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Abstract 

Over the past forty years the development of CMOS has been able to follow Moore’s law 

using planar silicon technology. However, this technology is reaching its limits as the 

density of transistors has a significant impact on the power dissipation in an integrated 

circuit. Alternative channel materials and device architectures will then be required in the 

future to reduce the power consumption of transistors. The development of CMOS 

technology with high mobility channel materials, specifically Ge for pMOS and III-V 

materials for nMOS, was the aim of the European Union FP7 funded Duallogic 

consortium, of which this project was part.  

The experimental work at the University of Glasgow was the III-V compound 

semiconductor MOSFET, in particular the study of Si processing compatible source/drain 

contacts to III-V MOSFET devices with InxGa1-xAs channel materials, which was an 

important aspect of this thesis. Another area investigated in this thesis is the impact of 

current crowding effects on source/drain contact resistance by aggressive scaling of 

devices.  

During this thesis, optimisation of a PdGe-based ohmic contact to buried channel device 

material with a In0.75GaAs channel led to a contact resistance of 0.15Ω.mm compared to 

1Ω.mm in previous work by R. Hill. The PdGe-based contact also proved to be scalable in 

both vertical and lateral dimensions. This scaled structure was then integrated in a surface 

channel MOSFET device with 1µm access regions and gate lengths varying from 100nm to 

20µm. The performance of the devices with 20µm gate lengths was then compared to 

devices with a NiGeAu based ohmic contact. An increase in RC, 1.82Ω.mm vs. 0.94Ω.mm, 

and Ron, 11.1Ω.mm vs. 8.55Ω.mm, was observed in the PdGe-based contact, which 

resulted in a decrease in gm, 92.3mS/mm vs. 103mS/mm, and Id,sat, 103mA/mm vs. 

122mA/mm. However, further optimisation of the PdGe-based ohmic contact showed 

promising results with a contact resistance of 0.45Ω.mm. 

 The novel test structure is the first test structure, which makes direct contact to III-V 

material, with critical dimensions below the transfer length. This structure is able to 

experimentally observe the current crowding effects and allows for the extraction of the 

sheet resistance underneath the contact and a more accurate extraction of the specific 

contact resistivity. This offers a significant insight into the impact of the sheet resistance 

underneath the contact and the role it plays. 
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2.  Introduction 

 

Over the past forty years, the development of CMOS has been able to follow Moore’s law 

due to ever-shrinking transistor dimensions. This trend is set to continue in the future and 

is laid out by the International Technology Roadmap for Semiconductors [1]. This 

roadmap outlines the performance metrics and device dimensions, which need to be met by 

future technology nodes and are shown in Table 2.1. In recent years, density scaling has 

been the main driver in the mainstream semiconductor industry and has had significant 

ramifications for power dissipation in integrated circuits. Reducing the power dissipation 

of individual MOSFETs has led to innovative solutions such as high-k gate dielectrics and 

metal gate solutions, strained Si and Tri-gate field effect transistors [2].  

The reduction of supply voltages will be one of the key aspects in the future to reduce 

power dissipation, as shown in Table 2.1. The density of scaling will be driven by scaling 

the source/drain contact length, physical gate length and the separation between the 

contacts and the gate, as shown in Table 2.1. As a consequence of scaling the device 

dimensions, regardless of novel high-k dielectrics, the ITRS [1] predicts a reduction in gate 

capacitance as shown in Table 2.1. In order to compensate the reduced supply voltage and 

the reduced gate capacitance, the effective carrier velocity will have to increase over time 

to compensate a loss in channel sheet carrier density. 

 

Year 2015 2018 2020 2024 

Physical gate length (nm) 17 13 11 7 

Source and drain contact length (nm) 13 9 7 4 

Total source drain resistance (Ω.mm) 0.14 0.13 0.12 0.11 

Supply voltage (V) 0.81 0.73 0.68 0.6 

Threshold voltage (V) 0.21 0.21 0.22 0.23 

Effective carrier velocity (m/s) 2.6x105 2.3x105 2.6x105 3.5x105 

Channel sheet carrier density (cm-2) 7.3x1012 7.1x1012 6.4x1012 5.1x1012 

Gate capacitance (fF/µm) 0.5 0.42 0.37 0.28 

Table 2.1: Various derived parameters and ITRS metrics taken from the 2009/2010 ITRS roadmap [1]. 
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High carrier velocities in non-equilibrium conditions will then play a key role in future 

MOSFETs. The effective carrier velocity mainly depends on scattering mechanisms and 

the low-effective mass, which can be addressed by using a device architecture featuring 

reduced ionised impurity scattering and carefully chosen material compositions.  

In order to research CMOS using high effective carrier velocity channel materials, the 

“Duallogic project” was founded and sponsored by the European Commission 7th 

framework program (FP7) in information and communication technologies. The objective 

of the Duallogic project was to develop a dual channel CMOS technology comprising 

MOSFETs with high channel mobility semiconductor materials co-integrated on a Si 

platform using a silicon-compatible process in a 65nm/200mm pilot line. The respective 

semiconductor materials are Ge for pMOS and III-V compounds for nMOS.  The device 

dimensions were chosen to offer a competitive alternative for the state of the art Si CMOS. 

At the start of the project, the proposed gate length was 65nm, however at the point of 

writing, a 22nm technology is already commercially available by Intel [2]. The original 

structure is shown in Figure 2.1 and illustrates an III-V nMOS and Ge pMOS co-integrated 

on a Si platform. 

 

 
Figure 2.1: Duallogic 65nm layout 

The consortium of the Duallogic project consists of research centres, equipment 

manufacturers, chip manufacturers and universities, including Aixtron, CEA-LETI, IBM, 

IMEC, Katholieke Universiteit Leuven, National Centre for Scientific Research 

Demokritos, NXP Semiconductors, ST Microelectronics and the University of Glasgow. 

The University of Glasgow was involved in two different areas: device simulation and 

device fabrication. The focus of the work of this thesis is the n-type III-V transistor with 
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particular emphasis on developing low resistance, silicon processing compatible 

source/drain ohmic contacts. This requires the development of gold free ohmic contacts 

because gold is an amphoteric material in silicon, which means that the behaviour of gold 

is unpredictable in silicon and can act as both donor and acceptor. The gold free ohmic 

contact results will be compared to the current best ohmic contact to III-V material, which 

are usually based on alloys of gold, germanium and nickel [3] with specific contact 

resistivities as low as 4x10-7
Ω.cm2.  

At the start of this work, there was much debate over which device architecture to use 

within the DualLogic consortium. Previous work at the University of Glasgow [4] using a 

flatband architecture [5] showed promising results and therefore this device structure was 

used in this work as well. In comparison to the more traditional inversion mode MOSFET, 

this structure does not need any implantation, which makes it easier to scale and reduces 

ionised scattering by making use of a heterojunction. In terms of scaling, flatband 

MOSFETs have an advantage over inversion mode MOSFETs as they have no p-n 

junctions. The p-n junctions are formed in the channel region between the ohmic contacts 

and the gate, also known as the access regions. Future technology nodes, with gate lengths 

of 15nm or smaller, are predicted to have access regions below 10nm [1]. In order to 

achieve p-n junction widths in silicon below 10nm, the doping levels will have to surpass 

3x1019cm-3 and keep increasing with each technology node. Obviating the need of a p-n 

junction will therefore aid the scaling of the access regions. Therefore, the flatband 

structure should be a serious competitor in terms of scalability and effective carrier 

velocity compared to the current silicon device technology.  

The requirement to compete with Si technology regarding device dimensions will limit the 

sizes of the gates, access regions and contact areas. High electron mobility transistors 

(HEMT) have been built at the University of Glasgow on III-V materials with 10nm gate 

lengths [6], which show small gate III-V devices are possible to build. However, the 

source/drain contact areas on HEMT’s are a lot bigger than the contact areas needed for a 

sub 22nm digital technology. In order to understand the effects of aggressively scaled 

ohmic contacts, simulations have been undertaken and test structures have been built to 

validate the simulations. 
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There are therefore two issues to consider in undertaking any research into source/drain 

contacts for III-V MOSFETs: 

i)  The contact geometries are scalable, 

ii) The materials solutions are silicon manufacturing compatible. 

The scalability issue is well captured in Figure 2.2, which shows theoretically how the 

resistance of a source or drain contact varies with the size of the structure according to the 

H.H. Berger model [7]. Basically, this is a reflection of current crowding effects, which 

increase the effective resistance of the contact as its size is reduced. To some extent, the 

current crowding issue can be mitigated if the specific contact resistivity (ρc) can be 

reduced. The contact resistance is governed by two factors: 

i)  The sheet resistance of the material beneath the source or drain 

metallisation, which may be modified from the underlying semiconductor 

sheet resistance if contact formation is facilitated by diffusion, 

ii)  The “transfer length” – a measure of the length scale over which current is 

injected into the underlying semiconductor from the edge of the source or 

drain contact. 
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Figure 2.2: Simulated impact of source and drain contact size on contact resistance due to 

current crowding effects with specific contact resistivities in the range of 10-6 to 10-9
Ωcm2.   
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The simulation, shown in Figure 2.2, demonstrates the current crowding effects, on the 

contact resistance values, taking place on a substrate with a sheet resistance of 300Ω/sq 

with specific contact resistivity values in the range 10-6Ωcm2 to 10-9
Ωcm2. These specific 

contact resistivity values are achievable for low bandgap III-V semiconductors, though the 

former is much more prevalent than the latter. As shown in Table 2.1, the total source/drain 

access resistance should be below 0.14Ω.mm in future technology nodes. This results in a 

contact resistance value below 0.07Ω.mm which can only be achieved if the specific 

contact resistivity is below 1x10-8
Ω.cm2 for a contact length of 13nm. Further scaling of 

the source and drain contact lengths will then have significant impact on the maximum 

specific contact resistivity value due to the current crowding effects. 

One of the aims of this work is to validate, or otherwise, this prediction by assessing the 

dependence of contact resistance on contact length down to 100nm critical geometries. A 

further aspect of this work is to screen various contact metallisation options with regard to 

scalability, silicon manufacturing compatibility and of course, basic electrical performance 

where the key metric is the specific contact resistivity. 

This thesis will first describe the theory of MOSFET device operation, the fabrication 

processes and tools and the characterisation methods used. Then a study of various ohmic 

contact structures on GaAs based semiconductor is undertaken and is used to determine the 

optimal ohmic contact strategy. This is followed by an experimental section, which verifies 

the electrical and chemical properties of different Si-processing compatible ohmic contact 

strategies including device results. The final part describes a novel measurement method in 

order to determine the contact resistance when the ohmic contacts are scaled. This includes 

the theory, concept, processes and techniques developed for reliable sub-micrometer scaled 

ohmic contacts and the experimental results. The experimental results are then compared to 

the most common contact resistance extraction methods.      

     

 

  



Chapter 3  MOSFET theory 
 

27 
 

3.  MOSFET theory 

3.1  Introduction 

The ideal operation of the classic bulk silicon MOSFET is first described, which will later 

act as a benchmark to compare the III-V MOSFET technology against. Then the 

advantages of density scaling are discussed together with different scaling methodologies 

and the key parameters, which are impacted by the reduction of the device dimensions. The 

figures of merit for a scaled n-type MOSFET are shown with Intel 45nm technology as a 

benchmark. 

A more in depth study of the metal/oxide/ semiconductor interface, channel transport 

properties and metal semiconductor contacts, is then undertaken to get a better 

understanding of the potential benefits of III-V channel material. Finally, MOSFET 

devices with advanced architectures will be discussed and compared to the classic bulk 

silicon MOSFET. 

3.2  MOSFET principles 

The classic bulk silicon MOSFET is illustrated in Figure 2.1 for the case of an n-type 

enhancement mode MOSFET. The silicon substrate material is p-type doped whereas the 

source/drain regions are n-type doped, achieved by diffusion, regrowth or implantation. 

Two p-n junctions in opposite direction are then formed between the source and the drain. 

The gate electrode is isolated from the channel by an insulator, which reduces the current 

flow from the gate into the source. 

The operation of an ideal classic bulk MOSFET will be described using an inversion mode 

device with a long channel. This means that the influence of the electric field imposed by 

the gate (ξy), in the channel region, is far greater than the impact of the electrical field from 

the source/drain p-n junctions (ξx) when biased. The channel of an n-type inversion mode 

MOSFET device is p-type doped and therefore needs a positive voltage applied to the gate 

to accumulate an inversion channel of electrons. The areas underneath the source and drain 

ohmic contacts are n-type doped hence forming a p-n junction between the channel and 

contact region when no gate voltage is applied. When a small bias is applied between the 

source and drain, no current flows until the source/gate voltage (Vg) becomes higher than 

the threshold voltage (Vt). Once Vg is larger than Vt, an inversion layer of electrons forms 

at the semiconductor oxide interface, which supports a source/drain current (Id).  
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In the linear regime, where Vd < (Vg – Vt) and (Vg – Vt) > 0, Id is dependent on the 

modulation of Vg and on the source/drain bias Vd as stated by Equation 3.1 [8].  

I� �	��� 	μ	C�� �V� �	V��	V� �	���
� �       (3.1) 

W and Lg are the gate width and gate length, as shown in Figure 3.1, µ is the mobility of 

the semiconductor material in the channel and Cox is the capacitance of the oxide. In the 

saturation regime, Vd > (Vg – Vt), threshold is barely maintained at the drain end. This 

threshold region is also known as pinch-off to indicate the lack of channel region near the 

drain. The pinch-off point in the channel will consequently move towards the source when 

Vg is further increased. The high longitudinal electric field will then allow the electrons to 

travel at saturation drift velocity from the drain towards the pinch-off region. The drain 

current, at this point (Id,sat), does not increase significantly with Vg and therefore it is said 

to be in saturation regime. The value of Id,sat is given in Equation 3.2 [8]. 

I�,��� �	 ���� 	μ	C���V� �	V���        (3.2) 

When devices are scaled, the long channel approximation above is no longer valid. The 

saturation current for a short channel device is given in Equation 3.3 [8] and is dependent 

on the velocity saturation (νsat) rather than the mobility. 

I�,��� � 	W	υ���C��	�V� �	V��        (3.3) 

Velocity saturation is one of the side effects when MOSFET devices are being scaled. The 

beneficial and detrimental effects of scaling MOSFET devices are discussed in following 

section. 



Chapter 3  MOSFET theory 
 

29 
 

 

Figure 3.1: Schematic representation of inversion mode nMOSFET 

3.3  Scaling  

One of the advantages of scaling devices is that the density of devices increases on a chip, 

however there are also benefits to the performance of a single device. One major advantage 

is the reduction of intrinsic gate delay (τi). The reduction in gate delay allows for faster 

switching of the device, hence improving the performance of the device and the overall 

circuit. 

τ! �	 "���#�,$%&          (3.4) 

As shown in Equation 3.4 [8], the intrinsic gate τi delay is determined by the supply 

voltage Vd, saturation current Id,sat and the total gate capacitance Cg. The total gate 

capacitance comprises the intrinsic gate capacitance (Cox) and additional parasitic 

capacitive elements. Reducing the area (W.Lg) of the gate will then result in a 

proportionally reduced gate capacitance. Scaling of the gate will then directly result in a 

reduced gate delay τi as stated in Equation 3.4. To maintain the ideal characteristics of a 

long channel MOSFET, other parameters have to be scaled together with the gate length 

Lg. One of the key attributes, which needs scaling is the oxide thickness. When scaling the 

gate oxide Cox, the saturation current Id,sat reduces as stated in Equation 3.2.  
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When simplifying the gate capacitance to a parallel plate capacitor, the oxide capacitance 

is then given by [8]: 

C�� �	 '(')*+�           (3.5) 

The oxide capacitance is determined by the dielectric constant of the oxide (εox), the 

capacitor area (A) and the oxide thickness (d). Decreasing the oxide thickness will result in 

a larger value for Cox, which increases Id,sat. The intrinsic gate delay reduces as Id,sat 

increases and scaling the oxide thickness has therefore a beneficial impact on the device 

performance. 

When reducing the gate length of a MOSFET device, without altering other key 

parameters, the ideal long channel behaviour is no longer valid. In particular the depletion 

layer width of the p-n junctions at the source and the drain has to be larger than the gate 

length. When the gate length becomes comparable to the depletion region width, the 

distribution of carriers in the channel is then a function of both ξx and ξy and the long 

channel behaviour is lost. The detrimental effects of a loss in long channel behaviour are: 

reduced gate control; threshold voltage variations; increased off-state current and drain 

induced barrier lowering (DIBL). These effects are called short channel effects [204] and 

are caused by: source/drain depletion regions merging in the channel (also known as punch 

through); surface scattering; velocity saturation; impact ionisation and hot electrons and 

will be discussed more extensively further in this chapter. These effects will have to be 

taken into account when designing scaled device structures.  

3.3.1  Key parameters to scale 

The channel charge control has to be maintained when reducing the gate length to keep the 

long channel ideal characteristics. There are four main parameters, which need to be scaled 

together with the gate length: junction depth, supply voltage, oxide thickness and doping 

concentration.  

Each of the parameters and their scaling advantages and limits will be discussed briefly in 

this section. Alternative technologies, used to scale devices without short channel effects, 

are analysed further in the chapter. 

1) Junction depth: If the junction depth is too large, punch through can take place 

below the channel [9]. However, a sufficient junction depth is needed in an 

inversion mode device to reduce the parasitic series resistance of the ohmic regions. 

Increased series resistance limits the transistor performance and can play a 
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dominant role. Regrown source/drain regions are currently being used in Si 45nm 

technology [10] to mitigate this issue. Regrowing allows for high doping 

concentrations resulting in reduced ohmic contact resistances. The shape of the 

regrown area can also be manipulated so that the distance between the source and 

the drain gradually becomes bigger when moving from the oxide/semiconductor 

interface towards the substrate. This would reduce the punch through below the 

channel. 

2) Channel doping concentration: The depletion region width of a source/drain p-n 

junction is important in inversion mode devices as the gate control is lost when the 

depletion region protrudes underneath the gate. This limits the size of the access 

regions, increasing the distance between the source and the drain contact resulting 

in overall larger device dimensions. The depletion region width of a p-n junction 

between the source and the channel (xds) and drain and channel (xdd) is defined by 

[8]: 

 x�� �	-�'$. /012030103 4 �V5!�       (3.6) 

 x�� �	-�'$. /012030103 4 �V� 6	V5!�      (3.7) 

The depletion region width is dependent on the potential difference under 

equilibrium between the p-type channel and the n-type source/drain regions, also 

known the built in potential (Vbi), the channel acceptor concentration and the 

permittivity (εs) of the semiconductor material. In order to minimise the depletion 

region width, the channel acceptor concentration has to be as high as possible. 

Higher channel doping concentrations are then necessary to avoid punch through 

and loss in gate control, when scaling down MOSFET devices. 

Although increased doping densities are beneficial to reduce short channel effects, 

the mobility of the channel material decreases due to increased ionised impurity 

scattering.  A reduction in mobility has a detrimental effect on the saturation current 

Id,sat as stated in Equation 3.2. The solution to counter for a loss in mobility in 

current 45nm technology is to introduce strain in the channel region [10]. 
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3) Dielectric thickness: The two-dimensional field distribution in the channel of the 

device is dependent on the thickness of the gate insulator and influences the 

threshold voltage (Vt) and the current flowing from the gate to the source, also 

known as gate leakage. The critical thickness of a gate oxide is then determined by 

the limit where electron tunnelling starts taking place, resulting in excessive 

leakage currents. This limit has been reached and one solution is to move from a 

standard SiO2 film to a film material with a greater dielectric constant, also known 

as high-k dielectrics. The advantage of the high-k dielectrics is that larger 

capacitance values with greater film thickness can be achieved, resulting in lower 

gate leakage. The high-k dielectric material used in current 45nm technology is 

HfO deposited on a layer of SiO2, which has a low interface state density when 

deposited on Si, and has a total oxide thickness of 0.8nm [10]. 

4) Supply voltage: If a large lateral field is applied to a scaled device punch through 

can occur. Therefore, the supply voltage has to be adjusted to the device 

dimensions to maintain an acceptable level of electric field strength. The mobility 

of the holes and electrons is also dependent on the vertical electrical field and 

follows a universal mobility curve [11]. At a low vertical electrical field the 

transport is limited by phonon scattering. When the field increases roughness 

scattering becomes more important as the carriers are pulled towards the 

oxide/semiconductor interface [12].  

Adjusting the supply voltage to reduce short channel effects is not a straight-

forward process as a number of parameters are affected by a change in Vdd. The 

overdrive voltage is decreased (Vdd – Vt) as the threshold voltage is predicted to 

remain around 0.21V in future technology nodes, as shown in Table 2.1. This 

affects the saturation current and a compromise has to be made between short 

channel effects and Id,sat.    

3.3.2  How to scale 

There exist a number of different scaling methodologies. Constant field scaling was first 

introduced by Dennard et al. [13] and is based on reducing the device dimensions without 

altering the electrical field. The oxide thickness, channel length, junction depth, channel 

width and supply voltage are then reduced by a factor k. The doping density has to increase 

with a factor k as well to maintain a similar electrical field. The device density can then be 

increased by a factor of k2 and the power consumed by each cell is reduced by a factor of 
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k2, resulting in a similar power-per-unit area. A potential detrimental effect is that the 

threshold voltage reduces by a factor k as well, which could potentially increase the off-

state leakage current as it is inversely exponentially dependent on the threshold voltage 

[14].  

Scaling a device while keeping the field constant is useful as the power delay product of a 

single device reduces. However, a reduction in power also means a reduction in supply 

voltage as the device dimensions decrease. Aggressively scaling devices increases the gate 

leakage as the oxide becomes critically thin. This has as a side effect that the threshold 

voltage does not scale with the device dimensions due to the leakage current. The supply 

voltage cannot be scaled with a factor of k as the relative difference between Vt and Vdd 

becomes greater, resulting in a reduced drive current. 

When the devices are scaled while maintaining the supply voltage, the scaling 

methodology is known as constant voltage scaling [227]. This scaling methodology was 

preferred over many years as it ensures the compatibility with various technologies such as 

5V TTL [15]. Scaling devices while maintaining the supply voltage results in an increased 

electrical field, which has a number of detrimental effects: increased leakage currents, 

mobility degradation and lower breakdown voltages. The power reduction is also minimal 

and this methodology is no longer used as, in recent years [1], the main driver has been the 

reduction of the supply voltage in order to mitigate the power consumption. 

A more sophisticated scaling methodology is the generalised scaling, which combines 

elements from constant voltage and constant field scaling [13]. The main principle is to 

scale the physical dimensions more rapidly than the supply voltage. The shape of the two 

dimensional electrical field is then retained while the increased supply voltage increases 

the field strength. 

3.3.3  Bulk silicon benchmark 

CMOS technology is ever evolving and the benchmark at the start of this work was the 

Intel 45nm technology [10]. The 45nm technology is no longer the most aggressively 

scaled MOSFET device technology. The 22nm technology [2] developed during this work 

makes use of a FINFET structure to improve the gate control and is therefore not ideal for 

direct comparison. The most aggressively scaled planar MOSFET device structure in mass 

production is the Intel 32nm technology [51]. However, few device performance 

parameters could be obtained from the Intel 32nm technology, and as a result, the Intel 
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45nm technology is used as a benchmark. The figures of merit and critical dimensions of 

an nMOS device of the Intel 45nm technology are summarised in Table 3.1:  

 

Figure of Merit Intel 45nm (2007) [10] 

Physical gate length (Lg) 35nm 

Equivalent oxide thickness (EOT) 1nm 

Nominal power supply voltage (Vdd) 1V 

Parasitic source/drain resistance (RSD) 150Ω.µm 

Threshold voltage (Vt,sat) 0.3V 

Subthreshold slope (SS) 110mV/dec 

drain induced barrier lowering (DIBL) 130mV/V 

On current (Ion) 1360µA/µm 

Off-state leakage current (Ioff) 100nA/µm 

Table 3.1: Intel 45nm (2007) bulk silicon performance benchmark 

The definitions of the figures of merit are defined as follows: 

1) Lg: Physical gate length measured at the oxide/metal gate interface.  

2) EOT: Equivalent oxide thickness is composed of the relative dielectric constant (k), 

the actual gate dielectric thickness (Td) and is relative to the dielectric constant of 

thermally deposited SiO2 and is given in Equation 3.22. 

3) Vdd: The supply voltage. 

4) Ioff: Off-state leakage current, also known as sub-threshold leakage current (Isd,leak), 

is defined as the residual current when Vd = Vdd and Vg = Vs = 0V measured at a 

temperature of 25°C. 

5) Id,sat: On-state current, also known as saturation drain current (Id,sat), is defined as 

the drain current when Vd = Vg = Vdd and Vs = 0V. 

6) RSD: Is the normalised value of the parasitic source and drain series resistance. 

7) Vt,sat: The threshold voltage measured at saturation regime where the drain bias Vd 

= Vdd.  
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Figure 3.2: Normalised gate leakage of Intel 45nm compared to 65nm technology [16] 

8) Jg: This is the gate leakage current density measured at 25°C. It is measured with 

Vg = Vdd and Vd = Vs = 0V. The gate leakage density for the nMOS and pMOS 

devices of the Intel 45nm technology compared to 65nm technology is shown in 

Figure 3.2: 

9) SS: The sub-threshold slope is the value of difference in Vg in order to reduce Id by 

one order and is measured at voltages below Vt. 

10) DIBL: drain induced barrier lowering is defined as a shift in Vt when Vd is altered. 

Larger Vd generally results in a reduced Vt. 

11) gm: The transconductance is the rate of change of Id corresponding to the applied Vg 

with a fixed Vd as stated by Equation 3.8 [8]:  

g8 �	 9#�9��         (3.8) 

Unfortunately, the transconductance value of the Intel 45nm nMOS [10] could not 

be obtained and is therefore missing from the Table 3.1.  

The typical IdVg responses together with a number of Figures of merit are illustrated in 

Figure 3.3. 
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a) Vt and Sub-threshold slope b) DIBL 

Figure 3.3: Example of Id/Vg plot 

3.3.4  Advanced design 

Another way of improving the device performance rather than straightforward scaling is 

the use of new materials and technologies. Different device structures such as buried 

channel devices, allow for further scaling of the access region as there is no p-n junction 

present. Also high-k dielectrics and metal gate stacks have already been introduced in 

current device technology [10]. This has been achieved by the optimisation of deposition 

tools resulting in high quality thin oxide layers, which outperform the poly-Si/SiO2 system 

dramatically. The deposition of conformal oxide films has allowed an adaptation of the 

planar device structure into a FINFET structure for the 22nm technology [2]. Altering the 

channel material with high mobility and low band gap material may have the potential to 

improve the performance of the scaled devices and is further discussed in section 3.7.  

3.4  MOS Contacts 

The metal/oxide/semiconductor interface of a MOSFET device offers two main advantages 

over a metal/semiconductor interface; when reverse biased there is a lower leakage current 

and when forward biased a current barrier is maintained. These advantages help to reduce 

the overall power consumption of the MOSFET device and contribute to the success of 

MOSFET devices in digital electronics. Although this work is mainly focussed on ohmic 

contacts, the basic physics of an ideal MOS system are required for a full understanding of 

a MOSFET device and are described in this section. 
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3.4.1  The ideal MOS capacitor 

An ideal MOS capacitor has the following characteristics: 

a) The difference between the metal work function (φm) and the semiconductor work 

function (φs) is zero.  

b) At any bias condition, the charges in the device are located in the semiconductor 

with an equal opposite charge at the metal/oxide interface. 

c) The oxide is a perfect DC insulator without any leakage current taking place. 

 

Figure 3.4: Ideal MOS capacitor band structure 

The energy band diagram for an ideal MOS structure is shown in Figure 3.4. The 

semiconductor work function (φs) is equal to the metal work function (φm) and is 

determined by the band gap (Eg), the semiconductor electron affinity (χs) and the potential 

difference (ψb) between the Fermi level (Ef) and the intrinsic Fermi level (Ei), as shown in 

Equation 3.9 [8]. 

ϕ� �	 χ� 6 ;��. �	ψ5         (3.9) 

This work consists of MOS contacts on n-type III-V MOSFET material and therefore the 

behaviour of the ideal MOS contact will only be discussed for n-type semiconductor 

material. When applying a voltage bias to the metal (gate) of an ideal MOS contact, the 

carrier concentration in the semiconductor will alter as the energy bands are affected. 

There are three main regimes depending on the voltage bias: accumulation, depletion and 

inversion. The energy band diagrams are shown for each regime in Figure 3.5.    
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(a) Accumulation 

 

(b) Depletion 

 

(c) Inversion 

Figure 3.5: Band structures of accumulation, depletion and inversion regimes. 

a) Accumulation:  The voltage applied to the gate is positive, resulting in the 

conduction band (Ec) of the semiconductor bending downwards. Once the 

conduction band becomes lower than the Fermi level (Ef), an accumulation of 

electrons at the insulator/semiconductor interface takes place. The carrier density 

(n) then depends on the effective density of states (Nc) and exponentially of the 

difference between Ef and Ec, as shown in Equation 3.10 [8].   

n � N>e/@ABC	ADEF 4        (3.10) 

b) Depletion: The applied voltage to the gate is negative, resulting in the bands of the 

semiconductor bending upwards. The carrier concentration is then reduced to the 

intrinsic level when the intrinsic Fermi level becomes equal to the Fermi level. The 

insulator semiconductor interface is then depleted. 

c) Inversion: Making the gate voltage more negative, results in an intrinsic Fermi 

Level with a higher energy level than the Fermi level. This causes an accumulation 

of holes at the insulator/semiconductor interface. 

