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"Thirty-one years ago, Dick Feynman 
told me about his 'sum over histories' 
version of quantum mechanics. 'The 
electron does anything it likes', he 
said. 'It goes in any direction at 
any speed, fonrward or backward in 
time, however it likes, and then you 
add up the amplitudes and it gives 
you the wave-function'. I said to 
him, 'You're crazy'. But he wasn't."

F.J. Dyson, 1979
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ABSTRACT

One has developed a new method which enables us to 
implement dynamical lattice fermions in Monte-Carlo Simulation; 
and it is simply based on the analytical formulation of the 
spectral density of the eigenvalues of the fermion matrix 
in the Kogut-Susskind scheme (4).

The ratio of the determinants is predicted, then compared 
to the ratio calculated via the lanczos method (8).

This is done in SU(3)> in the chirally broken phase (9)> 
in a 4^ lattice at P = 5»4, and in a 6^ lattice at P = 5*3«



I. Path formulation (l)

Path formulation is an alternative quantization approach, 
which has the advantage of describing quantum field theory 
by using only functional integrals. However, before one 
reaches this result, let us introduce this formalism in the 
simplest quantum mechanical system in order that it will be 
simpler to generalise it.

I.l One dimension quantum mechanical system
One of the interests of quantum mechanics is the 

transition probability of the system from an initial state 
to a final state. It is expressed by the quantity as follows.

<x*,t»| X, t = </x' I e -iH(t'-t) I (i.l)

where H is the Hamiltonian of the system and | x ^  is one 
of the eigenstates of the position operator ^  in the 
Shrodinger picture so that

J C  = X 1 ^ ^  (1-2)

and IX, t^ = e | x^ (1.3)

The set of J | x^ L is supposed to be an orthonormal
i f

basis in the Hilbert space ou . That is to say

I ^  I dx = I (1.4)
and ^ x ’ I x ^  = ^  (%' - x) (l«5)

i



Let us divide the inteirval of time | t'-t | into n equal 
segments each of duration 5 t.

V i

St = 1t*-tI
n

Use equation (l.4), then equation (i.l) can be written as

<^,t  | x , t >  =

= \   k - . x ^ .

(1.6)

One has considered that the position corresponds to the
time t..1
As the number of time-segments goes to infinity, which means 
that S t  is sufficiently small, one has

< X >  I I x >  = < X '  I “I  - iH St I x >  + 0( St)^ (1.7)
One takes as an example H = ^2 + V(x). Then

2m

I H  I = <JC I ^  I 4 V^ X̂ )

d p  Lp(X'X)
A n e f  .  v / i± x ') (1.8)



So far, one has used the well-known relations 

^  x' I X ̂  = S(x'-x) and ^  x | p ̂  = ipxe

Then

-  J 4 g ^ p ( ‘ - x )  £ ‘ S t H ( p ,  ^  ) ,

Back to equation (l.6), and with reference to (l«9) one

9)

obtains the following

<x = g ( ^ )  ( i . ) ...

Ç  [ p. (x.-X.. ,) _ St H (pf , j  (l-ioa)

As a result of this, the transition amplitude can then be 
written as

x e » p |i |2 s t[p ;( î i^ ')_ H (P c .iÿ ï ') ] j  “ ■
One would almost obtain the final result if one can perform 
the momentum-space part of the relation 1.10b. However, it 
can be written differently as n tends to infinity.

10b)



=  11■ jpdx' ■SJt . U p  L -H (l.lOc)

One must treat (i ^ t) formally as real, because of the 
oscillation of the integrand (equation 1.10c) and an 
analytical continuation to Euclidean space becomes possible. 

As a result allAintegrals are of the form

CL

And one obtains

A w :  € x p [ . g  P k  ■‘-R : U p
*?St

With this procedure (l.lOc) leads to

<x,t =<x'| =oL I
K-4>o V

4*. ÎL'
' \TTc1i ..6

i

or symbolically

<jc,t-(x^t> =  N ^ L o x j e .  " (1.11)

One could mention t h a t — V(x) is the Lagrange
function.



Then
t

=  N  J[d«] e '

< X , t ( x ' , t ' >  = w J i J )  X  /tj e ^  (1.13)

The quantity like ^ x, t | x',t'^ in equation (I.I3 ) 
is a functional integral. The left-hand side of the equation 
is a number; so the integral associates a number with each 
function x(t), and this integral is called a functional.

With the same procedure one can translate the previous 
result to the Green's functions. In the simplest case one 
will deal with the 2-points functions. It is given by

H M
G = < 0  I T ( Y  (t^) 1  (t^)) I 0 >  (1.14)

where | 0 ^  represents the vacuum state, which is the ground
H H

state, T the time ordering product operator of (t^), j[ (^2 *̂ 
One will obtain the following result in equation (l.l4) 

if one uses the property in equation (l.4)
/ H H

6  (ti't2) ” \ dx dx' <^o| x', t < ^ x ' , t ' I T( X  ( t^) X  (tg)!

x,t^^x,t| 0^  (1.13)

It is clear that

<olx\t'> = <o|e^*^lx>= e ‘^<o|x'>= e 

=  t k t ' )



Let us suppose that t' ^  ^  ^  t

= ̂ <x’l e I O < K ,  I kx-^ |/e'"'̂''̂te> <b,it
h i ’ ^ h i >It is understood that

then it becomes clear that

< ^ p fc  |T ( X  Li,)i ( t , ) ) l x , t >  = ^ X , ( t , )  x^C L ) X

t '

e x p |c S ^ d fc [p i  _ H ( p , x ) ]  j

As a result of this, one will obtain from equation (I.I3)

k t )  I X,(t,)x,(t.) X

However, it is proved that

_k,lrcL <Tx, t 1t(X (y  |x,t> = H;h')H;(r)£ e
L  ^

■ < ° l T ( / ( t , ) / ' ' ( y ) | o >



Then equation (I.I8) could be transformed into

fett, e '
b t>o

The result obtained so far, can be intuitively generalised 
to the n-point Green's functions

. t . ) .  < o i T ( / d . ) ...... / (y ) io >

(1.20)

- 4  I  a-

21)

The set of Green's functions can be generated as follows

6 (.fc, t )  , (r'O 5 W [ J ]
 ^J(lr.) (1.22)

< where

I

fc'

V can be considered as the transition amplitude from j0^
state at time "t" to | 0 ̂  state at time "t"'in the presence 
of an external source (^ ).



i.e. W = <  0 I 0 ̂  (1.23)

with the condition of normalisation

w [ o l  = 1 (1.24)

The result (l.22) can be also generalised this time for a 
system of N degrees of freedom in the presence of external 
sources ( "̂  ) '

Consequently one will have

 ̂n [dx-dp^.]
t -ivo LV
t lie»

(1.25)

1.2 Translation of P.I. formulation in Q.F.T.
One believes that Q.F.T. is the treatment of the physics 

of quantum systems with infinite degrees of freedom. As a 
result of the above one can change the classical physical 
quantities into their corresponding expressions in terms 
of field.

I T  [dx- dp. will be l^<J £> (x) d  J l ( x )  J

and

or

L k  ) 5C. ) will be j

H  (x^ , p.) will be J d  X

Then the path formulation can be naively obtained as follows.

8



Furthermore, a Wick rotation to imaginary time t --» -i t
can be performed in such a way that one will obtain a very 
interesting result familiar to statistical physicists.

