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Abstract 

Mineral bone disturbances are common in chronic kidney disease (CKD), and 

associated with significant risk of mortality and morbidity in patients on 

renal replacement therapy (RRT). Surrogate biomarkers of bone turnover 

such as parathyroid hormone (PTH), phosphate, calcium and Vitamin D are 

used to diagnose, evaluate, and guide treatment. 

This thesis examines the effect of RRT on mineral bone disturbances, it’s 

association with bone morbidity, and management strategies for phosphate 

control.  

Initially the incidence of radiologically proven bone fracture by site, in 

prevalent RRT groups is quantified and the relationship to associated risk 

factors studied.  In this multicentre observational study of 2096 patients 

over a 3-year period the risk of fracture is higher in haemodialysis (HD) 

patients than in transplant patients even when controlling for other risk 

factors. Exposure to lanthanum and Vitamin D is apparently a protective 

factor in the HD group. 

I then examine a thrice-weekly nocturnal in-centre dialysis model in which 

we attain normal phosphate levels without dietary restriction or 

supplementation by altering the dialysis prescription and time. This 

observational trial over a 2-year period with over 2000 sessions of dialysis in 

14 patients is associated with reduction of blood pressure medications. 

Subsequently I investigate the relationship of phosphate to FGF23 in a group 

of peritoneal dialysis patients. Finally, I study the effect of dialysis on 

clearances of FGF23 and expand on the knowledge of FGF-23 during a 

session of dialysis.  
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1.1 Introduction 

Chronic Kidney Disease (CKD) is a major public health problem affecting 8-16% of 

the population worldwide. (1) The estimated lifetime risk of CKD stage 3a is 

greater than 50%; higher than that of diabetes and increases dramatically with 

age.  (2) It causes progressive loss of renal function, decreased quality of life 

and increased mortality and morbidity. The increased deaths from 

cardiovascular disease in CKD are not well understood, though vascular 

calcification from disturbed mineral metabolism is believed to play a major role. 

These metabolic derangements and bony abnormalities in renal failure were 

traditionally described as ‘Renal osteodystrophy’.  

1.2 History of Renal Osteodystrophy 

Bone disease in renal failure, was first seen in the mid-nineteenth century by 

Virchow. By 1950s the roles of Vitamin D and parathyroid hormone to bone 

abnormalities were being increasingly recognised. Some authors believed 

Vitamin D deficiency caused bone symptoms and showed good response to 

calciferol in biopsy proven osteomalacia. Others demonstrated resolution of 

metastatic calcification and bone healing following parathyroidectomy. (3) Not 

all cases of uremic osteomalacia responded to Vitamin D, possibly due to 

resistance. In 1960s complications of vascular calcification arose from improved 

survival by modern dialysis techniques. During this time the roles of calcium and 

phosphate became prominent with Scribner noting his patients ‘turning to 

stone’.  (3)  

Bone disease by then was being recognised histologically as three different forms  

1.  Hyperparathyroid form, associated with an enlarged parathyroid gland, high 

levels of PTH, increased bone turnover and osteitis fibrosa 

2. Osteomalacia with unmineralised osteoid and low bone turnover 

3. Mixed form, a combination of the above patterns.  
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Though histological diagnosis provided a picture of the bone morphology, its 

relationship to abnormal mineral metabolites continued to remain a mystery. 

To understand the homeostasis of calcium, phosphate and vitamin D in the 

context of renal failure various hypotheses were proposed. An initial simplistic 

overview was as kidneys lost nephrons, its excretory function declined resulting 

in hyperphosphatemia. This in turn caused hypocalcemia and stepwise rise in 

PTH. Thus, secondary hyperparathyroidism occurred at the cost of calcium and 

phosphate homeostasis known as the ‘trade off hypotheses’.  (4)  

1.3 Initial management  

Initial management of renal osteodystrophy was aimed at correcting calcium and 

phosphate levels with Vitamin D supplementation. Dialysate calcium-controlled 

calcium levels while aluminium salts as aluminium hydroxide and aluminium 

carbonate served as phosphate binders. Aluminium being insoluble and poorly 

absorbed via the intestine was considered safe and controlled secondary 

hyperparathyroidism effectively.  

1.4 Aluminium based phosphate binders 

In 1977 Platts et.al found an association of encephalopathy and spontaneous 

fractures in home dialysis patients that were supplied with water that had high 

concentrations of aluminium and manganese. Aluminium levels measured using 

optical emission spectrography and Neutron activation was high in water and 

tissues (75% of the samples from bones though only traces were seen in the 

brain) of affected patients. Values were averaged and difference of means 

calculated using Student’s t tests. The findings in the brain tissue was in contrast 

to work done by Alfrey (5) who found high concentrations in the grey matter of 

the cerebral cortex of patients who died of encephalopathy. The analysis of 

brain by Platts et al. without separation of grey and white matter probably 

explains this paradox. (6) 

Toxicity from oral aluminium hydroxide used as phosphate binders was 

considered but couldn’t be proven, as 5 of the 11 patients had not been taking 
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their medications. Contamination from plumbing was unlikely given the 

similarity of results obtained from water source and patients home.  (6)  

During this period there was an improvement in the water purification systems 

with introduction of ion exchangers, but the use of oral aluminium containing 

phosphate binders continued. The prevalence of aluminium related osteomalacia 

decreased and shifted the epidemiology from an epidemic problem to an 

endemic form. By now it was widely believed that oral aluminium contributed to 

toxicity by prolonged slow exposure in the context of decreased renal function 

and inability to excrete metabolites effectively. Despite poor understanding of 

the mechanism by which aluminium caused osteodystrophy there was increasing 

evidence that aluminium had effects on osteoblasts, osteoclasts and bone 

mineralisation.  (7) It altered 1,25(OH)2D metabolism (8) and decreased 

secretion of PTH.  (9)   

In the absence of an alternative, effective binder, aluminium continued to be 

used in lower doses along with calcium salts to control hyperphosphatemia. 

Serum levels were closely monitored, and patients advised to avoid high 

phosphate containing diets. In severe cases desferoxamine was used as an 

aluminium chelator. Though these measures proved effective, desferoxamine 

had its own problems. Apart from minor side effects of headaches, flushing and 

rash, which were managed with decreasing infusion, there were grave concerns 

of some patients developing systemic mucormycosis. (10) 

In the absence of consensus and lack of therapeutic guidelines the management 

of bone disease was fragmented and suboptimal. 

1.5 Management of renal osteodystrophy 

The first attempt to an international consensus on the management of mineral 

bone disturbances in CKD was described by Cannata-Andia JB et.al in 2000 in a 

document, 'Clinical Algorithms on renal osteodystrophy'. (11)These were 

followed by the, Caring for Australians with Renal Impairment (CARI) guidelines 

in March 2000 and Kidney Disease Outcomes Quality Initiative (K/DOQI) by the 

National Kidney Foundation (NKF) in 2003. (12) 
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The work of the NKF began at a conference, 'Controversies in Mineral Metabolism 

and Bone Disease in CKD’ on March 14-16, 2003. Individuals with expertise on 

basic sciences, vascular pathology, parathyroid, Vitamin D, and diagnostics 

participated. Three sub-groups discussed, bone turnover, osteoporosis in CKD 

and vascular calcification. This resulted in a comprehensive set of guidelines for 

nephrologists to integrate latest evidence into clinical practice. A new definition 

of renal osteodystrophy was proposed: 'A constellation of bone disorders present 

or exacerbated by chronic kidney disease that lead to bone fragility and 

fractures, abnormal mineral metabolism, and extra skeletal manifestations'. This 

however failed to gain acceptance across the globe resulting in the formation of 

Kidney Disease: Improving Global Outcome (KDIGO).   (12-15) 

1.6 Kidney Disease: Improving Global Outcome (KDIGO)  

In 2003, Kidney Disease: Improving Global Outcome (KDIGO) an independent, 

non-profit foundation governed by an international board of directors was 

formed. Its mission was to ‘improve the care and outcomes of kidney disease 

patients worldwide through promoting coordination, collaboration, and 

integration of initiatives to develop and implement clinical practice guidelines’. 

Following the successes of the initial conference in 2004 on ‘Definition and 

classification of CKD’ a second consensus conference was held in September 15-

17, 2005, Madrid, Spain. The objectives were to develop a clinically clear, 

definition and classification, reach a consensus on bone evaluation and assess 

the utility of serum markers and imaging procedures of bone disease in CKD. The 

meeting consisted of more than 70 physicians from 21 countries across six 

continents. The conference proceedings consisted of plenary and breakout 

sessions of three separate working sub-groups addressing – biomarkers, 

histomorphometry and imaging. Specific recommendations were approved 

resulting in a statement 'Definition, evaluation, and classification of renal 

osteodystrophy: A position statement from KDIGO'.(13) 

The principal recommendations and conclusions of the conference were the use 

of the term ‘renal osteodystrophy’ exclusively to define bone pathology and 

‘Chronic Kidney Disease –Mineral Bone Disease’ incorporated a syndrome of 

clinical, biochemical and imaging abnormalities.   
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To develop a standardised approach based on the highest quality evidence 

KDIGO in 2009 published specific guidelines for diagnosis, evaluation, prevention 

and treatment of chronic kidney disease – mineral bone disorder (CKD-MBD). 

While providing guidance it identified gaps and lack of high-quality evidence of 

recommendations. Further work at a controversies conference, in 2013 ‘CKD-

MBD: Back to the Future’, identified 12 recommendations for re-evaluation. In 

June 2015, a working group convened where decisions considered important 

including those on outcomes were made. Multiple randomised control trials 

(RCTs) and prospective cohort studies were examined from December 2006 to 

September 2015, supplemented till February 2017.  

A selective clinical practice update using the GRADE system (16), to define the 

strength and levels of evidence were published in July 2017.  (17) The 

recommendations are graded as Grade 1 (strong or we recommend) or Grade 2 

(weak or we suggest) and quality designated as Grade A (high), Grade B 

(moderate), Grade C (low) or Grade D (very low). 

1.7 UK Renal Association – UK RA 

The UK Renal Association is a leading professional body of UK Renal Community 

that has provided guidance on best practice management of kidney disease since 

1995. Established in 1950 and NICE (National Institute of Health and Clinical 

Excellence) accredited in 2010, the latest UK RA guidelines on management of 

CKD-MBD was published in 2015, with further commentaries in June 2018.  

(18,19) It grades most of the evidence as Grade 2C or lower whereas only two of 

the original recommendations by KDIGO guidelines were graded as 1A, both 

within the paediatric nephrology. 20 of these were graded as 2C and 12 

ungraded. (17) 

1.8 Definitions  

1.8.1 Renal osteodystrophy  

The definition of renal osteodystrophy is summarised in Table 1.1. It involves 

evaluation using bone biopsy and reporting using the nomenclature 

recommended by the American Society for Bone and Mineral research. Its 
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classification is based on the TMV system – bone turnover, mineralisation and 

volume. This was mainly established as a research tool and for use in select 

group of patients with diagnostic uncertainty.  It did not form a part of routine 

assessment of CKD-MBD.   

Table 1-1 Definition of Renal Osteodystrophy 

Reprinted by permission from Macmillan Publishers Ltd: [Kidney International] (13), 
copyright (2006) 
 

1.8.2 CKD-MBD 

CKD- MDB was defined as a syndrome with definition summarised in table 1.2. A 

framework for classification of CKD-MBD into four types based on laboratory 

abnormalities (L), bone disease (B) and calcification of vascular or soft tissues 

(C) was proposed. The purpose was to improve communication and facilitate 

research. 

Table 1-2: Definition of CKD-MBD 

Reprinted by permission from Macmillan Publishers Ltd: [Kidney International] (13), 
copyright (2006) 
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1.9 Definition and Classification of CKD 

Chronic kidney disease or ‘CKD is defined as abnormalities of kidney structure 

or function, present for >3 months, with implications for health and CKD is 

classified based on cause, GFR category, and albuminuria category (CGA)’. (20) 

Its classification based on GFR and albuminuria was categorised in 2012 by 

KDIGO and represented below in Figure 1-1.  

Figure 1-1: CKD Nomenclature used by KDIGO(20) 
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1.10 Prevalence of CKD 

The prevalence of CKD varies across nations with 6% of men and 7% of women 

affected with CKD 3-5D in the Health Survey (HS) report of 2010 in England. 

Using the HS report the Office for National statistics estimated that 2.71 million 

had CKD stage 3-5 in 2009. The highest numbers were in those >75 years (29% in 

men, 35% women).  (21) A National Health and Nutrition Examination Survey 

(NHANES) in the US from 1999 – 2004 of 13233 patients aged >20 years estimated 

this to be 13.1%. (22) In a cross-sectional study of 47204 patients in China, from 

January 2007 to October 2010 the prevalence of CKD was 10.8% (8.7% men, 

12.9% women) equating to 119.5 million adults > 18 years with CKD.  (23) 

Estimation of early asymptomatic CKD is however difficult due to heterogeneity 

of population, different methodologies to estimate GFR, single timed 

measurements and asymptomatic nature of the disease.(1) 

The prevalence of adult patients on renal replacement therapy (RRT) in UK on 

31st December 2013 was 56,940 patients, an absolute increase of 4.0 % from 

2012. This was an increase of 1.2% for haemodialysis (HD), 7.1% for renal 

transplant (RT) and a decrease of 3.3% for peritoneal dialysis (PD).  (24) In the 

US 615,899 patients had end stage renal disease (ESRD) with 430,273 on dialysis 

and 185,626 with a functioning transplant, a one-year growth rate of 3.4% in 31st 

December 2011.  (25) On a global scale it’s estimated that more than 80% of 

patients receiving RRT are from affluent nations.  (1) Numbers from developing 

countries are small but these are largely due to incomplete data collection, 

absence of universal health care systems and lack of resources to accept 

patients into RRT programs. These numbers are expected to rise with expanding 

age, improved socio-economic status and population explosion in developing 

countries(1).  

1.11 Prevalence of CKD-MBD 

CKD-MBD is a systemic disorder that manifests with abnormalities affecting bone 

biochemical parameters and vascular calcification.  Its prevalence is best 

defined by characterising each component individually. 
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1.11.1 Bone abnormalities in CKD-MBD 

Histological classification, the gold standard for diagnosing renal osteodystrophy 

based on turnover and mineralisation is described in table 1-3. (17) 

Table 1-3: Histological classification on turnover and mineralization 

 

An analysis of bone disease by histological types from 1983 to 2006 in systematic 

literature based on RRT modality is shown in figure 1-2. There were wide 

differences in reported numbers due to classification methods, treatment 

modalities and genetic background. (17)

Histology Turnover Mineralisation 

Mild   Slightly increased Normal 

Osteotitis fibrosa Increased Normal 

Osteomalacia Decreased  Abnormal 

Adynamic bone disease Decreased & acellular  

Mixed  Increased Abnormal 
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Figure 1-2: Prevalence of types of bone disease by bone biopsy in CKD-MBD 

 

Reprinted by permission from Macmillan Publishers Ltd: [Kidney International]  (17) 
Copyright (2009); CKD- MBD, Chronic kidney disease – Mineral bone disease 

More recent data studying the prevalence of renal osteodystrophy using TMV 

classification found 58% patients with low bone turnover, 18% normal turnover 

and 24% high turnover. This study evaluated 630 bone biopsies from 2003-2008 

across 2 continents (US 316, Europe 314; 87 black and 543 white patients). All 

patients were on routine dialysis (600 HD and 30 PD) for at least 6 months and 

not taking any treatment known to affect bone metabolism apart from Vitamin D 

compounds or calcimimetics.  High turnover was associated with higher 

phosphorus and PTH and more common in the younger age group. Mineralisation 

defect was rare (only 3%) with normal and low trabecular thickness in 40% and 

37% patients respectively. There were significant racial differences with low 

turnover common in whites (62%) and high turnover in blacks (45%). 

Approximately same number of patients had low, normal or high cancellous bone 

volumes in whites while two-thirds of the black patients had high cancellous 

bone volume. Most black patients had high cortical porosity while almost equal 

numbers of white patients had low or normal porosity.  No racial differences 

were seen in trabecular thickness. (26) 

Interactions between TMV and architecture showed high bone turnover had 

increased cortical porosity, and patients with increased cortical porosity had 

higher erosion depth. Low bone turnover was associated with low cancellous 

bone volume or thin cortices in most white patients. No relationship was present 

between bone turnover, defective mineralisation, cancellous bone volume, or 

cortical thickness. (26) 
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1.11.2 Biochemical abnormalities in CKD-MBD 

Prevalence of biochemical abnormalities in relation to various stages of CKD was 

studied by Levin et al. In a cross-sectional analysis of 1814 subjects, using non-

referred populations in the community PTH levels greater than 65pg/ml and 1,25 

OH2 D3 levels below 22pg/ml (deficiency defined as levels <15ng/ml by KDOQI; < 

22pg/ml by Levin based on lowest tertile data) were identified early at eGFR 

>80ml/min per 1.73 m2. Normal calcium and phosphate levels are maintained 

until eGFR fell below 40 ml/min per 1.73 m2. (27)(Figure 1-3) 

Figure 1-3: Prevalence of secondary hyperparathyroidism, hypocalcemia and 
hyperphosphatemia by eGFR at levels 10mls/min intervals.  

 

Reprinted by permission from Macmillan Publishers Ltd: [Kidney International]  (28) 
copyright (2007) 

The prevalence in abnormalities of calcium, phosphorus and PTH in CKD 5D 

patients on haemodialysis across the globe are illustrated in the longitudinal 

DOPPS 4 (2011) data set. This represents results from a collection of samples 

from random facilities of country-specific cross-sectional cohorts.  (29) (Figure 

1-4) 
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Figure 1-4: Serum Calcium, phosphorus & iPTH in HD patients of DOPPS 4 (2011) countries 

 
Top & bottom boxes indicate 25th & 75th percentiles. Horizontal line within box indicates 
median (50th percentile) & diamond mean. Vertical lines extend to 5th and 95th percentile. 
Reproduced with permission (29) 
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Top & bottom boxes indicate 25th & 75th percentiles. Horizontal line within box indicates 
median (50th percentile) & diamond mean. Vertical lines extend to 5th and 95th percentile. 
Reproduced with permission (29)  
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1.12 Mortality & morbidity 

1.12.1 Introduction 

Mortality and morbidity in chronic kidney disease (CKD) remain high with 

cardiovascular (CV) events being the major cause of death. This is 10-30 times 

higher in ESRD than the general population when matched for age, sex and 

ethnicity.  (1) CKD patients on dialysis, unlike the general population exhibit 

reverse epidemiology of cardiovascular risk factors.  Large multi-center trials 

targeting traditional risk factors as hypercholesterolemia, showed no significant 

effect on death reduction from cardiovascular disease, myocardial infarction 

(MI) or stroke in HD patients.  (30,31) Similarly an inverse relationship has been 

seen between hypertension and increased body mass index (BMI) with 

cardiovascular mortality in CKD.  (32)   

The aetiology of this phenomenon is not clear and various hypotheses have been 

proposed. The survival bias, postulates that CKD patients that survive to reach 

RRT have undergone a specific selection process, as many do not reach ESRD due 

to high mortality and are thus distinct from the general population. The time 

discrepancy among competitive risk factors theory assumes that short-term 

survival advantages of obesity, hypercholesterolemia or hypertension outweighs 

the long-term cardiovascular risk. The malnutrition-inflammation complex 

syndrome (MICS) in dialysis patients is believed to offer the best explanation. It 

proposes that dialysis patients have a higher proportion of malnutrition, 

hypoalbuminemia and inflammation that are stronger risk factor for 

cardiovascular disease than the traditional risk factors seen in the general 

population.  (32)  

In recent years novel surrogate biomarkers such as Fibroblast Growth Factor – 23 

(FGF-23), and traditional markers such as phosphate have emerged as powerful 

predictors of adverse effects. These abnormal markers from defective bone 

metabolism are strongly associated with vascular calcification and fractures, 

common causes of morbidity in the CKD population.  
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1.12.2 Fractures in CKD-MBD 

Abnormal bone formation in common in CKD and contributes to bone pain, 

postural instability, weakness and increased risks of fractures. Data studying the 

relationship between bone histology, and risks of fractures are scanty. A review 

of 2507 bone biopsies in symptomatic patients over 16 years (1985 - 2001 over 

three time periods 1985-1990, 1991-1996 and 1997-2001) from Brazil (2340 

patients, 93.1 % HD; 6.9% PD) and Uruguay (167 patients on HD) noted an 

increased prevalence of hyperparathyroid bone disease, mixed bone disease and 

adynamic bone disease and decreased low turnover osteomalacia over the three 

time periods. (33) 

A review of the role of patient characteristics, RRT modality, biochemical 

parameters and medications in relationship to fractures is discussed further in 

chapter 2.  

1.12.3 Vascular calcification in CKD-MBD 

Vascular calcification is a common complication (34) and an independent 

predictor of mortality in CKD.  (35) Various authors have studied the association 

of different histomorphometric characteristics and vascular calcification. London 

et al. reported an increased association of adynamic bone disease (ABD) and 

aortic calcification in HD patients. (36) In contrast Barreto et al., found no 

association between coronary artery calcification and different types of bone 

disease.  (37)  

A prospective study of 64 stable HD patients with 1 year follow up by 16-slice 

coronary tomography (CT) and bone biopsy concluded that coronary artery 

calcification development was associated with lower trabecular bone volume 

while an improvement in bone turnover was associated with lower coronary 

artery calcification progression in patients with high- and low-turnover bone 

disorders.  (38) An evaluation of 150 patients >40 years old at various stages of 

CKD (47 HD and 103 CKD) using pulse wave velocity showed a significant increase 

in arterial stiffness compared to healthy population. This remained significant 

after adjustment for age, sex, mean arterial pressure, heart rate and body mass 

index (BMI). No differences were noted between pulse wave velocity and 
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glomerular filtration rate (GFR) in the predialysis group, but vascular 

calcification assessed by X-ray and CT showed a gradual and significant increase 

in aortic calcification. (39) 

1.13 Phosphate  

1.13.1 Introduction 

Inorganic phosphate or phosphorus is an important part of cellular components 

used for energy storage, oxygen transport, acid-base regulation, membrane 

transport, signal transduction and bone mineralisation. Serum phosphate is 

regulated between 0.8-1.5mmol/L in healthy individuals by hormones (PTH, 

Vitamin D, FGF-23, growth hormone amongst others) that modulate intestinal 

uptake, renal excretion and mobilisation from bone. Bone is the largest single 

source of phosphate present in the form of hydroxyapatite complexed with 

calcium. The daily phosphorous balance is the sum of the total intake and the 

amount excreted via the urinary and faecal route.  

1.13.2 Phosphate, cardiovascular disease and CKD 

High phosphate levels are associated with vascular calcification and increased 

cardiovascular mortality. This has been seen both in the CKD (40,41) and general 

population.  (42) Goodman et al. noted coronary-artery calcification is common 

(88%) in dialysis patients as young as 20-30 years age. In this group cholesterol 

concentrations were lower and phosphate levels higher in those with 

calcification, despite showing no association with blood pressure, male gender 

and diabetes mellitus. (40) A similar association has been seen with elevated 

phosphate being an independent risk factor for increased intima-medial 

thickness of the carotid artery of haemodialysis patients both, with and without 

diabetes.  (41)  

Post hoc data analysis of patients with ischaemic heart disease (IHD) and normal 

renal function, demonstrated a graded independent relationship between high 

serum phosphate within the normal reference, to increased cardiovascular 

events and deaths. (43) An evaluation of 3368 participants from the Framingham 

Offspring study over a period of 16.1 years found that higher serum phosphate 

was associated with increased mortality from cardiovascular events in patients 
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with no CKD (defined as MDRD GFR of ≥60 ml/min per 1.73 m2) or cardiovascular 

disease (defined as history of coronary heart disease, cerebrovascular disease, 

peripheral vascular disease or heart failure). On further scrutiny in a subgroup 

with eGFR of >90ml/min per 1.73m2 and no proteinuria, it emerged that the 

association remained robust. (42)  

Hyperphosphatemia is associated with progression of kidney disease in the CKD 

population. The composite end point determined by doubling of serum 

creatinine or reaching ESRD found a 29% higher risk with each mg/dl of rise in 

serum phosphate despite correction for multiple confounders. The study was 

limited by its retrospective nature, being confined to male US veterans and 

inability to measure the confounding effect of PTH.  (44)  

A systematic review of 35 studies from 1980 to 2007 studying the relationship of 

mineral metabolism disturbances to all-cause mortality (29 studies) and CV 

outcomes (11 for CV mortality & 4 CV events) in CKD found a strong association 

of increased mortality with phosphorus concentration. Despite the heterogeneity 

of the studies this association was present in both HD and PD patients though 

data on risk was less conclusive in pre-dialysis patients.  (45) These findings are 

similar to a recent study examining early CKD patient population (n=10672) from 

a community-based screening program over a 2.3-year period, which found no 

significant association between quartiles of serum phosphate and all-cause 

mortality. Though the association for progression to ESRD was present between 

higher quartiles of phosphate, this was non-significant following adjustment for 

cofounders.  (46) 

1.14 Vitamin D 

1.14.1 Introduction 

Vitamin D is a fat-soluble compound that plays an essential role in CKD-MBD. It 

consists of two main parent forms D2 (ergocalciferol) and D3 (cholecalciferol) 

that are metabolised in the liver to 25(OH) D2 or 25(OH) D3 known as ercalcidiol 

or calcidiol respectively. This undergoes further hydroxylation in kidneys into 1, 

25(OH) 2 D2 or 1, 25(OH) 2 D3 (ercalcitriol and calcitriol). Calcitriol is the most 

active naturally occurring Vitamin D derivative. The primary source of Vitamin D 
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is sunlight from exposure of the skin to ultraviolet B (UVB) solar radiation that 

converts 7-dehydrocholesterol to previtamin D3 that undergoes rapid conversion 

to Vitamin D3. Vitamin D deficiency occurs as a result of decreased endogenous 

synthesis production from insufficient exposure to sunlight or dietary deficiency. 

Various assays for measurement of Vitamin D exist and the definition of 

deficiency is not standardised. The current recommendations suggest using the 

same laboratory for measurement of levels. 

1.14.2 Vitamin D, mortality and CKD 

The prevalence of Vitamin D deficiency in CKD is common though its relationship 

to stages of CKD is unclear. Some studies reported lower levels with advanced 

disease (47,48) while others found no such relationship. (28) Observational 

studies in the general (49) and CKD population(50) with low Vitamin D levels 

have been associated with adverse clinical events.  

Figure 1-5: The prevalence of deficiency of 1,25 OH2 D3, 25(OH) D3, and secondary 
hyperparathyroidism by GFR  

 
Reprinted by permission from Macmillan Publishers Ltd: [Kidney International]  (28) 
copyright (2007) 
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A secondary analysis of a prospective double blinded, randomised placebo-

controlled trial in healthy postmenopausal women >55 years, from the 

community found a lower incidence of cancer in the Vitamin D treated group 

compared to the placebo arm. 1179 subjects were followed for 4 years and 

randomly assigned to receive placebo, calcium (1400-1500mg) or calcium & 

Vitamin D3 (1000IU, 25µg). The unadjusted relative risk (RR) of incident cancer 

in the calcium and Vitamin D group was 0.402 (CI: 0.20 – 0.82, p=0.013) and 

calcium group 0.532 (CI: 0.27 – 1.03, p = 0.063). The effect remained when 

cancers after first 12 months were excluded in the calcium and Vitamin D group 

(RR – 0.232, CI: 0.09 – 0.60, p <0.005). The change in Vitamin D levels was most 

in the Vitamin D and calcium group (23.9±17.8 nmol/L). (51) 

A similar randomised study in the Women’s Health Initiative (WHI) showed an 

inverse relationship between 25(OH)D and incident risk for all cancers though 

there was no significant effect of Vitamin D on colorectal cancers. The baseline 

Vitamin D, dose of Vitamin D used (400 IU versus 1100 IU) and changes of serum 

Vitamin D levels achieved were lower in the WHI study.  (51)  

Data from 825 incident patients in the US on haemodialysis suggests increased 

mortality with lower serum levels of Vitamin D within 90 days of initiating RRT. 

