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2
SUMMARY

An electromagnetic transducer has been developed to measure the 

complex dynamic shear modulus of viscoelastic liquids as a function 

of frequency in the range 20o/s - 1.5Ko/s. The test liquid is 
subjected to an oscillatory shear strain in an annular gap, and the 

variation of loading on the moving boundary as a function of the 

height of liquid in the annulus is reflected as a change in transfer 

impedance at the transducer terminals* This change in electrical 
impedance may then be used to calculate the shear properties of the 
test liquid*

The liquids investigated were four polydimethyl siloxane fluids 
of differing molecular weight<> Measurements previously made on 
these fluids at higher frequencies have been extrapolated to low 
frequencies on the basis of a modified theory of Rouse and it is 

shown that these extrapolations coincide well with the low frequency 

experimental determinations0
A theory has also been developed to attempt a correlation between 

the non-Kewtonian behaviour of viscoelastic liquids under the 

influence of steady shear flow with the dynamic shear moduli* It 

appears that there is a functional relationship connecting the shear 

and normal stresses as a function of shear rate with the real and 

imaginary parts of the complex shear modulus as a function of angular 
frequency,. In addition, the recoverable elastic shear strain in 
steady flow appears in the resulting equations and shows that the



properties In oscillatory shear do not completely specify the 

behaviour in steady shear flow. Some comparison of the theory with 
experiment is given*

Finally, some attention has been given to means of 

automatically calculating relaxation spectra from dynamic modulus 
data* Although various methods of performing this calculation have 

already been described, they usually involve laborious hand 
computation and are not amenable to direct programming for use on 

a computer* Two new methods are described one of which need 

Involve only a simple hand calculation after a certain matrix has 

been pre-»oaloulated. This matrix does not depend on the data values 
and so needs only to be calculated once.
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SYMBOLS

D Differentiating matrix 
e Strain

ft
0 Complex shear modulus (dyne, cm** ), Spectrum vector (dyne, 
f Frequency ( sec"*1)

■■2g Shear modulus vector(dyne.cm ) 
h Liquid height(cm) 2J Polar moment of inertia(gm.cm )
K Shear rate(sec*1)
K~ Transducer constant(dyne.cm.ohm.see)
M Kernel matrix. Loop gain(db)
Q Friction coefficient magnification factor 
q Molecular chain length 
R,r Radius(cm)
s Relaxation frequency(sec-1)
T Torque(dyne.cm) 
t Time(sec)
x Friction coefficient (dyne .see.cm"*1)
Z g f Z E l e c t r i c a l  Impedance(ohm)
3j,9Zq Torsional mechanical impedance (dyne, cm .seo)
z Torsional liquid impedance per unit height(dyne.seo)
o( Frequency shift factor9 angle
p Frequency shift faotor9 angle
t Deviatoric strain tensor component

—2^  Viscosity(dyne.cm .sec)(poise)
Kinematic viscosity(cm .sec ) 

f Density(gm.cm~^)
•2 \&  Stress tensor component(dyne.cm )

T  Time(sec), Relaxation time(sec) 
yp Relaxation function(dyne.cm* ) 
u; Angular frequency(sec ^)



CHAPTER 1
INTRODUCTION

The original studies of deformable media were concerned with 

purely viscous fluids and purely elastic solids. Fluids as 

investigated by Newton are incapable of supporting a shear stress 
without continuously deformingo Moreover, when the shear stress is 

removed the fluid instantaneously attains equilibrium in the new 
deformed state. The ratio of shear stress to strain rate is defined 
as the viscosity and is independent of these two quantities. In the 
case of elastic solids a shear stress induces a unique shear strain 
which is completely recovered upon removal of the stress. The main 
difference therefore between the elastic solid and the viscous 
fluid is that the former possesses an undeformed reference 

configuration while for the latter, the reference configuration is 

its instanteous state.
This may be described in other terms with reference to the 

concept of Memory9. The elastic solid may be said to have perfect 

memory since when the stresses are removed after whatever time, the 
material always returns to its reference state. The viscous fluid 

has no memory since upon removal of the stresses at time t^ the 
configuration remains the same for all times for which t ^  t^ 
i.e. it does not 9remember9 any previous state.

A class of materials exists that falls between these two 

extremes and exhibits imperfect or fading memory. These visco­

elastic materials, which may be either solid or liquid, have no
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absolute reference configuration but nevertheless show elastic or 

rubberlike behaviour* Under the influence of a steady shear stress, 
the material deforms apparently like a viscous fluid\ but upon 
removal of the stresses, a partial recovery takes place which depends 

on the history of deformation* The reference configuration thus lags 

behind the instantaneous configuration and the material is therefore 

partially elastic and partially viscous*

Maxwell (I867) was the first to postulate such a material in 
which the total deformation is the sum of an elastic and a viscous 
deformation* Such a material has a characteristic (relaxation) 
time given by the ratio of a viscosity to an elastic shear modulus*
In experiments involving time scales much shorter than the 
relaxation time, the Maxwell fluid tends towards the characteristics 
of an elastic solid, while for large time scales it approaches the 

behaviour of a purely viscous liquid* It is doubtful that any real 

materials are approximated by the Maxwell hypothesis but they may be 

described by a generalisation which involves superposing a number 

of Maxwell bodies in such a way that for a given strain, the stress 

is the sum of the stresses in a distribution of Maxwell elements*

The Theological properties may thus bedefinod by a distribution of 
viscosities, rigidity moduli and relaxation times* In fact only 

two of these three quantities are necessary to completely specify 

the viscoelastic properties of the material*
The Theological properties so far described are linear in 

that the principle of superposition of stress and strain applies*

In the case of small strains this assumption ±3 realistic and the



theory of viecoelasticity i.s well developed in this context and ie 

reviewed by Hunter (I960)* In the case of large strains a material 
may still be linear but a more complex theory is necessary to describe 
finite strain* Such theories have been developed by Murnaghan (1951) 

axad Rivlin (1956)* Finally, there are the inherently non-linear 

materials for which only elementary theories have been developed 

(Reiner, 1949)•
One of the mo3t convenient methods of determining the visco­

elastic properties for small strains is that of subjecting the 

material to sinusoidal variations of shear stress or strain* Part 
of the work with which this thesis is concerned has been to develop 
an apparatus capable of measuring these properties in the frequency 
range 20c/s~lo5Kc/s and the description of this method is contained 

in Chapters 3 and 4«
The advantage of this method of testing is that the mechanical 

properties of the material in its equilibrium or ground state are 

ascertained by small perturbations, and information may thus be 

gained as to the kinetics of molecular flowe Measurements have been 
taken on a series of polydiraethyl siloxane fluids of differing 

molecular weight* In the case of long chain polymers, at low 

frequencies the flow may be considered to involve the co-operative 
motion of the complete molecule, and the drag that the molecules 

exert upon each other manifests itself as a purely viscous effeot*

At higher frequencies segments of the molecule are capable of 
partially independent motion and the restraining effect of one 

segment on another of the same molecule gives rise to an elasticity*

At very high frequencies this effect is dominant and the behaviour 
tends to that of a perfectly elastic solid*



12
Several theories have been put forward to explain these 

mechanical properties on the basis of molecular models, for dilute 

solutions of long chain polymers (Bueche, 1954*t Rouse, 1953*>
Zimm, 195^)® For undiluted polymers Ferry, Landel and Williams (1955) 
have suggested a modification of the Rouse theory which is discussed 

in Chapter 6, and which appears to satisfactorily explain the 
observed properties of the polydimethyl siloxanes when due allowance 

is made for the polydispersity of molecular weight in these fluids*

The molecular picture of long chain polymers is complicated by the 

occurrence of temporary cross links above a certain critical 

molecular weight* These have the effect of immobilising parts of 
the molecule and greatly enhancing the static viscosity* However 

as the frequency of an oscillatory excitation is increased, since 
smaller parts of the molecule are involved in the motion, the 

'pinning* points of the molecules play a less significant part in 
the dynamic properties* For the same reason the chain length itself 
becomes less important in determining the high frequency properties, 

and experiment shows that at the higher frequencies the complex 

shear moduli of the different molecular weight siloxanes converge 

to a single curve (Barlow, Harrison and Lamb, 1964)*
Although the viscoelastic properties of a material are important 

for the purposes of understanding molecular kinetics, it is 

beginning to emerge that they do not completely define the mechanics 

of a material in steady flow* In particular, it is observed that 

when a viscoelastic material is subjected to steady shear flow, the 

viscosity, measured as the ratio of shear stress to strain rate,
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diminishes with increasing shear rate* Also, stresses normal to the 

direction of shear develop, which are also functions of shear rate* 
Many theories have been formulated to account for these effects 
based on empirical equations of state for which the molecular 

interpretations remain to be investigated* Very often, as a result 

of the experimental difficulty, it is impossible to distinguish one 
theory from another*

In general, it appears that these empirical equations contain 

parameters in addition to those required for exhibiting viscoelastic 

behaviour in oscillatory shear; and consequently the data from 
oscillatory experiments would not be sufficient to completely 
determine the steady flow behaviour* Nevertheless, correlations 

have been observed between the normal and shear stresses as a 
function of shear rate, and the real and imaginary parts of the 
dynamic shear modulus as a function of angular frequency (Padden 

and de Witt, 1954*, Markovitz and Williamson, 1957)* An advantage, 

therefore, of being able to take measurements in the audio 
frequency range is that the corresponding angular frequencies 
are of the same order of magnitude as shear rates obtainable with 

a variety of viscometers* For this reason it appears desirable to 

attempt a theoretical correlation and two appear in the literature 

(Pao, 1957*, de Witt, 1955)* The former theory however does not 

predict the presence of normal stresses in steady flow while the 

latter is confined to materials with a single relaxation mechanism*

A theory developed by the author and described in Chapter 7 allows 

for a distribution of relaxation times and predicts the occurrence
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of normal stresses. However, because only the viscoelastic 

properties have been included in the original equation of state the 

stresses result in not being completely kinematically determined.

The resulting equations nevertheless may be checked for consistency 

in the light of experimental data.
The remainder of the work of this thesis is concerned (Chapter 

8) with simple methods of obtaining relaxation spectra from dynamic 

data, that are suitable for programming on a digital computer.
Although various methods have already been described in the 
literature, they are primarily designed for hand computation and 
are not suitable for direct conversion to a computer programme.

The amount of labour involved in these calculations makes it 
desirable to formulate a method that is simple to programme and at 
the same time does not contain complicated convergence requirements. 

Two methods are described the second of which is amenable to simple 
hand calculation, after the Initial matrices that are required have 

been pre-calculated.

Note* Wherever reference is made in this thesis to automatic 
calculations, the associated numerical work has been carried out 

on the University of Glasgow EDF 9 computer using Algol as a 
programming language.



CHAPTER 2 
SOME INTRODUCTORY THEORY

15

2,1 Descriptions of Viscoelasticity

Theoretical work in the field of materials may begin from one 

of two starting points, the microscopio or the macroscopic. The 

two methods lead to results which inevitably overlap, (since they 
must be compatible) but the emphasis in each case is rather 
different. The macroscopic approach seeks to generalise the results 
obtained by experiment and so be able to predict behaviour in a 
diversity of situations, A consequence of this method is that, 
subject to the appropriate assumptions being made in the theory, 
general forms of equations are obtained of which the results from 

microscopic theory are special cases. The microscopic approach 
however involves the prediction of bulk properties from the 

behaviour of the Individual molecules that compose the material, and 

the assumptions in this method though by nature more specific must 

be compatible with those of the phenomenological theory, By 

comparing the results of such theories with experimental a greater 

understanding of molecular processes is obtained. An example of 
this approach is given in Chapter 6,

In viscoelasticity the elementary bulk or phenomenological 

theory of flow is well understood in the restricted situations of 

small strain and strain rate. Outside these restrictions the 

possible forms for the equation of state are very numerous especially



if non-linearity is allowed in the formulation. Even in the linear 

situation the formulation requires extensive use of topology and the 
theory of function spaces (Coleman and Koll, 1959)* The other main 

branch of phenomenological theory is that of predicting behaviour 

under diverse experimental conditions starting with an equation of 
state as a postulate. Unfortunately, the difficulty of this subject 

is often increased by the various means available of specifying 

strain. Lodge (1964) has attempted to rationalise this by the use 

of what he terms * shape variables9 with a resulting elegance and 
simplicity in the form of his equations.

The present chapter is concerned with the development of 

elementary small strain linear theory as it applies to the remainder 
of this thesis. The results obtained are not new but the approach 

is considered unconventional and leads to the desired results in an 

economical way.

2o2 Derivation of an equation of state
It Is the concern of this section to derive a relation between 

quantities (to be defined more precisely later), cT representing a 

deforming stress and £ the deformation or shear strain which in 

general may both be functions of the independent variable time, t. 
For the present discussion it is assumed that the relationship will 

be linear so that if

O'1 = ffej) and O- 2 s f(£2)



17
then cr ̂  ^ cr ̂  ^  ̂ 2^
We further assume at this stage that there are a finite number of 
discrete processes that will describe the viscoelastic system.

With these two assumptions the relation between o' and £ must be of 

the form * ^ W E  2.1
where f^ and f^ are linear total differential operators. By taking

the Laplace transform of both sides of equation 2.1 with zero 

initial conditions, we obtain

(p) = $ (?)• £ (p) 2<>2
where the superscript bar denotes a transformed variable. $(p) is
the ratio of two polynomials in p and is of the form

2 ’ 3 . mp * â j) + a«p + . . . • a p
*(p> =  —  ------------------------------  2.3

bQ + ^ p  + b^p * . bQp

The absence of a constant term in the numerator is based on the 
physical fact that in any fluid, no stress function can cause 

constant strain.

The polynomials in equation 2.3 may be factorised to give

m p )- p(p ~ v )  ~ y )  • ■ > • ( ? -  pm ‘)
(p - p x) (p - p 2) • • <■ • (p - pn )

where p^ and 0 are the poles and zeros of the function. This form
may now be written after use of the Heaviside expansion (Cheng, 1959»

P° 185) 0 (p) - kl P +  k2 p +  ‘ kn p 2c4
p - Px p - p2 p - p^
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or alternatively*

0(p) = jL*r t ¥l ̂  V; 4- ■ . . Vn
! P-Px P“P2 P-Pn

* c +■ C1 4  °2 -t . . . Cn 2„5
P-P] P~P2 P-Pn

The roots of the polynomial are either real or appear in complex

conjugate pairs® Since the fluid system is evidently stable* the
the real parts of all the roots must be negative and we now divide
the n poles of 0 into x real roots and y complex conjugate roots®

Equations 2®4 and 2®5 now becomex  x+\+y
m  = >  V  + 5  2*6

r= > p + 0 *

0(v) = 4 °r ^  2Cr(p- % } . 2,7
p—s ^  L- t \ 2 2r--i r * î r

respectively* when the real roots are ~ s . and the complex conjugatew
roots are

It is thus seen that the original system has been decomposed 
into x first order systems and y second order systems® In the study 

of relaxation behaviour in general and viscoelasticity in particular 

it is usual to neglect the second order systems on the grounds that 
the damping of the first order systems masks the presence of any 

natural modes® No experimental evidence has been found for the 

existence of natural modes and consequently viscoelastic behaviour 

is universally interpreted in terms of first order systems only®
An interesting discussion of this topic by Gross is to be found in



Harrison (1954* P° 227). We thus have the simplified equations?

which give two possible representations of the same system. The 

advantage of these forms over the polynomial form of equation 2.3 is 
that the system may be seen to be describable in terms of z systems 
of identical simple form but with different parameters, (in the 
second representation an additional system, C, is required also). 
These simple forms occur in network theory and are termed canonical 

forms. Mechanical and electrical canonical forms having the 
transfer functions occuring in equation 2.3 are shown in Figure 2.1.

In the electrical models the most common transfer functions are 

impedance (voltage/current) and admittance (current/voltage). For 
mechanical models two different types of transfer function are 
founds the modulus (force/displacement) and its inverse, compliance; 

and impedance (force/velocity) and its inverse, admittance.
Two types of analogue appear from the comparison in Figure 2.1 

1) Electrical impedance £ Mechanical modulus

It then follows in this case that the analogous quantities arei-

C

Electrical admittance £ Mechanical compliance

Voltage = Force Resistor £ Dashpot

Current s Displacement Inductor £ Spring

for models 1, 4* 5 and 8.
2) Electrical admittance s Mechanical impedance 

Electrical impedance £ Mechanical admittance
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This analogue concerns models 2, 3* 6 and 7 whence the analogous 
quantities are

Voltage « velocity Resistor 5 dashpot
Current 5 force Capacitor S spring

An interesting consequence of this type of analogue is that the
networks are topologically equivalent9 which is not the case in the

other representation^
The electrical models of Figure 2*1 are all known as Foster

canonical forms (Guillemin, 1937) whereas only two of the mechanical
models are distinguished by a titles the Maxwell and the Voigt

elementso Although both these models occur in viscoelasticity»
the present work is mainly concerned with the Maxwell representation

jc pi.e. transfer functions of the form \  r This has been chosen
*£-p^sp

because one such model could represent a hypothetical fluid whereas 
the Voigt element needs an extra dashpot in series corresponding to 

the quantity C in equation 2»80

2»3 The response in the time domain

Mow that the form of jt(p) appropriate to viscoelastic materials

has been determinedf we may substitute into equation 2*2 to give
x.

(p) = 5  € (p) 2o9

The response in the time domain is determined by finding the inverse
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transform of this equation.We first note a theorem of the Laplace 
transforms

then

If iffx(t)] * f^p) «ndf = f2(p)

ĵ '-[̂ (p).f£(p)J zf ̂(t-71 t2(T)dT
- aO

where the right hand side is the convolution integral which commonly

occurs In the theory of linear systems.
KIn equation 2.9 let s P«»£(p) and f^(p) = r .

The inverse transforms of these two fimctions are (Cheng, 1959»
P. 165, 175)

f„(t) = d£(t)
* dtK. 

fx(t) a £ K r«p(-*rt)
tr* I

Taking the inverse transform of both sides of equation 2.9 
therefore gives

b
(t> = £  I d£Cii dt

t f T J  dt
o-(t) ~ ~ J K-exp “̂6 A*-n)dfclt) dt 2.10

— OO

Equation 2.10 therefore gives the stress function of time cr in 

terms of the rate of change of the strain function^. It may be seen

that the state of stress at time t is dependent on the strain 

history from -op to the present time t. The lower limit of integration 

of-o0 ensures that the assumption of zero initial conditions in going 
from equation 2.1 to equation 2.2 does not limit the generality of 

equation 2.10.
A quantity called the relaxation function may be introduced at 

this stage defined by
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Y' (t) = fj(t) - Z^expt-s t)
so that equation 2*10 becomes

or-(t) z jy(t-j) d c m  dr

JToO
which is a form of the well known Boltzmann superposition integral 

given by Gross (1953)«

2»4 The frequency response

For the purposes of measuring the viscoelastic properties of a
liquid equation 2*10 is not suitable for calculation of the and

s^f since the process involves separating out the contributions of
z exponential functions, when simple step or impulse functions of
strain are appliedo This procedure is extremely imprecise

(Lanczos, 1957* P° 272) and the method of testing adopted is that

of frequency response determination i«e* the use of sinusoidal

functions of time» The frequency response may be simply obtained

by substituting p into equation 2«9* whereUJ is the radian

frequency of the disturbance, to givex
s k jt-o g(jtJ)

C —  8 + juj
r - i r

We may now define a coaplex modulus G(ju)) by the ratio of 

stress to strains

= O ’Qw) f  0“(jw) = O-  2oll
(T £_ T e„ *
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It may be noted that at very high frequencies where tvjfr sy,

G — ►  s £ K r« Goo*8 termed the high frequency, impulse or 
indicial modulus and is the elastic modulus observed in a fluid when 

experimental time scales are very short compared to all the 
relaxation times (l/sp) of the fluid* It is also apparent that 

eaoh corresponds to the high frequency modulus of each Maxwell 

element and equation 2*11 may be more appropriately written:

0(JQ>) = >  g,r 3UJ 2*12
C—  f jus
+-I

which, when separating into real and imaginary parts, gives
G iJ<&T

-Ts.| ^  UJ

8" = \  % ,  - ^ Br 2oX3

A dynamic viscosity^ ̂  is also defined as

w  h • , - w 2
In the special case where there is one relaxation frequency s^

i.e* x - 1, Figure 2*2 shows the variations of G 1, Gw and^d with

the radian frequency (/Jo
The dynamic viscosity defined above must converge to the static

viscosity'© at frequencies where ( V « s  * Hence we have
t””"’ a

2»14
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For a single relaxation time*Y (» l/s ) we therefore haveIs c°

2.4.1 ContinuouB systems
i

Until now the properties of the viscoelastic system have been 

deduced uner the assumption that there are a finite number of discrete 
relaxation processes each contributing (equation 2*11) an amount 
(K o Auj to the modulus. Because the viscoelastic liquid may be
r v * 'regarded as a continlum and the observed relaxation behaviour is an

agglomeration of statistica 1 processes, it is more realistic to
consider a continuous distribution of G over s, i.e. G —-̂ (^>(a)
In the elemental range (s, s-e»ds), the contribution of the indlclal
modulus is dG^Cs) - dCUs (s) ds . The contribution to the overall

ds
modulus is therefore

dG as dGofl(s) . iu) ds 
ds s+

putting N(s) — dGe^>(s) and integrating we obtain for the modulus
ds
G(j*/) = I Bf(s) ds 2.15

s+jw

where the upper and lower limits of integration allow of all 

relaxation frequencies in the semi-infinite range. H(s) is known as 

the distribution or spectrum of relaxation frequencies (or times), 

and a liquid may be completely specified viscoelastically by means of 
this function. A comparison of the representation with discrete and 
continuous spectra is shown in Figure 2.3°

In general it may be said that the results obtained for the
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discrete system may be applied to the continuous system except that

Integrals occur in the place of summations* Practically, there is

little difference between the two representations because the
continuous system may always be approximated to any desired degree

of accuracy by the use of a sufficiently large number of discrete
Maxwell elements$ though for numerical and analytical work it may
be more convenient to work with one rather than the other*

It is as well to note however that there is an analytical
difficulty if it is attempted to represent a line spectrum as a

continuous spectrum* We have by definition ff(s) - dffgoje)
ds

tt Gco(s) is a line spectrum it may be represented by

Co o (b ) S Ojp S(s-8y) ds
where & is the delta function of zero width, infinite height and unit 
area at the point s — s^o Differentiating this equation we

obtain
N(e) = = ^ ° < O T ^ ( s“ep)

4-
Thus when representing a line spectrum as a continuous spectrum the 
resulting function consists of a series of pulses with area 
infinite height and zero width* For this reason it is often more 

convenient to represent the spectrum in discrete terms although in 

real materials where line spectra are not found either representation 

may be used®

2*4*2 Calculation of the viscoelastic properties

The method of oscillatory testing is to obtain measurements of
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the complex ratio of stress to strain over a frequency range* Thus 

in equations 2*11 and 2*13 the complex function G(j<u) is an 
experimentally known function* From these measurements it is then 
necessary to determine the distribution of relaxation times which, 
in the case of the continuous system, is buried in the integrand 

of the integral equation 2*1$* Various methods have been devised 
to facilitate this calculation and this subject is more fully dealt 
with in Chapter 8*

2*5 Three dimensional equation of state

Until now we have been considering the simple case of a 
deforrnation£ and a stress <T , which are related by equation 2*10 
assuming linearity and the pres ence of first order meohanisms 
only* For a useful description of viscoelasticity this is not 
sufficient as the variables tr and£,will in general be functions of 
spatial coordinates* Thus to describe the behaviour in a variety 

of situations the equation of state in three dimensions is 

required , Although the end result is similar in form to equation 

2*10 the process by which it is achieved is not trivial and a 

variation of the method is capable of giving corresponding results 

for anisotropic viscoelasticity although this is not pursued here*

For the purposes of the three dimensional formulation we may 

consider<rand £ to be stress and strain tensors respectively of the 

second order* Now a second order tensor T may be split into three
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parts (Long, 19^1, p. 21)
T : 1 0  tr T +  Ta +  Is 2.16

3
where U is the unit tensor and tr T is the trace of the tensor T*
£L ST is an antisymmetric tensor and T is a symmetric tensor with 
zero trace* If it is assumed that these are no body couples acting 
and no rigid body rotation it follows that both the stress and strain
tensors are symmetric, so that

s i dcr - 1 U tr cr + cr »<r + cr
* 3

C r i u t r f c  + £ 8 s fc1 +fcd
3

and the tensors can be split into only two parts* The first terms 

are Isotropic tensors and are associated with hydrostatic pressure 

for crand dilalation for£ • The second terms are deviatoric tensors 

(\jy definition) and are associated with change of shape*
If the material is assumed isotropic and the stress and strain 

tensors may be related by a linear transformation, then de Groot and 

tfazur (1962, Chapter 6) show that the deviatoric part of cr is 
uniquely related to the deviatoric part of£by a constant multiplier; 

and similarly for the isotropic parts* Hence
O-1 -  c 1
o-d = Kd S d 2.17

where the superscripts and subscripts refer to isotropic and deviatoric 

relationships* This result is derived from the work of Curie (1908) 

which is based on the fact that the properties of an isotropic system
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are invariant under a rotation or inversion, and is known as Curie°s 

Theorem*
t

The work of de Groot and Mazur however is concerned with 

linear, time invariant, thermodynamic systems and the quantities K 

in equations 2*17 are true constants. For the time varying system cvf 
a viscoelastic fluid the result may be generalised by the use of
Laplace transformed tensor components cr and ££ which are related

by a linear transformation in the Curie sense. Therefore we may

write for equation 2.17t
—  i

Crd 2»18

Both equations imply that each component of the tensor (T1 is related 
to the corresponding component of the tensor £ by means of the 
multiplier K and that only two quantities JĈ  and are necessary 

for the complete formulation of the isotropic and deviatoric behaviour. 

We therefore have for any given component

a Kt(p)£ 1

= Kd(p)Cd 2o19
Since on the basis of assumptions made in section 2.2 the form of 

these equations oust be the same as tha. obtained in equation 2o9

it follows that K(p) must be of the form

£(p) £rP 2.20

Both of equations 2ol9 are of the same form and we may write a single 
equation to describe both isotropic and deviatoric behaviour.
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Substituting from equation 2.20 gives

2.21

Although this equation applies to both isotropic and deviatoric 
8ituation89 the constants Kr and s^ will be different. In particular.

have a static compreesional modulus. By analogy with equation 2.10, 

equation 2.21 may be rewritten in the time domain to gives

a viscoelastic material of which the microscopic structure consists 
of a number of randomly arranged dashpots and springs. Alfrey (194&) 
and many other authors suggest that the one-dimensional stress-strain 
law may be generalised a-priori to three dimensions, but this 

approach is open to the objection that it assumes a three dimensional 

system cannot exhibit features not evident in the one dimensional 

system.

2.6 Frequency - Temperature superposition

The viscoelastic properties so far discussed have been defined 

in terras of a spectrum of relaxation frequencies H(s). Since the 

bulk properties of materials depend on other external variables 
such as temperature and pressure, it is interesting to investigate 
how the relaxation spectrum will be affected. This was originally

for the isotropic case one of the s is infinite because fluidsr

These same results have been obtained by Bland (i960) who postulates
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carried out by Tobolsky and Andrews (1943) and Leaderman (1943) in 
connection with stress relaxation, and Ferry et al. (1952) used the 
method for frequency response testing® The two postulates on which 
the superposition principle is based are:

a) The variation of the relaxation frequency of any one 
relaxation process with temperature is the same for all relaxation 
processes in any given material*

b) The variation of the high frequency modulus <bf any one 

relaxation process with temperature is the same for all relaxation 
processes*

From postulate (a) it may be interpreted that we may write 

o((T) - STo where the suffioes T and To refer to two different

temperatures of which the latter may be considered a reference 
temperature* <^(T) is a function that represents the temperature 

variation of the relaxation frequencies s* In a similar way we may

s,T

write for postulate (b) that

Now

Substituting these results into equation 2*13 ve obtain

To

2*23



Bquation 2*23 may be separated into real and imaginary parts to

Togive 0 - H  a C_ (oM
$

0^(w) * G^0(o/w) 2.24_
It may be seen from these equations that if <* and are known,

f nexperimentally determined functions G and G at one temperature T 

may be referred to a reference temperature To* Of practical interest 

is the fact that if G(jw) is plotted on a log-log ecale the
factors^ and occur in such a way that the slopes of the curves 
are not altered by a change in temperature but only their position 
relative to the axes*

Consider equation 2*23 when CV(*/<$£ 3To 1'8* at very low 
frequencies* Then

Lt GT(jw) = V  = \ H„, dsTo To

STo

Thus ni 0 - As.- i T
*I°To

It is therefore shown that the product0(j£ may be obtained by finding 

the ratio of the static viscosities at different temperatures* We 

may also note from equations 2*24 that
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which eliminates ^  * It is therefore shown to be possible to find
bothc^and In practice, the reduction principle may be used to
obtain results over a wide range of*(6Jwith a relatively restricted
range of U> by variation of the temperature* This is of great advantage

because it lessens the necessary frequency range required of the
apparatus in order to explore the overall relaxation behaviour*

Unfortunately the form of equation 2*25 is such that for a given

frequency range the possible variations in temperature are limited
0 n

because of the G and G values becoming too small at low values of 
for accurate measurement*

, Often beeause the expected variation of an elasticity modulus 

with temperature is small is made unity, in which case is 
determined from the ratio of the static viscositieso
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CHAPTER 3 
THE ELECTROMAGNETIC TRANSDUCER

3*1 Survey of techniques

The measurement of the viscoelastic properties of a material 

as defined in Chapter 2 reduces to the problem of measuring the 

complex ratio of stress to strain over a wide frequency range* In 
principle, there is no difference between a method suitable for 

measuring the viscoelastic properties of solids or of liquids but in 

practice a liquid requires to be constrained between boundaries and 

often the mechanical properties of a liquid are more temperature 

dependent; hence a greater degree of temperature control is normally 
required*

Unfortunately, it is found that real materials have relaxation 

times extending over several decades and it impossible for a single 
apparatus to cover the required frequency range* In practice it is 
found that any one apparatus can rarely cover more than two decades 

of frequency, the limits being set by measurement accuracy and the 

occurrence of spurious modes of operation* Below lOc/s purely 

mechanical methods are usually favoured (Morrisson et al«, 1955** 

Russell, 194^) in which the stress and strain are measured directly 

together with the phase difference between them. At higher frequencies 

the inertia of the reciprocating masses causes excessive backlash 

and the various parts of the apparatus can no longer be considered
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rigid, resulting in spurious measurements of stress and strain*

Between lOc/s and lOKc/s the mass of the apparatus is decreased 

and its stiffness increased by minimising the size of the moving 

members* The most appropriate means of driving such a system is 

through the use of an electromagnetic method (Benbow, 1953$ Hopkins, 
1951; Fitzgerald and Ferry, 1953)* A variety of methods is used to 
measure the stress-strain ratio; these usually involve transforming 
the mechanical quantities into electrical quantities before 
measurement. The apparatus to be described later falls into this 
category, its limitation at high frequencies being spurious modes 

of oscillation set up in the vibrating member.
Above lOKc/s the transducer is almost invariably in the form 

of a crystal such as quartz or barium titanate (Mason, 1948) that 
is set into resonance by an applied electric field. Under these 

conditions the vibrating member cannot be considered as a rigid 

body and elastic theory is required to calculate the mechanical 

behaviour of the transducer. A characteristic of some of these 
techniques is the propagation of pulsed oscillations rather than a 

continuous wave. The pulses must be short enough not to set up 
standing waves in the vibrating member but long enough for the effect 

of transients to have died away, in order that the steady state 

behaviour of the test sample may be observed. A survey of the 

available methods for measuring viscoelastic properties is given in 

the literature (Ferry, 1958).
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3*2 The audio frequency range

The recent interest shown in the possible correlation between 

static (continuous shear) and dynamic measurements on viscoelastic 

materials (de Witt, 1955; Cox and Merz, 1958; Tyson, 19^5) requires 
that radian frequencies U) in dynamic experiments should be used that 

are within an order of magnitude of shear rates E. By virtue of the 

reduction principle (Perry at al., 1952) it is possible to predict 
results obtained at any one temperature and frequency from some other 
specified temperature and frequency. In the laboratory with which 
the author has been associated, several methods have been developed 
for measuring viscoelastic properties at frequencies above lOKc/s 

and the reduction principle has been applied to predict behaviour at 

audio frequencies (Barlow and Lamb, 1959)* It is therefore desirable 

to have some experimental check on the validity of the reduction 

principle.
More particularly, in the case of the present work, an 

experimental check on the low frequency behaviour of certain polymers 

predicted (Barlow, Harrison and Lamb, 19^4) on the basis of a 
modified theory of coiling polymers (Rouse, 1953)t is required.
Also, in the case of correlation with steady shear measurements, the 

upper limit of shear rate is of the order of 10^ sec*^ corresponding 

approximately to a frequency of 1500c/s, however viscometers operating 

at even higher shear rates have been developed (Barber, Muenger and 

Villforth, 1955)* The apparatus designed by the author operates in 
the range 20c/s - 1.5Kc/s at temperatures between 10°C and 50°C
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although all measurements reported herein were taken at 30°C.

