

0.23277
O.23260

Overall mean diameter 0.23918 in 0.23269 in
=0.6076 cm =0.5911 cm

Maximum departure from roundness O.OOOli in O.OOOO9 in
0.0003 cm 0.0002 cm

Overall length 1.00 cm 1.10 cm
Diameter of bore - 0.2468 cm
Maximum departure from roundness — 0 . 0 0 1 0 cm

The departure from roundness of both sinkers is not greater than 0.0001]^ inch 
(0.0003 cm). The non-parallelism of sinker 1 was found to be O.OOO33 inch 
(.OOO85 cm) > it was not measured for sinker 2.

3.2.2 Viscometer tube

The viscometer tube is No 2 precision bore hard drawn brass 
(H Rollet & Co Ltd, Paisley). The bore of the tube was polished with 
metal polish on a slowly rotating lathe, flushed with diethyl ether and 
polished again with dry cotton wool. Visual inspection showed any residual 
particles of cotton wool and these are easily removed with a warm-air blower.

The straightness, parallelism and diameter of the bore of the tube were 
measured at NEL after the viscometer was assembled. Precise measurements 
at 0.5 inch intervals up to 2 inches from either end showed from a total 
of 20 measurements that the mean diameter of the bore is 0.2482 3 inch, and 
the greatest deviation from this is +0.0002g inch. This falls well within 
the manufacturer’s stated value of 0.248 ± 0.001 inch. The greatest 
deviation occurred at 0.1 inch from the top of the tube and this is due to 
the tube being distorted where the top seal is made. Discarding this
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measurement, since it lies well outside the part of the tube where fall 
time measurements are made shows that the variation of tube diameter is 
no more than ±0.0001 inch. Thus

tube diameter = 0.24823 ± 0.0001 inch (= 0.6305 ± 0.00025 cm).

Over the 2 inch lengths measured parallelism is excellent, there being no 
effects greater than O.OOOOg inch. Non-straightness in the tube also 
proved to be negligible.

3.2.3 Details of viscometer and its construction

Drawings of the viscometer parts are shown in Figs 3.3 and 3.4. The only 
items not shown are the bellows and the holding magnet. The bellows are 
the same as for the densimeter and the specification is in section 6 .1 .1 (a). 
The bellows are soldered on to the bellows seal with Woods Metal as 
described in that same section. The holding magnet is described in 
section 3.2.4.

The coils are pre-assembled with the soft iron sleeve on a No 3 brass 
telescopic tube and clamped together by the two collars. The tube is then 
slid on to the viscometer tube (No 2 telescopic) and the top centering ring 
is soldered to the viscometer tube, the lower centering ring already being 
soldered to the bottom of the tube. The main advantages are that the coil 
assembly is done separately from the viscometer tube, thus avoiding 
accidentally damaging or bending the tube, and secondly the viscometer tube 
is easily and thoroughly cleaned from end to end before the bellows and top 
seal are screwed into place.

The 0-rings for sealing the viscometer are of butadiene acrylonitrile 
(nitrile rubber) which may be used up to 100°C

Edwards
No

Walker
No

British
Standard i.d, section 

No
(in) (in)

Top seal V0R 0011 0.301 0.07

Lower seal V0R 0116 50.116 O.S. 14 0.737 0.103
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Both seals are renewed at each filling to avoid contamination from absorbed 
test liquid or pressure transmitting fluid.

3.2.4 Lifting/detector coils

Each of the nine coils was wound by hand with 112 ft of 34 SWG DSC copper 
wire of rated resistance 361 U per 1000 yd. Therefore the theoretical 
resistance of each coil is 13.48 ft compared with the measured average 
value of 12.91 Q.

The coils are connected in series in threes so that the bottom coil is 
connected to the fourth coil and then to the seventh coil from the bottom,
1-4-7. The second set of coils is comprised of 2-5-8, and the third set, 
3-6-9. Inductance measurements of the three sets of coils are used to 
detect the position of the sinker, and therefore it is necessary that all 
three have as nearly identical inductances as possible. The inductance 
and resistance of each coil was measured on a reactance bridge.

Table 3.2
Measured resistance and inductance of lifting coils

Set No Coil No Resist
R

Inductance
L

Ratio
R/L

Total set 
inductance

1 12.95 fi 4.14 mH 3.13
1 4 13.05 4.20 3.11 12.43 mH

7 12.75 4.09 3.12

2 13.00 4.14 3.14
2 5 13.07 4.20 3.11 12.44

8 12.79 4.10 3.12

3 12.70 4.04 3.14
3 6 13.00 4.23 3.07 12.43

9 12.86 4.16 3.09

Average 12.91 n 4.14 mH 3.11 12.433 mH

The coils were combined so that each set had as nearly the same total 
inductance as shown in the table above. It can be seen from the table
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that the inductance totals have been equalised.

3.2.5 Holding magnet

The holding magnet is 1.4 cm long cut with a diamond saw from an |-inch 
diameter rod of high speed tool steel. It is suspended from the top seal 
by nichrome wire which is spot welded to the top flat surface as shown 
in Figs 3.1 and 3.2.

This particular material was chosen after preliminary tests with different 
types of steel and commercially available cylindrical magnets. The 
holding magnet is magnetized by passing a 3-second 25 V dc pulse through 
the magnetizing coil, and released for a fall time measurement by passing 
a decaying sinusoidal current through the same coil. The high speed tool 
steel was the only material of those tested which could be magnetized 
enough to hold the sinker, and yet be demagnetized sufficiently to release 
it.

3.3 Viscometer Control System and Mode of Operation

A  simplified schematic diagram of the control system is given in Fig. 3.5. 
The transitions between the four main parts of the operating cycle, ie 
lifting, holding, releasing and falling, are governed by a stepping relay 
(Post Office type, 50 V uniselector).

Initially, the sinker is at rest in coil a. The inductance bridge 
(Marconi TF 2700) is connected to the set of coils adg, and the presence 
of the sinker in coil a causes the bridge to be unbalanced. The out of 
balance signal (at 1000 Hz) is amplified, rectified, and is used to 
operate a relay which energizes the stepping relay. A current of up to 
1 A  dc is applied to the set of coils beh, and the sinker is lifted into 
coil b. When the sinker leaves coil a, the bridge returns to balance 
and the consequential loss of energizing current causes the stepping relay 
to advance to the next position. In this second position the lifting 
current is transferred to coils cfi, and the bridge connection to beh.
By successive steps of this kind the sinker is lifted until it reaches 
coil i. At this point a current is applied to coil j so that the
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magnet is magnetized and the sinker held. After about 3 seconds the 
magnetizing current is removed.

The time taken to lift the sinker varies from a few seconds to a few 
minutes, depending on the viscosity of the liquid under test and the 
sinker used. As a safety precaution the lifting time is limited, and 
the cycle is stopped if the sinker has not reached the top of the tube 
within this time. During lifting about 30 W are dissipated (mainly in 
the coils), and the sinker must be held whilst the temperature returns 
to its original value. The resistance of one set of the coils is 
monitored by connecting it to a Wheatstone bridge. The bridge is balanced 
before lifting occurs. When the temperature differs from its original 
value by less than 0.5°C, a timer is started by the diminution of the 
out-of-balance signal from the bridge. This timer introduces an 

, additional delay to ensure that thermal equilibrium is reached. The delay 
is adjustable, and is made at least ten times the lifting period. At the 
end of this delay the sinker is released. Coil j is connected as the 
resistive component of a damped tuned circuit, consisting of an inductance 
and a capacitor. The capacitor is initially charged to 300 V dc. A 
transient decaying oscillatory current passes through the coil, and the 
holding magnet is demagnetized. The heating effect of this current is 
negligible.

When the sinker leaves coil i the inductance bridge is connected to the 
set of coils beh and the motor of the chart recorder is started. The 
variation of the out-of-balance signal caused by the sinkers passing 
through coils h, e, and b is displayed as three peaks of the chart. The 
peaks are broad and similar in shape. Timing pulses from a clock are 
also recorded on the chart at intervals of one minute so that the chart 
speed can be accurately determined.

The chart recorder motor is stopped when the sinker reaches coil a, and 
the system is then ready for the start of a new cycle.' A counter is used 
so that a predetermined number of cycles are completed without inter­
vention.
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3.3.1 Main control circuit

The out-of-balance signal from the inductance bridge, caused by the 
presence of the sinker, is amplified and rectified by a 5-stage transistor 
circuit. When the signal is sufficiently out-of-balance, the dc level 
at the output closes the armature of a miniature relay which forms the 
load of the output stage. The circuitry and peripheral connections are 
shown in Fig. 3.6.

i ' Sequential shift

This mode of shift is the most important aspect of the automatic viscometer. 
It is the mode of shift adopted during the lift of the sinker, and during 
its fall. In this mode, the uniselector can only move to the next position 
after the previous step has been carried out. For example during the 
lifting sequence the lifting current is transferred to the next coil only 
when the required upward movement of the sinker has been successfully 
accomplished.

In this sequential shift mode the -30 V supply is connected to the emitter 
of transistor BFY 11 via a 1.8 kft resistor. This n-p-n transistor acts 
as a dc coupler. When the presence of the sinker is detected the output 
relay armature is closed. This drives a slave relay (SR) which energises 
the armature of the uniselector. When energised, a catch lever extends 
to engage the next tooth of a ratchet wheel. When the sinker departs from 
the detector coil, upwards during lifting or downwards during a fall time 
measurement, the bridge becomes balanced, the output relay drops out 
followed by the slave relay, which de-energises the uniselector coil.
The ratchet wheel of the uniselector is then drawn round to the next 
position. Thus the uniselector is moved to the next position only when 
the bridge is balanced after having first been out of balance.

ii Self-shift

This mode is used to perform steps such as moving over unused uniselector 
contacts to return to the zero position. It is used at intermediate
stages of the cycle to be described later.

Self-shift is achieved by biasing the output transistor so that the
miniature output relay is on. As shown in Fig. 3.6 this is done by
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connecting the base of the transistor through 10 kft to the -30 V supply 
through the normally closed (NC) contacts of the slave relay. Thus the 
-30 V biasing supply is interrupted whenever the miniature relay is 
energised causing the uniselector to move by one position each time. The 
presence of the 50 pF capacitor restricts the rate of switching to about 
two steps per second. Self-shift continues while the bias is applied, 
through bank 3 of the uniselector.

iii Test/run switch

In the test position the uniselector coil is isolated. This allows 
switching levels to be adjusted if required without actually stepping the 
uniselector. An indicator lamp shows when the slave relay is energised.
In this position the sequential shift mode is connected, as shown in 
Fig. 3.6. For automatic running the switch is in the run position.

iv Manual shift

Pressing and releasing the shift push button (NO - normally open) advances 
the uniselector sweep contacts by one position allowing any position in 
the cycle to be reached for test purposes.

To prevent the uniselector coil from overheating, a 135 ft, 30 W resistor 
is connected in parallel with the uniselector normally closed contacts. 
Thus, when energised, the voltage across the coil is reduced, but is 
sufficient to hold the armature closed.

3.3.2 Peripheral controls governing sequence of operation

Operational sequence is determined by the uniselector position. There are 
five banks of uniselector contacts as shown below.

Bank 1 Earth
Bank 2 -30 V Supplies indicator lights and relays
Bank 3 -30 V Shift mode supply, sequential or self-shift

connections
Bank 4 Induc­ Connects viscometer coils to inductance

tance bridge
bridge

Bank 5 -30 V Supplies relays which distribute lifting current.
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Fig. 3.7 shows the uniselector sequence. The main steps of the cycle are 
as shown by separate indicator lights controlled from bank 2. Operation 
falls naturally into these steps and is therefore described under those 
headings starting at the zero position.

i Zero

In the zero position the sinker is at rest at the bottom of the viscometer 
tube. It is therefore in coil set 1. A coil selector switch allows the 
inductance bridge to be connected to either of the three sets of lifting 
coils, as shown in Fig. 3.8. The bridge is balanced at coils 2 or 3, 
and out of balance at coil 1 due to the presence of the sinker. With the 
test/run switch at test, the amplifier gain in the main control may be 
adjusted so that the shift relay closes, this is shown by the ’shift1 
indicator light (Fig. 3.6). When the selector switch is returned to 
coils 2 or 3 balance is again achieved, the shift relay is de-energised, and 
the indicator lamp goes out.

A measurement cycle starts from the zero position. The test/run switch is 
put to the run mode. If one measurement only is required, the next position 
may be reached by pressing the manual shift button. Alternatively, if 
several complete runs are to be made a manual/self-start switch is put 
in the self-mode. This moves the uniselector to position 2 by self-shift 
as described in section 3.3.1. When the cycle is complete and the uni­
selector reaches the zero position it will automatically move on to 
position 2 and so restart the measurement cycle.

ii Lifting

Lifting is achieved by passing a direct current of up to 1 A through the 
coils so that the sinker is lifted by 8 successive steps, the controller 
being in the sequential shift mode. Power is supplied from a 50 V dc unit. 
It is carried to the lifting coils through contactors which are used to 
withstand the continual breaking of up to 1 A.

Fig. 3.9 shows the method of current distribution whereby two contactors 
carry the lifting current. The controlling relays A and B are energised 
through the contacts of bank 5; they control the contactors Cl and C2.
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3 a

1 o
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(a) Slave relays A and B

L O O  N

(b) Contactors C 1 & C2

LIFT I
50V a

C2LIFTING
CURRENT
ADJUSTMENT C 2

FUSE

(C) Distribution of lifting current.

X

Numbers on coils 
and relay contacts 
are the relay pin 
numbers.

COIL 1 

COIL 2 

COIL 3

MAGNETIZING COIL

Fig 3.9 Lifing current control circuits.



Lifting current limitation

30 W are dissipated in the coils due to the lifting current. To avoid 
the possibility of overheating the period of lifting is restricted to 
one, two or three minutes, the period being determined by the viscosity 
of the test liquid and the size of sinker used.

A 1-2-3 minute timer was built for this purpose. It provides an output 
which is closed for the duration selected on a 3-way switch. The circuit 
diagram, logic diagram, and switch arrangement are shown in Fig. 3.10.
The operation is self-explanatory.

There are six wires to the unit housed in a die-cast box with six miniature 
relays. The timer is triggered by connecting point 5 to earth through the 
contacts of a relay (1 minute timer relay) which is momentarily closed at 
minute intervals by a mechanical clock. An over-riding push-button is 
incorporated for test purposes. The connection labelled o provides a 
-30 V pulse after 3 minutes have elapsed, the function of which is 
included in section 3.3.2 (v).

Lifting current control relay

When the lifting period is started by the one minute clock the lift control 
relay is closed. This activates a 3-second delay switch (thermally 
operated relay) which closes a second relay, the lift current relay as

BANK 2

-30V W V

magnetizing

120 ft 
AA/V—

50V O

LIFT I

IA

Output from
1-2-3 minute timer LIFT 

CONTROL
J!------------- ----------

J L

I

3 second ^ II3
delay

Lifing current to coils and 
magnetizing pulse (Fig 3.9

Fig. 3.11 Lifting current control relay
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shown in Fig. 3.11. The purpose of the 3-second delay becomes 
apparent in section 3.3.2 (iii) (magnetizing). The contacts of the 
lifting current relay then supply the lifting current to the coils as 
already described in the previous section. In the event of lifting not 
being completed the lifting current is disconnected after the pre-set 
interval of 1, 2 or 3 minutes.

iii Magnetizing

When the sinker is drawn to the topmost lifting coil, its departure from 
the coil below is detected, and the uniselector moves to the next position 
which is the magnetizing position. Here the lifting current supply is 
directed to the magnetizing coil, coil 4, as shown in Fig. 3.9(c), through 
the normally closed contacts of relays A and B. In this position, however, 
the supply to the lift control relay is disconnected on bank 2 , so that 
connection to the thermal relay in Fig. 3.11 is broken. Thus, after a 
delay of 3 seconds, the lifting current relay drops out so that the 
magnetizing current is discontinued.

The 3 second current pulse to the magnetizing coil magnetizes the holding 
magnet and the sinker is drawn up by this magnetizing field. The sinker 
is then held in contact with the now-magnetized holding magnet.

The switching of the uniselector to the next position is by self-shift 
connected through normally-closed contacts of the lifting current relay. 
Thus the uniselector can only move on to the ’held’ position after 
magnetization has taken place.

iv Hold

The sinker is held by the holding magnet until the viscometer and test 
fluid reach the equilibrium temperature of the bath. Initial cooling is 
monitored by the change of resistance of one of the lifting coils, 
arbitrarily chosen. An additional delay is then imposed to ensure that 
true equilibrium is reached.
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Wheatstone bridge

Immediately the held position is reached coil 3 is connected into a 
Wheatstone bridge as shown in Fig. 3.12.

The 'hold' relay connected through bank 2, also serves to connect a 5 V dc 
supply to the bridge. In addition a second held relay connects the 
Wheatstone bridge output to the chart recorder. The chart recorder is 
arranged to advance slowly by means of short pulses at one minute intervals 
from the relay activated by the clock. The arrangement is shown in detail 
in section 3.3.3. The current drain through coil 3 is not more than 5 mA.

The Wheatstone bridge is balanced before lifting occurs so that when the 
monitored temperature reaches within 0.5°C of its original value an 
automatically resetting timer is triggered by a limit switch on the chart 
recorder. The action of starting the delay disconnects the supply to the 
Wheatstone bridge, and discontinues the advance of the chart recorder.

Reset timer (1-60 minute delay)

A reset timer is used which is adjustable to between 1 and 60 minutes. The 
delay is set so that it is at least 10 times the lifting period. A circuit 
diagram of the timer with peripheral components is shown in Fig. 3.13.
When the timer is instantaneously triggered by the chart recorder limit 
switch a synchronus motor runs, and coil CL is energised. The circuit 
is self-maintained by the closure of contacts 5 and 6 . After the set 
period of delay has elapsed the switch between 11 and 7 opens, and the
timer resets to its original condition.

A relay (timer relay) is connected as shown. It is evident that this 
relay is closed during the delay period. The contacts of this relay, in
series with the rheldf relay contacts, connect the 50 V supply to the
uniselector coil, as shown previously in Fig. 3.6. After the delay period 
has elapsed, the timer re-sets, drops out the timer relay which disconnects 
the supply to the uniselector and so moves the uniselector to its next 
position.
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Fig 3 *12 Wheatstone bridge for monitoring temperature.
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Timer

relay Limit switch on 
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Fig 3*13 1-60 minute reset timer.
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v Ready and release

After the appropriate delay has been imposed the sinker is released by
de-magnetizing the holding magnet. This is achieved automatically by 
making coil j , the coil inside which the holding magnet is placed, an 
integral part of a resonant R-L-C circuit with a decaying sinusoidal 
current.

The sequence of operation is in Fig. 3.14. In the ’ready’ position the
64 yF capacitor is charged to 300 V. The 560 Q resistance in series is to
prevent too large a charging current. This charging occupies two contact 
positions on the uniselector to ensure sufficient time to charge the 
capacitor fully. The uniselector moves on by self-shift mode to the 
release position. Here the 300 V supply is isolated, and coil 4 completes 
the R-L-C circuit through the closed contacts of the ’release’ relay. A 
transient current with decay time constant 0.4 seconds and frequency 9 Hz 
passes through the coil and the magnet is de-magnetized. The heating effect 
of this current is negligible.

The switching of the uniselector from the ’release’ to ’falling’ position 
is by sequential shift mode. Before and during release, the sinker is held 
by the magnet in coil 3. Coil 3 is connected to the inductance bridge so 
that the uniselector can only move to the next position after the sinker 
has departed from coil 3. This means that the cycle can only continue after 
the successful release of the sinker.

Abort contingency

In the event of failure to release provision is made to shut down the 
whole control system by an ’abort' relay. Use is made of the 1-2-3 minute 
lifting current timer.

1-2-3 minuteABORT ©
|------ O  Lift contact ^

O  Release contact

BANK 2 
-30V

pulse after 3 minutes 
elapsed (Fig 3 10).

Fig. 3.15 Abort circuit
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N.O. Ready relay 
contacts closed.

N.O. Release relay 
contacts open.

560ft / 5 H /
♦ 300V

6A p F COIL j

Open Closed

COIL j

i \(a) Ready position /
(b) Release position.

Fig 3*14 Demagnetizing circuit.
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In the release position -30 V is applied via a diode to the timer as 
shown in Fig. 3.15. If the sinker is present in coil 3, ie is held, 
then the shift relay (SR) contacts will be closed. After four consecutive 
pulses at minute intervals contacts E are closed (described in 
section 3.3.2 (ii)), and then the abort relay is closed. This de-energises 
the contactor controlling all the dc power units and so closes down the 
viscometer power supplies (Fig. 3.16). Therefore, should the sinker not 
be released, then the control system switches off rather than allow the 
uniselector to move on to the falling position where it would remain until 
manual intervention.

vi Falling

In the falling position, the chart recorder is immediately switched on.
The inductance bridge is connected to coil 2. As the sinker descends and
passes through each of three coils comprising coil 2 the resulting out-of­
balance signals are recorded on the chart and the uniselector is moved on 
by sequential shift. On departure from the lowest coil of the set, the 
uniselector moves by self-shift and so returns to the zero position where 
the cycle is restarted.

3.3.3 Control of number of measurements

At a set temperature and pressure, a pre-set number of measurements can
be made. This number is governed by a countdown relay. Fig. 3.16
indicates the position of the relay in the control system. The relay may
be set to any number up to 20. Each time the relay is energised, the relay
moves by one position so that when zero is reached, contacts on the switch 
open which switches off the contactor and thus disconnects the mains 
supply to the dc power units.

The pulse to the countdown relay is applied in the first lifting position 
just before the lifting current is actually applied to coil 2. This is 
achieved by the path to the countdown relay being through the following 
relay contacts:

LIFT CURRENT . MINUTE PULSE . CONTACTOR 2(C2) . DELAY TIMER 
(Note: . means AND X means NOT X)
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CONTROLS FOR
1) CHART MOTOR
2) COUNTDOWN RELAY
3) POWER SUPPLY CONTB-

l O-

MANUAL MOTOR 
SWITCH.

CHART
MOTORFALLING

DELAY
TIMER MIN.

PULSE LIFT I COUNTDOWN

RELAY
ABORT

POWER SUPPLY 
CONTACTOR

C3
Opens when countdown 

complete.

I C3
J L_C3 [
I
1l

dc POWER IISUPPLIES C3

Maintaining contact 
Push contactor 0  N 
button to start.

Fig 3.16 Circuits for countdown relay, chart motor, and mains supply.
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These conditions ensure that the countdown relay is activated only once 
in a complete cycle. A connection after the timer and minute pulse relays 
to the chart recorder motor, steps the chart feed except during the 
additional cooling period, and of course during fall time measurements 
when the chart motor runs continuously.

The role of contactor 3(C3) in supplying the dc power units is also seen 
in Fig. 3.16. It should be noted that a push button on the contactor 
requires to be depressed to close the maintaining circuit for the contactor 
to supply mains to the dc power units.

3.3.4 Additional circuitry detail

Certain additional features are incorporated into the instrumentation of 
the viscometer which are not integral parts of the control itself. Their 
purpose is to facilitate the operation of the viscometer.

i Independent circuit gain during fall

During fall the Inductance bridge is connected to coil 2, and the 
amplified out-of-balance signal is recorded continuously on the chart. 
During this period switching occurs each time that the sinker departs 
from each of the three successive coils comprising coil 2 , as is normally 
the case in the sequential shift mode. By including a separate gain 
control in the main control circuit (Fig. 3.6), it is possible to adjust 
this gain so that switching occurs when the sinker is well clear of the 
centre line of each coil which corresponds to the maximum on the trace, 
ensuring that a sufficient trace is obtained before the chart recorder 
motor is switched off. The two gains are controlled by change-over
contacts on the falling relay. The position of switching is shown
figuratively below.
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J
1
h
9
f

9e
d
c
b
a

r Inductance 
bridge.

Coil 2

Coil 2 out of balance signal.

Fig. 3.17 Inductance of coil 2 during fall as 
displayed on chart recorder

At the points A the shift relay closes, and opens at point B. The level 
at which the shift relay opens is lower than the closure point because 
the maintaining current of a relay is less than that required for 
initial closure.
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C H A P T E R  4

PRELIMINARY INVESTIGATION, PROCEDURE, AND 
VISCOMETER CALIBRATION

4.1 Introduction
Before calibrating the viscometer a series of preliminary investigations 
were required, such as finding the best sinker shape for repeatable 
measurements, and developing a procedure for cleaning and filling the 
viscometer. In addition, measurements were made with suspended level 
viscometers to obtain viscosities for calibration at atmospheric pressure.

4.2 Sinker Shape

In order to find the best sinker shape (ie the shape that gives the most 
reproducible fall times) measurements were made with variously shaped 
sinkers falling through air and then water in a 8 mm diameter precision 
bore glass tube, the timing being performed by stopwatch.

Five soft iron weights, three with flat ends and two with rounded ends, 
were turned on a lathe and polished until smooth. Table 4.1 shows 
particulars of their shape and dimensions.

Table 4.1 

Dimensions of test sinkers

No Diameter
(in)

Length
(in)

Shape Length/dia

1 0.293 0.293 Flat ends 1.0
2 0.293 0.4742 Flat ends 1.619*
3 0.293 0.586 Flat ends 2.0
4 0.2927 0.587 Parabolic nose 2.0
5 0.2924 0.432 Hemisph. nose 1.48

*Ratio of length to diameter is harmonic, 
(length)/(dia) = (length + dia)/(length)
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The glass tube was aligned vertically against two plumb lines set at 
right angles, and fall time measurements were made in air at ambient.
Fall times were very short, less than 4 seconds, and the scatter was 
large for all sinkers. This was mainly due to human error of at least 
0.2 seconds at the beginning and end of fall accounting for errors of 
about ±10 per cent. Nevertheless it was evident at this stage that the 
shortest sinker fell erratically in contrast to the longer ones which 
appeared to remain concentric.

A further series of measurements was made with the tube filled with water. 
Small air bubbles were seen when raising the sinker with a magnet and a 
delay of about 30 seconds was allowed before each measurement to allow 
rising bubbles to reach the surface. The results in Table 4.2 show that 
as might have been expected, the round nosed sinkers give more reproducible 
results. This is because laminar flow is developed as the liquid enters 
the annular gap between sinker and tube whereas with the flat-ended sinkers 
there is a sudden constriction which probably causes turbulence.

Table 4.2 

Fall times of five sinkers in water

Sinker No 1 2 3 4 5

Shape short
Flat ende 
medium

d
long parabolic hemisph.

No of readings 10 10 8 10 10

Average time, s 64.5 125.9 109.8 74.3 76.1

Mean deviation, % 5.9 1.2 1.1 0.88 0.79

Since these measurements were made at room temperature, 22.4 to 26.5°C, 
and that the water was tap water, the repeatability of less than 0.9 per 
cent for the round nosed sinkers leads one to anticipate good repeat­
ability in future measurements taken under more closely controlled 
conditions.
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It was found that chamfering the trailing edge of the sinkers improved 
repeatability since this allows a gradual release of fluid from the narrow 
annulus, so reducing turbulence. With the hemispherically nosed sinker 
the mean deviation in fall time was reduced from 0.7 to 0.5 per cent.

An important feature of the round nosed sinkers is that the upper surface 
is flat; this improves stability since the centre of gravity lies below 
the plane through the middle of the cylindrical surface of the sinker along 
which maximum shear stress is encountered. This stabilizing influence is 
absent in those sinkers which are rounded at both ends and are symmetrical. 
Bridgman (1926) and several subsequent workers have used such sinkers, and 
in every case guiding pins have been required to improve stability.

In conclusion, the preliminary experiment shows that a tapered trailing 
edge improves stability, and a round nosed sinker is predictably superior 
to a flat ended one. The hemispherically nosed sinker gives marginally 
better repeatability than the parabolic one.

4.3 Measurement Procedure

The viscometer is designed so that it can be thoroughly cleaned. The 
viscometer tube, sinker, bellows, retaining bar, and top seal with holding 
magnet can each be cleaned separately. Most of the liquids tested were 
cleaned with diethyl ether, the exception being the polydimethyl siloxanes 
for which petroleum ether was first used as a solvent. The viscometer 
tube is cleaned repeatedly and finally dried and polished with cotton wool. 
Any dust particles are easily seen and these are removed with a warm-air 
blower. The bellows require particular care so that all traces are 
removed from the convolutions. By using an ultrasonic bath this process 
is accelerated. A useful test of cleanliness is to put a large drop of 
the solvent from the bellows on to a filter paper and dry it rapidly. If 
a ring is visible then the solvent contains traces of test liquid, and 
further rinsing is required. New 0-ring seals are fitted on each filling.

The bellows are filled before joining to the viscometer, care being taken 
to avoid air pockets being trapped. This is effected by gently squeezing 
the bellows to expel any air, and for thicker liquids warming the bellows
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causes air bubbles to expand and rise to the surface. For the very viscous 
liquids a vacuum filling method was used, combined with heat to make the 
liquid thinner. After attaching the viscometer tube, it is filled from the 
top, and the upper seal screwed into place; any surplus liquid escapes 
through a bleed hole. The volume of liquid to fill the viscometer is 
about 20 cm3, although this can, if necessary, be reduced by placing a 
solid space filler in the bellows. The space filler must be short enough 
to allow the bellows to contract as the liquid is compressed.

The viscometer is lowered into the pressure vessel which is primed with 
pressure transmitting fluid, the electrical connections are made, and 
the vessel sealed as described in chapter 7. The vertical alignment of 
the pressure vessel is checked by a graduated spirit level placed on the 
horizontal surface of the vessel, perpendicular to the bore of the vessel. 
Alignment to less than 0.1° from the vertical is thus achieved, and by 
doing so errors due to eccentric fall are made negligible. This aspect 
is described in detail in chapter 5.