This was independent of residual renal function, biomarkers of mineral bone 

disease, nutritional factors and co-morbidities.  (50)   

A meta-analysis of Randomized Controlled Trials of 57,311 participants with a 

mean follow up of 5.7 years (range 6months – 7years), adjusted for study size, 

suggested Vitamin D supplementation reduces all-cause mortality in adults and 

older individuals. The mean daily dose of Vitamin D, adjusted for trial size was 

528 IU (range 300IU – 2000IU) with most patients receiving a dose between 400IU 

to 833 IU/day. Patients with chronic renal disease, ESRD, those on dialysis and 

advanced prostate cancer were excluded. It however did not examine the 

relationship with baseline Vitamin D status and the dose of Vitamin D 

supplementation. (49,52) 
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1.15 Parathyroid hormone - PTH 

1.15.1 Introduction 

Parathyroid hormone is an 84 amino acid protein composed of N-terminal, C-

terminal and mid-region fragment. It is secreted in response to low ionised 

calcium - the most important determinant, hyperphosphatemia and Vitamin D 

deficiency.  Levels are suppressed in response to calcitonin, hypercalcemia and 

high FGF-23 levels.  

Conventional assays for PTH measured C terminal or N-terminal while 2nd 

generation tests detected the full-length molecule i.e. both the N & C terminus 

(‘intact PTH’ or ‘active PTH’) using two-site radioimmunoassay. 3rd generation 

assays that truly determine the full length molecule of 1-84 amino acid residues 

(‘whole’/‘bioactive’ PTH) have been developed, but not widely available, and 

do not show better predictive value. Further methodological issues differ - based 

on collection mode (serum or plasma), sitting temperature (ice or room) and use 

of multiple commercial kits that make standardisation difficult.  

1.15.2 Diagnostic role as bone marker & mortality  

KDIGO recently assessed the diagnostic value of PTH as a marker of bone 

turnover in a cross-sectional retrospective study of 492 dialysis patients with 

bone biopsies. PTH was able to differentiate high turnover (iPTH >9 times upper 

limit of normal; sensitivity, 37.0%, specificity, 85.8%) from nonhigh and low 

(iPTH <2 times upper limit of normal; sensitivity, 65.0%, specificity, 67.3%) 

Addition of bone alkaline phosphatase improved this marginally. Low, normal, 

and high bone turnover could not be diagnosed with a single or combination of 

biomarkers.  (53) This is further discussed in Section 1.18.2.  

Raised PTH a consequence of secondary hyperparathyroidism is common in CKD 

stages 3-5D and associated with increased mortality and morbidity. Optimal 

levels of PTH in stages CKD 3-5D is unknown, though it is the most commonly 

used surrogate markers of bone turnover to guide treatment.  

Analysis of the DOPPS phases 1to 4 data over the last 15 years (1996-2011) 

suggests increased risk of all cause mortality with very high or low levels of PTH. 
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Cardiovascular and all cause mortality was high for PTH = 300-450 pg/ml (HR, 

1.09) and PTH > 600pg/ml (HR, 1.23) while hospitalisation rates were highest in 

the group with PTH levels >600pg/ml in the adjusted models. A further subgroup 

analysis of patients with no exposure to treatment for secondary 

hyperparathyroidism showed a similar association of increased mortality with 

very low (PTH <50 pg/ml; HR, 1.25; 95% CI, 1.04 to 1.51) and high levels of PTH 

(PTH >600 pg/ml; HR 1.15; 95% CI, 0.86 to 1.53), Figure 1-6. (54)
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Figure 1-6: Associations of (PTH) levels with mortality and hospitalizations in DOPPS 
participants.  

 

   

Republished with permission of American Society of Nephrology from Recent Changes in 
Therapeutic Approaches and Association with Outcomes among Patients with Secondary 
Hyperparathyroidism on Chronic Hemodialysis: The DOPPS Study, Tentori F. et. Al, 10, 
2015; permission conveyed through Copyright Clearance Center, Inc.  

 

This is consistent with other data (55,56) that suggests a U or J shaped 

relationship between adverse outcomes and PTH thresholds. However, a recent 

meta-analysis did not find an association between PTH and mortality.(57)This is 

possibly due to analysis of single cohort studies and evaluation of PTH as a 

continuous variable with linear association. The use of multiple analytical 
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methods and different assays adds to the complexity of being able to interpret 

the data accurately.  

1.15.3 Cinacalcet & effect on PTH 

Cinacalcet a calcimimetic agent lowers PTH along with calcium and phosphate 

levels.  It acts on calcium-sensing receptors on the parathyroid gland and used to 

treat refractory secondary hyperparathyroidism in patients on HD who do not 

respond to conventional therapy or cannot have a parathyroidectomy. An 

analysis of 4 randomized, placebo controlled clinical trials of >1100 patients 

showed a significant reduction in fracture rates, surgical parathyroidectomy and 

cardiovascular hospitalisation with improvement in the physical component 

summary and bodily pain of the short form (SF-36) health survey in the 

Cinacalcet group.  (58) The Evaluation of Cinacalcet Therapy to Lower 

Cardiovascular Events (EVOLVE) Trial reported a non-significant reduction (HR 

0.93; P = 0.112) in risk of deaths or cardiovascular events in patients with 

secondary hyperparathyroidism treated with cinacalcet use versus placebo. Total 

follow up was for 64 months (median 21.1 months, on Cinacalcet) with median 

iPTH levels of 692 pg/mL. The number of surgical parathyroidectomies fell by 

>50%. (59) 

1.16 Calcium  

1.16.1 Introduction 

Calcium in the bone accounts for 99% of the total calcium distribution. The 

remainder (1%) is present in the extracellular fluid, measurable as serum 

calcium with the rest being in intracellular spaces. 40-50% of the serum ionised 

calcium (Ca2+) is physiologically active while the rest is bound to albumin or 

anions as phosphate.  (17) Levels vary as per protein levels with laboratories 

reporting 'corrected calcium' in addition to ionised Ca2+. PTH, Vitamin D, various 

other hormones and pH tightly regulate serum calcium levels in a narrow 

reference range of 2.1-2.6 mmol/L in healthy individuals. The amount absorbed 

by the intestines, the exchanges across the intracellular, extracellular and bone 

compartments and those excreted via the kidneys maintains calcium 

homeostasis. The net balance is neutral in healthy adults, positive in children of 
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growing age, and negative in the elderly. The regulation of Calcium in relation 

to phosphate, Vitamin D and FGF-23 is described in Section 1.20.  

1.16.2 Calcium in CKD 

The kidneys play a vital role in calcium regulation. While no data exists on the 

association of high serum calcium on mortality and morbidity in CKD stage 3a- 5, 

high serum calcium in CKD Stage 5D increases mortality, independent of age, 

gender, race, diabetes, vintage, phosphorus and PTH.  (60,61) A prospective 

cohort study of 25,588 patients with end stage renal disease on HD for >180 days 

across 925 dialysis facilities found increased risk of all-cause mortality (HR, 1.10) 

and cardiovascular mortality (HR, 1.17) with calcium (or corrected calcium) 

levels of > 10 mg/dL (2.5 mmol/l) or calcium levels of ≤ 1.88 mmol/L. (60)Data 

from North America is conflicting with increased risk of mortality with calcium 

levels of <8.5 mg/dL (2.1 mmol/l) in univariable models which reversed with 

multivariable adjustment. (61) 

Calcium used in dialysate in HD patients is an important determinate of the total 

calcium balance. Mass assessment on calcium is difficult and levels during HD are 

affected by duration of HD, ultrafiltration rate and intradialytic interval.  (62) 

Two studies in the early 1990’s (63,64) evaluated the effects of varying dialysate 

calcium on plasma concentration. Acute (63,64) and long-term changes (64) in 

calcium were measured with different concentrations of dialysate (0.75, 1.25, & 

1.75 mmol, Hou SH. et al.; 1.25, 1.5 & 1.75 mmol; Argiles A. et al.). Dialysate 

calcium of 1.25 mmol/l was considered to be near neutral for most patients. The 

optimal dialysate calcium should induce a positive balance in patients with 

deficiency and reduce flux in those with calcification. Since then 2 RCTs have 

been conducted, the results of which are discussed in Section 1.19.4.  

 
1.17 Management of CKD-MBD 

Management of mineral bone disease in CKD is complex. It involves education, 

dietary restriction, medications, increased duration of dialysis and 

parathyroidectomy in severe cases. Therapies are focussed on correcting 

surrogate markers of bone turnover, the benefits of which remain uncertain.    
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1.18 KIDIGO 2017 & UK RA June 2018 Updates 

The summary of the original 2009 KDIGO guidance on Diagnosis, Evaluation, 

Prevention and Treatment of CKD-MBD and 2017 guidelines is compared and 

enlisted in Appendix 1.1. The guidance has not been reproduced verbatim to 

allow discussion of the recommendations. Here we consider the relevant KDIGO 

2017 updates, which include some changes in the order of recommendations. 

(65) 

The update has provided some clarity but raises further questions of 

implementation, investigations and treatment.  The major shift in management 

is towards an individualised, multi-professional approach and deviation from 

specific targets.  The evidence and rationale behind the latest guidance is 

included and the recommendations briefly examined.  

UK RA published an Update in June 2018 a ‘Commentary on the KDIGO Guideline 

on the Diagnosis, Evaluation, Prevention and Treatment on CKD-MBD in June 

2018’ to guide UK clinical practice. (19) This is covered with each section to 

summarise UK recommendations.  

1.18.1 Diagnosis of CKD-MBD using DEXA  

KDIGO Guideline 3.2.1, 2017 Update, Grade 2B  

A substantial advance in the new guidelines is the consideration for use of DEXA 

BMD in patients with CKD G3a- G5D to assess fracture risk if this information 

impacts treatment decisions in patients at risk.  

KDIGO Guidance 3.2.2, 2009, Grade 2B 

Dual energy X-ray absorptiometry (DEXA) BMD assessment was not routinely 

recommended in patients with CKD G3a – G5D due to lack of evidence and its 

inability to predict fracture risk. Besides, BMD did not predict histological form 

of renal osteodystrophy.  
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Rational & Evidence 

Fractures in CKD are higher than the general population. (66,67)Previous 

guidance on the use of DEXA, was based on cross sectional studies. Latest data 

from 4 prospective cohort studies (68-71) have consistently demonstrated hip 

BMD predicted fractures across the spectrum of CKD G3a – G5D, despite not 

making distinction between different histological forms i.e. adynamic bone 

disease, osteodystrophy, osteoporosis or high bone turnover.  (71)  

The latest evidence comes from Naylor et al., who examined data from the 

Canadian Multicentre Osteoporosis Study (CaMos) using The Fracture Risk 

Assessment Tool (FRAX®) in the CKD cohort. FRAX® assesses the risk of fractures 

over a 10- year period using clinical risk factors and BMD at the femoral neck in 

the general population. The CaMos cohort, stratified by eGFR had 320 patients 

all ≥ 40 years age with CKD 3a – 5 (72.2 % Stage 3a, 23.8 % stage 3b). Individuals 

were followed up for a mean of 4.8 years for major incident fractures. FRAX® 

predicted risk was 6.4% with BMD and 8.2% without BMD. This was similar to the 

major observed fracture risk of 5.3% in eGFR <60ml/min/1.73 m2 (3.3% - 8.6%, 

95% CI). The major limitations were relatively small number of fractures and 

inability to further stratify prognostication by stages of eGFR that reduced 

statistical power.(71) 

West et al. studied 131 patients from three tertiary care hospitals across 

Toronto ≥ 18 years with CKD stage 3a- 5 over a 2-year period. DEXA BMD was 

measured at baseline and 24 months. Baseline and 2 years DEXA BMD were 

significantly lower in the total hip, lumbar spine, ultradistal and ultradistal 1/3 

radius in the fracture group compared to those without fractures. The risk of 

incident fractures increased by 1.98 (95% CI, 1.53 – 2.43) for hip fractures and 

1.89 (95% CI, 1.44 – 2.34) for lumbar spine for every 1 standard deviation (SD) 

decrease in DEXA BMD. The association did not change in the adjusted models. 

(72) 

Yenchek et al. measured hip BMD in 2754 participants and reported its 

association to non-spine fragility fractures. DEXA BMD identified osteoporosis at 
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baseline and recorded fractures using self-reported surveys (contacted every 6 

months with annual review). Median observation period was 11.3 years and 587 

participants (21%) had a GFR of < 60 ml/min/ 1.73 m2.  98 fractures were 

recorded in the CKD group and 286 in the non – CKD group. Time to first fracture 

was analysed with BMD being the main predictor.  Greater fractures were 

associated with lower femoral neck BMD (each lower SD BMD, HR 2.14, 95% CI 

1.80 – 2.55, no CKD; HR 2.69, 95% CI 1.96-3.69, CKD) independent of CKD. The 

model was adjusted for age, sex, race and BMI.  

Iimori et al. assessed usefulness of PTH, bone alkaline phosphatase (b-ALP) and 

BMD in predicting fracture risks in patients with CKD stage 5D. This single 

centred study included 485 patients in Japan over a 5-year period. PTH levels 

<150 pg/ml (HR – 3.47, p <0.01, n = 148) or > 300 pg/ml (HR – 5.88, p <0.0001, n 

= 141) were associated with increased risk of all type of fractures. High b-ALP 

was a significant predictor of all fractures. Low baseline BMD at every site 

except lateral lumbar spine predicted fracture risk. (HR 0.96, P = 0.01, femoral 

neck; HR = 0.95, P = 0.003, trochanter; HR = 0.97, P = 0.005, total hip) The risk 

persisted in both unadjusted and adjusted demographic parameters. (68) 

What is not clear from the 2017 updates is what defines, risk factors for 

osteoporosis, how these patients should be monitored, with what imaging, and 

when treatment should be commenced.  

The effectiveness of Denosumab and safety in CKD stage G1 – G4 was evaluated 

in the FREEDOM trial (Fracture Reduction Evaluation of Denosumab in 

Osteoporosis Every 6 Months). 3902 subjects (2817 women with CKD stage 3a – 

G3b and 73 with G4) with an average age of 72.3 ±5.2 years received Denosumab 

and were followed up for 36 months. (73) Denosumab reduced incident 

fractures, with increases in BMD at all sites. Adverse effects were similar in both 

groups. There was no robust evidence to support a theoretical fear of adynamic 

bone disease though a major limitation was the lack of data on CKD 5- 5D.  
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UK RA Update, June 2018  

The UK RA recommends a multi-professional approach between 

rheumatologist/osteoporosis expert and renal physicians to aid decision on 

management following DEXA.  

1.18.2 Bone biopsy 

Use of bone biopsy, the ‘gold standard’ in diagnosis of renal osteodystropy is 

limited due to lack of physician expertise and patient choice.  

KDIGO Guideline 3.2.2, 2017, Not Graded 

Bone biopsy continues to be recommended for CKD G3a-G5D, if the knowledge 

will impact treatment decisions. This is no longer necessary for initiation of 

treatment.  

KDIGO Guidance 3.2.1, 2009, not graded 

KDIGO suggested bone biopsy in certain clinical settings in CKD G3a- 5D 

(unexplained fractures, persistent bone pain, unexplained hypercalcemia, 

unexplained hypophosphatemia, possible aluminium toxicity, and prior therapy 

with bisphosphonates, though not limited to these) and prior to the use of 

antiresorptive therapy.  

Rational & Evidence  

DEXA BMD or laboratory parameters do not provide an accurate assessment of 

bone histology in CKD. To predict diagnostic accuracy of bone turnover to bone 

histology a retrospective analysis of bone biopsies and biomarkers (iPTH, whole 

PTH, b- ALP and amino –terminal propeptide of type 1-collagen) were 

undertaken across 4 nations from 492 dialysis patients. Levels of biomarkers 

singly or in combination did not reach acceptable levels of discrimination for a 

single time point diagnosis of different forms of BMD. iPTH, whole PTH and b-

ALP levels were associated with bone turnover.  (53) 

PTH to help diagnostic decision-making is illustrated in Table 1-4.
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Table 1-4: Utility of PTH thresholds for diagnosis decision-making (KDOQI & KDIGO)(53) 

 
 

Reprinted from AJKD, Sprague SM et al., Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis, 

2016; 67:559-66 with permission from Elsevier  
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UK RA Guidance June 2018 

The UK RA acknowledges that bone biopsy may be an appropriate test and that 

implementation of an ungraded guidance may be limited by local expertise.  

1.18.3 Treatment targets 

KDIGO Guidance 4.1.1, 2017, not graded 

The new guideline suggests treatment to be focussed on serial assessments of 

phosphate, calcium, and PTH together in CKD G3a-G5D. 

Rational & Evidence 

Bone markers undergo diurnal changes and levels are affected by various other 

factors i.e. type of food intake, mediations, RRT treatment etc. amongst others.  

(74) This section is further covered in KDIGO Guidance 4.1.5 

1.18.4 Serum phosphate levels  

KDIGO Guideline 4.1.2, 2017, Grade 2C 

Elevated phosphate levels should be lowered toward normal in CKD G3a-G5D. 

KDIGO Guideline 4.1.1, 2009, Grade 2C 

Previous guidance was to maintain serum phosphate in the normal range in CKD 

G3a – G5 and lowering this towards normal range in CKD G5D.  

Rational & Evidence 

The association of high phosphate to mortality has been proven in multiple 

trials.  (60,75,76) However, there is no data supporting benefit from maintaining 

phosphate in the normal range with treatment, in CKD G3a – G4.  

A study on 148 patients with GFR between 20-45ml/min/1.73m2 treated with 

phosphate binders (calcium acetate, lanthanum, sevelamer or placebo) showed a 

fall in serum phosphate from 4.2 mg/dl (1.34 mmol/l) to 3.9 mg/dl (1.26 
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mmol/l) in the treatment arm compared to 4.1 mg/dl in the placebo arm. iPTH 

increased in the placebo group and was stable in the treated group. There was 

however an increase in coronary artery and abdominal aorta calcification in the 

treated group.  (77)  

UK RA Guidance June 2018 

The RA suggests an individualised approach towards achieving the normal range. 

Previously NICE and UK RA Update of 2015 recommended target serum 

phosphate level of 0.9 – 1.5 mmol (Guideline 3.1, 2015, Grade 2C) for CKD 3-5 

and 1.1 – 1.7 mmol for CKD 5D (Guideline, 3.2, 2015, Grade 2C).  (18)  

1.18.5 Serum calcium levels 

High calcium levels are associated with increased mortality and morbidity.  

KDIGO Guideline 4.1.3, 2017, Grade 2C  

An individualised approach to managing mild asymptomatic hypocalcemia and 

avoidance of hypercalcemia is suggested rather than correction.  

KDIGO Guideline 4.1.2, 2009, Grade 2D  

The maintenance of normal calcium was suggested in CKD Stages 3- 5D.  

Rational & Evidence 

In the EVOLE (Evaluation of Cinacalcet Therapy to Lower Cardiovascular Events) 

trial, subjects with hypocalcemia from cinacalcet did not come to harm, and 

correction of hypocalcemia had the risk of positive calcium balance. The findings 

of the EVOLVE trial is discussed further in later sections of the thesis.  (78) 

UK RA Guidance June 2018 

RA recommends avoidance of hypercalcemia and maintenance of levels below 

the upper range of normal for the reference laboratory.  
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1.18.6 Dialysate calcium  

KDIGO, Guideline 4.1.4, 2017, Grade 2C 

In patients with CKD G5D a dialysate calcium concentration of 1.25 to 1.50 

mmol/l has been suggested. 

KDIGO, Guideline 4.1.3, 2009, Grade 2D 

Guidance 4.1.3, 2009, Grade 2D has been upgraded to Guidance 4.1.4, 2017, 

Grade 2C with no change in the advice.  

Rationale & Evidence  

2 RCTs (79,80) have been published since 2009 of better quality though they do 

not discriminate between harm and benefit.  

Ok et al. examined the effect of dialysate calcium on coronary artery 

calcification (CAC) score and bone histomorphometry. Patients with PTH ≤ 

300pg/ml were randomised to high calcium dialysate of 1.75 mmol/l  (HCD, 

n=213) or low calcium dialysate 1.25 mmol/l (LCD, n = 212). Multislice 

computerised tomography (CT) and bone biopsy was performed at baseline and 

24 months. Overall there was an increase in CAC scores in both groups (452 ± 869 

to 616± 1086, LCD; 500± 909 to 803± 1412, HCD) but the differences were not 

significant (p = 0.25). However, the mean absolute difference i.e. the 

progression of CAC scores (-138, p=0.03) by Agatston method, a semi-automated 

tool to assess CAC score and the mean absolute difference in progression of 

volume (-118, p = 0.001) were significantly different. In 108 patients that had a 

bone biopsy an increase in bone turnover (bone formation rate and activation 

frequency) was seen in the LCD compared to the HCD. (low turnover decreased 

from 85.0 % to 41.8%, P = 0.001, LCD; 79.2 % to 64.2 %, HCD). (79) 

Another RCT in 52 patients with iPTH <100 pg/ml randomised to 1.25 mmol or 

1.75 mmol/l calcium dialysate over a 6-month period demonstrated an 

improvement in the bone and mineral parameters in the LCD group. Pre-dialysis 

mean total calcium was not significantly different between the two groups but 
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post dialysis total calcium was significantly higher in the HCD group (2.59± 0.18 

HCD; 2.44± 0.19, LCD; p<0.01). Ionised calcium was significantly higher in the 

HCD group both pre (1.08± 0.05 mmol/l, HCD; 1.04± 0.06, LCD; p = 0.02) and 

post dialysis (1.8 ± 0.04, HCD; 1.04 ± 0.04, LCD p <0.01), while this was not 

noted in the total or ionised calcium levels in the LCD group. Mean total and 

ionised calcium increased in the HCD compared to the LCD. iPTH and total 

alkaline phosphatase increased in the LCD group at 3 and 6 months (p < 0.001) At 

3 months the pre-dialysis total and ionised calcium in the LCD decreased and 

then levelled off.  (80) The study did not look at bone biopsies but based the 

likely diagnosis of adynamic bone disease on the iPTH levels.   

UK RA Guidance June 2018 

RA recommendations with CKD G5D are a dialysate of 1.25 to 1.5 mmol/l with a 

degree of flexibility to meet patients’ individual requirements.  

1.18.7 Treatment of hyperphosphatemia  

KDIGO Guidance 4.1.5, 2017, Not Graded 

The decision on phosphate lowering treatment should be based on progressive or 

persistent changes in phosphate levels.  

KDIGO Guidance 4.1.4, 2009, CKD 3a-G5, Grade 2D; CKD G5D, Grade 2B; 

Choice of binder, Not Graded 

Phosphate binders were recommended in CKD G3a- G5D for the treatment of 

hyperphosphatemia. The choice of binder was based on concomitant treatment 

and presence of other components of CKD.  

Rational & Evidence 

The study by Block et al. has been discussed in Section 1.18.4, KDIGO Guidance 

4.1.2, 2017. It highlights the risk of the associated arterial calcification with 

phosphate binding therapy. (77) 



53 
 
Hill et al. studied 8 patients with CKD Stage 3-4 during two 3-week periods in a 

placebo-controlled crossover study. Samples from blood, urine and faeces were 

collected at baseline and on a weekly basis. Patients on calcium carbonate had a 

greater calcium balance compared to placebo while phosphorus balance did not 

differ significantly. Fasting serum phosphate and PTH were unaffected by 

calcium carbonate despite a modest increase in urinary phosphate. (81) 

Both these studies challenge the rational of using calcium-based phosphate 

binders in the prevention of hypocalcemia and treatment of hyperphosphatemia.  

UK RA Guidance June 2018 

In CKD G3a-G5D the UK RA advises against the use of phosphate binders ‘pre-

emptively’ but reserving this for those with progressively rising or persistent 

hyperphosphatemia. A multi-professional approach to its management was 

suggested.  

KDIGO Guidance 4.1.6, 2017, Grade 2B 

The use of calcium-based phosphate binders in CKD G3a- 5D should be restricted 

in patients receiving phosphate-lowering treatment.  

KDIGO Guidance 4.1.5, 2009, Grade 1B 

Restriction on the use of calcium containing phosphate binders and/or dose of 

Vitamin D analogs in the presence of persistent or recurrent hypercalcemia 

Rational & Evidence 

Three new RCTs were published since the last recommendation; 2 published by 

the INDEPENDENT (Reduce Cardiovascular Calcifications to Reduce QT Intervals 

in Dialysis) investigators from the Di Iorio group. (82,83) In the first cohort 466 

incident haemodialysis patients across 18 Italian centres were randomly assigned 

to receive Sevelamer (4300 ± 1400 mg/day, median 4800 mg/day) or calcium 

containing phosphate binder (2200 ± 1000 mg/day, median 2000 mg/day) for 24 

months and followed up for 36 months. It excluded patients > 75 years of age 
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and those with a history of cardiac arrhythmia. Phosphate levels at baseline 

were higher (mean 5.6 ± 1.7 mg/dl versus 4.8 ± 1.4 mg/dl) and CAC scores lower 

(median 19, IQR 0-30 versus 30, IQR 7-180) in the Sevelamer group compared to 

the calcium group.  There were no significant changes in the use of Vitamin D 

analogs, Cinacalcet, beta-blockers or HMG (3-hydroxy-3-methyl-glutaryl) 

coenzyme reductase inhibitors. There was a decrease in serum phosphate (-0.65 

±0.12mg/dl, P <0.001), calcium (-137 ± 0.09 mg/dl, P <0.001) and iPTH (-173.7 ± 

15.85 pg/ml, P< 0.001) in the Sevelamer group compared to the calcium group 

at 24 months from baseline. Cardiovascular mortality due to cardiac arrhythmias 

and all cause cardiovascular deaths was lower in the sevelamer group compared 

to the calcium treated group (P<0.001). This association did not change after 

adjusting for CAC scores, time varying phosphate levels and C- reactive protein. 

Mortality from non-cardiovascular events were however not significant in the 2 

groups. (83) 

Mortality in kidney disease patients treated with phosphate binders 

(INDEPENDENT Study) was a randomised, multicentre, non-blinded pilot trial 

that looked at the use of phosphate binders on mortality. Patients with CKD 

Stage 3-4 were administered Sevelamer (n=107, mean dose 2184 ± 592 mg/day) 

or calcium carbonate (n = 105, mean dose 2950± 703 mg/day). CAC sores were 

assessed at 6 monthly intervals for a 2-year follow up period. Baseline median 

CAC scores (122 AU, IQR 0-180, Sevelamer group; 0 AU, IQR 0-215, Calcium 

group) and percentage of patients with calcification (62.6 % versus 47. 6%, P = 

0.02) were higher in the Sevelamer group. Average phosphate concentration 

(4.37 ± 1.33 mg/dl versus 4.85 ± 0.79 mg/dl; p<0.01) was lower and average 

serum calcium (8.6 ± 0.7 mg/dl versus 9.4 ± 0.6 mg/dl) decreased in the 

sevelamer group. Average concentrations were defined as mean of all values up 

to the event or closing of the study. Patients randomised to the Sevelamer group 

had a lower rate of all-cause mortality at dialysis inception. These associations 

did not change following adjustment with baseline covariates. The major 

limitation of this study was the sample size. (82) 

The study by Block et.al, (77) previously discussed in Section 1.18.4 highlights 

the potential harm from phosphate binders.  
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The working group acknowledged that calcium in any form might be harmful in 

all stages of CKD irrespective of presence of other markers (low PTH, 

hypercalcemia, arterial calcification or adynamic bone disease). Its use in 

certain high-risk scenarios may however be valid, thus the previous qualifier 

from 2009 recommending restricted use of calcium-based binders in persistent 

hypercalcemia was deleted.   

Further evidence has since emerged from meta-analysis though this did not have 

a bearing on the 2017 guidelines.  

Jamal et al. analysed data from 11 randomised trials (August 2008 – October 

2012) with 4622 participants as a part of systematic review and showed a 22% 

reduction in all-cause mortality in patients assigned to non-calcium binders 

(Sevelamer and Lanthanum) compared to those on calcium binders (RR 0.78, 95% 

CI (0.61 – 0.98).  The reduction in mortality was independent of serum 

phosphate and significant at 24 months but not 36-42 months, possible due to 

insufficient power. (84) 

Patel et al. reviewed further data of 25 studies until March 2015 and showed a 

46% reduction in all-cause mortality in patients receiving Sevelamer compared to 

those on calcium containing binders (RR 0.54, 95% CI 0.32 – 0.93). 88 % of the 

4770 participants were on haemodialysis. Patients in the Sevelamer group had 

lower serum calcium, higher iPTH and lower total and LDL cholesterol. The 

phosphate levels in the two groups however did not differ significantly. (85) 

Palmer et al. reviewed data from 77 trials with 12562 patients (11009 dialysis 

participants) and found no evidence that phosphate binder treatment reduced 

all call mortality compared to placebo. Sevelamer was better than calcium 

containing binders in reducing all-cause mortality (odds ratio, OR 0.39, 95% CI 

0.2- 0.74) but for all other groups (lanthanum, iron, colestilan) the effects were 

non-significant. All binders reduced phosphate more than placebo. (86) 
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UK RA Guidance June 2018  

The RA suggests limiting calcium-based binders in CKD G3a-5D. Calcium-based 

binders is no longer recommended as the first line of treatment specially as 

more generic version of non-calcium containing binders are available.  