3*3 General considerations of transducer design

For reasons already explained the possibility of using a purely 
mechanical system in the audio frequency range was discounted* The 
use of quartz crystals at frequencies below their natural resonance 

has received some attention (McSkimin, 1952), although their use below 
lOKc/s has not been reported. One method is to use a quartz crystal 
to propagate pulses of oscillations down a rod* The pulses ore 
reflected at the end and are reconverted into electrical energy by 
the crystal transducer. The properties of the test liquid are 
deduced from the loading effect caused by immersing the rod* An 

apparatus of this type has been developed in the author's laboratory 

(Barlow et al., 1961) consisting of a crystal capable of torsional 
vibration bonded to a Nickel-Silver rod* One result of the loading 

effect of the rod on the crystal is to lower the 9Q 9 hence increasing 

the available bandwith of the system} and frequencies down to lOKc/s 
have been obtained using a crystal with a natural resonance of 20Kc/s*>

Lower frequencies may be obtained only by increasing the size 

of the crystal in order to decrease its resonant frequency and also 
increasing the length of the rode The velocity of torsional waves 

in Nickel-Silver is 2*10^ cm/sec., thus at a frequency of lOKc/s a 

pulse of 20 cycles occupies a space of 400 cms. In order that a 

standing wave is not set up in the rod, the overall length of the rod
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must be greater than 400 cms* Since the rod must increase in length 

in inverse proportion to the frequency, it can be seen that a system 
operating down to low audio frequencies would be very cumbersome, 

unless materials with significantly lower velocities could be found* 
Although a lower velocity might be obtainable by using a rod 

with distributed inertia, a very large crystal would be necessary and 

it was therefore decided that an electromagnetic method would be most 
suitable* The difficulty with this latter type of system is that of 
achieving high frequency rather than low frequency capability as 
opposed to the torsional rod method* This is because one of the 
systems may be regarded as of the lumped parameter variety whereas the 
other (torsional rod) is of the distributed parameter type* The 

lumped paramter electromagnetic system must be such that the natural 
modes of the individual members of the apparatus are well above the 

operating range of the instrument* In practice this means that the 

parts must have a high stiffness to mass ratio i*e* the velocities 

of all possible acoustic waves in the various parts of the apparatus 

must be as high as possible*
Another consideration is the form of the vibrating member 

that will ezcite shear waves in the test liquid* Three principle 

methods appear in the literatures
1) Axial vibration of a cylinder (Fitzgerald and Ferry, 1953)• 

In this arrangement, the viscoelastic material is contained in the 
annulus between two cylinders, one of which executes axial oscillatory 

motion- The test material is therefore under conditions of
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oscillatory shear but unfortunately the boundaries are such that 

they are not suitable for constraining a liquid*

2) Axial vibrations of a rod (Smith, Ferry and Shremp, 1949)o 
In this method a rod is forced to oscillate axially as a solid body 

while immersed in a test liquid* Cylindrical shear waves are 
propagated radially into the test medium* The distance of propagation 

is so short compared to the distance to the outer boundary that the 
mechanical impedance observed from the rod is the cylindrical 
characteristic impedance*

At high frequencies $he rod breaks up into modes of standing 
waves and meaningful results can no longer be obtained* One criticism 

is that the end of the rod inevitably generates compressional waves 
in the test material and a correction has to be made* This however 
may be overcome by taking several measurements using different depths 
of immersion* Another difficulty when the oscillating and fixed 

boundaries are too close is the pumping effect which must then be 

allowed for*
3) Torsional osoillations* With these methods the moving 

boundary is an oscillating sphere, disc or cylinder (Sittel et al*,

1954$ Goldberg and SandVik, 1947)« The fixed boundary may be either 
of arbitrary shape, in which case it must be 8infinitely distant* from 

the moving boundary, or of the same shape as the moving boundary*

In the case of one instrument (Oldroyd, Strawbridge and Toms, 1951)* 
both boundaries, which are cylindrical, are movable, and the effect 

of propagating a shear wave from one boundary to the other and
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observing the resultant motion of the second boundary is the means 

of measuring the shear properties of the intervening medium.
It will be noted that the non-spherical systems all suffer from 

end effects but the spurious propagation is all in the form of shear 
waves and is thereby more easily allowed for.

3*4 Design of the transducer

In view of the above considerations it was decided to design an 
apparatus using torsional oscillations with cylindrical boundaries*
The method of eliminating the end effect is discussed in Section 3°6* 

Figure 3 shows a horizontal cross section of the system. The 

central cylinder or core is held stationary while the outer cylinder 

or cup is excited into forced torsional oscillations* The test liquid 

is in the annular gap between the two boundaries and shear waves hre 
propagated radially inwards and are reflected at the inner boundary.
A standing shear wave is thereby set up in the liquid and the loading 
effect at the moving boundary is related to the shear properties of 
the liquid by means of equations derived in Appendix A.

3.4*1 The oscillating cup
As has been previously pointed out, the rigidity of the moving 

boundary must be as great as possible and from this standpoint 

spherical symmetry would be most appropriate. However, in view of 

the difficulty of designing a spherically symmetric electromagnetic
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system, the cylindrical system was finally adopted* The outer 

boundary is in the form of a cup which is held in position by means 
of four spring steel strips clamped at each end as in a cantilever 

(Figure 3*2)o The cup was cast in an epoxy resin using a brass 

mould for the outer surface and a P.T.F.B. plug for the inner surface 
(Figure 3*3)« The epoxy resin was "Araldite1 type IIT 753 and the 
mould was cured at 60°C for 24 hours using 8Araldit©f hardener type 
HT 951• The choice of ttAraldite8 was based on the following 
considerations•

1) The velocity of sound is reasonably high in this material. 

Glass would be more appropriate but the difficulty of machining 
prevented its use.

2) It is translucent. For reasons that will appear later it 

is necessary to measure the height of test liquid in the cup and this 

is obviously facilitated if the cup is translucent.
3) The material is chemically inert. It is desirable that

the range of possible test liquids is not restricted by the possibility 

of chemical reaction with the containing vessel. “Araldite* however 

is slightly soluble in the heavier organic solvents such as 

nitrobenzene.
4) rtAralditen is dimensionally stable.

5) The mechanical damping in this material is quite high 

relative to metals or glasses. This implies that any natural modes 

set up in the cup will tend to be damped and thereby reduce the 

possibility of spurious measurements.
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The necessity to use P.T.F*E* for the central part of the mould 

arises from the high adhesive strength of ,Araldite9/metal surfaces* 

The adhesion to P*T.F*E. howe,ver is substantially less and the 
central plug was extracted without difficulty* After extraction from 

the mould, slots to take the spring steel strips were machined in 

the centre of each lug by means of a 0*005" thick diamond milling 
wheel* Slot8 to take the various coils to be mounted on the cup were 

then machined as indicated in Figure 3*4*
The curvature at the bottom of the cup was incorporated for the 

following reason* In torsional oscillation, shear waves are not only 
propagated inwards radially but also upwards from the bottom of the 
cup* In the absence of curvature, the upward propagating waves 
interfere with the radially propagating waves giving rise to 
unpredictable effects* In order to minimise this, the inner surface 

of the cup and the central core are given a curvature at their lower 

end such that their centres of curvature are at the same point (see 

below)*
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In this way the fixed boundary is at all places normal to the 
incident shear waves and in particular, shear waves in the annulus 

all propagate radially.

3.4*2 The cup coils
Two coils are mounted in a vertical plane at right angles to 

one another on the cup. One is for the purpose of driving and the 
other for measuring the angular displacement rate. The precise 
function of these coils is discussed in Section 3.6. The driving 

or current coil consists of a single loop of 26 s.w.g. copper wire 
bonded with general purpose ’’Araldite' adhesive into the slots that 
run down the side of the cup, and a slot diametrically across the 

bottom. The loop terminates at the top of the cup in two hooks which 

are cadmium plated.

The displacement or voltage coil is 30 turns of 47 s.w.g. 

enamel covered copper wire the ends of which are brought out to the 

bottom of the cup. The coil fills the two other side slots and the 

circumferential slots at top and bottom, and is bonded to the cup 
with "Araldite9 adhesive.

The driving torque T is given by

T - B l r i  3 d
where B is the magnetic flux density, 1 is the length of the coil 

in the magnetic field, r is the radius of the coil and i is the 

current flowing in the coil. While it is desirable to obtain the 
maximum torque for a given current by increasing the number of turns,



the total inertia of the cup would thereby be increased* It was 

therefore decided to use a single turn and pass as much current as 
possible without the wire heating unduly* For this design the 
maximum current is 4 A*

For the voltage coil the e*m*f*e induced by the motion of the 
cup is given by

e 3 B 1 r % 3C2
awhere 0 is the angular displacement rate* The sensitivity of the

" /Instrument will be directly related to the ratio e/d and it is 

important to make this as high as possible. Since the coil does not 
have to pass any current if e is to be measured directly, the wire 
may be as thin as desired consistent with mechanical strength. As 
many turns as would fit into the slots were used. The width of the 
slots is limited so that throughout the motion of the cup, the coils 

may be considered linked with a magnetic field of constant intensity.

3.4*3 The cup support

Four spring steel strips 0.25” wide 0.007w thick and 8" long 

were bonded into the lug slots with "Araldite9 adhesive. These are 
clamped top and bottom in flat jaws and form the means of supporting 
the cup. The torsional stiffness of this system depends on the 

thickness of the strip and any tension that may be induced in the 

strip. The purpose of using strip is to substantially increase the 
stiffness in lateral directions and thereby raise the frequency of 
the corresponding resonant mode above the desired operating range.
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A cross section of the assembled unit including the oscillating 

cup, the clamps and the central core is shown in Figure 3.5 and is 

hereafter referred to as the centre unit.

3.4.4 The electromagnet
A diagram of the electromagnet configuration is shown in 

Figure 3.6. Four pole pieces are energised by means of eight coils 
of 6000 turns of 30 s.w.g. high temperature enamel covered copper 
wire. The yoke was machined from mild steel and the pole posts were 

ground into the conical holes of the top and bottom retaining rings 
for good magnetic contact. A plug of mild steel is disposed centrally 
with respect to the pole pieces and fixed on the centre unit to reduce 

the air gap in the magnetic circuit. This plug also acts as the 

fixed cylindrical boundary for the torsional shearing motion.

It is evident from equations 3*1 and 3*2 that the sensitivity 
of the system i3 greatly improved if a greater flux density can be 

achieved. This may be arranged in two wayss the magnetomotive force 
can be made as high as possible; and the reluctance of the magnetic 
circuit can be made low. The first consideration is limited by the 

space requirements and the heating of the coils while the second is 

mainly determined by the length of the air gap. By virtue of the 

method adopted, the air gap is determined by the annulus 3ise and the 

thickness of the cup together with some clearance. The minimum 

annulus width is mainly limited by its allowable tolerance over 

the height of the cup and round its circumference. An annulus width
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of 0.0815" was finally used with a total air gap of 0.25" per pola®
With the designed electromagnet current of 0.3 A. an estimated flux

2density of 0.1 Wb/m is obtainable in the air gap.

3c4.5 Electrical connections
Connections to the voltage coil are obtained through a screened 

two-pole socket mounted on the bottom of the centre unit. A hole 
drilled centrally upwards from the socket allows the flying leads 
of the voltage coil to be soldered to the socket.

For the current coil, connection is made to the hook ends of the 
coil by means of small pots of mercury mounted on two of the pole 

pieces. With the central unit inserted into the electromagnet., the 

hooks dip into the mercury. The pots are made of ®Tufnol' and 

connection to the mercury is made by a small pin passing through the 

wall of the pot. All metallic pieces in contact with the mercury are 
cadmium plated to prevent erosion®

The connections must be such that they interfere as little as 
possible with the motion of the cup. In the case of the voltage 

coil, the wire is so fine that connection by flying leads causes little 

damping. For the current coil however a mercury connection provides 

a large current carrying capacity together with minimum frictional 

loss.

Temperature control
i f  m ii im w m  i w « r < r :  f t j a a r f f i  a i w r n r  ^ x T r r  - ■ ■■■■ i n

Owing to the marked temperature dependence of the mechanical
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properties of most liquids it is necessary to ensure that the test 

liquid in the annulus is closely defined intemperature. The upper 

part of the centre unit is provided with a jacket through which water 

at the required temperature is pumped. In Figure 3*2 the inlet 

nozzle of this jacket is visible. The water is pumped from a
thermostat bath in which the temperature is maintained stable to

owithin 0.1 C, through the jacket and back to the bath. Thermometers 
at the input and output of the jacket indicate any significant 
temperature drop. The upper part of the centre unit including the 
mild steel plug is thus maintained at the required temperature.

The test liquid is in intimate contact with the mild steel plug 

and tends to assume the same temperature as the plug. However because 
of the outward radial heat flow, a temperature drop across the 
annulus may be expected; but this will be minimised to a certain 

extent by the fact that the surrounding cup wall is a very poor 

thermal conductor. Because of the size of the annulus it is 
impossible to measure the temperature distribution across it, but 
a measure of the thermostatting efficiency is obtained by comparing 
the mean annulus temperature with the thermostat bath temperature.

A thermistor bridge employing one thermistor situated in the annulus 
and one in the thermostat tank recorded a difference in temperature 

of less than 0.05°C at 30°C. The time necessary to achieve stability 

after switching on the pump was two hours.
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3»4*7 Liquid level adjustment

It is shown in Section 3*6*3 that measurements with this system 
involve varying the height of liquid in the annulus during an 
experiment* Above the water jacket (Figure 3*3) in the centre unit 

is a small chamber to contain the test sample and a piston controlled 

by a knurled screw at the top of the apparatus* A diameter hole 
passes from the chamber down to the end of the steel plug and by
moving the piston, liquid may be expelled into the cup or removedI
from it* 30 cc* of test liquid is required to fill the apparatus 

of which 25 oc« is recoverable. The height of liquid in the annulus 
is measured by means of a travelling telescope situated 18 in* 
distant from the apparatus*

3»5 Assembly

Each time a different test liquid is to be measured the 

following procedure is necessary* The centre unit must first be 

withdrawn from the electromagnet and separated into the two halves 

Indicated in Figure 3*2* after loosening the upper set of strip 

clamps* The inside of the oscillating cup can then be cleaned* The 
upper section is in three parts consisting of the steel plug, the 

water jacket and the liquid chamber* These are separated and cleaned , 

followed by filling the chamber with new test liquid and reassembling*
A small extra amount of test liquid is poured into the cup before the 
two halves of the centre unit are bolted together*



The lower set of clamps are then slackened and four circular 

section feeler gauges of diameter equal to the annular thickness are 
inserted from the top of the cup* This ensures that the cup and the 

steel plug are concentric* The height of the cup is adjusted and the 
lower and upper clamps are then tightened* It is then necessary 

to give each of the steel strips a tension in order to ensure the 

absence of buckling in any on9 strip, which would cause severe non- 
linearity in the torque/displacement relationship* Also a slight 
adjustment of the fundamental resonant frequency may be achieved in 
this way* The tensioning is effected by passing a current of 
approximately 12 A* through the steel strips causing heating and 
therefore longitudinal expansion* When thermal equilibrium is 
reached, the upper clamps are momentarily loosened and then re­
tightened after which the current is switched off. A tension develops 

in the strips when they return to room temperature* The process 
is repeated cyclically on each strip several times in order to 

ensure that the four strips have equal tension*

Finally the gauges are removed from the annulus and the centre 

unit can be inserted into the electromagnet assembly.

3*6 Theory of the transducer

3*6*1 The single coil transducer
The torque and e.m.f. equations have already been given 

(equations 3.1 and 3*2). In the case of a transducer with a single



coil the torque is given by

T s K i
9and the e.ra.f. by e = Z ©

where K is a paramter depending on the flux density and the

geometry. We now define a torsional mechanical impedancei
ZT = T/» - E^i/e

In general the coil will have some internal electrical
impedance Z and because of the current i flowing, the potential c
difference ▼ across the coil will be different from e. In fact,

v = e + Z ic
giving s K2 i

1 v - Z i c
:

Rearranging, and defining the total electrical impedance of the coil
as Z ( - v/i ) we have, p

Ze * Zc = *A?  3’3
It will be noted that the electrical and mechanical impedances

are inversely proportional with &2 as a transducer constant. The

disadvantages of the single coil system are twofold: the internal

impedance Z of the coil is a difficult quantity to measure in an
electromagnetic system since it implies that the mechanical
system must be rigidly clamped (Ẑ , - infinity) while electrical 

measurements are being made. This is especially difficult at the 
higher frequencies and moreover it is necessary to obtain a

calibration curve of Z over the complete operating frequency rangec
of the instrument. Another difficulty occurs when the transducer 

is heavily loaded. In this case the difference between Z and Z



57

is very small compared to the value of Z itself, and large©
inaccuracy inevitably arises in the calculation of Z^*

It will be shown that these difficulties are greatly reduced 

in the two—coil transducer*

3*6,2 The two-coil transducer

For the two—coil transducer the torque and current is associated 
with one of the coils while the voltage and displacement rate is 
associated with the other*

We have, T - i^

•a *  * 2  4
which gives g> T = ^1 ^2

6 ™ 2
where the suffioes 1 and 2 refer to the current and voltage coils 

respectively* Now the difference between this and the single coil 

transducer equation is that is available directly, since no 

current need be passed through coil 2* Referring to the ratio ^/^l 
as the transfer impedance we have

2-j 9 /Zm 3° 4
where K - K

12
2

In practice, the transfer impedance does not depend solely on the 

mechanical loading Z^ because some of the e«m,f* induced in coil 2 

arises from mutual electrical coupling between the two ooils i*ec 

mutual inductance and capacitance* Equation 3*4 may be modified to
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allow for this effect to give

Z12 = KX  + M12 3.5
where M ^  is the mutual impedance between coils 1 and 2.

3*6.3 Effect of liquid loading

Equation 3*5 gives the electrical transfer impedance in terms 

of the torsional mechanical impedance of the apparatus and the 
impedance of the liquid sample. We may write

= Zo * zh
where ZQ is some 'base line' mechanical impedance, h is the height of 
liquid in the annulus measured from the top of the cup, and z is the 
torsional impedance per unit height of the annular sample of test
liquid. Hence Z^2 = Y? + 3*6

Z — zh o
Consider two separate measurements of Z^^f 2 ^  and Zg at different 

heights of the test liquid. We may regard Z ^  as a measurement with 

h s 0 and some mechanical impedance ZQ* It is a matter of convention 

that in the present work h - 0 is taken to be the case when the cup 

is full of test liquid, and h increases positively as the level of 

liquid is reduced.

Prom equation 3.6 we have

Zjfc = _ l L  -5- *12 3.7
o

and z_ ~ iC2 M10 3.8
Z - zho

when the change from Z_ to Z„ is solely due to a change in liquid
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height h® It will be noticed that in this way the end effects of

the apparatus may be included in the quantity Z • Equations 3*7 ando
3.8 give A Z fi = zeo - ZE = -if _  _ _ l f

Rearranging, w© obtain
Z Z - eho o

“ _ V i  _ a !  3.9
A z E K2 K2z

Appendix C indicates how it is possible to extract the value of z 
from the knowledge of a set of values ofAZg and h* If graphs of 
h x Re (l/&Zg) and h x Im (1/iZg) are plotted against h where Re and 

Im are real and imaginary parts of a complex argument, the following 
results are obtainedi

tan 0 - Sg/Sj tan (2J3 +  «) = Ig/^

|«| 12 (S1£ - 3.10I | m sa ■y m . ’j.'at nw n  r t i a u n  \»mn  iiti iw/ 2 2 I + I A1 * 2

where ^  a ZQ and z « |z| / -cV 0 The suffices 1 and 2 refer to the 
graphs of real and imaginary parts which are straight lines with slope 

S and intercept I.

3o 6«4 Mechanical impedance and resonance
Although it is shown in equations 3®10 that the effect of the 

8background0 impedance Zq may be eliminated in the calculations it 

nevertheless, by being sufficiently large, reduces the sensitivity of 

the measuremento In other words it is desirable that the changes in 
mechanical impedance caused by changing the height of the liquid in
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the annulus should be as large as possible compared with the mechanical 
Impedance of the apparatus when empty*

The moving system may be characterised by a polar inertia J9 
a torsional stiffness^ and a damping constant/|* The equation of 
motion is then v „

T(t) +
where T(t) is a time varying torque and 0 is the angular displacement.
In the special case of sinusoidal vibration the equation may be

prewritten T - A 0 f -ca> J0
The torsional impedance is therefore given by

* * *  +  = £  J . U

The real part of the impedance is independent of frequency and in 
the present apparatus its effect has been minimised* The imaginary 
part becomes zero at the resonant frequency defined by

= h/\Mopgiving L\Jo - A/J

Rewriting equation 3 » H  and eliminating X  s

za = 7 + ^ o  Wo-ty3°12
A graph of the function (R - l/R) where R shown in Figure 3®7

and it may be seen that the curve is antisymmetric about R - 1 when 

R is on a logarithmic scale* It therefore follows that if the apparatus 

is to be used in the radian frequency range (U^ , the optimum

position for the resonant frequency is given by =• Ju*f the
harmonic mean of the two limits*
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Under these conditions | j has the smallest possible magnitude 

over the given range. In practice for a frequency range of 20o/s - 
1.5Kc/s the optimum resonant frequency would be 173c/s. It was found 

impossible to increase the tension in the steel strips sufficiently 

to achieve this frequency, and ultimately a resonant frequency of 
approximately 60o/s was adopted. However, it was found that the 

measuring system described in Chapter 4 was sufficiently sensitive not 
to be seriously affected by this lower than optimum resonant frequency.

3»7 Calibration

The only calibration constant needing independent determination 

in equations 3*10 is K2. Since depends on the magnetic flux 
density and geometrical configuration only, it is therefore independent
of frequency. using a liquid of known properties (i.e. z is known)

2several values for K may be obtained by simply using different 

frequencies«> The simplest method is to use a Newtonian fluid for 
which the property z is a function of the statio viscosity. The fluid 

actually used was the 350 cS siloxane which is nearly Newtonian up 

to lOKc/s on the basis of the measurements of Barlow et al. (1939)* 
Table 3.1 summarises the measurements taken to estimate the value of 

the calibration constant.

3.7<*1 Units and dimensions

Throughout this work the centimetre-gramroe-second system is used



for all the mechanical properties of the viscoelastic fluids* The 
electrical units of volts, amperes and ohms are used for the 

transducer but no ambiguity arises since the calibration constant 

contains all the necessary conversion factors when the electrical 
and mechanical quantities are always as stated*

Table 3ol
2Determination of calibration constant K

Frequency (c/s) 25 60 160 350
Humber of determinations 5 8 4 4

2Mean value of K 180 172 168 181
Standard deviation 7 4 7 10

2Weighted mean K — 174 
(weights taken in inverse proportion to standard deviation)



CHAPTER 4 
THE irSASURIUO SYSTEM;

64

4»1 Introduction

In Chapter 3 (equation 3*9) it was shown that in order to find 

the impedance per unit height of the liquid in the annulus, it ie 

necessary to measure small changes ^ o f  the transducer transfer 
lmpedanceo Thus the measuring system must be capable of determining 

small changes in relative amplitude and phase of the applied current 

and the resulting e«m*f* Because the observed changes are so small 
especially when operating at frequencies well away from the 

mechanical resonance of the transducer, very stringent requirements 
are placed upon the various amplifiers and phase sensitive devices 
in the measuring system* It may be noted that in the case of the 

e*m*f* induced in the voltage coil, not only are the changes observed 

small on a percentage basis but also in absolute magnitude* As an 
example, at the high frequency end of the range a signal of only 

70jx\f may be obtained* The magnitude and phase of two signals cannot

be compared directly at this level, and high gain, stable, low 
noise amplification is required to raise these quantities to some 
suitable voltage level* Similarly, in the case of phase determination, 

changes of phase of the order of 0*1° need to be measured and so 

stability with respect to phase is as important as gain stability* 

Further, especially when signal levels are low, the measuring syBtem



must be capable of ignoring the effects of noise both in the phase 
as veil as the amplitude measurement*

The principle of measurement is that of measuring incremental 
quantities, Z£, vhenever possible in addition to one absolute 

quantity, Z^, which acts as a magnifying factor*

Zjĵ  is the magnifying factor and Zg/Z^ is measured as I d

is kept constant throughout the experiment and the quantities Z 

in equation 4-1 may then be replaoed by voltages)*
The necessary calculations to obtain the quantity Zg from the 

various readings on the apparatus is shown in Section 4<>5 and the 
present chapter is concerned mainly with the practical details of 
the system*

4o2 The system layout

A block diagram of the system is shown in Figure 4°lo An audio 

frequency oscillator drives a power amplifier which in turn drives the 

transducer in series with a standard one ohm non-inductive resistor* 

This resistor enables a reference signal to be derived which is 

proportional to and in phase with the input current* The voltage 
coil which is isolated from earth is connected at one end to a 

compensator which adds to the coil ©ora*f* a proportion of the

& and being the measured quantities* (Often the driving current
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reference signal* The resultant signal Is then taken with respect 
to earth from the other end of the coll* The purpose of this 
compensation will he explained In Section 4*2*3*

The remainder of the system may be regarded as having two 
channelsi the reference and the Blgnal channel.

4.2.1 The reference channel*
The single ended reference signal obtained from the one ohm 

resistor passes into a precision voltage divider and thereafter 
Into an uncalibrated but highly stable phase shifter. Provision 
is made for the Insertion of a 20x gain amplifier into the reference 
channel when necessary. The signal then passes to the comparator 
and phasemeter for comparison in amplitude and phase with the 

signal channel.

4*2.2 The signal channel
The voltage signal after compensation has no further phase 

shift except that introduced by the high gain amplifier. The 

preamplifier is only used when the signals are below a level of 

approximately 1 mV. The output of the amplifier is applied 

directly to the phase and amplitude comparison units and the 

comparison is carried out at a level of approximately 10 V. Jhe 

output of the 75 ohm attenuator may also be applied to the signal 
channel by means of the switch so that the loop gain and phase 

may be measured.
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4*2*3 Compensation
It was shown in Chapter 3 that the e*m*f* generated in the 

voltage coil is not solely due to the motion of the cup* The 
electrical pickup represented in equation 3*5 *>y the quantity 
in addition to the background mechanical impedance ZQ, while not 
explicitly affecting the measurement, reduces its accuracy if their 

effect is much larger than that due to changing the height of liquid 
in the annulus* The accuracy of the measurement may be much

iimproved by introducing an 'artificial pickup', which partially
cancels the effects of and Z at a reference height of liquid
h s 0 * i.e. 35 — 7- 0 4*2

ZooAgain since is of the same form as its effect is

cancelled out in the measurement and the compensator needs no 
calibration* In practice the compensator is adjusted so that at the 

beginning of the measurement (h~0 ), the output signal from the coil 

and compensator is as small as possible, consistent with a 
satisfactory signal to noise ratio* In cases where this is not 

a limitation the amount of compensation is determined by the 

maximum gain available* The result is that a much larger percentage 

change in the signal voltage is observed as h is Increased than 
would be the case without compensation*

In order to achieve compensation, advantage is taken of the 

fact that the voltage coil on the transducer is isolated from earth 

and the compensation voltage is introduced between earth and one end 

of the coil* The other end of the coil thus provides a compensated



single ended signal. The compensating signal is derived from the 
reference signal by means of a potentiometer with two shunt capacitors 
as shown in Figure 4*1* Magnitude and phase of the compensating 
signal may thus be adjusted.

4*3 Electronic design

4*3*1 Reference signal amplifier
This amplifier is i# the reference channel and provides a fixed 

gain of 20 in situations when the required driving current is small 

(i.e. near the frequency of resonance). The circuit is shown in 

Figure 4*2 and is a conventional 3-stage amplifier with negative 
feedback applied to the cathode of the first Btage. The open loop 
gain is approximately 10^ and the feedback is derived from two 

wire-wound manganin resistors in the cathode circuit of the output 

cathode follower.
The input network is designed to curtail the response above 

20Kc/s and prevent low frequency instability when the input is 

disconnected. The output cathode follower which is direct coupled 

to the previous stage consists of two halves of an SCC 91 strapped 
in parallel.