We [J] -  ( [dfl e 2)

or

We[j] ^
where s is the Euclidean action of the system.

yWg ^ reminds us that the fundamental quantity "
known as the partition function in statistical mechanics.
This means that one has made a direct connection between 
statistical physics and field theoiy. The Euclidean 
generating functional W^ in field theory considered
as a fundamental quantity corresponds to the partition 
function in statistical physics. The only difference
remains only on the dimension of the space on which one will 
work. One will deal with a four dimensional continuous 
Euclidean space whereas it is only a three-dimensional 
Euclidean space which is used in statistical physics.



1*3 Application to the fermionic fields
The generating functional for the fermionic fields is

with the usual anti-commutation relations between the fields

= [ ' K x ) ) ] ^ _  ( x ) , V " W ] ^  (1-3.2)

The field of the sources is taken as having the same nature 
of the fermionic field, then

[ i W , [tW ]~o  (1.3.3)

The above fields are non-abelian, therefore they respect 
Grassman algebra and the integral involved in (l.3«l) is 
not that trivial.

However, one can briefly give some results and properties 
of the Grassman variables. In a n-dimensional Grassman
algebra with its n generators  a^^one has the
useful properties.

10



- O i,j - J, 2, n.

(o(,o(^....<) -  = Ŝ .̂ c<̂ ....cĴ  ,_ ...

Jdol- ^ o

i d d. cL -J <..3
_i

5 p C p } =  ^ d c i . , - - c lo ; ,  [ d e t ( ^ i j ]  p ( p ( d ) )

where k  = Kj •
In order that one can use these relations for the 

purpose of path calculations (in particular for fermionic 
fields), one will need to evaluate the following expression 
of the form

( 3 ( ^ 4 )  ■= 6 ,

One can take the simplest illustration with a 2 x 2 matrix A. 
A is supposed to be antisymmetric.

A =
0 A12

"*12 0

then
G(a ) = da^da^

11



Because + *1*12*2 *2*21*1 *2*22*2

2 (*1*12^2 ” *2*12*1^ 

and f*l' *2^ “ ^

One obtains ^ *1*1 j*j “ *1*2*12

Then

G(a ) = Jda^da^ 6 *1*2*12

= Jda^da^ (1 +
G ( A ) = A^ 2 — J Det A

G(A) = ( d a ^ d a ^ e i ^  = (Det A)? (l-3-5)

This result can be extended to the general result with a 
N X  N antisymmetric matrix

o/ A 0(
Uot- ‘  ̂ ^ = (Det A)^/2 (1.3.6)

This result is the inverse of what one obtains with abelian 
real variables

(éh .
J JÏT J Ü  ^  = d / v M A  (1.3.7)

With complex Grassman variables one has

^dd^doi, -  ̂ =(Det a ) (1.3.8)

12



as well as with abelian complex variables

[ éh  ^  ^  d x ,  J  ^  /
J / Î  ‘ yJT /IT  ^  = V  (1.3.9)

In the case of fermion fields, one deals with Complex 
Grassman variables but they belong to an infinite-dimensional 
Grassman algebra and so, one will obtain the following

Wg- 5 C oc ])et(tl) (1.4.0)
1.4 Vacuum expectation value of an observable

When the Euclidean action of a physical system has the 
form, ^

6  = Y  H  t  ^  &  (1.4.1)
S (a

where the fermion action has a quadratic form, one can 
express the vacuum expectation value of an observable "O".
It can be computed in terms of a path integral

13



[d'ClpfJ e
(1.4.3)

From (1.4.0) one has

-Se
< o >  •

^ 0 ( u )  0  (1.4.1)

i^ULjsbdH
which is a quite familiar result, if not the same, in 
statistical mechanics.

14



II• Lattice formulation

II.1 Lattice formulation for the gauge fields
All the experience and intuitions a statistical physicist 

CEtn have, is a good background to study field theory once 
formulated in the lattice. This means that one simply 
approximates the universe by a four dimensional hypercube 
containing a finite number of sites separated by a constant 
distance "a", called the lattice spacing, (Fig. 1), and 
this in all the four directions of the space-time.

In statistical physics the fundamental quantity, as one 
has said previously, is the partition function which is

where H. is the Hamiltonian at the state | i ^  , k is the
Boltzman constant and T the temperature of the system.
In contrast with Euclidean quantum field theory, one has 
the generating functional and it can be written in case 
of pure Q.C.D. (quark effect neglected) as

pure
_S(u) (2.1.2)

where the theory is defined by (3 x 3)> SU(3) gauge matrices.
Once one considers the space-time as discretized 

the four dimensional integration will be replaced by a sum

id^x (2.1.3)
n

15



where "a" is the lattice spacing and a four dimensional 
derivative by finite differences.

CL ^  ^ ' J

pure
sum when the space is discretised.
The expression of can be changed now into a simple

4 ^  (lattice)

configurations

Using local gauge invariance and demanding locality of
the interactions, one can postulate lattice actions which
reproduce the Yang-Mills theory (Yang and Mills, 1954)

êhJonce in the continuum limit (a — »0),or the confinement of 
quarks once in the strong coupling limit.

II.2 The action
In the lattice version, the matrix which reflects 

interactions between neighbouring sites n — — ► n + p, is 
called the gauge link variable (Fig. 2).

Now, let us consider a four-dimensional hyper cubic 
Euclidean lattice with spacing a. On each link of the 
lattice an SU(3) matrix is placed

J •
U k/,n ) = (2.2.1)

16



where i = 1,2,...8 are the usual Gell-mann matrices.
One has in the lattice version of gauge transformation

t  — i l

and (Rt

where the SU(3) gauge symmetry is

= exp^l ^  ^  (2.2.3)

Therefore, 4^^ (J ^ ^  stays as a gauge-invariant
quantity.

The action of pure Q.C.D. with gluons is suggested 
to be having the form (2), (l8), (l9)«

(2.2.4)

and one notices immediately that the action is simply a sum 
of the trace of a product of four link variables around an 
elementary square called a "plaquette" (Fig. 3)» What La 
the physics of this proposed model?

17
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(1) Is the classical continuum limit (a— » 0) an ordinary 
Yang-Mills theory?

(2) Does the strong coupling limit confine quarks?

II.3 The continuum limit
To take the classical limit, one must "taylor" expand 

the slowly vaxying fields B]j,(n) which are defined as follows

B^(n) = I a g A. (2.3-1)

Then the SU(3) gauge link matrices can be rewritten as

= e x p  (2.3.2)

with respect to the following considerations

6 y(*v+;<) =  4 Q  + O ( a ^ )

^-9 =  -Ey, =  - [ 6^(n) 4 a d )  ^ o [o f)

^ (2.3.3)

One can transform equation (2.2.4) to the approximation

UUUU S' 0 ^ H )-1C  (2.3.4)

18



Now, by using the identity

e ' e ' '  .  ,,.3.5)

one believes that

UUUU ^  ■* - %. [ 6/ .H , 6̂ („)] )

_ 4 6 ; ( 4  + a 9 / B ^ W ) _ 4 / ^  [6^ i^ )   ̂B ; M ] )  ■

= W-) - %BX"| - [ f>A'). W ] )
'  '  (2.3.5)

Equation (2.3» 3) can be redefined since one believes that 

(n) = I agA^ (n) = a g A^(n)B

where A^(n) = ^  A.A(n)

(*') > )

UUUU ^  ,A^ ]  I  (2.3.6)
One recognises the conventional Yang—Mills field strength

W"

UUUUs

This, puts the gluon action to be written as

S ,  s  - i  ^ I r  ( (2.3.7)

;

19



which it can be simplified to

T. . Tr(l . uy,, - i a Y v ... )
=  *'“1 + la^^Tr^^-laYTrF^^A... 

= Trl -

(2.3.8)
*.*F . is a generator then Tr F  ̂ = 0 .