3.4.2  Capacitance Voltage characteristics 

In order to get a good understanding of the capacitance voltage characteristics of the ideal 

MOS structure, a basic review of the parallel plate capacitor is given. The simplified model 

of the parallel plate capacitor forms the basis of the capacitive behaviour of an ideal MOS 

structure. 

3.4.2.1  Parallel plate capacitor 

The capacitance (C) is defined to be the amount of charge (Q) for a given potential 

difference (V) over two plates, as shown in Equation 3.11 [8]. Therefore, capacitance is 

used as a measure of the ability to store charge. 

Q � CV           (3.11) 
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Using a parallel plate analogy, the C-V characteristics of an ideal MOS system can be 

analysed. A parallel plate model consists of two plates with a surface (A) separated by a 

vacuum with a distance (d) and are populated by an equal but opposite charge (Q).  

Gauss’s law states that the electric field (ξ) is equal to the net charge enclosed in the 

surface (Q) divided by the permittivity of the vacuum (ε0) and the surface area (A) as 

shown by Equation 3.12 [8].  

ξ � I'(+           (3.12) 

The potential difference (V) over a uniform field is [8]: 

V � 	ξd          (3.13) 

When combining Equation 3.11, 3.12 and 3.13, the capacitance of a parallel plate capacitor 

can be found and is given in Equation 3.14 [8].  

C � 	 '(+�           (3.14) 

3.4.2.2  The MOS capacitor 

Applying a voltage (Vg) to the gate metal of the ideal MOS contact causes the potential to 

drop across the oxide and the semiconductor, resulting in band bending. The 

semiconductor work function (φs) is equal to metal work function (φm) in an ideal MOS 

contact, leading to a semiconductor surface potential (ψs) of zero when the gate is 

unbiased.   

V� � V� 6	ψ�          (3.15) 

The potential across the oxide (Vo) is determined by the field (ξo) across the oxide and the 

oxide thickness (d). The field across the oxide (ξo) is then equal to the charge in the 

semiconductor (Qs) divided by the product of the permittivity (εox) and surface area (A) of 

the oxide [8].  

V� �	 ξ�d � 	 I$�+')*         (3.16) 

Using Equation 3.13 the oxide capacitance (Co) can be found, as shown in Equation 3.17 

[8]. 

C� � I$�)          (3.17) 
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A detailed band diagram of an ideal MOS contact in the accumulation regime can be seen 

in Figure 3.6 and shows Vo and ψs. The symbol ψ indicates a measure of band bending and 

is usually taken relative to the intrinsic Fermi level (Ei). The potential difference between 

Ei and Ef is expressed as ψB. The different regimes: accumulation, depletion and inversion 

can then be expressed using ψ. Also three other regimes are defined: intrinsic, flat band 

and strong inversion including non ideal behaviour, which will be discussed in the 

following section. 

 

 

Figure 3.6: Detailed Accumulation regime 

Accumulation: ψs > 0 

Flat Band: ψs = 0 

Depletion: ψB < ψs < 0 

Intrinsic: ψs = ψB 

Inversion: ψs < ψB 

Accumulation 

Accumulation occurs when a positive voltage is applied to the gate, which is greater than 

the flatband voltage VFB. The ideal flatband voltage is 0V.  The electrons then accumulate 

near the semiconductor/oxide interface due to the conduction band in the semiconductor 

bending downwards. Because of the proximity of the electrons close to the oxide, the 

capacitance reaches its maximum value (Cmax). The maximum capacitance is 

approximately the same as the capacitance of the insulator, which can be modelled by 

using Equation 3.14 from the parallel plate capacitor.  

Depletion 

When the gate voltage bias is below the flat-band voltage, the conduction band bends 

upwards to the point where the Fermi level meets the intrinsic Fermi level. This will 

deplete the semiconductor/oxides interface, which will add an additional depletion 

capacitance in series with the capacitance of the oxide layer. The depletion region width is 

described as follows [8]: 
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x� � -�'$L$.	03           (3.18) 

Where (εs) is the dielectric constant of the semiconductor and (ψs) is the semiconductor 

surface potential. Given the thickness and dielectric constant of the depleted region, the 

depletion capacitance (Cd) can be calculated [8]: 

C� �	 '$��          (3.19) 

The total capacitance extracted from the CV measurement given a certain voltage bias in 

the depletion region can then be expressed as [8]: 

	C � 	 ")*"�")*2	"�          (3.20) 

Inversion  

Further decreasing the gate voltage bias below the level where the intrinsic Fermi level and 

Fermi level meet, will allow for holes to start accumulating at the semiconductor/oxide 

interface. Once the surface hole concentration is greater than the bulk electron 

concentration, the surface will become strongly inverted and the depletion layer will no 

longer increase in width. The maximum depletion width (xd(max)) for strong inversion is 

shown as [8]: 

x��8��� �	MN	'$O	P QR�S3TU �.�03         (3.21) 

Non ideal capacitor behaviour 

So far, the ideal case of the MOS capacitor has been studied. However, in practice some 

non-idealities are present. The non-idealities are mainly due to work function difference 

and oxide charges. The oxide used on the most common Si MOSFET devices is SiO2 and 

has properties, which closely approximate the ideal MOS capacitor structure. The physical 

mechanisms causing the non-ideal behaviour will therefore be discussed using a SiO2/Si 

interface in this section. There are four main non-ideal oxide charges, which will be briefly 

discussed. Their relative position along the oxide/semiconductor interface is illustrated in 

Figure 3.7. 



Chapter 3  MOSFET theory 
 

42 
 

Metal

SiO2

Si

Mobile ionic charge

Oxide trapped charge

Fixed oxide charge

Interface states

 

Figure 3.7: Si/SiO2 MOS Charges [228] 

Interface states 

Interface traps (Qit) are caused by a sudden termination of the semiconductor crystal lattice 

at the oxide/semiconductor interface. These sudden terminations are generally induced by 

an excess of Si, O or impurities. Due to the location of traps, interface traps have energy 

states in the Si bandgap. When applying a gate voltage the energy states can cross the 

Fermi level, which results in an exchange of charge with the semiconductor. The exchange 

of charge can be modelled by including the interface trap capacitance (Cit) and resistance 

(Rit) into the simple equivalent circuit diagram of the ideal system, as shown in Figure 3.8.  

The interface trap lifetime (τit) can then be associated with the time constant of Cit and Rit. 

The interface traps are then able to respond to low frequency AC signals. This property is 

used to measure the interface trap (Dit) density using CV measurements (chapter 5.5). 

Cox

Rit (ψs�
ZLF

Cit (ψs�
Cd (ψs�

a) LF equivalent circuit b) HF equivalent circuit 

Figure 3.8: Equivalent circuit of oxide/semiconductor interface charge 
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Oxide charge 

Oxide charge is a general term, which includes all charges and traps that are situated in the 

bulk of the oxide. The different charges involved in a Si/SiO2 system are well understood 

and can be used as an example. There are three main types of oxide charge: fixed oxide 

charge, mobile ionic charge and trapped oxide charge. The origin of the charge together 

with their corresponding effects on CV-measurements, are discussed in the following 

section. 

Fixed oxide charge (Qf) 

Historically the charges have been considered to be located within a region of 3nm thick 

near the semiconductor interface in a Si/SiO2 system. However, modern MOSFET device 

technology [17] features SiO2 dielectrics with a thickness below 2nm rendering the 

previous definition meaningless. The fixed charge is generally positive in a Si/SiO2 system 

[8] and is unaffected by standard operating voltages and surface potentials. The polarity of 

the fixed charge varies with different oxides [18]. The fixed charge causes a voltage shift 

(Vf) when measuring high frequency CV measurements, as the interface trap lifetime (τit) 

prevents the traps from responding to the high frequency signal, as shown in Figure 3.9. 

The magnitude of the voltage shift depends on the fixed oxide charge and the oxide 

capacitance: 

ΔVX � ID")*          (3.22) 

 

Figure 3.9: Effect of Qf on Vt shift on C-V plot 

Mobile ionic charge (Qm) 

The mobile ionic charges, most commonly Na+ in SiO2, are mobile under the influence of 

an electric field and can therefore move in the gate dielectric, resulting in fluctuations in 

the threshold voltage Vt [8]. 
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Oxide trapped charge (Qot) 

The charges are caused by defects or impurities forming traps and are spread over the 

entire area of the gate dielectric. These traps are usually uncharged until the bias voltage is 

altered, resulting in threshold voltage shifts, which can create a hysteresis. 

High-k dielectrics 

As previously mentioned, CMOS performance improves when scaling the physical 

dimensions of MOSFET devices, which resulted in thinner gate dielectric layers. However, 

there is a crossover point where the advantages of a scaled gate dielectric are outweighed 

by an increase in leakage current. Therefore, alternative gate dielectric materials with a 

larger dielectric constant than SiO2, known as high-k dielectrics, have been researched and 

introduced on large scale production [17]. From the parallel plate capacitor, we know that 

an increase in permittivity also allows for an equal increase in layer thickness while 

maintaining the same capacitance value. As a result, the increased layer thickness reduces 

leakage current, by reducing the probability of electrons tunnelling through the oxide, 

while maintaining long channel behaviour and charge control. The thickness of the high-k 

dielectric layer (d) is usually compared to the thickness of SiO2 for a given capacitance and 

is known as the equivalent oxide thickness (EOT), expressed as: 

EOT � d	 \.Ô           (3.23) 

where k is the relative permittivity of the dielectric [8]. A suitable high-k dielectric needs 

to have basic properties such as thermal stability, chemical stability and compositional 

stability. Also more complex properties are required such as low interface state density, 

low oxide trap density and reduced channel mobility degradation in order to approach the 

ideal MOS capacitor model. Various suitable high k- dielectrics on Si are shown in Figure 

3.10 [19]. A minimum acceptable band offset, indicated by the dashed line in Figure 3.11, 

is required to keep the leakage current to a minimum when using a 1V supply bias: this 

excludes oxides such as Ta2O5 as a suitable dielectric on Si. A high band offset will also 

reduce the detrimental effects of hot electrons. The high electric fields (>104V/cm) present 

in scaled MOSFETs cause an increase in the energy of electrons. Non-equilibrium 

transport takes place as the electrons have greater energy than the thermal energy of the 

lattice. Some electrons are then able to leave the silicon and tunnel into the gate oxide if 

the kinetic energy band of the oxide conduction band is overcome (SiO2 ~ 3.2eV). This 

gives rise to oxide charging, which can accumulate with time and degrade the device 

performance by increasing the threshold voltage. This short channel effect can adversely 
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affect the gate control on the drain current and can be mitigated by opting for higher band 

offset oxides such as SiO2 and Al2O3. However, this work focuses on III-V materials and 

the suitable dielectrics are shown in Figure 3.11. Three different dielectric materials were 

used in this work: Ga2O3, GaGdO (GGO) and Al2O3. The choice of gate dielectric is 

determined by quality of the interface when deposited on the III-V material. 

 

Figure 3.10: Band offsets of various 

high-k dielectrics [20] 

Figure 3.11: Band offsets of various high-k dielectrics 

compatible with GaAs 

Metal gates 

The gate work function becomes increasingly important as devices scale, as the work 

function has a larger influence on Vt than substrate doping, oxide charge and oxide 

thickness on scaled MOSFET devices. The Vt has to be tightly controlled as devices are 

further optimised for low power consumption and therefore have smaller supply voltages. 

To obtain the correct Vt, the gate work function should be close to the conduction band 

edge in planar n-type MOSFET devices (Φm ≈ 5.0eV to 5.2eV). The work function of 

various metals is illustrated in Figure 3.12. 

The work function can be tuned by using alloys of metals with different work functions. 

The ease of work function tuning, patterning and resistance to boron penetration, have lead 

to the introduction of metal gates on large production volume devices [17]. 
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Figure 3.12: Work function of various metals under vacuum [229] 

3.5  Channel Engineering 

The introduction of new technologies such as high-k dielectrics, strain [17] and advanced 

architectures [2] has been necessary to keep scaling the size of the devices. Stress- or 

strain-induced improvement of the device performance is based on enhancing the mobility 

in the channel region and therefore improving the current density in the channel and the 

operation speed of the device. However, mobility enhancement by strain is limited [21]. 

Further improvement in mobility will then require materials with superior transport 

properties over strained Si, such as various III-V compositions, Ge and SiGe. This section 

will describe the basic transport concepts of velocity saturation and mobility in more detail 

and then compare the potential performance improvements of III-V channel materials. 

3.5.1  Transport basics  

Since III-V materials possess superior electron transport properties to both Si and strained-

Si, they have been recognised as alternative channel materials. The transport properties of 

these materials can be simply compared by examining bulk low field mobility, which is the 

proportionality constant between carrier velocity (υ) and field strength (ξ ). 

υ = µξ            (3.24) 

Mobility in non-polar semiconductors such as Si and Ge is determined by scattering from 

acoustic phonons and ionised impurities. On the contrary, optical phonon scattering is 

more significant in polar III-V materials [8]. The room temperature electron and hole 

mobility of alternative channel materials, compared to Si, is illustrated in Table 3.2 [8]. 
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 Ge Si GaAs InAs InSb InP 

Electron mobility  

(cm2/Vs) 

3900 1500 8500 23000 80000 4600 

Hole mobility 

(cm2/Vs) 

1900 450 400 100 1250 150 

 Table 3.2: Low field mobility of alternative channel materials (cm2/Vs) 

As shown in Table 3.2, the electron mobility of GaAs reaches a value of more than five 

times that of silicon and over double that of Ge. As drive current is directly proportional to 

mobility, in the case of the long channel model (Equation 3.2), an ideal GaAs MOSFET 

would then reach a fivefold increase in Id,sat over a Si MOSFET. Alternative materials, 

such as InAs and InSb, feature elevated values for electron mobility and could potentially 

provide large gains in drive current. Ternary materials, such as InxGa1-xAs, can also be 

used to increase the mobility while the lattice structure can be determined by the In 

concentration. However, the lattice structure of these materials makes integration on a Si 

platform complex. The electron mobility value of a weakly doped InxGa1-xAs compound 

can be calculated using following equation: 

μR � �40 � 80.7x 6 49.2x���10\��cm�/Vs�,     (3.25) 

where x represents the indium concentration [22].  

However, when due to scaling the long channel operation is no longer valid, the 

semiconductor material in the channel is then subjected to high electric fields. When high 

fields are applied, usually in the order of 10-100kV/cm, the linear relationship between the 

average carrier velocity and the applied field is no longer valid, as shown in Figure 3.14. 

The velocity of the carriers then tends to saturate and both saturation field and the 

saturation velocity of a semiconductor material are typically dependent on impurities, 

crystal defects and temperature [230]. 
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Figure 3.13: Velocity field characteristics of Si and GaAs 

The differences between the velocity-field characteristics of polar III-V semiconductors 

and covalent group IV semiconductors can be illustrated by the differences in the band 

structure of the respective materials. The general principles of velocity saturation are 

demonstrated with Si and GaAs as these are the most widely used group IV and III-V 

semiconductors. The corresponding simplified band diagrams are shown in Figure 3.14 

[23]. 
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Figure 3.14: Energy band structure 

In multi-valley semiconductors such as InGaAs and GaAs, the majority of conduction band 

electrons remain in the high mobility Γ valley at low fields [231, 22].  Increasing the 

electric field causes the carriers to transfer to the higher energy (+0.29eV), lower mobility 

L valley. These higher valleys feature relatively higher effective masses resulting in 

reduced drift velocities. The ratio of carriers occupying the L valley is then increased 

rapidly at the intermediate field strength, which leads to a peak in velocity. Finally, at 

higher fields, the majority of carriers are present in the L valley and are subject to 

increased scattering mechanisms, resulting in velocity saturation.  

Velocity saturation, as opposed to mobility, determines the drive current (Id,sat), in 

MOSFET devices with short channels (Equation 3.3). In addition, Figure 3.13 suggests that 

since the saturation velocity of III-V channels is similar to that of Si, there will be no drive 

current advantage of GaAs compared to standard Si technology in short channel devices. 

Strained Si features increased velocity saturation values compared to GaAs and Si and 

improvements in mobility and drive current have been demonstrated on nMOS devices 

[31, 32, 33].  

However, III-V channels can still offer an advantage in drive current over Si technology as 

the bulk transport is only a first order approximation of device performance. Other factors 

such as, 2 dimensional carrier confinement, transverse electric fields and non-equilibrium 

high field transport such as velocity overshoot and hot electrons can play a role in the 

physical processes of carrier transport in practical MOSFET devices.  
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3.5.1.1  2DEG 

When an nMOS transistor is operating in inversion, the electrons are confined close to the 

gate oxide/semiconductor interface. This is due to the gate-induced band bending at the 

gate oxide/semiconductor interface, which causes a potential well. The potential well 

confines inversion electrons parallel to the interface, also known as quantum confinement, 

which allows them to move free in either direction parallel to the interface, but the motion 

of the electrons perpendicular to the interface is restricted. This sheet of electrons is also 

known as a Two – Dimensional Electron Gas (2DEG). 

The electrons in the 2DEG are then separated from the donor impurities. The mobility is 

then greatly increased as there is a reduction of ionised impurity scattering [232]. 

Separating the channel from the ionised donors can then be used to increase mobility and 

the drive current and is most commonly used in HEMT devices.  

The carrier distribution in the channel, caused by the potential well, is dependent on the 

density of states and effective mass. The electron distribution at the oxide/semiconductor 

interface, under forward bias, is given for Si and GaAs in Figure 3.15. 

 

Figure 3.15: Impact of density of states on electron distribution at the oxide/semiconductor interface 

for Si and GaAs 
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The charge density can be calculated from the oxide capacitance and the drive voltage of 

the gate. The distance between the peak of the charge distribution and the 

oxide/semiconductor should be taken into account in order to calculate the charge density. 

This distance adds to the total thickness of the gate capacitance also known as the 

Capacitive Effective Thickness (CET) and is larger in III-V materials compared to Si. This 

is due to the lower density of states of III-V materials, which limits the spatial charge 

concentration and forces the electrons to accumulate in a wider distribution. As a 

consequence, the larger CET value in III-V materials leads to a reduced gate capacitance in 

surface channel devices. However, a larger gate voltage will then be required, compared to 

Si, which results in a reduced transconductance.  

The reduction in current from the density of states is offset by the increase in velocity, with 

theoretical drive current improvements of 200% over Si [25].  

3.5.1.2  Effective transverse electrical field vs. mobility 

The elastic properties between the semiconductor and oxide are often not identical and 

therefore the phonon deformation potentials are modified [233]. This leads to an increase 

of phonon scattering and results in a reduction of the inversion mobility compared to the 

bulk Si value. The relationship between inversion mobility and transverse electric field has 

been investigated by Takagi et al. [11]. The research has shown that the mobility can be 

represented by a universal curve, which is unaffected by the doping density in the 

semiconductor material. At fields below 0.5MV/cm, the scattering mechanisms are mainly 

determined by acoustic phonon scattering and to a lesser extent to Coulomb scattering. 

Coulomb scattering takes place at a lower field where the inversion charge density is low 

and collisions with impurities, such as doping are more likely to take place. At higher 

fields, the scattering mechanisms are a combination of acoustic phonon scattering and 

interface roughness scattering. At any inversion density or effective transverse electric 

field, the mobility consists of a contribution of all three main scattering mechanisms, as 

shown in Figure 3.16. The universal curve of mobility versus effective transverse electric 

field can then be used as a benchmark. 
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Figure 3.16: Dependence of mobility on transverse electric fields 

3.5.1.3  Velocity overshoot 

As previously stated, optical phonon scattering is more significant in polar III-V materials 

[8]. However, the optical phonon scattering can be reduced by shrinking the gate length. 

This allows the electron to travel from source to drain in a time smaller than the time 

required to emit an optical phonon. This is also known as velocity overshoot and the 

electron velocity can then surpass the saturation velocity. The velocity overshoot was 

demonstrated experimentally on a Si MOSFET device, which was cooled down to 4.2K 

[24]. The average carrier velocity in this work was extracted from the intrinsic conductance 

and was found to be over 1.8 times higher than the equilibrium velocity saturation value 

even though the devices displayed short channel effects. Carrier velocity overshoot was 

also demonstrated at room temperature in devices with gate lengths around 100nm, 

resulting in a 20% to 35% improvement over the saturation velocity [25, 26, 27]. Device 

modelling, using Monte Carlo Simulations, confirmed the experimental findings, 

indicating that the velocity overshoot has beneficial effects on Id,sat and CMOS switching 

time [28]. 

3.5.1.4  III-V heterostructure 

Figure 3.14 shows that the saturation velocity of Si is greater than GaAs at high fields. This 

is a potential disadvantage for scaled bulk GaAs MOSFET devices. Deposition 

technologies such as molecular beam epitaxy (MBE) and chemical vapour deposition 
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(CVD) allow for well defined interfaces between different III-V material layers. This can 

be used to create heterostructure devices containing heterojunctions to improve the 

transport properties.  

 

(a) n+ In0.52AlAs and In0.53GaAs before contact 

 

(b) n+ In0.52AlAs/In0.53GaAs heterojunction 

Figure 3.17: Energy band diagram of a heterojunction formation 

The standard simplified energy band diagram of a heterostructure is given in Figure 3.17a, 

where Ec is the conduction band, Ef the Fermi level, Ev the valence band, χ the electron 

affinity and Eg the bandgap or forbidden energy. A heterojunction is formed at the 

interface of a narrow bandgap semiconductor when it is brought into contact with a wider 

bandgap semiconductor, as shown in Figure 3.17b. As the layers are brought together, the 

Fermi levels align. Consequently the higher energy electrons diffuse into the undoped 

lower bandgap material. This causes a depletion region, with a width (W), at the wider 

bandgap material at the interface. The electrons accumulated in the narrow bandgap 

material eventually reach equilibrium and have a net negative charge. The electric field 



Chapter 3  MOSFET theory 
 

54 
 

across the heterojunction then causes band bending to occur with a magnitude of ∆Ec, 

forming a quasi-triangular potential well [235]. The quantum confinement creates a 2DEG 

sheet of electrons, which are spatially separated from the donors, as previously discussed 

in section 3.5.1.1, resulting in increased mobility.  

High indium concentration materials such as In0.53GaAs, InAs and InSb [22] feature a 

narrow (<1 eV) bandgap and also offer an increase in mobility, as shown in Table 3.2, due 

to reduced inter-valley scattering [38]. The indium concentration in the channel, in this 

work, varies from low In0.3GaAs to In0.75GaAs in order to obtain higher mobility values 

compared to Si and strained Si.   

However, to form a heterojunction, two materials have to be grown on top of each other 

with minimal lattice mismatch in order not to create dislocations in the material. The 

dislocations will then cause defect scattering [41], reducing the mobility of the material. 

An overview of lattice constants and corresponding bandgap for some III-V materials and 

group IV materials is given in Figure 3.18.  

 

Figure 3.18: Lattice constants of common III-V and IV materials including the band gap 

As shown in Figure 3.18, the arsenide materials system is one of the most versatile 

covering lattice constants of InxGa1-xAs from 0.567nm (x = 0%) to 0.608nm (x = 100%). 

III-V compounds with similar lattice constants are then needed to create a dislocation free 
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channel. A slight lattice mismatch between GaAs, AlGaAs, InAlAs and InGaAs can be 

accommodated when the layers are below a critical layer thickness [36, 37]. Therefore, the 

heterostructures formed in this work feature different wide bandgap materials and are 

grown on different substrates. The low indium concentration channel material (In = 30%) 

uses AlxGa1-xAs as a wide bandgap material and is grown on a GaAs substrate. The high 

indium concentration material (In >50%) uses InxAl 1-xAs as a wide bandgap material and is 

grown on InP. The lattice constant of InP is matched to the lattice constant of In0.53GaAs 

and In0.52AlAs and will then form a dislocation free heterostructure, as shown in Figure 

3.17.  However, the lattice constant of InP is significantly larger than the lattice constant of 

Si. This can cause problems when integrating III-V MOSFET on a Si platform. This has 

been mitigated by growing InP in a trench on top of a Ge buffer layer, resulting in a defect 

free top InP layer [234]. Other III-V compounds, for example, InAs and InSb also offer 

high mobility values, but integration issues with Si processing such as lattice mismatch and 

contamination prevent these materials to be used on a 200mm Si pilot line. Therefore, only 

GaAs and InGaAs based MOSFET devices are studied in this work. 

3.6  Metal- Semiconductor Contacts 

3.6.1  Introduction 

As this work focuses on forming ohmic contacts on III-V MOSFET material, the basic 

theory of metal-semiconductor contacts is explained in more detail. Both the ideal and 

practical energy band diagram of a metal/semiconductor interface will be discussed, 

leading to the conduction properties of the metal/semiconductor contacts, which are 

determined by the current transport processes. 

3.6.2  Energy band diagrams 

The ideal energy band diagram for a metal semiconductor interface has two main limiting 

cases. Firstly, the ideal contact does not take the surface states into account between a 

metal and semiconductor. Secondly, when a practical metal/semiconductor interface is 

made, a thin interfacial layer is present on the semiconductor surface. The interfacial layer 

is assumed to have a theoretical infinite amount of surface states in order to simplify the 

model. The energy band diagram for each case is given in Figure 3.19 and 3.20, where (a) 

is before and (b) is after contact under equilibrium. 
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a) Before contact b) After contact and under thermal 

equilibrium 

Figure 3.19: Energy band diagram of an ideal metal/semiconductor contact 

  

a) Before contact b) After contact and under thermal 

equilibrium 

Figure 3.20: Energy band diagram of a metal/semiconductor contact with a thin interfacial layer and 

an infinitely large density of states 

The energy band diagram of n-type semiconductor without an interfacial surface layer and 

without surface states is shown in Figure 3.19. When a metal is placed in contact with a 

semiconductor, the Fermi levels align and the conduction (Ec) and valence (Ev) energy 

bands bend in order to reach thermal equilibrium. The process is similar to the formation of 

a heterojunction, where electrons diffuse from the (high band gap) semiconductor material 

to the metal, which has low or no band gap. An electric field is then generated as donors 

are exposed in the semiconductor, limiting the diffusion process and resulting in a thermal 

equilibrium. The energy band diagram of an n-type semiconductor with a thin surface layer 

is shown in Figure 3.20. The thin layer could potentially be a native oxide or processing 

residue, which contains a large density of surface states (Dit), many with energies 

distributed within the bandgap of the semiconductor. The physics of the junction are then 
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no longer governed by the properties of the metal and semiconductor material. Instead the 

physics of the junction are governed by the properties of the semiconductor surface [40]. In 

the case that the semiconductor surface is electrically neutral, it is possible to define a 

neutral level Φ0, which represents the position of the Fermi level. Depending on the 

position of the surface states relative to Φ0, the semiconductor surface will either be 

positive or negatively charged. When the Fermi Level differs from the neutral level Φ0 a 

net charge (Qit) will be present at the surface. 

Q!� � q	D!��EX �	Ek� � 	q	D!��E� �	ΦmR �	Φk�     (3.30) 

The charge at the surface causes an electric field in the semiconductor, which leads to 

energy band bending. For an n-type semiconductor, a negative charge will make the energy 

band bend upwards, towards the surface, and a positive charge will make the energy band 

bend downwards, towards the surface. When bringing the metal in contact with the 

semiconductor, the charge at the surface is then a combination of the charge of the 

depletion region and the charge caused by the surface states: 

Q� � Q!� 6	Qn � Q!� 6	�q	NnWn�        (3.31) 

where 

Wn �	-�'o,$'(�pU.	03           (3.32) 

The height of the potential barrier (ΦBn) is in the ideal case the difference between the 

metal work function (Φm) and the semiconductor affinity (χ). A thin insulator at the 

metal/semiconductor interface causes an additional voltage drop (Vi) over the 

metal/semiconductor interface, which is determined by the charge (Qs) at the surface and 

the capacitance at the interface layer (Ci).    

ΦmR �	Φ8 � 	χ � V! �	Φ8 � 	χ � �I$"U�       (3.33) 

Taking into account the density of states at the surface, the equation for the potential 

barrier height (ΦBn) then becomes:    

ΦmR �	Φ8 � 	χ � � r"U�	/Qn 6 	qD!��E� �	ΦmR �	Φk�4    (3.34) 
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Extracting for (ΦBn) gives: 

ΦmR � 	γ	�Φ8 � 	χ� 6	�1 � 	γ��E� �	Φk� �	tI3"U       (3.35)  

with  

γ � 	 r
r2	u3U&vU

�	 r
r2	u	3U&wxo,$x(

         (3.36) 

For an infinitely large density of states (Dit), the potential barrier height is only dependent 

on the band gap of the semiconductor and the neutral level of the semiconductor. Fermi 

level pinning takes place at the interface making the potential barrier height independent 

from the metal work function. The infinitely large Dit then causes the potential barrier 

height to pin at 2/3 Eg, which is also known as Bardeen's limit [203]. The formation of 

surface states is dependent on the bonding type of the semiconductor material [40]. 

Covalent semiconductors such as Si, Ge and diamond, give rise to a large density of states 

at the surface due to the unsaturated bonds at the surface. For ionic semiconductors, the 

potential barrier height depends on the metal work function and a correlation between the 

interface behaviour and electronegativity exists [8]. The interface behaviour can be 

quantified by the dependence of potential barrier height to the electronegativity of the 

applied metal: 

S	 ≡ �{|T�}~           (3.37) 
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Figure 3.21: The index of interface behaviour (S) as a function of the electronegativity difference of 

various semiconductor materials [236]. 