1.18.8 Dietary phosphate restriction 

KDIGO Guidance 4.1.8, 2017, not graded 

The 2017 guideline added a qualifier for better education about food choices in 

addition to dietary phosphate restriction.  

KDIGO Guidance 4.1.7, 2017, not graded 

Dietary phosphate restriction is recommended in both the 2009 and 2017 update. 

Rational & Evidence  

From a patient perspective and on a practical basis dietary phosphate restriction 

is difficult and could potentially restrict protein intake. Additives in food are 

high in phosphate and phosphate from plants is less absorbable (20 – 50%) than 

phosphate from animals (40-60%) due to presence of phytates in plants. Besides 

vegetable based diet had a lower phosphate absorption compared to meat based 

diet.  (74) A better understanding and knowledge is suggested to help patients 

make better, informed choices.  

UK RA Guidance June 2018 

RA recommends personalised, evidence-based advice from Specialist Renal 

dietician in patients with CKD 3a- 5D for the management of hyperphosphatemia 

with our increased knowledge of bioavailability of phosphate from different food 

sources.  
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1.18.9 PTH in CKD-MBD 

Modest rises in PTH in early stages of CKD is an adaptive response to declining 

eGFR.  

KDIGO Guidance 4.2.1, 2017, Grade 2C 

The Work Group updated guidance to reflect treatment should not be based on 

single elevated PTH. Modifiable risk factors i.e. hyperphosphatemia, 

hypocalcemia, high phosphate intake and Vitamin D deficiency should be 

evaluated 

KDIGO Guidance 4.2.1, 2009, Grade 2C 

Rational & Evidence 

There was no data from RCTs for recommendation of an optimal PTH. Despite 

high PTH being associated with higher mortality, there is no data that’s shows 

improvement in outcomes with lower PTH. 

An RCT on 87 patients with CKD stage G2 to G4 randomised to treatment with 

5,000 or 20,000 IU of cholecalciferol reported no difference in the PTH levels 

between the two groups at completion of study. There was PTH reduction in 

both groups and Vitamin D levels increased in both arms with serum levels being 

significantly higher in the high dose cohort. (87) 

Thus recommendation 3.1.3 of the 2009 KDIGO guideline, which suggest 25 (OH) 

OD (calcidiol) level may be measured, and repeat testing determined by baseline 

values and therapeutic interventions remain. Replacement of Vitamin D 

deficiency and correction should continue as per strategies for the general 

population (Grade 2C).  

UK RA Guidance June 2018 

RA suggests evaluation of modifiable risk factors i.e. hyperphosphatemia and 

Vitamin D deficiency in patients with persistently elevated PTH and that 

decisions on treatment should not be based in single values.   
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1.18.10 Vitamin D analogs and calcitriol  

KDIGO Guidance 4.2.2, 2017, not graded 

The 2017 guidelines for CKD G3a - G5 no longer recommends routine use of 

calcitriol or Vitamin D analogs in non-dialysis patients, and that it should be 

reserved for severe and progressive secondary hyperparathyroidism.  

KDIGO Guidance 4.2.2, 2009, Grade 2C 

The use of calcitriol or Vitamin D analogs were suggested in CKD G3a - G5 in 

patients with rising PTH that remained persistently above the upper limit of 

normal despite correction of modifiable factors.  

Rational & Evidence 

Information from 2 RCTs, the PRIMO (88) and OPERA (89) showed no benefit of 

cardiac end points but increased risks of hypercalcemia with Vitamin D.  

In the OPERA trial, a prospective, double blind RCT, 60 patients with left 

ventricular (LV) hypertrophy and CKD Stage 3-5 were administered a placebo 

(n=30) or 1µg of paricalcitol (n=30), daily for 52 weeks. LV mass measured with 

cardiac magnetic resonance imaging (MRI) at baseline and end of study showed 

no significant change (median – 2.59, IQR -6.13 to 0.32 g/m2, placebo; median -

4.85, IQR -9.89 to 1.10 g/m2, paricalcitol) in the 2 groups despite significant 

reduction in the iPTH levels. The incidence of hypercalcemia (calcium >2.55 

mmol/L) occurred in 43.3 % (n=13) in the treated group compared to 1 patient in 

the placebo group. (89) 

The PRIMO (Paricalcitol capsules benefits in Renal failure Induced cardia 

Morbidity) study used a larger dose of paricalcitol (2 µg) and compared its 

effects to placebo in 112 patients with CKD 3- 5 over a 48-week period. Levels of 

PTH were reduced within 1 month and maintained in the normal range 

throughout the study.  LV mass not indexed to height, assessed by cardiac MRI 

showed no changes (1.29 g, 95% CI, −0.72 to 3.29 g, paricalcitol; −0.20 g, 95% CI, 

−2.19 to 1.80 g, placebo; P = 0.12). For a subgroup of patients with LV 
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hypertrophy the LV mass index increased at week 48 in the paricalcitol group 

compared to placebo (0.46 g/m2.7, 95% CI, −0.15 to 1.08 g/m2.7, paricalcitol; 

−0.23 g/m2.7, 95% CI, −0.87 to 0.41 g/m2.7, placebo; P = .05) though the overall 

LV mass index did not differ (0.34 g/m 2.7, 95% CI, -0.14 to 0.83 g/m 2.7; 

paricalcitol; -0.07 g/m 2.7, 95% CI, -0.55 to 0.42 g/m 2.7; placebo; P= 0.06). 

The incidence of hypercalcemia defined as 2 consecutive measurements of 

greater than 10.5 mg/dL, was higher in the paricalcitol group compared to 

placebo (22.6% versus 0.9%). (88) 

UK RA Guidance June 2018 

RA no longer recommends calcitriol or its analogues in CKD 3a – G5 with 

reservation of these treatments to severe, progressive secondary 

hyperparathyroidism. Where treatment is commenced it should be started at the 

lowest dose, avoiding hypercalcemia.  

1.18.11 PTH lowering therapy 

KDIGO Guidance 4.2.4, 2017, Grade 2B 

The use of calcimimetics, calcitriol, Vitamin D analogs or a combination of these 

medications has been suggested in patients with CKD G5D 

KDIGO Guidance 4.2.4, 2009 

This guidance suggested the use of calcitriol, Vitamin D analogs or calcimimetics 

to lower PTH (Grade 2B) and that the choice of the initial drug for treatment of 

elevated PTH be made on the serum calcium and phosphate levels (non graded). 

The binder used to adjust PTH should not compromise the serum phosphate and 

calcium levels (non graded) and that in patients with hypercalcemia Vitamin D 

analogue can be stopped (Grade 1B).  

Rational & Evidence 

The EVOLVE study (59)in 3883 HD patients, recruited across the globe showed a 

non-significant reduction of all-cause mortality and non-fatal cardiovascular 

events with cinacalcet use versus placebo (HR 0.93; P = 0.112). Though this did 
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not meet its primary unadjusted composite end point there seemed to be 

benefit of cinacalcet use when adjusting for baseline imbalances. The working 

group could not reach a consensus on the interpretation of data (use of primary 

analysis versus the suggestion of benefit from post hoc analysis) and 

recommendations for use of cinacalcet as the first line in CKD 5D. The new 

guidance thus recommends all concomitant treatment in CKD 5D in alphabetical 

order i.e. calcimimetics, calcitriol, or vitamin D analogs, or a combination of 

calcimimetics with calcitriol or Vitamin D analogs where PTH lowering therapy is 

needed.  

UK RA Guidance June 2018 

RA suggests that for dialysis patients requiring PTH lowering therapy 

calcimimetics, calcitriol and Vitamin D are all acceptable therapies. 

Parathyroidectomy has been suggested for patients that fail to respond to 

medical therapy in severe hyperparathyroidism.  

1.18.12 Role of bisphosphonates  

Guidance on the role of bone biopsy has been updated and covered in Section 

1.18.2.  

KDIGO Guidance 4.3.3, 2017, Grade 2D 

Treatment with bisphosphonates in patients with CKD G3a – 5D with low BMD, 

fragility fractures or biochemical abnormalities should take into account 

magnitude and reversibility of biochemical abnormalities with consideration of 

bone biopsy. 

KDIGO Guidance 4.3.3, 2009, Grade 2D 

The suggestion was treatment choices take into account biochemical 

abnormalities, progression of CKD and consider a biopsy in patients with CKD 

Stage 3 with low BMD or fragility fractures. 
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Rational & Evidence 

This has been covered in guidance 3.2.2 and the findings of the FREEDOM trial 

discussed. Recommendation 4.3.4 from 2009 has been removed with broadening 

of treatment choices.  

UK RA Guidance June 2018 

RA recommends treatment choices take specific side effects and bone 

phenotype into account in patients with CKD G3a-G5D. This is all the more 

relevant from a UK perspective as antiresorptive are not authorised for those 

with eGFR <30ml/min/m2. 

1.18.13 Assessment of BMD in transplant recipients 

KDIGO Guidance 5.5, 2017, Grade 2C  

Bone mineral density testing to assess fracture risks in CKD G1T – G5T in patients 

with risk factors for osteoporosis has been suggested. 

KDIGO Guidance 5.5, 2009, Grade 2D 

Assessment of BMD in patients with eGFR of >30ml/min/1.83 m2 was suggested in 

the first three months after transplantation if they received steroids or had risk 

factors for osteoporosis. 

Rational & Evidence 

This has been broadly covered in recommendation 3.2.1. Currently there’s no 

prospective data that looks into the association of DEXA to fractures in 

transplant patients.  

 A retrospective analysis of 238 transplant recipients from 1995 – 2007 examined 

the association of DEXA with fracture events. In the 670 examinations performed 

the incidence of osteopenia was 32.5% in the lumbar region and 46.0 % in the hip 

region, osteoporosis 14.1% in the lumbar and 13.9% in the hip region. There were 

53 fractures in 46 patients. The relative risk of fractures with osteopenia and 
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osteoporosis was significantly higher than those with normal BMD. This was 

independent of age, female gender and diabetes (HR 2.7, 95% CI 1.6 – 4.6, P = 

0.0003, Osteopenia; HR 3.5, 95% CI 1.8 – 6.4, P = 0.0001, Osteoporosis).   (90) 

This study however did not form part of the review process due to its 

retrospective design.  

UK RA Guidance June 2018 

RA suggests that DEXA may be a useful tool to assess fracture risk in transplant 

recipients while acknowledging that evidence for intervention to prevent 

fracture is limited.   

1.18.14 Role of Vitamin D post transplantation 

KDIGO Guidance 5.6, 2017, Grade 2D/2C 

The use of Vitamin D analogs and or antiresorptive agents is to be considered in 

patients with low BMD and eGFR ≥ 30 ml/min/m2 in the first 12 months after 

kidney transplant. The guidance however acknowledges that there’s insufficient 

data to guide treatment.  

KDIGO Guidance 5.6, 2009, Grade 2D/2C 

The guidance was similar to the updated 2017 guideline except that it 

recommended, consideration of bone biopsy prior to commencement of 

antiresorptive in the first 12 months with eGFR of > 30mil/min/m2 

Rational & Evidence 

This has been covered in section 4.3.3.  

UK RA Guidance June 2018 

The guidance is largely similar to the 2017 KDIGO guidance. On the use of 

antiresorptive agents it suggests guidance as per local practice in the absence of 

optimal treatment strategy.  
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1.18.15 KDIGO & RA Updates on children  

Guidelines specifically related to children 4.1.3, 4.1.6, 4.2.2 have not been 

considered for the purposes of this thesis.  

1.19 Novel biomarkers  

1.20 Fibroblast growth factors (FGF-23) 

Fibroblast growth factor 23, a novel molecule has emerged as an important 

regulator of phosphate metabolism. It maintains phosphate and Vitamin D 

homeostasis, independent of Calcium - PTH – Vitamin D axis by inducing 

phosphaturia and decreasing plasma 1,25(OH)2D3. Its structure, assays and 

biological properties are described further in Chapter 4.  

Traditionally our understanding of bone metabolism was limited to the Vitamin 

D- PTH- Calcium axis. Low calcium is the primary stimulant of PTH from the 

chief cells in the parathyroid gland. PTH increases 1-alpha-hydroxylase activity 

from the kidneys that promotes circulating 1,25(OH)2D3 levels. 1,25(OH)2D3 

increases calcium reabsorption by the kidneys. Calcium and phosphate efflux 

from bone by PTH and increased absorption of calcium from the intestine in 

response to increasing levels of 1,25(OH)2D3 levels helps restore calcium levels. 

The secondary effects of increased phosphate are offset by PTH, which promotes 

phosphaturia. With loss of renal function Vitamin D levels are reduced and PTH 

levels increased to help maintain normal calcium – phosphate levels. These 

mechanisms fail with progressive renal failure.  (91) Figure 1-7 
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Figure 1-7 : Traditional Calcium- PTH- Vitamin D axis 

Reprinted by permission from John Wiley & Sons, Inc. Seminars in Dialysis (91) 

FGF-23, first isolated from the ventrolateral thalamic nucleus of mouse brain 

(92) is mainly secreted from osteocytes and osteoblasts of bone, thymus and 

lymph nodes. High FGF-23 levels is associated with deficiency of 1,25(OH)2D3 and 

seen in X-linked hypophosphatemic rickets, autosomal dominant/recessive 

hypophosphatemic rickets and tumour induced osteomalacia.  

FGF-23 inhibition by administration of antibodies in animal models leads to 

hyperphosphatemia and normal 1,25(OH)2D3 levels by decreasing urinary 

fractional excretion of phosphate (UFE phosphate). Rats with mild CKD and normal 

serum phosphate had high UFE phosphate and low 1,25(OH)2D3 levels prior to 

administration of FGF-23 antibodies. This suggests the changes in Vitamin D and 

phosphate are FGF-23 dependant. The rise in FGF-23 in early CKD before any 

increases in PTH and phosphate abnormalities further supports the role of FGF-

23 in maintenance of normal phosphate levels.  (93)  
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The data on dietary phosphate acting as a stimulant of FGF-23 production is 

conflicting. Larsson et al. administered six healthy males with normal renal 

function a phosphate-supplemented diet. Blood samples were collected 4 times 

a day with measurement of phosphate and FGF-23 levels. FGF-23 levels were 

within the normal range and no circadian variation seen. Serum phosphate, PTH 

and 1,25(OH)2D3 levels did not change. Phosphate excretion was increased but 

no changes in FGF-23 levels were noted during the phosphate loading in the 24-

hour urine samples.  (94) In contradiction to the previous study phosphate 

restricted diet in 13 healthy individuals produced a significant reduction of FGF-

23 concentrations and increase in 1,25(OH)2D3 levels. There was an inverse 

relationship of FGF-23 to Vitamin D concentrations. (95) 

These suggest that FGF-23 is a counter regulatory hormone for Vitamin D. It 

increases phosphaturia and maintains serum Vitamin D levels. With failing 

nephrons phosphate excretion decreases and the effects of FGF-23 to maintain 

phosphate haemostasis becomes less effective. FGF-23 levels gradually rise, 

often 1000- fold in ESRD to maintain phosphate homeostasis.  

There may be a direct role of FGF-23 on PTH but the exact mechanism 

surrounding this is not fully understood. A simple representation of the role of 

FGF-23 in the regulation of phosphate, Vitamin D, calcium and PTH is shown in 

Figure 1-8.  
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Figure 1-8 FGF-23 & bone metabolism axis 

Reprinted by permission from John Wiley & Sons, Inc. Seminars in Dialysis (91) 

 

1.20.1 FGF-23 and mortality 

The ArMORR (Accelerated Mortality on Renal Replacement) study examined the 

association of FGF-23 and mortality in haemodialysis patients from a cohort of 

1056 US dialysis centres. Data was analysed prospectively from 10,044 subjects 

beginning haemodialysis treatment and followed up for 1 year. cFGF-23 levels 

(iFGF 23 and cFGF-23 had a linear correlation) were measured after excluding 

patients exposed to Vitamin D at entry point and multivariable models were 

adjusted for confounding factors. Baseline demographics, primary renal 

diagnosis, associated comorbidities, coexisting conditions, dialysis dose and 

facility-specific standardized mortality rates were included in the models. High 

cFGF-23 levels were strongly associated to mortality, independent of phosphate 

and other known risk factors. The relationship of FGF-23 and mortality was dose-

responsive and seen on a continuous scale (odds ratio 1.8; 95% CI, 1.4 - 2.4 per 

unit increase in log cFGF-23) and for each quartile (Quartile 1 served as 
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reference and odds ratio for quartile 2, 3 and 4 were 1.6 [95% CI, 0.8 - 3.3]; 4.5 

[95% CI, 2.2 - 9.4]; and 5.7 [95% CI, 2.6 to 12.6] respectively). (96) 

Secondary analysis from The EVOLVE Trial a randomised, prospective, 

multicentre placebo-controlled trial, showed treatment with cinacalcet 

significantly lowers FGF-23. FGF-23 levels were recorded at baseline and 20 

weeks, when 91% of patients had blood samples and were still on the original 

treatment. 2985 (77%), of the 3883 randomised patients had baseline FGF-23 and 

2602(67%) had both baseline and week 20 results available. Samples were 

analysed using Luminex- based microbead assay which uses polyclonal capture 

and detection antibodies.  Median FGF-23 levels at baseline (Cinacalcet group, 

5555pg/ml; Placebo, 5600 pg/ml; P= 0.86) were similar. At week 20 weeks FGF-

23 levels were significantly lower in the cinacalcet group (2255 pg/ml) compared 

to the placebo group (5580 pg/ml), P <0.001. Events defined in the primary end 

points were recorded up to 5 years and associations with FGF-23 levels recorded. 

Reductions in FGF-23 were associated with lower cardiovascular events and 

deaths. (97) 

While one cannot conclude that lower FGF-23 levels contributed to the lower 

cardiovascular events the association of high FGF-23 with LVH and the ability of 

Cinacalcet to lower calcium is relevant.   

1.21 Further avenues in management of CKD-MBD   

A systematic review and meta- analysis is underway to assess the use of 

cinacalcet versus standard treatment in CKD. All data sources from MEDLINE, 

EMBASE, Cochrane register and Web of Science from 1996 to June 2015 are being 

reviewed and will be reported using the GRADE summary results. (98) 
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1.22 Aims of this project 

This research project evaluates end points that are of direct importance to 

patients (fractures & quality of life) and investigates the effect of different 

dialysis strategies on biochemical markers such as phosphate, FGF-23 and 

others.  

1.22.1 Primary aims 

To investigate the association between bone biochemistry and hard end 

points such as fractures in a prevalent RRT population 

To assess the impact of a novel tele-health technology on clinical outcomes 

and quality of life in PD patients 

To study the effect of a nocturnal HDF program on bone biochemistry and 

fluid management 

1.22.2 Secondary aims: 

To expand on the knowledge of FGF-23 during a session of dialysis 

To study the association of phosphate and FGF-23 in a group of dialysis (PD 

& HD) patients 

1.23 Hypothesis 

Accepting that the management of CKD-MBD in patients with ESRD is 

challenging, it is hypothesised that better control of biochemical 

parameters is achievable by using different RRT modalities, innovative 

information technology and self-management techniques. This in turn may 

impact on morbidity, mortality and Quality of life (QOL). 
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1.24 Limitations 

Phosphate levels fluctuate within individuals and have interassay, post 

prandial, diurnal and seasonal variability. No study conducted during the 

routine delivery of dialysis can fully take these variations into account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

  

Symptomatic Fractures in RRT population 
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2.1 Introduction 

Fractures are an important cause of morbidity and mortality in patients on renal 

replacement therapy (RRT) (99). Histological changes of bone disease begin early 

in chronic kidney disease (CKD) but the clinical consequences of bone pain and 

fracture occur mainly in CKD stage 5d.   Features specific to chronic kidney 

disease – mineral bone disease (CKD-MBD) (hyperphosphatemia, diminished 

activation of vitamin D, secondary hyperparathyroidism, elevated fibroblast 

growth factor 23 [FGF-23]) and exposure to medications altering bone 

metabolism in patients with CKD are likely to contribute to fracture risk.  

Markers of chronic kidney disease - mineral bone disease (CKD-MBD) improve 

substantially with successful renal transplant but transplant patients have the 

additional fracture risk associated with steroid induced osteoporosis.  The true 

fracture risk in RRT patients and its association with surrogate markers of CKD-

MBD is poorly defined.  

In a recent report of the temporal trends in fracture risk in a large cohort of 

dialysis patients the incidence of pelvic/hip fractures fell from 29.6/1000 

patient years in year 2000 to 20.6/1000 patient-years in 2009 (100). A systematic 

review looking into fracture risk in kidney transplant recipients, with follow up 

from 1.7 to 5.3 years found a variable incidence rate of 3.3 to 99.6 fractures per 

1000-person years (101). The methods of detecting fracture events, difference in 

fracture definitions used and the fracture sites studied make it difficult precisely 

to define the true incidence and risk factors for fractures in the RRT population.  

2.2 Aims 

The aim of this multicentre observational study was to quantify the incidence of 

radiologically proven bone fracture by anatomical site in prevalent renal 

replacement therapy groups, and study its relationship to potential risk factors.   
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2.3 Material and Methods  

All adults (>18 years of age) prevalent on RRT on 07/07/2010 were identified 

from the West of Scotland electronic patient record.  This prospectively 

maintained database includes all patients managed by the 4 adult renal units 

(National Health Services (NHS) Ayrshire & Arran (n=287), NHS Dumfries & 

Galloway (n=123), NHS Greater Glasgow & Clyde (n=1376) and NHS Lanakshire 

(n=310) at inception) serving the 2.5 million population of the West of Scotland 

and has interfaces that receive all radiology reports from all of the 20 hospital 

radiology departments in the region.  Initial electronic search was performed on 

all reported fractures from 07/07/2010 until 01/08/2013. New fractures were 

identified by reviewing all radiology reports manually (X-ray, computerised 

tomography (CT), magnetic resonance imaging (MRI), ultrasound (USG), nuclear 

medicine scans, angiographic reports and others) and included all radiology 

investigations from date of inception. The clinical indication for the radiological 

examination was used to determine if the fracture was likely new. Where it was 

unclear from the report if the fracture was new or old a previous radiological 

investigation was viewed if available. Fractures reported in this study were 

either symptomatic or incidental findings reported as a part of other radiological 

investigation for a different purpose. From the clinical indication included in the 

radiological reports, the majority of fractures identified were symptomatic. 

This meant that all fractures in the study patients would be identified with the 

exception of fractures occurring outside the region (for example if the patient 

was on vacation elsewhere).  All of these reports were read to identify new 

fracture events.  If multiple anatomically distant sites were involved in one 

incident then they were recorded as separate fracture events.  One of the 4 

renal units joined the West of Scotland renal electronic patient record in 2011 

and so 01/08/2011 was selected as the inception date for RRT patients from this 

centre. Median follow up period was 3.0 years. 

2.3.1 Definition of fractures: 

We based the grouping of anatomical fracture sites on International 

Classification of Disease tenth version (ICD10)  (102) (Table 2-1).  
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Table 2-1 Definitions of fractures in RRT population 

Definition 
 

Includes fractures of  
 

Foot  Toe, metatarsals, calcaneus, os calcis, cuboid, cunieforms 

Tibia Fibula, ankle, malleolus, malleolar, bimalleolar and trimalleolar 

Femur  Shaft of femur, diaphysis and condyles 

Hip Neck of femur, pertronchanteric, intertrochanteric, trochanteric 

and subtronchanteric Pelvis Sacrum, ilium, acetabulum and pubis 

Shoulder  Clavicle, acromion, glenoid process and scapula 

Humerus Elbow, epicondyles and greater tuberosity 

Radius Ulna, wrist and scaphoid 

Hand  Metacarpals etc. 

Skull Face - maxilla, orbit, scaphoid 

Thorax  Ribs and sternum 

Others  Patella  

RRT – renal replacement therapy 
 

2.3.2 Covariates: 

Covariates identified as potential risk factors for fractures were age, sex, 

primary renal diagnosis (PRD), RRT modality, RRT duration, biochemical 

parameters (serum albumin, phosphate, adjusted calcium, alkaline phosphatase, 

intact parathyroid hormone (PTH)), haemoglobin, and medications affecting 

bone metabolism (corticosteroids, cinacalcet, alfacalcidol, calcium and non- 

calcium containing phosphate binders). 

For calculation of biochemical parameters, the average of the last three results 

prior to inception was calculated. The pre-dialysis values performed routinely 

each month were used for patients on haemodialysis (HD).  The ERA-EDTA Coding 

system for Primary Renal Disease and the related web-based PRD search tools 

were used in recording the diagnosis of PRD.  (103) They were grouped as 

familial/hereditary nephropathies, glomerular disease, systemic disease, 

tubulointerstitial disease and diabetes.  
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2.3.3 Statistical analysis: 

Follow up continued until the date of death or date of last recorded serum 

laboratory result in the electronic record before 4th September 2013. The 

incidence of fracture was expressed as the total number of fractures per 1000 

patient years of follow up. Patient baseline characteristics and fracture risk 

ratio were compared between RRT modalities.  Risk for sub-groups was the total 

number of fractures divided by the total follow up time in that group and risk 

ratios with 95% confidence intervals calculated to compare groups.  

Actuarial time to first fracture was calculated by Kaplan Meier survival method 

and log rank test applied to determine statistical differences between RRT 

groups. Censor date was time to first fracture, death or lost to follow up. 

Survival analyses were studied for different fracture groups: ‘all fractures’, hip 

fractures, pelvic fractures and major fractures (femur, hip and pelvic fractures 

combined).  

Cox- proportional hazard models were constructed with time to first fracture as 

the dependent outcome. The hazard ratio (HR) for fractures was estimated for 

each covariate in the univariable model.    All covariates in the univariable 

model were selected for the multivariable model. Further multivariable models 

were created in the same way for the renal transplant (RT), HD and PD groups 

separately. 

Statistical analysis was performed using SPSS version 21 (IBM Corp., New York, 

USA).  P values <0.05 were regarded as statistically significant. 