"Tr C  " % ( 21,, A, - aJ )
(2.3.9)

where the fact that Tr A.A. = 2 Ô • . has been used to1 J iJ
find equation (2.3.9).

* •* Ç . .  ̂ is the usual antisymmetric Levi-Cevita tensor. ^ ijft.
The action, now,settles on the given expression (to 

within a constant).

!) cc+ 1 " -4^/.) (2.3.10)

— — ^

Finally, one tends to the usual Euclidean action of 
classical Yang-Mills theory. (2l)

s =  I  J  d'*x(p^^ f (2.3.11)

20



II,4 Confinement criteria, the Wilson loop
What about the strong coupling limit? Is it character

ised by quark confinement? This is what one will hope for, 
unless the action proposed in lattice Q.C.D. is not the 
adequate candidate which gives the real figure of Q.C.D. 
once formulated in the lattice. One believes that Wilson 
has made one of the most elegant formulation in lattice Q.C.D., 
and in fact confinement occurs in the strong coupling limit 
(Wilson, 1974; Polyakov, 1975; Wegner, 197l). The loop 
correlation function which is also the ’’Wilson correlation 
function” is the order parameter for the strong coupling 
limit exploration. Simply because it is related to the 
behaviour of the heavy potential interaction between a pair 
of quark and antiquaxk particles.

It can be formulated by the expectation value of the 
evolution operator exp(-Ht) between one initial state 
and a final state.

^ • 1  - H k  I r - % ) t<  •-1 (Z 1^> = €  1
t-53o

—  ^  (2.4.1)

V(r) is the potential and r is the distance between the 
pair of quarks. From the fact that one knows how to express 
the vacuum expectation value of an observable, W(r,t) 
will be computed by

E _1_ ([4u] W{r,t) (2 (2.2.2)

21



In fact the action Ŝ . from (2.2.4) is written as 

S(,(u) = 1 - i Real (Tr )

where Tr UUUU0 ^

Then, Sg(U) = 1 - (Tr U q  + Tr )

And

W (TrU„T2M, TrU,)
3)

.*. (^^) is the number of plaquettes (Fig. 4). Once one2a
uses the properties of the gauge link variables such as

, (2-4.5)

Only the terms with (— ^) contribute to the evaluation of
a

<WCr,t)>

(2.4.6)

22



Once one identifies this result with (2.4.1), one will 
lead to the confining potential one hopefully has expected.

V(r) Z: Kr (2.4.7)

with K = (2.4.8)
a

where K is called as the string tension. The quark- 
antiquark potential seems to be growing without bounds.

V(r) >. Oo for R ---- >. c>o (2.4.9)

and this obviously implies the confinement of the theory 
which one has to respect in view of starting lattice 
calculations.

23



Ill• Monte-Carlo Simulation

III.l Introduction
In lattice formulation the Feynmann path formula 

for the gauge theory is simply an ordinary sum for the 
partition function. This suggests that one attempts numerical 
calculations to evgiluate this fundamental queoitity mentioned 
so far.

However, the problem is not as simple as one would 
imagine, because a straight forward numerical computation 
seems to be practically impossible, and this can be given
by the following exeanple.

4Consider a 10 lattice, which is a fairly reasonable 
lattice size, with a simple ^  gauge theory. Such a system 
has, first of all, forty thousand link variables and 
consequently the partition function, once one tries to 
evaluate, becomes a sum with an enoimous number of terms. 
Unfortunately this number is equal to

2,40000 ^ 1.58 X  iQl204l (3 .1 .1 )

A simple way to avoid this ambiguity one must lead 
to statistical treatment in such a way that the computation 
can be feasible and this, by what one calls the Monte-Carlo 
simulation method.

The Monte-Carlo technique is quite an old method (24) in 
statistical physics and the idea, is to replace the expectation 
value of a physical quantity "0" which is

24



, , - S l V i , )
i  r  o y o e  '
9  w  '

by

"  t r  (3.1.2)

W iWhere the set ^ of configurations has a Boltzmann
distribution law and "N" is the number of sets of configurations 
which significantly contribute to the average <0> .

Note that each set of configurations means a set
of U matrices on all the links of the lattice. Then, it 
is clear that a configuration with veiy large value of the
action does not effectively contribute to the path sum since

— t̂ S . _ _e remains very small.
The aspect of the problem will be now shifted to the 

algorithm programmes which generate the set of configurations 
one would need.

There are two very well known computer algorithms 
capable of solving the problem; the first is the Metropolis 
algorithm and the second is the Heat bath algorithm. One 
will look only at the first one which is used in our 
calculations. (3), (20).

25



III.2. The Metropolis et al. algorithm (3 )
Basically, the Metropolis algorithm begins with a given 

configuration ^ of the lattice system. Then one gauge
link variable is changed in order to obtain a new configuration 

. This new configuration is accepted unless it does 
satisfy the rules of the algorithm and one must seek the 
thermal equilibrium after many "sweeps" which generate a 
gauge configuration ^  U ̂  with a Boltzmann probability 
distribution.

Then the value of the physical quemtity "0" can be 
calculated for the configuration and recorded in the
storage memory of the computer. The next step is to apply 
the previous procedure to the A U L configuration until one
obtains another independant J U ̂  configuration which has 
also a Boltzmann distributionl

Finally, the "job" is repeated several times and an 
average value of "0" can be estimated by

<'o> =
Z 1

which is the equation (3»I«2).

26



Now, let us consider each, procedure mentioned so far 
in more detail.

All occur at a given site, once one has a configuration
S u l  changed, (by changing a link) will obtain a new 

( I *configuration iU> which will be tested by the following 
rules. Compute the change A s  in the action S; if A  S 
is negative or equal to zero, then the new configuration 
is accepted. If A  S is positive, then the > ^\ is accepted- A s  /but with a probability e this time. (It is understood
that S = ( s | u ^  - S ^ U ^ ) .

In other words, one picks a random number "r" where 
r ^ J 0, 1 ^ and if ^ r the change is accepted.
If e < r the change is not accepted.

With this procedure, one can prove that a thermal 
equilibrium can be reached after one repeats the process 
several times and the probability to find a configuration 
will be proportional to the Boltzmann factor. To establish 
this, let us consider the relationship between the Nth and 
the (N+l)th process (can be called sweeps). The probability 
to find a configuration ^ after (N+1) sweeps is

( u )  =  Z  w ( u ' - ^ u ) p ^ ( a ' ) 4 [ i - W ( u W ) | p ^ ( i ; )  (3. 2 .1 )

[U'j ^
where W ( u  ) is the probability for the transition
U ---
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It is clear that this process must converge to some 
stationary values, which implies the following condition 
for the thermal equilibrium.