4*3*2 Phase shifter

Figure 4«3 shows the design of the phase shifter. The important
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consideration here is that variation of phase should have the 
minimum possible effect on the amplitude of the output signal. This 
may be achieved by applying a balanced signal to a series R C 
combination and talcing the output from the R-C junction. As either 

R or C is varied, so the phase of the output signal changes without 
the amplitude changing. In the present design the balanced signal 
is obtained from a triode phase splitter at the input, the two 

outputs of which are a.c. coupled to t7/o similar cathode follower 
circuits. Each cathode follower consists of tv/o halves of an ECC 81 
strapped in parallel and drives each end of the R C network. A 

switch enables the polarity of the network to be reversed thus
Q .allowing a 180 phase shift. The phase may be continuously varied 

from 0 - 180° or 180° - 36O0 by means of the switched capacitors and 
the variable resistor; and the output of the network is applied to 
a cathode follower output stage which negligibly loads the network 
and provides a low output impedance.

A 100 ohm potentiometer in the cathode circuit of the input 

phase splitter allows final trimming of the balancing so that with 
large phase changes negligible amplitude changes are observed. The 

passive components of the phase shift network do not have to be 

calibrated but their stability is improved as much as possible by the 

use of polystyrene capacitors and wire-wound resistors. For amplitude 

stability wire-wound resistors are used throughout the circuit and 

special (manganin) types are used in the phase splitter. The overall 

mid-band gain of the circuit is 0.9 and can change phase from 

0 - 36O down to 20c/so
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4* 3o 3 Power amplifier
A standard 'MuHard 1 design (Figure 4*4) has been modified to 

give a current drive at its output* An output transformer with two 

3 ohm windings connected in parallel is capable of driving approximately 

3*6 A into a 1.5 ohm load at the full power of 20 watts* The low 
frequency limit of operation which is determined mainly by the 

distortion caused in the transformer is 15c/s* The feedback is 
applied in the same way as in the conventional design but it is 
derived from the standard one ohm resistor in the output oircuit 

which provides a single ended voltage signal proportional to the load 
current. The feedback components were calculated so that the lOOmV 
input voltage which gives full power output in the original design 

also gives full power in the present design.
It should be noted that although for most of the experiments 

the amplifier is required to deliver full power, only a fraction of 

this is dissipated in the transducer since the resistive part of 

its impedance is very small. Most of the power is in fact dissipated 

in the one ohm standard resistor and the connecting leads which 

together have a d.c. resistance of 1.5 ohms. The maximum current 

that can therefore be delivered is 3.6 A but is usually limited to 

3 A to ensure linear operation.

4o3q4 Preamplifier
The primary consideration in this circuit (Figure 4*3) is that 

of low noise. This requirement is more easily met because the source
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impedance for the amplifier i.e. the voltage coil and compensatory 
is typically only a few hundred ohms* and the input impedance of the 
amplifier need not he especially high. Gain stability is achieved 
by using a high forward gain and negative feedback; and in order to 

obtain the necessary gain together with low noise, an unusual circuit 
design has been used.

The input stage is a low noise cascode circuit (Valley and 

Wallman, 1943) using two halves of an ECC 83 double triode operating 
under current starvation conditions (Ferguson, 1954)* This stage la 

loaded by the input impedance of a cathode follower of which the 

cathode load is another triode. In this way the gain of the cathode 
follower becomes very nearly unity and the effeotive load of the 
casoode amplifier is of the order of 100 megohms giving an open 
loop gain of 10^o The output of the cathode follower is a.o. 
coupled to the feedback potentiometer consisting of two high stability 
wire-wound resistors; and the feedback signal is added to the input 

Bignal at the grid of the first valve by means of a resistive adder.

The overall gain of the circuit is 200 and the response is flat 
within 1 db over a frequency range of lo/s - lOOKc/s. With the input 

load connected, the equivalent noise input voltage is l<>5yuV and the 
maximum undistorted output is 5 V®

4o3»5 High gain amplifier
■ I *  I IT   III 11

The overriding consideration in this design (Figure 4-6) was to 

achieve a gain of 10^ together with high gain stability. In order
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to obtain the necessary stability all feedback resistors are 

manganin wire-wound types and the forward gains of the various stages 
are so high that the overall gain is almost entirely determined by 

the feedback components* This has the undesirable feature that with 

so much gain and feedbaok9 there is a strong tendenoy to oscillatory 
instability and therefore most of the stages are decoupled at the 
h*t* as well as interstage phase advance networks being incorporated* 

A consequence of this design is that the resultant frequency response 
of the oomplete amplifier is much better than that required 

but the property of gain stability is maintained only over a narrower 
frequency range*

The complete amplifier consists of two cascaded feedback 

amplifiers with overall feedbacks Each amplifier has an open loop
4 3gain of approximately 5 x 10 and 10 with feedback* The cascaded

6combination thus has a gain of 10 and with feedback the oomplete 

amplifier has a gain of 10^» The input stage consists of two triodes 
with a common anode load thus forming an adding circuit* The 

input is applied to one grid the other being a«c* grounded9 while 

the local and overall feedback signals are applied to the cathodes* 
The output of this stage is applied to a pentode of which the anode 

load is the input impedance of a cathode follower9 in much the same 

manner as that described in Section 4»3<>4* This completes the first 

half of the araplifier9 local feedback being derived from a 

potentiometer in the cathode circuit of the cathode follower*

The second half of the amplifier is of a similar design except



that the output cathode follower ie of the two-triode variety as 
in the preamplifier* The output stage of the complete amplifier 
consists of two halves of a double triotfe strapped in parallel, the 

input to the grid being via a filter network* Without the filter 

network, the bandwith extends from 0*05c/s —  lllo/s, with sufficient 

gain stability in the range lOc/s —  5Kc/s. To reduce the noise at 

the output in the working frequency range, the filter network is 

included to ourtail the response at about 50Hc/a. Under these 
conditions the equivalent noise input voltage is 12yuV and the 

maximum output level is 50 V* before the onset of serious dlstortiono
It was not found possible to measure the gain stability of 

this amplifier in isolation, but the gain stability of the complete 
system could be assessed by observing the variations in loop gain 

over a period of time* Since the percentage changes observed 

during a measurement are small the loop gain stability during the 

measuring period is important* This was found to vary by less than 

0o005 db (a ratio of 1*0006tl) over a period of ten minutes after 

allowing half an hour to elapse after switching on*

4*3*6 Comparator
The signals from the two channels are compared in amplitude 

oby applying them 180 out of phase to a comparator consisting , 

simply of a resistive adding network* The preoision voltage divider 
and the phase shifter in the reference channel are adjusted until a 
null is obtained at the output of the comparator* This is detected
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by means of a *Bruel and Kjaer* frequency selective valve voltmeter 

type 2107 having a maximum sensitivity of 100yuV full scale* The 

resistive network is of manganin wire-wound resistors throughout*
During construction the network was trimmed so that a balanced 

signal obtained from a 'Gertsch* inductive ratio box gave a null at 
500c/so It was found necessary to include some small capacitance 
to earth in one of the arms of the network to maintain proper 
balance within 0*1$ over the operating frequency range. Owing 

to the finite output impedances of the phase shifter and the high 

gain amplifier (Figure 4*1 )> provision is made to earth the output 
of the comparator by means of a switch in order that the interaction 

of the two signals is eliminated when taking a phase measurement*

For the same reason the phasemeter is isolated from the circuit 
when making an amplitude comparison*

4*3*7 The phasemeter
It has already been stated (Section 4*1) that small phase

ochanges of the order of 0*1 have to be measured, and the presence 
of noise and hum in the two signals to be compared will result in 
short term fluctuations in the apparent phase giving rise to •jitter9* 
The method used to minimise this effect is to relate the relative 
phase to the nark-space ratio of a square wave, the mean d.c* level 
of which is measured on a potentiometer* The time constant
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associated with the potentiometer may be made as large as required 

in order to average out the effects of jitter* A block diagram of 

the system is shown in Figure 4*7«

The two sine waves voktage signals whose relative phase is to 
measured are fed into comparator circuits whioh emit a negative
step at the time when the sine waves pass through sero with negative
elope* These negative steps, which occur at different times if a 
phase difference exists between the two signals, are differentiated 
at the two inputs of a bistable circuit which is only sensitive to 
negative pulses* The output of the bistable is thus a 
square wave of the same frequency as the input sine waves but 

having a mark-space ratio proportional to the phase difference*
The d*c* component of this square wave is then measured on a 

potentiometer*
The waveforms ocouring in this cirouit are shown in Figure 4*8*

It will be noted that the time at which the comparator produces a
positive step is not important in the measurement, and the form of

the output square wave is determined by only one point in each of 
the input sine waves per cycle* An ambiguity occurs in the output 
waveform when the phase difference is zero, since the bistable is then 
required to respond to two simultaneous input pulses. Also 

inaccuracies arise at very small phase differences because of the 

finite resolution time of the bistable and the phase jitter* To avoid 
these difficulties a monostable sircuit may be switched into one 

of the channels by means of S 2 (Figure 4®7) and the delay in one
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Pig.4.8 Phasemeter Waveforms
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channel varied* Since only changes of phase are being measured, 

the values of delay need not be known exactly* The circuits of the 

various units comprising the phasemeter are shwon In Figure 4*9*

Comparator circuit. Because it is required to seleot a certain 
voltage level on the input sine wave it is important that no distortion 
should aooour wherever there is a«o* coupling, since the result would 
be a shift in d.c* level of the waveform* For this reason a cathode 
follower is required to Isolate the inevitably a*o* coupled preceding 
stages to the following d*c* coupled design* The output of the
cathode follower drives an emitter follower whioh in turn drives a 
common emitter stage* The load of the common emitter stage is a 
combination of resistors and a tunnel diode whioh is designed to 

function in a bistable mode* The output excursion of this combination 

is 300 mV and is sufficient to switch the base of the output transistor 

when suitably biased* Silicon transistors are used to minimise the 
effects of temperature variation oh the bias current of the tunnel 
diode* This current is adjusted by means of the cathode follower 
grid potentiometer so that the circuit triggers at the point where 

the sine wave passes through zero* The diode and zener diode proteot 
the solid state circuitry from excessive voltages that may be applied* 

The stability of the tunnel diode characteristics together with the 

very fast switching time ensures that the circuit has little drift 

or inherent jitter* The trigger level potentiometers of the two 

comparators are adjusted as follows* A common signal is applied to
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both inputs9 the square wave outputs being connected to the trigger- 
and Y-inputs of an oscilloscope* The amplitude of the signal in 
one of the channels is then varied and the trigger level 
potentiometer is adjusted until the amplitude of the waveform does 

not affect the lateral position of the negative step displayed on 
the oscillosoope screen# Under these conditions triggering occurs 

at the point where the sine wave passes through zero, and the 

process is then repeated on the other channel0

Bistable and monostable circuits* These are conventional n p n 

silicon transistor cirouits, in which the collector excursions are 

approximately 8#5 V# Diode triggering is used on the bistable 
circuit and is only sensitive to negative voltage steps whioh appear 

as spikes on the bases of the transistors# The monostable has five 

available delays of 7°5* 15t 75* 150 and 75°yuS selected bj 
switch S 2o

Potentiometer* A common supply of 9 7# is used for all the pulse 
circuits and also the potentiometer# Calibration of the 0° and 

180° positions is carried out by switching S 1 to either of the 

positions A or B (Figure 4°9) and adjusting the appropriate preset 
100 ohm resistor* The effect of the switch is to maintain the 

bistable in one of its states and to compare its output voltage with 

the high or low end of the potentiometer# The potentiometer itself 
is a ten turn 1 K helical type with a linearity of 0#1^» By means



of switch S 3 a range of 180° or 10° may be covered by the ten turns 
of the potentiometer* A galvanometer of maximum sensitivity 1yuA 

full soale is used for the null detection and a relative overall 
precision of 0*01° is attainable in the phase measurement*

4*3*8 Ancillary equipment

Power supplies* All h*t« supplies are stabilised commercial types 

and valve heaters are supplied from heavy duty d*o* supplies run 
from constant voltage transformers* This ensures stability and 
maximum freedom from hum*

The transducer electromagnet is powered by a 'Brandenburg' constant 

current unit operating at 300 mA and approximately 470 V*

Oscillator* A 'Solartron' oscillator type CO 546 is used to supply 

signal to the power amplifier* The frequency calibration on this 
instrument was checked with an electronic counter and found sufficiently 

accurate for direct reading of frequency*

Oscilloscopes* Two oscilloscopes are used for monitoring theenB**r=*Kx>nm ̂■nwnwâ r f hitTiwihh mv • w

various waveforms* They are a °Telequipment' type D 31 general 
purpose oscilloscope and a 'Solartron0 type CD 568 for pulse work*
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4c 4 Measurement procedure

After setting up the various parts of the apparatus as 
previously described, the electromagnet coil current Is switched 

on and adjusted to 300 mA, and the test liquid is raised to its 
highest level in the annulus* Its height hQ is recorded with the 

measuring telescope* With the switch S (Figure 4*1) in position 2, 
thecompensator is adjusted as indicated in Section 4*2*3« The gains 
of the two channels are then arranged so thatrthe output of both 
channels is approximately 10 V. The voltage divider and phase 
shifter in the reference channel are then varied to obtain a null 
on the comparator and the voltage divider setting Pq *8 noted* The 

switch S is then switohed to position 1 and a null is now obtained 

on the comparator by varying the attenuator and phase shifter* >rhe 

attenuator setting H is noted* A phasemeter measurement is now 

made and then repeated after switching S to position 2 again, giving 
the loop phase shift J#. The comparator is then rebalanced using 
the phase shifter only and a phasemeter measurement is then made*

This completes the loop gain and phase measurements*
The liquid level is then reduced to height h^ and another 

phasemeter measurement is taken to give a phase change Q^* The 

amplitudes are now compared using the phaseshifter and voltage 

divider which results in the new setting P^* Another phasemeter 

measurement is then taken before reducing the height of the liquid 

again and repeating the procedure* Typically measurements at five
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different heights are taken«

4*5 Calculation of the measured quantities

The change in transfer Impedance ( Zg)n caused by a change in 
the liquid height from hQ to hQ is given by

( z ) = \" jn = Vo f 1 - Vn ̂ 0-̂  4»2
K  1 \ v„ Ko n o '  o n

where i is the current drive to the transducer and v is the voltage 
from the signal channel* The first part of the measurement gives

\  nM 4»3
*o

and the succeeding measurements give

V° = «*p (J > °n) ~ p 4°4
i v Pn o  o

Propping the suffix n, it follows from equations 4«2f 4*3 and 4°4 

that h — h = h, e"*^ 1 - P cos 0 t  J ? sin © 4*5
A Z E H 1 + P2 - 2 P coe C

where h s h - h n o

Separating equation 4*5 into real and imaginary parts gives

Re h^ ** cos 0 (1 - P cos Q) -fr P ein © sin 0 * h
1 + ?2 - 2 ? cos 9 H

Xm h s P sin Q cos 0 - sin 0 (1 - P cos ©) . h , ^jr% «  4ob
1 + P - 2 P 001 0 .

The quantities on the right hand side of equations 4*6 may then be 
[calculated directly from the experimental measurements and plotted
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graphically against h* The slopes and intercepts of these straight
line graphs are then used to obtain the values of | s| and / g where
z is the torsional impedance per unit height of the cylindrical 
system* It is at this point in the calculation that the calibration

constant of the apparatus Y? is required* Having obtained s9 it is
i *•

then necessary to find the corresponding values of 0 and 0 as

shown in appendix A* First9 quantities mod T and arg T are
calculated s mod Y - a f P » arg Y - - / z

8

where a is & constant, f is the measuring frequency and f is the
density of the test liquid* The table in appendix B may then be
used with suitable interpolation to obtain values for the quantities

fl nHOD and ARO* These are related to G and G by

o = s / o , 2 * 0 " 2 s b ? i 2 / G . tan-10" - AHO
MOD 0*""

where b is a constant^ The av&lues for G 9 and G" at the particular

frequency f can be thus obtained*
The advantage of this graphical technique is that some estimate

of the errors in the experiment may be determined from the scatter

of points on the curve* Also, any spurious effects would be

manifest as non-linearity of the curve*

4*6 Typical calculation
^ is > ! r r/ a 6s>«a*^.tjgwa tra5 rnW ,i i i i^Ti — — —  — — a  a t— — ■ ■ ■  •

Test liquids Silicone fluid MS 200/30K

Temperature s 30°C
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Density, ̂  s 0.967 gms/cco
Frequency, fi 60 c/s.
M « -» 60.1 db == 9*86 x 10~4 (if - 0.7791c

i h^ cm0 h cau pi •i P 8C in (a 2̂ . )
0 II083O 0 .3420 0 1 0 - -

1 11.172 O0658 .3764 .0229 1.1006 .0229 -3.345 + 5.510

2 10*514 1.316 .4210 .0349 1.2310 .0578 -2.620 +4.910

3 9o856 1*974 .4760 .0581 1.3977 .1159 -1.840 +4.387
4. 9ol98 2.632 .5547 .0880 1.6219 .2039 -1.104 +3.800

5 8o540 3*290 .6580 .1376 1.9240 .3415 -0.390 +3.193

The figures in the last two columns calculated from equation 4«6 are 
shown plotted against h in Figure 4*10° The slopes and intercepts 
found arat S1 - 1.128 . 103 s l'Ij = -4.O87 . 103 cm/-a

S2 - -0.878 . 103 -i-L'1 I : 6.081 . 103 cm/jx

From equations C.2 and C.3*

tan (2a> + <*) - 6.081 « -1o489> giving (2ft -f <*) = -0.979°
r -4*087

Therefore ot a arg Y = 0«337C
From equation C«4,

1*1 - g2(lol282 + 0.8782) . 103 a 277.3 K2

/ 4.0872 + 6.0812

Inserting 174 for K gives |s| — 48*200 dyne—seca.
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Fran equation A*13*
mod Y - 680c4 .0*967 . 60 s 0.821 

48200

Consulting the table in Section B.2 and interpolating as described 

in Section B.l gives HOD - 6.55 ABO - 1.21

From equations A.14 are then obtainedt

101 - 140«1 , 0.967 . 602 » 74.6 . 103 dynes/otn2
6.55

and / C « ARC a 1.21
1 2Therefore C fl * |Cl oos / Q & 26.2 • 10 djmes/om 

0" 3 |G| sin J_0 « 70,0 . 103 dyneo/cm2

All imitations of the. apparatus

The main difficulty associated with the system described in 

Chapters 3 and 4 is the amount of labour required in calculating 

the liquid properties. While much of it could be dealt with by a 

computer, it is desirable to retain the graphical method described 

in Section 4*5 so that a check on the consistency of the measurement 

is available. An added consequence of this difficulty is the 

impossibility of relating experimental errors to resulting errors 
in the complex shear modulus s recourse has to be made to a study of 
the repeatability of results.

Because of the overall design of the mechanical system and the 
temperature control method in particularf measurements cannot be 

made at temperatures greatly different from the ambient temperature.
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At low temperatures the heat dissipated in the electromagnet coils 
becomes important and the bulk of the apparatus is such that total 
immersion in a low temperature bath is impracticable* At high 

temperatures the mechanical properties of the •Araldite* cup would 

deteriorate and moreover the performance of the spring steel strips 
would be impaired.

The limitations on frequency range are determined by the 

electronic measuring system at low frequencies and the mechanical 
system at high frequencies. At low frequencies where the forward 
gain of the high gain amplifier becomes reduced, the gain stability 
suffers and the precision of the measuring system is thereby 
reduced. Also, with the present design of phasemeter, phase 
measurements are hampered by the lack of a sufficiently long 
time constant in the measuring potentiometer circuit. Although 

this could be improved by increasing the time constant, the 
measuring time required would be proportionately increased.

At frequencies above 1.5 Kc/s resonances in the oscillating 

cup were observed and this effect results in the graphs of h/^\ Zg 

vs. h deviating appreciably from straight lines. By using a vibration 

meter probe it was found that the mode of resonance in the cup was 

radial decreasing in amplitude in a downwards direction. By using a 

material with greater stiffness i.e. glass, these modes could 

reasonably be expected to occur at higher frequencies.



CHAPTER 5 
EXPERIMENTAL RESULTS

3*1 Description of the siloxanes

Six polydimethyl siloxanes have been supplied by Midland 

Silicones Ltdo of which the viscoelastic properties of four have been 
determined by the author. The static properties of all six however 
have been included since they are relevant to the discussion in 

Chapter 6 in which reference is made to viscoelastic measurements 
taken at higher frequencies. The siloxane liquids are commercial 
samples of the MS 200 series with viscosity grades 100* 350, 12500, 

30000 and 100000 oS (centistokes)* The viscosity grade signifies the 

nominal kinematic viscosity at 25°C which is within 5% of the actual 

values.
The chemical structure of the fluids is of the form shown below

where the bracket suffix denotes n monomer units. The polymerisation 

process only determines an average cha&n length and the final material 

is not fractionated except for the removal of the very low molecular 

weight components. The polymer is consequently polydlsperse and the 

molecular weight distribution is broad.



5*2 Density
I fc w p w n r iiu w B W M i w i f ' i ■■ f c j j f j . f t j

The densities of the MS 200 fluids have been measured using a 

25 cc. volumetric flask to an accuracy of 0,25% at a temperature of 

30°C j;0.1C *C* The results are shown in Table 5»1*

Densities at 30°C of the siloxanes

Viscosity grade (cS) 100 350 1000 12500 30000 100000

Density (gm/cc) Oe959 0*964 0*965 0*968 0*967 0*966

5*3 Static viscosity
flu-qwKt wK«ivrm>i',jijww> .mb—rriri it

The viscosities of the six fluids were measured at 30°C ^  0*1°C 

using suspended level viscometers immersed in a constant temperature 
bath* Flow times were measured to one part in 200 or better and 
three results were averaged to determine the viscosity using the 

equation
Viscosity (poise) - c ̂  t 

where c is a calibration constant*the density and t is the flow 

time* The values of the viscosity are estimated to be accurate to 

within 0*5$* Table 5*2 shows the values obtained*
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Table 5«2 

Viscosities at 30°C of the siloxanes

Viscosity grade (oS) 100 350 1000 12500 30000 100000

Viscosity (poise) 0*893 3ol5 8*96 108*5 287 944

5*4 Dynamic measurements

Measurements of the real and imaginary parts of the shear 

modulus were taken on four of the siloxanesusing the apparatus 

described in Chapters 3 and 4® A single temperature of 30°C 
controlled within 0.1°C was used and measurements were taken in the 
frequency range 20 - 1300 c/s© Chi the basis of repeatability, it 
was found that the estimated accuracy decreased at the higher 
frequencies and also at low frequencies due to the low absolute 

magnitude of 6 in some cases© Table 5*3 shows the estimated accuracies 
of the measurements at the low and high frequency ends of the range 
(which are the worst cases) for two of the fluids©

Table 5»3 
Estimated accuracy of measurements 

Viscosity grade (cS) at L*F. at H©F©

1000 ±  10$ &  8$

100000 ± 3 $  ±  10$
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It should be noted that the accuracy is improved at frequencies 

between the two limits*

The results shown in Table 5*4 were those obtained for the 
1000, 12500, 30000 and 100000 cS viscosity grade siloxanes©

Table 5*4
Dynamic moduli of the siloxanes

Frequency (o/s) G^xlG  ̂^ G"xlO J' to. (poise) 
^  __  (dynes/cm ) (dynes/cm ) ____

1000cS

3000QoS

lOOOOOcS

25 - 1.3 8.3
40 - 2.4 9.53
80 0*1 4.6 9.15

160 0*5 9.2 9.2
320 1*2 17-5 8*72
740 3*4 42 9-03

1200 8*2 60 7° 96

25 1*1 16 102
40 2*35 26 103
80 7o9 58 115
160 10*9 90 90
320 46 150 74-5
640 118 240 59.5
1300 205 370 45*3

25 6,8 39 248
60 26*2 70 246
80 29*5 121 240
160 72 170 160
350 155 220 100
800 300 260 51.8
1200 330 315 41*8

21 27 95 720
40 55 115 457
80 100 170 338
160 210 200 200
320 275 250 124
700 420 310 70*5

1000 500 275 43o8



The results of Table 5®4 are shown plotted In Figures 5*1» 5*2 and 
5*3 on a log-log scale. The continuous lines in these graphs are 
not the best smooth curves fitting the points but are predicted on 
the basis of a theory discussed in Chapter 6.
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CHAPTER 6 

UTBRPRBTATIOH OF EXPBRXMEHTAL RESULTS

6.1 Introduction x

This chapter is concerned with relating the measured 

viscoelastic properties of the siloxanes to theory which uses 
molecular structure as a starting point. Several theories have 

been recently put forward to account for the properties of long 

chain polymers in dilute solution. These are collectively known 
as the normal coordinate theories of viscoelasticity since the modes 
of motion of the postulated models are solved by means of an 
appropriate coordinate transformation.

The postulated model of the molecule is that of a chain of 

freely jointed segments with beads at each joint which hydro- 

dynamically interact with the surrounding solvent. Each of the M 
segments of the molecule, which consists of q monomer units, is 

considered just long enough so that the components of the 

segmental end-to-end vector are Gaussian distributed in space. The 

effects of thermal disturbance appear as if the segments have
2 2spring constants of magnitude 3kT/cr' where o' is the mean squared 

magnitude of the segmental end-to-end vector, T is the absolute 

temperature and k is Boltzmann's constant.
The theories diverge in the consideration of the inter­

action between a molecule and the surrounding solvent. Rouse (1953)
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assumes no Interaction i.e* the velocity profile of the fluid is

not affected by the presence of a polymer molecule9 (free draining 

case)* Zimra (1956) assumes interaction of a particular form which 

allows solution of the equations in two special oases, one of which 
corresponds to the results of Bouse, the other to what is termed the 
non free draining case* jlore recently, Tschoegl(1963) has 

calculated results for the general Zimm theory which predict 
behaviour im which the free draining and non free draining situations 

are limiting cases.
In applying any of these theories to the siloxanes allowance 

must be made for the fact that the polymer is undiluted and also 
that the molecular weight is distributed, i.e. not monodisperse 
as assumed in the theory. The discussion of this chapter is based 

on the arguments presented by Barlow, Harrison and Lamb (1964) 
which refer to the Rouse theory*, but contains a more critical 
assessment of the theoretical limitations.