2.3.4 Ethics review:  

This study involved anonymous, observational, electronic data collection and thus 

no ethics approval or informed consent was sought.  
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2.4 Results 

2.4.1 Patient characteristics: 

2096 patients on RRT at the start of the study. 907 were on HD, 108 on 

peritoneal dialysis (PD) and 1081 had a functioning RT. Mean age at inception 

was 55.7 years (50.4 years RT and 61.8 years HD group). Median duration of 

subsequent follow up was RT 1112 days (range 8-1155), HD 1086 days (range 1 – 

1155) and PD 1126 days (range 13-1155).  Patient characteristics at study 

inception are shown in table 2-2. As expected, mean serum phosphate, PTH and 

alkaline phosphatase were lowest in the RT group and this group also had the 

highest haemoglobin concentration.  Prevalent corticosteroid use was highest in 

the RT group, and prevalent phosphate binder and activated vitamin D use 

highest in the HD group.   
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Table 2-2 Baseline characteristics at inception in RRT population 

  RT HD PD Total 

Number (%) 1081(51.6) 907(43.3) 108(5.2) 2096 
Females, n (%) 442 (40.9) 375 (41.3) 54 (6.2) 871 (41.6) 
Age, years±2SD 50.4±13.3 61.8±15.8 57.9±15.3 55.7±15.6 
Age Groups, n (%)     

16-44 years 360 (33.3) 151 (16.6) 21(19.4) 532 
45-64 years 568 (52.5) 338 (37.3) 51(47.2) 957 (45.7) 
65-74 years 124 (11.5) 201 (22.2) 21(19.4) 346 (16.5) 
>75 years 29 (2.7) 217 (23.9) 15 (13.9) 261 (12.5) 
Total 1081 907 108 2096 

RRT Vintage, n (%)     
0-1 year 28(2.6) 324(35.7) 53 (49.1) 405(19.3) 
2-5 years 180 (16.7) 333 (36.7) 37(34.3) 550(26.2) 
6-10 years 250 (23.1) 121(13.3) 10 (9.3) 381(18.2) 
11-20 years 369 (34.1) 71(7.8) 5 (4.6) 445(21.2) 
>20 years 254 (23.5) 58(6.4) 3(2.8) 315(15) 

Primary Renal Diagnosis, n (%)*     
Tubulointerstitial disease  181(27.2) 104(18.2) 8(16.3) 293(22.8) 
Systemic disease  35(5.3) 68(11.9) 3(6.1) 106(8.2) 
Miscellaneous disease 105 (15.8) 113(19.8) 9(18.4) 227(17.7) 
Glomerular disease 205(30.8) 131(23.0) 10(20.4) 346(26.9) 
Familial/hereditary 

nephropathies  

113(17.0) 56(9.8) 8(16.3) 177(13.8) 
Diabetes 27(4.1) 98(17.2) 11(22.4) 136(10.6) 

Blood lab, Average (SD)     
Phosphate (mmol/L) 0.98 (0.25) 1.42 (0.44) 1.53 (0.44) 1.2 (0.42) 
Adjusted Calcium (mmol/L) 2.45 (0.16) 2.37 (0.17) 2.42 (0.18) 2.41(0.17) 
Alkaline Phosphatase (U/L) 96.7 (60.48) 131.12 

(113.6) 

135.87 

(74.96) 

113.64 

(91.48) 
Albumin (g/L) 38.85 (4.91) 34.26 (5.33) 36.92(5.1) 36.65 (5.59) 
Parathyroid hormone (pmol/L) 28.38 

(26.44) 

41.11(28.27) 39.86 

(28.49) 

37.3 (28.32) 
Hemoglobin (g/L) 117.48 

(26.87) 

98.97 

(20.85) 

108.32 

(20.55) 

108.57 

(25.78) 
Medication exposure at baseline, 

n(%) 

    
Corticosteroid 996 (92.14) 70 (7.72) 6 (5.56) 1072 

(51.15) 
Cinacalcet 28 (2.59) 110 (12.13) 5(4.63) 143 (6.82) 
Alfacalcidol 220 (20.35) 663 (73.10) 29(26.85) 912 (43.51) 
Alucaps 14 (1.30) 59 (6.50) 7 (6.48) 80(3.82) 
CCPB 48 (4.44) 250 (27.56) 12 (11.11) 310 (14.79) 
Lanthanum 6 (0.56) 156 (17.20) 7 (6.48) 169 (8.06) 
Sevelamer 27 (2.50) 283 (31.20) 22 (20.37) 332 (15.84) 

CCPB, calcium containing phosphate binder; HD, haemodialysis; n, number of patients; PD, 
peritoneal dialysis; RRT, renal replacement therapy; RT, renal transplant; SD, standard 
deviation * Data for Primary renal diagnosis available for 1285 (61.3%) 
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2.4.2 Incidence of fractures 

There were 340 fractures in the three-year study period with an overall 

incidence of 62.8 per 1000 patient years. The incidences were 37.6, 99.2, and 

57.6 per 1000 patient years in the RT, HD and PD groups respectively (p<0.05). 

Radial, foot and hip fractures were the 3 commonest sites (n=53, 47 and 46 

respectively). Fractures at other sites are illustrated in Table 2-3.  

The risk ratio (RR) of fracture in HD group compared to RT was 2.60, (95% CI: 

2.59- 2.61), and in HD compared to PD was 1.70 (95% CI: 1.68-1.70) for all 

fracture types.  

Table 2-3 Absolute number of radiological fractures in RRT population 

RRT patients  RT  HD PD  Total 

Number 1081 907 108 2096 
Fractures n (%)     

Foot  24 (2.2) 21 (2.3) 2 (1.9) 47 
Tibia 14 (1.3) 23 (2.5)  3 (2.8) 40 
Femur 7 (0.6) 6 (0.7) 1 (0.9) 14 
Hip 12 (1.1) 32 (3.5) 2 (1.9) 46 
Pelvis 3 (0.3) 12 (1.3) 2 (1.9) 17 
Vertebrae 9 (0.8) 29 (3.2) 0 38 
Shoulder 2 (0.2) 11 (1.2) 0 13 
Humerus 5 (0.5) 10 (1.1) 0 15 
Radius 19 (1.8) 32 (3.5) 2 (1.9) 53 
Hand 12 (1.1) 12 (1.3) 2 (1.9) 26 
Skull 3 (0.3) 1 (0.1) 0 4 
Thorax 2 (0.2) 20 (2.2) 1 (0.9) 23 
Others 1 (0.1) 2 (0.2) 1 (0.9) 4 

Total  113 211 16 340 

HD, haemodialysis; n, number of patients; PD, peritoneal dialysis; RRT, renal replacement 
therapy; RT, renal transplant 
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2.4.3 Univariable analysis 

Figure 2-1 shows Kaplan Meier cumulative hazard plots for first fracture based on 

RRT modality. Patients with RT had lower risks than HD and PD for all fractures 

(median time 492, 464 and 588 days for RT, HD and PD respectively). 

Sub-analysis of time to first hip fracture, pelvic fracture, and ‘all major 

fractures’ (hip, pelvis and femoral studied cumulatively as a group) showed 

similar results (figure 2-2 to 2-4).   

This risk difference was not seen for femoral fractures (p=0.77) (figure 2-5).
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Figure 2-1 Kaplan Mier curves for time to 1st fracture (includes ‘all fractures’) based on RRT 
modality (p<0.001, log rank test) 

 
 

RT 1080 1002 904 602 

HD 906  724 566 373 

PD 107 94 77 53 

 
HD, haemodialysis; PD, peritoneal dialysis; RT, renal transplant 
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Figure 2-2 Kaplan Mier curves for time to 1st fracture (Hip) based on RRT modality (p<0.001, 
log rank test) 

 
 
RT 1080 1038 953 653 

HD 906  772 634 440 

PD 107 99 85 61 

 
HD, haemodialysis; PD, peritoneal dialysis; RT, renal transplant 
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Figure 2-3 Kaplan Mier curves for time to 1st fracture (Pelvis) based on RRT modality 
(p=0.01, log rank test) 

 
 
RT 1080 1038 958 661 

HD 906  775 638 445 

PD 107 98 85 62 

 
HD, haemodialysis; PD, peritoneal dialysis; RT, renal transplant 
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Figure 2-4 Kaplan Mier curves for time to 1st fracture (includes cumulative of 
Hip/Pelvis/Femur)) based on RRT modality (p<0.001, log rank test) 

 
 
RT 1080 1033 949 647 

HD 906  768 626 431 

PD 107 98 83 59 

 
HD, haemodialysis; PD, peritoneal dialysis; RT, renal transplant 
 



83 
 
 
Figure 2-5 Kaplan Mier curves for time to 1st fracture (Femur) based on RRT modality 
(p=0.771, log rank) 

 
 
RT 1080 1036 954 657 

HD 906  777 643 448 

PD 107 99 85 62 
 
HD, haemodialysis; PD, peritoneal dialysis; RT, renal transplant
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In the univariable analysis age (HR 1.03 per year), female gender (HR 1.60), HD 

(HR 2.58), diabetes PRD (HR 2.38), serum phosphate (HR 1.73 per mmol/L), 

alkaline phosphatase (HR 1.0 per IU/mL), haemoglobin (HR 1.0 per g/L) and 

exposure to sevelamer (HR 1.59) were associated with significantly reduced time 

to first fracture. (p<0.05) (Table 2-4 below) 

Table 2-4 Unadjusted risk of bone fractures among RRT population  

  
Unadjusted  
(All RRT Groups)     

 HR 95.0% CI   p value 
    Lower Upper   

Age (years) 1.03 1.02 1.04 <0.05 
Female 1.60 1.26 2.04 <0.05 
RRT Modality     

RT Reference    
HD 2.58 1.99 3.33 <0.05 
PD 1.57 0.88 2.80 0.13 

RRT Vintage in years 0.97 0.95 0.98 <0.05 
Primary Renal diagnosis     

Familial/hereditary nephropathy  Reference    
Tubulointerstitial disease 1.09 0.64 1.85 0.75 
Systematic 1.04 0.51 2.10 0.92 
Miscellaneous 1.16 0.67 2.00 0.60 
Glomerular disease  0.71 0.41 1.23 0.22 
Diabetes 2.38 1.38 4.11 <0.05 

Biochemistry     

Phosphate (mmol/l) 1.73 1.33 2.24 <0.05 
corrected Calcium (mmol/l) 0.89 0.43 1.84 0.76 
Alkaline phosphatase (U/l) 1.00 1.00 1.00 <0.05 
corrected albumin (g/l) 0.93 0.91 0.95 <0.05 
Parathyroid hormone (pmol/l) 1.00 1.00 1.01 0.12 
Haemoglobin (g/dl) 1.00 0.99 1.00 <0.05 

Medication exposure         
Steroid 0.46 0.36 0.59 <0.05 
Cinacalcet 1.24 0.79 1.93 0.35 
Alfacalcidol 1.20 0.95 1.53 0.13 
Alucaps 0.97 0.50 1.89 0.93 
CCPB 1.22 0.88 1.68 0.24 
Lanthanum 1.02 0.65 1.61 0.94 
Sevelamer 1.59 1.19 2.12 <0.05 

CCPB, calcium containing phosphate binders; Co., corrected; CI, confidence interval; HD, 
haemodialysis; HR, Hazard ratio; PD, peritoneal dialysis; PTH, parathyroid hormone; RRT, 
renal replacement therapy; RT, renal transplant



85 
 
2.4.4 Multivariable model of all RRT groups: 

In the multivariable model including all RRT groups (table 2-5), age (HR 1.02, 

p=0.002) and HD (HR 5.25, p<0.001) were independently associated with 

increased risk of fractures and glomerular disease PRD (HR 0.42, p=0.017), 

increasing serum albumin (HR 0.96 per g/L, p=0.06) and being on alfacalcidol 

(HR=0.51, p=0.001) or lanthanum (HR 0.41, p=0.002) at inception were 

associated with decreased risk.  

Table 2-5 Adjusted risk of bone fractures among all RRT population  

  Adjusted (All RRT Groups)     

 HR 95.0% CI  p value 
    Lower Upper   

Age (years) 1.02 1.01 1.04 <0.05 
Female 1.16 0.80 1.68 0.42 
RRT Modality     

RT     
HD 5.25 2.12 12.99 <0.05 
PD 2.64 0.80 8.72 0.11 

RRT Vintage in years 1.01 0.98 1.04 0.46 
Primary Renal diagnosis     

Familial/hereditary nephropathy  Reference    
Tubulointerstitial disease 1.28 0.68 2.41 0.45 
Systemic 0.58 0.25 1.32 0.19 
Miscellaneous 0.95 0.50 1.81 0.87 
Glomerular disease 0.42 0.21 0.86 <0.05 
Diabetes 1.37 0.70 2.67 0.36 

Biochemistry     

Phosphate (mmol/l) 1.47 0.92 2.35 0.11 
corrected Calcium (mmol/l) 1.76 0.56 5.52 0.33 
Alkaline phosphatase (U/l) 1.00 1.00 1.00 0.10 
corrected albumin (g/l) 0.96 0.93 1.00 0.06 
Parathyroid hormone (pmol/l) 1.00 0.99 1.00 0.30 
Haemoglobin (g/dl) 1.01 1.00 1.02 0.30 

Medication exposure         
Steroid 1.49 0.75 2.96 0.25 
Cinacalcet 0.83 0.43 1.58 0.56 
Alfacalcidol 0.51 0.34 0.76 <0.05 
Alucaps 0.91 0.45 1.85 0.79 
CCPB 0.78 0.49 1.23 0.28 
Lanthanum 0.41 0.19 0.88 <0.05 
Sevelamer 0.84 0.53 1.32 0.45 

CCPB, calcium containing phosphate binders; Co., corrected; CI, confidence interval; HD, 
haemodialysis; HR, Hazard ratio; PD, peritoneal dialysis; PTH, parathyroid hormone; RRT, 
renal replacement therapy; RT, renal transplant
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2.4.5 Multivariable model of HD group: 

In a multivariable model of only HD patients age (HR 1.03, p=0.003) was 

independently associated with reduced time to first fracture and glomerular 

disease PRD (HR 0.36, p=0.026), increasing serum albumin (HR 0.95 per g/L, p 

=0.041) and being on alfacalcidol (HR =0.54, p=0.008) or lanthanum (HR 0.46, 

p=0.05) at inception were associated with decreased risk. (Table 2-6) 

Table 2-6 Adjusted risk of bone fractures among HD population  

  Adjusted (HD)     

 HR 95.0% CI  p value 
    Upper Lower   

Age (years) 1.03 1.01 1.04 <0.05 
Female 1.10 0.73 1.68 0.64 
RRT Vintage in years 1.01 0.98 1.05 0.53 
Primary Renal diagnosis     

Familial/hereditary nephropathy  Reference    
Tubulointerstitial disease 1.46 0.67 3.14 0.34 
Systemic 0.66 0.26 1.65 0.37 
Miscellaneous 0.96 0.44 2.11 0.92 
Glomerular disease 0.36 0.15 0.88 <0.05 
Diabetes 1.38 0.62 3.07 0.43 

Biochemistry     

Phosphate (mmol/l) 1.38 0.81 2.34 0.24 
corrected Calcium (mmol/l) 0.79 0.22 2.79 0.71 
Alkaline phosphatase (U/l) 1.00 1.00 1.00 0.08 
corrected albumin (g/l) 0.95 0.91 1.00 <0.05 
Parathyroid hormone (pmol/l) 1.00 0.99 1.01 0.59 
Haemoglobin (g/dl) 1.01 1.00 1.02 0.18 

Medication exposure         
Steroid 1.54 0.72 3.28 0.27 
Cinacalcet 0.80 0.40 1.60 0.52 
Alfacalcidol 0.54 0.34 0.85 <0.05 
Alucaps 0.98 0.48 2.03 0.96 
CCPB 0.76 0.47 1.25 0.28 
Lanthanum 0.46 0.21 1.00 0.05 
Sevelamer 0.88 0.54 1.42 0.59 

CCPB, calcium containing phosphate binders; Co., corrected; CI, confidence interval; HD, 
haemodialysis; HR, Hazard ratio; PD, peritoneal dialysis; PTH, parathyroid hormone; RRT, 
renal replacement therapy; RT, renal transplant
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2.4.6 Multivariable model of transplant group: 

In a multivariable model in transplant patients there were no significant 

independent associations of baseline co-variates with time to first fracture. 

(Table 2-7 below) 

Table 2-7 Adjusted risk of bone fractures among RT population  

  Adjusted (RT)     

 HR 95.0% CI   p value 
    Lower Upper   

Age (years) 1.02 0.98 1.06 0.38 
Female 1.77 0.59 5.25 0.31 
RRT Vintage in years 1.01 0.95 1.07 0.77 
Primary Renal diagnosis     

Familial/hereditary nephropathy  Reference    
Tubulointerstitial disease 1.24 0.27 5.77 0.79 
Systematic 0.00 0.00 . 0.99 
Miscellaneous 2.00 0.50 8.02 0.33 
Glomerular disease  0.62 0.14 2.76 0.53 
Diabetes 1.02 0.07 . 0.99 

Biochemistry     

Phosphate (mmol/l) 2.90 0.37 . 0.31 
corrected Calcium (mmol/l) . 0.65 . 0.08 
Alkaline phosphatase (U/l) 1.00 0.99 1.01 0.79 
corrected albumin (g/l) 0.94 0.84 1.05 0.24 
Parathyroid hormone (pmol/l) 0.98 0.95 1.02 0.36 
Haemoglobin (g/dl) 0.99 0.97 1.02 0.59 

Medication exposure         
Steroid . 0.00 . 0.99 
Cinacalcet 0.00 0.00 . 0.99 
Alfacalcidol 0.18 0.02 1.48 0.11 
Alucaps 0.00 0.00 . 0.99 
CCPB 2.22 0.16 . 0.55 
Lanthanum 0.00 0.00 . 1.00 
Sevelamer 0.00 0.00 . 0.99 

CCPB, calcium containing phosphate binders; Co., corrected; CI, confidence interval; HD, 
haemodialysis; HR, Hazard ratio; PD, peritoneal dialysis; PTH, parathyroid hormone; RRT, 
renal replacement therapy; RT, renal transplant



88 
 
2.4.7 Multivariable model of PD group: 

In a multivariable model in PD patients there were no significant independent 

associations of baseline co-variates with time to first fracture. (Table 2-8 below) 

Table 2-8 Adjusted risk of bone fractures among PD population 

  Adjusted (PD)     

 HR 95.0% CI  p value 

  Lower Upper  
          
Age (years) 0.54 0.00 1189.72 0.87 
Female 9.70 0.00 . 0.98 
RRT Vintage in years 1.00 0.97 1.03 0.89 
Primary Renal diagnosis     

Tubulointerstitial disease    1.00 
Familial/hereditary 

nephropathy 0.00 0.00 . 0.92 
Glomerular disease 0.00 0.00 . 0.82 
Miscellaneous 0.00 0.00 . 0.93 
Systematic 0.00 0.00 . 0.93 
Diabetes . 0.00 . 0.88 

Biochemistry         
Phosphate (mmol/l) . 0.00 . 0.89 
corrected Calcium (mmol/l) . 0.00 . 0.85 
Alkaline phosphatase (U/l) 0.95 0.30 3.04 0.94 
corrected albumin (g/l) 0.49 0.00 . 0.96 
Parathyroid hormone (pmol/l) 0.86 0.00 18542.73 0.98 
Haemoglobin (g/dl) 1.01 0.02 46.81 1.00 

Medication exposure         
Steroid 2401.68 0.00 . 0.94 
Cinacalcet . 0.00 . 0.79 
Alfacalcidol 20.11 0.00 . 0.98 
Alucaps . 0.00 . 0.80 
CCPB 891.69 0.00 . 0.89 
Lanthanum 0.00 0.00 . 0.88 
Sevelamer . 0.00 . 0.91 

CCPB, calcium containing phosphate binders; Co., corrected; CI, confidence interval; HD, 
haemodialysis; HR, Hazard ratio; PD, peritoneal dialysis; PTH, parathyroid hormone; RRT, 
renal replacement therapy; RT, renal transplant
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2.5 Centre effect in univariable & multivariable analysis  

We further analysed the data to see if there was a centre effect in the 

multivariable analysis but the results do not change.  (Table 2-9 to 2-11)  

Table 2-9 Unadjusted risk of bone fractures among RRT population with Centre effect 

   Unadjusted   
 (All RRT Groups)   
 HR 95.0% CI  p value 

  Lower Upper  
Age (years) 1.02 1.01 1.04 0.00 
Female 1.16 0.80 1.67 0.44 
RRT Modality         

RT Reference    
HD 5.00 2.01 12.44 <0.001 
PD 2.46 0.74 8.17 0.14 

RRT Vintage in years 1.00 1.00 1.00 0.61 
Primary Renal diagnosis     

Familial/hereditary nephropathy Reference   0.00 
Tubulointerstitial disease 1.34 0.71 2.54 0.37 
Systematic 0.61 0.27 1.41 0.25 
Miscellaneous 1.01 0.53 1.96 0.97 
Glomerular disease 0.44 0.22 0.90 0.02 
Diabetes 1.45 0.74 2.84 0.28 

Biochemistry         
Phosphate (mmol/l) 1.45 0.90 2.35 0.13 
corrected Calcium (mmol/l) 1.95 0.60 6.32 0.27 
Alkaline phosphatase (U/l) 1.00 1.00 1.00 0.08 
corrected albumin (g/l) 0.95 0.91 1.00 0.03 
Parathyroid hormone (pmol/l) 1.00 0.99 1.00 0.36 
Haemoglobin (g/dl) 1.01 1.00 1.02 0.13 

Medication exposure         
Steroid 1.51 0.76 3.00 0.24 
Cinacalcet 0.79 0.41 1.53 0.49 
Alfacalcidol 0.52 0.35 0.79 0.00 
Alucaps 0.95 0.47 1.93 0.88 
CCPB 0.81 0.51 1.31 0.40 
Lanthanum 0.40 0.19 0.88 0.02 
Sevelamer 0.90 0.56 1.45 0.66 

RRT Centre         
A Reference    
B 1.29 0.48 3.45 0.62 
C 2.35 0.70 7.83 0.17 
D 1.46 0.66 3.23 0.36 

CCPB, calcium containing phosphate binders; Co., corrected; CI, confidence interval; HD, 
haemodialysis; HR, Hazard ratio; PD, peritoneal dialysis; PTH, parathyroid hormone; RRT, 
renal replacement therapy; RT, renal transplant 
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Table 2-10 Adjusted risk of bone fractures among RT population with centre effect 

  Adjusted (RT)     

 HR 95.0% CI  p value 

  Lower Upper  
          
Age (years) 1.02 0.98 1.06 0.41 
Female 1.92 0.63 5.81 0.25 
RRT Vintage in years 1.00 1.00 1.00 0.74 
Primary Renal diagnosis     

Familial/hereditary nephropathy  Reference  0.68 
Tubulointerstitial disease 1.29 0.28 6.07 0.75 
Systematic 0.00 0.00 . 0.93 
Miscellaneous 2.27 0.55 9.44 0.26 
Glomerular disease 0.68 0.15 3.00 0.61 
Diabetes 1.10 0.07 16.81 0.94 

Biochemistry         
Phosphate (mmol/l) 3.48 0.40 29.92 0.26 
corrected Calcium (mmol/l) 25.78 0.46 1440.45 0.11 
Alkaline phosphatase (U/l) 1.00 0.99 1.01 0.78 
corrected albumin (g/l) 0.94 0.83 1.08 0.38 
Parathyroid hormone (pmol/l) 0.98 0.95 1.02 0.35 
Haemoglobin (g/dl) 0.99 0.96 1.03 0.69 

Medication exposure         
Steroid 6371.88 0.00 . 0.93 
Cinacalcet 0.00 0.00 . 0.93 
Alfacalcidol 0.17 0.02 1.42 0.10 
Alucaps 0.00 0.00 . 0.94 
CCPB 1.87 0.13 27.28 0.65 
Lanthanum 0.00 0.00 . 0.98 
Sevelamer 0.00 0.00 . 0.93 

RRT Centre    0.95 
A Reference    
B 24800.17 0.00 . 0.96 
C 10715.33 0.00 . 0.96 
D 14504.17 0.00 . 0.96 

CCPB, calcium containing phosphate binders; Co., corrected; CI, confidence interval; HD, 
haemodialysis; HR, Hazard ratio; PD, peritoneal dialysis; PTH, parathyroid hormone; RRT, 
renal replacement therapy; RT, renal transplant 
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Table 2-11 Adjusted risk of bone fractures among HD population with centre effect 

  Adjusted (HD)      
HR 95.0% CI 

 
p value   

Lower Upper 
 

          
Age (years) 1.03 1.01 1.04 <0.001 
Female 1.07 0.70 1.63 0.76 
RRT Vintage in years 1.00 1.00 1.00 0.76 
Primary Renal diagnosis 

    

Familial/hereditary nephropathy Reference 
 

0.01 
Tubulointerstitial disease 1.53 0.70 3.32 0.28 
Systematic 0.72 0.28 1.81 0.48 
Miscellaneous 1.06 0.48 2.35 0.89 
Glomerular disease 0.39 0.16 0.97 0.04 
Diabetes 1.50 0.67 3.37 0.33 

Biochemistry         
Phosphate (mmol/l) 1.34 0.78 2.31 0.29 
corrected Calcium (mmol/l) 0.86 0.24 3.17 0.83 
Alkaline phosphatase (U/l) 1.00 1.00 1.00 0.06 
corrected albumin (g/l) 0.94 0.90 0.99 0.02 
Parathyroid hormone 

(pmol/l) 
1.00 0.99 1.01 0.70 

Haemoglobin (g/dl) 1.01 1.00 1.03 0.07 
Medication exposure         

Steroid 1.58 0.74 3.37 0.24 
Cinacalcet 0.77 0.38 1.55 0.46 
Alfacalcidol 0.56 0.35 0.90 0.02 
Alucaps 1.05 0.51 2.17 0.90 
CCPB 0.81 0.49 1.35 0.42 
Lanthanum 0.46 0.21 1.02 0.06 
Sevelamer 0.95 0.57 1.59 0.85 

RRT Centre 
   

0.38 
A 

 
Reference 

  

B 2.95 0.62 14.15 0.18 
C 1.36 0.45 4.09 0.58 
D 0.84 0.29 2.49 0.76 

CCPB, calcium containing phosphate binders; Co., corrected; CI, confidence interval; HD, 
haemodialysis; HR, Hazard ratio; PD, peritoneal dialysis; PTH, parathyroid hormone; RRT, 
renal replacement therapy; RT, renal transplant 
 

There was no meaningful data for the PD population due to small numbers.  
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2.6 Discussion 

2.6.1 Summary of findings 

Our study is the first that analyses all radiologically proven fractures 

whether hospitalised or not in patients on all RRT modalities.  We found 

that incidence of fracture of 62.8 per 1000 patient years is almost double 

that reported in a self-reported health survey from 2002 to 2004 in a sample 

representative of the general population in England (104) and within the 

wide range of 3.3 to 99.6 per 1000 patient years in previous reports in the 

RT population.  (101) We found that relative risk of fractures in RT patients 

was substantially lower compared to the dialysis population. This association 

remained even when adjusting for associated risk factors including the 

younger age of transplant patients. Increasing age was independently 

associated with increased risk of fracture, while prescription of alfacalcidol 

or lanthanum at baseline was associated with reduced risk and there were 

no associations with baseline measures of CKD-MBD. The reduced incidence 

of fractures seen in the RT group is partly explained by selection bias, as the 

RT population is a healthier population while the HD population was from an 

older age group with increased frailty and thus potentially increased risks of 

fall. However even when attempting to adjust for known risk factors, the 

incidence in RT was reduced compared with dialysis patients despite the 

likely osteopenic effects of corticosteroids in this population. 

2.6.2 Lanthanum & its protective role 

CKD is typically associated with hyperphosphatemia, hypocalcemia, 

increased PTH, reduced activation of Vitamin D, inactivated Vitamin D 

deficiency and uremia. These abnormalities result in abnormal micro-

architectural bone changes, both at cortical and trabecular level (105,106) 

leading to renal osteodystrophy. Cortical bone plays a key role in providing 

mechanical strength,  (107,108) thus any changes in structure increases risks 

of fracture. Lanthanum carbonate, a non-calcium containing phosphate 

binder has been demonstrated to improve renal osteodystrophy compared to 
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other phosphate binders.  (109) It increases mineralisation at the periosteal 

surface and improves bone mass in HD patients with adynamic bone disease.  

(110) This has been proposed to reduce fracture risk and our data provide 

some support for this with lanthanum use at the time of study inception 

being independently associated with reduced fracture risk.  (109,110) 

Further exploration of this hypothesis would require detailed analysis of 

total exposure to phosphate binders, which was beyond the scope of this 

study. It is unlikely that a randomised controlled study of sufficient power 

will ever be conducted to test the hypothesis that lanthanum reduces 

fracture risk compared with other phosphate binders.  In our cohort 

lanthanum exposure was not random but was determined by physician and 

patient preference.  The effect of lanthanum was not seen in the RT group 

but that is likely explained by the fact that few patients in the RT group 

were on phosphate binders. It is not possible to draw firm conclusions about 

this potentially protective role of lanthanum as it may be a mere statistical 

association.  

Incident vertebral fractures were identified in 3.2% of our HD cohort in 

comparison to a prevalence of 55.3% in a study of 387 patients across 18 

dialysis centres in Italy by Fusaro et al. The authors in the study determined 

prevalence of historical vertebral fractures in HD patients, irrespective of 

symptoms identified radiologically using specialised, quantitative vertebral 

morphology software (MorphoXPress) whereas we identified mainly the 

incidence of new symptomatic fractures.  (111) The marked difference in 

incidence and prevalence may be a consequence of many vertebral fractures 

being asymptomatic. There may be other explanations such as the 

demographics of the individuals studied or differences in their dialysis and 

medication prescriptions. 

2.6.3 Role of Cinacalcet 

A recent secondary analysis of the Evaluation of Cinacalcet to Lower 

Cardiovascular Events (EVOLVE) trial in HD patients revealed an incidence of 

fractures of 47 per 1000 patient years in the placebo arm (78) compared 
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with 99.2 in our HD cohort. This may be explained by lower median age in 

the placebo arm compared to our HD group (54.4 v 63.3 years), exclusion of 

patients with unstable medical conditions in the EVOLVE trial and fractures 

being identified by patient-reported clinical events from study centres.  

