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Abstract

Pertussis toxin (PT) is a major virulence factor produced by Bordetella pertussis. In its 

detoxified form (PTd), it is an important component of acellular pertussis vaccines 

although some residual PT activity may be present because of the limitations of the 

detoxification processes used. The in vivo histamine sensitisation test (HIST) in mice is 

currently used for the safety testing of these vaccines to determine the level of their 

residual PT activity. However, an alternative test is needed because of large assay 

variability and ethical concerns with regard to animal usage. The main objective of this 

study was to search for an alternative test to the HIST.

The ADP-ribosylation enzyme activity of PT is thought to be the major factor 

responsible for the histamine-sensitising activity detected in vivo. In the present study, 

the enzymatic activities in different acellular pertussis-based combination vaccine 

formulations were measured by a recently-developed ADP-ribosylation assay and 

compared with their reactivities in the HIST. The results indicated that different 

products showed differences in ADP-ribosylation activity and, these did not correlate 

with their reactivity in the HIST.

PT has two functionally-distinct domains: the enzymatic A-protomer and the B- 

oligomer that facilitates host-cell binding and entry of PT into the cell. This dual 

biological function could explain why the residual enzyme activity of PT in vaccines 

did not fully reflect the in vivo reactivity observed by the HIST. Thus, refinement of the 

in vitro test to include a step which monitored the B-subunit activity of PT was 

attempted. A quantitative PT carbohydrate-binding assay using glycoproteins or defined
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oligosaccharides was developed. PT was found to bind preferentially to multiantennary 

iV-glycans, with the highest binding towards the fully sialylated structures. In contrast, 

PTd lost the ability to bind to sialylated multiantennary structures but retained some 

capacity to bind to neutral multiantennary structures.

Different vaccine preparations had different levels of PT binding activity as well as 

enzymatic activity. It was concluded that, although the enzymatic activity of PT plays a 

more important role in the death of mice in the HIST, a high binding activity of the B- 

subunit could increase the in vivo toxic effect by aiding the accessibility of the A- 

subunit to its cellular targets. A mathematical equation was devised to establish a 

preliminary relationship between the enzymatic, carbohydrate-binding and HIST assays 

in a product-dependent manner. Further studies with a larger number of vaccines are 

required for a more meaningful statistical analysis. However the methods form a sound 

basis for the future development of an alternative assay to the histamine challenge test. 

The in vitro assays could also be useful for investigating the mechanisms of PT 

detoxification. Comparisons of A- and B-subunit activities of purified PT and vaccine 

preparations of PTd indicated that both subunits are modified after chemical 

detoxification. Different vaccine products had different levels of enzymatic and binding 

activities and it was concluded that different detoxification procedures, as well as 

formulation factors, could contribute to this variation.

A CHO cell clustering assay is used as an alternative in vitro test to the HIST for 

assessing residual PT activity at the bulk stage of vaccine production. In a parallel study 

to the above, comparative proteomics was used to gain insights into the mechanism of 

PT-induced CHO cell clustering with a view to developing a mechanistic-based



alternative assay for the safety testing of pertussis-based combination vaccines. A 

proteomic map of CHO cells was established and PT-induced CHO cell clustering 

appeared to be a complex process involving subtle changes in various cellular functions, 

mainly related to intracellular transport, cell stress and the cell cycle. The information 

obtained will be useful for future studies into the possible mechanisms of the effect of 

PT on CHO cells.
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Chapter 1

Introduction



--------------------------     Introduction

1.1 The pathogen, the disease and treatment

The genus Bordetella currently contains nine species mostly pathogenic for different 

host organisms and typically associated with upper respiratory tract infections, with the 

exceptions of B. trematum, B. petrii and B, ansorpii (Preston, 2005; Ko et a l, 2005). B. 

pertussis is exclusively a human pathogen and was first described as the causative agent 

of pertussis (whooping cough) in 1906 by Bordet and Gengou. The organism is a small 

fastidious Gram-negative coccobacillus arranged in singly or in pairs and shows affinity 

for mucosal layers of the human respiratory tract (Figure 1.1) (Parton, 1998). B. 

pertussis shares many features with its related species in that it expresses a common set 

of adhesins and toxins required for colonisation and virulence. However, it is unique in 

expressing pertussis toxin (PT), a molecule that has been reported to be an important 

virulence factor and immunogen (Sato et a l, 1984; Weiss et a l, 1984; Preston et al,

2004).

Pertussis is a highly communicable disease lasting for 6  to 12 weeks or longer. It is 

divided into three distinctive clinical stages: catarrhal, paroxysmal, and convalescent. 

Initially, pertussis starts with catarrhal symptoms (coryza, conjunctivitis, occasional 

cough, and minimal or no fever) that are indistinguishable from those of other minor 

upper respiratory infections. Over a 7 to 14 day period the cough becomes paroxysmal. 

Paroxysms are characterised by repeated coughing fits with 5 to 10 or more forceful 

coughs during a single expiration often followed by a single sudden massive inspiration. 

This inspiration produces the characteristic whooping sound and is the hallmark of the 

disease. Cyanosis and post-tussive vomiting is common. Leucocytosis with absolute 

lymphocytosis is also characteristic in a typical case. The paroxysmal phase is
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the most dangerous with the greatest risk of complications including pneumonia, 

seizures and encephalopathy (Wortis et al., 1996; WHO position paper, 2005). The 

paroxysmal stage lasts for 2  to 8  weeks or more and, if individuals survive the 

paroxysmal stage, it is followed by the gradual transition to the convalescent stage. 

During this stage there is a gradual decline in all symptoms. The paroxysms, however, 

can occur sporadically for as long as 6  months after the infection (Cherry, 1999; Mattoo 

and Cherry, 2005). Clinical manifestations vary by age and both immunisation and 

previous infection moderate the severity of the clinical symptoms (Greenberg, 2005; 

Yarri et a l, 2006).

Diagnosis of pertussis can be made by direct detection of the bacteria by culture, 

polymerase chain reaction or by serological methods (WHO position paper, 2005). 

Pertussis treatment and post-exposure prophylaxis is usually by a course of 

erythromycin, clarithromycin or azithromycin, Trimethoprim-sulphamethoxazole can be 

used as an alternative if the patient cannot tolerate macrohdes or is infected with a 

macrolide-resistant strain of B. pertussis (Tiwari et al., 2005). Use of antibiotic is most 

effective if commencement is during the catarrhal stage although diagnosis at this early 

stage is difficult since initial symptoms are non-specific. In the paroxysmal phase of the 

disease, the use of antibiotics rarely affects the course of the disease but can eradicate 

any secondary pulmonary infection and B. pertussis from the nasopharynx, making the 

patient non-infectious to others. (WHO Model Prescribing Information, 2001; The US 

Center for Disease Control and Prevention (CDC), 2005a). The most effective method 

to control the global burden of pertussis has been through immunisation with efficacious 

preparations of whole-cell and acellular pertussis vaccines: ‘prevention is better than 

treatment’ (Erasmus (1466-1536) (sections 1,2 and 1.5).
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Figure 1.1. Attachment of B. pertussis to the ciliated epithelium of the respiratory tract 

Taken from NIBSC photographic library. Green, B. pertussis; red, epithelial cells; and 

orange, cilia.
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1.2 Epidemiology and prevention of pertussis

In the pre-vaccine era, pertussis was among the most conmion childhood diseases 

causing high mortality rates in children less than 5 years of age (Cherry, 1999). The 

introduction and widespread use of pertussis vaccines markedly decreased the incidence 

to low levels in countries with good vaccine coverage. The effectiveness of pertussis 

vaccines was further corroborated with observed epidemics during the periods when 

there was a decline or withdrawal of vaccines due to concerns regarding safety and 

efficacy of pertussis vaccines (Cherry, 1988). Despite the availability of vaccines, 

pertussis remains a major public health problem. Recent estimates from WHO suggest 

that in 2003, about 17.3 million cases of pertussis occurred worldwide and 279 000 

fatalities, with the highest incidence rates (90%) occurring in the developing countries 

(WHO position paper, 2005). In addition, resurgence of pertussis has been observed in 

many countries with high vaccine coverage and has indicated an epidemiological shift 

in the age distribution to adolescents and adults. The US National surveillance data from 

CDC found that the annual incidence of pertussis among persons aged 10-19 increased 

from 5.5% to 10.9% from 2001 to 2003. Similar increases were found in Canada, 

Australia and some European countries (WHO position paper, 2005; CDC, 2005b, 

2006; Celentano et aL, 2005; Greenberg, 2005). Possible reasons include increased 

recognition of the disease, quality of vaccines, waning immunity following previous 

infection or immunisation and possibly the antigenic variation between circulating 

strains and vaccine strains (Bentsi-Enchill et a i, 1997; Mooi et a l, 1999; Melker et al., 

2000; Mooi et al., 2001; Gzyl et al., 2004; Godfroid et al., 2005). Re-infections with 

pertussis in adults are a significant health burden since they are likely to transmit the 

disease to infants who are too young for immunisation or not fully protected. For this 

reason, several countries have implemented the US Food and Drug Adminstration
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(FDA) approved booster immunisation with acellular pertussis vaccines for adolescents 

and adults (Greenberg, 2005). The worldwide introduction of booster doses in 

adolescents and adults is expected in the near future. Since immunity after vaccination 

is short-lived, an interval of 1 0  years between booster doses has been recommended 

which would decrease B. pertussis disease rates in these groups and hence transmission 

(Forsyth et al., 2005).

1,3 Pathogenicity of B. pertussis

There are several features that make B. pertussis and other bacterial infectious agents 

pathogenic to humans. Disease is preceded by the attachment of the organism to the 

specific target tissue of the host (colonisation) followed by local tissue damage, 

secretion of products required for causing systemic disease and inhibition or evasion of 

host immune defences. B. pertussis, unlike the agents of some other diseases such as 

those causing diphtheria and tetanus, in which the clinical manifestations are mediated 

by a single toxin, is sophisticated in that it produces a vast number of virulence factors 

classically divided into adhesins and toxins that are likely to interact in a complex 

manner to establish infection (Figure 1.2).

1.3.1 Regulation of virulence factors

Expression of most of the virulence factors of B. pertussis is regulated in response to 

certain environmental stimuli, by the BvgA/S phosphorelay two-component signal 

tranduction system. This comprises the environmental sensor transmembrane protein 

BvgS and the DNA-binding response-regulator protein BvgA (reviewed by Locht, 

1999; Matoo and Cherry, 2005). BvgS contains a periplasmic domain, a linker region, a
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Pertussis
toxin

Fim briae

Adenylate 
cyclase toxin

Dermonecrotic 
toxin

Pertactin

Figure 1.2. Typical virulence factors associated with the pathogenesis of pertussis. 

Toxins include secreted pertussis toxin (PT), tracheal cytotoxin (TCT), surface 

associated (mainly) adenylate cyclase toxin and cytoplasmic dermonecrotic toxin. 

Attachment factors include filamentous haemagglutinin (FHA), pertactin, Bordetella 

resistance to killing factor A protein (BrkA), tracheal colonisation factor (TcfA) and 

fimbriae. Taken from Weiss (1997).



---------------------------------------------------------------------------------------------------------------------------------- Introduction

transmitter, a receiver, and a histidine phosphotransfer domain (HPD). At 37^C and in 

the absence of MgS0 4  and nicotinic acid, BvgS autophosphoryiates and relays 

phosphorylation from the periplasmic domain to the HPD of BvgS. The HPD can 

transfer the phosphate back to the BvgS or phosphorylate BvgA. The phosphorylation 

of BvgA promotes the transcription of vag genes (virulence-activated genes) which 

encode most of the virulence factors of B. pertussis. At the same time BvgA activates an 

intermediate regulatory gene BvgR which represses the expression of vrg genes 

(virulence-repressed genes).

1.3.2 Adhesins

1.3.2.1 Filamentous haemagglutinin (FHA)

FHA is encoded by XhtfhaB gene and is synthesised as a large precursor protein of 367 

kDa and undergoes N- and C- terminal modifications to form the mature 220 kDa FHA 

protein. It is exported across the cytoplasmic membrane via the B. pertussis Sec 

machinery (Lambert-Buisine et ah, 1998) and its translocation to the outer membrane 

requires accessory protein fhaC  (Jacob-Dubuison et al., 1999, 2001; Guedin et al.,

2000). After expression on the cell surface, mature FHA protein is released following 

proteolytic cleavage by subtilisin-like autotransporter/protease, SphBl (Coutte et al.,

2001). Although FHA is secreted, it is also found to be associated with the cell surface,

FHA has multiple binding specificities that may explain its differential roles in 

pathogenicity. It has two distinctive domains, which mediate attachment to ciliated and 

non-ciliated respiratory cells via lactosylceramides and sulphated glycosaminoglycans 

respectively (Menozzi et al., 1991; Prasad et al., 1993). In addition, it contains an Arg-

8
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Gly-Asp (RGD) motif that has been shown to stimulate adherence to 

monocytes/macrophages by interaction with a complex composed of leukocyte response 

integrin and integrin-associated protein, resulting in the up-regulation of CR3 binding 

activity (Reiman et a l, 1990; Ishibashi et a l, 1994, 2002; and Mobberley-Schuman and 

Weiss, 2005). CR3 is also one of the receptors for FHA. Although FHA mediates the 

phagocytosis and potential self-destruction of B. pertussis by binding to CR3 receptor, 

its cooperation with adenylate cyclase toxin (discussed later) prevents the oxidative 

burst (Mobberley-Schuman and Weiss, 2005). This may explain the persistence of 

pertussis in patients and intracellular survival of B. pertussis. In summary, FHA 

primarily acts as an adhesin and cooperates with other B. pertussis components to 

mediate both colonisation and immune evasion. During infection in both human and 

animal models, FHA produces a strong IgA and IgG antibody response (Thomas et a l,

1989). Vaccination with purified FHA protects mice against B. pertussis infection and 

moreover, clinical studies have shown that two component (FHA and PTd) acellulai’ 

pertussis vaccines are more effective than monocomponent PTd vaccines (Cherry, 

1997). For these reasons, FHA is considered to be an important component in acellular- 

based pertussis vaccines (Sato et a l, 1984; Sato and Sato, 1985). Nevertheless it is 

noteworthy that a clear correlation between serum antibody responses to FHA and 

protection in children has not been found (Cherry et a l, 1998).

1.3.2.2 Fimbriae (Fim)

B. pertussis produces serologically distinct fimbriae of two serotypes, designated 

serotype 2 and serotype 3, and these are composed of major subunits Fim2 (22.5kDa) 

and Fim3 (22kDa) respectively. In addition to the major subunits, both fimbriae also 

contain a minor 40kDa subunit, FimD, which is located at the fimbrial tip (Zhang et a l.
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1985; Irons et al., 1985; Willems et al., 1993; Geuijen et al., 1996). Expression of the 

fim2 andfimB genes is regulated by the bvgA/S system and, and at an individual level, 

by a phenomenon called phase variation. The latter occurs due to deletions or insertions 

at the promoter region which results in strains producing both types of fimbriae, one 

type or none at all (Willems et al., 1990). This feature is clinically significant since 

phase variation has been attributed to the observed adaptation of circulating B. pertussis 

strains, presumably due to immunological pressures (Preston, 1980; Willems et a l,

1990). For example, numerous workers have demonstrated that vaccines lacking in one 

or other serotype components can result in pertussis cases in individuals previously 

immunised, caused by the missing serotype (Preston et a l, 1985; Tim et a l, 1997).

Like FHA, both major and minor fimbrial subunits have been shown to bind to 

sulphated glycoconjugates, which are ubiquitous in the respiratory tract, and have been 

implicated in the colonisation state of the disease (Geuijen e ta l, 1996, 1997; Rodriguez 

et a l, 2006). FimD also binds to the integrin VLA-5, which activates CR3, the receptor 

for FHA. It is believed that, in vivo, fimbriae act in synergy with FHA (Hazenbos et a l, 

1995). In line with this, the gene encoding fimD is part of a gene cluster involved in 

fimbrial and FHA biosynthesis (Willems et a l, 1993,1994). Fimbriae have been shown 

to be protective immunogens in mice, and are also included in some acellular pertussis 

vaccine formulations. These preparations have also been shown to have higher efficacy 

than vaccines containing only PTd, FHA and PRN (Olin et a l, 1997).

10
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1.3.2.3 Pertactin (PRN), tracheal colonisation factor A (TcfA) and Bordetella resistance 

to killing factor A protein (BrkA)

These proteins belong to the autotransporter family of proteins in Gram-negative 

bacteria. They are structurally similar and are all synthesised as pre-proteins. They have 

an N-terminal signal sequence to direct translocation across the inner membrane, a 

passenger domain that is responsible for effector functions of the protein and a C~ 

terminal domain that mediates secretion across the outer membrane (Henderson et al.,

2001). Mature pertactin is a 69 kDa protein and is localised predominantly in the outer 

membrane. Like FHA, pertactin contains an RGD tripeptide motif as well as several 

proline-rich regions and leucine-rich repeat motifs that are characterisitic of molecules 

that form protein-protein interactions involved in eukaryotic cell binding (Emsley et a l, 

1994). Pertactin in combination with other B. pertussis adhesins probably contributes to 

the pathogenesis of pertussis via its involvement in bacterial adhesion. BrkA is 

expressed as a 103kDa pre-protein that is processed to yield a 73 kDa passenger domain 

and 30 kDa C terminal (Oliver et al., 2003a,b). It is a cell surface-associated protein 

and, similar to FHA and PRN, has two RGD sequences and has been shown to mediate 

adhesion to or invasion of a variety of cells (Fernandez et a l, 1994). In addition it 

enables the bacterium to resist the bactericidal activity of normal human serum by the 

antibody-dependent complement pathway and of some antimicrobial peptides 

(Fernandez et al., 1994; Fernandez and Weiss, 1996). Tracheal colonisation factor A 

(TcfA) is a secreted 60 kDa protein. Its sequence also has proline-rich regions and like 

FHA, pertactin and BrkA, it also has an RGD sequence which appears to be involved in 

the colonisation of the trachea (Finn and Steven, 1995). All of these three proteins 

appear to contribute to the colonisation of B. pertussis but only PRN is currently present 

in commercially-available acellular pertussis vaccines and has been shown to be an

11
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important protective antigen in animal models and following immunisation in humans. 

In fact, antibody levels against PRN correlated with protection in humans against 

pertussis (Olin et ah, 2001). In addition, vaccines containing PT, FHA and PRN are 

superior to vaccines containing only PT and FHA (Gustafsson et a l, 1996; Cherry,

1997).

1,3.3 Toxins

1.3.3.1 Adenylate cyclase toxin (ACT)

ACT is a large, bifunctional protein of 1706 amino acid residues encoded by the cyaA 

gene. Its calmodulin-dependent-adenylate cyclase (cytotoxic) activity resides in the N- 

terminal 400 amino acids whereas its haemolytic (pore forming) activity is due to the 

1300 amino acid C-terminal region (Glaser et al., 1988), which is also essential for the 

delivery of the catalytic domain into the cytoplasm of eukaryotic cells (Coote, 1996). 

Once inside the host cell, the catalytic domain is activated by endogenous calmodulin 

and catalyses the uncontrolled production of cAMP from ATP and subsequent 

intoxication of target cell (Wolff et al., 1980). The physiological consequences include 

the inhibition of neutrophil functions, including chemotaxis, oxidative burst and 

phagocytosis, and it also induces apoptosis in cultured murine macrophages (Confer and 

Eaton, 1982; Friedman et aL, 1987; Khelef et al., 1993; Njamkepo, 2000). The 

intoxication of phagocytic cells by ACT is mediated by its specific binding to 

CD 1 lb/CD 18 integrin (Guermonprez et al., 2001). However, ACT at high 

concentrations has also been shown to intoxicate cells that do not bear these receptors, 

by penetrating the lipid bilayer (Martin et al., 2004). Since ACT mainly affects immune 

cells, it is believed to contribute to the pathogenicity of B. pertussis by evasion of host

12
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immune defences and, in conjunction with other virulence factors, in providing an 

intracellular niche for the survival and persistence of B. pertussis infection (Friedman et 

aL, 1992; Hellwig et aL, 1999). Although ACT has been shown to induce a high 

specific antibody level after primary infection, to display adjuvant activities to co

administered antigens when using both native ACT and detoxified preparations, and to 

be a protective antigen in the mouse models, it has yet to be included in any acellular 

vaccine (Guiso et aL, 1991; Cherry et ah, 2004; Macdonald-Fyall et aL, 2004).

1.3.3.2 Dermonecrotic toxin (DNT)

As the name suggests, DNT causes skin lesions in a variety of animals and is lethal 

following intravenous injection in mice at high doses (Wardlaw and Parton, 1983; Livey 

and Wardlaw, 1984; Parton, 1985). DNT is a single polypeptide of 160 kDa (calculated 

mass) consisting of an N-terminal receptor-binding domain and a C-terminal enzymatic 

domain (Schimdt et aL, 1999; Kashimoto et aL, 1999; Matsuzawa et aL, 2002). The full 

expression of enzymatic activity in vitro requires the prior binding of DNT to 

uncharacterised receptors followed by internalisation by dynamin-dependent 

endocytosis into endosomes where it undergoes proteolytic processing before the 

translocation of the enzymatic domain to the cytosol (Matsuzawa et aL, 2004). DNT has 

transglutaminase activity and deamidates and polyaminates Gln63 of Rho GTPases 

(Gln61 of Rac and Cdc42) that impair GTP hydrolysis, rendering the constitutive 

expression of Rho GTPases (Horiguchi et aL, 1995, 1997; Schmidt et aL, 1999; Masuda 

et aL, 2002). Some of the effects associated with activation of Rho GTPases by DNT 

include morphological changes associated with actin fibre assembly and formation of 

focal adhesions, stimulation of DNA and protein synthesis, inhibition of osteoblastic 

differentiation and adjuvant activity (Horiguchi et aL, 1991; Horiguchi et aL, 1993;

13
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Horiguchi et aL, 1995; Horiguchi et aL, 1997; Munro et aL, 2005). How these factors 

contribute to the pathogenesis of whooping cough is largely unknown and has not been 

studied well since mutants lacking the DNT appear to be as virulent as the wild type in a 

mouse model of the disease (Weiss et aL, 1989).

1.3.3.3 Lipopolysaccharide (LPS)

B. pertussis is unusual in that it produces two distinct types of LPS molecules: Type A 

consists of lipid A plus a branched core oligosaccharide and a trisaccharide consisting 

of a-A-acetylglucosamine, |3-2-acetamido-3-acetamido-2,3-dideoxy-mannuronic acid 

and p -l“2 acetamido-4-methylamino-fucose; Type B contains lipid A and the 

oligosaccharide core structure (Peppier et aL, 1984; Caroff et aL, 2000). The expression 

of the trisaccharide is controlled by the 1 2 -gene wlb operon and is regulated by the 

BvgA/S system (Allen et aL, 1996, 1998). In general, like endotoxin from other Gram- 

negative bacteria, B. pertussis LPS is toxic, pyrogenic, mitogenic in spleen cell cultures 

and can activate macrophages and induce tumor necrosis factor production (Watanabe 

et aL, 1990). Some of these factors may be the cause of mild fever seen in some 

pertussis cases. Additional roles that have been elucidated by mutational analysis in the 

wlb locus and include colonisation and persistence within the mouse respiratory tract 

and evasion of host immune defences (Harvill et aL, 2000; Schaeffer et aL, 2004),

1.3.3.4 Tracheal cytotoxin (TCT)

TCT is a disaccharide-tetrapeptide of 921 Da fragment released from the Bordetella 

peptidoglycan during growth or bacterial lysis. (Rosenthal et aL, 1987; Cookson et aL, 

1989). It is always expressed and independent of BvgAS control. TCT is the only toxin

14
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that has been shown to reproduce the cytopathology attributed to B. pertussis infection 

and explain the paroxysmal coughing (Wilson et al., 1991). It causes ciliostasis and 

extrusion of ciliated cells in hamster tracheal ring cultures, which will impair normal 

lung clearance of debris (Goldman et aL, 1985). These effects are thought to be 

associated with the TCT-dependent increased production of intracellular interleukin-la 

(IL-la) and subsequent production of nitric oxide (Heiss et aL, 1993; Flak and 

Goldman., 1999; Flak et aL, 2000).

1.3.3.5 Pertussis toxin (PT)

This toxin will be discussed in the following section in more detail as its study forms a 

major part of this thesis.

1.4 PT

1.4.1 Structure and biogenesis

PT is an A-B toxin consisting of six polypeptides, SI (26,220 Da), S2 (21,920), S3 

(21,860), S4 (12,060) and S5 (10,940) in a 1:1:1:2:1 ratio. The A-subunit comprises the 

SI polypeptide and is responsible for the enzymatic activity whereas the B-subunit, 

mediating binding and possibly intracellular translocation, consists of polypeptides S2 

to S5 (Tamura et aL, 1982). Each polypeptide is encoded separately and contains a 

classical N-terminal signal sequence (a stretch of hydrophobic amino acids), indicating 

transport into the periplasmic domain probably via a general export pathway (Nicosia et 

aL, 1986; Locht et aL, 1986; Weiss et aL, 1993; Stathopoulos et aL, 2000). Once the 

polypeptides are exported across the inner membrane of B. pertussis to the periplasm,

15
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the S1 localises to the outer membrane and serves as a site for the assembly with the B~ 

oligomer (Farizo et aL, 2002). The correct assembly of polypeptides to form the 

holotoxin is critical for the secretion of toxin since A- and B-subunits alone were not 

secreted (Farizo et aL, 2000; Craig-Mylius et aL, 2000; Stenson and Weiss, 2002). 

Crystal structure analysis of the assembled PT revealed that the toxin forms in the shape 

of a pyramid with the enzymatic SI subunit sitting on top of its ring-like structure 

formed by the cell-binding B-oligomer, S2-S5 (Figure 1.3). Each of the five subunits 

consists of a common folding motif of approximately 1 0 0  residues that consists of the 

six anti-parallel p-strands forming a closed p-barrel, capped by an a-helix. The B- 

oligomer is arranged as two dimers, D1 (S2-S4) and D2 (S3-S4) joined together by S5 

subunit. The ring-like structure is formed by the association of B-subunits 

predominantly through anti-parallel P-sheet interactions to form an asymmetrical 

pentamer surrounding a central pore formed by five helices. The carboxyl terminus of 

SI penetrates into the central pore (Tamura et aL, 1982; Stein et aL, 1994a). Secretion 

of PT from B. pertussis is a complex process requiring the products of nine ptl 

(pertussis toxin liberation gene) genes (ptlA-I) that are located downstream of the 

structural genes (Kotob et aL, 1995; Farizo et aL, 1996). The ptl genes share 

considerable homology with the virB genes of Agrobacterium tumefaciens, which 

encode the type IV family of secretion systems that are involved in exporting virulence 

factors across the membranes of pathogenic bacteria. It is thought that PT may be 

secreted from B. pertussis in a similar manner (Weiss et aL, 1993; Bums, 2003).

1.4.2 Molecular mechanisms of toxin action

PT is considered a major virulence factor produced by B. pertussis and is well known to 

cause a wide range of physiological effects including histamine sensitisation,
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Figure 1.3. Schematic picture of PT. Taken from Stein et aL, 1994a.

17



---------------------------------------------------------------------------------------------------------------------------------- Introduction

hyperinsulinaemia, lymphocytosis promoting activity, adjuvant effects, clustering of 

Chinese Hamster Ovary (CHO) cells, mitogenesis, haemagglutination activities, 

stimulation of lipolysis in rat adipocytes and increased permeability in the blood brain 

barrier (Munoz, 1985; Bmckener et aL, 2003). The majority of the biological activities 

are attributed to the enzymatic activity of the SI subunit but some are dependent on the 

B-subunit activities alone. Following secretion by B, pertussis, PT needs to enter the 

membrane of the target host cell before carrying out its various activities. This is 

believed to involve three stages. 1) Binding of the B-oligomer to host cells, 2 ) 

internalisation and translocation of the SI subunit to the cytosol, and 3) ADP- 

ribosylation of G proteins catalysed by the SI subunit.

1.4.2.1 Binding

PT is clearly a complex molecule binding to a vast number of cell types derived from 

human and animal sources including bronchial epithelial cells, CHO cells, pancreas 

derived cells, endothelial derived cells, kidney derived cells, erythrocytes from chicken 

and goose, platelets, adipocytes, T and B lymphocytes and macrophages (Tamura et aL, 

1983; Sekura and Zhang, 1985; Kolb et aL, 1990; Rogers et aL, 1990; Saukkonen et aL, 

1992; Sindt et aL, 1994; Armstrong et aL, 1994; el Baya et aL, 1999). Although the 

majority of the cell types studied have been shown to express PT binding proteins, a 

unique receptor for PT remains elusive. However, several lines of evidence suggest that 

sialylated and non-sialylated carbohydrates are crucial components of receptors 

recognised by the toxin (Sekura and Zhang, 1985; Capiau et aL, 1986; Brennan et aL, 

1988; Saukkonen et aL, 1992; van't Wout et aL, 1992; Spangler et aL, 1993; Menozzi et 

aL, 2002). In addition, iV-linked oligosaccharides and terminal sialic acid residues 

appear to be important for toxin recognition (Armstrong et aL, 1988; Witvliet et aL,
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1989; Hausman and Bums, 1992; el Baya et al., 1999). For example, the ability of PT to 

ADP-ribosylate G proteins in intact CHO cells and its subsequent cytotoxic effect 

(clustering) was significantly altered in a CHO cell line specifically lacking terminal 

sialic acid (NeuAc) or carbohydrate sequences NeuAc—>Galp4 or 

NeuAc—>Gaip4GlcNAc on complex type glycoproteins (Brennan et at., 1988; Witvliet 

et al., 1989). Since the mutant CHO cells only differ from wild type cells in the 

structure of their A-linked oligosaccharide chain, the receptor for PT is likely to be a 

glycoprotein. Consistent with the lectin-like properties of PT, crystal structural analysis 

revealed regions in the B-oligomer that show structural homology to the family of 

calcium-dependent eukaryotic lectins and wheat germ agglutinin, both of which are 

carbohydrate binding proteins (Stein et al., 1994).

PT binds to some serum sialo-glycoproteins like haptoglobin and fetuin (Tamura et al., 

1983; Sekura and Zhang, 1985) and these have been used as ligands in affinity 

chromatographic columns for purification of the toxin (Capiau et al., 1986; Sekura et 

al., 1983). Apart from glycoproteins, PT also binds to glycolipids such as 

lactosylceramide and gangliosides (Saukkonen et al., 1992; Hausman et al., 1993). 

However, quartz crystal microbalance measurements investigating direct binding of PT 

with gangliosides did not support strong binding to glycolipids (Janshoff et al., 1997). 

The binding of PT to glycoproteins and glycolipids is mediated by the S2 and S3 

subunits (Witvliet et al., 1989; Schmidt et al., 1989., 1991; Saukkonen et ah, 1992). 

Experimental evidence suggests there are at least two different classes of carbohydrate 

structures recognised by the S2 and S3 subunits: oc-2,6-linked sialic acids and N~ 

acetyllactosamine residues (Tuomanen et al., 1988; Brennan et al., 1988; Armstong et 

al., 1988; Witvliet et al., 1989; Heerze and Armstrong., 1990; Hausman and Bums., 

1993). However, the extent of binding to specific oligosaccharide stmcture(s) mediated
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by S2 and S3 is unclear (Lang et al., 1989; Witvliet et al., 1989; Schmidt et al., 1989; 

Loosmore et al., 1993; Lobet et al., 1993; Raze et al., 1998).

The binding of PT to fetuin, a glycoprotein consisting of 0~ and N- linked glycans has 

been used as a model system to characterise the binding specificities of PT. Using 

sequential degradation and reglycosylation experiments it was found that PT binds 

better to oligosaccharides terminated with a2,6-linked NeuAc than A-acetamido sugars 

and binds least with galactose residues (Sekura and Zhang, 1985; Armstrong et a l,

1988). A study using mutant CHO cells with specific iV-glycosylation defects, showed 

that optimum binding of PT required a complete sialylactosarnine chain (Witvliet et a l,

1989). So far, the relative binding of PT to complex oligosaccharides with defined 

structures using a direct binding assay has not been investigated.

1.4.2.2 Entry

The molecular mechanisms involved in the entry and translocation of SI subunits to the 

cytosol of host target cells and relative roles of both A- and B-subunits in this process is 

so far unclear. However, several studies indicate that internalisation is by endocytic 

uptake involving early/late endosomes and Golgi apparatus (Xu and Barbieri, 1995; Xu 

and Barbieri, 1996; el Baya et al, 1997) and possibly the endoplasmic reticulum (ER) 

(Hazes et a l, 1996; Hazes and Read, 1997; Carbonetti et a l, 1999; Veithen et a l, 2000; 

Castro et a l, 2001). Consistent with the involvement of the ER, ATP, which is required 

for the in vitro activation of PT, is only present in the ER and not other cytosolic 

compartments involved in the endocytic pathway. ATP binds to the B-oligomer and 

permits the dissociation of SI from the B-oligomer (Lim et a l, 1984; Burns and 

Manclark, 1989; Hausman et a l, 1990; Hausman and Bums, 1992; Hazes et a l, 1996). 

It has been proposed that dissociation of AB-subunits allows the SI subunit to disguise
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itself as misfolded protein (i.e by exposure of hydrophobic regions and reduction of 

disulphide bond) and to use the endoplasmic reticulum (ER)-associated degradation 

pathway to access the cytoplasm where it escapes ubiquitination due to lack of lysine 

residues (Hazes and Read, 1997). Previous studies have demonstrated that efficient 

binding of PT and PT SI subunit to model phospholipid vesicles required the presence 

of ATP and a thiol reductant respectively (Bums and Manclark, 1989; Kmeger and 

Barbieri, 1993; Hausman and Bums, 1992). Crystal structure analysis studies also 

indicated that the proposed activation (reduction) regions on the PT molecule would 

result in a conformational change that would result in the exposure of hydrophobic 

regions (Stein et a l, 1994a).

Altematively, PT may directly traverse the membrane (Spangler et aL, 1993; Kaslow 

and Bums, 1992). Crystal structure analysis of PT complexed with oligosaccharide 

structures derived from transferrin indicated that sialic acid binding sites are located 

near the SI. Based on this observation it was suggested that the orientation of the 

holotoxin after binding is such that it brings the SI close to the membrane (Stein et aL, 

1994b). Considering the ability of PT to affect many different cells types and the fact 

that binding is mediated by either S2 or S3 or both S2 and S3 depending on target cell, 

internalisation and translocation process could also be cell-type specific.