6*2 The Bouse theory and undiluted polymers

For a dilute solution of monodisperse polymer the Rouse theory

predicts a number B of discrete relaxation processes all having a
high frequency modulus given by

G = n k T 60Iccn
thwhere p is the p process and n is the number of polymer molecules 

per cubic centimetre0 The relaxation time of eaoh process which
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thle related to the p mode of motion of the polymer molecule is

2 2given by T p  s q a xp______   6*2

24 ra ■i-2 '
2where a is the mean squared end to end distance of a monomer unito 

xo is the monomerio friction coefficient and corresponds to the 
viscous resistance experienced by the beads« It may be observed 

that equations 6.1 and 6.2 satisfy the two postulates of the time 
temperature superposition principle described in Chapter 2* Since 

n and k are evidently independent of temperature it follows that 

the high frequency modulus is proportional to the absolute temperature
for all relaxation processes« The only quantities that could vary

2with temperature in equation 6.2 are a and x q. Since these are 
both properties of a monomer unit th£lr temperature dependence cannot 
be affected by the mode number p P It is therefore apparent that 

all the relaxation times T p have a similar temperature dependence*
If the number of segments N in the molecule is sufficiently large so 
that B >?1 and only lower order modes are considered so that H >> pir 

then equation 6*2 may be written

which may be considered a sufficiently accurate representation if 

{ the number of modes included is such that p ^ B/&* Substituting 

equations 6*1 and 6o3 into equation 2ol2 we obtain for the complex 
modulus as a function of frequency
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A  4 m2 2 2S(jto) - nk'T \  j w  q a ____________ , . 6.4
fiir2!2®  t jw^q2®2! -p» I °

The complex modulus 0 in equation 6*4 is taken to be that due to 

the polymer contribution and that due to the solvent also* The 

solvent contributes an amount >>tj0 where ijg Is the solvent viscosity 
with which there is no relaxation associated* Perry, Landel and 

Williams (1953) suggest that in the case of undiluted polymers 
equation 6*4 may be expected to apply withtj8 z 0. This may be 
imagined as being equivalent to the solvent and solution viscosity 
being the same* We therefore have for the modulus of an undiluted

polymer A  v«r2 2 2
G(;H . nkT \  J " * a xo 6.5

Z_j 6 2p2kT * H2q2a2*p~ i°
The steady flow viscosity is consequently given by

nkTJT2 2 2 
6ir2kT Pf-l 2If 9 is sufficiently large the summation tends to the value If /6 

(Peirce, 1950» P°99)* Hence we have
s 1 n9^q2a2x 6*6

I t ?  03?
Combining equations 6.6 and 6*3 we obtain

ss _ 6 r i  6o7
^ 2 2-rr p^okT

Hence the values of are given in terms of quantities that are either

known or capable of experimental determination. The corresponding 

result for the complex modulus is



l-jVp^nkT + 6jwr\P* 1
which ooacerD8 monodisperse undiluted polymers*

G( j“>) 3 S^nkT — — -- 6,8

6o3 Generalisation to polydisperse polymerB

We first observe that for a polydisperse system the number of 

molecules per cc» n9 for a given species of molecular weight IT can
be expressed in terms of the weight fraction w^ of the species by

kH
n s V H 6.9

i
as a consequence of the definitions* Since all species are divided

thinto the same number 6f segments If it follows that for the i 
species the number of monomer units per segment is given by

q, — 2jL 6*10
mS

where m is the 9molecular weight9 of a monomer unit* We can therefore 

write for the contribution to the static viscosity of the i ^ 1 

species from equation 6*6
2a1 a x o V l f R

i s — rk m

The static viscosity of the polydisperse liquid is therefore given by
2

O' - x  s 1 6.11

where 38£,wi^i anc* *s wei^it average molecular weight, From
thequation 6o3 we may write for the relaxation times of the i species 

using equation 6® 10 s



Equations 6,11 and 6*12 may be combined to obtain
H26n Mi 1_  . ■? i 6.13

T P1 -

T  f RT Mw p‘

It will be observed that equations 6*11 and 6*13 have been derived
2on the assumption that the quantity a x q is independent of chain

length* This will only be the case if the molecular weights of all

the species in the polydisperse system are high enough for the
defined Gaussian distribution to obtain* The high frequency modulus 

thof the i species is given by

= fRT 6.14 
i

which is obtained from equations 6.9 and 6,1* The overall complex 

shear modulus is therefore

O(Jvu) • \ f R?gi jw61Mi___________  6.15
V  + ^ 6!M1

s 6iW  /
p tcm^p + ojwt]

from equations 6*13 and 2*12*

The treatment so far concerns a discrete molecular weight 

distribution* For a continuous distribution resulting from a 

condensation polymerisation process Bueche (1962) gives
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9(H)dlf is the weight fraction of molecules with molecular weights 
between M and M +• dM, and yu - where is the number average
molecular weight« It follows from equation 6.16 that n 2 

For the discrete system yu s and substituting this into
equation 6*15 and putting s 2 Mn we obtain

S f > m y y 6.17
4 7  p t

where is defined as s ^ 6„l8
^  2/> RT

In the oase of a continuous distribution the summation with 

respect to 1 in equation 6,17 becomes an integral; and using equation 
60l6 we obtain

o(3«*») m f  Rrr <y
o° g
' V l  ♦'/* d .  6.1J
2 2 P t T

6»4 Comparison with experiment

In order to compare this theoretical result with the experimental 

measurements a knowledge of the molecul ar weights of the slloxanes 

is required, Barlow et alo (19^4) have collected such information 

from the literature and this is presented in Table 6*1 in a kinematic 

viscosity/number average molecular weight form assuming the 

distribution defined above©
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Table 6.1

Viscosity grade (cS) K (e*oe)
100 6>] 1 10^ 7.09 x 10"8

350 1.58x 104 6.25 * 10"7

1000 2.1 x 104 -62.36 x 10
12500 4.0 x 104 5.43 x loT5
30000 5.0 x 104 1.80 X 10"4

100000 6.8 x IQ4 8.00 x 10~4

Figures 6*1 and 6C2 show the real and imaginary parts of the shear 
modulus plotted against frequency* Both these quantities are 

normalised in the manner indioated in the graph to effect comparison 
between the experimental results and the theory. The coninuous 
continuous line corresponding to the theoretical predictions was 

obtained from equation 6.19 by integrating and summing p up to a 

value of 175 (i°e<> B a 175)* Agreement between theory and experiment 
is good especially at the lower frequencies. Hot only does the 
normalising process bring the experimental results of the different

siloxanes on to the same smooth curve but this smooth curve also 

corresponds very well with that predicted by equation 6.19*

6 q4»1 The plateau region

The divergence from theory ol the experimental results at high 

frequencies appears more significant when the higher frequency 

normalised experimental results of Harrison (1964) (continuous linss)
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are superimposed as shown in Figures 6.3 and 6.4® The existence of

a plateau region is clearly defined and extends over a broader

band of normalised frequency the higher the molecular weight of the

siloxane* In Figure 6.5 is shown kinematic viscosity/molocular

weight data for the siloxanee obtained from the literature by

barlow et al. (19^4)• The low viscosity results are of the number
in

average molecular weights while /the higher viscosity siloxanes the

weight average molecular weights have been determined but they are

all plotted on a number average basis assuming the most probable

distribution 16. that M s 2 H o More will be said about thew n
significance of these results in Section 6.5 but at present it is 

the abrupt discontinuity that is of interest. Below the discontinuity,

the slope of the curve on log-log axes is 1.4* and above 3«9t the
—  4break point occurring at —  2 x 10 corresponding to a kinematic 

viscosity of 3^0 cS. Bueche (1952) attributes this effect to 

entanglements occurring in the long polymeric chains at high 

molecular weights. This effect is not allowed for in the above 

theory and it may be noted that in Figures 6.3 and 6,4 the 100 cS 

and 350 cS fluids agree with the theory quite well over the given 

range whereas all the siloxanes of higher molecular weight diverge 

appreciably. It is therefore assumed that the plateau region may 

be explained in terms of entanglements and this is enlarged upon 

later.
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Pig.6.5 Kinematic Viscosity / 
Molecular Weight Relationship
on a Logarithmic Scale

7

o number av. M.W 
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6o5 Viscosity - molecular weight relationship

11?

As has been previously stated, at low molecular weights the 
slope of the graph in Figure 6.5 of the kinematic viscosity/molecular

It would at firBt appear that this in itself is already a contradiction 

of the theory since equation 6*11 predicts a linear relationship 
between viscosity and molecular weight. Figure 6.6 shows the low 
molecular weight results of Barry (1946) obtained from chemical end 
group analysis plotted on a linear scale. The theory predicts a 
straight line through the origin. At very low molecular weights 

the theory would not be expected to account for the experimental 
results because most of the molecules are too short for the segment 

vectors to obey a spatial Gaussian distribution. Unfortunately at 
the higher molecular weights, entanglement occurs and it is 
therefore difficult to fit a straight line through the origin to aqy 
part of the data. However it may be shown that in the absenoe of 
certain approximations that have been made, a part of the non linear 
curve may be explained.

In deriving equation 6.11 for the static viscosity it has been 
assumed that the relative magnitudes of p and H are such that equation

6.2 may be reduced to an algebraic form. In the absence of this 

assumption we have

weight relationship is 1.4 corresponding to a power law V s k.Hn

6.20
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With the appropriate approximations the quantity in curly brackets 

?(&) approaches the value 2/3 = 0.667* Wow the theory requires that
the number of segments JT that may be used is such that each segment
is Just long enough to obey the defined Gaussian probability 
function. It follows that in the case of low moleoular weights S 
must be made too small for the simplifications to be valid and the 
exact formula of equation 6.20 must be used. The formula 6.20 imposes 
an implied lower limit on S sinoe the smaller N is, the laiger the 

contribution to the summation of the term for which p s N. Where 
this is the case a substantial contribution of processes excluded by 

the theory augments the static viscosity and the accuracy is 
therefore poor. This effect is illustrated below.

N 4 6 8 11 oo

f(w) loOO 0.895 0.832 0.746 0.667

final term (psfl) 6.2# 3.4% 1.9% 0*9% 0%

The table also clearly illustrates that even in cases where 
the contribution of the final term is negligible the value of f(H) 

is substantially different from 2/3.

We now assume a segment length of qm*n monomer units just long 

enough for the theory to apply, and therefore choose N so that 

B r where Z is the number of monomer units in a molecule

i.e. the degree of polymerisation. For the purposes of calculating 

Z it is assumed that the points on the graph of Figure 6.6 would be 
in much the same position as if the measured materials were
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monodisperse. We then have Z s. Mq/74<> We may rewrite equation 6* 20

as 2L * * * k.f(H). Mn

f * k f(»n/?4 qmia). Mn 6.21
IJy choosing an appropriate pair of values for k and qm^n (which
gives rise to a different value of S for each value of II ) then
continuous curve in Figure 6.6 is obtained which follows the

experimental points quite well* The curve shown uses a value for

qmin tiie Va*ue ^ corresponds to a monomeric friction
—9coefficient of z - 8*88 z 10 • The figure of 12 monomer unitso

per segment agrees well with the figure of 10 obtained by Barlow
et al* (19^4) on the basis of the deviation from theory In high
frequency viscoelastic measurements* The broken line in Figure 606
represents the results predicted by the approximate formula using 

***9 28088 z 10 dynes/cm for the monomeric friction coefficientf and 
by definition, the approximate and exact curves coalesce at higher 

molecular weights* It appears that siloxanes with kinematic visocsitles 

above 350 cS may be predicted by means of the approximate formulae 

but Barlow et alo (1964) have also used the approximate formula to 

explain the behaviour of the 100 cS siloxane using a different value 

of monomeric friction coefficient

There is no theoretical justification for this procedure since 

the chain length is adequately long for the premises of the theory 

to hold and consequently the monomeric friction coefficient remains 
at the same valueo A corollary to this argument in connection with 

the behaviour of the 100 cS fluid is given in Section 6»Je The other
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liquids investigated have molecular weights high enough for the 
approximation to be successfully used.

606 Modification of the theory for entanglements

6.601 The nature of entanglements

The sharp change in the kinematic visocsity/molecular weight 

curve of Figure 6*5 is attributed by Bueche (1952) to entanglements 
occurring in uncross-linked polymers. Although the exact 

nature of this molecular coupling is not fully understood, Hark and 

Tobolsky (1950, Chapter 10) suggest that even in uncross linked 

polymers transient networks may be formed by the adherence of 
Individual molecules at widely separated points along the chain*
These links break and reform at a rate dependent on the temperature 
and have the effect of substantially increasing the Btatic viscosity*
If is the molecular weight between entanglements Ferry (1961, p*190) 
suggests that for molecular weights such that M>  2 there are on 

average two entanglement points per molecule and by analogy with 

the theory of cross linking in gels (Flory, 1953t Chapter 9) the 
network may be considered to extend throughout the system* Because 

the formation of these links is temporary and not permanent as in 

the case of cross linking the material does not possess a low 

frequency limiting rigidity i.e. the material is still fluid although 

with an increased viscosity which may be regarded as a consequence 

of the disentanglement process*
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Figures 6.1 and 6.2 show that even in the case of entangled 

liquids (the 1000, 30000 and 100000 cS siloxanes) the theory 
successfully predicts the low frequency behaviour. The low 
frequency disturbance causes cooperative motion of portions of the 

chain on average much longer than the distance between entanglement 
points, and since this effect manifests itself in the static viscosity 
used in equation 6.16, the theory may possibly be expected to apply. 
Since the theory fits well for entangled liquids at low frequencies 

it follow8 that the Rouse model may be used at low frequencies subject 
to an enhanced monomeric friction coefficient, x, which allows for 
the increased friction due to entanglements.

6.6.2 Formulation
Feriy, Landel and Williams (1955) suggest that for a monodisperse

polymer the relaxation times predicted by the theory should be

divided into two blocks. The blook of longer times corresponds to
cooperative modes of motion involving chain lengths longer than the

distance between entanglement points and is governed by the magnified

monomeric friction coefficient x (« Q»x ) where x is the monomeric' o o
friction coefficient in the absence of entanglement and Q is a 

magnification factor. The block of shorter times involving chain 

lengths shorter than 2 are determined by xq

From the viscosity/molecular weight curve of Figure 6.5 it 
may be seen that for the siloxanes the critical molecular weight at 

which entanglements become important is (I s 1»6 i 10^ .
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The nearest Integer to U /(M ) represents the number average ofn n c
entanglement points per molecule for a silozane of number average

—  thmolecular weight 11 • The p mode, where p is the highestn e e
integer ^ ^n/(*n)c» represents the shortest relaxation time in the
block of longer times to be affected by the presence of entanglements.
Modes of motion corresponding to P > P fl are unaffected by the

entanglement points and are governed by the monomeric friction
coefficient x ♦ o

We therefore have for equation 6.18

7' Z 2 * s for p ^ pp ‘ p "o' 2 a
P p ir f RT

or ^  - ̂ 1 m .I for p > p_ 6o22
p P'rr f RT Q

The value of Q, the monomeric friction coefficient magnification 
factor, may be found from the graph of Figure 6.5* accordance 
with the considerations of Section 6.3 It may be assumed that in 
the absence of entanglements the kinematic viscosity of the higher 
molecular weight siloxanes may be deduced by extrapolating from the 

discontinuity at unit slope on the log-log plot. This corresponds 

to a linear relation which is predicted by the theory (equation 60ll) 

at high molecular weights. For a given number average molecular 
weight, Mq, a kinematic viscosity $ is obtained by means of this 

extrapolation which is lower than the experimental value ^ o The 

value of the magnification factor Q  is therefore given by Q s v* 
which may be used in the calculation of equation 6o22.

Harrison (1964) has calculated the results for the 100000 cS
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—  . n Asiloxane for which* M s 6*o x 10n
Pe = 608 x 104 21 4 —

1.6 x 104

Q = V/vx « 66
A graph of the real and imaginary parts of the rigidity modulus 

versus frequency is shown in Figure 6*7. The broken line correspond­
ing to the theory can bee seen to agree quite well with the 
experimental results. The upper frequency experimental results have 

been obtained by Barlow et alo (1964) an<* the lower frequency results 
by the author* The dotted curve represents interpolation between 
the two sets of results*

6*7 Discussion
IIHIII1TIIIWI— ■ I I ■ HT> II 

It is seen from Figure 6*7 that the plateau region is 

successfully predicted in spite of certain gross assumptions* It
is improbable that the discontinuity assigned to the spectrum at 

sz 'Tpd is realistic especially in view of the fact that the chain 
lengths are polydisperse* The theory implies the absence of any 

Relaxation processes in th© range TpC — > t iQ view of the
statistical nature of the entanglement process this can only be 

regarded as an approximation * However the theoretical and 

experimental curves suggest that this approximation is valid* The
calculation has not been performed on the siloxanes of lower 

molecular weight, since for a reasonable accuracy, the number of
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relaxation mechanisms in the first block for which p < p must©
contribute to the majority of the static viscosity. If this were 

not so, the value of the static viscosity in equations 6.22 would 
have to be reduced by an amount depending on the contribution from 

the second block of relaxation times. Since this quantity is 
unknown the calculation is necessarily limited to the higher 
molecular weight slloxanes.

For the unentangled liquids at low frequencies the experimental 
results are in good agreement with theory. Harrison (1964) has 
used plots similar to those in Figures 6.3 and 6.4 to extrapolate 
his high frequency results to low frequencies, on the basis that 
the curves for all the siloxanes appear to converge to a single 
curve. The results of these extrapolations are shown as continuous 

lines on the graphs in Figures 5*1* 5»2 and 5*3* It appears that 

the experimental results satisfactorily confirm the validity of this 

procedure. A difficulty however arises when considering the 100 cS 
fluid. From Figure 6.6 it can be seen that the chain length is too 
short for the approximations of the theory to be valid, but the 
experimental results nevertheless support the approximate theory 

(Figures 6.1 and 6.2}. This may be explained by observing that the 
oalculations of the relaxation times (equation 6.18) are all 

ultimately referred to the static visoosity. This in itself ensures 

the correct asymptotic behaviour at low frequencies though some 

deviation at higher frequencies might be expected. Barlow et al.

(1964) have observed such a deviation though they attribute it to 

an appreciable contribution of processes excluded by the Rouse theory.



12?

While this is inevitably true at even higher frequencies, the theory 

might agree over a more extended range with experiment if the 

numerical approximations of Section 6.2 were not used.
Further work is therefore required to resolve this difficulty.

The foregoing discussion on the effect of certain approximations needs 
to be extended to embrace polydisperse systems; and a more systematic 
approach to the relative contributions of the various species within 
a polydisperse system at any given frequency is required to 

validate the simplifying assumptions made. Further low frequency 
measurements on low molecular weight fluids or higher frequency 

measurements on higher molecular weight fluids would also assist 
in this respect. Unfortunately it is not possible to obtain an 
approach to a monodisperse polydimethyl siloxane and consequently 

other polymers might be more suitable for this purpose e.g. 

polystyrene in solution.
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CHAPTER 7

A THEORY OP STEADY SHEAR PLOW FOB VISCOELASTIC LIQUIDS

7 o1 Introduct ion

The similarity between the apparent statie viscosity/shear 

rate and dynamic viscosity/angular frequency relationships in many 

materials has led several authors (e*g» Philipoff* 1934) to suppose 
that a correlation necessarily exists between the two« At the heart 

of the problem is the determination of a sufficiently accurate 
equation of state and then to apply this to the coordinate system 
(the laboratory frame) pertinent to the experimental effect being 
examinedo Oldroyd (1930) has suggested a procedure for formulating 
general equations of state on the basis that they must have the 

appropriate invariance properties under a transformation and that they 

fit the results of limited experiments already performed0 It is 

shown that unfortunately when transformed to the laboratory frame 

an infinite number of such equations exist and the appropriate one 

may only be deduced as more experimental evidence becomes available.

Also this author (Oldroyd, 195®) has concentrated attention 
on the simplest possible equations of state which predict non- 
Newtonian steady shear behaviour and the ffeissenberg (1947) climbing 

effecto While this approach is interesting from a theoretical point 

of view it is doubtful whether a real fluid can be characterised 
by the three parameters of the Oldroyd model« These are a static
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viscosity, a retardation and a relaxation time* More recently 

Oldroyd (1961) has developed a more general equation of state 
involving eight parameters and has investigated the properties of 
fluids in three special cases when five of the parameters may he 

eliminatedo Dyson (19&5) however has shown that on the basis of 
available experimental evidence five of Oldroyd*s parameters may be 
eliminated but they do not correspond to any one of the special 
cases.

Rosooe (1964) uses a generalised form of Oldroyd*s 

constitutive equation having n retardation and n relaxation times 
together with two additional parameters. A simple consequence of 
these derivations is that the functions t| s(*K) and^^(to) are 

equivalent where is the steady shearing viscosity at shear rate K 
and is the dynamic viscosity at angular frequency^ . <x is a 
constant for a given material and shows that the apparent viscosit ies 
in the two experiments are equivalent if u)is assumed equivalent 
to times the shear rate. Also a formal equivalence is 

established between the dynamic modulus and the normal stresses in 
steady shear which give rise to the Welssenberg effecto Onogi,

Hamana and Hirai (195®) obtain good agreement with this result for 
concentrated solutions of polyvinyl alcohol with oC^l while for 

mineral oils IJyson finds (X^IO^ at atmospheric pressure.

Other theories in this connection are those of de Witt (1955) 
who uses a two parameter constitutive equation, and Pao (1957) whose 

formulation allows of a discrete spectrum of relaxation times. The
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latter theory however does not predict the appearance of normal 

stresses in steady shear. Boyd (195®) has investigated the shear 

rate dependence and dynamic properties of polymer melts and compared 
them with the Pao theory. Although the agreement is claimed to be 

good the method of oreep recovery which is used to determine the 

relaxation spectrum is very inaccurate for the purpose (see Section 

2.4) and consequently the results cannot be regarded as conclusive 

especially as no normal stress measurements were made. The correlation 
between tj andodCwas first observed by Padden and de Witt (1954) for 
a solution of polyisobutylene in the case of ̂  and and the 

equivalence between the normal stress differences and the dynamic 
modulus for uJs was shown by Markovitz and Williamson (1957)«

7q2 Equations of state and coordinate systems

Ideally an equation of state or constitutive equation is one 

which, in the present context, describes the relationship between 

stress and deformation in a way which is independent of any 

particular coordinate system. The equation is thus uniquely 

relevant to the material it describes and its form does not depend 
on the vagaries of the laboratory or material frames of reference.
There are three methods by which this may be achieved.

1) Oldroyd (195®) and Rosea© (1964) favour the method in 
which the equation is formulated in a Cartesian system fixed in space. 

Although this method allows easier interpretation of the equation in
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the laboratory frame, the time derivatives of the various tensor 
quantities are rather complicated. In fact the so-called material 
derivative is used whioh may be Interpreted as that tensor whose 

components referred to a Cartesian frame rotating with the particles 
of the liquid are equal to the partial derivatives of the corresponding 

components of the underived tensor. This may be regarded as the 

Eulerian approach.
2) De Witt (1955) and Pao (1957) use the Lagrangian method in 

which the equation of state is related to a coordinate system which 
rotates and connects with the partioles of the fluid. The time 
derivative in this case is a simple total differential. Since the 
equation of state given in equation 2.22 does not imply any rotation 
or convection a Lagrangian approach is used in the following theory.

3) Lodge (1964) 1^ his more restricted work on uniform strain 
rates uses an embedded vector method whioh in concept is similar

to (2). The more general tensor treatment however is required for 
the investigation of non-uniform strain rates and inhomogeneous flow.

■Ir.a__

We first define a laboratory coordinate system for simple shear 

flow which has become standard in the literature as shown in Figure 

7 © 1©
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/  — / - % +  )s s k ^.
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Figure 7.1

The 1 direction corresponds with the direction of flow and the 
2 direction is the direction of the shear planes which are at right 
angles to the 1 direction* The 3 direction is at right angles to 
the 2 and 1 directions so as to form a right handed Cartesian frame 

The vofcticity of the shear field may be expressed as

to =  jk^vxi - ̂
n 2 —  2 Jx2~ v“2 7.1

where v is a velocity and the suffix indicates the direction and 

where evidently for simple shear flow

x2

Also we have that

= 0.

v_2l. (£3.) = t-ii =. 2dll dtvax2 ’ Jt 
where is the displacement in the x^ direction, e the corresponding
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strain and K is the shear rate. It can therefore be seen that

w : i K  7<>3
or that the vorticity which is in a clockwise direction in Figure 
7ol is equal to half the shear rate.

Any particle in the shear flow rotates with angular velocity 
as it convects in the direction and it is now assumed that the 

constitutive equation 2.22 holds in the T coordinate system 
which rotates with clockwise angular velocity u> in the X frame. It 
is further assumed that the flow is homogeneous and there is therefore 

no need to make allowance for the particle convection. The 
coordinates in the two frames are related by the equations 

Xj = y 3 COB 0 -t- y2 sin 0 

x2 s “Jj sin 0 + y2 008 0
s y3 7»4

where 0 is the instantaneous angle between the two frames. We now
odconsider a symmetric 2 order tensor which will later be related 

to the stress and strain tensors. A second order tensor in the X 

frame has components which may be referred to the T frame as follows.

I  . -  X.. ^ xi  ^ zj  7.5
a b ~  13

lidby the usual transformation formula for a 2 order tensor. It 
follows from equations 7*5 and 7°4 that the various components are 

related by

^11 E ^1* eos P ^12 S^n ^  *** ^22 ^

*21 s T12 e * <Xn “ x22} 8in ^  + X12 003 2‘0
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*22 = X11 8i®' ^ f X12 Sin 20 + X22 CO£|2 $ 
*31 s *13 s ^ 3  C0° * " X23 Si“ *
^32 s ^23 s *13 8in ^ * *23 008 ^

*33 " X33 7.6
For the use of the constitutive equation the deviatoric components

of the tensor in the rotating Y frame must he used. For a deviatoric

component, YJ = Yy  - i S i j  7.7
3

where the prime denotes a deviatoric component and is the 

Kronecher delta. Thus only the principal diagonal elements of the 
deviatoric tensor are different from the corresponding elements of 

the original tensor. They are

*il - -| *H ” *̂22 + *33̂
= 1  h i  ~ (X22 * x33} “ xll8in20 - Xl2sin2p * X22Bin20

*22 * f  *22 “  § (*11 + *33>

= •§ X22 * i  (X11 + X33} * Kllsin^  + x128i“20 - X228in20

*33 “ -| *33 “ ^*11 + *22' - | X33 “ -j X̂H  + X22^ 7,8

We may now rewrite the equation of state for convenience

O'ab K S  1 *r «zP(“syr > r] ) d s ^  dr 7.9
* d l “

The superscript y is included to emphasise the fact that the equation 

holds in the rotating Y frame only.



7,1,1 The strain tensor components

We first evaluate the total derivatives of the strain components 

as required by equation 7*9* fy the chain rule of differentiation
deX as ^ e^ , o 6.0
a r  —  +  W * r

which has the physical significance that the total rate of change
of strain in the T frame is made up of the deformation in the T frame
alone and also that due to the rotation of the 7 frame in the X frame*

Since the vorticity to is constant in time and throughout the fluid
0 - l o t  and so de^ —  ̂ + uii e^ * 7*10

if  ~  r r
Before performing the differentiations it is first noted that certain 
simplifications can be made to the X frame strain tensor* For 
rectilinear homogeneous flow the only non-zero strain components are 

e ^  and 9 *2° strain tensor is of the form

ell ®12 0 \ 
\

®12 *22 °)
0 0 0 /

In many experiments the apparatus walls constrain the fluid so

that e ^  s 0. i.e. the shearing surfaces are maintained at a constant

distance apart* It is also assumed that e ^  s 0 or that the fluid

is prevented from elongating in the direction of flow. This will

certainly be the case in the concentric cylinder type of apparatus
but not necessarily in the cone and plate. The only non-zero partial

*derivative of the X frame strain tensor is therefore u 12 - K



The total derivatives of the strain tensor in the Y frame are given

by equation 7c10 and by using equations 7*6 and we obtain subjeot

to the above restrictions
de7̂  X11 - -K sin 2wr - 2w e ^  008 2 w r
d r  i

de/Y de/Y x21 - 12 s K cos 2uor - 2 lj# ^  sin 2co-r
d r  dr

d e Y it22 s K ein 2 w r  f 2u;©lp cos 2 ivr
dr

d*jj = den  - de3i = im'& = d*23 =0 7.11
d r  dr d r  dr dr

7<*3*2 The stress tensor components
For the simple shear flow described the stress tensor in the 

X frame is of the form

0
«u o
O an

The deviatoric components in the Y frame using equations 7*6 and
c\-7,8 and simplifying algebraicly areA

°il * M i+ °22- 2o33^ + 2^°11- °22)cos2,Jt ~ 0|2sin2wt
tiy f y I X  X X
°21 = °12 " 2 '°il“ °22)sin2uit * °12cos2wt

°22 = ^°llj °22" 2o33^ " 022^°OB2'Jt + °x2ain2tJt
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7p3»3 Substitution into the constitutive equation

j u— ir r  ry—  n — a ■ m m m m aim m m m m m m  m rn rn mmm m im m m tmmm — — — —  mmmmmammmmmmmatmmmm—M m m m m  m  mmlr ■■ — —  mam , m

As an example the first set of equations 7 « H  and 7*12 are used 
for substitution into the constitutive equation® The other equations 
all give consistent results but they are all contained in each of the 

first three equations* Substituting therefore into equation 7*9 gives 

£<<rn t v22~2o33  ̂+ | ^ n - 2wt - <r12sin 2^t =■
eX
k^expf-s^tt-Tj)j-Ksin 2wT - 2o)e1?cos 2wijdr 7*131J:r r ' ru    12

h "
The superscripts have now been dropped since all the tensor 

components now refer to the laboratory X frame only. Performing 

the integration on the right hand side and omitting the terms 
containing an exponential decay we obtain for the steady state*

+ cr2.2.~ 2. cri3) +- 2  ( O ' * - cos 2. wt - Sin 2. tot
STl ( _ s sin 2wt « 2u»cos 2«t 0 s cos2wt — 2wsin2b»t2k>*12_r

e /  + (2»f + (2w)2
7ol4

Equating coefficients of uni^r, cos 2cvt and sin 2u>t we obtain 

respectively

°11 + °22 " 2o33 = °

* (°11 " °22> s >  k:f — g K ~  -  *12 N  tt 2WBT
(— > » f (2w)2 n r

*i2 -
n .r2 -,(2»)2 £ . , 2 ,.<&,>* , a 5  

Remembering that u>s 1C it can be seen that the summations on the
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right hand sides of equations 7«15 are none other than the moduli 
V  and G” defined in equations 2«13 with K the shear rate as the 
argument of the functions instead of u> the angular frequency. We 

may thus rewrite equations 7«15 as

°il- °22- 2o33 = ° :
£(<rn - <r22) = O' (E) - e12C  • (E)

cf12 = 0"(E) + s120'(E)
The last of equations 7*16 may be rewritten in terms of viscosity as

t?8(k )= !L2=.17d(K ) + e120'(E)/E 7.17
K

where tj$a n d ^ a r e  the steady flow and dynamic viscosities respectively,

7®4 Discussion of the theory
mamBammmmmmammammammm•xsaommmmx r  gau g ing: n r  j ogger, u m i n i  u m  i  n m n n j   ̂ ■nPi.i

In equations 7ol6f represents the elastic shear strain in 

the viscoelastic fluid when being sheared at rate K. Unfortunately 
the measurement of shear recovery is difficult and has not been 
extensively undertaken so that the theory in its existing state 

cannot be thoroughly checked* However it may be interpreted that 

the kinematic indeterminacy of the elastic strain is a consequence 

of the equation of state us@d9 and that this equation is too general 

to completely determine the behaviour of a viscoelastic fluid in 

steady shear flow* The theory does nevertheless show that subject 

to the restrictions on the stress and strain tensors9 a material 

exhibiting dynamic moduli G° and G" in oscillatory testing shows 
properties indicated in equations 7ol6 in steady shear flow*
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Pao (1957) has used a more restricted form for the stress tensor 
than has been used here with the result that the normal stress 
difference cr^ - turns out ot be zero* It is interesting

to note that if or^ - o^2 • 0 (which is not the case in the majority 

of polymer solutions, for instance) then e^2 eliminated to

give o;2 * GM(&) + G *2 (K) which is Pao's result*
G” Ik )

One of the important conclusions to be drawn from equation 7®17 
is that since all the quantities must necessarily be positive, the 

theory predicts that the steady state viscosity begins to fall off 
at a higher shear rat® than the dynamic viscosity* While this is 
observed for solutions of polyisobutylene in deoalin (Padden and 
de Witt, 1954) it is not so for the silicones (see Figure 7*2)« 
Inadequacy of the theory to explain observed behaviour may be 
attributed to two causes* One ol these is the restrictions on the 

stress and strain tensors3 this is not considered to be important 
because no anomalies in the homogeneity of steady flow in 

viscoelastic materials has been reported except in incipient fracture 

phenomena (Hutton, 19^3)« A more likely limitation is that, due to 

some structural effect, the viscoelastic properties of the material 

become modified in a shear field so that some preferred direction 

exists for molecular movement* The material thus becomes anisotropic 

in flow* This anisotropy would also manifest itself in the 
rotating T frame and is therefore different from the anisotropy 
occurring in the X frame with the restricted class of materials 

considered here*
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7*5 An extension of the theory

The data normally available for viscoelastic materials in 
steady shear flow is confined to the shear stress and the normal 

stress differences as functions of the shear rate. In addition 

the shear moduli 0* and GM as functions of angular frequency are 
available. With this information equations 7.16 can only be 

checked for consistency in the absence of any further information 

regarding the recoverable elastic shear strain vl8CO“
elastic liquid so far described may however be endowed with further

properties in order to obtain another relation involving ®^2°
equation that often appears in the lierature is

^ll ~ °22 = a „ 7.18
2 ®X2

This result has been obtained theoretically by two authors 

(Weissenberg, 1 9 4 7 Lodge 1964). Weissenberg derived equation 

7*18 assuming that in any state of flow for a viscoelastic liquid 

the principal axes of shear stress and elastically recoverable shear 

strain are coincident in direction. Lodge obtains the same result 

for a particular type of viscoelastic fluid in which the component 

of normal stress acting on any plane depends on the history of 
separation ratios of the plane from a parallel material plane. 

Weissenberg (1949) has also shown that the same result applies if 
planes exhibit the same normal components of stress if they have 
undergone the same normal displacements per unit area from their
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neighbouring parallel planes. It would appear that this may be 
regarded as a special case of Lodge's assumption* It is also stated 

by Roscoe (1964) that equation 7.18 applies to any material 
exhibiting fading memory at low rates of shear.