The electronegativity (χm) of the metal is defined as the capability of an atom to attract an 

electron to itself. The index of interface behaviour (S), is plotted in Figure 3.21 as a 

function of the electronegativity difference of various semiconductor materials. The 

semiconductor material used in this work: GaAs, InGaAs, InAs, AlGaAs and InAlAs have 

low barrier heights, resulting in a low index of interface behaviour. As a consequence, the 

potential barrier height is highly likely to suffer from Fermi level pinning. 

3.6.3  Current transport mechanisms 

The current transport across a metal/semiconductor interface is mainly due to majority 

carriers. There are four basic transport mechanisms under forward bias for a metal to n-

type semiconductor contact illustrated in Figure 3.22. The mechanisms remain the same 

under forward or reverse bias. The basic transport mechanisms are [40]: 

1) Emission of electrons from the semiconductor over the top of the barrier into the 

metal. 
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2) Quantum mechanical tunnelling of electrons from the semiconductor through the barrier 

into the metal. 

3) Recombination of electrons and holes in the depletion region.  

4) Recombination of electrons and holes in the neutral region ("hole injection"). 

The four transport mechanisms will be discussed in the following sections.   

 

Figure 3.22: Energy band diagram displaying the four basic transport processes in a metal/ n-type 

semiconductor contact under forward bias. 

3.6.3.1  Emission over the barrier  

The emission of electrons over the top of the potential barrier can be described by two 

mechanisms: thermionic emission (TE) and diffusion. The mechanisms are dependent on 

the properties of the semiconductor material, where the semiconductor material can be 

described by either thermionic emission theory or diffusion theory. In practice, the 

transport process will be a combination of both, which has led to the development of a 

combined thermionic emission/diffusion theory. The assumptions made and the 

corresponding current density equations for are given in the following subsections.  

The thermionic emission theory 

The thermionic emission theory is based on a heat-induced flow of charge carriers from a 

surface over a potential energy barrier and is derived from the following assumptions [8, 

41]: 
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1) The potential barrier height (qΦBn) is greater than the thermal energy of the electrons 

determined by kT, where k is the Boltzmann factor and T is the absolute temperature. 

2) Thermal equilibrium is achieved at the plane that determines emission. 

3) The thermal equilibrium is not affected by the existence of a current flow. The two 

current fluxes, from the semiconductor to the metal and vice versa, can be superimposed. 

4) The actual transfer of electrons across the interface of the metal and the semiconductor 

is the current limiting factor. 

5) The electron mean free path should be bigger than the width of the region over, which a 

drop in potential energy, with a value of (kT), occurs at the barrier.  

According to these assumptions, the potential barrier height is the sole contributing factor 

to the current flow regardless of the barrier profile. Hence the thermal energy of an 

electron has to be sufficiently high to surpass the potential barrier in order for thermionic 

emission to take place. At thermal equilibrium, the electron flow is equal in both directions 

over a metal/semiconductor interface with, as a consequence, that the current density (J) 

across the interface is zero. Applying a forward bias voltage (Vf) will cause the Fermi level 

of the semiconductor to shift to a higher energetic level by an amount of qVf compared to 

the Fermi level of the metal. The barrier height for the electron flow is then reduced, 

resulting in an increase in current density. The current density becomes greater as there is 

less thermal energy required to surpass the potential barrier. In case of a reverse bias 

voltage (Vr), the Fermi level of the semiconductor is reduced to a lower energetic level, by 

an amount of qVr, compared to the Fermi level in the metal. The barrier height is then 

increased and the current density from semiconductor to metal reduces below the reverse 

current density, resulting in a reverse current. The current density in the reverse direction 

remains the same as the potential barrier ΦBn from the metal into the semiconductor is 

determined by the band gap of the semiconductor and either the metal work function or 

Fermi level pinning and therefore remains unchanged. The total current density for 

thermionic emission is given by [8,9]: 

 J � J�P exp /.	�OP4 � 1�        (3.38)  

where  

J�P � A∗T� exp�@.	{|TOP �	        (3.39) 
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and  

A∗ �	 N	�	.	8T∗ O���           (3.40) 

The total current density is determined by the barrier height (ΦBn), voltage across the 

barrier (V) and the temperature (T) where A* is the Richardson constant, q the electron 

charge, k Boltzmann's constant,  m*
n the electron effective mass, h Planck's constant. The 

saturation current density (JST) is defined by the temperature and barrier height and is 

therefore independent of the applied voltage. 

The diffusion theory 

The diffusion theory is based on the transport of charge carriers in a depletion region and is 

derived from following assumptions [8]: 

1) The potential barrier height (qΦBn) is greater than the thermal energy of the electrons 

determined by kT. 

2) The effect of electron collisions taking place in the depletion region is included; 

3) The current flow does not affect the carrier concentrations at the interface and in the 

semiconductor. 

4) The impurity concentration of the semiconductor does not degenerate. 

The current – voltage characteristics can be derived from the current density in the 

depletion region: 

J � J� � qμRn�x�E�x� 6 	q	DR 9R9�       (3.41) 

The current density in the x-direction consists of the electron charge (q), the electron 

mobility (µn), the electron concentration (n(x)), the electric field in the barrier (E(x)) and 

the diffusion coefficient for electrons (Dn ). The current density in the x- direction can only 

be expressed under this form if the mobility and diffusion coefficient are independent from 

the electric field [40]. Taking into account this assumption, neglecting the image force 

induced lowering of the barrier height and the current density, after applying Einstein's 

relationship (Dn/µn =kT/q), can be re-written as: 

J � J�n exp	�.�OP� � 1�         (3.42)  



Chapter 3  MOSFET theory 
 

63 
 

where  

J�n ≡	�.�nT0vOP �.��pU@���	03'o,$'( �r/� exp /@.	{|TOP 4�       (3.43)  

The total current density (J) is determined by the saturation current density (JSD), the 

applied voltage across the barrier (V) and the temperature (T). The saturation current itself, 

is determined by the effective density of states in the conduction band (Nc),  the built in 

potential (Vbi), the donor concentration (ND), the permittivity of free space (ε0) and the 

relative permittivity of the semiconductor material (εr,s). The expressions for the current 

density are similar for the thermionic emission and diffusion theory and are based on the 

saturation current density. However, the saturation current density for the thermionic 

emission theory (JST) is more sensitive to the temperature while the saturation current 

density of the diffusion theory (JSD) is more sensitive to the applied voltage [9].  

The combined thermionic emission / diffusion theory 

The diffusion theory is based on the assumption that the electron concentration at the 

metal/semiconductor is not susceptible to the applied bias. The quasi-Fermi level of the 

semiconductor, describing the population of the carriers under non-equilibrium conditions, 

should be equal to the Fermi level of the metal at the interface, in order for the previous 

assumption to be valid. This would require the quasi-Fermi level to drop off from the bulk 

semiconductor towards the interface, through the depletion region, which is in sharp 

contrast to the Fermi level in a p-n junction, where the Fermi level remains flat across the 

semiconductor material for both types of carriers [40]. 

The electrons crossing over the potential barrier from the semiconductor into the metal 

have a higher energy than the conduction electrons in the metal and are therefore not in a 

thermal equilibrium. Relative to the conduction electrons in the metal, these electrons can 

then be regarded as “hot” electrons. Due to the difference in energy, the hot electrons have 

a different quasi-Fermi level compared to the conduction electrons in the metal. This 

energy is lost as the hot electrons penetrate the metal and collide with the lattice atoms and 

conduction electrons. Eventually a thermal equilibrium is reached with the conduction 

electrons in the metal, resulting in a quasi-Fermi level equal to the Fermi level of the metal 

[40]. This process is similar to the recombination of electrons in a semiconductor and 

implies that the quasi-Fermi level at the interface does not have to be equal to the Fermi 

level of the metal. The quasi-Fermi level across the depletion region can now be assumed 

to be flat as in a p-n junction [40] and is one of the assumptions made in the thermionic 
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emission theory. The limiting factor to the current flow is different for the diffusion and 

thermionic emission theory. The current flow is limited by the combined effects of 

diffusion and drift in the depletion region for the diffusion theory. The limiting factor for 

the thermionic emission theory lies in the process of emission of electrons into the metal 

[40]. The transport behaviour in practical cases is a combination between the two extremes 

of the diffusion theory and the thermionic emission theory and is brought together in a 

combined thermionic emission/ diffusion theory.   

The most complete combined theory is that of Crowell and Sze, which consists of a 

concept including a recombination velocity (νr) at the top of the barrier [40]. The 

recombination velocity is determined by the electron current into the metal, which consists 

of the electron flux from the semiconductor to the metal for, which the electron flux from 

the metal to the semiconductor is subtracted. The effects of quantum mechanical 

tunnelling, reflection processes and backscattering of electrons have not been taken into 

account. The total current density is then given in Equation 3.43 and 3.44.  

J � 	 .0v�or2	�o�� exp /@.{|TOP 4 exp	�.�OP� � 1�        (3.44)  

with  

ν� ≡ � .�OP @.�{|T2	L�OP � dx�         (3.45) 

The total current density according to the combined theory is then determined by the 

effective density of states function in the conduction band (Nc), the recombination velocity 

at the top of the barrier (νr), the potential barrier height (Φbn), Boltzmann's constant (k), the 

absolute temperature (T), the applied voltage across the barrier (V) and the electron 

potential energy (qψ). The effective diffusion velocity (νd) is associated with the transport 

of electrons from the edge of the depletion layer to the potential energy maximum and not 

starting from the interface because of the image force induced barrier height lowering. 

When νd is greater than νr, the transport process will tend towards thermionic emission and 

in the opposite case the transport process will tend towards diffusion. When the electron 

mobility (µn) is assumed to be independent from the electric field (E) and the image force 

effects are neglected, then νd should be equal to µn.E. The Equation 3.46 according to the 

standard diffusion theory can then be obtained. The complete characteristics for the current 
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density, including backscattering, reflection processes and quantum mechanical tunnelling, 

are given by [8]:   

J � J�" exp	�.�OP� � 1�         (3.46)  

with   

J�" � A∗∗T� exp�@.	{|TOP �         (3.47)  

where  

A∗∗ �	 X�X�+∗
r2D�D��o��

          (3.48) 

The basic term for the current density (J) remains the same, however the saturation current 

density now depends on the effective Richardson constant (A** ), the temperature (T) and 

the potential barrier height Φbn. The effective Richardson constant is determined by the 

recombination velocity at the top of the barrier (νr), the effective diffusion velocity (νd), the 

probability of electron emission over the maximum potential of the barrier height (fp) and 

the ratio of the total current flow (fQ), taking into account quantum mechanical tunnelling 

and reflection, relative to the current flow neglecting these effects. The probability of 

emission over the maximum potential of the barrier height can be calculated with Equation 

3.49 and the ratio of the total current flow strongly depends on the electrical field and the 

electron energy at the potential maximum.  

f� � exp	/� �~�~�%T4          (3.49) 

where (xm) is the position of the maximum potential of the barrier height measured from 

the interface and (λmean) is the carrier mean free path at this position. 

The effect of the image force on the current – voltage relationship 

The current voltage relationship can be expressed in all previous cases in the form of the 

ideal rectifier characteristic, where J0 represents the saturation current density: 

J � Jk exp	�.�OP� � 1�           (3.50) 

In the case of the thermionic emission theory, the saturation current density is dependent 

on the potential barrier height (ΦBn). 
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Jk � A∗T�exp /@.{|TOP 4        (3.51) 

The potential barrier height is then supposed to be independent from variations in the 

electric field at the interface, however there are several reasons why this is not the case. In 

particular, the image force can reduce the barrier height in an ideal contact without an 

interface layer. The amount of barrier height reduction (∆Φ) depends on the voltage bias 

[40]. Increasing the forward bias will result in a larger barrier height, reversing the bias 

voltage will then result in a reduced barrier height [8]. The resulting effective barrier 

height (Φe) is then given by: 

Φ� �	ΦmR � 	ΔΦ          (3.52) 

When an interface layer is in place, an applied voltage bias will cause an image force 

induced lowering of the barrier height, also known as the Schottky effect. The Schottky 

barrier height reduction is in this case given by [8]:  

ΔΦ �	- .;N�'o,$'(          (3.53) 

The maximum electric field at the interface (E) will then cause the effective barrier height 

(Φe) to be dependent on the applied bias. The electrical field at the interface is not only 

susceptible to the applied bias, but also to the penetration of the wave functions of 

electrons from the metal into the semiconductor. The wave functions of electrons contain 

energies in the metal corresponding to the forbidden gap of the semiconductor material and 

after penetration decay exponentially. This creates an additional charge from the metal into 

the semiconductor and can be represented by states, which are often referred to as Metal 

Induced Gap States (MIGS) [40]. The bias dependence of the effective barrier height can 

then alter the current voltage characteristics and, when assuming Φe/V is constant, is 

expressed as: 

Φ� � �ΦmR�k �	�ΔΦ�k 6 	βV       (3.54) 

The effective barrier height is then determined by the uncorrected barrier height ((ΦBn)0), 

image force barrier height (( ∆Φ)0) and the voltage variation βV due to MIGS. Adjusting 

the equation for the ideal rectifier characteristics for the thermionic emission theory then 

gives: 

J � A∗T�exp /� .��{|T�(@	��{�(2���OP 4 exp /.�OP4 � 1�     (3.55) 
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J � J� exp /� .��OP 4 exp /.�OP4 � 1�        (3.56)  

where 

J ≡ A∗T�exp /� .��{|T�(@	��{�(�OP 4        (3.57) 

Rewriting Equation 3.55 gives: 

J � J�exp / .�ROP4 exp /.�OP4 � 1�        (3.58)  

where 

rR � 1 � β � 1 �	/9{�9� 4        (3.59) 

The factor n is called the ideality factor and is constant when Φe/V is constant. The current 

density including the ideality factor can be simplified when V is larger than 3kT/q: 

J � J�exp / .�ROP4          (3.60)  

for V > 3kT/q 

In practice, the ideality factor is not a constant as Φe/V is not constant but can be 

determined experimentally by extraction from the current voltage characteristics: 

 
rR � OP. 	��� ln � �

r@���/@	u�EF4�         (3.61)  

or if (V> 3kT/q) 

 
rR �	 OP. 	��� ln	�J�          (3.62) 

 In this case, the ideality factor depends on the bias (V) and can only be specified for a 

particular point on a current voltage characteristic. The current voltage characteristics of a 

metal/ semiconductor contact under reverse and forward bias, forming a Schottky diode, 

can be seen in Figure 3.23. The dependence of the ideality factor on the applied bias can be 

observed as the Schottky diode becomes leakier as n increases. As a result, the Schottky 

diode shows higher conduction in the reverse bias compared to forward bias. 
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Figure 3.23: Schottky diode characteristics and the dependence on the ideality factor (n) [11] 

3.6.3.2  Tunnelling through the barrier 

The second basic transport process, quantum mechanical tunnelling, will be described 

using a metal to n-type semiconductor contact under forward bias. The transport process is 

based on the principle that electrons, with energies below the potential barrier maximum, 

can penetrate the barrier under certain circumstances by quantum mechanical tunnelling. 

Two cases of quantum mechanical tunnelling can be observed, field emission (FE) and 

thermionic field emission (TFE). The corresponding energy band diagrams are shown in 

Figure 3.22 (1 and 2). 

In the case of highly doped semiconductor material (ND > 1018cm-3) at the 

metal/semiconductor interface, field emission (FE) takes place as the depletion region 

width (WD) of the Schottky barrier, close to the Fermi level energy, is narrow enough to 

allow for quantum mechanical tunnelling. The depletion width also depends upon the 

semiconductor material, as shown in Equation 3.31, and therefore field emission takes 

place at different doping densities for different semiconductor materials. Ohmic contacts 

usually consist of Schottky barriers on highly doped n-type semiconductor material and are 

predominantly driven by field emission. At intermediate levels of doping (1017cm-3 < ND < 

1018cm-3), the depletion region width close to the Fermi level is too large for quantum 
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mechanical tunnelling to take place. When the temperature is raised, the electrons are 

excited to a higher energy level and the probability of quantum mechanical tunnelling 

increases.  The electrons then encounter a thinner potential barrier and can tunnel through 

the barrier. This transport process is known as thermally assisted quantum mechanical 

tunnelling or thermionic field emission. Decreasing the doping to lower levels will require 

the electrons to travel over the top of the barrier height, resulting in thermionic emission 

[40,8]. Using the ideality factor [43], a universal expression for the current density for the 

different transport mechanisms (FE, TFE and TE) can be found, stated by equation:  

J � J�exp / .�ROP4 1 � exp /� .�OP4�        (3.63) 

The saturation current density (JS) is given by Equation 3.63, and the ideality factor (n) is 

used as a fitting parameter in order to fit the practical current voltage characteristics to the 

universal equation rather than a parameter indicating the dependence of Φe/V. It is 

assumed that when the ideality factor equals to 1, the transport mechanism is purely 

thermionic emission. When the ideality factor is between 1 and 2 it is assumed that 

thermionic field emission takes place. And in the case of the ideality factor being greater 

than 2, it is assumed that field emission takes place. Hence there is a relationship between 

the ideality factor and the transport mechanism. The more dominant field emission 

becomes as a transport mechanism, the higher the ideality factor [43].  

3.6.3.3  Recombination in the depletion region 

The transport mechanism based on the recombination of carriers in the depletion is caused 

by localised energy states within the band gap. These localised energy states exist in the 

vicinity of the metal/semiconductor junction and result from stresses and crystal lattice 

deformations. As a result, electrons may be captured by these states and can be re-emitted 

into the same energy bands. The states are traps and occur in the forbidden energy zone or 

band gap (Eg). When a state is occupied by an electron or a hole and returns to a neutral 

level, due to the capture of an opposite carrier, the states are called recombination centres 

[40]. The current density in Schottky diodes due to the recombination centres is based on 

the theory of Shockley, Read and Hall [237] and can be expressed as: 

J� � J�kexp / .�ROP4 1 � exp /�	.�OP4�        (3.64)  
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where  

J�k �	.RU�� o            (3.65)  

and n � 2 

The current density induced by recombination in the depletion region is then determined 

by the electron charge (q), the intrinsic electron concentration (ni), the depletion region 

width (WD) and the life time within the depletion region (τr). However, three assumptions 

have to be made in order for this equation to be valid [40]: 

1) The energy levels of the recombination centres coincide with the intrinsic Fermi 

level. 

2) The capture cross sections are equal for electrons and holes. 

3) The centres are distributed in a uniform manner across the interface. 

These assumptions are very likely to be untrue in practice, as the hole and electron capture 

cross sections, can differ up to three orders of magnitude. The ideality factor value (n) for 

the recombination current density is between 1 and 2 and depends on the ratio of the 

capture cross sections for electrons and holes [40]. Assuming the three assumptions are 

valid the total current density is then given by: 

J����Q � JP; 6 J�          (3.66) 

where 

J����Q �	 J�Pexp / .�ROP4 6	 J�kexp / .��OP4� 1 � exp /�	.�OP4�    (3.67) 

This is the total current density combining thermionic emission theory (JTE) and 

recombination theory (Jr) and has a ratio of thermionic emission current density to 

recombination current density proportional to: 

T�	τ�exp /.�;�2	�@�{|T��OP 4         (3.68) 

The ratio then depends on the properties of the semiconductor, temperature and applied 

voltage. When the lifetime, applied voltage and band gap increase the thermionic emission 

becomes the main transport mechanism. The recombination transport mechanism is then 

more prominent in material with low lifetime, with a high barrier, biased at low voltage 

and under a low temperature. The temperature variation of the forward current then 
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consists of two activation energies [40]. At a high temperature, the thermionic emission 

component is more prominent and the activation energy tends towards the value ΦBn – V, 

and at low temperatures the temperature approaches the value of (Eg – V)/2, which is a 

characteristic of the recombination component. 

3.6.3.4  Hole injection 

The hole injection transport process is based on the fact that if ΦBn is greater than Eg/2, the 

semiconductor material at the interface can become p-type, containing a high density of 

holes. Some of these holes are capable of diffusing into the neutral region of the 

semiconductor under forward bias, hence creating the injection of holes. 

The transport mechanism of hole injection through the depletion region is identical to the 

transport mechanism for holes in a p-n junction. The current density can then be given by 

[40]: 

J� � Jk� exp /.�OP4 � 1�         (3.69)  

where  

Jk� �	  .0¡	��\�¢�£/�� exp /�	.{¢OP 4         (3.70) 

The current density for hole injection is then determined by the effective density of states 

function in the valence band (Nv), the mean thermal velocity of the holes (ν) and the barrier 

for holes (Φh). The term (rh) consists of the recombination time for holes (τrh) and the mean 

time between collisions for holes (τch) and is defined by [40, 42]: 

r� �	  o¢ B¢           (3.71) 

 The ratio between hole injection (γh) and the electron transport mechanism is given by [8]: 

γ� �	 �¢��2	�¢ 	≅ 	 �¢�� � N	0¡�\�¢�£/�0v 	exp /� .�{¢@	{|T�OP 4      (3.72) 

 In the case of thermionic emission, the electron current density (Je) is equal to Jte and 

given by Equation 3.37. Equation 3.72 indicates that an increase of the Schottky barrier 

height (Φbn) leads to an increase of (γh) as an increased barrier height reduces the electron 

current density. 
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In practice, the hole injection ratio (γh) is generally negligible, hence a Schottky diode is 

described as a "majority carrier" device [40, 8]. The hole injection ratio is susceptible to 

the interface between the metal and the semiconductor as a thin interfacial layer can 

increase the hole injection [40] and can become appreciable at high forward current 

densities. This effect is only noticeable on Schottky contacts with large barrier heights on 

weakly doped semiconductor material [40]. 

3.7  Advanced architectures 

In order to control the short channel effects in scaled inversion mode devices, the channel 

doping has to be increased. The increased doping levels in the channel result in a decrease 

in channel mobility, which has a detrimental effect on the device performance. The 

detrimental effects of scaling will eventually outweigh the benefits of scaling and 

alternative MOSFET device architectures should be considered. At the start of this work, 

four device architectures, shown in Figure 3.24, were being actively explored as the test 

bed for assessing the potential of III-V MOSFETs.   

The inversion mode architecture, shown in Figure 3.24a, pursued by teams at the 

University of Purdue [44], National Tsing Hua University (NTSU) [45], Intel [46] and 

University of Texas [47], is a III-V embodiment of a traditional bulk silicon MOSFET.  An 

inversion channel is formed at the interface between the high mobility semiconductor layer 

and the gate dielectric.  The source and drain regions are formed by ion implantation. In 

terms of the source and drain formation, limitations on the maximum activation efficiency 

of ion implantation in III-V materials, given the restricted thermal budget (the III-V layers 

are usually grown at less than 600⁰C, implant activation annealing at any higher 

temperature will result in significant As out diffusion, degrading the properties of the high 

mobility channel material, may unacceptably increase the contact resistances.  Even in 

close to ideal situations, in-situ Si doping during the epitaxial growth of In0.53Ga0.47As 

yields maximum densities of 5-6x1019cm-3 [48], which is significantly below the values, 

which are likely to be required to form sufficiently low access resistances in channels of no 

more than 10nm thickness.  So, whilst the inversion mode architecture is perhaps a good 

candidate in terms of electrostatic scalability, to fully control short channel effects via 

implantation strategies, as used extensively in scaling silicon devices, may have severe 

limitations on attainable access resistance.  
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The re-grown source/drain architecture of Figure 3.24b, pursued by the SRC Non-Classical 

CMOS Research Centre led by University of California Santa Barbara [49, 246], is 

essentially a variant on the inversion mode MOSFET, where the highly doped, re-grown 

source and drain regions are designed to address the access resistance issue arising from 

the limitations of ion implantation in III-V materials mentioned above. In addition, to 

further reduce the access resistance, source and drain contact metals are deposited in-situ 

following the raised source and drain re-growth.  Thin sidewall spacers are required in this 

architecture to prevent the source/drain re-grown regions from shorting to the gate.  

The flat-band architecture of Figure 3.24c, initially developed by Motorola/Freescale [5] 

and subsequently carried forward in collaboration with the University of Glasgow [4], 

takes its origins from a classic III-V HEMT structure, in that the channel is formed in a 

high mobility, low band gap, buried channel layer embedded within larger band gap 

materials. The carriers are thus well confined, providing charge control within the channel 

comparable to that achieved in ultra-thin body SOI MOSFETs. Further, the channel is 

spatially separated from the gate dielectric therefore interface roughness scattering is likely 

to be reduced, and larger capacitive effective thickness can be expected. The doping 

arrangement ensures that the access regions on either side of the gate have low resistance 

and the channel is depleted by the work-function of a metal gate, however for highly scaled 

devices, defining the source/drain contacts directly on the large band gap material above, 

the channel may compromise the achievable access resistance.  
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(a) – Inversion mode architecture (b) – Regrown source/drain architecture 

  

(c) – Flatband mode architecture (d) – Recess gate architecture 

Figure 3.24: Various III-V MOSFET architectures currently being investigated 

The recessed gate architecture of Figure 3.24d, pursued by IBM [50, 241, 242, 244, 245], 

is also a buried channel solution, which should benefit from higher mobility due to reduced 

dielectric-semiconductor interface roughness scattering.  In some ways, this architecture is 

similar to the raised source/drain structure of Figure 3.24b, in that the access resistance is 

reduced by having a heavily doped cap layer between the source/drain contacts and the 

gate.  The gate is formed in a recess etched through the heavily doped cap.  This structure 

has many of the other electrostatic and confinement advantages of the flat-band 

architecture of Figure 3.24c.  From a manufacturing perspective, this architecture may 

have issues with threshold voltage uniformity due to variations in recess etch depth 

experienced by III-V HEMTs.  

Current device architecture is moving away from the typical planar device structure 

towards a multi gate device structure [2]. The purpose of a multi gate structure is to 

increase the surface of the gate in regard to the channel and hence improving the gate 

control on the channel. The improved gate control enables the devices to operate at a lower 

voltage, with less leakage current and therefore the power consumption of a chip is 
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significantly reduced. The most common non-planar multi gate structure is a FinFET, 

which comes in three main variations; double gate, tri-gate and omega gate, as shown in 

Figure 3.25. The distinguishing characteristic of the FinFET is that the channel is a thin 

“fin”, which is wrapped by a gate metal. The effective channel length of a FinFET is 

determined by the distance between the source and the drain. All FinFET structures are 

affected by the same basic issues. The fabrication of quality fins with a uniformly grown 

oxide requires more complex device processing. These issues were overcome, as 

experimental III-V FinFETs [238, 243] and large volume production compatible Tri-gate 

SI FinFETs [2], were demonstrated.  

 
a) 3D 

    

b) Double gate c) Triple gate d) Omega gate 

Figure 3.25: Representation of a generic FinFET and cross section of three fin variations 

  



Chapter 3  MOSFET theory 
 

76 
 

3.8  Summary 

This chapter has explored how III-V MOSFETs can become an alternative to Si 

technology in the future. First, the ideal operation of the classic bulk silicon MOSFET is 

described. As future technology will require a density scaling of transistors in order to keep 

up with Moore’s law, the different scaling methodologies and the key parameters, which 

are impacted by the reduction of the device dimensions, are discussed. The figures of merit 

of future scaled n-type MOSFETs are shown together with the Intel 45nm technology as a 

benchmark. 

In order to better understand the potential benefits of III-V channel material, a study of the 

metal/oxide/semiconductor interface, channel transport properties and metal semiconductor 

contacts, is then undertaken. This covers the benefits of high-k gate dielectrics, metal gates 

and alternative channel materials featuring heterostructures. As this work focuses on ohmic 

contacts, a more in depth study of the different transport mechanisms present in metal and 

semiconductor contacts, such as emission over and through the barrier, recombination and 

hole injection.  

Finally, MOSFET devices with advanced architectures will be discussed and compared to 

the classic bulk silicon MOSFET. The combination of advanced architectures and 

compound semiconductor materials with high channel mobility channels then allow scaling 

beyond that offered by Silicon technology. Therefore, the device material in this work 

features either a buried channel or surface channel device architecture with high-mobility 

InxGa1-xAs channel material, which eventually could be co-integrated on a Si 200mm 

platform. 
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4  Fabrication techniques 

4.1  Introduction 

Device performance, uniformity, reliability and repeatability can only be achieved by 

developing and integrating stable, low damage process modules. It is then key to have a 

fundamental understanding of the fabrication techniques used when expanding existing 

procedures or developing new processes. The principle techniques involved in device 

fabrication are described and analysed in this chapter. The fabrication techniques used in 

this project are semiconductor wafer growth, lithography, dielectric deposition, metal 

deposition and metal- and semiconductor etching. The principles of each individual 

process are discussed, together with an analysis of their benefits, limitations and effects on 

device performance. 

4.2  Semiconductor wafer growth 

4.2.1  Molecular beam epitaxy [74,75] 

High quality semiconductor material is the base of the work performed in this project and 

will therefore be discussed first. As previously described in chapter 3.7, it is now generally 

accepted that III-V MOSFET devices require heterojunctions with abrupt atomic layer 

definition for optimal electrostatic control. The quality of the devices then depends upon 

the precision of the fabrication technique used to realise the heterostructure. The 

semiconductor growth technique used in this work is Molecular Beam Epitaxy (MBE), 

which grows the III-V layers with atomic layer precision. The dual chamber MBE system 

used at the University of Glasgow is shown schematically in Figure 4.1 and will be 

explained in the following paragraphs. 
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Figure 4.1: Schematic representation of dual chamber Molecular Beam Epitaxy growth system 

The source material (e.g. Ga, Gd, In, As, Al, Si) is heated up in effusion cells to the point it 

starts evaporating. The atomic flux from the cells is dependent on the temperature of the 

cells and is then used to control the growth rate.  Each effusion cell has a shutter to isolate 

it from the substrate, to control if the flux impinges on the substrate or not. The 

temperature of the substrates, used in this work, varies from 400°C to 640°C for material 

growth. To minimise the contamination of the wafers, the growth chamber needs an ultra 

high vacuum (UHV) with a pressure of 1x10-8mTorr and the source material needs to have 

a purity of at least 99.99999%. The contamination can manifest itself as inconsistent 

doping levels or as increased trap density. The requirement of a UHV limits the size of the 

growth chamber. One of the main drawbacks of the MBE tool is the processing of multiple 

large diameter wafers. This requires a higher complexity of the system resulting in a higher 

cost. This limits the use of a MBE tool for industrial requirements, but it is still very useful 

in a research environment. In industry, semiconductor growth tools with a higher 

throughput, such as metal organic chemical vapour deposition (MOCVD), are used. 