4.3.1 Measurement of trace

During the fall of the sinker the inductance bridge is connected to the 
second set of coils, and the out-of-balance signal caused by the passage 
of the sinker through each of the three component coils is displayed on a 
chart recorder as already shown in Fig. 3.17. The three peaks are broad 
and similar in shape. A horizontal line is drawn intersecting the rise 
and fall of the recorded trace. The mid point of this line accurately 
defines the position of the peak of the out-of-balance signal. The 
position determined in this way does not vary with the level of the 
horizontal line except near the no-signal level and near the peak. In 
this way the distances between peaks can be determined to within ±0.02 inch, 
which constitutes an error of not greater than 0.2 per cent. The chart 
feed speed can be varied in fixed steps from 16 in h_1 to 960 in h“ * and 
pulses at one minute intervals are recorded on the chart so that the chart 
speed can be accurately determined.

In measuring fall time in two halves for each descent of the sinker their 
comparison is used to confirm that the speed of fall is uniform. Unequal 
fall times show that the sinker is falling erratically, or that there may
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be contamination of the test liquid by pressurising fluid. In practice 
the fall times are not exactly equal because the detector coils are not 
dimensionally identical which produces not 1 for the ratio of second 
trace to the first but 0.989 which is the experimentally found average
ratio from a large number of fall time measurements.

4.4 Viscosity of Calibration Liquids at Atmospheric Pressure

Accurate viscosity values are required for a range of liquids with widely
varying viscosities for the calibration of the falling body viscometer 
at atmospheric pressure. Since liquid viscosity can be measured 
accurately, to within ±0.5 per cent, at atmospheric pressure, it is common 
practice to calibrate with a range of different liquids, rather than to 
calibrate with one liquid at different pressures for which the viscosity 
cannot, as yet, be measured with such high accuracy.

The primary calibration liquids are the polydimethyl siloxanes (MS 200 
series) which cover a wide range of viscosity from 10 cSt to 100 000 cSt. 
They have the advantage that they are not hydroscopic and are stable, with 
the additional feature of changing viscosity much less with temperature 
than most other organic liquids, which means that errors due to temperature 
variations are less. All liquids whose viscosities were measured under 
pressure were also measured at atmospheric pressure by a suspended-level 
viscometer. These measurements are useful for checking against literature 
values where these exist, and can be used to check the calibration of the 
falling body viscometer.

These measurements were all made with suspended-level kinematic viscometers 
according to BS 188. Measurements were made at 30°C ± 0.1°C. To convert 
kinematic to dynamic viscosity, the density of the liquid is required; 
densities were also measured and the density results are reported at the 
beginning of chapter 9, and are also reported along with viscosity data 
in Table 4.3 for convenience.
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Table 4.3

Viscosity of calibration liquids at 30°C

Liquid Time V P n(cP)

(s) (cSt) (g cm"3) Measured Literature

Polydimethyl siloxanes (MS 200 series )
10 cSt at 25°C 309.1 9.51 0.9347 8.89 8.832a
20 cSt at 25°C 594.8 18.3 0.9449 17.3 17.43^

100 cSt at 25°C 291.2 93.84 0.9586 89.96 89.90a 88.0g
350 cSt at 25°C 307.5 328.5 0.964 317 315a

1000 cSt at 25°C 874 934.0 0.965 901.3 896a 880g
1437 cSt at 30OC 43.8 1437 0.9626 1383 -
(5.9:1 mixture of
1000 & 12500)

12 500 cSt at 25°C 345.6 11339 0.968 10980 10850a
30 000 cSt at 250C 823 27003 0.9637 26100 28700a

(Hopkin & Williams)
100 000 cSt at 25°C 794 92740 0.966 89600 94400a

Mineral oils
LVI (1964) 470.7 490.5 0.9301 457 452b
MVI(N) 170 TN 596/66 222.1 237.4 0.8929 212 216a 205c
HVI 330 (1964) 384.5 411.0 0.878 361 365a
LVI 260 TN 595/66 537.3 574.4 0.9407 540 -

Miscellaneous liquids
di-(2-eh)nhthalate 137.9 44.45 0.9760 43.48 42.0<i 43.5e
di-n-butyl phthalate 415.2 12.77 1.0371 13.24 13.43d
castor oil (0311 First) 169.9 514.9 0.9527 490.5 -

castor oil (Castrol 111) 624.0 667.1 0.9048 604 -
OS-138 194.8 6598 1.2049 7951 -
tri-m-tolyl phosphate - - 1.1675f - 42.0f

a Harrison (1964)
b Barlow (1959), measurement on a different sample
c Hutton (private communication)
d Barlow, Lamb, and Matheson (1966)
e Galvin, Naylor, and Wilson (1963)
f Erginsav (1969)
g Boelhouwer and Toneman (1957)
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4*5 Calibration of Solid Sinker (sinker 1)

This sinker was designed to cover the lower range of viscosity from 
10 cP to 1000 cP and the calibration was made with five liquids within 
this range, with corresponding fall times of between 90 seconds and 
155 minutes. As described in chapter 3, this sinker has a hemispherical 
nose, a flat upper surface, with an overall length of 1.00 cm, and a 
diameter of 0.6076 cm.

Calibration measurements were made at atmospheric pressure, at 30.0 ±0.1°C 
with the viscometer in the 3 kbar pressure vessels The results of 
calibration measurements are in Table 4.4 for 10 cSt, 20 cSt, and 100 cSt 
polydimethyl siloxanes, MVI(N)-mineral oil, and 1000 cSt polydimethyl 
siloxane. Between 3 and 8 measurements were made for each liquid. The 
repeatability of fall times is good, as indicated by the standard 
deviations shown in the last column of the table. The worst deviation 
from mean fall time is 0.6 per cent which occurs for the 20 cSt liquid, 
but nevertheless the fall time is 179.35 with a standard deviation of 
0.7 seconds (0.39 per cent) which in statistical terms means that 68.3 per 
cent of the measurements on this liquid are within 0.7 seconds of the 
mean. In the case of the longest fall time (2.5 h) for the 1000 cSt 
silicone, the standard deviation is 1.4 per cent. This is probably because 
of less steady fall due to the extremely slow rate of descent which reduces 
the self-centering dynamic forces that normally act on the sinker.

It has been shown that the equation of the falling sinker may be reduced 
to the expression

B ™  (2.43)7 ------   V  =  K T >Cp1 - p2)

where T is the fall time, and K is a function of the viscometer dimensions 
which are constant at atmospheric pressure. When T is plotted as a 
function of n/(pi “ P2) a straight line with gradient 1/K, passing through 
the origin should be found if the sinker obeys the laws of motion used to 
derive the equation.

This calibration covers two orders of magnitude in viscosity and fall time, 
and it is more convenient to illustrate such a calibration curve on
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Table 4.4 

Fall times for sinker 1 calibration

Liquid Chart
speed
(in h"1)

Length of chart trace 
(in) Ratio 

2nd : 1st

Mean
fall
time
(sec)

Std.
dev.
(sec)

Max. dev. 
from mean

(%)1st half 2nd half total

10 cSt 
siloxane 240

3.07
3.04
3.05 
3.03

3.01
3.01
2.98
3.00

6.08
6.05
6.03
6.03

0.980
0.990
0.977
0.990

90.72 0.35 0.53

average 
std dev.

3.048
0.017

3.OO0
0.01i+

6.04g
0.02i+

0.984 ± 0.003

20 cSt 
siloxane 64

1.61
1.60
1.60
1.59
1.60 
1.58 
1.61 
1.60

1.60
1.59
1.58
1.60
1.59
1.59
1.58
1.58

3.21
3.19
3.18
3.19
3.19
3.17
3.19
3.18

0.994
0.994
0.988
1.006
0.994
1.006
0.981
0.988

179.3 0.7 0.63

average 
std dev.

1.599
0.01

1.589
0 . 00g

3 • 18g 
0.012

0.994 ± 0.006

100 cSt 
siloxane 16

2.075
2.09
2.07 5 
2.05 5

2.04 
2.045
2.04 
2 *05 5

4.115
4.13s
4 .115 
4.11

0.983
0.978
0.983
1.000

927.5 2.5 0.39

average 
std dev.

2.07i+
0 .01!+

2.045 
0 .0 0 7

4. II9 
O.Oli

0.986 ± 0.005

MVI(N) 16
4.87 
4.86 
4.90 
4.855
4.88

4.81
4.84 
4.86 
4 .8O 5
4.84

9.68
9.70
9.76
9.66
9.72

0.989
0.996
0.992
0.990
0.992

2184 8.5 0.56

average 
std dev.

4. 873 
0 .0 1 8

4.832
0.02 2

9.705
0.03g

0.992 ± 0.001

20.15 19.95 40.10 0.990
1000 cSt 
siloxane 16 21.28 20.90 42.18 0.982 9277 130 2.3

20.91 20.51 41.42 0.981

average 20.78 20.45 41.23 0.984 ± 0.0005
std dev. 0.58 0.48 1.05 1
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logarithmic scales. By taking logs of both sides of equation 2.43 and 
treating T as the dependent variable we arrive at the expression

log I = log 7---2— -y - log K. (4.1)vpi P2'
Thus when the variables are both plotted on logarithmic scales, a straight 
line should be found with a gradient of unity, which intercepts the 
ordinate axis at (1/K). The five calibration points for sinker 1 are 
plotted in Fig. 4.1.

The viscometer constant K was found by a least-squares fit on equation 4.1. 
In the first instance an extra degree of freedom was allowed in that the 
gradient was not fixed at unity. The optimum is as follows

log T = 1.000 57 log t  ---^ + 1.8499. (4.2)Cpi ~ P2)

This indicates that the gradient is very close to the predicted value of 
unity.

The data were then refitted with the gradient fixed at unity to give

log T = log 7-- 2 r- + 1.8505. (4.3)
v P i  "  P2)

1.8505 = -log K = log 1/K, and therefore K = 0.014 11.
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P 1000 c St
SINKER 1

O 100000 
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100
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JJ 3 5 0 cSt

10 100001000100

FIG 4.1 Calibration of sinkers 1 and 2
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Table 4.5

Values used for calibration of sinker 1

Liquid n

(cP)

P2
(g cm-3)

n/(pi - P2) Fall 
time T
(sec)

\ecalc
(cP)

*diff %

10 cSt siloxane 
20 cSt siloxane 
100 cSt siloxane 
MVI(N)
1000 cSt siloxane

8.89
17.3
89.96

212.0
901.0

0.9347
0.9449
0.9586
0.8929
0.965

1.2906
2.5152

13.1053
30.5912

131.3794

90.72
179.3
927.5

2184.0
9277.0

8.82
17.4
89.83

213.6
897.8

-0.82
+0.58
-0.15
+0.74
-0.35

sinker density, = 7.823 g cm 3 *diff % ^calc ~ n) x 100/n

The errors in recalculated viscosity show no systematic trend, and the 
value of K is to within ±1 per cent.

The errors of measurement for viscosity and fall time are proportional 
to their magnitudes. In performing a regression analysis on equation 4.1 
where the log of n and T is used, these proportional errors are taken into 
account.

The linearity of the calibration is seen to be excellent over a range of 
two decades of viscosity for sinker 1. The repeatability of measurement 
is within ±0.5 per cent except in the case of excessively long fall times 
of greater than about 2 hours.

4.6 Calibration of Sinker with Central Hole (sinker 2)

This sinker was designed to extend the range of measurement to 300 000 cP 
(3000 P), providing at the same time an overlap with the range of sinker 1.

Preliminary measurements were made to check the linearity of this new 
design of sinker. Liquids from 350 to 100 000 cP were used for this 
purpose. The latter is the maximum viscosity of liquid with which it is 
practicable to fill the viscometer.

87



Table 4.6

Fall times for sinker 2 preliminary calibration

Liquid Chart
speed

Trace 
length 

(2nd half)
Mean fall 

time
Std.
dev.

Max. dev. 
from mean

(in h-1) (in) (sec) (sec) (%)

350 cSt 
siloxane

960
2.37 
2.39
2.37
2.35
2.37
2 .36c
2.36
2.36
2.36
2.36 
2.35 5

8.865 0.04 0.29

LVI(66) 480
2.02
2.02
2.03
2.03 
2.035 
2 .0 1 5 
2.02

15.18 0.06 0.49

1000 cSt 
siloxane

480
3.42
3.42
3.42
3.41
3.41
3.42

25.63 0.04 0.20

12 500 cSt 
siloxane

64
5.49 
5.51
5.50 
5.48

309.1 0.7 0.27

100 000 cSt 
siloxane

16
11.32
11.48
11.58
11.54

2583.0 26.0 1.04
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It was found that fall time measurements had an unexpectedly high scatter, 
due mostly to erratic fall during the first half of the descent. The 
second half of the traces were quite repeatable, and these were taken to 
test for calibration linearity. The erratic fall over the first half of 
the sinkerTs descent is discussed later in this section.

The fall time measurements for 350 cSt silicone, LVI(66), 1000 cSt siloxane, 
12 500 cSt siloxane, and 100 000 cSt siloxane are given in Table 4.6.
Between 4 and 11 measurements were made for each liquid. Repeatability 
is good as shown by the standard deviations in the table. The maximum 
deviation from the mean is 0.49 per cent, except for the most viscous 
liquid where the maximum deviation is 1.04 per cent.

The values for the preliminary calibration are in the following table

Table 4.7 

Preliminary calibration of sinker 2

Liquid n

(cP)

P 2
(g cm-3)

S NCMQ.1i—I
C
l

Fall 
time T
(sec)

^recalc
(cP)

*diff %

350 cSt siloxane 
LVI(66)

1000 cSt siloxane 
12 500 cSt siloxane 

100 000 cSt siloxane

317 
540 
901 

10 980 
89 600

0.964
0.9407
0.965
0.968
0.966

46.33825
78.66789

131.7252
1605.968

13101.33

8.865
15.18
25.63

309.1
2583.0

313 
538 
905 

10 911 
91 206

-1.23
-0.37
+0.46
-0.63
+1.79

sinker density, Pi = 7.805 g cm-3 *diff % ^recalc ^  X

The optimum straight line fit to the calibration data is given by

log T = log 7--- 2 - ^ -  - 0.712 92. (4.4)
s  ( P i  “  P2>

Hence the viscometer calibration constant is 5.1631. The recalculated 
viscosities (not log viscosity) which are for the approximate range of 
300 cP to 90 000 cP are remarkably good in that the average difference 
from the calibration values fee 0.9 per cent with a maximum error of .
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1.79 per cent. The linearity of this sinker calibration is thus confirmed, 
and is illustrated in Fig. 4.1.

The following steps were taken to improve the reproducibility of the fall 
time of the sinker with the central hole during its descent in the first 
half of its passage.

1 The vertical alignment of the tube was checked
2 The viscometer tube was re-polished
3 The sinker was re-polished
4 Fresh test liquid was used.

These steps did not alter the irregular first half fall times.

Further experiments were made as follows:

5 Fresh liquid of higher viscosity was used.

This was to establish if a change of viscosity would show an improvement 
or deterioration of fall time repeatability. It was thought that the 
self-centering of the sinker might be affected one way or the other by 
a slower descent. No systematic trend was detectable.

6 The central hole of the sinker was re-bored and polished to give a 
smoother finish.

No improvement in performance was observed.

7 The viscometer tube was replaced.

Again no change in performance resulted. The conclusion drawn is that 
due to the unusual shape of this sinker, that is its axial hole, it does 
not become stable until after it has passed through the first of the 
three detector coils. During the second half of its descent, however,
repeatability is satisfactory which means that reliable results can be
obtained. It was decided that since repeatable results can be obtained 
from the second half alone and these produce a good linear calibration 
for a 300 fold range in viscosity, that no more time should be spent in 
investigating this anomalous behaviour.

The sinker dimensions were altered, and a new viscometer tube fitted 
during the foregoing investigation which means that the calibration was 
then invalid. A second calibration was therefore necessary. The table
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of results for this Is given below.

Table 4.8

Second calibration of sinker 2

Liquid n

(cP)

P2

(g cm-3)

n/(PX - P2) Fall 
time T
(sec)

^recalc
(cP)

*diff %

Castor oil 
1000 cSt siloxane 
OS 138

490.5
901.3

7951.0

0.9527
0.965
1.2049

71.5818
131.769

1204.68

11.31
20.95

190.7

489.2
904.5

7944.0

-0.27
+0.35
-0.08

sinker density, pj - 7.805 g cm” 3 *diff % = (^recaj_c x 100/^

The optimum straight line fit to the calibration data is

log T = log t ---- 7 - 0.800 16 (4.5)SPl ” P2'
from which the viscometer constant is K = 6.3119. The linearity of this 
calibration is very good and the imposed gradient of unity is quite 
satisfactory. Linearity has been confirmed by the preliminary calibration 
of sinker 2 , and because of the difficulty of filling the viscometer with 
very viscous liquids (> 10 000 cP), and because the three point calibration 
above (up to about 8000 cP) is so linear, it was considered unnecessary to 
calibrate further.

4.7 Comparison of Theoretical and Experimental Calibration

In chapter 2 the general equation of motion for a sinker with a central 
hole was derived, equation 2.18. This may be expressed as

= KT, (2.43)
(Pi “ P2) 

where

_ (a2 ~ c2)g[(blf - a1* + c^)ln b/a - (b2 - a2)2] . (4 ,5)
2L(b4 - a4 + cH)

The equation for the solid sinker is obtained by reducing radius c to  

zero.
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The calculated values of K are compared with the experimentally derived 
value in the table below.

Table 4.9

Calibration constants - calculated and experimental

Sinker a/cm 

(sinker rad.)

b/cm 

(tube rad.)

c/cm 

(hole rad.)
^calc 

(cm2 s~2)

K * exp
(cm2 s“2)

No 1 

No 2

0.303 76 

0.295 52

0.315 25 

0.315 25 0.123 40

0.000 1281 

0.035 93

0.000 1411 

0.031 56

L = 6.024 cm *K is the experimental constant divided by 100,
because cP and not P units are used for calibration.

For sinker 1 the experimental K value is 9.2 per cent above the theoretical 
value. In the case of sinker 2 the experimental K value is 13.8 per cent 
below the theoretical value.

The difference between experiment and theory is not surprising because the 
analysis is for a cylinder with flat ends, and no account is taken of entry 
and exit effects. The mass of the sinker and its length do not appear in 
the derived equation because the sinker mass is expressed as 7ra2pil where 
1 is the length of the cylinder along which laminar flow is fully developed, 
and the length drops out of the expression since it appears in both the 
numerator and demonimator. To take account of the sinker having a round 
nose would cause the numerator of equation 4.6 above to be greater, which 
means that the theoretical and experimental values of K would be in 
closer agreement. In the case of the solid sinker, therefore, the differ­
ence between the experimental and the theoretical calibration constant is 
accounted for qualitatively by the round profile of the sinker nose.

On the other hand there is the effect of the liquid being constricted as 
it is forced into the narrow annulus. This has the effect of slowing down 
the rate of sinker descent because of loss of energy. The constriction 
produces a smaller K value than that calculated but the effect is small.
This has been proved by Chen and Swift (1972) who calculated the magnitude
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of this effect, and then confirmed it by experiment. They showed that 
for a sinker to tube ratio of 0.921 the entry effect causes a reduction 
of 0.8 per cent in terminal velocity. The reduction in terminal velocity 
for sinker 1 where k — 0.963 will be less than 0.8 per cent because with 
a narrower annulus the shear forces are larger. The experiments also 
revealed that a sinker with a length of greater than six times its diameter 
has a fall time which agrees with the theoretical value to better than 
0.5 per cent.

The sinker with the central hole (No 2) has a K value below the theoretical 
value, which means that this sinker is falling more slowly than expected. 
The reason for this is not apparent.

4.8 Discussion

The two sinkers were calibrated. Sinker 1 shows good linearity from 
10 cP to 1000 cP, and the calibration constant, K, is accurate to'within 
±1 per cent. No systematic errors are found when recalculated viscosities 
are compared with the reference values. The linearity of the calibration 
of sinker 2 was also demonstrated from 350 to 100 000 cP, and a second
calibration for this sinker also shows that K is accurate to within ±1 per
cent. The calibration of both sinkers show straight lines which, on a 
log-log plot of T, as a function of n/(Pi “ P2) have a gradient of one 
which accords with theory. It is evident therefore that a single point 
calibration for an unguided sinker is quite satisfactory provided that the 
sinker is used within the limits of its capabilities; above the point where 
turbulence is encountered (defined by Reynolds number in chapter 2), and 
below the point where excessively long fall times are encountered (greater 
than about 2 hours).

Some difficulty was encountered with sinker 2 in erratic first—half fall 
times. It was found that satisfactory results could be obtained by using 
only the second-half of the fall time trace with little loss of precision. 
This course was adopted. A useful line of investigation would be to
analyse the forces acting on this type of sinker (ie with a central, axial
hole) and to study the factors which govern stability. This could be 
supported by experiment to establish the best profile.
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C H A P T E R  5

THE EFFECT OF ECCENTRICITY ON THE TERMINAL 
VELOCITY OF A SINKER

The effect of eccentricity upon terminal velocity has been appreciated from 
the time of BridgmanTs first measurements of viscosity by the falling 
sinker technique. To reduce error from an eccentrically falling sinker 
the majority of investigators using this technique which includes 
Bridgman (1926), ASME Report (1953), Heiks et al. (1960), Cappi (1964),
Huang (1966), Galvin et al. (1968), have used guiding pins to maintain the 
sinker concentric with the viscometer tube. Apart from the technical 
difficulties in machining the guiding pins to fine tolerances there are 
unknown effects due to viscous drag on the pins. For these and other 
reasons stated earlier, unguided sinkers are used in the present work.

Preliminary tests were made to establish the precision with which the 
viscometer tube must be aligned vertically in order that the unguided 
sinker should fall concentrically. These tests showed that the sinker 
becomes more and more eccentric as the tube is tilted from the vertical 
position showing a corresponding decrease in fall time. That is, as the 
sinker becomes more eccentric, the terminal velocity increases. In this 
chapter the results of experiments upon three liquids at varying conditions 
of eccentricity are presented. A vigorous analysis of behaviour under 
eccentric conditions produces an original solution to this problem, and 
by comparing experimental and theoretical results a correlation between 
eccentricity and angle of viscometer tube inclination is established.

5.1 The Measurement of Fall Time Variation with Tube Angle

A length of precision bore Pyrex glass tubing of inside diameter 
8.0 ± 0.01 mm was aligned vertically in a temperature bath by means of two 
plumb lines set at right angles with respect to the tube. The parabolically 
nosed soft iron sinker (No 4) of outside diameter 7.422 mm was used for 
three sets of measurements on a series of Midland Silicones polydimethyl 
siloxane fluids. The silicones were of nominal viscosities 10, 20 and
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100 cSt at 25°C.

Measurements were made after the tube containing the liquid had been 
immersed in the temperature bath for more than 30 minutes to ensure 
thermal equilibrium. The bath was maintained at 30 ± 0.05°C by a single 
element heater controlled by a mercury contact thermometer via a thermal 
relay. Fall time was the interval that the sinker took to pass between 
two marks on the glass tube (12.36 cm apart) as seen through a glass panel 
in the tank, and was measured with an electronic timer triggered by hand.
A permanent magnet was lowered by means of a length of fine wire down the 
inside of the tube to retrieve the sinker after each measurement. The 
sinker was raised above the upper mark but not far enough to break the 
surface of the test liquid, and to commence another fall time measurement 
a sharp jerk was sufficient to detach the sinker from the magnet.

Four measurements were made for each angle of inclination starting at 
the vertical position, and the average value taken.- For the first two 
degrees of tilt on either side of the vertical position measurements were 
made at 0.5 degree intervals increasing to 1 and the 2 degree intervals 
up to 36 degrees from the vertical. Normalised fall times (fall time divided 
by the vertical fall time) are plotted for the three liquids in Fig. 5.1.

It was not possible to tilt the tube more than 36 degrees from the vertical 
in the tank, and in order to observe behaviour for angles greater than this, 
measurements were made on one liquid (10 cSt siloxane) on a bench top at 
room temperature. Tube angle was increased until at approximately 70 degrees 
the sinker was seen to falter during its fall resulting in erratic fall times, 
and at greater angles it ceased to fall at all. The behaviour of fall time 
as a function of tube angle is shown in Fig. 5.2.

From the measurements on the three silicones it is apparent that the 
behaviour of the sinker is not dependent upon the viscosity of the fluid 
but depends rather upon the inclination of the tube to the vertical. The
normalised fall time is reduced by more than 50 per cent at a tube angle
of 15 degrees which is quite a surprising amount, that is, the sinker 
velocity more than doubles its vertical velocity. At angles less than 
70 degrees the sinker descended quite steadily, and as far as could be
ascertained visually it was falling parallel to the tube.
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5.2 Analysis of an Eccentrically Falling Sinker

The analysis follows the method used to establish the equation for the 
concentrically falling sinker. Starting with the Naiver-Stokes equation 
the shear rate of the liquid in the annulus is found by integration, and 
the velocity by a second integration. From the latter the flowrate 
through the annulus is calculated and by imposing appropriate boundary 
conditions a unique expression relating fall time, or velocity, to 
viscosity and physical dimensions is found. The main difference between 
the concentric and eccentric cases lies in the fact that the shear stress 
on the surface of the sinker is not constant but varies with angular 
position leading to more complex expressions.

The fluid in the tube is Newtonian and the sinker is falling vertically 
but eccentrically, parallel to the centre line of the tube. It is 
further assumed that perfect Poiseuille flow (ie steady and laminar) is 
developed along the entire length of the sinker in the annular region and 
that the effects of the liquid entering and leaving the annulus at either 
end are negligible. The sinker has a terminal velocity of -V.

i Cylindrical coordinates

The datum is taken as the centre of the 
sinker as shown in Fig. 5.3. Let the 
sinker have radius a, and the tube have 
inner radius b. The eccentricity is 
defined as the distance between the 
centres of tube and sinker and has 
the symbol e. R is dependent upon 
angular position and is the distance 
between the centre of the sinker and 
the tube at angle 0.

R = /b^ - sin^ 0 - e cos 0

■n

-V

99
Fig. 5.3 The eccentric sinker with 

cylindrical coordinates



ii Forces acting on a fluid element

Consider the forces acting upon an element of fluid at radius r, angle 0, 
as shown in Fig. 5.3.

(t + <5x) (r + <5rH<50 - xr&<50 + -^Jtr605r - p?g£r606r = 0.oz

The first two terms are the shear forces, the third term is the upward 
force due to the pressure gradient, and the fourth term is the gravitational
force on the element. The length of the element I ,  equals the length of
.the sinker, and the fluid density is p£» Neglecting the term £6x<5r60, the 
above equation becomes

x<5r£<50 + r6x£<50 +■ -|̂ r6ril<50 - P2gr<5r£60 = 0.

By definition, x = 117— .
J * 3r

Thus the forces acting upon the fluid element per unit mass are:

fl 3w , 3^wl dp ,, ,x
= " dl P28' <5,1)

This is a simplified form of the Navier-Stokes equation in the z-direction
where w = dz/dt, the fluid velocity, is a function of r and 0. The pressure
gradient dp/dz is the pressure gradient caused by the falling sinker and 
includes the pressure due to the difference in levels of the liquid.

iii Shear rate

Integration of equation 5.1 yields

! = - - £  + - .  (5 .2)3r 2n r

where A = (dp/dz - P2§) f°r convenience, and C is a constant of integration. 
3w/3r is the shear rate or velocity gradient of the fluid and is a function 
of r and 0,
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iv Velocity

Integration of equation 5.2 yields

w  = - + C In r + D,4n

where D is a further constant of integration, 

v Flowrate through the annulus

The flowrate of the fluid element is the fluid velocity w multiplied by 
the cross-sectional area <Sr r 60. Thus the total ‘flowrate through the 
annulus is given by:

(5.3)

2 tt R
Q = w r dr d0 (5.4)

o a
2tr R■ I  fo a 
2tt

■It-
Ar * 
4n + C In r + D r dr d0d]

^ ( R -  - 3“) + ^(R2 In R - a2 In a) + (f 16n 2 2 £)(r2 a2) d0. (5.4a)

vi Boundary conditions

The constants of integration C and D can be determined from velocity
boundary conditions

At r = a, w = -V, 
at r = R, w = 0.

Thus C and D may be eliminated from equation 5.4a to give:
2tr

a2y + J L ( r 4 - a1*) - !R!,"prr[v + |-(R2 - a2)Q =
A
16n 4 In R/a d0. (5.5)

The flowrate through the annulus equals the rate of displacement of the 
sinker which is VTra2. Equating this with equation 5.5 gives.the identity:
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2 tt

Vua2 = Vira2 + A
16n CR" - a") - a2)_ (R2 - a2) r A_ 2 _ . 2 -j 

4 In R/a L 4ri a . de

Since the integral is symmetrical about tt, we have:

r  (R2 - a2) _ A.
In R/a W  ~ 4n

( r 4  _ a4) _ (R2 - a2)2 
lK. a ’ In R/a d0. (5.6)

The constant A is as yet unknown, but it may be found by examining the 
forces acting upon the sinker. Equation 5.6 relates viscosity to the 
velocity of fall, V.

V I 1 Sinker forces

Since the sinker travels down the tube at constant velocity, the forces 
acting upon it may be equated to zero. The forces acting upon the sinker 
are the shear force on the walls of the sinker, the-force due to gravity 
less buoyancy, and the force due to the pressure gradient.

The shear stress on the surface of the sinker is given by:

9w
9r*- -*r = a

By equation 5.2 and the velocity boundary conditions we have:

3w Ar 1
3r • 2n r V + t-(R2 - a2) 4n In R/a.