(59,78) Cinacalcet use was associated with a 16-29% reduction in 

fracture.   (78) No significant association between fracture and cinacalcet 

were identified though only 12.1% of the HD cohort were on cinacalcet at 

study inception. 

2.6.4 Role of Vitamin D 

The role of Vitamin D supplementation in patients with CKD and fracture 

prevention is not yet established. Vitamin D administration is associated 

with increased bone strength in animal models (112) and a prospective, 

randomised, placebo-controlled double blind study showed improved bone 

mineral density (BMD) assessed by dual energy X-ray absorptiometry (DEXA) 

with lowering of plasma PTH levels. (113) Although BMD assessment by DEXA 

in patients with ESRD has limitations (69,114) the reduced fracture risk in 

HD patients receiving vitamin D in this study supports the putative 

protective role of activated Vitamin D in preventing fractures in the HD 

population.  

2.6.5 Role of PTH 

The Dialysis Outcome and Practice Patters Study II suggested high PTH levels 

might be an independent risk factor for fractures in haemodialysis patients. 

(115) PTH concentrations have a U-shaped relationship with vertebral and 

hip fractures with no associations for a pelvic fracture.  (116) In contrast our 

results were more consistent with the USRDS Wave 1 data (117), which did 

not find any such association of fractures with PTH levels.  

2.6.6 Albumin & fractures 

Our data are also consistent with previous reports that have shown 

association between risk of fractures in the HD population with lower serum 
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albumin (115) and no significant fracture association with serum calcium 

and phosphate.  (116) The albumin level could be a surrogate marker for the 

level of co-morbidity in the population. 

It is interesting that we found no higher fracture incidence in females unlike 

other reports in the RRT and general population.  (66,67,115,117) No clear 

reason for this can be identified at this stage. 

2.7 Limitations:  

We did not include factors such as race, body mass index, smoking status 

and ethnicity, which have previously been associated with fracture risks as 

these data were not available, and nearly all patients were Caucasian. PRD 

was available for only 1285 patients, which reduced the power of the 

analysis of this particular association. Exposure to medications was based on 

the data collected at the point of entry and did not account for cumulative 

exposure before and after study inception. We may have failed to detect a 

genuine association between fracture risk and factors such as haemoglobin 

and phosphate because adherence to treatment guidelines keep these 

factors within relatively narrow ranges meaning that the conclusions are 

limited to the ranges studied.   We did not evaluate the role of previous RRT 

modality (other than total duration on RRT before study), previous 

fractures, reason for receiving a particular phosphate binder and exposure to 

other potentially relevant medication such heparin. Incidental or silent 

fractures may have been missed. These limitations are inherent to 

observational studies of large prevalent cohorts.   

Despite these limitations the large population studied from multiple 

centres, absence of exclusions, access to all radiological reports and 

averaging of laboratory variables over 3 consecutive readings make our 

conclusions relevant to patients and clinicians and the data could be used to 

inform the power calculations of interventional prevention studies.  
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2.8 Conclusion 

The risk of symptomatic bone fracture is high in RRT patients and is 

approximately 2.5 times higher in HD than in RT patients with the increased 

risk being independent of baseline factors. In PD the risk was 1.5 times than 

in RT but this did not reach statistical significance, possibly due to small 

patient numbers. Fracture risk increases with age and lower serum albumin 

and is reduced if the PRD is glomerular disease.   The possible protective 

role of Vitamin D and lanthanum in HD patients deserves further 

exploration. It is clear that the morbidity associated with fractures is a 

significant factor in all forms of RRT and preventative measures deserve to 

be considered when assessing the quality of RRT delivered. 
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Thrice weekly nocturnal in - centre HDF  

 



98 
 
3.1 Introduction: 

Patients undergoing conventional 4 hour dialysis sessions three times per week 

exhibit excess mortality that is four times higher than that of the general 

population for patients under 30, and six times that of the general population 

for patients above 65.  (118) This increased mortality has been attributed to low 

dialysis dose,  (119) but two large randomised controlled trials have failed to 

show any survival benefit for patients receiving a larger dialysis dose.  (120,121)  

In an effort to improve outcomes, multiple treatment schedules have been 

utilised. Online hemodiafiltration (OL-HDF), which combines diffusion and 

convection, has grown in popularity over the last 20 years. This provides 

enhanced clearance of toxins (122,123) increased hemodynamic stability (124), 

and better quality of life.  (125) The use of more frequent dialysis has also been 

shown to be beneficial (126,127) .The advantages in bone mineral profile 

(128,129), blood pressure control (130), patient experience and improved 

mortality(131) in programs with extended hours dialysis has been well 

demonstrated. This is often not an acceptable alternative for patients, and few 

of the studies of extended hours dialysis are based in centre, as the majority of 

patients in these studies undertake nocturnal dialysis at home.  

The use of convective therapy in combination with extended hours dialysis has 

been shown to be beneficial (132), but is not frequently described. 

This project was set up as an exercise allowing evaluation of small solute 

clearance by combining convection with long hours dialysis in a thrice-weekly 

hospital setting. This seemed an excellent compromise for patients who cannot 

have home dialysis but wanted to benefit from having extended hours. The 

frequency was kept at thrice-weekly due to patient preference.  

3.2 Methods 

A single-centred, prospective analysis of patients’ electronic records was 

performed for a two-year period. Patients were self -selected with no stipulated 

exclusion criteria apart from patients needing to have their own transport due to 
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the timing of commencement and cessation of treatment. Only ten patients 

initially came forward.  

The duration of haemodiafiltration was increased from a median of 4.5 hours to 

8 hours. Dialysis adequacy, biochemical parameters and medications were 

reviewed on a monthly basis. A reduction in plasma phosphate was anticipated 

so all phosphate binders were stopped.  

3.2.1 Patient characteristics 

During the period fourteen patients, 13 male and 1 female started nocturnal OL-

HDF with over 2000 sessions of dialysis.  Mean age was 45.2 ± 13.1 years (range 

23.8 – 66.2) and renal replacement treatment (RRT) vintage was 42.34 ± 40.62 

months (range 6.61 –116.94). All patients were on regular OL-HDF for at least six 

months; mean 30.93 ± 27.68 months, (range 6.67 – 93.44) prior to conversion to 

the nocturnal regime. 

The cause of end-stage renal disease was pyelonephritis/interstitial nephritis, 

Alports disease, haemolytic uremic syndrome, reflux nephropathy, membranous 

nephropathy, renovascular disease (1 patient each); adult polycystic kidney 

disease, IgA nephropathy, rapid progressive glomerulonephritis and unknown 

causes (2 patients each). All patients except one had a native arterio-venous 

fistula. Drop out reasons prior to 12 months were planned change in modality (1 

patient), transplantation (3 patients) or lifestyle choice (1 patient). 

3.2.2 Nocturnal treatment regime 

Patients on standard 4- 5 hours thrice weekly OL-HDF were switched to 7-8 hours 

thrice weekly nocturnal OL-HDF. Patients were dialysed using a Fresenius 5008 

machine and a Gambro Polyflux dialyser, without reuse. The blood flow (Qb) was 

reduced to 200ml/min and dialysate flow (Qd) was reduced to 300ml/min. All 

patients continued on post-dilution OL-HDF with a dialysate calcium 

concentration of 1.75mmol/l and potassium adjusted according to pre-dialysis 

levels. Dialysate bicarbonate concentration was reduced to prevent the 

development of alkalosis and anticoagulation was increased by 50%.  
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3.2.3 Biochemical parameters 

Monthly review of dialysis adequacy, electrolytes and haemoglobin (Hb) 

measurements was carried out. The baseline biochemical parameters were 

calculated from the averages of the last 3 months during standard thrice weekly 

4- 5hours OL-HDF. Routine samples (pre-and post-dialysis) were collected on the 

first weekday of the short intradialytic gap of the month. Small solute clearance 

was assessed using a standard Kt/V equation (Std Kt/V)  (133) with mineral bone 

disease monitored by plasma phosphate and calcium levels. A reduction in 

plasma phosphate was expected so all phosphate binders were stopped. All 

patients were assessed by a qualified renal dietician and advised to relax their 

phosphate restriction.  

Samples for ferritin and vitamin B12 were analysed every three months and 

parathyroid hormone (PTH), beta-2 microglobulin every six months. Doses of 

intravenous iron, erythopoetin (darbepoetin-alpha) and blood pressure 

medication use were recorded. Changes in medication were at the discretion of 

the responsible physician. 

3.2.4 Clinical parameters 

Average readings of clinical parameters i.e. blood pressure, weight and 

hydration were assessed using multi-channel bioimpedance Fresenius ® body 

mass composition (BCM) monitor and analysed with Fluid Management Tool 

software version 3.3.0.1637 on quarterly basis.  

3.2.5 Statistical analysis 

Data was recorded prospectively for a period of 24 months and included in the 

analysis where 12 months or more of data was available. This was analysed using 

SPSS software package version 17. A repeated measure of analysis of variance 

was performed with respect to baseline. Each patient served as his/her own 

control. As the sample size was small non-parametric statistics were used to 

compare readings at 24 months with baseline using Wilcoxon signed rank.  A 

value of p <0.05 was considered statistically significant.  
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3.2.6 Ethical approval 

Ethical approval was not sought, as this was a part of quality improvement to 

services. 

3.3 Results 

Table 3-1 summarises mean and standard deviation of all parameters measures 

following change in dialysis regime from thrice – weekly OL-HDF (4-5 hours) to 

thrice weekly nocturnal HDF (7-8 hours). 
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Table 3-1: Change from 3/weekly OL-HDF (4 - 5h) to thrice weekly nocturnal HDF (7-8 h) Mean ± SD 

 Baseline 3 months, n=9 
(n=9) 

6 months, n=9 
(n=9) 

9 months, n=9 
(n=9) 

24 months, n=5 
(n=5) 

Time (min) 277.22±25.80 474.26±9.58 a 472.52±7.92 a 476.85±5.99 a 466.60±13.68 c 

Volume (litres) 22.54±3.91 27.53±3.19 b 27.25±3.34 b 28.26±3.79 a 28.85±2.22 c 

URR 0.76±0.08 0.84±0.05 a 0.83±0.06 a 0.83±0.05 b 0.85±0.04 c 

Std KtV 2.37±0.21 2.68±0.18 a 2.62±0.25 b 2.61±0.19 b 2.68±0.16 c 

Corr.Ca (mmol/L) 2.34±0.22 2.37±0.17 2.41±0.15 2.39±0.14 2.48±0.19 

PO4 (mmol/L) 1.52±0.41 1.21±0.20 1.26±0.45 1.28±0.32 1.06±0.13c 

PO4 Binders 3.26±2.63 0.00±0.00 a 0.00±0.00 a 0.00±0.00 a 0.00±0.00 c 

Hb (g/dL) 11.58±1.35 11.55±0.97 11.19±1.58 12.10±0.72 11.96±0.47 

Ferritin (µg/L) 492.85±295.04 463.17±305.99 423.00±247.00 342.33±152.44 321.40±117.27 

EPO(weekly) dose) 21.85±21.61 12.96±16.11 18.52±16.92 15.74±13.67 15.00±8.66 

Iron dose(mg/week) 50.93±28.40 29.63±32.30 b 26.85±23.12 b 22.22±23.20 b 45.00±32.60 

Vitamin B12 (ng/L) 440.07±108.51 480.56±138.48 520±141.55 429.67±128.71 331.80±37.35 

Overhydration (litre) 1.53±2.96 1.31±1.48 1.48±1.21 1.08±1.21 1.81±2.44 

Systolic (mmHg) 146.63±21.77 139.52±26.68 137.26±25.18 140.30±30.22 137.47±17.30 

Diastolic (mmHg) 75.04±12.84 70.20±15.03 67.07±20.09 70.94±17.16 69.40±13.84 

BP Medications 1.31±1.04 0.70±1.31 b 0.56±1.33 b 0.67±1.32 b 0.60±0.89 c 

a p<0.01 - With respect to baseline, repeated measures analysis of variance (ANOVA) ; b p<0.05 - With respect to baseline, ANOVA; c p<0.05 - Wilcoxon 
signed rank test; BP, blood pressure; Corr. Ca, corrected calcium; SD, Standard deviation; EPO, erythropoietin; Hb, haemoglobin; HDF, haemodiafiltration; 
OL-HDF, online haemodiafiltration; n, number of patients; PO4, phosphate; URR, Urea reduction ratio
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3.3.1 Bone profile 

Pre-dialysis phosphate level fell from a mean of 1.52±0.41 mmol/L to 

1.21±0.2 mmol/l, 1.26± 0.45 mmol/l, 1.28± 0.32 mmol/l and 1.06±0.13 

mmol/L at 3, 6, 9 and 24 months respectively, p<0.05 at 24 months (Table 

1-1 & Figure 1-1). The use of binders dropped from an average of 3.26±2.63 

tablets to zero (p <0.05) (Table 3-1 & Figure 3-1). None of the patients have 

required recommencement of a phosphate binder or supplementation during 

dialysis due to low phosphate levels.  

Figure 3-1 Reduction in PO4 binders & PO4 levels on conversion from standard HDF to 
nocturnal HDF 

 
HDF, haemodiafiltration; *n = 9, † n = 5, where n is number of patients 
Reduction significant in binders, p<0.05 at 3,6,9,24 months & PO4 levels, p<0.05 at 24 
months. Data represented as mean � standard deviation 

Calcium levels were non-significantly raised at 24 months, which 

theoretically could lead to a positive calcium balance. PTH however fell 

from (39.24±31.4) pmol/L at baseline to (23.97±27.1) pmol/L and 

(26.13±12.6) pmol/L respectively at 12 and 24 months respectively (p<0.05, 

not shown). This failed to reach significance when one patient on cinacalcet 
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was excluded, p=0.08 at 6 months and p=0.07 at 12 & 24 months. (Table 3-

3) None of the patients has required a parathyroidectomy.  

3.3.2 Small Solute clearance 

Std Kt/V increased from 2.37 ± 0.21 (range 1.93 – 2.65) to 2.68 ± 0.16 (range 

2.52-2.92) at 24 months, with p<0.05 at 3, 6, 9 and 24 months compared to 

baseline. (Table 3-2 & Figure 3-2) 

Figure 3-2 Dialysis dose (St Kt/V) delivered on conversion from standard HDF to 
nocturnal HDF 

 
HDF, haemodiafiltration; m, months; *n = 9, † n = 5 where n is number of patients. 
Significant improvement in St Kt/V at 3, 6, 9 12 and 24 months, mean ± SD 
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3.3.3 Middle Molecule clearance 

Beta-2 microglobulin levels showed no significant change. Baseline levels 

were 23.34±9.19 mg/L and levels at 6, 12 and 24 months were 

20.88±5.99mg/L, 20.99±5.21mg/L and 24.09±3.13mg/L respectively. (Table 

3-2)  

Table 3-2 Changes in beta2m and PTH levels on changing from 3/weekly OL-HDF (4 - 
5hours) to 3/weekly nocturnal OL-HDF (7-8 hours) 

 

  Baseline 6 months  
n=9 

12 months  
n=9 

24 months  
n=5 

Beta2m 
(mg/dl) 

23.34±9.19 20.88±5.99 20.99±5.21 24.09±3.13 

Baseline               n=7                                n=7                                    n=4 

PTH (pmol/l) 30.52±14.55 21.93±22.53 15.45±11.84 20.84±4.82 

Beta2m, beta-2 microglobulin; n, number of patients; OL-HDF, online 
haemodiafiltration; PTH, parathyroid hormone. Data represented as mean ± SD. PTH 
data with patient on Cinacalcet omitted. No significant reduction over time although 
changes are almost significant (p = 0.08 at 6 month, p = 0.07 at 12 months & 24 month). 
Beta2m – no significant change 

3.3.4 Filtration volume 

OL-HDF substitution volume increased from 22.53±3.91litres (L) per session 

to 27.53±3.19 L at 3 months and 27.25±3.34, 28.26±3.79, 28.85±2.22 at 6, 9 

and 24 months respectively. (p<0.05 at 3,6,9 and 24 months)  

3.3.5 BP, fluid status and anti-hypertensive medications 

BP reduction and changes in over-hydration status did not reach statistical 

significance, but the use of antihypertensive medications decreased from 

1.31 ± 1.04 tablets to 0.6±0.89 tablets at 24 months (p<0.05).   

3.3.6 Haematological parameters and Erythropoietin dose 

Intravenous iron use showed a significant decrease from baseline 50.93±28.4 

mg/week to 29.63±32.30, 26.85 ±23.12, and 22.22 ±23.20 mg/week at 3, 6 

and 9 months respectively but not at 24 months (45±32.6 mg/week). 
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Erythropoietin (EPO) use decreased but did not reach statistical 

significance. Hb levels did not change significantly.  

3.4 Discussion 

3.4.1 Summary of findings 

Thrice-weekly extended-hours nocturnal OL-HDF seems to be an excellent 

alternative to current modalities of dialysis. It achieves targets for small 

solute clearance and mineral bone disease with elimination of phosphate 

binders and no dietary phosphate restrictions.  It has been accepted and 

well tolerated by patients. 

The unique finding seen is the complete elimination of phosphate binders 

without the requirement for intradialytic phosphate supplementation.  

3.4.2 Solute & middle molecule clearance 

Phosphate control with dialysis alone was first described in 1998 where 

patients were converted from conventional thrice-weekly dialysis to six 

nights weekly. Normal phosphate levels were achieved at five months 

despite a 50% increase in phosphate intake in diet. Blood flow rate was 300 - 

350 mls/min and dialysate flow rate of 500 mls/min.  (128) A recent paper 

by Maduell et al. to evaluate the beneficial effects of alternate day 

nocturnal OL-HDF reported a reduction of serum phosphorus from 4.93 ± 

1.5mg/dL (1.59 ± 0.48 mmol/L) to 3.74 ± 1mg/dL (1.20 ± 0.32 mmol/L) at 

12 months. Phosphate binders were reduced, but not eliminated and 

intradialytic supplementation was needed in 55% patients. Blood flows were 

400mls/min and dialysate flows were 500mls/min (132) The Australian 

experience of converting patients from conventional regime to home 

nocturnal 6-9 h sessions 3.5 – 4 x weekly resulted in significant reduction of 

phosphate levels again with a reduction in phosphate binder consumption, 

but with 22.7% patients needing supplementation.  Blood flow was 200- 

250mls/min with dialysate flows of 500mls/min.  (134) A recent study by a 

Dutch group comparing conventional (4 hours HD and HDF) and extended (8 
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hours HD and HDF) dialysis reported 'treatment time' as a major determinant 

of small molecule clearance and haemodynamic stability. The total solute 

removal (urea, uric acid, creatinine and phosphate) was higher in the longer 

duration treatments with no difference noted in the treatment modalities 

(HD vs HDF). Only acute affects were studied in this randomised cross over 

trial. Blood flow was 300mls/min and dialysate flows 600mls/min in all study 

sessions.  (135) The improvement in small solute clearance is consistent with 

other published reports. (132,136) 

The unique finding in this study of normal serum phosphate without the 

need for supplementation, previously not reported, could either be due to 

the lower dialysate and blood flows employed, or the reduced frequency of 

3 times week haemodiafiltration.   

We could not however demonstrate a reduction in middle molecule levels 

(beta-2 microglobulin). If B2M clearance is determined by the convective 

component of the therapy then this may be due to the already high 

substitution volumes utilised at baseline in these patients. It does suggest 

dialysis duration per se is a less important factor in achieving higher beta-2 

microglobulin clearance. 

3.4.3 Haematological parameters 

Other biochemical parameters such as Hb did not change though there was a 

trend towards a reduction in iron and erythropoietin doses. A more 

significant lowering in erythropoetin doses may have been achieved if iron 

doses had not been decreased. 

3.4.4 BP & volume control 

Charra et al. have reported one of the lowest mortality and morbidity 

statistics in dialysis patients. Absence of cardiovascular complications and 

good blood pressure was achieved with maintenance of dry weight, low salt 

diet and no antihypertensive drugs.  (130) Despite following a similar regime 

our BP lowering did not reach statistical significance. There was a reduction 
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in antihypertensive medications during the study without change in blood 

pressure which may suggest overall better BP control.  Over-hydration 

(Table 3-1) which theoretically could be from high salt intake, contributing 

to extracellular volume expansion, may explain why a significant reduction 

in BP was not demonstrated.     

We noted a significantly higher substitution volume, following transfer to 

the nocturnal program. Theoretically this may confer a survival advantage in 

the longer term, as implied by post hoc, sub analysis of data from two 

recent RCT which showed a lower mortality with higher substitution volumes 

of >17.4 liters and >21.95 litres per session.  (119-121)The substitution 

volumes in this group of patients were already in excess of these numbers at 

baseline so further study of the effect of increasing beyond this is needed. 

3.5 Limitations 

Our study has limitations due to the small patient numbers and being single 

centre and observational in nature. All patients were self-selected thus 

undoubtedly more motivated and may have less co-morbidity than 

conventional dialysis patients. Post dialysis phosphate monitoring was not 

conducted. No food charts or 24-hour urine collections were formally 

recorded to assess increased dietary intake of phosphate, but it is difficult 

to imagine that patients advised to follow a relaxed diet would continue to 

adhere to phosphate restriction. Residual renal function was not measured 

but as each patient acted as their own control it is unlikely that this would 

contribute to the benefits seen. Finally, we do not have a parallel 

comparator group comparing HD and HDF.  

3.6 Conclusion 

Nocturnal 3 times weekly in centre on-line haemodiafiltration is a practical 

alternative and is superior to conventional OL-HDF in terms of small solute 

clearance, control of phosphate and allows a reduction in medication. It has 

the potential to improve outcomes but this as yet remains unproven. It has 
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been well tolerated by this patient group and should be considered as a 

treatment alternative for patients receiving hospital-based haemodialysis 

therapy. Phosphate control can be achieved without the need for binders or 

supplementation.
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Phosphate and FGF-23 in peritoneal dialysis  
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4.1 Introduction 

Abnormal bone metabolism, common in CKD and the dialysis population, is 

measured with surrogate markers such as phosphate, parathyroid hormone  

(PTH), alkaline phosphatase and calcium. Chronic Kidney Disease - Mineral Bone 

Disease (CKD – MBD) assessment using bone biochemistry is suboptimal.  (17) 

Phosphate levels vary with circadian rhythm in health and similar  diurnal 

fluctuations are seen in dialysis; PTH responds to acute changes in serum 

calcium (152)and FGF-23 is unstable (153)and still being used as a research tool. 

Despite its limitations, FGF-23 measurement over time is believed to be a more 

accurate representation of renal bone disease though this remains to be proven.  

Peritoneal dialysis (PD) is a continuous form of renal replacement therapy in 

patients with end stage renal disease. Chronic PD is believed to provide a more 

stable blood chemistry in comparison to conventional thrice weekly 

haemodialysis.  Most patients on PD have a degree of residual renal function that 

is formally assessed on a quarterly basis as part of standard care. PD utilises the 

principles of diffusion and convection of solutes across a concentration gradient 

driven by osmotic and hydrostatic pressure gradients across the peritoneum. It 

thus forms an ideal model to study the relationship of established biochemical 

markers to novel laboratory parameters such as FGF-23.    

4.2 Aims of the study 

1. To study the correlation of phosphate and FGF-23 in a group of PD patients 

2. To examine the variability of FGF-23 and phosphate over a period of 9 

months 

3. To examine the clearances of FGF-23 in PD  

4.3 Methods 

4.3.1 Study population 

All adult patients with end stage renal disease, established on PD and attending 

the renal services at University Hospital Crosshouse were eligible. 
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4.3.2 Inclusion criteria 

1. Aged > 18 years 

2. Able to provide valid consent 

3. Established on peritoneal dialysis for at least 3 months 

4. No planned change in RRT modality over the next 9 months 

4.3.3 Exclusion criteria 

Serious co-morbid condition likely to reduce life expectancy to <9 months  

4.3.4 End of study 

If patient withdraws consent, dies or switches RRT modality i.e. has a transplant 

or converts to haemodialysis. 

4.4 Ethical approvals  

Ethical permission was granted by NRES Committee Yorkshire & The Humber - 

South Yorkshire, REC reference: 14/YH/0095, IRAS project ID: 148296. All 

patients provided written consent. The study was conducted as per Good Clinical 

Practice Guidelines, Research Ethics Committee regulations and NHS Board R&D 

office policies and procedures. 

4.5 Baseline characteristics 

Data was collected on age, sex, years on renal replacement therapy (RRT 

vintage), PD vintage and primary renal diagnosis at baseline.  

4.6 Laboratory assays 

Blood, urine and dialysate samples (from 24-hour collection) were collected 

during routine care and coincided with clinic visits at time 0 (baseline), 3, 6 and 

9 months.  
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All samples were centrifuged and frozen at -80 C within 4 hours of collection. 

Samples were analysed after a single thaw at a central processing laboratory in 

single batch. 

1. Urea and phosphate levels (in plasma and urine) were analysed using 

standard techniques at University Hospital Crosshouse.  

2. FGF-23 concentrations in blood (EDTA plasma samples), urine and 

dialysate were measured in duplicate using Immutopics 2nd generation 

C-terminal assays (Immutopics Inc., San Clemente, CA, USA) at 

University of Glasgow. Serial dilution of FGF-23 was performed for 

levels >1400 RU/ml.  

4.7 Calculation of phosphate & FGF-23 clearance 

Plasma and 24-hour collections were used to measure FGF-23 (RU/ml), 

phosphate (mmol/l), urinary and dialysate volumes (ml). Values of creatinine 

(mmol/l) were obtained from laboratory computer systems as this formed a part 

of routine investigations. Patients with no urine output were defined as having 

no residual renal function.  

RenalSoft PD Rx management tool (computer software) was used to calculate 

weekly urea clearance (L/week), creatinine clearance (L/week/1.73m2) and 

Kt/V.   

Clearances were calculated as described below. (Figure 4-1) 
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DV, Dialysate volume; DP, dialysate phosphate; P, plasma phosphate; UV, urine volume; 
UP, urine phosphate; DFGF-23, dialysate FGF-23; UFGF-23, urine FGF-23, FGF-23, plasma 
FGF-23. 

4.8 Statistical methods  

Data was analysed using SPSS version 21 for Mac (IBM Corporation, Chicago, IL, 

USA). Mean ± standard deviation was used to report normally distributed data 

and median (interquartile range) for non-normally distributed data. Nominal 

data was represented as total number (n) and percentage (%). Where data was 

positively skewed further analyses were performed using log-transformed values. 

P value of <0.05 was considered statistically significant.   

Change in levels of FGF-23 over time were analysed using repeated measures 

ANOVA model with a single 4 level within group repeated factor (time: 0,3,6 & 9 

 
Dialysate	clearance	of	phosphate	(L/day/1.73	m		 

= [24	hour	DV	(ml/day)x	0.001 
x	DP	(mmol/L))/	P(mmol/L)] 

x1.73	m2	 
 
Urine	clearance	of	phosphate	(L/day)/1.73	m2) 

= [24	hour	UV	(ml/day)x	0.001		 
x	UP	(mmol/L))/P(mmol/L)	] 

x1.73m	2	 
 
 
FGHIJ	KLGMKLIHN	OJNIPIQON	(R/SIT/U. VW	XY	Z[\) 

= 	Dialysate	phosphate	clearance + Urinary	phosphate	clearance 
 
 
Dialysate	clearance	of	FGF − 23	(L/day/1.73m2/day) 

= [24	hour	DV	(L/day)x		 
x	DFGF − 23	(RU/ml)/FGF − 23RU/ml)	] 

x1.73	m2	 
 
Urine	clearance	of	FGF − 23	(L/day/1.73m2/day) 

= [24	hour	UV	(L/day)x		 
x	UFGF − 23	(RU/ml)/FGF − 23RU/ml)	] 

x1.73	m2	 
 
FGHIJ	bcbYW	OJNIPIQON	(R/SIT/U. VW	XY	Z[\) 

= 	Dialysate	FGF − 23	clearance + Urinary	FGF − 23	clearance 
 

Figure 4-1: Formulae to calculate urine and dialysate clearances of phosphate and FGF-23 
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months).  Analysis was performed to assess if there was a significant change over 

time. For patients with missing data or those that decided to withdraw only the 

relevant available data were analysed. However, for data over time, imputation 

was used if there was an occasional missing data point in order to maximise the 

data use. 

