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Abstract

It took several decades of intense research and development and the effort of thousands of
people to reach the detectors sensitivity that allowed the gravitational waves detectors Ad-
vanced LIGO and later Advanced Virgo to make the first detection of gravitational waves
on September 14th 2015 (and many other after that). This event marks the birth of gravita-
tional wave astronomy and opens a new window on the universe, giving us the ability to
gather information otherwise impossible to obtain. However it is still important to further
increase the sensitivity of the interferometers in order to extract more accurately the pa-
rameters of the observed gravitational wave sources, as well as to discover new classes of

gravitational wave emitters.

So research efforts are pursued on all fronts, trying to reduce any relevant sources of noise.
One of the proposed methods for the reduction of the quantum noise is based on the concept
of quantum non-demolition measurements and speed meters. In this context, a proof-of-
concept experiment is underway at the University of Glasgow. The aim of the experiment
is to prove that in a Sagnac interferometer, which is per se a speed meter, quantum radiation
pressure noise is lower than in an equivalent Michelson at audio-band frequencies. The in-
terferometer designed for this experiment is composed by two triangular cavities with 1 g
input test masses and 100 g end test masses and a finesse of ~ 8000. In this way the sensi-
tivity at low frequencies will be dominated by quantum radiation pressure noise. However
these features make the interferometer very sensitive to loss and high quality surface mir-
rors are then indispensable. The analysis of how much the mirrors surface imperfections

will affect the quantum noise in speed meters is indeed the main topic of this thesis.

The work carried out can be divided in two parts. The first part consists in the deriva-
tion of the arm cavity mirrors surface requirements for the Glasgow Sagnac speed meter.
Because of the high dependence of its sensitivity from optical loss, the mirror surface re-
quirements must be very stringent and an in-depth analysis to derive them is presented
here. This analysis was done performing simulations that give an estimate of the roundtrip
loss generated by each kind of mirror surface imperfection. In particular most of the anal-
yses were done using OSCAR (acronym of Optical Simulation Containing Ansys Results),
a MATLAB® package that can simulate the behaviour of a cavity with arbitrary mirrors
surface profiles. The second part of the thesis is a theoretical analysis of the backscattering
effect inside a cavity and how much it affects the quantum noise. The backscattering is a
mechanism that arises when the intra-cavity beam has non-zero angle of incidence on the
arm cavity mirror. Due to microroughness, in fact, the beam can be scattered back in the
same direction as the incident beam. It will then couple with the counter-propagating beam
and this coupling causes an increment of the quantum noise. The results are applied to the

case of the Glasgow Sagnac speed meter and to future large scale interferometers.



il

It is worth noting that the analysis of this newly discovered noise coupling caused by
backscattering in speed meters featuring triangular cavities can also be applied to the class
of speed meters configurations using linear cavities and two different polarisations, where

the coupling of the modes is caused by birefringence.
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Preface

Chapter 1 introduces to gravitational wave astronomy, describing its birth occurred on
14th September 2015 with the first detection of a gravitational wave. A description of the
past, present and future detectors is then shown. The data of GW150914 are provided by
the open science centre of the LIGO Scientific Collaboration. Other material has been taken

from published literature.

Chapter 2 gives an overview of the theoretical concepts used for the input-output (I/O)
relations and quantum noise calculations and the softwares used for the measurements,

analysis and simulations of the mirror surfaces.

Chapter 3 introduces the quantum non-demolition measurements and the speed meters
and describes the Glasgow Sagnac speed-meter (SSM) proof-of concept experiment. The
design of the experiment was developed by Stefan Hild, Christian Graf, Sebastian Stein-
lechner and Ken Strain. The optical layout was made by Jan-Simon Hennig and Roland
Schilling. Additional contribution to the experiment came from Stefan Danilishin, Sean

Leavey, Jan-Simon Hennig, Alasdair Houston, Teng Zhang, Peter Dupej and myself.

Chapter 4 shows the mathematical manipulation of the quantum noise for a few interfer-
ometer configurations. Even if some of the results are known in literature, all calculations

consistent with the conventions used in this thesis were made by myself.

Chapter 5 describes the simulations and the analysis made to derive the surface require-
ments of the arm cavity mirror of the Glasgow SSM experiment. The simulations were
made by myself with the help of Stefan Hild, Kenneth Strain, Christian Graf and Sebastian
Steinlechner. Technical support for OSCAR has been given by Jerome Degallaix. Scattering

measurements were made by Laboratoire des Matériaux Avancés (LMA).

Chapter 6 shows the mathematical manipulation of the I/O relations for a Sagnac inter-
ferometer with backscattering effect in the cavities. The simulations of the scattering were
made by Stefanie Kroker. I made the backscattering calculation with the help of Stefan
Danilishin, Teng Zhang, Sergey Vyatchanin, Miroslav Tugolukov and Stefan Hild.

Chapter 7 presents the numerical results of the quantum noise when backscattering effect

is present in the cavities, with an analysis and interpretations of the results. The analysis

Xiv



ACKNOWLEDGEMENTS XV

of the results was made by myself, together with Stefan Danilishin, Teng Zhang, Sergey
Vyatchanin, Miroslav Tugolukov and Stefan Hild.

Appendix A shows the symbols and the definitions used in the thesis.

Appendix B contains all the mirror surface measurements. Mirror surface measurements
and analysis of the sample mirror were made by myself. Mirror surface measurements of
the ITM and ETM were made by Coastline Optics, Inc.

Appendix C reports the specifications documents of the arm cavity mirrors of the Glasgow
Sagnac speed meter proof-of-concept experiment. Specifications documents of ITM and
ETM were made by myself together with Stefan Hild, Kenneth Strain, Christian Graf and
Sebastian Steinlechner. Drawing of the ETM was made by Liam Cunningham and Russell

Jones. Drawings of the ITM were made by Jan-Simon Hennig.

Appendix D describes the measurements of the flatness of the silica ears for the ETM, the
polishing procedures to remove the spike from the surfaces and the cleaning and bonding
of the test masses. I made the ears flatness measurements. Polishing procedure were made
by myself together with Marielle Van Veggel and Stefan Hild with the help of Liam Cun-
ningham. Test masses cleaning and bonding were made together with Jan-Simon Hennig
and Marielle Van Veggel. Analysis of the ear position was made by myself together with

Jan-Simon Hennig. Drawing of the ear was made by Liam Cunningham and Russell Jones.

Appendix E reports the MATLAB® script for the quantum noise with backscattering cal-

culation. I developed the script starting from a previous script made by Stefan Danilishin.



Chapter 1

Gravitational wave astronomy

1.1 The birth of gravitational wave astronomy

At 09:50:45 UTC on September 14th 2015, the two LIGO interferometers located in Liv-
ingston, LA and Hanford, WA, detected for the first time a gravitational wave (GW) signal.
It was generated by the merger of two black holes about 1.3 billions light years away [1].
This event marks the beginning of a new era with the birth of the GW astronomy. Einstein
predicted gravitational radiation more that 100 years ago, but before that event there were
no direct observationg'} That is the reason why this event is so important. It represents in
fact not only the beginning of a new era but also a further proof of the validity of Einstein’s

theory of General Relativity.

On August 1st 2017 the Virgo detector, located in Cascina, near Pisa, in Italy, joined the two
LIGO interferometers in the observation run. Even if this run lasted less than one month,

two events were detected, each of them very important for different reasons:

« GW170814 was the first detection made by three interferometers and showed how
much the accuracy in the localisation of the source can be increased adding even

only one detector in the network;

« GW170817 was generated by a neutron star binary system and, in fact, an electro-
magnetic (EM) counter part was detected by many telescopes on Earth and in space,
giving the chance to combine GW and EM information and marking then the begin-

ning of the multi-messenger astronomy.

'With direct observations we mean observations made with instruments able to detect the passage of GW,
whereas indirect observations are meant to be observations of astronomical events caused by GW (like the
pulsar period measurements described in section [1.2.1). However this distinction is not universally accepted
and some scientists consider Hulse and Taylor measurements the first direct observation of GW.
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We will describe in this section the details and the outcomes of all the detections announced

so far.

1.1.1 GW150914

The GW signal, named GW 150914, was produced by two black holes with masses of 363 Mg
and 2977 M, which merged and formed a final black hole of 627 M with about 370 M ¢?
of energy emitted in form of gravitational radiationf} The signal has been estimated to be

at a luminosity distanc of 410228 Mpc, corresponding to a redshift of z = 0.091“0):83L [1].

The signal was first recorded by LIGO-Livingston and 6.91’8:2 ms later by LIGO-Hanford.
Each detector can give information about the source localisation in the sky since the de-
tected signal will depend from the relative position of the interferometer arms and the
direction of propagation of the wave. The accuracy of the position can be increased com-
bining the information taken from more than one detector. For GW150914, for example,
combining the data of the two detectors that received the signal, the location of the source
has been estimated to be in an area of the sky of about 610 deg” with a 90% probability
[4]. This is the reason why is important to have a network of detectors located around the

world, as we will explain in details in section[1.2.3]

This discovery has several astrophysical implications and some of them are very significant,

among which we can remind:

« first direct observation of GW;
« first direct observation of a black hole;
« first observation of a merger of black holes;

« proof of the existence of high mass black holes (> 25 M)[5];

2Here (and in the following sections) the errors have the same units as the measurements. So, for example,
with 361’2 M we mean a mass between 32 M and 41 M.
3In Astrophysics the luminosity distance d; is defined as

L
d; =1\ —,
L 4dr F

where L is the luminosity and F the radiant flux emitted by the object [2]. On the other side it can be
calculated from the GW signal through the following equation
d =k,
hf3
where h and f are the amplitude and the frequency of the GW respectively and k is a constant that depends
from the orientation of the source [3]. As we can see the distance can be calculated from the GW signal only,

independently from any other calculation of the source properties. This is the reason why GW sources are
considered standard candles.
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Figure 1.1: Measured signal of the first GW detection made by LIGO Hanford (on the left) and LIGO
Livingston (on the right). First row: the strain of the measured signal (the Hanford signal on the right
has been shifted in time time and inverted in order to take into account the time delay in the obser-
vation and the different orientations of the detectors respectively). Second row: Numerical relativity
waveform obtained from a system with the same parameters of that ones (red line); regions with
90% credibility for the waveform obtained from two independent calculation for the waveform re-
construction (dark and light shaded grey). Third row: Residual obtained from the difference between
the numerical relativity solutions and the detector observation data. Fourth row: Strain amplitude
as a function of time and frequency. Figure taken from .

« further confirmation of the General Relativity theory [6].

In figure [1.1] the signal detected by the two interferometers is shown, compared with the

numerical relativity solution of the waveform.

There are a lot of noise sources that can affect the measurements and then a very care-
ful and rigorous analysis and characterisation is necessary. Apart from the channel that
records gravitational wave signals, the two LIGO detectors have over 200 000 other chan-
nels, in order to monitor all possible sources of noise. These noises can be uncorrelated,
if they occur in each detector independently (like ground motion and laser modulation) or
correlated, if they affect both detectors (like electromagnetic signals and cosmic ray show-

ers). Analysing and comparing the data from both detectors makes possible to identify the
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sources of noises and to clean up the data [7]].

The data are then analysed through an algorithm, with the help of a supercomputer, that
compares them with a set of waveforms obtained from numerical relativity solutions. This
algorithm is able to check the best waveform that matches with the data, changing all
the source parameters, like for example masses, distance and orientations. In this way it
is possible to establish which kind of source generated that signal and what are its main

physical properties [8].

1.1.2 GW170817

After the first detection a number of other detections were made but the most important
between them is certainly the last one, detected on August 17th 2017 and then named
GW170817 [9]. The source of this gravitational radiation was the merger of two neutron

stars and the event was detected also in the electromagnetic spectrum.

The electromagnetic signal was actually the first one to be detected. The Fermi Gamma-
ray Burst Monitor (GBM), in fact, at 12:41:06 UTC received a trigger of a Gamma-ray Burst,
named GRB170817A. After about 6 minutes LIGO-Hanford registered a possible candidate
signal consistent with a neutron star binary system with merger time (¢,) 12:41:04 UTC.
Subsequent analyses showed that the GW signal reached Virgo first, after 22 ms LIGO-
Livingston and after 3 ms more LIGO-Hanford. Then an observing campaign was launched
and, thanks to the accurate sky localisation reconstructed from the GW, multiple telescopes
were able to detect the electromagnetic signal, which gives the exact location of the source
in NGC4993 [[10].

Figure|1.2[shows the timeline of the observations, taking as reference time the merger time
t.. The central part of the picture reports a table with GW and all electromagnetic spectrum
bands and all the instruments that made the observation in each band. On the right of the

bands names the following information are reported:

« the solid circles represent the observations with the area of the circle scaled as the

brightness;

« the solid horizontal line is the time at which the signal was visible by at least one

instrument;

- the shaded vertical lines represent the time when a GCN circular| was issued.

4The Gamma-ray Burst Coordinate Network (GCN) is a system which distributes information about GRB.
Specifically, through the circulars they reports the follow-up observations made in all the spectrum bands by
both ground-based and space-based observatories [[11].
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Furthermore in the figure also the first observations in GW and some of the electromagnetic
spectrum bands are also shown. On the upper left part of the figure there is the combined
spectrogram of the detected GW signals and the y-ray observations represented with the
light curves of the Fermi-GBM and the INTEGRAL/SPI-ACS. Then in the lower part of the
figure the X-ray, optical and radio observations are shown. For each of them the instruments
that made the observation (top left), the time after the merger time at which the GCN
was issued (bottom left) and the observation band (bottom right) is reported. Finally the
graph in the upper right part of the figure shows the spectra (each of them normalised
to its maximum) of four observations made with SALT, ESO-NTT, SOAR and ESO-VLT,

arbitrarily shifted along the y-axis in order to have a chronological order.

From the GW signal analysis it was possible to obtain information about the source: it was
found to be a binary system with primary component mass between 1.36 and 1.60 M, and
secondary component mass between 1.17 and 1.36 M, (low-spin priors), consistent with
neutron stars masses, at a luminosity distance of 40“:? 4 Mpc. Thanks to the fact that three
interferometers detected the signal, the sky localisation was more accurate and found to be

in a sky region of about 28 deg” with a probability of 90%.

The scientific importance of this discovery can be better understood considering the amount

of new information that was obtained. The most important aspects are summarised below.

« It was found a connection between at least one class of sGRB and binary neutron

stars.

« It was found a kilonova signature, characterised by the presence of rapid neutron-
capture process and responsible of the creation of heavy elements, like gold and plat-

inum [12].

+ An evaluation of the difference between the speed of light v,,, and the speed of
gravity v, which are supposed to be equal according to the Theory of General Rel-
ativity, has been done combining the GRB and GW data and obtaining the following
result [[13]

Vv -V
—3x 107 < IV < 1 7% 107", (1.1)
VEMm

This result proves with high accuracy that the assumption made in the Theory of

General Relativity is correct.

« A new test of equivalence principle can be done, probing that electromagnetic and
gravitational radiation are affected in the same way by the gravitational potential
[13].

+ A new calculation of the Hubble constant independent from the cosmic distance lad-

der has been possible. GWs, in fact, can be used as standard sirens and then the
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Figure 1.2: Timeline of the observations of GW170817 and its electromagnetic counterpart. As we
can see observations were made by about 70 instruments in time span of about two weeks. Refer to
the text for a detailed explanation. Figure taken from [10].
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distance of the source can be calculated from the GW signal only. The obtained value
was H, = 7().0:“;.20'0 kms~! Mpc™!, in agreement with the currently accepted values
determined with other methods [14].

Furthermore with this event we can state that the multi-messenger astronomy era has of-

ficially started.

1.1.3 Other detections

Between the first and the last detections, which are particularly important for the reasons

explained in the previous sections, other GWs signals have been detected:

« GW151226, also called boxing day event, was a GW signal created by the merging
of two black holes with original masses of 14.2J_“§:§ M, and 7.533 M,, at a distance of

440“:138 Mpc and with a final mass of 20.8f?:; M, [15];

« GW170104 was produced by the coalescence of two black holes with masses of

31.27%0 M, and 19.4*72 M, at a distance of 8807300 Mpc [16];

« GW170608 was produced by the coalescence of two black holes with masses of

127 M, and 73 M, at a distance of 340* %% Mpc [[17];

« GW170814 was particularly important since it was the first signal detected by three
instruments (the two LIGO and Virgo), which gives a much better accuracy for the
sky localisation: we have a sky region of 60 deg?, compared to 1160 deg” that would
have been obtained with only the two LIGO detectors. It was produced by two black

holes with masses of 30.5%77 M, and 25.372% M, at a distance of 5407 %0 Mpc [18].

1.2 Ground-based gravitational wave detectors

1.2.1 From resonant bars to laser interferometers

The discovery of the first binary pulsar PSR1913+16 made by Hulse and Taylor in 1974 [19]
and the subsequent analysis of its orbital period made by Taylor and Weisberg [20] gave
the first proof of the existence of GW. They in fact found that the orbital period decayed as
one would expect if we assume that it is caused by loss of energy through GW emission.
However, the direct observation of GW is very difficult and requires extremely high sensi-
tivity detectors, since the strain amplitude of GWs is of the order of 107! when observed
on Earth.
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The first experiment to detect GWs was performed in 1969 by Joseph Weber using a reso-
nant bar [21]. The device proposed was composed of an aluminium cylinder with a length
of 1.5m and a resonance frequency of 1660 Hz. On the surface of this cylinder some piezo-
electric crystals were bonded, in order to detect any change in the length due to the transit

of the GW with an accuracy of the order of 1071® m.

After a few months of observations with two detectors placed 100 km apart, Weber claimed
to have detected GWs signals, since he observed some coincident excitations in the two
detectors [22]]. However no proof of the validity of these results has been found until today,
but it seems very unlikely that he was actually observing GW signals, because of some

discrepancies between the results and the theory [23].

During the following years the Weber bar detectors were studied and improved by many
group around the world, but simultaneously another technique was introduced, which was

destined to become the most effective method to detect GWs: laser interferometers.

The proposal of the first laser interferometer for GW detection was made in 1972 by Rainer
Weis [25], based on a previous work of Felix Arnold Edward Piranﬂ [27]. Weiss suggested
to use an interferometer with a Michelson configuration, where the beam was split by a
beamsplitter and then passed through a hole in a mirror. In this way the beam made multiple
reflections between two mirrors before it came out from the arm and came back to the
beamsplitter. The transit of GW will change the length of the arms of the interferometer
in an opposite way (one arm will become shorter and the other one longer), and when the
beams are recombined they will be slightly out of phase. The absolute change of each arm

length due to the transit of the GW is given by the equation
AL = Lh, (1.2)

where L is the length of the arm and 4 is the amplitude of the GW (also called strain).
In figure [1.3| the original schematic drawing of the detector proposed by Weiss is shown.
He estimated that this detector would be able to measure GW strain of the order of 107!7.
The technologies used to reduce the level of the large number of noises which affect the
sensitivity of this kind of detectors have been developed during the past 45 years and today
we are able to reach a sensitivity & < 1023 /1/Hz (@100 Hz).

Current interferometers have arm lengths of the order of few kilometres, but the optical

path is increased using Fabry-Perot cavities. We need, in fact, an optical path as long as

Rainer Weiss will then be awarded, in 2017, with the Nobel Prize in Physics (together with Kip Thorne
and Barry Barish) "for decisive contributions to the LIGO detector and the observation of gravitational waves"
[24].

The very first idea of using an interferometer to detect GWs was actually made by Mikhail E. Gertsen-
shtein and Vladislav I. Pustovoit in 1963 [26].
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Figure 1.3: Original schematic drawing of the first interferometric GW detector proposed by Rainer
Weiss in 1972. Figure taken from [25].

possibld’|in order to have a change in its length great enough to be detectable. However
is not so simple to build big interferometer, both economically and logistically. Moreover
the Earth curvature introduces further source of error, since the gravity force acting on the
mirrors has different directions. This means that if the two mirrors that compose the cavity
are arranged in order to be parallel to each other, then they will not be perpendicular to the
local Earth surface. The number of degrees of freedom will then increase, since we have
to care about the vertical motion of the mirrors too. However a Fabry-Perot cavity can
be the solution to this problem, because it can increase the effective optical path without
increasing the physical size of the device. It is composed by two mirrors, named input test
mass (ITM) and end test mass (ETM). The input beam is partially transmitted through the
ITM and then it reaches the ETM, which has a high reflectivity and sends it again towards
the ITM. Since the ITM is partially reflective some of the light is reflected from the ITM and
is incident on the ETM and so on. Since part of the power is lost through the ITM, there is

7Tt must be noted that the length of the arms of the interferometer cannot be too big. The increase of
sensitivity with length, in fact, is in principle limited to about the GW wavelength (which has typical values
between a hundred and a thousand kilometers).
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Figure 1.4: Sensitivity plot of Advanced LIGO made with GWINC [29], where the contributions of
all the most important noises are shown.

a mirror before the beamsplitter (power recycling mirror), which reflects the exit light and

send it again into the cavities.

The behaviour of a lossless Fabry-Perot cavity is described by the so called finesse, defined

as [|28]]
AT 1
F=——1,

(1.3)
where r, and r, are the amplitude reflectivities of the ITM and ETM, respectively. From this
parameter it is possible to deduce the optical path and the circulating power of the beam
inside the cavity. For example Advanced LIGO has a finesse of 450, arms 4 km long and
input power of 125 W, which gives an optical path of ~ 1150 km and a circulating power of

~ 60 kW, which is further increased by the power recycling mirror up to 730 kW.

1.2.2 Fundamental noises

In order to reach the required sensitivity to be able to detect the GW signal, a lot of noises
must be analysed and minimised. In figure the spectral density of the sensitivity of
Advanced LIGO with some of the most important noises contributions is shown. In this
section we will explain the meaning and the way to estimate the dominant noises in the

spectrum: seismic, Newtonian, thermal and quantum noise.
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Seismic noise

Seismic noise originates from ground vibrations and it is dominant at low frequencies (be-
low 10 Hz). In a quiet site the value of the spectrum is expected to be ~ 1077 f~2m/ \/@
[30]. In order to reduce it, some techniques were developed through the years and can be
divided in the two kinds described below.

« Passive isolations are that ones that do not require energy from the outside. They
include for example the use of many stages pendulum structure which reduces the
horizontal motion by a factor 1/f? at each stage [23]. The transfer function for a

single pendulum between the ground motion x, and the mirror motion x,, is

X >

L 0 , (1.4)
X 2
Vo) e

where @ = 27 f is the angular frequency, @, is the resonance angular frequency and

y is the damping constant [30].

« Active isolations, on the other side, use an external force to damp or attenuate the

motion of the mirrors. This can be done for example using inertial sensors combined
to feedback.

The mirror suspensions of all current interferometers are based on these principles, even
though each of them is developed in a different way. In Advanced LIGO, for example, the
seismic isolation is composed by one hydraulic stage outside the vacuum system and two
stages in vacuum with active isolation [31]]. For Advanced Virgo instead the pendulum has
seven stages: an inverted pendulum and a chain of six seismic filters, all of them acting like
a low pass filters [32]. With these techniques it is possible to reduce the seismic noise by

more than 10 orders of magnitude.

Another possible way to reduce seismic noise is to use underground detectors as has been
done for KAGRA and it will be done for 3" generation GW detectors like the Einstein

Telescope.

Newtonian noise

The Newtonian noise, also called gravity gradient noise, is the displacement noise of the
interferometer’s test masses due to local fluctuations of the gravitational potential. It can
be caused by different factors: fluctuating seismic fields, atmospheric pressure and temper-
ature fluctuations, but also by anthropogenic sources. It has been estimated that it will limit

the sensitivity at low frequencies [33]. Direct measurements of this kind of noise are very
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difficult, but recent studies showed that it might be possible to detect it in the near future
[34]].

Different approaches have been proposed with the aim to reduce this kind of noise in fu-
ture GW detectors. The first one is to use a monitor and subtraction method, composed
by seismometers placed around each mass and a subtraction signal which will correct the
observed gravity fluctuations. The other one is to choose very quiet location and build
underground detectors [23]]. For the Einstein Telescope, for example, we might need both

approaches together.

Thermal noise

Thermal noise includes any noise related to the temperature and it can affect both mirrors
and suspensions. Mirror thermal noise can be divided in two types: thermo-optic noise,
which is the sum of thermo-elastic and thermo-refractive noise, and Brownian thermal
noise. Thermo-refractive noise is due to the change of refractive index with the change of
temperature, thermo-elastic noise is due to the thermal expansion and Brownian thermal
noise is due to Brownian motion. Furthermore each of them affects both the substrates and

the coating.

In general the spectral density of the thermal noise is given by the following equation

S, (w) =

a4k, T W . 2
B diss lgl (15)
F, Hz

Tw

where k is the Boltzmann constant, T" the temperature, W, the dissipated power and F;

iss

the amplitude of the oscillatory force acting on the mass [35].

Between all thermal noises the most dominant in the current GWs detectors are the coat-
ing Brownian thermal noise and the suspension thermal noise. For the coating Brownian

thermal noise equation [1.5/becomes

4k T, (1 —0)
Scbt(a)) = B\/_ N Y
Tow,,

where o is the Poisson ratio, w,, is the beam radius, Y is the Young modulus of the substrate

, (1.6)

and

d (Y Y
bopr =+ " \/; <Z¢J_ + ?d’”) ) (1.7)

with ¢ the mechanical loss of the substrate and Y|, ¢, Y| and ¢, are the perpendicular and

parallel components of the Young’s modulus and the mechanical loss of the coating. For
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the suspension thermal noise, on the other hand, the spectral density can be written as

4k BTa)gqu,

Ssusp(w) = ma’

(1.8)

where, in this case, ¢,, is the mechanical loss of the pendulum, m its mass and w, its

resonant angular frequency.

Quantum noise

Quantum noise is one of the most dominant sources of noise in the interferometric GW
measurements. It is composed of photon shot noise and radiation pressure noise [28]. The
shot noise is due to the fluctuations on the count of the photons that reach the photode-
tector. Radiation pressure noise, on the other side, is the noise due to the random radiation
pressure force created by the amplitude fluctuations of the incident light, which cause a

recoil of the mirror.

The quantum noise is composed by these two components. While the signal-to-noise ratio
of shot noise decreases when the input power increases, the radiation pressure noise in-
creases. So it is not possible to improve both at the same time, changing only the power. A
more detailed analysis of the quantum noise will be provided in chapter |4, where we will
describe the quantum noise calculations for some interferometer configurations. One of
the proposed approaches aimed to reduce this kind of noise in future generations of GW
detectors is the introduction of a speed meter configuration, as will be explained in chapter

[3lin more details .

1.2.3 A worldwide network

It is very important to be able to localise the sources of the GWs in order to alert telescopes
to point in the right direction and looking for an electromagnetic counterpart. However,
GW detectors are not like optical telescopes. Whereas the directivity of a telescope is as-
sociated with its large dimension compared to an optical wavelength, the GW detector has
dimensions much smaller than a GW wavelength. This results in a very limited directional
discrimination and the localisation of the source is then not easy to deduce from the de-
tected signal. So, in order to be able to do that we need to place detectors around the world
in appropriate positions and with determined orientations. In this way we can combine the
signal arrival time at each interferometer and the information obtained from the relative
position of the arms and the GW direction of propagation in order to derive the position of

the source in the sky.

Today there are four operative detectors :
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+ Advanced LIGO-Hanford, which has 4 km long arms and is located in Hanford, WA
(USA);

+ Advanced LIGO-Livingston, with the same dimensions and located in Livingston, LA
(USA);

« Advanced Virgo, with 3 km long arms and located in Cascina, near Pisa (Italy);

« GEO600, with an arm length of 600 m and located in Ruthe, near Hanover (Germany).

For the first four detections only the two LIGO interferometers were active and the sky
localisation of the sources were found to be between 500 and 1200 deg?, while for the first
one detected by three interferometers (two LIGO and Virgo) the position has been estimated
in area of 60 deg?, a factor ~ 20 better than it would be with only two detector So having

a worldwide network of detectors can further increase the accuracy.

In an effort to further improve the sky localisation, two more detectors are expected to
join the observations in the near term future. One is currently under construction in Japan
and it is called KAGRA (the name is a combination of its location, Kamioka, and Gravity).
It is an underground (to reduce seismic noise) cryogenic (to reduce thermal noise) GW
detector with 3 km arm length [36]. It is expected that with this additional detector the sky

localisation area will be reduced by a factor between 2.5 and 10 [37]].

The last detector that is in program to join the network is LIGO-India. The construction is

expected to start in 2019 and the detector is planned to start observations in 2025 [38].

In figure [1.5| the location on the world map of all these detectors is shown.

1.2.4 Future generations

Detecting GWs was only the beginning of a new chapter in the study of the universe. The
search of technologies able to improve the sensitivity of the detectors is still in progress. For
the future, in fact, many proposals have been made and many experiments are currently
underway trying to figure out what are the best solutions for the future upgrades of the
current detectors and for the design and construction of what is called the 3" generation
of GW detectors.

For example, for the near future an upgrade of Advanced LIGO, called A+, is funded by NSF.
It does include only moderate changes in the infrastructure and the total cost will be then

limited. The most important changes are [39]:

8GE0600 did not help with the sky localisation because it did not have a signal-to-noise ratio good enough
to detect the signal.
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in the next future.

« it will be implemented frequency dependent squeezing using a 300 m filter cavity in

order to reduce the quantum noise;

« the optical coatings will be optimised in order to have a reduction of the mechanical
loss by a target factor of 4, which will reduce the displacement noise from coating
thermal noise by a factor 2 [40];

- there will be a balanced homodyne readouf’| with suspended mirrors;
« it will be used a larger beamsplitter, which will reduce the loss;

« new test masses obtained with improved welding and fibres pulling systems will be

installed, in order to lower the test masses bounce mode frequency [41]].

The observations with A+ are planned to start in 2024.

Another upgrade under consideration for the future of LIGO is called Voyager. It is a 4
km interferometer with cryogenic 200 kg silicon mirrors, operating at a temperature of 123
K. This will potentially enable the increase of the intra-cavity power to 3 MW, without
affecting too much the thermal noise (at 123K in fact the silicon has low mechanical loss

and zero thermal expansion). Another big change will be the laser wavelength that will be

“Details on the homodyne readout method will be given in section
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aLIGO | A+ | Voyager | Cosmic Expl. | ET-LF | ET-HF
Arm length [km] 4 4 4 40 10 10
Mirror mass [kg] 40 40 200 320 211 200
Mirror diameter [cm ] 34 34 45 >70 >45 62
Temperature [K] 295 295 123 123 10 290
Input power [W] 125 125 140 220 3 500
Arm power [kW] 710 750 3000 2000 18 3000
Wavelength [nm] 1064 1064 2000 1550 1550 1064

Table 1.1: List of the parameters of the future GW detectors compared with that ones of Advanced
LIGO [39} [44].

2 pum, instead of the usual 1064 nm. The sensitivity is expected to be improved by a factor
2 at 100 Hz respect to A+ [39].

Apart from the upgrade of the current detectors, a 3* generation is planned to join the
worldwide network, which will require new facilities because of their bigger dimensions.
These detectors will have significant differences from the current ones and the research to
define all their features is still underway. The most important detectors that will form the

3t generation are listed below.

« Cosmic Explorer will have 40 km arms and the test masses weight will be further
increased to 320 kg. Like Voyager, it will use cryogenic mirrors and high intra-cavity
power (2 MW). This detector has expected to have a sensitivity improved by a factor
>10 respect to Advanced LIGO [42].

« Einstein telescope (ET) is an underground observatory composed by three 10 km
long detectors nested in a triangular shape. Each detector will be composed by two
interferometers, one optimised at low frequency (ET-LF) and the other one at high
frequency (ET-HF) [43].

The parameters of each of these detectors are listed in table[I.1]and the expected sensitivity
curves are shown in figure

1.3 Elements of gravitational wave theory

GWs are a direct consequence of the theory of General Relativity introduced by Albert
Einstein in 1916 [46]]. They are ripples in the space-time propagating at the speed of light,
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Figure 1.6: Sensitivity curves (created with GWINC [29]) of the 3" generation GW detectors Cos-
mic Explorer and Einstein Telescope (LF, HF and the sum of the two), compared with the designed
and real (for the second observation run) of Advanced LIGO and with the expected sensitivity for
Advanced LIGO upgrades A+ and Voyager [45].

created by a sudden and great change of mass distribution. Their equation is obtained
by linearising the Einstein equations of field considering a Minkowski space with a small
perturbation. There are two possible solutions, giving two possible polarisation, named

plus (+) and cross (X) [47]).

Unlike of what happens for the electromagnetic radiation, created by the dipole momentum,
the lowest order for the gravitational emission is the quadrupole momentum, defined by

the equation [28]]

1
I, = / dv (x,, X, — §5wr2> 20, (1.9)

where r is the size of the source and p is the mass density. From this equation we obtain
the amplitude of the GW, that is

h”v = ﬁlﬂ‘/’ (110)

where G is the gravitational constant and R is the distance of the source.

The passage of a GW will squeeze and stretch the space-time in the plane transverse to
its direction of propagation with opposite effect in the two directions and A represent the
relative change in length, according to equation[1.2]and this the basic working principle of
interferometric GW detectors (see figure [1.7).
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Figure 1.7: Representation (amplified) of how the arms of a Michelson interferometer will be affected
by the passage of a GW propagating in the direction perpendicular to the plane of the paper.

1.4 Conclusions

In this chapter we gave an overview of the past, present and future of ground based GW
detectors. In the first section we described the detections announced so far. We gave par-
ticular relevance to the most important ones: the first detection, which marked the birth
of the GW astronomy, and the detection of the GW generated by a binary neutron star
merger, which marked the start of the multi-messenger astronomy. The main outcomes
and physical implications of these two detections are also described. In the second section,
then, we described the history of ground-based GW detectors. We explained what are the
fundamental noises that limit the sensitivity of the detectors and what are the tecniques
used to reduce these noises in the current and future detectors. Finally in the last section

we gave a brief overview of the gravitationa wave theory.



Chapter 2

Methodology

In this chapter an overview of the tools and methods used to make the analyses and obtain

the results shown in the following chapters are given.

In the first section the theory at basics of the calculations of the I/O relations and the quan-
tum noise of an interferometer is shown. The results of this calculations are described in
chapters [4] and [6]

The last two sections of this chapter are about the tools used for the measurements and
analyses of the map of the mirror surfaces and the computer programs used for the sim-
ulations. Specifically, in the first part we show the softwares used for the analysis of the
surfaces imperfections of the arm cavity mirrors of the Glasgow SSM and the cavity loss
associated with them. This analysis, described in details in chapter[5| was made performing
simulations with the help of two MATLAB® packages, SimTools and OSCAR.