Since R is a function of 0, the shear stress is dependent upon angular 
position.

The shear force upon the sinker is thus
7T•2ttr -i3w

_3r ad0 = 2 t]Z f  [ - £ * [ ■ v + £t(r2 - a2)
l r R / a ] de

The body forces are shear force, gravitational force, and the force due 
to pressure gradient.

102



TT TT TT
-Aa2*, d0 + 2nS.V YndR/a + T  ^ln R/a )<19 ' "^P.lS + ft*™2 = °> 

o o o

where Pi is the density of the sinker, and since A = (dp/dz - p2g) the 
expression can be rearranged to the following:

A
2

r  ( R 2 -  a 2 )
In R/a de  = 7ra2(p1 - p 2 ) g  -  2nV

fit d e
In R/a'

Hence A can be eliminated by substitution of the above into equation 5.6,

Therefore

n = T r a 2 ( p x  -  p 2 ) g

r  tt
2V In R/a de  +

LO

r
f (R2 - a2) 

In R/a
LO

d e

TT
(R k -  a4) - (R2 - a2) 

In R/a de (5.7)

This equation describes variation of liquid viscosity with density and 
the geometry of the system, namely, the sinker and tube diameters and 
eccentricity, and is inversely proportional to sinker velocity. The 
eccentricity of the sinker is contained in the variable R where 
R * /b2 - e2 sin2 0 - e cos 0.

By imposing the velocity boundary conditions upon equation 5.3 the general 
solution for velocity of the differential equation of fluid motion, an 
expression for the velocity at angular position 0, a < r < b  is found.
This solution describing velocity at any point in the annulus is

• - ' '!> - T O

The velocity profile described by equation 5.8 is shown in Fig. 5.3 where 
it is seen to be parabolic in form with a velocity of zero at the inner 
surface of the tube, and a velocity of -V on the surface of the sinker.

V + 4 T) (R2 - a2) (5.8)
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V l l l The concentric case

The equation for r\ in the concentric case is where e = o, that is to 
say R = b. On substituting b for R in equation 5.7 the evaluation of the 
integrals becomes trivial and therefore the equation for q is

_ (pi ~ p?)a2g[(b2 + a2)ln b/a - (b2 - a2) ] , 
2V(b2 + a2) (5.9)

This solution for the concentric case is identical to that of Smith (1957), 
Swift, Lohrenz, and Kurata (1960), Huang (1966), Klinzel (1969), Chee and 
Rudin (1970), and the author, equation 2.19.

5.2.1 The effect of eccentricity variation upon fall time

To theoretically examine the dependence of fall time upon eccentricity 
equation 5.7 was rearranged in the following way:

T = k B + D - E

2qS , TT Distance, Swhere k = — >77-------- r— , and V = — =r.---- m— •7raz (px - P2 )g Time, T

The integrals are:

(5.10)

B = In R/ad0,

(r2 ~ a2 ) 
In R/a de,

D = (R^ - a4)d6 ,

E = (R2 - a2)2
In R/a d0, where R = f(0)

These are elliptic integrals of a non-standard type and attempts to obtain 
solutions by transforming the variable, 0 , were unfruitful as were attempts
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to use the complex variable for contour integration.

The integrals above were calculated by digital computer taking increments 
of 0.2 in 0 for values of e (eccentricity) varying from zero to total 
eccentricity where e = (b - a). The values of b and a are 4.00 mm and
3.711 mm which are the experimental dimensions of tube and sinker
respectively. The ratio T/T was thus evaluated from equation 5.10. 

o e=0Accuracy using 0.2 steps is estimated to be within +0.01 per cent.

A graph of variation of normalised fall time as a function of the
eccentricity ratio e/(b - a) is plotted on Fig. 5.4. As the sinker
becomes eccentric the analysis shows that the fall time decreases by more 
than 50 per cent. For complete eccentricity the fall time cannot be 
calculated because the sinker and tube are in contact which produces a 
theoretically infinite shear rate, and thus an infinite shear force. The 
graph shows that as the sinker approaches the tube the reduction in the 
normalised fall time is from 1.0 to 0.42.

5.3 Other Treatments of the Eccentric Fall Problem

A recent paper by Chen and Swift (1968) has treated the eccentric case 
by adopting a similar analytical approach but employing bipolar coordinates 
The solution of the derived equation describing the terminal velocity ratio 
(the inverse of rationalised fall time) was calculated by computer and is
presented in tabular form as a function of eccentricity ratio and k , which
is the ratio of sinker and tube radii. The radius of the parabolic sinker
3.711 mm, and the inner radius of the glass tube 4.00 mm, provide the value
of k = 0.9277. By interpolating k values of Chen, the rationalised fall 
times were calculated for an eccentricity ratio varying from zero to 0.95.

A problem is set in a book ’Fluid Flow1 by Sabersky and Acosta (1964) on
page 224 in which the leakage past an eccentric plunger in a cylinder is
to be found. If Q is the flow past the eccentric plunger and Q is the E o
flow with the plunger centred, the solution is Qe/Qq = (1 + 3e2/2(b - a)2) 
for an eccentricity ratio much less than unity. Since velocity is 
proportional to flowrate, it follows that the fall time ratio equals 
Q /Q .
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Thus
=0 [l ♦ |

(5.11)
(b - a)z

Values are calculated for eccentricity ratios, e/(b - a), up to 0.7.

A recent paper by KUnzel (1972) gives another expression for fall time 
ratio based on calculations from a thesis by Heinze (1925). The expression 
was derived on a basis of the rectangular parallel plate approximation of 
Lawaczeck (1919).

(b - a)3
3(1 + b - a)b

/(b - a)2 - e2 (b - a)2 1 + 2 (b - a)zJJ
e=o 3b2 + (b - a)2 (5.12)

The equation is evaluated for eccentricity ratios up to 0.99.

The values of rationalised fall time, or fall time ratio, obtained from 
equation 5.10 from Chen et al, and from equation 5.11 and 5.12 are 
collected in Table 5.1. The numerical solutions of the author and 
Sabersky are in complete agreement up to e = 0.5, while the average 
difference between those of the author and Chen is 0.1 per cent. The 
approximation of Ktinzel gives values slightly lower than equation 5.10 
with a maximum difference of 0.55 per cent.

Table 5.1

Comparison of theoretical fall time v. eccentricity

Eccentricity ratio 

(e/(b - a))

Eccentric fall time ratio T
£ j

Equation
5.10 Chen et al. Sabersky 

& Acosta Klinzel

0.0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0

0.1 0.9852 0.9852 0.9852 0.9852
0.2 0.9434 0.9436 0.9434 0.9434
0.3 0.8811 0.8814 0.8811 0.8808
0.5 0.7275 0.7281 0.7275 0.7265
0.7 0.5771 0.5780 0.5764 0.5749
0.9 0.4539 0.4553 0.4483
0.99 0.4162 “ 0.3932'
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The analyses of both the author and Chen are based on the same assumptions 
and are derived from a solution of the Navier-Stokes equation, and the 
good agreement confirms the correctness of both mathematical treatments.
That there is a slight difference in calculated values is due to the fact 
that the evaluation of integrals was performed by a small step by step 
procedure on a digital computer in the case of the author’s treatment, 
while a converging series was also evaluated by computer in the calculations 
of Chen et al, both of which calculations introduce very small errors.

The relationship between rationalised fall time and eccentricity ratio 
of Sabersky and Acosta is accurate for small eccentricities and has the 
considerable advantage that being comparatively simple, it is more 
readily calculable.

5.4 Comparison of Experimental Results and Theory

Fig. 5.2 shows the measured variation of fall time with tube angle. For 
the first 15 degrees of tilt, the fall time decreases by more than 50 per 
cent and subsequently increases as the tube is tilted further until the 
sinker no longer falls. Thus the sinker velocity is seen to increase by 
a factor of more than two, whereas gravitational considerations alone 
indicate that the velocity should decrease as the tube is inclined from 
the vertical position since the gravitational component, mg cos <f>, acting 
parallel to the tube, diminishes with tube inclination.

The theoretical analysis of fall time variation considers the case where 
the sinker falls eccentrically but vertically, and if theory and measure­
ment are to be compared the gravitational effect due to tilting has to be 
allowed for. Multiplying the experimental normalised fall times by cos 6, 
where <j> is the angle of tilt from the vertical, eliminates the gravitational 
variation of angle, and the resulting curve, B, is shown in Fig. 5.2. It 
is seen that the fall time still increases for angles greater than 15°.
In the region of <p greater than 15° the sinker was observed to the sliding
down the side of the glass tube so that the sinker is totally eccentric
in this region which means that fall time behaviour is due to effects
other than change of eccentricity, and since gravitational effects have 
been eliminated, the increase of fall time for <j> greater than 15° must be
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attributable to some other factor.

When the sinker is sliding down the side of the tube it is behaving as 
a body on an inclined plane as shown in Fig. 5.5.

m g

Fig. 5.5 Forces acting on a sliding sinker

Examination of kinetic behaviour shows that the forces causing motion 
parallel to the tube are (mg cos <f> - ymg sin <j>). Although the sinker is
sliding down the side of the tube there is a film of liquid present which
separates the two providing lubrication so that the coefficient of dynamic 
friction, y, should be small.

The measured normalised fall time in which both gravitational and 
frictional forces have been eliminated is obtained from the following 
expression:

t’(independent of gravity and friction)

_ fall time x (mg cos d> - ymg sin 4>)
vertical fall time x mg

Therefore t' = normalised fall time x (cos <f> - y sin <f>).

In the region where the sinker is sliding t 1, the corrected fall time, 
should not vary with tube inclination. A value of y = 0.26 was found

109



by trial and error to produce this effect and tha curve, C, of nonnalisad 
fall time with gravitational and frictional forces eliminated is also 
shown in Fig. 5.2. The value of y compares favourably with values of 
dynamic frictional coefficients of lubricated surfaces quoted in the 
American Institute of Physics Handbook (1957), and can be further verified 
as follows. At the angle of tilt where the sinker just ceases to slide 
the only forces acting on it are gravity and friction, and since the body 
is in equilibrium

mg cos <f» - ymg sin <j> = 0 

thus y = cot <p

<P = 75° (approx.) for y = 0.26.

As indicated by Fig. 5.2 (curve A) it is at approximately this angle of 
tilt that sliding no longer takes place and fall time becomes infinite.

Curve C, Fig. 5.2, represents the variation of the measured normalised 
fall time due only to eccentricity. Within 15° of tilt the fall time drops 
by almost 60 per cent and then remains constant for further inclination of 
the tube. During this initial tilting the sinker is becoming eccentric 
causing the large drop in fall time, and it is this which has been derived 
theoretically. At 0.99 eccentricity ratio theory predicts that normalised 
fall time will be 0.416, and on the corrected experimental curve the 
normalised fall time is 0.41.

The theoretically predicted value of 0.416 at 0.99 eccentricity ratio 
was computed from equation 5.10. This equation is a re-arrangement of 
equation 5.7 which was derived by the author (section 5.2), and relates 
velocity with R, a function of eccentricity. The equation is restated 
here with V the subject of the equation:

V =
2n

r it
In R/ad0 +

n r
Tra2(pi - P2)g
 T T T

R2 _ a2
In R/a de (R k -  a h ) ~ (R2 _ t 2 ) 2 '

In R/a de

(5.7a)
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The experimental normalised fall time value with gravitational and 
frictional forces eliminated, where the sinker is falling down the 
side of the tube at maximum eccentricity, is 0.41. This occurs at 
tube angles greater than 15° to the vertical and is shown in Fig. 5.2, 
curve C.

The excellent agreement between theory and experiment is gratifying and 
confirms that the Navier-Stokes equation provides a useful and powerful 
starting point for the analysis of practical problems in fluid flow.

5.4.1 Correlation between eccentricity and viscometer tube angle

Fig. 5.4 shows the theoretically derived curve of fall time as a function 
of eccentricity, and Fig. 5.2, curve C, shows the experimentally obtained 
relationship between tube angle and fall time. By disposing of the 
common variable, fall time, the relationship between eccentricity and 
tube angle can be found graphically. This relationship is shown in 
Fig. 5.6 and it shows that the sinker rapidly becomes more eccentric in 
the first 10° of tilt and then more slowly until it is totally eccentric 
at about 15° of tilt.

The experimental results in section 5.1 show that sinker fall time is 
very sensitive to the inclination from the vertical of the viscometer tube, 
and that with the experimental sinker and tube used total eccentricity 
is achieved within 15° of inclination. Within the limits of 0 to 15° the 
sinker appears to remain parallel to the tube which is due to the 
hydrodynamic lift of the fluid flowing through the narrow part of the 
annular space between sinker and tube. For angles of inclination greater 
than 15° the sinker slides down the side of the viscometer tube, while for 
a given angle less than 15° the sinker takes up a definite eccentricity and 
does not deviate from that eccentricity as was demonstrated by experiment.
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5.5 Discussion

No other reference has been found in which the eccentricity of an 
unguided sinker as a function of viscometer tube angle has been 
established. Lescaboura and Swift (1968) have examined the effect of 
eccentricity upon a sinker falling vertically by inducing predetermined 
values of eccentricity by adjusting the length of guiding pins. Good 
agreement with theory was obtained for four different sinkers varying 
in eccentricity ratio from 0 to 0.96, verifying the analysis for 
eccentric, vertical motion. For an eccentricity ratio less than 0.6 
and in the region where k (= sinker rad./tube rad.) is greater than or 
equal to 0.8, the fall time is almost independent of k. That is, the 
change in fall time scarcely varies from one viscometer to another if 
the gap between sinker and tube is small (k >0.8) and if the eccentricity 
ratio is limited to a maximum of 0.6.

Cappi (1964) investigated the effects of a non-vertical viscometer with 
a guided sinker and found that the fall time decreased for the first 
1.5° of inclination with a corresponding reduction in fall time of 
0.5 per cent, and then increased. The turning point of 1.5° found by 
Cappi occurs because the guiding pins prevent the sinker from becoming 
eccentric beyond the tolerance between the. tube and the guiding pins.
He attributes the subsequent increase in fall time to friction.

From the measurements of fall time variation it is apparent that from 
Fig. 5.1 the viscometer tube should be correctly aligned. An inclination 
of approximately 50 minutes of angle from the vertical causes a 1 per 
cent difference in fall time, and it is evident therefore that the 
viscometer tube must be aligned accurately. As a result of these findings 
particular care was taken in the alignment of viscometers and it is 
estimated that alignment is to within 5 minutes of the vertical which 
can produce an error of less than 0.1 per cent.

The behaviour of a sinker falling in an inclined tube provides the 
phenomenon of a large variation in fall time. The normal operating point 
for falling body viscometers, the vertical position where $ = 0, is shown 
again in Fig. 5.7 and occurs at a well-defined maximum. The fall time 
curve passes through a minimum as tube angle increases; the minimum point
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occurring at about 15° in the 
case examined. This minimum 
point is more gradual than 
the maximum point and it 
follows that the error arising 
from a given variation of tube 
angle would be less at the 
minimum. A possible result 
of this is that a falling 
body viscometer in which the 
viscometer tube is set at the 
angle of the minimum might be 
developed. At this minimum the 
sinker would fall eccentrically 
and slide down the side of the 
tube. A viscometer working in 
this mode would have the 
following advantages: Fig.

15°
VISCOMETER TUB E  INCLINATION

5.7 Fall time as a function of tube 
inclination

i Smaller errors due to misalignment.

ii Fall time more than halved meaning that

a the upper measuring limit of the viscometer is immediately 
doubled, and

b time spent on the measurement of fall time is more than halved.
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C H A P T E R  6

THE DENSITY OF LIQUIDS UNDER PRESSURE

6.1 Introduction

The compressibility of liquids is required in order that buoyancy 
corrections may be made in calculating dynamic viscosity from measurements. 
Density data are also used in testing a viscoelastic relaxation model 
described by Pursley (1968).

Many methods of measuring liquid compressibility have been used and a 
detailed survey has been published by Tsiklis (1968).

The bellows method of Bridgman (1931)' is capable of high accuracy and 
for this reason was adopted by the authors of the ASME Report (1953).
This method has also been used in the present work. A fixed mass of 
test liquid is enclosed in a flexible bellows and subjected to pressure. 
Knowing the volume of liquid at atmospheric pressure and the cross- 
sectional area of the bellows, it is possible to calculate the volume 
change of the liquid from the change in length of the bellows. If the 
density of the liquid at atmospheric pressure is known, the density of 
the liquid may be calculated.

Bridgman used a slide-wire to determine the change in length of the 
bellows. Shakhovskoi, Lavrov, Puchinskii, and Gonikberg (1962) avoided 
the problems inherent in Bridgman's potentiometric method by determining 
the change in length of the bellows by a linear differential transformer 
in place of the slide-wire. This permits an improved resolution in the 
position of the bellows and volume measurement to an accuracy of ±0.1 per 
cent can be attained.

The measurement of change in the length of the bellows by linear differ­
ential transformer is both accurate and simple. A brass rod carrying a 
Swedish iron core is fastened to the top of the bellows. The brass rod 
is free to slide in a guiding sleeve around which is wound a central 
primary winding and two secondary windings .which are connected in series
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opposition. The net voltage output from the secondaries depends upon the 
position of the iron core and voltage is directly proportional to the core 
displacement. When the iron core is in the centre of the transformer the 
secondary output voltage is ideally zero.

The e.m.f. induced in the transformer is balanced by a second linear 
differential transformer - the reference transformer - which is similar 
to the bellows transformer and has an iron core whose position is adjusted
by a micrometer screw. The primaries of the two transformers are connected
in series, and the secondaries are connected so that the output electro­
magnetic forces oppose one another. The output voltages may be balanced 
by adjusting the position of the reference core to produce a null point. 
Thus a displacement of the bellows transformer may be compensated by a 
similar displacement of the reference core.

This technique was employed by Yazgan (1966) and has been used in this
work with some modification.

6.1.1 Description of densimeter

A prototype densimeter having two bellows to contain the test liquid was 
first built. This was modified to a final version in which one bellows 
is used in order that the densimeter can be used in the very high pressure 
equipment (13.7 kbar).

6.1.1a Mechanical details 

i Bellows assembly

An assembly drawing of the long version (prototype) densimeter is shown 
in Fig. 6.1. It consists of a brass coil former (A) through which a brass 
slider rod (B) moves. The coil former has a radial slit along its length 
to eliminate eddy currents. The base of the brass rod is soldered with 
Woods Metal to the bellows (F) and a rod of Swedish Iron (E) is screwed 
on to the slider. In order that the iron core should be longitudinally 
symmetrical 8 BA holes are tapped at either end.. The composition of the 
Swedish Iron is:
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COIL FORMER SWEDISH IRON CORE

BELLOWSSLIDER

B E L L O W S  CONNECTORBRASS COVER

L O W E R  SEAL2 BA SEALING SCREW

FIG 6-1 Assembly drawing of prototype densimeter
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Fe: 98.84 C: 0.012 S: 0.018 Mn: 0.030 P: 0.004
Si: 0.002 0: 0.030 N: 0.0018

A brass, slotted cover (C) containing the bellows is screwed on to the 
lower end of the coil former. The cover consists of a cylindrical brass 
tube which defines the position of the lower end of the bellows with 
-reference to the transformer. The bellows are soldere'd with Woods Metal 
to a lower seal (H) which is firmly held to the bottom of the bellows 
cover by a lock nut.

The brass bellows are of the 'extra flexible' type, length 1.25 inch, 
outside diameter 1.125 inch, with eleven convolutions, (Hydroflex Metal 
Bellows, Drayton Controls Ltd). The wall thickness is 0.004 inch and 
care has to be taken in soldering to avoid damage due to overheating.
For this reason Woods Metal, melting point 70°C was used for the permanent 
joints on the bellows and it was found that soldering could be effected 
by using a hand-held warm air blower, thus avoiding any possibility of 
damaging the bellows.

There is a filling hole through the centre of the lower seal and this 
is closed by a sealing screw (D) which bears upon a nitrile rubber 
0-ring, Edwards No V0R 2A (non British Standard). A detailed workshop 
drawing of the components of the densimeter is shown in Fig. 6.2.

In the long version densimeter illustrated in Figs 6.1 and 6.2 two 
identical bellows are joined by connecting collar (G). The final form 
of the densimeter differs from the long version only in that it has one 
bellows and a shorter brass housing. A photograph of the final densimeter 
which was used in the very high pressure vessel is shown in Fig. 6.3.

ii Reference transformer

This part of the apparatus consists of a rigid brass framework upon which 
is mounted a barrel micrometer as shown in the photograph in Fig. 6.4.
The movement of the screw is transmitted via a single ball bearing to a 
brass rod of square section which passes through a square hole to ensure 
that movement is entirely vertical. A Swedish iron rod of identical 
dimensions with the bellows core and also tapped at both ends is attached
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FIG. 6.4. VIEW OF THE REFERENCE TRANSFORMER
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to the lower end of the brass connecting rod. The reference transformer 
which was wound with the same number of turns as the bellows transformer 
is rigidly attached to the base of the frame. A compression spring acts 
on the brass square section so that the micrometer is always in firm 
contact with the ball bearing.

6.1.1b Electrical system

A block diagram of the electronic system is given in Fig. 6.5. A crystal 
oscillator generates a 10 kHz continuous sinusoidal signal. This signal 
is passed through a buffer amplifier (A) and applied to the primary 
windings of the transformers which are connected in series. The total 
e.m.f. produced in the secondaries of both transformers is fed into a 
second buffer amplifier (B). The signal from the buffer amplifier is 
applied to a band-pass fitter and the output fed into an amplifier before 
being displayed on a single-beam oscilloscope. The oscilloscope is 
synchronised by triggering from the oscillator.

A schematic circuit diagram of the linear transformers is shown in 
Fig. 6.6. There are two linear differential transformers: the bellows 
transformer which is inside the pressure vessel, and the reference 
transformer which is outwith the pressure system. The primary coils 
of the two transformers are connected in series as shown. The secondary 
coils of the individual transformers are wound so that their fields 
oppose each other and the outputs from both transformers are connected 
in opposition. The field directions are illustrated by the arrows in 
Fig. 6.6. A displacement of the iron core attached to the bellows can 
be compensated by a displacement of the reference iron core by means of 
a micrometer so that the net voltage of the secondaries is reduced to 
a null.

i 10 kHz oscillator

A crystal controlled oscillator is used to achieve high stability.
The crystal is an X-Y flexure type (Marconi type 1652D). A circuit 
diagram is given in Fig. 6.7.
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ii Buffer amplifier A

This amplifier provides impedance matching between the oscillator and 
the differential transformers. The loading on the oscillator is minimised 
to ensure stability of signal amplitude. A 40:1 turns ratio transformer 
is used to provide the required matching. The circuit diagram is shown 
in Fig. 6.8.

iii Buffer amplifier B

This amplifier has a high input impedance of about 0.5 to provide 
minimal loading on the transformers. The circuit diagram is given in 
Fig. 6.9.

iv Filter

The filter has a pass-band of 9,900-10,100 Hz and is passive. The 
iterative impedances are 600ft . Its function is to reduce harmonics 
and minimise the effect of stray signals.

v Output amplifier

A circuit diagram of the amplifier is shown in Fig. 6.10. Its purpose 
is to amplify the out-of-balance signal from the transformers for 
display on the oscilloscope which is used as a null-detector. It was 
found that improved precision of balancing was possible from the visual 
display of the oscilloscope set at 10 mV/cm rather than with an 
electronic voltmeter as the latter proved excessively sensitive to stray 
pick-up and interference from other equipment in the laboratory.

vi Transformer coils

The dimensions of the two transformers are identical and every care was 
made to wind the coils similarly. The coils were wound by hand with 
PTFE insulated multistrand wire. The primary was first wound with 
203 turns. One of the secondaries was then wound in the same direction 
and then the other secondary was wound in the opposite direction, each 
with 203 turns. Both transformers were wound in the same manner.

Minor differences between the transformers and slight variations in the 
distributions of the windings prevented a perfect null from being obtained.
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A fixed capacitance across one of the secondaries of the reference 
transformer is used to establish a perfect out-of-phase relationship.
A variable resistor of 200 0, in parallel with one of the secondaries 
is necessary to maintain exact out-of-phase balance. Thus by alterately 
adjusting the reference core position and this resistance a well-defined 
balance point is achieved. For every change in bellows core position 
this procedure is adopted. The balance point obtained by this tuning 
method is unique. This was confirmed over the entire travel of the 
bellows core.

6.1.2 Differential transformer calibration

If the transformers were identical then a movement of the bellows iron 
core would be compensated by an equal movement of the reference core 
to provide balance at the circuit output. In practice, due to the 
transformers not being perfectly identical and other contributary 
factors such as the effect of the permeability of the pressure vessel 
on the bellows transformer, the ideal 1:1 core movement ratio does not 
exist. It is therefore necessary to calibrate bellows core movement 
against the movement of the reference core. The position of the 
reference core is defined by the reading on the reference transformer 
micrometer, so that once a calibration of one core movement against 
the other has been obtained then, at balance, the position of the 
bellows core is uniquely defined by the micrometer reading.

The bellows transformer assembly was placed in the high pressure vessel 
and immersed in the hydrostatic pressurising fluid. The bellows was 
empty and its sealing screw absent to allow the bellows to be compressed.
A micrometer acted upon the bellows core via a connecting rod to provide 
definite movement. For every position of the bellows core the corresponding 
reference core position was found by adjusting the latter for minimum out­
put voltage, and final tuning obtained by adjusting the variable resistor 
and reference core position in turn for out-of-phase balance.

Calibration was carried out with the pressure vessel at 30 ± 0.1°C. 
Calibration over a range of 7 mm downward movement of the bellows core 
was carried out and this corresponds to approximately 20 per cent
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compression of the bellows. The bellows core was moved by increments of 
0.0125 inch and after the calibration in the downward direction, the core 
was raised in equal steps by rotating the micrometer in the opposite 
direction. The elasticity of the bellows was sufficient to raise the 
core to its initial position. No hysteresis was observed in the return 
of the core to its original position.

The calibration figures are shown in Table 6.1. Inspection of table 
values shows that linearity is not achieved so that a definite increment 
in bellows core position does not correspond to k fixed increment of 
reference core position; that is to say, positional changes vary 
according to the absolute core locations. Initially a calibration curve 
of bellows/reference position was drawn but, while accurate, this proved 
to be a laborious method of converting reference core movement into the 
corresponding bellows core movement. As an alternative, the equation of 
the calibration curve was found. This was done by fitting several 
polynomial equations to the calibration data, increasing the number of 
coefficients by one each time. Polynomials of more than fifth order 
showed only a marginal improvement of fit and the fourth order of fit 
was therefore selected. The polynomial gives the bellows core position 
as a function of reference core position:

y = a + bx + cx2 + dx3 + ex^ (6.1)
a = 0.329 4309 
b = 0.026 0479 
c = 0.002 1079 
d = 0.000 0977 
e = 0.000 0018

The r.m.s. error is 0.000 11 inch (0.000 28 cm).

The recalculated values of bellows position and the differences are 
shown in Table 6.1. The maximum error is 0.000 21 inch (0.000 53 cm), 
and this, with the very small r.m.s. error, indicates that the bellows 
core position can be determined with very high precision. The errors 
are random, not systematic, and the accuracy of overall measurement, 
including estimates of bellows core resolution are further discussed 
in section 6.1.7.
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By using a polynomial the calculation of.results from measurements 
can be effected without recourse to graphical means which reduces the 
probability of human error.

Table 6.1

Recalculation of bellows position from equation 6.1

Reading
No

Bellows
position

(in)

Ref. micr. 
reading

(mm)

Bellows
position

(Recalc, by 
eqn. 6.1)

Error

(in)

1 0.0000 8.645 --0.00006 -0.000 06
2 0.0125 8.365 0.01255 5
3 250 8.085 2511 11
4 375 7.805 3760 10
5 500 7.530 4979 - 21
6 625 7.245 6234 - 16
7 750 6.955 7503 3
8 875 6.665 8762 12
9 0.1000 6.375 0.10010 10

10 125 6.085 1247 - 3
11 250 5.790 2492 - 8
12 375 5.485 3766 16
13 500 5.190 4984 - 16
14 625 4.875 6267 17
15 750 4.570 7492 - 8
16 875 4.255 8738 - 12
17 0.2000 3.930 0.20002 2
18 125 3.600 1260 10
19 250 3.270 2493 - 7
20 375 2.925 3752 2
21 500 2.575 4997 - 3
22 625 2.210 6258 8
23 750 1.840 7496 — 4

6.1.3 Determination of the effective cross-sectional area of bellows

To translate changes in bellows length into changes of volume it is 
necessary to know the effective cross-sectional area of the bellows.
A calibration apparatus, Fig. 6.11, was used by which changes in 
bellows length could be accurately determined as follows.
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FIG. 6.11. VIEW OF APPARATUS FOR DETERMINING CROSS-SECTIONAL AREA OF THE BELLOWS

133



The bellows was filled under vacuum with.distilled water and then 
carefully dried on the outside, and weighed. It was then assembled 
in the differential transformer and placed in the calibration apparatus 
which has a micrometer with a tufnol rod extension to bear on the iron 
core on the bellows. After the micrometer reading was taken, the 
bellows was removed from the apparatus and the sealing screw loosened 
enough to allow about 0.5 ml of water to be expelled from the bellows 
before resealing the bellows. After drying and weighing the apparatus 
was re-assembled and the change of bellows length was obtained directly 
from the new reading of the micrometer. This procedure was repeated 
until the bellows had been compressed by 7 mm.

The measurements were carried out at 23.4 ± 0.2°C. The density of water 
at 23.4°C is 0.9974 g cm"3> (Kell and Whalley) (1965), and this knowledge 
allows change of weight to be expressed as change of volume. In 
Fig. 6.12 the decrease in volume is plotted as a function of decrease 
in length which produces a straight line, the gradient of which 
(A volume/A length) is the effective cross-sectional area of the bellows. 
The value of the effective cross-sectional area of the bellows is
4.000 cm2.