Since these assumptions do not in any way contradict the

equation of state used hero, the theory may be extended by incorporating
equation 7ol8 in equations 7.16. We then obtain

G’ " *12 a — tt sr 9 12G" + e1? G°

which gives e ^  — - G" 2 + qi»2 7.19
Q«

Substitution of equation 7 d 9  into the last of equations 7*16 gives 
the interesting relation

°12 = y  G°2 + G"2 7o20
Instead of moduli G* and G" the real and imaginary viscosities 

and vj* may be used in which case equation 7*20 becomes

*Y|S - °12 ■ /  7o21

or the steady shear viscosity is the modulus of the complex dynamic 

viscosity. Such a relationship was postulated empirically by Cox 

and Uerz (1958) and shows good agreement with their experimental 
results on molten polyethylene and polystyrene (1959).

Equation 7.19 may also be used to find an expression for the 
normal stresses. Substituting this equation into the second of 
equations 7c16 gives
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7 o 2 2

At low rates of shear or frequency where 0 * ^ 0 %  the square root 

may be expanded to give the limiting result (T^ - which
agrees with a result given by Coleman and Markovits (1964).

7c6 Comparison with experiment

Although much information has been published on the dynamic 
and steady flow properties of a wide variety of materials, very few 
papers deal with steady flow and dynamic measurements on the same 

material. For the purposes of checking the theory, shear and normal 
stresses as a function of shear rate are required as well as the 
real and imaginary parts of the dynamic shear modulus as a function 
of frequency. A further check of the theory would be available if 
the recoverable shear strain as a function of shear rate were also 
knowno The most complete set of data for these purposes known to the 

author are those of den Otter (1965) who has measured the properties 

of two concentrations (1.03^ and 2$) of high molecular weight 
polyisobutylene in a low molecular weight solvent of the same material.

Both dynamic and steady shear experiments were performed on a 

cone and plate instrument. The experimental results for the dynamic 

shear moduli are shown in Figure 7«3o Figures 7*4 and 7#5 show the 
shear and normal stresses as a function of shear rate for the two 

solutions compared with the predictions based on equations 7*20 and
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7*22 and the dynamic results of figure 7*3* In the case of both the 

solutions it may be seen that the shear stress predictions are in 
reasonable agreement with the experimental results. The agreement 
is not however so good for the normal stresses and the divergence 
increases at the higher shear rates. Unfortunately the measurements 
do not extend to relatively low shear rates and frequencies where the 
normal stress predictions are more likely to approximate to the 
experimental values. Since the theory was based on the absence of 

any structural effect (which would be more apparent at high rates of 
3hear) the lower shear rate results would perhaps lend more support 

to the theory. That the lowest frequency dynamic results are 

already well into the relaxation region may be seen from the relative 
magnitudes of G9 and GM in Figure 7c3.

An additional difficulty is the imprecision of normal stress

measurements. The method used in this case is not known, but as 

Markovitz (i960) points out, a variety of results on the same 
material have been obtained by different investigators and the need 

for greater consistency is obvious. It may therefore be stated that 

this comparison is not conclusive and the need for further 
experimental evidence is apparent.
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CHAPTER 8
AUTOMATIC COMPUTATION OF RELAXATION SPECTRA 

8»1 Nature of the problem

In Chapter 2 it was shown that the viscoelastic properties 

of a material may be described by a relaxation spectrum N(s) where 
8 is the frequency or inverse time of a relaxation process„ The 
complex elastic shear modulus as an experimental function of angular 
frequency w  ia given by the integral equation 2©15*

-OH
O(jvj) = 1 B(s) ju) ds

) S 4 jw
8a

Separating into real and imaginary parts gives,
.40

2r‘
G*(ju»)-

G* *

s" f UJO
f  to

N(s) u)b ds
S  cf US

802

Row the pair of equations 8©2 must be consistent in that the 

experimentally determined functions G 8 and G 8 9 ar© not independent 

In fact they are related by the equations (Gposb, 1953)*

2 aG9 (u>) -  2u? j Q 9 6 (b) d®
3 s(uj - s^)

U ,9(^) —  2u>
If

o
r

G 1 (a) ds
s ur

o
Therefor©, if both of equations 8„2 are soluble for H(s) then only



149
one of the experimental functions need be used. The other may be used 

aa a check if desired. In the majority of experimental determinations 
0° and 0" are not measured explicitly but are derived from an 

impedance function ZT - RT * jXT which is related to the modulusJj u JU
0 by the equations (Barlow and Lamb, 1959)

where is the density® Now G' is a monotonically increasing function 
while GM has a maximum in the middle of the relaxation region and
tails off to zero on either side® Since RT and XT are usuallyL ii
accompanied by absolute as well as relative errors the values of 0® 

and G” are likely to be least accurate where their ampltiudes are 
smallest® For this reason, when calculating relaxation spectra, 

the function G° is usually used and the inacci^acies are then 

concentrated at lower values of to only. In the following analyses9 

therefore, the first of equations 8C2 is used only, although the 

second equation is also amenable to a similar treatment®

The problem is then to determine the function N(s) from 0® (to)

when the two are related by the equation

Since the range of the variables s and uj in equation 8®4 is very

0" * 2 r l 
f

8.3

8.4

large, it is more normal to use logarithmic variables defined by

x = In to a n d  y  » In a

whence,



150
X y ywhere g(x) a G® (e ) and n(y) s e N(e ), It is interesting to note 

that by means of this substitution the integral equation has been 

reduced to one of the convolution type, However it should be 
observed that this has no physical significance since the convolution 
integrals appearing in the mathematics of linear systems involve 

'memory* functions of time, whereas the arguments of the functions 
appearing in equation 8,5 are logarithms of frequency.

Linear integral equations of the first kind (Lovitt, 1950) of 
the type in equation 8,5 ®ay in principle be solved operationally 
by a method due to van der Pol and Bremmer (1955> P<»300), If equation 

8o5 is rewritten in the form

s(s) s fn(y).K(x-y) dy 
- 00

and the Laplace transform of both sides is taken, we obtain

I(p) a n(p) . F(p) 
which may be rearranged to give

n(p) s 1 , g(p) 8,6
K(p)

where K is referred to as the kernel function and a superscript har

denotes a Laplace transform, The inverse transform of equation 806

can be taken to give another convolution integral but with a different

kernel function defined by

X*m f 1
^K(p)

which is referred to as a reciprocal kernel. Unfortunately the

kernel function
[i + ,-2<*-r)J “i



has no reciprocal since its Laplace transform is the reciprocal of 

a sine function and a sine function has no inverse transform. By 

the same token it may be shown that the function n cannot be described 

in terms of an integral equation of the second kind either, viz.

For these reasons recourse is made to approximate numerical methods 
which have the advantage that the effect of 'noise* on the data can 
be assessed as the calculation proceeds,

8.2 Numerical methods

A variety of methods have been discussed in the literature to 

determine spectra from storage modulus data. They usually depend 
on some iterative scheme which is terminated when the recalculated 

function g approximates to the experimental results with appropriate 

accuracyo Williams and Ferry (1953) suggest a method which requires 

the numerical derivatives of g and n§ and starting with an arbitrary 
spectrum, a formula for a better approximation is given® Methods 
are also available which require higher derivatives of g such as 

that of Fujita (195^) or Schwarzl and Staverman (1953) which require 
second and third derivatives respectively. Because the experimental 

function g is subject to errors, the process of taking derivatives 
higher than the first is hazardous and must usually be accompanied 
by some form of smoothing® For these reasons the above methods are 

most suitably performed graphically®

n(x) s g(x) - :(x-y).g(y) dy
-"bo



Methods based on Fourier series have been developed by Roesler 

and Pearson (1954) and Roesler (1955)? and a simple iteration method 

ie discussed by Roesler and Twyman (1955)- They have the advantage 
that the limiting resolution of the process becomes apparent during 
the calculation. Unfortunately, a common feature shared by all 
these methods is the amount of labour involved in the calculations, 

and a means of calculating spectra automatically by means of a 
computer is therefore desirable. Direct programming of the methods 
previously mentioned suffers from the difficulty that the smoothing 

processes required at various stages of the calculation are not easily 
definedo In addition there is the problem of deciding upon a suitable 
criterion as to when to terminate iteration procedures. For these 

reasons certain simpler procedures are suggested which perhaps lack the 
sophistication of the other methods but which are more amenable to 

simple programming.

8q3 First method

The two methods to be described assume that the continuous 

spectrum may be approximated by a line spectrum if the spacing of the 
lines is sufficiently close. This has already been discussed in Section 

2«4olo For simplicity it is further arranged that the line spaclngs 

are equal on a logarithmic basis so that a constant factor m relates 
one relaxation frequency to its neighbour. For a discrete spectrum



tillwhere 6 is the intensity of the p " line and s its relaxation 
P P

frequency. In terms of m this may he written

o* m  = y  o „. u » 2
p 2 2p 2n VO t m so

J  \ 8.,
"n (w /e r  + m

where sq may be considered as some reference relaxation frequency. We
2now consider the values of the function Gu (u>) for (j- io0 , di^ , m~voQ 

. * , mnu)e, and refer to the q ^ ’ value of the function so that

= 0"(m4U)o)
If it is then arbitrarily arranged that U>Q - b f equation 8 0?

g - N  G_ m2*
may be written ^

A. s \  G
p Q  m ~ f m 

n pa C  P 9o8I  7 7 ^p* o
Equation 8.8 is a set of linear simultaneous equations and if it is 

further arranged to use n values of g, the sot is soluble. The 
equations are,



The values of gQ .«.. g^ are known and it is required to find the 
values G .... G . If it is arranged that m > l  so that g > go n  qi>l * q
since g is a monotonically increasing function, then the coefficients 
in equation 8.9 decrease from left to right, increase from top to bottom 

and are all positive.
Although the matrix of coefficients, M, is non-singular, its 

inverse indicates extreme ill-conditioning. This may be demonstrated 

by observing the inverse matrix in table 8.1 for which m = 1.^849 
corresponding to logarithmic increments of 0.2 decades. This 

interval is used because it represents a value consistent with the 
resolution of average data. For this matrix n r 38 corresponding to a 
total frequency range of 7° 6 decades. The inverse matrix was 
calculated on a computer and checked by multiplying it by the original 
matrix. The resultant matrix differed from the unit matrix by not more 
than one figure in the fourth place. The values for the spectrum may 
theoretically be obtained by pro-multiplying the vector of g values by 

the matrix of table 8.1. The alternately large positive and negative 

values along a row of the matrix indicate that an accuracy of at least 

Ooi$ is required on the values of g in order to obtain meaningful 
results. In practice this is an impossible requirement and the 

inverse matrix method is not feasible although a modified version of it 

provides the basis for a second method to be discussed later.
An alternative means of solving the equations is by some 

numerical method of which there are many described in the literature.

The method chosen here is the Gauss-Seidel procedure (Redish, 1961, P*19) 
whioh is the easiest to programme. The method involves writing equations
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809 in the form

G o o o oo
01 O O o J o
0 ^  S3 o o 9

etc »
A trial guess is first made, typically zero, for the values 0_ * ° o 0

• X Tk

and each equation is used sequentially to obtain better values for Go 

At each stage the most up to date values of the unknowns are used and 
the cycle is continued until convergence results. Owing to the ill™ 
conditioning in this set of equations a large scatter is obtained in the 
results for G even though the corresponding values for g are within 
experimental error, To overcome this difficulty a criterion of 
8smoothness® is applied to the G values, so that the G^ must not only 
satisfy the equations but also have continuity.

The means of smoothing used is that discussed by Lanczos (19579 
P9 33l)«> A Fourier analysis is performed on the values to find the 

n coefficients required for description by a Fourier series. The 
series is then truncated at some arbitrary term L (l<n) and the 

smoothed values of G are then obtained by using the truncated series 0

In this way the higher "frequency® components are eliminated. In 

mathematical terms, g is considered to be a continuous function of 
some variable x expandable in a sine series, I,©,

g(x) s b, sin nt * . b sin 2irx , 0 0 , , b sin mrx

where L is the range of x and the are ^ e  Fourier coefficients which 

are given by

P

L



15?^0-1
b„ 3 £  > e M  Ein
q n L , Lx*xa

The values h are computed only up to q s I and the smoothed version 3.
of g(x), g(x)> is obtained from the truncated series

x) - y b sin q^x
V

It should be noted that the smoothing is performed on a logarithmic

scale so that x is equivalent to log (frequency)• The overall
procedure is to perform one Gauss-Seidel iteration followed by smoothing,

and then to use the smoothed values for the next iteration* The process
is terminated when successive smoothed values of G do not differ byP
more than a certain amount* This does not however ensure that the
corresponding values for g are within experimental error* it will depend
on how much smoothing has been applied* In practice it is arranged that
the maximum amount of smoothing is used consistent with the g values being

within experimental error* For programming the main advantage of the
eFourier method of smoothing is that only one paramter is necessaryA

to determine the amount of smoothing, viz* L , the number of Fourier 
components used for the description of g*

Ideally the programme should select an appropriate smoothing 

parameter based on the progress of the calculation, but since this would 

take an excessive time the amount of smoothing is predetermined* 
Calculations in Section 8*4 suggest that with data that is accurate 
to about three significant figures little more information is given about 

the spectrum than 1*5 Fourier components per decade* The value of L 
is therefore the nearest integer to 1*5 times the frequency range in 
decades* A flow diagram of the computation is shown in Figure 8*1*

i(
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The convergence condition used is that the current recalculated values

where g* and g" are the current and previous recalculated g values and 
gn is the largest of the experimental data* Thus the standard error must 
be less than 1$ of the maximum value*

As an example of the application of the method, the results of 

Barlow and Lamb (1959) for a lubricating oil designated M 0V 0I have 
been used to determine the relaxation spectrum* This latter wa3 also 
calculated in the original paper by a method based on the iterative 

scheme of Alfrey and Doty (1945) and provides a means of comparisonQ 
Figure 8 02 shov/s the results of the calculations, the experimental 

data being taken from the Ph©D© thesis of Barlow (1959)° It can be 
seen that in the absence of any smoothing the points are so scattered 
as to be meaningless although for all the results shown the 

corresponding values for the moduli agree with the experimental values 

within 10$* Two other curves are shown using the described method 

with different smoothing parameters© These correspond to 12 and 8 

Fourier components which for the 7 ©6 decade span of the data give rise 

to resolutions of 1©6 and le05 components per decade© The difference 
between these two results is not significant and demonstrates that 
the number of components required is not critical©

It would appear that on the basis of these results the

of g agree with the previously recalculated values according to a

relative mean squared error criterion*

pr|
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graphical smoothing of Barlow and Lamb tends to be rather too severe 

as can be seen especially on the left hand peak of the spectrum. It 
should be emphasised that the diagram of Figure 8.2 represents a 
discrete spectrum of lines spaced at 0.2 decade intervals. A smooth 

curve drawn through the points represents an approximation to the 

continuous spectrum.

8.4 Second method

The second method to be described uses the same discrete spectrum
formulation but depends on matrix properties. Equations 8.9 may be
rewritten in matrix form as g « M 0 where g and G are column vectors
and M is a matrix of which the p q element is given by l/(lfm^^~^ )
It has already been stated that the formulation G s g is
unsatisfactory because of the ill-conditioning of the matrix M.

However* by means of a device, it is possible to find a matrix P^

which is an r approximation to and for which Lim P - 0
r -#**6 r

W© first note that for any arbitrary non-singular matrix D the 

following identity holds?

M i H ^ D ^ D  
The matrix product (DM) * may be written

(DM)"1 s (I - [I - DM} r 1
which may be expanded in a power series

(m )'1 : I t (i - m )  + (i • d m )2 * O O 8.10
where I  i s  the unit matriXo



The series 8e10 is not necessarily convergent but may be made so by

appropriate choice of the matrix D« Indeed it can be seen that the

closer D is to the inverse of M, the more rapid the convergence, and
tilD can be regarded as a first approximation to the inverse* An r 

approximation to can then be defined:

which is a truncated version of the series 8o10,
In order to find a suitable form for D an analogy is drawn with 

the properties of the continuous spectrum* Prom equation 8*2 one has

The form of the kernel function is a gradual step decreasing in the 

direction of increasing to and centred a t ^ = s* As a first approximation 

in accordance with the method of Alfrey and Doty (1945) the kernel 

function may be replaced by a step function in which case the integral 

simplifies to

is a first approximation to the spectrum* Sine© the discrete 

spectrum must approximate to the continuous one, the same type of 
first approximation may be useda In the present context this amounts 
to finding the matrix D which numerically differentiates a post- 

multiplied vector column0

The matrix is constructed from a method described by Lanczos

from which it can be seen that

n (b ) ~  ao'jw).
d vo w a



163
(195?» Po 321) for the differentiation of an empirical function,. It 

is assumed that the values of a function y(x) are available at 
equispaoed intervals and a parabola is fitted to five adjacent points

i
on a least squares basis* The value of the derivative at the centre 

point y 2 y(*o) is then given by the formula
djri s y ^ - O d  y ̂  + 0.1 yx f 0.2 y^
dx * ”XtaXo

Tot the first and last two ordinates9 this formula obviously cannot 

be used and Lanczos gives a four point asymmetric formula for these 

cases. The process for all the ordinates may bo condensed into a matrix 
multiplication for which the differential matrix D becomes

-io05 0 o 6 5 O o 8 5 O o 4 5 0 0 0 o 0 0 0 0 0

=Oo55 0 o l 5 Oo35 0 o 0 5 0 0  0 o 0 0 0 0 0
«0»2 = = 0 * 1 0 Ool 0.2 0 0 O 0 0 0 0 0
0 ~ 0 o 2 ~0ol 0 Ool 0o2 0 O e 0

0 0 o 0

o

o = 0 o 2 =0.1 0 O d 0.2
0

0
o 0 ~ 0 o 2 =Ool 0 Ool 0
o 0 0 ^0o05 - O o 3 5 - 0 o l 5 0

0 0 0  o o 0 0 0 o 4 5  - o 0 8 5 -O065 X

The matrix can evidently be constructed for any size equal to or 
exceeding 5 * 5° The effect of prenmltipXying a vector by the matrix
1) is to combine a numerical differentiation with a smoothing process 

since continuity of the curve is ensured by fitting a parabola through



two more points than the minimum necessary.
tk -1A programme to calculate the r approximation to M according

to equation 8.11 only requires two input parameters. These are the 

size of the matrix determined by the number of ordinates used, and also 
the ordinate spacing in decades d where m s antilog (d). This programme 

is not shown since it only involves standard matrix operations. The

result for the third approximation P ̂ for which the matrix size is 
38 x 38 and the ordinate spacing is 0.2 decades is shown in Table 8CJ2. 
This matrix may be compared with the exact inverse of Table 8.1 <> It can 
be seen that the third approximation puts far lesser stringent demands 
on the accuracy of the data and in addition its structure is tending to 
that of a band matrix. The latter property indicates that by means 
of this procedure the value of the spectrum at a certain point does 

not depend on too many neighbouring values of the storage modulus 
curve. In this case approximately six neighbours on either side of a 

given point give non-negligible contributions to the spectrum at the 

centre point.
In order to check the resolving power of this method5 calculations 

have been performed on single relaxation time data rounded off to three 
figures. This test puts a realistic amount of 0noise9 on the data and 
at the same time the ultimate shape of the spectrum is known. The 
difference between the single line spectrum from which the data is 

deduced, and the spectrum calculated according to the method gives an 
idea of the resolving power. Figure 8.3 shows the spectra calculated 
using three different approximations, P^, P^ and P^. The ordinate
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spacing used was 0*1 decades and the data covers 2D8 decades* Although 
ijr may be seen that each successive approximation improves the spectrum, 

they are all very different from a single point of one unit intensity*
In fact even the fifth approximation has a maximum intensity of only 
0*19, and significant negative portions are beginning to develop* 

Although it would at first appear that the method is unsatisfactory 

Figure 8*4 shows the modulus curves recalculated from the three spectra 
shown in Figure 8*3 and compared with the exact curve for a single 

relaxation time* It can be seen that even the third approximation 
reproduces the curve with negligible error and the conclusion is 
therefore that a higher resolution is unneccessary*

Unfortunately, this means that with data limited to the accuracy 
stated, the spectrum can be no better defined than those shown in 
Figure 8*3 However, since in real materials the spectra are relatively 
broad the apparent failure of the method to describe a single line 

spectrum is not important although the curves of figure 803 do give 

a measure of the ultimate resolving power* This may be assessed by 

finding the number of Fourier components necessary to describe the 

broadest spectrum that reproduces the single relaxation time data with 

negligible error* By inspection of Figure 8*3 it may be seen that this 

hardly exceeds 1*0 to 1*5 components per decade and the first method 
therefore uses this result*

The second method has been used to again determine the spectrum 

of the M.Volo oil results of Barlow and Lamb (1959)» Figure 8*5 
shows the results of the first, second and third approximations
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compared with those obtained in the original paper* The results 

of the third approximation can be seen to agree quite well with those 
of Barlow and Lamb although, in agreement with the results of the first 
method, the smoothing applied by these authors appears to be a little 
too severe *

805 The Second Method as an analogue of the Barlow and Lamb procedure0

It is of interest to note that the procedure adopted for the 

second method may be regarded as a numerical analogue of the method 
described by Barlow and Lamb (1959)* The calculations of these authors 
may be summarised as follows!

1) Obtain a first approximation to the spectrum by 
graphically differentiating and smoothing the storage modulus data go

2) Substitute into the integral equation and recalculate the 

function ĝ *>
3) The difference between the data g and the recalculated values 

g. is treated as a contribution to the modulus data and is 

differentiated and smoothed to give an extra contribution to the 
spectrum At this stage the current values of the spectrum are

given by S2 = Si t 8i#
The process is continued until the contributions become 

negligible, and may be described symbolically by the equation

S , - S f D(« - *S ) 8ol2n-1 n n'

The operator I) represents the differentiating and smoothing process 
while IS represents the integration* The suffices refer to the order
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of approximation* Rearranging and noting that 1%  represents the first 

approximation to the spectrum, S^, we obtain
Sn+1 s ( I - « ) 8 a + 81 

where I is an identity operator. By induction it can be seen that 

Sr - [i + (I-Dll) + (I-DH)2 + . . . + (I-DH)*- 1 ] . Sx .

Since a Ig a formal equivalence is established between this process 

and equation 8*11

8.6 Discussion

The two methods described both enable spectra to be sta satis­
factorily obtained from storage modulus data in ways suitable for 

programming. Although the two methods give slightly different results, 
for example in the case of the M.V.I. lubricating oil, the differences 

cannot be said to be important since the recalculated values of the 
data are all sufficiently close* Indeed, this only serves to illustrate 
the lack of precision with which the spectrum may be determined*

Of the two methods, perhaps the second is easier to apply since 

once the approximating matrix has been calculated automatioally, the 
result may be obtained by simply performing a matrix-vector 

multiplication. A number of approximating matrices could be 

calculated using different ordinate spacings and ranges, and the 
appropriate one used to solve any particular set of data* The ; 
spectrum is then obtained by multiplying the vector of experimental 

quantities by the appropriate square matrix* This process could



112

reasonably be carried out by hand and would take approximately one
eand a half hours for the 38 ordinate system using an electric calculating 

machine. Using a KDF 9 computer with a medium speed compiler 

("Kidsgrove intermediate”) the 38 x 38 third approximation matrix 
required approximately ten minutes before punching was completed.
For the first method, using KDF 9*each iteration on a 38 ordinate
system took approximately 2.5 minutes. It appeared that in general 
seven or eight iterations were necessary giving a total time of 
15 * 20 minutes for the complete spectrum calculation. The times 
given above should be reduced by approximately a factor of ten when 
the latest version of the compiler ("Kidsgrove optimised”) becomes 
available 0



A P P E K D I X  A
Analysis of shear wave propagation in cylindrical coordinates

Consider an infinitesimal cylindrical annulus of viscoelastic
fluid of width £r and unit height at radius r under conditions of
oscillatory shear® The torque at radius r is equal to 2t r,0 r d£.r

dr
where G is the shear modulus (which is complex) and © is the angular
displacement* The nett torque on the annulus is therefor©

d_ I 27. r3 0 d£\^r s 2^Gfr3 df© j. 3r3 d© ) £ r 
d A  I  dr2 dri

which is balanced by the inertial torque of the accelerating fluids 
— 27\t <Jr ̂  uJq - - 27C r ^  t~̂ Q(yr 

where ctJ is the radian frequency of ©scillation and ̂  is the density® 
The equation of motion is therefore

if® +  f <dl£ e = 0 Ao lA 2 r dr G dr

An equation of similar form is derived by Markovitz (1952) and is of 

the Bessel type® The solution of this equation (McLachlan, 1934) is*

© X  1 p J ^ a y f / ' G ') •+ A o 2

where and Y^ are first order Bessel functions of the first and 
second kinds® At the inner fixed boundary of the system © - 0 and 

r — R which gives

A J ^ w B / ^ T )  f BT, (yJUjcTQ) * 0 A. 3
The measured quantity z is the torsional impedance per unit height 
presented to the oscillating boundary at radius r9 defined as

z * torqua/anlt height _ r3G d© A„4
angular velocity fju7¥~ Hr
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Differentiating equation A.2s

I I  = i[* V  ♦ BV ] -  AJi OTi3
r

whence 1_ dg = AJl' +  BYl ‘ 1
0 dr AJ1 + BY, r

where the arguments of the Bessel functions ore understood* Inserting 

the initial conditions of , equation A*3 and substituting into
equation A*4* we obtain

2 . (• Y1(pR)J1 ‘<rr) - ̂ (TBjT^Crr)
j p V  £ XjT O J ^ T  "

where P  , the propagation constant, s ^ ^ / G  • Equations of the
form of equation A*5 occur in many boundary value problems with 
cylindrical symmetry* Oliner (1943) obtains a similar equation in 
connection with slow wave electromagnetic propagation in cylindrical 
waveguides* The present situation however is more difficult from 
a computational standpoint, because the propagation constant is in 

thiB cas© complex* Also, it will be observed that z is the

measured quantity and P  which is buried in the argument of the Bessel

functions5 is to be calculated from it. For computational purposes, 

a recursion property of Bessel functions (McLachlan, 1934 P«153) 

enables equation A*5 to be written in the form
- - 21TWP,3 ( y p B )J0(Pr) - J1(rR)Yo( ^ ) 2 ? Aa6

if / YjlfR) J1'(rr)' - J1TpR)Y1(prJ fr J

Unfortunately equation A06 is not in a suitable form for tabulation 

of corresponding complex values of s and P . This arises because
for the range of values of practical interest both the numerator

and the denominator of the fraction involving Bessel functions, tend

r ]
Ao5



115

to soro* A very high degree of precision is therefore required on
all the calculations in order to assume the desired end accuracy*
In addition, after performing the calculation no check on the end
accuracy is available* For these reasons the closed form solution

of equation A*6 was not used for calculation purposes*

In order to avoid these difficulties, recourse was made to the

differential equations, which were solved numerically by a step by
step method in which accuracy checks wore incorporated* Instead

of solving the second order linear differential equation of A*l, a
first order non linear equation is first obtained by combining

equations A*1 and A.4*
We first define a torsional admittance y s 1, •

z
From equation A*4 obtain,

y d© “ A* 7
dr 2**3G

Differentiating with respect to rs
y <L=£ /- .3® -S’ i  M  ), 2  dr dr 271GV 4 .3 drctr  ̂ r

P
or* i-2, z ~ A  .jtAj f.2 y dr dr 3 ! rdr * 2flGr y v

Substituting into equation A 6X and using A*7
32. J. s o A„8
dr 2?(Gr3 T

We now introduce the dimensionless variables s and Y as follows

I  *  2n I s-rl) \

s S (r/R) - 1 Ao9



Equation A08 then becomes
dT _  JY_ _  j J y R2 , jY2 - 0 A.10
ds svl G

Quantities a and^p are then introduced such that

a - t ^ f B 2 and 'p - / G A.ll
“ j o f ”

Equation A*10 then becomes

£1 _  J L  - >(ooanp - j sin'p) + JT2 = 0
de

Y is a complex number and this equation may b© separated into real 
and imaginary parts to give the pair of equations*

dYl s 3Y1 f 2Y1T2 4 a ainT
ds s-fl

dy2 - 3I2 + V X1 * a 008 T  A a 2
2 „ 2

. 4 *2ds sf 1

For the purposes of numerical computation described in Appendix B

the variables are named differently^
SOD = a ; ABO jmod'Y = j ij Y =

The important equations are now summarised for convenience*
from equation A»9mod Y a 2inM

arg Y « -/ z
MOD s CD2 P B2

I g T ^
ARG = Aol3

where s S (r/R) - 1 which may be tormed tho "relative gap0*
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In the present apparatus, with the dimensions given in Figure 
equations Aol2 may be simplified to*

mod T - 680*4 f

The equations A*12 are thus required to be integrated from 
the fixed boundary (s«0) where Y=0 (since the boundary presents 

zero admittance) to the oscillating boundary where s-s . The purpose 
of using equations involving admittance functions rather than 
impedance functions is so that the initial conditions are zero 

rather than infinite*

A*13

MOD s 140ol f2
i j a T

ARG ~t j G A.14



APPENDIX B»
W J i a a r :  .xassauesaan?-van '-**KJezsi»r*.*

Numerical integration of propagation equations 

B.l Description of the integration process

The equations A®11 were integrated automatically using a KDF 9

machine* A four stage Ruage-Kutta process was used (Collatz, i960, p 
and the integration out to the boundary was performed 430 times in 
order to cover a reasonable range of possible viscoelastic properties 
The Independent variable s has a value of 0.11 at the measuring 
boundary in the present apparatus and the initial step length used 
for the integration was 0*01. To ensure a certain accuracy in the 
calculated value© at the boundary the following procedure was used.