4.9 Results 

4.9.1 Patient characteristics 

A total of 19 patients were identified at the start of the study (11 females and 8 

males). The average age was 59.6 years at inception (range 26.7 to 84.3 years). 

Primary renal diagnosis (PRD) was obtained from the ERA-EDTA Coding system 

using the related web-based PRD search.  (103) They were grouped as diabetes, 

familial/hereditary nephropathies, glomerular disease, systemic disease, 

tubulointerstitial disease and miscellaneous. Average RRT vintage was over 4 

years. Baseline patient characteristics are represented in Table 4-1. 

Table 4-1: Patient characteristics at recruitment 

Females, n (%) 11(57.9) 

Age in years, Average (range) 59.63(26.7-84.3) 

Primary Renal diagnosis, n (%)  
Diabetes 3 (15.8) 

Familial/hereditary 2 (10.5) 

Glomerular 6 (31.6) 

Miscellaneous 1 (5.3) 

Systemic 4 (21.1) 

Tubulointerstitial 3 (15.8) 

PD Vintage, mean (range)* 34.1 (3.0 - 137.8) 
RRT vintage, mean (range)* 47.7 (3.0 - 195.3) 
PD, peritoneal dialysis; RRT, renal replacement therapy; *data in months 
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4.9.2 Phosphate in sample population 

Phosphate levels over 9 months were normally distributed and ranged from 0.76 

to 2.91 mmol/l (mean ± SD, 1.76 ± 0.46, n = 60) (Figure 4-2).  

Figure 4-2: Overall serum phosphate levels, normally distributed 
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4.9.3 FGF-23 in sample population  

FGF-23 distribution was positively skewed (plasma, dialysate and urine) and 

further analyses were performed using log-transformed values. (Figure 4-3, 4-4 & 

4-5) FGF-23 levels was not detected in 2 urine samples.  

Figure 4-3: Plasma FGF-23 
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Figure 4-4: Urinary FGF-23, positively skewed 

 
 
 
Figure 4-5: Dialysate FGF-23, positively skewed 
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Median plasma, urinary and dialysate FGF-23 were 8219.2 RU/ml (IQR 2749.2 - 

21390.0), n = 61; 5738.0 RU/ml, (IQR 1498.4 – 12019.6), n = 25 and 522.8 RU/ml, 

(IQR 252-4 – 995.1), n = 26 respectively.  

Figure 4-6 Distribution of FGF-23 in PD (Plasma) 
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Figure 4-7 Distribution of FGF-23 in Urine & Dialysate 
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4.9.4 Correlation of plasma FGF-23 and serum phosphate  

Across all time periods there were 58 measurements of both FGF-23 and 

phosphate taken at the same time.  

Figure 4-8 is a scatter plot showing the correlation of phosphate to plasma FGF-

23 using linear regression and Pearson correlation coefficients. There was a 

significantly strong association of log plasma FGF-23 with phosphate levels (r= 

0.52 (p< 0.001).  

Figure 4-8: Scatter plot to show the linear association of FGF-23 and serum phosphate 

 

 
4.9.5 Correlation of plasma FGF-23 to urinary & dialysate FGF-23 

There are significant positive correlations between plasma log FGF-23 with log 

FGF-23 levels in urine (r= 0.68, p <0.001, figure 4-9) and plasma log FGF-23 with 

log FGF-23 in dialysate (r=0.89, p <0.001, figure 4-10).  
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Figure 4-9: Scatter plot to show linear relationship between lnFGF-23 in plasma and urine 

 
 
Figure 4-10: Scatter plot to show linear relationship between lnFGF-23 in plasma and 
dialysate 
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4.9.6 Changes in FGF-23 and phosphate over 9 months 

Changes in FGF-23 and phosphate levels were analysed using paired t test in 14 

patients. Mean log FGF23 and phosphate levels at 9 months were 9.09±1.11 

RU/ml and 1.68±0.39 mmol/l compared to 8.64± 1.40 RU/ml and 1.75±0.36 

mmol/l at baseline (p=0.42) but these changes were not significant. 

Table 4-2 : Mean log FGF-23 and average phosphate values at baseline, 3, 6 and 9 months 

Plasma samples n Mean SD Minimum Maximum 

Log FGF-23 (RU/ml) 
     

Time 0 (baseline) 19 8.64 1.40 5.50 10.64 

3 months 14 9.05 1.32 7.35 11.04 

6 months 14 9.18 1.12 7.53 10.85 

9 months 14 9.09 1.11 7.59 11.08 

Phosphate (mmol/l)      

Time 0 (baseline) 19 1.75 0.36 1.28 2.71 

3 months 14 1.77 0.58 0.98 2.91 

6 months 13 1.88 0.55 1.07 2.91 

9 months 14 1.68 0.39 0.76 2.41 
n, number of patients; SD, Standard deviation 
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4.9.7 Repeated measure at 0,3,6 and 9 months (ANOVA) 

We further analysed changes in FGF-23 and phosphate over a period of time.  

There were 9 patients with readings available at 0,3,6 & 9 months. Repeated 

measures using ANOVA showed no significant change in either markers (FGF-23, 

F(1,8) = 1.63, P= 0.24; phosphate F(1,8)= 0.09, p = 0.78) over time. In particular 

there was no linear change (overall increase or decrease). In both cases the 

mean reading at 3 months were the lowest and the mean reading at 6 months 

the highest but these differences were not significant (Table 4-3)  

Table 4-3: Repeated measures ANOVA 

          Log FGF-23 (RU/ml) 
n = 9 

Mean SD  
 

              Baseline (0 months) 9.13 1.04  
Linear contrast F (1,8)=1.63  
P = 0.24 

3 months 8.86 1.07 
6 months 9.57 1.02 
9 months 9.23 1.05 

 
         Phosphate (mmol/l)    

              Baseline (0 months) 1.67 0.22  
Linear contrast F (1,8)=0.09  
P = 0.78 

3 months 1.49 0.31 
6 months 1.95 0.60 
9 months 1.56 0.39 

 

4.9.8 Variability of FGF-23 & phosphate 

The preceding analysis found that readings over time for both FGF-23 and 

phosphate did not change. We rank ordered individual participants for each of 

the 4 measurements to examine within subject means and range of variation. 

The variations in phosphate and FGF-23 in each individual is represented in 

Figure 4-11 & 4-12.  
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Figure 4-11 Variation in phosphate of each individual  

 
Arranged as rank of individual means. Means are represented as black dots and range for 
upper and lower values as black whiskers. 
 

Figure 4-12 Variation in FGF-23 levels of each individual 

  
 

Arranged as rank of individual means. Means are represented as black dots and range for 
upper and lower values as black whiskers. 
 
 
Assuming that the readings are stable over time it is possible to compare the 

within to between subject variation using the Intraclass correlation coefficient 

(ICC). ICC is generally used in reliability analysis when a number of raters 

measure the same subjects. It is assumed that the underlying subject score 

remains the same and each rater is estimating the same thing. Thus, in this 
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analysis the assumption is that the patient’s FGF-23 or phosphate level remains 

constant and the measures at different times are estimates of the same thing. A 

high ICC indicates that most of the variability is due to between subject 

differences, hence there is greater stability over time in the repeated measures. 

This analysis would not be the valid if there were any underlying change over 

time, for patients. ICC for FGF-23 was 0.90 compared to 0.65 for phosphate. 

(Table 4-4) 

Table 4-4:  ICC for FGF-23 and phosphate 

 Log FGF-23 Phosphate 
Mean 9.2 1.7 
Variation   
     Between subjects a 3.39 0.28 
     Within subjects b 0.37 0.15 
     Total variance c 3.76 0.43 
ICC 0.90 0.65 

ICC – Interclass correlation coefficient calculated using formulae a/c; Total variance c=a+b 

4.9.9 FGF-23 Clearance  

Clearances of phosphate and FGF-23 were calculated using formulae as 

described in section 4-7. The total FGF-23 clearances were the sum of the urine 

clearance (residual function) and the dialysate clearance. (Table 4-5) Levels of 

FGF-23 in plasma, dialysate and urine were correlated.  

Table 4-5 : FGF-23 clearances in urine and dialysate  

Clearance N Mean Median SD 

FGF-23 
(ml/min/1.73 m2) 
       Urine 

 
22 

 
0.67 

 
0.5 

 
0.65 

Dialysate 25 0.61 0.59 0.37 

Total  21 1.34 1.28 0.63 

Phosphate 
(ml/min/1.73 m2) 
       Urine 

 
22 

 
4.06 

 
3.5 

 
3.77 

Dialysate 21 4.46 3.09 7.14 

Total  22 8.73 6.04 7.13 

N, Number of samples; SD, Standard deviation 
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To determine if phosphate clearance was related to the plasma FGF-23 levels we 

examined the correlation between plasma FGF-23 levels and urinary and 

dialysate phosphate clearance. Plasma FGF-23 showed a negative non-significant 

relation to urinary phosphate clearance (r= -0.192, p= 0.39, n = 22). There was 

no relationship of dialysate phosphate clearance to plasma FGF-23 levels (r= 

0.08, p = 0.76, n =21).  

Plasma FGF-23 levels exhibited significant positive correlations with FGF-23 in 

urine (r = 0.682, p < 0.001, n =22) and FGF-23 in dialysate (r = 0.889, p <0.001, n 

= 25) but a negative non-significant correlation to FGF-23 clearance in urine (r=-

0.334, p = 0.12, n = 22) and FGF-23 clearance in dialysate (r=-0.137, p= 0.51, 

n=25). There was a strongly significant positive correlation between FGF-23 

clearance in urine and total FGF-23 clearance (r = 0.841, p <0.001, n = 21). 

Dialysate FGF-23 clearance showed a moderate, not significant correlation to 

total FGF-23 clearance (r= 0.217, p = 0.345).  

4.10 Discussion 

Our study confirms that FGF-23 is elevated in ESRD(91) and levels correspond to 

the degree of hyperphosphatemia (154) in a group of PD patients. Previous 

reports have shown that lower residual renal function is associated with higher 

FGF-23 levels.  (155) We found a negative correlation between plasma FGF-23 

levels and urinary clearance despite noting a strong association of plasma levels 

to urine and dialysate concentrations. Renal FGF-23 clearances correlated to 

total FGF-23 clearance. These findings suggest that residual renal function has 

an important role in FGF-23 clearance.  

ICC for FGF-23 was 0.90 compared to 0.65 for phosphate over a period of 9 

months. A low ICC suggests that the within-subject variation is high while a high 

ICC indicates variability is explained by between-subject variation. Thus, 

repeated phosphate measurements over time is likely to yield more 

heterogenous results in the same individual, while FGF-23 measurements are 

more likely to be uniform within an individual over time. Our findings, over a 

longer observation period of 9 months are consistent with reports where FGF-23 

demonstrated less within subject variability over a 3-month period compared to 

PTH and phosphate.  (155)  
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The negative relationship between plasma FGF-23 levels and phosphate 

clearance is unexplained. It is possible that with loss of residual renal function, 

FGF-23 levels continue to rise and a threshold is reached beyond which the 

tubules are unable to excrete phosphate any further.  

4.11 Conclusions 

The strengths of our study include data collection over a 9-month period and 

quantification of clearances from both urine and dialysate. Food diaries were 

maintained and all patients received dietary education. We however did not 

perform phosphate balance studies or take into account the role of Vitamin D 

and phosphate binders. Peritoneal membrane characteristics play an important 

role in clearance of solutes, and this was not formally assessed.  Patient 

numbers were small and like all observational studies this makes the results 

susceptible to bias. Larger studies in PD are partly limited by the decreasing 

number of patients choosing this modality of RRT in the developed world.  

FGF-23 is a potential biomarker with greater stability over time. Its role in the 

assessment of CKD-MBD alongside conventional markers deserves to be assessed 

further. Due to the consistency of plasma levels over time, PD may be a more 

suited RRT modality to undertake further studies on the characteristics and 

mechanism of action of FGF-23.  
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Effect of single session of dialysis on FGF-23  
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5.1 Introduction 

Increased phosphate levels and deficiency of 1, 25 (OH) Vitamin D has been 

associated with higher mortality and morbidity in patients with CKD. (91) 

Fibroblast growth factor (FGF-23), a relatively new biomarker, maintains 

phosphate haemostasis by increasing urinary excretion of phosphate, and 

lowering levels of vitamin D. Low FGF-23 levels are associated with 

hyperphosphatemia and elevated levels of 1,25 (OH) vitamin D.  (96) Recent 

studies have found FGF-23 to be an independent marker of mortality in patients 

starting haemodialysis.  (156) Levels of FGF-23 are 1000 - fold higher in patients 

with end stage renal disease (ESRD) on dialysis.  (96) Any treatment modality 

which alters FGF-23 is of great interest.  

5.2 Aims of the study 

To study the characteristics of FGF-23, its association with phosphate and 

clearances of FGF-23 during a single session of haemodialysis. We also wished to 

determine if it was possible to study kinetics of FGF-23 and to compare this to 

existing models for urea and phosphate.  

5.3 Fibroblast growth factors - FGFs 

FGFs are a group of polypeptides widely present in various adult tissues. They 

were initially isolated from brain and pituitary in the early 1970s (156,157) as 

acidic FGF and basic FGF, now known as FGF-1 and FGF-2 (158). FGFs are 

involved in embryogenesis (159) and play an important role in cell proliferation, 

angiogenesis, cellular differentiation and repair of cellular injury.  (92,160) 

The family consist of 22 members and are classified into seven subfamilies (FGF-

1, FGF-2, FGF-4, FGF-7, FGF-9, FGF-10, FGF-19) based on phylogenetic analysis. 

FGF-19 subfamily includes FGF-23, one of the most extensively studied FGF.  

(161) 

5.4 FGF-23 

FGF-23 was first isolated from mouse cDNA in the ventrolateral thalamic nucleus 

of the brain. It was termed as FGF-23 as the 23rd documented FGF.  (92) It is now 
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known that FGF-23 is primarily secreted from bone (162,163) and plays a key 

role in phosphate haemostasis. 

5.4.1 Structure of FGF-23 

FGF-23 and other members of the FGF-19 subfamily have a similar structure and 

share a common core region of β-trefoil. They are distinguished from other 

subfamilies by the presence of a disulphide covalent bond that is believed to 

stabilise the core region and result in the important distinctive biological 

activity affecting phosphate metabolism (164,165) 

Human FGF-23 consists of 251 amino acids and is encoded by three exons on the 

FGF-23 gene, located on chromosome 12p13. The first 24 amino acid residues 

are a signal peptide and appear to be a secreted protein. The following 227 

residues (25-251 amino acids) secreted as a ‘mature intact form’ in the 

extracellular contains an extended sequence the C-terminal (180-251 amino 

acids) and a N-terminus. The C-terminus is unique compared to other FGFs and 

believed to be important in its specific function for phosphate and Vitamin D 

metabolism. (Figure 5-1)  (165)  
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Figure 5-1 Structure of Fibroblast Growth factor 23 

 

The mature intact form of FGF-23 gains weight following post-translational 

modification to form a 32kDa molecule. It undergoes cleavage at the consensus 

site (176RXXR179) by protein convertases and generates an N (�18kDa) and C-

terminal (�14kDa) fragments. Mutations that impair cleavage increase levels of 

FGF-23 causing hypophosphatemic rickets (autosomal dominant/X-linked) and 

tumour-induced osteomalacia. Mature FGF-23 is the biologically active form. 

FGF-23 without the unique C-terminal fragment domain or the C-terminal 

fragment on its own is inactive.  (161,166,167) 

5.4.2 Biological activity of FGF-23 

FGF-23 is primarily secreted from osteocytes (162,163) and osteoblasts. It acts 

via the FGF receptor (FGFR) in the kidneys along with co-factor Klotho.   

(162,168)  

 



133 
 

 

It main functions are: 

1. Inducing phosphaturia by down regulation of sodium dependent phosphate co-

transporter in the proximal convoluted tubule (PCT)  (169) causing decreased 

phosphate reabsorption. 

2. Lowering 1,25 (OH) 2 Vitamin D levels by inhibiting 1-α- hydroxylase that 

converts 25-(OH) Vitamin D to 1,25 (OH) 2 Vitamin D (169) and stimulating 24-

hydroxylase (170) that catalyses Vitamin D degradation.  

5.4.3 FGF-23 assays 

In this study Immunotropics 2nd generation assay was utilised to measure FGF-23. 

This was chosen after reviewing the options commercially available. 

FGF-23 levels have been measured using four different assays.  

1. iFGF-23 assay - This measures intact FGF-23 alone and available from Kainos 

laboratories Inc. (Tokyo, Japan), Merck Millipore (Billerica, MA, USA) and 

Immutopics Inc. (San Clemente, CA, USA).  

2. 2nd generation C-terminal FGF-23 ELISA assay that measures both C-terminal 

fragments and intact FGF-23 and available from Immutopics Inc. only (Figure 5-

2)  

Levels are measured using serum (Kainos and Millipore) or EDTA plasma samples 

(Immutopics Inc.). 
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Figure 5-2 Fibroblast Growth Factor 23 assays 

 

5.4.3.1 Kainos assay  

This uses two specific monoclonal murine anti-FGF-23 antibodies; one used for 

capture (N-terminal) and the other HRP-conjugated antibodies for detection (C-

terminal). The sandwich ELISA complex is then measured with a 

spectrophotometric reader. 

5.4.3.2 Millipore assay 

This is a similar sandwich ELISA based assay that captures human FGF-23 

molecules utilising polyclonal goat anti-FGF-23 antibody and biotinylated 

polyclonal goat anti-FGF-23. Streptavidin-horse peroxidase conjugate is added 

and the enzyme activity measured spectrophotometrically. 

5.4.3.3 Immutopics Inc. iFGF-23 assay 

This uses a goat polyclonal antibody to capture and recognise epitopes within C-

terminal (51-69), and a horseradish peroxidase conjugated goat polyclonal 

antibody to detect the N terminal (186-206) fragment of the FGF-23 molecule. 

This recognises the intact FGF-23 fragment alone.  (167,171)  
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5.4.3.4 Immutopics Inc. 2nd generation C-terminal FGF-23 assay  

This recognises epitopes within the carboxyl-terminal (E186-206 and G225-244) 

using two-affinity purified goat polyclonal antibodies, one biotinylated for 

capture and the other HRP-conjugated to detect epitopes fragment of FGF-23. 

These bind to both intact and C-terminal fragments of FGF-23. (167,171) The 

binding of FGF-23 to the capture and detection antibody results in a sandwich 

complex. Following a period of incubation with a substrate solution the unbound 

antibodies are washed and analysed spectrophotometrically at 450 nm (primary 

procedure) and 595 nm - 650 nm (secondary procedure). Values >445 RU/ml are 

analysed using secondary assays and levels >1400 RU/ml (the value of the 

highest standard) further diluted to obtain values within the highest standard as 

per manufacturer instructions.  

5.4.4 Intact or C-terminal FGF-23 assays 

2nd generation Human FGF-23 (C-terminal) ELISA kits were used to measure 

plasma samples frozen at -80°C as per manufactures instructions. The choice of 

FGF-23 assay was determined by the immunoassay stability, repeatability and 

reproducibility, knowledge about reference range and nature of study. 

5.4.4.1 Immunostability 

iFGF-23 is an unstable molecule and degrades within 2 hours of sample collection 

in healthy volunteers and pre-dialysis CKD groups. Conversely cFGF-23 levels 

increase over the same period of time. The addition of a broad-spectrum 

protease inhibitor cocktail stabilises the molecule for 4 hours with no significant 

changes in concentration observed (iFGF-23 and cFGF-23).  (153) 

The stability in HD patients however varies and levels are based on the 

analytical methods used. Smith et.al measured FGF-23 concentrations in 10 HD 

patients using whole blood and blood collected using plasma protein 

preservation systems. Baseline samples were centrifuged and stored at -80C 

within 10 minutes of collection and remaining samples were allowed to stand at 

room temperature for 8 hours before centrifugation and storage. Samples 

analysed using 2nd generation plasma cFGF-23 concentrations remained 
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unchanged in comparison to baseline (p=0.760). Mean iFGF-23 levels decreased 

by 5% (Kainos assay), 7% (Millipore) and 23% (Immutopics).  (167) 

5.4.4.2 Repeatability and reproducibility 

The variability of cFGF-23, Immutopics is 2.2–4.4 % for intra-assays and 9-16 % 

for inter-assays. Comparatively, variability coefficients with other iFGF-23 inter-

assays are Immutopics, 22%-61% and manual Kainos 5.7-14%. Intra-assays of 

automatic washer Kainos are 11-43% and manual Kainos, 5.3-9.7%. (172) 

5.4.4.3 Suitability in HD patients  

In healthy individuals the assays of iFGF-23 and cFGF-23 show distinct patterns, 

and don’t correlate, a reflection of diurnal, intra-individual variations and 

presence of both iFGF-23 and cFGF-23 in health. (167,173) iFGF-23 has a higher 

intra-individual variation compared to cFGF-23 (18.3% versus 8.3%). (173) 

In chronic HD patients however, the assays of Immutopics iFGF-23 and cFGF-23 

correlate strongly. This possibly is due to the increase in iFGF-23 levels with 

worsening renal impairment.  (167) Torres et al. analysed samples form 14 

haemodialysis patients and found an excellent positive correlation has been seen 

between serum cFGF-23 (Immutopics) and iFGF-23 (Kainos).  (174)  

5.4.4.4 Reference range 

The normal reference range of plasma FGF-23 in 170 healthy individuals using 

the Immutopics assay was 11.7-48.6 pg/ml for iFGF-23 and 21.6-91.0 RU/ml for 

2nd generation cFGF-23.  (173) Mayo laboratories immunoassay for cFGF-23 ages 

18 years or older is ≤180 RU/mL.  (175) 

5.4.5 Half life of FGF-23 

The half-life (t½) of FGF-23 has been studied in patients with tumour-induced 

osteomalacia.  

Takeuchi et al. collected multiple venous blood samples from various sites 

(femoral veins, common iliac vein, junction of both renal veins, common 

jugular, inferior and superior vena cava and those from peripheral circulation) 
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through a catheter inserted in the left femoral vein. T ½ was determined as 21.5 

minutes (two sandwich ELISA (176) technique to determine N- terminal and C-

terminal) by measuring serum samples before and after removal of the right 

inguinal sac.   (177) 

Khosravi et al. calculated the t ½ by collecting samples from 3 patients every 30 

minutes for up to 2 hours and then less frequently after excision (2 days in 2 

patients and 3 days in 1 patient) of tumours in patients with tumour-induced 

osteomalacia (one phase exponential decay methodology). FGF-23 was measured 

using 2 assays – cFGF-23 and iFGF-23. Mean T ½ of FGF-23 from the three 

samples was 46 ± 12 minutes using C-terminal, Immutopics, Inc., assay and 54 ± 

34 minutes with iFGF-23 Kainos Laboratories, Inc., assay.  (178)  

The differing t ½ is possibly due to the methods used - semilog transformation 

from three time points vs. one phase exponential decay equation.  (177,178) 

Besides FGF-23 undergoes post-translation modification by glycosylation, which 

may have a role in secretion, metabolism and elimination of FGF-23. These 

processes are likely to be different in normal physiology and in patients with 

tumours.  (167,178) 

5.5 Dialysis modalities and removal of FGF-23 

Dialysis is a process of removing toxic solutes and excess fluids from the body 

across a semipermeable membrane. Conventional haemodialysis or low-flux 

dialysis (LFHD), is a diffusive process capable of removing small solutes such as 

urea and creatinine with a molecular weight (MW) of <500 Da. The development 

of high flux dialysis (HFHD) that combines an element of convection with 

diffusion arose from the desire to remove larger molecules, such as β2-

microglubin. This modality allows removal of larger molecules up to a MW of 40 

kDa.   

Haemodiafiltration (HDF) enhances the convective component of the dialysis 

process and has been defined as - “A blood purification therapy combining 

diffusive and convective solute transport using a high-flux membrane 

characterized by an ultrafiltration coefficient greater than 20 mL/h/mm Hg/m2 

and a sieving coefficient (S) for β2-microglobulin of greater than 0.6. Convective 
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transport is achieved by an effective convection volume of at least 20% of the 

total blood volume processed. Appropriate fluid balance is maintained by 

external infusion of a sterile, non-pyrogenic solution into the patient’s blood."   

(179,180)  Here we study the effect of different modalities of dialysis on FGF-23 

removal.  

5.5.1 FGF-23 removal during dialysis 

FGF-23 in acute dialysis has seldom been studied. In a group of 23 patients, 

Torres et al. reported a significant increase in serum FGF-23 levels after dialysis 

(16241± 14432 RU/ml, pre-HD Vs. 20791 ±19366 RU/ml, post HD, p<0.0001). All 

patients were dialysed for 4-5 hours, three times a week using LFHD with 

conventional hollow fibre dialysers. Samples were measured using c-terminal 

FGF-23 ELISA Kit (Immutopics) and collected after a 12 hour fast before dialysis. 

To ensure that increased levels were not due to by-products, iGFG-23 (Kainos) 

was compared in a subgroup of 14 patients, and this showed an excellent 

correlation. Correcting for haemoconcentration did not alter levels.  (174) 

A randomised cross over trial in 13 patients comparing conventional 4 hours high-

flux HD with 4 hours HDF and extended 8 hours high-flux HD with 8 hours HDF 

reported a higher reduction ratio in HDF compared to HD in both conventional 

(32.3 HDF vs. 12.1 HD) and extended (48.6 HDF vs. 26.3HD) groups, (p <0.05). 

(181) A similar cross-sectional study measuring pre and post concentrations of 

FGF-23, in high-flux HD and HDF, found a higher reduction ratio in the HDF group 

(55.7± 22.2%) compared to the HD group (36.2± 28.6%), (p=0.0001).  (182) Lower 

FGF-23 levels were reported in short daily HD, 5-6/week in comparison to 

conventional HD, 3/week (823RU/mL vs. 2521 RU/mL). Samples were collected 

immediately before dialysis i.e. 24 hours after previous treatment in the short 

daily group and 48 hours after the previous treatment in the conventional group.   

(183) 

5.6 Methods 

5.6.1 Study population 

25 stable patients with end-stage renal disease on haemodialysis were selected 

from two different centres, University Hospital Crosshouse (UHC) and Glasgow 
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Royal Infirmary (GRI). UHC dialyses patients using HDF while GRI utilises high-

flux HD.  

5.6.1.1 Inclusion criteria 

1. Patients with end-stage renal disease established on haemodialysis for at 

least 3 months. 

2. Age ≥18years and ≤100 years. 

3. Using AV fistula as dialysis access. 

5.6.1.2 Exclusion criteria 

1. Patients unable to consent. 

2. Patients hospitalised with infection or heart failure. 

3. Severely malnourished with normalized protein catabolic rate (NPCR) <0.7 

and albumin <35 g/L. 

4. Evidence of recirculation of > 5% in AV fistula. 
 
Residual renal function of <100mls/ 24 hours was disregarded for purposes of 

this project.  

5.6.2 Laboratory assays 

Blood samples were collected during routine dialysis sessions at equally timed 

intervals with dialysate fluid collected as described below. All samples were 

centrifuged and frozen at -80 C within 4 hours of collection. Samples were 

analysed after a single thaw at a central processing laboratory in single batch. 

1. Urea and phosphate levels (in plasma and dialysate) were analysed using 

standard techniques at University Hospital Crosshouse.  

2. FGF-23 concentrations (EDTA plasma samples & dialysate) were measured in 

duplicate using Immutopics 2nd generation C-terminal assays (Immutopics 
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Inc., San Clemente, CA, USA) at University of Glasgow. Serial dilution of 

plasma FGF-23 was performed for levels >1400 RU/ml. FGF-23 dialysate 

samples needed concentrated.  

5.7 Ethical permission 

Ethical permission was approved by West of Scotland Research Ethics service, 

REC reference 15/WS/0039. All patients provided written permission for 

recruitment in the project.  

5.8 Sample collection 

Plasma samples were collected at previously described.  (184) In brief this was 

at the start (tia), equally timed intervals during dialysis (ti2, ti3, ti4, ti5, ti6) 

and at the end of treatment (tid). Dialyser clearance was derived from samples 

collected from dialyser inlet and outlet ports at 20 minutes from start of 

dialysis. Patients were given a choice to participate until the completion of 

treatment or stay for an extra hour for further sample collections at 15, 30 and 

60 minutes.  (184) 

All patients had a working fistula with no evidence of recirculation (<5%). 