This compares well with the value of Yazgan and that of the manufacturers 
of the bellows. Their values are 3.989 and 4.00 cm2 respectively.

6.1.4 Dimensional corrections due to pressure

Due to the compression of the component parts of bellows transformer 
assembly there is a slight differential movement between the iron core 
and the transformer windings. The correction due to the pressure may 
be estimated by considering the assembly in three parts as follows:

i The bellows

The upper and lower brass seals, which constitute the major portion of 
the cross-sectional area of the bellows, are subject to pressure and 
therefore suffer a small reduction in cross—sectional area. This 
results in an increase in bellows length since the volume of che 
bellows is constant at any particular pressure. The relative increase
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in length is equal to the relative reduction in cross-sectional area.
That is

A1ft = &A
1.. A 2eb (6,1)b&ws

where e^ is the linear compression of brass, is the length of the
bellows, and Al^ is the change in liquid length.

Along the length of the bellows the brass housing is compressed so that

Al,

H>£ws k= e, (6.2)

where Al^ is the shortening of the bellows housing.

The total apparent increase in bellows length is therefore

Al0 + Al = 1,  2e, + 1,  e, = 3 1 ,  0 £ , .  ( 6 . 3 )I h bJlws b bJlws b b£ws b

ii Brass slider

In this section the slider and the surrounding casing are of the same 
material, so there is no differential movement.

iii The iron core

The iron core is compressed by an amount given by

Al
^ = e. (6.4)1 ic

where 1 is the iron core length, and e. the linear compression of c i
iron. The relative change of the brass coil former at the same section 
is

Aif
_ = v  (6-5) c

Since e > e. there is a net upward movement of the core with respect b l
to the transformer:

&1f - A1C = Vb" Vi= V'b ■ 'J- (6-6)
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The real effect will be half this value since the mid-point of the iron 
core has half the relative movement of the top of the core.

The upward movement of the core, Al, is the sum of the two upward 
increments described by equations 6.3 and 6.6.

A1 = 31b£wsEb + 0,5 1c (eb “ £i^ * (6*7)

The values of and are given in section 2.4.1, where the values are 
given as 2.42 x 10"7 and 1.98 x 10“ 7 bar-1 respectively. The length of 
the iron core is 2.2 inch which allows the movement of the core as a 
function of applied pressure to be calculated. By equation 6.7,

A l = (7.26 ^  + 1.23) x l ( r 7 x p cm. (6.8)

This correction is a function of bellows length and is directly 
proportional to the hydrostatic pressure (bar) . It is subtracted from 
the displacement of the bellows core which takes place when the test 
liquid is compressed.

A sample calculation for water at 4868 bar is shown:

mass
"b£ws area x po

- (bellows movement with respect.to P = 0 position)

14.9306
4.000 x 0.9957 

= 3.2675 cm.

- 0.4813

By equation 6.8

Al = (7.26 x 3.2675 + 1.23) x 10“7 x 4846 

= 0.0121 cm (= 0.37 per cent of lb£ws>

The corrected length is

1 = 1, „ -  A lcorr b£ws

= 3.2554 cm

massFinally p = ------— ----/ H area x 1corr

= 1.1466 g cm-3*
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The densimeter described in the ASME Report (1953) makes use of a 
bellows with a potentiometric slider mounted on top. On page 51 
(Vol. 1) the report has an expression for correcting for the compress­
ibility of the apparatus. By re—arranging the expression and stating 
it in terms of the notation already used the correction to the 
displacement is

Al = 3 1,. C. + 1 (£, - e.). (6,9)b£ws b c b l

This is similar to the expression in equation 6.7 which was derived 
independently.

6.1.4a Other pressure effects

The effect of pressure on the dimensions of the apparatus immersed in 
the pressure vessel has been analysed in section 6.1.4. There is in 
addition a reduction in the resistance of the transformer windings due 
to pressure, but the change in inductance is negligible. The reduction 
of resistance causes a decrease in coil impedance, which results in more 
current in the bellows transformer primary winding, but since the same 
current flows in the reference transformer primary, this pressure effect 
will increase the sensitivity of the transformers equally. The change 
of resistance in the secondary winding of the bellows transformer has 
no appreciable effect on the null point since there is little or no 
current circulating in the secondary circuit at balance.

The effect of pressure on the permeability of the iron core was examined 
by Yazgan who found that there was negligible change in the apparent 
core position under pressure.

6.1.5 Measurement method

Before introducing a test liquid, the bellows are cleaned thoroughly both 
inside and outside, and the bellows, sealing screw and O-ring are weighed 
on a chemical balance. The bellows are filled by a vacuum technique and 
particular care is taken to avoid pockets of air being trapped in the 
convolutions of the bellows. When viscous liquids are being used, for
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example castor oil, heating the liquid in the bellows facilitates the 
expulsion of air bubbles. Once filled, the bellows are sealed with
the screw and O-ring. Any test liquid on the outside of the bellows
is cleaned off and the bellows re-weighed. By subtraction, the weight 
of test liquid in the bellows is found.

The bellows transformer arrangement is assembled and the bellows housing 
is screwed on to the coil former until the iron core is at the top end 
of the calibration range. This initial positioning of the core need
not be precise as the exact starting position is immediately defined
by the reference micrometer once circuit balance is achieved. The
four leads of the bellows transformer are soldered on to the pressure 
vessel seal which is then lowered into position and screwed down. The 
pressure vessel is thermostatically controlled and a period of at least 
30 minutes is allowed for thermal equilibrium to be reached.

The first measurement is at atmospheric pressure to define the starting
position of the bellows core. The pressure is then increased in steps 
of approximately 400 bar. After each pressure increment, a period of 
at least 3 minutes is allowed before the pressure chart reading, and 
the reference micrometer reading are recorded. This period is allowed 
for equilibrium to be reached after the heating caused by increasing the 
pressure. Readings are taken for increasing pressure, and then as the 
pressure is decreased by similar intervals back to atmospheric pressure.

At the end of a run the bellows are removed from the pressure vessel 
and are cleaned and dried. They are re—weighed and compared with the 
weight before measurement. This provides a check that liquid has not
leaked from the bellows, or been drawn into it.

In order to calculate the density of a liquid under pressure from the 
measured change in volume the liquid density at atmospheric pressure 
is required. Liquid density is measured in a 25 cm^ density bottle 
by the standard method. The volume of the density bottle was initially
measured using mercury; at 30 C p = 13.5218 g cm (American Institute
of Physics Handbook, 1957).
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6.1.6 Computation of results

To establish the change in volume of the test liquid in the bellows it 
is sufficient to know the position of the bellows core with respect 
to its original starting position at atmospheric pressure. Since the 
effective cross-sectional area of the bellows is known the change in 
volume may be readily found.

In mathematical terms the calculation of density is 

massP = area x 1corr

1 = Ko ~ A1corr b£ws

m a  g g # 9- (bellows movement with respect to P = 0 position)b&ws area x p o

Al = (7.26 1, . + 1.23) x l<r7 x p cm (6.8)b£ws

p = liquid density at pressure P (g cm-3) 
mass = mass of test liquid (g)
area = cross-sectional area of bellows (4.000 cm2)
1 = corrected bellows length (cm)corr &
^b&ws = measured bellows length (cm)
Pq = liquid desntiy at zero gauge pressure (g cm”3)
Al . = correction term due to differential compressibilities (cm)
P = gauge pressure (bar).

A computer program was used to perform the density calculations. The 
input information required is as follows:

1 the mass of test liquid in the bellows,

2 the liquid density at atmospheric pressure, and

3 the reading of pressure from the Foxboro gauge on the high pressure
apparatus along with the corresponding reference micrometer reading.
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The fifth order equation which defines the bellows core position as a 
function of the reference micrometer reading (equation 6.1) is contained 
in the program with the pressure gauge calibration constant 
(14.67 lb/in2 per bar) which converts the pressure readings into bar.

At each pressure the corresponding density, specific volume, and linear 
secant bulk modulus is computed and tabulated. The linear secant bulk 
modulus is approximately linear with pressure for liquids. Thus

PV
K = —— ——— = K + mP (6.10)V - V o o

where Vq equals the specific volume at atmospheric pressure. The subject
of bulk moduli and density-pressure equations is fully discussed in
section 6.3. The constants K and m are computed by a least-squareso
procedure thus giving an equation by which specific volume, or density, 
may be recalculated for a given pressure.

An example of the results computed from measurements on di-(2-ethylhexyl) 
phthalate is produced in Table 9.4. In the table correction terms are 
also shown. The linear secant bulk modulus is evaluated for this liquid 
as

K = 14710 + 4.666 * P. (6.11)

From this the specific volume is recalculated with an r.m.s. error of 
0.0036 cm3 g_1.

The results of all density measurements are in chapter 9.

6.1.7 Error analysis

At a given pressure density is calculated from

______ mass____
 ̂ area x 1corr

By making specific volume V, the inverse of density, the subject of the 
equation and substituting the full expression for icorr volume can be
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stated m  terms of the parameters which are subject to uncertainties

y area
mass

, mass .
(W  x P - B)(l - 3eb) - 0.5 lc (eb - e.)

The overall effect upon V, of uncertainties in the parameters at 
5 kbar is found by substitution of typical values, and then by a 
perturbation upon these values.

area = 4.000 - 0.001 cm2 

mass = 14.000 + 0.0025 g

p = 1.0000 - 0.0004 g cm-^0
B = 0.4 - 0.000 85 cm (bellows movement)

= 2.42 x 10“ 7 - 3% bar” *

e. = 1.98 x i c r 7 + 5% bar-11
1 = 5.588 - 0.0056 cm.c

With no errors, V = 0.851 81 cm3 g”1*

By arranging the errors so that they have a cumulative effect,
V = 0.854 12 cm3 g_1, which corresponds to an error of 0.27 per cent.
The probability that the errors on and are as large as 3 per cent 
and 5 per cent, and that they are in opposite directions is small. The 
uncertainty on the bellows movement, B, is taken as three times the 
r.m.s. error of the recalculated bellows position as a function of 
micrometer reading. The probability of all errors being cumulative is 
small also, and therefore the error of 0.28 per cent is pessimistic. 
Therefore a realistic estimate of the error in specific volume or density 
measurement is ±0.14 per cent at 5 kbar. At pressures of higher than 5 kbar 
the uncertainty will be greater and therefore by the above analysis a 
realistic value for the uncertainty in this region is ±0.25 per cent at 
worst.
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6.2 Equations of Density as a Function of Pressure

It is desirable to describe the behaviour of liquid density under 
pressure in the simplest possible manner, that is, with as few constants 
as possible. In analysing liquid behaviour, for example in applying the 
free-volume concept to describe viscosity under pressure, density is 
required with minimum computation. It is also required for liquid model 
calculations, and to determine the buoyancy corrections applicable to all 
types of falling body viscometers.

The subject of liquid compressibility is a straightforward one which 
has unfortunately been obscured largely due to varying definitions of 
the bulk modulus. Hayward (1967) has presented a comprehensive survey 
of most equations used and has rationalised the subject.

6.2.1 Bulk moduli

Tangent bulk modulus

K = -V § .  (6.12)

The tangent bulk modulus is the inverse of compressibility which is 
defined as the fractional volume change per unit change in pressure

ii Secant bulk modulus

V P
K = — ---- . (6.13)^ V - V o

This may be considered as the average bulk modulus over the range from 
0 to P. The term V is the specific volume at atmospheric pressure
0? = o).
iii ’Mixed1 bulk modulus

K' = - V  |o dv

This is a hybrid between the two previous expressions.
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6.2.2 The linear secant bulk modulus equation

When K, K of K' are plotted as a function of pressure they all are 
practically linear but becoming more curved at higher pressures. In 
terms of ease of calculation, K in equation 6.13 is most easily obtained.

Thus it is possible to obtain the following equation

V P
K = y-?— y = R + roP ' (6.15)

o
and m are constants and may be calculated with comparative ease 

from P-V data. This equation is referred to as the linear secant bulk 
modulus equation.

6.2.3 The Tait equation

This equation is derived from the mixed bulk modulus and is attributable 
to a misinterpretation of Tait’s original expression (1888). The commonly 
used, but erroneous equation is derived from the identity:

K 1 = -V = K + m,P. (6.16)o dV o 1

Unlike the linear secant bulk modulus, the mixed modulus, being a 
tangential gradient, cannot be evaluated directly.

Integrating equation 6.16 yields

V - V -d . p
 C log (6.17)
o

where C = 1/m and B *= K /m,. This is the spurious Tait equation now 1 o 1
commonly used. Due to the non-linear form of equation 6.17 performing 
a least squares fit to obtain B and C is more difficult than finding K_̂  
and m in equation 6.15. This is one disadvantage of the so-called Tait 
equation.

As pointed out by Hayward (1967), the equation propounded by Tait was 

actually the linear secant bulk modulus equation, expressed in reciprocal 
form.

144



6.2.4 Modified secant bulk modulus equation

Tamman (1907) introduced the equation

V = V « + ITT7- <6-18>

This has intuitive appeal due to the physical significance of the 
first constant. As pressure tends towards infinity the specific volume 
of a liquid approaches a constant value asymptotically. This is in
the equation. There are three constants in the equation, but by 
introducing V , the specific volume at zero pressure, any one of the 
constants may be eliminated. Thus by re-arranging equation 6.18 and 
eliminating

V P  V k V
+ (6-19)o

This is in the form of equation 6.15 which therefore illustrates that 
equation 6.18 is an alternative form of the linear secant bulk modulus 
equation.

To facilitate manipulation it is proposed to express equation 6.18 in 
simpler form:

V = a + j - r -  (6.20)k + p

where a = V , b = Ak, and k remains unaltered.

6.2.5 Comparison of the Tait and secant modulus equations

In comparing the usefulness of density equations three main factors 
should be considered:

i The accuracy with which density or specific volume can be 
calculated from the equation - the primary objective.

ii The number of constants should be minimal for ease of derivation 
and reclaculation provided that this is compatible with (i).

iii The constants should, if possible, have physical significance.
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The constants oi the Tait equation, and the constants of equation 6.20 
were found by least-squares procedures using a digital computer. The 
three liquids studied are n-pentadecane (PSU 532), 9 (2-phenylethyl) 
heptadecane (PSU 87), for which data were obtained from the measurements 
of Cutler et al. (1958), and di(2-ethylhexyl) phthalate from the data 
for the 1953 ASME Report.

Table 6.2 

Pressure-density equation constants

Liquid Temp

(°C)

1 Tait Eqn 2 Lin.Sec.Eqn 3 Modified Eqn Vo

(cm3 g_1)B C K0 m a b k

PSU 532 37.8 978.7 0.2058 11 420 4.4057 1.022 778 2592 1.3224
60.0 874.9 0.2058 10 508 4.2321 1.031 792 2483 1.3499
79.4 762.3 0.2058 9 745 3.8715 1.018 894 2517 1.3751
98.9 678.3 0.2058 9 702 3.5000 0.996 1110 2772 1.4015

115.0 607.8 0.2058 9 521 3.3013 0.986 1246 2884 1.4263
135.0 533.6 0.2058 9 124 3.1550 0.982 1336 2892 1.4575

PSU 87 37.8 1313 0.2058 16 565 3.9496 0.8836 1258 4194 1.1847
60.0 1168 0.2058 15 829 3.6813 0.8750 1408 4300 1.2054
79.4 1037 0.2058 15 645 3.4092 0.8597 1648 4589 1.2243
98.9 933 0.2058 15 124 3.2665 0.8547 1763 4630 1.2438

di(2-eh) 0.0 1573 0.2058 20 242 3.7898 0.7364 1410 5341 1.0005
phthalate 25.0 1521 0.2058 18 671 4.0291 0.7651 1172 4634 1.0190

37.8 1424 0.2058 18 159 3.8463 0.7599 1263 4721 1.0290
98.9 1021 0.2058 16 392 3.2370 0.7389 1688 5064 1.0790

1 Tait equation — ^ C log -
o

V P
2 Linear secant equation -— ~ ^  = Kq + mP

o
b3 Modified secant equation V = a + + p

(6.17)

(6.15)

(6.20)
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A tabulation of the constants for a range of temperatures are produced 
m  Table 6.2. The constants of the linear secant bulk modulus equation 
are also produced, these being calculated from the constants of equation 
6.20. The value of C in the Tait equation is reported by Cutler to be 
0.2058 for a large number of hydrocarbons and. independent of temperature. 
The values of C are reproduced in the table for the three liquids and 
are remarkably constant, none showing any deviation from 0.2058.

Table 6.3

Comparison of r.m.s. errors in specific volume and 
maximum percentage errors for the two equations

Liquid Temp

(°C)

Tait Eqn Lin.Sec. Eqn Pmax
r .m. s. max % r.m.s. max % (bar)

PSU 532 37.8 0.003 -0.04 0.0 -0.0 689
60.0 0.0002 -0.04 0.0004 -0.06 1723
79.4 0.0003 -0.04 0.0010 -0.14 2756
98.9 0.0004 0.09 0.0022 0.37 4479

115.0 0.0004 0.09 0.0032 0.61 5513
135.0 0.0010 0.15 0.0046 0.93 6546

PSU 87 37.8 0.0003 -0.07 0.0007 0.09 4135
60.0 0.0003 -0.05 0.0011 0.24 5513
79.4 0.0013 -0.19 0.0018 0.45 6891
98.9 0.0013 -0.19 0.0024 0.68 8269

di(2-eh) 0.0 0.0017 -0.28 0.0007 0.16 3154
phthalate 25.0 0.0009 0.26 0.0010 -0.25 5254

37.8 0.0005 0.10 0.0008 0.15 6088
98.9 0.0008 -0.17 0.0028 0.63 10 232

The accuracy of the two equations is compared in Table 6.3. The maximum
errors as well as the r.m.s. errors in specific volume are listed. It
is evident from the table that the Tait equation is more accurate than
the modified equation in nearly every case. With both equations the
errors become greater with rising temperature because the pressure
ranges are greater at higher temperatures, as shown in the table by the
P figures. This confirms a previous statement which is that the bulk max
modulus becomes more non-linear at higher pressures.
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On closer examination the Tait equation,

o B + PY C log -— , (6.17)
o

is not consistent with physical behaviour at elevated pressures because 
as pressure tends to infinity, the equation forces V towards a large 
negative quantity. Thus the Tait equation is not physically realistic 
in its prediction of behaviour and should not therefore be used for 
extrapolation.

The modified linear secant bulk modulus equation (Tamman’s equation) 
has constants which do comply with physical behaviour in that the volume 
tends asymptotically to a constant specific volume a (= V ) . This 
equation may therefore be used for extrapolation with more confidence 
than the Tait equation, but this should be done with caution beyond a 
thousand bars or so because of the increasing curvature, although slight, 
of the secant bulk modulus as pressure increases. For an improved fit, 
and hence more reliable prediction, a second or higher order polynomial 
may be used, of the form

K = K + mP + nP2 + ... (6.21)o

In conclusion the linear secant bulk modulus equation is preferable 
because it is accurate (r.m.s. error in specific volume is not greater 
than 0.0046 cm3 g"1 in the data sampled), and it has only two disposable 
constants both of which may be readily found. The equation may also, with 
care, be used for limited extrapolation.
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C H A P T E R  7

HIGH PRESSURE SYSTEMS

7.1 Introduction

In this work three different pressure systems were.used. For preliminary 
work a 1000 bar system was used. A 3000 bar system was also built, and 
measurements at very high pressures were made in apparatus capable of 
200 000 lb in"2 (14 000 bar).

7.2 1000 Bar System

The general arrangement of the system is shown in Fig. 7.1. The pressure 
vessel stands 14 inches high overall and has an effective inner working 
space of 8 by 2 inches diameter. Pressure is transmitted by a hydraulic 
hand pump using aircraft mineral hydraulic oil as the working fluid. The 
vessel sits upon two mild steel stubs which are firmly attached to the 
base of the constant temperature bath. The top seal of the pressure 
vessel can be unscrewed while the vessel is sitting in the tank, thus 
avoiding the considerable inconvenience of removing it in order to undo 
the top seal.

The fluid in the constant temperature bath is Shellsol T (Shell Chemical 
Company). It is an aliphatic hydrocarbon solvent of low vapour pressure 
and is suitable for an open bath. A temperature of 30°C ± 0.1 is main­
tained by a 750 W heater operated by a Sunvic thermal relay with a 
mercury-in-glass contact thermometer. An extra heater is used to raise 
the bath temperature initially.

7.2.1 Closure seals

A drawing in Fig. 7.2 shows the pressure vessel seal and the means whereby 
electrical leads are introduced. The closure screws into the vessel body 
and a seal is effected by an 0-ring which rests on a smooth seat, and is 
held by a circular groove in the closure. The closure has an axial hole
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FIG 7.2 Pressure seals for 1000 bar vessel.
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through which the leads are taken in a brass holder which is sealed by a 
second O-ring as shown. A copper sheathed four lead Pyrotenax thermo­
couple cable is soldered along its entire length into the holder. Both 
ends of the cable are sealed with epoxy resin to prevent moisture or 
pressurising fluid from entering the magnesium oxide insulation.

After connecting the viscometer or densimeter to the leads of the brass 
holder, it is lowered into the pressure vessel. The steel closure is 
then placed over the brass holder and tightened without rotating the 
holder, to avoid damage to the connecting wires.* The holder is then 
raised, keyed by a washer attached to the closure, but before tightening 
the holding nut the pressure transmitting fluid is pumped to displace 
any remaining air in the vessel.

The O-rings, of nitrile rubber, are as follows:

Edwards No Walker No

Pressure vessel VOR 1161 50-228
Brass holder VOR 0212 50-212

*British Standard, BS 1806 (1951). In 1969 a new standard was published,
BS 4518, after all design and manufacture of apparatus had been completed. 
The later 0-ring standard specifications differ from the earlier ones, 
and consequently none of the rings used is now standard, but they are 
still manufactured.

7.2.2 Pressure measurements and calibration

A Bourdon type pressure gauge, graduated at intervals of 50 atmospheres 
from 0 to 2000 atmospheres is used. The gauge was calibrated, and carries 
a National Physical Laboratory certificate. The gauge requires to be 
tailed vigorously before each observation.

•Jf
BS No i.d. Section

2.25 in 0.139 in 
OS 17 0.859 in 0.139 in
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7.3 3000 Bar System

The pressure vessel has an effective working space of 8 by 1^-inch 
diameter. Like the 1000 bar apparatus, pressure is produced by an 
hydraulic hand pump. Steel pressure tubing (0.0625 in bore, 0.25 in o.d.) 
is used throughout and fine control of pressure decrease is effected by 
a release valve.

The vessel is attached to the base of the constant temperature bath thus 
enabling the top seal to be unscrewed in situ. The bath is controlled in 
a similar manner to the 1000 bar constant temperature bath. It has two 
1 kW heaters one of which is regulated by an auto-transformer so that 
the heating period is made roughly equal to the off period; this improves 
stability. The bath is stirred by a motor-driven paddle. As a safety 
measure there is a normally closed thermally-activated switch which 
isolates all heaters in the event of overheating.

7.3.1 Closure seals

The pressure vessel is sealed with a screwed steel closure, the electrical 
connections being through an axial brass holder. As with the 1000 bar 
system the seals are of the grooved 0-ring type. The closure is shown 
by the photograph in Fig. 7.3 where the separate components are clearly 
seen. In this arrangement the thermocouple cable is soldered into the 
lower cylindrical section of the holder which is 2.5 inches long.

The nitrile rubber 0-rings are as follows:

Edwards No Walker No

Pressure vessel VOR 1149 50-224
Brass holder VOR 1130 50-118

7.3.2 Pressure measurement and calibration

Pressure is measured by a Budenberg gauge, graduated at intervals of 50 
atmospheres from 0 to 3000 atmospheres. The gauge was calibrated in the 
laboratory against a deadweight tester which allows pressure to be 
measured to within i5 bar (1 atm ^ 1.013 25 bar, exactly).

i.d. Section

1.75 in 0.139 in
0.875 in 0.103 in
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Table 7.1

Budenberg pressure gauge calibration

Gauge
pressure

atm

Deadweight tester

bar atm

800 793 783
896 893 881
996 993 980

1090 1093 1079
1186 1193 1177
1285 1293 1276
1780 1793 1770
2270 2293 2263

By least-squares analysis the true pressure is given in terms of the 
gauge reading by the following

Actual pressure = gauge x 1.006 - 19.3 atm
= gauge x 1.019 - 19.6 bar

For the above fit the gauge reading was treated as the dependent variable.
The average percentage deviation is 0.18 per cent with a maximum error of
3.3 atm. The linearity is therefore very good over.the range of 
calibration.

7.4 14 000 Bar System

The general arrangement of the high pressure system is shown in Fig. 7.4.
A hand operated pump is used to prime the upper cylinder of a 100:1 ratio

•• 2intensifier. Low pressure up to 2000 lb in ( ~ 140 bar) is generated by 
a motor driven pump, and by means of a control valve the hydraulic fluid
is directed to the intensifier. Thus pressure up to 200 000 ( ~ 14 000 bar)
is obtained at the intensifier output, and transmitted to the pressure 
vessel through a uni-directional check valve. A similar check valve is 
used to isolate the low pressure side. A release valve is fitted in the 
high pressure side to allow fine control of pressure decrease.

The pressure vessel has thick walls to withstand the very high pressure, 
having an outside diameter of 10 inches and an effective working space of
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1.25 inch diameter by 8 inches long. It sits in a cylindrical tank,
containing a silicone fluid (ICI Fluid F 111/20) which is maintained at
30 C i 0.1 C. The pressure transmitting fluid is an equal parts mixture 
of Aeroshell Fluid 4 and petroleum ether.

A full description of the entire system, and the procedure for operating
it is described in the PhD thesis of W G Pursley (1968).

7.4.1 Pressure measurement and calibration
—2Pressure is recorded on a Foxboro chart recorder (0 to 200 000 lb in ) 

which is driven by a 'bulk modulus' cell transducer. It was calibrated 
by a deadweight tester (Budenberg Co Ltd). Unfortunately, the tester 
can be used only for calibration purposes, due to the unavoidable leak 
of pressure transmitting fluid past the top piston. It would have been 
preferable to use a resistance type measuring device such as a manganin 
coil which is capable of higher accuracy, but this was impracticable 
because all the electrical leads from the pressure vessel are required 
for the viscometer or densimeter.

The so-called bulk modulus cell consists of a steel stem, the movement of
which is a function of the applied pressure. The cell stem moves 0.01-inch 
for a pressure of 200 000 lb in"2. This movement by means of a lever and 
bellows system, modulates a compressed air supply, delivering to a 
pneumatic receiver in the chart recorder a pressure of between 
3 and 15 lb in 2 in proportion to the pressure in the high pressure system. 
The circular chart of the recorder is rotated by a clock and is graduated
in steps of 2000 lb in”2 from 0 to 200 000 lb in 2 , and can be read with
an error of not greater than ±400 lb in ( ~ 25 bar). The linearity of 
the response of the pneumatic receiver was checked by applying direct

— A
air pressure of 3 to 15 lb in" and reading the corresponding chart 
pressure. In Fig. 7.5 there is a graph showing the excellent linear 
response of the receiver, from these experimental measurements.
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The chart recorder was calibrated with the deadweight tester to its 
limit of 8 kbar. Due to the slow leak of fluid past the top piston of 
the tester a very slight loss of accuracy is incurred. Calibration 
measurements, at intervals of 500 bar, were plotted on a large scale and 
straight line drawn through all the points, and no point was found to 
deviate by more than the uncertainty in reading the chart recorder. The 
gradient was found by the method of least squares to be 14.67 lb in”2/bar. 
Although it was not possible to calibrate beyond 8 kbar the validity of 
a linear extrapolation to 14 kbar can be safely assumed, because there 
is no systematic deviation from linearity up to 8 kbar, and the linearity 
of the receiver is established over the entire range.

_ 2Pressure = chart pressure (lb in )/14.67 bar (±25 bar).

7.5 Units of Pressure

Many different units of pressure are commonly used, as illustrated by the
equipment described in this chapter: gauges graduated in atmospheres, the

-2chart recorder graduated in lb in , and the deadweight tester with the 
bar unit.

Although the SI and MKS unit of pressure is pascal (Pa = N/m2 = 10 5 bar) 
the practical unit is the bar.

Table 7.2 

Conversion table for pressure

atm kgf/cm2 lbf/in2 bar MN/m2

1 atmosphere = 
1 kgf/cm2 = 
10 lbf/in2 = 
1 bar 
1 MN/m2

1
0.967 841 
0.680 460 
0.986 923 
9.869 23

1.033 23 
1
0.703 070 
1.019 72 
10.1972

14.6959
14.2233
10
14.5038
145.038

1.013 25 0.101 325
0.980 665 0.098 0665
0.689 476 
1 
10

0.068 9476 
0.1 
1

Factors underlined are exact.

In some European countries the kfg/cm2 is called the Technische atmosphare 
(at) which can easily be mistaken for the atmosphere (atm).
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C H A P T E R  8

RESULTS: VISCOSITY UNDER PRESSURE

8.1 Liquids Studied

tri-m-tolyl phosphate
1000 cSt polydimethyl siloxane (MS 200)
bis (m-(m-phenoxy phenoxy)-phenyl)ether (Monsanto OS 138)
castor oil (0311 First) Supplied by Department of Mechanical Engineering,

The Queen's University, Belfast
di-n-butyl phthalate
di-(2-ethylhexyl) phthalate.