*’n +1 ( U) = Pk ) (3.2.2)

From (3.1.3) one obtains

Z  ) w ( u - » L / )  - P^(u) w ( u - > u ' ) j =  O  (3.2 .3 )

which leads to the result

w ( u - x ; ' )  = w ( u U u )  (3.2.4)

Successive sweeps must bring us closer to satisfying the 
balance (eq. (3»1«6)). In the Metropolis eilgorithm one 
defines W ( u — ►U*) to be equal to

f i  SCu)>S(0')

W ( u t 0 ' )  = }
S (u ) (3.2.5)

From equation (3.1 .6) one leads to the final result

Pj^^^(u) a C. (3.2.6)

which is the requirement of the theory. (23)
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III»3» The modified Metropolis algorithm (23)
The previous method may not be practical since 

quantities calculated by M.C. methods will converge as l/yiT 
which is a slowly falling function of n • One can repeat 
the Metropolis algorithm at each site several times before 
moving on to the next site to proceed with the same manner. 
Consequently, when one searches for an acceptable configuration, 
which is done by the computation of A  S, it will involve only 
the neighbouring plaquettes and then the probability of 
finding a new candidate for is increased. Hiis idea
is approved in the modified Metropolis algorithm and less 
time will be required to obtain an acceptable configuration.
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IV. Lattice formulation for the fermion field
IV.1. The naive action

In order to have a complete lattice model of Q.C.D
one must have some schemes for including fermions on the
lattice, to reproduce more or less quarks contribution in 
the system.

However, several difficulties occur once one starts
lattice calculations. One of the difficulties is that one

4finds 2 degeneracy of fermions in the continuum limit 
instead of one fermion which one has naively expected. (22) 
First of all, let us introduce the original action called 
the naive action which leads to the difficulty (the doubling 
problem) mentioned so far. Obviously, one requires to 
discretise the Dirac action.

continuum
F = ^ d^x^ (j6 + im) (4.1.1)

where ^ denotes the Dirac's operator

A = (4.1.2)

A natural way to represent S on the lattice is to 
associate fermion fields with lattice sites and to substitute 
derivatives by finite differences. Specifically, in order 
to have something which is symmetric and has the same 
hermiticity properties as the operators in the continuum 
theory, one would replace the first derivative with central 
differences and this action leads to what one has called 
the naive action.
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>Sp = ^  (4.1.3)

where the gauge link variables have been introduced to make 
the coupling among nearest neighbours covariant.

The doubling problem can be seen easily once one emalyses 
the continuum limit simply with the free case; with U = 1 ,  
and it is convenient to rescale the field variable 4̂̂  as 
follows :

4"  a-3/2 Y  (4.1.5)

Then, the action becomes

and now, one can mention that "a" has been incorporated 
with the mass term.

The continuum propagator equation for the free fermions
is
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)y  flAAlx) ( ^ ( y !  -  - 5

where
[  r ,  ) ' ] .  - - 2 S

/.)

(4.1.7)

(4.1.8)

As a result of this, the lattice propagator equation can be 
written as; (in case of free fermions)

(4.1.9)

The next step is to write equation (4.1.9) the momentum 
space and this can be done via the Fourrier transform

Ex
P

tp

(4.1.10)

Consequently, equation (4.1.9) becomes

+ I ^ a ^ e  6 ( p )

(4.1.11)

One can transform equation (4.1.11) more, as follows

LP Ol

f e ^ ^ 6 ( p ) [ z r ( -f îVvOL
• 0

(4.1.12)
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where, a = p . > i  (4.1.13)

and — ^  ^  for each p, direction.5. ^  ^
Equation (4.1.12) gives the fermion propagator in

the momentum space

G p C f )  = _______^__________  (4.1.14)
KV0L4-2! (X.

/A ' /*
Putting m = 0 and using equation (4.1.8) one obtains

6 C f )  =
^  6 Sivu|:^Ou

(4.1.15)

It is clear that G(p) has a periodic structure in the 
Brillouin zone (P 6 TT )

^ â ’ ~  J ^
There are = 2 unexpected poles at

p = (0,0,0,0), p = ( ^  ,0,0,0), ... p = (1. , X  TT "5 )^  (L  ̂ OL CL  ̂ OL

Thus, in a D dimensional lattice one finds 2^ species which
survive in the continuum limit. The naive theory finds 2^-1
unwEinted flavors as the cut-off is removed (a — ►  O). (l6)

IV.2. Wilson's action (2)
The idea of Wilson consists in adding some terms in the 

naive action in order to modify the dispersion formula;
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which means that the I3 poles will be decoupled from the 
central pole. This is done by adding the following term;

Vi  z  % ’3C ' '3L-/1  ̂ (4.1.17)

As a result, the fermion propagator equation becomes

‘^ z |  6(w+/.)V+(ifca-^66j,(i,.i.i8)

And after the Fourrier transform, this equation can be 
rewritten in the momentum space.

Z  Z x )  E  Z 6 (f)

-F 2) Z  6 ( p ) (4.1.19)

or

4 / / .  V ,

which leads to

6 C f )  = (4.1.21)
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Putting m = 0

-   :-------- \ (4.1.22)
4  Z  ï r  S ' I  ^COS^ÉL -  j

Now G(p) has still a pole at p = (O,0,0,0) while the 
other 15 poles have been removed. However, the action has 
neither continuous nor discrete symmetry.

IV.3» Kogut-Susskind action with spin diagonalisation (4)
If one does a unitary transformation on the fermion 

field variable 4^ called spin diagonalisation, one should 
be able to decouple the I6 flavors of naive fermions into 
four groups of four fermions.

At any site = (x,y,z,t) the fermion field variable
^  should be transformed to the following variable OC

4  (3.3.1,

And also

It is clear that the transformation is unitary since

Y  T  = j C X  (4.3.3 )

35



The four components of nX* are decoupled emd can be 
considered as four independant fermion fields with just 
four species doubling each.

Then one can introduce the Kogut-Susskind action as 
similar to

K-S __
(Sp = + ‘5 m £X.)'4̂  (4.3.4)

•+ 2 1  Y  Y  (4.3.5)-7^ 'x. I>_

where Mp^_g has been defined as

4 M ,  4  . Z  X . y . X ,  (3.3.3,
ol-l

which is the Kogut-Susskind fermion matrix. a reads for 
the flavor number and f^ (x) for the fermion sign.

1 ^ " ""l

' = -1
(-) " " ). = X3
(-)*l+*2+*3M = t

The doubling problem still remains as one has noticed so 
far, but chiral symmetry has been recovered for m = 0.
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V. The Lanczos method and its application in lattice Q.C.D.

(ll).The Lanczos method is a numerical method to tridiagonalise 
or invert very large matrices and seems to be having very 
good convergence properties. In particular it has proved 
its efficiency in lattice calculations since the last two 
years.

It is logical, if not crucial, to introduce the Lanczos 
method and its application in lattice gauge theories so that 
one can compare the results obtained from this method and the 
results which will be obtained from the new method. The 
latter will be discussed in the next chapter.

V.l. The hermitian Lanczos algorithm (7 )
First, one will describe how to tridiagonalise a hermitian 

matrix H (i.e. H = iM) of dimension N, where N is a fairly 
large number.

One introduces a unitary transformation which leads
to the triadiagonalised matrix T.

jc H jc = T »  y  = di

T is tridiagonal, real and symmetric

T =

a.
2 2

N-1
N-1
"N

(5.1 .2)
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One can write oC as a set of column vector

(5.1.3)

These vectors are called the lanczos vectors and they are 
orthonormal

*1 ^  ij - (5.1.4)

These properties considered all together lead to what one 
calls the lanczos equations from which the a^, and even
can be deduced recursively.