One step of the integration was first performed and then again 

using the half steps. The ti?o results were then compared and if 

different by more than 0o01$, the step length was halved* This was 

repeated until the desired step accuracy was achieved, and the 
relevant values were stored* The next step was then integrated 

in the same way and so on until the boundary was reached. To speed 

the calculation up where possible, it was arranged that a trial 
step length was always made double the previously chosen step lengtho

After reaching the boundary the whole integration was repeated 

halving each step length chosen in the previous calculation 

The values obtained at the boundary this time w©r© compared with 

the previous values and if differing by more than 0.1$, the process
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was repeated until this accuracy was reached* In this way the 
accuracy of the overall calculation may be guaranteed to 0*1^ and 
the method is not prone to instability as when fixed step lengths 

are used*
The following pages contain the results of these integrations 

and the table consists of four partss a main table, a sub-table

and an interpolation table for each* The sub-table is used in the
range MOD ® 50 to MOD a 5000 where the values change more rapidly 

and interpolation accuracy is likely to be poor* It is found in 
practice that for adjacent entries in the table, Interpolating for 
arg T, AEG and mod 7, HOD may be performed separately with 
satisfactory accuracy* The angles are given in radians and may be 
interpolated linearly* The interpolation for MOD and mod T however 
is slightly more complicated* It is found that over a small range

MOD and mod y are related by a power law, thus

for a given angle, ARG, where k is an interpolating coefficient*

In the interpolating tables, for each value of ARG, a value of the 

exponent k is given (referred to as Coeff*) for the range between 

adjacent HOD values0

Finally, to avoid transcription errors the table shown was 

photo-copied from the actual computer output*

HOD

MOD

1

1 (mod
,   -------------------------

(mod
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i

Bo2. Table of values for the integrated propagation equations
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I
Main table
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MOD

1 .0 x>
1.0 b 
1 .0 B 
1 .0 » 
1 .0 »
1.0 B
1.0 B 
1 .0 B 
1 .0 » 
1 .0 B
2.0 B
2.0 b
2.0 B
2.0 b
2.0 « 
2.0 „ 
2.0 »
2 .0 b
2.0 b
2.0 b
5.0 B
5.0 B
5.0 B
5.0 B
5.0 B
5.0 B
5.0 B
5.0 B
5.0 B
5.0 B
1.0 B 
1 .0 B 
1 .0 B 
1 .0 » 
1 .0 b 
1 .0 » 
1 .0 b 
1 .0 » 
1 .0 b
1 . 0  B
2.0 »
2.0 b
2.0 b
2.0 «
2.0 b
2.0 b

ARG mod Y arg Y
1

+1.57080 1 .238 b -2 -0.0004
- 1 +1.48353 1 .238 B -2 +0.0869
- 1 +1.39626 1 .238 B -2 +0.1742
- 1 +1.30900 1 .238 B -2 +0.261 4
- 1 +1.22173 1 .238 B -2 +0. 3486
-1 +1.1 3446 1 .238 B -2 + O.4361
-1 +1 .04720 1 .239 B -2 +0 . 5231
- 1 +0.95993 1 .239 B -2 +0.6103
-1 +0.87266 1 .238 B -2 +0.6978
- 1 +0.78540 1 .238 B -2 +0.7851— 1 +1.57080 2.476 B -2 -0.0009— 1 +1.48353 2.476 B -2 +0.0864
- 1 +1.39626 2.476 B -2 +0.1737
-1 +1.30900 2.477 B -2 +0.2609
- 1 +1.22173 2.477 B -2 +0.3483- 1 +1 .1 3446 2.477 B -2 +0.4355
- 1 +1 .04720 2.477 10 -2 +0.5229
- 1 +0.95993 2.477 B -2 +0.6104
— 1 +0.87266 2.477 B -2 +0.6974
— 1 +0.73540 2.478 B -2 +0.7848
— 1 +1 .57080 6.190 B -2 -0.0022
- 1 +1 .48353 6.191 B -2 +0.0851-1 +1.39626 6.193 B -2 +0.1 72 3-1 +1.30900 6.194 B -2 +0.2596
- 1 +1.22173 6.195 B -2 +0.3470
- 1 +1 .1 3446 6.196 B -2 +0.4343
- 1 +1 .04720 6.197 B -2 +0.5216
- 1 +0.95993 6.198 B -2 +0.6090
- 1 +0.87266 6.199 B -2 +0.6965
-1 +0.78540 6.200 B -2 +0.7838
+0 +1 .57080 1 .238 B - 1 -0.0044
+0 +1 .48353 1 .238 B - 1 +0.0829
+0 +1.39626 1 .239 B - 1 +0.1702
+0 +1.30900 1 .240 B - 1 +0.2575
+0 +1.22173 1 .240 B - 1 +0.3449
+0 +1 .13446 1 .240 B - 1 +0.4324
+0 +1.04720 1 .241 B - 1 +0.5198
+0 +0.9599 3 1 .241 B -1 +0.6074
+0 +0 .87266 1 .242 B - 1 +0.6947
+o +0.78540 1 .242 B - 1 +0.7823
+0 +1 .57080 2.476 B - 1 -0.0088
+0 +1 .48353 2.478 B - 1 +0.0785
+o +1.39626 2.480 B - 1 +0.1658
+0 +1 .30900 2.481 B - 1 +0.2533
+0 +1 .22173 2.484 B - 1 +0.3407
+0 +1 .1 3446 2.485 B - 1 +0.4282
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MOD ARG mod r arg Y

2.0 10 +0 41 .04720 2.487 ID — 1 40.5160
2.0 10 40 40.95993 2.489 X) — 1 40.6037
2.0 10 40 40.87266 2 .490 X) - 1 40.6916
2.0 10 40 40.78540 2.492 X) • 1 40.7792
5.0 10 40 41 .57080 6.188 X) • 1 -0.0219
5.0 D 40 41 .48353 6.200 0 • 1 40.0654
5.0 0 40 41.39626 6.212 K> — 1 40.1528
5.0 0 40 41.30900 6.224 K> — 1 40.2404
5.0 n 40 41 .22173 6.235 X» • 1 40.3282
5.0 0 40 41.13446 6.246 X) • 1 40.4162
5.0 0 40 41.04720 6.258 X) — 1 40.5043
5.0 0 40 40.95993 6.268 0 —  1 40.5926
5.0 X) 40 40.87266 6.278 0 • 1 40.6809
5.0 D 40 40.78540 6.288 0 - 1 40.7695
1 .0 10 41 41 .57080 1 .236 0 40 -0.0439
1 .0 X) 41 41 .48353 1 .241 0 40 40.0434
1 .0 X} 41 41.39626 1 .246 0 40 40.1310
1 .0 X) 41 41.30900 1 .251 0 40 40.21 88
1 .0 X) 41 41.22173 1 .256 0 40 40.3069
1 .0 10 41 41 .1 3446 1 .260 0 40 +0.3955
1 .0 X) 41 41 .04720 1 .265 0 40 40.4845
1 .0 X) 41 40.95993 1 .269 0 40 +0.57 36
1 .0 10 41 40.87266 1 .273 0 40 40.6633
1 .0 10 41 40.78540 1 .277 0 40 40.7530
2.0 X) 41 41 .57080 2.463 0 40 -0.0874
2.0 10 41 41 .48353 2.482 0 40 -0.0007
2.0 X) 41 41.39626 2.501 0 40 40.0867
2.0 X) 41 41.30900 2.521 0 40 40.1747
2.0 10 41 41 .22173 2.541 0 40 40.2635
2.0 X) 41 41.13446 2.560 0 40 40.3530
2.0 10 41 41 .04720 2.579 0 40 40.4432
2.0 X) 41 40.95993 2.599 0 40 40.5341
2.0 10 41 40.87266 2.616 0 40 40.6255
2.0 X) 41 40.78540 2.634 0 40 40.71 80
5.0 X) 41 41 .57080 6.000 0 40 -0.2138
5.0 X) 41 41 .48353 6.109 0 40 -0.1312
5.0 X) 41 41.39626 6.226 0 40 -0.0471
5.0 X) 41 41 .30900 6.350 0 40 40.0386
5.0 X) 41 41 .22173 6 .4 7 9 0 40 40.1261
5.0 X) 41 41.13446 6.615 0 40 40.2154
5.0 X) 41 41 .04720 6.755 0 40 40.3066
5.0 X) 41 40.95993 6.899 0 40 40.4001
5.0 10 41 -40.87266 7.045 0 40 40.4959
5.0 X) 41 40.78540 7.190 0 40 40.5939
1 .0 X) 42 41 . 5 7 0 8 0 1 .105 0 41 - 0 . 3 9 8 4
1 .0 0 42 41 .48353 1 . '3 9 0 41 -0.3278
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MOD ARG

1 .0 e +2 41.39626
1 .0 10 +2 41.30900
1 .0 10 +2 41.22173
1 .0 10 +2 41.13446
1 .0 X) +2 41 .04720
1 .0 X) 42 40.95993
1 .0 10 42 40.87266
1 .0 X) +2 40.78540
2.0 X) 4-2 41 .57080
2.0 10 4-2 41 .48353
2.0 10 ¥2 41.39626
2.0 X) +2 41.30900
2.0 X) +2 41 .22173
2.0 X) 42 41 . 1 34146
2.0 10 +2 41 .04720
2.0 X) +2 40.95993
2.0 10 4-2 40.87266
2.0 10 4-2 40.78540
5.0 X) 4-2 41.57080
5.0 10 4-2 41 .48353
5.0 10 4-2 41.39626
5.0 10 +2 41.30900
5.0 10 +2 41 .22173
5.0 X) +2 41.13446
5.0 X) 4-2 41.04720
5.0 X) 42 40.95993
5.0 10 42 40.87266
5.0 10 42 40.78540
1 .0 10 +3 41 .57080
1 .0 X) +3 41 .48353
1 .0 10 +3 41.39626
1 .0 X) +3 41 .30900
1 .0 X) +3 41.22173
1 .0 10 +3 41.13446
1 .0 E +3 41.04720
1 .0 X) 43 40.95993
1 .0 E +3 40.87266
1 .0 X) +3 40.78540
2.0 E +3 41.57080
2.0 E 43 41 .4875 3
2.0 E +3 41.39626
2.0 E 43 41.30900
2.0 E 43 41 .22173
2.0 E 43 41.13446
2.0 E 43 -̂1 .04 720
2.0 E 42 40.9599 3

mod Y arg Y

.175 E 41 - 0 .2562

.217 E 41 - 0 .1827

.264 E 41 - 0 .1073

.317 E 41 -0 .0293

.378 E 41 40 .0520

.442 E 41 40 .1363

.516 E 41 40 .2256

.599 E 41 40 . 3204

.763 E 41 - 0 .6445

.820 E 41 - 0 .5978

.885 E 41 - 0 .5523

.960 E 41 -0 .5077

.046 E 41 -0 .4646

.149 E 41 -0 .4353

.275 E 41 - 0 .3983

.426 E 41 -0 .3629.610 E 41 - 0 .3299

.839 B 41 - 0 .2992

.501 E 41 - 0 .8488

.513 E 41 -0 .8214

.525 E 41 -0 .7972

.544 E 41 - 0 .7810

.538 E 41 - 0 .7598

.540 E 41 -0 .7478

.535 r 41 - 0 .7413

.525 E 41 - 0 .7414

.507 E 41 - 0 .7484

.479 E 41 - 0 .7651

.254 E 41 - 0 .8337

.233 E 41 - 0 .7946

.207 E 41 - 0 .7554

.176 E 41 - 0 .7159

.1 35 E 41 - 0 .6751

.088 E 41 - 0 .6335

.028 E 41 - 0 .5898

.953 E 41 - 0 .5434

. 862 B 41 - 0 .4929

.748 E 41 - 0 .4 374

. 559 E 41 - 0 .8056

.554 E 41 - 0 .7616

. 551 E 41 - 0 .7171

.549 E 41 - 0 .6720

.550 E 41 - 0 .6271

.557 E 41 - 0 .5807

.573 E 41 - 0 .5338

. ^ 0 2 E 41 - 0 .4 86-1

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3' ij
32
2
2
4
4
4
4
4
4
4
4
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MOD

2.0 £ +3
2.0 X) +3
5.0 X) +3
5.0 X) +3
5.0 X) +3
5.0 X) +35.0 X) +35.0 X) +35.0 X) +35.0 X) +35.0 X) +35.0 X) +3
1 .0 X) +4
1 .0 X) +4
1 .0 X) +4
1 .0 X) +4
1 .0 X) +4
1.0 X) +4
1 .0 X) +4
1.0 X) +4
1 .0 X) +4
1 .0 X) +4
2.0 X) +4
2.0 X) +4
2.0 X) +4
2.0 X) +4
2.0 X) +4
2.0 X) +4
2.0 10 +4
2.0 X) +4
2.0 X) +4
2.0 X) +4
5.0 X) +4
5.0 X) +4
5.0 X) 44
5.0 X) 44
5.0 X) 44
5.0 X) 44
5.0 X) 44
5.0 £ 44
5.0 £ 44
5.0 X) 44
1 .0 10 +5
1 .0 X) +5
1 .0 X) +51 .0 X) +5

ARG
+0.87266 
+0.78540 
41 .57080
+1 .**835341.39626
41.30900 
41 .22173 
41.1 3446
41.04720
40.9599340.87266
40.78540 41 .57080 
41 .4835341.39626
41 .30900
41.22173
41.13446 
41 .04720
40.95993
40.87266
40.78540
41.5708C 
41 .48353
41 .39626 
41 .30900 
41 .22173
41.13446
41.04720
40.95993
40.87266
40.78540
41.57080
41 .4835341.3962641.30900
41.22173
41.13446
41.04720
40.95993
40.87266
40.7854041.57080 
41.4835341.3962641.30900

mod Y

41 
41 
41 
41 
41 
41 
41 
41 
41 
41 
41
41
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
42

arg Y

-0.4379
-0.3857
-0.7991
-0.7561
-0.7129
-0.6698
-0.6266
-0.5832
-0.5398
-0.4954
-0.4508
-0.4044 
-0.7954 
-0.7518 
-0.7086 
-0.6654 
-0.6221 
-0.5789 
-0.5356 
-0.4921 
-0.4487 
-0.4048 
- 0.7922 
-0.7491 
-0.7058 
-0.6622 
- 0.6192 
-0.5755
-0.53e2
-0.4886
-0.4453
-0.4017
-0.7895
-0.7463
- 0.7028
-0.6594
- 0.6161
-0.5723
-0.5289
-0.4846
-0.4416
-0.3971
-0.7885
-0.7448
- 0.7012
-0.6593

4.651 X?
4.726 X)7.166 X}7.161 X)
7.157 X)
7.151 X)
7.145 X)
7.138 X)
7.117 X)7.121 X)
7.085 £7.060 £
1 .010 £
1 .009 £
1 .009 £
1 .008 £
1 .008 £
1 .007 £
1 .007 £
1 .006 £
1 .005 £
1 .004 £
1 .423 £
1 .423 £
1 .423 £
1 .423 £
1 .422 £
1 .422 £
1 .422 £
1 .420 £
1 .419 £
1 .419 £
2.245 £
2.245 £
2.245 £
2.244 £
2.245 £
2.243 £
2.244 £
2.24 3 £
2.239 £
2.241 £3.172 £3.172 £
3.170 £
3.172 £
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MOD ARG

1 .0 D +5 41 .22173
1 .0 D +5 41 .1 3^(46
1 .0 10 +5 41 .04720
1 .0 » +5 40.95993
1 .0 K +5 40.87266
1 .0 » +5 40.78540
2.0 D +5 41.57080
2.0 r +5 41 .48353
2.0 X) +5 41.39626
2.0 X) +5 41.30900
2.0 re +5 41.22173
2.0 » +5 41 .13446
2.0 X) +5 41 .04720
2.0 10 +5 40.95993
2.0 X) +5 40.87266
2.0 s +5 40.78540
3.0 X) +5 41 .57080
5.0 X) +5 41.48353
5.0 X) +5 41.39626
5.0 X) +5 41.30900
5.0 X) +5 41 .22173
5.0 10 +5 41 .1 3446
5.0 X) +5 41.04720
5.0 10 +5 40.95993
5.0 X) +5 40.87266
5.0 X) +5 40.785^0
1 .0 X) 46 41 .57080
1 .0 X) 46 41.48353
1 .0 X) 46 41.39626
1 .0 X) 46 41.30900
1 .0 X) 46 41.22173
1 .0 X) 46 41.13446
1 .0 X) 46 41.04720
1 .0 X) 46 40.95993
1 .0 X) 46 40.87266
1 .0 X) 46 40.785^0
2.0 X) 46 41.57080
2.0 10 46 41 .48353
2.0 10 46 41.39626
2.0 X) 46 41.30900
2.0 X) 46 41 .22173
2.0 X) 46 41 .1 3446
2.0 10 46 41 .04720
2.0 10 46 40.95993
2.0 X) 46 40.87266
2.0 X) 46 40.78540

aod Y arg Y
.186 X) +2 -o.6i30
.171 re +2 -0.5708
.169 X) +2 -0.5263
.167 re 4-2 -0.4830
.163 ID +2 -0.4413
.167 ID +2 -0.3965
.478 0 +2 -0.7846
.481 X) +2 -0.7440
.481 X> 4-2 -0.7004
.473 X) +2 -0.6578
.487 re 42 -0.6148
.478 X) 42 -0.5680
.468 X) 42 -0.5283
.478 re 42 -0.4825
.478 D 42 -0.4392
.476 V 42 -0.3881
.077 re 42 -0.7865
.087 re 42 -0.7429
.079 re 42 -0.6997
.077 re 42 -0.6551.096 re 42 -0.6122.076 re 42 -0.5686
.080 re 42 -0.5256
.077 re 42 -0.4814
.078 re 42 -0.4 388
.077 0 42 -0.3945
.000 re +3 -0.7877
.001 re 4*3 -0.7428
.997 re 42 -0.6988
.001 re 4-3 -0.6555
.001 10 4-3 -0.6123
.001 re 4-3 -0.5685
.001 re +3 -0.5247
.001 re 4-3 -0.4812
.914 re 42 -0.4436
.001 re 4-3 -0.3940.415 re 4-3 -0.7859.415 0 4*3 -0.7423.415 re 4*3 -0.6991
.^15 re 4*3 -0.6551
.414 re 4*3 -0.6125
.^15 re 4*3 -0.5680
.415 re 4*3 -0.5244
.417 re 4*3 -0.4801
.415 re +3 -0.4373
.416 re 4*3 -0.3950

3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
7
7
7
7
7
7
7
7
7
7
1
1
9
1
1
1
1
1
9
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MOD ARG

5.0 x> 46 4-1 .57080 2.
5.0 10 46 +1 .48353 2.
5.0 K> 46 41.39626 2.
5.0 X) +6 4-1 . 30900 2.
5.0 D 46 4-1 .22173 2.
5.0 X) 46 4-1 .1 3446 2.
5.0 X} 46 4-1 .04720 2.
5.0 X) 46 40.95993 2.
5.0 X) 4-6 40.87266 2.
5.0 X) 46 40.78540 2.
1 .0 X) +7 41 .57080 3.1 .0 X) 4-7 +1 .48353 3.
i .0 X) 4-7 41.39626 3.
i .0 10 4-7 41.30900 3.1 .0 X) 4-7 4-1 .22173 3.
i .0 X) 4-7 4-1 .1 34 46 3.1 .0 X) 4-7 4-1 .04720 3.
i .0 X) 4-7 40 . 95993 3.
1 .0 X) 4-7 40.87266 3.1 .0 X) 4-7 40.78540 3.

Y arg Y

B +3 -0.7857
B +3 -0.7^13
B +3 -0.6990
B +3 -0.6551
B +3 -0.6118
B +3 -0.5676
B +3 -0.5199
B +3 -0.4809
B +3 -0.4362
B +3 -0.3934
B +3 -0.7856
B +3 -0.7405
B +3 -0.6986
B +3 -0.6549
B +3 - O.6119
B +3 -0.5677
B +3 -0.5251
B +3 -0.4800
B +3 -0.4445
B +3 -0.3947

mod

2 37
247
236
237
236
241
2 34236
229
237
163
1 54164
164
163
163160
164
158
144



Interpolation for main table
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MOD range ARG Coef f

1 .0 0 — 1 -> 2.0 X) 1 41 .57080 41.000
1 .0 10 - 1 -> 2.0 X) - 1 +1 .48353 +0.9991 .0 0 -1 -> 2.0 X) -1 4 1.39626 41 .000
1 .0 0 -1 -> 2.0 X) - 1 4 1.30900 41.000
1 .0 0 - 1 -> 2.0 X) — 1 41.22173 +1.000
1 .0 0 - 1 -> 2.0 x> -1 41.13446 +0.999
1 .0 K) - 1 -> 2.0 X) - 1 41 .04720 41 .000
1 .0 0 - 1 -> 2.0 0 — 1 +0.95993 +1 .000
1 .0 X) — 1 -> 2.0 X) — 1 40.87266 41 .000
1 .0 X) - 1 -> 2.0 X) -1 40.78540 +1.000
2.0 X) -  1 -> 5.0 X) — 1 41 .57080 41.000
2.0 X) -  1 -> 5.0 X) - 1 +1 .48353 41 .000
2.0 X) -  1 -> 5.0 X) -  1 41.39626 41 .000
2.0 X) -  1 -> 5.0 X) -  1 41.30900 41 .000
2.0 0 - 1 -> 5.0 X) - 1 41 .22173 +0.999
2.0 X) -1 -> 5.0 X) - 1 41.1 3446 +0.999
2.0 X) -  1 -> 5.0 X) - 1 41.04720 +0.999
2.0 X) - 1 -> 5.0 X) - 1 +0.95993 +0.999
2.0 X) - 1 -> 5.0 X) — 1 40.87266 +0.999
2.0 X) - 1 -> 5.0 X) - 1 40.78540 +0.999
5.0 X) - 1 -> 1 .0 X) 40 41 .57080 41 .000
5.0 X) - 1 -> 1 .0 X) 40 41 .48353 41 .000
5.0 X) - 1 -> 1 .0 X) 40 41.39626 41 .000
5.0 x> - 1 -> 1 .0 X) 40 41 .30900 +0.999
5.0 X) - 1 -> 1 .0 X) 40 41 .22173 +0.999
5.0 X) — 1 -> 1 .0 X) 40 41 .13446 +0.999
5.0 X) - 1 -> 1 .0 0 40 41.04720 +0.998
5.0 10 - 1 -> 1 .0 0 40 +0.95993 +0.999
5.0 X) — 1 -> 1 .0 0 40 +0.87266 +0.998
5.0 X) -1 -> 1 .0 0 40 +0.78540 +0.998
1 .0 X) -HO -> 2.0 0 40 +1 .57080 41 .000
1 .0 X) 40 -> 2.0 0 40 41 .48353 +0.999
1 .0 X) 40 -> 2.0 0 40 41 .39626 +0.999
1 .0 X) 40 -> 2.0 0 40 41.30900 +0.999
1 .0 X) 40 -> 2.0 0 40 41.22173 +0.998
1 .0 X) 40 -> 2.0 0 40 41 . 1 3446 +0.997
1 .0 X) 40 -> 2.0 0 40 41 .04720 +0.997
1 .0 0 40 -> 2.0 0 40 +0.95993 +0.996
1 .0 X) 40 -> 2.0 0 40 +0.87266 +0.996
1 .0 X) 40 -> 2.0 0 40 +0.78540 +0.995
2.0 X) 40 -> 5.0 0 40 41.57080 41 .000
2.0 X) 40 -> 5.0 0 40 +1 .48353 +0.999
2.0 X) 40 -> 5.0 0 40 41.39626 +0.998
2.0 X) 40 -> 5.0 0 40 41.30900 +0.996
2.0 X) 40 -> 5.0 0 40 41 .22173 +0.99 6
2.0 0 40 -> 5.0 0 40 41 .1 3446 +0.994
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MOD range ARG Coeff
2.0 10 +0 -> 5.0 X) 40 41 .04720 40.993
2.0 x>+0 -> 5.0 X) 40 +0.95993 40.992
2.0 K> 40 -> 5.0 X) 40 40.87266 40.991
2.0 JO 40 -> 5.0 X) 40 40.78540 40.990
5.0 X) 40 -> 1 .0 X) 41 41.57080 41.002
5.0 X) 40 -> 1 .0 X) 41 41.48353 40.999
5.0 X) 40 -> 1 .0 r 41 41 .39626 40.996
5.0 X) 40 -> 1 .0 JO 41 41 .30900 40.993
5.0 10 40 -> 1 .0 JO 41 41 .22173 40.990
5.0 X) 40 -> 1 .0 JO 41 41 .1 3446 40.987
5.0 10 40 -> 1 .0 JO 41 41 .04720 40.985
5.0 X) 40 -> 1 .0 JO 41 40.95993 40.983
5.0 10 40 -> 1 .0 JO 41 40.87266 40.981
5.0 X) 40 -> 1 .0 JO 41 40.78540 40.978
1 .0 X) 41 -> 2.0 JO 41 41 .57080 41 .005
1 .0 X) 41 -> 2.0 JO 41 41 .48353 41.000
1 .0 X) 41 -> 2.0 JO 41 41.39626 40.99^
1 .0 JD 41 -> 2.0 JO 41 41 .30900 40.989
1 .0 X) 41 -> 2.0 JO 41 41.22173 40.984
1 .0 X) 41 -> 2.0 JO 41 41 .13446 40.978
1 .0 X) 41 -> 2.0 JO 41 41 .04720 40.972
1 .0 X) 41 -> 2.0 JO 41 40.95993 40.967
1 .0 X) 41 -> 2.0 JO 41 40.87266 40.962
1 .0 X) 41 -> 2.0 JO 41 40.785^0 40.957
2.0 10 +1 -> 5.0 JO 41 41 .57080 41 .029
2.0 X) 41 -> 5.0 JO 41 41 .48353 41 .017
2.0 X) 41 -> 5.0 JO 41 41.39626 41 .005
2.0 10 41 -> 5.0 JO 41 41.30900 40.992
2.0 X) 41 -> 5.0 JO 41 41.22173 40.979
2.0 10 41 -> 5.0 JO 41 41.13^46 40.965
2.0 JO 41 -> 5.0 JO 41 41 .04720 40.952
2.0 JO 41 -> 5.0 JO 41 40.95993 40.939
2.0 10 41 -> 5.0 JO 41 40.87266 40.925
2.0 X) 41 -> 5.0 JO 41 40.78540 40.913
5.0 X) 41 -> 1 .0 JD 42 41 .57080 41 .136
5.0 X) 41 -> 1 .0 JO 42 41 .48353 41 .1 1 3
5.0 D 41 -> 1 .0 JD 42 41.39626 41 .091
5.0 X) 41 -> 1 .0 JD 42 41.30900 41 .065
5.0 X) 41 -> 1 .0 JD 42 41.22173 41 .037
5.0 X) +1 -> 1 .0 JD 42 41 .1 3446 41.007
5.0 1C 41 -> 1 .0 XI 42 41 .04720 40.972
5.0 X) 41 -> 1 .0 10 42 40.95993 40.9^0
5.0 X) 41 -> 1 .0 10 42 40.87266 40.904
5.0 10 41 -> 1 .0 JO 42 40.78540 40.867
1 .0 JD +2 -> 2.0 10 42 41 .57080 41 .483
1 .0 10 +2 -> 2.0 10 42 41 .48353 41 .479



191

MOD range ARG Coeff

1 .0 B +2 -> 2.0 B 42 41 .39626 41 .4671 .0 10 +2 -> 2.0 B 42 +1 .30900 +1 .4551 .0 b +2 -> 2.0 B 42 41 .22173 41 .440
1 .0 » +2 -> 2.0 B 42 +1.13446 41.414
1 .0 x> +2 -> 2.0 B 42 41 .04720 41.382
1 .0 X) +2 -> 2.0 B 42 40.95993 +1 .3331 .0 X) +2 -> 2.0 B 42 40.87266 41 .2771 .0 B +2 -> 2.0 B 42 40.78340 41 .2082.0 B +2 -> 5.0 B 42 41 .57080 42.6182.0 B +2 -> 5.0 B 42 41 .48353 42.8372.0 X) +2 -> 5.0 B 42 41.39626 +3.1382.0 B +2 -> 5.0 B 42 41.30900 +3.5142.0 B +2 -> 5.0 B 42 41.22173 +4.2512.0 B +2 -> 5.0 B 42 41.13446 +5.4942.0 B 42 -> 5.0 B 42 41 .04720 +8.459
2.0 B 42 -> 5.0 B 42 40.95993 422.988
2.0 B 42 -> 5.0 B 42 40.87266 -22.808
2.0 B 42 -> 5.0 B 42 40.78540 -6.753
5.0 B 42 -> 1 .0 B 43 41 .57080 +2.635
5.0 B 42 -> 1.0 B 43 41 .48353 +2.752
5.0 B 42 -> 1 .0 B 43 41.39620 +2.895
5.0 B 42 -> 1.0 B 43 41.30900 +3.127
5.0 B 42 -> 1.0 B 43 41 .22173 +3.283
5.0 B 42 -> 1 .0 B 43 41 .1 3446 +3.544
5.0 B 42 -> 1 .0 B 43 41 .04720 +3.906
5.0 B 42 -> 1 .0 B 43 40.95993 44 . 420
5.0 B 42 -> 1 .0 B 43 40.87266 +5.239
5.0 B 42 -> 1.0 B 43 40.78540 +6.733
1 .0 B 43 -> 2.0 B 43 41 .57080 +2.055
1 .0 B 43 -> 2.0 B 43 41 .48353 42.023
1 .0 B 43 -> 2.0 B 43 41.39626 41 .981
1 .0 B 43 -> 2.0 B 43 41 .30900 41 .928
1 .0 B 43 -> 2.0 B 43 41 .22173 41 .860
1 .0 B 43 -> 2.0 B 43 41 .13446 41 .781
1 .0 B 43 -> 2.0 B 43 41 .04720 41 .680
1 .0 B 43 -> 2.0 B 43 40.95993 +1 .563
1 .0 B 43 -> 2.0 B 43 40.87266 41 .427
1 .0 B 43 -> 2.0 B 43 40.78540 41 .278
2.0 B 43 -> 5.0 B 43 41 .57080 42.026
2.0 B 43 -> 5.0 B 43 41 .48353 42.025
2.0 B 43 -> 5.0 B 43 41.39626 42.024
2.0 B 43 -> 5.0 B 43 41.30900 42.026
2.0 B 43 -> 5.0 B 43 41 .22173 42.030
2.0 >3 43 -> 5.0 B 43 41 .1 3446 42 . 031
2.0 B 43 -> 5.0 B 43 41 .04720 42.072
2.0 B 43 -> 5.0 B 43 40.95993 42.099