8.2 Experimental Results of Viscosity Under Pressure

Measurements of viscosity were made for all the above liquids at 
30.0 ± 0.1°C according to the procedure described in chapter 4. The 
densities of the test liquids at the same temperature and pressures are 
given in the following chapter. Two corrections were applied:

a The correction for the change of sinker and tube dimensions under 
pressure. This correction is applied to the fall time; it increases 
with increase in pressure, and for sinker 1 is about 1 per cent at 3 kbar, 
the maximum pressure used for this sinker. For sinker 2 this correction 
is much less, being about 0.1 per cent at 7 kbar. This correction is 
fully described in section 2.4.2.

b A correction is applied for the change in density of the sinker.
The relative decrease in volume of the mild steel sinker is
3 x 1.98 x 10"7 per bar (c.f. section 2.4.1)> and this corresponds to a
correction of 0.2 per cent at 7 kbar.

Dynamic viscosity is calculated by evaluating the following expression

q  =  K T ( p  j  _  p 2 ) »
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where K = viscometer constant,
T = corrected fall time,
PX = sinker density, corrected for compression, and 
p 2 = liquid density under pressure.

8.2.1 Tri-m-tolyl phosphate

This liquid was measured in the 3 kbar pressure vessel with sinker 1.
At 1.52 kbar the viscosity value is slightly above the calibration range, 
and therefore may be less accurate. The liquid density was estimated by 
J D Isdale (1974) with an error of not greater than 1 2 per cent. 
Experimental density measurements were not made for tri-m-tolyl phosphate 
because it was considered to be less important than the other liquids in 
the programme of study.

The viscosity results are contained in Table 8.1, and plotted in Fig. 8.1.

Table 8.1

Measured Viscosity of Tri-m-tolyl phosphate at 30°C

Gauge pressure Fall time 
T/second

Corrected
T

p x/g cm"3 
compress. 
corrected

p2/g cm"3 n /cP
atm bar

0
500

1000
1500

0
507

1013
1520

448.4
1284
3931

13,466

448.4
1282
3916

13,390

7.823
7.824
7.825
7.826

1.1675
1.186
1.202
1.216

42.1
120.1
366

1250*

K = 0.014 11 (sinker 1) Measurements in 3 kbar apparatus
*Slightly above calibration range

8.2.2 1000 cSt polydimethvl siloxane

Measurements were made in the 3 kbar pressure vessel with sinker 2. 
Two sets of measurements were made on the same sample.
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Table 8.2

Measured viscosity of 1000 cSt siloxane at 30°C

Gauge pressure Fall time 
T/second

Corrected
T

Pl/g cm" 3 
compress, 
corrected

p^g cm"3 n/cPatm bar

0 0 20.95 20.95 7.805 0.965 904.5
200 203 31.0 31.0 7.805 I.OO65 1330
500 507 51.0 51.0 7.806 1.0325 2180
700 709 68.1 68.1 7.807 1.046 2910
900 912 88.0 88.0 7.807 1.059 3750

1300 1317 148.5 148.5 7.808 1.082 6300
1600 1621 213.1 213.0 7.809 1.0975 9020

0 0 20.96 20.96 7.805 0.965 904.9
1000 1013 102.0 102.0 7.807 1.065 4340
1300 1317 148.9 148.9 7.808 1.082 6320
1700 1723 237.1 237.0 7.809 1.102 10000
1140 1155 120.0 120.0 7.808 1.073 5100

K = 6.3119 (sinker 2) Measurements in 3 kbar apparatus

The curve of log r\ as a function of pressure is shown in Fig. 8.2.

8.2.3 Bis (m-(m-phenoxy phenoxy)-phenyl) ether (OS 138)

This liquid has a comparatively high viscosity at atmospheric pressure, 
7951 cP. Measurements were made using sinker 2 in the 3 kbar apparatus. 
The results in Table 8.3 show that at 405 bar the viscosity of the 
sample exceeds the range for which it was practicable to establish 
linearity for this sinker, and therefore the viscosities at this 
pressure and at 507 bar may be less accurate.
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Table 8.3

Measured viscosity of OS 138 at 30°C

Gauge pressure Fall time 
T/second

Corrected
T

p,/g cm-3 
compress, 
corrected

P2/g cm"3 n/cPatm bar

0 0 190.7 190.7 7.805 1.205 7,944
100 101 348 348 7.805 1.211 14,500
180 182 597 597 7.805 1.2155 24,800
200 203 683 683 7.805 1.2165 28,400
300 304 1402 1402 7.806 1.221 58,300
400 405 2982 2982 7.806 1.225 124,000*
500 507 6260 6260 7.806 1.229 260,000*

K = 6.3119 (sinker 2) Measurement in 3 kbar apparatus
■^Measurements outwith range of calibration

Two unusual features are evident in Fig. 8.3 where log r\ is plotted 
as a function of pressure. Firstly, the curve is convex towards the 
pressure axis whereas most liquids are concave. This is attributable 
to entanglement of the comparatively complex OS 138 molecules.
Secondly, the viscosity of this liquid is more sensitive to pressure 
than any of the other liquids measured. For OS 138 viscosity increases 
tenfold during the first 350 bar. For the same increase in viscosity 
di-n-butyl phthalate and 1000 cSt siloxane require pressures of 1750 bar 
and 1620 bar respectively.

8.2.4 Castor oil

Two sets of measurements were made, the first in the 14 kbar pressure 
vessel, the second in the 3 kbar vessel. Both measurements were made 
using sinker 2, and a fresh sample of oil. was used in each case.
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Table 8.4

Measured viscosity of castor oil at 30°C

Gauge pressure Fall time 
T/second

Corrected
T

pi/g cm"3 
compress. 
corrected

P2/g cm-3 n/cP
atm bar

- 0 11.31 11.31 7.805 0.9527 489
- 1300 78.34 78.32 7.808 1.013 3,360
- 2740 461.9 461.7 7.811 1.0515 19,700
- 2730 453.4 453.2 7.811 1.0515 19,300
- 3410 972.0 971.5 7.813 1.067 41,400
- 4040 1960 1959 7.814 1.081 83,200
- 1490 99.2 99.2 7.808 1.0195 4,250

0 0 11.61 11.61 7.805 0.9527 502
200 203 16.39 16.39 7.805 0.968 707
510 516 27.52 27.52 7.806 0.983 1,190
510 516 27.23 27.23 7.806 ' 0.983 1,170
700 709 36.30 36.30 7.807 0.991 1,560

1000 1012 55.68 55.67 . 7.807 1.0025 2,390

K = 6.3119 (sinker 2) First group of measurements in
14 kbar apparatus, second group in 
3 kbar apparatus

Measurements cover the range 500 cP to 83,200 cP, the latter viscosity 
corresponding to a pressure of just over 4 kbar. The variation of 
viscosity with pressure is shown in Fig. 8.4.

8.2.5 Di-n-butyl phthalate

Measurements were made on this liquid using sinker 1 in the 3 kbar 
apparatus, and sinker 2 in the 14 kbar apparatus. The highest pressure 
reached was 7.1 kbar, and the range of viscosity measured is from 13.4 cP 
to 74,950 cP.

170



CASTOR OIL (0311 FIRST)10000

O  SINKER 1 
O  SINKER 2 
a  WILSON (1967)1000

PRESSURE j kbar

100
0 532

FIG 8 .4  Measured viscosity of castor oil at 30° C

171



Table 8.5

Measured viscosity of di-n-butyl phthalate at 30°C

Gauge pressure Fall time 
T/second

Corrected
T

P l / g  cm"3 
compress, 
corrected

P 2/g cm"3 n/cPatm bar

- 0 133.5 133.5 7.823 1.0371 13.36
- 532 285 284 7.824 1.067 28.3- . 1140 673 671 7.826 1.095 66. 6
- 1760 1416 1407 7.827 1.117 139
- 2300 2796 2772 7.828 . 1.133 274

3170 8240 8144 7.830 1.156 802

K - 0.014 748 (sinker 1) Measurements made in 14 kbar
apparatus

Gauge pressure Fall time 
T/second

Corrected
T

p 1/g cm’3 
compress, 
corrected

P2 /g cm"3 n /cP
atm bar

_ 3070 16.5 16.5 7.812 1.153 694
- 4090 51.0 50.95 7.814 1.178 2,130
- 4430 77.5 77.4 7.815 1.185 3,240
- 5070 160 159.8 7.817 1.197 6,680
- 5860 387 386 7.818 1.210 16,100
- 6400 734 733 7.820 1.218 30,500
- 7100 1804 1801 7.821 1.2275 74,950

K = 6.3119 (sinker 2) Measurements made in 14 kbar apparatus

The viscometer tube was replaced due to its being distorted when a 
lifting coil overheated and had to be recalibrated. The new value for 
K was obtained from a two point calibration with this liquid and 
di-(2-ethylhexyl) phthalate. It has already been argued 
(c.f. section 4.8) that a sinker with a proven linear calibration need 
not be recalibrated over its entire viscosity range.

The shape of the log n as a function pressure curve for di-n-butyl 
phthalate, Fig. 8.5, is unusual in that it concaves towards the pressure 
axis but passes through a gentle inflection to become convex at higher 
pressures. This type of behaviour has, however, been reported earlier, 
particularly in the AS ME Report (1957), and by Bridgman (1926).

The curve also shows an overlap of measurements with the two sinkers,
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and it is seen that the agreement is excellent thus giving further 
validity to both these measurements and to the calibration method.

8.2.6 Di-(2-ethylhexyl) phthalate

Measurements on this liquid were made using sinker 1 in the 3 kbar 
pressure vessel and sinker 2 in the 14 kbar vessel, both at 30°C.

Table 8.6

Measured viscosity of di-(2-ethylhexyl) phthalate

Gauge pressure Fall time 
T/second

Corrected
T

Pl/g cm"3 
compress. 
corrected

P2/g cm-0 n/cP
atm bar

0 0 429.6 429.6 7.823 0.976 43.4
200 203 660.4 659.9 7.823 0.989 66.5
400 405 1011 1009.5 7.824 1.000 102
550 557 1361 1358 7.824 1.007 137
800 811 2156 2150 7.825 1.018 216

1000 1013 3143 3131 7.825 1.027 314
1300 1317 5468 5441 7.826 1.037 545
1550 1571 8233 8185 7.827 1.046 819

K = 0.014 748 (sinker 1) Measurements made in 3kbar apparatus

Gauge pressure Fall time 
T/second

Corrected
T

0Pl/g cm" 
compress. 
corrected

0
p2/g cm" Tl/cP

atm bar

2410 68.0 68.0 7.811 1.071 3,495
2940 152.3 152.2 7.812 1.085 7,810
3820 536 535.5 7.814 1.105 27,400
4050 751 750 7.814 1.109 38,400
4770 2100 2097 7.816 1.125 107,000
4850 2310 2307 7.816 1.126 118,000*
5390 5020 5013 7.817 1.136 255,000*

- 5500 5850 5842 7.818 1.138 298,000*

K = 7.6266 (sinker 2) Measurements made in 14 kbar apparatus
*Beyond calibration range

In the second set of measurements with sinker 2, the fall times were 
outwith the range of calibration for this sinker, that is, beyond che 
range for which linearity has been experimentally confirmed. These
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points may therefore be less precise than the rest of the data. The 
shape of the log t) curve as a function of pressure in Fig. 8.6 is 
concave towards the pressure axis.

8.3 Assessment of Accuracy

Viscosity is calculated from the calibration equation

n =  K T ( p :  -  p 2 ) . (2.43)

By the Law of Propagation of Errors, the variance of viscosity is given
by

2
crq = 3K °K +

3n
3T a m2 + 3q

3p i
api2 + Bti

3 p 2 a  p 2 ‘

Therefore cm
2

"crK
2

-f o f
2

o p t
2

Op 9
T) K T _(p 1 “  P2)_ _(P 1 “  P2) .

Variance is the square of one standard deviation, and for a normal 
distribution the standard deviation, a, corresponds to a confidence 
interval of 68.3 per cent, and 2a corresponds to a confidence interval 
of 95.5 per cent. For purposes of error calculation, the uncertainty of 
the variables is entered for one standard deviation, so that for the 
sinker constant, for example, which was shown to be within about i"l per 
cent, a value for aK/K of 0.0068 is the approximate input value. When 
on/n is calculated, it will give the 68.3 per cent confidence interval 
for viscosity, but in quoting a figure for the uncertainty in viscosity 
it is more realistic to use 2 x ari/n«

Fall time is repeatable to within 0.6 per cent for both sinkers, except 
for long fall times. The figure of 0.6 per cent is the worst value 
encountered over nearly all the calibration range, and therefore the 
standard deviation is approximately crT/T = 0.006 * 0.683 = 0.004.

In Chapter 6 it was shown that at 5 kbar the uncertainty in liquid 
density is 0.14 per cent rising to about 0.25 per cent at higher pressures 
The latter, which is the worst possible case, is used. The contribution 
of error due to uncertainty in P2 is therefore
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0.0025/(7.823 - 1.1) 0.000 37, where 1.1 g cm-3 is a typical p2 value.

The sinker density, pj, was ascertained from a cylindrical section of 
soft if on cut from the same stock from which the sinker was made. The 
sample was polished in the same way as the sinkers for minimum surface 
irregularities, its length and diameter measured by a micrometer, and 
its weight was determined by an analytical balance, sensitive to I’O.l mg

mass mp l =  — :- - -  =  — s - .volume it a 1

By the Law of Propagation of Errors

api' 2 am 2 r2a i 
a 2 al"

m a _1 _

0.004
5.9668 + 2 x 0.0005-i 2

0.311
0.001
0.6127

= 0.449 x 10"8 + 1034 x 10"8 + 266 x lo-8

ap i
Therefore ____ = 0.0036 (ie 0.36 per cent).

Pl
Thus api = 0.0282, and the sinker density error contribution is 
0.0282/(7.823 - 1.1) = 0.0042.

By substitution of these separate errors, the variance in viscosity is 
2on = 0.0068 

+0.0042 
+0.00422 
+0.00042 
= 0.000 080

= 0.000 046 (sinker constant)
0.000 016 (fall time)
0.000 017 6 (sinker density)
0.000 000 16 (liquid density)

Therefore on
T5 = 0.009 (ie 0.9 per cent).

This analysis shows that 68.3 per cent of viscosity values calculated 
from equation 2.43 are accurate to within ±0.9 per cent, but it is more 
realistic to use the 95.5 per cent confidence interval giving an accuracy 
of ±1.8 per cent. This accuracy applies to fall times of less than about 
2 hours. There is no reason to question the continued linearity o_ 
calibration, but extrapolation does increase the possibility of larger
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error, and where long fall times are encountered there is poorer 
repeatability. It is not possible to quantify these errors, but they 
are estimated to be less than twice the probable error, that is, less 
than ±3.6 per cent.

The above analysis does not include uncertainties being introduced by 
the correction factor which is applied to the fall time to allow for 
dimensional changes under pressure since these are very small. This 
factor, derived in section 2.4 is negligible for sinker 2, and a 
maximum of 1 per cent for sinker 1 at 3 kbar which is the maximum 
pressure used with this sinker, and can be calculated with high accuracy. 
This is because the errors in sinker and tube dimensions are extremely 
small, even although the value of e may not be well defined. For example,
the radius of the brass tube b at 3 kbar is given by

b = bp=Q(l - e)

= 0.31525 (1 - 2.42 x 10'7 x 3000)

= 0.315 021 1 cm.

When a +5 per cent uncertainty is placed upon e, the b value is
0.315 009 7 cm, and therefore the uncertainty in b is only 0.004 per cent.
Calculation showed that the resultant uncertainty in the correction 
factor is less than 0.1 per cent, and the analysis is not given here 
because it is comparatively complicated, and only shows what is 
intuitively obvious.

In summary, the measurements of viscosity have a probable error of up 
to ±1.8 per cent. This calculation takes into account errors due to 
Uncertainties in calibration, fall time measurement, liquid and sinker 
densities, and correction factor; it is therefore the assessment of 
performance of this viscometer under pressure, using unguided sinkers.

8.3.1 The effect of pressure and temperature measurement upon
viscosi ty

Since viscosity is a property which is sensitive to changes in both 
pressure and temperature, accurate viscosities must be associated with 
accurate values of pressure and temperature if the combined data is to 
be classed as accurate.
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a Pressure

With the exception of OS 138, the viscosity of the liquids studied varies
by up to 0.2 per cent per bar. The effect on OS 138 is 0.6 per cent per
bar. Pressure is measured to within 1”3 per cent absolute in the 3 kbar 
vessel, and therefore the maximum error is 0.6 per cent for most of the 
liquids studied, and 1.8 per cent for OS 138.

In the case of the 14 kbar vessel the uncertainty in absolute pressure
measurement is as high as 25 bar, with a proportionally adverse effect
upon viscosity. Pressure measurement in this vessel to within "ts bar 
has been achieved using a manganin gauge, Pursley (1968), but it was not 
possible to use this type of transducer because the four electrical leads 
into the pressure chamber were required for the viscometer.

b Temperature

The effect of temperature upon the viscosity of a liquid is quite well 
represented by the equation

1 *" i B"In n .= A + T
o

For di-(2-ethylhexyl) phthalate Ay = -9.421, B / = 1305 K, T^ = 150.6 K, 
Barlow, Lamb, and Matheson (1966). The temperatures of the constant 
temperature baths were monitored with mercury-in-glass thermometers, 
calibrated to the specification of BS 593, or ASTM E77-70, and therefore 
accurate to within i"0.05OC. The baths were controlled at a mean absolute 
temperature of 30.0 ± 0.05°C, but with a temperature fluctuation of up to 
±0.1°C. Due to the high thermal inertia of the thick-walled pressure 
vessels this fluctuation is smoothed, and the temperature of test fluid 
did not depart by more than i'0.02 C from the absolute value of

+ o30 ± 0.05°C. Thus the maximum possible error in temperature is -0.07 C, 
but the probable error is somewhat less than this, say ^0.05 C. Hence it 
is easily shown that di-(2-ethylhexyl) phthalate viscosity varies by no 
more than 0.27 per cent. The effect of temperature on viscosity is more 
pronounced as pressure increases, and from ASME (1953) data on 
di-(2-ethylhexy1) phthalate where several isotherms are reported, it can 
be shown that at 4 kbar the effect on viscosity of a 0.05 C temperature 
excursion is 0.60 per cent.
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For the other five liquids of this study there are less data for viscosity 
as a function of temperature and pressure, and an approximate assessment 
of error must be made. The data of Barlow et al. (1966) show that for 
many different liquids an uncertainty of i"0.05 C at atmospheric pressure 
would cause a change in viscosity of less than 0.25 per cent. The 
limited data at pressure suggest that the uncertainty in viscosity of the 
liquids studied will be similar to that calculated for di-(2-ethylhexyl) 
phthalate.

8.4 Comparison with Published Data

Data on the viscosity of liquids at pressures greater than 1 kbar are 
still scarce when compared with the prolific data to be found for liquid 
viscosity as a function of temperature, at atmospheric pressure. Two 
sources of data stand out because of the quality and the quantity of the 
work. Bridgman (1926) produced viscosity data up to 12 kbar at 30°F and 
75°F for 43 pure liquids, and in the ASME report (1953) there are data 
on 44 liquids over a wider temperature range to 10 kbar. The accuracy 
of these data is high, and both use the falling body viscometer.

Of the liquids measured in this study, the viscosities of di-(2-ethylhexyl) 
phthalate, 1000 cSt siloxane and castor oil, have previously been determined 
under pressure.

8.4.1 Tri-m-tolylphosphate

The viscosity of this liquid when measured at atmospheric pressure using 
sinker 1 was found to be 42.1 cP. This is 0.24 per cent higher than the 
value found by Erginsav (1969).

8.4.2 1000 cSt polydimethyl siloxane

This siloxane was one of the three liquids used to calibrate sinker 2, 
and therefore the value calculated from fall time measurement is a 
measure of the quality of calibration. The difference from the 
suspended-level viscosity value is +0.35 per cent. After a series of 
measurements were made up to 1.6 kbar, a repeat measurement was made at
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atmospheric pressure: the value was 904.9 compared with 904.5 cP.

The viscosity of Dow Corning DC 200 of 1000 cSt nominal viscosity at 
25°C has been measured by Boelhouwer & Toneman (1957) at 30°C, at 
pressures up to 1.2 kbar. The method used was the unguided falling 
needle viscometer. A viscosity of 880 cP at atmospheric pressure was 
reported. Their results under pressure are consistently lower by about 
3 per cent, which means although the agreement in absolute terms is only 
moderate, there is very good agreement in terms of the relative effect of 
pressure. The discrepancy in absolute values is probably due to the 
liquid samples being from different suppliers.

8.4.3 Bis(m-(m-phenoxy phenoxy)-phenyl) ether (OS 138)

This is a very viscous liquid having a viscosity of about 8000 cP at 30°C, 
at atmospheric pressure. No other viscosity-pressure data are known to 
exist, and at atmospheric pressure the data of Erginsav (1969) and Cochrane 
and Harrison (1972) are not at 30°C. Extrapolation of their data is 
inadvisable because OS 138 is so sensitive to temperature, that large errors 
are likely.

8.4.4 Castor oil

The oil sample was supplied by Dr W R D Wilson of the Department of 
Mechanical Engineering, the Queen's University of Belfast. Dr Wilson 
made measurements up to 12 kbar on this oil with his novel flat plate 
viscometer, at temperatures of 25.1, 44.5, 69.2, and 91.0 C. The oil 
supplied by the Castrol Oil Co is designated '0311 First Castor Oil .

In his thesis (1967), Wilson gives preliminary results for this oil m  
graphical form on a logarithmic scale of viscosity. In order to compare 
his results with this work, his viscosity values were taken at 1 kbar 
intervals from the graph and tabulated. These were then re-plotted as 
a function of temperature in order to find the 30°C isotherm values by 
interpolation.
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Table 8.7

Viscosity of castor oil from Wilson1s Graph

Press
(kbar)

Viscosity/cP Interpolated JBI
Diff %

25.1°C 44.5°C 69.2°C 91.0°C 30° C 30°C

0 796 210 49.0 21.9 560 489 14.5
1 3,800 915 170 64.5 2,700 2,380 13.4
2 13,500 2,900 485 160 9,100 8,100 12.3
3 35,500 7,900 1250 356 24,000 26,100 - 8.0
4 96,000 19,800 2900 740 63,000 80,000 -21.3
5 330,000 46,500 6300 1450 190,000 - -

5.5 700,000 71,000 9200 1950 365,000 - -

The error introduced in the graphical interpretation of Wilson's data is 
estimated to be within 1"2.5 per cent. The agreement between this work 
and that of Wilson is poor; the errors vary from +14.5 per cent at 
atmospheric pressure, to -21.3 per cent at 4 kbar. The errors are 
systematic as shown in Fig. 8.4, and in Table 8.7.

Two separate samples of castor oil were obtained from Belfast 6 months 
apart, and the kinematic viscosity of each was measured by suspended- 
level viscometer at 30.0 ± 0.1°C. Different viscometers were used on 
each occasion, the viscometers being NPL calibrated with an accuracy of 
*0.5 per cent. The density of the first sample was measured in a 10 ml 
density bottle, and the. second in a 25 ml bottle, and a value of 
0.9527 g cm”  ̂ was obtained in each case. Density was used to convert to 
dynamic viscosity and the values are 490.5 cP and 491.8 cP (diff — 0.26 per 
cent). The difference between these viscosity values and that of Wilson 
at atmospheric pressure strongly suggest inaccuracy in the latter, 
although Wilson states that his value is in excellent agreement with 
results obtained by Castrol Ltd using more conventional techniques.

The flat plate viscometer developed by Wilson is novel, and the results 
obtained by it are described as preliminary. No assessment of accuracy 
is given for the viscosity data reported. In comparing his absolute 
values with the values obtained by this falling body viscometer 
(relative method), the conclusion can be drawn that errors of 17 per cent
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or more may be encountered with the plate viscometer, even allowing for 
a *4 per cent error in the falling body measurements.

Since castor oil is a vegetable product, its quality and therefore its 
properties vary, and it is not possible to compare the results of this 
work with results obtained from measurements on a different stock. For 
example Hersey and Shore (1928) made measurements of viscosity under 
pressure using two different castor oil samples. At atmospheric 
pressure the first had a viscosity of about 740 cP at 22°G, the second a 
viscosity of about 600 cP at 25°C.

A different sample of castor oil, designated 'Castrol III Press’, was 
purchased direct from the Castrol Oil Co. Its viscosity was measured 
at 30°C and found to be 604 cP which is also markedly higher than the
490.5 cP of the Belfast sample.

8.4.5 Di-n-butyl phthalate

No viscosity-pressure data for this liquid were found in the literature. 
The atmospheric pressure viscosity of 13.36 cP is in good agreement with 
the value of 13.43 cP of Barlow, Lamb, and Matheson (1966).

8.4.6 Di-(2-ethylhexyl) phthalate

The data published in the ASME Report (1953) at 32, 77, and 100°F were 
carefully interpolated graphically to produce viscosities at 30 C which 
are compared with the measured viscosities in the following table.

The interpolated values are estimated to be within T̂3 per cent. The 
agreement between the results is very satisfactory; the r.m.s. difference 
is 2.6 per cent and only two of the differences are greater than 3 per
cent. The measured values are also in good agreement with those of
Galvin, Naylor, and Wilson (1963-64), obtained at 30 C and at pressures 
up to 1.03 kbar.

The measured results, the ASME interpolated results, and the values of
Galvin et al can be seen in Fig. 8.6. ,
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Table 8.8

Comparison of viscosity data for 
di-(2-ethylhexyl) phthalate

Pressure
bar

Measured
P

ASME
P diff %

0 0.434 0.441 1.6
203 0.665 0.665 0.0
405 1.02 0.992 -2.8
557 1.37 1.33 -2.9
811 2.16 2.15 -0.5

1013 3.14 3.11 -1.0
1317 5.45 5.36 -1.7
1571 8.19 8.29 1.2
2410 34.95 32.8 -6.2
2940 78.1 74.3 -4.9
3820 274 273 -0.4
4050 384 381 -0.8
4770 1070 1050 -1.9
4850 1180 1180 0.0
5390 2550 2490 -2.4
5500 2980 2900 -2.7

8.5 The Double Exponential Equation

Up to pressures of 1 kbar or so it is common practice to assume that 
log viscosity is a linear function of pressure; this is usually a 
reasonable assumption. However at pressures in excess of this the 
behaviour of viscosity on a logarithmic scale may be concave towards 
the pressure axis, convex, or both. An example of each type may be 
seen in Fig. 8.7 where all six liquids measured are drawn on one graph. 
Castor oil is concave, tri-m-tolyl phosphate is convex, and di-n-butyl 
phthalate is initially concave before passing through a gentle inflection 
to become convex.
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Several different descriptive equations, mostly empirical or at best 
semi- theoretical, have been proposed. Perhaps the best of these is that 
of Roelands (1966), whose one parameter equation is very effective in 
that it can represent concave or convex curvature, or a straight line.
It cannot, however, cope with a curve passing from concave to convex.

The equation proposed here describes all three types of behaviour almost 
to within experimental error

. . BP -DPIn n = Ae - Ce (8.1)

where P is the gauge pressure, and A, B, C, and D are constants at a 
given temperature. By imposing the condition that at P = 0, n = T1o t*ie 
number of disposable constants is reduced to three. The equation is 
unequivocally empirical.

The method of optimization of equation 8.1, its derivation, and its 
wider applications, are described more fully in chapter 10.

8.5.1 Fitted data

The viscosity data at 30°C of OS 138, di-n-butyl phthalate, and 
di-(2-ethylhexyl) phthalate were fitted to equation 8.1. There are 
insufficient data to fit tri-m-tolyl phosphate and 1000 cSt siloxane.

Table 8.9

The constants of the double exponential equation 
for three liquids

A B/kbar C D/kbar

OS 138
di-n-butyl phthalate 
di-(2-eh) phthalate

4.5992
2.8095
6.0029

1.150
0.1396
0.0929

0.2242
4.8314
6.8381

0.321
0.2282
0.2229

A close examination of the accuracy of fit of the double exponential 
may be obtained from Table 8.10 where the errors for each liquid are 
shown. The fits for di-n- and di(2-ethylhexyl) phthalates are excellent
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with r.m.s. errors of 2.3 per cent and 2.2 per cent respectively, and a 
maximum error of -5.1 per cent. Thus the equation describes the 
variation of viscosity over four orders of magnitude for both of these 
liquids almost to within experimental accuracy.

The fit for OS 138 is poorer due to the limited amount of data (to 
0.5 kbar), and in Fig. 8.7 it can be seen how rapidly the log q curve 
rises in comparison with the other liquids. The combination of the 
limited range, steep curve, and only 7 data points from which to find 
three constants produces a poor fit to the data. The problem of fitting 
double exponential type equations has been previously encountered in the 
analysis of isotope decay measurement, and a warning of the equation 
being extremely ill-conditioned is mentioned by Acton (1970). Provided, 
however, that the uncertainties in the data are not too great, and that 
a sufficient spread of data are used, then good fits can be achieved for 
log q -pressure data.