Patients were not severely malnourished or hospitalised.  

Dialysate samples were collected at 5 different intervals using specially adapted 

three-way system. (Figure 5-3) Serial concentrations were measured to calculate 

the total amount of phosphate and FGF-23 removed during dialysis. 
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Figure 5-3 : Three-way adapted system to collect dialysate effluent samples during HDF at 5 
different time intervals 

 

 

5.9 Baseline characteristics 

Data was collected on gender, age, RRT vintage, dialysis vintage, primary renal 

diagnosis and total body water using Fresenius Body Composition Monitor (BCM) 

® (described in section 6.11).  Treatment characteristics included dialysis 

efficiency (URR & St Kt/V), duration of dialysis session (Td), blood flow (Qb) and 

dialysate flow (Qd) and intradialytic weight changes. Equipment and dialysers 

used were recorded.    

5.10 Statistical methods 

Data was analysed using SPSS version 21 for Mac (IBM Corporation, Chicago, IL, 

USA). Mean ± standard deviation was used to report normally distributed data 

and median (interquartile range) for non-normally distributed data. Nominal 

data was represented as total number (n) and percentage (%). Where data was 

positively skewed further analyses were performed using log-transformed values. 

A p value of <0.05 was considered statistically significant.   
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Reduction ratios (dd) of FGF-23 and Urea were calculated from pre (efgh) and 

post dialysis (efijk) concentrations  

   dd = l1 −
mnopq

mnrs
t u	100 

Correlation of phosphate and FGF-23 at different time points during dialysis was 

tested using Pearson’s test.   

Changes in pre and post dialysis solute levels were analysed using non-

parametric Wilcoxon tests. Mass removal of solutes during dialysis (HDF versus 

HD) was compared using the non-parametric Mann-Whitney U test. P values of < 

0.05 were considered statistically significant.  

Changes in circulating levels of Urea, phosphate and FGF-23 at different 

treatment times of dialysis were performed using non-parametric Wilcoxon 

paired rank test.  

5.11 Urea distribution and calculation of Total Body Water 
(TBW) 

The volume of urea distribution (V) was derived from total body water using the 

Fresenius Body Composition Monitor (BCM) ® before dialysis. BCM uses a 

physiological three-compartment model of lean tissue mass, adipose tissue mass 

and over hydration to calculate TBW. The intracellular and extracellular water 

components are derived using bio impedance spectroscopy.  This method of TBW 

calculation has been validated using gold standard deuterium dilution methods.  



143 
 

 

5.12 Results 

5.12.1 Baseline characteristics 

A total of 25 patients (11 HD, 14 HDF) participated; 7 patients agreed to stay on 

for an extra hour (3 HD, 4 HDF). 1 person could not complete the study.   

Baseline and RRT characteristics are depicted in Table 5-1.    

Table 5-1:Baseline characteristics of population 

  Haemodiafiltration Haemodialysis 
Number (%) 14 11 
Age, years (range) 64.6 (34.2 - 82.7) 66.6 (54.7 - 87.2) 
Males 9 8 
RRT vintage, months  105 139 
HD vintage, months 102 120 
Primary Renal Diagnosis, n (%)    

Systemic 4 (28.6) 2 (18.2) 
Diabetes 5 (35.7) 1 (9.1) 
Familial/Hereditary 2 (14.3) 1 (9.1) 
Glomerular 0 3 (27.3) 
Tubulointerstitial 2 (14.3) 0 
Miscellaneous 1 (7.1) 4 (36.4) 

BCM (Vurea) 39.3 (24.6 - 55.3) 36.6(19.8-45.4) 
Urea reduction ratio 0.79± 0.07 0.75±0.06 
St Kt/V 1.6 (1.1 - 2.5) 1.4(19.8-45.4) 

RRT Characteristics   
RRT duration (minutes) 272 (240 - 300) 248(240-270) 
Blood flow (millilitres/min) 283 (222-299) 316(281-350) 
Dialysate flow (ml/min) 700 500 
Weight change (kilograms) 1.4 (0-3.2) 1.5(0.3-2) 

Machine & Dialyser characteristics   
Fresenius 5008 14 9 
Fresenius 4008 0 2 
FX 60 2 0 
FX 80 9 5 
FX 100 3 6 

BCM, Body composition monitor; RRT, renal replacement therapy; St Kt/V – standard Kt/V 



144 
 

 

5.12.2 Phosphate distribution during dialysis 

Plasma phosphate measured at all time points during dialysis was normally 

distributed and ranged from 0.15 to 1.27 mmol/l (mean ± SD, 0.67 ± 0.21) in 

HDF, n = 99; 0.33 to 1.15 mmol/l (mean ± SD, 0.60 ± 0.17) in HD, n=76. (Figure 

5-4) 

Figure 5-4: Phosphate distribution during HD & HDF 
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5.12.3 FGF-23 during dialysis  

FGF-23 distribution was positively skewed and further analyses were performed 

using log-transformed values. (Figure 5-5) 

Figure 5-5:FGF 23 distribution during HD & HDF 
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Median values were 2698.97 RU/ml (IQR 974.11 – 15962.24, n = 99 HDF); 2771.14 

(IQR 1101.59 – 5436.0, n = 76 HD). (Figure 5-6) 

Figure 5-6: Distribution of FGF 23 during HDF & HD 



147 
 

 

5.12.4 Correlation of FGF-23 and plasma phosphate 

Figure 5-7 is a scatter plot showing the association of phosphate with FGF-23 

using linear regression and Pearson correlation coefficients. There was a 

significantly positive correlation of plasma FGF-23 with serum phosphate at start 

of dialysis (r= 0.69, p< 0.001, n=25).  

Figure 5-7: Association of phosphate with FGF-23 at start of dialysis 
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When we extrapolated the data using each modality of dialysis i.e. HDF and HD 

the results were similar. Serum phosphate strongly correlated to plasma log FGF-

23 during both dialysis modalities; r= 0.68, p<0.001, n=99 HDF; r=0.43, p<0.001, 

n=76 HD. (Figure 5-8) 

Figure 5-8: Pearson’s correlation of FGF-23 and PO4 during HD & HDF 
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5.13 Modelling of solute clearance  

Kinetic modelling and its application have been extensively studied to measure 

the ‘effective dialysis’ dose. Urea a commonly used surrogate marker is almost 

exclusively excreted by the kidneys and is abundant in renal impairment with 

good dialysis clearance. It’s small molecular properties, distribution and easy 

measurability, makes it an ideal candidate for clearance measurement. For 

ease, further references to solute in this chapter imply urea, until specified 

otherwise.  

To understand mathematical modelling, we start with the simple single pool 

urea kinetic model. In this, the human body is considered a single chamber of 

fluid with uniform concentration of solutes. There is no generation of urea, with 

neither removal nor addition of water during dialysis and solute is removed at a 

constant rate.  

In reality, because urea is a water-soluble molecule it is distributed within the 

total body water distribution in two compartments - intracellular and 

extracellular. Initial studies on a two-pool mathematical model mostly assumed 

equal distribution of solute in these two compartments with free flow between 

the two. 

5.13.1 Dialysis adequacy 

Dialysis adequacy or the effective dialysis dose is the ability to remove solutes 

effectively during a session of dialysis. It is an important parameter used by 

clinicians regularly and often linked to mortality and morbidity. To calculate and 

understand the ‘optimal dialysis dose’ dialysis adequacy tools were introduced. 

Urea reduction ratio and vw/x	(discussed further in the chapter) are two of the 

most widely accepted dialysis adequacy tools in routine clinical use. 

5.13.1.1 Urea reduction ratio (URR) 

URR is a simple measure of dialysis adequacy that is mathematically expressed 

as 

ydd = 	 (yz − 	y)/	yz 
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or         ydd = 	1 − 	y	/	yz  Equation 1 

where yz is the urea concentration pre-dialysis and U the urea concentration 

post dialysis   

5.13.1.2 {|/}	 

vw/x	is a dimensionless ratio of the volume of plasma cleared to the urea 

clearance volume where K is the dialyser clearance (ml/min), t the time on 

dialysis (ml/min) and V the volume of distribution (ml or litres) of solute. The 

total volume of distribution of solute is calculated as the total body water (60% 

in males and 45-55% in females, not relevant when measured using BCM). Thus a 

vw/x of 1 is a volume that has been completely cleared of its solute.  

We know from first order differential equations, that describes exponential 

clearance or decay of solutes  

    x	
~�

~k
	= 	−vy   

where 
~�

~k
 is the first derivative of concentration of solute with time, V the 

volume of distribution of solute, K the dialyser clearance and U the urea 

concentration at the end of dialysis. The dialyser clearance (K) or the ability of 

the dialyser to clear a solute is based on the size, membrane permeability, blood 

and dialysate flow rate.   

Thus    

1

y

ÄÅ

Äw
= 	−

v

x
 

Integrating both sides   

Ç
1

y

ÄÅ

Äw
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     logy = 	−v
k

Ñ
+ ÖÜáàwâáw  

Thus     y =	äã
åq
ç
éèiêjkëêk 

Where e is the natural logarithm 

     y = yi	ä	
ãík/ì 

Where yi	is the concentration at start of dialysis 

     ík

ì
= îÜï

ño
ñ

   Equation 2 

We know from Equation 1   ydd = 	1 − 	y	/	yz 

Thus     1 − 	ydd = 		y/yz  Equation 3 

5.13.1.3 URR in relation to {|/}	 

The mathematically relationship of vw/x to ydd	can be derived by substituting 

the values from equation 3 in equation 2  

Thus because    log
ñ

ñó
= 	− log

ñó
ñ
	   

The equations can be rewritten as ík

ì
= − log	( 1 − ydd)	    

The single pool model however does not account for solute generation and 

ultrafiltration. It assumes a linear decline in solute concentration during dialysis. 

A simplified second-generation equation was subsequently developed that could 

be applied to thrice weekly 2.5-4 hours dialysis that corrected for ultrafiltration 

and fluid removal as depicted below. (133) 

òôvw/x = − log(d − 0.008	uw) + (4 − 3.5	ud)	u	yú/ù(133) 

R, post dialysis/predialysis ratio; t, time on dialysis (hours); UF, ultrafiltration (litres); W, 
post dialysis weight (kilograms) 
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Solute rebound occurs post dialysis to reach a steady state of equilibration in the 

various chambers of the body.  

To address the urea rebound (difference in solute concentration immediately 

post dialysis and the time taken to attain full equilibration of urea, usually 30- 

60 minutes after dialysis) äûÅüîü†°âwäÄ	vw/x		(ävw/x) has been suggested. This 

recognises solutes are not confined to a single chamber.  

ävw/x is calculated as follows based on the access used and depicted as follows. 

Arterial access ävw/x = àôvw/x −	(0.6	£	àôv/x) + 0.03	(185) 

Venous access  ävw/x = àôvw/x −	(0.47	£	àôv/x) + 0.02(185) 

Other commonly used formulae to predict ävw/x includes the Schneditz rate 

equation(186), Smye method (187)and the Tattersall equation(188). 

Since patients now dialyse more frequently and follow different treatment 

regimes a §ää•î¶	òwÄ	vw/x has been developed. The weekly Std Kt/V is not a 

product of the SpKt/V by the sessions of dialysis, since urea decreases with each 

session of dialysis.  

Thus the weekly urea clearance is derived as follows -  

ùää•î¶	òwÄ	vw/x = 7	£	1440	[(0.184(ßedá − 0.17)]/

	ô°äÄüâî¶àüà	Å°äâ	§ää•î¶(189) 

®|©	{|/} , standard Kt/V; PCRn, normalised protein catabolic rate, 7 is number of days X 
1440 minutes/ day = 10,080 minutes per week.  

KDOQI recommends a minimum òôvw/x of 1.2 or a URR of 65% in dialysis 

patients on 3 times/week with residual renal function of <2ml/min/1.73m2. To 

achieve this target, the delivered òôvw/x should be 1.4 or a URR of 70%. (190) 

UK Renal Association clinical practice guidelines on haemodialysis recommend a 

òôvw/x of >1.3, a äôvw/x of 1.2 or a URR of 65% during a session of dialysis.  

The minimum targets are an URR of 70% or äôvw/x of 1.3 to achieve these goals. 	
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5.14 Phosphate kinetics 

Phosphate unlike urea is a complex molecule distributed in various components 

in the body. It’s primarily found in bone as hydroxyapatite as a complex with 

calcium.  (191) Serum phosphate measures the inorganic phosphorus while 

various other forms as dihydrogen phosphate (H2PO4 –) and hydrogen phosphate 

(HPO4 -1) exist. Diurnal variation in phosphate, the amount of phosphate intake, 

effects of other hormones and residual renal function play an important role in 

serum phosphate levels. Levels are difficult to control in CKD and ESRD despite 

removal during dialysis. To better understand the role of phosphate and its 

distribution various kinetic models with 2 to 4 compartment assumptions have 

been proposed. These aim to improve our understanding of phosphate balance 

during dialysis and help assess phosphate status better.   

A recent systematic review of phosphate kinetic models in haemodialysis 

published before August 2016 looked at 1964 studies and included 11 with 9 

different models.  (192)These were assessed using the modified version of the 

Newcastle-Ottawa scale that includes 14 quality indicators based on model 

approach, treatment setup, design, validation and conclusions. 3 of the 11 

studied models were considered high quality with scores of 10.5 – 11 (6 medium 

quality, scores of 6.5 to 9.5 and 2 low quality, scores of 2 to 4 on a scale of 0-14) 

but none of them have gained clinical acceptance.  (192) 

Physiologically some of these models are plausible but complex. Spalding et al. 

four pool model is based on a standard 2 pool model that proposes a third 

compartment which allows an additional flux of phosphate into the extracellular 

space to maintain targets.  A fourth compartment comes into play when 

intracellular phosphate falls below a certain level.  (184)Other simple models 

are theoretical and some have assumed phosphate as equivalent to the TBW.  

(193)The role of dietary phosphate, phosphate binders, hormonal influences and 

dialysate composition adds to the complexity in our ability to build a phosphate 

kinetic model. Despite these limitations and the absence of a phosphate kinetic 

model that is widely accepted it is these initial works that prompt further 

investigation into phosphate behaviour.  
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The emerging role of FGF-23 in phosphate regulation and clearance in dialysis 

may help better understand mineral bone metabolism in CKD.  

5.15 Mathematical modelling of FGF-23  

Sample collection and methods are previously described in section 6.8. Dialytic 

clearances were calculated from the total solute (FGF-23) removed divided by 

dialysis duration and the log means of the pre and post dialysis concentration of 

the FGF-23 calculated. Total solute removed was the sum of the dialysate 

volume, ultrafiltration volume and substitution volume (only in HDF) multiplied 

by the solute concentration. Urea, phosphate and FGF-23 concentrations in the 

dialysate were calculated from the fluid collected at the 5 different time points 

via the three-way system.  

Means of urea and phosphate concentration and medians of FGF-23 were 

recorded for patients on both HD and HDF. Data for an hour post dialysis were 

available for only 4 on HD and 5 on HDF. Separate plots were created for this 

subgroup of patients.  
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5.15.1 Results 

Figures 5-9 and 5-10 shows the fall in urea concentration during dialysis followed 

by a rebound in the subgroup of patients that agreed to stay for an hour extra.  

Similar findings are noted in phosphate concentrations in Figure 6.13 and 6.14.  

Figure 5-9: Mean urea concentration during dialysis 

 

Figure 5-10: Mean urea levels in a subgroup, to include data 1-hour post dialysis 

 

tia, start of dialysis; ti2 – ti6, equally timed intervals between dialysis; Td, end of dialysis; 
tAD, after dialysis; tAD15 – tAD60 are 15, 30 and 60 minutes post dialysis concentrations; U 
after each time signifies urea concentration at that time interval  
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Samples for urea were further analysed using the single pool model to ensure 

accuracy of data collection. Figure 5-11 & 5-12 shows observed and predicted 2-

pool models in both modalities of dialysis.  

Figure 5-11: Mean urea concentrations during HD 

                      
HD- Haemodialysis  

Figure 5-12: Mean urea concentrations during HDF 

                      
HDF - Haemodiafiltration 
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Figure 5-14: Mean phosphate levels in a subgroup, to include data 1-hour post dialysis 

 

tia, start of dialysis; ti2 – ti6, equally timed intervals between dialysis; Td, end of dialysis; 
tAD, after dialysis; tAD15 – tAD60 are 15, 30 and 60 minutes post dialysis concentrations; P 
after each time signifies urea concentration at that time interval  
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Figure 5-14: Mean phosphate levels during dialysis Figure 5-13: Mean phosphate level during dialysis 
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Samples for phosphate were further analysed using the 2 pool, 3 pool and 4-pool 

models. Figure 5-15 & 5-16 shows observed and predicted models in both 

modalities of dialysis.  

Figure 5-15: Mean phosphate concentrations during HD 

  

HD, Haemodialysis 

 

Figure 5-16: Mean phosphate concentrations during HD 

  

HDF, Haemodiafiltration  
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Figure 5-18: Median FGF-23 levels in subgroup, to include data 1-hour post dialysis 

 

tia, start of dialysis; ti2 – ti6, equally timed intervals between dialysis; Td, end of dialysis; 
tAD, after dialysis; tAD15 – tAD60 are 15, 30 and 60 minutes post dialysis concentrations; 
FGF after each time signifies FGF-23 concentration at that time interval  
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from 18.52 ± 3.41 mmol/L during HDF to 4.02 ± 1.72 mmol/L, n = 13; For HD 

mean values fell from 16.44 ± 5.67 mmol/L to 4.1 ± 1.09 mmol/L, n = 11. 1 HD 

patient could not complete the test.  

5.15.3 FGF-23 

Post dialysis FGF-23 concentrations were corrected for haemoconcentration 

assuming single pool distribution   

  [FGF-23corrected = FGF-23post/[1+ΔBW/(0.2XBWpost)] 

Where ΔBW is the difference between pre and post dialysis treatment weight 

and BW post the post dialysis body weight.  

It is clear from the above data that a one or 2- pool model cannot explain FGF23 

removal. The maintenance of a steady level throughout dialysis suggests FGF-23 

generation, either through acute changes in phosphate concentrations or 

alterations in PTH in response to ionized calcium.  

During HDF median FGF-23 decreased from 2906.1 RU/ml (IQR 1307.4 - 18678.3) 

to 2608.7 (IQR 1212.0 – 5802.2), p = 0.002, n = 13; For HD median values fell 

from 3113.54 RU/ml (IQR 1212.0 – 5802.2) to 2461.9 RU/ml (IQR (958.3-5438.9), 

p= 0.003, n = 11.  

Total FGF-23 mass removal during dialysis by HDF was greater compared to HD 

(HDF, 183987.82 RU (IQR 36603.84 – 969224.16); HD 180464.71 RU (IQR 72321.30 

– 323473.56), but this was not significant (HDF, n = 13; HD, n =11; p = 0.8, 2 

tailed).  

5.15.4 Phosphate 

During HDF phosphate decreased from a mean of 1.35 ± 0.53 mmol/L to 0.65 ± 

0.19 mmol/L, n = 13; For HD mean values fell from 1.34 ± 0.41 mmol/L to 0.58 ± 

0.14 n = 11. 1 HD patient could not complete the test.  
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Mass phosphate removal by HDF was greater compared to HD (HDF, 28352.70 ± 

11661.66 mmol; HD 26229.89 ± 7299.08 mmol), though this was not significant 

(HDF, n = 13; HD, n =11; p = 0.8, 2 tailed).  

5.16 Discussion 

This observational study confirms FGF-23 is removed during dialysis and its levels 

are 1000- fold higher in ESRD. HDF is superior to HD in mass phosphate and FGF-

23 removal and there is a strong correlation of phosphate to FGF-23 during 

dialysis, both in HD and HDF.  

A recent study comparing short daily dialysis with conventional dialysis did not 

find any differences in time averaged phosphate (3 serum samples collected 

prior to dialysis levels over 3 months) and PTH in the 2 groups. Levels of serum 

phosphate in the conventional group were 5.0±1.3 mg/dL versus 5.0±1.2 mg/dL 

in the short group. In comparison median plasma FGF-23 levels were lower (short 

daily, 823; IQR 263 – 2169 RU/mL versus conventional, 2521; IQR 909 – 5556 

RU/mL, p <0.01) in the short daily group despite equivalent levels of phosphate. 

The correlation of phosphate to FGF-23 concentrations was similar to our 

findings (r= 0.42, p <0.01; conventional and r= 0.52, p <0.01; short daily).  (194)  

In contrast, a cross sectional study by Knap et al. reported similar levels of FGF-

23 on long nocturnal HD with standard dialysis (mean 2677.2 ±4010.1 RU/ml, 

n=10, Nocturnal; 4134.4 ±6310.7 RU/ml, n=40, standard; P= 0.28). Patients in 

the nocturnal were younger (48±10 years versus 58.5 ± 15.7 years), dialysed for 

longer (24hours/week versus15hours/ week), had longer RRT vintage (mean 15.4 

years versus 7.6 years) and had lower phosphate levels (1.2± 0.25 mmol versus 

1.54±0.55 mmol/L, P= 0.05) (195) The high standard deviations in the FGF-23 

levels and small patient numbers may have had an effect on the unexpected 

results.  

Yamamoto et al. studied acute changes in circulating FGF-23 levels in 45 

clinically stable patients from Brazil. Using, reused cellulose acetate or 

derivatized cellulose membrane they recorded a -19% reduction of FGF-23 levels 

during a single session of HD. They speculated the close association of phosphate 
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to FGF-23 explained the drop. Whether the reuse of dialysers or germicides to 

contributed to these results are unknown.  (196)  

Mass FGF-23 removal, a better assessment of the total FGF-23 reduction during 

dialysis was greater in the HDF group in comparison to HD arm in our study 

population. The HDF group was younger and had a lower RRT vintage. This may 

have contributed to the higher median FGF-23 levels in the HD group.  

What is not clear is if FGF-23 removal has any positive effect on the overall 

outcome of patients. It may be, like phosphate and PTH, therapeutic measures 

to reduce FGF-23 in the future will only advisable in extreme cases. This 

question still remains unanswered for now. 

Our attempts to create a kinetic model for FGF 23 was met with various inherit 

problems. FGF 23 is a large unstable molecule and concentrations in dialysate 

fluid were low, with some samples needing concentrated by factors of 10, 100 

and 1000. Its secretion primarily from the bone and distribution in the multiple 

pools of the body is unknown and unlikely to be constant. Levels are affected by 

phosphate removal. The effect of haematocrit, dialyser membranes, 

ultrafiltration and duration of dialysis on FGF-23 is unclear.  

5.17 Limitations 

Our study was limited by small patient number and being observational in 

nature. Phosphate balance from diet, medications and hormonal influences were 

not taken into consideration.  

5.18 Conclusion 

The strengths of our study include robust data collection that was validated by 

the urea kinetic model. Subjects were from two different centres and used 

different models of dialysis.  

Plasma FGF-23 levels strongly correlate to phosphate before and during a session 

of dialysis. Haemodialysis (HD or HDF) is an effective treatment in reducing FGF-
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23 levels. Further kinetic studies should be undertaken to examine the 

elimination of FGF-23 during dialysis. 
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Conclusion & Discussions   
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6.1 Introduction 

The work in this thesis was designed to narrow the gap and improve our 

understanding of the management of CKD- MBD. The initial chapter identifies 

the problem and the next chapter explores possible solutions to improve care in 

the present health care setting. The use of IT to develop new technology and it’s 

effect on quality of life has been explored and the study of novel biomarkers in 

relation to PD and HD is covered in the subsequent chapters.  

6.2 Symptomatic fractures in RRT population 

Fractures are common in the CKD population and remain a significant cause of 

mortality and morbidity. The incidence of fractures and their association with 

surrogate bone markers in the RRT population is poorly defined. The principal 

aim of this chapter was to identify radiological proven bone fractures and study 

the relationship to risk factors.  

Retrospective data collection was carried out over a 3-year period, across 4 

different health boards and included all radiology reports from 20 different 

hospitals. Fractures were classified using the ICD 10 nomenclature defined by 

the WHO and Primary renal disease using the ERA-EDTA Coding system. 

Covariates known to affect bone parameters (demographic, biochemical and 

medications) were identified.  

The data was analysed using Cox-proportional hazard models and time to first 

fracture calculated by Kaplan Meier survival curves.  

A total of 340 fractures were identified with an overall incidence of 62.8 per 

1000 patient years. This was almost double that of a self-reported health survey 

from 2002-2004, in England (104)and within the wide range of 3.3 to 99.6 per 

1000 patient years of previous reports.   (101) 

The highest incidence of fractures was recorded in the HD population and the 

lowest in the RT group. Risk ratio for HD and PD were 2.6 and 1.7 respectively 

for all fracture types. Further analysis was carried out for major fractures i.e. 

hip, pelvis and femoral. In the Univariable analysis age, female gender, HD, 
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diabetes, serum phosphate and exposure to sevelamer were associated with 

reduced time to first fracture. Age and HD were independent risk factors for 

fractures in multivariable analysis. These results are perhaps unsurprising, given 

that the RT patients are a self-selected healthier population compared to the HD 

group.  

Exposure to alfacalcidol and lanthanum and increased serum albumin were 

associated with decreased risk. Lanthanum has been reported to improve renal 

osteodystrophy (109) and increase mineralisation at the periosteal surface in HD 

patients with ABD, (110) while Vitamin D has shown improvement in DEXA BMD in 

CKD.  (113) Our data supports the role of Lanthanum and Vitamin D at reducing 

fractures. Low albumin is a surrogate marker of poor nutrition and its association 

with fracture risk (115) is consistent with previous reports.  

There was no site effect for each of the RRT modalities, which meant the 

findings were across the board.  

Despite being retrospective in nature our study was robust and the first reported 

study that looked into radiological proven bone fractures in a large CKD 

population. Data was collected over 3 years and included average reading of 3 

consecutive values. It included relevant parameters that are used in daily 

clinical practice.  

The model of this study could be used to design future prospective trials with 

inclusion of associated risk factors such as FGF-23. The role of DEXA as recently 

defined in the KDIGO guidelines and impact of Cinacalcet could be explored 

further.  

6.3 Thrice weekly nocturnal in-centre HDF 

This was a prospective study over a 2-year period from electronic records on a 

self-selected group of 14 patients. They were converted from conventional 4-5 

HDF to nocturnal 8 hour HDF in an in-centre setting. Changes in clinical and 

biochemical parameters were recorded at 3,6, 9 and 24 months. Analysis was 

carried out only for data that was available for more than 12 months. Each 

patient served as his or her own control.  
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The use of phosphate binders was altogether eliminated and small solute 

clearance improved significantly. Phosphate (128,132) and better small solute 

control (132,135) with increased dialysis has been reported since 1998. The 

unique finding in our study was normalisation of phosphate without need for 

supplementation and complete elimination of all binders. This could perhaps be 

explained with the lower dialysate and blood flows and the reduced frequency of 

dialysis.   

There was a reduction in blood pressure with lesser use of antihypertensive 

medications that would suggest better blood pressure. Charra et al. have 

previously reported one of the lowest mortality with excellent blood pressure 

with extended hours of dialysis.   (130) 

A trend towards the lesser use of intravenous iron and erythropoietin was 

recorded though no changes in beta-2 microglobulin was noted.  

A major limitation of this study was small patient numbers in a self-selected 

group. There were no recordings of food charts to assess phosphate balance and 

we did not have a comparator group.  

This study could be the basis for conducting large multicentre trials especially in 

patients with difficult phosphate and fluid management. It also forms an 

opportunity to explore the effects of long hours of dialysis on novel markers such 

as FGF-23.  

6.4 Phosphate and FGF-23 in PD 

The chapter focussed on the study of novel biomarkers and their correlation to 

phosphate in a group of PD patients. PD was chosen as the RRT modality of 

choice due to it being a continuous form of RRT. The formal assessment of 

residual renal function is a part of routine clinical care for all patients on PD 

which was an additional advantage. 

In this prospective study over 9 months data was collected on phosphate and 

FGF-23 from plasma and dialysate. Clearances were calculated and scatter plots 

created using linear regression and Pearson correlation coefficients. Changes in 
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levels of phosphate and FGF-23 were analysed using ANOVA.  Intraclass 

correlation coefficients were measured to compare the within to between 

subject variations.  