'MOD range
2.0 b +3 -> 5.0
2.0 b +3 -> 5.0
5.0 K> +3 -> 1 .0
5.0 K +3 -> 1 .0
5.0 X) +3 -> 1 .0
5.0 10 +3 -> 1 .0
5.0 B -►3 -> 1 .0
5.0 B +3 -> 1 .0
5.0 » +3 -> 1 .0
5.0 D +3 -> 1 .0
5.0 B +3 -> 1 .0
5.0 B ♦3 -> 1 .0
1 .0 10 +4 -> 2.0
1 .0 X) +4 -> 2.0
1 .0 X) +4 -> 2.0
1 .0 X) -Mi -> 2.0
1 .0 X) -Mi -> 2.0
1 .0 10 -Mi -> 2.0
1 .0 X) -Mi -> 2.0
1 .0 X) -Mi -> 2.0
1 .0 X) -Mi -> 2.0
1 .0 X) -Mi -> 2.0
2.0 X) -Mi -> 5.0
2.0 X) -Mi -> 5.0
2.0 X) -Mi -> 5.0
2.0 10 -Mi -> 5 . 0
2.0 B -Mi -> 5.0
2.0 10 -Mi -> 5.0
2.0 B -Mi -> 5 . 0
2.0 X) -Mi -> 5 . 0
2.0 X) -Mi -> 5 . 0
2.0 X) -Mi -> 5.0
5.0 B -Mi -> 1 .0
5.0 X) -Mi -> 1 .0
5.0 X) -Mi -> 1 .0
5.0 X) -Mi -> 1 .0
5.0 X) -Mi -> 1 .0
5.0 10 -Mi -> 1 .0
5.0 B -Mi -> 1 .0
5.0 X) -Mi -> 1 .0
5.0 X) -Mi -> 1 .0
5.0 X) -Mi -> 1 .0
1 .0 X) + 5  -> 2.0
1 .0 X) +5 -> 2.0
1 .0 X) +5 -> 2.0
1 .0 X) +5 -> 2.0

ARG C o e f f

b +3 4 0 .87 26 6 42.1 77
b +3 4 0 .7 8 5 4 0 42 . 2 83
b 44 4 1 .5 7 0 8 0 4 2 .0 1 9
X) -Mi 41 .48 35 3 42.021
X) -Mi 41 .39 62 6 4 2 .0 2 0
X) -Mi 4 1 .3 0 9 0 0 4 2 . 0 1 8
X) +4 +1 .22173 4 2 .0 1 6
X) -Mi 4-1 .1 3446 4 2 .0 2 8
X) -Mi + 1 .04 72 0 4 2 .0 0 0
x> -Mi 4 0 .9 5 9 9 3 4 2 .00 6
X) -Mi 40 .8 7 2 6 6 41 .981
X) -Mi 4 0 .7 8 5 4 0 41 .966
X) -Mi 41 .57080 4 2 .0 2 3
B -Mi 41 .48353 4 2 .0 1 7
x> -Mi 4 1 .39626 4 2 .01 4
B -Mi 41 .30900 42 .012
B -Mi 41 .22173 4 2 .0 1 2
B -Mi 41 .13 44 6 4 2 .0 0 9
X) -Mi 4 1 .0 4 7 2 0 4 2 .0 0 8
X) +4 4 0 .9 5 9 9 3 4 2 .0 1 0
X) -Mi 4 0 .8 7 2 6 6 4 2 .0 0 9
X) -Mi 4 0 .7 8 5 4 0 4 2 .0 0 6
B -1-4 41 .57 08 0 4 2 .0 0 9
B -Mi 4-1 .48353 4 2 .0 1 0
B -Mi 41 .39626 4 2 .0 1 0
B -Mi + 1 .3 0 9 0 0 42 .01 0
B -Mi +1 .22 17 3 4 2 .0 0 7
B -Mi 4-1 .1 3446 4 2 .0 1 0
B -Mi 4-1 .04720 4 2 .0 0 8
B -Mi 4 0 .9 5 9 9 3 42 .00 4
B -Mi 4 0 .8 7 2 6 6 42.011
B -Mi 4 0 .7 8 5 4 0 4 2 .0 0 4
B +5 + 1 .5 7 0 8 0 4 2 .0 0 5
B +5 41 .48353 4 2 .0 0 5
B +5 +1 .39626 4 2 .0 0 9
B +5 41 . 30900 42 .00 4
B +5 4 1 .2 2 1 7 3 4 1 .9 7 9
B +5 41 . 13446 42 .00 4
B +5 4-1 .04 72 0 4 2 .0 0 7
B +5 4 0 .9 5 9 9 3 4 2 .0 0 9
B +5 4 0 .8 7 2 6 6 4 2 .0 0 6
B +5 4 0 .7 8 5 4 0 4 2 .0 0 6
B +5 4-1 .57080 4 2 .0 1 0
B +5 4-1 .48353 4 2 .0 0 6
B +5 4-1 . 39626 4 2 .0 0 3
X) +5 4 1 .3 0 9 0 0 42 .016
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*OD range
1 .0 JD +5 -> 2.0 X) +5
1 .0 X) +5 -> 2.0 X) +5
1 .0 X) +5 -> 2.0 X) +5
1 .0 X) +5 2.0 X) +5
1 .0 X) +5 2.0 X) +5
1 .0 D +5 -> 2.0 X) +5
2.0 X) +5 -> 5.0 X) +5
2.0 X) +5 -> 5.0 10 +5
2.0 X) +5 -> 5.0 JD +5
2.0 X) +5 -> 5.0 JD +5
2.0 X) +5 -> 5.0 JD +5
2.0 D +5 -> 5.0 JD +5
2.0 X) +5 -> 5.0 JD +5
2.0 X) +5 -> 5.0 JD +5
2.0 X) +5 -> 5.0 X> +5
2.0 JD +5 -> 5.0 10 +5
5.0 X) +5 -> 1 .0 JD +6
5.0 X) ■̂5 -> 1 .0 JD 46
5.0 X) +5 -> 1 .0 JD 46
5.0 JD +5 -> 1 .0 JD 46
5.0 X) +5 -> 1 .0 JD 46
5.0 X) +5 -> 1 .0 JD 46
5.0 » +5 -> 1 .0 JD 46
5.0 X) +5 -> 1 .0 JD 46
5.0 X) +5 -> 1 .0 JD 46
5.0 X) +5 -> 1 .0 X> 46
1 .0 X) +6 -> 2.0 JD 46
1 .0 X) 46 -> 2.0 JD 46
1 .0 X3 46 -> 2.0 JD 46
1 .0 X) 46 -> 2.0 JD 46
1 .0 X) 46 -> 2.0 JD 46
1 .0 X) 46 -> 2.0 JD 46
1 .0 X) 46 -> 2.0 JD 46
1 .0 X) 46 -> 2.0 JD 46
1 .0 X) 46 -> 2.0 JD 46
1 .0 X) 46 -> 2.0 JD 46
2.0 X) 46 -> 5.0 JD 46
2.0 X) 46 -> 5.0 JD 46
2.0 X) 46 -> 5.0 JD 46
2.0 x> 46 -> 5.0 JD 46
2.0 ID 46 -> 5.0 JD 46
2.0 X) 46 -> 5.0 JD 46
2.0 X) 46 -> 5.0 JD 46
2.0 X) 46 -> 5.0 JD 46
2.0 X) 46 -> 5.0 JD 46
2.0 JD 46 -> 5.0 X) 46

ARG C o e f f

4-1 .221 73 4 2 .0 2 5
41 .1 3446 4 2 .0 0 7
4 1 .0 4 7 2 0 4 2 .0 1 8
4 0 .9 5 9 9 3 42.001
4 0 .8 7 2 6 6 4 1 .9 9 4
4 0 .7 8 5 4 0 4 2 .0 0 3
4 1 .5 7 0 8 0 4 2 .0 0 2
41 .48353 4 1 .9 9 9
4 1 .39626 4 2 .0 0 3
4 1 . 30900 4 1 .9 9 7
4 1 .2 2 1 7 3 4 1 .9 9 9
4 1 . 1 3446 4 2 .0 0 3
4 1 .0 4 7 2 0 41.991
4 0 .9 5 9 9 3 4 2 .0 0 2
4 0 .87 26 6 42 .00 2
4 0 .7 8 5 4 0 4 2 .0 0 0
41 .57080 4 2 .0 0 2
41 .48353 4 2 .0 0 8
4 1 .3 9 6 2 6 4 2 .0 0 8
41 .30900 4 2 .0 0 0
4 1 .2 2 1 7 3 42 .01 6
4 1 .13 44 6 41 .997
4 1 .0 4 7 2 0 42 .00 2
4 0 .9 5 9 9 3 4 2 .0 0 2
4 0 .8 7 2 6 6 4 2 .0 5 7
4 0 .7 8 5 4 0 42.001
41 .57080 4 2 .0 0 0
41 .48353 42.001
4 1 .39 62 6 4 1 .99 6
4 1 . 30900 4 2 .00 2
41 .22173 4 2 .0 0 5
4 1 . 1 3446 4 2 .0 0 3
4 1 .0 4 7 2 0 42.001
4 0 .9 5 9 9 3 41.991
4 0 .8 7 2 6 6 41 .947
4 0 .7 8 5 4 0 4 1 .9 9 6
4 1 . 57080 42.001
4 1 .4 8 3 5 3 4 1 .9 8 3
4 1 .39626 42.001
4 1 .3 0 9 0 0 4 2 .0 0 0
4 1 .2 2 1 7 3 4 2 .0 0 0
4 1 .13 44 6 + 1 .9 9 3
41 .04720 4 2 .0 0 6
4 0 .9 5 9 9 3 4 2 .0 1 0
4 0 .87266 4 2 . 0 1 8
4 0 .7 8 5 4 0 42 .004
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MOD range ARG Coeff
5 . 0 46 -> 1 .0 X) +7 4-1 .57080 4-2 .000
5 . 0 10 46 -> 1 .0 X) +7 +1 .48353 4-2.043
5 . 0 s 46 -> 1 .0 10 +7 4-1 .39626 4-1 .997
5 . 0 10 46 -> 1 .0 X) +7 4-1 .30900 4-2.000
5 . 0 D 46 -> 1 .0 X) +7 4-1 .22173 4*1 .997
5 . 0 X> 46 -> 1 .0 X) +7 4-1 .1 3446 42 .01 2
5 . 0 X) 46 -> 1 .0 X) 4*7 4-1 .04720 4-2.000
5 . 0 X) 46 -> 1 .0 » +7 4 0 .9 5 9 9 3 4-1 .996
5 . 0 X) 46 -> 1 .0 +7 40 .87 26 6 4-1 .989
5 . 0 X) 46 -> 1 .0 » 4-7 4-0.78540 4-2.037

>



195

Sub -  -table (MOD s 50 -  5000)
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MOD ARG mod a r g  Y

5 . 0 B +1 -41 .57 08 0 6 .0 0 0 x> +0 - 0 . 2 1 3 8
5 . 0 X) -1-1 +1 .48353 6 .1 0 9 X7 +0 - 0 .1 3 1 2
5 . 0 X) -1-1 -41 . 39626 6 .2 2 6 X} 40 -0 .0 4 7 1
5 . 0 X) +1 -41 . 30900 6 .3 5 0 X) +0 40 .0 3 8 6
5 . 0 X) +1 -41 .22173 6 .4 7 9 X) 40 +0 .1 2 6 1
5 . 0 X) +1 4-1 .1 3446 6 .6 1 5 X) 40 +0.21 54
5 . 0 X) +1 -41 .04 72 0 6 .7 5 5 X) 40 4 0 .3 0 6 6
5 . 0 X) +1 +0 .9 5 9 9 3 6 .8 9 9 X) 40 40.4001
5 . 0 X 4-1 4 0 .8 7 2 6 6 7 .0 4 5 ID 40 4 0 .4 9 5 9
5 . 0 X) +1 4 0 .7 8 5 4 0 7 .1 9 0 X) 40 + 0 .5 9 3 9
6 . 9 X) +1 + 1 .5 7 0 8 0 7 .5 3 6 D +0 - 0 . 2 6 9 4
6 . 9 X) 4-1 +1 .4 8 3 5 3 7 .7 0 5 X) 40 - 0 . 1 8 9 7
6 . 9 X) 4-1 +1 .39626 7 .8 8 8 B 40 - 0 . 1 0 8 3
6 . 9 X) 4-1 4-1 .30 90 0 8 .0 8 7 X) 40 - 0 .0 2 5 2
6 . 9 B 4-1 +1 .22 17 3 8 .2 9 8 X) 40 +0 . 0 6 0 0
6 .9 X) -1-1 4-1 .1 3446 8 .5 2 5 X) 40 + 0 .1 4 7 5
6 . 9 X) 4-1 + 1 .0 4 7 2 0 8 .7 6 4 X) +0 4 0 .2 3 7 6
6 . 9 X) -1-1 + 0 .9 5 9 9 3 9 .0 1 6 X) 40 4 0 .3 3 0 5
6 .9 X) 4-1 +0 .8 72 66 9 .2 7 8 X) 40 4 0 .4 2 6 5
6 . 9 B 4-1 4 0 .7 8 5 4 0 9 .5 4 9 X) 40 + 0 .5 2 5 8
8 . 0 B 4-1 -41 .57 08 0 9 .1 7 8 X) 40 - 0 . 3 2 9 3
8 . 0 X) +1 +1 .48353 9.421 X) +0 - 0 . 2 5 3 5
8 .0 X) +1 + 1 .39626 9 .6 8 9 B 40 - 0 . 1 7 6 2
8 .0 X) 4-1 4-1 .30900 9 .9 8 3 B +0 - 0 . 0 9 6 9
8 . 0 X) 4-1 +1 .22 17 3 1 .03 0 B +1 - 0 . 0 1 5 3
3 . 0 X) 4-1 -41 .1 3446 1 .066 B +1 4 0 .0 6 8 8
8 . 0 X) 4-1 +1 .0 4 7 2 0 1 .104 B +1 +0.1 557
8 . 0 X) +1 +0 .95 99 3 1 .146 B +1 4 0 .2 4 6 3
8 . 0 X) 4-1 4 0 .8 7 2 6 6 1 .190 B +1 4 0 .3 4 0 7
8 . 0 X} 4-1 + 0 .7 8 5 4 0 1 .23 8 B + 1 + 0 .4 3 9 7
1 .0 X) 4-2 +1 .57 08 0 1 .105 B +1 - 0 . 3 9 8 4
1 .0 X) 42 +1 .48353 1 .139 B +1 - 0 . 3 2 7 8
1 .0 X) 4-2 +1 .39626 1 .175 B +1 - 0 . 2 5 6 2
1 .0 r 4-2 +1 .30900 1 .217 B 4-1 - 0 . 1 8 2 7
1 .0 X) 4-2 + 1 .22173 1 .264 B +1 - 0 . 1 0 7 3
1 .0 X) 4-2 +1 .13446 1 .317 B +1 - 0 . 0 2 9 3
1 .0 X) 4-2 +1 .04720 1 .378 B 4-1 + 0 .0 5 2 0
1 .0 x> 4-2 + 0 .9 5 9 9 3 1 .442 B + 1 +0 .1  363
1 .0 X) 4-2 4 0 .8 7 2 6 6 1 .516 B 4-1 4 0 .2 2 5 6
1 .0 X) 4-2 4 0 .7 8 5 4 0 1 .599 B 4-1 +0 .3 20 4
1 .2 X) 4-2 +1 .57080 1 .271 B +1 - 0 . 4 6 0 3
1 .2 X) 4-2 +1 .48353 1 .312 B 4-1 - 0 . 3 9 5 6
1 .2 X) 4-2 +1 .39626 1 .359 B + 1 - 0 . 3 2 9 8
1 .2 X) +2 +1 .30 90 0 1 .412 B 4-1 - 0 . 2 6 2 8
1 .2 X) -42 +1 .22173 1 .47 3 B + 1 - 0 . 1 9 4 3
1 .2 X) -42 +1 .13446 1 .542 B 4-1 - 0 . 1 2 3 9
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MOD ARG mod Y arg Y
1 .2 B +2 4-1
1 .2 B 42 40
1 .2 9 42 40
; .2 9 4-2 40
1 .6 9 42 41
1 .6 9 4-2 41
1 .6 9 4-2 41
1 .6 9 4-2 4-1
1 .6 9 42 41
1 .6 9 42 4-1
1 .6 9 42 41
1 .6 9 42 40
1 .6 9 42 40
1 .6 9 42 40
2.0 9 42 4-1
2.0 9 42 4-1
2.0 9 42 4-1
2.0 9 4-2 4-1
2.0 9 4-2 4-1
2.0 9 4-2 4*1
2.0 9 4-2 4-1
2.0 9 4-2 40
2.0 9 42 40
2.0 9 42 40
2.5 9 42 4-1
2.5 9 42 4-1
2.5 9 42 41
2.5 9 42 41
2.5 9 4-2 4-1
2.5 9 4-2 4-1
2.5 9 42 4-1
2.5 9 42 40
2.5 9 42 40
2.5 9 4-2 40
3.2 9 +2 41
3.2 9 4-2 41
3.2 9 42 41
3.2 9 42 41
3.2 9 4-2 41
3.2 9 4-2 41
3.2 9 4-2 41
3.2 9 4-2 40
3.2 10 4-2 40
3.2 9 42 40
4 . 0 9 42 41
4 . 0 10 42 41

.0 4 7 2 0  1 .6 2 2

.9 5 9 9 3  1-720

.87266  1 .8 2 7

.78 54 0  1 .951

.57 08 0  1 .5 4 8

.*18357 1 .600

.39626 1 .6 6 0  

.3 0 9 0 0  1 .7 2 9

.22 17 3  1 .8 0 8

.13446  1 .9 0 0

.0 4 7 2 0  2 .0 2 3

.9 5 9 9 3  2 . 1 5 8

.87266  2 .3 2 2

.78 54 0  2 . 5 2 3

.5 7 0 8 0  1 .7 6 3

.4 8 3 5 3  1 .8 2 0

.39626  1 .885

.3 0 9 0 0  1 .9 6 0

.2 2 1 7 3  2 .0 4 6

. 131**16 2 .1 4 9

.0 4 7 2 0  2 .2 7 5

.9 5 9 9 3  2 . 4 2 6

.87 26 6  2 .6 1 0  

.7 8 5 4 0  2 .8 3 9

.5 7 0 8 0  1 .9 6 9

.48 75 3  2 . 0 2 7

.39626 2 . 0 9 3

.30900 2 . 166

.22173  2 . 2 2 7

.13446 2 .3 2 4

.0 4 7 2 0  2 . 4 3 8

.95 99 3  2 . 5 7 5

.87266  2 .7 3 9

.7 8 5 4 0  2 .9 3 6

.5 7 0 8 0  2 .1 5 5

.48 35 3  2 . 1 9 8

.39626  2 .2 4 8

.30 90 0  2 .3 0 3

.2 2 1 7 3  2 .3 6 6

.13446  2 .4 4 6

.04 72 0  2 .5 1 5

.9 5 9 9 3  2 .6 0 5

.87266 2 .7 0 9

.78 54 0  2 . 8 2 8

.57 08 0  2 .3 2 6

.48353  2 .3 5 5

B 41 . 0 .0 5 1 0
B 41 4 0 .0 2 6 0
B 41 4 0 .1 0 7 5
B 41 40 .19^6
B 41 -0 .5 6 4 1
B 41 - 0 . 5 0 9 5
B 41 - 0 . 4 5 5 0
9 41 - 0 . 4 0 0 4
9 41 - 0 . 3 4 5 9
9 41 - 0 . 2 9 1 5
9 41 - 0 .2 4 1 4
9 41 - 0 .1 8 5 4
9 41 - 0 .1 2 7 5
9 41 - 0 .0 6 7 0
9 41 - 0 . 6 4 4 5
9 41 - 0 . 5 9 7 8

41 - 0 . 5 5 2 3
9 41 - 0 .5 0 7 7
9 41 - 0 . 4 6 4 6
9 41 - 0 . 4 3 5 3
B 41 - 0 . 3 9 8 3
B 41 - 0 .3 6 2 9
B 41 - 0 . 3 2 9 9
B 41 - 0 .2 9 9 2
B 41 - 0 . 7 1 8 9
B 41 - 0 .6 8 0 2
B 41 - 0 .6 4 2 4
B 41 - 0 .6 0 6 6
B 41 - 0 . 5 8 7 9
B 41 - 0 . 5 6 3 3
B 41 - 0 .5 4 2 6
B 41 - 0 .5 2 6 6
B 41 -0 .5 1 7 1
B 41 - 0 . 5 1 4 2
B 41 - 0 . 7 8 5 7
B 41 - 0 . 7 5 5 5
B 41 -0 .7 2 8 1
B 41 - 0 . 7 0 4 9
B 41 - 0 . 6 8 5 7
B 41 - 0 . 6 7 5 9
B 41 - 0 .6 6  36
B 41 - 0 . 6 6 2 4
B 41 - 0 . 6 6 9 5
B 41 - 0 . 6 8 6 7
B 41 - 0 . 8 2 6 4
B 41 - 0 . 7 9 9 2
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roD ARG mod Y arg Y

4 0 X) 42 41 .39626 2.386 10 41 -0.7753
lA 0 10 +2 41.30900 2.419 X) 41 -0.7556
k 0 s 4-2 41 .22173 2.453 10 41 -0.7398
a 0 X) 4-2 41 .1 3UU6 2.490 10 41 -0.7297
u 0 10 42 41 .04720 2.527 X) 41 -0.7261
4 0 10 42 40.95993 2.566 x> 41 -0.7294
4 0 10 -42 40.87266 2.605 X) 41 -0.7417
4 0 10 -42 40.78540 2.646 10 41 -0.7637
5 0 X) -42 41 .57080 2.501 X) 41 -0.8488
5 0 X) -42 41 .48353 2.513 X) 41 -0.8214
5 0 X) -42 41 .39626 2.525 X) 41 -0.7972
5 0 X) -42 41 .30900 2.544 X) 41 -0.7810
5 0 10 +2 41.22173 2.538 10 41 -0.7598
5 0 X) -42 41.13446 2.540 X) 41 -0.7478
5 0 10 -42 41.04^20 2.535 X) 41 -0.7413
5 0 X) 42 40.95993 2.525 X) 41 -0.7414
5 0 X) 4-2 40.87266 2.507 X) 41 -0.7484
5 0 X) -42 40.78540 2.479 x> 41 -0.7651
6 4 X) -42 41 .57080 2.^20 10 41 -0.8541
6 4 X} -42 41.48353 2.728 10 41 -0.8279
6 4 X) 4-2 4 1.39626 2.706 X) 41 -0.7956
6 4 X) -42 41.30000 2.691 10 41 -0.7699
6 4 X) 42 41.22173 2.669 X) 41 -0.7467
6 4 X) -4 2 41.13^46 2.638 X) 41 -0.7264
6 4 X) -4 2 41 .04720 2.596 10 41 -0.7099
6 4 10 42 40.95993 2.541 X) 41 -0.6974
6 4 X) 42 40.87266 2.472 X) 41 -0.6897
6 4 X) -42 40.73540 2.395 X) 41 -0.6935
8 0 X) 4-2 41 .57080 2.959 X) 41 -0.8468
8 0 X) -42 41 .48353 2.944 X) 41 -0.8123
8 0 X) 42 4 1.39626 2.923 X) 41 -0.7784
8 0 X) 42 41.30900 2.906 10 41 -0.7496
3 0 10 42 41 .22173 2.856 X) 41 -0.7138
3 0 X) 42 41 .1 3446 2.819 X) 41 - O.6869
3 0 X) 42 41 .04720 2.749 10 41 -0.6520
3 0 X) 42 40.95993 2.672 10 41 -0.6225
3 0 X) 42 40.87266 2.576 X) 4i -0.5942
8 0 X) 42 40.78540 2.457 X) 41 -0.5661
1 0 X) +3 41 .57080 3.254 X) 41 -0.8337
i 0 10 +3 41 .48353 3.233 10 41 -0.7946
1 0 E +3 41.39626 3.207 10 41 -0.7554
1 0 K> +3 41 .30900 3.176 10 41 -0.7159
1 0 » +3 41.22173 3.135 10 41 -0.6751
1 0 10 +3 41.13446 3.088 10 41 -0.6335
l 0 10 43 41 .04720 3.028 10 41 -0.5898
1 0 1C +3 40.95993 2.953 X) 41 -0.5431



MOD ARG

1 .0 V +3 +0.87266 2.
1 .0 X) +3 +0.78540 2.
1 .2 K> +3 +1 .37080 3.
1 .2 X) +3 +1 .48353 3.
1 .2 X) +3 +1.39626 3.
1 .2 X) +3 +1.30900 3.
1 .2 10 +3 + 1 .22173 3-
1 .2 X) +3 +1 .13446 3.
1 .2 JO +3 +1.04720 3.
1 .2 » +3 +0.95993 3.
1 .2 10 +3 +0.87266 3.
1 .2 10 +3 +0.78540 3.
i  .6 X) +3 + 1 .57080 4.
1 .6 X) +3 +1 .48353 4.
l .6 X) +3 +1.39626 4.
1 .6 X> +3 +1.30900 4.
1 .6 X) +3 +1.22173 4.
1 .6 » +3 +1.13446 4.
1 .6 X) +3 +1 .04720 4.
1 .6 XJ +3 +0.95993 4.
1 .6 X) +3 +0.87266 4.
1 .6 X) +3 +0.73540 4.
2.0 X) +3 +1.57080 4.
2.0 X) +3 +1 .48353 4.
2.0 X) +3 +1.39626 4.
2.0 X) +3 +1.30900 4.
2.0 X) +3 +1.22173 4.
2.0 10 +3 +1. 1 3446 4.
2.0 X) +3 +1 .04720 4.
2.0 KJ +3 +0.95993 4.
2.0 10 +3 +0.87266 4.
2.0 X) +3 +0.78540 4.
2.5 X) +3 +1 .57080 5.
2.5 X) +3 + 1  .48353 5.
2.5 10 +3 +1.39626 5.
2 . 5 ID +3 +1.30900 5.
2.5 X) +3 +1 .22173 5.2.5 10 +3 +1.13446 5.
2.5 X) +3 +1.04720 5.
2.5 X) +3 +0.95993 5.
2.5 X) +3 +0.87266 5.
2.5 10 +3 +0.78540 5.
3.2 JO +3 +1 .57080 5.
3.2 X) + 3 +1 .48353 5.
3.2 X) +3 +1.39626 5.
3.2 X) +3 +1.30900 5.

Y arg Y

X) +1 -0.4929
X) +1 -0.9374
X) +1 -0.8230
X) +1 -0.7810
X) +1 -0.7383
» +1 -0.6946
X) +1 -0.6490
X) +1 -0.6016
X) +1 -0.5506
X) +1 -C.4955
X) +1 -0.4339
X) +1 -0.3642
X) +1 -0.8106
X) +1 -0.7663
X) +1 -0.7215
X) +1 -0.6753
X) +1 -0.6286
X) -0.5791
10 +1 -0.5269
X) -0.4714
X) +1 -0.4113
X) -0.3455
10 +1 -O.8056
X) +1 -0.7616
ID +1 -0.7171
X) +1 -0.6720
10 +1 -0.6271
X) +1 -0.5807
10 +1 -0.5338
X) +1 -0.4861
X) +1 -0.4379
X) +1 -0.3857
X) -0.8036
10 +1 -0.7604
X) -0.7168
10 +1 -0.6735
X) +1 -0.6304
10 +1 -0.5876
X) -hi -0.5454
X) +1 -0.5046
X) +1 -0.4665
X) +1 -0.4322
X) +1 -0.8022
» +1 -0.7595
10 +1 -0.7167
10 +1 -0.6740

mod

862
748
539320
498
470
437
401
356
304
242
172076
065
053
041
030
022
01701 8
032
063
559
55^
551
549
550
557
573602
6 5 1726
096
093
093
095098
105
120
142
172
217
756
753
751
748
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MOD ARC

3.2 ID +3 +1 .22173 5.
3.2 B +3 +1.13446 5.
3.2 B +3 +1 .04720 5.3.2 B +3 40.95993 5.
3.2 B +3 40.87266 5.
3.2 B +3 40.78540 5-
4.0 B +3 4 1 .5708O 6 .
4.0 B +3 41 .48353 6 .
4.0 B +3 41 .39626 6 .
4.0 B +3 41 .30900 6 .
4.0 B +3 4 1 .22173 6 .
4.0 B +3 41 .13446 6 .
4.0 B +3 41.04720 6.
4.0 B +3 40.95993 6 .
4.0 B +3 40.87266 6 .
4.0 B +3 40.78540 6 .
5.0 B +3 4 1 .57080 7.
5.0 B +3 41 .48353 7.
5.0 B +3 4 1.39626 7.
5.0 B +3 4 1 .30900 7.
5.0 B +3 41 .22173 7.
5.0 B +3 4 1 .13446 7.
5.0 B +3 41.04720 7.
5.0 B +3 40.95993 7.
5.0 B +3 40.87266 7.
5.0 B +3 40.78540 7.