The meaning of the symbols and some definitions used in this chapter and all the later ones

can be found in appendix [A]

2.1 Basic theory for quantum noise calculation

In an optomechanical system the equations that describe the linear transformations of the
input fields into the output fields are called input-output (I/O) relations. In this section
we show the theoretical basis and the mathematical framework that will be used for the
derivation of the I/O relations of the interferometers and the calculation of the quantum
noise that will be shown in chapters [4/and []

In the first section the two-photon formalism is introduced. This formalism, developed
in the 1980’s, is commonly used for the analysis of quantum noise of gravitational wave

detectors. In the second section the definition and the properties of the vacuum state of

19
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an optical field are shown. Finally, in the last two sections, the derivation of the transfer

matrix of a lossless and a lossy optical element is shown.

2.1.1 Two-photon formalism

In chapter 4] the calculations of the I/O relations for several interferometer configurations
relevant in the context of this thesis are shown. The calculations are made using the two-
photon quadrature formalism, developed by Caves and Schumaker in 1985 [48] [49]. It
was developed modifying the one-photon formalism in order to analyse the so called two-
photon devices. Two-photon devices are systems that produce as output a radiation com-

posed by pairs of modes independently excited.

Something similar happens in the interferometers for gravitational waves detection, since
the gravitational wave signal produces a pair of sideband fields in the output of the inter-
ferometer. This is the reason why this formalism is commonly used for the description of

quantum noise of interferometric gravitational wave detectors.

In quantum field theory, a freely propagating electromagnetic wave is described in every
point of the space (x, y, z) and at any time ¢ by the Heisenberg operator, that for a wave

propagating along the positive direction of the z-axis can be written as [50] [51]

A(x, y, 2,1) = u(x, y, 2) / do 2T (5 gmiot 1 G giot) (2.1)
0 27[ ch

where  is the frequency, A, is the beam cross-sectional area, u(x, y, z) is the spatial mode

shape and the single photon annihilation and creation operators d and @' satisfies the com-

mutation relations
4,.d ] =2x6(w—a), [4,.4,]=]a,a]=0. (2.2)
As said, in GW interferometric detectors a pair of sidebands is created by the signal with

frequencies w, + Q and w, — €, so it is useful to define the sideband operators

A

4, =4, 4.=4a, . (2.3)

These operators are used to define the quadrature operators, which will be

7 7l 4 A
R a,+a' . a, —a'
a.(Q) = ——— 4=

V2 iV2

(2.4)
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in frequency domain and

©4qa, +a © 04, —a
a.(1) = / dL 7T o 4 = / A% (2.5)

OOE\/E © 27 i\/2

in time domain.

Through these definitions the commutation relations 2.2 become

[4.(Q),4,(Q)] =276(Q+ ), |44, Q)] = [a,a,Q)] =0. (2.6)

In order to make the calculation simpler, each of these components can be split in a constant

part and a time dependent part, i.e.
éold S A+ 4w &old S A 44w (2 7)
c ’ s ’ .
C c N N

which represent the classical amplitude and the time varying part, e.g. the quantum fluc-
tuation of the fieldl

Now we can define the vectors of quadrature for both components (from now on the su-

perscript new will be omitted) as

[ w-f "

and with these definitions we can finally write the electric field in equation[2.1]in terms of

D>

'Here we made the assumption that since we control the interferometers and they are stable, then the DC
part is constant
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a cosine and a sine component. So, approximating @ as ®,, equation 2.1/ becomes

[2zhw, [ 40 ,
A y,2,1) = Y, p daa —i(w,+Q)t + T t(a) -Q)t
(x,y,z,t) =u(x,y, 2) A /0 . (a+e a' )
/2757100 ,
—M(X y, Z) / —lCOI —iQt + etw tai e—lQl)
[2nho, [ 40 ,
_ p —iw, t t ta) t —iQt
- 9 ,Z ~ ? +
u(x,y, z) e /0 " (a a ) e
[2nhow ®©
=u(x, y, z) 1 cp /0 g [a+ (cos 1t — isincopt) +a (cos W+ i sina)pt)] e i
q
drhw, a,+a’ a,—a’ o
=u(x,y, z) / cos ,t + sinw,t | e™™.
iv2

(2.9)
Finally, using equation [2.5 we have
drhw, )
A=u(x,y,z) w (A, +a,0)cosw,t+ (A, +a,1)) sinw,t) . (2.10)

q

In the end any relation between two electric fields of the form f)(w) = f(Q)a(w) can be

written in terms of two-photon formalism transforming the function f(€2) according to the

(f++f) i(fe=1)| .
b(Q) = -a(Q), 2.11

where f, and f_ are defined as in equation and

a(Q) = [ c] N OE [

are the fields in the two-photon formalism.

following rule

[
Qﬂ)

] (2.12)

(SN
SO

2.1.2 Vacuum state of the optical field

In classical physics the vacuum is a region of the space where no particle are present. How-

ever this is not true in quantum mechanics, where, because of the Heisenberg’s uncertainty
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principle, in each point there must be a fluctuation of energy. To explain that, it has been
supposed that in the vacuum there are temporary particles which continuously and quickly

create and annihilate.

So the vacuum state |0) of an optical field is by definition the ground state, i.e. the lowest
state of energy (equal to w/2) with no excitation. This means that it must satisfy the

following relations

a, |0y, =0, (2.13)

(0], a’ =0, (2.14)

(0l a, 10y =(a,) = (al ) = 0= (a,(Q) = (a,Q)) =0, (2.15)
(0141 10y = (@) = (a'@®)) = 0 = (4.(1)) = (a,(t)) =0, (2.16)

where |0) is defined as the vacuum state of all modes?|over all frequencies @ [50]. The first
two equations represent the fact that |0) has the lowest energy and no excitation at every
frequency. The last two, instead, represent the fact that, because of its statistical properties

the mean value is zero, in both frequency and time domain.

Furthermore for the quantum noise calculation it is useful to define the symmetrised single-

sided spectral density S,;(€2) as

275(Q - )S,;(Q) = - (a,(Q)a;(Q) +a,(Q)a,Q) (.j=c,s) (2.17)

0| =

and the associated quadrature amplitude matrix of spectral densities

S@) [Scc@) Scm)] | 1)

S..(Q) S,(Q)

For the vacuum state, this matrix of spectral densities can be obtained form the commuta-

tion relations 2.6 and it is

5@, = [3) 3], SW=S@=1. S.@=0. @)

2.1.3 Transfer matrix of a lossless optical element

In order to be able to write the relations between the input and output fields of a general

optical element (e.g. mirror, lens, beamsplitter, etc.) its optical transfer matrix must be

defined.

2A quantum state of a travelling wave comprises a continuum of modes and each of them can be viewed
as a quantum oscillator.
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Figure 2.1: Optical element with two input beams @(Q) and é(2) and two output fields b(Q) and

F(Q.

Let us consider for example an optical element with power transmissivity 7" and power
reflectivity R and suppose that there are two beams a(£2) and e(Q2) incident on its surface
(cf. figure . The relation between these beams and the output beams b(Q) and f(Q) can

be written as R
b(Q) VRe? \Tet | |a@)
X = , NN : (2.20)
F@| | VTet Ret| |e@

where ¢, and ¢, are the phases of the reflected and transmitted fields respectively.

Because of the energy conservation law, the optical transfer matrix must be unitary and

that means that the following relation must be true

VRe* \Tet | | WRet (| {10 (2.21)
VT e \/Rei VT e # y/Re| |0 1| '

This gives us the following conditions:

R+T =1,

(2.22)
VRT (@00 4 ¢i@—8)) = 0,

The first one is the the energy conservation law itself and from the second condition we

have

cos (¢, — ¢,) +isin(¢p, — ¢,) +cos(¢p, — @,) +isin(p, — p,) =2cos (¢, — ¢p,) =0, (2.23)

which means that must be ¢, — ¢, = i%. There are several solutions that satisfy this

condition. In this thesis , unless otherwise specified, we will always use the convention

$.=0, ¢ = % (2.24)
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Figure 2.2: System equivalent to a mirror with a power loss equal to €. In order to take into account
the loss and the additional noise related to it, two imaginary asymmetric beamsplitters with reflec-
tivity equal to the loss are added before the two input fields. The two vacuum fields #, (Q) and A,(€2)
gives the contribution of the additional noise.

So equation become

b | _|VR iVT| |a@
. = | . (2.25)
F@]  [ivT VR] |e@

which describe the relations between the input and the output beams acting on the mirror.

2.1.4 Transfer matrix of a lossy optical element

The case of a lossy mirror is more complex but it is required to analyse realistic systems.
Let us consider for example a mirror with power transmissivity 7', power reflectivity R and
a loss described by a coefficient € that could be due to scattering, absorption, any other
mechanism that creates a loss or a combination of these. According to the Fluctuation Dis-
sipation Theorem [52] there is a connection between any kind of a dissipative mechanism
(i.e. the loss) and some kind of fluctuation. This means that the optical loss must always

introduce an additional noise.

In order to take into account this additional noise, we can consider an equivalent system
where two imaginary beamsplitters are introduced (see figure[2.2). Each of these beamsplit-
ters will have a reflectivity e, so the reflected light is equal to the loss, and a second input

field, which is a vacuum field and represent the additional noise associated to the loss.

The relations between the input fields a(€2) and e(€2) the output fields IAJ(Q) and f' () can
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then be written as follow [50]

b(@) =(l-¢) VR VT LN e(1—e) VR T e (2.26)
7 WT VR| |e@ VT VR] |a,@]

where 1, ,(Q) are vacuum fields. It is worth noting that in this case the energy conservation
law becomes R + T + € = 1. The additional noises sources associated to the loss are
uncorrelated with the input field and one with each other and that means that they must

satisfy the following condition:
(A, (1), Ay (1)) = 0. (2.27)

Furthermore, because of the arbitrariness of the noise fields introduced, we can redefine

keeping the condition of uncorrelation expressed in equation still valid. In this way
equation can be simplified

lb(g)] —(-e) [\/E iﬁ] . [é(g)] +Ve(l—e) ["’I(Q)] . (229

(2.28)

n,(Q)

" (Q)
A, (Q)

ﬁ](m]

7@ iVT VR| [&@ n,(Q)

which gives the equations of the output beams for a lossy optical elements as a function of

the input beams and the vacuum fields associated to the loss.

This method will be used in chapter [| for the calculation of quantum noise of an interfer-

ometer with a lossy ITM.

2.2 Measurements and analysis of the mirror surface

The surface requirements of the arm cavity mirrors of the Glasgow SSM are defined per-
forming simulations in order to evaluate the loss that each kind of surface imperfection
produces. There are several kinds of surface imperfections that cause loss or beam distor-
tion. They will be analysed in details in chapter |5, where we will describe the results of the

measurements and the simulations that led us to the derivation of the mirrors requirements.

In this section we will describe the most important mirror surface errors and the tools used

to measure and analyse them.
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2.2.1 Mirror surface imperfections

There are a lot of imperfections a mirror surface can have that can create additional sources
of noise in the interferometers. The effects they have on the interferometer performance
are different for each of them, but one of the most important is the scattering, which will

be described in details in chapter [6]

Here there is a list of the most important surface errors.

Point defects

A point defect is defined as a randomly placed defect with dimensions of the order of the
microns. A theoretical study of the effects of this kind of anomalies was made by Yamamoto

[53] and can be summarised as follow.

According to the Huygens principle any point of the wavefront can be considered as a
source of the electromagnetic field. So, if we consider the field E,(x,, ,, z,) as the field in
the source point (x, y,, z,), then the electromagnetic field in a generic point of the space

(x, ¥, z) in the Fresnel approximation can be written as [54]

2
—ik Ax2 +Ay

i
E(x,y,2) = Ia / / dx,dy, Ey(xo, Yo, Zg) € 2L, (2.30)

where L = z—z,, Ais the wavelength, k is the wave number, Ax = x —xj,and Ay = y—y,.

In our case we want that the source is a gaussian beam reflected by a point defect placed
in the centre of the reflection point. The effects of the point defect is a perturbation of the
gaussian field T E M, described by a factor exp [2i k f(x,, y,)], i.e.

2,2
0%

; 2 TTx g
Eg(Xg, Yo 2) = TEMpy €' /0090 = —e w5 ko), (2.31)
Tw
0

with w, the beam waist (which is supposed to be on the mirror surface) and f(x,, y,) a
function that describe the geometry of the point defect. Inserting equation [2.31]in equation
and expanding the exponential in f until the first order, we can write the Huygens
integral as the sum of an unperturbed field F(x, y) and a perturbation d F(x, y):

E(x,y,z) = Fy(x,y,z) +dF(x,y, z)

kAx +Ay _xg';y(z)

dx,dy,e" "2 e "0
Lﬂ/ / 04 Y€ (2.32)
X242
A‘( +Ay 0_20
Lﬂ/‘/dedyozlkf(xO,yo)e 2L “o .
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The perturbed field d F(x, y) can be simplified using the Fraunhofer approximation (then
X, << x and y, << y) and assuming that the beam size is much more bigger than the point

defect (x << w, and y << w,)) and then we have

/ L x24y2 L XXV Y
dF(x,y) = %Le“" i 2ik / / dxydy, f(xgy)e T . (2.33)
Tw; LA

Finally, the relative power loss due to the point defect is found by calculating the power of

the perturbed field

Loss —//dxdy |dF(x,y,2)|* = 327’ — (2.34)
(wyA)
where we have supposed that the point defect has a gaussian shape with area on the mirror

surface equal to a* and maximum height h.

Since the loss is proportional to the power that hits the point defect, the final equation for
the total loss is obtained performing the integral of the loss due to a point defect described
in equation multiplied by the gaussian beam’s function and the surface density N of
point defects:

Loss,,, = / / dxdyLoss exp(=2(x* + y*)/w*)N. (2.35)

Astigmatism

Astigmatism is an optics aberration that causes a distortion of the image and the creation
of a secondary image. For example, in case of a point source reflected (or propagating)
through an astigmatic mirror (or lens) the image will be two perpendicular lines [55]]. The
surface of an astigmatic optical element can be described by the Zernike polynomial (2,2)
[56].

Zernike polynomials are a set of polynomials which are a complete orthogonal base over
a unit disk. This means that every circular surface (or wavefront) can be described as a
sum of Zernike polynomials and this is the reason why they are often used to describe the

mirror surface.

In a polar coordinate system (p, ¢), they are defined through two indexes m and n as [57]]

-

Z"(p,p) = R"(p) cos(mg) form >0,
1Z™(p, ¢p) = R"(p)sin(m¢p) form <0, (2.36)
Z"(p,d) = R'(p) form = 0,

“
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Figure 2.3: Example of a surface described by Zernike polynomial Z%(p, P).

with (rom)/2
! —D*(n = k)!
an(p) 2: ( ) ( ) n 2k.

p)
= o« (ﬂ —k)! (""" —k>!
2 2

From this definition we have that the polynomial Z3(p, ¢) = V6 p? cos(¢) represents the
astigmatism (see figure [2.3).

(2.37)

Flatness and microroughness

Spatially periodic surface imperfections can be defined considering their spatial frequen-
cies. In general errors with low spatial frequencies are defined as flatness, and errors with
high spatial frequencies as microroughness. There is not a fixed rule to define the limit of
the spatial frequency range for each kind and their effects depend from different parameters
like beam size and mirror diameter. Usually the spatial period of flatness is of the order of

the mm or cm and that one of microroughness of the order of the microns.

They are usually measured in rms, which stands for root mean square, and it is defined as

N \n, - A
P = \/—Z":1 | N | : (2.38)

where A, is the measure of the height of each of the N points of the surface map and 4 is

the mean value of the heights.

A very useful tool to describe the periodic surface errors is the power spectral density
(PSD). The PSD of a random time series s(¢) is defined as the Fourier transform of the
autocorrelation function
PSD(f) = L s % s(7) ™7 dr, (2.39)
2x J—eo
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Figure 2.4: Example of the PSD of a mirror surface. Specifically it is the measurements of the surface
of one of LIGO’s ETM, made before and after the coating. The units of the y-axis are expressed in
this way in order to highlight the scale of the error (nm) and the spatial frequency units (1/mm).
It must also be noticed that at low frequencies the convolution gives non-physical results. Figure
taken from [/58].

where the autocorrelation function is defined as

sx s(t) = /°° s(t) st + 1) dt, (2.40)

o]
and it gives the frequency distribution of the time series amplitude.

This definition can be extended to a surface replacing the time with the space coordinates
and the frequencies with the spatial frequencies. In this way we have a detailed description
of the periodic surface errors relatively to their spatial frequencies. An example of the PSD
of a mirror surface can be seen in figure where it is shown the PSD of one of the LIGO
ETM before and after the coating.

The spatial frequencies are usually measured in 1/mm and the lower limit is defined by the
mirror diameter, because at lower frequencies we do not have enough statistics (it would
mean to have less than one defect per mirror size). The microroughness, on the other side,
has usually a spatial scale greater than 1/mm, which set the upper limit. The PSD, then, is
measured in [nm? - mm] or [nm? - (1/mm)~!'], in order to highlight the scale of the errors

(nm) and the spatial frequency units (1/mm).
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Figure 2.5: Schematic draw of a Fizeau interferometer.

2.2.2 Flatness measurements through phase shifting

interferometry

The measurements of the flatness were done with Zygo GPI XP/D™ interferometer [59]],
which allows to measure flatness of a mirror without touching its surface. This model is a

phase shifting interferometer with a Fizeau configuration.

The optical configuration of a Fizeau interferometer can be seen in figure The laser
beam passes through a beamsplitter and reaches the reference flat, placed in front of the
test surface that we want to measure. At this point part of the light is reflected back to
the beamsplitter creating a reference wavefront and part is transmitted and reaches the
test mirror. The two wavefronts are then recombined at the beamsplitter and the phase

difference between the two creates an interference pattern of dark and light fringes.

The relation of the height of the surface h(x, y) and the phase difference ¢(x, y) in each
point (x, y) of the surface is described by the following equation

= (2.41)

where 4 is the laser wavelength.

The phase shifting interferometry technique is based on the introduction of a time depen-
dent phase shift, added with the help of some piezoelectric transducers, that change the
position of the reference flat [60]. According to this method, the reflected fields from the
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reference flat and the test surface will be respectively

E,(x,0.1) = A,(x, y) e/e0=0), (2.42)
E(x,y) = A(x,y) ¥, (2.43)

where A,, A,, ¢, and ¢, are the amplitudes and the phases of the reference flat and the test
surface respectively and 6(¢) is the time-varying phase. The intensity of the interference

pattern is given by the squared sum of the two fields, i.e.
2
I(x,y,0) = |E.(x,y,1) + E(x, )|
=Af(x, »+ Atz(x, N+ A(x,y)Ax,y) (ei(¢(x’Y)+5(’)) + e_i((l’(x’Y)"s(’))) (2.44)

=I'(x,y) + I"(x,y) cos (¢(x,y) + 6(1)),

where we have defined I'(x, y) = Af(x, )+ Atz(x, y) the average intensity and I"(x, y) =
A,(x,y) A,(x, y) the intensity modulation.

At this points there are several algorithms that can be used to take the measurements, whose
major differences are the number of times and the rate at which the interference patterns
are measured. In order to have an idea of how these algorithms work, we will show here

the simplest one, the so called four step algorithm.

As the name suggests, with this algorithm we consider four changes of the phase
6, =0,n/2,7,37/2; i=1,2,3,4, (2.45)
which give the following measured intensities for the interference patterns

Il(x7 J’) = I,(X, y) + 21”(X, J’) COos (d)(x’ Y)) ’ (246)

L(x,y) = I'(x,y) + 21" (x, y) cos (¢(x, y) + 7/2)

=1I'(x,y) = 2I"(x, y) sin (¢(x, y)), (2.47)
Ii(x,y) = I'(x,y) + 21" (x, y) cos (¢(x,y) + 7)

= 1I'(x,y) = 21" (x, y) cos (¢(x, ), (2.48)

I(x,y) =I'(x,y) + 21" (x, y) cos(¢(x,y) +37/2)

= I'(x,y) + 21" (x, y) sin(¢(x,y)), (2.49)
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This is a system of four equations in three unknowns I'(x, y), I"'(x, y) and ¢(x, y), but what
we only need for our measurements is the value of ¢(x, y) in each point of the map. It can
be found subtracting in pairs the equations with odd and the even subscripts, in order to
eliminate the average intensity and making the ratio of the obtained equations to eliminate

the intensity modulation

L(x,y) = L(x,y) _ sin((x, y)
LGy = 106y cos (@, )

= tan (¢(x, y)) . (2.50)

Finally the value of the phase shift is

(2.51)

P(x,y) = tan~! <I4(X, y) — L(x, )’)>

Il(x9 y) - I3(X, y)
and replacing this equation in equation[2.41] we obtain the height of the surface map.

In Zygo GPI XP/D™ a digital camera with a 640x480 pixels resolution is used for the ac-
quisition. The camera takes a set of snapshots of the interference pattern when the two
wavefronts has a predetermined phase difference, with an algorithm similar to that one
described above, and the data are then processed and combined in order to find the phase
of the wavefront at each point of the surface map. The data can be then visualised through

the MetroPro™ software, provided with the instrument. An example of the output is shown

in figure

2.2.3 SimTools

SimTools is a collection of MATLAB® functions useful for optical simulations. It has been
developed by gwoptics since 2006 and it includes functions made by several people. It does

not have a manual, but the list of available functions can be found on the website [61]].

A few of these functions will be used in chapter 5| for the correction of the flatness mea-
surements of some mirrors surfaces. These maps will be then used for the simulations
performed to derive the arm cavity mirrors requirements. Specifically we will use the fol-

lowing functions:

FT_recenter_mirror map.m

It finds the centre of the map (x,, y,) by computing the centre of gravity, i.e.

_Zixi y _Ziyi
==, y=—=

xmax ymax

X, (2.52)
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Figure 2.6: Example of a measurement with Zygo interferometer. In the top part of the figure we
have the surface profile (in 2D on the left and in 3D on the right) and the values of the flatness.
In the bottom part we have 1D surface profile on the left (the direction where this measurement is
taken can be chosen by the user) and the intensity map on the right. On the far left we have a list
of other possible analyses that can be made on the map.

where x; and y, are the indices and x,,, and y, . are the number of element in x and y

respectively.

FT_remove_offset_from mirror_map.m

This function is used to remove any offset on the map. It calculates the average value of the
central region of the map and then it removes it from the whole map, in order to have the
average value of the central region equal to zero. The size of the central area can be chosen

by the user, according to the accuracy required.

FT_remove_piston_from mirror_map.m

This function is used to remove any tilt in x and y directions. In order to do that a perfect
map is defined and modified adding a tilt in x and y directions. Finally the most likely
value of the tilt of the measured map is found testing for which values of the x and y tilt

the measured map has minimum difference respect to the perfect map. The output of the
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function is a new map with the tilt removed and the values of the tilt.

FT_map_rms.m

This function computes the rms value of the surface distortion using equation It can
be applied to the whole mirror surface or to a selected area. The latter can be done defining

the radius over which the calculation should be made.

FT_remove_curvature_from mirror map.m

This function gives an estimate of the radius of curvature of the mirror surface. This is done
finding the spherical surface which best fit to the surface map. The output is the radius of

curvature and a new map with the curvature removed.

FT_zernike_map_convolution.m

This function performs a convolution between a mirror map and a Zernike polynomial and
it is used to define the astigmatism as the amplitude of Z(p, ¢) polynomial. The amplitude

c of the Zernike polynomial is found through the following equation

Zx,y (Zx,y ) Di,y)

¢ = : (2.53)

S (2., 22,)

where Z_ and D, , are the map defined through one of the Zernike polynomials and the

measured map respectively.

2.3 OSCAR

In order to find the arm cavity mirrors requirements for the Glasgow SSM, we need to
evaluate how the surface imperfections will affect the performance of the cavity. As we will
explain in detail in chapter|[5] the loss is a critical factor for the sensitivity of this particular
experiment. Therefore, we need to consider any possible source of loss and evaluate its
impact. This analysis was done in MATLAB® with the help of OSCAR (acronym of Optical
Simulation Containing Ansys Results), a MATLAB® code that uses the fast Fourier transform
(FFT) method [62] to simulate cavities with arbitrary mirror profiles [63]]. However, since its
calculations are limited to the steady state solution, it cannot be used to calculate quantum

effects, like radiation pressure.

The details and the results of these simulations are shown in chapter 5
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2.3.1 Field propagation

The FFT simulations base on the fact that the propagating field can be represented by adding
a phase to the FFT of the original field. That means that a transverse electric field E(x, y, 0),

which propagates in the z direction from z = 0 to z = d, can be evaluated as follow [[64].

First we make the Fourier transform of the original field

E(v,,v,,0) = / / E(x,y,0)e* """ xdy, (2.54)

where v, , is the spatial frequency in the basis of x or y.
If we consider that the wave is propagating along the direction z, or close to it, then the

z-component of the wave number can be written as

K+ kK
k.~ k— T k= An(vi+ VD), (2.55)

where k =  /k? + ki + k2 = 2z /A is the wave number. Substituting equation [2.55(in [2.54

we have

E(v, v, d) = E(v,,v,,0) 7% = E(v,, v,, 0) ¢, (2.56)

Finally, the field after the propagation can be obtained making the inverse Fourier transform
of equation [2.56}

E(x,y.d) = / / E(v,,v,,d)e™ gy dy, (2.57)

In order to use this method for a computer simulation, we need to consider that the optical
field is not a continuous but a discrete function. So the integrals will become sums over a
discrete 2D grid and the multiplications are meant as element by element multiplications
of two matrices. It is important to highlight the FFT requires square grids with the number
of elements for each side being a power of 2 [65]. The reason for this condition can be

explained through the Danielson-Lanczos Lemma.

In 1942 Gordon Danielson and Cornelius Lanczos showed that a discrete FFT of length N
can be written as the sum of two FFT of length N/2 each. This lemma is of great importance
for digital computing since it can be used recursively reducing the computation time. But
in order to be able to do that it is necessary that the number of elements will always be
even at each iteration and this can be guaranteed by using as number of elements a power
of two. [[66]
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2.3.2 Realistic optics and wavefront distortion

One of the most important features of OSCAR is the possibility to simulate realistic optical
elements, e.g. optics with curvature or surface profile defined by the user. The method used
to calculate the wavefront distortion is the same in both cases. In fact once we have defined
the surface profile of the optics, the calculation is done pixel by pixel, despite the fact that
the surface has a perfect shape or not. We will see now in detail how this calculation is

made.

The mirror surface curvature or imperfections cause a difference in the optical path of the
beam. In order to calculate this difference, consider a frame of reference (x, y) with the
origin in the centre of the mirror, which has a radius of curvature R,. The change in the

value of the sagitta in each point will be

As(x,y) = R, — 1/ R> = (x* + )?) (2.58)

and the difference of path length will simply be twice this value.

From this value the wavefront distortion can be evaluated considering that this change in
the optical path will add a phase shift in the original field. So the field affected by this

distortion can be described performing the following calculation pixel by pixel

E(x,y) = Ey(x,y) e 280, (2.59)

2.3.3 Clipping and round trip loss

With the term clipping loss we mean the loss that occurs in a cavity due to the finite size
of the mirrors [64]. It is always present in a cavity since a gaussian beam has by definition
an infinite wavefront area, but usually the beam radius is chosen much smaller than the
mirror radius and then it can be neglected. On the other side, it becomes important when

other mechanisms occur in the cavity, like scattering or generation of higher order modes.

The clipping loss is found considering that, for the energy conservation law, the sum of all
the output powers and the loss must be equal to the input power, i.e. [67]]

P,=P+P+P (2.60)

ost?

where P, is the incidence power, P, is the reflected power, P, is the transmitted power

and P, is the lost power, as shown in figure Dividing the previous equation for the
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Figure 2.7: Drawing of a cavity where we show the definition of incidence power P,,, reflected power
P, circulating power P,, and transmitted power P,, used for the calculation of the clipping loss.

circulating power P, we obtain

2 lost
= +2+
12 12 2P
2 2,02 2 2.0
1_"1_"2"'”1”2"'("2_”1”2)3_t2+Plosz
r > P, (2.61)
2 2 2 2
(l_rl)(l_r2)+r2(1_rl>g:t2+1)lost
-7 > P

1 Cc

POS
(1—r§)+r§$=t§ ll’ct’

where r is the amplitude reflectivity and ¢ the amplitude transmissivity of the cavity input
mirror (subscript 1) and end mirror (subscript 2) and & is the total loss at each round trip,
which will be then

})lost Pin_Pr_Pt Pin_Pr_Pt
&L = > = 5 ~ (262)
I‘ZPC rZPC Pc
since the factor r% in the denominator is usually close to one.
We can also calculate the loss projected on the TEM00 mode
P — POO _ POO
Lyy= —"—", 2.63
" - (2:63)

4

where P and P are the powers in the TEM00 mode of the reflected and transmitted
fields. In this way we take into account, apart from the clipping loss due to the finite size of
the mirrors, also the loss due to the coupling due to the generation of higher order modes.
In this case we will talk about round trip loss, i.e. the total loss that we have at each round
trip [68].
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2.3.4 Fundamental functions

In order to be able to perform simulations of a cavity, we first need to define its necessary
feature, like the input field, the mirrors and the shape and the length of the cavity itself. In
this section we will describe the fundamental functions used to do that. These functions
are used to define new classes of objects that OSCAR introduce in order to simplify the

calculation.

Grid (Num_point, Length)

Before performing any simulation, we need to define the grid, setting the number of points
Num_point and the physical size Length of each side. It will be used for both the mirrors
and the fields wavefront and it defines the resolution of the calculation. So it is important
to choose a number of points high enough to avoid to lose any information, but not too
high that entails a very long computational time. The better solution is to define a different
grid for each simulation, finding a good compromise between the resolution needed for
that particular simulation and a reasonable running time of the code. A wrong choice of
the resolution, for example, could cause aliasing, which will entail an underestimation of
the loss [65].

It is important to remember that the number of points must always be a power of two, as
explained in section [2.3.1]

The output of this function will be an object of the class Grid with the following properties:

Num_point: 512
Length: 1
Step: 0.0020
Half_ num_point: 256

Vector: 1x512 double]

Axis: 1x512 double]

Axis_FFT: 1x512 double]
D2 _X: 512x512 double

512x512 double

[

[

[

[
D2_Y: [512x512 double

D2_square: [

[

[

[

]
]
]
]
]
]

D2_r: 512x512 double
D2_FFT_X: 512x512 double
D2_FFT_Y: 512x512 double

where we have used as an example 512 point over a length of 1 metre. Apart of these two
values, the function have calculated and stored in the object some properties useful for the

simulations. Specifically we have
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« Step is the resolution, i.e. the physical size of one pixel, given by the ratio of the

length and the number of points;
« Half_num_point, as the name suggests, is simply half the number of points;
« Vector is an array with values from 1 to Num_point;

« Axis is a vector representing the x and y physical coordinates (in metres), from

—Length/2 to Length/2, so centred in zero, and it is calculated as

Length Ste
Axis = — 2g + > Pt vector - Step; (2.64)

« Axis_FFT are the spatial frequency coordinates calculated as

Axis_FFT = —

+ Vector - Step; 2.65
2Step F (2.69)

« D2_x and D2_Y are the grids of the coordinates x and y defined in Axis;

« D2_square is a 2D matrix with the square of the distances from the centre of each
point, so

D2_square = D2_X° 4+ D2_Y?> (2.66)

« D2_r is the square root of D2_square, so it is the distance of each point from the

centre;

« D2_FFT_X and D2_FFT_Y are the grids of the spatial frequencies coordinates.

E_Field(Grid, options)

This function is used to defined the electromagnetic field. There are two mandatory param-
eters: the first is an object of the class Grid, which is defined as described above, and the
second could be either the waist radiug’|, the beam size and the radius of curvature or the
waist radius and the distance from the waist or the complex radius of curvature g, defined
as [54]

=— i (2.67)

with R the radius of curvature, 4 the wavelength and w, the waist radius. In this way, if no

other options are set, a gaussian beam is created.

Additionally other optional parameters can be added, like the power (otherwise set to 1 W

by default) and the mode order (otherwise set to the fundamental mode).

3The waist radius of Gaussian beam is defined as the minimum beam radius, which occurs where the
radius of curvature of the wavefront is zero [[54]].
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The objects of the class Field will have the following properties:

Grid [1x1 Grid]
Field [512x512 double]
Field SBl1 (]
Field_SBu : []
Refractive_index 1
Wavelength : 1.0640e-06
Frequency_Offset : O
Mode_name : "HG 0 0f
k_prop : 5.9052e+06

where

« Fieldis a 2D matrix with the values of the field in each point;

« Field_SBl and Field_sSBu are the lower and upper sidebands (they will be defined

only in some simulations);
« Refractive_index is the refractive index of the medium set to 1 by default;
« Wavelength is the laser wavelength set to 1064 nm by default;
« Frequency_Offset is the frequency of the sidebands;
« Mode_name is the family (HG or LG) and order of the mode;

« k_prop is the laser wavenumber, i.e. 27 /Wavelength.

Interface (Grid)

This function is used to create an interface between two media. The only required pa-
rameter is an object of the class Grid. In this way a flat, infinite interface with a power
transmissivity of 0.1 is defined. However it is possible to change these features setting the
optional parameters like radius of curvature, the diameter, the transmissivity, the loss and

the angle of incidence of the input beam.

The properties of an object of the class Interface are:
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Grid [1x1 Grid]
surface [512x512 double]
mask [512x512 double]
T 0.1
L 0
nl 1
n2 1.4500
t 0.0000 + 0.31621
r 0.9487
where

« surface is a 2D matrix with the height of the surface in each point;

« mask is a 2D matrix with only 1 and 0 that describe the aperture of the optic;
« T is the power transmissivity, set by default to 0.1;

« L is the loss, set by default to zero;

nl and n2 are the refractive index of the two media (set as default to 1 and 1.45, i.e.

air and silica);

« t and r are the amplitude transmissivity and reflectivity respectively.

If needed is also possible to define thick substrates using the class Mirror. However, since

we will not use it for our simulations, we will not talk about it.

Cavityl (I_input, I_end, Length, Laser_in) and

CavityN(I_array,d_array, Laser_in)

Once we have defined the grid, the input field and the interfaces, we are able to define the
cavity. The simplest option is the linear cavity, which is defined by the function cavityl.
In this case we just have to put as the function options the two objects of the class Interface
interface I_input and I_end, the length of the cavity Length and an object of the class
E_Field (Laser_in), that represent the input field.