1.4.2.3 ADP-ribosyl transferase activity

Once the S1 subunit has reached the cytoplasmic side of the host cell it catalyses the 

transfer of the ADP-ribose moiety from NAD to the cysteine residue located 4 amino 

acids from the. carboxyl terminus of the a-subunit of guanine nucleotide-binding 

proteins (G-proteins) which include Gi, Go, and Gt (Ui, 1990). The catalytic activity
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resides in the amino terminal region (1-180) of the SI subunit as determined by 

mutagenesis studies (Pizza et aL, 1988; Locht et aL, 1989; Loosmore et aL, 1990). G- 

proteins act as molecular switches for many biological processes. In their inactive state, 

G-proteins are a trimeric form containing GDP bound to the a-subunit and attached 

either to the inner surface of the plasma membrane or to the inner surface (cytosolic 

side) of the transmembrane receptors (known as G-protein coupled receptors) (Figure

1.4). Upon external stimuli, the receptor undergoes a conformational change causing the 

a-subunit of G-protein to mediate exchange of its GDP to GTP. This then triggers the 

dissociation of the trimeric form to G a and GPy. The G a is now active and interacts 

with the appropriate effector protein. For example, the Gia protein interacts with adenyl 

cyclase and causes inhibition of cAMP synthesis (Ui, 1990). The G a protein has 

intrinsic GTP hydrolase activity which exchanges the GTP for GDP and in doing so 

results in the dissociation from the effector protein and reassociation with the Gpy 

dimer, hence returning to the inactive state. PT catalysed modification of G-proteins 

prevents the exchange of GDP for GTP thus, if the Gi is targeted, the inhibitory pathway 

is blocked (Krueger and Barbieri, 1995). The biological consequences of ADP- 

ribosylation by PT includes histamine sensitisation, leucocytosis/lymphocytosis, 

hyperinsulinaemia with subsequent hypoglycaemia and CHO cell clustering (Sekura et 

aL, 1985), which will be discussed in the following section.
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1.4.3 Biological activities of PT

PT was originally given several names based on its diverse biological activities. It was 

only after extensive purification and characterisation that it was realised that the vast 

array of biological activities was attributable to a single protein (Munoz, 1985). 

Although the precise mechanisms of many of the biological activities are still obscure, 

with the progression of molecular tools, it is now known that some of the effects are a 

direct consequence of catalytic activity and others are a result of the B-subunit activity. 

Some of the most relevant biological activities of PT will be discussed in the following 

sections.

1.4.3.1 Lymphocytosis promoting activity

The pronounced leucocytosis, predominantly as lymphocytosis, seen in pertussis cases 

is one of the hallmarks of the disease and one that is exclusively associated with PT. It 

is characterised by the increase in small lymphocytes, that include both T-cells and B- 

cells, also polymorphonuclear leukocytes, a marked decrease in the weight of the 

thymus and lymph nodes and an increase in the spleen weight (Morse and Morse, 1976; 

Munoz, 1985). The observed increase in lymphocytes is not due to proliferation but is 

due to the prevention of the recirculation of these cells through the lymphoid tissue 

(Morse and Riester, 1967; Spangrude et al., 1984). Further to this, the 

immunophenotype of peripheral blood lymphocytes derived from pertussis cases 

relative to uninfected subjects showed a marked decrease in L-selectin but the 

mechanisms remain elusive. L-selectin is an adhesion molecule essential for 

lymphocyte homing (Hudnall and Molina, 2000; Hodge et al, 2003). Lymphocytosis is 

primarily dependent on the expression of the catalytic activity of PT. However, there are 

studies showing that the B-oligomer also contributes since recombinant PT with
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alterations in the B-oligomer demonstrated reduced lymphocytosis (Loosmore et ah, 

1993; Raze et al., 1998). The number of circulating lymphocytes in the whole blood of 

immunised mice can be used as a check for determining the level of active PT in 

pertussis-based vaccines (Section 1.6 .2 .1 )

1 .4.3.2 Hyperinsulinaemia with subsequent hypoglycaemia

One of the original names of PT was ‘islet activating protein’ as it had a unique action 

of enhancing insulin secretory responses of experimental animals to nutritional and 

hormonal stimuli (Yajima et aL, 1978). Early observations showed that children with 

pertussis or experimental animals with B. pertussis infection, were found to be 

hypoglycaemic (Wardlaw and Parton, 1982). Adrenaline is known to cause 

hyperglycaemia by inhibiting the production of cAMP and subsequent release of insulin 

by stimulation of « 2 -adrenergic receptors. However, in pertussis-vaccinated animals, 

adrenaline causes hyperinsulinaemia with consequent hypoglycaemia (Katada and Ui, 

1976). The molecular mechanism of toxin action was found to be as a result of 

unresponsiveness at the ^  adrenergic receptors and stimulation of the p-adrenergic 

receptor by adrenaline since a- and p-adrenoreceptor antagonists either did not alter or 

decreased the increased insulin production respectively (Katada and Ui, 1977; Katada 

and Ui, 1979). The reversal of adrenaline inhibition of cAMP production and 

consequent insulin secretion was due to the direct modification of inhibitory G-proteins 

by the SI subunit of PT (Ui, 1990).
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1.4.3.3 Histamine-sensitisation activity

Parfentjev and Goodline (1948) reported that certain strains of mice injected 

intraperitoneaily with pertussis vaccine subsequently became hypersensitive to 

histamine challenge, resulting in a marked decrease of the lethal dose of histamine 

(Fishel et aL, 1961). PT is primarily responsible for this effect, but, there are reports to 

suggest that endotoxin preparations from B. pertussis and other bacteria can possibly 

cause histamine sensitisation. Nevertheless, the histamine sensitisation induced by 

endotoxin is variable and 1 0 0 % death could not be observed with any dose studied 

(Pieroni et aL, 1966; Munoz and Bergman, 1968a). Apart from histamine sensitisation, 

PT can also sensitise mice to a variety of substances including serotonin, bradykinin, 

endotoxin, cold stress and anoxia (Munoz and Bergman, 1968a).

The observed hypersensitivity is dependent on the expression of PT catalytic activity. 

(Nencioni et aL, 1991; Loosmore et aL, 1993) However, the precise mechanism of PT 

in histamine sensitisation is still unknown. Histamine is known to cause vasodilation, 

promote capillary permeability and bronchoconstriction. Studies indicate that the 

histamine sensitisation effects are associated with changes in the vascular and not the 

pulmonary system (de Wildt et aL, 1983; Vleeming et aL, 2000; Meijeren et aL, 2004a). 

In rats, histamine sensitisation is characterised by decreased diastolic blood pressure and 

enhanced histamine-induced decrease in blood pressure, and this sensitisation is 

primarily mediated by histamine Hi receptor (de Wildt et aL, 1983; Vleeming et aL, 

2000). Consistent with the latter observation, the gene controlling susceptibility to PT- 

indueed hypersensitivity to histamine has recently been identified as the histamine Hi 

receptor (Ma et uL, 2002). Histamine and other factors including serotonin, bradykinin, 

cold stress and anoxia, to which PT causes sensitisation, are associated with loss of
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blood volume (Munoz and Bergman, 1968; Yong et al., 1993; Vleeming et al., 2000). 

Moreover mice dying from shock induced by histamine or serotonin were protected by 

restoring blood volume with physiological saline (Munoz, 1985). Since sensitisation 

could be duplicated by blocking of (3- adrenergic receptors and adrenalectomy, PT has 

been suggested to impair adrenoceptor function but the role of altered adrenoceptor 

function in histamine sensitisation is unclear (Fishel et aL, 1961; Bergman and Munoz, 

1966; Bergman and Munoz, 1968). Others have suggested that the vasoconstricting- 

regulating mechanism is predominantly involved in PT-induced histamine sensitisation. 

PT reduced the contractile properties but had no effect on the relaxation properties of 

small mesenteric resistance arteries following stimulation with various pharmacological 

agents. Based on these outcomes, it was proposed that PT may produce a condition 

whereby the contractile properties are unable to counteract the shock syndrome 

resulting from decreased blood pressure elicited by histamine and may explain why PT 

can increase the sensitivity to many agents (Meijeren et aL, 2004a, b, c). It should be 

noted that the effect of PT on the relaxation properties were assessed using only 

histamine or acetylcholine. These studies did not address the effect of PT on the 

relaxation properties using pharmacological agents for (3-adrenoceptor agonists. PT has 

been shown to inhibit p-adrenoceptor stimulation with salbutamol (de Wildt et aL, 

1983). In general, this area is not well understood. Nevertheless, the histamine 

sensitisation induced by PT is used for measuring toxic levels of PT present in vaccines 

and is discussed in Section 1.6.2

1.4.3.4 Clustering of Chinese Hamster Ovary cells

In CHO cells, PT binds to a 165 kDa membrane glycoprotein which then results in 

receptor-mediated endocytosis and retrograde transport to at least the Golgi apparatus,
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followed by translocation of the PT SI subunit to the cytosol, and subsequent ADP- 

ribosylation of a 41 kDa inner membrane protein (Brennan et a l, 1988; Burns et a l, 

1987; el Baya et aL, 1997). The modification of G-proteins induces a clustered growth 

pattern and a change in cell morphology to a more rounded appearance. The onset is 

slow and requires a minimum of 16 h after the addition of toxin (Hewlett et aL, 1983; 

Gillenius et aL, 1985). Although the exact mechanism of toxin action on CHO cells is 

not clear, it requires the functions of both A- and B-subunits. Fluorescence microscopy 

studies have indicated cytoskeletal proteins as the target of toxin action since there was 

a reduction in the percentage of actin filaments remaining in the clustered cells 

(Scapigliati et aL, 1988). Due to the high sensitivity of CHO cells to PT, they are used 

for monitoring the toxicity levels of PT in vaccines (section 1.6.2.1) and are also used 

for determining the neutralising capacity of anti-PT serum (Gillenius et aL, 1985).

1.4.3.5 T-cell mitogenicity

Stimulation of T- and B- cell proliferation by PT resides in its non-catalytic, binding 

subunit B-oligomer but the toxin concentration required is much higher ( 1  jxg/ml) in 

comparison to other in vivo or in vitro effects of PT (Stmad and Carchman, 1987; 

Rosoff et aL, 1987; Nogimori et aL, 1986; Kolb et aL, 1990; Nencioni et aL, 1990; 

Loosmore et aL, 1993; Tonon et aL, 2006). Therefore, the relevant importance of this in 

natural infection is unclear. Nevertheless, it may be crucial for the adjuvant and 

protective properties of PT. The mechanisms involved in the activation of T-cells result 

from cellular signal transduction events induced by the direct interaction of the B- 

oligomer with plasma membrane proteins and mimic the mitogenic pathway induced by 

monoclonal antibodies to T-cell receptor complex (TCR-CD3) (Witvliet et aL, 1992; 

Armstrong et aL, 1994). PT is unable to activate cell-signalling events related to the
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mitogenic pathway in cell lines lacking the TCR-CD3 complex (Rogers et aL, 1990; 

Witvliet et aL, 1992). The precise nature of the receptor for activating T-cells is unclear, 

but 43 kDa and 70 kDa receptors have been identified and sialylated structures appear to 

be important for toxin recognition (Clark and Armstrong, 1990; Rogers et aL, 1990; 

Armstrong et aL, 1994). It has been proposed that the S2 and S3 subunits of PT bind 

divalently to a multi-subunit receptor complex which in turn interacts with the TCR- 

CD3 to elicit cellular signalling events (Witvliet et aL, 1992; Wong et aL, 1996). This 

results in the activation of the phospholipase C pathway (Rosoff et aL, 1987; Strnad and 

Carchman, 1987; Gray et aL, 1989; Thom and Casneliie, 1989) and the subsequent 

production of IL-2, a molecule that leads to T-cell proliferation (Rosoff et aL, 1987; 

Stanley et aL, 1990; Grenier-Brossette etal., 1991).

1.4.3. 6  Other activities of PT

PT is well known for its strong adjuvant actions in several immunological systems and 

include the enhancement of serum antibody response to various antigens, increased 

cellular immune responses to various protein antigens, contribution to experimental 

autoimmune encephalomyelitis (EAE), induction of delayed-type hypersensitivity and 

increased anaphylactic sensitivity (Munoz, 1985; Steinman et aL, 1985; Munoz and 

Peacock, 1990; Roberts et aL, 1995; Ryan et aL, 1998). Of particular interest is the dual 

role of PT in protecting against or enhancing experimental autoimmune 

encephalomyelitis (EAE) (Munoz, 1985; Robbinson et aL, 1996). Respiratory tract 

infections with B. pertussis or whole-cell vaceination have been occasionally associated 

with neurological disorders and encephalopathies (Donnelly et aL, 2001). Originally PT 

was hypothesised to induce EAE by increasing the permeability of the blood-brain 

barrier. However, recent studies suggest that PT induces EAE by the recruitment of
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leucocytes to the central nervous system (CNS) by signalling through Toll-like receptor 

4 (TLR-4), Activation of TLR-4 results in the up-regulation of P-selectin on the 

endothelial surface which facilitates leucocyte access to the CNS and subsequently 

results in the increased permeability of the blood-brain barrier, thereby providing a 

mechanism for the breakdown of the blood-brain barrier and induction of the 

inflammatory response (Kerfoot et al., 2004). Interestingly PT also has protective roles 

in EAE. This is thought to be due to the differential activities of the A- and B-subunits, 

but the relative roles of A- and B-subunit activities in enhancing and inhibitory effects 

on EAE is contradictory (Robbinson et al., 1996; Ben-Nun et a l, 1997; Su et al., 2003; 

Brukener et al., 2003; Kerfoot et al., 2004). It has been suggested that the role of PT in 

permeabilising the blood-brain barrier may be mediated by the activity of the ADP- 

ribosyltransferase. By contrast, the B-oligomer mediates an anti-inflammatory effect by 

competitively blocking leucocyte adherence, and thereby preventing lymphocyte 

extravasation (Bmckener et al., 2003).

Other functions of PT include its ability to adhere B. pertussis to human macrophages 

and ciliated respiratory epithelial cells, to increase lung permeability and airway 

oedema, to inhibit HTV replication and vims expression in human macrophages and to 

inhibit chemotaxis and migration of neutrophils, monocytes/macrophages and 

lymphocytes (Tuomanen and Weiss, 1985; Reiman et al., 1990; Wout et al., 1992; 

Patterson et a l, 1995; Brito et al., 1997; Alfano et al., 2000; Alfano et a l, 2001; Garcia 

et al., 2 0 0 2 ) .
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1.4.4 Detoxification of PT

PT is considered too toxic for inclusion in vaccine preparations. In all of the acellular 

pertussis vaccines currently available for human use, PT is detoxified by chemical 

treatment (PTd) using a variety of chemicals that includes formaldehyde, 

glutaraldehyde, or both, hydrogen peroxide, or tetranitromethane. An alternative method 

to detoxify PT involves genetic manipulation (PTg) but these vaccine preparations, 

although superior to chemically-treated PT vaccine preparations, are not currently 

available. The genetically inactivated PT (PTg) has substitutions at positions 9 (Arg 

—>Lys) and 129 (Glu —>Gly) in the SI subunit, resulting in a toxoid devoid of ADP- 

ribo syltransferase activity. The toxoid is also treated with a low concentration of 

formaldehyde for stabilisation (Pizza et aL, 1989; Siber et aL, 1991; Edwards et aL, 

1995; Rappuoli, 1994; Petre etal., 1996).

Different detoxification procedures using various reagents have been shown to result in 

different amino acid side-chain modifications (Table 1.1) and changes in 

conformational and epitope binding patterns for the resulting PTds (Bums et aL, 1987; 

Nencioni et aL, 1991; Ibsen, 1996). The quality of the resulting toxoid depends on the 

reagent used and on the extent of chemical modification. The modification of the 

protein is also affected by factors such as the pH, the availability of the reactive amino 

acid(s) in the protein, the reactant concentrations and the matrix (Metz et aL, 2004). 

Differential modification of PT by different detoxification methods or subtle changes in 

the detoxification process itself can have distinct effects on the toxic and immunogenic 

properties of the resulting PTds (Gupta et aL, 1987; Edwards et aL, 1995., Metz et aL,

2004). Therefore for an effective vaccine, the production of detoxified PT needs to be
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carefully monitored in order to achieve a balance between immunological efficacy 

whilst minimising toxicity levels.

Aldehydes, such as formaldehyde and glutaraldehyde are widely used reagents for the 

preparation of PTd. In the toxoiding process, formaldehyde reacts primarily with the e- 

amino group of lysine residues to form methylol groups followed by a condensation 

reaction to form a Schiff base (imine), which is rapid and reversible. The imine then 

cross-links with other amino acids to form a stable methylene bridge (Metz et aL, 2004). 

During the toxoiding process, cross-links can occur within or between different protein 

molecules (Petre et al., 1996). Glutaraldehyde also reacts in a similar manner to 

formaldehyde (Table 1.1). It is generally thought that the aldehyde treatment 

predominantly modifies the B-subunits as evidenced by the formation of higher 

molecular weight species of the B-ohgomer on SDS-PAGE gels and the fact that SI 

subunit lacks lysine residues (Nogimori et al., 1986; Nencioni et al., 1991; Fowler et 

al., 2003). Nevertheless changes in both A- and B-subunits cannot be excluded (Bums 

et al., 1987; Fowler et al., 2003). In addition, recent studies indicate that methylol 

groups can be found on the side chains of amino acids other than lysine residues (Metz 

et al., 2004). To date, the precise nature and location of different chemical 

modifications on the PT molecule are not known.
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1.5 Pertussis vaccines

1.5.1 Whole-cell pertussis vaccines (WCVs)

The methods used for the production of WCVs can vary among different manufacturers. 

In general, WCVs are prepared by growing B. pertussis organisms (often more than one 

strain is used) under conditions that favour the expression of the virulent phase I 

phenotype and the display of fimbriae 2 and 3. Once the bulk culture is complete, the 

bacterial cells are harvested, washed to remove substances derived from the medium 

and suspended in a solution of sodium chloride. The organisms are killed and their 

toxicity is inactivated by different time-temperature incubations, formalin, thimerosal, 

long term storage at 2-8°C or some combination of these methods (Griffiths, 1988; 

Cherry et a l, 1988). Currently available WCVs usually combine the killed suspension 

of B. pertussis cells with aluminium-adsorbed diphtheria and tetanus toxoids (DTPw) 

(European Pharmacopoeia (EP), 2006; WHO recommendations for whole cell vaccines,

2005). In some cases, the B. pertussis suspension is adsorbed to either aluminium 

hydroxide or aluminium phosphate (EP, 2005).

WCVs are used globally and immunisation of infants following approved schedules has 

shown an efficacy of 80% or more. Despite the success of WCVs, the high 

reactogenicity has made the use of these vaccines quite controversial. In a study 

involving 15,752 DTPw recipients and 784 diphtheria and tetanus toxoid (DT) 

recipients the adverse reactions occurring within 48 h following immunisation were 

significantly more frequent following DTPw vaccine. Local reactions such as redness, 

swelling and pain occurred in 37.4, 40.7 and 50.9% respectively of DTPw recipients 

whereas the percentage of these reactions in DT recipients, was less than 10%. Fever 

(>38°C), drowsiness, fretfiilness, vomiting, anorexia and persistent crying were reported
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in 31.5, 31.5, 53.4, 6.2, 20.9 and 3.1% respectively following immunisation with DTPw 

and again the reaction rate was markedly lower following immunisation with DT (Cody 

et al., 1981). Apart from these so-called mild reactions, severe side effects such as 

convulsions, hypotonic-hyporesponsive state, encephalopathy and death have in the past 

been associated with pertussis vaccination. However, the link between vaccination and 

some of the severe neurological reactions has never been conclusively proven (Miller et 

al., 1981; Cherry et al., 1988; Mattoo and Cherry, 2005). Nevertheless WCVs have 

been shown to induce convulsive activity in mice and was thought to be associated with 

the presence of PT and LPS. These components are residually present in WCVs but are 

absent in the acellular pertussis vaccine (ACVs) (Donnelly et al., 2001). The adverse 

publicity and concern regarding the safety of WCVs decreased vaccine acceptance and, 

as a consequence, the incidence of pertussis cases increased. The World Health 

Organisation (WHO) continued to advocate use of WCVs since the benefits of the 

vaccine outweighed the risk of side effects and concurrently, research on the 

development of a new (acellular) vaccine devoid of side effects was encouraged.

1.5.2 Acellular pertussis vaccines (ACVs)

The most important finding that led to the development of a ‘safer' vaccine was the 

identification of antigens that conferred protection (Sato et al., 1974 Sato et al., 1984) 

and since then a variety of ACV formulations has been produced. They differ from each 

other with regard to bacterial clone, methods of purification and detoxification (section

1.4.4), number and quantity of components, incorporated adjuvants and excipients.

All ACVs currently in use contain PTd either alone or in combination with FHA, PRN 

or Fims 2 and. 3 to give one, two, three, or five component vaccines (Casey and 

Pichichero, 2005). The bacterial components used in the vaccine are prepared from the
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culture supernatant of B. pertussis in two ways: co-purification or by individual 

purification of components. The first approach produces a mixture of antigenic 

components from B. pertussis and involves the precipitation of protective antigens with 

ammonium sulphate, extraction of soluble proteins with concentrated sodium chloride 

from the precipitate and then fractionation of the extract by sucrose density gradient 

centrifugation to obtain a preparation practically free of endotoxin. The second method 

involves the purification of individual components by successive chromatographic and 

precipitation steps (Sato et al., 1983; Corbel and Xing, 2004). The bacterial components 

prepared by either method are then detoxified where required, and blended together to 

form the one to five component acellular bulk. The combined acellular bulk is adsorbed 

to aluminium hydroxide or phosphate gel prior to blending it with adsorbed diphtheria 

and tetanus toxoids to form the triple vaccine (DTaP).

Several clinical trials have been carried out in order to evaluate the safety, 

immunogenicity, and efficacy of different DTaP vaccines by comparing them with each 

other and with DTPw products (Klein, 1995; Decker et al., 1995; Edwards et al., 1995; 

Olin et a l, 1997; Cherry, 1997). Although it has been emphasised that differences in 

methodology and case definition made comparisons between trials difficult, some 

general comparisons and conclusions were drawn (Cherry, 1997). Overall, the results 

from the various clinical trials (Klein, 1995; Decker et aL, 1995; Edwards et a l, 1995; 

Greco et al., 1996; Gustafsson et al., 1996) showed that DTaP vaccines were associated 

with less severe and less frequent adverse reactions compared with DTPw vaccine. The 

DTaP vaccine efficacy improved with an increasing number of antigen components and 

the best DTaP vaccines showed protective efficacy similar to the best DTPw (Olin et 

al., 1997;Greco.^? al., 1996; Gustafsson et al., 1996). The level of antibody necessary 

for protection is not known but results from the trials indicated that anti-PT, anti-PRN
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and anti-Fim antibodies appear to be important (Cherry et a l, 1998; Storsaeter et a l,

1998).

One finding from clinical trials with serious implications was the ability of 

formaldehyde treated PTd to revert to toxicity (Ad Hoc Group., 1988; Storsaeter et a l, 

1988; Storsaeter et a l, 1988b; Storsaeter et al, 1990). The ability of formaldehyde 

treated toxins to revert to toxicity has been previously documented (Akama et a l, 1971; 

Northurup and Chisari, 1972; Sato and Sato, 1988; Cryz et a l, 1981). This problem was 

addressed by Rappuoli and co-workers with the development of PTg, which was also 

reported to be superior in terms of immunogenicity, but for legal reasons, the product is 

currently not available. This may not be unethical since its efficacy was found to be 

similar to that of chemically-detoxified vaccine (Greco et a l, 1996).

Despite the lower reactogenicity of DTaP vaccines in comparison to WCV, recent 

studies have indicated that 1-2% of DTaP booster vaccine recipients display extensive 

limb swelling at the injection site (Rennels et a l, 2000; Yamamoto et a l, 2002; Gold et 

a l, 2003; Casey and Pichichero, 2005) which is partly associated with residual activity 

of PT (Rennels et a l, 2000). Hypotonic-hyporesponsive episodes, which are adverse 

events associated with pertussis vaccines, have also been reported occasionally 

following immunisation with DTaP vaccine (Braun et a l, 1998). Since reversion of PTd 

to PT can have severe implications in immunisation programmes, regulatory authorities 

require extensive testing before clinical use to assure the safety of chemically-treated 

vaccines (1.5.5).

In summary, acellular pertussis vaccine are an innovation that have resulted in less 

discomfort from vaccination and provided an opportunity to give a late booster dose to
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Stimulate antibody levels in adolescents and adults which is not possible with WCVs 

(Pichichero et ah, 2006). All licensed acellular pertussis vaccines, that may differ in 

antigen composition and method of detoxification, have been highly effective in 

controlling pertussis in infants and children, where vaccine coverage has been high.

1.5.2.1 Acellular-based combination vaccines

In recent years, several other vaccines have been added as a combination with DTaP 

products to produce multivalent vaccines in order to simplify vaccine administration. 

The combination of other vaccines is highly advantageous to both manufacturer and 

recipient since these would induce protection against 4-5 different diseases in one single 

injection, thereby reducing the distress to the recipient and improving compliance, 

reduce materials and distribution costs, and prevent the additive exposure to 

preservatives and stabilisers that can contribute to adverse events (Halsey, 2001). 

Currently a number of countries have licensed diphtheria, tetanus acellular pertussis 

based combination vaccines. Three or five component DTaP product are used as a base 

and combined with some or all of the following vaccines: Haemophilus influenzae (Hib) 

type b polysaccharide (PRP) conjugated to T or D (PRP-T, PRP-D), hepatitis B (HB) 

and inactivated polio virus (IPV) to form tetra-, penta- and hexavalent vaccines (Vidor 

et al., 1999; Halsey, 2001). The different types of DTaP-based combination vaccines 

are shown in Table 1.2 and differ in the amount of pertussis antigens, the type of 

adjuvant and the presence of other additional antigens.

The decrease in pertussis incidence in developed countries has made it difficult to 

research on combination vaccines as it is seen as unethical to undertake placebo- 

controlled clinical trials. Since the disease is uncommon and each vaccine has a known
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Table 1.2. Existing and potential acellular pertussis-based combination vaccines. 

The number of pertussis antigens is shown in brackets.

Commercial name Composition

Pediacel DTaP(5)/rPV/Hib

Pediarix DTaP(3)/Hep B/IPV

Repavax Tdap(5)/n>V

Hexavac DTaP(2)/IPV/Hib/Hep B: fully liquid

Infanrix-Hexa DTaP(3)/Hep B/IPV/Hib (Hib component is

lyophilised)

Infanrix-IPV-Hib DTaP(3)/IPV/Hib

Infanrix-IPV DTaP(3)/IPV

Infanrix-Hib DTaP(3)/Hib

Infanrix- Hep B DTaP(3)/ Hep B

Infanrix DTaP(3)
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record of serological correlates of efficacy, this is used for assessment of combination 

vaccines. Although this is a satisfactory method for assessing efficacy for most vaccine 

antigens, it is not appropriate for pertussis antigens since the correlation of specific 

antibody titres with protection has not been well established. Rather, the immune 

responses to a combination vaccine are compared to the immune responses elicited by 

DTaP vaccine with proven efficacy (WHO 1998, EP, 2006).

Results from clinical trials have been promising and have shown that immune responses 

to combination vaccines including DTaP, HB and IPV are comparable to separately 

admdnistered vaccines (Vidor et a l, 1999; Yeh, 2005; Black and Greenberg, 2005). In 

sharp contrast, concerns have been raised regarding Hib immunogencity in pertussis- 

based combination vaccines. A significant reduction in anti-PRP antibody levels was 

seen following administration of the three component DTaP combination product in 

comparison with separate administration of Hib and DTaP both clinically and in 

laboratory studies. Other studies using a different combination containing 5 pertussis 

components reported no significant effect on Hib immunogenicity (Black and 

Greenberg, 2005). The reason for this is unclear but it is thought to be due to 

modulation of Hib in Hib/DTaP combination and possibly results from the interaction 

of Hib with adjuvant and other vaccine antigens (Mawas et a l, 2005, 2006). The 

clinical relevance of this observation is unclear but may in part account for the increased 

incidence of Hib cases in England and Wales in recent years (Capiau et a l, 2003; 

Me Vernon et a l, 2003). This unpredictability of immune responses to individual 

vaccine antigens after incorporating multiple antigens into combination vaccines can 

have serious implications for the protection against these diseases.
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Regarding safety, the reactogenicity of currently available combination vaccines has 

been shown to be no different from its respective counterparts. Nevertheless, it should 

be noted that deaths have been observed following administration of the newer 

pentavalent and hexavalent vaccines (Anonymous, 2004; Yeh, 2005; Zinka et aL,

2006). A causal relationship between vaccination and sudden unexpected deaths has not 

been conclusively proven. Nevertheless, these findings prompt intensified surveillance 

for unexpected deaths after vaccination. Since pre-licensure Phase I, II and III studies 

are too small to detect rare or delayed adverse events, post-licensure studies of larger 

populations for longer periods of time are of paramount importance to assess vaccine 

safety and effectiveness (von-Kries et aL, 2005). The problem with combination 

vaccines is that it is difficult to pinpoint which component is responsible for a particular 

adverse event. Currently, the existing guidelines or pharmacopoeial monographs for the 

laboratory evaluation of DTaP-based combination vaccines are based on experience of 

tests on individual components (section 1.6). It is assumed that the combination will not 

display effects not produced by the individual components. However, considering that 

DTaP vaccines are not without adverse reactions and the complexity of multivalent 

vaccines, this may not be the case.

1.6 Quality control testing of pertussis vaccines

In general, pertussis vaccines are not considered to be well-defined products since they 

are derived from, or produced by, a living organism in a batch-wise procedure and, due 

to the toxoiding procedure, the relationship between physico-chemical or antigenic 

characteristics and efficacy is not clear. Moreover the negative influence that one 

vaccine may have on the other in a combination cannot be excluded. For these reasons 

quality control testing of vaccines is of paramount importance during all stages of
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vaccine development for the assurance of product consistency, potency and safety. One 

of the best examples for demonstrating the need for standardisation of the properties of 

pertussis vaccines came from the early clinical trial studies with various WCVs where 

vaccine efficacy ranged from 0 to 100% (Lapin, 1943). Since then it has been learnt that 

subtle changes in materials, in the process itself or in conditions such as temperature, 

can result in changes in the final vaccine that can affect its safety, its effectiveness or 

both. Subsequently, several in vivo and in vitro control methods have been developed to 

assure the quality of vaccines. Regulatory agencies, e.g. European Directorate for the 

Quality of Medicines (EDQM), European Pharmacopoeia (EP), and WHO, generate 

recommendations and guidelines for the production and control of pertussis vaccines. 

Vaccine products are assayed for sterility, purity, identity, potency and toxicity and 

these tests are part of a panel of release assays required by regulatory authorities prior to 

final release of vaccines for clinical use. This assures that the product is consistently 

efficacious and at the same time presenting minimal, if any, adverse effects (WHO, 

1998; EP, 2005, 2006). Pertussis vaccines are administered to large numbers of healthy 

people as a prophylactic measure, therefore the assurance of potency and safety of 

vaccines is essential if effective vaccine immunisation programmes are to be 

maintained. The current methods used for this purpose have been recently reviewed by 

Corbel and Xing (2004).

1.6.1 Potency and toxicity tests for WCVs

1.6.1.1 Mouse weight gain test (MWGT)

Currently the control test required by WHO, EP and U.S. for assessing the toxicity of 

WCV is the mouse weight gain test (WHO, 2005; EP, 2005; FDA, 2006). MWGT is 

considered to be a general, non-specific test measuring overall toxicity since a number
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of B. pertussis toxins may affect the weight gain of mice. The exact role of the different 

B. pertussis toxins and their relative contribution to the overall toxicity in vaccine- 

induced reactions remains elusive. At least three components, DNT, LPS and PT can 

influence the mouse weight gain. Although the mechanism of toxicity is uncleai*, the 

MWGT is detecting mainly endotoxin. DNT is destroyed during the manufacturing 

process therefore is inactive in vaccine preparation and PT has been shown to interact in 

this assay in a way that may actually have a suppressive effect on the endotoxin-induced 

weight loss of mice (Gupta et aL, 1988; Horiuchi et aL, 1994). Based on this, a 

refinement of the MWGT is used in some countries since the toxicities of LPS and PT 

can be differentiated with respect to weight and time (WHO, 2005). Despite these 

findings, the test has been shown to be useful to some extent since a correlation has 

been reported between the reactogenicity of pertussis vaccines in the MWGT and the 

adverse reactions in children (Corbel and Xing, 2004). However, it does not account for 

the rare cases of severe reactions in children. Separate quantitative assays on each of the 

biologically-active components may allow for better comparisons with regard to clinical 

reactivities of pertussis vaccines. Since PT and LPS are thought to largely contribute to 

the adverse reactions of whole-cell vaccines, regulatory bodies (Section 1.6.2.1) require 

monitoring of these components using specific methods.

1 .6 .1 . 2  hitracerebral mouse protection test

The intracerebral mouse protection (Kendrick) test is the official potency test for WCVs 

(EP, 2005). The test evaluates the ability of vaccines to protect mice from a lethal 

intracerebral challenge with a virulent strain of B. pertussis. The mechanism of 

protection by this route is unclear but it is believed that the protection is dependent on 

alterations of the blood-brain barrier by the presence of active PT in vaccines, thereby

43



-------------------------------------------------------------------------------------------------------------- Introduction

allowing access of antigens, antibodies and immune cells into the brain, and it is the 

combined effects of minute amounts of PT and other antigens that confer protection 

(Robinson and Irons., 1983; Munoz and Peacock, 1989; Gupta et aL, 1990). The test 

was established based on the observation of a strong correlation between vaccine 

efficacy in children and its potency in the Kendrick test (UK Medical Research Council, 

1956). However, the artificial mode of protection, technical difficulties and significant 

intra- and inter- laboratory variation, animal distress and the passing of vaccines of 

lower efficacy have raised concern regarding its use (Cameron, 1988; van der Ark et aL, 

1994; Greco et aL, 1996; Simondon et aL, 1997; van Straaten-van de Kappelle et aL, 

1997). In order to address these issues a collaborative study was organized by the WHO 

that required global vaccine manufacturers and national control laboratories to test 

blinded vaccine samples of high and low potency using the intracerebral mouse 

protection test. The results of this study showed that the test performed reproducibly 

with good assay precision. The majority of the participants were able to discriminate 

between vaccine samples of high and low efficacy (Xing et aL, 2001). Nevertheless, 

some technical problems were highlighted in some of the laboratories that may have led 

to significant outcomes in terms of passing and failing a vaccine sample if samples with 

marginal differences in potency had been evaluated. Based on the artificial mode of 

protection, possible discrepancies in vaccine potencies, animal welfare a better method 

of assessing potency is required.

1 .6 .1.3 Alternative potency tests

A serological potency test has been described for whole-cell pertussis vaccine (van der 

Ark et aL, 1994). Although the authors demonstrated that the potency of vaccines 

determined by this test was significantly similar to that obtained using the intracerebral
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mouse protection test, the assay has not been widely accepted as an alternative model 

for assessing potency for several reasons, even though it can reduce animal distress and 

the number of mice required by more than 25%. The test is only measuring total 

antibody binding and there is no assessment of antibody function. Moreover, correlation 

of serum antibody responses and clinical protection is unclear (Ad Hoc group, 1988; 

Cherry, 1997). Since the mechanism of protection afforded by whole-cell vaccines 

involves both cell-mediated and humoral immunity (Mills et a l, 1993a; Canthaboo et 

aL, 2001) measuring only total antibody responses may not necessarily represent 

protection. Thus, the basis of this test is questionable.