The III-V heterostructure layers are grown in one chamber to form the III-V MOSFET 

device heterostructure. The oxide on the heterostructure is grown in a different chamber 

linked to the III-V chamber via a transfer tube, which is also under UHV. The effusion 

cells in the oxide chamber are equipped with individual cooling and are capable to run up 

to temperatures of 2000⁰C.  

The oxide chamber in Glasgow has been used for the growth of a Ga2O/GaGdO (GGO) 

dielectric stack. The sources used to form the GGO stack are polycrystalline Ga2O3, Gd 
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and O2. The gallium oxide source sublimes at a temperature of 1990⁰C resulting in a flux 

of O2 and Ga2O molecules [52]. The Ga2O molecules have a higher sticking coefficient on 

GaAs than O2 and passivate the GaAs surface. Additional flows of atomic Gd and O2 are 

used to grow a GdxGa0.4-xO0.6 (GGO) layer on top of the passivated GaAs/Ga2O3 to 

increase the dielectric constant of the gate oxide stack and to reduce gate leakage as the 

conduction band offset between Ga2O3 and GaAs is insufficient as seen in figure 3.11.  

The quality of the growth is verified via an in-situ reflection high electron energy 

diffraction (RHEED) diagnostic tool. A beam of electrons is directed towards the wafer 

surface under a small angle of 1 – 2° and is reflected by the crystal surface. The reflected 

beam then strikes a fluorescent screen, which shows the diffraction pattern of the electrons. 

When the surface of the crystal is perfect, a set of lines separated by distances proportional 

to the atomic spaces is observed. A spotted diffraction pattern indicates a rough crystal 

surface suggesting poor growth conditions. The growth rate of III-V material and the 

surface quality can then be determined using the RHEED surface diagnostic tool. 

The growth rate of the III-V material can be observed as the RHEED intensity changes as 

the surface goes through a cycle of becoming rougher and smoothing back out as each 

monolayer is completed. The interaction between the Ga2O and GaAs can also be 

monitored via RHEED as it is important to have a passivation layer between 

semiconductor and oxide to limit defect density. After the deposition of the first monolayer 

of Ga2O the crystal structure goes from crystalline to amorphous over multiple 

monolayers, which can be monitored using the RHEED diagnostic tool. The pattern on the 

RHEED diagnostic tool will then have a transition from a crystalline pattern to a ring 

pattern, which is characteristic for amorphous materials. The growth rate of the Ga2O3 

layer is then determined from the time it takes for the amorphous ring structures to appear. 

4.2.2  Atomic Layer Deposition [76] 

Atomic layer deposition (ALD) is based on a gas phase chemical process, which is 

repeated until the required thickness of the film is reached. The ALD technique was used in 

this work to deposit a Al2O3 oxide layer on In0.53GaAs MOSFET device material and was 

grown at Stanford. Most commonly, the ALD deposition technique uses two separate 

chemical reactants called precursors. The precursors react in a sequential manner and every 

exposure to a single precursor will build up a mono layer of atoms on top of the underlying 

surface. Since a single layer is deposited with every exposure, the amount of material 

deposited in each reaction cycle is constant, resulting in uniform and thin conformal films. 
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The growth of materials by ALD is broken up into two half-reactions. The substrate is 

exposed to the first precursor, which is often an organo-metallic compound. Then the 

chamber is purged with either nitrogen or argon gas to remove excess non-reacted 

precursor material and the by-products. The sample is then exposed to the second precursor 

and is purged afterwards. This process is repeated until the desired film thickness is 

reached. The amount of material deposited during each reaction cycle is known as the 

growth per cycle. As an example, the growth of a thin film of Al 2O3 on GaAs is described: 

1. In air, most surfaces form a hydroxyl group and the sample is then put into the ALD 

chamber. 

2. The first precursor is then pumped into the chamber, which is trimethyl aluminium 

(TMA). This reacts with the hydroxyl group producing methane as a by product: 

Al	�CH\�\ 6 	GaAs � O � H	 → GaAs � O � Al�CH\�� 6 	CHN 

3. The chamber is then purged removing the excess trimethyl aluminium and 

methane. 

4. The second precursor is then introduced, which is H2O. The dangling methyl 

groups then react with the H2O forming aluminium-oxide bridges and hydroxyl 

groups. Again, the by-product is methane. 

GaAs � O � Al�CH\�� 6 	2H�O	 → GaAs � O � Al�OH�� 6 	2CHN 

5. The chamber is purged again and prepared for another trimethyl aluminium 

precursor reaction. 

Repeating the cycle then forms a thin layer of Al2O3 on a GaAs substrate. Since the film 

thickness depends on the number of reaction cycles, the control of the layer thickness is 

simple and accurate. A single cycle layer thickness roughly takes 0.5s. The chemical nature 

of the process means there is little need for reactant flux homogeneity and parameters other 

than substrate material, precursors and processing temperatures have insignificant 

influence on the process. Another advantage is that there is no need for a plasma resulting 

in limited damage in the substrate [77] and high density and low impurity films, as shown 

in section 4.4.5. The temperature of the process can be below 200°C [221] in order not to 

affect sensitive substrates with epitaxially grown layers. 

The sequential nature of purging gases means that the ALD technique is slow when thicker 

films are needed. Also, the residues from the precursors form a risk for the amount of 

impurities in the film.  
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4.3  Lithography 

The cornerstone of electronic device fabrication is the use of masking layers to selectively 

pattern a surface. The pattern can then be used to selectively remove or deposit material. 

The term for the masking process is lithography and it encompasses many techniques. The 

lithography techniques can be divided up in two main categories: stamping or printing 

based lithography [53, 54, 55, 56] and an irradiation exposure based lithography. Although 

the nano-imprint technique is becoming increasingly more popular, only irradiation 

exposure based lithography has been used in this project. 

The irradiation exposure based lithography is based on depositing a radiation-sensitive 

mask, which is usually a polymer. This resist layer can be uniformly applied to the surface 

of the sample by either spin coating or spraying. When the resist is exposed to either UV or 

electron radiation the physical properties of the resist change. The irradiated regions then 

become either more or less soluble in a developing solution.    

When the irradiated region becomes more soluble, the resist is called positive tone. In case 

of electron radiation, the irradiation causes the polymer chains to break up by chain 

scission [57]. The depolymerised regions can then be dissolved by making use of an 

appropriate developer given sufficient time. The irradiated regions become unmasked 

when using positive resist. 

 

Figure 4.2: Development of positive and negative resist 

If the irradiated region becomes less soluble, the resist is negative tone. In the case of 

electron radiation, the irradiation results in a linking of the polymer chains increasing the 
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average chain length. The exposed regions then become less soluble in comparison to the 

unexposed regions. The unexposed regions then become unmasked by the development 

process. The positive and negative resist processing is shown in Figure 4.2. The resolution 

of a resist based lithographic process is limited by several factors: the type of radiation, the 

incidence of radiation and the chemistry of the resists. The most commonly used 

lithography in this project is e-beam lithography using resist with positive tone. 

4.3.1  Photo lithography 

The lithography technique used in CMOS fabrication has to provide a high throughput, 

scaled feature sizes and low unit processing costs. The high throughputs compared to e-

beam lithography makes photolithography the dominant lithography technique used by 

industry. The basic principle of photolithography consists of using a hard mask to block 

UV-light onto resist coated substrates. There are three main photolithograpy techniques: 

contact, proximity and projection. The proximity and contact process are very simple and 

comprise a light source, lens, hard mask and a resist coated sample. The difference 

between the two is that the hard mask either contacts or is in close proximity (>10µm) to 

the resist coated sample shown in Figure 4.3.  

UV - Lamp

Lens

Mask

Resist

Sample

s

   

a) Contact photolithography  b) Proximity photolithography 

Figure 4.3: Schematic representation of basic photolithography techniques 

Contacting the resist layer can introduce cross contamination between wafers and cause 

damage and is not suitable for modern device processing requirements. The gap between 

the hard mask and resist coated sample prevents the cross contamination, but potentially 

allows for diffraction of the UV light. The minimal theoretical resolution for proximity 
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lithography, lmin, is determined by the separation between mask and substrate (s) and 

illumination wavelength (λ). 

l8!R 	 � 	√λs          (4.1) 

The wavelength of deep ultra violet is 193nm, which can be achieved by making use of a 

ArF excimer laser. Theoretically, a resolution of around 300nm can be achieved using a 

500nm thick resist. The flatness of the wafer will limit the minimum separation distance, 

which will consequently reduce the resolution in practice.   

 

Figure 4.4: Schematic representation of projection lithography 

The projection photolithography technique is based on focussing the beam of UV light by 

making use of a lens. The lens is positioned between the hard mask and the substrate and a 

simplified schematic is shown in Figure 4.4. Focussing the beam allows for a better 

resolution compared to the proximity photolithography without the detrimental effects 

from contact photolithography. The resolution limit for a projection system is defined as 

[8]: 

l8!R � Oo�$�0+           (4.2) 

where kres is a constant describing the ideality factor of a resist, wave length (λ) and the 

numerical aperture of the lens NA. The numerical aperture specifies the refractive 

properties of the lens and is a number between 0 and 1, characterising the angular extent of 

the lens. Modern low-kres value resist and high-NA lenses have allowed for resolutions as 
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small as 30nm [17]. Other photolithography improvements, such as multiple exposures 

[58], phase shifting techniques [59] and resist etchback [60], have contributed to cost 

effective processing of critical geometries required by the silicon industry. The use of 

automatic registration schemes is another advantage of projection lithography enabling a 

high throughput with accurate alignment. These advantages makes the projection 

photolithography the most commonly used lithography techniques, however the systems 

are extremely expensive and can only be found in a handful of companies around the 

world. 

4.3.2  Electron beam lithography 

The resolution of photolithography is limited by the wavelength of the source due to 

diffraction, as shown in Equations 4.1 and 4.2. Electron beam Lithography (e-beam) uses a 

focussed beam of electrons instead of a hard mask. The pattern can then be generated by 

software and is written directly onto the resist with the help of a computer controlled 

exposure system. The diffraction of e-beam systems is limited by the de Broglie 

wavelength of the electron beam rather than the diffraction of light when using a hard 

mask. At a typical operating energy of 100keV, the diffraction of an e-beam is around 

0.004nm, which is smaller than the spacing between atoms on any substrate material [61, 

62]. Diffraction is therefore not an issue on e-beam systems, however the minimal 

resolution is dependent on the spot size and electron scattering. The quality of the electron 

optics determines the spot size but is limited by the mutual repulsion of electrons when 

being forced into a focussed beam. The detrimental effects of electron scattering come 

from two different electron components. First, when the e-beam hits the resist surface, it 

causes additional lateral exposure. Secondly, electrons can scatter backwards from the 

substrate increasing the secondary exposure, which results in line widening. The pattern 

dependent exposure is called the proximity effect. 

A typical electron beam lithography system consist of three major parts: an electron 

source, an electronic lens system and the sample chamber, as shown in Figure 4.5, which is 

a schematic of the Vistec VB6 e-beam lithography tool used in this work. The electron 

source is a thermal field emitter using a zirconium oxide-coated tungsten cathode, which 

after heating emits electrons, which are then accelerated with voltages up to 100kV 

improving emission collimation. The higher accelerating voltages provide a smaller spot 

size at the expense of lower beam current densities, resulting in increased writing times.  



Chapter 4  Fabrication techniques 
 

85 
 

 

Figure 4.5: Schematic representation of a Vistec VB6 e-beam lithography tool [78] 

The suppressor and extractor create a flow of electrons from a cathode, present in the 

emitter, through an electrostatic gun lens focusing the beam towards the anode. The 

electron beam then passes through gun alignment coils, which align the electron beam to 

the central 2D axis for optimal spot formation. A magnetic lens then focuses the beam and 

the blanking cell is used to deflect the beam away from the sample.  The patterns are 
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generated by different deflectors before a final magnetic lens, which has to be adjusted for 

a given working distance. This system allows for a selective exposure within a limited 

region without having to move the substrate. The final beam focus determines the spot 

geometry and therefore also the minimum resolution, which can be calculated from: 

	d � k����	C�/
£4λ/�4         (4.3) 

Where kspot is an ideality constant, which defines the sharpness of the spot and Cs is the 

spherical aberration of the final lens. The minimum ideal spot size has been calculated by 

Broers et al. [61] and was found to be 0.37nm at 100kV. Due to imperfect electron optics, 

the modern e-beam lithography tools have minimum spot sizes varying from 1 – 5nm. The 

Vistec VB6 tool used at the University of Glasgow has a digital pattern resolution 1.25nm, 

however the minimum spot size is 4nm.  

The sample chamber contains a precision translational stage, a Faraday cup and detectors 

to measure the x, y and z position, beam current and electron backscattering. The stage is 

usually driven piezoelectrically and is controlled using feedback from laser 

interferometers, which measure the x and y travel. The offset in the vertical or z direction 

is measured, using a second laser with a photodiode detector. The measurement of the 

vertical direction is critical as it will determine the focus of the e-beam. The mechanical 

precision of the stage movements is usually a lot lower than the precision of the beam 

deflectors and will predominantly determine the field stitching accuracy. The Faraday cup 

is used to measure the electron current density of the e-beam, which is a feedback to 

calculate the exposure time. The visual representation of the samples is provided by a 

backscatter detector, which is similar to the operation of a scanning electron microscope. 

The visual representation can also be used for automatic sensing and alignment markers 

registration, which is all software controlled. 

The patterns are first designed in the CAD package L-edit by Tanner EDA resulting in a 

GDS layout file. The pattern then has to be fractured up into smaller area structures 

(1.2mm x 1.2mm) as the lithography tool can only write within fields of this size. The 

fracturing software used is a CATS package by Synopsis. The fractured patterns can then 

be positioned on a virtual sample in Belle, which is in-house software created at the 

University of Glasgow. The Belle software also allows selection of the beam size, beam 

current and the dose. When saving, the exposure times are then calculated and this 

command file can then be used by the control computer of the VB6 system.   
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4.3.2.1  Proximity effects and scattering 

The minimum feature size is dependent on the electron beam interaction between the resist 

and the substrate. Electrons are scattered once the beam penetrates the resist, altering their 

velocities and direction of travel. This results in an increased lateral exposure of the resist 

and consequently the minimum feature size will be larger than the minimum spot size. 

Scattered electrons can produce secondary electrons provided they have enough energy, 

which then travel in random directions with low energies. The scattering process is shown 

in Figure 4.6. 

Electrons, which keep travelling towards the substrate after scattering are defined as 

forward scattering electrons. The forward scattering is inversely proportional to the energy 

of the electrons, and broadens the Gaussian profile of the beam energy [61].  

20kV

50kV

Substrate

Resist

Forward scattering

Backscattering

 

Figure 4.6: Schematic representation of the interaction between incident electrons and the resist and 

the substrate [61]. 

The substrate can also be penetrated by electrons given sufficiently high accelerating 

voltages during exposure. The electrons with high velocity can scatter from the substrate 

surface and re-enter the resist, known as backscattering.  The backscattering effect 

produces a second, wide spread, Gaussian energy distribution into the resist. A small 

distribution of electrons with high enough energy scatters back from the sample and is 

picked up by the backscatter detector, forming the electron image. The backscattering 
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effect is dependent on the substrate material, which means that dose tests will be required 

across different samples. The combination of the forward beam energy and the 

backscattering results in a double Gaussian exposure profile, which is accelerating voltage 

dependent. Higher voltages reduce the forward scattering effect and therefore the 

accelerating voltages can be used to broaden the backscatter curve to get a broad and 

relatively uniform distribution of the backscattered electrons compared to the forward 

distribution [61, 62].  

The proximity effect is caused by the increase of exposure in the resist by electron 

backscattering [63]. The effective exposure becomes higher in densely patterned regions as 

the distribution of the backscattered electrons starts accumulating. The proximity effect is 

shown in Figure 4.7 and shows that features written in the centre of a pattern receive a 

higher effective exposure. This will have detrimental effects when trying to write small 

features close to big exposed areas. This problem can be solved by taking into account the 

backscattering effects and altering the required exposure dose according to pattern size and 

density. Specialist software by Proxecco [64] is built into the CATS fracture suite and 

allows for proximity effect corrections according to resist thickness and substrate material. 
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4.3.2.2  Comparison between photolithography and Electron Beam 

Lithography 

The photolithography tool used at the University of Glasgow is a Suss MicroTec MA6 

mask aligner with a UV light source with a wavelength of 400nm. It uses contact 

lithography, which for an experimental research environment is adequate and masks can be 

made in house using E-beam lithography. The minimum feature sizes in this work are 

below 100nm and critical marker alignment will also be required for some process 

modules. Photolithography has an advantage over e-beam lithography in terms of time 

needed for processing, as e-beam lithography samples have to be written overnight. 

Therefore, it seems that it would be beneficial to use the photolithography for less critical 

lithography features and e-beam lithography for critical feature sizes (<1µm). However, it 

was chosen to write all the samples using e-beam lithography to obtain a maximum of 

Figure 4.7: Schematic representation of the proximity effects [73]. 
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processing consistency. The versatility of the e-beam tool also allows making quick 

changes to the layout.  

4.3.2.3  Resist 

The pattern definition and minimum feature size strongly depends on the resist used. 

Different resists have different developer requirements, exposure characteristics and etch 

resistances. There will always be a trade off between resolution, adhesion, solubility, etch 

resistance and yield. 

The solubility of the resist depends on the developer, development time and the 

temperature. The exposure dose is dependent on the resist sensitivity and thickness and to a 

lesser extent to the actual development process. The etch resistance and resist sensitivity is 

determined by the polymer density or molecular weight of the resist [65]. The resist will be 

less sensitive to an exposure dose when there is an increased molecular weight. This is due 

to the increased number of scission events needed for total exposure. The resolution of the 

resist is also determined by the molecular weight [66]. 

The resist used throughout this work is poly-methyl methacrylate (PMMA). The advantage 

of this resist is that it is easy to process, it is available with various molecular weights and 

has excellent resolution (<100nm) [66]. The developer used is a methyl isobutyl ketone 

(MIBK) or methyl ethyl ketone (MEK) [67] and isopropyl alcohol (IPA) solution. 

4.3.2.4  Pattern transfer 

There are two different kinds of pattern transfer: additive and subtractive. Additive 

patterning is used to deposit material onto lithographically exposed areas in the resist. 

Subtractive patterning is based on the removal of material of lithographically exposed 

areas. Either pattern transfer process can potentially affect the underlying semiconductor 

material. In the case of additive patterning, there could be a thin layer of resist present 

between the deposited material and the substrate and in the case of subtractive patterning, 

the etch process can damage the substrate material. These changes can affect the electrical 

properties and have to be taken into account when developing new process modules.  

An example of an additive patterning process is the lift-off technique. The lift-off 

patterning relies on an overhung resist profile using a double layer of positive resist, as 

shown in figure 4.8. The profile creates a discontinuity in a uniformly deposited metal 

film. The bottom layer of the resist bi-layer is more sensitive with a lower molecular 

weight. Both layers are exposed to an identical dose, resulting in a larger development area 
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for the low molecular weight resist. This creates an undercut profile resulting in the 

discontinuity in the deposited metal. The exposed resist sidewall can then be dissolved 

using a solvent, in most cases acetone, and the metal layer on top of the resist lifts off. The 

metal pattern on the substrate defined by the exposed windows is then left behind on the 

substrate. To obtain a large enough exposed resist area, the bottom layer thickness has to 

be at least as large as the metal thickness.  

High molecular weight resist

Low molecular weight resist

Evaporated metal

1. Development 2. Metal deposition 3.Lift off

 

Figure 4.8: Schematic representation of lift-off technique 

Subtractive patterning uses either a dry or a wet etch to remove uniformly deposited 

material from the substrate. A wet etch technique is attractive for large area feature sizes, 

but ineffective for small feature sizes described in section 4.5. Subtractive patterning is 

most commonly used after the deposition of refractory metal films such as tungsten and 

molybdenum, as the metals are uniformly deposited. The metal layer then covers the 

sidewalls of the resist undercut profile preventing the developer to dissolve the resist and 

metal lift-off to take place. 

4.4  Plasma processing  

Plasma processes can be used for either etching or dielectric deposition. The processes are 

dominant in a great number of device fabrication flows and the different techniques used 

will be reviewed in the following section. A number of factors have to be considered when 

comparing different etch processes of dielectric, metal or semiconductor material.  

- Profile: There are two different types of etches resulting in more sloped or vertical 

etch edge profiles. An isotropic etch removes the material at the same rate in any 

direction while an anisotropic etch has a preferential etch direction.  

- Selectivity: The removal of one material while not affecting another is called 
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selective etching. This allows for etch stops to be incorporated into the device 

processing. 

- Damage: The detrimental effects of altering inadvertently the underlying 

semiconductor material due to the plasma exposure. This affects the electrical 

properties of the semiconductor material. 

- Etch speed: Time required to complete an etch process. 

- Repeatability: Processing consistency over a large number of samples is required. 

Plasma based etching techniques are also referred to as dry etch material removal, as there 

are no liquids involved in the process. The dry etch process most commonly involves 

physical sputtering, a gaseous chemical reaction or a combination of both. 

4.4.1  Physical sputtering 

The physical sputtering process is based on a non reactive process, where atom species 

bombard the surface of the substrate. The atom species are usually energetic ions from a 

plasma. To prevent chemical reactions between the substrate and the plasma, inert gases 

such as Ar are used. An example of physical sputtering is described using an RF-source 

and Ar ambient plasma, as shown in Figure 4.9a.The plasma is formed by electron initiated 

avalanche multiplication induced by the RF source in an Ar ambient. The negative period 

of the RF bias will then accelerate the charged Ar ions towards the substrate. When an Ar 

ion collides with the surface, the momentum of the ion is big enough to break bonds and 

material is ejected from the surface. The etch rate of a physical sputtering process is 

dependent on the voltage bias of the RF source, the substrate material and the ion density. 

Physical sputtering results in an anisotropic etch due to the low chamber pressure and the 

corresponding long mean free path. The process is non-selective and produces near vertical 

profiles. The disadvantage of the physical nature of the process is that the electrical 

damage can be problematic in the substrate. The relatively large energies required can 

cause the ions to penetrate into the substrate, hence altering its electrical properties. The 

material ejected from the surface is not absorbed by the process and this can lead to non 

ideal etch profiles with hourglass, trenched or redeposition effects. For this reason, the 

physical sputtering process is not suitable for a well controlled processing environment.  
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a) Physical sputtering b) Plasma etching 

Figure 4.9: Schematic representation of basic dry etch techniques 

4.4.2  Plasma etching 

Where sputtering is driven by physical removal of the surface of the substrate, plasma 

etching in contrast, is a chemical process. The plasma supplies neutral radical species, 

which diffuse to the surface of the substrate with random velocities and cause a chemical 

reaction. For example, a reactive plasma etch can be used to remove a polymer resist.  In 

this case, ozone plasma reacts with the hydrocarbon resist producing volatile products, 

which are removed from the etch chamber by pumping. There are different tool 

configurations, such as a barrel asher and a parallel plate ashing system, shown in Figure 

4.9b.The barrel asher features a perforated earthed shield to protect the substrate from high 

energy positive charged species, which are potentially damage inducing. The chemical 

nature of the plasma etch and relatively high pressures results in an isotropic etch profile. 

4.4.3  Reactive ion etching 

Reactive ion etching (RIE) combines physical sputtering and plasma etching by replacing 

the neutral gas in a sputtering system by a reactive gas. The ions formed by the plasma 

then contribute to the etch in two forms. The high energy ions collide with the sample 

surface and bombard the surface causing a sputter product to eject. The reactive radical 

ions diffuse to the surface with sufficient energy to activate chemical plasma etching 

(EACPE) and hence react with the substrate. The chemical product after reaction is often 

volatile and can be extracted limiting redeposition. Figure 4.10a shows a schematic of the 

RIE process and equipment.  
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a) Reactive ion etching b) Inductively coupled plasma etching 

Figure 4.10: Schematic representation of RIE and ICP dry etch techniques 

Etching small critical dimensions requires anisotropic etches as the minimum feature size 

will be degraded by the undercutting. The mean free path of the ionised species increases 

the anisotropic etch profile and therefore low pressure plasma is required. The etch rate is 

controlled by high energy and reactive radical ion concentration and RF bias. Low plasma 

pressure will then result in increased etch times. Increasing the RF bias is unattractive, as 

the high energy ions cause too much damage in many applications. The inductively 

coupled plasma (ICP) technique was developed to allow independent control of the density 

of the plasma and the pressure in the processing chamber, as shown in Figure 4.10b. The 

technique uses one RF source to control the built in potential to accelerate the high energy 

ions and a second RF source to control the density of the plasma. The independent control 

of the plasma density and ion energy allows for fast anisotropic etches in a low pressure 

environment. However, the RIE etch induces damage due to the exposure to plasma even 

in a low pressure environment [77]. 

4.4.4  Ion gun etching 

Ion gun etching is a form of physical sputtering. The difference between plasma and ion 

gun etching is that the ion gun uses an external source to accelerate the high energy ions 

towards the surface of the substrate. This allows for a large bias source to be applied, 

which results in very aggressive etching. The operation of a D.C. Kaufman-type ion gun is 

described in Figure 4.11. As the ion gun process is non reactive an inert gas is used in the 
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sample chamber, which in this case is Ar. The operation pressure is relatively low (0.4 to 

4x10-2mTorr), resulting in an anisotropic etch profile. The principle of operation is to 

generate electrons by thermal emission. This is done by running a current through a 

cathode with a tungsten filament. The electrons are then accelerated towards an anode 

(Vdis), which is in an Ar environment. The Ar plasma is then ignited by electron initiated 

avalanche multiplication releasing Ar ions. The beam voltage (Vbeam) accelerates the Ar 

ions towards the substrate through the screen grid. The Ar ions are further accelerated 

through the negatively biased (Vacc) accelerator grid. This stops neutraliser electrons from 

returning into the positive screen grid. The neutraliser, consisting of another tungsten 

filament, emits electrons to the positively charged Ar ion beam to stop the substrate from 

charging. 
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Figure 4.11: Schematic representation of an ion gun dry etch system 

The density and the energy of the ion beam determines the etch rate. The beam current 

(Ibeam) controls the density of the ion beam, which is dependent on the plasma density. The 

plasma density is dependent on the pressure of the Ar gas and can be controlled by the 

cathode current (Icath). The energy of the individual ions in the ion beam is predominantly 

determined by the beam voltage (Vbeam). Higher beam voltages will then result in higher 
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etch rates but will also increase the levels of damage in the semiconductor substrate. The 

ion gun is therefore not a suitable technique when limited levels of processing damage are 

required. Similar to the plasma sputtering technique, the ion gun technique also suffers 

from redeposition. A significant proportion of the ejected substrate material is then 

redeposited on the surface of the substrate. Some redeposited material is then re-sputtered, 

but since the etch profile is anisotropic there is a build-up of redeposited layers on both the 

etch sidewalls and the mask leading to non-ideal effects [68,69]. One of the e-beam 

evaporator metal deposition tools, discussed in section 4.5, features an in-situ ion gun, 

which allows for etching prior to metal deposition without having to break the vacuum. 

4.4.5  Dielectric plasma deposition 

Plasma processes can also be used for the deposition of thin films, in particular dielectrics, 

on substrate material. The MOSFET device process incorporates thin deposited dielectric 

films as spacers to separate contacts, insulating layers to form barriers or capacitors or as 

protective layers to protect the devices from further processing damage.  

Chemical Vapour Deposition can deposit dielectrics, but it requires elevated temperatures 

comparable to the original material growth [70]. The elevated temperatures can cause 

damage to the underlying epitaxially grown semiconductor layers and to the quality of the 

oxides grown by MBE. The solution is to deposit the dielectrics using a plasma, known as 

plasma-enhanced chemical vapour deposition (PECVD).  

The fundamental principles of PECVD are similar to plasma etching by exposing a 

gaseous mixture with reactants to an energetic plasma. The energy of the plasma provides 

the necessary activation energy, rather than the increased substrate temperature. Controlled 

deposition conditions can then be developed to deposit dielectrics on a sample surface with 

fewer damaging effects compared to CVD. A number of dielectrics can be deposited using 

PECVD, but only a Si3N4 dielectric is used in this work.  In this case, silane (SiH4) gas and 

either gaseous nitrogen or ammonia provide the Si and N components resulting in 

following reaction:  

3SiHN 6 	2N� → Si\NN 6 	6H� 

The hydrogen by-product is likely to be present in the Si3N4 film and together with other 

possible contaminants the physical properties such as dielectric constant, refractive index, 

permeability and stress might change as a result [70]. The impurity of the PECVD 

deposited dielectric films potentially poses a problem when ideal properties of the 

dielectric films are required. The large energies involved to form a plasma in a PECVD 
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technique can damage the substrate making this technique unsuitable when a minimum 

amount of processing damage is required. 