Table 8.10

Double exponential fit for experimental data

OS 138

Press/kbar n /Pmeas n calc/P Diff 7o

0 79.44 79.44 0
0.101 145 141 - 2.8
0.182 248 235 - 5.3
0.203 284 270 - 4.9
0.304 583 556 - 4.6
0.405 1240 1250 0.8
0.507 2600 3130 20.4

187



Table 8.10 (Contd)
di-n-butyl phthalate

Press/kbar n /Pmeas n calc/P Diff %

0 0.1336 0.1324 -0.9
0.532 0.283 0.286 0.9
1.14 0. 666 0.650 -2.4
1.76 1.39 1.43 3.0 .
2.30 2.74 2.76 0.7
3.17 8.02 7.61 -5.1
3.07 6.94 6.79 -2.2
4.09 21.3 21.6 1.4
4.43 32.4 31.7 -2.2
5.07 66.8 65.5 -1.9
5.86 161.0 164.0 1.7
6.40 305.0 312.2 2.4
7.10 749.5 745.4 -0.6

di-(2-ethylhexyl) phthalate

Press/kbar ri /P meas n calc/P Diff 7o

0 0.434 0.434 0.0
0.203 0.665 0.658 -1.1
0.405 1.02 0.985 -3.4
0.557 1.37 1.33 -2.9
0.811 2.16 2.15 -0.5
1.013 3.14 3.13 -0.3
1.317 5.45 5.40 -0.9
1.571 8.19 . 8.40 2.6
2.410 34.95 33.6 -3.9
2.940 78.1 76.5 -2.0
3.820 274.0 282.0 2.9
4.050 384.0 393.0 2.3
4.770 1070.0 1084.0 1.3
4.850 1180.0 1212.0 2.7
5.390 2550.0 2560.0 0.4
5.500 2980.0 2979.0 0.0
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C H A P T E R  9

RESULTS: DENSITY UNDER PRESSURE

9.1 Introduction

The main application m  this work on liquid densities under pressure is 
to apply corrections for buoyancy in the viscosity measurements. For 
this purpose high accuracy is not required since the liquid density 
appears with the sinker density and the latter predominates, so that the 
effect of any error in liquid density under pressure is diminished by a 
factor of approximately six.

The experimental procedure is described in section 6.1.5.

9.2 Liquids Studied

Measurements were made at 25°C on di-(2-ethylhexyl) phthalate to allow a 
direct comparison with the results reported in the ASME Report (1953). 
Subsequent measurements of density were all made at 30°C. The liquids 
measured were distilled water, di-n-butyl phthalate, and a polydimethyl 
siloxane (MS 200 series) of nominal viscosity 1000 cSt at 25°C. A sample 
of castor oil from the Department of Mechanical Engineering, the Queen’s 
University of Belfast was measured; it is designated ’0311 First castor 
oil1. The density of bis(m-(m-phenoxy phenoxy)phenyl) ether, known as 
OS 138, was also measured as a part of the study on the viscoelastic 
properties with pressure carried out by Barlow, Harrison, Irving, Kim,
Lamb, and Pursley (1972).

9.3 Density Measurements at Atmospheric Pressure

* Densities were measured using a 25 cm^ density bottle which was calibrated 
st 30 C with mercury according to the procedure described in section 6.1.5. 
For the one measurement at 25°C a correction term to account for the 
thermal contraction of the density bottle was applied.
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Table 9.1

Measured arid literature density values at atmospheric

Liquid Temperature
(°C)

Density (g cm”3)

Measured Literature

di-(2-eh)phthalate 25 0.9794 0.981* 0.977b
di- (2-eh)phthalate 30 0.9760 0.974b
water 30 *- 0.9957C,f
di-n-butyl phthalate 30 1.0371 1.035b 1.042d
1000 cSt silicone 30 - 0.9658
Castor oil (0311 First) 30 0.9527 -•
OS-138 30 1.2049 -

a ASME Report (Vol. II)
b Barlow, Lamb and Matheson (1966)
c Engineering Sciences Data Unit, ESDU (1968)
d Bridgman (1931) (by interpolation)
e Harrison (1964)
f National Engineering Laboratory (NEL) Steam Tables (1964).

Measured values and literature values are compared in Table 9.1. The
agreement is considered satisfactory except for Bridgman's value for 
di-n-butyl phthalate which appears to be 0.5 per cent high.

Several other liquids covering a wide viscosity range were used for 
calibrating the viscometer at atmospheric pressure. It is appropriate 
to list the density values in this section. The densities are in 
Table 9.2.

192



Table 9.2

Density of calibration liquids at 30°C

Liquid
Density (g cm-3)

Measured Harrison (1964)
2 cSt silicone 0.8716
5 cSt silicone 0.9018

10 cSt silicone 0.9347 0.933
20 cSt silicone 0.9449 0.942

100 cSt silicone 0.9586 0.959
350 cSt silicone 0.964

12 500 cSt silicone 0.968
30 000 cSt silicone 0.9637

100 000 cSt silicone 0.966
LVI 260 mineral oil 0.9407
MVI(N) 170 mineral oil 0.8929 0.895

All the silicones, MS 200, were supplied by Midland Silicones with the 
exception of the 30 000 cSt sample which was obtained from Hopkin and 
Williams. The mineral oils were supplied by Shell Research Ltd,
Thornton Research Centre, Chester.

9.4 Experimental Results of Density Under Pressure

The results were calculated by computer as described in section 6.1.6. 
Measurements on di-(2-ethylhexyl)phthalate at 25 C and water at 30 C 
were made before the program was written and were therefore calculated 
on a desk calculator.

9.4.1 di-(2-ethylhexyl)phthalate at 25 C

The entire calculation showing bellows length and the correction term A1 
are contained in Table 9.3. Two separate tests were made with different 
samples. A leak in the pressure vessel occurred during the second tesu. 
Pressure was released and the leaking top seal tightened without removing
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the densimeter. This resulted in a small change in the bellows position 
at zero gauge pressure from 0.0128 to 0.0244 inch, probably due to 
vibration in securing the pressure vessel seal. Density as a function 
of pressure is shown graphically in Fig. 9.1.

9.4.2 di-(2-ethylhexyl)phthalate at 30°C

The computed results are shown in Table 9.4. In this case only, the 
details of calculation are shown in which bellows position, bellows 
length and correction are tabulated. This was used to verify that each 
step of the program was in agreement with the hand calculation. The 
results for the other liquids are adequately described by an abridged 
table in which pressure, density, specific volume, specific volume 
recalculated by the linear secant bulk modulus equation, and the 
difference are listed. The abridged table is shown for this test in 
Table 9.5.

The two constants of the linear secant bulk modulus equation for 
di-(2-ethylhexyl)phthalate at 30°C are included in Table 9.5. The 
coefficients of the alternative modified secant bulk modulus equation 
(eq 6.20) are calculated from these two constants.

Density up to 6 kbar is plotted in Fig. 9.2. The measurements for both 
increasing and decreasing pressure are seen to fall on a smooth single 
curve. The differences between the measured specific volumes and those 
calculated from the linear bulk modulus equation show systematic errors 
(Table 9.5, column 4) which indicates that for such high pressures the 
secant bulk modulus deviates from a straight line and that it could be 
better represented by a polynomial.

9.4.3 Water at 30°C

For these density measurements a datum measurement was made at atmospheric 
pressure and the system then pressurised to 8.68 kbar. A delay of about 
30 minutes was made to allow thermal equilibrium to be regained before 
taking measurements for downward steps of pressure. The results which 
were calculated by hand are in Table 9.6. The measured density as a
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function of pressure was plotted and is shown in Fig. 9.3.

9.4.4 di-n-butyl phthalate at 30°C

The results of density measurements up to 8.7 kbar are given in Table 9.7 
and are plotted in Fig. 9.4. The root mean square of the differences 
between measured and recalculated volumes'is 0.0010 cm^ g”~̂ . Even for 
this good degree of fit a systematic deviation is evident (Table 9.7) 
which again indicates that a polynomial would represent the secant bulk 
modulus better.

9.4.5 1000 cSt silicone at 30°C

This liquid has a high compressibility, its volume being reduced by 
approximately 17 per cent at 5 kbar. Measurements were discontinued at 
5.44 kbar due to an electrical short circuit so that no results could be 
made while reducing pressure. Preliminary measurements for pressure 
increasing to 2 kbar and reduced in steps to atmospheric fell on a single 
curve and were in excellent agreement with the results reported in 
Table 9.8. Because of the comparatively high compressibility the secant 
bulk modulus is non-linear. The density-pressure curve is in Fig. 9.5.

9.4.6 OS 138 at 30°C

This liquid is comparatively viscous (7951 cP at 30°C) and consequently
greater care was required during filling to ensure that no pockets of 
air remained in the convolutions of the bellows. The results for 
measurements made with increasing pressure up to 6.176 kbar are in 
Table 9.9.

It was found that for pressure excursions greater than about 3 kbar that 
downward pressure measurements did not coincide with those taken with 
increasing pressure. This effect is probably due to a mechanical 
deformation of the bellows caused by the liquid becoming glass-like and 
ceasing to compress as a liquid. This explanation is borne out by the 
fact that successive runs to above 3 kbar showed that bellows displace­
ment curves as a function of pressure were parallel. That this effect
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was not due to contamination was confirmed by weighing the bellows 
containing the OS 138 before and after measurements; no discrepancies 
were found. By making measurements on di-(2-ethylhexyl)phthalate in 
between tests on OS 138 it was shown that the apparatus was working 
satisfactorily and that the effective cross-sectional area had not 
been affected by the behaviour of OS 138 at pressure.

A graph of density as a function of pressure is shown in Fig. 9.6.

The points fall on a smooth curve which flattens to a nearly horizontal
line above 3 kbar unlike any of the other liquids. Examination of the
viscosity behaviour of this liquid indicates that, by extrapolation,
OS 138 has a viscosity of at least 1 0 P at 3 kbar. This means that
the liquid has reached a glass-like or vitrified state in which
molecules are in a closely packed configuration and consequently the
sample is relatively incompressible. The glass transition temperature
of a liquid is conventionally defined as the temperature at which the
viscosity of a liquid is 1013 P at atmospheric pressure. Bondi (1968)
discusses the pressure dependence of T^ and states that for each
temperature T > T there is a pressure P at which a melt will vitrify 8 8 
and states that the vitrification curve seems to be linear over most of
the range. Erginsav (1969) has shown that for this liquid at
atmospheric pressure T =-10°C, and if the vitrification curve is linear

8 # othen it would appear as in Fig. 9.7. This shows that at 10 C P^ could
be as low as 1 kbar.

9.4.7 0311 First castor oil at 30 C

The results for this liquid are listed in Table 9.10. Measurements were 
made for increasing and decreasing pressure with a maximum of 3.272 kbar 
As shown in Fig. 9.8 the scatter of measurements is greater than for 
the other reported liquids, although below 1 kbar the agreement among 
measurements made with increasing and decreasing pressure is excellent.
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9.5 Comparison with Published Data

Sources of data are available on di-(2-ethylhexyl)phthalate> water and 
di-n-butyl phthalate. Reliable data have not been located for 1000 cSt 
silicone, OS 138, and 0311 First castor oil.

9.5.1 di-(2-ethylhexyl)phthaiate

Density values at 25 C are reported m  the ASME Report. They are 
plotted on the same graph as this work in Fig. 9.1. The published data 
are shown by the solid line and agreement with this work is good, the 
maximum difference being 0.003 g cm-3. For a true comparison of the 
agreement under pressure, the ASME data were recalculated with reference 
to an atmospheric density of 0.9794 g cm"1 instead of their value of 
0.981 g cm-3. The density values fall on or below the ASME values.

9.5.2 Water

There are many sources of density data on water particularly in the 
range 0 to 1000 kbar. Within this range measurements have been made to 
within 0.001 per cent as reported in the Engineering Sciences Data Unit 
(ESDU) tables of 1968 which are recommendations based largely on the 
work of Kell and Whalley (1965). Sources of other reliable density data 
below 1 kbar are to be found in a work by Hayward (1971).

These measurements were made with reference to an atmospheric density 
at 30°C of 0.9957 g cm-3 which is the internationally agreed value 
recommended by ESDU and by the National Engineering Laboratory (NEL)
Steam Tables (1964).

In the range 1 to 10 kbar published measurements and recommended values 
are mostly within ±0.2 per cent although reproducibility of i0.3 per cent 
is claimed by Koster and Franck (1969) with an uncertainty of ±1.0 per 
cent. An equation of state by Juza (1966) has uncertainties of up to 
±1.0 per cent at 10 kbar. The recommendations of ESDU are based largely 
on the equation of Juza and his measured values. With these comparatively 
large uncertainties it is surprising that independent measurements which
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include the work of Bridgman (1935) should be within ±0.2 per cent of 
one another. Bridgman’s relative volume measurements are with reference 
to his value of 0.9949 g cm-3 at atmospheric pressure.

In Fig. 9.3 the above-mentioned published data are plotted along with 
the results of this work up to 8.7 kbar. At pressures up to about 2 kbar 
agreement between this work and other published data is excellent. At 
higher pressures the agreement is less good with measurements higher than 
the published data, but nevertheless falling well within the above- 
mentioned uncertainties of ±1.0 per cent. A measurement by Yazgan (1966) 
at approximately 2 kbar which was made on a similar apparatus is also 
slightly higher than the published data.

9.5.3 di-n-butyl phthalate

Bridgman (1931) measured the density of di-n-butyl phthalate up to 12 kbar 
at 0°C, 50°C and 95°C. Values at 30°C were found by careful graphical 
interpolation and these are compared with this work in Fig. 9.4. The 
agreement is very good up to 3 kbar. Between 3 kbar and 6 kbar Bridgman’s 
values are up to 0.3 per cent lower, and from 6 kbar his values are 
higher by 0.48 per cent. The agreement over the comparatively large 
pressure range of 8 kbar is quite satisfactory particularly as the values 
of Bridgman are interpolated.
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Table 9.3

Calculation of density from pressure measurements 
on di-(2-ethylhexyl)phthalate at 25°C

TEST 1 PP=0 0.9794 g cm”3 mass = 14.7393 g

Press. Bellows
position bx,ws ^b&ws A1

1corr
=1, . -A1 liq

P V

(bar) (in) (cm) (cm) (cm) - (g cm” 3) (cm3 g_1)

0 0.0265 0.0 3.7623 0.0 3.7623 0.9794 1.0210
634 0.0694 0.1090 3.6533 0.0018 3.6516 1.0091 0.9910

1360 0.1087 0.2088 3.5535 0.0037 3.5498 1.0380 0.9634
2040 0.1342 0.2736 3.4887 0.0054 3.4833 1.0578 0.9453
2730 0.1580 0.3340 3.4283 0.0071 3.4212 1.0771 0.9284
4090 0.1946 0.4270 3.3353 0.0104 3.3249 1.1082 0.9023
5450 0.2221 0.4968 3.2655 0.0136 3.2519 1.1331 0.8825
6800 0.2430 0.5499 3.2124 0.0167 3.1957 1.1531 0.8673
8040 0.2594 0.5916 3.1707 0.0195 3.1512 1.1693 0.8552

TEST 2 p_,_n = 0.9794 g cm 3 mass = 14.7162 gP—0

Pressure
(bar)

P
(g cm”3)

V
(cm3 g” 1)

Run 1
0 0.9794 1.0210

395 1.0001 0.9999
729 1.0169 0.9833

1400 1.0429 0.9589
1895 1.0581 0.9451

Run 2
0 0.9794 1.0210

4090 1.1089 0.9018
7020 1.1552 0.8656
8070 1.1692 0.8553
3240 1.0915 0.9162
1870 1.0562 0.9468
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Table 9.4

Detailed calculation of specific volume from pressure 
measurements on di-(2-ethylhexyl)phthalate at 30°C

No Press. 

(bar)

Bellows
position

(in)

^b£ws

(cm)

A1

(cm)

1corr
=1.. -A1 liq

V

(cm3 g"1)

1 136 0.0369 3.6584 0.0004 3.6580 1.0144
2 273 0.0472 3.6325 0.0008 3.6317 1.0071
3 409 0.0567 3.6083 0.0011 3.6072 1.0003
4 532 0.0652 3.5865 0.0014 3.5851 0.9942
5 682 0.0742 3.5638 0.0018 3.5619 0.9878
6 818 0.0820 3.5439 0.0022 3.5417 0.9821
7 954 0.0896 3.5246 0.0026 3.5221 0.9767
8 1077 0.0954 3.5098 0.0029 3.5070 0.9725
9 1241 0.1038 3.4886 0.0033 3.4853 0.9665

10 1363 0.1087 3.4761 0.0036 3.4725 0.9630
11 1636 0.1201 3.4471 0.0043 3.4428 0.9547
12 1909 0.1309 3.4198 0.0050 3.4149 0.9470
13 2181 0.1410 3.3940 0.0056 3.3883 0.9396
14 2454 0.1495 3.3725 0.0063 3.3662 0.9335
15 2727 0.1581 3.3507 0.0070 3.3437 0.9273
16 3115 0.1698 3.3209 0.0079 3.3130 0.9187
17 3545 0.1808 3.2931 0.0089 3.2842. 0.9107
18 4070 0.1935 3.2607 0.0101 3.2506 0.9014
19 4772 0.2083 3.2231 0.0118 3.2113 0.8905
20 5433 0.2209 3.1911 0.0133 3.1778 0.8812
21 6040 0.2312 3.1649 0.0146 3.1503 0.8736

22 5862 0.2290 3.1704 0.0142 3.1562 0.8753
23 5303 0.2187 3.1968 0.0130 3.1838 0.8829
24 4635 0.2058 3.2294 0.0114 3.2180 0.8924
25 3954 0.1916 3.2657 0.0099 3.2558 0.9029
26 3204 0.1720 3.3153 0.0081 3.3072 0.9171
27 2249 0.1423 3.3908 0.0058 3.3850 0.9387
28 873 0.0853 3.5356 0.0023 3.5333 0.9798
29 504 0.0628 3.5927 0.0014 3.5913 0.9959
30 0 0.0226 3.6947 0.0000 3.6947 1.0246
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Table 9.5

Measured density of di-(2-ethylhexyl)phthalate at 30°C

Press.
(bar)

P
(g cm” 3)

V
(cm3 g” 1)

Recalc. V 
(cm3 g” 1)

Diff.
(meas-calc)

ATMOS 0.9760 1.0246
136 0.9858 1.0144 1.0155 -0.0011
273 0.9929 1.0071 1.0071 0.0000
409 0.9997 1.0003 0.9994’ 0.0010
532 1.0058 0.9942 0.9929 0.0013
682 1.0124 0.9878 0.9855 0.0022
818 1.0182 0.9821 0.9793 0.0028
954 1.0238 0.9767 0.9736 0.0032

1077 1.0283 0.9725 0.9687 0.0039
1241 1.0346 0.9665 0.9626 0.0039
1363 1.0385 0.9630 0.9583 0.0047
1636 1.0474 0.9547 0.9496 0.0052
1909 1.0560 0.9470 0.9418 0.0052
2181 1.0643 0.9396 0.9348 0.0048
2454 1.0713 0.9335 0.9285 0.0050
2727 1.0785 0.9273 0.9227 0.0045
3115 1.0884 0.9187 0.9154 0.0033
3545 1.0980 0.9107 0.9084 0.0024
4070 1.1094 0.9014 0.9008 0.0006
4772 1.1229 0.8905 0.8924 -0.0018
5433 1.1348 0.8812 0.8856 -0.0044
6040 1.1447 0.8736 0.8803 -0.0067

5862 1.1425 0.8753 0.8818 -0.0065
5303 1.1326 0.8829 0.8869 -0.0040
4635 1.1206 0.8924 0.8939 -0.0015
3954 1.1076 0.9029 0.9024 0.0005
3204 1.0904 0.9171 0.9139 0.0032
2249 1.0653 0.9387 0.9331 0.0056
873 1.0206 0.9798 0.9770 0.0028
504 1.0041 0.9959 0.9943 0.0016

0 0.9760 1.0246 1.0246 0.0000

V P
Linear secant bulk modulus, y ^-y = 14710 + P x 4.666

o

Modified equation (eq 6.20) V - 0.8050 + 3151.8 + p
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Table 9.6

Measured density of water at 30°C

PP=0 " °*9957 8 cm~3 mass = 14.9306 g

Pressure P V
(bar) (g cm"3) (cm3 g-1)

0 0.9957 1.0043
626 1.0216 0.9788

1505 1.0532 0.9495
2245 1.0781 0.9275
3016 1.0993 0.9097
3624 1.1160 0.8960
4226 1.1324 0.8831
4846 1.1466 0.8721
5435 1.1570 0.8643
6098 1.1710 0.8540
7277 1.1943 0.8373
8108 1.2067 0.8287
8680 1.2159 0.8224

Table 9.7

Measured density of di-n-butyl phthalate at 30°C

Press. 
(bar)

P
(g cm-3)

V
(cm3 g"1)

Recalc. V 
(cm3 g-1)

Diff.
(meas-calc)

ATMOS 1.0371 0.9642
273 1.0523 0.9503 0.9504 -0.0001
750 1.0774 0.9281 0.9296 -0.0015

1227 1.0969 0.9117 0.9123 -0.0006
1472 1.1056 0.9045 0.9044 0.0001
2747 1.1450 0.8734 0.8720 0.0014
3647 1.1674 0.8566 0.8552 0.0014
4485 1.1862 0.8430 0.8425 0.0005
5726 1.2090 0.8271 0.8276 -0.0004

5331 1.2025 0.8316 0.9319 -0.0003
4035 1.1766 0.8499 0.8490 0.0009
3252 1.1574 0.8640 0.8621 0.0019
2147 1.1277 0.8867 0.8857 0.0010
1384 1.1027 0.9068 0.9072 -0.0004

5876 1.2110 0.8258 0.8260 -0.0002
7812 1.2386 0.8074 0.8091 -0.0018
8725 1.2467 0.8021 0.8029 -0.0008
6844 1.2227 0.8179 0.8168 0.0010

Linear secant bulk modulus, - ~ y  ~ 17970 + P * 3.916
°_ 1129.9

Modified equation (eq 6.20) V - 0.7180 + 4589.2 + P



Table 9.8

Measured density of 1000 cSt silicone at 30°C

Press. 
(bar)

P
(g cm-3)

V
(cm3 g"1)

Recalc. V 
(cm3 g-1)

Diff.
(meas-calc)

ATMOS 0.9650 1.0363
136 0.9976 1.0024 1.0148 -0.0125
273 1.0136 0.9866 0.9966 -0.0101
409 1.0248 0.9758 0.9810 -0.0052
545 1.0356 0.9657 0.9674 -0.0017
682 1.0444 0.9575 0.9554 0.0020
941 1.0610 0.9425 0.9364 0.0061

1227 1.0776 0.9279 0.9195 0.0084
1500 1.0916 0.9161 0.9064 0.0097
1772 1.1051 0.9049 0.8954 0.0095
2059 1.1169 0.8953 0.8857 0.0096
2345 1.1283 0.8863 0.8774 0.0089
2584 1.1377 0.8790 0.8714 0.0076
2993 1.1518 0.8682 0.8625 0.0056
3408 1.1647 0.8586 0.8550 0.0035
3817 1.1761 0.8502 0.8488 0.0014
4213 1.1873 0.8422 0.8436 -0.0014
4622 1.1983 0.8345 0.8390 -0.0045
5037 1.2076 0.8281 0.8348 -0.0067
5440 1.2161 0.8223 0.8313 -0.0090

V P
Linear secant bulk modulus, ^ y “ 6053 + P x 3.942

o

Modified equation (eq 6.20) V = 0.7734 + 1535.4 + p
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Table 9.9

Measured density of OS 138 at 30°C

Press.
(bar)

P
(g cm-3)

V
(cm3 g_1)

Recalc. V 
(cm3 g_1)

Diff.
(meas-calc)

ATMOS 1.2049 0.8299
136 1.2130 0.8244 0.8244 -0.0001
273 1.2193 0.8202 0.8195 0.0006
409 1.2256 0.8159 0.8151 0.0008
559 1.2311 0.8123 0.8108 0.0015
668 1.2353 0.8095 0.8079 0.0017
927 1.2444 0.8036 0.8018 0.0018

1213 1.2551 0.7967 0.7961 0.0006
1636 1.2681 0.7886 0.7893 -0.0007
1909 1.2752 0.7842 0.7856 -0.0014
1895 1.2756 0.7839 0.7858 -0.0018
2413 1.2875 0.7767 0.7799 -0.0032
2761 1.2943 0.7726 0.7766 -0.0041
3095 1.2980 0.7704 0.7739 -0.0035
3436 1.3011 0.7686 0.7715 -0.0029
3763 1.3030 0.7675 0.7694 -0.0019
4090 1.3051 0.7662 0.7675 -0.0013
4444 1.3068 0.7652 0.7657 -0.0004
4751 1.3080 0.7645 0.7642 0.0003
5078 1.3090 0.7639 0.7628 0.0011
5010 1.3094 0.7637 0.7631 0.0006
5467 1.3115 0.7625 0.7613 0.0012
5842 1.3125 0.7619 0.7600 0.0019
6176 1.3136 0.7613 0.7589 0.0024

Linear secant bulk modulus, v °_ y “ 19410 + P x 8.544
o

Modified equation (eq 6.20) V - 0.7328 + £271 + P
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Table 9,10

Measured density of 0311 First castor oil at 30°C

Press. 

(bar)

P

(g cm-3)

V

(cm3 g_1)

Recalc. V 

(cm3 g_1)

Diff.

(meas-calc)

ATMOS 0.9527 1.0496
259 0.9711 1.0298 1.0320 -0.0022
409 0.9783 1.0222 1.0232 -0.0009
545 0.9840 1.0163 1.0159 0.0003
668 0.9893 1.0108 1.0100 0.0008
954 0.9996 1.0004 0.9977 0.0027

1207 1.0094 0.9907 0.9885 0.0021
1452 1.0194 0.9810 0.9807 0.0003
1772 1.0294 0.9714 0.9718 -0.0004
2195 1.0385 0.9629 0.9629 0.0009
2454 1.0447 0.9572 0.9568 0.0004
2733 1.0514 0.9511 0.9518 - -0.0007
2999 1.0577 0.9455 0.9475 -0.0020
3272 1.0634 0.9404 0.9435 -0.0031

2986 1.0558 0.9471 0.9477 -0.0006
2727 1.0502 0.9522 0.9519 0.0003
2727 1.0506 0.9519 0.9519 -0.0001
2100 1.0345 0.9667 0.9641 0.0026
1431 1.0150 0.9852 0.9813 0.0039
661 0.9895 1.0106 1.0103 0.0003
409 0.9788 1.0216 1.0232 -0.0015

Linear secant bulk modulus, y 3—y 13910 + P x 5.640
o

Modified equation (eq 6.20) V - 0.8636 + 2^ 6 + p
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C H A P T E R  10 

EMPIRICAL AND SEMI-THEORETICAL VISCOSITY EQUATIONS

The behaviour of gases and solids is fairly well understood, and 
satisfactory theories exist. In contrast, however, the behaviour 
of the liquid phase is not nearly so well understood, and no precise 
theory has so far been developed. As long ago as 1924, for example, 
Lennard-Jones was able to deduce the force law for various atoms from 
gas viscosity, but since then this has still not been done from 
liquid viscosity data.

Many different theories of liquid viscosity have been proposed, but 
none has been successful in predicting viscosity without introducing 
adjustable parameters. In his paper ’Theories of liquid viscosity’ 
Brush (1962) reviews the position in critical detail. While warning 
against empirical formulae, he does admit that they do fulfil a role 
in that they provide a convenient means for presenting experimental 
data in a form which is useful to others, as well as providing 
physical chemists with profitable employment.

In the absence of adequate fundamental theories, many empirical 
relationships to describe transport and other liquid properties have 
been proposed. Many of these work surprisingly well and some have been 
lent respectability by having been derived theoretically from simple 
models. As such, it is more correct to describe these derivations as 
’semi-theoretical7. Until such time as a proper molecular theory is 
produced, an event viewed with pessimism by Goldstein (1969) and 
others, the only course open for treating liquid viscosity data is to 
employ the best semi-theoretical relationship or empirical equation 
available.

In this chapter the free volume equation is used to describe viscosity 
data as a function of pressure. It is shown to fit data over many 
decades of viscosity accurately, and a new but straightforward 
application of the free volume equation overcomes inconsistencies 
found by earlier workers.
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A completely new empirical equation with three constants is offered in 
Section 10.6. This equation relates viscosity to pressure for all the 
experimental data tested, to within experimental accuracy.

10.1 The Free Volume Theory

"If you knows a better Tole, go to it"
C B Bairnsfather (1915)

The free volume equation has been used to describe liquid viscosity as 
a function of specific volume for many liquids, especially for temperature 
variation in the non-Arrhenius region. The concept of free volume was 
introduced by Batschinski (1913), modified by Macleod (1923), and adopted 
by Doolittle in 1951. The free volume equation that Doolittle proposed 
is

In n = A' + B' (10.1)vf

where A' and B' are constants for a single substance, and vQ/vf at fixed 
pressure is a function of temperature only. Doolittle originally 
defined vQ as the specific volume of liquid extrapolated to absolute 
zero, but he later modified this in 1957. The free volume Vf is the
difference between specific volume v, and v0 .

The free volume equation was later derived by Cohen and Turnbull (1959) 
who related the diffusion constant D in a liquid of notionally hard 
spheres with free volume, and used the Stokes-Einstein inverse relation­
ship between D and dynamic viscosity to produce an equation similar to 
equation (10.1). The mechanism assumed by Cohen and Turnbull is that 
occasionally there is a fluctuation in density which opens up a hole 
within a cage large enough to permit a considerable displacement Oi. the 
molecule contained by it. Such a displacement gives rise to diffusive
motion only if another molecule jumps into the hole before the first can
return to its original position.

It is now generally held that v0 is the limiting specific volume or the 
liquid, that is the volume occupied by a molecule when m  a close-packed 
glasslike condensed phase. It is more than the specific volume of the 
sphere itself since there are always small pockets between spneres when
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they are closely packed, and each sphere has its share of the pockets 
included in v Q .

A paper by Hogenboom, Dixon and Webb in 1967 clearly sets out the 
advances and applications of the free volume equation up to that time, 
with particular emphasis on the effects of pressure. Further advances 
are proposed in this chapter in Sections 10.1.2 et seq.