If needed it is also possible to define more complex cavities, with an arbitrary number
of mirrors. In this case the function CavityN must be used, with the input variables an
array I_array with all the interfaces, an arrays d_array with the distances between the
mirrors and the input field Laser_in. Setting appropriate values of the distance between
the mirrors in the array d_array and the angles of incidence of the beams in the options

of each interface it is possible to define a cavity with any geometrical shape.
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The properties of this two class are similar: for Cavity1l the output will be an object with

the following properties

I_input

I_end

Length

Laser_in
Laser_start_on_input
Resonance_phase
Cavity_scan_all_field
Cavity_scan_param
Cavity_phase_param
Cavity_scan_R
Cavity_scan_RZ
Cavity_EM mat
Propagation_mat
Field_circ

Field_ref
Field_trans
Field_reso_guess

Loss_RTL
and for CavityN we have

I_array

d_array

Nb_mirror

Laser_in
Laser_start_on_input
Resonance_phase
Cavity_scan_all_field
Cavity_scan_param
Cavity_phase_param
Cavity_scan_R
Cavity_scan_RZ
Cavity_EM mat
Propagation_mat_array
Field_reso_guess
Field circ

Field_ref

Field_trans

Loss_RTL

1x1 Interface]

[
[1x1 Interface]
1

1x1 E _Field]

x1 Prop_operator]

[1x3 Interface]
[1 0.5000 1]
3

[I1x1 E_Field]

1

(]

(]

[1000 500 2.0000e-09]
100

x3 Prop_operator]
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As we can see the only differences between the two classes are the first three properties,

because we have the input and end interface and the length of the cavity in the first case

and the array with the interfaces, the array of the distances and the number of mirrors in

the second one. Furthermore, most of other properties are empty vectors that will be fill

during the simulations. We will see now in details what are all these properties:

Laser_start_on_input is alogical value (1 for true and 0 for false) which specifies
where the input field is defined;

Resonance_phase is a complex number used to adjust the phase and bring the cav-

ity on resonance;
Cavity_scan_all_field stores all the fields after each round trip;

Cavity_scan_param is an array with the number of points used for cavity_ -
scan_R, the number of points for Cavity_scan_Rz, the span of the zoom and the

max number of iteration in case of high finesse cavity;
Cavity_phase_param is the number of roundtrips used to find the resonance;

Cavity_scan_Rand Cavity_scan_RZ are the cavity circulating power scan over

one FSR|and the zoom of the scan around the resonance frequency;

Cavity_EM mat is the kernel for one round trip in the cavity (it is used to calculate

the eigen modes);

Propagation_mat and Propagation_mat_array describe the propagation rules
of the field in the cavity through a new class of objects introduced by OSCAR and

called prop_operator;

Field_reso_guess is afirst approximation of the cavity resonant field used for the

calculation of the resonance phase of the cavity;

Field circ,Field _refandField_trans arethe circulating, reflected and trans-

mitted fields respectively;

Loss_RTL is the round trip loss.

The free spectral range (FSR) is defined as the frequency difference between two consecutive intensity
maxima (or minima) and it is equal to ¢/(2L), with L the length of the cavity [54].
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2.4 Conclusions

In this chapter we described the tools and methods that are used to obtain the results shown
in the next chapters for the calculation of the quantum noise and for the analysis of the
mirror surfaces. Specifically, in the first part we introduced a new formalism, called two-
photon formalism, which is used for the calculation of the quantum noise. In the second part
of the chapter, then, we described how the measurements of the mirror surface can be done
and analysed. Finally we have given an overview of the MATLAB® package OSCAR, which
is a code that simulates the behaviour of a cavity with arbirtrary mirror surface profiles.
This code is used for the simulations of the cavity with the aim to estimate the optical loss
as a function of the mirror surface imperfections and to derive the surface requirements
of the arm cavity mirrors of the Glasgow Sagnac proof-of-concept experiment described in

the next chapter.



Chapter 3

Speed meters as sub-SQL

interferometers

In this chapter we introduce the concepts of the standard quantum limit (SQL) and quan-
tum non-demolition (QND) measurements, which represent respectively a limitation in the
quantum measurements and a possible way-out to this limitation, which can be applied to
the gravitational wave detectors. It will be shown that an example of QND observable is
the velocity (or momentum) and then measuring the speed instead of the position of test

masses in gravitational wave detectors can reduce the quantum noise.

At the end of the chapter we will describe the features of the Glasgow Sagnac speed meter
(SSM) proof-of-concept experiment, which has the purpose to asses the validity of the theo-
retical predictions and then the quantum noise of a SSM is actually lower than an equivalent
Michelson.

3.1 Linear quantum measurements

The description of a linear quantum measurement can be obtained considering the scheme
shown in figure where we have a probe mass on which a force G, that we want to mea-
sure, is acting. The measurement of the mass motior]] % due to this force is done through
a generic meter or detector (for gravitational wave detection it is the interferometer). The
force F represents the back-action force, i.e. the radiation pressure fluctuations. Further-

more, the meter will have also an additional readout noise O 71> .. the shot noise.

The Hamiltonian that describes the system is given by the sum of the Hamiltonian of the
probe H ,, the Hamiltonian of the detector H , and an interaction term V' (f) = —% (ﬁ + G(t)),

! The hat symbol (") is used to denote quantum operators.

46
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B T meter

Figure 3.1: Schematic drawing of a linear measurement of the motion due to a force G of a probe
mass, through a generic meter. The output signal will include the displacement X and the measure-
ment noise 7.

ie.
Hty=H,+ H,+ V(). (3.1)

The evolution in time of the readout observable O, the back-action force F and the probe
displacement % can be found using the Heisenberg operatorg?and they are found to be [j50,
70]

o) = 00 + / dt’ yort — )%, (3.2)
10

Fity=FO@ + / dt' ypp(t — R, (3.3)
10

2(t) = 2000 + / dt’ y(t —1") (G{) + F(1)), (3.4)
10

where the so called susceptibilities y are defined through the Heisenberg equations of mo-

tion as

i

Xor(t =) = 2 [0V, FOW], (3.5)

xppt = 1) = = [FO0, FOW). (3.6)
_ = L0 50

2t = 1) = 2[R0, 2], (3.7)

with the superscript (0) denoting the free evolution of the observable, i.e. without coupling
between the probe and the detector. Here the probe displacement X is composed by three
terms: the motion due to the signal force x (), the displacement due to the back-action

force that the meter exerts on the probe x, , (¢) and the free evolution of the probe (7).

2In the Heisenberg representation the state function do not depend explicitly on time and all the time
dependences are given by the operators corresponding to physical variables [69].
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Defining the spectral susceptibility as
Yap(2) = / drt y,5(1) e, (3.8)
0

equations and [3.4] can be rewritten in frequency domain as

O(Q) = 0Q) + yor(Q)X(Q), (3.9)
F(Q) = FOQ) + ypp(Q%(Q), (3.10)
2(Q) = 20(Q) + 1,,(D (G(Q) + F(Q)), (3.11)
which gived|
. . Q) xor(€2) A
O@Q) = 6OQ) + KuxDor GQ) + FOQ))., 3.12
@ =00+ 17 g ey (GO + @) 12
A 1 A
FQ) = Q QGQ) + FOWQ)), 3.13
@ = @ (2x (D xpr( QG + FO(Q)) (3.13)
@)= — 2 Gy Fo). (3.14)

I = 2 (€2) xpp(€2)

We can define now two new observables 7 and F as

) O(O)(Q)

Q) = , 3.15
7€) Xor(€) ( )
7@ = FO@) - 25D 5010 (3.16)

IOF(Q)

The first of these two new variables, 7(£2), represents the output fluctuation that does not
depend on the probe, which in the gravitational wave detectors is identified as the shot
noise. The second one, ﬁ’(Q), on the other side, represents the response of the probe to the
back-action force, i.e. the radiation pressure noise. Furthermore, we have that the doubled-

sided spectral densities of these two variables are defined as

S, (@) = / dt (D)o (1)) 2D, (3.17)
Srr(Q) = / wdt<f’(r)of‘(t’)> e, (3.18)

3Here the terms £(?(Q) can be omitted because it only depends on the initial value of position and mo-
mentum of the probe.
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S, Q) = / Tt GoF () e, (3.19)

[o0]

and they must satisfy the Schrodinger-Robertson uncertainty relation:
2 R
S (DS = | @ 2 7. (3.20)

which is the equivalent of the Heisenberg uncertainty principle for correlated variables.

3.2 Standard quantum limit

The results described in the previous section, and specifically the condition set by equation
3.20] imply a lower limit in the value of the shot noise and the radiation pressure noise. In

case of the two noise sources are non-correlated the condition becomes

2
S @S, @ 2 2 (3.21)

since S, (€2) = 0.

Furthermore, under this conditions, # and 7 are simply the fluctuation of the displacement

and the force and then we can rename their spectral density as

S, @ =S(Q). S =S (3.22)

Using this condition is possible to minimise the quantum noise in the measurements, i.e. the
sum of these two noises. In order to do that, it is useful to normalise the output described in
equation by the unit signal. However there are different options depending on which
aspect of the signal we want to consider. The most common normalisation for gravitational

wave detectors are the follows:

« F-normalisation: in this case we consider as signal the force of the gravitational wave;

« x-normalisation: we consider as signal the mirror motion due to the gravitational

wave force;

« h-normalisation: the signal considered is the gravitational wave amplitude.

Let first consider the F-normalisation. In this case the coefficient of G(€2) will be equal to 1
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and the output described in equation becomes [50]

1= xrr(Q) 1 (Q) A

0'En = Xor(8) 1, (€2) O
i (e g ow) e
= }i (2) +F(Q) + G(Q)
and then its power spectral density will be
STQ) = % + S:(Q) = |;i:$;|2 + 4;?9). (3.24)

The minimum of the sum of these two noises is called standard quantum limit (SQL) and is

achieved when they are equal, i.e.

_ 17}
SQL( ) = —| xx(Q)l , (3.25)
ith
b s@=21@.  s@=—L— (3.26)
X 2 XX ’ F 9 |XXX(Q)| . .

The relations between the SQL in the other normalisations is given by the following equa-

tions
€9))
SQL
SQL(Q) m, (3.27)
SQL(Q) |Xxx(Q)|2 SQL(Q) (328)

where M is the mass and L the cavity length.

The explicit form of the noises, and then of the SQL, change depending on the properties
of the system. We can consider for example two common cases: the free mass and the

harmonic oscillator. In the first case we have

1
Xex = ~3ren (3.29)
SQL(Q) AMQ?, (3.30)
Q) =_"_ 3.31
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h _ 2h

SSQL(Q) = m, (332)
while in the latter we obtain
P p—— (3:33)
xx M(Qé _ 92)5 .
S50 () = hM|QF — Q| (3.34)
ST (Q) = L (3.35)
N 4h|Q§ — Q7|

SSQL(Q) = W, (336)

where €, is the oscillator mechanical eigenfrequency:.

3.3 Speed meters

The SQL, described in the previous section, is a fundamental limitation in quantum mea-
surements. However, it is important to remark that it is a direct consequence of the Heisen-

berg uncertainty principle that is valid only for conjugate variables.

The SQL, in fact, can be avoided through the quantum non-demolition (QND) measure-
ments, defined in 1980 by Braginsky et al. [71]. A physical quantity A is said to be a QND
observable if and only if it commutes with itself when measurements are made in two dif-
ferent times ¢, and ¢,, i.e.

[A(z)), A(7)] = 0, (3.37)

and if this is true for all times. This condition is satisfied if the observable A is conserved
during the system evolution, i.e. ‘Z—’? = 0. This means that energy and momentum are QND
observables, but position is not. So a way to avoid SQL is to make measurements of QND

observables.

There are some observables that are intrinsically QND variables and than they can be mea-
sured without being limited by the SQL. An example of such kind of observables is the
momentum (or the speed), because it is well known that, since it is a conserved quantity,
is not affected by the Heisenberg principle [72]. This can be applied also in gravitational

wave detectors in order to increase the sensitivity reducing the radiation pressure noise.

The first attempt to convert a Michelson interferometer for gravitational wave detection
in a speed meter was done in 2000 by Braginsky et al. [73] and after that many other
approaches have been theorised (cf. for example [74-76]). However in 2003 Chen showed
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North cavity

East cavity

Figure 3.2: Optical layout of a Sagnac interferometer with triangular cavities.

theoretically that a zero area Sagnac interferometer is a speed meter as it is, without any

change in the basic configuration [77].

3.3.1 The Sagnac speed meter

The working principle of a Sagnac speed meter (SSM) is based on the fact that in this config-
uration the two beams that come out from the beamsplitter will travel in both arms before
being recombined again. We have in fact that the beam is split by the beamsplitter in two
different beams: one goes into the North cavity and one into the East cavity. The first beam
measures the positions of the mirror at time ¢ and then goes into the East cavity and mea-
sures the position of the mirror at time 427, where 7 is half the cavity roundtrip time. The
second beam, instead, follows the reverse path, so it measure the position of the mirror of
the East cavity at time ¢ and the position of the mirror of the North cavity at time 7+ 27. So
the measurements of the mirrors positions are made at different times and this means that
the test mass velocity is actually measured. In figure|3.2|the layout of Sagnac interferometer

with triangular arm cavities is shown. We will describe now in details how it works.

The phase shift of the clockwise propagating beam (R) and the counterclockwise (L) at the
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output port are [77]]
Opr ~ xn@) + xp(t+ 27), (3.38)
0, ~ xp(t) + x5t +27), (3.39)

where x, and x, are the measurements of the displacements of the mirrors in the North
and East cavity respectively. At the output port the amplitude of the beam is proportional
to the difference of the phases of the two beamd i.e.

Spr — 8¢, o (xy(1) — xy(t +27)) = (xx(1) = xp(1 + 27)) . (3.40)

The two terms on the right hand side of the equation are simply the velocity of the test
masses and then in this way the output will give a measurement of the speeds instead of

the positions, as happens for the Michelson interferometer.

The reason why we need a zero area configuration can be explained considering that the
Sagnac interferometer is sensitive to the rotation of the Earth, because the relative phase of
the two beams depends on the angular velocity of the instrument (Sagnac effect). Specifi-

cally, the relative phase of the two beams is given by the following equation

b= t—‘;‘ Qa, (3.41)
where A is the enclosed area, Q is the angular frequency of the interferometer rotation
and w, is the laser angular frequency. So the Sagnac effect can be suppressed with a zero
area configuration, obtained when the total area enclosed in the beam path is zero, i.e.
it travels in two equal cavities with opposite directions. However, in gravitational wave
detectors, even if the rotation of the Earth could be considered negligible in the time span
of one measurement, we still need a zero area configuration. From equation we can
see that any fluctuation of the area or the laser frequency could affect the relative phase
of the beams. This means that also the laser frequency noise, the seismic noise and the
beam misalignement can couple into optical phase noise, affecting the performance of the
detector. An estimation of the noise due to these effects has been made, showing that it can

be minimise using a zero area configuration [78]].

A detailed calculation of the I/O relations and the quantum noise for a Sagnac interferom-

eter with and without cavities will be shown in chapter

*As we will see in chapter |4} for this particular configuration the output port will be the dark port, i.e.
where we have the destructive interference between the two beams.
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Figure 3.3: Expected noise budget of the Glasgow SSM. In the plot all the main sources of noise are
included and, as we can see, the spectrum is dominated by quantum noise for frequencies between
100 and 800 Hz. Figure taken from [[79].

3.4 The SSM proof-of-concept experiment

With the aim to prove experimentally the validity of the theory introduced by Chen, a
proof-of-concept experiment has been designed and is currently in commissioning at the
University of Glasgow [79, [80]. An input beam of 1.7 W with a wavelength of 1064 nm is
used. Since the purpose of the experiment is to prove the reduction of radiation pressure
noise compared to an equivalent Michelson, we need that the sensitivity of the interferom-
eter is limited by quantum noise. In order to do that a cavity finesse of ~ 8000, which gives
an intra-cavity power of ~ 5kW and very small arm cavity mirrors have been chosen (as e
can see from the noise budget plot shown in figure 3.3). In figure [3.4)a plot of the expected
quantum noise limited sensitivity (red line) and total noise (orange line) of the Glasgow
SSM compared with an equivalent Michelson (dark and light blue lines) are shown. The
goal of the experiment is to reach a sensitivity better than the Michelson’s, i.e. in the green

area of the plot.

The whole system is placed in a vacuum chamber, with a stack of tables for seismic isolation,
as shown in figure The data acquisition and control of the Glasgow SSM is based on the
Advanced LIGO Control and Data System (CDS) [81]. More information about the control
system of the Glasgow SSM can be found in [82].

In this section we will give an overview of the main features of the experiment.
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Figure 3.4: Plot of the expected sensitivity of the Glasgow SSM compared with an equivalent Michel-
son. The aim of the experiment is to reach a sensitivity in the green area of the plot, in order to prove
that the radiation pressure noise is smaller than an equivalent Michelson. Figure taken from .

Figure 3.5: Image of the vacuum chamber used for the SSM experiment. It is composed by two tanks
of 1 m diameter connected through a tube. In each tank there is a seismic isolation stack of tables
connected to each other with a bridge structure.
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3.4.1 Optical layout

The optical layout of the Glasgow SSM is shown in figure The most important mirrors

are

« M,, and M, are the input test masses (ITM) of the cavities a and b, respectively. They
are 1g mirrors with a diameter of 1 cm and a curvature of 7.91 The value of the
radius of curvature has been chosen in order to avoid the resonance of higher order

modes in the cavities, as shown in figure

« M, and M, are the cavities end test masses (ETM) mirrors, which are 100 g mirrors
with 5 cm diameter. More details of the ITM and ETM can be found in chapter |5/and

Appendix
+ M is the main beamsplitter.
+ M, is a curved steering mirror and its purpose is to mode match the cavities.

« M, is the beamsplitter of the balanced homodyne detector, which will be described
in section [3.4.3]

More information about the optical layout can be found in [83]].

3.4.2 Suspensions and actuation

In order to have a quantum noise limited sensitivity all the other noises must be reduced as
much as possible. Seismic noise is one of the most critical ones and this is the reason why
all the mirrors will be suspended by multiple pendulum systems. Three different kind of

suspensions are used:

« the auxiliary suspensions are two stages pendulum with coils actuation on the top

mass and they will be used for all mirrors except for the arm cavity mirrors;

« the 100 g suspensions, which will be used for the four ETM, are triple pendulum with

monolithic last stage and electrostatic actuators;

« the 1 g suspensions, used for the ITM, are four stages pendulums with monolithic last

stage and switchable Eddy current damping [84].

More information about the suspensions used for the Glasgow SSM experiment can be
found in [83]].

>The value of the curvature reported here is that one established in the design [[79]], but it has been changed
to 8 m during the progression of work, because of manufacturing difficulties (cf. section5.3.2).
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Figure 3.6: Layout of the Glasgow SSM experiment.

Normalised transverse mode buildup
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Figure 3.7: Normalised power buildup of the higher order modes inside the cavity as a function
of the radius of curvature of the ITM, which has been chosen to be 7.91 m, in order to avoid the
resonance of modes 7 and 11 (dashed grey line). Figure taken from .
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3.4.3 Balanced homodyne readout

The output of the Glasgow SSM is read out using a balanced homodyne detector (BHD)
[85]. In this kind of detector the output signal is overlapped with another laser beam called
local oscillator (LO) through a 50:50 beamsplitter (M,,). If a is the LO and b the output

signal, the two outputs from the beamsplitter will be

c'e= % [a*a +a'be”™ +ab' e + bTb] , (3.42)
did = % [a*a —a'be ™ —ab' e + bTb] , (3.43)

where the phase shift ¢ between the two signals is called homodyne angle. Both output
signals ¢ and d are then detected with high efficiently photodetectors and subtracted to

each other in order to remove the DC part:

i_=c'ce—d'd=a"be™ —a'be'®+ab’ e —ab' ?. (3.44)

For the Glasgow SSM the output of the bright port of the main beamsplitter has been chosen
as LO. It has been recently shown analytically that this choice can significantly reduce the

laser fluctuations noise [86].

3.5 Conclusions

In this chapter we explained the concept of SQL, which is direct consequence of the Heisem-
berg uncertainty principle and then a fundamental limit in linear quantum measurements.
However this limit can be surpassed with the introductionof QND variables, such as mo-
mentum (or speed). The use of speed meter instead of position meter can then increase
the sensitivity of GW detectors, reducing the radiation pressure noise. We described in
this chapter a proof-of-concept experiment that is underway at the University of Glasgow

which has the aim to asses the validity of this theory.

We will explain in the next chapter how the quantum noise can be calculated for both
position meters (like a Michelson interferometer) and speed meters (like a Sagnac interfer-
ometer), showing why in the second case we will have a lower radiation pressure noise.
So the speed meter might be a valid alternerative for future generations of GW detectors,
like ET. An example of the sensitivity of a speed meter with the same scale of ET will be
shown in section 5.1, where we will also show how the loss, that has an important role
in the performance of a speed meters, will affect the sensitivity of the Glasgow SSM and
ET-LF.



Chapter 4

Introduction to quantum noise for

lossless interferometers

In this chapter an introduction to the calculation of the quantum noise is shown. Quantum
noise is one of the most dominant noises in interferometric gravitational waves detectors. It
include noises due to two different effects: quantum radiation pressure and shot noise. We
have already explained in chapter 3| the physical meaning and the consequences of these
two effects for the sensitivity of interferometric gravitational wave detectors. In this chapter
we will focus on how they can be evaluated mathematically and how the quantum noise

limited sensitivity can be calculated for a few exemplary interferometer configurations.

In the first section we explain how the radiation pressure force can be calculated starting
from the equation of motion of the mirror. We will see that, in order to calculate it, we need
the equations of the output fields in terms of the input fields. So in the second section we
show how these fields can be calculated and what are the input/output (I/O) relations for
different interferometer configurations. All these calculations are made for lossless inter-
ferometer and then we will assume that all the mirrors have reflectivity equal to 1 (apart
from the ITM when arm cavities are present). In the third section we will introduce the op-
tical rigidity, which plays an important role for the radiation pressure contribution when
we have to deal with detuned cavities. Finally in the last section we show how the quantum

noise limited sensitivity of the interferometer is obtained.

The meaning of the symbols used and some definitions can be found in appendix [A]

4.1 Radiation pressure force

Radiation pressure noise is the noise due to the amplitude fluctuations of the incident pho-

tons which cause a recoil of the mirror. The contribution of the radiation pressure in the

59



CHAPTER 4. INTRODUCTION TO QUANTUM NOISE 60

mirror motion is found from the equation of motion
mi(t) = F(t) + G(1), (4.1)

which states that the total force acting on a mirror with mass m that makes it move by x is

given by the sum of the radiation pressure force F and the signal force G.
We know that the radiation pressure force is given by the ratio between the power incident

on the mirror and the speed of light, that can be written as [50]]

. P  hw ho
F@) = 7“ = 2—0” E@)? = 2—0” (E +é(t))2, (4.2)

where the field &€ (7) is defined in equation and then we have considered the field as the

sum of the classical amplitude E and the quantum fluctuation &(z).

This equation can be simplified keeping only the terms of the first order in the quantum
fluctuation and performing the Fourier transform averaged over a time much shorter than

the signal period and much longer than 1/w,:

h
FQ) ~ % (E'E +2E' (@) . (4.3)

Furthermore we can ignore the first term because it is constant and so we are able to correct

it adding an opposite force on the mirror. So we can write

. ho,
F(Q) ~ —E"eQ). (4.4)
c
Transforming the equation of motion in frequency domain we have
- mQ*%(Q) = F(Q) + G(Q) (4.5)

and splitting the mirror motion x into two terms: the motion due to the radiation pressure
(which is noise and it can be calculated from the radiation pressure force F¥(Q)) and the

motion due to signal (which is the one we want to measure) we have
X(Q) = XP(Q) + XV (Q) = y(QF Q) + 377 (Q), (4.6)

where we have defined the mechanical susceptibility as

1

X(Q)=-—c

(4.7)

Replacing equation [4.4] in the I/O relations we are able to explicitly include the radiation
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pressure contribution relative to each input field.

4.2 1/0 relations

In this section we will show how the I/O relations of an interferometer are calculated. First
we will do it for a simple Michelson configuration (without cavities) and then we will do
the same for a simple Sagnac. After having shown the results for a single cavity, at the
end of the section we will show the solution for a Michelson with linear arm cavities and
a Sagnac with triangular cavities, a configuration similar to that one used for the Glasgow

SSM proof-of-concept experiment described in chapter

The method is similar for all cases, so we will show the full calculation only for the Michel-
son interferometer, since for the other cases it is easy to deduce following the same steps,

which can be summarised as follow.

1. The first thing to do is to write the relations between all the fields involved using the
optical transfer matrix that we showed in section In our case we will assume
that all the mirrors have reflectivity equal to 1, apart from the I'TM for cases where
the arm cavities are considered. Furthermore we are using the convention that the
phases will not change in reflection, but only in transmission (by 7z /2), so the optical
transfer matrix in equation is just the identity matrix and then we have that
the reflected field is equal to the incoming field. Of course this is not true for the

beamsplitter, for which we have to write and solve the full transfer matrix.

2. Apart from the equations obtained from the transfer matrix we also need to consider
other conditions that take into account the phase change due to the propagation. This
is done considering that when a field £ (f) propagates for a distance s, the value of
the field in s will be £ ( + s/c), which can be evaluated after the FFT, as described in

the next point.

3. In order to solve the equations obtained we need to transform them in frequency
domain. Since neither the reflectivity nor the transmissivity depends on time, this
transformation is quite immediate for the relations obtained from the transfer matrix.
For the equations that describe the propagation, on the other hand, we need a further
step. The equation of the field in the position s, namely £ (t + s/c), in frequency

domain becomes
E() ¥ ~ (E + &) (1 + 2i0>) ~ E + &(w) + 2iwE>, (4.8)
C C

since for GW detectors we have w ~ 10> Hz and s ~ 10~ 8 m.
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4. Atthis point of the calculation it is useful to split the fields in a classical and a quantum
fluctuation part, as described in[2.7] since they will have different roles in the quantum

noise calculation.

5. For the quantum noise calculation we need to transform the results obtained so far

in two-photon quadrature using the rule described in equation2.11]

6. Inorder to obtained the final I/O relations, with both shot noise and radiation pressure
noise explicitly included in the equations, we have to replace equation 4.6|in the I/O

relations.

7. We have now obtained the I/O relations in two-photon quadrature formalism with
the shot noise and radiation pressure transfer matrix explicitly expressed in the equa-
tions. So we are able to calculate the quantum noise, as we will describe in the next
section. However, when arm cavities are present, a further step is required with the
purpose to write the solutions in a more compact way. From the definition of the
cavity bandwidth, we obtain that the transmissivity of the ITM can be written as a
function of the arm half roundtrip time 7 and the half-bandwidth y, i.e. T};,, = 4y.
In this way we have all terms written as a function of 7 and they can be expanded in

Taylor series:

V TITM =V dyz,
VR = V1 =4yt~ 1 =21, (4.9)
2 & 1 +2iQr1.

Replacing these equations in the I/O relations, keeping only the first non-vanishing

terms, we can rewrite the relations as a function of 7 and y.

In all these calculations we will consider as phase reference the phase of the intra-cavity
fields. This is done because it makes the equations much more easier to write and much
more clearer to understand, without changing in any way the outcome of the analysis. Of

course this entails that the input fields have components in both quadratures.

4.2.1 Simple Michelson

The Michelson interferometer is probably the most famous and used interferometry con-
figurations. It was invented by Albert Abraham Michelson in 1881 and it was first used
to measure the speed of light in different directions, obtaining the first proof against the

aether theory [87]]. Because of its high potential in high precision measurements despite the
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Figure 4.1: Simple Michelson interferometer.

simplicity of the configuration, it is largely used in different field, including gravitational

wave detection.

The layout of a Michelson interferometer is shown in figure the input beam P (7), that
comes from the laser, is split in two beams that go into the two arms, are reflected by the end
mirrors and then they are recombined again at the beamsplitter. Since both end mirrors are
at the same distance L from the beamsplitter, the two output beams will be the results of the
destructive interference (Q (7)) and the constructive interference (O (¢)). These two outputs

are named respectively dark and bright port of the interferometer for obvious reasond]

From equation we can deduce the optical transfer matrix that relates the input and

output beams at the beamsplitter, which can be written as follows

_ m (t)_

E
«| 5O (4.10)

0
0
vV Rgg P (1)

Ryg i/ Tgy 1)

O | |ivTes VRgs
Q) | _|VRes ivTas
AE (1) 0 0
AN (1) 0 0

This is a system of four equations that describes the relations of the input and output fields
in time domain. However for the calculation that we are going to do the transformation in

frequency domain is necessary. Then we have

O (1) = i\/Tgg BY (1) + \/Ryg BE (1) = O(w) = i7/Tyg BY (@) + /Ry B (0), (4.11)

nterferometric gravitational wave detectors actually are set in order to have all the injected power exiting
toward the laser and then the dark port is on the side of the photodiode.
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Q (1) = \/Ryg BY (1) + i\ Tgs BE (1) = Q) = VR BY (@) + i\/Tys BE(w), (4.12)
AN (1) = \/Rpg P (1) + i\/Tps I (1) = AN (w) = \/Ryg P(w) + i1/ Ty L), (4.13)

AE () = i Ty P (1) + VRps I (1) = AP (w) = i7/Tyg P(@) + \/Rys L(w). (4.14)

Furthermore we can define the field incident on the end mirrors as the field that comes from
the beamsplitter multiplied by a propagation factor which takes into account the change of
the phase

EE (1) = A (z + %) = RE(w) = Af(w) ¢, (4.15)

On the other hand, the field that is reflected from the end mirror, which has reflectivity
equal to one, is
2iw

x A A
FE (1) = £F <t + 7E> > P (@) = Bf (@) + —L Efx,(0), (4.16)

where in this case the propagation factor takes into account the phase shift due to the mirror

motion x . Then the field that hits the beamsplitter is

BE (1) = FF (r + %) = Af(0) = FE () e, (4.17)

Now it is useful to split the field in a classical amplitude term, that is the part that is the
constant part, and a fluctuation term. In this way the fields that reach the ETM can be

e’ () = <i\/TBS p(@) + VRys i(a))) et (4.18)

written as?

and

Ef = iy/TggP + /Ryl (4.19)

for the East cavity and

&V (w) = (i\/TBS (@) + VRyps p(w)) el (4.20)

and
EY =i\/Tysl+ /Ry P (4.21)

for the North cavity.

2We are considering as reference phase (set to zero) the phase of the field incident on the beamsplitter.
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So the fluctuation of the beams incident on the beamsplitter will be

. 2i
b () = <é§(w) ¢ e xE(a))> e
¢ (4.22)

2iw ,
=( Tps p(@) + VR le(w)) T+ c”Ef xp(@) e

for the East cavity and

R 2i A
b (w) = (i\/ Tpsi(@) + /R BSp(co)) vioe y 1% —L B xy(@) e (4.23)

for the North cavity.

Finally, inserting equations and in equationf4.11] we are able to write the quantum

fluctuation part of the output of the full interferometer as

\/ /T 2i
o(w) =i TBS < BS e21a)r i(w) + Gemwr b(w) + —2

11
p tcor EN XN(CO)>

+ RBS( \/;ehwr A(a))+ \/;ebcor 1((1))+ p ICOT EE XE(CO)>

(4.24)

= <_TBS + RBS) eZia)T i(a)) + 2i\/RBS\/me2le A(CO)
21(0
< Vv BSE2 xN(w) + \/ BSE2 xE(a))>

For the quantum noise calculation we need to transform the equations [4.18 [4.19] [4.20] |4.21|

and in the two-photon quadrature notation, according to the rules described in equa-
tion and then we have

E; =+\/Tps6 P+ \/Rysll, (4.25)

e (Q) = \/Tys 6™ Q)+ /Ry 1 1(Q) = L2(Q) H(Q) + LL(QI(Q),  (4.27)
| N
[RA(®) [ER(®)
e (Q) = \/Tys 6 1(Q) + \/Rpg 1 p(Q) = L5 (Q)p(Q) + L\, (Qi(Q),  (4.28)

L (Q) LA (Q)
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and

0(Q) = (~Tys + Rys) €711 (Q) + 2V/R s \/Tps 4% 6 P(Q)

.

Tio (Q) T (Q)
2w _ 2w )
—T" Tys LEY €7 x(Q) + T” VRps 6 EE e x;(Q) (4.29)
A ~ 7 o ~ J
RNo(Q) REO(Q)

=T (Qi(Q) + T (Q) p(Q) + R™(Q) x1(Q) + R¥(Q) x  (Q).

Here the transfer matrix 'I]'S‘f;.(Q) represents the shot noise in the output 0(Q2) correspondent
to the field #(Q) and TP (€2) that one correspondent to the field p(€2) and the vectors Rf
and RY are the response functions of the interferometer to the motion of the mirrors of the

East and North arm respectively.

In order to include the radiation pressure noise contribution in the transfer matrix we insert

equations and in equation and we obtain

0(Q) = T (Q)F(Q) + T (Q) p() + RF(Q) x¢ (Q) + RV(Q) x¢" (Q)

2hw . .
+ RE"(Q))(E(Q)TP (Ef)T (L2(Q) p(Q) + L',(Q)i(Q))

2hw ) n
+RY(Q) (@ (EY )" (12, h(Q) + L, (Q)i(Q))

=T (Q)i(Q) + T () p(Q) + R*(Q) x¢" (@) + R¥(Q) x¥ (Q)

2hw ; s
+— (RE(Q)2,(@) (EE) L4@) + R™Q2y@) (E}) LL@)) pQ) (430

WE?Q)
2hw T N A
+— (REQ) 2, (EE) L@+ R™Qxy@) (E)' Ly@)) i@)
'I]'r"f’;?Q)

= (T;f;_(sz) + v;;.(gz)) Q) + (T;'.‘;‘(Q) + T,"j,,@)) ()

+ RP(Q) x5 () + RV(Q) xSV (Q)
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and similarly, the other output of the interferometer is found to be

.

4(Q) = (—Tgs + Ryg) 71 p(Q) + 24/ Rpg\/Tps € 6 1(Q)

T (Q) T,9,(Q)
2601’ A N iQr 2601’ E iQr
+? VRpsGE; e xN(Q)_T VTps LE; ™ xg(€2)
\\. ~ J/ A\ ~ J/
RN4(Q) RE4(Q)

=T (Q) p(Q) + T () i() + R*(Q) x5 (Q) + RY(Q) xV(Q)

2hw ¥ A .
+ RP(Q) y(Q) : 4 (Ef)I (L2(Q) p(Q) + L' () i(Q))

2hw . o
+RY(Q) yy () . 4 (Eé\[)T (L2 () p(Q) + L' (Q)i(Q))

=T (Q) H(Q) + T () F(Q) + RF(Q) x5 (Q) + R¥(Q) x5 (Q)

2ha)p E ENT o p N N\T 1 p o
+— (R “(Qp(Q) (EY) L(Q) +RY(Q)xy(Q) (EY) [LN@)) p()

" 7
Vo

T/.(Q)

2hw v . N
+— (REQ)2,(@) (EE)' L@+ R™@Qy @ (E)' Ly@) i@

. 7/
v

T,

= (T1.@ +T(@) i@ + (17 + 17 h@)

+RE(Q) x4 (@) + RV(Q) xSY (Q).
(4.31)

These are the I/O relations of a Michelson interferometer. We can notice that if we have only
the input from the laser, i.e. i(Q) =0, and a perfect 50:50 beamsplitter, then Tslfz.(Q) =0
and all the light will exit from the port 6(£2), which is the bright port. The port g(€2), on
the other side is dark port.
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Figure 4.2: Simple Sagnac interferometer.