The study confirms FGF-23 is elevated in a group of PD patients and that levels 

are strongly correlated to phosphate.  There was a negative correlation between 

FGF-23 and urinary clearance suggesting residual renal function had an 

important role in FGF-23 clearance. FGF-23 measurements are likely to be less 

variable over a longer period compared to phosphate. These findings are 

consistent with previous reports (91,155) though the negative relationship 

between plasma FGF-23 and phosphate clearance needs further exploration.  

The strength of the study was the data collection over a 9-month period, 

maintenance of food dairies and quantification of clearances. This chapter will 

hopefully help future researchers to undertake studies on FGF-23 and phosphate 

clearances in PD patients.    

6.5 Effect of single session of dialysis on FGF-23  

FGF-23 is a novel biomarker that is believed to play a critical role in CKD- MBD. 

Despite extensive research it remains an elusive molecule that is yet to make its 

way into routine clinical practice. This chapter aims to demystify FGF-23 and 

study its function, the role it plays in phosphate, Vitamin D and PTH regulation. 

The commercially available assays are reviewed and the t ½ examined.  

I studied the association of phosphate to FGF-23 during two different modalities 

of dialysis, HD and HDF. A basic understanding of Kinetic modelling, URR and its 

association to Kt/V is examined in relation to urea and phosphate clearance. 

Finally, we explored the possibility of creating a model to study the kinetics of 

FGF-23.  

This prospective study consists of 25 patients from 2 different centres on HD and 

HDF. Blood and dialysate samples are collected during a session of dialysis at 

equally timed intervals. In a subgroup, sample collection was extended to 1-hour 

post dialysis.  



169 
 

 

The results confirmed a 1000- fold increase in FGF-23 levels in dialysis patients 

with ESRD. Phosphate had a strongly positive correlation to plasma FGF-23 

during dialysis and total FGF-23 (mass removal) by HDF was greater compared to 

HD.  

Though I was able to replicate previous urea and phosphate kinetic models,  

(184) a tight fit for a FGF-23 model could not be established. While it establishes 

the strong association of phosphate to FGF-23 (183) in a HD cohort it raises more 

questions about its clearances. Some authors have reported a reduction of FGF-

23 during a session of HD (196) while others have had no changes between 

standard dialysis and long nocturnal HD.  (195) 

It is clear that the rate of removal of FGF-23 by the dialysis process is being 

matched by FGF-23 generation as dialysis continues. The stimulus for this could 

be related to the demonstrated changes in phosphate concentration or could be 

due to alterations in PTH in response to changes in ionised calcium. Further 

studies may be able to elucidate this more clearly particularly if the analysis of 

FGF-23 concentrations becomes easier through the development of commercially 

viable FGF-23 assay. 
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In conclusion, it is clear that while some answers have been provided by this 

research, there are many unanswered questions and controversies to be resolved 

in the field of CKD-MBD.   

The studies included in this thesis were designed to further define some of the 

morbidities associated with CKD-MBD. I have sought to understand some 

potential ways of improving metabolic control and have investigated the 

potential role and associations of novel biomarkers in relation to conventional 

markers of CKD-MBD. The results have added to the pool of knowledge in this 

field but have also opened up a range of new challenges and questions that need 

to be addressed. Undertaking this research has enabled me to expand my own 

knowledge, gain experience in clinical research and has given me a secure 

foundation to further develop my interest in the field of CKD-MBD in my clinical 

career. 
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1.1 Summary of 2019 & 2009 KDIGO CKD- MBD 
recommendations 

 

Reproduced as per Creative Commons Attribution-NonCommercial-No Derivatives License 
(CC BY NC ND) 

Summary and comparison of 2017 updated and 2009
KDIGO CKD-MBD recommendations

2017 revised KDIGO CKD-MBD
recommendations 2009 KDIGO CKD-MBD recommendations Brief rationale for updating

3.2.1. In patients with CKD G3a–G5D with
evidence of CKD-MBD and/or risk factors for
osteoporosis, we suggest BMD testing to
assess fracture risk if results will impact
treatment decisions (2B).

3.2.2. In patients with CKD G3a–G5D with evidence
of CKD-MBD, we suggest that BMD testing not be
performed routinely, because BMD does not
predict fracture risk as it does in the general
population, and BMD does not predict the type of
renal osteodystrophy (2B).

Multiple new prospective studies have
documented that lower DXA BMD predicts
incident fractures in patients with CKD G3a–
G5D. The order of these first 2
recommendations was changed because a
DXA BMD result might impact the decision to
perform a bone biopsy.

3.2.2. In patients with CKD G3a–G5D, it is
reasonable to perform a bone biopsy if
knowledge of the type of renal osteodystrophy
will impact treatment decisions (Not Graded).

3.2.1. In patients with CKD G3a–G5D, it is
reasonable to perform a bone biopsy in various
settings including, but not limited to: unexplained
fractures, persistent bone pain, unexplained
hypercalcemia, unexplained hypophosphatemia,
possible aluminum toxicity, and prior to therapy
with bisphosphonates in patients with CKD-MBD
(Not Graded).

The primary motivation for this revision was
the growing experience with osteoporosis
medications in patients with CKD, low BMD,
and a high risk of fracture. The inability to
perform a bone biopsy may not justify
withholding antiresorptive therapy from
patients at high risk of fracture.

4.1.1. In patients with CKD G3a–G5D,
treatments of CKD-MBD should be based on
serial assessments of phosphate, calcium, and
PTH levels, considered together (Not Graded).

This new recommendation was provided in
order to emphasize the complexity and
interaction of CKD-MBD laboratory parameters.

4.1.2. In patients with CKD G3a–G5D, we
suggest lowering elevated phosphate levels
toward the normal range (2C).

4.1.1. In patients with CKD G3a–G5, we suggest
maintaining serum phosphate in the normal
range (2C). In patients with CKD G5D, we suggest
lowering elevated phosphate levels toward the
normal range (2C).

There is an absence of data supporting that
efforts to maintain phosphate in the normal
range are of benefit to CKD G3a–G4 patients,
including some safety concerns. Treatment
should aim at overt hyperphosphatemia.

4.1.3. In adult patients with CKD G3a–G5D, we
suggest avoiding hypercalcemia (2C).
In children with CKD G3a–G5D, we suggest
maintaining serum calcium in the age-
appropriate normal range (2C).

4.1.2. In patients with CKD G3a–G5D, we suggest
maintaining serumcalcium in the normal range (2D).

Mild and asymptomatic hypocalcemia (e.g., in
the context of calcimimetic treatment) can be
tolerated in order to avoid inappropriate
calcium loading in adults.

4.1.4. In patients with CKD G5D, we suggest
using a dialysate calcium concentration
between 1.25 and 1.50 mmol/l (2.5 and 3.0
mEq/l) (2C).

4.1.3. In patients with CKD G5D, we suggest using
a dialysate calcium concentration between 1.25
and 1.50 mmol/l (2.5 and 3.0 mEq/l) (2D).

Additional studies of better quality are
available; however, these do not allow for
discrimination of benefits and harms between
calcium dialysate concentrations of 1.25 and
1.50 mmol/l (2.5 and 3.0 mEq/l). Hence, the
wording is unchanged, but the evidence grade
is upgraded from 2D to 2C.

4.1.5. In patients with CKD G3a–G5D, decisions
about phosphate-lowering treatment should
be based on progressively or persistently
elevated serum phosphate (Not Graded).

4.1.4. In patients with CKD G3a–G5 (2D) and G5D
(2B), we suggest using phosphate-binding agents
in the treatment of hyperphosphatemia. It is
reasonable that the choice of phosphate binder
takes into account CKD stage, presence of other
components of CKD-MBD, concomitant therapies,
and side effect profile (Not Graded).

Emphasizes the perception that early
“preventive” phosphate-lowering treatment is
currently not supported by data (see
Recommendation 4.1.2).
The broader term “phosphate-lowering”
treatment is used instead of phosphate
binding agents since all possible approaches
(i.e., binders, diet, dialysis) can be effective.

(Continued on next page)

www.kisupplements.org

Kidney International Supplements (2017) 7, 1–59 19
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2017 revised KDIGO CKD-MBD
recommendations 2009 KDIGO CKD-MBD recommendations Brief rationale for updating

4.1.6. In adult patients with CKD G3a–G5D
receiving phosphate-lowering treatment, we
suggest restricting the dose of calcium-based
phosphate binder (2B). In children with CKD
G3a–G5D, it is reasonable to base the choice of
phosphate-lowering treatment on serum
calcium levels (Not Graded).

4.1.5. In patients with CKD G3a–G5D and
hyperphosphatemia, we recommend restricting
the dose of calcium-based phosphate binders
and/or the dose of calcitriol or vitamin D analog in
the presence of persistent or recurrent
hypercalcemia (1B).

New evidence from 3 RCTs supports a more
general recommendation to restrict calcium-
based phosphate binders in
hyperphosphatemic patients across all
severities of CKD.

In patients with CKD G3a–G5D and
hyperphosphatemia, we suggest restricting the
dose of calcium-based phosphate binders in the
presence of arterial calcification (2C) and/or
adynamic bone disease (2C) and/or if serum PTH
levels are persistently low (2C).

4.1.8. In patients with CKD G3a–G5D, we
suggest limiting dietary phosphate intake in
the treatment of hyperphosphatemia alone or
in combination with other treatments (2D). It is
reasonable to consider phosphate source (e.g.,
animal, vegetable, additives) in making dietary
recommendations (Not Graded).

4.1.7. In patients with CKD G3a–G5D, we suggest
limiting dietary phosphate intake in the treatment
of hyperphosphatemia alone or in combination
with other treatments (2D).

New data on phosphate sources were deemed
to be included as an additional qualifier to the
previous recommendation.

4.2.1. In patients with CKD G3a–G5 not on
dialysis, the optimal PTH level is not known.
However, we suggest that patients with levels
of intact PTH progressively rising or
persistently above the upper normal limit for
the assay be evaluated for modifiable factors,
including hyperphosphatemia, hypocalcemia,
high phosphate intake, and vitamin D
deficiency (2C).

4.2.1. In patients with CKD G3a–G5 not on dialysis,
the optimal PTH level is not known. However, we
suggest that patients with levels of intact PTH
above the upper normal limit of the assay are first
evaluated for hyperphosphatemia, hypocalcemia,
and vitamin D deficiency (2C).

It is reasonable to correct these abnormalities with
any or all of the following: reducing dietary
phosphate intake and administering phosphate
binders, calcium supplements, and/or native
vitamin D (Not Graded).

The Work Group felt that modest increases in
PTH may represent an appropriate adaptive
response to declining kidney function and has
revised this statement to include “persistently”
above the upper normal PTH level as well as
“progressively rising” PTH levels, rather than
“above the upper normal limit.” That is,
treatment should not be based on a single
elevated value.

4.2.2. In adult patients with CKD G3a–G5 not on
dialysis, we suggest that calcitriol and vitamin D
analogs not be routinely used. (2C) It is
reasonable to reserve the use of calcitriol and
vitamin D analogs for patients with CKD G4–G5
with severe and progressive
hyperparathyroidism (Not Graded).

4.2.2. In patients with CKD G3a–G5 not on dialysis,
in whom serum PTH is progressively rising and
remains persistently above the upper limit of
normal for the assay despite correction of
modifiable factors, we suggest treatment with
calcitriol or vitamin D analogs (2C).

Recent RCTs of vitamin D analogs failed to
demonstrate improvements in clinically
relevant outcomes but demonstrated
increased risk of hypercalcemia.

In children, calcitriol and vitamin D analogs
may be considered to maintain serum calcium
levels in the age-appropriate normal range
(Not Graded).

4.2.4. In patients with CKD G5D requiring PTH-
lowering therapy, we suggest calcimimetics,
calcitriol, or vitamin D analogs, or a
combination of calcimimetics with calcitriol or
vitamin D analogs (2B).

4.2.4. In patients with CKD G5D and elevated or
rising PTH, we suggest calcitriol, or vitamin D
analogs, or calcimimetics, or a combination of
calcimimetics and calcitriol or vitamin D analogs
be used to lower PTH (2B).
! It is reasonable that the initial drug selection for

the treatment of elevated PTH be based on
serum calcium and phosphate levels and other
aspects of CKD-MBD (Not Graded).

! It is reasonable that calciumornon-calcium-based
phosphate binder dosage be adjusted so that
treatments to control PTH do not compromise
levels of phosphate and calcium (Not Graded).

! We recommend that, in patients with hyper-
calcemia, calcitriol or another vitamin D sterol
be reduced or stopped (1B).

This recommendation originally had not been
suggested for updating by the KDIGO
Controversies Conference in 2013. However,
due to a subsequent series of secondary and
post hoc publications of the EVOLVE trial, the
Work Group decided to reevaluate
Recommendation 4.2.4 as well. Although
EVOLVE did not meet its primary endpoint, the
majority of the Work Group members were
reluctant to exclude potential benefits of
calcimimetics for G5D patients based on
subsequent prespecified analyses. The Work
Group, however, decided not to prioritize any
PTH-lowering treatment at this time because
calcimimetics, calcitriol, or vitamin D analogs
are all acceptable first-line options in G5D
patients.

summary and comparison of 2017 updated and 2009 KDIGO CKD-MBD recommendations www.kisupplements.org

20 Kidney International Supplements (2017) 7, 1–59
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2017 revised KDIGO CKD-MBD
recommendations 2009 KDIGO CKD-MBD recommendations Brief rationale for updating

! We suggest that, in patients with hyper-
phosphatemia, calcitriol or another vitamin D
sterol be reduced or stopped (2D).

! We suggest that, in patients with hypocalcemia,
calcimimetics be reduced or stopped depend-
ing on severity, concomitant medications, and
clinical signs and symptoms (2D).

! We suggest that, if the intact PTH levels fall
below 2 times the upper limit of normal for the
assay, calcitriol, vitamin D analogs, and/or cal-
cimimetics be reduced or stopped (2C).

4.3.3. In patients with CKD G3a–G5D with
biochemical abnormalities of CKD-MBD and
low BMD and/or fragility fractures, we suggest
that treatment choices take into account the
magnitude and reversibility of the biochemical
abnormalities and the progression of CKD,
with consideration of a bone biopsy (2D).

4.3.3. In patients with CKD G3a–G3b with
biochemical abnormalities of CKD-MBD and low
BMD and/or fragility fractures, we suggest that
treatment choices take into account the
magnitude and reversibility of the biochemical
abnormalities and the progression of CKD, with
consideration of a bone biopsy (2D).

Recommendation 3.2.2 now addresses the
indications for a bone biopsy prior to
antiresorptive and other osteoporosis
therapies. Therefore, 2009 Recommendation
4.3.4 has been removed and 2017
Recommendation 4.3.3 is broadened from CKD
G3a–G3b to CKD G3a–G5D.

4.3.4. In patients with CKD G4–G5D having
biochemical abnormalities of CKD-MBD, and low
BMD and/or fragility fractures, we suggest
additional investigation with bone biopsy prior to
therapy with antiresorptive agents (2C).

5.5. In patients with G1T–G5T with risk factors
for osteoporosis, we suggest that BMD testing
be used to assess fracture risk if results will
alter therapy (2C).

5.5. In patients with an estimated glomerular
filtration rate greater than approximately 30 ml/
min/1.73 m2, we suggest measuring BMD in the
first 3 months after kidney transplant if they
receive corticosteroids, or have risk factors for
osteoporosis as in the general population (2D).

2009 Recommendations 5.5 and 5.7 were
combined to yield 2017 Recommendation 5.5.

5.7. In patients with CKD G4T–G5T, we suggest
that BMD testing not be performed routinely,
because BMD does not predict fracture risk as it
does in the general population and BMD does
not predict the type of kidney transplant bone
disease (2B).

5.6. In patients in the first 12 months after
kidney transplant with an estimated
glomerular filtration rate greater than
approximately 30 ml/min/1.73 m2 and low
BMD, we suggest that treatment with vitamin
D, calcitriol/alfacalcidol, and/or antiresorptive
agents be considered (2D).
! We suggest that treatment choices be

influenced by the presence of CKD-MBD, as
indicated by abnormal levels of calcium,
phosphate, PTH, alkaline phosphatases, and
25(OH)D (2C).

! It is reasonable to consider a bone biopsy to
guide treatment (Not Graded).

There are insufficient data to guide treatment
after the first 12 months.

5.6. In patients in the first 12 months after kidney
transplant with an estimated glomerular filtration
rate greater than approximately 30 ml/min/1.73
m2 and low BMD, we suggest that treatment with
vitamin D, calcitriol/alfacalcidol, or
bisphosphonates be considered (2D).
! We suggest that treatment choices be influ-

enced by the presence of CKD-MBD, as indi-
cated by abnormal levels of calcium, phosphate,
PTH, alkaline phosphatases, and 25(OH)D (2C).

! It is reasonable to consider a bone biopsy to
guide treatment, specifically before the use of
bisphosphonates due to the high incidence of
adynamic bone disease (Not Graded).

There are insufficient data to guide treatment after
the first 12 months.

The second bullet is revised, consistent with
the new bone biopsy recommendation (i.e.,
2017 Recommendation 3.2.2).

25(OH)D, 25-hydroxyvitamin D; BMD, bone mineral density; CKD, chronic kidney disease; CKD-MBD, chronic kidney disease–mineral bone disorder; DXA, dual-energy x-ray
absorptiometry; PTH, parathyroid hormone; RCT, randomized controlled trial.
Changes to above summarized recommendations resulted in renumbering of several adjacent guideline statements. Specifically, 2009 Recommendation 4.1.6 now becomes
2017 Recommendation 4.1.7; 2009 Recommendation 4.1.8 now becomes 2017 Recommendation 4.1.9; 2009 Recommendation 4.3.5 now becomes 2017 Recommendation
4.3.4; and 2009 Recommendation 5.8 now becomes 2017 Recommendation 5.7.

www.kisupplements.org summary and comparison of 2017 updated and 2009 KDIGO CKD-MBD recommendations

Kidney International Supplements (2017) 7, 1–59 21
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4.1 Consent form 

 

 

Centre Number: 

Study Number: 

Patient Identification Number for this trial: 

CONSENT FORM 

Title of Project: To study the effect of a phosphate reduction program on novel biomarkers - 

(Fibroblast Growth factor - 23, Klotho) and quality of life in a group of peritoneal dialysis patients 

 

 Name of Researcher: Dr Vishal Dey 

Please initial all boxes  

1. I confirm that I have read and understand the information sheet dated …………… 

(Version ….) for the above study.  I have had the opportunity to consider the 

information, ask questions and have had these answered satisfactorily. 

2. I understand that my participation is voluntary and that I am free to withdraw at any time 

without giving any reason, without my medical care or legal rights being affected. 

3. I understand that relevant sections of my medical notes and data collected during the 

study may be looked at by individuals from NHS Ayrshire & Arran, from regulatory 

authorities or from the NHS Board, where it is relevant to my taking part in this research.  

I give permission for these individuals to have access to my records. 

4. I agree to my GP being informed of my participation in the study.    

5. I agree to take part in the above study.    

 

 

 

            

Name of Participant   Date    Signature 

                                

            

Name of Person   Date    Signature  

taking consent.  

1 for participant; 1 for researcher; 1 (original) to be kept in medical notes 
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5.1 Patient Information sheet 

 

 

Version 2.1 Page 1  02.03.2015  
 

       Contact   Vishal Dey 
Renal Office, Level 2 East 
Crosshouse Hospital 
Kilmarnock KA2 OBE 
 

Telephone 01563 825177 
       Email  vishal.dey@nhs.net 

Participant Information Sheet  
 
Kinetics of FGF-23 during dialysis 
(To study the removal of a protein called FGF-23 during dialysis) 
 
We would like to invite you to take part in our research study. Before you decide we would like 
you to understand why the research is being done and what it would involve for you. One of our 
team will go through the information sheet with you and answer any questions you have. This 
should take about 20 minutes. Talk to others about the study if you wish.  
 
Part 1 tells you the purpose of this study and what will happen to you if you take part.  
 
Part 2 gives you more detailed information about the conduct of the study.  
Ask us if there is anything that is not clear  
 
What is the purpose of the study?  
 
To study the removal of a protein called FGF-23 (Fibroblast Growth factor -23) during a session 
of dialysis. 
 
Phosphate is a mineral normally found in your bones. This with calcium and Vitamin D helps 
you remain healthy and build strong bones. In kidney failure the levels of phosphate tend to go 
up and can cause damage to your bones and blood vessels. New tests as FGF-23 are believed 
to play an important role in phosphate regulation. 
 
The kidney teams, at hospitals, across West of Scotland want to study the mechanism of FGF-
23 clearance during dialysis to have a better understanding of phosphate regulation 
 
Why have I been invited?  
 
You have been invited to take part because you have kidney disease and are currently on 
haemodialysis.   
 
Do I have to take part? 
 
No. If you decide to join the study we will describe the study and go through this information 
sheet. If you agree to take part, we will then ask you to sign a consent form. You are free to 
withdraw at any time, without giving a reason. This would not affect the standard of care you 
receive. 



181 
 

 

 

 

Version 2.1 Page 2  02.03.2015  
 

If you have given informed consent and lose capacity to consent during the study you will be 
withdrawn from the study. Identifiable data or tissue already collected with consent would be 
retained and used in the study. No further data or tissue would be collected or any other 
research procedures carried out on or in relation to you 
 
What will happen to me if I take part? 
 
During the study we will collect 13 extra samples of blood on dialysis. 10 of these samples will 
be done during dialysis and 3 an hour after completion of dialysis. In case you do not wish to 
have the 3 tests after completion of dialysis you will have only 10 tests done. The tests will be 
done at the same time as routine dialysis and will not involve extra hospital visits. We will also 
collect samples from the fluid that is discarded after dialysis. 
  
Prior to your tests, we will ensure there is no recirculation in your fistulae and measure your total 
body water (TBW). You may already be having these tests routinely, as part of your treatment.  
 
Measurement of TBW is like having an electrocardiogram (ECG) and takes 2 minutes.  
 
The doctors who are running the project will access your hospital record to review your results, 
hospital admissions and diagnosis. This will allow us to see what happens to your health, 
without having to contact you regularly.  
 
You will not receive any specific additional treatment as a part of this study. You will continue to 
receive your usual treatment as agreed with the dialysis team, and we will keep a record of this.  
 
What will I have to do? 
 
Consent to have your blood and dialysis fluid being tested along with your routine tests 
 
What are the possible benefits of taking part? 
 
The information collected from this study will give us a better understanding of newly developing 
blood tests and its role in the future in detecting/ treating patients with kidney disease in the 
future. Otherwise you will receive no direct benefit from taking part in the study. 
 
What happens when the research study stops? 
 
You will continue to receive your regular care.  
 
What if there is a problem? 
 
Any complaint about the way you have been dealt with during the study or any possible harm 
you might suffer will be addressed. The detailed information on this is given in Part 2. 
 
Will my taking part in the study be kept confidential?  
 
Yes. We will follow ethical and legal practice and all information about you will be handled in 
confidence. The details are included in Part 2. 
 
This completes part 1. 
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If the information in Part 1 has interested you and you are considering participation, please read 
the additional information in Part 2 before making any decision 
Part 2 of the information sheet  
 
What if relevant new information becomes available? 
 
Sometimes we get new information about the treatment being studied. If this happens, your 
research doctor will tell you and discuss whether you should continue in the study. If you decide 
not to carry on, your research doctor will make arrangements for your care to continue. If you 
decide to continue in the study he may ask you to sign an agreement outlining the discussion.  
 
What will happen if I don’t want to carry on with the study? 
 
You can withdraw from having further tests. Information collected may still be used. Any stored 
blood or tissue samples that can still be identified, as yours will be destroyed if you wish. 
 
What if there is a problem? 
 
If you have a concern about any aspect of this study, you should ask to speak to the 
researchers who will do their best to answer your questions [Vishal Dey, Phone 01563 825177]. 
If you remain unhappy and wish to complain formally, you can do this with Patient Relations and 
Complaints Department, NHS Ayrshire & Arran, Eglinton House, Ailsa Hospital, Dalmellington 
Road, Ayr KA6 6AB, Phone 01292 513 620  
 
In the event that something does go wrong and you are harmed during the research and this is 
due to someone‘s negligence then you may have grounds for a legal action for compensation 
against NHS Ayrshire & Arran but you may have to pay your legal costs. The normal National 
Health Service complaints mechanisms will still be available to you.  
 
Will my taking part in this study be kept confidential? 
 
All information, which is collected, about you during the course of the research will be kept 
strictly confidential, and any information about you which leaves the hospital/surgery will have 
your name and address removed so that you cannot be recognised.  
 
Involvement of the General Practitioner/Family doctor (GP) 
 
We will inform your GP about participation in the study  
 
What will happen to any samples I give? 
 
Your blood samples will be taken and stored in a freezer. Your details will be removed from the 
samples. Some of the tests will be done at Crosshouse hospital, NHS Ayrshire & Arran and 
others will be performed at Glasgow University. Any extra samples after the necessary tests will 
be disposed in accordance with the current legislation (Human Tissue Authority Code of 
Practice).  
 
Will any genetic tests be done?   
 
No 
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5.2 Consent Form 

 

 

Consent form date of issue:     02/03/2015 
Consent form version number: 2.1  Page 1 of 1 

 

 

Centre Number:       

Study Number:  

Patient Identification Number for this trial: 

CONSENT FORM 

Title of Project:  Kinetics of FGF-23 during haemodialysis 
(To study the removal of a protein, FGF-23 during dialysis) 

 
 Name of Researcher: Dr Vishal Dey                Please initial all boxes  

1. I confirm that I have read and understand the information sheet dated   ………….                

(Version...………) for the above study.  I have had the opportunity to consider the 

information, ask questions and have had these answered satisfactorily. 

2. I understand that my participation is voluntary and that I am free to withdraw at any time 

without giving any reason, without my medical care or legal rights being affected. 

3. I understand that relevant sections of my medical notes, electronic records and data 

collected during the study may be looked at by individuals from NHS Ayrshire & Arran, 

from regulatory authorities or from the NHS Board, where it is relevant to my taking part 

in this research.  I give permission for these individuals to have access to my records. 

4. I agree to have my blood and dialysis fluid tested along with my routine tests at 

Crosshouse Hospital, NHS Ayrshire & Arran and Glasgow University. 

5. I agree to my GP being informed of my participation in the study.    

6. I agree to take part in the above study.    

 

            
Name of Participant   Date    Signature 

                                

            
Name of Person   Date    Signature  
taking consent.  
1 for participant; 1 for researcher; 1 (original) to be kept in medical notes 
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5.3 Dialysis visit record 

 

 
 

Version 1.0                                                                                                  Page 1 of 2 10.12.2014 

 

Participant Dialysis Visit Record                    

Study ID ………………      Date of Visit ………….. 

Age          

Consent form signed         Y/N 

No evidence of recirculation        Y/N 

BCM performed          Y/N 

Blood collection date: ………………… 

5 ml blood samples at each of the time intervals (Tick box)                  

5 mls of dialysate fluid in plain sterile vial at each of the time intervals  

Stage 1 

Time 
ti2 - ti6 are 5 equally 
spaced intervals 
during dialysis 

 
Time from start of dialysis 

Record time below 

 
Blood 

Sample 
√ Box 

Dialysate 
effluent 
Sample 
√ Box 

tia 
Before dialysis 

e.g. 0 minutes   

ti2    
ti3    
ti4    

ti5    
ti6    
td 

(End of dialysis) 
   

After Dialysis 2 minutes after dialysis 
 

  

 

Divide blood samples into 2 vials EDTA / Li-Heparin 
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5.4  Letter to GP 

Version 1.0 10/12/2014 

RENAL DEPARTMENT ROOM 244 EAST 
CROSSHOUSE HOSPITAL  CROSSHOUSE KA2 OBE 
TELEPHONE 01563 521133

Enquiries to: Vishal Dey 
Direct Line: 01563 825177 or Ext 25177 

Fax Number 01563 577987 

Email: vishal.dey@nhs.net 

Date……………………. 

Dear Dr 

Kinetics of Fibroblast growth factor (FGF-23) during dialysis 

Re: Name 

Date of Birth 

CHI 

This patient is participating in the above study. This will involve extra investigations in the form of blood 
and dialysate samples, but is an observational study with NO specific therapeutic intervention.  

A copy of the patient information sheet is enclosed for your information. 

Yours sincerely 

Dr Vishal Dey 
On behalf of the study investigators 
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