10.1.1 Free volume and temperature

For most liquids it is found experimentally that, at atmospheric 
pressure, density varies linearly with temperature below the vicinity 
of the boiling point. Thus

When temperature T0 is defined as the temperature corresponding to the 
limiting specific volume v0, Barlow, Lamb and Matheson (1966) showed 
that by combining equations (10.1) and (10.2) the following equation 
is derived by simple algebraic manipulation

where A", B" and T0 are constants. This equation is referred to by 
Barlow et al as the modified free volume equation. The two equations 
(10.1) and (10.3) are precisely equivalent in liquids where density 
is a linear function of temperature. Equation (10.3) is the same as 
the empirical equation found by Vogel (1921), Fulcher (1925), and 
Tamman and Hesse (1926), apparently independently of one another, 
according to Goldstein (1969).

10.1.2 Free volume and pressure

Whereas liquid density at atmospheric pressure is found to vary linearly 
with temperature, under pressure the experimental data show that 
specific volume varies linearly with temperature. Thus

temperature. The linear temperature coefficient of specific volume is

p = pr (l - a(T - 273.2)}. (10.2)

(10.3)

v = vo ^  + " T0)>>
where vQ is the limiting specific volume, and T0 the corresponding

(10.A)

defined as a. Since free volume is v - vQ it follows ^rom the above



relation that vf = vQa(T - T0), and substitution into equation (10.1), 
the free volume equation yields

In q = A' + 7 -f-J To)-, (10.5)

which has exactly the same form as equation (10.3). Here B"' = B ' / a

Thus, by using the linear relationship between specific volume and 
temperature at a given pressure, the modified free volume equation is 
again derived. It is paradoxical that the same type of modified free 
volume equation can be derived by taking either density or specific 
volume as a linear function of temperature.

Equations (10.5) and (10.1) are equivalent when specific volume is a 
linear function of temperature.

10.1.3 The variation of v0 and TQ with pressure

It is proposed here that it is valid to use the free volume equation 
to describe the effect of pressure on viscosity, provided that the 
equation is applied isobarically. This is in contrast to earlier 
workers such as Hogenboom, Dixon and Webb (1967) who applied it as a 
function of pressure along the isotherms. For this proposed application, 
the free volume equation is stated more precisely as

[in r|] = A* + B' —— . (10.1a)p vf

If the linear specific volume relationship v = v0{l + a(T - T0)} is 
applied at a fixed pressure, then the modified free volume equation is 
derived, and this is re-stated more precisely as

[In n]p = A' + (T _-T^ .  (10,5a)

It is of interest to consider how the parameters A , B , B , and in 
particular how vQ and T0 vary with pressure. Examination of specific 
volume as a function of temperature shows a series of straight lines 
whose gradients decrease with pressure as shown in Fig. 10.1. If T0 
remains constant as pressure is increased, then v0 will become less, 
taking values falling on line AB in the figure, implying that v0 is



compressible. On the 
other hand, if v0 is 
incompressible, then 
T0 would assume values 
at the intercepts of 
line AC with the 
volume isobars which 
is not possible, since 
this would produce 
high T0 values at 
elevated pressures.

Thus vQ appears to 
vary with pressure, 
although T0 does not 
necessarily remain 
constant.

v

o

To T

FIG 10*1 Isobaric specific volume as a 
function of temperature

That the limiting specific volume should become less under pressure is a 
realistic supposition. In addition to the argument above, it has been 
suggested by others, including Matheson (1966).

10• 1 • 4 Methods of finding the variation of vn with pressure

At any fixed pressure v0 is constant, and therefore if viscosity and 
density data are available over a range of temperature then v0 can be 
found with A' and B ' by optimization, from equation (10.1a) (the free 
volume equation).

Alternatively, viscosity-temperature data can be fitted to equation (10.5a) 
(the modified free volume equation) to find A', B'" and T0 , along the 
isobars. By using the linear specific volume temperature correlation, 
the value of vG a-t temperature T0 is found by extrapolation, at each
pressure.

Since both equations are equivalent, the method adopted is arbitrary 
except in the case where the precision in specific volume data is poor, 
in which case equation (10.5a) is preferable. Both methods involve

221



considerable effort in the preparation of data because viscosity data 
are usually presented as a function of pressure at a few fixed tempera­
tures, but to apply the free volume equations as proposed here 
requires viscosity as a function of temperature at fixed pressure, and 
therefore the data require to be plotted, smoothed, and values taken 
along isobars of viscosity temperature curves. This is time consuming 
when done accurately.

10.2 Free Volume Calculations

Some data from the ASME Report (1953) were used to test the effective­
ness of the proposed interpretation of the free volume model. The data 
are among the best available since viscosity and density values of 
fairly high accuracy are reported over a wide range of pressure and 
temperature. Smoothed data from the paper by Hogenboom, Webb and 
Dixon (1967) are also used.

10.2.1 Pi-(2-ethylhexyl) phthalate 

a Preparation of data

For this liquid the ASME data are from 32 to 425°F (0 to 218.3°C) up to 
pressures of 145 klb/in2 ('vlO kbar). The isothermal curves of viscosity 
as a function of pressure are shown in Fig. 10.2 where it is seen the 
curves are concave towards the pressure axis, with those at the lower 
temperatures tending towards linearity at higher pressures. Viscosity 
values were taken from this graph at 10 klb/in^ pressure intervals in 
readiness for fitting to the free volume equation. These isobaric 
values of viscosity are plotted as a function of temperature in 
Fig. 10.3 and show that the curves .are roughly parallel to the atmos­
pheric pres sure curve. While not necessary to the procedure of fitting 
data to the free volume equation, this figure is shown in order to obtain 
a better understanding of viscosity-pressure-temperature behaviour.

To find the corresponding density data, the ASME values were plotted on 
a large scale and densities were read from the graph at the same iso 
bars as for viscosity.
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b Fitting data to the free volume equation

The viscosity and density data were fitted, at pressure intervals of 
20 klb/in2, up to 100 klb/in2, to the free volume equation:

[In n]p = A' + B' (10.1a)

The parameters A', B', and v0 were calculated by digital computer 
using an optimization procedure proposed by R Jefferyes (1967) . The 
following table summarises the results.

Table 10.1

The parameters A', B', and v0 of the free volume equation 
for di-(2-ethylhexyl) phthalate

Pressure

klb/in2

No of 
points A ' B ' vo 

cm^ g-*

Max error 
in q

%

0 6 -6.27 0.412 0.952 2.1
20 6 -6.67 0.523 0.907 -2.2

40 6 -6.77 0.563 0.880 -5.6

60 6 -7.08 0.569 0.863 -7.2

80 6 -6.73 0.454 0.855 -8.6

100 3 -6.61 0.382 0.847

Data are fitted from 100 to 425°F to obtain the above parameters. It 
was found that the values from 32 to 100°F do not conform to the free 
volume equation. This small range where free volume does not apply 
is discussed later.

The table shows that A' does vary from pressure to pressure, but only
slightly, and this could be attributable to some extent
uncertainty of the experimental data. The parameter B also
with pressure, first increasing, and then decreasing in a systematic
manner. The limiting specific volume, v0, decreases smoothly with^
increase in pressure which shows that it is compressible
results are promising in that the parameters are shown m  Pr^nc^ le t0
conform to the general model of free volume, and vD

c ^  m  1 c o n s i d e r a t i o n s .  U s i n gcompressible as one would expect from P Y *



the isobaric approach, the errors on recalculation over a range of 
five decades of viscosity are all within +2.1 per cent to -8.6 per 
cent, as shown in Table 10.1. The errors are not systematic.

The free volume equation is strikingly simple in that when viscosity 
is plotted on a logarithmic scale as a function of Vq/v ,̂ a straight 
line should result. The equation is independent of temperature 
because this is accounted for in the specific volume behaviour con­
tained in vf . These results suggest that while A' and B ' are inde­
pendent of temperature, as originally proposed by Doolittle (1951), 
they are not independent of pressure. This is illustrated to advant­
age in Fig. 10.4 where log q is plotted as a function of v0/vf for
the isobars 0, 20, 40, 60, 80 and 100 klb/in2 . A fan of converging
straight lines results. The effect of pressure upon B' (the gradient) 
is clearly seen; the gradient increases with pressure to a maximum at 
40 klb/in2 and then decreases thereafter to 100 klb/in2 .

c Fitting data to the modified free volume equation

The viscosity-temperature data for di- (2-ethylhexyl) phthalate were 
fitted at pressure intervals of 20 klb/in2 to the modified free volume 
equation

"R"'
[In n ] p = A' + (I V  (1°

The results are in the following table, in which v0 is calculated from
the optimised TQ using the linear specific volume relation of
equation (10.4).

226



0 kpsi
20

0001

v0 /„ for di- (2- ethylhexyl) phfhalateFIG 10-A Log as a function ofof

227



Table 10.2

The parameters A', B'", and T0 of the modified 
free volume equation for di-(2-ethylhexyl) phthalate

Pressure

klb/in2

No of 
points A' B"'

K

T■Lo

K

vo 

cm3 g”1

0 7 -6.71 598 202 0.951
20 7 -6.73 888 201 0.906
40 7 -6.79 1175 196 0.880
60 7 -6.88 1411 195 0.865
90 7 -6.84 1655 200 0.854

Data were fitted over the range 100 to 425°F, the same range as 
used for fitting the free volume equation. Parameter B'" varies 
rapidly with pressure, increasing linearly, while A' and T0 are 
virtually constant. The agreement between the v0 values calcu­
lated from TQ and those found from the free volume equation given 
in Table 10.1 is excellent. This is not surprising since the two 
forms of equation are exactly equivalent.

The most significant results is that T0 is found to be constant 
within experimental error for di-(2-ethylhexyl) phthalate, and this 
was established without placing any constraints on A and B .

10.2.2 Di-(2-ethylhexyl) sebacate

Viscosity and specific volume data from the ASME Report were pre 
pared in the same way as for di-(2-ethylhexyl) phthalate, and 
fitted to the free volume equation. The results are tabulated below.



Table 10.3

The .parameters A', B', and vn of the free vcl,,^ ion
for di-(2-ethylhexyl) sebacate

Pressure No of 
points A' B' vo Max error 

in r\ T * io
klb/in2 cm2 g”1 % K

0 5 -6.802 0.603 0.9798 3.3 165
10 5 -6.602 0.540 0.9684 2.3 165
20 5 -6.390 0.485 0.9572 9.7 166
30 5 -6.469 0.519 0.9398 9.2 164
40 5 -6.458 0.531 0.9270 9.6 162
50 5 -6.248 0.490 0.9197 -6.7 166
60 5 -6.209 0.483 0.9103 8.4 167
70 5 -6.554 0.538 0.8989 -6.9 160
90 5 -6.561 0.548 0.8831 -33.4 156

110 4 -6.986 0.620 0.8657 -20.1 147
130 4 -7.777 0.717 0.8518 -12.9 -
150 4 -7.697 0.707 0.8411 I -36.9 -

*Found from vQ by linear extrapolation

All the data were used, unlike the previous case where values below 
100°F were omitted, and this is reflected in the poorer fit shown 
by the maximum errors in the table above. Even so, this constitutes 
a very good fit since the viscosity range covers five decades.

The limiting specific volume decreases smoothly with pressure, while 
A* is essentially constant except at very high pressures, but B 
varies with pressure in a different manner from di- (2-ethylhexyl) 
phthalate. Fig. 10.5 is a graph of log q as a function of v0/vf, and 
the straight lines for each isobar are contained in a narrow spread, 
especially within the range 0 to 90 klb/in2.

It has been shown that equations (10.1a) and (10.5a) are equivalent 
when isobaric specific volume varies linearly with temperatur
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Rather than fit viscosity-temperature data to equation (10.5a) T 
is found in this case by linear extrapolation of specific volume
to find the temperature, TQ , which corresponds to v0 for each iso­
bar. The Tq values are added in the last column of Table 10.3.
Up to 70 klb/in2, T0 is constant at 165 ± 2 K to within accuracy of 
calculation, but above this pressure it decreases to about 147 K.
At these higher pressures it is difficult to assess how much of 
this apparent drop in T0 is real, and how much is due to there 
being less data with which to optimise.

At this point no conclusions will be drawn as to the significance of 
the behaviour of A', B ', v0 (and TQ), but it is worth comparing the 
trends shown by them for the two liquids studied so far. The
variation of vQ for both di-(2-ethylhexyl) phthalate and
di-(2~ethyhexyl) sebacate is similar; it decreases with pressure, 
corresponding to the behaviour one expects intuitively. Under pres­
sure, A ' shows some variation but this is comparatively small, being 
more at zero pressure for the phthalate, but more marked at high 
pressures for the sebacate. The variation of B' differs from one 
liquid to the other. The effect of pressure is less on the sebacate 
as can be seen by comparing Figs 10.4 and 10.5 which are drawn to 
the same scale.

10.2.3 l-cyclopentyl-4(3-cyclopentylpropyl) dodecane 
(ASME liquid No 10)

This liquid is a pure hydrocarbon of high molecular weight, 348.6, 
and the data are from the ASME Report (1953) . Viscosity and specific 
volume data are given from 32 to 400°F (0 to 204.4°C) at pressures 
up to 151 klb/in2 ( y 10 kbar) . For this liquid, viscosity varies by 
less than four decades. Data were prepared as before up to
36.8 klb/in2 , above which there are no further measurements at 32°F. 
The results of fitting the data to the free volume equation follow.



Table 10.4

The parameters A', B', and y„ of the fro.P 
equation for ASME liquid No 10

Pressure No of 
points A' B' VQ

cm3 g“*

Max error 
in r)

%

*
To
Kklb/in2 kbar

0 0 5 -6.173 0.386 .. 1.079 -9.3 196
7.4 0.5 5 -6.561 0.498 1.049 -12.4 183
14.7 1.0 5 -6.959 0.564 1.032 8.8 167
22.1 1.5 5 -7.202 0.626 1.015 -8.7 156
29.4 2.0 5 -7.590 0.717 0.999 9.9 146
36.8 2.5 5 -7.035

....
0.640 0.993 -21.2 159

*Found from vQ by linear extrapolation

The maximum errors in recalculated viscosity occur at the low 
temperature region near 0°C, and had the data at this temperature 
been discarded, an even better fit would have been found. Neverthe­
less, the quality of fit of the free volume equation along these 
isobars is still quite good.

As for the previous two liquids, v0 shows a decrease with pressure, 
and the corresponding temperature T0 is given in the table. In this 
case Tq decreased with temperature; the uncertainty in these T0 
values is about ±5 K.

In Fig. 10.6 log r\ is plotted as a function of v0/vf, and a fan of 
converging straight lines is seen.

10.3 Interpretation of Free Volume Results

Viscosity and specific volume data have been fitted to the free 
volume equation along isobars for three liquids, allowing complete 
freedom in A', B ', and vQ . Other investigators have also applied
free volume to i n t e r p r e t  v i s c o s i t y - p r e s s u r e - t e m p e r a t u r e  data but
have done so by taking data along the isotherms. Among these 
investigators are Dixon and Webb (1962), and later Hogenboom, Webb 
and Dixon (1967) who found that v0 tended to increase with decreasing
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temperature, which is opposite to normal behaviour, and for which no 
explanation could be offered. Matheson (1966) adopted a different 
approach by supposing that v0 is a function of pressure and 
temperature but regarded A' and B' as independent of both.

This new approach does not claim to produce a better fit to the data, . 
but does show that the parameters of the free volume model do vary in 
a physically realistic manner.

10.3.1 Limiting specific volume, vQ

In Fig. 10.7, vG is plotted as a function of pressure for the three 
liquids, and in each case the limiting specific volume decreases, 
rapidly at first and then flattening off at elevated pressures.

In Chapter 6 it was shown that the modified secant modulus equation 
provides an excellent fit to specific volume as a function of 
pressure:

v = a + r-~— , (6.20)1C T p

where a = v , the value to which specific volume tends asymptotically 
as pressure approaches infinity. Data were fitted to this equation 
for di-(2-ethylhexyl) phthalate from 0 to 98.9°C (Table 6.2) and it 
was found that v lies between 0.736 and 0.765 cm3 g""1. When vn is

00 °  U

extrapolated towards infinite pressure in Fig. 10.7, it is seen that 
it agrees fairly well with the v^ predicted from v - T data. This 
suggests that from a physical standpoint both vQ and v^ both tend 
toward a common realistic value, which is the ultimate limit of 
specific volume.

For di-(2-ethylhexyl) sebacate, vro was found by fitting to be between 
0.761 and 0.816 cm3 g”1. This agrees very well with vQ when graphic­
ally extrapolated towards infinite pressure, Fig. 10.7. Specific 
volume data for ASME liquid No 10 were not fitted to the equation 
above, but the vQ values show a similar shape to the other two 
liquids.
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10.3.2 The variation of A 9 and B' with pressure

In his original proposal of the free volume equation Doolittle (1951) 
stated that "A' and B' = constants for a single substance", and that 
at fixed pressure v Q/ v ^ is a function of temperature only. He did 
not specify whether or not vQ itself is constant for a single sub­
stance, but did state that "presumably changes in relative free-space 
(vf/vQ) result from changes in pressure ... but data have not so far 
been obtained that could be used in a similar study of the pressure 
variable". This statement tells us nothing about vQ , because it is 
obvious that Vf is a function of pressure since it contains specific 
volume, v. None of his subsequent papers in the series 'Studies in 
Newtonian Flow' (1952a), (1952b) and (1957) discusses the effects 
of pressure.

In his treatment, Matheson (1966) considered A' and B' as constants 
and allowed v0 to be a function of pressure and temperature, giving 
it the characteristics of a solid. Earlier Dixon-and Webb (1962) 
fitted data to the free volume equation along isotherms, and thus 
considered A', B' and vQ as functions of temperature, and later 
Hogenboom, Webb and Dixon (1967) reported the results of the same 
approach, but did not publish the A' and B' values.

The plots of log q as a function of v /vf are shown for the three 
liquids where the data were fitted along isobars in Figs 10.4 to 
10.6. Although these three liquids are different types, when they 
are plotted on one graph they show a remarkable similarity as seen 
in Fig. 10.8.

With the exception of di-(2-ethylhexyl) phthalate at 100 klb/in2, 
all the lines converge at one point where ri = 1 cP and vQ/vf « 4.
This exception is at the highest pressure where there is only 
limited data; and the line has been extrapolated back by about two 
decades of viscosity so that small errors are amplified.

That the three liquids should have log n versus v0/v^ lines which 
so nearly converge is quite striking, but this pattern could be 
fortuitous. Whether or not this is so, the fact that each family 
does converge immediately allows A' and B' to be readily correlated.
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Before doing so, however, a verification of this behaviour was sought.

Hogenboom et al (1967) have fitted atmospheric pressure data to the 
free volume equation for nine liquids and reported A', B' and vQ 
values. The convergence of the three liquids being studied here 
showed a focal point at q = 1 cP, and vQ/vf « 4. This implies, on 
substitution into the free volume equation that:

In t)q = A' + 4B', (10.6)

where qQ is the reference viscosity which is approximately equal to 
1 cP.

From this equation

n0 = exp (A ' + 4B'). (10.7)

The value of qQ was calculated for each of the liquids in the paper
of Hogenboom et al, using their values of A' and B'. The values of
A', B', and q are in Table 10.5 where it may be seen that the average
value of q is 0.87 cP, with a standard deviation of ±0.09 cP. Thiso
value of 0.87 cP is gratifyingly close to the figure of 1 cP which, 
after all, was an approximate value taken from the graph of Fig. 10.8.
The same procedure was applied to the three liquids using the A' and 
B' values already calculated at various pressures, as well as at
atmospheric pressure to show exactly the variation of q . The results
in Table 10.6 show the phthalate, sebacate, and ASME liquid No 10 to 
have average viscosities of 0.88, 1.08 and 0.97 cP respectively. If 
the 100 klb/in2 isobar of di-(2-ethylhexyl) phthalate qQ is omitted, 
then the average value is increased from 0.88 to 0.94 cP.

These results, therefore, show that to a fairly good first approxi­
mation, many liquids of greatly differing structures all converge 
at about 1 cP for v0/vf = 4, or, in other words, that at 1 cP the 
liquids have about 20 per cent free volume. This generalisation holds 
at high pressures as well as at atmospheric pressure.
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Table 10.6

Test for viscosity convergence at v0/vf = 4 for 
three liquids, along their isobars

Pressure
klb/in2

■A' B' (A' + 4B') n _ (A' + 4B')
V  8

poise

di-(2-ethy! .hexyl) ]5hthalate
0 -6.27 0.412 -4.62 0.010
20 -6.67 0.523 -4.54 0.011
40 -6.77 0.563 -4.52 0.011
60 -7.08 0.569 -4.80 0.008
80 -6.73 0.454 -4.91 0.007

100 -6.61 0.382 -5.08 0.006
0.008g = average

di-(2-ethylhexyl) sebacate
0 -6.80 0.603 -4.39 0.012
10 -6.60 0.540 -4.44 0.012
30 -6.47 0.519 -4.39 0.012
50 -6.25 0.490 -4.29 0.014
70 -6.55 0.538 -4.40 0.012
90 -6.56 0.548 -4.73 0.009

110 -6.99 0.620 -4.51 0.011
130 -7.78 0.717 -4.91 0.007
150 -7.70 0.707 -4.87 0.008

0.010g = average

ASME liquid No 10
0 -6.17 0.386 -4.63 0.010

7.4 -6.56 0.498 -4.57 0.010
14.7 -6.96 0.564 -4.70 0.009
22.1 -7.20 0.626 -4.70 0.009
29.4 -7.59 0.717 -4.72 0.009
36.8 -7.04 0.640 -4.48 0.011

0.009y = average
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10.4 A Tentative Simplification of the Free Volume Equation

In the previous section it was shown that for several different liquids,

Since q = 1 cP to a good approximation, and provided that cPoise units 
are used then equation (10.8) reduces to

10.4.1 A test of the simplified free volume equation at
atmospheric pressure

One set of viscosity-density data (v = 1/p) was chosen at random from 
the paper by Hogenboom et al (1967). Their A', B', and vQ values were 
used to recalculate viscosity, and the results are in Table 10.7 for 
later comparison. The results show an r.m.s. error of 0.25 per cent.

A fit to the new equation (10.9) was carried out. This simplified 
equation has only two disposable parameters, namely B' and v0 . From 
the point of view of optimization, however, the equation is very 
non-linear indeed, and B' and vQ were therefore found by trial and error 
using a pocket calculator. After five iterations an r.m.s. error in 
viscosity of 0.44 per cent was achieved which is almost to within 
experimental error. Results of the calculation are in Table 10.7 
where it is seen that there is a slight systematic error. Further 
calculation would probably reduce the r.m.s. error but this was not 
considered worthwhile.

This result shows that the proposed two-constant simplified free volume 
equation describes viscosity-specific volume data at atmospheric pres­
sure with almost the same accuracy as the three-constant free volume 
equation.

In n = A' + 4B'. 'o
By combining this with the free volume equation, and eliminating A' the 
following relationship is derived

(10.8)

[in q]p - 4 .
J

(10.9)
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Table 10.7

Viscosity data fitted to the simplified free volume 
equation at atmospheric pressure

In q = ■-2.852 ^ 0.6960 x 0.960 In q = 0.7228 0.9553
v - 0.960 [v - 0.9553

Temp n V ^calc Diff vo/vf ^calc Diff

°C cP 3 -1 cm° g 1 cP % cP %

15.56 1.81 1.1539 1.81 1 0.0 4.810 1 .796 0.8
37.78 1.225 1.1787 1.225 0.0 4.276 1 .221 0.4
60.00 0.885 1.2050 0.883 0.3 3.826 0 .882 0.4
79.44 0.698 1.2282 0.697 0.1 3.501 0 .697 0.1
98.89 0.565 1.2523 0.568 -0.5 3.216 0 .567 -0.4

115.00 0.487 1.2737 0.486 0.3 3.000 0 485 0.3

Free volume equation Simplified equation
r.m.s. error in q = 0.25% r.m.s. error in q = 0.44%

trans-octahydroindene, data from Hogenboom et al (1967)

The value of vQ in the free volume equation is 0.960, and in the 
simplified free volume equation it is 0.9553 cm3 g-1, a difference 
of 0.5 per cent. Accuracy to the fourth decimal place is required 
for vQ to maintain precision. The value of B' differs from one 
equation to the other; in the simplified equation it is 3.9 per cent 
higher. It is clear, therefore, that the B' and vQ values obtained 
by fitting data to the free volume equation cannot be applied to the 
simplified equation without sacrificing accuracy.

10.4.2 A test of the simplified free volume equation at pressure

Viscosity-specific volume data at several pressures were fitted to the
equation [in q] = B(vQ/v£ - 4) for three liquids. A program was ?
written to optimise for B and vQ .

The detailed results for di-(2-ethylhexyl) phthalate are in Table 10.8 
and the individual errors are listed as well as the r.m.s. percentage 
error for each isobar. The r.m.s. errors vary from 1.3 to 9.0 per 
cent, the latter occurring at 80 klb/in2 . This constitutes an excel­
lent fit for a two-constant equation, and at 80 klb/in2 the viscosity
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has changed by nearly four decades. The limiting specific volume, vQ , 
decreases with pressure as was found for the free volume equation, and 
B' is also a function of pressure, starting at 0.431 at 0 klb/in2, 
increasing to 0.618 at 80 klb/in2 and then falling to 0.301 at the 
maximum pressure of 100 klb/in2 . These parameters are plotted in 
Fig. 10.9.

It is significant that for each isobar the maximum difference between 
experimental viscosity and the recalculated value occurs at the minimum 
temperature where viscosity is greatest. For example, along the 
60 klb/in2 isobar (r.m.s. error = 8.3  per cent), the maximum error is 
-18.3 per cent at 37.8°C. This error is contributed to mainly by the 
low specific volume which is 0.9022 cm3 g"1, and an uncertainty in this 
value of as little as ±0.0005 cm3 g-1 leads to a relatively large error 
in = v - vQ . In this instance the resulting errors in vf for 
vD = 0.8665 cm3 g-1 is 1.4 per cent, which causes a difference in 
recalculated viscosity of 15 per cent. This is important, because it 
means that where specific volume is low, that is at low temperature and 
at high pressure, any free volume equation is extremely sensitive to 
small errors of as little as 0.05 per cent, and therefore the efficacy 
of this equation cannot be properly assessed without very good quality 
specific volume data.
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0-9
cm g

0-8 di-(2- ethylhexyl ) sebacate 
trans - octahydroindene 
di-(2— ethylhexyl) phthalate
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FIG 10 9 Variation with pressure of vQ  and B1 in equation 
In;; = B 1 (v’o/v'f - 4) .
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The smoothed trans-octahydroindene data of Rogenboom et al (1967) were 
fitted. It should be noted that their values cover a 200°C temperature 
range, at pressures from 0 to 3.6 kbar, and the viscosity varies by 
less than one decade for each isobar. The results are summarised in 
Table 10.9 where values for B' and vQ are given. The r.m.s. errors 
for each isobar are not greater than 2.9 per cent, with an overall 
maximum error of 5.1 per cent. This constitutes an excellent fit.

Table 10.9

Trans-octahydroindene data fitted to 
the simplified free volume equation 

at different pressures

Pressure

kbar

B ' vo
Q -Icm3 g 1

r.m.s. % 
error

0 0.727 0.9555 0.3
0.4 0.748 0.9486 1.6
0.8 0.751 0.9425 1.8
1.2 0.747 0.9372 2.5
1.6 0.750 0.9324 2.8
2.0 0.789 0.9255 2.9
2.4 0.0832 0.9185 2.6
2.8 0.913 0.9101 1.6
3.2 1.048 0.8999 1.6
3.6 1.260 0.8880 2.9

Data from Hogenboom et al (1967)
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Data for di-(2-ethylhexyl) sebacate were also fitted to the simplified 
free volume equation. The values of viscosity change up to four 
decades within the temperature range 0 to 218.3°C, along each isobar 
up to 110 klb/in2 (^7.5 kbar). This is a much more severe test of 
the equation than the previous liquid because it covers such a wide 
range of viscosity, pressure, and temperature. The results are in 
Table 10.10. All the r.m.s. errors are within 10.1 per cent except 
for the 90 klb/in2 isobar.

Table 10.10

Di-(2-ethylhexyl) sebacate data fitted 
to the simplified free volume equation 

at different pressures

Pressure 

klb/in2

B ' vo
3 -1 cmJ g

r.m.s. % 
error

0 0.481 0.9959 6.5
10 0.4915 0.9755 9.8
20 0.544 0.9540 10.1
30 0.604 0.9352 9.5
40 0.666 0.9197 9.4
50 0.648 0.9107 8.4
60 0.634 0.9020 9.6
70 0.634 0.8939 8.3
90 0.644 0.8786 20.1

110 0.660 0.8643 9.3

10.4.3 Conclusions on the effectiveness of the simplified free 
volume equation

The proposed simplified free volume equation is
fv^

[In q] = B'
lvf

- 4 (10.9)

It has two disposable parameters B' and vQ which are functions of 
pressure, and the equation was derived from the observation that 
when log p is plotted as a function of vQ/vf, then a fan of straight 
lines is found which converge approximately at v0/vf = 4, where n « ,1 c?

248



This behaviour was noted for twelve different liquids with atmospheric 
pressure data, and also with pressure data up to 15 kbar for three 
liquids.

When B' and vQ were found by optimization, using trans-octahydroindene 
data the r.m.s. error in recalculated viscosity varied from 0.3 per 
cent for the atmospheric pressure isobar, up to 2.9 per cent for the 
3.6 kbar isobar. Although this is a very good fit, the data do not 
impose a very severe test on the equation because the temperature range 
of 100°C is not large, and having a fairly symmetrical molecular struc­
ture the liquid viscosity is not as sensitive as other more complex 
liquids to variations of pressure.