The PECVD technique can be improved by using a separate coil, with an RF source, to 

generate and control the plasma. This technique is known as inductively coupled plasma 

chemical vapour deposition. In case of Si3N4 deposition, a high density nitrogen plasma in 

the upper portion of the chamber is ignited by the inductively coupled coil. The silane is 

then introduced below the coil and reacts with the nitrogen plasma forming a high density 

of both species. These are consequently deposited on the surface of the substrate with low 

power. The low power reduces the energy of the ions compared to PECVD reducing 

potential damage to the substrate. The high density plasma allows a more efficient 

generation of highly reactive radicals, which allows a lower processing temperature. As a 

result, the concentration of reactive elements is relatively higher than the residual or 

secondary contributions. Higher quality and purity films can then be achieved using ICP-

CVD, which are compatible with III-V MOSFET processing without damaging the 

underlying epitaxially grown layer structure. The tool used in this work for Si3N4 

deposition is a Plasmalab System-100 ICP-CVD tool by Oxford Instruments. 

 

Figure 4.12: Schematic representation of an ICP-CVD deposition tool 
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4.4.6  Wet etching 

The simplest method of removing material in a semiconductor device process is to use a 

liquid chemical etchant. There are wet etches for numerous materials and applications and 

are often used in a III-V MOSFET device process as oxide etches, isolation etches or gate 

recess etching when a HEMT like device structure is used chapter 3.7.  

Wet etching is a chemical process, which can be split in three steps: a reactant is 

transported to the surface of the substrate, then a chemical reaction takes place between the 

reactant and the substrate and finally the product is transported away from the substrate 

[71]. The transport is driven by diffusion and if the transport is the etch rate limiting factor, 

then the process is diffusion limited due to the small diffusion coefficient in liquids. The 

etching process can in this case be quickened by agitating the sample or etch solvent. 

When the reaction is the etch rate limiting factor, then the process is reaction rate 

dependent. Increasing the temperature or concentration levels can then speed up the 

etching process. 

The chemical process only affects the surface of the substrate and causes little or no 

damage in the substrate itself. The wet etch generally proceeds in all directions at the same 

rate and has therefore strong isotropic tendencies. The etch direction can then not be 

governed by process control as is the case in dry etch. In addition, the etchant solution can 

undercut the mask and etch the underlying material, resulting in an increased feature size. 

However, the etch direction can be dependent on the crystal orientation of the 

semiconductor substrate [71]. The morphology of a wet etched surface depends on the 

reaction rate. A slow reaction rate produces a smoother surface while a fast reaction rate 

causes gas bubbles to form at the surface of the substrate. These bubbles are the product of 

rapid gas production from the chemical reaction and affect the surface morphology and 

uniformity [72]. The by-products formed by the etching process can potentially re-deposit 

on the etched surface. This could lead to potential contamination or increased defect 

densities. 

The III-V MOSFET device process can benefit from selective wet etching in different 

areas: semiconductor material etches with an etch stop, metal etching and oxide etching. 

An example of a wet etch with an etch stop is the gate recess etch process used with 

HEMT like structure processing. The process involves a succinic or citric acid and 

hydrogen peroxide mixture, which reacts with gallium containing layers but not with 

aluminium containing layers. The level of selectivity then depends on the aluminium 
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concentration. A layer structure with a sufficient amount of aluminium can then be used as 

an etch stop. Metals such as titanium can be etched using hydrofluoric acid and oxides can 

be etched using hydrochloric acid. 

The III-V MOSFET device fabrication process also requires non-selective etching for the 

mesa isolation of devices. A wet etch process for III-V semiconductor material is more 

complex due to the zinc-blende crystalline structure. The principle of the wet etch is to first 

oxidise the semiconductor surface and then etch the oxide [71]. The surface can be 

oxidised with diluted hydrogen peroxide forming an oxide on the surface and can be etched 

using an acid, which is compatible with hydrogen peroxide such as orthophosphoric acid or 

sulphuric acid. The dilution ratio between the reactants and water will determine the etch 

rate. The etch process is electrochemical and the presence of metals can alter the etch rate. 

This has a detrimental effect on the uniformity of the etch across the wafer. 

Advantages of wet etch over dry etch: 

- Damage: Low or very little damage is introduced in the substrate. 

- Speed: High etch rates can be achieved dependent on the material and etchant. 

- Cost: Low running costs as wet etch equipment is inexpensive compared to dry 

etch. Most wet etches can take place in either a glass or plastic beaker. 

Disadvantages of wet etch: 

- Capillary action: Penetration of resist underneath the mask, which can lead to 

different feature sizes and increased edge roughness. 

- Poor process control: Etch temperatures, sample solutions and agitation are difficult 

to reproduce in an experimental environment leading to poor repeatability. 

- Contamination: Potential re-deposition of by products on the surface of the 

substrate. 

- Waste: The by-product of a wet etch is often a hazardous liquid. 

- Bubble formation: Gaseous reactions form bubbles, which lead to non-uniformity. 

A wet etch process is preferred over a dry etch process when low cost, high throughput and 

low damage are paramount. However, when a vertical etch profile with good 

reproducibility is required, then dry etch is the preferred etch method. 
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4.5  Metallisation 

There are principally three different methods of depositing metal on a substrate: plating, 

sputtering and metal evaporation. Metal plating is generally used to deposit thick layers 

and with relaxed process tolerances. In III-V device processes the most common metal 

used is gold to form interconnects, bond-pads or is used in backside processes. The 

resolution of plating is poor and has not been used in this work however it is a cost 

effective method for depositing thick layers of metal. 

4.5.1  Metal Evaporation 

Evaporation techniques are based on heating up a source to a temperature where the 

material starts vaporising. The vaporised material is then deposited on the sample and 

cools down forming a thin film. Thermal evaporation can either be achieved by heating the 

source with a resistive element or by using an electron beam. Resistive heating takes place 

by passing a current through a heating element, often made out of tungsten, which heats up 

a crucible containing the source material. Resistive evaporation has the disadvantage of 

potential contamination from the crucible if the melting temperature of the crucible is close 

to the melting temperature of the source material, resulting in a poor film quality. Electron 

beam evaporation uses an electron beam generated from a cathode to heat up the source 

material locally. The crucibles are water cooled to minimise contamination. The electron 

beam is generated by a thermionic emission filament and is accelerated towards the 

crucible using a high accelerating voltage. The beam is then focussed into a spot on the 

surface of the source material and the interaction between the accelerated electrons and the 

source material will cause the material to start heating up and vaporise. The combination of 

local heating and water cooled sources prevents crucible metal contamination, resulting in 

a high purity film deposited on the substrate. 
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Figure 4.13: Schematic representation of e-beam evaporator 

A generic schematic representation of an e-beam evaporator can be seen in Figure 4.13. 

Most commonly there are two shutters, illustrated by the dashed lines, between the source 

and the substrate target. The shutter separates the target from the source to allow for the 

source material to heat up. During the initial stages of the heating process, the flux rate 

fluctuates and the bottom shutter is opened once the evaporation rate is sufficiently stable. 

The evaporation rate is monitored, using a quartz crystal whose oscillation frequency 

reduces as additional layers of source material are deposited. This allows for rate control in 

a closed loop feedback with the e-beam source power control. Once a predetermined 

evaporation rate is reached, the top shutter opens and exposes the substrate to the 

evaporant flux until the desired film thickness is reached. 

The evaporation processes take place under high vacuum (1x10-3 to 1x10-4mTorr) in order 

to create a mean free path of the evaporating flux, which is greater than the distance 

between the source and the sample. As a result, there is low particle scattering, which leads 

to a highly directional, non-conformal coating on the sample. A Plassys MEB450 and a 

Plassys MEB550 were used in this work as evaporation tools. The Plassys MEB 450 

features an in situ ion gun, which can be used for dry etching. The source materials present 

in the evaporation tools are described below: 

1. Plassys MEB450: titanium, nickel, nickel/chromium, germanium, gold, palladium, 

aluminium  

2. Plassys MEB550: titanium, nickel, nickel/chromium, germanium, gold, platinum, 

molybdenum, aluminium  
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4.5.2  Sputtering 

While evaporation requires a source to be heated to produce a flux of gas, sputtering 

targets make use of a physical plasma process rather than heat. The sputtering process is 

then similar to a dry etch process, where the plasma bombards the surface of a target 

containing a source metal. The plasma is formed using an inert gas (normally Argon) and 

is excited by either a DC or RF source. The target source is negatively biased and the 

plasma sputters neutral atoms of source material away from the target towards an anode, 

where the neutral atoms are deposited on the sample. Since a plasma is required, the 

working pressures of sputtering systems are relatively high (around 1x10-1mTorr). 

Consequently, most atoms collide before reaching the sample resulting in a large spread of 

incident angles. The deposited metallic coating is therefore more conformal and as a 

consequence lift off techniques cannot be used. Sputtering of metallic films usually 

requires a subtractive process. The advantage of a sputtering tool is that materials with a 

relatively high melting point such as tungsten can be deposited. Also, alloys and 

compounds such as titanium-tungsten can be deposited in a single step. The sputtering tool 

used in this work is a Plassys MP900S. 

 

Figure 4.14: Schematic representation of a sputter system 
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4.5.3  Metal deposition technique comparison 

The choice between sputtering and evaporation techniques is sometimes limited because of 

processing constraints. But when either sputtering or evaporation techniques can be used 

the relative advantages of both and their patterning technique must be evaluated. 

Advantages of electron beam evaporation and lift-off: 

- Reduced damage: The dry etch and plasma of the sputtering both introduce damage 

into the substrate. 

- Cost: Dry etch and sputter tools are relatively expensive to purchase and to run 

compared to the evaporation tool. 

Advantages of sputter deposition and subtractive dry etch: 

- Material choice: Materials with high melting points, often refractory with good dry 

etch properties, cannot be used in e-beam evaporation tools. 

- Scaling: The uniformity of the metal film over a large area is superior when using 

sputter deposition. 

- Adhesion: Sputtered films have better adhesion compared to e-beam deposited 

films. 

- Control of film properties: More parameters can be adjusted when sputtering a film, 

which controls the stress, grain, resistivity and step coverage of the metal. 

- Compound deposition: Stoichiometric films that would dissociate during 

evaporation can still be deposited using sputter deposition. 

- Yield: Due to the better adhesion and controllability, plasma processes have a 

better reproducibility and yield over e-beam evaporation. 

Sputtering and dry etch has a number of advantages over e-beam evaporation and lift off. 

However, the low cost and the ease of processing makes the latter a more suitable solution 

in an experimental environment. Ohmic contact formation also requires a low damaging 

process as any out-diffusion of doping leads to an increased resistance. This is the most 

important factor why e-beam evaporation and lift-off have been preferred over 

sputtering/dry etch. Also an e-beam evaporator can still blanket deposit a metal, which can 

be dry etched afterwards if resist residue is an issue. 
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4.6  Summary 

The fundamental technologies required to build MOSFET devices have been discussed in 

this chapter. This included the semiconductor growth techniques, lithography techniques, 

etch techniques and dielectric and metal deposition techniques. The semiconductor growth 

technique described the formation of a MBE grown GaGdO dielectric and an ALD grown 

Al 2O3 dielectric, which are two types of gate dielectrics used in this work. The merits and 

disadvantages of the various technologies have been discussed. In particular the different 

etch techniques and metal deposition techniques, which will be crucial in forming low 

resistance ohmic contact, which will become clear in later chapters. 
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5  Characterisation and metrology 

5.1  Introduction 

The development of MOSFET devices relies on accurate characterisation and metrology in 

order to understand the operational behaviour of the various parameters and underlying 

phenomena involved. The device performance has to be able to be benchmarked against 

existing MOSFET devices of various technologies. Therefore, it is crucial that the 

characterisation and metrology used corresponds to what is commonly found in the 

literature. 

The main physical parameters defining the performance of a MOSFET device are: the 

metal semiconductor interface for source/drain contacts, the channel material and the 

quality of the oxide.  This chapter will show some basic measurement techniques for the 

channel material, the oxide quality and overall device performance. It will show some 

more in depth detail of the characterisation of the metal semiconductor interface, as this 

thesis focuses on the ohmic contacts to III-V MOSFETs.  

5.2  Ohmic contacts theory 

To be able to measure the physical properties of the ohmic contacts to semiconductors, a 

clear definition of the term 'contact resistance' and how it can be measured, needs to be 

established. Over the years, different terminologies have been used in the literature to 

describe the properties of an ohmic contact: contact, resistivity, contact resistance, specific 

contact resistivity, specific contact resistance, and specific interface resistance. Because of 

the different terms used, there exists some confusion on the definition of these ohmic 

contact properties, which will be explained in more detail.  

There are several methods to determine the contact resistance, which are based on various 

models and use different simplifications. The measurement methods will be divided up in 

two-, three- and four-terminal resistor methods. Each of the different measurement 

methods has certain drawbacks and limits, which will be described in more detail.  

5.2.1  Specific interface resistivity 

The main goal of an ohmic contact measurement is to obtain information on the metal to 

semiconductor interface, called the interface resistance. As seen in the chapter 3.6, a metal 

semiconductor interface forms a Schottky barrier. Given the theoretical physical 

parameters for a certain semiconductor material, the Schottky barrier height and width can 
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be simulated [97,98]. However, this is an ideal theoretical approach where parasitic 

contributions from the semiconductor material are not taken into account.  The specific 

interface resistivity (ρi) can therefore be determined theoretically, but is not equal to a 

particular measured quantity. This is due to the fact that a metal semiconductor interface is 

never perfect, there is always a small amount of damage and residue from processing on 

the interface layer. The specific interface resistivity (ρi)  is found by the current density (J) 

flowing through a metal semiconductor interface for a certain voltage drop across the 

barrier (V) (Equation 5.1). 

ρ! ≅ �9�9���²k@r            (5.1) 

The main mechanisms of current transport have been previously described in chapter 3.6.3: 

thermionic emission (TE), thermionic field emission (TFE) and field emission (FE). The 

expression for the specific interface resistivity depends on the current transport mechanism 

[3] and can be shown for each case as: 

(TE) 

ρ! ∝ exp /q. ´|TO.P 4           (5.2) 

(TFE) 

ρ! ∝ exp µN�¶8∗'('o,$� ·´|T¶03¸ tanh � .�N�OP- 038∗'('o,$�»      (5.3) 

(FE) 

ρ! ∝ exp µN�¶8∗'('o,$� ·´|T¶03¸»         (5.4) 

The value of the specific interface resistivity is then determined by the potential barrier 

height (ΦBn), doping concentration (Nd), temperature (T) and the semiconductor material 

properties (m*).  

The equations show that thermionic emission is temperature dependent, field emission has 

no temperature dependency and the thermionic field emission does not have a linear 

variation with either temperature or doping concentration.  

The specific interface resistivity is mainly used when ohmic contacts are simulated, in 

practice the specific contact resistivity is the most frequently used term for the ohmic 

behaviour of a metal semiconductor interface. 
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5.2.2  Specific contact resistivity 

The specific contact resistivity (ρc) is also a parameter to indicate the resistance of a metal 

semiconductor interface similar to the specific interface resistivity. Where the two differ, is 

that the specific interface resistivity is a theoretical value and the specific contact 

resistivity is an extracted value from an ohmic contact measurement. The specific contact 

resistivity includes the various parasitic contributions coming from processing such as: 

foreign contaminants and structural defects on the semiconductor surface. The non ideal 

characteristics of a Schottky diode can be simulated using a 'ideality factor' (n) [79, 80], as 

explained in section 3.6, and thus bringing the simulated value of specific interface 

resistivity in line with the measured specific contact resistivity.  The specific contact 

resistivity is most commonly expressed in Ω.cm2 and is used as a benchmark to indicate 

the quality of an ohmic contact. The key figure of merit varies over the years and is 

technology dependent. The tendency is to achieve a value below 10-8Ω.cm2 according to 

the ITRS [1] roadmap for future CMOS devices. 

The specific contact resistivity is often referred to as specific contact resistance. A 

resistivity value is expressed per unit area and is a physical property of a substance, in this 

case the metal semiconductor interface. Resistance is a property of an object given certain 

dimensions and is therefore the incorrect term when describing the potential drop over a 

metal semiconductor interface. 

5.2.3  Contact Resistance 

The definition of contact resistance originally proposed by Berger [7] was the difference 

between the measured value of the actual contact and the value of the ideal contact. The 

contact resistance was a series resistance to the ideal contact resistance. However, for 

measurement purposes it was more convenient to combine these. 

The contact resistance is found by measuring the total resistance over two separate ohmic 

contacts and excluding the sheet resistance of the semiconductor substrate. This results in 

the contact resistance of two ohmic contacts. The contact resistance is the value for a single 

ohmic contact and is then found by dividing the previous result by two and commonly 

expressed in Ω.mm. Because of the fact that the contact resistance is a direct result from a 

measurement, there is no direct relation to the physical aspects of the ohmic contact unlike 

the specific contact resistivity. This limits the use of the contact resistance as a quick and 

easy guideline for some basic ohmic contact characteristics. There exist various models to 

extract the specific contact resistivity from the contact resistance, which are used by 
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different ohmic contact measurement methods. 

5.2.3.1  Berger model (simple) 

The simplest model [7] assumes there is a perfect vertical current flow in the interface 

layer and therefore has a uniform current distribution. The only parameters used in this 

model are the contact resistance, the specific contact resistivity and the contact area. The 

extraction of the specific contact resistivity is straightforward because of the uniform 

current distribution: 

ρ> �	R". A           (5.5) 

The assumption of vertical current flow is only valid when the resistance of the metal 

semiconductor interface is significantly larger than the semiconductor bulk resistance. 

Progress through ohmic contact research has made this model redundant. The specific 

interface resistivity cannot be determined accurately from the specific contact resistivity 

using measurement methods based on this model. 

 

Figure 5.1: One dimensional ohmic contact model proposed by Berger [7] 

5.2.3.2  Berger model (extended) [7] 

Incorporating the semiconductor bulk sheet resistance recognises that the main part of the 

current flows parallel to the metal semiconductor interface. The current flow in the 

interface layer has no longer a uniform current distribution and causes current crowding 

effects to take place. Current crowding effects are caused by two main mechanisms: 

1. The sheet resistance of the semiconductor substrate underneath the contact is 

higher than the sheet resistance of the metal layer. 

2. The specific interface resistance is comparable to or larger than the sheet 

resistance of the semiconductor substrate underneath the contact.   

The Berger model however does not take the sheet resistance of the metal into account and 

assumes that the sheet resistance of the diffusion area underneath the contact is equal to the 
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sheet resistance of the bulk semiconductor. The equivalent electrical circuit representing 

the model used is shown in Figure 5.2. 

 

Figure 5.2: Two dimensional ohmic contact model proposed by Berger [7] 

The mathematical analysis [7, 88] shows the dependency of the contact resistance on the 

current crowding effects and this limiting factor should be taken into account when 

measuring ohmic contacts. The current crowding effects start to take place when the 

contact length is smaller than two times the transfer length LT. The transfer length is based 

on the distribution of current along the metal semiconductor interface. The distribution of 

the current density is not linear with distance and most of the current flows near the edge 

of the contact with an exponential decrease away from the edge Figure 5.3. 

 

Figure 5.3: Current flow density in semiconductor using planar ohmic contacts 
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The equation for the transfer length shows that the current crowding effects are depending 

of the sheet resistance Rsh and specific contact resistivity ρc. 

LP � - ¾B¿$¢           (5.6) 

R" �	¿$¢.�F� 	 . coth / ��F4         (5.7) 

d: Contact Length 

W: Contact width  

The specific contact resistivity can then be extracted by combining equation 5.6 and 5.7 

using the sheet resistance and contact resistance values. 

 

Figure 5.4: Schematic impression of a planar ohmic contact 

5.2.3.3  Reeves and Harrison [81] 

The bulk semiconductor sheet resistance does not necessarily correspond to the sheet 

resistance underneath the ohmic contact. The modification in sheet resistance beneath the 

ohmic contact can have multiple causes: alloying/sintering, polysilicide like ohmic 

contacts, processing induced damage and the thickness of the active semiconductor layer. 

Hence a more detailed model for ohmic contacts is required. 

 

Figure 5.5: Two dimensional ohmic contact model proposed by Reeves and Harrison [81] 
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The sheet resistance underneath an ohmic contact has the symbol Rsk and has a similar 

expression as the sheet resistance in Ohm/sq. The equivalent electrical model is 

represented in Figure 5.5 and the corresponding mathematical equations are shown in 

equations 5.8 and 5.9. 

LP � - ¾B¿$E           (5.8) 

R" �	¿$E.�F� 	 . coth / ��F4         (5.9) 

The specific contact resistivity can be found by combining equations 5.8 and 5.9. However, 

the sheet resistance value underneath the contact has to be known in order to extract the 

specific contact resistivity according to this model. 

5.2.3.4  Scott model 

The model proposed by Scott et al. [82] was originally used to predict the effect of 

silicided diffusions on the performance of ohmic contacts. This is the most complete model 

and takes the sheet resistance of the silicide on top of a diffusion layer into account. 

However, the electrical equivalent model for an ohmic contact used in this thesis, is 

slightly different. So far, in previous models the sheet resistance of the metal of the ohmic 

contact was not taken into account. The metal sheet resistance is far smaller than the sheet 

resistance underneath the contact and should only play a minor role. Novel technologies 

allowing to scale the metal layers further and increasing doping concentration might alter 

the balance and a model that incorporates the metal sheet resistance will allow for more 

accurate measurements and simulations of ohmic contacts.  

Using the mathematical analysis performed by Scott et al. and adjusting two parameters the 

electrical equivalent model looks as follows: 

 

Figure 5.6: Two dimensional ohmic contact model proposed by Scott et al. [82] 
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The silicide sheet resistance has been replaced by the metal sheet resistance and the 

diffusion sheet resistance has been replaced by the sheet resistance underneath a contact. 

The mathematical equations for the transfer length and contact resistance are described as 

follows:
 

LP � - ¾B¿$E2¿~          (5.10) 

R" �	 /¿$E.¿~2�¿$E� 2¿~� �4.>���· �ÁF¸·ÂÁF¸�¿$E2¿~�.�!R�· �ÁF¸
	        (5.11) 

In order to extract the specific contact resistivity according to this model, the sheet 

resistance under the contact and the metal sheet resistance need to be known.
 

5.2.4  Summary 

The extraction of the specific contact resistivity is critical to be able to determine the 

quality of the ohmic contact accurately. This is critical, as the result of the specific contact 

resistivity can be compared to a simulated specific interface resistivity and hence extracts 

the Schottky barrier height. To emphasize the limitations of the different models, due to the 

assumptions made, a comparison is shown in Table 5.1. 

 Assumptions Limitations 

Berger 

(simple) 

- Vertical current flow - Sheet resistance not taken into account 

- Current crowding effects cannot be measured 

Berger 

(extended) 

- Rsk = Rsh 

- Rsh >> Rm 

- Specific contact resistivity will be extracted 

incorrectly when Rsk is different from Rsh 

Reeves - Rsk>>Rm - Invalid when using highly doped 

semiconductor material and very thin metal 

contact layers. 

Scott - 2D model - Voltage distribution across contact is assumed 

to be uniform 

Table 5.1: Comparison between the different ohmic contact models 

The models used in this thesis are the extended Berger model for normal contact 

measurements and Reeves and Scott model for scaled ohmic contacts. The simple Berger 

model has not been used, as the extracted data would be too inaccurate and would not 

allow for a direct comparison with the results found in literature. 
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5.3  Ohmic contact characterisation 

5.3.1  Two terminal resistor 

The two terminal resistor structure was originally proposed by Sullivan and Eigler [83] to 

be able to determine the semiconductor contact resistance. The structure consists of two 

contacts with a surface area on the top and bottom of a homogeneous semiconductor 

material (Figure 5.7). 

 

Figure 5.7: Two terminal resistor 

The current is assumed to be uniform and vertical when passing through this structure. The 

model used for this particular measurement method is thus the Berger model (simple). The 

voltage drop measured over the top and bottom contact will give the total resistance RT for 

this specific structure. The total resistance consists of the contact resistance of the ohmic 

contacts and the resistance of the bulk semiconductor: 

R" � r� . /RP � ¿$¢.�+ 4          (5.12) 

In order to extract the contact resistance the sheet resistance of the bulk semiconductor 

would have to be known, because it cannot be extracted from measuring the structure. A 

different two terminal resistor structure was suggested by Cox and Strack [84] to overcome 

this issue. 

However, in both cases the measurement method can only be used on uniformly doped 

semiconductors. The semiconductor material used in this thesis has in nearly all cases a 

non uniform doping profile and layer structure. Together with the assumptions made by the 

Berger model (simple), this measurement method would be far too inaccurate to study the 

properties of ohmic contacts. 
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5.3.2  Three terminal resistor method 

The three terminal resistor method is made up of two or more planar resistors, originally 

proposed by Shockley [85]. Two versions of this method exist: the transfer length method 

or transmission line model (TLM) and the contact end resistance extraction method. The 

contact end resistance method allows for a mathematical model to extract the sheet 

resistance underneath a contact whereas the TLM method is limited to the more simple 

model, where the sheet resistance underneath the contact is assumed to be the same as the 

bulk semiconductor sheet resistance.   

5.3.2.1  TLM method, 

The transmission line model (TLM) test structure is made of many planar contacts with 

constant widths (W) on non-insulating semiconductor material. The various contacts are 

separated by spacings, which progressively increase in size. The total resistance of the 

planar contacts is measured for each spacing and is plotted as a function of spacing size 

(l1, l2).  

  

Figure 5.8: Resistor test structure for TLM measurements 

The increase in resistance between a larger spacing and a smaller spacing gives an 

indication of the semiconductor sheet resistance Rsh. The sheet resistance is a normalised 

value expressed in Ω/square. This means that the gap size and contact width have to be 

normalised when calculating the sheet resistance. When extrapolating the data for a 

spacing length of zero, the semiconductor sheet resistance is nonexistent and only the 

resistance of two planar contacts remains. The resistance for one planar contact is called 

the contact resistance (RC). The contact resistance is usually normalised for a contact width 

of 1mm resulting unit expressed in Ω.mm. Further extrapolation of the data, where RC =  

0Ω.mm, allows to find the value of the transfer length LT, which is used to extract the 

specific contact resistivity ρc, as shown in Figure 5.9. 

L� � 2. LP           (5.13) 
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R" � ¿$¢.�F� 	for	�d ≫ 	L��         (5.14) 

RP � 2R". ¿$¢.�*�           (5.15) 

 

Figure 5.9: TLM extraction method 

This measurement method has its limitations. Due to current crowding effects the contact 

length (d) has to be at least two times bigger than the transfer length of the contact. The 

resistance underneath the contact should be the same as the semiconductor sheet resistance, 

however this is not always the case as described by Chang [86]. The resistances of the 

contacts have to be identical, which in reality might not be true. This has to be taken into 

account when measuring the correlation between the data and the gap size. The correlation 

has to be as high as possible and preferably over 99.9%. The last limiting factor is the 

lateral spreading of the current and the possibility of the edge currents along the contact. 

This would make the contact width larger electrically and could affect the result. There are 

two ways to counter these effects: Circular TLM structures or a mesa etch. The TLM 

measurement method is a quick and easy way to determine contact resistance (RC), 

semiconductor sheet resistance (Rsh) and specific contact resistivity ρc. The simplicity of 

this measurement method makes it a popular way of determining the ohmic contact quality 

in literature. 

5.3.2.2  CTLM 

The Circular TLM structure [87] is based on the TLM principle of planar contacts with 

various gap spacings (S). From this structure, the different ohmic contact parameters can 

be determined through the linear relationship between the gap spacings and the planar 

contacts. Where the circular TLM method differs from the ordinary TLM method, is that 

there is no mesa etch required to limit the current spreading between contacts. The typical 

CTLM structure consists of a round centre contact, a ring-shaped gap as a spacing and 

another larger contact. 
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Figure 5.10: CTLM structure 

When measuring CTLM contacts, the results of the total resistance over different gap 

spacings will not be linear. This non linear relationship is due to the changing circular 

geometry of the contact structures. It can be made linear by using correction factors [87] 

out of which the contact resistance, semiconductor sheet resistance, transfer length and 

specific contact resistivity can be determined. 

R" �	 ¿$¢�.�.¿£ . �s 6 2LP�. c         (5.16) 

With c being the correction factor: 

 c � 	¿£� . ln /�¿£2��¿£ 4          (5.17) 

Although the Circular TLM does not require a mesa etch, it still has most of the same 

limitations in common with the normal TLM. When implementing the CTLM as a test 

structure on a sample, the size of the test structure has to be taken into account as it is 

considerably larger than a normal TLM structure.  

5.3.2.3  End resistance 

The contact end resistance is defined as a difference between the measurement of the 

contact resistance RC for a loaded and unloaded contact [7]. This implies that there is a 

voltage drop between the outer edges of the ohmic contact when a current is applied to the 

contact. This is due to current crowding effects [88], which make the current density drop 

exponentially along the contact. The contact end resistance Re can be derived from 

following measurement set-up: 
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Figure 5.11: Contact end resistance measurement 

R� � ��#Ä � Å�!R�	�Æ��          (5.18) 

The parameter Z can be determined from RC as long as the contact length (d) is longer than 

two times the transfer length (αd > 2). The attenuation constant is described as following 

[89]: 

α � ¿$�.Å           (5.19) 

With 

R�� � �Rr � R��. �Q£@Q�         (5.20) 

And 

R" � ¿�.Q£@¿£.Q��.�Q£@Q��           (5.21) 

The values of R1, R2, l1 and l2 can be measured from the structure shown in Figure 5.8. 