The intranasal or aerosol respiratory challenge models have been proposed as suitable 

alternatives to the Kendrick test. Apart from having the added advantage of assessing 

both whole-cell and acellular pertussis vaccines, respiratory tract infection of mice has 

many similarities to human infection: (i) mice are more susceptible to infection when 

they are young; (ii) localisation of infected bacteria; (iii) similar post-infection 

physiological changes including lymphocytosis, hyperinsulinaemia and hypoglycaemia 

and acquired immunity to re-infection (Sato et aL, 1980; Redhead et aL, 1993; Mills et 

aL, 1998a; Xing et aL, 1999; Canthaboo et aL, 2000). The aerosol challenge route has 

been shown to consistently and reproducibly infect the lower respiratory tract, 

demonstrate a good correlation between bacterial clearance from the lungs after aerosol 

challenge and the potency of vaccines as estimated by the Kendrick test and with 

vaccine efficacy in children. However, the complexity and need for specialised aerosol 

equipment, unlike the intranasal challenge model, has hindered the further validation of 

this method by an international collaborative study for the acceptance of this method for 

routine use (Mills et aL, 1998b; Canthaboo et aL, 2000; Wantanabe et aL, 2002; Corbel 

et aL, 2004). On the other hand, a collaborative study was organised by the WHO on the
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intranasal challenge model. This method differs in that the B. pertussis challenge is 

carried out by administration of a bacterial suspension directly into the nose using a 

micropipette and, like the aerosol challenge method, it too was robust and shown to 

discriminate vaccines of different potencies in a similar performance to vaccines used in 

clinical trials (Guiso et al,, 1999). However, further optimisation of this method is 

required as no reliable estimates of relative potency could be determined as a linear 

immunisation dose-response line was not established under the experimental conditions 

used (Corbel et al., 2004). The respiratory challenge models are not currently part of 

the release assays as yet but could be anticipated as alternatives in the near future.

There is now evidence indicating that B. pertussis can be taken up and survive within 

macrophages and that clearance involves activated macrophages (Friedman et aL, 1992; 

Xing et aL, 1998). Production of reactive nitrogen/oxygen intermediates from activated 

macrophages is one of the principal mechanisms of macrophage cytotoxicity to 

invading bacteria. Recent studies showed that immunisation with WCV was associated 

with the induction of NO synthesis by macrophages and based on this, an in vitro nitric 

oxide induction assay has been developed and reported to form the basis of a potential 

replacement potency assay (Canthaboo et aL, 1999; Xing et aL, 2002; Canthaboo et aL, 

2002). A good correlation was observed between the production of reactive 

nitrogen/oxygen intermediates and with protective immunity by the aerosol challenge 

method. Although the data indicate that NO may serve as a useful marker of 

macrophage activation, like the serological potency assay, measurement of NO 

production alone may not fully reflect the protective properties of vaccine since 

antibody-mediated phagocytosis is also a key mechanism for B. pertussis killing by 

phagocytes. Further studies are required to identify the relative roles of the different 

antigen(s) present in the vaccine for production of reactive nitrogen/oxygen

46



---------------  Introduction

intermediates and macrophage activation and how this correlates with protection, by 

immunising mice with various vaccine preparations of different quality.

1.6.2 Potency and toxicity tests for ACVs

The MWGT has proved to be useful for the safety control for pertussis vaccines, but it 

is not suitable for assessing the toxicity of acellular vaccines since PT/d, which is 

present in all of the currently available acellular vaccine preparations, may accelerate 

the weight gain of mice. Therefore, it is considered important to evaluate each of the 

toxicities separately by specific methods. In ACVs, safety testing involves the 

monitoring of PT and LPS. These components are considered to be the major players 

involved in the reactogenicity of WCVs. Other reactogenic B. pertussis components are 

excluded by validation of the manufacturing process. The toxicity tests for residual PT 

activity in vaccine is the main subject of this thesis and will be discussed below. The 

tests available for monitoring other B. pertussis components have been reviewed by 

Corbel and Xing (2004).

1.6.2.1 Specific toxicity tests

Currently the HIST is the official safety test for monitoring active PT in ACVs. In 

HIST, groups of mice are injected intraperitoneally with doses of vaccines, and 

unvaccinated controls are included. After five days, the mice are injected with histamine 

solution and the number of mice surviving at 24 h is recorded. A sensitive variant of the 

test based on the measurement of rectal temperature has been developed in Japan. 

However has not yet been recommended under the EP or WHO guidelines (Horiuchi et 

aL, 2001). A major problem with HIST is that it is a lethal challenge test, uses large
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numbers of animals and large variations in test performance have been observed. The 

variability arises from mouse strain, age, sex, injection route, challenge route, and 

environmental factors (Wardlaw and Parton, 1982). Although the assay variability is 

unacceptable, at present there is no other practical means for detecting active PT in 

these vaccine preparations. Therefore HIST should be regarded as a priority for 

replacement. Efforts to develop a new toxicity test based on the mechanism of 

histamine sensitisation for monitoring PT are still the subject of intense study. As 

discussed in section 1.4.3.3, the precise mechanism of HIST is unclear but it is known 

that both A- and B-subunit activities of PT contribute to HIST (Ui et aL, 1985; 

Loosmore et aL, 1993). Recently, de Wildts group have shown that PT induces 

histamine sensitisation probably by interfering with the contractile mechanisms of 

vascular smooth muscle and has suggested using the contractile mechanisms of the 

vascular smooth muscle cells of resistance arteries as the basis for a possible alternative 

to the HIST (Meijeren et aL, 2004a, b). However no further developments have been 

described and it remains to be seen whether this phenomenon is specific for PT and if 

this approach is able to distinguish toxin from toxoid.

The CHO cell assay (section 1.4.3.4) is an in vitro test that may be used as an 

alternative to the HIST for monitoring active PT in vaccines and was based on the 

observation that PT specifically causes clustering of CHO cells (EP, 2005; WHO, 1998; 

Hewlett et aL, 1983). In brief, the CHO cells are treated with PT reference or vaccine 

dilutions. After incubation, the morphological changes are observed under a 

microscope. The highest dilution of the test vaccine showing total cell clustering 

represents the titre. The amount of active PT in the test sample can be quantified against 

a reference preparation of known concentration. This assay, in comparison to HIST, is 

far superior in terms of sensitivity (Gillenius et aL, 1985). Despite its excellent
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sensitivity, its use is limited since the assay is not usually suitable for testing the final 

formulation because of the presence of adjuvant, which causes CHO cell death. 

However it is useful for monitoring bulk components if they have not been adsorbed to 

the adjuvant. Another concern regarding the use of the CHO cell assay is the possibility 

of failing to detect reversion to toxicity after chemical detoxification. It has been shown 

that CHO cell clustering test failed to detect reversion to toxicity of aldehyde-detoxified 

PT since the same sample showed significant activity in the HIST. This could be due to 

the inability to detect activity concealed in aggregates of toxoided PT. The different 

mechanism of PT action in HIST and CHO is likely to account for the discrepancies 

(Horiuchi et a l, 2001; Kataoka et a l, 2002; Corbel et a l, 2004).

The lymphocytosis promotion test (section 1.4.3.1) is another in vivo assay that can 

measure active PT in vaccine samples. The assay involves the comparison of peripheral 

leukocytosis in mice induced by test and reference vaccines. Although this test is useful, 

it has been reported to be of insufficient sensitivity to demonstrate residual pertussis 

toxin activity in acellular pertussis vaccines. In addition, the assay is difficult to 

standardise due to technical problems and this has prevented its use in the routine safety 

testing of pertussis vaccines (WHO, 1998; Horiuchi e ta l, 2001).

1.6.2.2 Alternative specific toxicity test

The histamine sensitisation activity is abolished in PTg, in which the enzyme active site 

has been inactivated by site-directed mutagenesis (Pizza et a l, 1989; Rappuoli et a l, 

1997). Therefore, histamine sensitisation is dependent on the catalytic activity of the A- 

protomer. A synthetic peptide (GOi3 C2 0  peptide) homologous to the carboxyl-terminal 

2 0  amino acid sequence of the a-subunit of the Gis-protein was identified as a good
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substrate for PT ADP-ribosylation (Finck-Barbancon and Barbieri, 1995) and, based on 

this, an enzymatic-HPLC (E-HPLC) coupled assay has been recently developed in 

which the ADP-ribosylation activity of PT SI subunit is determined. A synthetic 

fluorescein-labelled GOi3 C2 0  peptide was used as the substrate for the PT A-protomer- 

catalysed enzymatic transfer of ADP-ribose from NAD to the cysteine moiety of the 

fluorescent synthetic peptide and reverse-phase HPLC methodology was used to 

separate and quantify the ADP-ribosylated product (Cyr et a l, 2001). Although the 

ADP-ribosylation activities of native PT preparations using the E-HPLC coupled assay 

were shown to correlate well with the toxicity observed by HIST (Yuen et a l, 2002), 

the relationship between the ADP-ribosylation activity due to residual PT in vaccines 

and the in vivo HIST has not been investigated. In order to replace the unsatisfactory 

HIST, a relationship needs to be established between the enzymatic activities in 

vaccines and their reactivity in HIST. Another concern regarding the use of this in vitro 

assay is that the mechanisms and sites of the different toxoiding processes on the PT 

molecule have not been defined. Thus PTd, present in pertussis vaccines from different 

manufacturers, could be modified at different sites of the A-protomer, B-oligomer or 

both. As mentioned previously, the B-oligomer facilitates host-cell binding and entry of 

the SI subunit into the cell and the enzymatic A-protomer catalyses the ADP- 

ribosylation of G proteins. This dual biological function of the PT molecule is likely to 

be fully reflected in the in vivo HIST but not in the E-HPLC assay which only measures 

the A-protomer activity. Therefore the E-HPLC method may not fully reflect the in vivo 

toxicity of detoxified PT, Additional assays, to monitor the B-subunit activities, may be 

needed.
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1.6.2.3 Potency test

Due to the unsuitability of the intracerebral mouse protection test for acellular pertussis 

vaccines and the absence of a clear immune correlate of protection against pertussis, an 

innnunogenicity assay in mice is currently used to monitor the consistency of a test 

vaccine by comparison with a stable reference vaccine of known clinical efficacy. The 

immunogenic activity, measured as total antibody response by ELISA, of each antigen 

claimed to contribute to vaccine efficacy should be within the specification approved by 

the national control authority, and is based on the immunogenic activity of the 

corresponding antigen in the reference vaccine (WHO, 1998; EP, 2006). This approach, 

like the serological potency assay as described for WCVs, measures only total antibody 

binding and there is no assessment of antibody function. Therefore, assurance of 

vaccine quality should be made with caution since the test also measures non-functional 

antibody responses. Moreover, this assay does not take account of cell-mediated 

immunity. Assessment of cell-mediated immunity can be a useful addition to the 

immunogenicity test (Mastrantonio et a l, 1999; Ausiello et a l, 2003).

In Japan, and other Asian countries, a modified Kendrick test has been used for 

assessing potency of acellular vaccines. This has a similar procedure to the conventional 

test except that the time of challenge was extended from the original 2  weeks to 3  weeks 

(Horiuchi et a l, 2001). Although this approach has proved to be effective in monitoring 

potency of pertussis vaccines in Japan, the assay has not been widely accepted due to 

technical problems and animal welfare concerns. Nevertheless, under the current 

situation where there is no suitable method for determining potency, the WHO working 

group on the standardisation and control of pertussis vaccines recommended other 

countries to start using the modified Kendrick test to determine applicability of the
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method since a collaborative study revealed that the method was effective for 

differentiating immunologically active and inactive preparations (Corbel et aL, 2004). 

Other alternative potency tests that are under investigation include the intranasal and 

aerosol challenge model and have been discussed previously (1.6.1.3).

1.7 Aims and objectives

The in vivo quality control tests play a crucial role in the assessment of the potency and 

safety of pertussis vaccines and are essential if effective immunisation programmes are 

to be maintained. However, the assays currently available are far from satisfactory and 

the continual use of large numbers of animals is not in line with current 

recommendations to limit the use of animals in the laboratory. Regulatory authorities 

require safety testing of ACVs in order to confirm the absence of significant residual PT 

activity. Currently, the HIST is the only practical test for this purpose. However, it is a 

lethal challenge test and suffers from poor precision. Factors such as mouse strain, age, 

sex, injection route, challenge route, and environmental factors can affect the 

reproducibility. Therefore there is an urgent need for a replacement of the HIST. The 

CHO cell assay is a possible alternative but its use is limited since it cannot be used on 

final vaccine formulations and may also fail to detect toxic preparations. The E-HPLC 

coupled assay merits further investigation as an alternative in vitro toxicity test but in 

order to replace the unsatisfactory HIST, the relationship between the ADP-ribosylation 

activity of residual PT in vaccines and the HIST will need to be established. PT is an 

AB5 type bacterial toxin with two functionally distinct domains. The B-oligomer 

(subunits S2-S5) facilitates host-cell binding and entry of PT into the cell, whereas the 

enzymatic A-protomer (subunit SI) catalyses ADP-ribosylation of host G-proteins and 

causes subsequent cell toxicity. A major concern regarding the use of E-HPLC alone is
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that it measures only the SI subunit activity whereas the dual biological functions of the 

A- and B-subunit activities are both likely to be reflected in the HIST. Therefore, 

additional ass ay (s) to monitor the B-subunit activity may be needed to complement the 

E-HPLC coupled assay. The overall aim of this project was to develop a reliable in vitro 

assay to replace the HIST currently used in the control of pertussis vaccines.

The main objectives were: 1) to further optimise and validate the E-HPLC assay, 

investigate the effectiveness of the proposed enzymatic assay to determine PT toxicity 

in different vaccine formulations and to establish its relationship with the in vivo HIST; 

2) to develop a binding assay for assessment of B-subunit activity of PT in vaccines; 3) 

to investigate the potential application of the combination of the E-HPLC and binding 

assays for monitoring active PT in pertussis vaccines and its relationship with the HIST; 

and 4) to investigate the interaction of PT with CHO cells by comparing the protein 

expression profile of PT-treated cells with those of non-treated cells using two 

dimensional gel electrophoresis. Changes in protein expression in CHO cells induced by 

PT may point the way to alternative toxicity assays.
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2.1 Antigens

2.1.1 PT

PT was a freeze-dried in-house reference preparation (NIBSC code 90/518). Each 

ampoule contained a nominal 20 \ig of PT and has been assigned 2100 international unit 

(lU) of PT activity in terms of the First International Standard for Pertussis Toxin in 

HIST (Xing e ta l, 2002).

2.1.2 Pertussis toxoid

Glutaraldehyde (0.5%)-inactivated PT (PTd) was a kind gift of Sanofi Pasteur (France). 

PTd was prepared for lyophilisation by dialysis, using cellulose membrane with 

molecular cut off at 12,000 (Sigma-Aldrich, Poole, UK), three times over a period of 24 

hours (h) against 10 mM ammonium acetate solution to remove storage buffer 

(carbonate buffer). After dialysis, the PTd was diluted with 0.5% bovine serum albumin 

(BSA) solution (1:1 v/v) and aliquots of 500 pi (72.5 pg/ml) were freeze dried and 

stored at -20®C until use. Protein concentration was determined by UV absorption 

spectroscopy (2.4.1). Formaldehyde and glutaraldehyde detoxified PT (50 pg/ml) was a 

kind gift from GSK (Rixensart, Belgium) and was stored at -20^C.

2.1.3 Other Antigens

Diphtheria toxoid (D, 02/176), fimbriae 2 and 3 (Fims 2/3, 85/638), Haemophilus 

influenzae type b capsule conjugated to tetanus toxoid (PRP-T, in-house reference), 

inactivated polio virus (IPV, in-house reference) and tetanus toxoid (T, 02/232) used in 

ADP-ribosylation assay or binding assays were all obtained from NIBSC. Filamentous 

haemagglutinin (FHA, 30 pg/ml) and pertactin (PRN, 50 pg/ml) were kindly donated by 

GSK.
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2.2 Antisera

Mouse anti-FHA monoclonal antibody 1C6 (99/570), mouse anti-B. pertussis fimbriae 3 

monoclonal antibody (04/156), mouse anti-PT SI subunit monoclonal antibody 1B7 

(99/506), rat anti-D monoclonal antibody (5mg/ml), rat anti-T monoclonal antibody (5 

mg/ml), guinea pig anti-PT serum, sheep anti-PT serum (97/572) and sheep anti-PRN 

serum (97/558) were all obtained from NIBSC (in-house reagents). Monoclonal 

antibody to fimbriae 2 was kindly supplied by Health Protection Agency (Porton Down, 

UK).

2.3 Test vaccines

Vaccines used in this study were from three manufacturers with 10 different 

formulations (A-J). All the formulations used in this study were in combination with D 

and T ± other antigens such as PRP-T, IPV, FHA, PRN and Fims 2/3. The properties 

are shown in Table 2.1. Throughout this thesis, for confidential reasons, the exact 

compositions of the different vaccine formulations used in this study have not been 

indicated.

2.4 Determination of protein concentration

2.4.1 UV absorption spectroscopy

Concentrations of PTd and FAC ± [(CH2)5]-G(xi3C20 were estimated by measuring 

absorbance (A) near 280 and 495 nm respectively using the Beer-Lambert law:

A 28O or 495 “  £ c /

Where £ is the molar absorption coefficient (M'* cm'*), I is the path length (cm), and c is
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Table 2.1, Pertussis vaccines

Sample Adjuvant [PTd]

IXg/SHD

Method of detoxification

DTaP-A A1(0H)3 25 FA and GA

DTaP-B A1(0H)3 25 FA and GA

DTaP-C A1P0 4 20 GA

DTaP-D A1P0 4 20 GA

DTaP-E A1P0 4 20 GA

DTaP-F A1P0 4 20 GA

DTaP-G A1P0 4 2.5 GA

DTaP-H A1P0 4 2.5 GA

DTaP-I (PT-g) A1(0H)3 5 or 7.5 PT-9K/129G + FA*
DTPw-J A1(0H)3 N/A FA
SHD, single human dose (0.5 ml); FA, formaldehyde; G A, glutar aldehyde; * DTaP with genetically 

inactivated SI activity of PT was treated with a low concentration of FA (0.035% (w/v) for commercial 
use (Nencioni etal., 1991).
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the protein concentration (M). The UV spectra for PTd (190-370 nm) and FAC ± 

(CH2 )5 -Gai3 C2 0  (300-550 nm) were measured at room temperature (RT, ~22°C) using a 

Cecil 6000 Series spectrophotometer and a matching 1-cm path-length, 1 ml Quartz 

cuvette (Hellma, Essex, UK). Blank samples for FAC ± [(CH2 )5]-Gai3 C2 0  and PTd 

solutions contained 10 mM ammonium acetate buffer, pH 8.5. The calculated molar 

extinction coefficient for PT at 280 nm was reported to be 126742 M'' cm"̂  (Fowler et 

a l, 2003). Concentration of the FAC ± [(CH2 )5 ]-Gai3 C2 0  was calculated using the 

average molar extinction coefficient of 5-carboxyfluorescein (Aldrich), £4 9 2 , 64,400 M'^ 

cm'^ (Dr C-T Yuen, personal communication).

2.4.2 Modified Bradford assay

Protein concentrations of cell lysates to be separated by 2-D PAGE (Section 2.10) were 

determined using a Bradford Protein Assay kit (Bio-Rad) according to the 

manufacturer's instruction with modification as described by Ramagli and Rodriquez 

(1985). Standard BSA solutions and each test sample were diluted to 50 jil using the 

same lysis buffer as that was used to prepare the cell lysates (Section 2.10.1.3). Samples 

were then individually mixed with 10 pi 0.1 M hydrochloric acid (HCl) and 40 p.1 

distilled water to a final volume of 1 0 0  p,l in 1 cm path-length, 4 . 5  ml polystyrene 

cuvettes. Lysis buffer was used as blank. To each replicate sample, 3.5 ml diluted 

Bradford reagent (1:4 in distilled water) was added and mixed by repeated inversion of 

sealed cuvettes. After 5 minutes, the absorbance was measured at 595 nm using a 

Lambda 800 UV spectrophotometer (Perkin Elmer Instruments). A concentration curve 

corresponding to the absorbance values for BSA ranging from 0-50 p.g was performed 

and the protein concentration of unknown samples were calculated from the slope of the 

standard-curve using Microsoft Excel.
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2.5 Histamine sensitisation test (HIST)

HIST was carried out according to the method described in the WHO guidelines for the 

production and control of the acellular pertussis component of monovalent or combined 

vaccines (WHO, 1998). NIH strain mice, of 4-5 weeks of age were randomly distributed 

in groups of 10 per cage. They were inoculated intra-peritoneally (i.p) with each test 

vaccine at 1 single human dose (SHD, 0.5 ml)/mouse. Three reference groups were 

injected with 0.5 ml of PT (90/518) in phosphate-buffered saline containing 0.2% 

gelatin (PBSG) at 5.25 (50 ng), 1.75 (16.7 ng) and 0.58 lU (5.6 ng) /mouse respectively 

(Appendix A.l and A.2). The mice in the negative control group were injected with 0.5 

ml PBSG (Appendix A.3). Five days after immunisation the mice were challenged (ip) 

with 0.5 ml histamine dihydrochloride solution (11.04 mg/ml in PBSG equivalent to 2 

mg histamine base per 0.5 ml dose). The number of survivors in each group was 

recorded after 24 h. The validity criteria for the HIST test were as follows: no deaths in 

the negative control group after challenge; at 5.25 lU/dose in the PT reference group, > 

30% mice show histamine sensitisation; at 1.75 lU/dose in the PT reference group, < 

70% mice should show histamine sensitisation. A test result was only taken into 

consideration if the test met all of the above criteria. Since the HIST is variable, 

whenever mice in the test group showed signs of reactivity after the histamine 

challenge, the test was repeated at least once. A batch was regarded as reactive if > 5% 

mice showed signs of histamine sensitisation from the combined test results.

2.6 High performance liquid chromatography (HPLC)

The HPLC was performed on a titanium PEEK lined Gilson binary pump system fitted

with a model 118 UV detector and model 122 fluorescence detector, model 122

(Anachem, Luton, UK). Both operation and data acquisition were controlled and

processed by the Gilson Unipoint software.
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2.7 ADP-ribosylation assay

Adjuvant stock solutions: aluminium hydroxide, alhydrogel (2% Al(OH) 3  equivalent to 

1,3% AI2 O3 ) were from Superfos, Denmark, and aluminium phosphate (0.44mg/ml) was 

obtained from CSL Limited, Australia. All chemicals and reagents were of analytical 

grade purchased from Sigma-Aldrich or VWR-BDH, (Poole, UK) and consisted of: 

adenosine triphosphate (ATP), acetonitrile, ammonium acetate (CH3 COONH4 ), 

chloroform (CHCI3 ) dithiothreitol (DTT), dimethyl sulphoxide (DMSO), hydrochloric 

acid (HCl), isopropanol (ISP), lysophosphatidylcholine (LPC), methanol (MeOH), 13- 

nicotinamide adenine dinucleotide (p-NAD), ovalbumin (OVA), 

phenylmethylsulphonyl fluoride (PMSF), polyoxyethylene (80) sorbitan monolaurate 

(TweenSO), and Trizma®Base. Stock and working preparations of enzyme reaction 

reagents are shown in Appendix B. The PT enzyme substrate, FAC-(CH2 )s-GaBC2 0  and 

FAC-Gai3 C2 0  (Fluorescein caproic acid (FAC) tagged Goti3 C2 0  peptide, FAC- 

VFDAVTDVIIKNNLKECGLY-COOH) was custom synthesised by AnaSpec Inc.( San 

Jose, CA, USA) and was reported to have > 90% purity. FAC-G«i3 C2 0  lacks the (CH2 ) 5  

linker between the FAC and peptide (Figure 2.1).

2.7.1 Enzymatic reaction

The enzymatic ADP-ribosylation activity of PT was assayed in duplicate as follows. 

The PT standard-curve (Appendix B.3) used in each assay was constructed using 13 

mM (similar to the amount typically present in vaccines (EP, 2006)) of either A1(0 H ) 3  

or AIPO4  as diluents for PT 90/518 according to the characteristics of the test sample 

(Chapter 3, Section 3.1.2). Vaccine samples, especially in the case of ACVs, generally 

have high ADP-ribosylation activity. In order to assay them within the PT standard- 

curve range, they were pre-diluted in OVA (2 mg/ml) solution and used for the ADP-
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Figure 2.1. Structure of fluorescein tag (FAC TAG) a) with and b) without linker
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ribosylation reaction in an identical way to the reference PT. The enzymatic activity in 

the neat sample (per SHD) was obtained by multiplying by the sample dilution factor.

20 pi of PT 90/518 (Appendix B.3), Biken (in-house positive control vaccine (NIBSC 

code 00/486), Appendix B.4) and test (vaccine) samples were activated with 5 pi DTT 

(200 mM, Appendix B.5) for 15 rain at RT. Thereafter, 10 pi of ADP-ribosylation 

reagent (Appendix B .ll)  was added, mixed and incubated for 30 rain at 4°C. Stock 

FAC-(CH2 )5 -Gai3 C2 0  or FAC-Gai3 C2 0  (5 pi, Appendix B.12) was added, mixed and 

incubated at 20°C for 6  h. The reaction mixture was stopped with 40 pi of DMSO;0.5 M 

NH4OH buffer (1:1, v:v) and stored at -20^C until HPLC analysis. HPLC analysis was 

carried out within 2 days. The reaction scheme of PT catalysed ADP-ribosylation of 

FAC-(CH2 )5 -Gai3 C2 0  peptide substrate is presented in Figure 2.2.

2.7.2 Analysis of ADP-ribosylated product and FAC-Gcd3C20 by reverse-phase 

HPLC

ADP-ribosylated product was resolved using a Shodex Asahipak (ODP50-4E)

polymeric column (5 pm, 4.6mm x 250mm; Phenomenex, Macclesfield, UK). The

HPLC mobile phase was Solvent A, 10 mM CH3COONH4 , pH 8.5, containing 80%

acetonitrile and Solvent B, 10 mM CH3 COONH4 , pH 8.5. Flow rate was 0.8 ml/min and

detection was by fluorescence at 495nm (lex) and 515 (A,em). Separation was achieved

using gradient-elution with solvent B: 75% (0-1 min); 75-70% (1-2 min); 70% (2-6

min); 70-0% (6 - 8  min); 0% 8-9 min; 75% (9-11 min); and 75% (11-20 min). Prior to the

injection of the PT ribosylation reaction mixture (10 pi) on to the column, the frozen

solution was thawed, mixed and centrifuged at 10000 rpm (Microcentaur, Sanyo) for 1

min. Ribosylated product and substrates had a retention time of approximately 7.1 and

10.8 min respectively (Chapter 3, Figure 3.2). For the further characterisation of the

substrate, separation was achieved using a slower elution-gradient with solvent B: 75%
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Figure 2.2. Reaction scheme of PT-catalysed ADP-ribosylation of FAC TAG-Gio3 C20 

peptide.
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(0-3 min); 75-68% (3-4 min); 68-65%; (4-18 min); 65-50% (18-24 min); 0% (24-28 

min); and 75% (28-40min).

2.7.3 Data analysis

After HPLC analysis, fluorescence peak area under the ADP-ribosylated product peak 

was integrated using the. Gilson Unipoint software. A PT reference standard-curve 

constructed with either Al(OH) 3  or AIPO4  adjuvant according to the type of adjuvant in 

the test sample, was used to calculate the enzymatic activity in the test sample by using 

the linear regression line generated by the Microsoft Excel programme. The enzymatic 

activity for PT 90/518 was expressed as pM substrate present in the ADP-ribosylated 

product peak. One pM of fluorescence substrate was deduced to have a fluorescence 

peak area of 542000. Therefore, the pM substrate was determined by dividing the 

fluorescence peak area generated by PT 90/518 by 542000. The enzymatic activity for 

vaccines was defined as: one ADP-ribosylation enzyme unit (E-unit) is equivalent to 

enzyme activity generated by 1 pg of PT 90/518. Unless otherwise stated, all assays 

were performed in duplicate and the results presented as means ± standard deviation or 

CV%.

2.8 Development of a carbohydrate-binding assay for the B-oligomer of pertussis 
toxin and toxoid

2.8.1 General materials

BSA fraction (grade V), 3 '-diaminobenzidine (DAB) tablets, ethylenediaminetetraacetic 

acid (EDTA), o-phenylenediamine dihydrochloride (OPD) tablets, peroxidase labelled: 

anti-sheep IgG (donkey), anti-mouse IgG (goat), anti-mouse IgM (goat) and anti-rat IgG 

(goat), polyoxyethylene (20) sorbitan monolaurate (Tween-20), polyoxyethylene (80)
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sorbitan monolaurate (Tween-80), tetrabutylammonium cyanoborohydride 

(TBACNBH3 ) and tri-sodium citrate were purchased from Sigma-Aldrich or VWR- 

BDH. All other chemicals were of analytical grade purchased from either Hayman LTD 

(Essex, UK), Sigma-Aldrich or VWR-BDH. 3-aminopropylbiotinamide (Biotin) and 

Reacti-Bind Neutravidin coated polystyrene strip plates were purchased from 

Pierce/Perbio, Northumberland, UK.

2.8.2 Glycoproteins, glycolipids and neoglycolipids

Glycoproteins, glycolipids and negative controls (bovine pancreas ribonuclease A 

(RNaseA), BSA, 2 -dihexadecyl-5 n-glycero-3 -phosphoethanolamine (DHPE) and 

glucose-ceramide) were all purchased from Sigma-Aldrich-Fluka. Glycoproteins used 

were: Bovine ai-acid glycoprotein (bAGP), bovine pancreas ribonuclease B (RNaseB), 

bovine thyroglobulin-G (bTG), foetal calf serum asialofetuin (Afet), foetal calf serum 

fetuin (Pet), human «i-acid glycoprotein (hAGP), human haptoglobin (hHg) and human 

transferrin (hTf). Glycolipids used were: GMl, GAl, GM2, GM3, GTlb, GDI a and 

GDlb. Glycoproteins and glycolipids were prepared at 1 mg/ml (w/v) diluted in dHzO 

and 1 mg/ml (w/v) diluted in butanol respectively and stored at -20^C as stock 

solutions. Neoglycolipids (oligosaccharides.DHPE) consisted of LNT, lacto-N-tetraose; 

LNnT, lacto-N-neotetraose ; LNFP-I, lacto-N-fucopentaose-I; LNFP-II, lacto-N- 

fucopentaose-II; LNFP-UI, lacto-N-fucopentaose-III; S A3 LNT, sialyl a2,3-LNT; 

SA3LNnT, sialyl a2,3-LNnT; SA3LeA5, sialyl LNFP-B; Su3LNT, 3’-sulphated LNT; 

Su3LeX5, 3’-sulphated LNFP-III; and Su3LeA5, sulphated LNFP-II were kind gifts 

from Dr. C-T Yuen, The Glycosciences Laboratory, Northwick Park Hospital, Harrow. 

The structures of glycolipids and neoglycolipids are shown in Table 2.2. The 

predominant structures found on the glycoproteins tested are shown in Table 2.3.
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Table 2.2. Structures of glycolipids (oligosaccharide.cer) and neoglycolipids 

(oligosaccharide.DHPE)
Glycoconjugates Structure

GAl

GMl

GM2

GM3

GTlb

GDI a

GDlb

LNT

LNnT

LNFP-I

LNFP-n

LNFP-m

SA3LNT

SA3LNnT

SA3LeA5

Su3LNT

Su3LeA5

Su3LeX5

DHPE

Gaip 1,3GalNAcP 1,4Galp 1,4Glcp 1. Cer 

Gaip 1,3GalNAcP 1,4(Neu5Aca2,3)Gaip 1,4Glcp 1. Cer 

GalNAcp 1,4(Neu5Aca2,3)Gaip 1,4Glcpi. Cer 

Neu5Aca2,3Gaipi,4Glcpl. Cer 

Neu5Aca2,3Galp 1,3GalNAcp 1,4(Neu5Aca2,8Neu5Aca2,3)Galp 1,4Glcp 1. Cer 

Neu5Aca2,3Galp 1,3GalNAcp 1,4(Neu5Aca2,3)Galp 1,4Glcp 1. Cer 

Gaip 1,3GalNAcp 1,4(Neu5Aca2,8Neu5Aca2,3)Galp 1,4Glcp 1. Cer 

Gaip 1,3GlcNAcp 1,3Galp 1,4Glc. DHPE 

Gaip 1,4GIcNAcp 1,3Galp 1,4Glc.DHPE 

Fucal ,2Gaip 1,3GlcNAcp 1,3Galp 1,4GIc.DHPE 

Gaip 1,3(Fucal ,4)GlcNAcp 1,3Gaip 1,4Glc.DHPE 

Galal ,4(Fucal ,3)GlcNAcp 1,3Galp 1,4Glc.DHPE 

Neu5 Aca2,3Gaip 1,3GlcNAcp 1,3Gaip 1,4Glc.DHPE 

Neu5 Aca2,3Gaip 1,4GlcNAcp 1,3Gaip 1,4Glc.DHPE 

Neu5 Aca2,3Galp 1,3(Fucal ,4)GlcNAcP 1,3GaIp l,4Glc.DHPE 

S03-3Galp 1,3GlcNAcP 1,3Galp 1,4Glc.DHPE 

SOs-SGalp 1,3(Fucal ,4)GlcNAcp 1,3 Gaip 1,4Glc.DHPE 

S03 -3Gaip 1,4(Fucal ,3)GlcNAcp 1,3Gaipi ,4Glc.DHPE

C37H78NÜ6P=‘̂

*2- Dihexadecyl-sn-glycero-3-phosphoethanoiamlne. Cer, ceramide; Glc, glucose; Gal, galactose; 

GlcNac, N-acetyl glucosamine; GalNac, N-acetyl galactosamine; Neu5Ac, N-acetyl neuraminic acid, 

commonly known as sialic acid; Fuc, fucose. SO3, sulphate.
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Table 2.3 iV-glycan structures predominantly found on glycoproteins

Glycoprotein iV-glycans Reference

bAGP A2 (contains N-glycolyl and N- 

acetyl sialic acids)

Nakano et al., 2004

RNaseB High mannose structures (Man 5-9) Joao et al., 1993; Rudd et 

a l , 1995

bTG Complex (contain sialic acid, fucose 

and galactose residues) and high 

mannose structures

Rawitch et al., 1993

Afet Prepared by removal of sialic acid 

from fetuin, yielding neutral 

complex type structures NA2, NA3

Fet A2 and A3 Takasaki et a l, 1986

hAGP A2, A3 and A4 Foumet et al., 1978; 

Yoshima etal., 1981

hHg A2, A3 Sieczkowska and Olczak., 

2001

hTf A2 Charlwood etal., 1998
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2.8.3 Oligosacccharides

N-glycans: mono sialylated biantennary (Al); di-sialylated biantennary (A2); tri- 

sialylated triantennary (A3); tri-sialylated triantennary with core fucose (A3F); tetra- 

sialylated tetraantennary (A4); tetra-sialylated tetraantennary with core fucose (A4F); 

asialo-biantennary (NA2); asialo-triantennary (NA3); asialo-tetraantennary (NA4) were 

either purchased from Dextra Laboratories (Reading, UK) or from Ludger 

Glycotechnology (Oxford, UK) or prepared in-house from glycoproteins (hTf, bovine 

Fet and hAGP (Sigma-Aldrich, Poole, UK) according to previously published 

procedures (Yuen et al., 2002). Other IV-glycans were prepared in-house by Dr. C-T 

Yuen and consisted of N-glycolyl (Ngc) and N-acetyl (NAc) sialylated N-glycans: A2- 

1, di-sialylated (1 Ngc, INAc) biantennary; A2-2, di-sialylated (2Ngc) biantennary, A2- 

3, tri-sialylated (INgc, 2NAc) biantennary; A2-4, tri-sialylated (3Ngc) biantennary; 

A3-1, mixture of tri-sialylated (INgc, 2NAc) and tri-sialylated (2Ngc, INAc) 

triantennary and were prepared from bAGP. High mannose type N-glycans were 

prepared from RNaseB (Yuen et al., 2002). Galactose (Gal), maltopentaose (Glc5), 

lactose (Lac) and sialyl a2-3/6-lactose (SaLac) were purchased from Sigma-Aldrich, 

Poole, UK. The structures and monosaccharide compositions of these glycans are listed 

in Tables 2.4 and 2.5. Since native oligosaccharides do not adhere directly to 

micro wells, oligosaccharide structures were therefore derivatised with an amino-biotin 

derivative (section 2.8.4) and immobilised to neutravidin-coated wells.