One has

= T
A

:)CjC HjĈ  i r

Consequently, H > X = v X t  (5.1.5)
The lanczos equations can be obtained from (3*1*5) by 
considering the form of the matrix T in (5*1*2)

a) HX^ = + "iX

b) HX. = 1 ‘‘i-l Xl-1

c) = ^N-1 Xn-1

The first procedure is to choose to be any unit vector
For instance

(5*1 *6)
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Then, one takes the scalar product of with the first 
lanczos equation and uses the equation (5.1.^), which is 
the orthonormality equation of the lanczos vectors. This 
will lead to the following value of

H (5.1.7)

It is clear that is real, because of the hermiticity of H.

a* = X^ X^ = X^ H X^ = (3.1.8)

The second step is to obtain and the second lanczos 
vector X^»

From the 1st lanczos equation one can compute the 
following.

Xg = H X^ - 

Then, uses the fact that 

%2 = 1 

As a result
= I H X^l (5.1 .9)

and Xg = i (HX^ - â X̂̂ )̂

One can compute similarly to find the ojs, the P^s and X^s 
after using the second lanczos equation.

a = xT H X^ (5.1.10)

(5.1.11)

y = ? T T  - Pi_2Xi_2 - “l-lXi-l) (5.1 .12)
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Finally, this defines the lanczos algorithm but it would 
be rather safe to check that the hermitian na^ture of H 
ensures the orthogonality of the lanczos vectors at any 
stage of the calculation. One has to show, for a simple 
illustration, that is orthogonal to X^.

1 -  “ A ) ]

= (x+ H X^ - «iX^Xi)

So far, it has been proved that = X^ HX̂  ̂ (equation
and that is due to the hermiticity of H, which includes that

K  ^2 = F  (“i - =i) = 0 (5.1.13)

which is the case for all the rest of the lanczos vectors.
From the last equation, one can find that

“n  = x; H X^ (5.1.14)

which is the last parameter to find by the algorithm.
Nevertheless, one can fail into problems, particularly 

when P in some steps is equal to zero, then one will have 
a division by zero. That simply means that the first lanczos 
vector is orthogonal to some eigenvector of the matrix H.

The solution to this problem is to continue the 
calculation by choosing the next X^ to be any unit vector 
orthogonal to all the predecessor vectors. It seems to be 
slightly difficult to compute this idea practically, but 
since one has never failed in this situation, one has ignored 
it.
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One has to add another procedure to the algorithm so 
that it increases its efficiency because it seems that after 
few iterations one might notice the loss of the orthogonality 
between the lanczos vectors and it is impossible to overcome 
this problem by increasing the precision while the errors 
tend to build up exponentially. Then it is essential to 
reorthogonalise.

The new lanczos vector X^ can be made orthogonal to 
the previous lanczos vector X^ simply by the following 
transformation.

= X^ - Xj(X+ x^) (5.1.15)

That reduces the loss of orthogonality between lanczos 
vectors and it is quite reasonable not to reorthogonalise 
at each iteration when the eigenvalues of H are relatively 
well separated.

V.2. The non-hermitian lanczos method (7 )
The previous modified lanczos method can be generalised 

for tridiagonalising arbitrary complex matrices. One requires 
a bi-unitary transformation

T = Y"*" H X
T"̂  = X"̂  H*̂ Y (5.2.1)
Y"^X = I

T is the tridiagonal, symmetric matrix which one wants to obtain. 
Similarly X and Y can be written as a set of column vectors

' ■  (5.7.7,
X = (X^.Xg,.....Xjj)
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They are also called the lanczos vector and satisf^” a 
bi-orthogonality property

Yi Xj = i i j  (5.2.3 )

As a result of this, one obtains the first lanczos equations, 
practically with the same way as in the previous method.

HXi =

= a* Y^ + P* Yg
(5.2.4)

The next step is also as in the first method, one simply 
chooses and as unit vectors and by using (5.2.3 ) one 
will obtain

= Y+ H X^ (5.2.5)

Then, it is possible to compute

^1*2 = H X^ - X^ 

and P* Yg = H+Y^ - a* Y^ 

where it is easy to find P^

( P *  Y g )+  (P ^ X g )  = P f  = (H+Y^ -  a*Y^)- '- (H X ^ -  )

In other words
P^ = I (H+Y^ - o* Y^)*(HX^ - o^X^) (5.2.6 )

Finally, one can get the second lanczos vectors

Xg = F / A  - “A )
and

(5.2.7)

= J * ( H %  - af Y^)
1

which will satisfy the bi-orthogonality property 
Y^ Xg = 1
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One can continue in a similar way to find the rest of the
a^s P^s and the lanczos vectors

a. = yT H X. 1 1 1 (S-S.. 3)
P. =1 (h V  - a*Y. - P?_i Y._i) +

and

^+1 = 7 . (H^i - *i%i - )1

i+1 = À  ( « %  - (5.2.9 )

Furthermore» one completes the algorithm when one obtains 
the value of a.N

a.•N = ^
and theoretically one must check the condition (3*2.3) 
between the lanczos vectors. As an example one takes

<  ^ 2  = ? *  -  “ A ) ]  = -  “ 1) = 0
(5.2 .11)

This is the case where there are not any rounding errors.
However, it seems to be the case after some iterations

and the process needs the re-orthorgonalisation ageiin, as
previously mentioned. It is done simply by the projection
of the lanczos vectors X.» Y . on the earlier ones X. and Y .1 J 3 3

(5.2.10)

Y.1

-► X
-

=  T i )

(5.2.12)
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V.3« Application of the method in lattice Q.C.D.
After one has introduced the lattice formulation in 

the previous chapters, one can see the use of lanczos 
algorithm in our calculation.

If Ng and are the number of sites along the spatial 
and temporal directions respectively, and if a^ and a^ are 
the lattice spacing along the spatial and temporal directions 
respectively, one would write the complete action discretized 
as follows;

S =

where

2 a spatial
plaquettes

1 - i Real (Tr UUUU ) 
c

. f ï î  i  I
e

temporal
plaquettes

which is the well-known ^luon action 
and

1 - i Real (Tr UUUU ) 
c

hermitian
conjugate

which is the fermion action in the Kogut—Susskind scheme. 
Hiis means
.*. ^  is the single colour triplet sited at

n = (x^,X2»x^,t)
. . I S the 4 directions index in the space - time.
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p is the displacement vector of length a , in 
direction p-.

• • ^ ^ is a 3 X 3 gauge matrix joining sites n
and n + p

^n,n+p the fermion sign factor.

The fermion action can be simply written as

Sp = - Y  (M + 2 ma ) Y  (SO-l)

Since has a quadratic form the integral involved in
the calculation of the fundamental quantity which is
the partition function appears as a Gaussian, then it is 
natural to integrate out Grassmann fermion fields variable 
in that case. Then, is written as

^  ^  ^ 6 * t  M  (5.3.2)

where H = M + 2ma.

This reminds us that DetH contains the dynamics of Q.C.D 
in lattice and to simulate this dynamical effect in M.C. 
simulation means the computation of the determinant of H 
at each change of link because it is needed at any trial 
of new configuration accepted by the Metropolis algorithm.