This extraction method is not capable of determining the sheet resistance underneath the 

contact. However, a new measurement method on similar contact structures as in Figure 

5.8 proposed by Reeves [81] allowed the extraction of the contact resistance. By extracting 

the contact end resistance Re and contact resistance RC directly from the measurements, we 

can find the transfer length LT. From the transfer length the sheet resistance underneath the 

contact can be determined, as shown in Equation 5.22. 

L� � �.¿$E.�F¿$¢            (5.22) 

Since this measurement method also uses a TLM structure, the same problems of current 

crowding and edge currents along the contact exist. Therefore, a Circular TLM structure 

could also be used to extract the sheet resistance underneath the contact (Rsk) in a similar 

fashion [90].  
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5.3.3  Four terminal resistor 

The main issue with the TLM method is that the extraction of the contact resistance is 

based on extrapolation of data and therefore measurement errors are more critical. 

Measuring small values for the specific contact resistivity (ρc < 10-7
Ω.cm2) becomes more 

inaccurate. The inaccuracy comes from the errors made inadvertently during the 

measurements. These measurement errors have significant error propagation when 

extracting the contact resistance and specifically the specific contact resistivity resulting in 

large measurement uncertainty. It would therefore be beneficial to have a measurement 

method that extracts an absolute value for V/I straight away. The four terminal resistor also 

know as a Kelvin resistor [91], uses only one single contact area between metal and 

semiconductor material. The structure consists of four contact pads: two pads are 

connected to the doped bulk semiconductor material and two pads contact to the metal 

used to form the ohmic contact. The metal level and semiconductor material level are 

separated by an insulating material such as SiO2 with a window for the ohmic contact area 

shown in Figure 5.13. 

 

Figure 5.12: Four terminal resistor structure 

Current is then forced into terminal I1 and I2 and a corresponding voltage drop over the 

ohmic contact is measured on terminal V1and V2. Since there is no current flow through 

terminal V1 and V2, the voltage drop is sensed and the resistances of the probes, metal 

layer and diffusion layer will not be measured. The value of the contact resistance RC is 

measured directly, however for comparison purposes the value has to be adjusted to get a 

normalised value in Ω.mm. The big advantage of this measurement method is that small 

contact areas can be measured, corresponding to the same size of source/drain contact area 

used in current VLSI technology. The specific contact resistivity ρc is then extracted from 
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the contact resistance RC value and the contact area A (RC = ρc/A). This is based on a 

simple vertical current flow model and the sheet resistance of the semiconductor material 

is not taken into account. This means that current crowding effects cannot be taken into 

account when extracting the specific contact resistivity as described by W.M. Loh [92]. 

Substantial research has been done on the effect of lateral current spreading [93 - 96], 

which limits the size of the diffused semiconductor area. The measured value of V/I is no 

longer described as RC but as Rk, which is a combination of RC and an additional resistance 

Rgeom due to current flow around the contact in the overlap region. 

RO � R" 6 R���8          (5.23) 

RO � ¾B+ 6 N¿$¢9�\�*�È 1 6 9���*@9��        (5.24) 

 

Figure 5.13: Contact area geometries for four terminal resistor structure [96] 

This allows a more accurate extraction for RC, but the specific contact resistivity is still 

extracted without taking into account the metal sheet resistance and the sheet resistance 

underneath the contact. The contact length should then be at least two times bigger than the 

transfer length in order to extract values for the specific contact resistivity ρc. Also the bulk 

semiconductor sheet resistance Rsh will have to be measured using a separate measurement 

method such as TLM or Hall measurement. 

5.3.4  Summary 

The measurement method used will determine, which parameters can be measured and 

how accurate they can be measured. The properties of each measurement method has been 

summarised in Table 5.2. 
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 Parameters 

extracted  

Processing limitations Measurement limitations 

Two 

contact 

RC and  ρc -  Uniformly doped, 

single layer bulk 

semiconductor only. 

- Simple vertical model flow model. 

- Does not measure Rsh 

 

TLM RC, Rsh and  

ρc 

- Mesa etch 

 

- Needs identical contacts 

- Extrapolation of data increases 

measurement inaccuracies 

TLM 

Reeves 

RC, Rsh, Rsk 

and  ρc 

- Mesa etch - Needs sufficient voltage drop over 

the contact length 

CTLM RC, Rsh and  

ρc 

- Lift off or etching of 

circular structures 

- Structure requires 

more space 

- Needs identical contacts 

- Needs a correction factor to fit the 

curve 

CTLM 

Reeves 

RC, Rsh, Rsk 

and  ρc 

-  Lift off or etching of 

circular structures 

- Structure requires 

more space 

- Needs sufficient voltage drop over 

the contact length 

Kelvin 

Resistor 

RC and  ρc - Mesa etch - Simple vertical model flow model. 

- Does not measure Rsh 

Table 5.2: Comparison of the different ohmic contact measurement methods. 

5.4  Channel material characterisation  

The performance of III-V MOSFET devices strongly depends on the quality of the 

epitaxial layers grown by molecular beam epitaxy. The electron density and mobility of the 

active layers will define the drain current of the device, which determines factors such as 

sheet resistance, transconductance, subthreshold swing, Ion/Ioff and Id,sat chapter 3.3.1. These 

parameters are key figures of merit for device performance and extracting the numbers for 

the electron density and mobility will allow for a more in depth study of the device 

behaviour. 

The most frequently used method for semiconductor material characterisation is a 

technique based on the principles of the Hall effect [99]. The Hall effect describes the 
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influence of a force F and a magnetic field B on the current density J in a semiconductor. 

The charged carriers in the semiconductor material can thus be deflected by an electric 

field and a magnetic field. 

F � J. B           (5.25) 

If the magnetic field and the current flow through the semiconductor are perpendicular, 

then a Lorentz force is applied to the charged carriers. The electrons will accumulate on 

one side of the semiconductor whereas the holes will deplete the opposite side of the 

semiconductor. A voltage difference will then occur across the semiconductor expressed as 

VH. 

VË � m.#.¿Ì�            (5.26) 

Where t is the thickness of the sample and RH is the Hall coefficient, which is material 

dependent. 

 

The conductivity of the semiconductor material σ is given by: 

σ � #.��1.�.� � n. q. μ           (5.27)  

Where L is the semiconductor length and W is the semiconductor width. The Hall 

coefficient RH is equal to 1/n.q, the mobility is then defined as: 

 μ � σ. RË � rR...¾           (5.28) 

 
Figure 5.14: Hall effect principles 



Chapter 5  Characterisation and metrology 
 

122 
 

The thickness of the material has to be known and the sample geometries have to be 

precise to be able to extract the mobility data. However, determining the layer thickness of 

a multi layer III-V semiconductor structure is not straightforward. A measurement method 

proposed by Van der Pauw [100] allowed for the extraction of the mobility without 

knowing the thickness of the material. 

The Van der Pauw technique is based on the extraction of the Hall coefficient and 

resistivity value from a sample with an arbitrary geometry. The contacts are positioned at 

each corner of the sample resulting in a symmetrical design. The symmetry has as a result 

that the resistance values (R) are then equal across any given edge along the sample. 

Simplifying the equation for the resistivity value gives: 

ρ�� � ��¿QR	���            (5.29) 

R�� � ¾$¢� � �¿QR	���           (5.30) 

 The sheet resistance can then be found by dividing the sheet resistivity by the thickness of 

the layer and can be directly extracted from the measurement, as the thickness of the 

material does not have to be known. 

The resistance value (R) measured across the edge of the sample changes when a 

perpendicular magnetic field is applied to the sample. Since the magnetic field drives a 

change in the resistance, the Hall coefficient can then be extracted by measuring the 

changes in resistance, corresponding to a known perpendicular magnetic field. 

RË �	 �m∆R            (5.31) 

The mobility is a product of the conductivity and Hall coefficient and can in this case be 

extracted without requiring the sample thickness.  

μ � 	 QR	����.m . ∆¿¿             (5.32) 

With the majority carrier density being: 

n� �	 m∆¿..            (5.33) 

 The structure used is shown in Figure 5.15 and shows that the contacts are positioned 

around a central square. The square, attached wires and contact areas is a mesa layer, 

which allows the current to flow from the contacts into the square while isolating the 
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square from any leakage currents. Ohmic contact metal is then deposited on the contact 

areas and has to be low in resistance to allow for an accurate measurement. 

 

Figure 5.15: Van der Pauw test structure 

The Van der Pauw measurement method is assumed to be accurate as the impact of the 

hole concentration is below the ionisation field thresholds. This is only valid in material 

where the hole concentration is sufficiently low compared to the electron concentration, 

which is the case for the highly doped In0.53GaAs and device materials used in this work. 

5.5  Oxide characterisation 

The oxide quality can be measured by making use of a capacitance voltage measurement or 

simply CV measurement. The basic principle of the CV-measurement is to apply an AC 

signal to the structure with a certain frequency and amplitude superimposed on a DC 

voltage. The DC voltage is swept to explore the inversion, depletion and accumulation 

regions. This will result in a curve, which shows the capacitance for one particular 

frequency. However, there is a frequency dependence of the CV measurement, because 

there is a certain amount of time needed to obtain thermal equilibrium. This does not allow 

for generation of minority carriers in the inversion layer and therefore a low and high 

frequency CV-measurement are necessary.  
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Figure 5.16: Low frequency capacitance - voltage plot 

Quasi static or a low frequency measurement stays within the time boundaries for thermal 

equilibrium to take place. The capacitance measured over the voltage range is then directly 

related to the capacitance of the oxide. By sweeping the voltage, different capacitance 

values are measured for the different potential distribution modes for n-type semiconductor 

material. The different potential modes; accumulation, depletion and inversion are 

explained in chapter (3.3). 

 

Figure 5.17: High frequency capacitance voltage plot 

High frequency measurement does not allow for the thermal recombination/generation of 

the minority carrier. This limits the response of the inversion layer to the applied AC signal 

and renders the minority carriers invisible to the CV measurement. The depletion region 

will therefore stay constant and the capacitance stays constant at Cd(max). The series 

combination of Cox and Cd will then give CHF - min as a result. The high frequency CV 

measurement can also be used to show the effects of interface defects. The charges can 

then be extracted by calculating the charge difference between CLF – min and CHF - min. 

However, this has not been used in this work as the focus is on the study of ohmic contact 

behaviour rather than oxide/semiconductor interface quality.  
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5.6 Device performance characterisation  

The various MOSFET device parameters are extracted from two different measurements. 

In both cases the gate is connected to a voltage source and the source and drain are 

connected to a different voltage source. The first measurement sweeps the drain voltage 

and measures the source/drain current for a given gate voltage. The gate voltage is then 

raised in steps and the process is then repeated, which results in a Id/Vd plot Figure 5.19. 

The source/drain voltage sweep ranges from 0V past the saturation point. Further 

increasing the drain voltage can damage the device due to avalanche effects. The second 

measurement keeps the drain voltage constant and sweeps the gate voltage from a negative 

voltage (between inversion and depletion) to a positive voltage (accumulation) resulting in 

a Id/Vg plot Figure 5.20 and 5.21. The Id/Vg plot is measured in the linear regime of the 

MOSFET and in the saturation regime, which can be found from the Id/Vd characteristic. 

 
  

Figure 5.18: Id/Vd plot 

 

Figure 5.19: Id/Vg plot 

 

Figure 5.20: Logarithmic 

I d/Vg plot 

The Id/Vd plot mainly extracts information about the maximum drain current and gives an 

indication for the linear and saturation regime of the MOSFET device. The data directly 

extracted from the measurement setup for the Id/Vg curve are: 
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Symbol Unit Device parameters 

gm S/µm Normalised: δId/δVg 

Swing mV/decade Subthreshold swing 

Swingmin mV/decade Lowest value for the subthreshold swing 

gm,max S/µm Maximum value for gm 

Id,sat A/µm Saturation current maximum (normalised) 

Vthcon V Gate voltage measured when Id = 1 µA.µm 

Ig,max A Maximum gate leakage 

Ron Ω.µm source/drain resistance at highest gate voltage (normalised) 

Von V Voltage measured at maximum gm 

Vthlin V Threshold Voltage extracted from Von - (Vd/2) 

Table 5.3: Device parameters extracted from Id/Vg plot. 

The DIBL value is not directly extracted from the measurement set-up, but is calculated 

afterwards when the data is processed. The data is processed by using a template in a 

Origin 8 software package, allowing for faster analysis of the measured data. 

5.7  Metrology 

The equipment used to measure the various measurement setups are semiconductor 

analysers, which need to be able to perform accurate DC and AC measurements up to 

1MHz. Only the CV characterisation uses an AC measurement, the ohmic contact and 

device measurement is DC only. The majority of the ohmic contacts have been measured 

on an Agilent 4155C semiconductor parameter analyser using a four probe measurement 

set-up to compensate for any series resistance of the cables, probes and connectors. The 

schematic representation of a four probe measurement is shown in Figure 5.22, where two 

probes are used on each side of the device under test (DUT). One pair of probes is used to 

pass current (I) through the device under test and the other pair of probes measures the 

voltage drop (V) over the device under test. The impedance of the voltage measurement 

tool has to be significantly higher than the resistance of the device under test, to keep the 

maximum amount of current flowing through the device under test. This will result in a 

negligible current through the voltage sensing probes, which minimises the voltage drop 

over the probe and cable resistances (Rp2, Rp3). The voltage V will then be equal to the 
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voltage drop over the device under test, resulting in a highly accurate measurement. The 

voltage drop over the current feeding probes (Rp1, Rp4) is unimportant as the current source 

provides a known constant current (I). The values of current and voltage over the device 

under test are then measured independently from each other cancelling out the resistances 

by probes, cables, switches and connectors between the semiconductor parameter analyser 

and the measured sample. This measurement set-up can be calibrated to obtain higher 

accuracy and sensitivity. However, there is currently no calibration kit available for the DC 

measurement set-up. 

 

Figure 5.21: Schematic representation of a four probe measurement set-up 

The CV, device and some ohmic contact measurements were performed on a Agilent 

B1500 semiconductor parameter analyser. The analyser is connected to a semi-automatic 

Cascade Microtech Summit 12000 probe station allowing for rapid measurements of 

multiple devices using Agilent Easy Expert and Cascade Microtech Nucleus software 

packages running on a Windows XP control computer. The control computer, 

semiconductor parameter analyser and probe station are connected via a General Purpose 

Interface Bus (GPIB).The control computer is able to control the stage of the probe station 

and extract the data from the semiconductor parameter analyser allowing for automatic 

measurements of multiple test structures. The probes have to be positioned manually prior 

to the automated measurement.  The source and drain pads are connected to a double probe 

set-up allowing for a four probe measurement set-up and the gate is connected via a single 

probe, as shown in Figure 5.23. The single probe set-up on the gate should not suffer from 

voltage drops over the probes, cables and connectors, as the resistance of the oxide of a 

MOSFET device is high, reducing the current flowing through the gate probe.  
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Figure 5.22: MOSFET Device measurement set-up Figure 5.23: Capacitance - Voltage measurement 

set-up 

The CV measurement uses two single probes as the series resistance of the probes is not 

critical to extract capacitance values. Ideally, the capacitance of the cables and connectors 

should be calibrated out by making use of a calibration kit. There is currently no 

capacitance calibration kit available, which leads to reduced sensitivity and accuracy of the 

measurement set-up. The CV measurements in this work have been used to verify the 

overall quality of the oxide rather than a detailed study of the metal/oxide/semiconductor 

interface removing the need for a highly accurate measurement set-up. 

5.8  Summary 

The first part of this chapter presented the different terminology and models used to 

describe the physical properties of an ohmic contact. The second part of this chapter 

described the different characterisation techniques used to measure ohmic contacts, 

devices, gate dielectrics and semiconductor properties. Emphasis has been put into the 

various ohmic contact characterisation techniques and a comparison has been made 

between them. The importance of correctly interpreting and extracting the physical ohmic 

contact properties will become clear in a later chapter. Also, the measurement equipment 

used during this work is described in this chapter and is a contributing factor to the 

accuracy of the measurements. 
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6  Ohmic contact development 

6.1  Introduction 

A metal/semiconductor interface is described as ohmic when the applied voltage and the 

resulting current flow have a linear relation, however good ohmic contacts need to have 

several additional properties. First of all they need to have a very low specific contact 

resistivity ρc <10-8
Ω.cm2 to meet MOSFET device requirements [1]. Secondly, the ohmic 

contacts have to be thermally stable, reproducible, uniform, non corrosive and have to be 

Si-processing compatible in an industrial environment. Finally, the ohmic contacts have to 

be scalable in order to keep up with the ever decreasing size of the transistors used in 

CMOS technology. 

A generic ideal contact characteristic is first described and different contact strategies from 

previous work are then discussed regardless of any process flow constraints. This allows 

for a global overview of the different ohmic contact strategies on n-type InxGa1-xAs and 

GaAs. The ohmic contact strategies are divided up in different categories: alloyed contacts 

increasing doping; bandgap reducing ohmic contacts; non alloyed contacts on doped 

substrates; and various surface treatments and cleaning techniques to reduce the gap states 

formed at the metal/semiconductor interface. Regrowth and implantation techniques are 

also discussed as a mean of selectively increasing doping concentration underneath the 

metal/semiconductor interface.  

This work has constraints on the materials used as the aim of this project is to develop Si-

processing compatible ohmic contacts. This is not the only constraint as the MOSFET 

material has some limitations regarding the temperature budget, choice of oxide etching 

techniques and the potential scalability of the ohmic contact. Taking into account the 

various constraints a suitable ohmic contact strategy has been chosen from the previous 

work to correspond with specific MOSFET device material used in this work. 

Finally, the experimental work will be discussed. The experimental ohmic contact work is 

divided up in two parts: ohmic contacts and MOSFET devices. The ohmic contact aspects 

are further subdivided as alloyed and non-alloyed contacts sections. This is because the 

alloyed part mainly focuses on forming ohmic contacts on MOSFET device material while 

the non-alloyed part focuses on highly doped In0.53GaAs material to investigate the 

possible gains if doping can be introduced in the device structure. The MOSFET device 

material has a gate dielectric layer in place, which has to be removed prior to contact 
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deposition and therefore wet etch and dry etch strategies are required. The alloyed contacts 

are analysed using transmission electron microscopy (TEM) and electron energy loss 

spectroscopy (EELS) to get a better understanding of the reactions taking place during 

annealing. The MOSFET device section features two different types of device: surface 

channel and buried channel MOSFET devices. These are discussed separately and 

benchmarked against previous work performed at the University of Glasgow using 

material with identical layer structures to assess the impact of the differences in the ohmic 

contact strategies. 

6.2  Theory/Ideal Ohmic Contact Properties 

Many factors contribute to the overall quality and feasibility of an ohmic contact scheme 

such as: specific contact resistivity, contact stability, surface and edge definition, radiation 

damage resistance, low cost, reproducibility and robustness against corrosion. In reality 

there will always be a trade-off between the different criteria. For example, a gold based 

ohmic contact scheme has a low specific contact resistivity, but imposes a low thermal 

budget for following processes and may have poor morphology. It is then important to 

understand all the criteria in order to choose the optimal ohmic contact scheme for a given 

device structure.  

Specific Contact Resistivity: This will contribute to the total on resistance of the MOSFET 

device and has to be significantly small in order to allow for large ON-state current at a 

low supply voltage. Also when the devices are scaled and the ohmic contact area becomes 

very small, current crowding effects start to take place. The ITRS road map for sub 45nm 

technology requires a specific contact resistivity value in the low 10-9Ωcm2 range. 

Contact stability: Ohmic contacts have to withstand elevated processing temperatures after 

the ohmic contact formation. The ohmic contact strategy has to be compatible with these 

elevated temperatures and is potentially a problem when using alloyed ohmic contact 

strategies. When the alloying temperatures are close or below the maximum processing 

temperature, additional reaction between the contact and semiconductor will take place. 

This may deteriorate the optimized ohmic contact structure causing additional lateral and 

vertical diffusion. The diffusion area has to be reduced to a minimum when working with 

shallow active layers and scaled device feature sizes.   

Surface smoothness and edge definition: The separation between electrodes has been 

reduced over the years to a nanometer scale. A good edge definition is then needed to aid 

the processing of the devices and preventing short circuits. This property is less critical 
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when using self-aligned device structures. The contact surface morphology has to allow for 

easy interconnect wiring. Both properties are essential for devices with high yield 

requirements. 

Corrosion resistance: Oxidation or corrosion during processing will deteriorate contact 

properties and will hamper interconnectivity bonding and its long term reliability. Metals 

such as Au and Pt are generally inert and do not have corrosion issues, however other 

corrosive metals might provide a better overall solution for an ohmic contact scheme and 

will require a protection layer. 

Radiation damage resistance: The metals with a relatively low atomic number generally 

have a better resistance to radiation environment. However, CMOS technology is generally 

not used in high radiation environments and it's thus a minor issue.  

Low residual stress: Stress can induce dislocations in the semiconductor device leading to 

device degradation. It can also limit the adhesion between the metal and the semiconductor 

resulting in metal layers peeling off.  

Good thermal and electrical conductivities: VLSI applications generate a significant 

amount of heat within the devices, which has to be able to be dissipated. High thermal 

conductivity of the ohmic contact scheme used will aid the dissipation of heat. The metal 

also has to have good electrical conductivity as the current is passed through the metal into 

the wire bond or interconnect. 

6.2.1  Recent developments 

The III-V semiconductors suffer from high concentration of surface states at the surface of 

the semiconductor. These states are located in the bandgap, which causes Fermi level 

pinning at the Bardeen [203] limit. This results in a Schottky barrier that will cause high 

specific contact resistivity or in the worst case non ohmic behaviour. There are three ways 

to reduce the Schottky barrier: 

a) Reduce the density of states, unpinning the Fermi level leads to a lower Schottky 

barrier  height. 

b) Reduce the barrier height by choosing a lower bandgap semiconductor material. 

c) Increase the doping concentration to reduce the Schottky barrier width and increase 

the tunnelling probability of electrons. 
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The ideal case is a highly doped low bandgap material such as n-InAs to make low 

resistivity ohmic contacts. This allows for non alloyed contacts with good edge definition 

and generally good contact stability. To apply this strategy to an actual MOSFET a highly 

doped contact region with low bandgap semiconductor material will have to be regrown 

[119] as the device layer structure is MBE grown with a gate dielectric in place. Even 

though the University of Glasgow has an onsite MBE chamber, which potentially allows 

for regrowth, introducing processed wafers would potentially contaminate the chamber. 

This limits the best suitable ohmic contact strategy to an alloyed ohmic contact for the 

MOSFET work of this project. A HEMT-like layer structure with highly doped contact 

regions could potentially solve this problem, however it complicates the gate dielectric 

formation process as the highly doped layer has to be etched away. The gate dielectric 

deposition requires a very smooth surface to feature a low density of states and it is 

therefore undesirable to deposit a gate dielectric on an etched surface.   

There are two main groups of alloyed ohmic contact strategies, increasing doping by 

inserting a n-type dopant in III-V material such as Si or Ge and reducing the barrier height 

by reducing the bandgap by increasing the indium concentration. Inserting a n-type dopant 

or indium into III-V material can be done by solid phase regrowth. The most common used 

ohmic contact strategies for III-V devices are a NiGeAu and PdGe based contact, which 

will be described in more detailed followed by a summary of various alloyed, bandgap 

reducing and non alloyed contact schemes.  

6.2.1.1  Alloyed 

Increasing doping into substrate: 

NiGeAu [118, 120, 129] 

This is the most commonly used ohmic contact to n-type III-V materials, resulting in an 

increased n-type surface doping provided by the Ge layer. The composition is generally 

12% Ge and 88% Au and the mixture has a melting temperature of 361ºC on GaAs [3].  

The Au and Ge forms a AuGe alloy, which is prone to “balling up” once temperatures 

exceed the eutectic temperature, which leads to poor morphology. Ni reacts with GaAs at 

lower temperatures to form binary and ternary compounds (Ni3Ge, Ni2GaAs, Ni3GaAs) 

and facilitates the incorporation of Ge as an n-type dopant. Further increasing the 

temperature to 420ºC forms a AuGa compound and is responsible for spiking behaviour, 

which leads to lateral alloying of the contact. The Ni then forms a conductive NiAs(Ge) 
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compound. Specific contact resistivity of 2x10-6
Ωcm2 has been reported on 7.5x1018cm-3 

doped GaAs [127].  

 

Figure 6.1: Schematic illustration of an alloying sequence Au/Ni/AuGe metallization on GaAs [3] 

Table 6.1 shows a summary of Ni/Ge based ohmic contacts to n-GaAs/n-InGaAs and the 

metal layer at the left hand side makes contact to the semiconductor surface layer for all 

the following tables. 

Metallisation 

Anneal 

(optimal 

temperature) 

Doping 

(cm-3) Substrate ρc (Ω.cm2) 

RC 

(Ω.mm) Ref. 

Ni/Ge/Au 450°C 5s 2.00x10+18 GaAs   0.2 [142] 

Ni/Ge/Ag 550°C -650°C 2.00x10+18 GaAs   0.26 [143] 

Ge/Ni 600°C 1.00x10+18 GaAs   0.8 [147] 

Al/Ni/Ge 500°C 1.00x10+18 GaAs 1.40x10-6   [148] 

Au/W0.6N0.4/ 

Ge/Ni 500°C 1.00x10+18 GaAs 1.00x10-6   [160] 

Ni/Ge/W 650°C 5s 1.00x10+18 GaAs   0.16 [163] 

Au/Ge/Ni/Au 400°C 4.00x10+17 GaAs 5.60x10-6   [173] 

Ni/Ge/Au     GaAs     [176] 

Ni/Ge/Au 420°C 7.50x10+18 GaAs 2.00x10-6   [127] 

Ni/Ge/ 

(..,Au,Ag,Pd,In)     GaAs Low 10-6   [129] 

Au/Ni/Au/Ge/Pd 400°C   GaAs-     [192] 

Au/Ni/Au/Ge/Pd 400°C 2.00x10+17 InGaAs 1.00x10-6   [192] 

Au/Ge/Ni/Au 440°C 3.00x10+18 In0.53GaAs   0.9 [118] 

Ge/Ag/Ni 425°C 60s n/a In0.53GaAs 2.62x10-7 0.06  [120] 

Table 6.1: Summary of Ni/Ge based ohmic contacts to n-GaAs/n-InGaAs 
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PdGe/PdSi [102, 103, 112, 114, 115, 116, 117, 118, 121, 130, 134, 138] 

The two elements have different functions: the Ge or Si provides a n+ doping in GaAs , the 

Pd reacts with the GaAs allowing for solid phase regrowth. Annealing the Pd/Ge contact to 

a temperature of 100°C triggers a reaction between the Pd/Ge and the GaAs forming a 

Pd4GaAs phase. The contact at this point is not ohmic. At 300°C the Pd4GaAs decomposes 

reacting with the Ge layer and forming PdGe. This causes a migration of Ge across the 

PdGe layer resulting in a n+ GaAs (Ge) doped layer and a Ge layer on the GaAs substrate.  

An optimal Pd/Ge metallization thickness needs an excess of Ge to form the PdGe layer 

and Ge regrown layer. Most commonly the Pd/Ge thickness is a ratio of 5/12. Specific 

contact resistivities of 5x10-7
Ωcm2 and 2x10-8Ωcm2 have be reported on 5x1018cm-3 doped 

GaAs [187] and on 4x1019cm-3 doped In0.53GaAs respectively.  

 

Figure 6.2: Schematic illustration of an alloying sequence Pd/Ge metallization on GaAs [3] 

Table 6.2 shows a summary of Pd/Ge based ohmic contacts to n-GaAs/n-InGaAs: 

  



Chapter 6  Ohmic contact development 
 

135 
 

Metallisation 

Anneal 

(optimal 

temperature) 

Doping 

(cm-3) Substrate ρc (Ω.cm2) 

RC 

(Ω.mm) Ref. 