2.8.4 Preparation of biotinylated (BTN) glycans and glycoproteins

2.8.4.1 Conjugation of oligosaccharides or glycoproteins to biotin

Oligosaccharides (Tables 2.4 and 2.5) were conjugated to N-(3-aminopropyl)

biotinamide by reductive amination (Figure 2.3) as described (Yuen et al, 2000 and
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Oligosaccharide Structures

Man5-9 / Manal^Manpi ^
(Mana1̂ 2)̂   ̂ / Manat  ̂ Manpl —4GlcNAcpl—4GlcNAc 

[ Manat

NA2
Gaipi— 4GloNAopl—2M anal\^

Manpi —4GlcNAcf3l—4GIcNAc 

Galpl" 4GlcNAopi—2Manal-^

NA3

Gaipi—4GlcNAcpi —2Manal.

Manpl ~“ 4GlcNAcpl—4GlcNAc 
Gaip 1— 4GlcNAc pi 3

4 /
Manal
2

Galpl— 4GlcNAcpi'^

NA4 Galpl— 4GlcNAcpl ^
6
Manal 
2 \

Gaipi— 4GIcNAcpl/ Manpl — 4GlcNAcpl—4GlcNAc 
Gaipi— 4GlcNAcpi^ 3

4 /
Manal
2

Gaipi— 4GlcNAcpi/

Glc5 Glcal— 4Glcal—4Glcal—4Glca 1—4Glc
Lac Galpl~4Glc

* For the binding experiments oligosaccharides were assayed as biotinylated oligosaccharides. Man5-9, 

oligomannose 5-9 type AT-linked oligosaccharides; GlcNAc, N-acetyl glucosamine; Man, mannose; Gal, 

galactose; Glc, glucose.
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Table 2.5 Structures of acidic oligosaccharides*
Oligosaccharide Structures

Gal p 1 — 4GlcN Acp I— 2Maii a 1 
A l Neu5Aca2-3/6^ Manpi — 4GlcNAcpi — 4GlcNAc

SaLac

Galpl —  4GlcNAcpi— 2Manal 

A 2 Neu5Aca2— 3/6Gaipi —  4GlcNAcpi—2 M a n a l\^
6
Manpi — 4GlcNAcpi— 4GlcNAc 
3

Neu5Aca2— 3/6G aipi—  4GlcNAcpi—2Manal-'''^^

Neu5 A c a 2 ~  3/6 Gaip 1 —4G lcN A cpi— 2M anal
A3 ^

M anpl — 4GlcNAcpl— 4GlcNAc 
N eu5A ca2— 3/6G aipi— 4GlcNAcpI 3

4 /
M anal
2

Neu5Aca2—  3/6G alpl—  4G lcNA cpl'^

Fucal
N eu5 Aca2—3/6 Gaip 1 —4GIcNAc pi — 2M ana L I

A3F 6
M anpi — 4GlcNAcpl— 4GlcNAc 

N eu5A ca2—  3/6G alpl— 4G lcN A cpl\^  3
4 /
M anal
2

Neu5Aca2—  3/6G aipi—  4G lcNA cpi'^

N eu5A ca2—  3/6G alpi— 4G lcN A cpis^
6
M anal 
2 \

A4 Neu5 Aca2 ~  3 /6 G alpl—  4G lcNA cpl'^ M anpi —  4GlcNAcpl— 4GloNAc
Neu5 A ca2—  3/6Galpl — 4GlcNAcp 1 ^  3

4 /
M anal
2

Neu5Aca2-— 3/6G aipi—  4G lcNA cpi'^

Neu5 A ca2—  3/6G aipi—  4GlcNAcpl

M anal Fucal
A4F 2 \  1

Neu5Aca2—  3/6Galpl —  4GlcNAcpl'^ Manp 1 —  4GlcNAcp 1—  4GLN Ac
Neu5 A ca2—  3/6Galpl —  4GlcN Acp 1 ^  3

4 /
M anal
2

Neu5Aca2—  3/6Galpl—  4GlcNAcpl'^

Neu5Aca2 — 3/6Galpl — 4Glc

* For the binding experiments oligosaccharides were assayed as biotinylated oligosaccarides. A2-1 to A2- 

4 and A3-1 differs only in the sialylated structures present but have the same structure of A2 and A3 

structures respectively (section 2.9.2). GlcNAc, N-acetyl glucosamine;- Man, mannose; Gal, galactose; 

Neu5Ac, N-acetyl neuraminic acid, commonly known as sialic acid; Glc, glucose.
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Sugar-CHO + NHa-Biotin

Boric acid

Sugar-CH(OH)-NH-Biotin

Dehydration

SugaT"CH=N-Biotin (imine/Schiff base)

CNBH3 (reduction)

Sugar-CH2-NH-B iotin

Figure 2.3, Reaction scheme for formation of biotinylated oligosaccharides. In

brief, the boric acid prepares the aldehyde group of the reducing end of the 

oligosaccharide (carbonyl carbon) for the nucleophilic attack by the amine group of the 

biotin. This forms an intermediate product with a hydroxyl group and a new C-N bond 

(hemi-aminal). The acidic medium aids in the protonation of the hydroxyl intermediate 

to allow water to leave, forming the partially stable Schiff base. The Schiff base imine 

group is chemically reduced to give a stable derivatised glycan using 

tetrabutylammonium cyanoborohydride.
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Feizi et al, 1994) with slight modifications. Lyophilised oligosaccharides (-10-100 nM) 

in 1ml- polypropylene v-vials were dissolved in boric acid (10 |4l, 0.5 M in 50% 

ethanol) and added to N-(3-aminopropyl) biotinamide (80 pi, 10 mM in MeOH) and the 

mixture was gently vortexed. Then, freshly prepared tetrabutylammonium 

cyanoborohydride (TBACNBH3 , 1 0  pi, 1 M in MeOH) was added, mixed and the 

reaction mixture capped tightly and incubated on a heating block at 60°C for 3 h. When 

making TB ACNBH3 solution, it should be noted that 1 mg of TB ACNBH3 solid would 

take up -1 pi volume when dissolved). After incubation, the cap was opened and the 

reaction mixture was allowed to dry at 60°C by evaporation (-40 min) in a fume 

cupboard. The derivatized (biotinylated) oligosaccharides (BTN-oligosaccharides) were 

re-suspended in distilled water (200 pi). To remove excess TBACNBH3 300 pi of ethyl 

acetate was added to the solution, vortexed to mix, centrifuged ( 1  min at 1 0 ,0 0 0 rpm, 

Minispin Eppendorf) and the upper organic layer was removed (biotinylated 

oligosaccharide is present in the lower aqueous phase). This procedure was repeated 

five times in total. After ethyl acetate extraction, biotinylated oligosaccharides in the 

lower aqueous phase were lyophilised. These partially purified BTN-oligosaccharides 

were then subjected to further purification by HPLC on a TSK Amide-80 column 

(Section 2.8.4.2). Biotinylation of fetuin and ribonuclease B glycoproteins was 

performed using biotin N-hydroxysuccinimide according to the manufacturer’s 

instructions (Pierce, UK).

2.S.4.2 Purification of biotinylated oligosaccharides by normal phase HPLC

Biotinylated oligosaccharides were purified by normal-phase HPLC on an TSK Amide-

80 column (Anachem; 5 pm, 4.6 x 250 mm) as described previously (Yuen et al, 2002)

with minor modification of the solvents and elution gradient conditions, to remove

unconjugated biotin and other carbohydrate impurities. Chromatographic separation was
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achieved using gradient elution over a period of 1 h at a flow rate of 1 ml/min. Solvents 

A and B consisted of 80% and 20% acetonitrile, respectively, and both contained 5 mM 

trifluoroacetic acid (TFA) and 10 mM CH3 COONH4 , pH 4.2 (final pH -2.5). The 

elution gradient profile of solvent B was as follows: 30% (0-1 min) 30-45% (1-40 min), 

45-80% (40-48 min), 80-30% (49-51 min) and 30% (51-60 min). The system was 

calibrated using 4-ABA- labelled glc oligomers to create a dextran ladder as previously 

described (Yuen et a i, 2002). Detection of 4-ABA-labelled glucose references was by 

fluorescence (kex, 296nm; Xem, 359nm). Biotinylated oligosaccharides were detected 

by UV absorption at 223 nm. Lyophilised biotinylated oligosaccharides (section 2.8.4.1) 

were reconstituted to a total volume of 1 0 0  pi in a two step procedure with starting 

solvent, 70% solvent A and 30% solvent B (first step, 70 pi; second step, 30 pi and 

pooled) prior to injection into the HPLC system. After each step the samples were 

vortexed and centrifuged at 10000 rpm (Minispin Eppendorf) for 10-20 seconds to 

maximise recovery of the oligosaccharides. HPLC fractions were isolated on elution 

and lyophilised.

2.8.4.3 Identification of biotinylated oligosaccharides

All the structures of the glycans prepared in-house and derivatised oligosaccharides and 

4-aminobenzoic acid derivatives were confirmed by mass using a matrix assisted laser 

desorption ionisation-time of flight (MALDI-TOF) mass spectrometer (MS) (Bruker 

Autoflex; Coventry, UK) operated in the positive ion reflection mode with 2,5 

dihydroxybenzoic acid (Sigma-Aldrich, UK) as matrix. Structures were also confirmed 

from their relative elution times compared with authentic commercial standards (when 

available) by TSK Amide-80 HPLC. The lyophilised biotinylated N-glycan fractions 

(post HPLC purification) were re-dissolved in 100 pi distilled water. 1 pi of sample

(-10-100 pM) was mixed with 1 pi of matrix (2,5 -dihydroxybenzoic acid (20 mg/ml in
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0.05% TFA, 50% ethanol)) and 1 pi of this mixture was spotted on target and allowed 

to dry at ambient temp and subjected to MALDI-TOF MS. The results are presented in 

Chapter 3, Table 3.3.

2 .8 .4.4 Quantification of biotinylated oligosaccharides by orcinol staining

Quantification of biotinylated oligosaccharides was carried out on normal aluminium- 

backed TLC plates (Merck) using an orcinol sulphuric acid staining procedure (Dubois 

et al., 1956 and Feizi et al., 1994). 1 pi of known amount of galactose (0.05-0.5 mg/ml) 

and 1 pi of unknown amounts of biotinylated oligosaccharides were spotted on TLC 

plates and allowed to dry. 3,5-dihydrotoluene-monohydrate (Orcinol, Sigma-Aldrich) 

reagent (Appendix C.l) was sprayed evenly just until the plates appeared slightly wet 

and thereafter heated in a vented oven at 120^C for about 1 min or until the violet colour 

of hexose was maximal. Quantification was performed after image acquisition using a 

ProtoCOL colony counter (Synbiosis, Cambridge, UK) fitted with a CCD camera (Sony 

DFW/SX900) and using GeneTools analysis software (SynGene, Cambridge, UK). The 

amount of hexose present in the biotinylated oligosaccharides was derived from the 

galactose standard-curve. Total amount of biotinylated oligosaccharide was calculated 

from the relative percentage of hexose present in the oligosaccharide structure. For 

example, the amount of hexose present in biotinylated A3 was found to be 0.4 mg/ml, 

which only accounts for 30.7% of hexose content in A3. Then the total amount of 

oligosaccharide would be 0.4 x 3.26 (100%) to give amount of oligosaccharides per ml. 

The percentages of hexose present in the oligosaccharide structures tested are shown in 

Chapter 3, Table 3.3.
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2.8.5 Investigation of PT binding to glycolipids using DOT blot method

1  pi of stock preparations of glycolipids ( 1  mg/ml) were spotted directly on 

nitrocellulose membrane (Hybond-C super membrane, RPN203G 91448, Bio-Rad) 

allowed to dry and then blocked with 3% BSA diluted in PBS for 2-3 days at 4®C. After 

blocking, the membrane was washed four times with PBS and incubated with 20 ml of 1 

pg/ml PT (diluted in PBS) for 2 h at 37*̂ 0 with shaking (20 revs/min Stuart shaking 

incubator: S150, Stuart Scientific, UK). Following washing of the membrane with PBS, 

the blot was then incubated with 20 ml of sheep anti-PT serum (1/10,000 diluted in 

PBST) for 2 h at 37^C with gentle agitation (20 revs/min). The membrane was then 

washed three times with PBST and subsequently incubated with 20 ml of peroxidase- 

labelled anti-sheep IgG (1/1000 diluted in PBST) for 2 h at 37^C with shaking (20 

revs/min). The membrane was washed three times with PBST and developed with 15 ml 

DAB solution, prepared according to manufacturer’s instruction, for about 5-10 min at 

RT shaking (20 revs/min). The reaction was stopped by washing with distilled water 

and blotted dry. Dot blot images were captured using a white light trans-illuminator 

connected to an image acquisition and analysis software package (LabWorks, 

www.uvp.com).

2.8.6 Investigation of PT binding to neoglycolipids by neoglycolipid-capture ELISA

Neoglycolipids were coated on hnmulon 4 plastic microwells (Thermo Labsystems) as 

described by Green et a l, 1992. Binding of PT was performed as described for 

glycoprotein-capture ELISA (Section 2.8.9).
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2.8.7 Screening of glycoproteins as ligands for PT binding

A total of 8  different glycoproteins were investigated for their suitability as a ligand for 

PT binding and the non-glycosylated proteins RNaseA and BSA were used as negative 

controls. The procedure was performed as follows: Nunc maxisorp-96 well ELISA 

plates (VWR-BDH, UK) were coated with 1 |ig of glycoprotein (100 pi per well in 

carbonate buffer (pH 9.5) containing 0.035 M sodium hydrogen carbonate, 0.015 M 

sodium bicarbonate and 7.4 mM sodium azide) at RT (~22°C) overnight (O/N). Plates 

were blocked with 3% BSA in PBS containing 0.05% v/v Tween-20 (blocking buffer, 

PBST, 100 [xl per well) for 1 h followed by incubation with PT at 25 ng/well (positive 

control, 100 pi per well) or test samples at RT for 2 h. Serial dilution across the plate 

was performed using the blocking buffer as the diluent. Negative control wells were 

incubated with blocking buffer. Thereafter, 100 pi of sheep anti-PT serum (NIBSC, 

97/572, 1:50,000 in blocking buffer) was added and incubated at RT for 1 h 30 min, 

followed by incubation for 1 h 30 min with 100 pi per well of horseradish peroxidase- 

labelled anti-sheep IgG (1:1000 in blocking buffer). Optimal concentrations of both 

primary and secondary antibodies were determined using checkerboard titrations. The 

colour development was carried out according to manufacturer’s instructions by adding 

100 pi OPD substrate solution to all wells and incubation in the dark at RT (15-20 min), 

followed by the addition of 50 pi of 3 M HCl to stop the reaction. The plates were read 

immediately at 492 nm using a Multiskan MS plate reader running on Genesis software 

for Windows (Labsystems, UK).

2.8.8 Screening of oligosaccharides as ligands for PT binding

The binding activity of PT towards a panel of 17 different oligosaccharides was
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examined. The procedure was similar to that described for screening of glycoproteins, 

except for the following changes: Neutravidin plates (pre-blocked in blocker BSA, 

Pierce, UK) were used and they were coated by incubating with biotinylated glycans or 

biotinylated glycoproteins (30 pM/200 pi) for 2 h at room temperature. The capacity of 

biotin binding by the plates, according to the manufacturer is about 25 pM using 200 pi 

incubation volumes. After washing, wells were incubated with PT 90/518 at 500 

ng/well (200 pi per well) for 2 h at RT. Following incubation for 1.5 h with 200 pi per 

well of sheep anti-PT serum (1:100,000 in blocking buffer), the binding was quantified 

by incubating ELISA plates for 1.5 h with 200 pi per well of horseradish-peroxidase- 

labelled anti-sheep IgG (1:2000 in blocking buffer) and subsequent colour development 

with OPD substrate solution (200 pi per well) in the dark (30 min). Colour development 

was stopped by adding 3 M HCl (50 pi per well) and the developed colour was read 

immediately using a Multiskan MS plate reader at wavelength 492 nm. Optimal 

concentrations of both primary and secondary antibodies were determined using 

checkerboard titrations.

2.8,9 Determination of binding activity of PT and PTd using glycoprotein- or 

oligosaccharide-capture ELISA

The binding activities of PT and PTd were assessed using glycoprotein or 

oligosaccharide-capture ELISA described above with the following exceptions for 

oligosaccharide-capture ELISA: sheep anti-PT serum was used at 1:80,000; horseradish 

peroxidase-labelled anti-sheep IgG was used at 1:2000; and serial dilution of PT and 

vaccine test sample (DTaP A-H) using desorption buffer (section 2.8.8). The blocking 

buffer was used as negative control and PT was used as reference. The binding activities 

in the test samples were either expressed as potency relative to the reference vaccine by
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parallel line assay using the linear portions of the titration curves for the test sample and 

the reference preparation (Finney, 1978) or the PT reference standard-curve was used to 

calculate the binding activity in test sample by using the linear regression line generated 

by the Microsoft Excel programme. The binding activity for the latter case is defined as: 

one binding unit (B-unit) is equivalent to binding activity generated by 1 pg of PT 

90/518. For investigation of the effect of other vaccine components on the binding 

assay, the optical density (OD) values of negative controls were subtracted from the OD 

values of the reference toxin (PT) and test sample and the binding activity in the test 

sample was presented as % of the OD values generated by binding of PT at 31.25 

ng/well (1 0 0 %).

2.8.10 Desorption of antigens from aluminium adjuvant suspensions

Three different desorption buffer systems: tri-sodium citrate (citrate; 100 mg/ml diluted 

in PBS) or EDTA (3 mM diluted in 0.25 M Na2 HP0 4 ) or Tween-20-EDTA (0.2% 

Tween-20 and 0.2% EDTA) were used to investigate their efficiency in eluting the 

antigen from the aluminium adjuvants. Equal volumes of vaccine and desorption buffer 

were mixed and incubated O/N at 37^C and with gentle shaking (150 revs/min, Stuart 

Scientific, S150 UK). Aluminium adjuvants were then removed by centrifugation at 

13200 revs/min (Eppendorf 5415D) for 10 min at RT and the supernatant was used 

immediately for the binding assay.
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2.9 Exploring the potential applications of ADP-ribosylation assay and 

carbohydrate binding assay

2.9.1 Comparison of different formulations

Vaccine samples were treated with and without Tween-80 and kept at 4^C for two 

weeks. PBS (Appendix A.3) was used instead of Tween-80 as control. Histamine 

sensitisation, ADP-ribosylation and fetuin binding activities were assessed according to 

the method described in sections 2.5, 2,7 and 2.8.7 respectively. The monoclonal 

antibody-capture ELISA experiment for PT subunits S1 and S2/3 is described hereafter. 

ELISA plates were coated with 100 pi of 1/100 monoclonal anti-PT SI (NIBSC code 

99/506) and 1/100 monoclonal anti-PT S2/3 (NIBSC code 99/534) diluted in carbonate 

coating buffer. Plates were left overnight in a humid box at 37^C. After washing three 

times with PBS (Appendix A.3 (i)) containing 0.05% Tween-20, plates were blocked 

with 100 pl/well of 10% FCS diluted in PBST. For preparation of vaccine samples, 

DTaP-A and DTaP-C were desorbed using tri-sodium citrate as described in Section

2.8.10 and the supernatant was used for the assay. Two-fold serial dilutions of the 

vaccine sample and PT 90/518 (positive control, 1000-8 ng/ml) was carried out in 

ELISA plates and after loading, plates were incubated for 2 h at RT (~22°C). After 

washing the plates three times with PBS, they were incubated with 100 pi of guinea pig 

anti-PT serum (1:1000 diluted in blocking buffer) and incubated for 2 h at RT, 

Thereafter, following another washing step, 100 pi of horseradish peroxidase-labelled 

anti-guinea pig IgG (1:2000 diluted in blocking buffer) was added and incubated for a 

further 2 h at RT. The colour development was carried out as described in Section 2.8.7. 

The plates were read immediately at 492 nm using a Multiskan MS plate reader running 

on Genesis software for Windows (Labsystems, UK). The binding activities in the
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DTaP products treated with Tween-80 were expressed as potency relative to the 

corresponding reference DTaP products without Tween-80 by parallel line assay as 

described in Section 2.8.9.

2.9.2 Preliminary interpretation of the relationship between the in vitro and in vivo 

tests of PT toxicity

The following mathematical equation [1] was used according to the method described 

by the Heinemann working group (Chapter 2, Solving equations and inequalities, 2002) 

to explore the possible relationship between histamine sensitisation, enzymatic and 

binding activities in this study

Death = A (H x B) + C [1 ]

where A is an associated parameter for enzymatic-HPLC (H) and binding (B) activity 

and C is a constant parameter. The suitability of this model was assessed by fitting the 

model to the experimental data obtained in each of the three assays using PT 90/518. 

Using the mean values for histamine sensitisation (% death), enzymatic (pM substrate) 

and binding activities (OD values) for PT at 16.7 and 50 ng PT 90/518, two equations 

could be generated and are as follows:

16.7 ng PT 23 = A x (25.11 X 0.20) + C [2 ]

50 ng PT 70 = A x  (75.64 x 0.42) + C [3]

The A value was calculated by subtracting equation 2 from 3 (Heinemann writing 

group, 2002). The C value was calculated by substituting the A value into equation 2 or
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3. The calculated A and C values were inserted into equation [1] and the mathematical

model to correlate death with enzymatic and binding activity is shown in the equation

below,

Death = 1.77 (H x B) + 14.4 [4]

2.10 Proteomic analysis of PT-induced CHO ceil clustering

A 2-D gel electrophoresis method was used for the proteomics study and involves: 

sample preparation, 2-D gel electrophoresis (both analytical and preparative), image 

analysis and mass spectrometry for protein identification and this work was carried out 

in collaboration with Dr. J. Wheeler, Laboratory of Molecular Structure, NIBSC. The 

aim was to investigate the proteomic changes induced by PT in CHO cells but due to 

limited time, training could not be given on mass spectrometry, therefore protein 

identification was kindly carried out by Dr. J. Wheeler.

All reagents and equipments used, unless specified, were purchased from Amersham 

Biosciences, Buckinghamshire, UK.

2.10.1 Preparation of CHO cells

2.10.1.1 Cell culture

CHO K1 cells (Cat No. 03-402-83, ECACC No.8505/005) were maintained in RPMI 

1640 with glutamine and supplemented with 10% (v/v) heat-inactivated foetal calf 

serum (FCS), 100 units/ml penicillin and 100 pg/ml streptomycin (tissue culture
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medium, all purchased from Invitrogen, Paisley, UK). Cell cultures were maintained in 

a monolayer culture at 37^C in humidified air with 5% CO2 .

2.10.1.2 Treatment of CHO cells with FT

CHO cell clustering assay was carried out as described by Gillenius et at. (1985). 

Confluent flasks of CHO cells were aspirated, washed twice with sterile PBS (Appendix 

A.3 (i)) and the cells were detached by incubating with 5 ml of 0.25% trypsin solution 

(Life technologies, UK) for approximately 3 min at RT at which point the solution was 

removed, and then the flask was incubated for 5 min at 37^C. Detached cells were re

suspended in tissue culture medium and adjusted to a concentration of 2  x lO"̂  cells/ml 

using Trypan Blue dye exclusion. 50 ml of cell suspension (1 x 10̂  cells) were 

transferred to 75 cm^ tissue culture flask followed by the addition of 6.7 ml of tissue 

culture medium (negative control) or PT 90/518 at 64 ng/ml (diluted in tissue culture 

medium) and incubated for 48 hrs at 37°C.

2.10.1.3 Sample preparation for gel electrophoresis

The treated and untreated control cells were detached, re-suspended in tissue culture 

medium and cell count and viability were obtained using Trypan Blue exclusion. 5 x 

10  ̂ cells were pelleted by centrifugation at 1200 rpm (Legend RT, Sorvall) for 5 min 

and re-suspended in ice-cold PBS. Centrifugation was carried out at 4°C. This washing 

procedure was repeated three times to remove potential contaminants from culture 

media. The final cell pellet was lysed in 40 p.1 of lysis buffer (Appendix D.l) using three 

different methods:
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1. Normal lysis buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 10 mM Tris, pH 

8.0, 5 mM Mg acetate and 1% protease inhibitor. Cells were dissolved in the buffer and 

vortexed for 5 min.

2. Sonication -  cells were dissolved in the normal lysis buffer (as No. 1) and sonicated 

in a water bath for 5 min.

3. Urea only lysis buffer -  9 M urea, 4% CHAPS, 10 mM Tris, pH 8.0, 5 mM Mg 

acetate and 1% protease inhibitor. Cells were dissolved in the buffer and vortexed for 5 

min.

Samples were centrifuged at 13000 rpm (Microcentaur, Sanyo) for 30 min at 4°C to 

remove any insoluble materials e.g. cell debris. The protein concentration of the pooled 

supernatant of control and treated cells was determined using Bio-Rad Bradford assay 

(Section 2.4.2), This was then aliquoted accordingly and stored at -20°C until use.

2.10.2 Two dimensional (2-D) gel electrophoresis

2-D gel electrophoresis was performed according to the manufacturer's instructions 

using standard Amersham Biosciences 2D-polyacrylamide gel electrophoresis (PAGE) 

apparatus and the PlusOne reagents (Buckinghamshire, UK). The total protein loading 

for analytical and preparative gels was 50 p,g and 400 pg, respectively. Cell lysates were 

diluted with rehydration buffer (Appendix D.2) to a total volume of 350 pi and applied 

onto the Immobiline pH gradient (IPG) strips (pH 3-10 non-linear, 4-7 linear or 6-9 

linear, 18 cm) using an in-gel rehydration technique (Sanchez et aU, 1997). This 

involved the reswelling of dry IPG strips by placing the gel side down directly into the 

rehydration solution containing the sample. This was subsequently overlayed with IPG 

cover fluid and in-gel rehydration was carried out overnight at RT.
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2.10.2.1 Isoelectric focusing (lEF)

First dimensional electrophoresis, IFF was carried out on a Multiphor II electrophoresis 

unit consisting of stepped voltages from 500 to 3500 V. Different total focusing times 

were tested using a total volt-hours of 30000 (for IPG strips 6-9 only), 45000, 60000, or 

100000 (Appendix D.3). After IFF, the IPG strips were stored at -20^C until second 

dimension electrophoresis was performed.

2.10.2.2 IPG strip equilibration

Prior to 2-D gel electrophoresis the IPG strips were equilibrated. IPG strips were 

carefully placed in the rehydration tray with the gel side facing up and then incubated in 

SDS equilibration buffer 1 containing DTT (Appendix D.4, 2 ml per strip) for 15 min at 

RT with slow shaking (Orbital mixer, Denley). After aspiration, the above procedure 

was repeated using SDS equilibration buffer containing iodoacetamide instead of DTT 

(Appendix D.4).

2.10.2.3 Second dimensional gel electrophoresis

Sodium dodecyl sulphate (SDS)-PAGE was performed according to the method of 

Laemmli (1970) in a vertical gel electrophoresis tank (Hoefer SE600 apparatus). 

Homogeneous polyacrylamide gels containing 12% T acrylamide (Appendix D.5) were 

prepared using a multiple gel (18 X 16 X 0.15 cm) caster according to manufacturer’s 

instructions.
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Immediately after equilibration, the IPG strip was embedded on top of the SDS-PAGE 

gel, sealed with 2% molten agarose (Appendix D.6 ) and assembled into the 

electrophoresis tank filled with running buffer (Appendix D.7). The gel was run initially 

at 25 mA/gel until the blue dye entered the resolving gel and then the current was 

increased to 40 mA/gel. The gel electrophoresis run was terminated once the dye front 

migrated to the bottom of the gel. After second dimensional electrophoresis the gels 

were carefully transferred into a glass tray containing fixing solution and left O/N 

(Appendix D.8 ).

2.10.3 Protein staining

All analytical gels were silver-stained using PlusOne silver staining kit (Amersham 

Biosciences, UK) according to the manufacturer’s instructions. Preparative gels were 

also silver-stained with the same kit using a modified protocol omitting the 

glutaraldehyde (Yan et aL, 2000). Gels were scanned immediately at 100 |im resolution 

using a personal SI Densitometer (Amersham Biosciences).

2.10.4 Gel analysis using computer-assisted 2-D software programme

The computer 2-D software package used was ImageMaster 2D Platinum software 5.0 

(GE Healthcare/Amersham Biosciences). All procedures were essentially according to 

the manufacturer's user guide and detailed as follows:

1. Automatic spot detection with default parameters
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2. Manual spot editing: add, erase, or combine spots if necessary to ensure the correct 

representation of the gel image. This was a time consuming step with possible 

human intervention.

3. Gel matching: a best resolved gel image was chosen as master. A number of 

landmarks were ehosen for each gel. After automatic matching, extensive checking 

and editing were carried out.

4. Spot parameters: contained spot information such as spot number, pi and Mr. Spot 

quantity normalisation was performed using % spot intensity prior to statistical 

analysis.

5. Statistical analysis: gels were grouped as control and treated. Quantitative analysis 

was then performed for each group. Although the software carries out the t-test, it 

does not provide the probability (i.e. confidence interval).

2.10.5 Enzymatic digestion and mass spectrometry for protein identification

Spots were excised manually from each of two preparative gels. Excised spots were 

destained in 30 mM potassium ferricyanide and 100 mM sodium thiosulphate (1:1, 

freshly mixed) according to Yan aL, 2000. Samples were washed alternatively with 

50 mM ammonium bicarbonate, 50% acetonitrile in 50 mM ammonium bicarbonate and 

100% acetonitrile. In-gel tryptic digestion was carried out at RT overnight using 0.25 pg 

of trypsin in 50 mM ammonium bicarbonate (pH 8.5).

Peptides were extracted sequentially using 1% TEA, 50% acetonitrile in 0.2% TEA and 

100% acetonitrile. The pooled extraction solution was dried in a GyroVap centrifugal 

evaporator (Howe, Banbury, UK). For LC-MS/MS ion trap analysis (Vipond et aL, 

2005), the dried digest was dissolved in 10 pi of solvent A. containing 95% water, 5%
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acetonitrile and 0.1% formic acid. The digest was separated in a 60 min LC mn using 

solvent A and B (containing 95% acetonitrile, 5% water and 0.1% formic acid), on a 

HyPurity C18 column (100 x 0.18 mm, 3p) (Thermo Electron, Hemel Hempstead, UK) 

with column flow rate of 2 pl/min. After initial isocratic flow of solvent A for 5 

minutes, a gradient of 100% to 30% A/0% to 70% B was carried out for 36 min 

followed by a 4 min flow of 30% A/70% B, and 15 min of 100% A. Peptide sequencing 

was callied out using data dependent acquisition on a LCQ Deca XP Plus (Thermo 

Electron). The mass spectra were analysed and searched against the full entry of the 

UniProt/Swiss-Prot PASTA database, Release 49.0 (www.epi.ac.uk). The MS Spectra 

were also searched against the NCBI non-redundant protein database (May 2005, 

http://www.ncbi.nlm.nih.gov). P ^ ia l methionine oxidation was assumed and one 

enzyme miscleavage was allowed during searching. A protein was considered to be 

successfully identified where three or more peptide sequences from the MS data 

matched with a predicted protein from the two databases, and where at least one of the 

peptides passed the single threshold filter by Xcorr (1.50, 2.00, 2.50) vs charge state (+/- 

1,2,3) respectively. No taxonomic restriction was used for searching, and the species of 

origin for each protein was determined from detailed search results. Where multiple 

species were listed the protein was homologous between species of origin. Highest 

peptide coverage was usually observed for the protein of Cricetulus griseus (CHO) 

origin, when the sequence was available, and this accession number was reported. When 

matched peptides had 1 0 0 % homology and protein isoforms could not be differentiated, 

the origin with higher species rank was reported (e.g reporting human rather than rat, rat 

rather than mouse, etc).
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3.1 ADP-ribosylation assay: Standardisation and assessment of residual PT ADP- 

ribosylation activity in pertussis vaccines and its relationship with the in vivo 

HIST.

Cyr et al (2001) established an in vitro quantitative method using fluorescence detection 

of the tagged product for measuring the enzymatic activity of PT. Since the enzymatic 

activity of PT is considered essential for histamine sensitisation, the method was 

suggested as a potential alternative assay to the in vivo HIST. Subsequently, a direct 

correlation was seen between the ADP-ribosylation activities of native PT and its in 

vivo toxicity as measured by HIST (Yuen et al, 2002). Despite this, the relationship 

between the residual ADP-ribosylation activity of PT in pertussis or pertussis- 

containing vaccine formulations and their reactivity in the HIST has not been explored. 

This is essential in order to assess the possibility of replacing the HIST with the ADP- 

ribosylation assay. In the present study, the ADP-ribosylation assay has been further 

optimised, standardised and used to measure the activity in 51 batches of pertussis- 

containing vaccines of 10 different formulations. The enzymatic activities in these 

vaccines were compared with the results obtained from the HIST.

3.1.1 Selection of substrate for ADP-ribosylation assay

A fluorescently-labelled substrate for PT was purchased from two commercial sources. 

It differed from the original substrate as described by Cyr et al. (2000) by lacking the 

linker ((CH2 )5 ) that joins the FAC to the 20 amino acid peptide (Chapter 2, Figure 2 . 1 ). 

The substrate without the linker (FAC-G«i3 C2 0 ) was analysed and compared to the 

original substrate (FAC-(CH2 )s-Gai3 C2 0 ) to test its suitability as substrate for PT- 

catalysed ADP-ribosylation.

89



-------------------------------------------------------------------------------------------------------------------- Results

3.1.1.1 Characterisation of FAC-(CH2)5-Gai3C20 and FAC-Gai3C20 peptide substrates

The characterisation of FAC-(CH2 )5-Gai3 C2 0  peptide substrate and its ADP-ribosylated 

product using reverse-phase HPLC and mass spectrometry has been described 

previously (Cyr et aL, 2001; Yuen et aL, 2002). The FAC-G«i3 C2 0  was reported by the 

manufacturer to be > 90% pure. Further characterisation of FAC-Gai3 C2 0  peptide 

substrate was done by mass spectrometry and chromatography. To investigate substrate 

isomers and impurities, a slower gradient-elution was used than that used for the ADP- 

ribosylation assay (Chapter 2, Section 2.7). Upon HPLC analysis, the FAC-Gai3 C2 0  

peptide substrate eluted as two peaks (Figure 3.1) and mass analysis showed that both 

compounds had the same mass and they are the 5/6-isomers of the fluorescein tag 

(results not shown). The other peaks are impurities from the substrate and, since they do 

not change during analysis of the ADP-ribosylated product peak, further investigation 

into the impurity peaks were not carried out. The two substrate isomers, however, were 

purified further by collecting the eluted peaks which were designated FAC-Gai3 C2 0 -l 

and FAC-Gai3 C2 0 -2 . PT-catalysed ADP-ribosylation of FAC-Gai3 C2 0 -l and FAC- 

Gai3C20-2 was carried out and assayed using reverse-phase HPLC. The purified 

substrates, in terms of assay sensitivity, showed no differences in activities (results not 

shown). All further experiments were carried out using the mixture of FAC-Gai3 C2 0 -l 

and FAC-G„i3 C2 0 - 2  (FAC-G„i3 C2 0 ).