'ir arg Y

X) + 1 -0.6317
X) 4-1 -0.5907
X) + 1 -0.5491
X) 4-1 -0.5093
X} 4-1 -0.4712
X) 4-1 -0.4350
X) 4-1 -0.8008
X) 4-1 -0.7581
X) 4-1 -0.7150
X) 4-1 -0.6723
X) 4-1 -0.6296
X) 4-1 -0.5922
JD 4-1 -0.5462
X) 4-1 -0.5027
X) 4-1 -0.4625
X) 4-1 -0.4145
X) 4-1 -0.7991
» 4-1 -0.7561
JD 4-1 -0.7129
X) 4-1 -0.6698
X) 4-1 -0.6266
X) 4-1 -0.5870
X) 4-1 -0.5398
X) 4-1 -0.4954
X) 4-1 -0.4508
X) 4-1 -0.4044

mod
ike
749
740
733
719
691
421417
412
407
401
408
378360
331296
166
161
157
151145
1 56
117
121
085060
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Interpolation for sub-table
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MOD range ARG Coeff

5. 0 v + 1 •  s 6 4 B 41 4 1 .5 7 0 8 0 4 1 .083
5 0 V 4 1 — ) 6 4 B 41 4 1 .48333 4 1 . 0 6 4
5 0 B + 1 -) 6 4 B 41 4 1 .3 9 6 2 6 4 1 . 0 4 3
3 0 B + 1 - ) 6 4 B 41 4 1 .3 0 9 0 0 4 1.021
3 0 B + 1 - ) 6 4 B 41 4 1 .2 2 1 7 3 4 0 . 9 9 8
3 0 B 4 1 - ) 6 4 B 41 4 1 .1 3 4 4 6 + 0 .9 7 3
3 0 B 41 - ) 6 4 B 41 4 1 . 0  ̂ 7 2 0 + 0 . 9 4 8
3 0 B + 1 .  y 6 4 B 41 +0 .9 3 9 9 3 + 0 .9 2 2
3 0 B + 1 . y 6 4 B 41 4 0 .8 7 2 6 6 + 0 .8 9 6
3 0 B ■4- 1 —y 6 4 B 41 4 0 .7 8 5 4 0 +0 .8 7 0
6 4 B 4 1 - ) 8 0 B 41 4 1 .5 7 0 8 0 + 1. 132
6 4 B + 1 • y 8 0 B 41 4 1 .4 8 3 3 3 4 1 . 1 1 0
6 4 B 41 .  ) 8 0 B 41 4 1 .3 9 6 2 6 4 1 . 0 8 5
6 4 B 41 — y 8 0 B 41 4 1 . 3 0 9 0 0 + 1 .0 5 9
6 4 B 4 1 .  ) 8 0 B 41 4 1 .2 2 1 7 3 4 1 . 0 3 2
6 4 B 4 1 .  y 8 0 B 41 4 1 .13 4 ^ 6 4 1 . 0 0 0
6 4 B 4 1 -  ) 8 0 B 41 4 1 .0 4 7 2 0 4 0 . 9 6 5
6 4 B 4 1 .  y 8 0 B 41 +0 .9 3 9 9 3 4 0 . 9 3 2
6 4 B 4 1 — y 8 0 B 41 4 0 .8 7 2 6 6 4 0 . 8 9 3
6 4 B 41 •  y 8 0 B 41 4 0 .7 8 5 4 0 4 0 .8 6 0
8 0 B 41 -  y 1 0 B 42 4 1 .5 7 0 8 0 4 1 .2 0 5
8 0 B 4 1 -  y 1 0 B 42 + 1 .4 8 3 3 3 4 1 . 1 78
8 0 B 41 — ) 1 0 B 42 4 1 .39626 + 1.133
8 0 B 4 1 -  ) 1 0 B 42 4 1 . 3 0 9 0 0 41 . 125
8 0 B 41 — y 1 0 B 42 4 1 .2 2 1 7 3 4 1 . 0 8 9
8 0 B 41 .  y 1 0 B 42 4 1 .1 3 4 4 6 + 1 . 0 5 3
8 0 B 4 1 .  ) 1 0 B 42 4 1 .0 4 7 2 0 4 1 . 0 0 9
8 0 B 41 -  ) 1 0 B 42 + 0 .9 3 9 9 3 4 0 . 9 6 9
8 0 B 4 1 -  y 1 0 B 42 4 0 .8 7 2 6 6 4 0 . 9 2 2
8 0 B 41 •  ) 1 0 B 42 4 0 . 7 8 5 4 0 40 .87 1
1 0 B 42 .  y 1 2 B 42 4 1 .5 7 0 8 0 41 .296
l 0 B 42 .  y 1 2 B 42 +1 .4 8 3 3 3 4 1 . 2 8 4
1 0 B 42 — ) 1 2 B 42 4 1 .3 9 6 2 6 41 .254
1 0 B 42 -  ) 1 2 B 42 4 1.30900 4 1 . 2 2 6
1 0 B 42 .  y 1 2 B 42 4 1.22173 4 1 . 1 9 5
l 0 B 42 — y 1 2 B 42 41 . 13446 41 .  154
1 0 B 42 -  y 1 2 B 42 4 1.04720 41 . 1 17
1 0 B 42 — y 1 2 B 42 + 0 .9 3 9 9 3 + 1 .0 3 7
1 0 B 42 — y 1 2 B 42 4 0 . 8 7 2 6 6 + 0 . 9 8 0
l 0 B 42 — y 1 2 B 42 4 0 .7 8 5 4 0 + 0 .9 1 8
l 2 B 42 .  y 1 6 B 42 4 1.57080 + 1 .4 6 2
l 2 B 42 - > 1 6 B 42 +1 .4 8 3 3 3 +1.451
i 2 B 42 - > 1 6 B 42 41.39626 4 1 . 4 4 0
1 2 B 42 -> 1 6 B 42 4 1 . 3 0 9 0 0 4 1 . 4 2 4
l 2 B 42 -> 1 6 B 42 41 .22173 4 1.402
l 2 B 42 -> 1 6 B 42 4 1 . 13446 + 1 .3 7 7
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MOD range ARG Coeff

1 . 2 V + 2 - 1 . 6 B 4 2 4 1 . 0 4 7 2 0 + 1 . 3 0 4
1 . 2 B + 2 - 1 . 6 B 4 2 + 0 . 9 5 9 9 3 + 1 . 2 6 7
1 . 2 B + 2 - 1 . 6 B 4 2 4 0 . 8 7 2 6 6 + 1 . 1 9 9
1 . 2 B + 2 - 1 . 6 B 4 2 4 0 . 7 8 5 4 0 + 1 . 1 1 9
1 . 6 u > 2 - 2 . 0 B 4 2 4 1 . 5 7 0 8 0 + 1 . 7 1 7
1 . 6 B + 2 - 2 . 0 B 4 2 4  1 . 4 8 3 5 3 + 1 . 7 3 8
1 . 6 B + 2 - 2 . 0 B 4 2 4 1 . 3 9 6 2 6 + 1 . 7 5 2
1 . 6 B + 2 - 2 . 0 B 4 2 4 1 . 3 0 9 0 0 + 1 . 7 7 5
1 . 6 B + 2 - 2 . 0 B 4 2 4 1 . 2 2 1 7 3 4 1 . 8 0 6
1 . 6 b + 2 - 2 . 0 B 4 2 4 1 . 1 3 4 4 6 4 1 . 8 1 0
1 . 6 ® 4-2 - 2 . 0 B 4 2 4 1 . 0 4 7 2 0 4 1 . 8 9 8
1 . 6 B 4 2 - 2 . 0 B 4 2 + 0 . 9 5 9 9 3 4 1 . 9 0 6
1 . 6 B 4 2 - 2 . 0 B 4 2 4 0 . 8 7 2 6 6 4  1 . 9 0 9
1 . 6 B 4 2 - 2 . 0 B 4 2 4 0 . 7 8 5 4 0 4 1 . 8 8 8
2 . 0 B 4 2 - 2 . 5 B 4 2 4 1 . 5 7 0 8 0 4 2 . 0 1 1
2 . 0 B 4 2 - 2 . 5 B 4 2 + 1 . 4 8 3 5 3 4 2 . 0 6 5
2 . 0 B 4 2 - 2 . 5 B 4 2 + 1 . 3 9 6 2 6 + 2 . 1 3 3
2 . 0 B 4 2 - 2 . 5 B 4 2 + 1 . 3 0 9 0 0 4 2 . 2 3 1
2 . 0 B 4 2 - 2 . 5 B 4 2 + 1 . 2 2 1 7 3 4 2 . 6 3 2
2 . 0 B 4 2 - 2 . 5 B 4 2 + 1 . 1 3 4 4 6 4 2 . 8 5 7
2 . 0 B 4 2 - 2 . 5 B 4 2 + 1 . 0 4 7 2 0 4 3 . 2 2 2
2 . 0 B 4 2 - 2 . 5 B 4 2 + 0 . 9 5 9 9 3 + 3 . 7 5 0
2 . 0 B 4 2 - 2 . 5 B 4 2 4 0 . 8 7 2 6 6 4 4 . 6 1 4
2 . 0 B 4 2 - 2 . 5 B 4 2 4 0 . 7 8 5 4 0 4 6 . 6 7 5

2 . 5 B 4 2 - 3 . 2 B 4 2 4 1 . 5 7 0 8 0 4 2 . 7 4 7
2 . 5 B 4 2 - 3 . 2 B 4 2 + 1 . 4 8 3 5 3 + 3 . 0 5 2
2 . 5 B 4 2 - 3 . 2 B 4 2 + 1 .3 9 6 2 6 + 3 . 4 5 9
2 . 5 B 4 2 - 3 . 2 B 4 2 + 1 . 3 0 9 0 0 4 4 . 0 4 7
2 . 5 B 4 2 - 3 . 2 B 4 2 + 1 . 2 2 1 7 3

+ 1 . 1 3 4 4 6
4 4 . 0 8 1

2 . 5 B 4 2 - 3 . 2 B 4 2 4 4 . 8 4 0
2 . 5 B 4 2 - 3 . 2 B 4 2 4 1 .04720 + 7 . 9 9 0
2 . 5 B 4 2 - 3 . 2 B 4 2 + 0 . 9 5 9 9 3 + 2 1 . 2 5 3
2 . 5 B 4 2 - 3 . 2 B 4 2 4 0 . 8 7 2 6 6 -22.155
2 . 5 B 4 2 - 3 . 2 B 4 2 4 0 . 7 8 5 4 0 - 6 . 6 0 8

3 . 2 B 4 2 - 4 . 0 B 4 2 4 1 . 5 7 0 8 0 + 2 . 9 1 1
3 . 2 B 4 2 - 4 . 0 B 4 2 + 1 . 4 8 3 5 3 + 3 . 2 3 6
3 . 2 B 4 2 - 4 . 0 B 4 2 4 1 . 3 9 6 2 6 + 3 . 7 4 9
3 . 2 B 4 2 - 4 . 0 B 4 2 4  1 .3 0 9 0 0 + 4 . 5 1 6
3 . 2 B 4 2 - 4 . 0 B 4 2 4 1 . 2 2 1 7 3 4 6 . 1 3 2

3 . 2 B 4 2 - 4.0 B 4 2 4 1 .  1 3 4 4 6 4 1 2 . 4 1 2
3 . 2 B 4 2 •• 4 . 0 B 4 2 4 1  . 0 4 7 2 0 4 4 4 . 3 0 5
3 . 2 B 4 2 - 4 . 0 B 4 2 + 0 . 9 5 9 9 3 - 1 4 . 7 9 3
3 . 2 B 42 - 4 . 0 B 4 2 4 0 . 8 7 2 6 6 - 5 . 7 3 5
3 . 2 B 4 2 - 4 . 0 B 4 2 + 0 . 7 8 5 4 0 - 3 . 3 5 2
4.0 B 4 2 - 5.0 B 4 2 4 1 . 5 7 0 8 0 4 3 . 0 7 8

4.0 B 4 2 - 5.0 B 4 2 + 1 . 4 8 3 5 3 4 3 . 4 2 8



MOD range ARG Coeff

b.o X) +2 - > 5 . 0 b +2 + 1 . 3 9 6 2 6 + 3 . 9 5 0
U.u X> +2 - > 5 . 0 B +2 + 1 . 3 0 9 0 0 + 4 . 4 3 6
4 . 0 X) +2 - > 5 . 0 B +2 + 1 . 2 2 1 7 3 +6 . 5 8 5
4 . 0 n +2 - > 5 . 0 B +2 + 1. 1 3 4 4 6 + 1 1 .3 2 4
4 . 0 X) +2 - > 5 . 0 B +2 + 1. 0 4 7 2 0 + 7 1 . 3 8 6
4 . 0 x> +2 - > 5 . 0 B +2 +O.S5993 - 1 3 . 7 9 ^
4 . 0 E +2 - > 5 - 0 B +2 +0 . 8 7 2 6 6 - 5 . 7 9 8
4 . 0 X) +2 - > 5 . 0 B +2 + 0 . 7 8 5 4 0 - 3 . 4 2 3
5 . 0 X) +2 - > 6 . 4 B +2 + 1 . 5 7 0 8 0 + 2 . 9 3 9
5 . 0 X) +2 - > 6 . 4 B +2 + 1 . 4 8 3 5 3 + 3 . 1 8 4
5 . 0 X) +2 - > 6 . 4 B +2 + 1 . 3 9 6 2 6 + 3 . 5 5 2
5 . 0 X) +2 - > 6 . 4 B +2 + 1 . 3 0 9 0 0 + 4 . 4 0 4
5 . 0 X) +2 - > 6 . 4 B +2 + 1 . 2 2 1 7 3 + 4 . 8 9 5
5 . 0 X) +2 - > 6 . 4 B +2 + 1. 1 3 4 4 6 +6 . 5 0 3
5 . 0 X) +2 - > 6 . 4 B +2 + 1 . 0 4 7 2 0 + 1 0 . 4 1 7
5 . 0 ID +2 - > 6 . 4 B +2 + 0 . 9 5 9 9 3 + 3 7 . 6 8 4
5 . 0 X) +2 - > 6 . 4 B +2 + 0 . 8 7 2 6 6 - 1 7 - 5 8 3
5 . 0 X) +2 - > 6 . 4 B +2 + 0 . 7 8 5 4 0 - 7 . 1 8 4
6 . 4 X) +2 - > 8 . 0 B +2 + 1 . 5 7 0 8 0 + 2 . 6 5 1
6 . 4 X) +2 - > 8 . 0 B +2 + 1 . 4 8 3 5 3 + 2 . 7 6 6
6 .4 X) +2 - > 8 . 0 B +2 + 1 . 3 9 6 2 6 +2 . 9 0 2
6 . 4 X) +2 - > 8 . 0 B +2 + 1 . 3 0 9 0 0 +2 . 9 0 2
6 . 4 X) +2 - > 8 . 0 B +2 + 1 . 2 2 1 7 3 + 3 - 2 9 5
6 . 4 X) +2 - > 6 . 0 B +2 + 1 . 1 3 4 4 6 + 3 . 3 5 2
6 . 4 X) +2 - > 8 . 0 B +2 + 1. 0 4 7 2 0 + 3 . 9 0 2
6 . 4 X) +2 - > 8 . 0 B +2 + 0 . 9 5 9 9 3 + 4 . 4 4 3
6 . 4 £ +2 - > 8 . 0 B +2 +0 . 8 7 2 6 6 + 5 . 4 4 1
6 . 4 X) +2 - > 8 . 0 B +2 + 0 . 7 8 5 4 0 + 8 . 7 0 8
8 . 0 X) +2 - > 1 . 0 B +3 + 1 . 5 7 0 8 0 + 2 . 3 5 2
8 . 0 X) +2 - > 1 . 0 B +3 + 1 . 4 8 3 5 3 + 2 . 3 8 3
8 . 0 10 +2 - > 1 .0 B +3 + 1 .3 9 6 2 6 + 2 . 3 9 9
6 . 0 £ +2 - > 1 . 0 B +3 + 1 . 3 0 9 0 0 + 2 . 5 1 5
3 . 0 10 +2 - > 1 . 0 B +3 + 1 . 2 2 1 7 3 + 2 . 4 0 0
6 . o 10 +2 - > 1 . 0 B +3 + 1. 1 3 4 4 6 + 2 . 4 5 1
8 . o X) +2 - > 1 . 0 B +3 + 1 . 0 4 7 2 0 + 2 . 3 1 1
6 . 0 X) +2 - > 1 . 0 B +3 + 0 . 9 5 9 9 3 + 2 . 2 3 4
8 . 0 X) +2 - > 1 . 0 B +3 + 0 . 8 7 2 6 6 + 2 . 1 1 9
S.o K +2 - > 1 . 0 B +3 + 0 . 7 8 5 4 0 + 1 . 9 9 8
1 .0 X> +3 - > 1.2 B +3 + ) . 5 7 0 8 0 +2 . 166
1 .0 X) +3 - > 1 .2 B +3 + 1. 4 8 3 5 3 + 2 . 1 4 4
1 .0 10 +3 - > 1 .2 B +3 + 1 .3 9 6 2 6 +2 . 1 0 5
1 . 0 X) +3 - > 1 .2 B +3 + 1 . 3 0 9 0 0 +2 . 0 5 6
1.0 X) +3 - > 1 .2 B +3 + 1 . 2 2 1 7 3 + 1 . 9 8 2
1 .0 X) +3 - > 1 .2 B +3 + 1. 1 3 4 4 6 + 1 . 8 8 8
1 .0 10 +3 - > 1 .2 B +3 + 1. 0 4 7 2 0 + 1 . 7 7 0
1 . 0 c +3 - > 1.2 B +3 + 0 . 9 5 9 9 3 + 1 .621



0
u
£
2
2
2
2
2
2
2
2
2
sb
S’D66
66
6
66
6
o
o
o
0
0
0
0
0
0
(J
5
b
3
s
b
3
3
3
3
3
2
2
2
2

MOD range ARG Coeff

X) +3 - > 1 .2 E +3 +0 . 8 7 2 6 6 + 1 . 4 5 9
10 +3 - > 1.2 £ +3 + 0 . 7 8 5 4 0 + 1 . 2 6 9
10 +3 - > i . 6 E +3 + 1 . 5 7 0 8 0 +2 .037
X) +3 - > i.e £ +3 + 1 . 4 8 3 5 3 + 1 . 9 9 8
K) +3 - > 1 .6 £ +3 + 1 . 3 9 6 2 6 + 1 . 9 5 3
K) +3 - > 1 .6 c +3 + 1 . 3 0 9 0 0 + 1 . 8 8 9
10 +3 - > 1.6 £ +3 + 1 .2 2 1 7 3 + 1 . 6 0 5
X) +3 - > 1 .6 £ +3 + 1. 13446 + 1 . 7 1 7
X) +3 - > 1.6 £ +3 + 1. 0 4 7 2 0 + 1 .601
£ +3 - > 1 . 6 £ +3 + 0 . 9 5 9 9 3 + 1 . 4 7  !
10 +3 - > 1 .6 £ +3 +0 . 8 7 2 6 6 + 1 . 3 2 0
10 +3 - > 1 .6 £ +3 + 0 . 7 8 5 4 0 + 1 .162
X) +3 - > 2 . 0 £ +3 + 1 . 5 7 0 8 0 + 1 . 9 9 ^
X) +3 - > 2 . 0 £ +3 + 1. 4 3 3 5 3 + 1 . 9 6 4
X) +3 - > 2 . 0 £ +3 + 1 . 3 9 6 2 6 + 1 . 9 2 5
X) +3 - > 2 . 0 £ +3 + 1 . 3 0 9 0 0 + 1 . 8 3 4
10 +3 - > 2 . 0 £ +3 + 1 . 2 2 1 7 3 + 1.841
X) +3 - > 2 . 0 £ +3 + 1. 1 3 4 4 6 + 1 .7 8 6
X) +3 - > 2 . 0 £ +3 + 1. 0 4 7 2 0 + 1 . 7 2 0
X) +3 - > 2 . 0 £ +3 + 0 . 9 5 9 9 3 + 1 . 6 4 5
X) +3 - > 2 . 0 E +3 +0 . 8 7 2 6 6 + 1 . 5 6 4
X) +3 - > 2 . 0 £ +3 +0 . 785^ 0 + 1 . 4 7 6
X) +3 - > 2 . 5 £ +3 + 1 . 5 7 0 8 0 + 2 . 0 0 5
X) +3 - > 2 . 5 £ +3 + 1 . 4 8 3 5 3 + 1 . 9 9 7
10 +3 - > 2 . 5 E +3 + 1 .3 9 6 2 6 + 1 . 9 8 2
X) +3 - > 2 . 5 £ +3 + 1 . 3 0 9 0 0 + 1 . 9 6 7
» +3 - > 2 . 5 £ +3 + 1 .2 2 1 7 3 + 1 .9 6 2
10 +3 - > 2 . 5 £ +3 + 1 . 1 3 4 4 6 + 1 . 9 6 4
X) +3 - > 2 . 5 £ +3 + 1. 0 4 7 2 0 + 1 . 9 7 7
X) +3 - > 2 . 5 £ +3 + 0 . 9 5 9 9 3 +2 . 0 1 2
10 +3 - > 2 . 5 £ +3 +0 . 8 7 2 6 6 +2 . 1 0 2
10 +3 - > 2 . 5 £ +3 +0 . 785^0 +2 . 2 6 0
10 +3 - > 3 . 2 £ +3 + 1. 5 7 0 3 0 +2 . 0 2 6
X) +3 - > 3 . 2 £ +3 + 1. ^ 8 3 5 3 +2 . 0 2 6
10 +3 - > 3 . 2 £ +3 + 1 .3 9 6 2 6 +2 . 0 3 2
10 +3 - > 3 . 2 £ +3 + 1 .3 0 9 0 0 +2 . 0 5 0
X) +3 - > 3 . 2 E +3 + 1 . 2 2 1 7 3 + 2 . 0 6 3
X) +3 - > 3 . 2 E +3 + 1. 1 3 4 4 6 +2 . 0 7 8
X) +3 - > 3 . 2 £ +3 + 1 . 0 4 7 2 0 + 2 . 1 5 9
X) +3 - > 3 . 2 £ +3 + 0 . 9 5 9 9 3 +2 . 2 7 0
X) +3 - > 3 . 2 £ +3 + 0 . 8 7 2 6 6 + 2 . 4 5 3
X) +3 - > 3 . 2 £ +3 + 0 . 7 8 5 4 0 + 2 . 8 3 7
10 +3 - > 4 . 0 £ +3 + 1 .5 7 0 8 0 + 2 . 0 4 0
X) +3 - > 4.0 £ +3 + 1 . 4 8 3 5 3 + 2 . 0 4 2
X) +3 - > 4 . 0 £ +3 + 1. 3 9 6 2 6 +2 . 0 5 0
X) +3 - > 4.0 £ +3 + 1 . 3 0 9 0 0 + 2 . 0 5 5



MOD range

3.,2 X) +3 -> 4,,0 X) +3
3-,2 X) +3 -> 4.,0 X) +3
3-,2 X) +3 -> 4.,0 X) +3
3., £ X) +3 -> 4.,0 X) +3
3.,2 X) + 3 -> 4,,0 X +3
3.,2 X) +3 -> 4.,0 X +3
4,,D X) +3 -> 5.,0 X +3
4,.0 X) +3 -> 5.,0 X +3
4,.0 X) +3 -> 3.,u X +3
4,.0 X) +3 -> 3-, 0 X +3
4 ,,0 X) +3 -> 3-,0 X +3
4,,0 X) +3 -> 3.,0 X +3
4,»0 X) +3 -> 3.,0 X +3
4,,0 X) +3 -> 3.,0 X +3
4,.0 X) +3 -> 3.,0 X +3
4,,0 X) +3 -> 3.,0 X +3

ARG Coeff

+ 1.22173 +2.066
+ 1.13446 +2.056
+ 1.04720 +2. 1 17
+0.95993 +2.149
+0.87266 +2.195
+0.78540 +2.207
+1.57080 +2.034
+1.^8353 +2.035
+ 1.39626 +2.031
+ 1.30900 +2.031
+1.22173 +2.029
+ 1.13446 +2.023
+ 1.04720 +2.035
+0.95993 + 1.97^
+0.87266 +1.984
+0.785^0 + 1.9^8
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B«3o Al/gol programme for integration procedure

The Algol programme shown in the next few pages performs the 
procedure described in Section Bol© The results for the complex 

values of Y are punched in cartesian form and a small subsidiary 
progransae (not shown) was used to convert these to polar form as 

presented in Section B02o



■♦ESTABLISH DA1201000APU;
Cylindrical propagation?O/P L}-»
begin library AO,a6;
HgJxTST?7C®od, arg , M, B; intsgor k ,s , t ,u ,v ,n , l , I ,A ,N » N I  boolean fij
array y1[1:2], y2[1s2], F[l:2], f[l:2], T[0:500], 
SGBTTj50J» ARGtl:50],Z[1:2,0:500], Yl[l:2J;
refl £E°£«*ir# DE(ya,yb,t,n) ? value ya,yb,t,n;
£££l ya,yb,t; Integer n?
begin If n»1 then DE:®3xya/(t+l )+2xyaxyb4iEodxaln(arg) 
eXae DE:»3xyb/Xl+T) +ybT2-yat2+oodxeoa(arg)|
end DE j

fiJ&Sf&i’SSL RK0ST(x,h,y1,y2)j
vaia® x *h »yiireal x,h; array y1, y2;
begin real xe? array k[1:2,0s4]j integer p,qj
k[I,0]:«k[2,0]:®0|
for q§»1 step 1 until h do
yr, i'- v> saaAr* — ih ib̂iii r» mm 1 rrrrbeginxe :*x+ {(q&2)/2)Xhj
for p:*»1 step 1 until 2 do
ySTpl t^iT5m[p7q=TTx( (q*2)/2) *
for ps®1 step 1 until 2 do 
H p,q] ^h5DBfy2[TT7^[2]7xe,p) |

for p:«1 step 1 until 2 do
^ p ] : * y l T F T ? k [ p 7 n 7 ^ k [ p r 2 ] / 3 + k [ P ,3]/3tlctp,U]/6; 

e n d  R K O S T  ;

open(DO)| open(20)j us«0| M s®x5«4®
As^0|
As^read(20);
ns«read(2o)|
Bs«read(2G)j 
NIi«read(20)$
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N  % r e a d  ( 2 0 )  i
f o r  k i'm s t e p  - 1  u n t i l .  1 d o  M 0D [ l < ]  s ^ r @ a d ( 20) | 
‘f o r  k s ^ N l H s t e p  - t  u n t T l  1 d o  A R G [ k ]  x ® r e a d ( 2o f  | 
FTSfo+l1 ™  — —
d a t a :  h : ® 0 . 0 1 |  N s * s N ~ 1 |  if N«0 then begin

«WK i , llffcr-r̂ ? ■HU.'I J.r’A  M M m  Vn:«n-1;N:®NI;
end;
if u>2 then Ms«M/lO;
T 7  u » 1  !E K S n  M s « M x 1 0 ;
17 u>0 tKan hx«2xT[t]|
IT h>0.T5f €hen hs«0.0ii;

h s ® h / 2 |
e n d s

if k ® 2  t h e n  b e g i n—  i t  — I---  '' ill tyT-rfr^L^rr«ia

Y l [ l ] t - y l [ l ] j  
Y 1 [2 j Jasyl [2 } | 
y l  [ 1  ] * « f [ 1 ] J « y 2 [ 1 31 
y l  [ 2 ]  s«af [ 2 ]  s « y 2 ( 2 )  j

e n d ;

if k & l  t h e n  g o t o  L  e l s e  i f  k*>2 then g o t o  L s
I F  (( y 2 t n ^ f T T T / y 2 r T T T ^ (  (y2tsJ^[2T77y2[2])t2<M

lcs*us«0; s5*»11 
1:®0;mod:«MOD[n]; args«ARG[N];I:*Q$
if taod>xA then hs«0.00125;
L: RK0ST(x,h,yl,y2);
Is-I+lj
if u>0 then goto RR;|wu: m tramp c&at»=yggic s ®k+1 •if k^l^than begin F[l]t«*y2[l]
W 2 ] : « v 5f R T

ks^O;
x s « x - f h ;  h s ^ X h ;

T [ s ] : ® x ;
y 1 [ 1 J s « Z [ 1 d s ] : « y 2 [ 1 ] |
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y1[2]:-Z[2,s]s-y2[2];
end
else begin kswt; xj«*x«h; h:^h/2s T75TfT^“
F{ 1 ] x«sf [ 1 ]} F[2] s*>f[2] j
yl [ 1) s«*Y1 [1 ]| yl[2]:»Yl[2]$ends
If k»1 then goto L else If x>B-K)a0002 
W e n goto repeaF else~Ft«>ei»«84-1;
• ■ i ■ eS fica taB rxK i?  44 mm     /

If s<498 then goto L ©l&e goto data;
*mmmaaa m *  m o w  ^jftry^rsaa—  11 nw . i ■> j jligm .it -.jwg> ^repeat: ss«l; u:«u-M; v:»0;
P:-Q:^0; Z[1,0]s«Z[2,0jt«»10; 
yl [ 1 ] :«y1[2] :«<y2[ 1 ] J®y2f2] :«0;
RR: v*wv4-1j
If v-1<2Tu then begin
x:»T[s~1 ] 4* (TtsT^i ) X ( v -1) /2Tu |
yl[1]:«y2[13; 
yl[2]2**y2[2]$ 
end;:1T"v-'H®2Tu then begin 
FT*Zll.s]; 5?=Z[578TT 
x:«T[sJ;yi f 1 j:«Z[1^s]:«y2[1]; 
y112] :«Z[2*s]:«y2f2]; s:«s+1 
end |
TF“s*t+1 and ((P~Z[1,s«1])/Z[1,8-1])T2+((Q-Z[2,8~1])/Z[2,8~1]
JT2<b~8 ~then goto out;
T[t+1]:«0;
h:»(T[s]-T[s-1])/2Tu|If sst+l then goto repeat else goto L;
out: 
s ŝ O;
X: 82^84*11if T[s]<B»0.0Q01 then goto X%
T? T[s ]>B*o.ooo 1 then begin 'E:®B®TCs-l]| fltotrue;
yl[l]:«Z[l9s-l]jyH2J:«Z[2,s~l];
RK0ST (T[s«l]/>h#y1^y2)5 end
else fis«faXse; 
if not fi then begin



As®A+1;If A«47 then As«1j 
TF A>1 then"goto NOPAGE;
h:«arctan(y2[2]/y2[1]);

: /  jw[ 6s ] arg»Y[ 7s ] INTfgc ] ]T 5
write text ( 2c2s JMQD[9s]ARG[8s ]mod»Y

if y2[1] < 0 then h:«if y2[2j<0 then h-3.1*1159265 
STae h-*>3 -1 ̂ 1$92655
NOPAGE: write (10, format ((d.daK+nd;J) ,EX>d); write (10, format" 
write (10, format write (10* format
if n+N>2 then goto data;
close(10); close(20); 
end->

ss+d „ ddcTdd; ]) ̂ arg} ;'ssd.dddsB̂ ndr, ]_), sqrt(y2( 1 ]T2+y2[2]T2))
se4*d.dddd|c]J7 h);
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APPENDIX Cuwiiiijwu im.i<iiiiih'"IOTi ir 1 rrri

Calculation of the cylindrical impedance z

Prom equation 3® 9* we have
. Z .h Z 2 „ .is ci. o    o C o X

I x \  z2 z2*

where h is the change of liquid height in the annulus, causing a
2change in the electrical impedance® £ is the transducer constant, 

z is the contribution to the torsional impedanc© of unit height of 
liquid and Zq is an unknown background impedanceo
Let 1z a 1 zja_^ * , z ,0
Then 1 [4 ] 1 * h !!  K2

2oj

ta)
(ftsZg j i = zo!

szo b
cos PoL COsf^-fCf)

Z '2oS sin
K2| a

(^s-k O

If graphs are drawn of the real and imaginary parts of (h/£&Zg) vs* h9 

let the slopes and intercepts of tho resulting straight lines b© S 

and I with suffices 1 and 2 to represent real and imaginary quantities 

respective!;^
Then, S.̂ « P o l cos ^  5 ss —  Ŝ ol coe(^f§$)

K2r K 2 |zS
2

So s I J>! sin $  $ I s —  S Zq| gin
 ̂ K2 f K2 |R

Whenceo ,tan

2

= S2/S1 Co 2

tan(2^^) as Ig/I, C®3



whore gi 3 z s arg I  and 155

From equations C» 2 and C«39 the unknown ̂  may be eliminated to give 

jL»- Together with equation C»4* z is thus determined<>

e 2(s

s t

s /> Co4
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