4.2.2 Simple Sagnac

In this section we will show how the I/O relation of a Sagnac interferometer are obtained.
A Sagnac interferometer was introduced by George Sagnac in 1913 with the aim to prove
the existence of the aether and its main peculiarity is that the two beams will travel through

both arms but in opposite directions [88].

The layout of a zero-area Sagnac interferometer and the fields nomenclature that we will
use for this calculation are shown in figure[4.2] In this case each beam will hit both end mir-
rors before coming back at the beamsplitter. That path is possible introducing the steering
mirror M, (cf. figure [4.2), which will reflect the beam coming from one ETM towards the
other.

The transfer matrix in time domain that describe the beamsplitter is the same as described

in equation

O (1) i\Tps VRps O 0 BN (1)

QM |_|VRes iVTps 0 0 | |B¥® @32
ALE (1) 0 0  i\/Tzs +/Rgs P@ | '
ARN (1) 0 0 Rys i\/Tps 1)
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but in this case the beam will have a different path. For example for the clockwise beam,
which will be indicate with the superscript L (left), it can be outlined with the following
steps:

« the beam arrives at the first ETM with a phase shift %:
LE LE Len (LE ALE iwt
EFMH=A t+ — => E,;"(w) = A" (w) e""F12; (4.33)

« it is reflected from the ETM:
FLE (1) = \/R, ELE (1) = /R, FLE(w) = ELE (w), (4.34)

where R, is the power reflectivity of ETM;

« it has a further phase shift due to the travel towards M:
LE LE Ly RLE LE iwt
B =F,"(t+ => B""(w) = F)"(w) "%, (4.35)
c

« it is reflected by M, with power reflectivity Rj:

AN (1) = \/R, BE (1) > AN (0) = B E (w), (4.36)

« it travels to the second ETM at a distance L y,;:

L A ~ .
&M =AM (r + N”) = B (@) = A" (0) e, (4.37)
c

« itis reflected by the second ETM:
FIN (1) = VR, EFY (1) = /R, FIY (w) = BV (w); (4.38)
« finally it comes back to the beamsplitter

L A A .
B"N (1) = FN <t + ﬂ) = B"Y(w) = F1Y () eV, (4.39)
C

Here we have indicated with L the distance between two optical elements specified by the
subscripts: 1,2 and 3 states for the beamsplitter, the ETM and M, respectively and E and
N state for East and North cavity. In the same way we have defined 7 as the time travel

between two optical elements specified in the subscript. Then, in order to simplify the
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calculation, we assume that

Lyyy+ Lyys = Lgy + Ly =2L, (4.40)

Tnip + Tnos = Tpip + Tpp3 =27 (4.41)

Furthermore, for sake of simplicity, we will consider that all the mirrors have a power
reflectivity equal to one, because the introduction of a transmissivity will entail the presence

of loss and then we should also consider the additional noise related to it, as described in

section [2.1.4]

Following the same method used for the Michelson interferometer, we obtain all the fields

in the two-photon quadrature notation:

~LN . n 2, ; .
b (Q) = <(\/TBS 6 p(Q) + \/_BS (Q)ﬂxE(Q)> 2 cp 6E§E e’QTEB) o2

4.42
+ 2i ~ ELN iQTN 1o X (Q) ( )
Cc

" (@)= ((@ 6 p(€) +V/Rys () ) 9 + c" 6 E}" ¢/ x <sz>> e
TN QB + L)y () + X (Q) x4(Q)

(4.43)

éé‘E(Q) = (VTBS 6p() + Ry U;(Q)> el = [leE('Q')ﬁ(Q') + [LlLE(‘Q) Q) (4.44)

and because of the symmetry of the system we have

i)RE(Q) — << \/T BS Ul(Q) +41/R BS p(Q)> 2191’ Z)P ~ ERN iQTNo3 x (Q)) 2iQr

2w
P A pRE iQ
+TGE2 e e X ()

(4.45)
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& @)= ((\/E 61() +V/Rys 1(R) ) % + c” 6 EXN ¢ x <sz>> e
= L7 (Q) p(Q) + L} ,(Q)1(Q) + X7 (Q) x(Q)
(4.46)
&5"(Q) = (V/Tas 61 + VRys 1(D) ) €272 = L (@) () + Ly (DFQ). (447)

So the I/O relation of the full interferometer will be

0(Q) = (=Tps + Rpg) €1 p(Q) + 24/ Ry Ty € 6 i(Q)

.

v

~
T/5.(©Q) T35, ()

2w . , ;
14 (_\/mﬂEg,EetQTEBeZIQT + \/R_M&E5E6197512> xE(Q)
_

~ '

R (4.48)
+ (\/_BS ERN iQty23 2007 \/TSHELN ZQTN12>X Q)

RNj’r(Q)

arm

=T (Q)p(Q) + T (Q) i(Q) + R (Q) x £ (Q) + RN (Q) x  (Q)

arm

We have now to include the radiation pressure contribution. In this case we have two beams

incident on the same mirror and the total radiation pressure force will be the sum of the
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two forces created by each beam:

arm arm

6(Q) =T (Q)p(Q) + T () 1(Q) + RE () x¢"(Q) +RY (Q)x¢"(Q)

arm

hw y . X
+ R (Q))(E(Q)Tp (EZLE)k (L7 (Q)P(Q) + L (Q)i(Q))

arm

ho ; A A
+R> (Q))(E(Q)% (EXF)" (L% (@) D) + L ,(Q)1(Q) + X (Q) x4 (Q))

arm

hw - . A
+R° (Q))(N(Q)Tp (EXN) (L y(@)p(Q) + L)\ (Qi(Q) + XTI (Q) x(Q))

arm

hw ; . A
+R (Q))(N(Q)Tp (EXN) (L% 0 (QB(Q) + L (Q)1(Q))

=—|]—S[:IO(Q)IA’(Q) + —H—;z(g) ,l.\(Q) + ROE (Q) ng(Q) + RoN (Q) X%W(Q)

arm arm

arm

hw
— [RE" Q) z:(Q) ( (EXE) 12 Q) + (ERE)' [LI;E(Q)>

. 7/
v

Lr()

7\

Ve

+ R @@ ((E2) 1@+ (BR) Uy @) | 5@

arm

hw _ '
et (R @@ ((EE) L@+ (EEF) L)

arm

. 7
hd

-ﬂ—rifu (Q)

7\

Ve

+ R @ ry(@) ((E2Y) 1@+ (EX) 1L @)] H@)

arm

= <1r;f;‘(sz) + T;f;(sz)) P(Q) + (Ts"ﬁ'n.(ﬂ) + Tj‘;(ﬂ)) i(Q)

+ R (@) xSV (Q) + RY? (@) x§" (),

arm arm

(4.49)

where we have considered that in this case the new terms in x are zero because

¥ 0 1 1
(EY)'X], |1 0] [_1 0] : H =0, (4:50)

since we chose the phase of the intracavity field as reference (i.e. equal to 0).

The details of this calculation and what happens when the cavity is detuned will be shown
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in section
For the output ¢(€), the solution is quite similar. In fact, from equation we have

4(Q) = (Rpg — Tys) €7 1(Q) + 24/ Ry Tps ¥ 6 p(Q)

.

~
T4 T
20)1’ RE iQt 2iQt ~ pLE iQr GW
+T <—\/TBSE2 e"TERe™™ + \/Rps 6 ES"e 523) Xy (£2)
. 7
'
E
R7(Q) (4.51)
2w, A LN iQryps 200 RN _iQ GW
+T (\/RBSGE2 et N2e ™ — [Ty ES €' TNB) xy ()
. 7
'
R1(©Q)

=T (Q)F(Q) + T (Q) p(Q) + RE (Q) x,(Q) + RV x,(Q).

And replacing the motion of the mirrors x with the sum of the two contributions described
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in equation [4.6, we have

g(Q) =T} (Q)i(Q) + T (Q) p(Q) + RL () x7"(Q) +R) (Q)xT" ()

arm

hw . A
+R5 (Q))(E(Q)Tp (EZLE)T (L7 (Q)p(Q) + L (Q)i(Q))

arm

hw + . A
+R (Q))(E(Q)Tp (EXF)" (L% o(Q)p(Q) + L, ,(Q1(Q) + X ,.(Q) x(Q))

arm

hw + . A
+ RN (Q))(N(Q)Tp (EXN) (L, @)p(Q) + L) (Qi(Q) + XF (Q) x(Q)

hw + , A
+ RN (mm@)T” (EXV)" (L2 () p(Q) + L% (Q)1()

arm

=T (Q)i(Q) + T () p() + RE () x¢" (@) +RY () x5 (Q)

arm arm

arm

ho
+= [REL@@ ((EFF) 1@ + () 1, @)

(. 7
v

/(@)

N\

-

+RU@ (@ ((E2) 1@ + (ER) 1 @) | @)

arm

ho _ |
+= [REL©@@ ((EFF) 1@ + () 1, @)

arm

. J
'

T4

7\

7

+RYQ 7y (@) ((EXY) L@+ (EX) 1L @)] H@)

= (wsf;(gz) +T4 .(g)) i(Q)+ (m(g) +T ,'f;(sz)) Q)

+RE Q) x5% (@) + RV (Q) xS7 (Q).

arm arm

(4.52)

We can notice that in this interferometric configuration the situation is the opposite of the
Michelson interferometer. In fact in this case the dark port is towards the photodiode and

the bright port towards the laser.
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Figure 4.3: Linear cavity with massive perfectly reflective ETM.

4.2.3 Single cavity

All current interferometric gravitational wave detectors have a Michelson configuration,

but, in order to increase the sensitivity, optical cavities are introduced in the arms.

When we introduce the cavity in the interferometer arms the calculation of the I/O relations
is a bit different, since we have to include in the calculation another mirror between the
beamsplitter and the ETM. First of all, apart from solving the transfer matrix for the beam-
splitter, we have to write and solve it also for the ITM. So referring to the cavity shown in
figure the relations between the input A (¢), the output B (¢) and the intra-cavity fields
& (1) and F (7) are

B(t) =\ Ryppy A =2x/c)+iN Ty E (1), (4.53a)
FL@®) =\ Ryppy &t +2x/c)+iN Ty A, (4.53b)
EM=F @E+2L/c). (4.53c)

In the first terms of the first two equations we take into account the phase shift due to the
mirror motion and in the last equation we considered that the field £ (7) is simply equal to
the field | (¢) after a roundtrip, since we are assuming massive (so the radiation pressure

can be neglected) and perfectly reflective ETM.

The solution of this system is found following the same method used in the previous sec-
tions. So after having transformed the equations into frequency domain and in the two-

photon quadrature, we find that the intra-cavity and the output modes are

T eZiQT 2(0 R eZiQr
é,Q) = M 6a(Q) + —2 [TV & E, x(Q)
1 — 4 /RITM eZiQr C 1 — 4 /RITM eZiQ‘r
= L(Q)a(Q) + X (Q) x(Q), (4.54)

A 2w
h(Q) = (\/R,TM 1+ \/Tyyyy 6 [L(Q)) 6@+ —VRi7y 6 (LQE, - 4) x(Q)

Q) x(Q). (4.55)

arm

=T _(QaQ +R
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Now we have to include the radiation pressure effects on the mirror motion, replacing
equation in Notice that in this case there are two beams that contribute to the
radiation pressure: E and A and that we set as convention that the radiation pressure
force due to intra-cavity field is positive and that one due to inout field is negative. Then

we have

b =T _(Qa(Q) +R,,,(Q)x"(Q)

arm

2wph T ~
+ —— R, (@) (E) (LQ)a(Q) + X x(Q)
(4.56)

= <Ts.n.(9) + T,,p,(9)> a(Q) +R’_(Q)x"(Q)

=—l]—arm(gz) &(Q) + llirm(gz) xGW(Q)'

Here again we have that the additional terms in x are zero because is still verified.

Usually at this point a Taylor expansion in 7 is made in order to write the I/O relations in

a clearer way. So using equations [4.9| and keeping only the first non vanishing terms we

1 R
L(Q) ~ -~ \/; & (4.57)

obtain

2y
T @QQ~|1- 0 4.58
L@ (1--20) (459)
1 / 8yP.w, |0
R _(Q)~ 4.59
arn(&) (y —iQ) \ c272hQ2 [1] (4.59)
8w,y P, 0 0
T (Q~—2 ° . 4.60
r‘p.( ) CZT(y—iQ)z}( [_1 0] ( )
(4.61)

Here we have used as phase reference the phase of the intra-cavity field reflected on the

ITM, which has been supposed to be equal to zero. Furthermore the I/O relations are often

oW 2n
uQ?
and in this way the response function and the radiation pressure transfer matrix become

R (Qn~—" \/4@y o 1 (4.62)
arm (y _ IQ) QZ 1 xSQL

written with the displacement x“" normalised to the SQL displacement xg,, =
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. 20yu 0 O

r.p.

where we have defined the normalised circulating power ® and effective mass y of the

cavity as
4w P,
o=—2° (4.64)
ucL
My
y = ATMMETM (4.65)

My + Mery

The I/O relation finally becomes

2 _ 1 4 20yu 0 Of\.
b(g)_«l y —iQ \/:>H+(y—i9)2% [—1 0]>a(g)
4 1 [4@y |0 x6W
(y—iQ V Q@ (1] x50,

This calculation has been made considering a linear cavity, but it can be easily extended

(4.66)

to any cavity geometry. In particular as far as we assume that all the end mirrors have
reflectivity equal to 1, that they are massive test masses, so that they are not affected by
radiation pressure and that there is no loss, then the solution will be same. Under these
assumptions in fact, as far as it concerns this calculation, any cavity is equivalent to a linear
cavity with a length equal to the total length of the path traveled by the beam to reach all

the mirrors and a effective mass properly modified in order to include all mirrors.

4.2.4 Michelson with linear arm cavities

In this section we want to see how the I/O relations for a Michelson interferometer with
linear arm cavities (shown in figure can be written. Once we have the solution for a

single cavity, we are able to write the full interferometer I/O relations just recombining the
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Figure 4.4: Michelson interferometer with linear arm cavities.

outputs of the two cavities at the beamsplittelﬂ

6(Q) =\/Rys b (Q) +6/Tpsb (Q)
(4.67)

=v/Rys (TE (@ a"(Q) +RE (@) x5 ()

+6 /Ty (TN (a"( Q) + R (Q)x{¥(Q)

Then if we consider that
(4.68)

a"(Q) = 6 \/Tyg P(Q) + V/Rpsi(Q),

a"(Q) = 6 \/Tpg1(Q) + \/Rps P(Q),

3Here, since we are using the two-photon formalism, the phases of the transmitted beams are included in

(4.69)

6.
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we can replace them in order to have the output written as a function of the inputs p(€2)
and i(Q):

6(Q) =\/Rys TE (Q) (a Vs PQ) + VRysi (Q))
+ 6- V TBS -[l—a]:‘/m(g) <& Y TBS ;(Q) + V RBSI’}(Q))
+ 4/ RpsRE (@) x5 (Q) + 6 /Ty RY (@) x5V (Q)

= (RBS Tab;m(g) + Ty Ta]:rm(g)) i(Q)

\ ~ _J
Toic(€) (4.70)
+6 \/RpsTys (TE (@) + TV (Q)) p(Q)
T [??Q)

mic

+vVRps RE (Q) x6"(Q) + 6 /Ty RY () xSV(Q)

RE0 (Q) RM(Q)

mic mic

=T (Q)I(Q) + T2 () p(Q) + RE?

mic mic

Q) x7"(Q) +R2(Q) xJ (Q)

mic

and
Q) =VRys T2, (6 VTas 1 Q) + VRys h@))
+6 VT TV (@) (a Vs Q) + \/R_Bsf(Q)>
+1/Rps RET (@) xS (Q) + 6 /T RY(Q) x5 (Q)

= (RBS —I]—aErm(Q) - TBS —H—a]jm(g)) ﬁ(Q) + o V RBSTBS (Tim(g) + —I]—(szm(g)) i(Q) (471)
T,Zi?;m v""im

mic

+ VRps RE (Q) x67(Q) + 6 /T RN(Q) x5 ()
. 7

N —— ~
R (@) RY(Q)
=T (Q)1(Q) + TP (Q) p(Q) + R.L(Q) x4 (Q) + RYI(Q) x{V (Q).

From the previous equations we can see that, as before, for a Michelson interferometer, in
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Figure 4.5: Sagnac interferometer with triangular arm cavities.

case we have identical cavities and a perfect 50:50 beamsplitter, the dark port corresponds
input port (where the laser is placed) and the bright corresponds to the readout port (where
the photodiode is placed).

4.2.5 Sagnac with triangular arm cavities

We want now to obtain the I/O relation for a Sagnac interferometer with triangular arm cav-
ities. This configuration is similar to that one used for the Glasgow SSM proof-of-concept
experiment described in chapter (3| As done before, we consider that the two ETM have a
reflectivity equal to one and no loss. In this way the shape of the cavity does not affect the
results because it will behave exactly the same as a linear cavity (or any other geometry)

with the same length.

The main difference between a Michelson and a Sagnac interferometer is the fact that in
the latter there are two beams circulating in the cavity and one of them is the output of the
other cavity. This means that the results for a single cavity is the same as the Michelson,

but we have then to replace one of the inputs with the output of the other cavity.

So first we need the I/O relations for a single cavity calculated in section [4.2.3] but in this

case we have two beams circulating in each cavity and then we have to consider the solution
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for each of them. However, since the two beams do not couple, the solution will be the same.
So we can rewrite equations and in the general form

AIJ A AlJ N
e ()= sa" Q)+ 6E, x,(Q)
! 1= \/Rypy €2 € 1 — /Ry 29 Iy
(4.72)
2w R
AlJ p ITM
=L,@a" @+ — /7 LQE, x,©Q),
ITM
~IJ R
b (@)= (\/RITM + VT I]_](Q)> a, Q)
@)
il 4.73
+T RITMa-I]—J(Q)E]J x,](Q) ( : )
RIA @
=T/ (@a" (@) + R} () x,(Q),

where I = R, L (right and left) stands for the beam’s direction of propagationand J = N, E
(North and East) stands for the cavityf].

At this point we need to split x; into the motion due to radiation pressure and the motion
due to the signal as done in section[4.1] but in this case we have four beams that contribute
to the radiation pressure force, two intra-cavity and two input beams. However usually the

contributions of the input beams are neglected, because of the much smaller value of the

4The justification of the choice of the notations is probably not immediate and needs an explanation. The
direction of propagation of the beam can be clockwise (the beam goes first in the North cavity and then in
the East cavity) or counterclockwise, but for shortness we will refer to them as R and L respectively. For the
cavities, instead, we will use the notation of North and East cavity, commonly used to indicate the cavities of
GW detectors, even if in our layout the arms are not perpendicular to each other.
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power.

" (@) =T @a" (@) +R!

arm

Q) x§"(Q)

h ho, ;N
+R (@) ;{,(Q)% (A7) " (@ + R (@ ;(J(Q)% (A”)T " (@)

arm arm

h
FRY (@) 7, (Q—2 (EV)' <[LJ(Q)&”<Q> +——RY (@ x,@))
¢ TITM
+RI©) 7, @2 (B <[LJ(9)a”<Q> +——RI,©@ xm))
¢ TITM
= (TS{,{(Q) + Trf_;(g)> a”@+T1 (@a" @ +R!Y Qx5 Q)
=T @a" (@ +T1/ () a’l (Q) + R (Q) x5 (Q).

(4.74)

Here again we have that the additional terms in x; are zero because is still verified.

In order to find the full interferometer I/O relations, we have now to consider that one of the
input beams of one cavity is the output of the other and vice versa. So, using the notation

shown in figure[4.5|for the beams nomenclature, we have to replace in the previous equation
aN) =b@), @ =b"(Q). (4.75)

In this way we found that the two beams that leave the cavity and go back to the beam-
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splitter are [|89]

arm arm

b (@) =TV (@) Q,(Q) TEE(Q) 4-5(Q)

.

v

LE
T,y

+ (TRN Q)+ TN Q,@TH  (Q) TTRN(Q)) a*"(Q)

arm,r.p. arm arm,r.p. arm
@
+ (Rgrf; Q@+ T N(QQ, QT (R (Q)) xy(Q) (4.76)
RQN(Q)

arm arm

+ TEV(Q) Q,(€2) REE(Q) x,(Q)

.

v

R}y (@
=T @ a" Q) + TR (@) a"" (Q) + RY (@) xy () + RE (Q) x£(Q);
and

— Tarm
“

" (Q) =TREQ) Q@) TRV (@) a*" (@)

~-
RN
Tre

+ (T, @+ TRE@ QY@ TEY,, @ TLE@)a (@)

arm,r.p. arm arm,r.p.
TrE@Q)
+ (Rfr’fn @+ TRE@ 0@ T, (@RLE (Q)) Xp(Q) (4.77)
RE, @

arm arm

+ TREQ) Q(QREN(Q) x(Q)

.

'

R}, (@)

=TRN (@) "™ (Q) + TLE(Q)a" " (Q) + RY .(Q) x5 (Q) + RE (Q) x (Q);
with

Q, = (U - TR TN >_1, (4.78)

arm,r.p -~ arm,r.p.
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Figure 4.6: Input and output beams at the beamsplitter. The beams in reflection on the upper side
are supposed to have a phase shift equal to zero and that one ones on the lower side have a phase
shift equal to x.

-1
_ LN TRE
@R - (l] - —ﬂ—arm,r.p_]]—arm,r.p.> . (479)
Finally, the full interferometers I/O relations are found using the beamsplitter transfer ma-
trix. However in this case is more convenient to use a different convention for the phases,
in order that the two cavity input beams have the same phase. So we define the phase in
transmission equal to zero and the phase in reflection equal to 7z on one side and zero on

the other side, as shown in figure

So the beamsplitter transfer matrix can be written as

E(9)) Ry Ty 0 0 p(Q)
a"’ @) | | VTss -VRzs O 0 i(Q)
N = X| LN , (4.80)
4(Q) 0 0 Ry Vs | |b (@
6(Q) 0 0 Tos —VRss| [B7°@
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and the output 0(Q2) is then
6(Q) =—/Rygb () +\Thsb ()
= — V/Rys (TR (@ a"" (@) + TLE(@Q)a" " (Q) + R .(Q) x (@) + RE (Q) x(Q))

+ /Ty (TR (@& (@) + THEQ (@) + RY (@) xy () + RE (@) x (D)

( VRys TRN(Q) + /Ty TRY <Q>) €2)
+ (= VR s REL®) + Ty RfN@)) *p()

7/

REo
sag

+ (—\fRBS RN, (Q) + /Ty RJZN<9>) Xy (£2)

/

No
sag

(4.81)

We can now replace the cavity input beams a®"(Q) and a"*(Q) with the interferometer

input beams p(Q) and i (Q) using equations that come from the beamsplitter transfer matrix.
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Finally we have

6@ = (~VRas TRY@) + VT T @) (VRas D@ + Vs i)

+ (VR T @+ VT T@) ) (-VRas i@ + VT h@)

+RY(Q) x5 (Q) + RE(Q) x,(Q)

sag sag

= (~Rps T @)+ V/RpsTys T Q) = v RpsTys TEQ) + Tps THD)) (@)

. J
v

LA(S)

+ (Rips THE@) = VR s Ts THEQ) = VRys Ty TN (@) + Ty TRY@) ) @)

Tio (Q)

sag

+ RY2(Q) xy (@) + RE(Q) x£(Q)

sag

=T7 (Q) p(Q) + T (D i(Q) + RY*(Q) x(Q) + RE (Q) x ().
(4.82)



CHAPTER 4. INTRODUCTION TO QUANTUM NOISE 87

And, following the same steps, the other output is found to be

4(Q) =\/Rys b (Q) +\Tss b (Q)

= < Rps TRV (Q) + V/RpsTps Tep () + \/RpsTps T/ (Q) + Tys Ty (Q)) j1(9))

- -

~
T " (@)

+ (R THQ) + v Ropg Ty T (@) = VR Ty THEQ) + Ty TR (@) ) §@)

. /
v

@

. J/

+ (VRus RV (@ + VT RY@)) x,(@)

RNI(Q)

+ (VRus REV@ + VT REL@)) x,(@)

. J/

LA

=T Q) p(Q) + T, () i(Q) + R}(Q) xy(Q) + REL(Q)x (€.

sag

(4.83)

From equations and we can see that in case of two identical cavities, a perfect
beamsplitter ratio of 50:50 and the laser providing the only input field, we have again that
the port toward the laser is the bright port and the port towards the photodiode is the dark
port. In this case it is probably not as immediate as before to see that because, in order to
make the equations less cumbersome, we introduced the transfer matrices T(€2). However,
it becomes more clear if we notice that because of the symmetry of the system we have
TN (Q) =T/ 0(Q) and TV (Q) = TrE(Q), which makes the term in p(Q) in equationm
vanish.

4.3 Detuned cavities and optical rigidity

A cavity is said to be detuned when it is slightly off from its resonance condition, i.e. when
w,t = nx + 0, with n an integer and 6 # 0. This fact will induce a phase shift § of the
field propagating inside the cavity and a rotation of the quadratures of the field. In fact,

the intra-cavity field in a detuned cavity will have a non-zero component in both sine and
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cosine quadrature, since equation becomes [89]

__ L e _ions
Lﬂgy_@_49y+52V:«y iQ)6+40), (4.84)

where 6 = 0/7 is the detuning from the cavity resonance frequency. This means that the
equation is not valid anymore and then the additional terms in x; in equation are

not zero anymore.

In order to understand the physical meaning of this additional term, we have to understand
first what happens in a detuned cavity. The mirror displacement changes the resonance fre-
quency of the cavity and then the intra-cavity power will change according to the equation
(51]

y2
P, = Px, (4.85)

c 27 ¢
2 X
y +<5+wOL>

where P"** is the intra-cavity power without detuning. This means that the radiation
pressure force, that is equal to P, /c, depends on the position of the mirror and the derivative
of the force is defined as the rigidity of the cavity:

1dP, 2P.w, 5

K(Q)=—- = , —. (4.86)
c dx Le (Q—-06+4+iy)(Q+6+iy)

For sideband frequencies Q < § and Q < y, the previous equation can be approximated

performing the Taylor expansion, that gives

K(Q) ~ 212200 <y2 i =+ (y22;y;52)29> = K, — 17,2 (4.87)
In this way we are able to split the real part that correspond to the rigidity and an imaginary
part that represents a damping term. To have an idea of the meaning of these two terms
we can think of them as a restoring force (like a spring with a spring constant equal to K,
attached to the mirror) and a viscous damping force, which will always go against the other.
We can notice, indeed, that the two terms will always have opposite sign, so when one is
positive the other one is negative and vice versa. This means that the system will always

be unstable.

The plot of the intra-cavity power, the rigidity and the damping terms are shown in figure

So the additional term in x is the rigidity and the force described in equation |4.4| will have

two terms: the radiation pressure force and the optical rigidity, i.e.

F(Q) =F,,(Q) - K@Q)x. (4.88)
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Figure 4.7: Left: intra-cavity power as a function of the cavity detuning relative to the half-
bandwidth. Right: real (rigidity) and imaginary (damping) terms of the optical spring constant K ().
All plots are normalised to their respective maxima, which corresponds to 6 = 1 for K, and

6= —1/\/§for Yopt-

When the rigidity is non-zero we have to redefine the mechanical susceptibility defined in

equation 4.7 as
x,(82)

I+ ¢, (QK(Q)
and the I/O relation of the cavity can be written simply replacing y,(Q) with »7*“(€).

27 =

(4.89)

4.4 Quantum noise

We have already introduced the quantum noise in chapter [3] where we explained its origin
and physical meaning. However in this section we will give details on how the quantum
noise can be calculated practically in the framework of the two-photon formalism and we

will show the results for the configurations described in the previous section.

Once we have the contribution of shot noise and radiation pressure noise in the I/O re-
lations, the quantum noise power spectral density (PSD) and the quantum noise limited
sensitivity of the interferometer can be calculated. The PSD of the quantum noise is calcu-
lated summing the contribution of the optical response of each field relative to the output.

So if the I/O relations are written in the general form

0(Q) = Z T.(Q)i (<), (4.90)
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with fi(Q) the input fields, then the PSD of the quantum noise is simply given by the sum
of the PSD of the contribution of each field, i.e. [50]]

S(@ = Y T/(Q)- SIQ) - T(), (4.91)

where S!"(Q) is the spectral density matrix of the input field as defined in

There are different methods to read the output signal of the interferometer. However if we
want to be able to take into account both quadratures of the output field, we can use for
example a balanced homodyne detector, described in section and used also as readout
method for the Glasgow SSM. In this way we can define the homodyne vector H, as

H, = [COS C] , (4.92)

sin ¢
where ¢ is the homodyne angle, and the PSD of the quantum noise becomes

S (Q) = Z Hg - THQ) - S"(Q) - T(Q) - H,. (4.93)

In order to estimate the quantum noise limited sensitivity we have to normalise the PSD
in the appropriate way in order to have the sensitivity referred to the chosen variable. In
GW detectors the sensitivity is often expressed in terms of the strain or simply in terms of

displacement x_ of the mirrors differential motion, defined as

X_=Xy—Xg. (4.94)

The PSD of the quantum noise limited sensitivity in terms of the displacement can then be
written as )
. LHT©Q-SMQ) - T@)-H,
Sx(Q) = XSQL(Q) ) ) (495)
)Hg : R—(Q))

where R™(Q) is the response function of the interferometer to the differential motion of the

mirrors

RY(Q) - RE(Q)

R™(Q) = >

(4.96)

In figure [4.8] the plots of the quantum noise are shown for interferometers with and with-
out cavities, as described in the previous section. In both figures the big plot on the left
shows the quantum noise limited sensitivity and the two small plots on the right show the

quantum noise amplitude spectral density and the response function of the interferometer
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to the differential mirror motio As we can see, in both case the quantum noise limited
sensitivity of the Sagnac interferometer is better than the equivalent Michelson, especially
at low frequencies. The reason why this happens is clear if we look at the behaviour of the
quantum noise and the response function for the two topologies of interferometer. At low

frequencies, in fact, we have that:

« the quantum noise amplitude spectral density of the Michelson interferometer goes

like 1/ f2, while in the Sagnac it is constant;

« the response function is constant in the Michelson and goes like f in the Sagnac.

The quantum noise limited sensitivity according to equation is given by the ratio of
the these two functions. So at low frequencies, i.e. before the point of minimum, it is
proportional to 1/f? in the Michelson and proportional to 1/f in the Sagnac. This means
that the quantum noise limited sensitivity of a Sagnac interferometer at low frequencies

will always be higher than an equivalent Michelson.

4.5 Conclusions

In this chapter we showed how the calculation of the quantum noise can be done for a
few different interferometer configurations. Specifically we focused our analysis on the
Michelson configuration and the Sagnac configuration. At the beginning of the chapter we
showed how the radiation pressure noise can be calculated starting from the equation of
motion of the mirror. In the second section, then, we calculated the I/O relations for each
of these configurations, considering both cases with and without cavities. The particular
situation of a detuned cavity is explained in section 3, where we introduced also the con-
cept of optical rigidity and optical spring. In the last section, finally, we showed how the

quantum noise limited sensitivity can be calculated.

The results, shown in figure 4.95, demostrate that, using exactly the same parameters for a

Michelson and a Sagnac, the latter will always have a lower radiation pressure noise.

>The bounces at high frequencies represent the free spectral range, defined as FSR = ¢/2L [54].
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(b) Plot of the quantum noise limited sensitivity(left), quantum noise amplitude spectral density (top right)
and response function (bottom right) for a Michelson (blue line) and a Sagnac (red line) with cavities.

Figure 4.8: Plots of the quantum noise for interferometers with (bottom) and without (top) cavities.
The plots are made considering only the sine quadrature and in all cases the output signal is taken
at the dark port. Notice that in order to have comparable results between the interferometers with
and without cavities, in the first case we had to use some uncommon parameters, like extremely
high power and very long arms.



Chapter 5

Requirements of the arm cavity

mirrors of the SSM experiment

In section[4.2.5|we showed the results of the quantum noise calculation for a lossless Sagnac
interferometer with a configuration similar to that one used for the Glasgow SSM experi-
ment. However, because of the high cavity finesse the quantum noise is very sensitive to
the loss. Some of the most important sources of loss in the cavity, like scattering or creation
of higher order modes, are due to mirror surface imperfections and this is the reason why
we need very restrictive requirements for the arm cavity mirrors of the SSM experiment.
The specifications documents that have been sent to the vendors can be found in appendix

In this chapter we will show how the requirements of the arm cavity mirrors are deter-
mined. In the first section we will show the relation between loss and quantum noise. We
will show then in the second section the first simulations run made with OSCAR using
real maps of a sample mirror and in the third section we explain how the simulations for
the derivation of the requirements through synthetic maps specifically created to represent
each surface imperfection were made. Finally in the last section the outcome of the analysis

is shown, describing how the real mirrors match the requirements requested.

5.1 Loss influence on quantum noise in a Sagnac speed

meter

In SSM interferometers the loss has a role much more important than in the Michelson.
This is because the presence of loss in the arm cavity creates two important effects. The
first one is the fact that when the beam leaves the first cavity it will be affected by the loss,

hence its power in the second cavity will be reduced. This means that the subtraction of

93
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the radiation pressure force is not perfect anymore. The second effect is the fact that the
vacuum fields associated to the loss that must be added (as we showed in section [2.1.4)

create a further radiation pressure force that is not compensated by any other field.

When we have to include the loss in the calculation equation becomes

6Q) =Y TQILQ+ D N (Qh, (), (5.1)

with fi(Q) the input fields and A (€2) any vacuum field that should be added in case of loss,
as explained in section[2.1.4] Then the power spectral density of the quantum noise limited
sensitivity is [50]
Y. HZ THQ) - SMQ) - T(Q)-H, + Y, Hg ‘NI(Q)-N (Q) - H,
5,@) = 34, (@) = . (52)
1 - R-©)

where now the optical transfer matrices and the response function defined in equations

[4.57H4.60l must be modified as

1 Y .
L(Q)=——4 /=0, 5.3
( ) )/-i_yloss_i'gz\v/;(7 ( )
2
T (@)~ <1 _ —y> I, (5.4)
Ss.n. y + }/loss — lQ
8yPw, |0
R, (Q)~ I : 2 , (5.5)
(7 + V)pss — 1€2) V 27202 |1
8w,y P, 0 0
T (Q~ = ——— 1 (5.6)
P Ty + Yo — 1€2) -1 0
(5.7)

and the optical transfer matrices of the vacuum fields are defined as

NQ) =N, (@ +N, (Q)=-

2 YV ioss 86017 yylossPc 0 0
— [+ — . (5.8)
Y+ Vipss — 12 2t(y + 7, — Q2?7 [=1 0

In these equations we have defined the cavity half bandwidth due to the loss 7}, as y,,,, =
71/055/41'

Figure [5.1 shows the behaviour of the quantum noise limited sensitivity with the loss for
the Glasgow SSM and for ET-LF [43]]. We can see that for the first configuration the loss is a

crucial factor that affects the sensitivity of the instrument. The situation is much less critical
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Figure 5.1: Reproduction of the results from Danilishin et al. [89]. Quantum noise limited sensitivity
for different values of the round trip loss for Glasgow Sagnac speed meter (left) and ET-LF (right).
The roundtrip loss is considered symmetric in both cavities. The parameters used for ET-LF are listed
in table|l.1land we used an I'TM power transmissivity of 10 000 ppm. Furthermore we increased the
input power to 45.73 W in order to compesate the absence of the power recycling mirror.

for large scale interferometers, where the influence of the loss on the quantum noise is not
so strong. This can be explained by the fact that the finesse of the cavity in the Glasgow
SSM is about 20 times larger than in ET-LF and hence the effective loss will also be 20 times
larger. This behaviour forced us to require very restrictive specifications for the arm cavity

mirrors of the SSM experiment.