A typical chromatogram showing the HPLC analysis of the ADP-ribosylated product is 

shown in Figure 3.2. The ADP-ribosylated product peak was well resolved from the 

substrate with retention times of 7.1 and 10.9 minutes respectively. This was similar to 

that reported by Yuen et al (2002). However, using FAC-Gai3C20, a co-elution impurity
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Figure 3.1. HPLC of FAC-G0Û3C2 O substrate. Fluorescence (red line) and UV (blue 

line). 1 |il of FAC-Gcd3 C2 0  peptide substrate solution (750 pM, as determined by UV 

absorption at 495 nm in 0.2 M Tris-HCl pH 7.6:DMSO (1:1)) was injected into the 

column and separation was achieved using a slow gradient-elution, as described in 

Chapter 2, Section 2.7.
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Figure 3.2. Typical chromatograms showing the product of the PT-catalysed ADP- 

ribosylation of FAC-God3 C2 0  detected at 495 nm. Assay conditions were as described in 

the Section 2.7. The substrate peak was the “off scale” peak between 10.5 and 1 1.2 min. 

Trace (a) were obtained with 500 ng/ml PT 90/518 (5 pi injected to make sure it is 

within scale); Traces (b)-(e) were obtained with 250, 125, 62.5 and 0 ng/ml PT 90/518 

respectively ( 1 0  pi injected).
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substrate peak at 7.2 was observed in this study. It was not considered essential to 

improve the resolution between the product and impurity peak since this peak did not 

interfere with the final calculation of the enzymatic activities. The same consideration 

was applied to the other substrate impurity peaks at times: 4.2, 5.3, 5.7 and 7.8 min. The 

structures of the ADP-ribosylated product peak and FAC-Gai3 C2 0  were confirmed by 

mass spectrometry and gave molecular masses (M + H^) of 3153.3 (theoretical: 3155) 

and 2612.7 (theoretical: 2614) respectively.

3.1.1.2 Comparison of FAC-Goi3C20 and FAC-(CH2 )s - Gai3C20 as peptide substrates 

forPT

After ADP-ribosylation by PT, the FAC-Gai3 C2 0  peptide without the linker showed a 

higher fluorescence reading hence a higher enzyme activity than the substrate with the 

linker and therefore a better sensitivity, by approximately 30% (average of two 

experiments) in comparison to FAC-(CH2 )5 -Gai3 C2 0  (Figure 3.3). In addition, the 

relationship between the substrate concentration and ADP-ribosylation activities 

expressed in fluorescence units, using 250 ng/ml PT, showed good correlation with the 

correlation coefficient, r  ̂being > 0.98 for both substrates. Hence, in the subsequent PT 

assays, the substrate without the linker was used.

3.1.2 Standardisation of ADP-ribosylation assay

Analytical characteristics of the ADP-ribosylation assay e.g. assay accuracy, sensitivity 

and precision for PT, have been described previously by Yuen et aL, (2002). In the 

present study, this assay system was further standardised for the purpose of 

determination of ADP-ribosylation activities in vaccine formulations. Two aluminium 

adjuvants are currently used in AC Vs or ACV-based combination vaccines namely 

A1(0 H) 3  and AIPO4 . The effect of these salts on the ADP-ribosylation activity of PT
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Figure 3.3. Comparison of FAC-Gai3C20 (A) and FAC-(CH2)5-Gai3C20 (B) peptides as 

substrates for PT (250 ng/ml)-catalysed ADP-ribosylation reaction. Results shown are 

the means of duplicate values.
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was studied by adding equal volumes of PT 90/518 to the aluminium salts (0-13 mM). 

In the presence of Al(OH) 3  (5 mM), the ADP-ribosylation activity of 90/518 (500 

ng/ml) decreased by approximately 50% with the inhibitory effect at a maximum at > 5 

mM. This effect was seen using either FAC-Gai3 C2 0  or FAC-(CH2 )5 -Gai3 C2 0 . In 

contrast, no reduction in the ADP-ribosylation activity was seen with AIPO4  (results not 

shown). The dose-response curves for PT (0-1000 ng/ml) with these two adjuvants (13 

mM) were assessed in four independent assays. Although, with both types of adjuvants, 

there was high linearity (r  ̂> 0.98) (Figure 3.4), the slopes for the two types of standard- 

curves were significantly different (p < 0.05) and a higher slope value (mean = 0.22) 

was found with AIPO4  than with Al(OH) 3  (mean = 0.15). Therefore, in each ADP- 

ribosylation assay, an appropriate PT standard curve was constructed using either 

A1(0 H) 3  or AIPO4  adjuvant as diluents for PT 90/518, according to the type of adjuvant 

present in the test sample.

The reason for the apparent change in enzymatic activities in the presence of the 

different aluminium salt solutions was not clear. The effect due to pH difference was 

excluded since the pH was found to be similar in the two aluminium salt solutions. The 

loss of fluorescence due to adsorption to Al(OH) 3  was also investigated as, prior to the 

separation of the ADP-ribosylated product by reverse-phase HPLC, the enzymatic 

reaction mixture was centrifuged to remove aluminium salt entering the column that 

could block the colunrn flow. Freshly prepared Al(OH) 3  was added to a sample of ADP- 

ribosylated product of known enzyme activity and analysed by HPLC in the same way 

as before. No difference in the level of fluorescence was observed after the inclusion of 

A1(0 H) 3  (results not shown).
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The vaccine preparation, Biken (Section 2,7.1) containing two pertussis components 

(PT, FHA) in combination with D and T was used as the positive control vaccine in 

each ADP-ribosylation assay. The repeatability of the assays was assessed by 4-6 

independent assays using the ratio of ADP-ribosylation activities of the PT reference at 

concentrations of either 250 or 125 ng/ml compared to the ADP-ribosylation activities 

in 1 SHD of the positive control vaccine. The analytical characteristics of the assay 

method are presented in Table 3.1 and validity criteria for the ADP-ribosylation assay 

have been set as follows: the negative control (0 ng PT) should show no ADP- 

ribosylation activity; the standard curve of PT constructed with either Al(OH) 3  or AIPO4  

should show linearity (r^>0.96); the ratio of PT at 250 ng/ml reconstituted with Al(OH) 3  

or AIPO4  adjuvant to the positive control vaccine preparation (00/486) should be 0.018 

(0.016-0.02) and 0.025 (0.015-0.035) at 95% confidence level, respectively. The data 

presented in this study were all obtained from assays that met these validity criteria, 

unless indicated.

The specificity of the ADP-ribosylation assay was examined by assessing the enzymatic 

activity in other vaccine components which are commonly present in ACV-based 

combination vaccines, e.g. IPV, PRP-T and also in a combination vaccine product 

DTaP-I, in which the ADP-ribosylation activity of PT had been eliminated by mutation. 

The specificity of the assay system for ADP-ribosylation activity due to PT was 

evidenced by the absence of enzymatic activity seen with DTaP-I or DTaP-I in 

combination with any of these other vaccine components (results not shown).
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3.1.3 Residual PT ADP-ribosylation activities in different pertussis vaccine 

formulations

Residual PT ADP-ribosylation activities were measured in 51 batches of vaccines in 10 

different formulations and the results are presented in Table 3.2. ADP-ribosylation 

activities were detected in all vaccine formulations except DTaP-I. However, no consensus 

average enzyme activity could be defined amongst these different vaccine formulations and 

the range of activity was wide between the products, ranging from 0 (DTaP-I) to 10.2 (in 

one batch of DTaP-D) E-units/SHD. Nevertheless the level of residual PT enzyme activity 

in DTaP vaccine formulations appeared to be product-specific and batch-to-batch 

variability (CV %) ranged from 22.5 to 34 % (Figure 3.5) where the number of batches 

tested for a particular product was > 6 . Similar to previous findings (Cyr et al, 2001), the 

residual PT enzymatic activity measurable in different batches of WCV (DTPw-J) was 

found to be much lower in comparison to DTaP, with the exception of DTaP-G which is a 

booster vaccine that contains a much lower amount of PT antigen in comparison to other 

DTaP formulations (Chapter 2, Table 2.1).

3.1.4 Comparison of residual PT ADP-ribosylation activities and their relationship 

with the in vivo HIST

All the above DTaP vaccine batches were also tested by the HIST and a comparison of their 

PT ADP-ribosylation activities and their reactivity in HIST is shown in Figure 3.5. As 

expected, two batches of DTaP-I product, which did not have detectable enzymatic activity, 

did not show any reactivity in HIST. Products DTaP-G and DTaP-H which had low or
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Acellular pertussis vaccine formulations

Figure 3.5. ADP-ribosylation activities in different pertussis vaccine formulations and 

relationship to activities in the in vivo HIST. The average value per group of vaccines is 

represented by a and crosses indicate vaccine batches that show reactivity in the 

HIST and dots indicate batches that were non-reactive in HIST. The results were 

expressed as ADP-ribosylation activity units (E-units) per SHD of test vaccine where 1 

E-unit is equivalent to the enzymatic activity produced by 1 |ig of PT (90/518)
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modest levels of ADP-ribosylation activities, did not show reactivity in vivo although 

only 1 or 2 batches of these vaccines were tested. A positive relationship between the 

enzyme activity in vaccine lots and the in vivo reactivity observed by the HIST was 

found for product DTaP-A where 3 lots had higher enzymatic activities and also showed 

reactivity in mice. However, this was not the case for products DTaP-C to DTaP-F 

where no positive relationship between the in vitro and in vivo systems could be found, 

either between these vaccine formulations or between different lots within the same type 

of product. The most striking finding was with products DTaP-E and DTaP-F. These 

showed the highest mean enzymatic activities but no batches showed any reactivity in 

the in vivo HIST. This can be compared with product DTaP-D which had similar or 

lower enzyme activities, but the majority of batches showed sensitising reactivity in 

HIST. The results indicate that a value of enzymatic activity common to all vaccines 

and predictive of in vivo reaction could not be defined.

Interestingly, product DTaP-C was an intermediate bulk for the DTaP-D vaccines, but 

the latter product had been formulated with other additional antigen components. A 

comparison was made between these two products using 4 paired batches from each 

vaccine. Batches of product DTaP-D that sensitised mice in the HIST, displayed higher 

enzyme activities by approximately 30% than the corresponding DTaP-C batches that 

showed no reactivity in vivo (Figure 3.6). The observed difference in enzymatic 

activities was not attributed to other antigen components since the assay system was 

specific for PT in that no enzymatic activity was seen with any of the other components 

tested. Moreover, addition of these antigen components to DTaP-C products did not 

enhance the enzymatic activities (results not shown).
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3.2 Development of a carbohydrate-binding assay for pertussis toxin and toxoid

The ADP-ribosylation assay described in the previous section measures only the A- 

subunit activity of PT, The precise mechanisms and sites of different detoxification 

procedures on the PT molecule are not known, thus the PT/d present in vaccines could 

be modified at different sites in the B-oligomer, A-subunit, or both. Since both A- and 

B-subunits contribute to histamine sensitisation and both of these functions are assessed 

in the in vivo toxicity control test for assessing residual PT activity in vaccines, the use 

of the ADP-ribosylation assay alone, therefore, may not reflect the activity of PT 

observed in HIST. In the following section, a carbohydrate-binding assay was 

developed for measuring the B-subunit activity of PT.

3.2.1 Characterisation of biotinylated (BTN-) oligosaccharides

Since native oligosaccharides do not adhere directly to micro wells, oligosaccharide 

structures were derivatized with an amino-biotin derivative (Chapter 2, Section 2.8.4). 

Typical HPLC chromatograms of the BTN-oligosaccharides are shown in Figure 3.7 

and demonstrate high efficiency of the biotinylation reaction and good separation of the 

biotinylated products from the starting materials. NA3-BTN gave a single major peak at

17.5 min, which showed >95% completion of the biotinylation reaction and NA3 

oligosaccharide eluted at 21 min as a very minor peak. The HPLC chromatogram of A3- 

BTN showed a major product eluted at 32.5 min and two smaller peaks at 27.5 and 30.3 

min. Mass analysis indicated the latter were BTN-oligosaccharides generated from other 

minor A-glycans present in the starting material (data not shown). Mass analyses of all 

the BTN-oligosaccharides used in the binding assays are presented in Table 3 .3 .
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Figure 3.7 Typical Amide-80 HPLC chromatograms of A3-BTN and NA3-BTN after 

partial purification by ethyl acetate extraction. The detection of the BTN-oligosaccharides 

was by UV at 223nm and the detection of the glucose oligomer ladder of 4-aminobenzoic 

acid derivatives (in numbers; Yuen et aL, 2002) was by fluorescence (̂ Excitation» 296nm; 

^Emission» 359nm).

104



o

I

tS

i

I

1
I

î

m

?
?

<n e s o oo t'00 (S oo <n en

s m Ê a 3 :g :g g
0 \ en S3 e s ON ro r - un

q q E< q 00 o (S 5
Vû 00 o\ r% "S" o e s 00 en

OO es t n o\ s - e s Tj- en S" es

a o\ !S S M SOj e s \o e s unes e s es e s en

I
%

I

o "S" 00 B e s es e s 00 oo e s e s NO e s NO
C3\ e s un NO q o NO r-

M oô C3N o NO e s en On r~ en en en ON
'4- r - en en ■Tf NO un NO 00 o en Tf 00
ON en \o e s un un un oo oo e s en oo CJN

Ci £S q C3 Ci q q q q q q
3 oo NO e s es e s oo r- es e s a e s NOON e s «n NO NO q p q t-;
un NO K oo Tf o tC un r-
es ON un o es "Te en ■S' NO 00 es NOOn e s NO e s un un un 00 oo en oo ON

e s e s es e s es e s es e s en en en en en

'B
'i

I

i
g

% !z:
O o a
a i s't 1
13 13 -g
Ü Ü Ü

fî î  I"

I

ë

I
§

I
ë ë g §
s. s a s
ë
I
a I I ëI

ë

I

s

%

x>

i
ï

I
Q

I

I
I
I

t

I
t

I
BT3

I
I

I
g es en

^  ^  3

I
a  t

g
i

a

B

I
e5

§

i

un NO q r-H q 00 q q NO e3N r-
es es NO es es oei 00 o CD «3 On

en en en en es es en en es es

ë

ë

'I'

i
en

es

I
I

I

S



I
I

? VO
<r! Is I

00

I
I s

I
■s

i

I

I?

I
oo
sa

I
g

I

ON

oq
UN

m
UNm

I §
I §

I
i
i

I
Ü Ï Î

ë
ÿ

I
i

g

•a

■S
ë'S’

1

I

I

pq

I

Ü
ë

I

I
pq

Ï
I
â
s

I



3.2.2 Screening of glycoproteins and oligosaccharides as ligands for FT binding 

using ELISA

Prior to carrying out the oligosaccharide and glycoprotein binding experiments, non

specific binding of other components or reagents used in the system i.e. Neutravidin, 

biotin, primary and secondary antibodies was assessed. No detectable binding activity 

for these reagents was observed under current experimental conditions (data not shown). 

A panel of glycoproteins (Chapter 2, Section 2.8.2) with different oligosaccharide 

structures was investigated to test their suitability as coating ligands for PT using 

ELISA. The PT binding to these glycoproteins was found to be in a glycoprotein 

concentration-dependent manner. However, the binding of PT to the glycoproteins were 

also found to be structure dependent e.g. the binding of PT (25 ng/well) to hAGP, BTG, 

hTf, bAGP and Hg did not reach maximum even at a coating concentration of 8  fxg/well 

whereas binding to Fet was maximum above coating concentration of 1 pg/well (Figure 

3.8). When all the glycoproteins were used at 1 pg/well for coating, PT showed highest 

affinity to Fet whereas it bound moderately (relative to Fet) to hHg (48%), bTG (39%) 

and AFet (28%) (Figure 3.9a). Interestingly under these conditions, little or no binding 

was observed to glycoproteins hTf and bAGP, comprising mainly sialylated blantennary 

W-glycans. As expected, PT did not bind to RNaseB, that contains only neutral N-linked 

oligomannose 5-9 structures, nor to the non-glycosylated RNaseA or BSA (Figure 3.9 

a).

A panel of oligosaccharides structures varying from neutral to acidic milk 

oligosaccharides and A-glycans was screened (Table 3.3, Figure 3.9b). PT had a strong 

preference fo r , sialylated multi-antennary A-glycan structures (A3 and A4) and 

desialylation caused reduction in % binding, relative to that of A3, as in asialo tri-
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Figure 3.8. Binding of PT to glycoproteins coated at a starting concentration of 80 

pg/ml ( 8  pg/well). Two-fold serial dilutions were carried out. PBST containing 3% 

BSA was used instead of PT for control wells coated with carbonate coating buffer (CC)
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Figure 3.9. (a) Binding of PT to glycoproteins (as defined in Chapter 2, Section 2.8.2) 

Wells were coated with glycoproteins (1 jig per well in PBST containing 3% BSA) and 

binding of PT was detected as described Chapter 2, Section 2.8.7. CC, carbonate coating 

buffer. Results shown are the average of two experiments. For comparative purposes 

binding of PT to Fet was taken as 100 %. (b) Binding of PT to subgroups of BTN-A- 

glycans (as defined in Chapter 2, Section 2.8.3). Binding of PT was detected as 

described in Chapter 2, Section 2.8.8. Results shown are the means and standard error of 

means of three experiments. For comparative purposes binding of PT to A3 was taken 
as 1 0 0  %.
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(NA3, 72%), tetra- (NA4, 65%) antennary structures. Moreover little or no binding was 

seen with mono- and di-sialylated or asialo- biantennary structures, which supported the 

results found in the glycoprotein binding experiment where little binding was observed 

with glycoproteins containing mainly biantennary jV-glycan structures (hTf and bAGP; 

Chapter 2 Table 2.3). The addition of core fucose to both A3 and A4 structures reduced 

the % binding, relative to A3, to 13% (A3F) and 37% (A4F) respectively (Table 3.3, 

Figure. 3.9b). Milk oligosaccharides SaLac and Lac showed little binding to PT and 

neutral high-maimose structures (RNaseB) and maltopentaose (Glc5) showed only 

background binding. Binding of toxin also appeared to be greatly influenced by the type 

of sialic acid present since binding to A3 containing the iV-glycolyl form of sialic acid 

(A3-1, Table 3.3) was 70% lower in comparison to A3 containing only the A-acetyl 

form of sialic acid (results not shown). In theory, A4 could be used but it is more 

expensive commercially. All further experiments therefore were carried out using 

oligosaccharides A3 and NA3.

3.2.3 Screening of glycolipids as ligands for PT

Previous studies have documented the binding of PT to gangliosides prepared from

macrophages and cilia using TLC (Saukkonen et aL, 1992). Based on these

observations, different glycolipids or neoglycolipids (Chapter 2, Table 2.2) with

differing compositions were tested for their ability to bind PT. No binding was observed

with any of the glycolipids tested (GMl, AGMl, GM2, GM3, data not shown) under

the same experimental conditions for the glycoprotein-capture ELISA. Further

investigations using the neoglycohpid capture-ELISA (Chapter 2, Section 2.8.6) ±

Tween-20 from reagents to improve coating efficiencies did not result in observable

binding to any of the glycolipids and neoglycolipids studied (results not shown). On the
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contrary, using dot blotting, only very weak binding was observed to glycolipids GTlb 

and GDI a (Figure 3.10). Since the binding was weak, no further investigation for the 

purpose of developing the binding assay was carried out.

3.2.4 Comparison of PT and PTd binding in glycoconjugate-capture ELISA

The binding of PT to Fet-coated plates showed good dose-responses with a linear range 

from 0.5ng-30 ng/well. In contrast, the binding activity of a PTd detoxified by 

glutaraldehyde was much lower. With PTd at 1,000 ng/well, binding activity was 

equivalent only to that of 1.2 ng PT i.e. 850 times lower than PT (results not shown). 

When binding activities of PT and PTd were investigated using defined AT-glycans, 

major differences in binding specificity of PT and PTd were observed (Figure 3.11). 

The binding activity of PTd to A3 was almost undetectable (0.4%) and at least 250 

times less than that of PT at the same protein concentration (1.25 jLig/ml). However, 

when NA3 was used to coat the ELISA plates, the binding activity of PTd was only 3 

times lower than that of PT (Figure 3.11).

3.2.5 Effect of other vaccine components on the binding assay

Apart from PT/PTd, a variety of antigens such as FHA, PRN, Fims2/3, T, D, IPV and

PRP-T can be present in different types of acellular pertussis combination vaccines. It

was important therefore to investigate possible interference of these antigens in the PT

binding assay. To address this issue, two approaches were undertaken in the present

study: 1) The binding activities of these antigens to Fet were determined by using

antibodies specific for these components; (2 ) the possible competition between these

antigens and PT for the Fet binding sites was investigated. Apart from PT, none of the
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GM2 GM2 GTlb

Glu-cer Glu-cer GTlb

DHPE DHPE GDlb

GM3 GM3 GDlb
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Figure 3.10. Binding of PT to (neo)glycolipids. 1 pg of indicated glycolipids was 

applied directly to nitrocellulose. Dot blots were then incubated with 1 pg/ml PT 90/518 

and binding was visualised as described in Chapter 2, Section 2.8.5. Structures of 

glycolipids are shown in Chapter 2, Table 2.2
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Figure 3.11. Binding of PT and PTd to oligosaccharides A3 and NA3 using 

oligosaccharide-ELISA. Binding activities were analysed by parallel line assay as 

described in Chapter 2, Section 2.8.9. For comparative purposes, binding of PT was 

taken as 100%. Results shown are the average of duplicate or * triplicate dose response 
curves.
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antigens bound to Fet (results not shown). Moreover, addition of these antigens to PT 

either individually or in combination in a relative concentration typically present in 

vaccines, did not affect its binding to Fet (Figure 3.12).

3.2.6 Desorption of antigens from aluminium adjuvant solution

In pertussis-based combination vaccines, PT/d is adsorbed in varying degrees onto 

A1(0 H) 3  or AIPO4  adjuvant. Since these adjuvants interfere with the ELISA assay 

system (Doel and Staple, 1982; Katz, 1987), PT/d is required to be released (desorbed) 

from the aluminium adjuvant prior to the binding assay. Three desorption reagents: 

citrate, EDTA and Tween-20/EDTA were investigated for their ability to elute the 

antigen and PBS was used as a control. These desorption reagents had no effects on the 

PT binding assay system (results not shown). Since it was found that PT was more 

strongly adsorbed to Al(OH) 3  (>95%) than to AIPO4  (<25% data not shown), it was 

essential to select an eluting reagent that was most effective for eluting antigen from the 

A1(0 H) 3  adsorbed vaccines. Tween-20/EDTA was found to be unsuitable because, 

although it showed similar eluting efficiency in comparison to EDTA for AlP0 4 -based 

vaccines, it was less effective for Al(OH)3 -based vaccines (results not shown). 

Furthermore, unexpectedly high ADP-ribosylation activities were observed after 

treatment of DTaP products with Tween-20/EDTA while citrate or EDTA alone showed 

little or no effect (Figure 3.13). Although EDTA gave slightly better results than citrate 

for AlP0 4 -adsorbed vaccines, citrate was selected to be the eluting reagent because it 

was nearly 3 times more effective than EDTA in eluting PTd from A1(0 H) 3  (Figure 

3.14).

114



-Results

PT

PT + FHA 

PT + PRN 

PT + Fim2/3 

PT + T 

PT + D 

PT + PRP-T 

PT + IPV 
^ 0 -  PT+FHA+PRN+Fim2/3+T+D 
- e ~  PBST

Log dilution factor of antigen

Figure 3.12, Binding of PT to Fet in the presence of other vaccine components. Wells 

were coated with 1 jig Fet, blocked and incubated with 400 ng/well PT, 400 ng/well 

FHA, 128 ng/well PRN, 100 ng/well Fims2/3, 100 pi of 4Lf T, 20 Lf D, 1/5 of IPV and 

2.5 pg PRP-T. This was followed by incubation with anti-PT antibodies and was 

developed as described in Chapter 2, Section 2.8.7. Results shown are the average of 

two experiments. Lf, Limit flocculation unit.

115



-Results

a)

EDTA Citrate

D T a P - A I ( O H ) 3

Tween/E DTA
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Figure 3.13. Effect of desorption reagents on ADP-ribosylation activity in DTaP 

preparations. For controls, DTaP-AlP0 4  (DTaP-C) or DTaP-AlOHa (DTaP-A) was 

treated with PBS, and the enzymatic activity was taken as 1. The enzymatic activities of 

DTaP-AlPO# and DTaP-AlOH] products after treatment were compared to those from 

DTaP-AlP0 4  and DTaP-AlOHa treated with PBS, respectively. Data represent the mean 

of three different batches of DTaP-AlPÛ4  and three different batches of DTaP-(A1 0 H) 3  

products, testing each condition in triplicate.
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Figure 3.14 Fetuin binding activity of PTd eluted from Al(OH) 3  and AIPO4  adsorbed 

vaccine preparations (DTaP, acellular pertussis vaccine preparation) using different 

desorption agents. *As controls, DTaP-AlP0 4  (DTaP-C) or DTaP-Al(OH) 3  (DTaP-A) 

was treated with PBS, and the binding activity of the PTd in the resulting supernatant 

fraction was taken as 1 . The binding activities of DTaP-AlP0 4  and DTaP-Al(OH) 3  

products after treatment were compared to those from DTaP-AlP0 4  and DTaP-Al(OH) 3  

treated with PBS, respectively. Data represent the mean of three different batches of 

DTaP-AlP0 4  and three different batches of DTaP-(A1 0 H) 3  products, testing each 

condition in triplicate.
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3.2.7 Validation of carbohydrate-binding assay using A3-capture ELISA

Since Fet, A3 and NA3 were found to be suitable ligands for PT binding in the ELISA 

system, validation of the binding assay was carried out using A3 coating as an example. 

The cut-off value was defined as the mean OD of the negative control plus 2 standard 

deviations (SD). The detection limit for PT binding under the experimental conditions 

was found to be 2 ng/well (n=ll). Reference PT concentrations from 2.5 pg/ml to 1.2 

ng/ml (500-0.24 ng/well) were examined and PT from 4-250 ng/well resulted in a linear 

dose-response curve (r  ̂= 0.99). The day-to-day coefficients of variation of the ratio of 

the reference toxin (250-31.25 ng/well) to the blank were from 8.62 to 26.4 by 15 

independent assays and the coefficient of variance increased as the PT concentration 

decreased. The intra-assay variation for PT was determined by comparison of 5 

replications of dose-response curves within the same day. The potencies of the 5 

replicates relative to each other were calculated using parallel line assay analysis. The 

geometric coefficient of variance (GCV) within assay was found to be 2.8%. Further 

validation of the desorption and binding activities for different vaccine products was 

carried out using one selected batch from each vaccine type. The reproducibility of the 

assay was assessed by 4-6 replicated independent assays performed on separate days. 

Their relative potencies were calculated using parallel line assay as described in Section 

2.8.9 with the exception that PT 90/518 was used as reference. The GCV for these 

assays ranged from 13.5 to 22.5% (Table 3.4) for the inter-assay variation. The different 

vaccine products showed differences in their binding activities.
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Table 3.4. Assay reproducibility and validation of A3-capture ELISA for PT eluted 

from different DTaP preparations by tri-sodium citrate

Vaccine Potency /geometric mean 

(Range at 95% Cl)

GSD GCV(%) n

DTaP-A 0.66 (0.49-0.83) 1.13 13.5 5

DTaP-B 0.45 (0.31-0.59) 1.18 17.5 5

DTaP-C 0.25 (0.19-0.31) 1.15 15.4 6

DTaP-D 0.36 (0.35-0.37) 1.15 14.8 5

DTaP-E 0.08 (0.06-0.1) 1.18 17.5 5

DTaP-F 0.09 (0.09-0.13) 1,23 22.5 4

DTaP-I 0.35 (0.21-0.49) 1 . 2 1 2 0 . 6 5

The values were analysed by parallel line assay as described in Chapter 2, Section 2.8.9. with the 

exception that PT was used as a reference. GSD, geometric standard deviation; GCV, geometric 

coefficient of variance; n, number of experiments.
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3.3 Exploring the potential application of the developed in vitro assays

3.3.1 Comparison of enzymatic and binding activities of PT in vaccine 

formulations and in purified native PT

As defined in Materials and Methods (Chapter 2, Sections 2.7.3 and 2.8.9) the results of 

ADP-ribosylation activity or binding activity per SHD of test vaccine were expressed as 

E-units or B-units, where one E-unit or B-unit is equivalent to the activities produced by 

1 pg of PT 90/518 respectively. Further comparison of A- and B- subunit activities were 

made between PTd in vaccine and purified PT preparation 90/518 at equal protein mass 

(the activities produced by 1 pg of PTd protein antigen in a vaccine product was 

compared to the activity produced by 1 pg of native PT). For example, for a vaccine 

which has a 25 pg PTd antigen content, the activities produced by 1 pg PTd in the 

vaccine were calculated by dividing the E- and B-units produced per SHD by 25 

(Chapter 2 , Table 2.2). Using DTaP-A (n=9) as an example, the mean ADP-ribosylation 

and binding activities were 0.06 ± 0.02 E-unit/pg PTd and 0.006 ± 0.001 B unit/pg PTd 

in comparison to 1 E-unit or B-unit/pg in purified PT 90/518 respectively. Thus, a large 

reduction in the enzymatic and binding activities of PTd antigen was evident. This 

indicates that the detoxification process affected both A- and B- subunit activities of PT. 

Since the decrease in B-subunit activity was approximately 150-fold and that of the A- 

subunit was 17-fold, the results indicate that the detoxification process affected the B- 

subunit activity more than the A-subunit activity. Similar observations were also made 

for other vaccine formulations tested (results not shown).
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3.3.2 Comparison of different detoxification methods

The in vitro assays developed can be used to determine the degree of detoxification in 

vaccines. Interestingly, formaldehyde-glutaraldehyde treated PT (DTaP-A; Al(OH)3 ) 

significantly (P<0.05) retained less enzymatic activity (0.06 ± 0.02 E-unit/pg PTd, n~9) 

than glutaraldehyde-only treated PT (DTaP-C; AIPO4 , 0.17 ± 0.04 E-unit/pg PTd, n=5 

Figure 3.15). On the contrary, there was significantly (P<0.05) less PT binding activity 

remaining when PT was chemically-inactivated with glutaraldehyde only (0.003 ± 

0.0005 B-unit/pg PTd) rather than with formaldehyde-glutaraldehyde (0,006 ± 0.001 B 

unit/pg PTd, Figure 3.15).

3.3.3 Comparison of different formulations

For confidential reasons the exact compositions of the different vaccine formulations 

cannot be indicated in this thesis. For distinguishing different vaccine formulations, 

DTaP in combination with other antigen components are indicated by the letter x in this 

section. For example, a comparison was made between products DTaP-C and DTaP-D 

(x). These products were compared since DTaP-C is an intermediate bulk to the DTaP- 

D vaccines but the latter product was formulated with other additional antigen 

components. Interestingly, four batches of DTaP-D (x) products but not the four 

corresponding DTaP-C products showed reactivity in the HIST. One batch of DTaP-D 

(x), which was a clinical trial lot, showed no HIST reactivity (Figure 3.16).

Further investigation was carried out to determine whether the results seen in HIST 

were due to changes in PT activity by assessing the ADP-ribosylation and binding 

activities of PT in these two vaccine formulations. Comparison of ADP-ribosylation
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Figure 3.15 ADP-ribosylation (a) and A3 binding (b) activities of PT in vaccines 

compared to purified PT. The data shown represent the means of 9 lots of DTaP-A 

products and 5 lots of DTaP-C products. 1 E-unit and B-unit is equivalent to the activity 

produced by 1 pg PT 90/518. The activity produced by 1 pg PT protein in vaccines was 

calculated by dividing the activity per SHD of vaccine by the nominal PTd content in 

the vaccine (Chapter 2, Table 2.2)
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Figure 3.16. HIST results for DTaP-D (x) and corresponding batches of DTaP-C. All 

DTaP-D (x) products showed histamine reactivity (mouse deaths) in the HIST with the 

exception of one batch highlighted (red). This was a clinical trial lot, and showed no 

reactivity in the HIST even at 2 SHDs.
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activity and binding activity in DTaP-D (x) is shown in Figure 3.17a, b. The activity of 

the corresponding DTaP-C was taken as 100% for comparative purposes. The binding 

activities of PT/d in these vaccine products were determined using Fet-capture ELISA. 

For these experiments vaccine samples were treated with EDTA to release the PT from 

the AIPO4 . To calculate the binding activity using 90/518 as a reference for both 

products, a standard-curve was constructed using the optical densities corresponding to 

the various concentrations of PT 90/518. Binding activity in the supernatant was 

calculated against the standard-curve. Further comparisons were also made of the 

clinical trial batch and production batches on the mathematical ratio of binding (B) 

activity over enzymatic activity and is presented in Figure 3.18.

It was noted that the use of PT 90/518 as a common reference to compare the binding 

activity in different vaccine formulations may not be appropriate, since this does not 

take account of the desorption differences between different vaccine formulations. Since 

the E-HPLC method can be used to determine the enzymatic activity of PT even when it 

was adsorbed to the adjuvant, the enzymatic activity found in vaccines would reflect the 

total amount of PT present in the vaccine formulation. Therefore the PT ADP- 

ribosylation activity in the supernatant after desorption was used in comparison to the 

total activity in the un-desorbed sample to work out the percentage of desorption and 

then to calculate the total binding activity in test sample, e.g. if the binding activity in 

supernatant is 5 which accounts for 20% of total PT in the supernatant, then the binding 

activity would be 5x5 (100%) to give total binding activity in the vaccine. The results 

showed that both enzymatic and binding activities of these products were higher in 

DTaP-D (x) products than their corresponding DTaP-C products (Figure 3.17). It was 

also found that the increase in both activities was not due to the addition of other
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Figure 3.17. Comparison of the (a) ADP-ribosylation and (b) binding activities of PT 

present in DTaP-D (x) and their corresponding batches of DTaP-C vaccine products. * 

Clinical trial lot and its intermediate bulk. For binding, only the eluted PT released into 

the supernatant can be assessed hence the total binding activity as shown in b was 

calculated by determining the PT ADP-ribosylation activity in the supernatant in 

comparison to the total activity in the sample using ADP-ribosylation assay. This was 

used to calculate the total binding activity in test sample, e.g. if the binding activity in 

supernatant is 5 which counts for 20% of total PT in the supernatant, (as determined by 

the ADP-ribosylation method), then the binding activity would be 5x5 (100%) to give 

total binding activity. For comparative purposes, the binding activity of DTaP-C 

product was taken as 1 0 0  percent.
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Figure 3.18. Comparison of ratio of PT-B activity to PT-A activity in the vaccines. * 

Clinical trial lot. For comparative purposes, the PT- B activity divided by PT-A activity 

for DTaP-C was taken as 100 percent.
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vaccine components (x), since addition of x to DTaP-C did not alter enzymatic activity 

or binding activity (results not shown). It is noteworthy that the increased binding 

activity in DTaP-D (x) (100-250%) relative to DTaP-C, was much higher than the 

increase in enzymatic activities (30-60%, Figure 3.17). In addition, the ADP- 

ribosylation activities or the binding activities of the clinical trial lot vaccines and its 

intermediate bulk, were similar and the clinical trial lot displayed no reactivity in the in 

vivo HIST (Figure 3.17). The PT-B activity divided by PT-A activity of DTaP-C was 

taken as 100%. Interestingly, it was found that the three batches of DTaP-D (x) with 

the exception of the clinical trial lot batch showed a higher activity (Figure 3.18).