This is called the updating of dynamical fermions in 
M.C. simulation. As far as the application of Lanczos 
algorithm is concerned, the inversion of the matrix H is 
needed, then performed this time in the updating. (8)
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In fact, the ratio of the detenninant of H corresponding 
respectively to two configurations is computed

R = det(H + A ) 
det (h )

= det(l + H"*A ) 3.3 .3 )

where A  is the change in the fennion matrix once the link 
is changed. It is important to notice that A is different 
from zero only in the 6 x 6  block corresponding to the two 
end points of the link involved in the change. Then, once 
one has the value of in this region, will be able to
update the same link as many times as wanted.

Indeed, it is possible to modify the lanczos method and 
try to meike it much faster in its execution for the updating 
purpose.

One has not discussed the inversion of a sparse matrix 
by the lanczos method because it is not used to compare the 
results with the new method in our calculations.

Nevertheless, the candidate for the inversion of H is 
called the block lanczos method and has already been developed 
for both cases, the hermitian and the non-hermitian case. 
Basically, it consists of considering the alphas and betas 
as elementary matrices and the lanczos equations will be 
modified with respect to the new hypothesis.
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The block lanczos method stays as a standard method 
with good convergence properties for the updating in M.C. 
procedure, but one is not going to introduce it because it 
is not used in our trial on setting the new method. However,
one must point out that, in our "trial of setting the new
method" for the updating purpose, one will need the lanczos 
method for tridiagonalising the fermion matrix H emd evaluate
Det H (equation 5»3»3)* On the basis of the results obtained
by the lanczos method like the distribution function of the 
eigenvalues, the maximum eigenvalue, the determinant of H, 
and the ratio of two determinants corresponding respectively 
to two configurations differing only on one link changed; 
one will try to introduce the new method which really does 
not need a long time to compute these results. Therefore, 
it will be practical to update dynamical fennion in M.C. 
simulation with less time required than in the block lanczos 
method.(23)
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VT • The new method
The method consists simply of studying the form of the 

spectral density function which is the distribution function 
of the eigenvalues of the fermion matrix* One is in the 
case of the Kogut—Susskind scheme, where only the neighbouring 
sites can interact between each other, in the lattice, via 
the gauge link matrices which correspond to the colour 
interaction transported by the gluons. Then, the fermion 
matrix has the following form

2mai M
H = (M + 2mai) = ( ) (6.1.1)

2mai
For the calculations below,one will consider first

2m = 0 in order to work out the trace of matrices like H ,

VI. 1 The fermion matrix
One is interested in the computation of the trace of 

the fermion matrix at any power, in terms of elementary loops 
of different orders, and this will depend on the accuracy 
required by the new method. One can prove easily that traces 
of H^, H^, are formulated by calculating simply
the average value of loops of order, 4, 6, ...n in the lattice

An example can be shown clearly in a 2-dimensional
2lattice of l6 sites which is in fact a 4 lattice, and an 

extension of the idea becomes clearer for a four dimensional 

lattice.
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In the case of a 4 lattice,and with respect to the 
Kogut—Susskind scheme, one has the form of the fermion matrix 
shown in Figure 5 ,with the 32 links representing the gauge 
interaction.* In fact this implies 32 x 32 non-zero elements 
in the matrix, which one is going to deal with.

Consequently, the trace of can be found easily, 
once one knows the form of H (or M, in fact) and furthermore, 
only the top diagonaJL element of has to be known, because
of the symmetry of the lattice.

4Now, the problem becomes simple, and the element ^2,1 
of the matrix M is equal to

^ 1 , 1  = + U^U^UgU^)

*  ^^1^7^29^4 * ^4^29^7^# *  ^4^ 29^ 29^4  ̂

V2V12VÎ2V2 + U2^12'^30< + V4V30VÎ2V2 + ^4^30^30^;)

(6.1.2)

One recognises different species of loops in equation (6.1.2),
and it is important to classify them to formulate the trace 

Ziof
One recognizes the loop like (U^U^U*U^) as a constant 

because of the property of the gauge links

u T  u .1 J 4 » (6 .1 .3 )

'̂ See Figure 5'
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then (U^U^U^U^) = 1 for example.
One also recognizes the loop like (U^U^UgU^) as a

polyakov loop which is non—zero, and there are four of
them in the expression of .1 > 1

The final loops are the well-known "plaquelles" which 

are the loops like or ^2^12^30^4 etc..., and
there are eight of them in total.

This idea concerns only a site in the lattice or one 
element of the diagonal of but it is the same case for 
all the sites. The trace of is then 3 Ng times the average 
values of the loops which occur in a similar manner in the 
calculations. Ng is the number of sites in the lattice, 
and 3 corresponds to the dimension of the SU(3) group. As 
a result, one has

Tr = 48(l6 - 8 < £] >) + ^Polyakovs 
where < Q  > is the average plaquettes value and the 
associated (-) sign arises from the Dirac gammâ matrices.

4 6One has to notice that the trace of M or M , or even higher 
degrees of power, can be worked out only by computing the 
number of possible loops with their vsulues. Especially, 
when one works on a 4—dimensional lattice, the access to the 
computer becomes crucial to count the possible loops, and 
this is not trivial, in particular for higher order loops
in the lattice.

However, in a 4—dimensional lattice it is easy to find
that there are 48 possible plaquettes per site, 24 in one

4direction and 24 in the other direction and Trace M can be
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expressed by

Tr M = 3Ng(8 + 8 x 7 -  48 < Q  >) +^Polyakovs (6*1.5)

for example, in a 4^ lattice Ng = 4^ = 236 sites.
For higher degrees of the trace M^, computer calculations 

are required to find the number of loops of different species 
in the lattice. But one has to be careful on finding all 
the possible kinds of loops which are in the expression of 
Tr M^* A good example of this is that one has worked out
the formula for Tr M^, where the loops like the one shown
in Figure (6) have to be computed.

Finally Tr is given by the following expression.

Tr = 3Ng(2192 - 2016 < □  > + 912 loop6) + ̂ Polyakovs
(6.1.6)

for example in a 6^ lattice, Ng = 6^ = I296 sites.
It is also clear that Trace in a 6^ lattice is given

Tr M = 3N_(8^ + 8 x 7 - 4 8 < D > )  (6.1 .7 )
by

.4

One has noticed immediately the difference from equation
(6.1 .6); this is simply due to the reason that in a 6^
lattice the polyakov loops of order 4 cannot exist and then, 

hTr M is simpler.
After all, one can prove the exactness of these formulae 

by computing Tr and Tr M via the Lanczos method which 
will give the eigenvalue of M and one has

4 ST ,4Tr M = ^
i (6.1 .8)

and Tr ^
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Finally the results confirm each other, so that one could 
say that equations (6.1,6), (6.1.7) and (6.1.^) are correct.