5.2 Test simulations run

The requirements of the mirrors are found creating synthetic maps that represents the sur-
face errors and simulating what is the cavity behaviour and the loss that they cause. How-
ever before doing that, we make an initial analysis of the simulations considering perfect
arm cavity mirrors first and real mirrors then. These first analyses are made with the aim

to have a first estimation of the loss associated to a real mirror.

For this purpose the surface profile of a sample mirror is measured and the maps obtained

from these measurements are used for a first analysis of the loss.
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parameter value
laser input power 1.7W
laser wavelength 1064 nm
ITM-ETM distance 1.3153m
ETM-ETM distance 0.2m

ITM power transmissivity | 700 ppm

ITM diameter 1cm

ITM radius of curvature 7.91m (concave)

ETM power transmissivity | 2 ppm

ETM diameter 5cm
ETM radius of curvature 0
beam radius on ITM 1.112mm

angle of incidence on ITM | 4.3987°

angle of incidence on ETM | 42.8°

Table 5.1: List of the parameters of the Glasgow SSM.

5.2.1 OSCAR results for a perfect cavity

Before starting with the simulations with a real mirror surface, we want to check what are
OSCAR’s results for a perfect cavity, in order to better understand its behaviour. In this
first tests we will use the parameters of the cavities of the Glasgow SSM listed in table

Defining the cavity

First of all we have to define the cavity. We want to simulate a triangular cavity where the
distances between the mirrors are: 0.2 m between M2 and M3 and 1.3153 m between M1
and M2 and between M1 and M3 (for the mirrors nomenclature refer to figure [3.6).

To do that we define the three interfaces that form the cavity: M1 has a diameter of 10 mm,
a radius of curvature 7.91 m (concave) and a transmission in power of 700ppm and M2 and
M3 are flat, have a diameter of 50 mm and a transmission in power of 2 ppm. The laser
beam has a wavelength of 1064 nm, a radius of 1.12mm on the input mirrof] an input
power on each cavity of 0.85W (assuming that the beam is perfectly 50% transmitted and
50% reflected by the beam splitter) and an angle of incidence of 4.3987 degree on M1 and

IThis is not the beam waist, because the waist is between the two M, and Mj.
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Figure 5.2: Power spectral density of the surface of the input and the end mirrors. For the ITM
the curvature has been removed, otherwise it will dominate the PSD values. Since the surface is
supposed to be perfect, the values of the PSD represent rounding errors.

42.8 degree on M2 and M3. The cavity is defined through the OSCAR function CavityN
described in section

Through the function P1ot_PSD it is possible to calculate and plot the power spectral den-
sity of the surfaces flatness shown in figure This function calculates the 2D PSD of the
surface and then it transforms it in 1D. To do it first a Hanning window] is applied to the
data, then the 2D PSD is calculated and finally it is transformed in 1D PSD summing all the
spatial frequencies along one direction (in this case along the radial direction). As we can
see, since the surface of the mirrors are defined perfect, the PSD is practically zero at all

frequencies, i.e. dominated by numerical errors.

Then running the function Check_stability, we have as output all the values needed in

order to have a stable cavity and the finesse of the cavity:

————————————————— For the surface 1 --—————-———"—"—""""—-
RofC fitted (m): 7.90997

Center of the map, horizontal (mm): -6.2242e-09
Center of the map, vertical (mm): -7.30011e-09

Tilt horizontal (nrad): 0.00078688

2 A Hanning window is a window defined through the Hann function:

win) = %(1 —0052%) for0<n<N
0 otherwise

i

with N the length of the window [90].
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Tilt vertical (nrad): 0.0009229
Flatness RMS (nm): 1.98829,

————————————————— For the surface 2 @-——-—f——------———
RofC fitted (m): -4.07628e+98

Center of the map, horizontal (mm): O

Center of the map, vertical (mm): O

Tilt horizontal (nrad): O

Tilt vertical (nrad): O

Flatness RMS (nm): 1.85268e-95,

————————————————— For the surface 3 @—--—""--"—-—-—-—————

RofC fitted (m): -4.07628e+98
Center of the map, horizontal (mm): O
Center of the map, vertical (mm): O

Tilt horizontal (nrad): O
Tilt vertical (nrad): O

Flatness RMS (nm): 1.85268e-95,

Beam radius on the first mirror: 0.00111829
Beam radius on mirror 2 [m]: 0.00101387
Beam radius on mirror 3 [m]: 0.00101387
Cavity finesse: 8921.87

Cavity gain: 5647.59

Mode matched input beam parameters:

Beam radius [m]: 0.00111837 Wavefront curvature [m]: -5.45515

The most important parameters in this output are the values of the beam radii and the
wavefront curvature in the last lines. They are required in order to have a stable cavity
and so all the following simulations will be carried out using these values. It must also be
noticed that the large value of the flatness for the surface 1, i.e. the ITM, is due to the mirror

curvature.

Circulating power

With the function Calculate_field_ AC it is possible to calculate the circulating power
inside the cavity and with the function Display_results we can display the profile of

the input, circulating, reflected and transmitted beams. The output is:

Power in the input beam 0.85 [W]
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Circulating power 4800.43 [W]
Total transmitted power 0.0192017 [W]
Reflected power 0.830798 [W]

Round trip losses [ppm]: 1.38235e-05

As expected, the roundtrip loss is very low, since it is only due to clipping loss of the beam,
which have radii much smaller than the mirror respective dimensions. This simulation is
done using a grid with a size of 512 points and a physical size of 0.011 m (so we consider

only clipping loss on the ITM).

Cavity eigen modes

The next simulation performed with OSCAR is the analysis of the eigenmodes created by a
macroscopic roundtrip length detuning. When we have a detuned cavity in fact, the input
beam, which is of the fundamental order HG(0,0), does not fit the surface of the mirror
anymore, because the change in the length of the cavity will change the curvature of the
beam on the surface of the mirror. This fact causes the generation of higher order modes
which in turn increases the roundtrip loss, because of the different power distribution on

the surface.

To find the cavity eigenmodes the OSCAR function Display_cavity_modes is used. In
this case we use a grid with the same number of points as before (512) but a smaller physical
size (5 mm), since we only need to check the profile of the beam (which has a radius of
1.12 mm) and the mirror size does not affect the results significantly. The output of this
function is a plot of the roundtrip loss as a function of the detuning and the profile of the
corresponding Hermite-Gaussian modes that create it. The output is shown in figure
(for the first 10 modes).

5.2.2 Surface measurements

After having performed the simulations for a perfect cavity, we can start the second phase
of the analysis, namely adding a surface map on the mirrors to investigate what happens

in a more realistic situation.

To do that a Laseroptik Garbsen flat mirror with a diameter of 50 mm, a thickness of 9 mm
and a flatness of ~ 60 nm rms is used. The measurements of the surface flatness of this
mirror are done with the Zygo interferometer, described in section Since there are
many factors that can affect the measurements (like thermal effects due to the laser heating

up the mirror or ground vibrations), the mirror is left in the set up for about 30 hours and



CHAPTER 5. REQUIREMENTS OF THE ARM CAVITY MIRRORS OF THE SSM 100

1- 0.0
0,1) (1,0 *
0.995 - * . 1.1

(2,0)

* 2,1) (1,2)
0,2) * .

>

0

©
T

o o
o 2 ©
N © o
o ® o
T

*

1 - Round trip loss

0.97

0.955 I I I L I |
6 - 3 - -1
Cavity detuning [rad]

0.0

0.2)

mm x10° mm X107 mm x10° mm x10° mm x10°

(2.2)

mm x 107 mm x10° mm x10° mm x 107
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point. Bottom: surface profile of the mode corresponding to the eigenmodes showed in the plot on
the top.

different measurements are taken during this period. The results of these investigations

will be described and discussed in the following.

The analysis of the mirror maps are made through SimTools: first of all we centre the map
in the grid and then we remove the offset, so the mirror centre is set to zero, and the piston
is corrected. These corrections are made using the proper functions described in section
After this corrections, the flatness is calculated using the SimTools function FT_-
map_rms .m, which calculates the rms according to the definition in equation Figure
[5.4)shows the flatness of the surface after each correction respect to the time that the mirror

was in the set up.

Through this analysis it is possible to understand how the measurements of the flatness of
the mirror changes from one measurement to another. We take a total of 8 measurements
and we compare them making the difference between each map and its consecutive and
between each with the last one taken. The rms of the resulting maps are also calculated
and plotted (see figure[5.5). We obtain that the difference between the measurements are
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all below 8.5 nm and the flatness of the residual maps are below 25.5 nm rms.
The surface profiles of all the measurements can be found in Appendix [B]

In addition we can estimate the radius of curvature. Since the mirror is supposed to be flat,
the theoretical value of the radius of curvature is infinite and then the real value will give its
error. The radius of curvature is calculated using the SimTools function FT_map_remove_-
curvature_from _mirror_map.m. It must be noted that an edge of 5 mm has been cut
out from the map before this calculation, because the values are affected by a measurement
artifact (it can be seen in the mirror surface profiles shown in figure [B.2). The results for
all maps are shown in figure [5.6|and they give a mean value for the radius of curvature of
80.7 km.

A description of the mirror surface profile can be obtained calculating the power spectral
density (PSD) of the surface, which gives the level of the imperfections as a function of
the spatial frequency as explained in section In figure the PSD of the ITM and
the ETM after adding the same map (number 8, i.e. the last one taken) is shown| For the
ITM we have to remove the curvature of the mirror before calculating the PSD, because the

curvature has a dominant effect on the PSD.
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Figure 5.4: The plot shows how the mirror surface flatness changed with the passing of time. The
flatness is calculated after each adjustment made with SimTools.

5.2.3 Roundtrip loss simulations

In order to find a threshold value of the mirror flatness we can afford, we make a simulation

of the cavity after having added a map to the ITM. So, using one of the map measured

3With OSCAR it is possible to add the same map on mirrors with different sizes because an interpolation
is done internally when the map is added.
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Figure 5.8: Round trip loss trend as a function of the flatness of the mirror.

with Zygo (the map number 8) described in the previous section, a simulation of the cavity
is performed. The map is added to the ITM, scaling its values by different factors. The

roundtrip loss as a function of the flatness is calculated (see figure 5.8).

This analysis allows us to evaluate the loss versus the flatness of the ITM. Furthermore we
deduce that for a scale factor of 1 (corresponding to a flatness of ~ 10nm), so considering

the real mirror map, the round trip loss is estimated to be ~ 2 ppm.

5.3 Mirrors surface requirements

The analyses made so far give us a first estimate of a real mirror surface specifications
and the associated loss. However, it would be too expensive to set requirements for all of
mirror. It is more economic to divide the mirror surface in zones and to set the requirements
for each different surface imperfections. So we need a more rigorous way to describe the
different surface errors and define the requirements for each different type of error. With
the analysis made in the previous section, in fact, we are not able to distinguish the surface
errors and then the effects of each of them. So in this section we will show how the analysis
of the effects of each surface errors is made and how we define the requirements of the arm

cavity mirrors of the Glasgow SSM experiment.

First of all we consider that the central zone of the surface affects much more the loss,
because it will be hit by the beam area with most of the power in it. So we divide the mirror

surface in zones. The size and the number of the zones will be different for the ITM and
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the ETM, because of their different dimensions. Specifically, the choice of the size of the

central zone is made simply calculating the power outside the zone through the equation
P, =e 7, (5.9)

where r is the radius of the central zone and w is the beam radius on the mirror surface.

IT™M

As said we need to divide the mirror in zones. For the ITM, considering that it has a radius
of 5 mm and the beam radius on its surface is 1.12 mm (as obtained from the OSCAR output

described in section [5.2.1), we choose:

« Zone A: inside a radius of 3mm (0.58 ppm of power outside this area according to

equation [5.9);

« Zone B: outside a radius of 3mm.

So we can make the analysis for the two zones in order to set requirements more restrictive

in the central zone.

ETM

Since the ETM is much larger than the ITM we decide to define three zones instead of two.
At first we define the central area with a radius of 4 mm, which will give about the same
value of the power as for the ITM (0.58 ppm outside of it). However, the larger dimensions
of the mirror give us much more large range of choice and we increase it to 5 mm, which

gives a power outside the central zone of ~ 107!¢ ppm. So the zones are defined as:

« zone A: the surface inside a radius of 5mm;
 zone B: ring 5 mm from centre to 15 mm from centre;

« zone C: the surface outside a radius of 15mm.

5.3.1 Point defects

We gave a first overview of the point defects behaviour in section Here we we will
see how we simulated in MATLAB® their effect on the roundtrip loss of the cavity.

In the mirror surface requirements we want to specify the size and the total area of defects

over the whole surface, so for a full analysis of this effect done using the equation
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Figure 5.9: Procedure used to calculate the loss due to point defects for the zone A (top) and B or C
(bottom). On the right there is a zoom of the matrix that represents the point defects, in order to be
able to see them.

we need to have an estimation of the height of the point defects. Then the simulations

are performed using the following procedure (a schematic description of this procedure is
shown in figure [5.9):

« first we make an initial guess for the dimension of the defects (1 ym), which will also

be the resolution of the grid, since we will consider each defect equal to one pixel;

« we define the mirror through a matrix with the value 0 inside a circle with radius

equal to the mirror radius and NaN outside;

» we define the defects as a matrix with the same size of the previous one with all 0
elements and some elements equal to 1 randomly placed in the matrix: each of these

elements represent a point defect;

» we sum these two matrix: in this way we have a matrix of the same size of the surface

of the mirror with the point defects on it;

« we define a matrix that describe the beam profile (a gaussian beam) and we multiply

it for the matrix that describes the mirror surface with the point defects;

« finally the power inside the pixels corresponding to the point defects is calculated

and all these values are summed in order to have the total power loss.

We should note that this calculation is an upper limit of the power loss because we are
considering that all the light that hits the point defects will be lost and this is not necessarily

true. However this method gives us an approximation of the order of magnitude of the loss.
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We can estimate the height of the point defects comparing these results with equation[2.35
The value of the a height of the point defects at which the two results agrees can be con-
sidered a good estimation of the height of the point defects. In particular this comparison
is done changing the numerical density of the point defects and calculating the respective

loss due to these defects.

I™

For the ITM the value of the height for which this result matches with equation is
found to be ~ 85 nm for both zone A and B. As we can see in figure in fact, the value
of the loss obtained through the simulations changing the density of point defects on the
surface (circles in the plot) and the trend of the equation[2.35|using the value of 85 nm (line)

match.

Once we found this value, we use again equation[2.35]for a plot of the loss as a function of
the size of the point defects, changing the number of points. For the zone B the calculation
is the same, but we also consider the beam shifted from the central position of the mirror
of 2mm, in order to see how much it affects the loss (see figure [5.11). This simulation is
made with a grid size of 4096 and a pixel size (which corresponds to the size of the point

defects) of 1.5 um for the zone A and 2.4 ym for the zone B.

In this way, once set the maximum loss due to this imperfections that we can afford, we
have the chance to choose the number and the maximum size of points defects. In this case
we decide to set no point defects with size > 1 ym and a total area < 100um? for zone A
and no point defects with size > 1 um and a total area < 2000um? for the zone B, which

should result in a loss <5 ppm.

ETM

For the ETM we have that for the zone A results are similar to that one obtained for the
ITM. In fact we have a difference of the loss of about a factor 2 and the equation[2.35/agrees
with the results of the simulation considering a height of the point defects of ~ 110 nm.
For the zone B instead we have that the two results agrees for an height of the point defects
of ~ 6 ym. Finally for the zone C, since the total power that hits that area of the mirror is

negligible, no simulations are performed.

The simulations are made with 8192 points and a pixel size 1.2 ym for the zone A and
3.7 ym for the zone B. The results are shown in figures and The requirements
chosen are no point defects with size > 1 ym and a total area < 600um? for zone A and no
point defects with size > 1 ym and a total area < 3000um? for the zone B, and also in this

case this should result a loss of <5 ppm.
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Figure 5.10: Loss as a function of the size of the point defects, considering different number of points
for the zone A (a) and B(b) for the ITM. The circles represent the values of the loss obtained with
a fixed size of 1 ym changing the numerical density of point defects (i.e. their total area). The line
represents equationfor h = 85nm.
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Figure 5.11: Loss as a function of the size and the number of the point defects on the ITM for the

zone A (a), B (b) and for the zone B with the beam shifted of 2 mm from the centre of the mirror.
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Figure 5.12: Loss as a function of the size of the point defects, considering different number of points
for the zone A (a) and B(b) for the ETM. The circles represent the values of the loss obtained with
a fixed size of 1 ym changing the numerical density of point defects (i.e. their total area). The line
represents equation for A = 110 nm for the zone A (a) and A = 6 ym for the zone B (b).
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5.3.2 Radius of curvature and astigmatism
I™

According to the design paper the radius of curvature of the ITM must be 7.91m. The reason
why we chose this particular value is clear from figure In fact the radius of curvature
of the input mirror and the length of the cavity are the critical factors that determine the
resonance of the higher order modes in the cavity, which can affect the performance of the
instrument. So we need to check what is the maximum error in the radius of curvature in

order to avoid this effect.

To have an estimation of the error of the radius of curvature, we change the radius of
curvature in the x direction in one cavity and in the y direction in the other one with equal
values AR, but opposite sign (see figure[5.14). The difference between these two beams can
be considered the loss due to destructive interference. Some examples of the beam profile
obtained by the difference of these two beams are shown in figure and the roundtrip
loss as a function of AR is shown in figure This calculation is made using the OSCAR

function minus, which allows to calculate the difference between two fields.

For the requirements of the ITM we choose an error on the radius of curvature < 0.02 m,

which corresponds to a loss of 107 W, i.e. 2 x 10~* ppm.

A similar approach is used to find the power loss as a function of the astigmatism. In order to
find the power loss due to this kind of deformation, we add an error to the radii of curvature
of the two ITM with equal values and opposite sign and we calculate the difference between
the reflected beams obtained. As before, the power of this difference between the beams

corresponds to the loss.

Finally the amplitude of the Zernike 2,2 polynomial that corresponds to the error of the
radius of curvature is calculated (through SimTools) and so we are able to plot the power
loss as a function of the astigmatism (see figure [5.17).

The requirements for the astigmatism of the ITM has been set to be < 8 nm, which should
give a loss < 107® W, that corresponds to 2 x 10~ ppm.

ETM

For the error of the radius of curvature of the ETM we follow the same method as described
above, but this time, since the mirror must be flat and then with a radius of curvature
infinite, we need to set a minimum value as requirement. Figure shows the amount
of power lost when the error AR is added to the two directions x and y with equal value
and opposite sign on both ETM. We set as requirement a minimum value of the radius of

curvature of 10 km, which corresponds to a loss of < 107° W.
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For the astigmatism the method used for the ETM is a little different from that one used for
the ITM. In this case we simply add two maps that represents the astigmatism with opposite
signs and then we calculate the difference of the intra-cavity beams obtained adding these
maps. We do this with different combinations of the maps on the four ETM in order to
consider any possibility. The results are shown in figure We choose a value of the
astigmatism for the ETM < 16 nm, which should result in a loss < 1077 W (2x10~* ppm) in

the worst case scenario.
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Figure 5.14: (a) Representation of the method used to calculate the loss due to the error of the ITM
radius of curvature: and error in the x-direction is added to the radius of curvature of one of the
ITM and along the y-direction to the other and the difference between the two two output beams
was calculated.
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Figure 5.15: Intensity profile of the difference between: (a) the beam of the first cavity with ITM’s
radius of 7.91 m and no error added and the beam of the second cavity with the ITM’s radius of
curvature in the x direction r, = 8.01 m and no error in the y-direction, so r, = 7.91m; (b) the
beam of the first cavity with ITM’s radius of 7.91 m and no error added and the beam of the second
cavity with r,, = 7.91 m (no error added) and r, = 7.81 m; (c) the beam of the first cavity with ITM’s
radius r, = 8.01 m and the beam of the second cavity with r, = 7.81 m.
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Figure 5.16: Power loss (referred to the input power) due to the overlap of the beams obtained when
an error AR is added on one of the two ITM only along the x-direction (blue line), only along the
y-direction (red line) and on both ITM with opposite value in the two directions (green line).
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Figure 5.17: Power loss (referred to the input power) due to the overlap of the beams obtained when
an error AR is added on both I'TM with opposite value in the two directions (same as the green line
in figure[5.16). On the x-axis we have the correspondent values of the radius of curvature in terms
of amplitude of the Zernike polynomial (2,2), which represents the astigmatism
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Figure 5.18: Power loss (referred to the input power) due to the error in the radius of curvature of
the ETM.
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Figure 5.19: Power loss (referred to the input power) obtained adding two different maps that repre-

sent the astigmatism (the two figures on the right) on the four ETM as a function of the of amplitude
of the Zernike polynomial (2,2).



CHAPTER 5. REQUIREMENTS OF THE ARM CAVITY MIRRORS OF THE SSM 115

Figure 5.20: Sinusoidal map used to simulate errors at different spatial frequencies.

5.3.3 Errors at discrete spatial frequencies

We want now to define the requirements of the surface error based on their spatial fre-
quencies. The analysis is made using a perfect sinusoidal map as that one shown in figure
This map is added to the mirror and the simulations for the calculation of the round
trip loss are performed with OSCAR. The analysis made can be divided in two main parts.
First the simulations are performed with a constant amplitude of 1 nm and the round trip
loss is calculated changing the spatial frequencies from 0.3 mm™! to 2mm™". In this way
it is possible to see the dependance of the loss from the spatial frequencies and to select
some crucial values and then define the requirements for each range of spatial frequencies
as described below. The second part of the analysis is the calculation of the round trip loss
as a function of the amplitude. To do that we fix the spatial frequencies at the two selected
values, which define the limits of two ranges of frequencies. We make then the same calcu-
lation as before changing the amplitude. So, it is possible to give the requirements for the

peak to peak value of the error in each range of frequencies.

Note that this analysis represents the upper limit of the loss. The requirement defines
the maximum amplitude peak to peak that a surface error can have, but this calculation

considers that all the peaks have the maximum value and this is not true for real mirrors.

In this case the method used is exactly the same for ITM and ETM. The results are shown
in figures and In figure we have the plot of the loss as a function of the
spatial frequencies for both ITM and ETM. The simulations for the ITM are made using
a grid with 256 points and a physical size of 0.015 (to evaluate the clipping loss we need
that the physical size must be a little larger than the size of the mirror) and we define a
map with an amplitude of 1 nm, and a size of 256 points. So since the ITM size is 1 cm, the
resolution of the map is ~ 40 yum. When we make the same simulations for the ETM, we
have to consider its larger dimension. So we define a grid with 256 points and a physical

size of 5.5cm and a map with 1 nm amplitude and 2048 pointd’} which gives a resolution

“The map does not need to have the same size of the grid, since an interpolation is done internally by
OSCAR when the map is added.
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close to the previous one, i.e. ~ 24 ym. The fluctuation of the values that we can see for the
ETM is probably due to the fact that in this case the angle of incident is ~ 7 /4. The peak
and the valley at each cycle in fact differ of half the wavelength of the sinusoidal map, so
the beam will be reflected in opposite directions in the two cases. From these results, we
decide to set as limits for the description of the spatial frequencies 0.3 mm~' and 1 mm™!.
Notice that 1 mm™! corresponds to the size of the beam and we can see in fact that at this

value the trend of the curve changes.

In figure the plot of the loss for a fixed spatial frequency at these two values and
changing the amplitude is shown. We set as requirements for the ITM 0.3 nm P-V for high
spatial frequencies and 2 nm P-V for low spatial frequencies and for the ETM 0.25 nm P-V
for high spatial frequencies and 1 nm P-V for low spatial frequencies, which should give
about the same loss for both, i.e. 4x ~ 10~7 ppm for low spatial frequencies and 3 ppm for

high spatial frequencies.
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Figure 5.21: Dependence of the power loss from the spatial frequency of the periodic surface errors
with a fixed amplitude of 1 nm when the map is added only on the ITM (black line), only on one
ETM (red line) and on both ETM (blue line). Notice that, because of the larger dimensions of the
ETM, we needed a map with a greater number of points in order to have a similar resolution.

5.3.4 Microroughness

An analysis of the loss due to the microroughness is very difficult to do. This kind of errors,
in fact, has typical spatial frequencies of the order of the microns and high resolution maps
are then required. For this reason we decide to set as requirements 0.1 nm rms, which is a

standard value for microroughness of high quality optics.
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5.3.5 Flat edge of the ITM

Since for the SSM experiment we use monolithic suspensions for the arm cavity mirrors,
the test masses have to feature a flat edge, where the ears can be bonded. However, because
of the small dimensions of the ITM, even a very small flat edge could cause a significant

increase of the clipping loss.

So we make a calculation of the loss as a function of the dimensions of the flat edge. To do
that, we modify the mask of the Interface function in OSCAR, changing the value of the
flat edge thickness from 0.5 mm to 2 mm. This simulation is made with one of the map
provided in the OSCAR package (with flatness of 96.61 nm rms) added to the input mirror
and a plot of the round trip loss as a function of the flat edge thickness is made (figure[5.23).
We decide to set the thickness of the flat edge to 2 mm.

5.4 Qutcome and conclusions

According to the manufacturer, the required radius of curvature value for ITM of 7.91 +
0.02m was overly difficult and expensive to achieve, so they suggested to change it to
8.0 + 0.2m. In order to be sure that this change was not critical for our experiments, we
analysed how it affects the behaviour of our cavity. As explained before, the resonance of
the high order modes in the cavity depends on the radius of curvature of the ITM and the
length of the cavity. So we made a plot similar to that one shown in figure but this
time we kept the radius of curvature constant and changed the length of the cavity. We can
see from figure that in order to avoid the resonance of the 11th order mode, we had to
slightly change the length of the cavity by about 10 cm.

Once the mirrors arrived we had the chance to make some tests to check if the requirements
were satisfied. The company provided the measurements of the maps of the surfaces (shown
in appendix[B), and so it was possible to re-run the simulations with the real surface profiles.

We calculated the round trip loss with these maps added to the mirrors.

In the case of the ETM we have two possible orientations, since the substrates have two
flat edges on opposite sides. So we calculated the round trip loss with the two possible

positions. The results are shown in table as we can see all values are below 5 ppm.

Then choosing the two worst and the two best cases (highlighted in red and green in table)
we calculated the round trip loss in these cases when also the map on the ITM is added.
The results are shown in table 5.3]

Thanks to the surface measurements provided by the company we were also able to cal-
culate the PSD of the mirrors surfaces. The plots are shown in figure As we can see,
for the ETM the PSD is about one order of magnitude better than that one of the sample
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mirror used for the first simulations and shown in figure The peaks that appear at dif-
ferent frequencies for each map are due to the fact that the measurements were taken when
the substrates did not have the coating yet and hence there were interference fringes from

reflection off the back surface, as it is clear from the surface profile shown in figure

On the other side, for the ITM it could look like they are worse than the sample mirror, since
the PSD is about three orders of magnitude higher. However, we have to consider that in

this case the curvature has not been removed and then it dominates in the spectrum.

In this chapter the derivation of the requirements for the arm cavity mirrors of the Glasgow
SSM experiments has been shown. We have described how the different surface errors are
simulated and the results obtained for the round trip loss that each of them causes (a sum-
mary of the requirements can be found in appendix[C] where the specifications documents
are reported). The total loss estimated by the simulations were of the order of 19 ppm, while

the values obtained with the real mirrors maps is between 8.64 and 13.30 ppm.

The substrates were then coated in order to have the required transmissivity and after the
coating the scattering of ETM were measured again by the company and a value between

2.2 and 9 ppm were found (the complete set of measurements is listed in table [5.4).

After these procedures, the mirrors were ready to be bonded in order to be assembled in the
monolithic suspensions. A picture of the mirror is shown in figure A brief overview
of the bonding procedure can be found in appendix D] while a detailed description of this

procedure and in general on the Glasgow SSM mirrors suspensions can be found in [83].
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Figure 5.22: Dependence of the power loss from the amplitude of the periodic surface errors with
a fixed spatial frequency of 1 mm™' (a) and 0.3mm™! (b). In both plots the dashed line shows the
chosen requirements.
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Figure 5.23: Roundtrip loss as a function of the flat edge thickness of the ITM. In the box the shape
of the mirror is shown (seen from the front).
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Figure 5.24: Build up of the higher order modes as a function of the cavity length considering the
radius of curvature of the ITM equal to 8.2m.
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Map rotated by 90°
ETM#3 | ETM#6 | ETM#7 | ETM#8 | ETM#10

ETM#2 1.92 4.42 2.14 3.16 2.91
ETM#3 - 2.87 1.76 2.43 2.60
ETM#6 - - 3.27 3.79 4.12
ETM#7 - - - 3.25 2.77
ETM#8 - - - - 4.13

Map rotated by 270°

ETM#3 | ETM#6 | ETM#7 | ETM#8 | ETM#10

ETM#2 1.92 - 2.14 3.16 291

ETM#3 - 3.21 1.76 2.43 2.60
ETM#6 - - 3.49 4.46 -
ETM#7 - - - 3.25 2.77
ETM#8 - - - - 4.13

Table 5.2: Round trip loss with the real maps added to the ETM with the two possible orientations.
The two best and worst values are highlighted in green and red respectively. All values are in ppm.

NomaponITM | 1.76 | 1.92 | 4.67 | 491

ITM#1 8.68 | 8.64 | 11.24 | 10.84
ITM#2 11.03 | 11.33 | 13.15 -
ITM#3 9.29 | 9.14 | 12.19 | 11.59

Table 5.3: Round trip loss with the real maps added to both ETM and ITM. In the first line we
reported as comparison also the loss when only the ETM the map is added. All values are in ppm.
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Figure 5.25: PSD of the surfaces of the SSM substrates.
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test mass | scattering

IT™™ 5 (average)
ETM#2 2.8
ETM#3 4.5
ETM#6 9.0
ETM#7 4.0
ETM#8 7.7
ETM#10 2.2

123

Table 5.4: Measurements of the scattering of the arm cavity mirrors after coating. All values are in

(b)
Figure 5.26: Pictures of the ITM compared to a 1 pound coin (a) and of the ITM and ETM (b).




Chapter 6

Backscattering effects in triangular

cavities

In this chapter we will analyse the influence of backscattering inside the arm cavities of the
speed meter. After a short introduction on the optical scattering, given in the first section,
we will explain the backscattering effects and their properties in terms of amplitude and
phase of the scattering beams in the second section. In the third section we will derive the
optical transfer matrix of a mirror taking into account all the first orders (plus and minus)
scattering beams in both reflection and transmission. Finally, in the fourth section we will
show the calculation of the I/O relations of a triangular cavity with an ITM with the optical
transfer matrix described in the third section. The numerical solutions obtained applying

this results to real interferometers parameters will be shown in the next chapter.

6.1 Introduction to optical scattering

With optical scattering we mean the effects of the interaction between radiation and matter
on the propagation path of the light. The scattering can be due to the interaction of the
photons with other individual particles or due to the interaction of light beams with a

surface. In this analysis we will only study the second case.

A sketch of optical scattering is shown in figure where the deflection of the radiation

due to some imperfections on the mirror surface is shown.

In the case of coherent scattering, the relation between the incident light and the scattered
light are easier to deduce since the only effect of the scattering surface is the modification
of the direction of propagation, without changing the intrinsic properties of the radiation
(like the wavelength). Specifically, we have that the angle of the m order scattering beam

0, is related with the incidence angle 6, and the spatial frequency of the mirror surface

124
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Figure 6.1: Light beams scattered by the roughness of a reflective surface.
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Figure 6.2: Normalised power distribution of the scattered beam (x 0;2).

imperfections f, through the equation [91]
sin,, =sinf, + mf, A. (6.1)

From this equation it is clear that mirror surface imperfections with high spatial frequen-
cies, like microroughness, create scattering at large angle, whereas surface imperfections

with low spatial frequencies, like flatness, creates scattering at small angle.

Furthermore, we have that the power distribution function of the scattered light can be
approximated (for small angles) to be proportional to 6> [92]]. This means that the power
of the scattered beam is not concentrated in one direction, but it is distributed in a broad
function around 6,,, as shown in figure
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——> clockwise beam
- - —=> counterclockwise beam
-3 packscattered beam

Figure 6.3: Mirror with incident clockwise (in red) and counterclockwise (in green) beams and the
surface roughness that creates a backscattering beam (in blue).

6.2 Backscattering effect

For the Glasgow SSM experiment the scattering could have an important effect on the per-
formance of the cavity. In this case, in fact, the beam can be scattered back in the same
direction of the incident beam. As we explained in the previous section, the scattered beam
has a broad power distribution function and this mean that part of it will couple with the

counter-propagating mode (see figure[6.3).

This effect is called backscattering and, as we will see in the next sections, it can affect

significantly the quantum noise of the SSM.

6.2.1 Amplitude of the backscattered radiation

A first estimation of the amplitude of the backscattering beam as a function of the mirror
microroughness was made for the Virgo input mode cleanerfl| [93][94]. In this analysis the
mirror surface is described by the function

2 2

X ;j + e(x, ), 6.2)

fx,y) =

where the first terms represents the curvature of the mirror with radius of curvature R

and the second term is a function that describes the microroughness. A clockwise beam is

IThe input mode cleaner in Virgo is a triangular cavity placed before the power recycling mirror with
the aim to select only the fundamental mode before being injected in the interferometer. The mode cleaner
cavity, in fact is tuned to the resonance frequency of the fundamental mode, that is different from that ones
of the higher order order modes, which will be then suppressed.
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present in the cavity and it is supposed to be gaussian, so it is described by the equation

2.2 2.2
tpo(x,y)=\/i exp Xty —ikx +y + ikf (xcos¢ + ysing)|, (6.3)
rTw? 2p

w2

where w is the beam width on the mirror surface, p is its curvature, supposed to be equal
to the mirror curvature R, k = 27” is the wave number and (0, ¢) are the incidence angles
measured respect to the mirror axis. Furthermore, in the cavity there is also a counter-
propagating mode that is the same as the clockwise mode, but with opposite phase. So its

equation will be

2 2 2 2
W06 ) = | —= exp l—x Y Y ko (xcosp+ysing)|.  (6.4)
Tw

w? 2p

The equation of the beam reflected by the curved mirror is

wr(x,y) = wo(x, y) exp [2ik f(x, )], (6.5)

and the coupling between the counter-clockwise and the reflected beam is given by the

hermitian scalar product between the two fields, i.e.