3.3.3.1 Preliminary investigation of the effect of Tween-80 on enzymatic and binding 

activities of vaccines

On closer examination of the procedures involved in the preparation of the DTaP-D (x) 

it was noticed that Tween-80 was used as a detergent in the formulation. The effect of 

Tween-80 on PT was assessed by the ADP-ribosylation assay. DTaP-C was treated with 

different concentrations of Tween-80 and DTaP-C treated with PBS was used as the 

control. All samples were kept at 4^C until assay. The results are presented in Figure 

3.19. Increased ADP-ribosylation activity was found as the Tween-80 concentration 

was increased, up to 0.1%. The enhancement was rapid and sustained over a period of 

time (Figure 3.20).

To investigate if this effect was product specific, two pertussis toxoid preparations and 

four other DTaP products and one whole-cell pertussis vaccine (DTPw-J) were also 

included in the assay. All samples were treated with Tween-80 at 0.1% final
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Figure 3.19. Effect of concentrations of Tween-80 on ADP-ribosylation activity in 

DTaP-C. The enzymatic activity in the vaccine preparation treated with PBS was taken 
as 100%.
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Figure 3.20. Time course of Tween-80 effect on DTaP-C. For control, the enzymatic 

activity of DTaP-C product treated with PBS was taken as 100%.
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concentration and assayed for ADP-ribosylation activity. The results are shown in 

Figure 3.21. The effect of Tween-80 appeared to be product-specific as both pertussis 

toxoid preparations and other pertussis-based vaccines from other manufacturers did not 

show markedly enhanced enzymatic activities after the treatment with Tween-80 in 

comparison with DTaP-C (DTaP-4, Figure 3.21). However this was not the case for 

binding activity. Furthermore the in vivo histamine sensitisation experiments also did 

not show differences between the Tween-80 treated and the untreated samples (results 

not shown).

The finding that Tween-80 enhanced ADP-ribosylation activity but not binding activity 

in a product dependent manner was also confirmed using monoclonal antibody-capture 

ELISA (Chapter 2, Section 2.9). The monoclonal antibodies specific to the SI subunit 

and S2/S3 subunits were used to investigate their subunit specific immuno-reactivity to 

PT/d present in DTaP-A and DTaP-C products. The two vaccine products were treated 

with or without Tween-80 and the reaction with monoclonal antibody to SI or 

monoclonal antibody to S2/3 are shown in Figure 3.22. The results demonstrate that the 

available binding of the antibody to the SI subunit increased following treatment of 

DTaP-C with Tween-80 whereas negligible changes were observed in the binding of the 

antibody to the S2/3 subunit for both vaccines.
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Figure 3.21. Effect of Tween-80 on different vaccine products. 1, 2, 3, 4 represent 

different manufacturers. The enzymatic activity in the vaccine preparation treated with 

PBS (0% Tween-80) was taken as 100%.
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Figure 3.22. Comparison of the binding of monoclonal antibodies to SI and S2/3 to 

DTaP-A and DTaP-C products in the presence and absence of 0.1% Tween-80, (a) anti- 

S1 monoclonal (b) anti-S2/3 monoclonal. The values were analysed by parallel line 

assay as described in section 2.8.9 with the exception that DTaP without treatment was 

used as reference and given a potency value of 1. DTaP-C results were the average of 

two experiments
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3.3.4 Relationship of activities of A- and B- subunits of PT/d in vaccines and the 

in vivo HIST

3.3.4.1 Role of A- and B~ subunit activities in vaccines and in the HIST

It is generally believed that the B-subunit facilitates the binding of PT to host cell 

receptors, which is then followed by the internalisation of the toxin and translocation of 

the SI subunit into the cytosol, where the SI subunit can then exert its toxic effects by 

catalysing the ADP-ribosylation of G proteins. Therefore, both A- and B- subunit 

activities of PT are thought to contribute to the toxicity observed in vivo by the HIST. 

For example, DTaP-I products displayed high binding activity (0.26 B unit/SHD, n=2) 

but did not show reactivity in HIST since the enzymatic active site has been eliminated 

by mutation. Interestingly DTaP-D, DTaP-E and DTaP-F products (Chapter 2, Table 

2.1), which were all identical in terms of the detoxification reagent used 

(glutaraldehyde), adjuvant type and antigen composition (with the exception of DTaP- 

E), had different behaviours in the HIST. DTaP-D products, but not the other two 

formulations, showed reactivity in the HIST (Figure 3.23c). DTaP-E was an 

intermediate bulk to DTaP-F and contained other vaccine antigens. Further 

investigations were carried out to compare the A- and B- subunit activities in these 

vaccine products to explore the relative roles of the enzymatic and binding activities in 

relation to the HIST. Binding was performed using A3-capture ELISA. The results are 

shown in Figure 3.23 a,b. The mean enzymatic activity in all products was not 

statistically different (p>0.05). In contrast, the mean A3-binding activity of DTaP-D 

was found to be significantly higher (P<0.05) in comparison to DTaP-E and F vaccines 

(Figure 3.23b). This suggests that the higher binding activity may, to some extent.
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Figure 3.23 Comparison of PT A- and B- subunit activities and the in vivo toxic activity 

using HIST in DTaP-D, E and F vaccines. The data shown represent the means of at 

least 12 lots of DTaP-D products and 3 lots each of DTaP-E and F products. Red 

indicates reactive batches. The non-reactive A- and B- subunit activities range from 2.7- 

6.25 and 0.06-0.13 E-unit and B-units respectively. 1 E-unit and B-units is equivalent to 

the activity produced by 1 |ig PT 90/518.
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explain the higher reactivity of these products observed in vivo. It is possible that there 

may be a critical level of each of the A- and B- subunit activities that needs to be 

present in order to be reactive in the HIST.

3.3.4.2 Preliminary interpretation of the relationship between in vitro and in vivo tests of 

PT toxicity

Although the experimental data (Table 3.5), showed that, in general, there was no 

apparent correlation between the higher enzymatic activities in vaccines and higher 

mean percentage death in HIST, the enzymatic activity of PT may still play an 

important role in the death observed in vivo in the HIST. A higher binding activity, as in 

the case of DTaP-D appeared to increase the in vivo toxic effect of the enzymatic 

activity presumably by aiding the accessibility of cellular targets to the PT S1 subunit 

(Table 3.5 and Figure 3.23). A direct correlation between in vivo and in vitro assays for 

different vaccine formulations could not be established using either A- or B- subunit 

activities alone (Figures 3.5 and 3.24). The relationship between these in vitro and in 

vivo activities was then initially explored using simple comparisons, for example by 

multiplying the A- and B-subunit activities (Figure 3.24) or by adding or dividing the 

A- and B-subunit activities. However a clear-cut meaningful relationship between the in 

vitro and in vivo systems could not be found, either for the different vaccine 

formulations or for different lots within the same type of product. For example, for 

DTaP-D products, the A- x B-subunit activities of the lowest and highest HIST reactive 

batches were 0.23 and 0.55 respectively, whereas the A- x B-subunit activities of the 

lowest and highest HIST non-reactive batches were 0.25 and 0.45, which were very 

similar. Likewise when relating the data by adding or dividing the A- and B-subunit 

activities no relationship could be established (results not shown).
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Table 3.5 Comparison of in vitro and in vivo activities for different pertussis-based 

combination vaccines

DTaP-A

n-9

DTaP-C 

n =5

DTaP-D 

n =12

DTaP-E 

n =3

DTaP-F 

n =3

♦Histamine 5 + 6 5 + 7 17+19 0 0

reactivity

E-units/ SHD 1.52 + 0.52 3.20 + 0.98 4.89 ± 1.0 6.58 + 0.12 6.5 + 0.96

B-units/ SHD 0.15 + 0.034 0.06 + 0.003 0.08 + 0.019 0.05 + 0.003 0.05 + 0.008

* % death. All values are expressed as mean and standard deviations of the mean. 1 E-unit and B-unit is 

equivalent to the activity produced by 1 |xg PT 90/518.
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Figure 3.24. A- x B-subunit activities in pertussis vaccines. The average value per 

group of vaccines is represented by a crosses indicate vaccine batches that show 

reactivity in the in vivo HIST and dots were HIST non-reactive batches. AxB was 

calculated by multiplying the ADP-ribosylation activity units (E-units) per SHD of test 

vaccine by the binding activity units (B-units) per SHD vaccine.
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To further explore the possible relationship between histamine reactivity and enzymatic 

and binding activities, the following mathematical equation [1] was used according to 

the method described by the Heinemann working group (Chapter 2, Solving equations 

and inequalities, 2002). Because the number of batches tested in the present study was 

very limited, the analysis in this section can only be interpreted as preliminary.

Death = A (H x B) + C [1]

where, A is an associated parameter for E-HPLC (H) and binding (B) activity and C is a 

constant parameter. Using the data generated from PT preparation 90/518, the equation 

was constructed as explained in Chapter 2, Section 2.9.2 and is shown below:

Death = 1.77 (H x B) + 14.4 [4]

The experimental data fitted well with the equation and the results are shown in Table 

3.6. This equation was then further used to test its suitability for assessing residual PT 

activity in pertussis vaccines and was applied to vaccine formulations A, C and D. For 

these products, the number of batches tested in the in vivo and in vitro assays were > 5. 

Because the A- and B- subunit activities varied between products, according to 

experimental data, the parameters for each product used in the equation would be 

product dependent. Using DTaP-A products as an example, the A and C values can be 

calculated using equation [1].
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Table 3.6 Comparison of actual deaths (shown in brackets) due to purified PT 

preparation 90/518 in HIST and predicted deaths from enzymatic and binding data 

using equation 4.
PT 16.7 ng 50 ng

*Actual

HPLC

**Actual

binding

Predicted 

death (%)

‘Actual

HPLC

“ Actual

binding

Predicted 

death (%)

16.87 0.16 19.22 101.0 0.32 71.46

17,59 0.25 22.26 52.65 0.50 60.98

29.15 0.29 29.36 67.43 0.31 50.98

22.39 0.14 19.98 70.22 0.46 71.69

23.46 0.23 23.78 - - -

Mean 21.89 0.21 23 72.83 0.40 64

C23) (+70)

♦Enzymatic activities of 90/518 were expressed as described in Chapter 2, section 2.7.3. **Binding 

values refer to OD values. values shown are the mean actual deaths observed for 16.7 ng (n=13) and 50 

ng (n= 30) PT, the raw data values are shown in Appendix E.l.
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Group 1: Higher mean death, enzymatic and binding activities of 10, 2.33 and 0.585 

respectively (Appendix E.2). Group 2: lower mean death, enzymatic and binding 

activities of 0, 1.252 and 0.816 respectively (Appendix E.2). Thus using the 

mathematical model two equations can be generated using these two groups:

10 = A (2.33 X 0.585) + C group 1 

0 = A (1.252 X 0.816) + C group 2

The mathematical equation for DTaP-A products can now be represented as follows:

death = 29.3 (H x B) -29.9

When the death equals zero then the equation for enzymatic and binding activity for 

DTaP-A can be represented as follows:

H x B >  1.02

The enzymatic and binding activities of all the DTaP-A products were compared to the 

death threshold line. A similar procedure was carried out for DTaP-C and DTaP-D 

products and the death threshold line was deduced to be H x B > 1.08 and H x B > 3.22 

respectively. The ADP-ribosylation and binding activities in relation to this equation 

line that represents no reactivity in vivo is shown in Figures 3.25, 3.26 and 3.27 for 

DTaP-A, C and D respectively. Experimental data showed that when enzymatic activity 

was below a certain value, there was no death observed regardless of binding activity. 

Therefore, a E-HPLC-death threshold (E-HPLC cut-off) for each product was defined as 

the minimal level of ADP-ribosylation activity required for showing any reactivity in
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Figure 3.25. Relationship between enzymatic activity, binding activity and HIST 

reactivity for DTaP-A (n=9) products. Red dots indicate reactive batches in HIST. Pink 

squares indicate HIST non-reactive batches. For binding, potency values were analysed 

by parallel line assay using a reference vaccine as described in Chapter 2, section 2.8.9. 

The equation line (blue triangles) corresponds to the death threshold. The horizontal line 

indicates E-HPLC cut-off value.
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Figure 3.26. Relationship between enzymatic activity, binding activity and HIST 

reactivity for DTaP-C (n= 5) products. Red dots indicate reactive batches in HIST. Pink 

squares indicate HIST non-reactive batches. For binding, potency values were analysed 

by parallel line assay using a reference vaccine as described in Chapter 2, section 2.8.9. 

The equation line (blue triangles) corresponds to the death threshold. The horizontal line 

indicates E-HPLC cut-off value.
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Figure 3.27. Relationship between enzymatic activity, binding activity and HIST 

reactivity for DTaP-D (n=14) products. Red dots indicate reactive batches in HIST. 

Pink squares indicate HIST non-reactive batches. For binding, potency values were 

analysed by parallel line assay using a reference vaccine as described in Chapter 2, 

section 2.8.9. The equation line (blue triangles) corresponds to the death threshold. The 

horizontal line indicates E-HPLC cut-off value.
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the HIST. This was calculated by dividing the death threshold value (e.g. for DTaP-A, 

this is 1.02) by average binding activity of the two groups used to create the death 

equation line for DTaP-A (0.70).

The A- and B- subunit activities in all the reactive lots (3) of the test vaccines of DTaP- 

A type were found to be greater than the death threshold line and also the HPLC cut-off 

line indicating a clear positive relationship between the in vitro and in vivo methods. 

Using the same parameters (E-HPLC cut-off line and death threshold line) specific for 

DTaP-C products, the activities of 2/3 batches in the in vivo HIST were correctly 

identified as negatives. However, from the two reactive products only one was 

positively identified and the other was a false negative, i.e. the product showed 

reactivity in the HIST but was below the death threshold line. A total of 14 batches of 

DTaP-D products were tested. Five batches showed reactivity in HIST. Reactive lots for 

this product were defined by comparison with the activities of a reference vaccine 

which had been shown to be clinically safe. 4/5 of the reactive products were positively 

identified, that is higher than the death threshold line and also the E-HPLC cut-off. On 

the other hand, two batches were false positives and one batch was a false negative. The 

reasons for the discrepancies could be caused by the large variation in the HIST. It has 

been shown that the HIST is extremely variable making the validation of any new 

method against it very difficult (van de Rappelle et a i, 1997; Xing et al., 2002). Using 

the proposed mathematical model for histamine reactivity, there appears to be a 

product-specific minimal level of enzymatic activity required (i.e. E-HPLC cut-off 

value) for displaying reactivity in vivo in all three products. The binding activity only 

contributes to reactivity in vivo when the E-HPLC activity is above the cut-off value.
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4.1 Standardisation and assessment of residual PT ADP-ribosyl transferase 

activity in pertussis vaccines and its relationship with the in vivo HIST

WCV and AC Vs play an essential role in controlling the global burden of the pertussis 

disease and in these vaccine preparations, PT, in its detoxified form, is considered to be 

an essential component for protection against the disease. The detoxification process 

needs to be carefully controlled so that the protective epitopes are preserved whilst 

minimising toxicity levels. Since PT has a number of toxic activities in vivo, monitoring 

the residual PT activity and any reversion of toxoid to toxicity in pertussis vaccines is 

essential if safe and effective immunisation programs are to be maintained. Currently 

the only toxicity test practical and recommended by regulatory authorities for this 

purpose is the in vivo HIST (WHO, 1998; EP, 2006). However, this test is a lethal 

challenge test and also suffers from large intra/inter laboratory variations (van de 

Rappelle et al., 1997; Xing et al., 2002). Therefore a replacement test is needed. 

Although the modified in vitro ADP-ribosylation assay was shown to directly correlate 

with the in vivo HIST when using native PT preparations (Cyr et al., 2001; Yuen et al., 

2002), these studies did not address the relationship between ADP-ribosylation activity 

in pertussis vaccines and reactivity in the HIST. In the present study, the ADP- 

ribosylation assay has been further optimised and standardised. To assess the 

possibility of replacing HIST with the ADP-ribosylation assay, the relationship between 

the PT enzymatic activities in various vaccine formulations and their reactivity in the 

HIST has been investigated.

4.1.1 Optimisation and standardisation of the ADP-ribosylation assay

The ADP-ribosylation activity of PT was found to be higher when using the substrate

without the linker (FAC-Gai3C20) in comparison with that FAC-(CH2)5-Gcti3C20 used in
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previous studies (Cyr et a l, 2001; Yuen et al, 2002). From this result, the substrate 

without the linker was chosen for the assay, as it would increase its sensitivity (Chapter 

3, Figure 3.3). The reason for this finding is not known but it can be speculated that the 

one with the linker might be less soluble and hence less reactive with the enzyme, or it 

might be more hydrophobic and aggregate more, and hence become less reactive. 

Molecular modelling and nuclear magnetic resonance studies could be used to 

investigate these possibilities but these experiments were beyond the scope of the 

present study.

Other than PT, there is a number of other antigen components present in WCV and 

ACV preparations. In addition, Al(OH) 3  and AIPO4  are used as adjuvants for WCVs 

and ACVs. For this reason, the effect that the different antigens and these adjuvants 

might have on the assay system was investigated. In agreement with previous studies, 

the ADP-ribosylation assay proved to be specific for PT as none of the other vaccine 

antigen components demonstrated ADP-ribosyl transferase activity including PRP-T, 

which has not been previously assessed and is now a component present in the newer 

multivalent vaccines (Halsey, 2001). In contrast, in this study, the adjuvants commonly 

used in pertussis vaccines demonstrated a differential effect on PT ADP-ribosylation 

activity. The presence of A1(0 H) 3  but not AIPO4  decreased the ADP-ribosyl transferase 

activity of PT. This may possibly explain the lower slopes observed in some selected 

vaccine products when using the standard addition method where vaccine was used as 

matrix for reference PT preparation when constructing the standard curve (Cyr et al,

2001). The reason for this is unknown and Yuen et a l (2002), using a similar approach, 

reported that the adjuvant did not interfere with the enzymatic activity. Since the 

aluminium salt effect in this study occurred using either substrate with or without the -  

(CHajs- linker, and the only difference between this study and the previous study was
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the batch of substrate, the observed effect may have been be due to unidentified 

impurities present in this batch of substrate, generated during the synthesis and 

purification. There have been occasions when the supplied substrates were rejected due 

to the unexpectedly low reactivity with the enzyme (C-T Yuen, personal 

communication). Therefore, in view of this effect of adjuvant on the ADP-ribosylation 

activity of PT, it was decided to add the appropriate aluminium salt to the PT 

preparation 90/518 when preparing the standard-curve, to compensate for the effect that 

it had on PT activity. Thus the residual PT enzyme activity of test vaccines containing 

different adjuvants was calculated from the appropriate standard-curves.

In the present study, due to occasional reagent variability, there were some slight 

inconsistencies in the day-to-day measurements of ADP-ribosylation activities in 

vaccine products. To reduce such variations, the assay was standardised by including a 

positive control vaccine, Biken, into each assay and a validity criterion was established 

using the ratio of ADP-ribosylation activities of PT to ADP-ribosylation activities of 

Biken (Chapter 3 section 3.1.2).

4.1,2 Residual PT ADP-ribosylation activities in different pertussis vaccine 

formulations

In agreement with previous observations, no ADP-ribosylation activity was observed 

when using DTaP-I, which contained a genetically-inactive enzyme subunit (Chapter 3, 

Table 3.2). The residual PT enzymatic activity in WCVs (DTPw-J) was also found to be 

much lower in comparison to ACVs, with the exception of DTaP-G and this was similar 

to the findings of Cyr et al. (2001). These authors suggested that the low enzyme 

activity of DTPw might be due to the degradation of the synthetic substrate by unheated

147



---------------------------------------------------------------------------------------------------------------- Discussion

whole-cell components such as proteases. However, this was not observed in this study 

since degradation of the substrate was not seen. The reason for the observed lower 

enzymatic activity found in these vaccines is unclear. The DTPw products were not 

subjected to HIST in the present study because WCV composition is much more 

complex and varied, containing large amounts of LPS and other cellular components 

which could also affect the outcome of HIST. The products DTaP-G and DTaP-H that 

showed low enzyme activities and also did not cause histamine sensitisation in mice, 

were booster vaccine formulations corresponding to the full dosage vaccine DTaP-C 

and their PTd antigen content was lower than that of DTaP-C. The result for these two 

booster vaccines may indicate that the present ADP-ribosylation assay could be applied 

quantitatively and specifically to vaccines of similar formulations.

Apart from DTaP-I and products where only 1 or 2 batches were tested in this study, 

batch-to-batch variations of ADP-ribosylation activity were observed for all vaccine 

formulations. This within-product variability may be partly explained by the fact that 

both WCVs and ACVs are produced from a living organism in a batch-wise procedure. 

Subtle changes in materials, in the process itself or conditions such as pH, availability 

of reactive amino acids in the protein (PT) during the chemical inactivation reaction, 

can affect the extent of detoxification and type of chemical modification (Metz et al., 

2004). Apart from variability within products, different formulations showed 

differences in their enzymatic activities ranging from 0-10.2 E-units per SHD. 

Therefore a common level of enzymatic activity of PT for all vaccine formulations 

could not he defined. Furthermore, the enzymatic activities did not correspond to their 

total PT protein concentration as specified in the vaccine formulations, e.g. the PT 

antigen contents of DTaP-A and B were reported to be 20% higher than those of DTaP- 

C to F, but the enzymatic activity was much lower in the former products. Based on the
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observation that antigens other than PT do not have any intrinsic ADP-ribosyl 

transferase activity, the variation in enzyme activities was likely to be as a result of the 

different detoxification methods used in the production procedures because products 

DTaP-A and B were from one manufacturer while products DTaP-C to F were from 

another (Section 4.3.1). Chemical treatment has been widely used by manufacturers to 

detoxify PT. Different detoxification procedures using different reagents/or conditions 

have been shown to result in different amino acid side-chain modifications and changes 

in conformational and epitope binding patterns for the resulting PTd (Bums et al., 1987; 

Ibsen, 1996). The mechanisms and the sites of different toxoiding reactions on the PT 

molecule have not yet been defined. Thus, the PTd present in pertussis vaccines from 

different manufacturers could be modified at different sites of the A-subunit, B- 

oligomer or both and this deserves further investigation.

4.1.3 Relationship between residual PT activity in vaccines and reactivity in the 

HIST

Product DTaP-C was the intermediate bulk to DTaP-D, which had identical DTaP 

components except that, in addition to these antigens, DTaP-D also contained other 

antigen components. Comparison of the enzymatic activities in products DTaP-C and 

DTaP-D showed that, in general, higher enzymatic activities were found in the latter 

products which also showed more reactivity in HIST (Chapter 3, Figures 3.6 and 3.17). 

The difference between these two products was unlikely to be caused by other vaccine 

components since addition of the other antigens to DTaP-C did not result in either an 

increase in the enzymatic activities or in the reactivity in vivo (DK Xing, personal 

communication). These data suggest that, apart from the detoxification procedure, other 

formulation factors might affect the residual ADP-ribosylation activity in the final
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vaccine products. For example, Tween-80 is a detergent used in DTaP-D vaccine final 

formulation. Preliminary investigation showed that addition of Tween-80 to DTaP-C 

products enhanced the ADP-ribosylation activities (Section 3.3.3).

At present, the HIST is the only practicable means for detecting active PT in pertussis 

vaccines. HIST is a lethal test and large variations in test performance have been 

observed (van de Rappelle, 1997). In a more recent international collaborative study, 

significant differences (>30-fold) in HIST results between individual laboratories were 

observed, reflecting differences in animal sensitivity and other assay conditions (Xing et 

al., 2002). Therefore it is possible that some vaccine batches which showed reactivity in 

the present study may not have heen judged to be reactive in a test performed by other 

laboratories that use a different animal strain or test procedure. Moreover, the residual 

active PT is expressed as the proportion of animals that die upon sensitisation with a 

SHD of vaccine. Since this test, as done routinely, is highly variable, it would not give a 

quantitative indication of toxicity. For this reason, a direct quantitative comparison 

between the enzymatic activity and reactivity in HIST for each vaccine formulation 

would not be possible. Indeed, a clear positive relationship between the residual PT 

enzyme activity in vaccines and the in vivo reactivity observed by the HIST could not 

be found in the present study under the current experimental conditions. For example, 

none of the DTaP-E and F vaccines, possessing high enzyme activities, showed 

reactivity in HIST whereas approximately 60% of DTaP-D products, with similar or 

lower enzyme activities, showed reactivity in HIST (Chapter 3, Figure 3.5).

PT preparation coded 90/518 was used as the in-house reference for both enzymatic- 

HPLC and HIST assays in this study. This preparation has been assigned a unitage of 

2100 lU per ampoule in terms of the International Standard for PT (NIBSC code
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JNIH-5) in HIST (Xing et aL, 2002). However, because the contribution of ADP- 

ribosylation activities in these references to the reactivity observed in HIST is uncertain, 

the same unitage in HIST cannot be applied to the enzyme activity. Therefore in the 

present study, an arbitrary E-unit was used to express the amount of ADP-ribosylation 

activity in one SHD of vaccine and 1 E-unit was equivalent to the enzymatic activity 

produced by 1 pg of PT (90/518). In the current HIST system, the 50% histamine 

sensitisation lethal dose (HSD5 0 ) for preparation 90/518 is within the range 16.6-50 

ng/mouse which corresponds to 1.75 IU-5.25 lU of bioactivity (Xing et al., 2002). 

Interestingly, the residual enzymatic activities found per SHD of the vaccine 

formulations were approximately 18-200 (Chapter 3, Table 3.2 and Section 4.3,4.1) fold 

higher than the HSD5 0  values of PT 90/518, and with these high values of activity, all 

mice in the test groups would be expected to show signs of reactivity if the ADP- 

ribosylation activity is the sole factor in the in vivo HIST. However, this was not the 

case. Therefore, the results obtained from the study indicate that ADP-ribosylation 

activity in vaccines could not directly reflect the reactivity seen in HIST except in the 

case of DTaP-g, which does not have the enzymatic activity and also did not show any 

reactivity in HIST.

PT is an AB type bacterial toxin possessing two functionally distinct domains: the 

enzymatic A-protomer and the B-oligomer that facilitates host-cell binding and entry of 

the toxic enzymatic A-protomer into the cell. Although the precise mechanisms and the 

role of each A- or B- subunits on reactivity in vivo are unknown, this dual biological 

function of the PT molecule is likely to be fully reflected in the HIST but not in the 

present ADP-ribosylation assay which measures only the A-protomer activity. Different 

detoxification processes can yield quite distinct products (Bums et al., 1987; Gupta et 

al., 1987; Gupta et al., 1987b; Ibsen, 1996; Metz et al., 2004). Since the precise nature
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and location of the effects of different toxoiding reactions on the PT molecule have not 

been defined, the PTd present in pertussis vaccines could be modified on either the A- 

protomer, B-oligomer or both. A possible discrepancy between the in vivo and in vitro 

assays for the vaccine products could conceivably occur if the detoxification procedure 

was modifying mainly the B-oligomer, hence preventing the binding of the holotoxin to 

receptor sites on the cell surface and entry of the A-protomer into the cells. 

Furthermore, detoxification might affect parts of the PT molecule involved in binding to 

ATP, or internalisation and intracellular translocation (Hausman et al., 1990; el Baya et 

al., 1999), either alone or together with the receptor binding, ultimately preventing the 

entry of the A-protomer into the cytoplasm. Therefore, to understand better the effect of 

chemical detoxification on these PT subunits, both of the biological functions of PT 

should be measured.

Pertussis-based combination vaccines have been introduced with the aim of simplifying 

the immunisation of children against multiple diseases. More antigen components in the 

combination vaccine formulations could add further complications to the test systems. 

For native PT, the ADP-ribosylation activity determined by the E-HPLC coupled assay 

was found to correlate well with the results obtained in HIST (Yuen et al., 2002). 

However, a correlation between enzyme activity and HIST could not be established for 

most vaccine formulations assessed in the present study. The HIST is based on the 

ability of PT to sensitise mice and subsequently cause anaphylactic shock after 

histamine challenge. As mentioned in Chapter 1, Section 1.4.3.3, the molecular 

mechanism of this phenomenon is not clear. It cannot be ruled out that potential 

interaction between residual PT and components or formulation factors in a 

combination vaccine could also affect the outcome of HIST. Further investigation is 

needed.
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In summary, the ADP-ribosylation assay was further optimised and standardised. Levels 

of residual PT ADP-ribosylation activity varied between different acellular pertussis- 

based combination vaccine products. Different detoxification procedures as well as 

formulation factors could contribute to these variations. A level of enzymatic activity 

that would be significant in relation to the reactivity seen in the HIST could not be 

defined. Relying solely on the residual PT enzyme activity in vaccines may not fully 

reflect the in vivo reactivity observed by the HIST. Refinement of the in vitro test to 

include a step which monitors the B-subunit activity of PT may provide a better 

correlation with the in vivo HIST.

4.2 Development of a carbohydrate-binding assay for pertussis toxin and toxoid

Both A- (SI) and B- (S2-S5) subunits functions are involved in histamine sensitisation, 

where the carbohydrate binding subunits S2-S5 are involved in the binding to host cell 

receptors, followed by entry of the toxin into the target cells and the subsequent ADP- 

ribosylation of G proteins by the SI subunit. Therefore, as suggested in the previous 

section, a better correlation may be achieved by taking account of both the enzymatic 

and binding activities of PT when comparing activity in the HIST. In this study a 

binding assay was developed based on the carbohydrate-binding properties of PT.

4.2.1 Carbohydrate-binding specificity of PT

It is well documented that PT is a carbohydrate binding protein but the majority of the 

methods used to characterise the carbohydrate binding specificities have been indirect: 

sequential degradation followed by reglycosylation, deglycosylation by chemical or 

enzymatic approaches (Armstrong et aL, 1988; Hausman et al., 1993; Menozzi et a l,
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2002) using cell lines with glycosylation defects, inhibition of binding to model 

receptors or biological activities with glycoproteins or high concentrations of 

monosaccharides (Sekura and Zhang, 1985; Brennan et aL, 1988; Witvliet et aL, 1989; 

Tyrell et aL, 1989; Heerze and Armstrong, 1990; van’t Wout et aL, 1992).

In the present study, using an ELISA system and biotinylated oligosaccharides with 

defined structures, the precise structural carbohydrate binding specificities of PT were 

evaluated quantitatively. The results showed that PT had a high binding preference for 

multiantennary iV-glycans such as NA3, NA4, A3 and A4, with the highest affinity 

towards the fully sialylated structures. Preliminary studies indicated that PT was able to 

bind better to A-acetyl (A3) than to the A-glycolyl form of sialic acid (A3-1). Binding 

activity was also found to be adversely affected by core fucosylation of A3 and A4. The 

high bindings observed for A3 were in agreement with the binding activities observed to 

the glycoprotein fetuin, which consists predominantly of A3. hAGP also contains 

sialylated tri- and tetra-antennary type A-glycans (Fournet et aL, 1978; Yoshima et aL, 

1981) but, in the present assay system, higher coating concentrations (>8 pg/well) were 

required to achieve similar binding to that obtained with fetuin at 1 pg/well. The 

differences in binding activities of PT to these two glycoproteins may be due to 

different A^-glycan presentation or because of possible inferior coating of hAGP to the 

ELISA plates due to its higher carbohydrate content (45%). To my knowledge, this is 

the first report demonstrating the preferential binding of PT to fully sialylated tri- and 

tetra-antennary A-glycan structures. The method described herein avoids the 

interpretational problems of carbohydrate structural heterogeneity seen in glycoproteins- 

based experiments. It also allows for the direct comparison of PT-binding specificities 

and has the potential ability to differentiate binding activities to different structures on 

glycoprotein hgands.
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Previously, the binding of PT to a fetuin-coated plate was inhibited by sialyllactose 

(Witvliet et aL, 1989). However, in the present study, little or no binding was found to 

siayllactose. The difference between those data and the data reported here could be due 

to the use of higher concentration of trisaccharide (12.5mM, Witvliet et aL, 1989). The 

binding of PT to fetuin could also be inhibited by glycoproteins carrying biantennary 

structures (Sekura and Zhang, 1985; Heerze and Armstrong, 1990; Heerze et aL, 1991). 

In the present study, there was negligible binding of PT to biantennary 77-glycan 

structures (A2) presenting either as glycoprotein (hTf, bAGP, 1 |ig coating) or N-glycan 

ligands, at the concentrations studied. It was interesting that the binding activities for 

bAGP and hTf at 8 pg/well were 1.167 and 0.841 respectively and unlike the other 

glycoproteins, the binding activities reduced sharply to near background values at the 4 

pg coating level. As mentioned previously the binding of PT to Fet was maximum 

above 1 pg coating concentration. bTG and hTf have a lower (-8%) carbohydrate 

content (Spiro and Spiro, 1965; Riebe and Thorn, 1991) than Fet which has a 

carbohydrate content of approximately 20%. Therefore it is likely that the observed 

maximum binding to 1 pg Fet is due to optimal presentation of higher amounts of 

carbohydrate present on fetuin rather than the saturated coating of wells (Spiro et aL, 

1960). Although bAGP contains approximately 35% carbohydrate by weight, both 

bAGP and hTf consist predominantly of sialylated biantennary structures (Nakano et 

aL, 2004; Spik et aL, 1975) whereas Fet consists predominantly of tri-antennary 

structures (Takasaki and Kobata, 1986). Therefore, apart from the higher carbohydrate 

content, the overall charge of the carbohydrate content may also be critical for binding 

and possibly explain the very low binding observed to A2. This discrepancy in the 

interaction of PT with biantennary structures may be due to differences between the 

methods employed in different laboratories. It is likely that the presentation of
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biantennary structures for PT binding may be different in the various assay systems. 

The much lower binding affinity of A2 compared to A3 was corroborated in studies 

using fetuin (A3) and transferrin (A2) as ligands where fetuin was reported to be 

approximately 500 times better than transferrin in binding inhibition experiments 

(Tyrell et aL, 1989). Also, in a study by Heerze and Armstrong (1990), inhibition of PT 

binding to fetuin was approximately 150 times higher with human fibrinogen than with 

human transferrin, although both glycoproteins carry identical sialyl a2,6 biantennary 

structures (Spik et aL, 1975; Townsend et aL, 1982). Although the weakly-binding 

disialylated biantennary A-glycans (A2), as observed in this study, have been used 

successfully to identify carbohydrate binding sites on PT S2 and S3 subunits by X-ray 

crystallography (Stein et aL, 1994b), it would be interesting to determine if the stronger 

binding tri- or tetra-sialylated (A3, A4) and even the neutral multiantennary N-glycans 

(NA3, NA4) would react to the same binding sites, since regions other than those 

identified in that study are also implicated in receptor binding (Saukkonen et aL, 1992; 

van’t Wout et aL, 1992; Lobet et aL, 1993; Loosmore et aL, 1993; Stein et aL, 1994). 