A more exacting test of the equation was with di-(2-ethylhexyl) phthalate 
data for temperatures from 37.8 to 218.3°C, for pressures up to 10 kbar. 
The equation describes the data well, with r.m.s. errors of 3.5 per cent 
or less for four out of six isobars. The maximum error is -18.3 per 
cent at 60 kbar, but this occurs where an uncertainty of only 
0.0005 cm3 g” 1 in specific volume gives rise to a 15 per cent error in 
viscosity. This shows that the equation requires accurate data where 
V£ (= v - vQ) is small.

Lastly, the equation was tested against di-(2-ethylhexyl) sebacate using 
the available data down to 0°C. The errors are larger, due in part to 
the uncertainty of specific volume data, with r.m.s. errors of about 
10 per cent except at 90 klb/in2 where it is 20 per cent. The fit is 
still considered to be quite good in view of the fact that it covers a 
viscosity range of almost six decades, that is from 0.73 to 630 000 cP.

The effectiveness of the simplified equation is limited, although not 
to a great extent for the three liquids which have been considered, by 
small specific volume errors producing large variations in viscosity. 
These errors occur at high pressure combined with low temperature - less 
than about 35°C for the phthalate, for example. The region where 
viscosities become dangerously inaccurate can be quantified by dif­
ferentiating equation (10.9) to give the identity



If the acceptable limit of viscosity error is set at say 10 per cent 
(ie Ap/n = 0.1), then for Av = 0.0005 cm3 g"1 we have

|fB'v0 0.0005)
. v “ vo = i[ o  ;

thus v - vo = /(0.005B'v q). (10.11)

Both B' and vQ are slowly varying functions of pressure, and for 
di-(2-ethylhexyl) phthalate the average value of B'vQ is 0.44, with a 
standard deviation of ±0.11. But v - vQ equals the free volume, and 
so for this liquid it may be stated that where v^ is less than 
0.047 cm3 g” 1, then errors of 10 per cent or more will be encountered 
for viscosity.

For trans-octahydroindene the Vf minimum value is about 0.06 cm3 g_1,
/ and for the sebacate, it is 0.05 cm3 g”1.

The variation of the parameters v0 and B' with pressure are shown for 
the three liquids in Fig. 10.9. As before v0 decreases with pressure 
asymptotically towards an ultimate specific volume in the same way as 
it was found to vary for the original free volume equation. Therefore 
this isobaric interpretation of the free volume concept not only fits 
the data very well, but also shows that v q behaves in a physically 
realistic manner. The variation of B' shown for the three liquids in 
Fig. 10.9 is smooth, and passes through a maximum for the two phthalates, 
and for the trans-octahydroindene it increases rapidly at higher pres­
sures. The variation of B' with pressure is systematic and too large 
for it to be attributed to experimental errors. Insufficient data are 
presented here to be able to surmise the significance of the behaviour 
of B'. It could be a molecular packing factor which occurs due to an 
overlap of the free volumes of adjacent spheres, or in the context of 
the theory of Cohen and Turnbull (1959) an overlap of the cages which 
they define as being occupied by each molecule. Their free volume is 
defined as the cage volume less the volume of the molecule. That B' 
appears to increase and then decrease could be explained by the cages 
being squeezed closer together under pressure, until the repulsive 
forces between molecules prevent further overlap. The behaviour of B'
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leaves room for further investigation not only to explain it, but also 
to establish the effect upon B' of the range of data used in its 
^derivation.

The simplified free volume equation has been shown to describe data 
almost as well as the free volume equation, and it has two pressure 
dependent parameters as opposed to three. The simplified equation is 
offered as a purely empirical extension of the free volume equation 
which was derived by Cohen and Turnbull using a hard-sphere model.
That such a simple equation as the simplified equation (or the free 
volume equation for that matter) expresses the data to such high 
accuracy is surprising, because the molecules of the liquids tested 
here lack sphericity and any significant symmetry.

10.5 Free Volume - Discussion

It is customary to treat Doolittle’s original free volume equation,
v

In n = a ' + B' — , (10.1)v >

as viscosity on a logarithmic scale as a function of VQ/Vf> which of 
course yields a straight line relationship in the region where it is 
valid. The independent variable is not v0/vf> however, but specific 
volume, v. Equation (10.1) may be expressed more fully as follows

B'v0
In H = A' + ---- — . (10.12)v - v^ o

On rearrangement this becomes

(A' - B') ~ —  vv
In n = -------- ---------. (10.13)

1  "

This is of the form

Y = w^en Y = In n» and X = v, (10.14)

which is the general equation of the rectangular hyperbola. The 
asymptotes of the hyperbola are given by X = -1/R, and Y = Q/R. Thus
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from equation (10.13) it is deduced that when In n is plotted as a
function of specific
volume, v, then the
asymptotes are at
v and at A'. This o
becomes clearer in 
Fig. 10.10. As v 
approaches v q  the 
curve rises steeply 
towards the vo
asymptote so that 
any small deviation 
in specific volume 
results in a rapid
change in viscosity specific volume,*/
which is on a log-
arittoic scale. FIG10-10 The hyperbolic form of the

free volume equation

v-v,

A'

o

The hyperbola is a useful and flexible equation, and it occurs in many 
fields as the proper relationship, although it is often not recognised. 
For example, the modified secant bulk modulus equation used in 
Chapter 6 to relate specific volume and pressure is also a hyperbola. 
Hohmann and Lockart (1972) state that in many instances the hyperbola 
with its three constants can fit data more precisely than a five-constant 
polynomial. It has the additional advantage that the constants often 
have physical meaning.

10.5.1 Comparison with other equations

The relative merits of the free volume model and other types of models 
for describing viscous behaviour have been compared by several workers 
including Hogenboom, Dixon, and Webb (1967), Gubbins and Tham (1969), 
and Hutton (1972). In the context of this thesis, the most important 
models are, briefly:

a The reaction rate model proposed by Glasstone, Laidler, and 
Eyring in 1941 which resulted in an equation of the Arrhenius form

B/Tq = Ae (10.15)
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Although this equation has severe limitations, it is nevertheless 
still useful, mostly at high temperatures.

b The free volume equation of Doolittle (1951) which is adapted
from the earlier models of Batchinski (1913) and Macleod (1923) .
The equation has already been discussed in this chapter.

c The Cohen and Turnbull hard-sphere diffusion model produced
in 1959 yields the following equation

In (q/T2) = A"" + B""/(v - v q ) .  (10.16)

This derivation provided the theoretical justification of Doolittle’s 
empirical equation, since In (T2) in the above equation, where T is 
the absolute temperature, is a slowly varying function compared with 
In q, and may usually be regarded as constant.

d The Eyring and Ree significant-structure theory - Eyring and 
Marchi (1963), Ree, Ree, and Eyring (1964) - produced an equation 
which bears similarities to the previous equations. At atmospheric 
pressure the equation is

In {q(v - v g)/T2} = A + (Bvg/(v - vg)T}. (10.17)

Here v g is the specific volume of the solid phase.

A careful comparison of the effectiveness of the last three equations 
has been made by Hogenboom et al (1967) for nine compounds at atmos­
pheric pressure. It was found that all three equations provide excel­
lent fits to the data. This confirms that no single model is unique 
in accurately describing the data, and is a warning against accepting 
any one hypothetical model as successful simply because it fits the 
data well. This point has been discussed in a definitive paper by 
Brush (1962). Hutton and Phillips (1970) also observed that liquid 
model theories cannot be unequivocally tested using viscosity data.

Each of the equations has its limit of applicability; in particular the 
free volume equation has deficiencies in accounting for Arrhenius 
behaviour in liquids. To overcome this, Macedo and Litovitz (1965) com­
bined the rate theory of Glasstone et at (1941) with the free volume 
theory of Cohen and Turnbull. This quite logical merging of models to 
obtain the virtues of both was not entirely successful and has been
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criticised on theoretical grounds by Brummer (1965), and also by 
Barlow, Lamb, and Matheson (1966), Hogenboom, Webb, and Dixon (1967), 
and Bloomfield (1971) . More recently another equation which combines 
two flow processes has been proposed by Breitling and Magill (1974) . 
Their equation is capable of reducing data for several polymers to a 
single master curve which extends over 16 orders of magnitude.

Many different liquids of varying molecular complexity have been shown 
to exhibit behaviour that can be described by various models. In the 
main, the successes have been in describing the viscosity of liquids 
as a function of temperature. It was noted by Dixon and Webb (1962) 
that it is surprising that the relatively simple free volume equation 
describes data with precision even for complex molecules which lack 
both sphericity and symmetry. The accuracy with which the free volume 
equation describes data has been confirmed here and elsewhere, but 
this is not by any means conclusive evidence that this particular 
hard-sphere model is more correct than all others. That the free volume 
equation in all its simplicity does perform as well for pressure as well 
as temperature variations suggests that it should be maintained as an 
extremely useful tool until significant advances in liquid theory have 
been made to provide a practical and convincing alternative.

One of the strongest critics of the simplistic models' is Goldstein (1969) 
who considers the pursuit of these models misguided. In his view they 
are crude and naive and suggests for the present that investigations 
should be of a qualitative or at best semiquantitative nature until a 
rigorous molecular theory of viscosity can be developed. Of this he 
is pessimistic.

10.5.2 The effect of pressure on vQ

By applying the free volume equation along viscosity isobars it has been 
shown in this chapter that the limiting specific volume, vQ, does behave 
in a physically realistic way, that is, it is compressible. In their 
treatment of pressure data Hogenboom et al showed that the free volume 
equation provides an excellent description of data, but they applied 
the equation to isotherms with the result that v0 was found to decrease 
with increasing temperature in defiance of the expected, and impossible 
to explain in physical terms.
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It is not difficult to understand why this second isothermal treatment 
produces curious effects. This is because it implies that the limiting 
specific volume (the volume in the close-packed state) is not a function 
of pressure, but solely a function of temperature. However, when a 
liquid is subjected to high pressures and to excursions in temperature 
the effects of the former are known to be dominant upon its specific 
volume, simply by examining liquid P-V-T data.

The main argument often used against the free volume approach is that 
the resulting equation predicts that if pressure and temperature are 
increased simultaneously to maintain the specific volume of the liquid 
constant, then it predicts that the viscosity will remain constant, 
whereas it is found experimentally that viscosity decreases under these 
conditions. The argument assumes that v q is independent of pressure 
and temperature. This assumption is incorrect as mentioned above, and 
it is difficult to find its origin in view of several early references 
to v q as not being immune to these external variables. As early as 
1937, for example, Bernal asserted that vQ , the occupied volume in the 
model of Batchinski, ’cannot be considered to be independent of 
temperature and pressure’. He then showed that by allowing vQ to vary 
with pressure and to have the same compressibility as solid lead - no 
solid mercury compressibilities were available then - that Bridgman’s 
mercury viscosity measurements were well described by the Batchinski 
equation up to 12 kbar. Bernal therefore recognised that v q is a 
function of pressure.

In his first paper on free volume, Doolittle (1951) implied that vQ 
could be a function of pressure, and Cohen and Turnbull (1959), in 
their well-known derivation of the free volume equation, suggested 
that for liquid metals the temperature coefficient of v0 is small 
compared with that of the free volume whereas the reverse is true of 
the pressure coefficients. In 1964 Naghizadeh found good agreement 
of the pressure and temperature dependence of the self-diffusion 
coefficients of the rare-gas liquids with the free volume model by 
allowing for the ’softness’ of molecular cores. Jhon, Klotz, and 
Eyring (1969) have discussed the effects of pressure and temperature 
on their significant structure equation which uses vg which is con­
ceptually very similar to vQ , and they considered the compressibility
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of v g and not its thermal expansion because the expansion is negligible. 
The allowance that Matheson (1966) made for the effects of pressure and 
temperature on v q were mentioned in Section 10.3.2. In his approach he 
found that v q increases with temperature and decreases with increasing 
pressure by amounts which correspond with solid behaviour. The import­
ance of core ’softness* when pressure dependence of transport rates is 
interpreted in terms of free volume was mentioned again by Turnbull and 
Cohen in 1970.

Although Hogenboom et al fitted isothermal viscosity-pressure data and 
hence obtained v q as a function of temperature, they also discussed 
other ways of applying the free volume equation. In their paper (1967) 
they modified the Cohen and Turnbull equation to allow vQ to be a 
-function of pressure, and found the variation of v0 with pressure, and

Ialso found that vc has solid-like compressibility. The T 2 term was 
included in the calculation. The fit to the data was comparatively 
poor because they used the atmospheric values of A"" and B""
(equation (10.16)). Hogenboom et al did not pursue this treatment.

In this chapter it has been demonstrated that v0 does vary with pressure 
if viscosity data are fitted along isobars. It shows compressibility 
which agrees with the ultimate specific volume, deduced from P-V-T 
data alone. It has been shown above that other workers in this field 
have recognised the dependence of vQ upon pressure, and to a lesser 
degree upon temperature, but none has used this approach. It is 
emphasised that the agreement of vQ with expected behaviour was obtained 
without placing any restraint on A', B', or vQ during optimization.

10.5.3 The range of applicability of the free volume equation

The modified free volume equation has been used to describe viscosity 
as a function of temperature fairly successfully by many different 
workers. It is not valid to apply this equation in the Arrhenius 
region, that is at higher temperatures. This subject is discussed by 
Davies and Matheson (1966) who also observed that the liquids that do 
show Arrhenius behaviour over the whole liquid range are confined to 
those composed of spherical atoms or molecules which are free to rotate 
in the liquid.
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The free volume theory is gaining acceptance by polymer scientists 
such as Cukierman, Lane, and Uhlmann (1973), and Breitling and 
Magill (1974) . Cukierman et al. found that the range of close des­
cription is from 10“2 to 101* P for simple organic liquids, and also 
noted that the free volume model ceases to provide a useful des­
cription of viscosity for fractional free volumes of smaller than 
about 0.015.

In Section 10.2.1 a limit to the successful description by the free 
volume equation of viscosity-pressure data was found, in the region 
of high pressure and low temperature. For di-(2-ethylhexyl) phthalate 
this meant that the temperature range was 100 to 425°F rather than 
from 32 to 425°F. Larger errors at low temperatures are inevitable with 
the free volume equation, especially at high pressure, for here the 
specific volume, v, and the limiting specific volume, vQ, become 
closer in magnitude and small errors are amplified when the two 
quantities are subtracted to calculate Vf. This was demonstrated 
quantitatively in Section 10.4.3 where it was calculated that when v^ 
is less than 0.047 cm3 g“  ̂ then the error in viscosity is 10 per cent 
for an error in specific volume of only 0.0005 cm3 g-1. This analysis 
is for the simplified free volume equation, but the argument holds for 
the free volume equation also, to a lesser extent. Along the 20 kbar 
isobar the free volume v^ for di-(2-ethylhexyl) phthalate is 
0.05 cm3 g-1 at 32°F; this point was discarded. This shows at 20 kbar 
that v^ is small enough to cause large errors in viscosity; the situ­
ation is worse at the higher isobars.

The free volume equation has been shown in this chapter to describe the 
effect of pressure on viscosity, for viscosity ranges of up to six 
decades. Care has to be exercised in the low temperature, high pressure 
region to avoid errors at small v^ values.

10.6 The Double Exponential Equation

Over the years many empirical viscosity-pressure equations have been 
proposed. Wilson (1967) reviewed the subject. The nine empirical 
equations that he cited are briefly:

Barus (1892) suggested a law of the form

n = n eA(P " Pa). (10.18)
ci
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It is by far the most common approach to use an exponential relation­
ship. In the equation, pa is the viscosity at atmospheric pressure,
P . and A is a constant, a
Kiesskalt (1927a,b) used an alternative form,

n « naB (p ” Pa\  (10.19)

where B is another empirical constant.

Bridgman (1931) suggested

log n = CP + D, (10.20)

where C and D are constants.

Suge (1937) found that the constant A of the Barus equation varied 
exponentially with temperature

b  T0.A = A e o (10.21)

where Aq is the value of the constant at temperature T0 , and E is an 
empirical constant.

Dow, McCartney and Fink (1941) worked on mineral oils and produced the 
equation

n = Fn GP, (10.22)
a

with the two empirical constants F and G.

Hersey and Snyder (1932) used a modified exponential equation to obtain 
a better fit with experimental results.

n = n e (HP -JpK), (10.23)
a

where there are three constants, H, J, and K.

Skinner (1938) and Block (1951) suggested

r) = n (1 - L + M e ^ )  . (10.24)
Si

Cragoe (1933) proposed that viscosity obeys the relationship

n = QeR/S, (10.25)

where Q and R are empirical constants, and S is a function of 
temperature and pressure for a given oil:

S = Sa/{1 + U(P - Pa)}, ■
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where, at constant temperature, S is the value at atmospheric pressure
c l

and U is a constant. Dow (1948) investigated this equation and con­
cluded that U is not constant, but varies with pressure.

Karlson (1926) developed an equation for use in his work on gear 
lubrication

P + W
W

X
, (10.26)

where he gave X a value of 2. In the general form above, the equation 
was used by Blok (1950), Hersey and Lowdenslager (1950), and by 
Hersey and Long (1951).

In addition to these there are several comparatively recent equations, 
such as that of Chu and Cameron (1962),

= {1 + 10a (l - b)no~ (1 ” b)P}n . (10.27)

The empirical equation proposed by Roelands (1966) has only one dis­
posable parameter and holds generally up to 5 kbar and often higher.
It is

Z
log q + 1.2 = (log n + 1.2) 1 +o ' 2000 (10.28)

This equation is more accurate and certainly simpler than most other 
equations. The units for the equation are cP and kgf cm-2. This equation 
like the others, does not hold far beyond the log q-pressure transition, 
that is, where the curve- changes from concave to convex towards the 
pressure abcissa.

The double exponential equation proposed here does permit all the known 
types of viscosity-pressure behaviour to be described almost to within 
experimental accuracy. The equation which is purely empirical is,

In q = AeBP - Ce~D P . (10.29)

In Chapter 8, viscosity results are fitted to this equation satisfactorily



To begin with, data were fitted to the equation using a graphical 
method. As pressure increases the second term becomes insignificant, 
and by plotting log log ri as a function of pressure, A and B can be 
found. If the lower pressure values are subtracted from the 
back-extrapolation of the first straight line to P = 0, then a log 
plot of the difference yields exponent D. This method is a trial 
and error process because the high pressure line is asymptotic and 
the gradient is not well defined, so that different lines have to 
be tried until the low-pressure differences plot is linear. The 
preliminary fits to several liquids provided such good results 
that a computer program was written.

10.6.1 Optimization method

Viscosity data are fitted equally well by a variation of equation (10.29). 
The alternative equation, given below, was used since it simplifies the 
calculation of optimized constants

In (n/no) = A(eBP - e KP). (10.30)

For ease of manipulation let y = In (q/rio), where q is the viscosity 
at zero gauge pressure. Thus

A , BP -KP. .y = A(e - e ). (10.31)

The constants A, B and K cannot be found directly by least squares fit.
It is necessary to give starting values and obtain the constants by 
iteration.

Let the values for optimum fit be A + a, B + 3» and K + y, where A, B 
and K are given starting values, and a, 3> and y are found by optimization, 
The equation can now be written as

y = (A + a){e(B + 3)P - e“ (K + y)P}. (10.32)

By expanding the exponentials, and discarding square or higher terms in 
a, 3 or y the equation becomes

y = (A + a){eBP(l + BP) - e_KP(l - yP)}

« A{eBP(l + BP) - e_KP(1 - yP)} + a(eBP - e-KP) . (10.33)
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The sum of the squares of the differences between the experimental 
values of y and the values calculated by equation (10.33) is there­
fore given by

r BP; -KP
s2 = y  f r i - A{e (1 + ePi> - e (1 - ypi>} _

i=l

BPi -KPi 2
- o(e - e x)] . (10.34)

By differentiating with respect to a, $ and y the following equations 
are obtained.

n
ac2 BP,* -KP,*>>

= 2 y  b i  -  A { . - a ( . . . ) ] ( e  x - e  i; (10.35)
i=1

n
8S2 BPi

}(~Ae * 0  (10.36)
i=l

9S2 -KPi
i y ~ = 2 }<Ae P i> (10.37)

i=l

To minimise errors the differentials given by equations (10.35), (10.36) 
and (10.37) are each equated to zero giving three simultaneous equations 
linear in a, 3 and y. The values of these are found by normal computing 
methods.

The values obtained are added to the starting values and the optimization 
procedure is repeated until the value of the squares of the errors, S2, 
has converged, or is sufficiently small to be accepted as a solution.

By optimizing on In (n/ilo) (=y) t*ie errors are in proportion to the mag­
nitude of viscosity and not to viscosity itself. This is important since 
viscosity often changes by four or five orders of magnitude over the 
pressure range, and percentage errors in viscosity measurements are of 
similar magnitude over the entire range.
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10.6.2 Evaluation of the double exponential equation

The data in the ASME Report (1953) have been fitted to the double 
exponential equation. An overall experimental accuracy of ±3 per 
cent is justifiably claimed, but there are a few points which are 
clearly in error by up to ±10 per cent. These have been discarded.
The double exponential fits the isotherms which range from 0 to 
218.3°C to within experimental accuracy in nearly every case. The 
44 liquids reported in the ASHE Report fall into various categories: 
synthetic lubricants, pure hydrocarbons (American Petroleum 
Institute, API), gear oils, high rate of shear test oils (API),
Navy oils, special samples prepared for ASME, and additional syn­
thetics. The optimized constants for equation (10.30), and the 
r.m.s. errors on recalculated viscosity for samples from each group 
are given in Table 10.11.

The r.m.s. errors in recalculated viscosity are small being not 
greater than 3.5 per cent, and usually about 2.5 per cent. The 
maximum errors are less than twice the r.m.s. errors. Isotherms may 
be either concave or convex towards the pressure axis, or be concave 
and then convex passing through a point of inflection, and cover a 
change of viscosity of up to five decades. Behaviour of liquids with 
long chains exhibit convex curvature more than less complex liquids 
as illustrated by the isotherms of Dow Corning f550 silicone' shown 
in Fig. 10.11. At temperatures of 32, 77 and 100°F the curves are 
convex, while the curves at 210 and 425°F start by being concave and 
then become convex. The double exponential equation describes all of 
these curves with r.m.s. errors of less than 3.5 per cent.

The values of A, B and K of the equation vary with temperature, but 
not smoothly, and it is therefore inadvisable to interpolate them in 
order to calculate viscosities at other temperatures. The variations 
with temperature are mainly due to the form of the double exponential 
equation, since equations with two or more exponents have a notorious 
tendency towards being ill-conditioned, Acton (1970). It is probable, 
however, that this non-regular variation with temperature could be 
resolved by taking a set of A, B, £r K values for one liquid, smoothing 
it, and re-optimizing for the remaining two parameters at each
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t e m p e r a t u r e .  I n  t h i s  w ay  i t  m ay b e  p o s s i b l e  t o  f o r c e  A ,  B , a n d  K t o  

b e  e a c h  a  s m o o th  f u n c t i o n  o f  t e m p e r a t u r e  w i t h o u t  s e r i o u s l y  i m p a i r i n g  

t h e  a c c u r a c y  o f  t h e  d o u b le  e x p o n e n t i a l  e q u a t i o n .

Some e f f o r t  w as m ade t o  c o r r e l a t e  t h e  p a r a m e t e r s ,  a n d  i t  w as fo u n d  

t h a t  B a n d  K a r e  a p p r o x i m a t e l y  p r o p o r t i o n a l  f o r  e a c h  l i q u i d .

1 0 . 6 . 3  E x t r a p o l a t i o n  u s in g  t h e  d o u b le  e x p o n e n t i a l  e q u a t i o n

BP “ KP
T h e  d o u b le  e x p o n e n t i a l  e q u a t i o n  I n  q / r ) 0 = A ( e  -  e  )  c a n  b e  u s e d  t o  

e x t r a p o l a t e  t o  v i s c o s i t y  v a l u e s  a t  h i g h e r  p r e s s u r - e s .

V i s c o s i t y - p r e s s u r e  d a t a  a t  3 2 ,  7 7 ,  2 1 0  a n d  4 2 5 ° F  f o r  d i - ( 2 - e t h y l h e x y l )  

p h t h a l a t e  f r o m  t h e  ASME R e p o r t  w e re  f e d  i n t o  t h e  d o u b le  e x p o n e n t i a l  

o p t i m i z a t i o n  p r o g r a m ,  b u t  t h e  d a t a  w e re  c u r t a i l e d  a t  h ig h e r  p r e s s u r e s  

b y  u p  t o  a b o u t  4 k b a r .  F o r  e x a m p le ,  t h e  ASME d a t a  a t  4 2 5 ° F  r e a c h  

1 0  k b a r ,  b u t  v a l u e s  w e re  o n l y  o p t im is e d  u p  t o  5 . 6  k b a r .  T h e  v a l u e s  

fo u n d  f o r  A ,  B a n d  K w e re  u s e d  t o  c a l c u l a t e  v i s c o s i t i e s  u p  t o  10  k b a r ,  

a n d  t h e s e  w e r e  c o m p a re d  w i t h  t h e  ASME d a t a .  F o r  t h e  4 2 5 ° F  i s o t h e r m  

t h e  m axim um  e r r o r  i s  15  p e r  c e n t  ( b e lo w  t h e  m e a s u re d  v a l u e )  w h ic h  i s  

q u i t e  g oo d  f o r  a n  e x t r a p o l a t i o n  o f  4 . 4  k b a r .

A t  h ig h  t e m p e r a t u r e s  t h e  v i s c o s i t y - p r e s s u r e  is o t h e r m s  a r e  l e s s  s t e e p ,  

a n d  t h e r e f o r e  t h e  l i k e l i h o o d  o f  e r r o r  i s  l e a s t ,  F i g .  1 0 . 1 1 .  F o r  t h e  

7 7 ° F  i s o t h e r m ,  o n  t h e  o t h e r  h a n d ,  a n  e r r o r  o f  + 4 4  p e r  c e n t  w as fo u n d  

f o r  a  2 . 8  k b a r  e x t r a p o l a t i o n .  AT lo w e r  t e m p e r a t u r e s  s u c h  a s  3 2 ,  77  

a n d  1 0 0 ° F  e x t r a p o l a t i o n  s h o u ld  b e  l i m i t e d  t o  a b o u t  1 k b a r  i f  e r r o r s  

o f  g r e a t e r  t h a n  2 0  p e r  c e n t  a r e  t o  b e  a v o i d e d ,  w h e re a s  a t  h i g h e r  

t e m p e r a t u r e s  s u c h  as  2 1 0  an d  4 2 5 ° F  e x t r a p o l a t i o n s  u p  t o  a b o u t  4 k b a r  

a r e  p o s s i b l e  w i t h o u t  s e r i o u s  lo s s  o f  a c c u r a c y .
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10.6.4 Range of applicability

W hen a  l i q u i d  i s  s u b je c t e d  t o  p r e s s u r e s  a b o v e  a b o u t  1 k b a r  t h e  a s s u m p ­

t i o n  t h a t  t h e  l o g a r i t h m  o f  v i s c o s i t y  i s  a  l i n e a r  f u n c t i o n  o f  p r e s s u r e  

b e c o m e s  i n v a l i d  i n  m any c a s e s .  T h e  s e v e r a l  e m p i r i c a l  e q u a t io n s  w h ic h  

d e s c r i b e  v i s c o s i t y  a s  a  f u n c t i o n  o f  p r e s s u r e  a r e  in a d e q u a t e ,  e s p e c i a l l y  

a t  h i g h e r  p r e s s u r e s  t h a n  t h i s .  T h e  d o u b le  e x p o n e n t i a l  e q u a t i o n  p r o ­

p o s e d  h e r e  h a s  b e e n  d e m o n s t r a t e d  t o  d e s c r i b e  t h e  b e h a v io u r  o f  v i s c o s i t y  

o f  e l e v e n  m a r k e d ly  d i f f e r e n t  t y p e s  o f  l i q u i d s  t o  w i t h i n  e x p e r i m e n t a l  

e r r o r .

T h e  r a n g e  o f  a p p l i c a b i l i t y  o f  t h e  p r o p o s e d  e q u a t i o n  i s  a l s o  w i d e .  I t  

h a s  b e e n  d e m o n s t r a t e d  t o  d e s c r i b e  c h a n g e s  i n  v i s c o s i t y  u p  t o  f o u r  

d e c a d e s  a t  p r e s s u r e s  r a n g in g  f r o m  a t m o s p h e r ic  t o  1 0  k b a r .  T h e  m axim um  

l i q u i d  v i s c o s i t y  w i t h  w h ic h  t h e  e q u a t i o n  h a s  b e e n  t e s t e d  i s  a b o u t  

5 0 0 0  P o i s e ,  t h i s  b e i n g ,  a t  t h e  m o m e n t, t h e  u p p e r  l i m i t  o f  a c c u r a t e  

v i s c o s i t y  m e a s u re m e n t  a t t a i n a b l e  b y  c o n v e n t i o n a l  h i g h - p r e s s u r e  v is c o m e t r y  

t e c h n i q u e s .  W hen t h e  r a n g e  i s  e x te n d e d  b y  f u t u r e  e x p e r i m e n t a l i s t s  i t  i s  

e x p e c t e d  t h a t  t h e  d a t a  w i l l  b e  f i t t e d  t o  t h e  d o u b le  e x p o n e n t i a l  w i t h  

s i m i l a r  p r e c i s i o n ,  p r o v id e d  t h a t  t h e  v i s c o s i t y  m e a s u re m e n ts  a r e  w e l l  

d i s t r i b u t e d  o v e r  t h e  p r e s s u r e  r a n g e  a n d  t h a t  t h e  s c a t t e r  i s  n o  g r e a t e r  

t h a n  ± 3  p e r  c e n t  o r  s o .
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