)/(0, d)) = <Wc’ WR>

2 2 2 2
= L exp _2X ty exp 2ik f(x, y) - Xty
R2 7rw2 LU2 2'0

(6.6)
-exp[—2ikO(xcos¢p + ysingp)|dxdy
= / I(x,y)exp[2ike(x,y)] exp[—2ikO(x cos ¢ + ysing)|dx dy,
R2
where we have defined the normalised intensity distribution of the incident beam as
2, .2
I(x,y) = 2z exp 22 +y ) (6.7)
Tw? w?

The square modulus of y is called coupling factor I" and it represents the relative intensity
coupled by backscattering in the counter-propagating mode. If the microroughness is small
compared to the wavelength, then the coupling factor can be written as
2
re,¢) = / I(x,y) (1 + 2ike(x, y) — 2k*e(x, y)*) exp [2ikO(x cos ¢ + ysing)]| dxdy.
R2
(6.8)
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Then since

(6.9)

0% k*w?
/ I(x,y)exp[2ikO(xcos¢p + ysing)|dxdy = exp [— 5 l ,
R2

we have

2
I, ¢) = / I(x,y) (14 2ike(x, y) — 2k*e(x, y)*) exp [2ik0(x cos ¢ + y sin )]
R2

20%n’w?

e l+2ik/ I(x,y)e(x,y)exp [2ikO(xcosp + ysing)|dxdy
R2

= |exp l—

2
—2k? / I(x,y)e(x,y)* exp[2ik0(x cos ¢ + ysinp)]| dxdy.
R2

(6.10)

If we define the natural overlap between the two beams as the overlap that we have when

the microroughness is zero, i.e.

20’ w? 26°
I',(0) =exp l—%l = exp [_F] , (6.11)
&

we can notice that for § > 6, (as happens for both the Virgo input mode cleaner and the
arm cavity of the Glasgow SSM experiment) then we can neglect the natural overlap term

and the coupling factor becomes

I, ) = 4k*

/ I(x,y)e(x,y)exp [2ikO(x cos P + ysin )]

R
(6.12)

2
+ik / I(x,y)e(x, y)? exp [2ikO(x cos ¢ + ysin@)]| ,
RZ

that is the Fourier transform of the microroughness function weighted by the intensity of
the beam. A numerical solution obtained using a real mirror map with a microroughness
of 1.3 nm rms is shown in figure

Unfortunately we do not have a mirror map of the microroughness of the arm cavity mirror
of the Glasgow SSM, so we cannot apply this analysis at our case. However these results
are useful, because they provide an idea of the order of magnitude that we can expected for
the power of the backscattered beam. We have in fact that for mirrors with microrough-
ness of 1.3nm rms the power of the backscattered beam is below 0.1 ppm (see figure [6.4).
Considering that for the SSM’s ITM the microroughness is 0.1 nm rms, we can expect that

in this case the backscattered power will be even smaller.
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Figure 6.4: Coupling factor for backscattering as a function of the angle of rotation of the mirror ¢
for the Virgo input mode cleaner. Figure taken from [93]].

6.3 Relations between plus and minus first order scat-

tering beams

Since the amplitude of the electromagnetic fields involved in the backscattering are very
small, we need to take into account all first order scattering terms (see figure [6.5). So, we
need to know the amplitudes and the phases of the scattering beams. To that end some
simulations were performed? considering a binary grating with amplitude 0.5nm, a grat-
ing period of 6.9 ym, an angle of incidence of 4.4° and a radiation wavelength of 1064 nm.
Furthermore, in order to have a transmissivity ~ 700 ppm, a coating composed by 12 pairs

of silica and tantala is considered.

Amplitude

As a general rule the amplitude of plus and minus scattering terms are the same for the
reflection and the transmission, but the ratios between the first order and the zero order
beams for the reflected and the transmitted beams are not the same. This can be easily
explained considering the grating equation (see equation [6.1). Through this equation, in
fact, we can calculate the maximum scattering order allowed m™*, considering that the
maximum angle must be < 7 /2. Combining the grating equation with the Snell’s law we

have
$in 07 = m,, . nif, <1. (6.13)

2The simulations were performed by Dr Stefanie Kroker from the Friedrich Schiller University Jena, using
a software based on the RCWA (Rigorous Coupled-Wave Analysis) method.
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Figure 6.5: Mirror with all first order scattering beams. The point of incidence/reflection should be
the same for all beams, but for practical reason the beams have been slightly shifted from their real
position in order to be be able to distinguish them.

In our case the refractive index of the medium where the beam is reflected (air, with n=1)
and where it is transmitted (silica, with n=1.45) are different, and specifically it is larger for
the latter. This means that we will have the transmitted power split in a larger number of

beams.

However we have also to consider that in our case because of the low transmissivity the
amount of power in the higher order beams can be neglected and then the efficiency in
reflection and transmission can be considered equal. From the simulations we have indeed

that he intensities of each order are (in %)

T+5 | T+4 | T+3 | T+2 | T+1 | To | T-1 T-2 T-3 T-4 T-5

4e-8 | 2e-14 | 1e-8 | 1e-14 | 1e-7 | 0.1 | 1e-7 | 1e-14 | 1e-8 | 1le-14 | 7e-9

for the transmissivity and

R+5| R+4 | R+3 | R+2 | R+1 | RO | R-1 R-2 R-3 R-4 R-5
6e-6 | 4e-11 | 5e-5 | 5e-11 | 4e-4 | 99.9 | 4e-4 | 5e-11 | 5e-5 | 5e-11 | 1le-5

for the reflectivity. Then the ratios between the first and the zero orders are

T T R R
M o1x10% a1x10°% Ha4ax10° —Lx4x10°.
TO 0 0 RO

So in our analysis we will consider that all these four are the same.
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Phases

In order to be able to write the transfer matrix of the mirror considering all the scattering
beams, we also need to have some information about the phases. The relations between
the phases of the beams can be obtained from the same simulations performed for the

amplitudes, which gives (in rad)

T+5 | T+4 | T+3 | T+2 | T+1 | TO T-1 | T-2 | T-3 | T-4 | T-5

1.61 | -0.72 | 2.57 | 0.49 | 3.05 | 5e-3 | 8e-3 | 0.89 | -0.28 | 0.11 | -0.98

for the transmissivity and

R+5 | R+4 | R+3 | R+2 | R+1 | RO R-1 | R2| R3 | R4 | R-5

2.05|-045 ] 2.73 | 0.58 | 3.08 | 9¢-3 | 9e-3 | 0.92 | -0.20 | 0.27 | -0.71

for the reflectivity. From these results we can notice that the difference between the phase

of the "plus" mode and the respective "minus" is always ~ 7.

6.4 Transfer matrix of a mirror with all first order scat-

tering beams

We have now all the means to derive the optical transfer matrix of a mirror considering
all the first order scattering beams. Figure shows the ITM that we want to study with
the microroughness that creates backscattering and all the other first order beams in both
transmission and reflection. As we can see the +1st order terms have the same direction as
the counter-propagating beams and hence they will couple with them. On the other hand,
the -1st order terms can be considered as loss since they create four additional ports that
do not couple to the cavity. As we explained in section [2.1.4] in case of loss, a mirror is
equivalent to an optical system composed by the mirror without loss and one beamsplitter
with reflectivity equal to the loss. In our case, since there are four input beams, in the

calculation we need the four beamsplitters shown in figure

However in this case we have to be more careful, since we have four input beams and the
loss in each port is the coupling of the 7", term and R_, term of two different input beams.

Then we can describe the optical system dividing the process in three parts:

« the first part describes the coupling between the -1st order terms, described by the

matrix C;
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Figure 6.6: (a) Mirror with 4 input beams and all the first order scattering beams in reflection and
transmission. (b) Equivalent system of the mirror in (a) composed by the lossless mirror and four

beamsplitters.
Also in this case all the beams in each port are supposed to be overlapped but we have drawn them

here slightly shifted in order to be able to distinguish them.
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« the second part is the transfer matrix of the mirror with 0 and +1 order terms, de-

scribed by the matrix T;

« the third and last part is the second passage through the beamsplitter that gives the
output beams, described by the matrix B.

In this way the optical system is described by the following equations

P () Pi(w)
P2 () P(w)
P () Pi(w)
Pr@)| _ [Bl le rn E] [Q «:2] Pr) | 610
Prw)| By B,| |Ty T,| |Cs Cyf PP
P () Pi(w)
P () P"(w)
| Py ()] | Py(@)]

with

VeR e+ \/E ePn /€T '+ ﬁ e/ ]
_[I_ _ \/E ei¢r0 \/ €R ei¢r+ ﬁ eid’to 1/ eT ei¢t+ (6 15)
1= )

’\/€—Tei¢t+ ﬁei¢r0 \/G—Rei¢’+ \/Eeiqﬁro
\/fei‘i’to \/ﬁe"d’t+ \/Eei"bro \/&e”’br+

L=T,=0, T,=1 (6.16)

C,=C, = ¢®\/1 — |eReir + cTed |21, (6.17)

0 \/e_R eir- 0 \/e_T el
i,_ i
C, = \/ﬁ e 0 \/ﬁ e 0 ’ (6.18)

0 \/ﬁ el 0 \/Jei"ﬁrf
\/e_T e 0 \/e—Re’¢r— 0

C,=Cl, (6.19)
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and we have defined as 13;"(0)) and IA’Z”’(a)) the input and output of the port n respectively.

Using the phase convention described in section|2.1.3] the results of the simulations showed

in the previous section and considering that the matrices must be unitaryf’} we obtain

T b4
b = bk b0=0, ¢ =-7 ¢, =0, ¢_ = 5’ br1 = (6.21)
In this way the transfer matrix becomes
—iyeR \/E VeT iﬁ
\/E —iVeR iﬁ VeT
T, = , (6.22)
VeT  iVT —iveR /R
iﬁ VeT \/E —iyeR
0 ivVeR 0 —\VeT
ivVeR 0 —\eT 0
CS — , (6.23)
0 —\VeT 0 ivVeR
—\eT 0 iveR 0
C,=C,=e®V1-e(R+T)I, (6.24)
with the condition
R+T+¢e¢R+€T =1. (6.25)
In the end the I/O relations of the mirror can be written as
[ Po(@)| [P"(w)|
Po(@) P(@)
P‘S”” (w) Pg” (w)
ljﬁj:i(w) —| ©hG Gihe I:E‘:(w) . (6.26)
P (w) GTC +C; GTC,+C,| | PY(w)
Po(@) Pir(w)
Po(@) P(@)
(@) P

In the next section we will see how, starting from these equations it is possible to obtain

the I/O relations of one cavity and the full Sagnac interferometer, from which it is possible

to calculate the quantum noise.

3 A matrix M is unitary if M7 - M =1
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6.5 1/0 relations with scattering beams

In equation we are only interested in the output of the first four ports, since the other
four represent the loss. So we can ignore the last four terms in the output column and
the second row in the transfer matrix. On the other hand for the input beams we need to
consider all the 8 ports, since we have to take into account the contributions of the vacuum
fields. Then we have

[ o () | _iVeR VR VT T |[pro)
f’g”’(a)) =<eid’\/@>2 \/E —iveR iﬁ \/ﬁ f’;"(a))

P () Vel iVT -iveR VR ||Pi(w)

P () VT Vel VR —iveR||P/(w)
i i i ] ~ (627)

—i —ye 0 0 ||PMw)

+e®V1— Z \e(R+T) Ve i R | B

0 0 —i  —ye|| Pl (o)

0 0 —ye —i |[Prw)

In order to make the calculation more clear and consistent with the ones shown in chapter
we rename the fields as

Pl@) - BY (@), PY(0) - BY (@), Pl - ), P - F (W),
P"w) - A (@), PJ(Q) > AT (w), PI(w) - EY(w), PMw) - E (),

where the fields B!/ (w) and A!’ (w) are the cavity output and input fields respectively and
F!/ (w) and E'7 (w) are the intra-cavity fields (see figure . Furthermore, we will rename

the other four input fields, which are vacuum fields due to the loss, as

Pl - (@), Pl —-m" (@), Pl -i"Q, P i),
where we have considered that the classical amplitude of the vacuum fields is zero (therefore
the lowercase).
6.5.1 Intra-cavity fields

In order to find the I/O relations of one cavity, we can solve the equations and find
the intra-cavity fields following the same method shown in section We will do this

calculation only for the quantum fluctuation part, since the classical part is easy to deduce
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from it just replacing the quantum fields with the classical fields and setting the frequency
equal to zero. The intra-cavity fields reflected from the ITM is then

@ == 2) [Ty 8" @) + VeT 3 (@)
+VR 1y €7 (@) = iVeR 1y 8" (@)
+ (VRias 20k E" + VeRyry 24 ET ) x,]
V1= Z e (Rygas + Tyrns) <iﬁ”(a)) + \/Eﬁ”(a))> .

(6.28)

Since we are considering massive ETM with reflectivity equal to 1, the intra-cavity field
incident on the I'TM is just the field reflected from the ITM with the phase shift due to the

round trip and then

(@) =t (@ e
= (1= 2) & |iy/Tyrag 8" (@) + VeT 4" (@)
+v/ R,y € (@) = i\eR, 1, &' () (6.29)
+ ( Ryrns 20k B! + \/eR, 7y, 2k BT J) x,]
—V1=Z Ve (Rygas +Tyrns) (iﬁ”(a)) +4/e ﬁ”(co))
Moving all the terms in &'/ () on the left side of the equation, we have
&’ (o) (1 — (1 - P) o M) — (1 - ) o [imﬁ”(a)) + VeT a7 (w)
—i\/eR 1y & () + ( Rypa 2ik,E" + \/eR 7y 2k B J) x,]

—VI=Z e (Ripp +Tirnt) (iﬁ”(w) + \/Eﬁ”(w)> .

(6.30)



CHAPTER 6. BACKSCATTERING EFFECTS IN TRIANGULAR CAVITIES 137

Because of the symmetry of the system, the counter-propagating field can be written as

_ _ 2iwt
e ()= — L =L e (VT 8 @) + VeT 8 (@)

1-(1-2) e \/Riry
_iy/eR,y & () + <\/R,TM 2ik B + \/eRyrn 2ka”> x,] (6.31)
_ \' 1 _3\/2 (RITM+TITM)

(. A () + \/EAIJ(a))>.

Now, in order to have the intra-cavity field as a function of the input field, we have to

substitute equation in equation [6.30] which gives

e (@) (1= (1= 2) " Ry ) = (1 = 2) & |iy/Tyrpg 8 (@) + VeT 4 (@)
+ (\/R,TM 2ik B + \/eR,1yy 2ka”) xj]
—VI=Z e (Ripp +Tirnr) (z’ﬁ”(a)) + \/Eﬁ“(m)>

1—-< 2iwt
€R; 1y ( )2'6 [i\/ ITM ﬁ”(a)) + VeT a”(w)
1 -(1-%2) e** \/R;1y

—iveR,py 6 (@) + (\/R,TM 2ik E” + \/eRypyy 2ka”> x,]

V1= Z+/e (R T ]
+iv/eR,pa ¢ (Reras + Tirw) (iﬁ”(a))+ \/Zﬁ”(a))>.

1-(1-2) e \/R;n

(6.32)

In this way we have an additional term in &'/ () on the right side of the equation, that can
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be moved on the left and then we obtain

~lJ 2iwt (1 — 3)2 Hor
el l1-1-L)e VRiypy +€R
1-(1-%) e \/R;ru

= (1= 2) ¢t [imﬁ”(a)) +VeT 3" (w)
" < VR 2ik,EY + V/eR 1y 2ka”> x’]
= V1= Z Ve Ry + Tyry) (18" @) + Ve @) (6.33)

1-< 2iwt
—iveR, 0 d=F)e [im A" () + VeT 4" (w)
1= (1 - %) e \/Ry7ay

4 (VRiras 20 ET + VeRy 0 24 ) x,]
V 1 _3 \/E (RITM +TITM)

1-(1-2) e /R

+ivVeR

(' Al () + \/EA”(a))>.

We have obtained the equation for the intra-cavity field, which can be rewritten in a clearer
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way gathering all the terms corresponding to each field

) 1—-2 2 4le
(@) 1= (1= 2) o Ry 4+ — L) TRy
1-1-2) ez’“”
, 1-2) e ey/Ryry
(1= 2) o Ty (1- =2 VRiry a" (o)
1-1-2) ez’m

(1 -2) ¥ \/R;r > A ()
M

+(1 - %) ¥" \/eT 1+
e 1—(1- %) etor \/R,,

1-(1-2) e \/Rirns

1_3 2iot /R ~
- V1 —3\/E(R+T)e2"M<\/E+ {-e Vo )ﬁ”(w)
1-(1-2) e¥or \/Rypy

A 1 - %) ¥ ey/R
+(1=2) & 2ik ) \/Rypp | 1 - ( ) ™ )EY x,
1 —(1=2) e’ \/R;ry

A 1 - %) e* eq/R ;
+ (1 = %) e 2ik \/eR 1y <1+ ( ) e >E”xJ

1—-% 2iwt /R
—\/1—9\/E(R+T)e2"wf<1— ( ) e eV Ry )ﬁ”(w) (6.34)

1= —=2) e \/R;py

and multiplying all terms by (l —(1 =) ¥ \/R,, M) we have
ATJ 2i 2 2 4i
¢ (@) <(1 — (1= 2) Ry ) + (1= 2) RITM>

=i(1=2) & Ty (1= (1= 2) & (e + DV Rp7yy ) 3 @)

+ (1= L) & \[eT 4 A ()

~VI=ZVe®+T) e (1= (1= 2) & (e + DYy ) (@) 63
— V1= ZeR+T)e al (w)

+2ik, (1 = %) & \[Ryrm (1 (1= P) & (e + 1)@) EV x,
+2k,(1 = Z) ¥ \/eR1) E" x,.
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Now, transforming in two-photon quadrature formalism and defining the following transfer

matrices
. 1—(1=2) ¥ (e + D\V/Rpry .
L,(Q) = (1 =) " \Tiry ) M & (6.36)
LYP(Q) = (1 = L) ¥ \/Tyry \/(;2) (6.37)

Q) =—-\1-ZFe¥r —Z (6.38)

J Uac( DJ (Q)

) 1 _ 1 _ g 2iwt + 1 R
LD (@) = VT = Z ™ & (Rypay + Typy) e 22 ¢ CH DV Rirur

Jvac DJ(Q)
(6.39)
with )
D@ =(1-(1=2) @ Ry ) +(1 =2V " eRpryy. (6:40)
and the following vectors
XM (Q) = 2k, 1| DM | ()™

ITM

R _
X" (Q) =2k, | L LSP(QE, (6.42)
P TITM

then the intra-cavity fields can simply be written as

QA" Q) + 1 @a" (@)

Jvac

¢’ (@) =1,@a" (@ +L@a" @ +L

Jvac

As we can see, since we have an anti-diagonal transfer matrix relative to one input field
(L,(€)) and a diagonal transfer matrix relative to the other ([L(JC" )(Q)), the classical part
of the intra-cavity fields will have a non-zero component in both quadratures and then
equation is not verified. We will see in the next chapter that from this fact it follows
that optical springs will be created in the cavity.
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6.5.2 Cavity output fields

Once we have the intra-cavity fields, the calculation of the cavity output fields is straight-

forward. From equation in fact we have
1) ;
b () =(1-L)VR;ry (@ —i(1 - L)\VeR;py 2" (w)

+i(1 = L)\T s 8" (@) + (1 = L)\eT 7y &7 ()

] (6.44)
—iV1 —gim”(w)— 1-Z22m" (v)
€
—2ik, (1 = £) VRyrm <A” - i\/EA”) )
which in two-photon quadrature can be written as
~1J N N AT
b " (Q=0-L)VR, 78" (Q) -6 -2L)\VeR, ) 8" (Q)
+6 (1= L)\VTirp 8 (@) + (1 = L) \VeT 1y 7 (Q)
(6.45)

—6v1- 2%;&”(9) NI-z2n"©
€

—26k,(1 = L) \VRirnt (A” - a—\/EAfJ) X,(Q).
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Now we can substitute in the previous equation the intra-cavity fields in equation and

we get
57(Q) = (1 - £) VR;y 0y 6 (@ — 6(1 = £) VR, a™ (@)
+6 (1= 2) Ty (L@a" @+ 157 (@3" @

QA" (Q) + 1L @a" Q)

J vac Juvac

RITM 1J RITM (cp) IJ
+2ke,1 [ 7L QE x,(Q) + 2k, | = LT QE x,(Q)
ITM ITM

(1= 2) VeTyry (L@3a" @ +157@a" @ (6.46)
L, QA" (@ + L7 @4 (@)

R[TM IJ RITM D) iy
+2k, L, (QE™ x;(Q) + 2k,q [ 7L, (QE"™ x,(€)

TITM TITM

g ~1J N7
1-Z—m’'Q-VI-ZLZm" (Q)
€

—26k,(1 = L)\ Ryrm <A” - 5\/2,4’7) X,(Q).

Finally, defining the following transfer matrices which represents the shot noise contribu-

tions of the respective fields

THQ=01-2) <\/R1TM 1+ /Tya 6L,(Q) + \/eT ry, I]_JUM(Q)> , (6.47)

T (@=01-2) ( —6\/eRypp1 + Tz 6L, (@) + \/eTjrn, I]_J(Q)) . (648)

MY7Y(Q)=-6V1-Z g, (6.49)
e

Mg;(g) =-\V1-ZZ, (6.50)

NI (@) = (1= D) VT (61, (@ + VeLSD©@). (6.51)

NI Q) = (1= 2) VT (SL50.@ + Vel (@), (6.52)
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and the response vector

R (@) =2k, (1 - £)\/R,pny [(6[I_J(Q) + \/ErL(j'”(sz)) EV

arm

(6.53)
+ (BL57,@) + Ve, (@) EV - 64" — feal’ |,

then the output fields of the cavity J can be written as

(@ =T @a" @+ T (©@a" (@ +M"(@Qh](©Q)+M Q)

S.n.,Cp

+ N (@al (@) + N (@Q)al (@) +RY (Q)x,(Q). (6.54)

S.n.,.cp arm

In order to include the radiation pressure contribution, we have now to substitute equation

in and then we get and equation similar to equation [4.74}

b (@ =T @a" @+ T, (@a" (@ +M @i (@ +M(@Qn" @

S.1.,Ccp

+ N7 @a” @+ N7 (@a (@) +RY

s.n.,cp arm

(DEYRE(?)

+R} (Q) 1, (Q)

arm

2hw hw SNt
2(a) a" (@ +RY 4, —L (A”) a'’ (@)
C

arm
C

2h : :
+RY (Q) 1, Q2 (E") [[I_J(Q)&”(Q) + L7 @a" (@)

arm
(4

Jvac

L, @@+ L7, @@ + (X(©@ + X @) x,@)

2h N _
+RI (@) 1,@—2 (EV) [1,@a" @+ @a" @

arm

+L

Jvac Jvac

QA7 (Q) + 1L (@A (Q) + <Xf 1Q) + Xf;(g)) xJ(Q)] .

However in this case the additional terms in x; are not zero, because of the presence of
X! pJ () for which equation is not true. Here in fact we find that the intra-cavity field
has components in both quadratures and then the optical rigidity is not zero. So we have
to use the modified mechanical susceptibility, as described in section [4.3] but since here we
have two beams that gives two different contributions to the rigidity, equation must

be written as
X ()

1+ 2,(Q) (K1 (@) + KT (Q))

arm arm

(6.55)

7h@) =
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where
4hw? + i}
K (@) =-—"L(E") LYY (QE". (6.56)
c2 J

arm

We can write then the transfer matrices of the radiation pressure contribution as

T(@ =R, X;QW@ :(E”)T L,(Q)+ (Ef f)T [Lf,”’)(Q): (6.57)
TV (@=R, Z;GW@ :(E”)"' LP(Q) + (Ef J)T I]_J(Q): (6.58)
Nr@ =R e )L, @+ (B7) 1n@| e
NI (@) = R g :<E”)T L0 @+ (V) [L,W@ (6:60)

and the output mode becomes

i@ = (1i@+15@) '@+ (T7,@+7],@) e @

. / . /
' v

'ﬂ'[.’ (Q) 'ﬂ'l.’ (Q)

arm arm,cp

+ (N @+ NI @) a7 @+ (N @+ N @) 2”@

. 7 . 7
hd hd

NI (Q) Narm.cp© (6.61)

+ MY (@' (Q) + M (@' (@) + R XV

arm ~J

=T @a" (@ +T!/

arm arm,cp

@a" (@ +NY @ (@ +NY (@a' ()

arm,cp

+ M (@' (@) + M (@ m" (@) + R XV

arm = J

6.5.3 Full Sagnac solution and quantum noise calculation

Once we got the I/O relations for one cavity, the solution for the full Sagnac is straight-
forward. As done in section in fact, we have now to consider that one of the output
beams of one cavity is the input of the other and the vice versa. So using equation [4.75| we

obtain the two output beams that arrive to the beamsplitter, which can be written as
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b (@) = TRV (@)a™ (@) +

N

+ NEE QA (Q) + NEL(Q) A (Q) + NFV(Q) A" (Q) + NIV (@) A" (Q)

N

N

THE@Q) a" " (Q) + RY (Q) xy(Q) + RE(Q) x(Q)

145

+ MR Q) m" (Q) + MEA (Q) A" (Q) + My (Q) ™™ (Q) + M (Q) "™ (Q)

N

and

b (@) = TAV(@)a" (@) +

E

+ NRE(Q) A (Q) + NEE(Q) A" (Q) + NN (Q) A" (Q) + NEY (Q) A" (Q)

E

E

E E E

TEEQ)a" (Q) + RY .(Q) xy(Q) + RE (Q) x(Q)

(6.62)

+ MRE@Q) " (Q) + MEE(Q) " (Q) + MEN (@) m ™™ (Q) + MEY (@) m"™ (Q);

E

where we have for the North cavity

TR(Q) =

N

TEEQ) =

N

NI (Q) =

N

NEE(Q) =

N

NEN(Q) =

N

NEN(Q) =

N

RE _
M (€)=

ML (Q)

MAY(Q) =

N

MEN@) -

R}, (@)

T (@Q,@T, " (QTENQ)+T, " (Q),

arm,cp arm arm,cp

Tom Q@ Q ()T, (Q),

arm

T (@QQ, QNI (),

arm,cp

Tom Q) Q (Q NI (Q),

arm

Tom @ Q@ T"  (QNI(Q) + N (),

arm,cp arm arm,cp

Tom(@Q, @T, " (QNIY (Q)+ N (Q),

arm arm,cp arm,cp arm

TAN@Q 0, (@ MLE (@),

arm,cp

TV Q) 0, (@ ML (Q),

arm

Tom Q@ Q (T, QM7 (Q)+ M, (),

arm arm,cp arm arm,cp

TAN@Q O, (@ TEE (@MEY (@) +MEN (@),

arm,cp arm,cp arm

Ton(@Q,@T, " (QR:N(Q) +R(Q),

arm arm,cp arm arm

(6.63)

(6.64)

(6.65)
(6.66)
(6.67)
(6.68)
(6.69)
(6.70)
(6.71)
(6.72)
(6.73)

(6.74)



CHAPTER 6. BACKSCATTERING EFFECTS IN TRIANGULAR CAVITIES
E _ TLN LE
l{LN(gz) - —l]—arm (€) @L(Q) Rarm(Q)’
and for the East cavity

Tee @ =T, (@ QT (),

arm

Trr Q) =T (Q) Q@ TRV ()T (Q) + Tb (),

E arm,cp arm arm,cp

Npp(Q) = T (Q) Q@) TV (QNgD (Q) + NIT(Q),

E arm arm,cp arm,cp arm

NRp(Q) = T (Q) QR (@) T (NI (Q) + NIT (Q),

arm,cp arm arm,cp

NEY(Q) = TRE(Q) @, (@) NAY (@),

E arm arm

NEN(Q) = TRE(Q) Q (@ NEY (Q),

E arm,cp

Mz @) = T2N(Q) Q@ T (QM" (Q) + M7 (Q),

E arm,cp arm,cp arm

Mz = T (Q) Q@ TV (M (@) + M (Q),

E arm arm,cp arm arm,cp

o ()

MAM(Q) = TXE@Q) Q@ (M

M5 (Q) = TREQ) Q (@ MEY (),

E arm,cp
Ry (Q) =T, (Q)Q, QR (Q),

Ry (Q) =T N (QQ,(@QT;" (R} (Q) +R]"(Q),

arm,cp arm arm
with

-1
@L=<H_—H—RE TLN ) ’

arm,cp ~arm,cp

-1
Qe = (1-TEN,TRE,)

arm,cp ~arm,cp
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(6.75)

(6.76)
(6.77)
(6.78)
(6.79)
(6.80)
(6.81)
(6.82)
(6.83)
(6.84)
(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

In this way the I/O relations for the full Sagnac correspond to equations and [4.83| plus

the additional terms relative to the vacuum fields, i.e.

6(Q) = TP(Q) p(Q) + THQ) Q) + NREQ) a*F(Q) + NEE(Q) A" ()
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+ NV Q) ™Y (Q) + NIV (@) AN (Q) + MEE(Q) m™F(Q) + MEF(Q) " ()
+ MY Q) "™ (Q) + MEV (@) ™™ (Q) + RY(Q) xy (Q) + RE(@Q) x,(Q)  (6.90)
4(Q) = T/ Q) + T i(Q) + NFF (@) A" (Q) + N (@ A" ()
+ NV @A™ (Q) + NIV (@) A" (Q) + MEF(Q m™H (Q) + MEE (@) " ()
+ MY Q) m™*N (Q) + MM () m N (Q) + RY(Q) xy(Q) + REQ) x(Q),  (6:91)
where for the output 0(€2)
T/(Q) = Rps TEE(Q) + Ty TRN(Q) — /Ry Tys (THEQ) + TN (), (6.92)

TPQ) = —Rpg TRY(Q) + Tpg THE(Q) + V/RpsTps (TR (@ + THE(Q),  (6.93)

N (Q) = —/Rys NV (Q) + /Ty NI (), (6.94)
MI7(Q) = —/Rgg MEL(Q) + \/Tyg M (), (6.95)
RY(Q) = —\/Rps RY (@) + /T RY (), (6.96)
RE(Q) = —/RysRE (@) + /T RE (), (6.97)

and, similarly, for the output g(£2)

T,(Q) = —Rys T/y(Q) + Tps T (D) + VR Tps (T[N ()~ T (@), (6.99)

TAQ) = Ry T/ (Q) + T Tof () + V/RysTs (T/o(Q) + T (Q) (6.99)
NI7(Q) = /R NI(Q) + /T NET(Q), (6.100)
M (Q) = V/Ryps ML (Q) + /T M7, (Q), (6.101)
RY(@Q) = VRys RY (Q) + /Tps RY (Q), (6.102)
REQ) = VR R (Q) + VT REL(Q). (6.103)

Finally for the quantum noise calculation, since in this case we have loss, the output equa-
tion have the form of equation then the quantum noise limited sensitivity must be

calculated with equation The numerical results of this calculation will be shown in the
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next chapter.

6.6 Conclusions

In this chapter we have described the backscattering effect and we have shown the calcu-
lation of the I/O relations and the quantum noise for a SSM with triangular cavity. With
the help of simulations we have been able to derive the optical transfer matrix of a mirror
with 4 input beams and 24 output beams, distributed in 8 ports, which represents the ITM
of the two cavities. With these results the I/O relations of one cavity first and then the full
Sagnac were calculated with a method similar to that one presented in section for a
lossless Sagnac. The calculation has been carried out by hand by the author. Since this fact
could entail some errors, in order to verify the correctness of the results, multiple checks
have been made by the author (for the whole calculation) and also, independently, by other

people (for some part of the calculation).

The calculation described in this chapter refers to the coupling between backscattered and
counter-propagating beams in a triangular cavity. However the method is absolutely gen-
eral and can be applied to any kind of coupling in any kind of cavity. For example, it can
also be applied to the class of polarisation speed meter (some examples of polarisation speed
meter can be found in [95,96]]). The layout of a polarisation speed meter is shown in figure
In this case the two beams will pass through a polarising beamsplitter (PBS), which
gives to each of them a different polarisation. Then each beam will travel into one cavity
with a polarisation, will be reflected by the PBS and it will travel into the other cavity with
a different polarisation. Quarter-wave plates between the ITM and the PBS are added in
order to transform the polarisation from linear to circular at each passage. In this way we
have two beams traveling in the two cavities in sequence, each of them with a different po-
larisation. The working principle is then compatible to a speed meter interferometer [97].
However, since in this topology the cavity are linear instead of triangular, the backscatter-
ing effect is not a mechanism that creates the coupling, but a birefringence effect can be
present and give a similar results. The calculation shown in this chapter can be applied also

in this case.

Some numerical examples and the interpretation of the results are discussed in the next

chapter.
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Figure 6.7: Layout of a polarisation speed meter.



Chapter 7

Influence of backscattering on the

sensitivity of speed meters

In this chapter we will show the results of the calculation of the quantum noise limited
sensitivity including the backscattering effect described in the previous chapter. We will
analyse several interferometers configurations spanning length scale from 1m (SSM) to
40 km (Cosmic Explorer). First of all we show the results for the Glasgow SSM, where,
because of the high finesse and the low mass of the ITM, we expect that this effect will
be much more relevant. Then we will analyse the results, giving the explanations of the
peculiar features that we obtain in the sensitivity plots. We will explain why some particular
values of the backscattering coefficient set the limit between what we will call weak and
strong coupling. We will then describe how to interpret the results, with a special focus on
the presence of the optical spring effect created by the backscattering, which changes the
dynamics of the mirrors. Finally, in the last section, we will show the results for three large
scale interferometer configurations: Voyager, Cosmic Explorer and the ET-LF, described
in chapter |1} We will show that, as expected, in this cases the presence of backscattering

affects much less the sensitivity respect to what happens for the Glasgow SSM.

The results presented in this chapter can be found in reference [98].

7.1 Results for the Glasgow SSM experiment

We will see now what are the results of the calculation of the backscattering effect, made in
the previous chapter, considering the parameters of the Glasgow SSM interferometer. The
summary of the parameters used are listed in table Some of them are slightly different
from that ones defined in the design paper [79]], since here we are using the final values,

optimised through the years of the experiment preparation. Furthermore, all calculations

150
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parameter value
laser input power 1.7W
roundtrip length 2.86 m
laser wavelength 1064 nm
photodetector efficiency 1
homodyne angle /2
power reflectivity of the beamsplitter 0.5

power transmissivity of the beamsplitter | 0.5

North cavity ITM power transmissivity | 632 ppm

North cavity ITM mass lg

North cavity ETM mass 100 g

East cavity ITM power transmissivity 632 ppm

East cavity ITM mass 1g

East cavity ETM mass 100g

Table 7.1: List of the SSM parameters used for the results shown in this chapter.

are made considering a perfect 50:50 beamsplitter with no loss and a perfect photodetector

with 100% efficiency, because we want to exclude any other source of noise in the analysis.