For instance, one obtains that the total sum of the 
eigenvalues to the power six and four are

2 1  = 5158613^0

= 370601.20

and that the trace of or obtained from equation (6.1.8) 
and (6.1 .9) respectively are the following 

Tr = 3156830.0
and Tr = 370638.25

where < Q  > = -0.51398402
Pol = 68.935

Loop6 = 0.6630476.10^
This was in a 6^ lattice at # = 5» 5»

VT.2 The spectral density
The aim of our research is to find out the actual real 

form of the spectral density function of the eigenvalue of the 
fermion matrix and predict analytically the value of the 
determinant at any configuration of the lattice, then the 
ratio to implement dynamical fermion in M.C. simulation. (8) 

After several observations on the form of the function 
^  (X) which is the spectral density, one proposes the following 
analytical form of it

^  ( X) = (A + BX + C X  + ...) ^  — X (6.2.1 )

The odd powers of |̂ | could be included in the polynominal 
part of ̂  , but since ( ^ ) in (6.2.1) has fitted the set
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of eigenvalues of the diagonalised form of M, one has to say
that they do not contribute in the calculations. The anti —
hermiticity of M implies that the eigenvalues come in pairs
of equal and opposite sign; then one is going to treat
to positive eigenvalues distribution which is the same for
the negative eigenvalues. Obviously, one assumes in the
above and below that one is in the chirally broken phase,
which means that the spectro-function ^   ̂) is non-zero
between 0 and X^, but the formulation of the spectro function
could be easily extended to the unbroken phase by considering
that ^  (X ) is equal to zero at a particular minimum
eigenvalue X . • (9)^ min

In equation (6.2.1),^ (X) is parametrised by the 
unknown variables A, B, C,... and which is the maximum
positive eigenvalue of M, and they can be evaluated by 
setting up a system of equations. These equations come from 
the fact that one knows some properties of the normalised 
spectro—function. First of all one has

j
Xmax

max
and / X

^  (X)dX = 1 (6.2.2)
-X

max
2 TrX P(X)dX = o jj = ® (6.2.3 )

-X Smax

Xmax
X^p(X) dX = ^  ^ (6.2.4)

• X max
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XmaxJ A6 Tr
-Xmax

Xmsix

X-_y(A)dX = ^  (6.2.5)

X^"j)(A)dA= (6.2.6)
-X ^meix

The limit has been made when one considers that

^   X? --- +^X^ (X) dX. which is for an
infinite lattice.

The application of this idea could be made if, for 
example, one has ^  (X) given by

^  (A) = (A + BA^) / x 2  _ &2

, Xand ( max
j^>(X)dX = 1/2

0

/ Xmax 2
0

X

X'^J>(X)dX = 8/2

max
X^j) (X)dX = ) = P/^ (6.2.7)

0
This gives.

(8A + 2BX^) = 1/2
32  ̂ M

Z|
(16A + 8BA^) = 4 (6.2.8)

irx*. + lOBA^) = p/2
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and finally the parameters A, B and X aremax
^max^ obtained from the equation X^ - 96X^ + l6p = 0 

and 7

In the equation which computes X , one has to choose onemax
real root closer to the value of the maximum eigenvalue
given by the lanczos method which has been always around
4.5* Note that equation (6.2.9) implies that the maximum
eigenvEilue X is given by max ^ ^

Lajc = y'*8 - 8 /6(1 i 2 < Q > )

and therefore, the expression of the parameter A will be

A = (A^ _ 16)
^  M

which means that for < D  > = 5/6, one has = 4, then
A = 0. This assumption leads to the fact that chiral
transition occurs at the vaJLue 0.83 for the average plaquette 
and this result depends neither on the size of the lattice 
nor the temperature of the lattice.

It is then necessary to go to a higher order para- 
metrisation of ^  ( X) and include higher order loops in 
order to avoid this ambiguity.

The inclusion of higher order loops is possible as long 
as the trace of (with n > 4) can be worked out.
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For instance, one can include Trace M in the 
parametrisation of ^ (X) and obtains from

a" - a2m (6.2.10)

max

0
j) (X)dX = 1/2

and
max

0
X ^  ( X ) dX = 8/2

max
a'* j) (A)dA = 1/2 2 1 ^  = p/2

0

max 
6

0
y  (\)dx = 1/2 Tr M

3N, = f/2

the following ;

97X^ - 9408 X^ + 1616 p.X^ - 64.f
which gives X

=  0

max
and f ^A " 128/ % x 2

= C k ' ^
2048/ It X^ 
1024P/T(X^

where
-1

64 16 8
32 16 10
64 40 28

-1

(6.2.11)
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VI. 3 Application to a lattice
Once one has evaluated the analytical expression of 

the spectral density (Fig. 1-a), the determinant of the 
fermion matrix can be calculated analytically without any 
problems. One is in the case of a lattice at 1̂ = 5*^ in 
SU(3).

Tfr('fcu(M + 2 ma))
Det(M + 2ma) = e

X

—  e
where 2ma =  m
In our case J> {X ) = (A + BX^) ^  - X‘

max o p  .
0 ln(X + m ) ^ ( X ) d x  (6.3«l)

Then
X

/  ln( X^ + m^) j) (X)dX = ^  (A + Bd^x^)d^/ l-x^ln| (mf).

.(l+b^x^) dx
X ^  Xwhere d = X ; b = max and x = ^
m meix

Consequently 
X

ln(X^+m^) (X)dX = 2d^ ln(m^ (A+Bd^x^) y^l-x^ dx

+ d V ^  (A + Bd^x^)^l-x^ ln(l+b^x^)dx 
•̂ 0

= 2d^ln(m) [a  ^  + Bd^ + d^ ̂  Al^ + Bd^l^j

. ■ M i  r M  • ‘” ^ 1

(6 .3 .2 )
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So the determinant can be predicted at any configuration of
the lattice (Fig* 1—b) , once ^  ( X ) is formulated by the
given values of the corresponding loops which occur in the
computation of Tr • The computation time is not very long
and the method seems to be useful. However» the detenninant
at zero—mass is calculated separately but still in an
analytical way and it is given by

d
/  (a  + BX^) ^d^-X^ 2 InX dX

Dq = exp'0

) - |-(a  - )j {6.3.3)

The next step of the calculation is to evaluate the determinant
of M as many times as the link is changed to give another
configuration. This means» that when a new spec tro-function
is given with its new parameters » (Fig. 1-c)» the determinant
corresponding to a new configuration is evaluated (Fig. 1-d).
Finally» the ratio of the determinants is calculated. This
process does not need a lot of time to be computed and
the implementation of dynamical fermions becomes operational.

XmaxJ  /,2 2^(X)ln(X + m )dX 

j  ^"^X) ln(x2 ^ m^)dX
Ratio =  0 ^ ------------------- (6.3.4)

'    -
0

(See Fig. 1-e).
The results are confirmed when one compares them with 

the results obtained from Lanczos. Nevertheless» there is 
difference between them for small masses between 0 and 

0.2 in lattice unit.
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VI. 4 Application to a 6^ lattice
The procedure is similar to the previous one but one 

is going to use the method in a 6^ lattice at = 5.5. The 
aim of this is that one proves that ^  ( X) form, is still 
correct in the calculation of the determinant or the ratio.

One takes ^  (X) = (A + BX^ + CX^) J (X^ - X^ )
(Figs. 2-a, 2-c and 2-f), where the computation of loop6 is 
required. The determinant is then given by

Det = exp (1), where

2 / v ( x  2 %  4 ^ r1 = 2d ln(m) j + Bd + Cd —

+ d^ j A 1^ + Bd^l^ + Cd^ 1^j (6.4.1)

where %  (1 1 _  .1 + / l+b^
1 1+b

and I„ =  r U 3A  - 8)(1 - / I T ? )  2b2(3 - ^  In
^  48b

/I +\/l+b^\ ^
( 2 / 192

And the determinant at zero mass is given by the following

Dq = e^O

where 1^ = ( A(ln I - |) + 2 ^  (In I + ^) + 2|(in | + ^ ) jJL±- , a^j.n 2 - g, T 2, V—  2 " 4/ ' 8 '*"

(6 .4 .2 )
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Finally the ratio is given by

Ratio = § (6.4.3)
D

where D is the determinant corresponding to a configuration 
t>y one link from the previous configuration.