Pd/Ge 325°C  1.00x10+18 GaAs 1-3x10-6   [144] 

Pd/Si 375°C  1.00x10+18 GaAs 2-6x10-6   [145] 

Au/Ge/Pd 175°C 1h 1.00x10+18 GaAs 1.00x10-6   [153] 

Au/W/Pd/Ge 800°C 5s 1.00x10+17 GaAs 5.00x10-6   [161] 

Pd/Ge/Ti/Au 380°C 5.00x10+17 GaAs   0.43 [168] 

Pd/Ge     GaAs 4.00x10-7   [179] 

Pd/Ge/Ti/Au 340°C 5.00x10+17 GaAs 2.80x10-6   [182] 

Pd/Ge/Ti/Pt 400°C   GaAs 2.40x10-6   [183] 

Pd/Ge/Ti/Pt 

380°C-

450°C 6.00x10+17 GaAs 

2.40x10-6 – 

5.30x10-6   [184] 

Pd/Ge/Au/Pd/Au 400°C 6.00x10+17 GaAs 2.00x10-6   [185] 

Pd/Ge/Au/Pd/Au 400°C   GaAs 2.10x10-6   [186] 

Pt/Ti/Ge/Pd 400°C 5.00x10+18 GaAs 5.00x10-7   [187] 

Pd/Ge 320°C 60s 3.70x10+18 GaAs 1.00x10-5   [189] 

Pd/Ge 317C 7.00x10+16 GaAs     [138] 

Pd/Ge 550°C 1.00x10+16 GaAs 3.50x10-4   [102] 

Pd/Ge 

325°C 

30min 4.00x10+18 GaAs 9.00x10-7   [103] 

Pd/Si 

375°C 

30min 4.00x10+18 GaAs 2.00x10-6   [103] 

Ge/Pd/Ti 380°C 2.00x10+18 GaAs 8.50x10-7   [114] 

Pd/Ge 400°C n/a GaAs 9.80x10-6 0.29 [116] 

Ge/Pd 400°C 1.00x10+18 GaAs 2.00x10-4   [130] 

Pd/Ge/Cu 250°C 4.00x10+18 GaAs 5.73x10-7   [134] 

Pd/Ge 400°C   InGaAs     [194] 

Pd/Si/Ti/Pt 425°C   InGaAs 

1.00x10-6 – 

2.00x10-6   [121] 

Pd/Ge/Ti/Pt 400°C   InGaAs 3.70x10-6   [117] 

Pd/Si/Pd/Ti/Au 

300°C-

400°C   InGaAs 4.30x10-7   [196] 

Pd/Ge/Pd/Ti/Au 425°C   InGaAs 1.00x10-6   [197] 

Pd/Ge/Pd/Ti/Au 400°C 10s 1.00x10+19 In0.50GaAs 1.10x10-6   [112] 

Pd/Ge/Ti/Pt 400°C 10s 1.00x10+19 In0.50GaAs 3.70x10-6   [112] 

Pd/Ge   4.00x10+19 In0.70GaAs 2.00x10-8 0.01 [218] 

Pd/Ge/Au 440°C 3.00x10+18 In0.53GaAs   0.3 [118] 

Table 6.2: Summary of Pd/Ge based ohmic contacts to n-GaAs/n-InGaAs 
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Various 

Other metallization strategies are based on reducing the Schottky barrier width by doping 

the substrate such as: MoGeW, PdSn and CuGe. CuGe shows specific contact resistivity 

value of 6.5x10-7Ωcm2 for 1-3x1017cm-3 doped GaAs, as shown in Table 6.3 [132]. 

Towards the end of the project, a novel Ni-based salicide-like metallization contact 

strategy to InxGa1-xAs MOSFET devices was demonstrated [216, 217] showing some 

promising results. The main objective of this technique is to reduce the Schottky barrier 

height to almost zero by increasing the doping and the indium content in the underlying 

semiconductor material. The Ni-salicide layer is created by depositing Ni on a InxGa1-xAs 

substrate and then subjecting the sample to an annealing temperature of at least 250⁰C. 

This forms a Ni-InGaAs layer with good morphology and is uniform across the 

source/drain region with a composition ratio of Ni (51%), In (12%), Ga (14%) and As 

(23%) [216]. However, the specific contact resistivity value in the range of 10-3
Ωcm2 to  

10-4
Ωcm2 is quite poor. 

Metallisation 

Anneal (optimal 

temperature) 

Doping 

(cm-3) Substrate 

ρc  

(Ω.cm2) 

RC 

(Ω.mm) Ref. 

Ni 250°C 60s Si Implant In0.7GaAs 10-3 ~ 10-4 8.9 ~ 7.6 [216] 

Ni 250°C 60s Si Implant In0.8GaAs   2.73 [217] 

Cu/Ge 400°C 30min 1-3x10+17 GaAs 6.50x10-7   [132] 

Cu/Ge 200°C – 400°C 3.00x10+17 GaAs 6.50x10-7   [111] 

Au/TaSiN/ 

Au/Ge/Pt 450°C- 550°C 1.00x10+18 GaAs 3.70x10-6   [151] 

Mo/Ge/W 800°C 1.00x10+18 GaAs   0.3 [154] 

Au/WSi/Ge 600°C 1.00x10+16 GaAs 5.00x10-5   [159] 

Pd/Sn 360°C 2.00x10+18 GaAs 3.00x10-5   [180] 

Pd/Sn,  

Pd/Sn/Au 360°C-430°C   GaAs 

8.00x10-6 – 

3.00x10-5   [181] 

Pd/Ga/Ti/Au 380°C -460°C 7.00x10-16 Al0.23GaAs 

2.30x10-6 – 

9.50x10-5   [195] 

 Table 6.3: Summary of various alloying ohmic contact strategies to n-GaAs/n-InGaAs 

Bandgap reduction 

Replacing Ga with In reduces the bandgap of GaAs, which reduces the specific contact 

resistivity. Some metallization strategies combine In with Ge to dope the substrate as well 

as lowering the bandgap. This results for the Pd/Ge/In case in a specific contact resistivity 

of 6x10-7
Ωcm2 for 1x1018cm-3 doped GaAs, as shown in Table 6.4 [165]. 
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Metallisation 

Anneal (optimal 

temperature) 

Doping 

(cm-3) ρc (Ω.cm2) 

RC 

(Ω.mm) Ref. 

Pd/In/Pd 600°C - 650°C 1.00x10+18 1.00x10-6 [146] 

W/In 700°C - 800°C 1.00x10+18   <0.2 [150] 

Mo/Ge/In/W 675°C 3.50x10+13   0.3 [156] 

Ge/In/W 900°C - 980°C 3.50x10+13   0.5 [157] 

Ni/In/W 800°C - 1000°C 3.50x10+13   0.3 [157] 

W/In/Te 500°C 6.00x10+13 5.00x10-6 [162] 

W/Ni/InAs 750°C - 850°C 3.50x10+13   0.4 [119] 

W/Ni/InAs/Ni 750°C - 850°C 3.50x10+13   0.4 [119] 

Pd/In/Ge 400°C 1.00x10+18 6.00x10-7 [165] 

Ni/In/WN 750°C 5s 6.60x10+13   0.3 [166] 

Ni/In/Ge 650°C     0.18 [175] 

In 375°C 2.00x10+16 3.00x10-6 [177] 

Pd/In 600°C 1.70x10+18 1.00x10-6 [178] 

Table 6.4: Summary of In based bandgap reducing ohmic contact strategies to n-GaAs 

6.2.1.2  Non alloyed [108, 113, 122, 135, 136, 137, 139] 

Non alloyed ohmic contacts are ideal for applications where good morphology and edge 

definition are required. Non alloyed does not necessarily mean non annealed, but the 

contact metal does not react with the substrate after heating. The quality of the ohmic 

contact is nearly entirely dependent on the substrate material. Most non alloyed ohmic 

contacts strategies are applied to highly doped, high indium concentration material as they 

do not introduce additional doping or reduction of the bandgap. Native oxides are a critical 

issue as there is no possibility to aggressively alloy through the oxide layer. This makes 

substrate surface treatment prior to metal deposition vital for ohmic contacts with low 

specific contact resistivity values. Different surface treatments can be used: cleaning of the 

surface oxides, depinning of the surface and regrown InGaAs/InAs regions with in-situ 

metal deposition. An overview of various non alloyed contacts is shown in Table 6.5: 
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Metallisation Doping (cm-3) Substrate ρc (Ω.cm2) Ref. 

Au/Pt/Ti 1.50x10+19 GaAs 1.10x10-6 [149] 

Au/Ti 5.00x10+18 GaAs 2.00x10-6 [169] 

Au/Al/Ti 2.00x10+18 GaAs 3.70x10-3 [170] 

Cr/Au 6.10x10+19 In0.53GaAs 1.70x10-8 [199] 

Mo 5.00x10+19 In0.53GaAs 1.00x10-8 [137] 

Mo 3.60x10+19 n/a 1.30x10-8 [200] 

Ti/Pd/Au 3.50x10+19 In0.53GaAs 7.30x10-7 [108] 

TiW/Ti/Ni 3.50x10+19 In0.53GaAs 8.40x10-7 [108] 

ErAs 3.50x10+19 InAs 1.50x10-8 [113] 

Mo 3.50x10+19 InAs 5.00x10-9 [113] 

TiW 3.50x10+19 In0.53GaAs 7.00x10-9 [113] 

Al 3.00x10+19 In0.50GaAs 4.80x10-7 [135] 

Au/Pt/Ti/WSiN 1.00x10+19 n/a 2.00x10-7 [122] 

Table 6.5: Summary of non alloyed ohmic contact strategies to n-GaAs/n-InGaAs 

Surface treatment 

The surface of a GaAs, InGaAs and InAs substrate has a thin native oxide layer, which 

contains defects of sufficient density to pin the Fermi level. Even though the Fermi level 

pins in the conduction band in high indium concentration (>80%) material, the oxide 

causes an increased resistance as electrons have to tunnel through the thin oxide layer. It is 

therefore important to remove surface native oxides, which can be done via cleaning 

procedures. After the substrate cleaning there are also techniques using sulphur to 

passivate the substrate, reducing the number of states at the semiconductor surface. 

Alternatively the Fermi level can be unpinned by introducing an insulating layer between 

the metal and semiconductor to reduce gap states, which will lower the Schottky barrier 

height and lower the specific contact resistivity. But as a consequence the electrons will 

have to tunnel through a thin insulator rather than a Schottky barrier. 

The ideal case is where the ohmic contact structure can be deposited in-situ on top of the 

semiconductor layer to overcome any surface oxide formation. This is another advantage 

of using regrowth techniques, as the sample can be metallised in the same tool without 

breaking the vacuum.  

Cleaning  

The native oxide can be removed by either wet or dry etch. The wet etch is the most 

common technique used and is based on wet etches of acids, ammonia based solutions or 

solutions containing sulphur. The H component of the acids bonds to the native oxide 
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forming H2O, the sulphur based solution helps to passivate the surface by leaving a thin 

layer of sulphur behind. The various native oxide cleaning solutions are usually diluted in 

H2O solutions: 

HF [107, 140, 141] 

HCl [105, 107, 116, 131, 137, 140] 

NH4OH [105, 108, 113, 116, 131, 140] 

(NH4)2S [105, 116, 131] 

H2SO4:H2O2 [104] 

Na2S: C3H7OH [104] 

A dry etch technique to remove the native oxide from the substrate is by exposing the 

sample to atomic H [137] leaving clean GaAs surfaces. However, extended exposure of 

atomic H might lead to reduction of the overall doping as the H passivates the Si donors in 

the n-type III-V material [223]. 

The substrate surface does not only contain a native oxide but it is also contaminated by 

various processing steps. These contaminants might not necessarily be affected by a wet 

etch clean. A UV/ozone surface cleaning technique can be used to deliberately oxidise the 

surface layer. This forms an oxide layer on top of the substrate and can be cleaned using 

conventional wet etch techniques [108, 113, 137, 140]. 

Depinning of surface  

Fermi level pinning can be described by the theory of Metal Induced Gap States or MIGS 

[40] as explained in chapter 3.6.3. In a metal/semiconductor junction the free electron 

wave function can penetrate into the semiconductor bandgap. This generates gap states, 

which consist of donor and acceptor like states. There is a charge neutrality level in the 

bandgap where the gap-state charges are balanced. The metal Fermi level is pinned close to 

the charge neutrality level because of dipole formation. To prevent the Fermi level pinning 

the free electron wave function penetration has to be reduced. This can be done by 

introducing a thin dielectric layer. Si3N4 [105, 107, 131] has low dielectric constant and 

moderately high band gap to prevent the free electron wave function from penetrating into 

the semiconductor bandgap and hence releasing the Fermi level. Al2O3 [131] has also been 

reported to reduce the Fermi level pinning effects. Adding an additional layer of insulating 
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material will require the electrons to travel through the thin dielectric layer. This 

potentially causes additional resistance, increasing the specific contact resistivity value.  

Regrown [119, 135, 137, 153]  

When a semiconductor material is grown in an oxygen free environment, no native oxides 

can form. This is then the cleanest surface on which ohmic contacts can be deposited. 

However, processing requires lithography steps and source/drain contact definitions. The 

source/drain ohmic contact area will always be contaminated. A solution is to clean the 

surface and regrow semiconductor material in the source/drain area and in-situ deposition 

of a metal to form the ohmic contact. This will not only result in a very clean surface, also 

the doping concentration and In level can be altered, effectively reducing the bandgap and 

improving tunnelling probability. 

Implantation [110, 123, 124, 125, 127, 128] 

Implanting n- type species helps to reduce the Schottky barrier width by introducing local 

doping. The implantation of dopants into semiconductor material has two major 

disadvantages. One is the high activation temperature (> 800⁰C) of the Si atoms in III-V 

semiconductor materials.  The other disadvantage is the large distribution of implanted 

atoms into the semiconductor material. The large distribution of atoms makes this an 

impractical technique when designing scaled CMOS devices.   

6.2.2  Critical Issues 

Apart from the standard factors that determine a good ohmic contact scheme, there are a 

number of factors that are specific to this project. Firstly the material used for III-V 

MOSFET has an oxide layer grown by MBE, MOCVD or ALD. The oxide has a certain 

temperature budget and will have to be removed in order to make ohmic contacts to the 

underlying GaAs/InGaAs semiconductor material. Since the technology for the ohmic 

contacts should be transferable to a 200mm processing environment using VLSI, there are 

some constraints on the metals and processes used. Ultimately, small contact geometries 

(<100nm) would be required for gate pitch scaling 

6.2.2.1  Temperature budget 

The III-V MOSFET device structure grown at the University of Glasgow uses a 

Ga2O3/GaGdO dielectric stack. This oxide dielectric stack has shown low interface state 

density and low gate leakage to GaAs and was therefore chosen as the oxide for GaAs-

based III-V buried channel MOSFETs. The oxide stack is grown in a III-V MBE chamber 
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at around 460⁰C– 510⁰C for an amorphous deposition [101]. It is critical the dielectric 

oxide stack remains amorphous as the gate leakage increases and the permeability drops 

when the oxide stack becomes crystalline. This limits the annealing temperatures for any 

ohmic contacts to around a maximum 450°C. 

The current tendency is to move away from the buried channel MOSFET device towards a 

high indium concentration surface channel device. The characteristics of a GaGdO stack on 

InGaAs are inferior to GaAs and alternative dielectric oxide stacks are used such as ALD 

grown Al2O3. The ALD gate dielectrics supplied by Stanford University have not been 

subjected to thermal budget tests and their maximum processing temperature is therefore 

unknown. 

6.2.2.2  Oxide etching 

The dielectric stack is grown uniformly on the wafer and has to be etched away in the 

source/drain region in order to make ohmic contacts. The etch of the gate dielectric needs 

to be well defined because the ohmic contact structure should not have any gap between 

the oxide or overlap the oxide. When there is a gap in the oxide the surface gets pinned 

mid gap in case of GaAs, which raises the conduction band from the channel. This moves 

the conduction band closer or above the Fermi level and limits the number of free 

electrons. The number of free electrons determines the maximum current and 

corresponding on-state device performance. In case of this band structure without the oxide 

the maximum electron concentration is 1.5x1015 cm-3. From Figure 6.3 we can see that the 

electron concentration is a lot higher when there is an oxide (>1017cm-3), giving a lower 

sheet resistance for the access region in a buried channel device architecture. 
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a) Carrier concentration with GaO/GaGdO gate 

dielectric at Vg = 1.2V 

b) Carrier concentration after removal of 

GaO/GaGdO gate dielectric 

Figure 6.3: Carrier concentration distribution in GaO/GaGdO gate dielectric stack device material 

using Poison - Schrodinger simulation 

When the contact structure overlaps the oxide the model becomes a bit more difficult. It’s 

believed that there is a voltage difference between the channel and the contact metal. The 

electron concentration at the drain region can therefore increase and have essentially the 

same effect as the gate metal, which uses high metal work function metals to increase the 

carrier concentration. The detrimental effect is then more likely to take place at the source 

contact metal. The voltage difference between the contact metal and channel can then 

potentially reduce the electron carrier concentration or form a depletion region. The 

overlapping part may act as a negatively biased gate metal reducing the electron 

concentration in the channel and effectively increasing the sheet resistance in this region. 

Therefore, the gate dielectric has to be etched accurately to avoid increased sheet resistance 

in the access regions.  

 

Figure 6.4: Charge effects due to ohmic contact overlap 

6.2.2.3  Si Compatibility 

The focus of the DualLogic activity in Glasgow is the n-type III-V transistor with 

particular emphasis on developing new gold free, low contact resistivity, ohmic contacts, 
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which are compatible with a silicon CMOS process flow. This requires the development of 

gold free ohmic contacts because gold is an amphoteric material in silicon, (the behaviour 

of gold is unpredictable in silicon and can act as both donor and acceptor). Also Ag and Cu 

are not Si-processing compatible metals however Cu is used in back end processing as 

interconnect wiring. The source/drain ohmic contact formation is a front end process and 

it's therefore impractical to use Cu as a possible source/drain ohmic contact metal. The 

MOSFET device structure was not finalized at this stage in the project and therefore 

corresponding processing including resists, masks, solvents and temperature budgets are 

not necessarily Si-processing compatible. 

6.2.2.4  Scalability 

When scaling MOSFET devices to sub 22nm technology generation, the ohmic contacts 

require good edge definition and little vertical and lateral alloying into the semiconductor 

material. Lateral alloying will result in poor yield and reproducibility, increased short 

channel effects and potentially a short circuit between source and drain. The ohmic contact 

structure thickness also has to be scaled as self aligned processing [202] requires thin 

source/drain regions in the region of 100nm or smaller. This is for a gate length of 40nm 

and further reducing of the gate will require thinner source/drain contact metals.  

6.2.3  Comparison/Contact strategy 

The choice of the best suitable ohmic contact is based on the III-V MOSFET device 

structure. The original device structure developed at the University of Glasgow in 

cooperation with Freescale Semiconductors is a flatband, buried channel device 

architecture. The oxide layer is a GaO/GaGdO layer, which will require etching prior to 

source/drain ohmic contact formation. Underneath the oxide there is a wide band gap 

undoped AlGaAs layer. Unless the ohmic contact strategy features significant alloying, the 

ohmic contact will form a Schottky barrier on the metal/semiconductor interface of the 

wide bandgap layer. Since the wide bandgap layer is undoped, tunnelling effects are going 

to be minimal and the Schottky barrier height will dominate the quality of the ohmic 

contact. It would thus be beneficial to use an ohmic contact strategy that increases doping 

levels and/or reduces the band gap. There are two different buried channel device 

structures used, which are both listed in the materials section in the appendix. One 

structure is GaAs-based with a wide bandgap structure (AlxGa1-xAs) and a In0.3GaAs 

channel and the second structure is InP-based with a wide bandgap structure (InxAl 1-xAs) 

and a higher indium concentration InxGa1-xAs (x ≥ 0.53) channel. 
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The ohmic contact strategy previously used at the University of Glasgow is NiGeAu based, 

which allows for lateral alloying due to the spiking behaviour. This has the advantage that 

the metal/semiconductor interface is positioned in the channel, taking advantage of the 

lower band gap of In0.3GaAs. However, the purpose of this project is to develop an ohmic 

contact strategy, which is compatible with Si processing. Metals such as Au, Ag and Cu 

cannot be used as an ohmic contact, which significantly reduces the numbers of suitable 

candidates such as NiGeAu, CuGe, and NiGeAg.  

The second limitation is the temperature budget with a maximum limit at 450°C. This 

limits the use of indium base contacts as In starts forming InxGa1-xAs at temperatures 

around 600°C. The high melting points of refractory metals prevent alloying below 450°C. 

This limits the possible ohmic contacts from the literature to the following metallisation, as 

shown in Table 6.6 [6] for GaAs.  

Metallisation 

Anneal (optimal 

temperature) Doping (cm-3) 

ρc  

(Ω.cm2) 

RC 

(Ω.mm) Ref. 

Pd/Ge 325°C 30min 1.00x10+18 1-3x10-6   [144] 

Pd/Si 375°C 30min 1.00x10+18 2-6x10-6   [145] 

Pd/In/Ge 400°C 1.00x10+18 6.00x10-7   [165] 

In 375°C 2.00x10+16 3.00x10-6   [177] 

Pd/Ge     4.00x10-7   [179] 

Pd/Sn 360°C 2.00x10+18 3.00x10-5   [180] 

Pd/Sn, 

Pd/Sn/Au 360°C-430°C   

8.00x10-6 – 

3.00x10-5   [181] 

Pd/Ge/Ti/Pt 400°C   2.40x10-6   [183] 

Pd/Ge/Ti/Pt 380°C-450°C 6.00x10+17 

2.40x10-6 – 

5.30x10-6   [184] 

Pt/Ti/Ge/Pd 400°C 5.00x10+18 5.00x10-7   [187] 

Pd/Ge 320°C 60s 3.70x10+18 1.00x10-5   [189] 

Pd/Ge 317C 7.00x10+16     [138] 

Pd/Ge 325°C 30min 4.00x10+18 9.00x10-7   [103] 

Pd/Si 375°C 30min 4.00x10+18 2.00x10-6   [103] 

Ge/Pd/Ti 380°C 2.00x10+18 8.50x10-7   [114] 

Pd/Ge 400°C n/a 9.80x10-6 0.29 [116] 

Al Non Alloyed 5.00x10+15 5.00x10-6   [125] 

Ge/Pd 400°C 1.00x10+18 2.00x10-4   [130] 

Table 6.6: Summary of Si-processing and III-V MOSFET processing compatible ohmic contact 

strategies 
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The PdGe based ohmic contact seems to have low specific contact resistivity [179], ideal 

temperature window and is compatible with Si processing. This ohmic contact strategy has 

then been used experimentally to form source/drain ohmic contacts to a III-V MOSFET 

During the project, new developments such as regrowth allowed the device structure to 

change to a surface channel device structure. This reduced a number of constraints. When 

regrowing is possible, doping can be increased to 1x1020cm-3in source/drain regions and 

the indium content in the InGaAs compound can be gradually increased. Because of the 

increased doping, there is no longer a need for alloyed contacts, which usually have bad 

surface morphology and temperature budget. Since regrowing is not possible at the 

University of Glasgow, wafers with highly doped 1x1019cm-3 Si In0.53GaAs surface 

material have been used instead. High doping and material with low bandgap should allow 

for ohmic contacts with low specific contact resistivity values. Potential suitable ohmic 

contacts for a Si compatible process using regrowth ohmic contacts are shown in Table 6.7. 

Metallisation 

Anneal 

(optimal 

temperature) Doping (cm-3) Substrate 

ρc  

(Ω.cm2) Ref. 

Pd/Si/Ti/Pt 425°C   InGaAs 1x10-6 – 2x10-6 [121] 

Pd/Ge/Ti/Pt 400°C   InGaAs 3.70x10-6 [117] 

Wnx/WN0.5x/W 400°C   InGaAs 2.00x10-7 [139] 

Mo n/a 5.00x10+19 In0.53GaAs 1.00x10-8 [137] 

Mo n/a 3.60x10+19 InGaAs 1.30x10-8 [200] 

TiW/Ti/Ni Non Alloyed 3.50x10+19 In0.53GaAs 8.40x10-7 [108] 

Pd/Ge/Ti/Pt 400°C 10s 1.00x10+19 In0.50GaAs 3.70x10-6 [112] 

ErAs n/a n/a InAs 1.50x10-8 [113] 

Mo n/a n/a InAs 5.00x10-9 [113] 

TiW n/a n/a In0.53GaAs 7.00x10-9 [113] 

Al Non Alloyed 3.00x10+19 In0.50GaAs 4.80x10-7 [135] 

ErAs 350°C 9.00x10+18 InGaAlAs 1.50x10-7 [219] 

Table 6.7: Summary of Si-processing and source/drain regrowth compatible ohmic contact strategies 

6.3  Experimental 

This section is split up in three main parts, which covers alloyed and non alloyed ohmic 

contacts and MOSFET device results. The alloyed ohmic contact section is split up in two 

parts where the first part studies the chemical and electrical properties of a PdGe-based 

ohmic contact using a wet etch surface clean technique whereas the second part studies the 

use of alternative dry etch gate dielectric removal techniques in order to build scalable 

source/drain ohmic contacts to III-V MOSFET devices. The non-alloyed ohmic contact 
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section investigates the electrical properties of both e-beam evaporated and sputtered 

metals on 1x1019cm-3 Si doped In0.53GaAs. The MOSFET device section features the 

results of both buried channel and surface channel device architectures. 

Previous to this work the foundations of GaAs-based buried channel MOSFETs with 

Ga2O3 or GaGdO gate dielectrics were developed by R. Hill and D. Moran. The work 

included the design of the buried channel, quantum well, layer structure, the choice of the 

oxide and its thickness, source/drain ohmic contacts including an oxide etch process, gate 

metal and various processing steps to build a device. The optimal way to deposit a 

semiconductor/oxide interface with a low density of states was found to be in-situ growth 

of AlGaAs/InGaAs/GaAs layer structures and GaGdO layer by MBE epitaxy without 

breaking vacuum. This means that the gate dielectric is present on the wafers with a buried 

channel architecture and therefore the insulating oxide layer has to be removed in order to 

make source/drain ohmic contacts to the underlying semiconductor material.  

The process used to remove the oxide layer should not influence the underlying 

semiconductor material, resulting in a clean metal/semiconductor interface. There are two 

approaches that can be used to etch the oxide layer: a wet etch process and a dry etch 

process. The wet etch has been previously optimised by comparing different solutions of 

HF and HCl. The optimal wet etch found for a GaGdO gate dielectric is an HCl:H2O 1:100 

solution. A 30s etch time results in a 10nm oxide etch with minimal (<100nm) lateral etch. 

The dry etch techniques previously tested are a methane:hydrogen/oxygen etch, an Ar 

plasma etch and an Ar ion gun. These had their disadvantages; residual layers for the 

methane: hydrogen/oxygen and re-deposition and damaging effects for the Ar plasma and 

ion gun. The current dry etch strategy uses a RIE etch with an ionised SiCl4 gas as 

described in the fabrication chapter. 

As source/drain ohmic contacts, NiGeAu and PdGe metal stacks have been researched by 

R. Hill. The measurements were all taken by making use of TLM structures. It was found 

that the Pd/Ge (50nm/50nm) contact was inferior to the AuGeNi contact and has thus been 

dropped. The optimal contact strategy was found to dependent on the gate dielectric 

removal technique, as shown in Table 6.8. 
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 Layer Structure Optimal Anneal 

NiGeAu (wet etch) Ni/Ge/Au 

20/20/200nm 

360ºC 60s 

AuGeNi (dry etch) Au/Ge/Au/Ge/Au/Ni/Au 

10/10/10/10/20/11/80nm 

420ºC 60s 

Table 6.8: Optimised Ni/Ge/Au based ohmic contacts for GaO/GaGdO gate dielectric stack device 

material use dry or wet etch 

The MOSFET device material is not grown as a part of Duallogic, but borrowed from 

EPSRC funded work. This means there is a limited supply of actual MOSFET device 

material for this project. The various device layer structures are indicated by the first 

character as follows; “x” is a Glasgow grown structure with a GaGdO gate dielectric stack, 

“c” is a Glasgow grown structure, which may or may not have a gate dielectric and “6-“ is 

a Freescale grown structure with a GaGdO gate dielectric stack. If a gate dielectric has 

been deposited on a c-wafer, it will have been deposited at Stanford University by ALD. 

The wafers grown at IMEC under the Duallogic project are indicated with “IM” followed 

by the material type.  The full material layer structures can be found in the materials 

section in the appendix 

In order to cover for HEMT-like device structures and MOSFETs with regrown 

source/drain areas, specific highly doped wafers were grown. This also allows for a 

comparison between results from literature, which use highly doped surface layers. Four 

types of wafers were grown: one wafer with highly doped GaAs surface (IM-GaAs), one 

wafer with a 500nm thick 1x1019cm-3 Si doped In0.53GaAs layer at the surface (IM-

InGaAs500), several wafers with a 20nm thick 1x1019cm-3 Si doped In0.53GaAs at the 

surface (IM-InGaAs20) and two wafers with a 2.5nm thick 1x1019cm-3 Si doped InAs layer 

at the surface (c760,c783). The IM-InGaAs20 wafer has an In0.52AlAs layer, which acts as 

a barrier and allows for isolation and mesa etching, which is not possible with the other 

wafers.  

Over the period of this project, an InP-based structure with In0.53GaAs channel and ALD 

(Chapter 4.2.2) deposited Al2O3 from Stanford University was developed. The advantage 

of this structure is the high indium concentration of the channel material resulting in high 

mobility. The ALD Al2O3 oxide etch has been optimised by S. Bentley using dilute KOH 

and the ohmic contacts used are Ni/Ge/Au-based. The annealing cycle used is 280⁰C 60s, 

this limits the lateral alloying of Ni/Ge/Au-based ohmic contacts by keeping the alloy 
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under its eutectic temperature. This allowed for the study of scaled MOSFET devices, but 

it potentially has a detrimental effect on the contact resistance as there will be little 

additional doping into the semiconductor as the eutectic temperature has not been reached 

(chapter 6.2.2). The full material layer structures can be found in the materials section in 

the appendix. 

TLM structures (chapter 5.3.2) were used as a test structure with gap sizes of 2,4,6,8 and 

10µm and do not feature an isolation etch. On average 4-8 TLM structures were measured 

and the results were then analysed using excel. The excel file extrapolates the results for 

the RC and Lx value, as shown in figure 5.9, using the “LINEST” function. The excel file 

also returns the correlation, Rsh, ρc and LT values and the respective averages and standard 

deviation. 

6.3.1  Alloyed Contacts 

6.3.1.1  Wet Etch 

Pd/Ge/Pd/Ti/Au on x238 device material 

After making a comparison of the various ohmic contact strategies, a metallisation based 

on the work by I.H. Kim [112] was explored. The Pd/Ge/Pd/Ti/Au (50/120/50/35/35nm) 

metallisation was chosen because it featured a specific contact resistivity of 1.0x10-6Ω.cm2 

and the Pd, Ge, Ti, Au metals were available in the Plassys 1 metal deposition tool chapter 

4.5.1. Optimal anneal temperature range was chosen based on literature review [112]. In 

parallel an XRD study was carried out at IMEC, which indicated low resistivity phases are 

formed starting from 300ºC annealing temperatures.  