These regions mainly lie in the N-terminal domains of S2 and S3 that resembles 

mammalian C-type lectins and, in one study, a free peptide spanning the amino acid 

sequence of the S3 subunit of pertussis toxin (44-58) was found to bind to fetuin and a r  

acid glycoprotein (Tallet et aL, 1993).

4.2.2 Binding of PT to glycolipids

PT was shown to bind to GTlb and GDI a glycolipids using a dot blot method. 

Consistent with these findings, PT bound to mixed brain ganglioside (Tallet et aL, 

1993) and to GDI a (Hausman et aL, 1993). Mixed brain ganglioside contains 

approximately 18% GMl, 55% GDI a, 15% GDlb, 10% GTlb and 2% other
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gangliosides (http://www.mGrckbiosciences.co.uk/html/CBC/home.html; for structures 

see Chapter 2, Table 2.2). Although binding was not observed to all the neoglycolipids 

or glycolipids (Chapter 2, Table 2.2) tested using microwell binding assays, it is 

probably due to inadequate coating since it has been reported that approximately 15% of 

the acidic, 40% of the neutral glycolipids and 20% of neoglycolipids remains associated 

within microwells after washing procedures (Green et al., 1992; Bierfreund et al., 

1998). Fukui et al, (2002) reported that 50% of acidic and neutral neoglycolipids were 

retained when they were immobilised on nitrocellulose and this may explain the weak 

binding to GTlb and GDI a using dot-blotting. During dot-blotting glycoproteins were 

loaded onto nitrocellulose membrane using a pipette. It was observed that following 

application of the sample, the sample spread outwards rapidly. Clustered presentation of 

oligosacchardies of neoglycolipids is reported to be important requirement for 

interactions with carbohydrate-binding proteins (Feizi et al., 1994). Therefore further 

studies using neoglycolipids applied to nitrocellulose using a microinjector (Fukui et al.,

2002) for a concentrated application may provide insights into structural requirements 

of PT for oligosaccharides structures found on glycolipids.

4.2.3 Comparison of PT and PTd binding in glycoconjugate-capture ELISA

PT in its detoxified form (PTd) is an important antigen present in all AC Vs. It is usually 

inactivated by chemical treatment with formaldehyde, glutaraldehyde, or both, or 

hydrogen peroxide or tetranitromethane (Siber et al., 1991; Edwards et al., 1995). These 

different detoxification procedures result in different amino acid side-chain 

modifications and changes in conformational and epitope binding patterns for the 

resulting PTds (Bums et al., 1987; Ibsen, 1996). Various attempts have been made by 

several workers to identify the binding sites of PT or to explore mechanisms of
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detoxification. Subunits S2 and S3 were found to be involved in binding to fetuin since 

construction of B. pertussis strains in which the S2 or S3 gene was deleted and 

substituted with S3 or S2 respectively resulted in production of mutant PTs containing 

two copies of S3 or S2 respectively, both with lower binding activities (Raze et al, 

1998). However, the extent of binding to specific oligosaccharide structure(s) mediated 

by S2 and S3 is unclear (Lang et a l, 1989; Schmidt et a l, 1989; Witvliet et a l, 1989; 

Loosmore et a l, 1993; Raze et a l, 1998). One of the commonest chemical 

detoxification processes uses cross-linking agents formaldehyde and glutaraldehyde. In 

the present study, a sample of PTd inactivated by glutaraldehyde was used as an 

example, for the comparison to PT with respect to their binding activities to A-glycans 

(A3 and NA3).

PTd showed much less binding to Pet, A3 and NA3 in comparison to PT. The 

extremely low binding activities of PTd to glycoconjugate ligands is not surprising 

since aldehyde treatments has been reported to modify mainly the B-oligomer as 

evidenced by the formation of higher molecular weight species in the B-oligomer on 

SDS-PAGE gels. Changes in the structural conformation of the B-oligomer would be 

expected to lead to reduced binding (Nogimori et al, 1986; Nencioni et a l, 1991; 

Ibsen, 1996; Fowler et a l, 2003 ). However, the reduction in binding activity of PTd to 

NA3 was less dramatic than that to A3, where the binding was minimal. This suggests 

that the toxoiding process for this product mainly alters the binding sites involving 

sialylated structures rather than sites that bind non-sialylated structures. Such a 

differential modification of the subunits with chemical detoxification of PT using 

formaldehyde and pyridine-borane was demonstrated in a previous study by Nogimori 

et a l (1986). The authors found that this modification of PT by reductive méthylation 

did not affect S2-S4 mediated haemagglutination. In contrast, reductive méthylation
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markedly impaired S3-S4 mediated mitogenicity. The present study provides the first 

evidence that glutaraldehyde detoxification causes the loss of PT binding ability to 

sialylated multiantennary structures but the ability to bind neutral multi antennary 

structures is partially retained. To date, the mechanisms and sites of chemical 

detoxification of the PT molecule remain unclear (Nogimori et aL, 1984; Nicosia et aL, 

1986; Gupta et aL, 1991; Nencioni et aL, 1991; Petre et aL, 1996). Glutaraldehyde or 

formaldehyde treatment of PT have differential effects on its biological activities (Gupta 

et aL, 1991) and other factors during the detoxification process itself such as, reactant 

concentrations, matrix, and the availability of the reactive amino acid in the protein 

solution, could also affect the extent of chemical modification. The defined 

oligosaccharide-capture ELISA developed in the present study would be useful for 

determining the specificity and location of the carbohydrate binding sites in the different 

subunits/parts of the PT molecule, and, furthermore, it could be useful for investigating 

the mechanisms and sites of action of different chemical treatments on the 

carbohydrate-binding properties of PT.

4.2.4 Validation of carbohydrate-binding assay using A3-capture ELISA

Since Fet, A3 and NA3 were found to be suitable ligands for PT binding in the ELISA 

system, further validation of the binding assay was carried out using A3 coating. PT 

showed high affinity to this ligand and use of oligosaccharides avoids the 

interpretational problems of carbohydrate structural heterogeneity seen in glycoprotein- 

based experiments (Section 4.2.1). In addition, use of the sialylated ligand permitted 

discrimination between PT and PTd. In combination vaccines, more antigen 

components could potentially complicate the test system. Investigation of the effect of 

other antigen components on the binding assay method showed that this method was
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specific for PT. This was further supported by the relatively higher binding activities 

observed for the ACV (DTaP-I) compared with the other AC Vs such as DTaP-A. 

DTaP-I consisted of the genetically-detoxified PT-g, contained about five times less PT 

antigen, and was stabilised/detoxified with a lower concentration of formaldehyde than 

DTaP-A. Therefore this assay, in theory, could estimate the integrity of the B-oligomer. 

A preliminary study on the feasibility of the newly-developed binding assay for 

application to different types of pertussis-based combination vaccines showed that the 

assay was reproducible and sensitive, could detect 2 ng PT (-0.21 lU), and hence 

substantiated its potential for monitoring the binding activities of PT/d in vaccine 

formulations. The results also demonstrated that the binding activities of PT/d recovered 

from different types of vaccines were variable (Chapter 3, Table 3.3) and it is unlikely 

that it will be possible to set a common baseline for all products. Furthermore, since 

different types of vaccines will differ in their detoxification methods and formulation, 

e.g. antigen concentration, composition and adjuvant types, the influence of these 

factors on the assay system cannot be completely excluded. For the purpose of 

monitoring product consistency, it would be reasonable to set up product-dependent 

specifications. The desorption procedure prior to the binding assay for each type of 

product could be another source of variation. To avoid this, ideally, one reference batch 

from each type of vaccine should be included in each assay and would be treated in 

exactly the same way as the test samples. Despite the above factors and desorption 

differences between products, comparisons were made in this study using 90/518 as a 

common reference for DTaP-C and DTaP-D products by using the E-HPLC to calculate 

total PT binding activity (Chapter 3, Section 3.3.3). However, this is time consuming 

and needs additional resource to be able to carry out the experiment at the same time. 

Therefore it may not be practicable.
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In summary, using defined oligosaccharide A3, a robust, sensitive binding assay that 

can be used for investigating the mechanisms of detoxification of PT and for the 

assessment of PT binding activity in vaccine formulations has been developed. This 

assay could be used to complement the ADP-ribosylation assay to form the basis of a 

potential alternative assay to the HIST.

4.3 Exploring the potential application of the ADP-ribosylation and carbohydrate 

binding assays

4.3.1 Differential modification of A- and B-subunit activities of PT after chemical 

detoxification

In general, detoxification was found to affect both A- and B- subunit activities. 

Moreover, there was a greater reduction in binding activity in comparison to enzymatic 

activity after chemical detoxification. Chemical inactivating reagents such as 

formaldehyde and glutaraldehyde are reported to primarily react with lysine residues 

(Nogimori et al, 1984, 1986). These lysine residues are present only in the B-oligomer 

but not in the SI subunit (Nicosia et ah, 1986; Locht and Keith, 1986) and so it is not 

surprising that the detoxification effect was more apparent on the binding activity than 

the enzymatic activity. Previous studies have reported that, after detoxification with 

glutaraldehyde, high molecular weight species were observed on SDS-PAGE gels 

whilst the SI subunit retained its original size (Nicosia et ah, 1986). Despite the fact 

that SI subunit lacks lysine residues, this study and others have shown that both SI 

subunit enzymatic and monoclonal antibody binding affinity were reduced after 

chemical treatment (Burns et ah, 1987; Ibsen, 1996; Fowler et a l, 2003a, b). It could be 

argued that the reduction in activity might be due to the constraints imposed by the
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extensive cross linking of B-oligomer thereby preventing the accessibility of S1 to its 

substrate or antibody, rather than chemical modification of the SI subunit itself. 

However the intensity of the SI subunit band decreased on SDS-PAGE gels after 

detoxification with formaldehyde indicating some modification of the subunit (Nencioni 

et aL, 1991; Petre et aL, 1996). Although direct evidence of changes in the A-subunit 

remain elusive, this is still possible, since both glutaraldehyde and formaldehyde can 

react with amino acids other than lysine (Habeeb and Hiramoto, 1968; Tome et aL, 

1985; McIntosh, 1992; Metz et aL, 2004).

4.3.2 Comparison of different detoxification procedures

In this study, it was observed that DTaP-A products, in which the PT had been 

inactivated with formaldehyde/glutaraldehyde, showed a greater reduction in enzymatic 

activity in comparison to DTaP-C products in which the PT had been inactivated using 

glutaraldehyde alone. In contrast, despite desorption differences, glutaraldehyde- 

inactivated DTaP-C products showed a greater reduction in binding activities than 

formaldehyde/glutaraldehyde-treated PT in vaccines. The reason for the differential 

observation in A- and B-subunit activities is not clear, since the detoxification 

procedures vary between different manufacturers. However, the developed in vitro 

assays should be useful for distinguishing differences in the detoxification procedure. 

Further studies could be carried out to investigate the effect of different chemicals on A- 

and B- subunit activities of PT.
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4.3.3 Comparison of different formulations

In the present study, HIST results obtained for DTaP-C and DTaP-D products were 

particularly noteworthy. DTaP-C was an intermediate bulk to DTaP-D products and the 

latter products differed in that they were formulated with additional antigen 

components. Paradoxically, DTaP-D products, but not the corresponding DTaP-C 

products, showed reactivity in the HIST. Concomitantly, both A (enzymatic) and B 

(binding) subunit activities were higher in the DTaP-D products in the in vitro assays. 

This strongly indicated that the differences in reactivity observed in vivo could be 

ascribed to changes in the A- and B-subunit activities of PT (Chapter 3, Section 3.3.3). 

It was also noteworthy that the enhancement in B-subunit activity was greater than for 

the A-subunit activity, with the exception of the clinical trial lot and its intermediate 

bulk. This may have been due to the fact that the detoxification process predominantly 

targets lysine residues present only in the B-subunit (Nogimori et aL, 1986; Nicosia et 

aL, 1986). Therefore, if reversion of the toxoiding process did occur in DTaP-D 

products then it would be reasonable for the changes to be more evident in the B- 

subunit than the A-subunit activity (Section 4.3.1). Regaidless of the observation that 

both A- and B- subunit activities were greater in DTaP-D products than the 

corresponding DTaP-C, the significance of this enhancement in terms of the histamine 

reactivity is presently unknown. It was difficult to establish the proportion of A- and B- 

subunit activity required for causing in vivo toxicity (see Section 4.3.4.2). In addition 

the influence of the other additional antigens on the outcome of HIST cannot be ruled 

out, even though the other vaccine antigens administered individually or in combination 

with DTaP-C did not show any activity in HIST (DK Xing, personal communication).
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Preliminary studies indicated that Tween-80, which is used in the DTaP-D formulation, 

was a contributor to the enhanced ADP-ribosylation activity in DTaP-D products. The 

reasons for the effects of Tween-80 on PT enzymatic activity in vaccines are not fully 

understood but Tween-80 may promote de-aggregation of PT molecules. During the 

detoxification process, PT has a tendency to aggregate (Jiang and Schwenderman, 2000; 

Kataoka et aL, 2002; Fowler et aL, 2003b) and the addition of Tween-80 may release 

PT concealed or trapped in aggregates. However, when comparing the ratio of binding 

activity to enzymatic activity in DTaP-C and DTaP-D products, the activity was higher 

in the latter products suggesting that de-aggregation did not take place, but further 

studies are required to rule this out. The DTaP-C vaccine was a concentrated product 

and was diluted to the same concentration as the DTaP-D products (neat) prior to testing 

of the enzymatic and binding activities. Dilution of the toxoid may facilitate the 

dispersion of PT from the aggregates. It is possible that, in the present study, sufficient 

time was not allowed after dilution for the de-aggregation process to reach completion 

since the DTaP-D products used here had been formulated for months or more. 

However de-aggregation does not explain why such products showed reactivity in the in 

vivo HIST.

An alternative explanation for the Tween-80 effects may be that re-naturation of the 

protein occurred, i.e. reversion. The effect of Tween-80 was found to be product 

specific as its addition to DTaP-C intermediate bulks showed a marked enhancement of 

enzymatic activity but this did not occur with other products tested (Section 3.3.3.1). 

This suggests that the Tween-80 effects may depend on the types and extent of chemical 

detoxification used in the production process, but since the chemical detoxification 

conditions are different between manufacturers, it is unknown at this stage if the effect 

of detergent on the enzymatic activity is detoxification procedure specific. However,
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under the present experimental conditions, addition of Tween-80 to DTaP-C did not 

noticeably enhance the binding activity or cause any reactivity in HIST. Therefore, the 

effect of Tween-80 observed in the present investigation may not entirely explain the 

enhancement in reactivity in HIST, or the increased binding activity. Again it should be 

stressed that the significance of this enhancement in enzymatic activity in HIST is not 

known. Other unidentified formulation factors may be contributing to the higher 

binding and reactivity in vivo. Further investigation is needed into other possible factors 

that might have contributed to the increased reactivity seen for DTaP-D products.

4,3.4 Relationship between A- and B-subunit activities of PT and the in vivo HIST

4.3.4.1 Comparison of A- and B-subunit activities in vaccines and in purified PT 90/518 

and their relationship with HIST

In the present study, the residual enzymatic activities found per SHD of the vaccine 

formulations were approximately 18-200 fold higher (taking the lowest and highest 

values of enzymatic activities) than in 50 ng of purified PT 90/518. The HSD5 0  of this 

PT 90/518 is within the range of 16.6-50 ng/mouse (Xing et al., 2002). With no 

detoxification, the expected ratio would be 400-500 times since non-booster vaccines 

generally contain about 20-25 pg of PTd. However, in the case of the binding activities 

in these vaccines, the activities were equal to or 3.6-fold higher than that in 50 ng of 

purified PT 90/518. This differential reduction of the relative enzymatic and binding 

activity in vaccines to native toxin could be explained by the fact that detoxification 

occurs predominantly in the B-subunits (Section 4.3.1, Nogimori et aL, 1986; Nicosia et 

aL, 1986). The paradox here is that, even with such high A- and B-subunit activities, 

most of the vaccine lots did not show reactivity in the HIST. It is generally believed
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that the mechanism of toxin action involves three stages: binding; internalisation and 

translocation of the toxin; and the ADP-ribosylation of G proteins. The binding and 

enzymatic activity is mediated by the B-oligomer and SI subunit respectively (Sekura 

and Zhang, 1985; Ui, 1990). However, the relative roles of the A- and B-subunits in the 

internalisation process are unclear (Kaslow and Bums, 1992; Spangler et aL, 1993; 

Stein et aL, 1994b; el Baya et aL, 1997; Castro et aL, 2001). It is possible that the 

discrepancy between the reactivity of PT in the vaccines and purified 90/518 occurred 

because the detoxification procedure affected parts of the A- or B- subunits involved in 

translocation of SI subunit, thereby preventing the ADP-ribosylation of G proteins and 

reactivity in HIST. On the other hand, others have suggested that PT may transverse the 

membrane directly (Kaslow and Bums, 1992; Spangler etaL, 1993; Stein etaL, 1994b).

The precise mechanism of histamine sensitisation and thus the endogenous ligands for 

PT are unknown. Native PT was shown to bind to several oligosaccharide structures 

(Chapter 3, Section 3.2.2). For T-cell mitogenicity, PT binds to a 43 kDa and 70 kDa 

receptor. Activation is believed to be due to the divalent binding mediated by S2 and 

S3. Although these two subunits share more than 70% sequence similarity (Nicosia et 

aL, 1986; Locht and Keith, 1986), differences in carbohydrate binding specificities have 

been reported (Armstrong et aL, 1988; Brennan et aL, 1988; Witvliet et aL, 1989). A 

second reason for the discrepancy could be due to the presentation of ligands in vivo. 

Although vaccines showed binding to oligosaccharide A3 after detoxification, it is 

possible that the vaccine may not have been able to bind to other carbohydrate 

structures that are also essential for toxicity in vivo. As discussed in Section 4.2.3, 

future studies using the developed assay should explore the possible use of other ligands 

and also investigate specificity and location of the carbohydrate-binding sites in the 

different subunits/parts of the PT molecule. Nevertheless, it is possible that the
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mechanism of action of vaccine preparations and purified PT preparations in HIST may 

be different. The possibility of the interaction between purified PT and other unknown 

components in vivo or PT and formulation factors influencing histamine reactivity 

cannot be ruled out. For example, previous studies have shown that both native PT and 

LPS can enhance XL-Ip production in the hippocampus (Loscher et aL, 2000)

4.3.4.2 Role of A- and B- subunit activities in vaccines and the in vivo HIST

DTaP-I products displayed high binding activity but did not show toxicity in vivo since 

the enzyme active site had been eliminated by mutation. Further comparisons of A- and 

B-subunit activities in DTaP-D, DTaP-E and DTaP-F also highlighted the fact that the 

higher binding activity of DTaP-D products in comparison to DTaP-E and DTaP-F may 

have contributed to the toxicity observed in vivo for this product. The enzymatic 

activities were similar between the products (Chapter 3, Figure 3.23 and Table 3.5). 

The differences in binding activity may have been due to differences in the 

detoxification procedures. Therefore, both A- and B- subunits appear to play a role in 

the in vivo HIST.

Although these comparisons highlighted a possible role for B-subunits in causing 

toxicity in vivo, it is difficult to determine the relative contributions of A-subunit 

activity and B-subunit activity. In theory, it might be possible to re-assemble the 

holotoxin with known amounts of A-subunit and B-subunit activities to establish this 

relationship. However it might be difficult to produce such a modified holotoxin. PT is 

arranged in a molar ratio of SI: S2: S3: 2xS4: S5 (Tamura et aL, 1982). Thus prior to 

the assembly of B-oligomer with different levels of activities one would have to identify 

the effective binding activity of each subunit before any modification. Any structural
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modification of individual subunits might cause inappropriate holotoxin assembly and 

this structural modification might lead to reduced or inappropriate toxin activity, i.e. the 

carbohydrate-binding specificity might change and cause unpredictable activity in vivo.

4.3.5 Establishment of a preliminary relationship between enzymatic, 

carbohydrate-binding and HIST tests of PT toxicity

A mathematical model was derived according to the method described by the 

Heinemann working group (Solving equations and inequalities, 2002) to explore the 

relationship between the in vitro and in vivo assays. Using the data generated from PT 

preparation 90/518, the experimental data fitted well with the equation (Section 3.3.4.2). 

Therefore it seemed reasonable to further apply this model to vaccines. Three death 

threshold equation lines were generated for DTaP-A, DTaP-C and DTaP-D products, 

respectively. The need for product-dependent specification was based on the differences 

in production processes with regard to methods of purification and detoxification, 

number and quantity of components, incorporated adjuvants and excipients in different 

vaccine formulations from different manufacturers (Corbel and Xing, 2004). Moreover 

the extent of detoxification can depend on the reagent used and factors such as pH, 

availability of reactive amino acids in the protein in solution, reactant concentrations 

and the matrix can affect the quality of the resulting toxoid thereby resulting in different 

levels of residual PT activity both in products from different manufacturers and within 

products (Sections 4.3.2 and 4.3.3.2; Metz et aL, 2004). The influence of these factors 

on the enzymatic, binding and HIST cannot be completely predicted. Although the 

model for the vaccines was only very preliminary, a relationship between in vitro and in 

vivo assays was observed for all vaccine products when applying the E-HPLC cut-off 

line. It appears that there is product-specific level of enzymatic activity that is critical
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for reactivity in HIST. However this is based on the assumption that the death threshold 

equation line below the E-HPLC cut-off value does not apply. So far, none of the 

reactive batches showed any reactivity below the HPLC threshold line. This finding is 

in line with the fact that the histamine sensitisation is dependent on the expression of PT 

catalytic subunit activity (Pizza et a l, 1986; Nencioni et a l, 1986). The binding activity 

only contributed to the reactivity in vivo when the ADP-ribosylation activities were 

above the E-HPLC cut-off line. To replace the HIST, more work needs to be done to 

evaluate a larger number of vaccines and accumulate a large amount data for 

meaningful analysis and to judge the appropriateness of the mathematical model. 

Nevertheless, the results obtained for vaccine formulations A, C and D (Figures 3.25- 

3.27) suggested that the developed methods form a good basis for the future 

development of an alternative assay to the HIST. At current stage, if using the E-HPLC 

cut-off value for the different vaccine formulations (Figure 3.25-3.27), it may reduce the 

HIST by approximately 70, 40 and 40 % for DTaP-A, C and D products respectively. 

The E-HPLC-cut off line was also found to be product-specific and the higher 

enzymatic cut-off line generally paralleled with the higher reactivity seen in vivo (e.g. 

DTaP-D). However, the clinical significance of the reactivity of vaccines in HIST is not 

known.

In summary, the developed assay could be useful for measuring product-specific 

consistency and a preliminary relationship between the developed in vitro assay and in 

vivo assay was established. Further studies, evaluating a larger number of vaccines is 

required for meaningful statistical analysis. The methods developed form a good basis 

for the future development of an alternative assay to the histamine challenge test.
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Proteomic analysis of PT induced CHO cell
clustering
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5.1 Introduction

The in vitro assays for measuring the A- and B- subunit activities of PT (Chapters 4) 

forms the basis of a potential replacement test for the in vivo safety testing of pertussis- 

based combination vaccines by the HIST. The developed assays are biochemical assays, 

measuring the enzymatic and binding activities of PT independently and demonstrating 

different parts of the mechanisms involved in its toxicity. The precise nature of PT- 

induced toxicity and the target cells involved in histamine sensitisation are unclear and 

thus present some challenges in developing a suitable alternative in vitro model for 

measuring active PT that is directly reflective of the toxicity observed by the HIST. The 

CHO cell clustering assay has been used as an in vitro test for determination of residual 

active PT in vaccines. Despite the disadvantages of this assay e.g. interference by 

adjuvant and possibility of failing to detect PT activity concealed in aggregates of 

toxoided PT (Chapter 1, Section 1.6.2), the CHO-cell assay can still be used for 

determination of residual PT in PTd at the bulk stage. Similar to HIST, the mechanism 

of the CHO cell clustering is not clear (Chapter 1, Section 1.4.3.4). In order to 

understand how CHO cells are altered by the toxin and hence to give some leads into 

developing a mechanistic-based alternative assay for the safety testing of pertussis- 

based combination vaccines, comparative proteomics was used to study the changes and 

possible mechanisms of PT-cell interactions.

Proteins are effector molecules controlling the biological processes in an organism. It is 

at the protein level where the biological processes can be modulated, thus changes for 

example in cell function due to toxin treatment can be linked at the protein level. In 

general, DNA codes for RNA which is translated to protein therefore, theoretically, 

studying the genetic (mRNA levels/transcriptomes) or protein profiles of control and 

toxin-treated cells should give meaningful insights to the mechanism of toxicity.
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Nevertheless, studying the protein profiles is considered to be more direct. A single 

gene can give rise to different proteins and functional genomics studies have indicated 

that analysis of mRNA levels does not necessarily correlate with protein expression 

level nor does it indicate the nature of the functional protein product (Gygi et aL, 1999; 

Anderson and Seilhamer, 1997). In addition, several post-translational modifications, 

such as glycosylation or phosphorylation can affect proteins following translation but 

cannot be predetermined at the genetic level yet can alter the cell’s functions. Therefore, 

in this study, the protein response was targeted to gain an understanding of the 

mechanism of PT-induced toxicity.

‘Proteomics’ is a high throughput analytical approach for expressed proteins of a cell, 

tissue, or biological fluid in a given time. The proteome of a biological sample (e.g. 

cell) is a complex and dynamic entity that changes depending on its physiological state. 

The core technology of proteomics combines protein separation by two dimensional 

polyacrylamide gel electrophoresis (2D-PAGE) with mass spectrometry for protein 

identification. An alternative non-gel based strategy suitable for this purpose involves 

the use of the isotope coded affinity tag (ICAT) method (reviewed by Geert et al, 2005). 

In this study, the former method was used for investigating differentially-expressed 

proteins after PT challenge of CHO cells.

2D-PAGE technique sorts proteins in two separate steps according to two independent 

properties: the first-dimension, isolelectric focusing (lEF) and the second dimension 

step, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). lEF 

separates proteins according to their isoelectric points (pi). Proteins are amphoteric 

molecules that carry a positive, negative, or zero net charge (pi) depending on the pH of 

their surroundings. For lEF, the protein mixture is loaded onto a carrier ampholyte
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generated pH gradient in polyacrylamide gel, and, under the influence of an electric 

current, the proteins will initially move towards the electrode with the opposite charge. 

As each protein migrates, the net charge and the mobility will progressively decrease 

and it will stop migrating at its pi. If the protein diffuses away from its pi, it will pick up 

a charge and hence move back to the position where it is neutral. This is the focusing 

effect of lEF, which concentrates the protein at their pis. SDS-PAGE separates proteins 

according to their molecular weights. Proteins to be separated by this method are kept 

under denaturing conditions to produce a linear polypeptide chain using a combination 

of SDS and reducing agents such as mercaptoethanol or dithiothreitol. SDS is an 

anionic detergent that breaks up complex protein structures by binding to proteins 

specifically in a mass ratio of 1.4 g SDS/g protein. This confers a net negative charge to 

the polypeptide in proportion to its length. The net charge to mass ratio is constant. 

Polyacrylamide gel acts as a molecular sieve, formed by polymerisation of acrylamide 

monomers into long polyacrylamide chains and cross-linking of the chains by inclusion 

of bis-acrylamide, that restrains larger molecules from migrating as fast as smaller 

molecules. Proteins of different molecular weight ranges can be separated by using the 

appropriate % T, which corresponds to the total concentration of acylamide monomers 

(acylamide and bis-acrylamide). Therefore, in an electric field, the negatively charged 

denatured protein in a polyacrylamide gel will move to the anode and migration will 

depend on the molecular weight of the protein.

Sample preparation for complete solubilisation, disaggregation, dénaturation, and

reduction of proteins is essential for lEF and obtaining a good 2-D gel result. These can

have a large effect on the appearance of the final gel and need to be determined for a

given sample. Allowing sufficient lEF focusing times (which needs to be empirically

determined) to separate the proteins is also important to achieve good separation and
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well resolved protein spots. Following the establishment of these conditions for a given 

sample, this technology allows thousands of different proteins to be separated with high 

resolution, and information such as pi, apparent molecular weight, and the amount of 

each protein is obtained. These features, and its relative robustness following 

introduction of immobilised pH gradient (IPG) strips, which are created by covalently 

incorporating a gradient of acidic and basic buffering groups into a polyacrylamide gel 

at the time it is cast, has made this separation technology a powerful and popular tool 

for the analysis of complex protein mixtures (Gorg et aL, 2000). 2D-PAGE, however, 

can be very challenging in order to resolve reproducibly and accurately thousands of 

separated proteins. The general procedure for performing 2-D PAGE involves: sample 

preparation; IPG strip rehydration; sample application; lEF; equilibration; SDS-PAGE; 

staining. Each of these processes needs to be stringently controlled in order to produce 

gels reproducibly and with high quality. Considering the multi-step procedure, the need 

for much manual handling and the scale of the proteins involved, reproducibility can be 

extremely challenging. Sampling solubilisation conditions, sample handling, sample 

loading, and staining absorption, buffer preparation, gel casting and numerous other 

processes can affect the resulting gel image and contribute to variability in measured 

protein separation and intensity. The fact that the result is only known at the end of the 

experiment makes this method a very long and technically-demanding procedure 

requiring much skill to master.

Reference proteomic maps of the CHO cell line have been described previously

(Champion et aL, 1999; Naryzhny et aL, 2001; van-Dyk et aL, 2003; Hayduk et aL,

2004). van-Dyk et at. (2003) used the reference map for investigating cellular changes

associated with increased production of human growth hormone. In the present study,

this technique was applied to examine the interaction of PT with target cells using the

174



------------------------------------------------------------------------ Proteomic analysis o f  PT induced CHO cell clustering

CHO cell line as a model. The effect of PT on the protein profiles of CHO cells has not 

been reported previously. Changes in protein expression in cells induced by a given 

toxin should reflect its toxicity. Thus, comparing the protein expression profiles of PT- 

treated cells against reference non-treated cells may provide an understanding of the 

mechanism of this assay. Since the dynamic range of proteins depends on the cell status 

and condition, sampling time is critical. The CHO cell assay is routinely used in our 

laboratory for monitoring active PT in pertussis vaccine preparations. The sampling 

time and concentration of PT chosen were known to cause the maximal clustering 

response.

5.2 Results

5.2.1 Determination of optimal solubilising conditions and lEF times for the 

proteomic profiling of CHO cells

The protein profiles of CHO cells under three different solubilising conditions were 

compared by loading equal amounts of protein (100 jig) on each gel, and staining the 

second-dimensional gel with silver. For optimal sample preparation, three different 

lysing methods were compared and consisted of: 7 M urea 2 M thiourea lysis buffer; 7 

M urea 2 M thiourea lysis buffer with sonication; and 9 M urea only lysis buffer 

(Chapter 2, Section 2.9.1.3). These methods are commonly used for solubilising various 

protein samples. Figure 5.1 shows the 2-D gel images using the different lysis methods. 

The overall protein spot profiles were similar. The use of thiourea in combination with 

urea as a chaotrope has been reported to improve the solubilisation of hydrophobic 

membrane proteins and proteins that tend to aggregate (Rapilloud, 1998). Therefore, 

theoretically this should potentially separate more proteins, and for this reason it was
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Figure 5.1 The effect of different solubilising methods and DEF times (kVh) on protein 

separation and resolution in 2D-PAGE. 2D-PAGE was performed as described in 

Chapter 2, Section 2.10. pH 3-10 NL IPG strips with 100 pg loading of total protein 

extracts from CHO cells were used for first dimension and second dimension was 

performed on 12% T polyacrylamide SDS-gel.
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chosen for all further experiments. Resolution of the spot separation is also important 

for high performance 2D-PAGE and can be affected by the lEF times. Three different 

focusing times were investigated and it was found that the optimum time needed for the 

lEF pattern to reach the steady state (best resolution) was achieved when using longer 

focusing times, thus 100 kVh was used for all subsequent experiments (Figure 5.1).

5.2.2 2D-PAGE using narrow range IPG strips

Using a broad-range pH 3-10 IPG strip, a high complexity of protein spots was 

observed (Figure 5.1) resulting in overcrowding of spots. This could potentially hamper 

subsequent protein quantitation and identification. To overcome this, overlapping 

narrow range pH 4-7 and pH 6-9 IPG strips were selected for the purpose of 

investigating the proteomic profiles of treated CHO cells. Good separation of proteins 

was achieved under the optimised conditions for IPG strips pH 4-7 (Figure 5.4). On the 

other hand, under the same conditions with the pH 6-9 IPG strips the basic proteins 

were not well resolved (Figure 5.2). Shorter focusing times are recommended by the 

manufacturers for basic proteins and, to improve the separation, different focusing times 

were investigated. The resulting 2-D electrophoretic separation of basic proteins is 

shown in Figure 5.2. Under the usual experimental conditions, basic proteins were not 

well resolved as evidenced by horizontal streaking on the gels. Direct addition of 

reducing agent DTT at the cathode reportedly improves solubilisation of less soluble 

proteins (Hoving et aL, 2002). However this was not seen in the present study (data not 

shown). Obtaining good solubilisation for basic proteins is a common problem 

associated with this technology (Shaw and Riederer, 2003; Henningsen et a l, 2002). 

Nevertheless, several advances in solubilisation methods and strategies for separation of 

basic proteins such as multiple gel fractionation, organic solvent fractionation and other
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Figure 5.2. The effect of different lEF times (kVh) on protein separation and resolution 

in 2D-PAGE using pH 6-9 NL IPG strips for first dimension. 100 pg of total protein 

extracts from CHO cells were used for gel loading and 2D-PAGE was performed as 

described in Chapter 2, Section 2.10. Second dimension was performed on 12% T 

polyacrylamide SDS-gel.
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fractionation experiments for isolation of integral membrane protein have greatly 

improved the recovery of these types of proteins (Molloy, 2000). However, due to 

restricted time, further studies were not carried out. In this study, proteomic analysis of 

CHO cells was focused in the acidic pH range.

5.2.3 Comparison of control and toxin-treated CHO cell protein expression profiles

PT induces CHO cells to grow in clusters of tightly associated elements (Figure 5.3). 

At the end of the treatment, the viability of untreated and treated CHO cells, as 

monitored by trypan blue exclusion, was as high as 95% with the usual experimental 

conditions. CHO cell lysates from control and PT-treated cells, from three separate 

experiments were pooled, prior to sample solubilisation. Total cellular proteins (50 pg) 

were prepared from the control and treated cells and separated using the optimised two- 

dimensional gel electrophoresis in three replicate gels per treatment. Using the default 

parameters in the software, more than 1500 spots from each gel were automatically 

detected. From the three control replicates, control 3 was used as reference image as this 

gel presented the highest number of well-resolved protein spots (Table 5.1). The spots 

that matched across 6 gels were individually confirmed manually. All negatively- 

stained and co-migrated spots were omitted from the analysis as quantitation was no 

longer accurate. After analysis, 579 spots were presented and matched in all of the 6 

gels (Table 5.1). Of those, in comparison to control 3, 262 spots were increased, 220 

decreased and 97 remained unchanged in expression level due to PT treatment. All the 

changes were proportionally quite small and statistical analysis was not feasible because 

of the low number of gel replicates and intrinsic problems related to this methodology 

in terms of reproducibility. The gel images of the proteomic profiles of control and 

treated CHO cells are shown in Figure 5.4.
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Figure 5.3. PT-induced clustering effect on CHO cells, (a) CHO cells treated with 

tissue culture medium only for 48 h. (b) CHO cells treated with PT at 64 ng/ml for 48 h. 