Figure[7.1 shows the plots of the spectral density of the quantum noise limited sensitivity
(left), the quantum noise amplitude spectral density (top right) and the response function
of the interferometer to the differential mirrors motion (bottom left) for 5 values of the
backscattered coefficient €, compared to the results for an interferometer with perfect mir-

rors (¢ = 0). In these plots we can notice three peculiar features:

« for € > 0.1 ppm the response function and then the sensitivity curve do not have a

regular behaviour anymore, but they are completely off respect to the other curves;
« a peak appears at different frequencies for each backscattering coefficient;

« at low frequencies the sensitivity seems to increase with the increase of backscatter-

ing coeflicient € and it goes below the SQL.

We will explain now the physical meaning of each of these features.
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Figure 7.1: Plots of the results of the quantum noise calculation for the Glasgow SSM with different
values of the backscattering coefficient €. On the left: PSD of the quantum noise limited sensitivity.
On the top right: Amplitude spectral density of the quantum noise. On the bottom right: Response
function of the interferometer to the differential displacement of the mirrors of the two cavities. The
peculiar features (the presence of peaks and the sensitivity increasing with backscattering) and the
meaning of the critical valuee > 0.1 ppm will be explained later in this chapter.

7.1.1 Critical values

It seems that some value around € ~ 0.1 ppm must have a special physical meaning since
for values € > 0.1 ppm the sensitivity stops to have a regular behaviour with the increasing
of the backscattering coefficient and a complete different regime scheme to dominate. In
order to understand what happens a simple analysis of the DC power of each beam involved

in the calculation can help.

We consider first only one cavity with the two input beams of equal power. A schematic
drawing of the power of the beams involved is shown in figure where we have only
considered one beam outside the cavity (the red arrows) and one inside the cavity (the light
blue arrows) with the respective scattered beams, because the other two beams will give the
same results. So we calculated the power of each beam for three values of backscattering
coefficient: 10 ppm, 0.1 ppm and 0.001 ppm. As we can see, for € = 0.1 ppm the power of
the scattered beam in reflection inside the cavity and the power of the transmitted input
beam are of the same order. Furthermore, if we recall the mirror transfer matrix described
in equation[6.22] we can notice that these two beams also have opposite phases. This means
that we will have destructive interference in the cavity and so it is like no input power is

present.

When we consider both cavities and the fact that one of the input beam is the output of the
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Figure 7.2: Schematic drawing of the power involved in the backscattering calculation. Here we
have considered only one cavity and one input beam (red) and one intra-cavity beam (blue). We
have highlighted in yellow the beams that we want to compare.

other cavity and it is already affected by the backscattering effect the situation is different.
In this case in fact the destructive interference creates a strong asymmetry between the
two intra-cavity beams, since one of the input beam is approximately equal to zero. This
situation is shown in figure[7.3] where we can see that since the input beam that comes from
the other cavity is zero due to the backscattering effect, the input beam for this direction of
propagation will be the backscattered beam of the counter-propagating mode, which have
the same amplitude as the original input beam but opposite phase. In other words in this
case we have a cavity with only one circulating beam and with the backscattered beam that

replaces the input beam.

However this particular situation happens only for a specific value of the backscattering

coefficient €, that can be approximated to

2
4Py e~ Tirm

Tirm Py =€ Rpry P, €. ¢ )
Tirm 4

circ ™~

which for our value T,;,, = 632 ppm gives €, = 0.0999 ppm.

7.1.2 Optical springs

The other feature in the sensitivity plot that we need to explain is the presence of the peaks.
This can be done considering the fact that the backscattering effect creates a detuning in
the cavity. The optical rigidity in fact is not zero anymore since the intra-cavity mode has

non-zero components in both quadratures. As described in section [4.3] this fact creates an
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Figure 7.3: Schematic drawing of the power involved in the backscattering calculation for ¢ =
0.1 ppm considering both cavities. Here the only scattered beam considered is R, of the intra-
cavity beam. As we can see, the power of the transmitted input beam (blue arrows) couples with
the reflected first order scattered beam R of the intra-cavity beam (red arrows) and, since they
have opposite phase their sum will be zero. So the output of the first cavity and then the input of
the second cavity will be zero (green arrows).

optical spring, i.e. a restoring force acting on the mirrors.

The detuning from resonace can be evaluated from the optical rigidity of the cavity. Making
the Taylor expansion in 7 until the first non vanishing order and keeping only the first order

of e, we have that the rigidity given in equation can be rewritten as

Ve
KIJ (Q) — _SPCCOP 27

arm

7 — (7.2)
Lorter—i + 5

h . . : .
where P, = %E TE is the circulating power, that can be considered equal for both beams.

Comparing this equation with the definition of the optical rigidity in equation 4.86, we
obtain that the detuning of the cavity due to backscattering is

N

T2

) (7.3)

In figure the value of the detuning as a function of the backscattering coefficient is

shown.



CHAPTER 7. INFLUENCE OF BACKSCATTERING ON THE SENSITIVITY OF SPEED METERS155

105: e e ————

10tr E

o ]

-

o

£

=4

3

3

el

103t |
T02 L T T SRR | caa i | L P S T B A
10°® 1074 10 1072 107!

backscattering coefficient [ppm]

Figure 7.4: Plot of the cavity detuning due to backscattering as a function of the backscattering
coefficient (blue line). The dotted red line represents the value of the half bandwidth y.

7.1.3 Normalisation

Another important aspect of the results that needs to be explained is the fact that the radi-
ation pressure noise seems to disappear at low frequencies, bringing the sensitivity below
the SQL level. However this does not mean that the sensitivity is improved, because we did
not consider the force created by the optical spring. As explained in the previous section,
in fact, the backscattering effect creates an optical spring in the cavity and then another
force is involved in the picture. So in order to better understand what is happening, it is

useful to analyse the results in terms of forces.

The signal read by interferometric gravitational wave detectors is usually expressed in
terms of mirror motion, which causes asymmetry in the length of the two cavities and
creates an interference pattern. However with this view the test masses are supposed to
be free (as it is thanks to the multistage pendulum suspensions). This assumption is not
correct anymore when the optical springs are present. Furthermore when the mirrors can-
not be considered free masses anymore the x-normalisation used so far can give misleading

results.

So the sensitivity must be rewritten in terms of forces to be sure that all the forces acting on
the mirror are taken into account. To do that we can normalise the PSD of the sensitivity
as done in section [3.2| for the SQL. So we can write the corresponding of equation for
the sensitivity, which will be

S$*(€2)

sh@ = =1,
| 7 ()]

(7.4)
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Figure 7.5: Plots of the quantum noise limited sensitivity displacement (left), strain (centre) and
force (right) for the Glasgow SSM, with the parameters listed in table

or, in terms of the familiar strain A

45%(Q)
M?2L204 |}(xx(9)|2’

ShQ) = (7.5)

where y,.(Q) is now defined by equation [6.55]

In figure[7.5/the quantum noise limited sensitivities in terms of force and strain are shown.
As explained in section [3.2) when we do not have a free mass the SQL will change too and
in our case it is dependent on the backscattering coefficient. In the figure we have the
sensitivity and the respective SQL for three values of the backscattering coefficient. As we
can see, with this correction the sensitivity does not go below the respective SQL and it

gets worst, as one should expect.

7.2 Energy conservation law

In order to prove that the results are right we checked if the energy conservation law is
verified. The energy conservation law for one cavity can be determined from the optical
transfer matrix defined in equation However for the power calculation we do not need

the whole transfer matrix, but only the classical part, since it is the only part that gives some
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contribution. The equations for the classical part can be written as

Bl _iveR VR Ver VT |[av
B VR —iveR iWT  +eT ||V

EV VeT  iVT -iveR R ||EVY
E" iVT Vel VR —ivVeR||EV

=(1-DT,

By definition the power of a generic field E is P, = %ETE and for the energy conser-
vation law the total output power (the term on the left in the previous equation) must be
equal to to the total input power minus the loss (the term on the right). So, calculating the

power we will have

_BI_J_Jr _BI_J_ _AIJ_ f _AIJ_
ha)p B!/ Bl ha)p AI_J AI_J
> | gir| | gio =— (1=T, El 1-2T, g |l (7.7)
E! E EfJ EfJ
which, using the matrix property (AB)" = BT A", becomes
p— B — — _T — -
): AlY AlY
ho ) . o | BV hw Al AlY
P I f 7 _ P 2 +
— [(BIJ)T (BIJ) (EIJ) (EIJ> ] £is|= T(1 -2 El7 L El
E! EfJ EiJ
_A”_
hw ) . ) Al
f T
- Tp(l % [(AIJ)T @y (V) (EV) ] I ool
EiJ
- (7.8)

where we have used the condition that T, is unitary. The previous equation can be written
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Figure 7.6: In blue: Results of the equation |7.10, which should be theoretically zero, but it actually
represents the numerical accuracy of the calcualtion. In red: The same as before but neglecting the
second order terms in Z.

in terms of power as
Py + P+ PL 4 PY = (1= 2 (P + PI 4 PP+ PLT). (7.9)

So the relation between the input, output and lost power is

P4 P - PP+ Pl = (22 - 2%) (P + PP+ P 4 P ) =0 (7.10)
“ ~— J ~— ol 7,
input out put g

loss

The difference between input, output and loss power described in the previous equation
must be, theoretically, equal to zero. However performing the calculation with MATLAB®
we have that it is not exactly zero, but some value around 10~!>W. The results of this
calculation is shown in figure However given the small value (compared to an input
power of 1.7 W) and the noisy appearance of the plot, we can say that it is the numerical
accuracy of the calculation. Furthermore, we evaluated also the results in case we want to
neglect the second order terms of the loss and we can see that this approximation is valid
only for a backscattering coefficient smaller than the critical value of 0.1 ppm, the meaning
of which has been explained in section[7.1.1]
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7.3 Analysis of km-scale speed meters with backscatter-

ing

The results of the backscattering calculation for the Glasgow SSM show that even for
10~° ppm of backscattered radiation we could have a decrease by one order of magnitude
in the strain sensitivity of the interferometer at very low frequencies. However this is true
only for this particular case, but the effect is much less influent for large scale interferom-
eters. In order to prove that, we applied the calculation to three configurations of future
gravitational wave detectors: Voyager, Cosmic explorer and Einstein Telescope (optimised

at low frequencies).

The parameters used for these calculations are listed in table In all cases, since in
the configurations the presence of the power recycling mirror is planned, the input power
has been increased in order to compensate its absence and to provide the same circulating
power. It should also be noted that the baseline configurations of Voyager, Cosmic Explorer
and ET are not speed meters. Furthermore for Voyager and Cosmic Explorer the presence
of a Signal Extraction mirror (which will affect the effective bandwidth) is planned and the
value of the ITM transmissivity has not been fixed yet (the actual proposed value is about
1000 ppm). So we choose the value of 7000 ppm for Voyager and 15000 ppm for Cosmic
Explorer, in order to compensate these differences and to be able to see the speed meter
behaviour (sensitivity parallel to the SQL at low frequencies). We will only analyse the case
of weak coupling, for which we have a full understanding of the mechanism. The critical
value of backscattering coefficient that defines the transition between weak and strong
coupling is obviously different in each case and it has been calculated through equation
for each of them. Their values are listed in table Furthermore, all calculations are made
considering a perfect 50:50 beamsplitter with no loss and a perfect photodetector with 100%

efficiency, as done for the previous calculation.

In figures and[7.9)the quantum noise limited sensitivity in terms of strain (on the left)
and force (on the right) are shown for Voyager, Cosmic Explorer and ET-LF respectively. For
Voyager we have that the backscattering effect is much less significant than in the Glasgow
SSM. However it becomes to be significant at frequencies below a few hertz, where the
interferometer sensitivity is dominated by seismic noise, so probably it would not affect
the total noise. For Cosmic explorer the effects are even less significant, due to the longer
arms. In this case in fact the sensitivity becomes to decrease only for frequencies below
0.8 Hz. On the other side, for ET-LF the backscattering effect becomes significant already
around 2Hz. However it must be noted that for all of them, because the backscattering
effect would be significant at higher frequencies, we need a high backscattering coefficient,

around 0.1 ppm.
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parameter Voyager CE ET-LF
laser input power 750 W (140 W) | 500 W (220 W) | 31.5W (3 W)
arm power 3 MW 2MW 18 kW
cavity length 4km 40 km 10 km
laser wavelength 2 ym 1550 nm 1550 nm
ITM power transmissivity 7000 ppm 15000 ppm 7000 ppm
ITM mass 200kg 320kg 211kg
ETM mass 200kg 320kg 211kg
photodetector efficiency 1 1 1
homodyne angle /2 /2 /2
power reflectivity of the beamsplitter 0.5 0.5 0.5
power transmissivity of the beamsplitter 0.5 0.5 0.5

Table 7.2: List of the parameters used for the results shown in figure and |7.9| for Voyager,
Cosmic Explorer and ET-LF configurations respectively [39} [99]]. The laser input power has been
increased in order to compensate the absence of the power recycling mirror (in brackets the real

power).
€. [ppm] o= 10_38 ;I[)L/l\/?i 0 ppm ratio | f [Hz]
Glasgow SSM ~0.1 ~1x1075 | ~5%x10718 | ~200 | 100
Voyager ~ 12 ~1x10720 | ~1x10721 | ~ 10 0.5
Cosmic Explorer ~ 56 ~3x1072 | ~5x1072 | ~6 0.1
ET-LF ~ 12 ~4x1070 | ~1x10721 | ~40 0.1

Table 7.3: List of the critical value of the backscattering coefficient €., the value of the quantum
noise limited sensitivity at the specified frequency f for a backscattering coefficient € = 1073 ppm
and without backscattering and the ratio between these two values for all the interferometer con-
figurations considered in this chapter. In all cases the value of the frequency at which the sensitivity
is taken is chosen in order to be 2 orders of magnitude below the frequency at which the interfer-
ometer is most sensitive. Note that we expect that these interferometers do not have a meaningful
sensitivity below 1 Hz (due to noises other than quantum noise).
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Figure 7.7: Plot of the quantum noise limited sensitivity force for Voyager.

In order to compare these effects between the four interferometers considered in this chap-
ter, we choose a backscattering coefficient of € = 10~ ppm at which we calculate the strain
quantum noise limited sensitivity. The frequency at which this value is taken is chosen to be
two order of magnitude below the frequency at which the interferometer has the maximum
sensitivity (different from each of them). All the results are listed in table As expected
the effects of the backscattering on large scale interferometers are smaller than a small scale
interferometer like the Glasgow SSM. Furthermore for this comparison we are considering
the value of the sensitivity at frequencies smaller than 1 Hz, where the total noise is dom-
inated by seismic noise. So this effect probably will not affect the final sensitivity of the

detectors.

7.4 Conclusions and outlook

In this chapter we have shown the results of the quantum noise limited sensitivity when
this newly discovered noise coupling, called backscattering effect, is present in the cavities.
First of all we made the calculation with the parameters of the Glasgow SSM experiment.
The results show some peculiar features, which we have been able to explain. One impor-
tant fact that we have discovered is the presence of a critical value of the backscattering
coefficient, that makes us to divide the mechanism in two cases: weak coupling, that hap-
pens below the critical value and strong coupling, that happens above it. While the weak
coupling case has been understood in every aspect, the strong coupling is not yet clear. In

fact, the critical value of the backscattering coefficient, which corresponds at the situation
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Figure 7.8: Plot of the quantum noise limited sensitivity force for CE.

when the backscattered beam and the transmitted input beam have the same power, acti-
vates some mechanism not yet fully understood and that will be analysed in the next future,

in order to complete the picture.

However for all future GW detectors we assume that the mirrors quality will be good
enough so that we stay in the range of weak coupling, hence this case is more impor-
tant than the case of strong coupling. The weak coupling situation has been studied and
understood for the Glasgow SSM, Voyager, Cosmic Explorer and ET-LF. The results show
that while in the first case we could have a significant increment of the quantum noise, that
does not happen in the large scale interferometers. For these interferometers in fact we
have that the backscattering effect begins to significantly affect the quantum noise at low
frequencies (~ 1Hz), where the sensitivity is dominated by seismic noise and then it will

probably not affect the total noise of the detectors.
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Figure 7.9: Plot of the quantum noise limited sensitivity force for ET-LF.



Chapter 8
Conclusions

Current gravitational wave detectors are based on a Michelson configuration, which is lim-
ited in the audio band frequencies mainly by quantum noise. However, it has been proved
theoretically that using an interferometer with a different configuration can reduce the
radiation pressure noise and even allows measurements below the SQL. This kind of inter-
ferometers, called speed meters, perform continuous measurements of the momentum of
the mirrors, which is a quantum non-demolition (QND) observable and then it can be mea-
sured without being limited by the standard quantum limit (SQL). The simplest speed meter
configuration is the Sagnac interferometer, which has been proved theoretically that is a
speed meter as it is, without any change at its basic configuration. With the aim to prove
that this assumption is right and also that in a Sagnac interferometer the radiation pressure
is actually smaller than in an equivalent Michelson interferometer, the Sagnac speed meter
proof-of-concept experiment in underway at the University of Glasgow. The theoretical
basis of the speed meters and the details of this experiment have been described in chapter
3. However, the features of this particular experiment (small ITM and short cavity length)
makes the interferometer very sensitive to optical loss. We have in fact, as shown in section

that quantum noise increases in a significant way when loss is present.

In chapter 4 I introduced the quantum noise calculation for several interferometer con-
figurations. I showed how the I/O relations can be obtained, from which it is possible to
calculate the quantum noise and then the PSD of the quantum noise limited sensitivity.
First I discussed the radiation pressure and how the radiation pressure force can be calcu-
lated and included in the I/O relations. From these results then it is possible to calculate the
quantum noise. However, these results are obtained considering the ideal cases, i.e. without

any loss or detuning in the cavities.

Since the Glasgow SSM is very sensitive to optical loss, the cavity mirrors surfaces require-
ments must be very restrictive. So in chapter 5 the analyses that I made to derive these

requirements are shown. The round trip loss in the cavity is estimated performing simu-
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lations, most of them using the MATLAB® package OSCAR, which is a code that uses the
FFT method to simulate cavities with arbitrary mirror profiles. After the requirements have
been defined, I sent the specifications documents for ETM and ITM, that can be found in
appendix |C| to several companies, in order to obtain the quotes, but also and most impor-
tant to have an idea of the feasibility of such kind of mirrors. Most companies in fact replied
that they cannot achieve such quality and others accepted the work but with some excep-
tions. Then I analysed these exceptions, before the manufacturing, in order to confirm their

compatibility with the experiment target.

In chapter 6 then, I introduced a theoretical analysis that shows how the microroughness
can create the backscattering effect and how this mechanism affects the quantum noise.
Since in triangular cavities the angle of incidence on the ITM is not zero, in fact, the beam
can be scattered back in the same direction of the incident beam. The backscattered beam
will then couple with the counter-propagating beam. This effect affects the quantum noise
of the interferometer and so there will be a decreasing of the sensitivity. I showed in this
chapter how the transfer matrix of a mirror can be written when all first orders scattered
beams are taken into account. From this transfer matrix I calculated the I/O relations for
one cavity first and for the full Sagnac interferometer are calculated. The equation of the
quantum noise and the quantum noise limited sensitivity is then straightforward, since it
is obtained following the same steps as the ideal case, including all the additional terms.
However, even if I calculated the backscattering effect for the particular case of a triangular
cavity with two intra-cavity beams propagating in opposite directions, the calculation is

actually absolutely general and can be applied to any case of coupling inside a cavity.

The results of this analysis, described in chapter 7, show that this mechanism creates a de-
tuning in the cavity that will then produce an optical spring effect. Furthermore there is a
particular value of the backscattering coefficient (i.e. the amount of power scattered back)
that corresponds to the value at which the transmitted input beam and the backscattered
beam have the same power. The optical transfer matrix that describes the mirror shows
that these two beams have opposite phase and then a destructive interference arises. While
for the situation when backscattering coefficients are smaller than this critical value (weak
coupling) is fully understood, the case when the backscattered power is of the same order
or larger than the transmitted input power (strong coupling) is not yet clear, but this sce-
nario is less likely to occur with state of the art experiments. I analysed the weak coupling
situation for the special cases of the Glasgow SSM and for some large scale interferometers
planned for the next future. The results show that even if in the first case this effect is very
significant, the influence is much less important for the other cases, because of the longer

arms and the bigger test masses.

In the end we can say that the speed meter is a possible candidate for the topology of

future gravitational wave detectors. However this configuration has some constraints and
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in this thesis I described two of them. The first one is the dependence of the quantum noise
from optical loss, which is particular significant for the Glasgow SSM, since, because of
the purpose of the experiment, its sensitivity must be dominated by quantum noise. So
I showed the methods used to define the requirements of the arm cavity mirrors of the
Glasgow SSM in order to reduce as much as possible the optical loss inside the cavities.
The second constraint showed in the thesis is a newly discovered noise coupling present
in speed meter: the backscattering effect. I made the mathematical computation of the
quantum noise when this effect is present in the cavities, in order to show that, even if in
the Glasgow experiment it could be significative, its importance is much less significant in

large scale interferometers.



Appendix A

Symbols and formulae used

a,, a single photon annihilation and creation operators
A1) electric fields in time domain
A(a)) =A+a(w) field A (¢) in frequency domain
A classical amplitude of field A(a))
a(w) quantum fluctuation of field A(a))
A classical amplitude in two-photon quadrature notation
a(Q) quantum fluctuation in two-photon quadrature notation

¢ =299792458 % speed of light

h =1.055x10"* r% reduced Planck constant

[ identity matrix
I =RL direction of propagation of the beam
I the opposite direction of 1
J =N,E cavity ( North (N) or East (E))
K optical rigidity
L cavity length
Ry beamsplitter power reflectivity
Riry ITM power reflectivity
Ty beamsplitter power transmissivity
T ITM power transmissivity
X arm elongation
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x?W arm elongation due to the signal
Xsor = ua,Z:QZ standard quantum limit
y = % cavity half bandwith
4o, P17 . . .
e = :)"—C“L normalised circulating power
A optical wavelength
Y, = —LMTETM effective mass of the arm J (for a linear cavity)
miryM+Mery
H; = 2Murm™eTy effective mass of the arm J (for a triangular cavity)
My +2mpyy
u = e effective mass of the full interferometer
UNTHE
0 1
6 Pauli matrix
-1 0
T = % half roundtrip time
X —ﬁ mechanical susceptibility function
0} optical band frequencies
w, =2mc/i laser frequency
Q =ov—-w measured band frequencies

intra-cavity power




Appendix B

Mirrors surface measurements

In this appendix we show the measurements of the mirrors surface profiles made with
Zygo. Figure B.1|show the raw data, without any corrections made. These data were then
corrected with Simtools and the offset and the pistons were removed as described in section
The profile of the surface after these corrections are shown in figure The profile
of the residual after the subtraction of each map with its consecutive (figure and with
the last one taken are also shown (figure [B.4).

Figures B.5|and [B.6| at the end show the surface profile of the ITM and ETM substrates of
the Glasgow SSM experiment respectively.
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Figure B.1: Maps of the raw data of flatness measurements of the sample mirror.
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Figure B.2: Maps of the sample mirror with offset and piston removed.
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Figure B.4: Maps of the residual data of the difference of each map with the last one taken.
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Figure B.5: Maps of the ITM front and back surfaces.
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Appendix C

Specifications documents

In this appendix we report the specifications documents of the arm cavity mirrors of the

Glasgow SSM experiment as they have been sent to the manufacture companies.

176



APPENDIX C. SPECIFICATIONS DOCUMENTS

A Umver31ty
Glasgow

Specifications document
of the I'TM substrate
of the Sagnac Speedmeter
proof of principle experiment

Issue: 1
Date: July 9, 2015

SUPA
Institute for Gravitational Research
Department of Physics & Astronomy
University of Glasgow
Glasgow, G12 8QQ, United Kingdom

177



APPENDIX C. SPECIFICATIONS DOCUMENTS

CONTENTS

Contents

1 Aim of this document

2 Specification zones

3 Material

4 Dimensions

5 Lateral Flat

6 Chamfers

7 HR Surface
7.1 Radius of curvature . . . . . . ... ..
7.2 Microroughness . . . . .. ... ....
7.3 Surface defects . . .. ... ... ...
7.4 Surface error (Low spatial frequencies)
7.5 Surface error (High spatial frequencies)

8 AR Surface
8.1 Radius of curvature . . . . .. ... ..
8.2 Microroughness . . . . ... ... ...
8.3 Surface defects . . . . ... ... ...
8.4 Surface error (Low spatial frequencies)
8.5 Surface error (High spatial frequencies)

9 Surface maps

10 Contacts

page 1 of 7

178



APPENDIX C. SPECIFICATIONS DOCUMENTS 179

1 Aim of this document

The aim of this document is to describe the technical specifications of the input test masses of
the Sagnac Speedmeter proof of principle experiment.

2 Specification zones

We define two different specification zones:
e Zone A: surface inside a radius of 3 mm;

e Zone B: surface outside a radius of 3 mm.

3 Material

The substrate material must be suprasil or equivalent.

4 Dimensions

We are flexible in regards to dimensions and leave to the producer whether to start from a
cylindrical substrate (Option 1) or from a square substrate (Option 2).

Please quote the option you prefer.

For both options it is required that there is no wedge.

Option 1
The mirror must have a diameter of 10mm £ 0.1 mm and a thickness of 5mm + 0.1 mm (see
figure 1).

Option 2
The mirror must be square with dimensions 9mm + 0.1 mm x 9mm =+ 0.1 mm and a thickness
of 5mm + 0.1 mm (see figure 2).

5 Lateral Flat

Option 1
The substrate must have 4 flat edge of dimensions 5mm x 4 mm. They must be parallel with
an accuracy of 0.1 mm.

Option 2
The lateral surfaces must be parallel with an accuracy of 0.1 mm.

page 2 of 7
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In both cases on three sides there must be an area centered on the flat with dimensions 2 mm
x 2mm and with a roughness compatible with the silicate bonding (<1nm) and a flatness PV
of 60 nm and on the side without the bond area the serial number must be etch and there must
be an arrow pointed to the curved surface (see figures 1 and 2).

6 Chamfers

All the sides of the substrate must have a polished chamfer of width 0.25mm 4+ 0.05 mm at
45°.

7 HR Surface

7.1 Radius of curvature

The HR surface must be concave with radius of curvature of 7.91m =+ 0.02m.

7.2 Microroughness

Microroughness must be < 0.1nm (”super polish” best effort) for spatial frequencies above
750 mm~L.

7.3 Surface defects
Digs

Zone A
No single point defects larger than 1 pum and total area of defects < 100 pym?.

Zone B
No single point defects larger than 1 um and total area of defects < 2000 um?.

Scratches

Zone A
No scratches with a width > 1 gm (5/L0x0.001 with ISO 10110 method 1).

Zone B
No more than 10 scratches with a width > 1 gm (5/L10x0.001 with ISO 10110 method 1).

page 3 of 7
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7.4 Surface error (Low spatial frequencies)

7.4 Surface error (Low spatial frequencies)

Zone A
LSF error < 2nm rms for spatial frequencies 0.3 — 1 mm~1.
Astigmatism must be < 8 nm.

7.5 Surface error (High spatial frequencies)

Zone A
HSF error < 0.3nm pk-pk for spatial frequencies 1 — 750 mm™!.

8 AR Surface

8.1 Radius of curvature

The AR surface must be flat (RoC' > 100km).

8.2 Microroughness

Microroughness must be < 0.1nm (”super polish” best effort) for spatial frequencies above

750 mm™?.

8.3 Surface defects
Digs

No more than 100 point defects with size > 2 um.

Scratches

No more than 100 scratches with a width > 5 pm (5/L100x0.005 with ISO 10110 method 1).

8.4 Surface error (Low spatial frequencies)

LSF error must be < 2nm rms.

8.5 Surface error (High spatial frequencies)

HSF error must be < A/8 .
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9 Surface maps

If possible, the company should send the electronic files of the surface maps for future simula-

tions.

10 Contacts

e Daniela Pascucci (d.pascucci.1@research.gla.ac.uk);

o Stefan Hild (Stefan.Hild@Qglasgow.ac.uk);

page 5 of 7
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Figure 1: Drawing of the ITM (option 1).
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Figure 2: Drawing of the ITM (option 2).
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1 Aim of this document

The aim of this document is to describe the technical specifications of the end test masses of
the Sagnac Speedmeter proof of principle experiment.

2 Specification zones

We define three different specification zones:
e Zone A: surface inside a radius of 5 mm;
e Zone B: ring 5mm from centre to 15 mm from centre;

e Zone C: surface outside a radius of 15 mm.

3 Material

The substrate material must be suprasil or equivalent.

4 Dimensions

The mirror must have a diameter of 48.8 mm =+ 0.1 mm and a thickness of 24.5mm =+ 0.1 mm
(see figure 1).
The parallelism must be 0.1°.

5 Lateral Flat

The substrate must have 2 flat faces of dimensions 15mm x 24.5 mm., with a roughness com-
patible with the silicate bonding (<1nm) and a flatness PV of 60 nm (see figure 1). They must
be parallel with an accuracy of 0.4°.

On the curved barrel the serial number must be etched and there must be an arrow pointed to
the front surface.

6 Chamfers

All the edges of the substrate must have a polished chamfer of width 0.25mm + 0.1 mm at
45°415°.

page 2 of 6
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7 Front surface

7.1 Radius of curvature

The front surface must be flat (RoC' > 10km).

7.2 Astigmatism

Astigmatism must be < 16 nm.

7.3 Microroughness

Microroughness must be < 0.1nm (”super polish” best effort) for spatial frequencies above
750 mm .

7.4 Surface defects
Digs

Zone A
No single point defects larger than 1 um and total area of defects < 600 pm?.

Zone B
No single point defects larger than 1 um and total area of defects < 3000 um?.

Scratches

Zone A
No scratches with a width > 1 gm (5/L0x0.001 with ISO 10110 method 1).

Zone B
No more than 10 scratches with a width > 1 gm (5/L10x0.001 with ISO 10110 method 1).

7.5 Surface error (Low spatial frequencies: 0.3 — 1 mm™)

Zone A
LSF error < 1nm pk-pk.

Zone B
LSF error < A/20 rms (A= 633nm).

Zone C
LSF error < A/5 rms (A= 633nm).

page 3 of 6
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7.6 Surface error (High spatial frequencies: 1 — 750 mm™!)

7.6 Surface error (High spatial frequencies: 1 — 750 mm™!)

Zone A
HSF error < 0.25 nm pk-pk.

Zone B
HSF error < A\/20 rms (A= 633nm).

Zone C
HSF error < A\/5 rms (A= 633nm).

8 Back surface

8.1 Radius of curvature

The back surface must be flat (RoC' > 10km).

8.2 Microroughness

Microroughness must be < 0.1nm (”super polish” best effort) for spatial frequencies above

750 mm~.

8.3 Surface defects
Digs
No more than 2 point defects with size > 40 ym (5/2x0.04 with ISO 10110 method 1).

Scratches

No more than 2 scratches with a width > 40 pm (5/L2x0.04 with ISO 10110 method 1).

8.4 Surface error

The surface error must be < A/20 rms (A= 633nm).

9 Surface maps

The company should send the electronic files of the surface maps for future simulations.
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10 Contacts
e Daniela Pascucci (d.pascucci.1@research.gla.ac.uk);

o Stefan Hild (Stefan.Hild@glasgow.ac.uk);
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Figure 1: Drawing of the ETM.



Appendix D

Bonding of the test masses

In this section we will give an overview of the procedure of cleaning and bonding of the
arm cavity mirrors of the Glasgow SSM proof-of-concept experiment. A more detailed

description can be found in [83].

D.1 ETM

Before describing the cleaning and bonding of the ETM, we will show how the analysis of
the ears flatness was made, in order to check that the requirements for the bonding surfaces
were satisfied. We will show the results of the flatness measurements made for a set of 40

ears and the procedures followed to remove the spikes that we found on some of them.

D.1.1 Ears flatness

One of the crucial factors that determines the success of the bonding procedure is the flat-
ness of the involved surfaces. In fact, the bonding procedure require a flatness of the sur-
faces involved of the order of 60 nm P-V and there must not be sharp spikes. So charac-
terised the obtained ears with Zygo GPI XP/D™ in order to check that the ears surfaces
satisfy these conditions. The technical drawing of the ears is shown in figure

A set of 40 ears has been measured and the values of the flatness obtained are listed in table
Two examples of the Zygo measurements are shown in figure one of the best ears,
with a flatness of ~ 12 nm rms, and one of the worst ears, with the presence of a spike with

an height of ~ 300 nm.

As we can see from the results shown in the table, for some of them we notice the pres-

ence of spikes not compatible with the bonding requirements. So some polishing test were
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Figure D.1: Technical drawing of the ETM’s ears.

performed in order to try to remove these peaks, without compromising the rest of the ear

surface. Specifically we tried the following methods:

« isopropanol (C;HO),

« cerium oxide (Ce0O,),

« hydrofluoric acid (HF).

The first one was an attempt to clean the surface from dust particles, because isopropanol

can only clean the surface without altering the surface itself. This procedure was made

for 5 different ears, but none of them had any significant reduction of the spikes after the

cleaning.
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serial number rms (nm) P-V (nm) comments

01 13.54 72.15

02 18.62 110.99

03 17.67 98.13

04 24.51 424.64 spike with height of ~ 250 nm
05 25.99 135.18

06 22.76 145.16

07 8.91 42.99

08 18.93 111.72

09 10.35 66.01

10 17.74 236.50

11 13.06 76.94

12 26.02 120.42

13 16.42 113.04

14 16.43 94.40

15 11.41 208.90

16 25.62 252.94 spike with height of ~ 150 nm
17 12.20 84.57

18 22.53 118.71

19 24.47 88.78

20 24.43 124.40

21 17.84 97.13 dig with depth of ~ 80 nm
22 11.99 133.37

23 22.33 162.24 spike with height of ~ 80 nm
24 17.84 82.37

25 16.89 168.05 spike with height of ~ 40 nm
26 14.85 103.49

27 11.58 94.65

Continued on next page
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Continued from previous page

serial number rms (nm) P-V (nm) comments

28 15.91 186.00  spikes with max height of ~ 100 nm
29 13.72 75.08

30 28.28 383.11 spike with height of ~ 250 nm

31 17.72 176.09 spike with height of ~ 50 nm

32 11.89 153.53 spikes with max height of ~ 70nm
33 11.10 45.14

34 10.84 77.92

35 13.25 98.38

36 16.50 89.64

37 9.97 88.30

38 28.61 616.11  spikes with max height of ~ 300 nm
39 9.66 76.80

40 11.60 97.03 spike with height of ~ 40 nm

Table D.1: List of the values of the faltness obtaind for the ears

The second method is a common procedure of pre-bonding cleaning, because it can polish
the surface without causing scratches [[100]. The cerium oxide powder was wiped over the
surface, then all remains of oxide were removed with soda bicarbonate and finally the mass
was dried with methanol. We manually polished the surface for 10 seconds first and for
1 minute then, but none of them gave a significant change. So we decide to make a more
drastic attempt wiping for 50 minutes. The spike disappeared, but, since the very small
dimensions of the ears it was almost impossible to focus the pressure only on the spike

position, then the surface around this position was damaged.