The results are confirmed by lanczos results but the 
dif^^FGnce at small masses remains again. This concludes 
that the computation of higher order loops like lopp8, looplO 
etc. is needed to explore the interval of quark masses 
between 0 and 0.23 in lattice units.
*See figures (2-b; 2-d; 2-f; 2-g; 2-h; and 2-i).

VI. 3 Conclusion
From this method, with its trivieil emd simple formulation, 

one has nearly discovered the results obtained by Lemczos 
method to update dynamical fermions at quark masses bigger 
than 0.2 in lattice unit. Although, one has included only 
small loops of order four and six, one has obtained similar 
results. Consequently, the updating of dynamical fermion 
of masses larger than 0.2, loops of order higher than six, 
do not seem to contribute substantially.

However, higher order loops are crucially needed in the 
method for the implementation of light dynamical fermions 
because the predicted ratios at small masses as shown in 
Figures (l-e; 2-g; 2-h; 2-i) differ from the ratios obtained 
by Lanczos method quite clearly. Nevertheless, finite size 
effect can be also a factor in the predicted ratios, and as 
one knows, that on any finite lattice this effect will dominate
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low eigenvalues which will manifest themselves at 
small quark mass (Fig. 3-a). (13)

As far as the time of the computation of these loops is 
concerned, it becomes longer for higher order paths, especially 
for bigger lattices. The time can be reduced to a big 
factor, however, because one is searching on the change of 
the loops once a link is changed in a configuration. This 
change occurs only in the neighbouring loops to the link 
involved in the change. Then

loopnz = loopn^ + ^ ^ l o o p n  (6.5.I)

where ̂ ^ A loopn has to be computed in view of evaluating the 
trace of M^. The computation of ^ A loopn is fast, then 
the time required for finding a configuration accepted by 
the Metropolis algorithm, with dynamical fermions implemented, 
is minimised.
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THE SPECTRAL DENSITY,1ST CONFIGURATION• .It

(Fig. 1-a)
t i e

t.ie

I

2 e 3.t 3.6#.6 4.#

The spectral density without any change in links
p = 5.4; 4 lattice
The neu method
Lanczos method
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THE DETERMINANT,1ST CONFIGURATION

(Fig• 1—b)

• .•5

0.65

0.e0.2 e.e I .•QUARK MASS
* The determinants without any change in links
* fi = 5.4; 4 lattice
—  The new method
—  Lanczos method
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The spectral density^2nd configuration

(Fig. 1-c)

0. 14

o . te

I
0.00

0.06

2 #0.6 4.6

* The spectral density at one link changed
* =5.4; ^  lattice
— —  The neu method
+ Lanczos method
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the DETERMINANT,2ND CONFIGURATION
t.oe

(Fig. 1-d)

0.8S

t.e0.4 e.e#2 I .0QUARK MASS

* The determinants at one link changed, the first link
* p - 5.-̂ ; 4^ lattice
—  The new method
—  Lanczos method
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THE RATIO, ONE LINK CHANGED

# #0

2.76

2.60

2.26

I
s

2 00

! .76

1.60

1 25

1 .00

0.0 0.80.40.20.0

* p = 5.4; 4*̂  lattice
— —  New method
  Lanczos method
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THE SPECTRAL DENSITY ST CONFIGURATION

(Fig, 2-a)

0. 12

0.02

2.0I 2 5EIGENVALUE0.5 3.0 3.5 4.0 4.5

* The spectral density,without any change of links
* P = 5.5; 6*̂  lattice 
—  The new method
+ Lanczos method
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the DETERMINANT,1ST CONE

(Fig. 2-b)

#42

Ê . 4 B

r\
t #.##I

#.96

#.S2

9.4 I .#9.2
OUAMC HASS

* The Determinants without any change in links
* ^ = 5.5; 6̂  ̂ lattice
—  The new method
  Lanczos method
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the spectral density ,2ND CONFIGURATION

(Fig. 2-c)

1.12

e. ie

I
e.ee

2.6 4.6 4.E6.5

* The spectral density at one link changed, the first link 
p = 5.5; 6^ lattice

  The new method
—  Lanczos method
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the DETERMINANT,2ND CONE

(Fig. 2-d)

ê.48

r\

I
§

t.4#2 #.e 1.9OUAWC HASS

* The determinants at one link changed, the first link
* P = 5.5; 6^ lattice
—  The new method 
  Lanczos method
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the spectral density ,3RD CONFIGURATION

(Fig. 2-e)

• .14

• .12

I
• .•6

2 eI 2 BEIGENVALUE 3.6 4.G 4.63.6

The spectral density at one link changed, the second link 
P = 5.5; 6^ lattice
The new method 
Lanczos method
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ÎHE DETERMINANT^3RD CONF

(Fig. 2-f)
#.44

#42

/s
t #.##I

#.#2

t.# #.4 a.e#2 I .#OUAMC HASS
* The spectral density at one link changed, the second link

^ = 5.5; 6^ lattice
—  The new method
—  Lanczos method
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THE RATIO OF DETERMINANTS,1ST LINK CHANGED2.*

(Fig. 2-g)

2.4

2.2

2.#
g

#.e#.4#.2
OUARX HASS

* fi = 5.5; 6 lattice
—  The new method
  Lanczos method
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THE RATIO OF DETERMINANTS,2ND LINK CHANGED

9.6

(Fig. 2-h)

9.9

p 2.6I
2.9

# #9.49.2
OUARK HASS

* = 5.5; 6 lattice
' ■ —  The new method
  Lanczos method
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THE RATIO OF DETERMINANTS, TWO LINKS CHANGED

t . fE

(Fig. 2-i)

1.25

1.16

1.16

#.4#2

* p =  5.5; 6 lattice
— — The new method
—  Lanczos method
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th e r a t i o AT M=0.2

(Fig. 3-a)

oH#-<
ft

200150 250100 see50 h

The ratio at = 5.4, 4 lattice. One can see that the variation 
of ratio is rapid from 1st eigenvalue to B5th eigenvalue, and 
becomes slower after that.
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U ^(x + ar)

U_(x) ‘ ‘ U (x + 8^ )

U.(x)

Fig. 3 . "The plaquette"

Lq. 4. Number of plaquettes iS ^t/a
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Appendix
Abbreviations
1) M.C simulation is Monte Carlo simulation.
2) Q.F.T is QUATXJM field theory.
3 ) P»I is Path integral.
4) Q.C.D Quantum chromodynamics.

Numerical results
In the graphs of the determinants, one should read

3 4the value of the determinants as in 10 units in a 4 lattice,
4 Aand in 10 units in a 6 lattice.

From "Table of Integrals", I.S. Gradshteyn/l.M. Ryzhik, 
Fourth edition. Academic Press, New York and London, 1963» 

One has ;

\ IL ( T ?  ^  - M )

I !  Tf

W  H ^

T .

’0 d+a'si*v'x_ )
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