Images were captured using a Nikon Diaphot inverted microscope with phase contrast 

optics. Magnification 20 x lens. Courtesy of Dr. R. Fleck, NIBSC
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Table 5.1. Number of spots identified and matched to reference image.

Gel Name No. of spots detected No. of spots matched to reference gel (%)

Control 1 1712 1366 (78)

Control 2 1772 1441 (81)

* Control 3 1782 1782(100)

Treatment 1 1533 1239 (75)

Treatment 2 1743 1276 (72)

Treatment 3 1741 1304 (74)

ImageMaster 2D Platinum software 5.0 was used for spot analysis and was performed using the default 

parameters in the software. * reference gel.
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Figure 5.4 2D-PAGE protein profiles of the control and PT-treated CHO cell extracts. 

50 |ig protein loaded, lEF at pH 4-7, 12% T SDS-PAGE.
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5.2,4 Protein Identification

A total of 199 protein spots were excised from each of the two preparative gels and 

analysed by capillary LC-MS/MS. The CHO genome has not been fully sequenced 

therefore there is some loss of stringency in assurance of protein identification and for 

this reason it was prefened to do cross-species sequence homology using 

UniProt/Swiss-Prot PASTA, which is a curated protein sequence database that provides 

a high level of annotation, a minimal level of redundancy and a high level of integration 

with other databases (Apweiler et aL, 2004; Bairoch et al, 2005). The MS/MS data 

were also compared against all entries of the NCBI non-redundant protein database 

(downloaded 16 May 2005) which contains the translation of all coding sequences 

presented in the NCBI nucleotide sequence databases. Many of the identified proteins 

were similar in protein identity regardless of the database used. However, 3 additional 

proteins were identified, namely vimentin, hypothetical protein 1-2 and cytochrome c 

oxidase polypeptide Va, when using the NCBI database. The latter protein decreased 

(1.1-fold) in quantity following PT treatment and the former two proteins were not 

quantitative. Using UniProt/Swiss-Prot PASTA, a total of 51 protein spots were 

identified (Table 5.2, Appendix E.3). The 2-D PAGE map of the identified proteins is 

shown in Figure 5.5. Of the 51 proteins identified, 25 proteins matched to those spots 

with accurate quantitation. Of these, 88% were found to be differentially expressed in 

PT-treated cells. 19 proteins increased and 3 proteins decreased in expression. The 

identified proteins with accurate quantitation were sorted based on their known 

functions; cell stress associated (5 spots), cell cycle (3 spots), cell signaling (3 spots), 

protein folding (6 spots) protein degradation (4 spots), protein synthesis (2 spots), 

membrane and cytoskeletal associated (1 spot) and metabolic enzymes (4 spots) and are 

shown in Table 5.3.
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Figure 5.5 2D-PAGE proteome map of CHO cell proteins. 400 p.g protein was loaded 

and the gel developed with MS compatible silver staining.
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Table 5.2 Proteins identified in CHO-Kl 2D-gels. Proteins that have matched to those 

with accurate quantitation data showing in red (increased due to PT), blue (decreased 

due to PT) and green (no change). Black, not quantitative.
Spot ID 

No
Protein identity and/or homologue 

to other species
Spot ID 

No
Protein identity and/or homologue 

to other species

2114 Calreticulin,
Cricetulus griseus (Q8K3H7)

2698 Alpha enolase, Homo sapiens 
(P06733)

2157 78 kDa glucose regulated protein. 
Homo sapiens (PI 1021 )

2763 Actin, cytoplasmic 1, Cricetulus 
griseus (sp P48975)

2179 78 kDa glucose regulated protein, 
Homo sapiens ( PI 1021)

2768 Actin, cytoplasmic 1, Cricetulus 
griseus (P48975)

2307 Stress-70 protein, Cricetulus griseus 
(035501)

2769 Actin, cytoplasmic 1, Cricetulus 
griseus (P48975)

2308 Heat shock cognate 71 kDa protein, 
Cricetulus griseus (PI9378)

2775 Actin, aortic smooth muscle. Homo 
sapiens (P62736)

2316 Heat shock cognate 71 kDa protein, 
Cricetulus griseus (P19378)

2776 Actin, cytoplasmic 1, Cricetulus 
griseus (P48975)

2385 T-complex protein 1 subunit beta. 
Homo sapiens (P78371 )

2787 Nuclear migration protein nudC 
(nuclear distribution protein C 
homolog), Rattus norvegicus 
(063525)

2449 T-compIex protein 1 subunit alpha, 
Cricetulus griseus (PI 8279)

2808 40S ribosomal protein SA (p40) 
(34/67 kDa laminin receptor), 
Cricetulus griseus (P38982)

2459 60 kDa heat shock protein. Homo 
sapiens (PI0809)

3026 Elongation factor 1 -delta. Mus 
musculus (P57776)

2505 Protein disulphide isomerase A3, 
Homo sapiens (P30101 )

3068 Elongation factor 1 -delta, 
Oryctolagus cuniculus (P53787)

2509 Vimentin, Cricetulus griseus (sp 
P48670)

3082 Inorganic pyrophosphatase. Homo 
sapiens ( Q15181 )

2563 Tubulin beta-1 chain, Cricetulus 
griseus (P69893)

3109 Annexin A5 (lipocorin V), Homo 
sapiens (P08758)

2674 Protein disulfide isomerase A6, Rattus 
norvegicus (Q63081)

3141 Microtubule associated protein. 
RP/EB family, member \ ,MAREI- 
Homo sapiens (Q15691 )

2686 Alpha enolase. Homo sapiens 
(P06733)
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Table 5.2 continued

Spot ID 
No

Protein identity and/or homologue 
to other species

Spot ID 
No

Protein identity and/or homologue 
to other species

3200 EF hand domain containing 2, Homo 
sapiens (Q96C19)

3384 Ubiquitin conjugating enzyme E2-25 
kDa, Homo sapiens (P61086)

Chloride intracellular channel 1, Homo 
sapiens (000299)

3396 Translationally controlled tumour 
protein, Homo sapiens (PI3693)

3202 Proteasome subunit alpha type 1, 
Homo sapiens (P25786)

3411 Lactoylglutathionelyase, Rattus 
norvegicus (Q6P7Q4)

3209 Proteasome activator complex subunit 
2, Sus scrofa (Q863Z0)

3414 Proteasome subunit beta type 6, 
Rattus norvegicus (P28073)

3237 14-3-3 protein gamma, (protein kinase 
C inhibitor protein 1), Homo sapiens 
(P61981)

3447 Peroxiredoxin 2, Homo sapiens 
(P32119)

3239 Prohibitin, Homo sapiens (P61086) 3466 Protein DJ-1 oncogene. Homo sapiens 
(Q99497)

3249 Proteasome subunit, alpha type, 3, 
Homo sapiens (P25788)

3576 Myosin regulatory light chain 2, 
Homo sapiens (P19105)

3258 14-3-3 protein beta/alpha (protein 
kinase C inhibitor protein 1), Homo 
sapiens (P31946)

3725 SH3 domain binding glutamic acid 
rich like protein. Homo sapiens 
(075368)

3264 14-3-3 protein beta/alpha (protein 
kinase C inhibitor protein 1), Homo 
sapiens (P31946)

3729 Thioredoxin, Rattus norvegicus 
(PI 1232)

3274 Ran specific GTPase activating 
protein. Homo sapiens (P43487)

3742 Galectin-1, Cricetulus griseus (sp 
P48538)

3336 Rho GDP dissociation inhibitor 1, 
Homo sapiens (P52565)

3789 Nuclear transport factor 2, Homo 
sapiens (P61970)

3337 Peroxiredoxin 4, Homo sapiens 
(013162)

3862 Heat shock cognate 71 kDa protein, 
Cricetulus griseus (P19378)
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Table 5.3 Functions of proteins identified from CHO cells treated with PT.

Function Protein name 
(fold change)

Fold
change

Reference Spot ID 
No.

Cell stress associated

up regulated 

Thioredoxin 1.8 Amer and Holgren., 2000; 3729

Protein DJ-1 1.3
Okuyama et al., 2003 
Taira et a i ,  2004 3466

Peroxiredoxin 2 1.2 Chevallet et al., 2003; Choi et al.. 3447

Peroxiredoxin 4 

Prohibitin

1.2

1.2

2005

Winston et al., 2001 ; Coattes et

3337

3239

Cell cycle Microtubule associated protein 1.2

al., 2001

Morrison et al., 1998; Rogers et 3141
RP/EB family member 1 
Ran-specific GTPase activating 1.1

al., 2002; Green et al., 2005; 
Bischoffeta/., 1995 3274

protein
Nuclear migration protein 1.1 Chiu et a i ,  1997; 2787

Protein degradation

nudC

Proteasome activator complex 1.5 Ciechanover., 1998; Schwarz et 3209
subunit 2
Proteosome subunit alpha type 
1
Proteosome subunit alpha type

1.2
al., 2000
Ciechanover., 1998 3202

1.2 Ciechanover., 1998 3249

Ubiquitin-conjugating enzyme 1.1 Ciechanover., 1998; Kalchman et 3384

Protein folding

E2-25 kDa

Protein disulphide-isomerase 1.3

al., 1996

Fiickel et al., 2002; Frickel et al.. 2505
A3 (Erp57) 
Prohibitin 1.2

2004
Nijtmans et al., 2000 3239

T-complex protein subunit beta 1.2 LIorca et al., 2000 2385

Cell signalling SH3 domain binding glutamic 1.2 Egeo et al., 1998 3725
acid rich like protein 
Ran-specific GTPase activating 1.1 Bischoff et a/., 1995 3274

Protein synthesis

protein

Elongation factor 1-delta 1.1 Sheu et al., 1997 3026

Metabolic enzyme alpha-enolase 1.2 Ogino et al., 2001 2698
Inorganic pyrophosphatase l.I Islam et al., 2003 3082

Membrane and Annexin A5 1.6 Tzima et al., 1999, 2000; 3109
cytoskeletal related 

Protein folding

down regulated 

Stress-70 protein 1.2

Mollenhauer er fl/., 1997 

Singh et al., 1997 2307

Heat Shock cognate 71 kDa 1.1 Ahmad et al., 1990 2308

Metabolic enzyme
protein
alpha-enolase 1.1 Ogino ero/., 2001 2686

Protein folding
no-change 

T complex protein I subunit 0 LIorca et al., 2000 2449

Protein synthesis
alpha
Elongation factor I-delta 0 Sheu et al., 1997 3068

Cell signalling Rho GDP dissociation inhibitor 
1
Lactoylglutathione lysase

0 Leffers et al., 1993 3336

Metabolic enzyme 0 Chen et al,, 2004 3411
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5.3 Discussion

PT induces a characteristic clustering of CHO cells and has been used as an in vitro test 

for control of the residual PT in pertussis toxoids at the bulk stage where the PT has not 

been adsorbed to aluminium salt. The mechanism by which PT induces clustering in 

this assay is unclear and therefore a comparative proteomic study of this cell clustering 

effect would help to understand the mechanism and may give some leads into 

developing a mechanistic-based alternative assay for the safety testing of pertussis- 

based combination vaccines.

5.3.1 Proteome map of CHO cells

A 2-D proteomic reference map of CHO cell proteins of pH range 4-7, comprising 51 

identified proteins has been established. The number of proteins identified was 

relatively high in comparison to previous studies (Champion et at., 1999; Van Dyk et 

a l, 2003; Lee et a l, 2003). However, the number of identified proteins was low in 

comparison to the total number of protein spots studied (199 protein spots). The 

apparent low success rate in protein identification in this study is likely to be due to the 

interference of the silver stain in the ion trap mass spectrometer, the low abundance of 

some of the proteins and the presence of spots containing multiple proteins (Scheler et 

a l, 1998; Vipond et a l, 2006). Using fluorescence staining combined with tandem 

time-of-flight MS for protein identification, Hayduk et a l (2004) provided the most 

comprehensive CHO 2D map to date, in which 224/274 proteins studied were 

identified. The CHO cell genome has not been fully sequenced. The combination of 

reduced sensitivity as a result of using silver staining, thereby reducing the sequence 

coverage of peptide, followed by cross-species database matching is likely to be a major
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contributor to the lower number of proteins identified in this study. Proteomics is often 

described as the quantitative and qualitative analysis of the expression of all proteins 

existing within a cell but it is well accepted that this is very difficult to achieve due to 

technical limitations of the methodology. For example, in this study, it was observed 

that the gel resolution was compromised when using broad range IPG strip due to 

overcrowding of proteins. The problem of resolution with the use of 2D gel 

electrophoresis is also highlighted by fact that the number of spots detected using 

narrow range (pH 4-7, -1700) and broad range (pH 3-10, -1800) IPG strips in lEF, as 

used by Hayduk et al. (2004), were relatively comparable. Considering the high 

complexity of CHO cell proteins, and the moderate success rate of protein 

identification, further studies are still required for establishing a good representation of 

the CHO cell proteome. This could possibly be achieved by using overlapping zoom-in 

IPG strips with 1 to 1.5 pH units, larger gel formats (24 cm) that reportedly improve 

sample sepaiation (Gorg et at., 2000; Wildgruber et a l, 2000), and the use of 

fluorescence staining methods or ammoniacal silver staining for increased sensitivity 

for protein identification (Westermeier and Marouga, 2005; Chevallet et at., 2006). This 

will allow for an in-depth analysis of the CHO cell proteome.

5.3.2 Possible roles of differentially expressed proteins in CHO cells treated with 

PT

Previous studies have reported that changes in cell function to a diseased state are not 

necessarily correlated with gross or dramatic protein changes (Shapiro et al., 2003; 

Renieri et al,, 2003), Therefore it is conceivable that, in this preliminary study, PT- 

induced clustering of CHO cells involved subtle changes in various cellular functions 

that are mainly related to cell stress, cell cycle and protein degradation and folding. The
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possible implications of the identified proteins in CHO cell toxicity will be discussed 

hereafter.

At present, it is known that PT-induced clustering of CHO cells is preceded by binding 

of the toxin to a 165 kDa membrane glycoprotein followed by retrograde transport 

through endosomes and the Golgi apparatus (Xu and Barbieri, 1995, 1996; el Baya et 

a i, 1997a,b) and possibly the endoplasmic reticulum (ER) (Hazes et a l, 1996; Hazes 

and Read, 1997; Carbonetti et a l, 1999; Castro et a l, 2001) prior to the final 

translocation of the SI across the plasma membrane and the subsequent ADP- 

ribosylation of G proteins (Xu and Barbieri, 1995). The possible translocation of PT SI 

subunit from the ER is of interest since several of the identified proteins indicate routing 

activities, possibly of PT to ER and the involvement of ER associated degradation 

(ERAD) pathway for possible retrotranslocation of the catalytic domain. This ERAD 

pathway, for the delivery of the enzymatic domain to the cytosol has been shown to be 

exploited by several AB type toxins (Blanke, 2006). The ER of the cell operates a 

quality control system that identifies misfolded proteins, transports them into the 

cytoplasm and then targets them for degradation by the proteosome following 

ubiquitination (Rutishauser and Spiess, 2002; Spear and Ng, 2003). In this study, the 

observation of increased (1) ubiquitin-conjugating enzyme E2-25 kDa, which is 

involved in marking proteins for degradation (Kalchman et a l, 1996; Kikuchi et a l,

2000); (2) increases in proteosomal activity (Ciechanover et a l, 1998) (proteosome 

activator complex subunit 2 , proteosome subunit alpha type 1 , proteosome subunit alpha 

type 3); and (3) increase in protein disulphide isomerase (Erp57) which is a component 

of the calnexin/calreticulin chaperone cycle system (Frickel et a l, 2002, 2004), supports 

the involvement of the ER and ERAD pathway after PT treatment. Interestingly, ricin, 

an AB type bacterial toxin, uses the ERAD pathway for translocation of the active A
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chain into the cytosol of the host cell. This toxin travels from the Golgi to ER by 

binding via the lectin activity of the ricin B chain to the molecular chaperone protein 

calreticulin, which contains a terminally galactosylated oligosaccharide (Day et aL,

2001). As mentioned above, Erp57 increased after PT treatment. This protein assists in 

the proper folding of newly synthesised glycoproteins by the formation of disulphide 

bonds. However, the interaction of this protein with the molecular chaperones 

calnexin/calreticulin is imperative for its function (Frickel et aL, 2002, 2004). 

Calreticulin was identified from CHO cells but was not quantitative e.g. non 

reproducible spot pattern between each gel. PT can bind to terminally galactosylated 

oligosaccharide structures (Chapter 3, Figure 3.9), therefore it is tempting to speculate 

that PT may also gain access to ER by binding to the carbohydrate moieties of 

calreticulin.

ADP-ribosylation of intracellular G proteins by PT is required for CHO cell toxicity but 

the mechanism(s) leading to the clustered morphology is presently unclear. 

Fluorescence microscopy studies implicated cytoskeletal proteins as cellular targets for 

PT since a small percentage of actin filaments were remained in clustered cells 

(Scapigliali et aL, 1988). In this study, due to difficulties in quantitation as a result of 

saturation with silver staining or other problems inherent to the methodology (discussed 

in Section 5.3.3), the involvement of the identified cytoskeletal proteins (tubulin beta- 1  

chain, vimentin and 5 protein spots related to actin) in toxin action could not be 

clarified. However, indirect involvement of cytoskeletal proteins was seen. T-complex 

protein subunit beta, also known as chaperonin containing TCP-1-beta (CCT), increased 

following PT treatment. This chaperone protein is known to interact with tubulin and 

actin, and is required for the final folding of the cytoskeletal proteins to their native 

structures (Llorca et aL, 2000). On the contrary, heat shock cognate 71 kDa protein
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(HSP71), which has been suggested to have a role in the in vivo assembly and function 

of microtubules, decreased (Ahmad et aL, 1990), These findings suggest that PT may 

cause alterations to cytoskeletal proteins. Other proteins that were differentially 

expressed and may also be associated with the cytoskeleton include proteins related to 

cell cycle: nuclear migration protein nudC; ran-specific GTPase activating protein; and 

microtubule-associated protein RP/EB family. NudC is necessary for correct formation 

of mitotic spindles and chromosome separation during mitosis by modulating the 

dynein/dynactin motor system (Chiu et aL, 1997; Sharp et aL, 2000). Ran-specific 

GTPase activating protein, also known as Ran-binding protein 1, is involved in the 

intracellular cell cycle signalling pathway and has roles in nucleocytoplasmic transport, 

centrosome cohesion, cell cycle progression, regulating microtubule nucléation, and the 

organisation and function of the mitototic spindle (Bischoff et aL, 1995). 

Overexpression of Ran-binding protein 1 yields abnormal mitosis (Guarguaglini et aL, 

2000; Fiore et aL, 2003). Microtubule-associated protein RP/EB binds to microtubules 

and may be involved in spindle function, stabiUsing microtubules and achoring them at 

centrosomes (Rogers et aL, 2002; Wen et al, 2004; Green et aL, 2005). PT may be 

interfering with cell cycle pathways related to the cytoskeletal organisation during cell 

division. Defects in micro tubules and actin molecules during this process may account 

for the clustered morphology seen in CHO cells and account for the observed changes 

in chaperone proteins involved in tubulin and actin folding (Yokota et aL, 2001). 

Previous studies have shown that pertussis vaccine caused an increase in surface 

microvilli, blebs, lamellipodia and filopodia on cultured CHO cells. These change 

during the cell cycle (Hewlett et aL, 1983; Porter et aL, 1973).

Annexin is another protein that was differentially up-regulated by PT. Annexins are 

known to bind phospholipids, actin-based cytoskeletal protein, collagen, and
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carbohydrate moieties of sialoglycoproteins and glycosaminoglycans, in a calcium 

dependent manner. However their exact physiological role is unclear (Mollenhauer et 

aL, 1997; Tzima et aL, 1999, 2000; Kirsch et aL, 2000). The binding to collagen and 

glycoconjugates is extracellular whereas its cytoskeletal and membrane functions work 

intracellularly. Annexin has been suggested to mediate interactions between cytoskeletal 

proteins and membranes (Tzima et aL, 1999; 2000). It is possible that the clustered 

morphology is due to the interaction of annexin with the actin cytoskeletal proteins. 

Alternatively annexin may be transported outside the cell and bind to cell surface 

glycoconjugate receptors causing cell adhesion.

Other cellular functions associated with toxicity are related to cell stress. PT induced an 

increase in thioredoxin, a small disulphide reducing enzyme that acts as a hydrogen 

donor (Amer and Holmgren, 2001). This is of particular interest since it is cited in the 

literature that reduction of the SI disulphide bond is essential for ADP- 

libosyltransferase activity (Kaslow and Bums 1992). However the increase in 

thioredoxin is more likely to be due to oxidative stress since numerous proteins 

important in cellular antioxidant defences were increased, including thioredoxin, 

peroxiredoxin 2, peroxiredoxin 4 and protein DJl (Table 5.2). In addition, thioredoxin 

has been implicated to block oxidative stress induced-apoptosis mediated by semm 

deprivation and l-methyl-4-phenylpyridinium via the suppression of cytochrome c 

release (Andoh et al, 2002). Consistent with this, a decrease (1.1-fold) in cytochrome c 

oxidase polypeptide Va was observed in this study. High accumulation of ROS can be 

detrimental to the cell, and eventually lead to apoptosis (Andoh et aL, 2002). A balance 

between the oxidant and antioxidant is important for homeostasis since intracellular 

redox status is involved in various control mechanisms in signal transduction and gene 

regulation and has been linked to cellular differentiation, immune response, growth
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control, cytoskeletal organisation and apoptosis (Jin et al., 1997; Alexandrova et aL, 

2006). It appears that PT may be interfering with the regulation of intracellular redox in 

that the anti-oxidant pathway is switched on constitutively. Prohibitin also known for its 

anti-apoptotic activity and was increased following PT treatment (Fusaro et aL, 2003; 

Tang et aL, 2006). Collectively, these findings indicate that PT may be interfering with 

pathways involved in apoptosis. This may explain why PT is known not be cytotoxic to 

cultured cells (Castro et aL, 2001).

5.3.3 Technical considerations

In this study, twenty-two identified proteins were found to be differentially expressed 

due to PT treatment. Nineteen proteins were increased and three proteins were 

decreased in their expression. However, it should be noted that the degree of changes 

was below the 2-fold threshold that is often regarded as significant. Despite the many 

advantages of 2D-gel technology, one of the outstanding problems associated with this 

technology is reproducibility because of its multi-step procedure. This is exemplified by 

the observation that only approximately 38.6% of protein spots were presented and 

matched in all 6  gels due to the inability to reproduce spot patterns, to identify 

individual proteins even in replicate gels of the same sample, and because of missing 

spot intensities. Although there are many comparative proteomic studies where there are 

significant changes in protein expression, the protein changes reported in published 

studies often only take into account of proteins where the change is or above the 2 -fold 

threshold (Naryzhny and Lee, 2001; Seong et at., 2002; Bhat et aL, 2005). In these 

cases gel-to-gel variation is not a primary concern since statistical validation can be 

achieved by increasing the number of replicates. However, since all changes were subtle 

(<2 -fold) in this study, it was anticipated that increasing the number of gels for analysis
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would not compensate for the variability of the methodology and therefore, in this 

circumstance, it would be reasonable to assume that this approach is unlikely to 

differentiate protein quantities between control and treated samples with statistical 

significance. This, however, can be resolved by using two-dimensional difference in-gel 

electrophoresis (2D DIGE) and will need to be addressed in future studies to confidently 

distinguish the subtle protein changes (Marouga et aL, 2005).

In summary, a proteomic map of CHO cells has been established and a preliminary 

investigation of the proteomic changes occuring following treatment of CHO cells with 

PT was performed. It appears that PT induced CHO cell clustering is a complex process 

involving subtle changes in various cellular functions. Using this technology 

hypothetical insight into the mechanism of toxicity is described which related mainly to 

intracellular transport, cell stress and the cell cycle. It is not known how and if these 

various cellular pathways correlate and contribute to CHO cell toxicity. The information 

obtained will be useful for future studies into the possible biological mechanism of PT 

effect on CHO cells. Further studies are required for more confident and comprehensive 

understanding of PT toxicity.

195



Appendix A: HIST solutions

A.1 Stock PT 90/518 (10 pg/ml)

PT 90/518 1 ampoule (20 jig)
PBSG (Appendix A.4) 2 ml

Aliquots of 160 |il were prepared and stored at -20^0 for up to 6  months.

A.2 Working concentration of PT for HIST

(i) 50 ng/0.5 ml = 150 |il stock PT 90/518 + 14.85 ml PBSG
(ii) 16.7 ng/ 0.5ml = 3.3 ml PT at 50 ng/SHD 90/518 + 6.7 ml PBSG
(iii) 5.6 ng/ 0.5 ml = 1.12 ml PT 90/518 at 50 ng/SHD + 8 . 8 8  ml PBSG

A 3 Phosphate-buffered saline (PBS) and PBS with 0.2% gelatin (PBSG)

(i) PBS

NaCl (anhydrous) 10 g
KCl (anhydrous) 0.75 g
Na2 HPO4 . i 2 .H2 O 1.44 g
KH2 PO4  0.125 g

Made up to 1 litre in distilled water.

(ii) PBSG

PBS 1 litre
gelatin 2  g

After mixing, solution was sterilised by autoclaving at a minimum of 15 lbs (121^C) and 
stored at 2-8®C for up to 2 years.

Appendix B. ADP-ribosylation assay: enzyme reaction stock and working reagents

All the following stock reagents and working solutions were stored in an atmosphere of 
nitrogen at -20^C unless indicated,

B.l Stock enzyme assay buffer 

1 M Tris/HCl, pH 7.6

B.2 Stock ovalbumin (10 mg/ml) 

ovalbumin 30 mg

Made up to 3ml with distilled water 

B.3 Stock PT 90/518 (20 jig)
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PT 90/518 1 ampoule
Ovalbumin 10 ml at 2 mg/ml

After mixing, aliquots of 100 pi (200 ng) were lyophilised and stored at -20°C as stock 
reference standards. Prior to enzymatic reaction PT was reconstituted with distilled 
water and equal volumes of adjuvant and PT were mixed to obtain final desired 
concentration of PT ranging from 0-500 ng/ml and 13 mM of adjuvant.

B.4 Stock in-house positive control vaccine, Biken

Biken NIBSC code 00/486 1 ampoule
Distilled water 2 ml

After reconstitution, Biken was diluted 1/8 in 2 mg/ml ovalbumin solution and 50 jil 
aliquots were lyophilised

B.5 Stock dithiothreitol (DTT)

200 mM dissolved in 0.5 M Tris/HCl pH 7.6 

B.6 Stock p-NAD

3 mM P-NAD dissolved in 0.1 M Tris/HCl, pH 7.6 

B.7 Stock ATP

18 mM ATP dissolved in 0.1 M Tris/HCl pH 7.6 

B.8 Stock lysophosphatidylcholine (LPC)

10 mg/ml diluted in CHCla/MeOH (v/v, 9/1)

B.9 Stock phenylmethylsulfonyl fluoride (PMSF)

100 mM in isopropanalol (ISP)

B.IO Preparation of 1ml working solution of PMSF/LPC

(i) Pipette 150 jxl of stock LPC into a 2 ml glass vial and blow dry with a stream of N2  at 
RT.

(ii) Add the following to the dried LPC

Stock PMSF 200 pi
ISP 200 pi
0.1 M Tris/HCl pH 7.6 600 pi

This PMSF/LPC working solution was sonicated for 1 min in a water bath at RT before 
use

B .ll  Working ADP-ribosylation reagent
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This is freshly prepared by mixing equal volumes of PMSF/LPC, p-NAD and ATP 
(appendix B . 6  to B.IO) and is sonicated for 1 min in a water bath at room temperature

B.12 Working substrate concentration

400 pM FAC-(CH2 )5 -Gcxi3 C2 0  and FAC-G„i3 C2 0  was dissolved in DMSO first then 0.2 
M Tris/HCl, pH 7.6 (v/v 1/1)

The concentration of substrate should be confirmed by UV absorption at 495 nm in 10 
mM NH4 OAC, pH 8.5 (Chapter 2, Section 2.4.1)

Appendix C: Quantification of BTN-oIigosaccharide solution

C.1 Orcinol-sulphuric acid reagent

This reagent was prepared on ice in a 1 litre Pyrex conical flask

Orcinol 900 mg
Ethanol 375 ml
I 8 M H 2 SO4  50 ml
Distilled water 25 ml

Concentrated H 2 S O 4  was diluted with distilled water slowly and then used to dissolve 

orcinol. This was then diluted with ethanol and stored at 4-6°C.

Appendix D: 2D-PAGE

D .l Lysis buffers

(i) Normal lysis buffer (7 M urea and 2 M thiourea)

Tris 1.0 M pH 8.0 0.25 ml
Mg acetate 0.5 M 0.25 ml
Urea 10.6 g
Thiourea 3.8 g
CHAPS 1 g

Made up to 25 ml with distilled water

(ii) 9 M urea only lysis buffer

Tris l.OM pH 8.0 0.25 ml
Mg acetate 0.5 M 0.25 ml
Urea 13.5 g
CHAPS 1 g

Made up to 25 ml with distilled water. 1% of protease inhibitor mix (Amersham) was 
added to both lysis buffers and was then aliquoted and stored at -20°C for 6  months.
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D.2 Rehydration buffer

Urea 10.6 g
Thiourea 3.8 g
CHAPS 1.0 g
Pharmalyte 3-10 (1%) 0.25 ml
DTT ( 2mg/ml) 50 mg

Made up to 25 ml in distilled water, and a trace of bromophenol blue (100 pi of 1% 
solution) was added, aliquoted and stored at -20®C

D.3 lEF times

Current (mA) and Power (W):

(i) Total volt hour ~ 30000

Step Volts Ma W Volt hours Time
1 500 1 5 1
2 500 1 5 2500 5h
3 3500 1 5 22200 6.3 h
4 1000 1 5 5300 5.3 h
5 500 1 5 10000 holding step

(ii) Total volt hour --45000

Step Volts Ma w Volt hours Time
1 500 1 5 1
2 500 1 5 2500 5 h
3 3500 1 5 40000 11.4 h
4 500 1 5 2500 5h
5 500 1 5 10000 holding step

(iii) Total volt hour -60000

Step Volts Ma w Volt hours Time
1 500 1 5 1
2 500 1 5 2500 5h
3 3500 1 5 46200 13.2 h
4 500 1 5 11300 22.6 h
6 500 1 5 10000 holding step

(iv) Total volt hour -100000

Step Volts Ma w Volt hours Time
1 500 1 5 1
2 500 1 5 2500 5h
3 3500 1 5 70000 20 h
4 1000 1 5 15000 15 h
5 500 1 5 12500 25 h
6 500 1 5 10000 holding step
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D.4 SDS equilibration buffer

This solution was freshly made

Urea 21 g
Thiourea 7.61 g
1.0MTris-HClpH6.8 5 ml
Glycerol 15 ml
SDS 1 g

This was made up to 50 ml in distilled water

(i) For equilibration buffer 1, 200 mg DTT was added to 10 ml equilibration buffer
(ii) For equilibration buffer 2, 480 mg iodoacetamide was added to 10 ml 

equilibration buffer

A trace of bromophenol blue was added to both equilibration buffers.

D.5 Preparation of 12% SDS-PAGE gel using gel caster

Water 81 ml
20% T, 3% C acrylamide/bis 360 ml
1.5 M Tris-HCl, pH 8 . 8  150 ml

After adding the above components, degas and mix for a minimum of 1 hour then add 
the following:

10% SDS 6  ml
10% ammonium persulfate (APS) 2.86 ml 
TEMED 8 6  pi

10% SDS and APS was diluted 1.5 M diluted in Tris-HCl, pH 8 . 8

Gels should be stored at 2-8^C prior to use.

D.6 Gel sealant: 2% molten agarose

Agarose 0.5 g
Running buffer (Appendix C.7) 25 ml
Bromophenol blue 100 pi of 1% solution

Mix and heat mixture

D.7 Running buffer

Glycine 14.3 g
Tris base 2.75 g
SDS 0.93 g

Made up to 1 litre in distilled water

D.8 Fixing solution
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Methanol 100 ml
Acetic acid 25 ml

Made up to 250 ml with distilled water 

Appendix Ë: Experimental data

Appendix E.l Raw data values for actual deaths (%) observed in HIST using 
purified PT preparation

PT ng/mouse
71

16.7 50

1 40 50
2 0 40
3 2 0 40
4 60 80
5 50 50
6 1 0 90
7 0 1 0 0

8 1 0 90
9 0 60

1 0 0 30
1 1 0 70
1 2 70 50
13 60 1 0 0

14 70
15 80
16 80
17 90
18 60
19 70
2 0 90
2 1 90
2 2 60
23 60
24 80
25 80
26 30
27 40
28 60
29 1 0 0

30 1 0 0

n, assay number
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Appendix E.2: Raw data values used for creating “Death” threshold equation line.
HIST 

(% Death )
ADP 

( E-units)
Binding
(potency)

DTaP-A
Group 1 10 2.08 0.64

10 2.58 0.53
Group 2 0 1.34 0.53

0 1.23 0.78
0 1.37 1
0 1.41 0.84
0 0.91 0.93

DTaP-C
Group 1 0 2.41 0.45

0 2.37 0.44
Group 2 6.7 4.75 0.52

DTaP-D
Group 1 25 5.46 0.72

21 5.5 1
20 4.03 0.6
17 4.36 0.56

Group 2 65 5.87 0.77
40 5.22 0.64
60 10.15 0.5
50 6.03 0.38

ADP-ribosylation activity units (E-units) per SHD of test vaccine. For binding, potency values were 

analysed by parallel line assay using reference vaccine as described in Chapter 2, Section 2.8.9.
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Appendix F: Publications and acknowledgement letter from Home Office for 
research conducted

The A  P  C
Animal Procedures Committee

5" Floor. Hoiseferiy House, Doan Ryle Street. London, SW1P SAW 
Direct Une 0207035 4760 / 4776/4777 Fax 020 7035 4775

o: www.apc.HOv.uk

Our Ret 
Your Rot

03 April 2006
Dr D L Xing
Division of Bacteriology 
NIBSC
Blanche Lane 
South Mimms 
Potters Bar
Hertordshire EN6 3QG

Dear Dr Xing,

Devetopment of an alternative test to the histamine challenge test based 
on in vitro enzymatic-HLPC coupled assay for pertussis vaccines

Thank you forwarding the final report on the above project earlier this year. This 
was discussed at the iast meeting of the Research and Alternatives sub
committee and members were very pleased with the successful results of the 
project highlighted by the posters and literature produced.

Members would be interested if you could keep them informed of any further 
developments of alternative methods arising from this project.

Yours sincerely

Philip Brenner
ARC secretariat
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