The third and last attempt that we made was using hydrofluoric acid, that is an acid able to
dissolve silica [101]. We pushed on the spike with a cotton bud soaked with the acid for 90
seconds (since the etching rate for silica is 2.1 nm/s and the spike was about 200 nm), but we
had again the same problem as before: the small dimensions of the part forced us to touch
and affect the surrounding area. However what was interesting is that the spike was still
there after the procedure (see figure [D.3). This fact means that the spike was not made of

silica but it was probably an organic contamination during the manufacturing procedure.

Finally, since none of these procedures has been found to be effective, the manufacturing

company agreed to replace the ears that did not satisfy the requirements.
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Figure D.2: Two examples of the measurements of the ears with Zygo interferometer (serial number
#27 and #4): on the top the requirements are satisfied and on the bottom they do not, due to the
presence of that huge spike on the right.
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00

Figure D.3: Measurement of one of the ears with Veeco before and after the procedure with hy-
drofluoric acid.

D.1.2 Test masses cleaning

The coated surfaces of the arm cavity mirrors are very delicate and they must be protected
during the successive procedures for the monolithic suspension assembly (like ears bonding
and fibres welding). So once they arrived we cleaned and safely put them in caps specifically

designed for this purpose.

The cleaning was done with methanol, without acting any pressure on the critical surfaces
(coated surfaces and flat edges) and then the cap which covers and protects the coated
surfaces was mounted (see figures and[D.4b). The part, along with the ears, were then
put in an ultraviolet/ozone (UV/O) chamber for the final cleaning as shown in figure
The UV/O cleaning procedure has been shown to be very effective to remove a lot of organic

contaminants from the surfaces such as residues of methanol [102].

After that the test masses and the ears were ready for the bonding.

D.1.3 Hydroxide-catalysis bonding

The hydroxide-catalysis bonding consist in using a solution (in our case sodium silicate)
which will be placed between the two surface that should be bonded. The chemistry process
can be described by the following phases [103]]:

+ hydration and etching,
+ polymerization,
« dehydration.

During the first phase the process is defined by the following reaction

Si0, + OH™ + 2H,0 — Si(OH); (D.1)
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So the OH™ ions act as a catalyst and etch the two surfaces, which will emit silicate ions
Si(OH); . This reaction entails a reduction of the number of OH™ ions and so a decrease of

the pH of the solution and once it will be below 11 there will be the following reaction
Si(OH); — Si(OH); + OH". (D.2)

At this point we will have the second phase, i.e. the polymerization, described by the reac-
tion
2Si(OH); — (HO);SiOSi(OH); + H,0. (D.3)

This means that two silicate ions will combine to form a so called siloxane chain plus water.

This leads us to the third and last phase: the dehydration. During this phase the water
molecules created in the previous phase will evaporate or migrate to the bulk of the mass

and the siloxane chain will form a 3D network that will attach the two surfaces.

The curing time needed for the whole process to complete and for the bond to have the

maximum strength is four weeks at room temperature. [103]

D.1.4 Ears positioning

Two ears have to be bonded onto opposite flat edges of the test masses. In order to be sure
that the ears will be in the right position we used a template, that is fixed on the cap and
indicates the spot on the flat edge at which the ear must be placed (see figures and
[D.4€). A drop of 0.2 ul of bonding solution was applied on the flat edge and then the ear
was placed in position as shown in figures[D.4f] [D.4g| and [D.4h]

After that we made a check of the position of the first bonded ear with Matlab Image Pro-
cessing Toolbox, which allows to analyse an image pixel by pixel (see figure[D.5). Through
this method we found that the distance from the ear to the edge of the mirror is exactly the
same at both sides and the distance from the ear to the edge of the flat differs by 28 um. The
physical size of one pixel was found to be 28 ym, which can be considered the error of our

measurement.

This analysis was made only for the first one of the ears bonded in order to check the

validity of the procedure and the accuracy of the template.

D.2 ITM

The procedure for the cleaning and the bonding of theITM was similar to that one of the

ETM. The main difference is that in this case the caps to protect the coated surfaces were
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(c) Test masses and ears placed in the ozone cham- (d) Template used for the right positioning of ears
ber. and prisms.

(e) Positioning of the template. (f) Bonding solution on the flat edge.

}

(g) Positioning of the ear. (h) Ear bonded on the flat edge.

Figure D.4: Set of pictures that shows the whole process of cleaning and bonding of the ETM.
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Figure D.5: Check of the ear position through Matlab Image Processing Toolbox.

mounted at the end of the process. In figure the main steps of the bonding procedure
are shown. In this case the ear is placed in the jig, the bonding solution is put on it and then
the test mass is placed over it. Then it has been left in the jig for a few hours and finally the
mass cap is mounted. The mirrors were then placed in a vertical mount where they have

been left in cure for 40 days.
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(c) Test mass in the jig. (d) Mounting of the cap.

(e) Test mass in the cap. (f) Two of the ITM in the vertical mount.

Figure D.6: Set of pictures that shows the whole process of bonding of the ITM.



Appendix E

MATLAB® script for backscattering

calculation

1 function [chi_xx ,Sx,Resp ,QN]=SSM_QN_bs(p)

2 %

3 % function for the calculation of the quantum noise limited
4 % sensitivity of a Sagnac interferometer with triangular

5 % cavities when the backscattering effect is present.

7 % The argument of the function is a structure p with the

8 % following data:

9 %

10 % p.freq —> frequency range [Hz]

11 % p.Pin —> laser input power [W]

12 % p.L —> half roudtrip length [m]

13 % p.lambda0 —> laser wavelength [m]

14 % p.etaPD —> photodetector efficiency

15 % p.zeta —> homodyne angle [rad]

16 % p.RBS —> Power reflectivity of BS

17 % p.TBS —> Power transmissivity of BS

18 % p.Tn —> North cavity ITM power transmissivity
19 % p.mn —> North cavity ITM mass [kg]

20 % p.Mn —> North cavity ETM mass [kg]

21 % p.Te —> East cavity ITM power transmissivity
22 % p.me —> East cavity ITM mass [kg]

23 % p.Me —> East cavity ETM mass [kg]

24 % p.kbN —> North cavity backscattering coefficient
25 % p.kbE —> East cavity backscattering coefficient
26

27 %% Constants

28 hBar = 1.054572000000000e —34; %reduced Planck constant
29 ¢ = 299792458; %speed of light;
30

31 %% Experiment parameters

32 fregq = p.freq; %frequency range

33  Pin = p.Pin; %laser input power

3¢ L = p.L; %infrastructure length;

35 lambda0 = p.lambda0; %laser wavelength;

3 omega_p = c/lambda0=2+pi; %laser angular frequency
37 k_p = omega_p/c; %wave number for pump laser
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38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

etaPD = p.etaPD; %photodetector efficiency
zeta = p.zeta; %homodyne angle
tau = L/c; %light single pass time

%% Beams plitter parameters
RBS = p.RBS; %Power reflectivity of BS
TBS

p.TBS; %Power transmissivity of BS

%% North arms parameters
Tn = p.Tn; %ITM power transmissivity
Mn_ITM = p.mn; %ITM mass
Mn ETM = p.Mn; %ETM mass

Mn = 2+Mn_ITM+«Mn_ETM/(Mn_ITM+2+«Mn_ETM) ; %Effective mass
P.n = RBS»Pin; %power entering N arm after the BS

eps_N = p.kbN; %backscattering coefficient

Rn = 1/(1+eps_N)-Tn; %ITM power reflectivity

Rn_eps = eps_Nx«Rn; %backscattering in reflection

Tn_eps = eps_Nx«Tn; %backscattering in transmission

Loss_N = Rn_eps+Tn_eps; %Loss in the north arm

203

%% East arms parameters

Te = p.Te; %ITM power transmissivity

Me_ITM = p.me; %ITM mass
Me ETM = p.Me; Z%ETM mass

Me = 2+Me_ITM«Me_ETM/(Me_ITM+2+Me ETM); % Effective mass
P_e = TBS+Pin; %power entering E arm after the BS

eps_E = p.kbE; %backscattering coefficient

Re = 1/(1+eps_E)-Te; %ITM power reflectivity

Re_eps = eps_E+Re; %backscattering in reflection

Te_eps = eps_Ex«Te; %backscattering in transmission

Loss_E = Re_eps+Te_eps; %Loss

%% useful definitions

prop = @(f) exp(4ixpixf«tau); %propagation factor

%% General purpose matrices
I = eye(2);
Pauli_mat = [0 1 ;—1 0];

Hv = [cos(zeta) sin(zeta)]; % Homodyne vector (row)

ScriptDn = @(f) (1-sqrt(Rn)«(1—-Loss_N)«prop(f))”*2+Rn_eps«(1—-Loss_N) "2«prop(f)"2;
ScriptDe = @(f) (1—-sqrt(Re)«(1—Loss_E)«prop(f))”"2+Re_eps«(1—Loss_E) "2+prop(f)"2;

LMn = @(f) (1-Loss_N) =« prop(f)
) /ScriptDn(f) = Pauli_mat;
LMe = @(f) (1-Loss_E) « prop(f)

) /ScriptDe(f) = Pauli_mat;
LMn_cp = @(f) (1—-Loss_N) « prop(f)
/ScriptDn (f) « I;
LMe_cp = @(f) (1-Loss_E) =« prop(f)
/ScriptDe (f) + I;

sqrt(Tn) » (1—sqrt(Rn)«(1—Loss_N)x(eps_N+1)«prop(f)

sqrt(Te) » (1—sqrt(Re)«(1—Loss_E)x(eps_E+1)«prop(f)

(sqrt(Tn_eps) + sqrt(Tn+Rn_eps) — sqrt(Rn+«Tn_eps) )

(sqrt(Te_eps) + sqrt(TexRe_eps) — sqrt(Re«Te_eps) )

LMn_vac = @(f) —sqrt(1—Loss_N)=*sqrt(eps_N)«(Rn+Tn) « prop(f) » (1—sqrt(Rn)«(1—Loss_N)
«(eps_N+1)«prop(f)) /ScriptDn(f) « Pauli_mat;
LMe_vac = @(f) —sqrt(1—Loss_E)*sqrt(eps_E)«(Re+Te) « prop(f) » (1—sqrt(Re)+«(1—Loss_E)

«(eps_E+1)«prop(f)) /ScriptDe(f) « Pauli_mat;
LMn_vac_cp = @(f) —sqrt(1—Loss_N)«Loss_N « prop(f) /ScriptDn(f) « I;
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90 LMe_vac_cp = @(f) —sqrt(1—Loss_E)«Loss_E « prop(f) /ScriptDe(f) « I;
91

92 %% shot noise

93

94 T_sn_LN = @(f) (1—Loss_N) « ( sqrt(Rn)+I + sqrt(Tn)=Pauli_mat+«ILMn(f) + sqrt(Tn_eps)+
LMn_cp(f) );

95 T_sn_RN = @(f) (1-Loss_N) « ( sqrt(Rn)+I + sqrt(Tn)=Pauli_mat+«ILMn(f) + sqrt(Tn_eps)=
LMn_cp(f) )

96 T_sn_LE = @(f) (1—Loss_E) « ( sqrt(Re)+I + sqrt(Te)=Pauli_mat«LMe(f) + sqrt(Te_eps)=
LMe_cp(f) );

97 T_sn_RE = @(f) (1-Loss_E) =« ( sqrt(Re)+I + sqrt(Te)=Pauli_mat«LMe(f) + sqrt(Te_eps)=
LMe_cp(f) );

98

99 T_sn_cp_ LN = @(f) (1-Loss_N) » ( —sqrt(Rn_eps)~Pauli_mat + sqrt(Tn)=Pauli_mat«LMn_cp(f)
+ sqrt(Tn_eps) «LMn(f));

100 T_sn_cp_RN = @(f) (1-Loss_N) « ( —sqrt(Rn_eps)=Pauli_mat + sqrt(Tn)«Pauli_mat«LMn_cp(f)
+ sqrt(Tn_eps) +«LMn(f));

101 T_sn_cp_LE = @(f) (1—-Loss_E) « ( —sqrt(Re_eps)=Pauli_mat + sqrt(Te)«Pauli_mat«LMe_cp(f)
+ sqrt(Te_eps) »LMe(f));

102 T_sn_cp_RE = @(f) (1-Loss_E) « ( —sqrt(Re_eps)«Pauli_mat + sqrt(Te)+Pauli_mat«LMe_cp(f)
+ sqrt(Te_eps) »LMe(f));

103

104 N_sn_LN = @(f) (1-Loss_N)=sqrt(Tn) » ( Pauli_mat«LMn_vac(f) + sqrt(eps_N)+LMn_vac_cp(f)
)5

105 N_sn_ RN = @(f) (1-Loss_N)=sqrt(Tn) » ( Pauli_mat«LMn_vac(f) + sqrt(eps_N)+LMn_vac_cp(f)
)3

106 N_sn LE = @(f) (1-Loss_E)=sqrt(Te) » ( Pauli_mat«LMe_vac(f) + sqrt(eps_E)«LMe_vac_cp(f)
)s

107 N_sn RE = @(f) (1-Loss_E)»sqrt(Te) » ( Pauli_mat«LMe_vac(f) + sqrt(eps_E)«LMe_vac_cp(f)
)5

108

109 N_sn_cp_ RN = @(f) (1-Loss_N)«sqrt(Tn) « ( Pauli_mat«LMn_vac_cp(f) + sqrt(eps_N)+«LMn_vac(
f) )

110 N_sn_cp_ LN = @(f) (1—-Loss_N)«sqrt(Tn) « ( Pauli_mat«LMn_vac_cp(f) + sqrt(eps_N)«LMn_vac(
£) )

m N_sn_cp_LE = @(f) (1—Loss_E)+sqrt(Te) = ( Pauli_mat+«+LMe_vac_cp(f) + sqrt(eps_E)*LMe_vac(
£) )

112 N_sn_cp_RE = @(f) (1—Loss_E)+sqrt(Te) « ( Pauli_mat«LMe_vac_cp(f) + sqrt(eps_E)+LMe_vac(
£) )

113

114 f) —sqrt(1—Loss_N)=«sqrt(eps_N)«(Rn+Tn) « Pauli_mat;

115 f) —sqrt(1—Loss_N)«sqrt(eps_N)«(Rn+Tn) « Pauli_mat;

116 f) —sqrt(1—Loss_N)=«sqrt(eps_E)«(Re+Te) « Pauli_mat;

117 f) —sqrt(1—Loss_N)«sqrt(eps_E)«(Re+Te) « Pauli_mat;

118

119 @(f) —sqrt(1—Loss_N) » (Rn+Tn) = I;

120 @(f) —sqrt(l1—Loss_N) » (Rn+Tn) = I;

121 @(f) —sqrt(1—-Loss_N) « (Re+Te) » I;

122 = @(f) —sqrt(1—-Loss_N) + (Re+Te) = I;

123

124 %% Classical

125

126 fields

127 sqrt(2+«P_n/(hBar~omega_p))+«[1;0]; %North arm. Clockwise propagating (R) beam

128 sqrt(2«P_e/(hBar+~omega_p))+«[1;0]; %East arm. Counter clockwise propagating (L)

129

130 T_sn_RN(0) ;
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131

132

133

134

135
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137

138

139

140

141

142

143

144
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146

147

148
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151

152
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154
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156

157
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159

160
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169

171

172

alpha_E = T_sn_LE(0);
beta_ N = T_sn_cp_RN(0);
beta_E = T_sn_cp_LE(0);

A_LN = (I-beta_Exbeta_N)"—1+alpha_E+«A_LE + beta_E+(I-beta_E=xbeta_N)"—1+alpha N+«A RN; %
North arm. Counter clockwise propagating (L) beam
A_RE = (I-beta_N=«beta_E)"—1+alpha_N+«A RN + beta_N=«(I-beta_N=«beta_E)”*—1+alpha_E+A_LE; %

East arm. Clockwise propagating (R) beam

%%% Intra—cavity fields

ERN = ILMn(0) = ARN + LMn_cp(0) » A_LN; %North arm. Clockwise propagating (R) beam

E_LE = LMe(0) « A_LE + LMe_cp(0) » A_RE; %East arm. Counter clockwise propagating (L)
beam

E_LN = IMn(0) » A LN + LMn_cp(0) « ARN; %North arm. Counter clockwise propagating (L)
beam

E_RE = LMe(0) « A_RE + LMe_cp(0) » A_LE; %East arm. Clockwise propagating (R) beam

%% Calculation

%%% optical response to the mirror displacement

R_arm_RN = @(f) 2+k_p*(1—Loss_N) » ( ( Pauli_mat*sqrt(Rn)+LMn(f) + sqrt(Rn_eps)+LMn_cp(f
) )+E_RN + ( sqrt(Rn_eps)+«LMn(f) + Pauli_mat»sqrt(Rn)+LMn_cp(f) )+E_LN — Pauli_mat=
sqrt (Rn)«A_ RN — sqrt(Rn_eps)«A_LN );

R_arm_LE = @(f) 2+«k_p»(1—Loss_N) » ( ( Pauli_mat+sqrt(Re)+LMe(f) + sqrt(Re_eps)=LMe_cp(f
) )+E_LE + ( sqrt(Re_eps)+«LMe(f) + Pauli_mat»sqrt(Re)+«LMe_cp(f) )+E_RE — Pauli_mat=
sqrt (Re)«A_LE — sqrt(Re_eps)+«A_RE );

R_arm_LN = @(f) 2+«k_p»(1—-Loss_N) » ( ( Pauli_mat+sqrt(Rn)«LMn(f) + sqrt(Rn_eps)«LMn_cp(f
) )+E_LN + ( sqrt(Rn_eps)+«LMn(f) + Pauli_mat»sqrt(Rn)+«LMn_cp(f) )+E_RN — Pauli_mat=
sqrt (Rn)«A LN — sqrt(Rn_eps)+«A RN );

R_arm RE = @(f) 2+«k_p»(1—-Loss_N) » ( ( Pauli_mat«sqrt(Re)+LMe(f) + sqrt(Re_eps)=LMe_cp(f
) )*E_RE + ( sqrt(Re_eps)«LMe(f) + Pauli_matssqrt(Re)+LMe_cp(f) )+E_LE — Pauli_mat+
sqrt (Re)«A_RE — sqrt(Re_eps)+A_LE );

%%% optical rigidity

K_arm_RN = @(f) —2+hBar+k_p+2+k_pssqrt(Rn)/sqrt(Tn) » E_ RN’ « ( LMn(f)+E_RN + LMn_cp(f
)«+E_LN );

K_arm_LE = @(f) —2«hBar«k_p+«2+k_p»sqrt(Re)/sqrt(Te) « E_LE’ « ( LMe(f)+E_LE + LMe_cp(f
)+E_RE );

K_arm_LN = @(f) —2«hBar«k_p+«2+k_p»sqrt(Rn)/sqrt(Tn) « E_LN’ « ( LMn(f)+E_LN + LMn_cp(f
)*E_ RN );

K_arm_RE = @(f) —2«hBar«k_p+«2+k_p=»sqrt(Re)/sqrt(Te) « E_RE’ « ( LMe(f)+E_RE + LMe_cp(f
)+E_LE );

%%% mechanical susceptibility function
chi N = @(f) ( —1/(Mnx(2+pixf)"2) );
chi_ E = @(f) ( —1/(Me«(2«pi=f)"2) );

(

(

chi_new_ N = @(f) chi_N(f) / ( 1+chi_ N(f) » (K_arm_LN(f)+K_ arm_RN(f)) );
chi_new_E = @(f) chi_E(f) / ( 1+chi_E(f) » (K_arm_LE(f)+K_arm_RE(f)) );

%%% radiation pressure force
F_RN_a RN = @(f) 2+«hBar+k_p « E RN’ « LMn(f); %coefficient of a RN in F RN
F_RN_a_LN @(f) 2+hBar«k_p » E_RN’ « LMn_cp(f); %coefficient of a LN in F_RN

F_RN_n RN = @(f) 2+hBar+k_p « E_RN’ « LMn_vac(f); %coefficient of n RN in F_RN
F RN_n LN = @(f) 2+hBar«k_p » E_RN’ » LMn_vac_cp(f); %coefficient of n LN in F_RN

F_LN_a LN = @(f) 2+hBar«k_p » E_LN’ » LMn(f); %coefficient of a LN in F_LN
F_LN_a RN = @(f) 2+hBar+«k_p * E_LN’ « LMn_cp(f); %coefficient of a RN in F_LN
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F_LN_n_LN =
F_LN_n RN =

F_RE_a _RE =
F_RE_a_LE =

F RE n RE =
F RE n LE =

F LE a LE =
F LE a RE =

F_LE_n_LE =
F_LE_n RE =

F_a_RN =
F_a_LN =
F_a RE =
F_a_LE =

F_n_RN =
F n LN =
F n RE =
Fn LE =

@(f)
@(f)
@(f)
@(f)

@(f)
@(f)
@(f)
@(f)
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@(f)
@(f)

@(f)
@(f)

@(f)
@(f)

@(f)
@(f)

@(f)
@(f)

F_RN_a_RN
F_LN_a_ LN
F_RE_a_RE
F_LE_a_LE

F_RN_n_RN
F_LN_n_LN
F_RE_n RE
F LE n_LE

2+hBar«k_p =
2+hBar«k_p =

2+hBar«k_p =
2«hBar«k_p =

2«hBar«k_p =
2«hBar«k_p =«

2«hBar+k_p =
2«hBar+k_p =

2«hBar+k_p =«
2«hBar+k_p =«

f)
f) +
f) +
f)

+

—~ o~ o~ o~

f)
f)
f)
f)

—~ o~ o~ —~

+ o+ o+ o+

%%% radiation pressure noise

T_rp_ LN =
T_rp_ RN =
T_rp LE =
T_rp_RE =

T_rp_cp_LN
T_rp_cp_RN
T_rp_cp_LE
T_rp_cp_RE

N_rp_LN =
N_rp_ RN =
N_rp_LE =
N_rp RE =

N_rp_cp_LN
N_rp_cp_RN
N_rp_cp_LE
N_rp_cp_RE

%%
T _arm_LN =

T_arm_cp_LN

T_arm_RN =
T_arm_cp_RN

T_arm_LE =
T_arm_cp_LE

T_arm_RE =

Transfer

@(f)
@(f)
@(f)
@(f)
@(f)
@(f)
@(f)
@(f)
@(f)
@(f)
@(f)
@(f)

@(f)
@(f)
@(f)
@(f)

chi_new_N(f)
chi_new_N(f)
chi_new_E(f)
chi_new_E (f)

chi_new_N(f)
chi_new_N(f)
chi_new_E (f)
chi_new_E (f)

chi_new_N(f)
chi_new_N(f)
chi_new_E (f)
chi_new_E (f)

chi_new_N(f)
chi_new_N(f)
chi_new_E(f)
chi_new_E(f)

matrices

@(f)
@(f)

@(f)
@(f)

@(f)
@(f)

@(f)

T_sn_LN(f)

T_sn_RN(f)

T_sn_LE(f)

T_sn_RE(f)

E LN’ «
E LN’ «

E_RE’ =«
E RE’ =«

E RE’ «
E RE’ «

E_LE’ +«
E LE’ =«

E_LE’ =
E_LE’ =«

+ F_LN_a RN(f)

F_RN_a_LN(f); %coefficient
F_LE a RE(f)
F_RE a LE(f)

F_LN_n_RN(f
F_RN_n_LN(f
F LE n RE(f
F RE n LE(f

T_sn_cp_LN(f)
T_sn_cp_RN(f)

T_sn_cp_LE(f)

—_— — — —

R_arm_LN(f)
R_arm_RN(f) =
R_arm_LE(f)
R_arm_RE(f)

R_arm_LN(f)
R_arm_RN(f)
R_arm_LE(f) =
R_arm_RE(f)

R_arm_LN(f) =
R_arm_RN(f) =
R_arm_LE(f) =
R_arm_RE(f) =

R_arm_LN(f) =«
R_arm_RN(f) =
R_arm_LE(f) =
R_arm_RE(f) =

+ T_rp LN(f);

; %coefficient

; %coefficient

; %coefficient

; %coefficient
; %coefficient
; %coefficient

; %coefficient

F_a_ LN(f
F_a_RN(f
F_a_LE(f
F_a_RE(f

F_a_RN(f
F_a LN(f
F_a_RE(f
F_a_LE(f

F_n_LN(f);

F_n_RN(f
Fn LE(f
F n RE(f

F_n_RN(f);

F n LN(f
F_n_RE(f
F n LE(f

+ T_rp_cp_LN(f);

+ T_rp_RN(f);

+ T_rp_cp_RN(f);

+ T_rp_LE(f);

+ T_rp_cp_LE(f);

+ T_rp_RE(f);

)
)
)
)
)
)
)
)
)
)
)
)

)
)
)
)

LMe(f); %coefficient
LMe_cp(f); %coefficient

IMe(f); %coefficient
LMe_cp(f); %coefficient

of
of
of

of

of
of
of

of

5

5

5

5

5

5

5

5

5

5

5

5

5

5

LMn_vac(f); %coefficient
LMn_vac_cp(f); %coefficient

of a_RE
of a_LE

LMe_vac(f); %coefficient

of n_.LN in F_LN

of

n RN in F_LN

in F_RE

in F_RE

of n RE in F RE

LMe_vac_cp(f); %coefficient

of a_LE

LMe_vac(f); %coefficient
LMe_vac_cp(f); %coefficient

a_RN
a_LN
a_RE
a_LE

n_RN
n_LN
n_RE
n_LE

of n_LE

in
in
in

in

in
in

in

of n LE

in F RE

in F_LE

of a_RE

in F LE

in F LE

of n RE in F_LE

F RN+F LN
F LN+F RN
F RE+F_LE
F_LE+F RE

F_RN+F_LN
F_LN+F RN
F RE+F LE
F_LE+F_RE
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231

232

233

234

235

236

237

239

240

241

242

243

244

245

246

247

248

249

250

251

252

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

281

282

T_arm_cp_RE

N_arm_LN =
N_arm_cp_LN

N_arm_RN =
N_arm_cp_RN

N_arm_LE =
N_arm_cp_LE

= @(f) T_sn_cp_RE(f)

@(f) N_sn_LN(f)
= @(f) N_sn_cp_LN(f)

@(f) N_sn_RN(f)
= @(f) N_sn_cp_RN(f)

+

+

T_rp_cp_RE(f);

N_rp LN (f);
N_rp_cp_LN(f);

N_rp_RN(f);
N_rp_cp_RN(f);

207

@(f) N_sn_LE(f)
= @(f) N_sn_cp_LE(f) +

+

N_rp _LE(f);
N_rp_cp_LE(f);

N _arm RE = @(f) N_sn_RE(f) + N_rp RE(f);

N_arm_cp_RE = @(f) N_sn_cp RE(f) + N_rp_cp RE(f);

%% coefficients of the output functions

% b_x_z_y states for the coeffecient of z_y in the output function b_x

b_RE_b_ RE = @(f) ( I-T_arm_cp RN(f)+T_arm_cp LE(f) )"-1

b_RE_a_RN = @(f) T_arm_RE(f)«b_RE_b_RE(f) « T_arm_RN(f);

b_RE_a LE = @(f) T_arm_RE(f)«b_RE_b_RE(f) « T_arm_cp_RN(f) » T_arm_LE(f) + T_arm_cp_RE(f
)5

b_RE_n_ RN = @(f) T_arm_RE(f)«b_RE_b_RE(f) « N_arm_RN(f);

b_RE_n_ LN = @(f) T_arm_RE(f)+b_RE_b_RE(f) » N_arm_cp_RN(f);

b_RE_m RN = @(f) T_arm_RE(f)+«b_RE_b_RE(f) + MRN(f);

b_RE_m_LN = @(f) T_arm_RE(f)«b_RE_b_RE(f) *« M_cp_RN(f);

b_RE_n RE = @(f) T_arm_RE(f)+«b_RE_b_RE(f) » T_arm_cp RN(f) » N_arm_cp_LE(f) + N_arm_RE(f
)

b_RE_n LE = @(f) T_arm RE(f)+«b_RE_b_RE(f) » T_arm_cp RN(f) » N_arm LE(f) + N_arm_cp RE(f
)

b_RE_m _RE = @(f) T_arm_RE(f)«b_RE_b_RE(f) +« T_arm_cp_RN(f) » M_cp_LE(f) + M_RE(f);

b_RE_m_LE = @(f) T_arm_RE(f)«b_RE_b_RE(f) +« T_arm_cp _RN(f) » M_LE(f) + M_cp_RE(f);

b_RE_ x_ E = @(f) T_arm_RE(f)«b_RE_b_RE(f) + T_arm_cp_RN(f) » R_arm_LE(f) + R_arm_RE(f);

b_RE_x N = @(f) T_arm_RE(f)+«b_RE_b_RE(f) » R_arm_RN(f);

b_LN_b_LN = @(f) ( I-T_arm_cp_LE(f)+T_arm_cp_RN(f) )"-1 ;

b_LN_a RN = @(f) T_arm_LN(f)+«b_LN_b_LN(f) » T_arm_cp LE(f) » T_arm _RN(f) + T_arm_cp_ LN(f
)s

b_LN_a LE = @(f) T_arm_LN(f)«b_LN_b_LN(f) « T_arm_LE(f);

b_LN_n RN = @(f) T_arm_LN(f)«b_LN_b_LN(f) + T_arm_cp_LE(f) » N_arm_RN(f) + N_arm_cp_LN(f
)5

b_LN_ n LN = @(f) T_arm_LN(f)+«b_LN_b_LN(f) » T_arm_cp_LE(f) » N_arm_cp_RN(f) + N_arm LN(f
)s

b_ LN m RN = @(f) T_arm_LN(f)«b_LN_b_LN(f) » T_arm_cp_LE(f) « MRN(f) + M_cp_ LN(f);

b_LN_m_LN = @(f) T_arm_LN(f)+b_LN_b_LN(f) « T_arm_cp_LE(f) +« M_cp_RN(f) + M_LN(f);

b_LN_n RE = @(f) T_arm_LN(f)+«b_LN_b_LN(f) » N_arm_cp_LE(f);

b_LN_n LE = @(f) T_arm_LN(f)«b_LN_b_LN(f) « N_arm_LE(f);

b_LN.m RE = @(f) T_arm_LN(f)+b_LN_b_LN(f) » M_cp LE(f);

b LN m LE = @(f) T arm_LN(f)sb_LN_b LN(f) « M_LE(f);

b_ LN _x N = @(f) T_arm_LN(f)«b_LN_b_LN(f) « T_arm_cp_LE(f) » R_arm_RN(f) + R_arm_LN(f);

b_LN_x E = @(f) T_arm_LN(f)«b_LN_b_LN(f) « R_arm_LE(f);

b_LN_i = @(f) sqrt(TBS)«b_LN_a RN(f) — sqrt(RBS)«b_LN_a LE(f);

b_LN_p = @(f) sqrt(RBS)«b_LN_a RN(f) + sqrt(TBS)«b_LN_a LE(f);

b_RE_i = @(f) —sqrt(RBS)«b_RE_a LE(f) + sqrt(TBS)«b_RE_a RN(f);

b_RE_p = @(f) sqrt(TBS)«b_RE_a LE(f) + sqrt(RBS)«b_RE_a RN(f);

T_sag_i

= @(f) —sqrt(RBS)«b_RE_i(f)

+ sqrt(TBS)«b_LN_i(f);
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283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

T_sag_p = @(f) —sqrt(RBS)«b_RE_p(f) + sqrt(TBS)«b_LN_p(f);

N_sag RN = @(f) —sqrt(RBS)«b_RE_n_RN(f) + sqrt(TBS)+«b_LN_n_RN(f);
N_sag LN = @(f) —sqrt(RBS)*b_RE_n_LN(f) + sqrt(TBS)+b_LN_n_LN(f);
N_sag RE = @(f) —sqrt(RBS)«b_RE_n_RE(f) + sqrt(TBS)«b_LN_n_RE(f);
N_sag LE = @(f) —sqrt(RBS)«b_RE_n_LE(f) + sqrt(TBS)«b_LN_n_LE(f);
M_sag RN = @(f) —sqrt(RBS)+b_RE_m _RN(f) + sqrt(TBS)+«b_LN_m_RN(f);
M_sag LN = @(f) —sqrt(RBS)*b_RE_m_LN(f) + sqrt(TBS)+«b_LN_m_LN(f);
M_sag RE = @(f) —sqrt(RBS)+b_RE_m RE(f) + sqrt(TBS)+«b_LN_m RE(f);
M_sag LE = @(f) —sqrt(RBS)+b_RE_m _LE(f) + sqrt(TBS)+«b_LN_m LE(f);

R_sag E = @(f) —sqrt(RBS)«b_RE_x_E(f) + sqrt(TBS)«b_LN_x_E(f);
R_sag N = @(f) —sqrt(RBS)«b_RE_x N(f) + sqrt(TBS)«b_LN_x N(f);

R_sag_diff = @(f) (R_sag_N(f)-R_sag E(f))/2;
%% Mechanical susceptibility function

chi_xx=zeros(1,numel(freq));
for k=1:numel(freq)
chi_xx (k) =...
(abs(chi_new_N(freq(k)) ));

end;
%% Reponse of the cavity

Resp=zeros (1 ,numel(freq));
for k=1:numel(freq)
Resp(k) =...
(abs(Hv+R_sag_diff(freq(k)) ));

end ;
%% Quantum noise

ON=zeros (1,numel(freq));
for k=1:numel(freq)
ON(k) =...

Hv« (...
T_sag_i(freq(k))«I+T_sag_i(freq(k)) *+...
T_sag_p(freq(k))+I+«+T_sag_p(freq(k)) "+...
N_sag RN(freq(k))+«I+N_sag RN(freq(k)) *+...
N_sag LN(freq(k))+«I+N_sag LN(freq(k)) *+...
N_sag_RE(freq(k))+«I+N_sag RE(freq(k)) *+...
N_sag LE(freq(k))+«I+N_sag LE(freq(k)) *+...

M_sag RN(freq(k))«I+M_sag RN(freq(k)) *+...
M_sag LN(freq(k))«I+M_sag LN(freq(k)) *+...
( ( )) T+

( )) T+

B
B

B

B

M_sag_RE(freq(k))«I+M_sag RE(freq(k
M_sag LE(freq(k))«I+M_sag LE(freq(k
(1—etaPD)/etaPD)+Hv’;

B

end ;

%% Displacement due to quantum noise

Sx =ON./(Resp)."2;

end
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