 A Pd/Ge/Pd/Ti/Au contact was then made using an e-beam evaporator and lift-off to x238 

device material and the annealing temperature was based on the best temperature of 400°C 

in literature [112]. The annealing time was varied from 10s to 60s.  An HCl:H2O oxide etch 

of 15s was used based on previous work. To determine the optimal oxide etch time a 

separate oxide etch test was carried out using a NiGeAu contact structure and the optimal 

etch time was then found to be 30s. 
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Figure 6.5: Comparison between a Pd/Ge/Pd/Ti/Au annealed at 360⁰C for 10s, 20s, 30s and 60s and 

AuGeNi ohmic contact structure on x238 device material. 

The lowest contact resistance and specific contact resistivity values are found for an 

annealing time of 10s, which agrees with previously published data [112]. However, the 

specific contact resistivity is one order larger than the values found in [112]. The main 

reason for the higher specific contact resistivity values is the difference in semiconductor 

material used in comparison to previous work [112]. The Pd/Ge/Pd/Ti/Au is deposited on a 

narrow bandgap 1x1019cm-3 doped In0.5GaAs wafer [112] in comparison to the MOSFET 

device layer structure, which features an oxide and a wider, undoped bandgap material 

underneath the oxide. A non-optimised oxide etch is one potential cause of a higher 

specific contact resistivity as explained in chapter (6.2.1). A second potential cause is the 

actual metal/semiconductor interface. This depends on the vertical alloying properties of 

PdGe on the device material. The top layer is an undoped wide bandgap material, whereas 

the channel is an In0.75GaAs narrow bandgap material in the case of the x238 layer 

structure. If there is little vertical alloying the metal/semiconductor interface will take 

place on wider bandgap GaAs or InAlAs material resulting in an increased specific contact 

resistivity compared to the narrow bandgap material in the channel. The lower specific 

contact resistivity for the NiGeAu is then largely due to the fact that because of significant 

alloying, the metal/semiconductor barrier actually forms in the channel. This suggests that 

there is little alloying in the semiconductor material from the PdGe contact.  In this case, 

the contact performance should be compared to similar undoped material and the closest 

semiconductor material found in literature featuring a PdGe based ohmic contact is 

1x1016cm-3 doped GaAs [102].  The PdGe contact is annealed at 550⁰C giving a specific 
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contact resistivity of 3.5x10-4Ω.cm2. This is one order higher than the Pd/Ge/Pd/Ti/Au 

contact, indicating that the contact potentially alloys through the 2 monolayers of GaAs 

and forms an ohmic contact on narrower bandgap material.    

So far, only the annealing time has been adjusted, while the XRD study performed at 

IMEC by A. Firrincielli suggests that ohmic contacts can be made at temperatures above 

300⁰C.  The time is still kept to 10s for direct comparison to previous results and the 

annealing temperatures have a very coarse scale of starting from a non annealed contact to 

an annealing temperature of 420⁰C, as shown in Figure 6.6. This temperature range was 

also based on results from [112] as an optimal window to show the relation between 

temperature and ohmic contact formation. The HCl:H2O oxide etch time was adjusted to 

the best result for NiGeAu etch to 30s.  

  

Figure 6.6: TLM results of a Pd/Ge/Pd/Ti/Au ohmic contact structure on x238 device material 

annealed for 10s at 0⁰C, 360⁰C, 400⁰C and 420⁰C. 

The annealing temperature of 400⁰C confirms the lowest specific contact resistivity and the 

non annealed contact showed non ohmic behaviour. Changing the etch time resulted in a 

specific contact resistivity of 1.58x10-6
Ω.cm2. This is better than the NiGeAu contact that 

had been optimised before and the PdGe work previously done before and comes very 

close to the work done in [112]. 

Pd/Ge/Pd/Ti/Au vs. Pd/Ge/Ti/Pt on highly doped IM-InGaAs500 

Checking the effect of highly (>1x1018cm-3) doped low bandgap material used in the 

literature, a 1x1019cm-3 Si doped In0.53GaAs layer of 500nm thick on InP substrate was 
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used. The optimal anneal (400⁰C 10s) was based on previous work on x238 device 

material. The sample had no oxide grown and thus no etch/clean was used. The 

Pd/Ge/Pd/Ti/Au structure previously used, yielded the result shown in Table 6.9: 

Substrate Metallisation RC 

(Ω.mm) 

Rsh 

(Ω.sq) 

ρc  

(Ω.cm2) 

Correlation 

IM-InGaAs500 Pd/Ge/Pd/Ti/Au 0.01 0.31 2.77x10-6 0.98 

Table 6.9: TLM result of a Pd/Ge/Pd/Ti/Au ohmic contact structure on highly doped GaAs. 

The sheet resistance of the material is very low making it hard to extract a precise result for 

the specific contact resistivity because of the poor correlation between different data 

points. A specific contact resistivity of 2.77x10-6
Ω.cm2 is higher than previously recorded 

on x238. This might be due to the TLM measurement, but could also be due to the fact that 

there has not been a native oxide clean. 

 So far, the ohmic contact structure featured a layer of Au, which makes this contact 

scheme incompatible with Si processing. The choice was then made to investigate a 

Pd/Ge/Ti/Pt (50nm/120nm/35nm/35nm) structure also described in [112]. Slightly elevated 

specific contact resistivity values are to be expected as the lowest specific contact 

resistivity in the paper [112] was reported to be 3.7x10-6
Ω.cm2 compared to the  

1.1x10-6
Ω.cm2 from Pd/Ge/Pd/Ti/Au. To make the Pd/Ge/Ti/Pt contact the sample had to 

be transferred from one deposition tool to the other after depositing the PdGe layers as the 

Plassys 1 deposition tool does not contain Pt. The exposure to air could have detrimental 

effects on ohmic contact behaviour as the Ge layer can oxidise. 

The Pd/Ge/Ti/Pt was first tested on was the highly doped In0.53GaAs material. This formed 

ohmic contacts with similar values as Pd/Ge/Pd/Ti/Au. But the variability between contact 

measurements was far greater than the increase in sheet resistance of TLM's with 2,4,6 and 

8µm gap sizes. The measurements of the total resistance between contact pads are in the 

same order as the Pd/Ge/Pd/Ti/Au contact but exact numbers for the sheet resistance and 

specific contact resistivity cannot be extracted due to poor correlation (<0.9) between the 

measured data.  
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EELS analysis on Pd/Ge/Ti/Pt on IM-InGaAs500 

In order to understand the Pd/Ge/Ti/Pt contact formation on doped In0.53GaAs, a scanning 

transmission electron microscopy ((S)TEM) and electron energy loss spectroscopy (EELS) 

investigation was carried out at the physics department at the University of Glasgow. The 

PdGe ohmic contact is based on a solid state reaction where Ge diffuses through the Pd 

layer into the In0.53GaAs layer occupying preferentially Ga sites n-type doping the 

substrate. The thickness of Pd and Ge are chosen in a way that there is an excess of Ge to 

provide for the Pd2Ge formation and Ge penetration into the InGaAs. The Ti/Pt layer acts 

as a barrier for outdiffusion. The TEM micrographs give an insight into the morphology 

and layer structures, but chemical analysis is required to find the profile of the various 

elements in the contact structure. The chemical analysis has been done using EELS [201]. 

This is a powerful characterisation technique where a mono-energetic beam of electrons is 

directed at the sample and the composition of the material is obtained by the loss in energy 

of the electrons after the beam interacts with the sample. 

Before EELS and TEM can be used, small samples have to be extracted from the processed 

substrate. For this reason, the substrates containing the TLM structures also feature small 

gratings, which are 2µm wide and 2µm apart. This allows for multiple samples to be taken 

from a single grating structure. The samples go through a specimen preparation that 

involves: cutting, grinding, dimpling and ion milling the sample. The sample preparation is 

a corrosive process and the substrate and contacts have to be covered with a 100nm layer 

of Si3N4 to give protection from sample preparation damage. 

The recipe for the metals is Pd 50nm Ge 120nm Ti 35nm Pt 35nm, analysing the TEM 

micrograph Figure 6.7a of the unannealed contact showing the as-deposited metal layers, 

the actual thickness for the metals are: Pd 70nm, Ge 100nm, Ti 30nm, Pt 40nm. The 

unannealed sample does not show any signs of major reactions between the substrate and 

the whole contact region with amorphous Pd and Ge layers. The ohmic contact results 

showed non ohmic behaviour when the contact is not annealed suggesting an ohmic 

contact can only be formed after a solid state reaction has taken place.  
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Figure 6.7: TEM micrograph of the ohmic contact stack: a) 

unannealed sample; b) annealed sample (400⁰C 10s) 

 

Figure 6.8: High-resolution TEM 

image of the interface region in the 

annealed sample (400⁰C 10s) 

 

The contact after annealing, Figure 6.7b, still has clearly distinguishable Ti and Pt layers, 

but the Pd and Ge layers have reacted to form a Pd2Ge granular structure. Some amorphous 

Ge remains at the Ti interface, and there is an indication of a reaction between Ge and Ti at 

the interface forming a slightly darker region underneath the Ti layer on the TEM 

micrograph. The interface layer between the substrate and the contact is no longer smooth. 

To look into the roughness of the sample a high magnification image was taken of the 

interface Figure 6.8. By making use of image masking and applying a FFT based filter a 

crystallised area has been detected at the interface region with the same orientation as the 

In0.53GaAs material. The crystalline material is most likely Ge that has been regrown on 

the substrate by solid phase regrowth as suggested by the theory. To examine if solid phase 

regrowth has taken place, a chemical analysis has been performed on the In0.53GaAs/Pd/Ge 

interface using EELS Figure 6.10. 

   

Figure 6.9: ADF STEM survey image 
of the annealed InGaAs sample with 
Pd/Ge/Ti/Pt ohmic contact structure. 

Figure 6.10: Normalised EELS edge intensity profiles, extracted 
from the region in the black box.  
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The edge intensity profile of Ge, Pd, As, Ga and In have been extracted for a given area, 

obtained by annular dark field scanning electron microscopy (ADF STEM), as shown in 

Figure 6.9 by a black box. A multiple linear least square (MLLS) fit method has also been 

applied to Ga and Ge to reduce background noise. The normalised spectrum shows that Ge 

has either directly penetrated the Pd layer or propagated along grain boundaries and 

diffused into the In0.53GaAs more strongly than the Pd. Ga, In and As have diffused into the 

contact region with Ga propagating further. Also a 2nm In rich and Ga deficient layer, 

indicated with “3” on Figure 6.9, has been detected. This is possibly due to Ga diffusing 

into the PdGe contact creating vacancies of Ga in the In0.53GaAs layer. The diffusion of Ge 

into the In0.53GaAs substrate potentially n-type dopes the substrate, however the Ga 

diffusion into the contact might create a PdGa compound, which is a p-type dopant in 

Pd2Ge. The excess of Ge over Pd at the interface also indicates that the crystalline material 

is effectively regrown Ge. 

Figure 6.11: ADF STEM survey 

image of Ti/Ge interface. Black 

box is the area for acquisition of 

the EELS intensity edge profiles 

Figure 6.12: Normalised EELS edge intensity profiles, extracted 

from the region in the black box 

The TEM micrograph Figure 6.7b and 6.11 indicate that the Pt and Ti layers have not 

diffused and can be used as capping material. However, there seemed to be a transition 

zone between the Ti and Ge layer that needed some further exploring. A high magnification 

image was taken and EELS analysis was performed to monitor the Ge levels in the Ti 

barrier layer, as shown in Figure 6.12. The normalised edge intensities have been extracted 

and it effectively shows the Ge has penetrated into the Ti layer. However, there is little 

diffusion throughout the Ti layer indicating the Ti layer is a good barrier from Ge out 

diffusion. Low Pd concentration near the interface layer confirms a residual amorphous 

layer, which has not reacted with the Pd.  

In order to gain more understanding of how the alloy aids the formation of an ohmic 

contact two separate samples were made. The Pd and Ge layer, which form the solid phase 
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reaction were split and were deposited individually on the In0.53GaAs substrate. A TiPt 

layer was kept to protect the two samples from the TEM sample preparation. The sample 

with the 120nm deposited Ge layer had a respective TEM measured metal stack of: Ge 

100nm, Ti 30nm, Pt 40nm. The other sample with the 50nm deposited Pd layer had a 

respective TEM measured metal stack of: Pd 70nm, Ti 30nm, Pt 40nm. Both metal stacks 

had one unannealed sample and one 400 C 10s annealed sample to compare the results 

with the Pd/Ge/Ti/Pt ohmic contact. Both samples were then investigated using TEM 

micrographs and EELS analysis. 

The interface between the substrate and Ge, as shown in Figure 6.15, appears to be smooth 

in both annealed and unannealed case. The In, Ga, Ge, and As edge intensity profile, as 

shown in Figure 6.13, indicates that the annealing process has not caused any major 

variations in morphology or chemistry. The In, Ga and As profile lines in the unannealed 

sample (Figure 6.13a) drop off together and symmetrically in respect to the Ge profile line. 

There seems to be little or no interpenetration from Ge into In0.53GaAs. The Ga profile in 

the annealed sample (Figure 6.13b) appears to diffuse further into the Ge layer, potentially 

causing p-type doping. However, it's not clear if Ge has diffused into the In0.53GaAs layer. 

 

Figure 6.15: High-resolution TEM image 
of the interface region in the Ge only 

annealed sample. 

Figure 6.13: EELS edge intensity profiles extracted 
from the interface region in the Ge only sample: (a) 

top, unannealed; (b) bottom, annealed. 

Figure 6.14: 7 High-resolution TEM image 
of the interface with the substrate in the 

annealed Pd only sample. 
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The interface between the InGaAs substrate and Pd layer, as shown in Figure 6.17, is fairly 

sharp but rough with granular structures, which are most likely Pd. The In, Pd, Ga and As 

edge intensity profiles are presented in Figure 6.16 and show the penetration of In, Ga and 

As into the Pd layer. The As and Ga layer have penetrated throughout the Pd where the In 

layer only penetrates through region B. The regions are divided up as follows: 

A) In0.53GaAs Substrate 

B) High Pd concentration layer with significant Ga and little In 

C) As rich layer 

D) Mainly Pd with only Ga and As extending up to the Ti layer 

The reaction between Pd and In0.53GaAs is relatively complex, but it seems to aid the 

diffusion of various elements. This is possibly due to the Pd4GaAs phases that are formed 

during annealing as described in the theory. The Pd layer may then act as a metallic 

transport medium for Ge, which was previously suggested by T. Sands et al. [224]. 

The TEM and EELS analysis confirms the solid state reactions, which are described in the 

theory. There will be a competition between the interaction of Ge and In0.53GaAs with Pd. 

There is proof of Ge diffusing into the In0.53GaAs layer effectively n-type doping the 

substrate. There also seems to be Ga out diffusion into the contact, which could p-type 

dope the ohmic contact. This would be detrimental for the performance and might explain 

the inferior performance compared to the NiGeAu ohmic contact. Also Ti proves to be an 

excellent barrier layer to prevent Pt reacting with the underlying metals and substrate. 

  

Figure 6.17: ADF STEM survey image 
used for the acquisition of the EELS edge 
intensity profiles in the annealed Pd only 

sample. 

Figure 6.16: Edge intensity profiles extracted from the 
selected region in Figure 6.17. 
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Pd/Ge/Ti/Pt on x266 device material 

Given the fact that the Pd/Ge/Ti/Pt had ohmic contact behaviour, a study of the Pd/Ge/Ti/Pt 

contact stack was undertaken on MOSFET device material. Since the x238 material had 

been used up, a new wafer was used: x266. Although both have a buried channel layer 

structure, the In concentration in the channel is lower for x266 material and therefore the 

material underneath the oxide is wider bandgap Al0.45GaAs instead of In0.52AlAs. The 

oxide etch characteristics of this wafer were first verified with the standard NiGeAu recipe 

annealed at 360⁰C 60s and the results are shown in Figure 6.18.   

  

Figure 6.18: Wet etch test on x266 device material using standard NiGeAu ohmic contact 

Optimal oxide etch for a HCl:H2O 1:100 solution was found to be 30s. A Pd/Ge/Ti/Pt 

ohmic contact structure using a 30s oxide etch and lift off was then subjected to a 

temperature test and compared to a NiGeAu ohmic contact structure on the same x266 

substrate material. The NiGeAu contact parameters were measured as a part of the 

characterisation of MOSFET devices. The processing of these devices featured a process 

where the gate was deposited prior to the ohmic contacts (GF) and a process where the gate 

was deposited after the ohmic contacts (GL). The temperature range of the Pd/Ge/Ti/Pt was 

varied from 360⁰C to 420⁰C based on previous results, as shown in Figure 6.19. 
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Figure 6.19: TLM results of a Pd/Ge/Ti/Pt ohmic contact structure on x266 device material annealed 

for 60s at 360⁰C, 380⁰C, 400⁰C and 420⁰C and for 10s at 400⁰C. 

The 360⁰C 60s anneal shows slightly better results than the previous best anneal 

established at 400⁰C 10s. It was then chosen to do a time test for 360⁰C, as shown in 

Figure 6.20. However, looking at the temperature window, the contacts resistance is still on 

a descending trend at 360⁰C and potentially better ohmic contacts can be made at lower 

annealing temperatures. 

  

Figure 6.20: TLM results of a Pd/Ge/Ti/Pt ohmic contact structure on x266 device material annealed at 

360⁰⁰⁰⁰C for 10s, 30s, 45s and 60s 

The RC value would indicate that the 10s anneal is the best result. But the specific contact 

resistivity is the actual parameter indicating the quality of the metal/semiconductor barrier 

and the 30s anneal features the lowest specific contact resistivity. The results are 

0

0.5

1

1.5

2

2.5

3

3.5

4

360⁰C 380⁰C 400⁰C 420⁰C

R
C

(Ω
.m

m
)

Temperature

Contact Resistance
x266 Pd/Ge/Ti/Pt

10s

60s

GF

GL

360⁰C 380⁰C 400⁰C 420⁰C

ρ
c

(Ω
.c

m
2 )

Temperature

Specific Contact Resistivity
x266 Pd/Ge/Ti/Pt

10s

60s

GF

GL

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

10s 30s 45s 60s

R
C

(Ω
.m

m
)

Temperature

Contact Resistance
x266 Pd/Ge/Ti/Pt

360⁰C
10s 30s 45s 60s

ρ
c

(Ω
.c

m
2 )

Temperature

Specific Contact Resistivity
x266 Pd/Ge/Ti/Pt

360⁰C

10-6 

10-5 

10-4 

10-3 

10-2 

10-0 

10-1 

0 

1,2x10-4 

1,0x10-4 

8,0x10-5 

6,0x10-5 

4.0x10-5 

2.0x10-5 

1.4x10-4 



Chapter 6  Ohmic contact development 
 

159 
 

effectively one order of magnitude higher than the NiGeAu results and over one order of 

magnitude lower than the x238 Pd/Ge/Pd/Ti/Au results. However, the layer structure varies 

greatly between x238 and x266 and the results cannot be compared directly as the x266 

features larger bandgap Al0.45GaAs material compared to In0.52AlAs underneath the oxide 

and throughout the whole layer structure.  

EELS analysis Pd/Ge/Ti/Pt on x266 device material 

Since the NiGeAu results were similar on x266 and x238, a TEM investigation was carried 

out to observe on which material the PdGe layer makes the better ohmic contact. Since the 

NiGeAu alloys in the channel it will take advantage of the lower bandgap material. The 

increased specific contact resistance of the Pd/Ge/Ti/Pt sample is then probably due to the 

fact that the PdGe-based ohmic contacts do not alloy into the channel. In order to 

investigate the alloying behaviour of a PdGe-based ohmic contact a TEM and EELS 

analysis was carried out on x266 material. 

Figure 6.21 shows a TEM micrograph of a cross section of a non annealed Pd/Ge/Ti/Pt 

contact to x266 device material. The picture is tilted 90 degrees to the right. Moving from 

left to the right the x266 substrate can be seen on the left, the first lighter grey area is the 

In0.3GaAs channel, followed by wider bandgap GaAs and AlGaAs. The Pd (60nm), Ge 

(100nm), Ti (30nm) and Pt (<20nm) layers are clearly defined, with some reaction between 

the Pd and Ge layer.   

 

Figure 6.21: TEM micrograph of as deposited Pd/Ge/Ti/Pt contact on x266 device material 

The samples used for EELS analysis are annealed at 380 C, 400 C and 420 C for 60s 

Figure 6.23.  The specific contact resistivity increases with annealing temperature. 

According to literature [112] and previous TEM and EELS research on In0.53GaAs, the 
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following behaviour is expected at annealing above 350⁰C:  

− Ge diffuses into Pd and reaches the semiconductor surface 

− Ti layer acts as barrier layer maintaining the layer structure of  Ti/Pt 

− Non spiking interface, little alloying (<5nm) 

− A layer deficient in Ga in the substrate 

The TEM micrographs confirm the relatively smooth interface between contact and 

substrate and the annealing temperatures have not affected the In0.3GaAs channel layer. 

There also does not seem to be an extra In rich layer, which is deficient in Ga. The top Ti 

and Pt layers are still clearly defined separate layers and thus have not diffused into the 

Pd2Ge region. 
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Figure 6.22: TEM micrograph of 

Pd/Ge/Ti/Pt contacts on x266 device 

material annealed at 380⁰⁰⁰⁰C, 400⁰⁰⁰⁰C and 

420⁰⁰⁰⁰C 

 

Figure 6.23: EELS analysis of Pd/Ge/Ti/Pt contacts on 

x266 device material annealed at 380⁰⁰⁰⁰C, 400⁰⁰⁰⁰C and 420⁰⁰⁰⁰C 

The results of the EELS analysis are shown in Figure 6.23, as an edge intensity profile. 

There are six elements monitored: As, Ga, Ge, In, Pd, Ti. In every case there seems to be a 

Pd- rich layer at the semiconductor interface, which penetrates the GaAs and AlGaAs 

layers. The Ge layer, expected to reach the semiconductor surface, does not seem to diffuse 

into the GaAs/AlGaAs layer.  In this case, the GaAs/AlGaAs layer would not receive 

additional n+ doping, which is critical to reduce the Schottky barrier width. The diffused 

Pd could potentially form a PdGa compound, which is a p-type layer causing an n-p barrier 

between the channel layer and ohmic contact. This could be the reason for the drop in 
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performance compared to the best annealing temperature for Pd/Ge/Ti/Pt ohmic contacts. 

The lack of an n+ interface layer could then be due to the elevated/non ideal annealing 

temperature, which is also mentioned in literature [112]. The ideal ohmic contact should 

still have a small residual layer of amorphous Ge near the Ti edge. Further optimisation of 

the contacts can then be achieved by altering Pd and Ge ratios and annealing temperatures.  

The EELS analysis also measured the oxygen level but was found to be significantly low 

and there was no increased level between Ge and Ti layer. Suggesting the exposure of the 

sample during the processing step will have minimal contributions to the quality of the 

ohmic contact.  

Pd/Ge/Ti/Pt vertical scaling study 

IM-GaAs 

The Pd/Ge/Ti/Pt is a rather large vertical structure of about 240nm. When the contacts are 

used on actual MOSFETs the contacts will have to become thinner (<100nm) as larger 

contacts pose lithography and processing problems. The thickness of the contact layers was 

then reduced, keeping the same ratio of Pd/Ge to have an excess of Ge. The structure was 

investigated without a cap, with a Ti/Au cap and a Ti/Pt cap, as work by [114] proved that 

scaled PdGe contacts are possible without a Pt or Au cap with specific contact resistivity as 

low as 8.5x10-7 Ω.cm2 on highly doped GaAs. The sample without a cap was difficult to 

measure as the probes damaged the thin PdGe layer. The PdGeTiAu structure showed poor 

contact resistance due to severe alloying of Au through the Ti barrier layer. The Ti/Pt cap 

proved the best results and also featured reduced Ti/Pt layer thickness. The material used is 

the highly doped GaAs wafer (IM-GaAs) supplied by IMEC.  The temperature window has 

been expanded, given the results on x266. Pd and Ge layers thickness of are 10nm/25nm, 

25nm/60nm, 50nm/120nm were studied and the results are shown in Figure 6.24. 
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Figure 6.24: PdGe thickness scaling study on n-GaAs material annealed for 60s at 200⁰⁰⁰⁰C, 300⁰⁰⁰⁰C, 

350⁰⁰⁰⁰C, 400⁰⁰⁰⁰C and 450⁰⁰⁰⁰C 

The lowest specific contact resistivity was achieved with the thinnest layer structure at an 

annealing temperature of 400⁰C. This clearly indicates that the PdGe structure is scalable. 

The specific contact resistivity is still rather large given the highly doped nature of the 

semiconductor material. This is potentially due to the Ga outdiffusion into the Pd2Ge layer 

effectively p-type doping the layer and creating a p-n junction. 

IM-InGaAs20 

In order to compare the scaled Pd/Ge/Ti/Pt (10nm/25nm/30nm/30nm) contact with non-

alloyed ohmic contacts, the scaled Pd/Ge/Ti/Pt contact was tested on 20nm 1x1019cm-3 Si 

doped InGaAs (IM-InGaAs20). These results can then be used as a direct comparison with 

the Pd/Ge/Ti/Pt contact. 
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Figure 6.25: TLM results of scaled Pd/Ge/Ti/Pt ohmic contact structure on n-In0.53GaAs annealed at 

0⁰⁰⁰⁰C, 200⁰⁰⁰⁰C, 300⁰⁰⁰⁰C, 320⁰⁰⁰⁰C, 340⁰⁰⁰⁰C, 360⁰⁰⁰⁰C, 380⁰⁰⁰⁰C and 400⁰⁰⁰⁰C 

The results in Figure 6.25 show encouraging specific contact resistivity values. These are 

not as good as the non-alloyed contacts of chapter 6.3.2, suggesting a reduction of 

doping/increased barrier. This is similar to the Pd/Ge/Ti/Pt contact to highly doped GaAs 

and is possibly due to an outdiffusion of Ga, which potentially p-type dopes the Pd2Ge 

layer as previously discussed in the EELS section. 

NiGe on InGaAs20 

Alternatively to the PdGe-based work a NiGe layer structure was tested based on the work 

by K. Tanahashi [147]. From literature this contact strategy gets the best results if annealed 

over 500⁰C. Given the fact that in this work the temperature ranges are adjusted to the 

maximum temperature determined by the oxide, the annealing temperatures are kept in a 

window between 300⁰C and 440⁰C. The semiconductor material used in this test is IM-

InGaAs20, which features a narrow bandgap, highly doped surface material. 
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Figure 6.26: NiGe thickness scaling study on n-GaAs material annealed for 60s at 300⁰⁰⁰⁰C, 320⁰⁰⁰⁰C, 

340⁰⁰⁰⁰C, 380⁰⁰⁰⁰C, 400⁰⁰⁰⁰C and 440⁰⁰⁰⁰C 

As shown in Figure 6.26, The samples have poor ohmic contact performance, certainly 

given the highly doped and low barrier nature of the material. A drop off in specific contact 

resistivity after 450⁰C was detected at IMEC but for the purpose of developing an ohmic 

contact suitable for GaGdO based MOSFET devices, the NiGe contact layers are not 

considered viable.  

Conclusion 

The electrical performance of the ohmic contact is predominately determined by the 

bandgap and the doping of the semiconductor material underneath the contact metal. The 

chemical analysis revealed little alloying (5 to 10nm) into the semiconductor material, 

which results in specific contact resistivity ranges varying between 5x10-5
Ωcm2 for x266 

material to 3x10-6Ωcm2 for IM-InGaAs20. Therefore, the PdGe-based contact could 

potentially be used as a self-aligned ohmic contact but suffers from an increased contact 

resistance compared to the NiGeAu contact as the semiconductor material in the channel 

material has a lower bandgap than the semiconductor material underneath the oxide, which 

is due to the buried channel layer structure. Removing the wider bandgap material prior to 

metal deposition could potentially improve the specific contact resistivity, which is 

described in the following section. 
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6.3.1.2  Dry Etch 

The chemical process of a wet oxide etch is isotropic for amorphous materials, which leads 

to lateral etching of the oxide underneath the mask. For small scaled devices the etch 

profile has to be vertical to limit access region pinning and depletion as discussed in 

chapter 6.2. Dry etching can form anisotropic features by making use of physical 

processes. Physical dry etch processes also feature detrimental aspects such as re-

deposition, mask erosion, surface contamination and material damage. Previous work by 

R. Hill and X. Li established a process for dry etching GaGdO on device material with a 

Ni/Ge/Au based ohmic contact [225]. 

Combining dry etch with the small lateral alloying from the Pd/Ge contact, opens the route 

to devices with sub-100nm gate length. This is of a particular interest for self-aligned 

devices, which feature small sidewall spacers and require little lateral diffusion of the 

source/drain ohmic contacts. It also offers possibilities to remove the wider bandgap 

material between the dielectric and the channel prior to metal deposition. 

Plasma etching of 6-1073 device material 

As a benchmark, devices were built on device material provided by Freescale 

Semiconductors. The contacts used, are the standard Au/Ge/Ni metal stack annealed at 

420⁰C for 60s. The dry etch was performed in an Oxford Instruments Ltd. Plasmalab 

System 100 RIE at room temperature. The etching end point was monitored by using an 

interferometer with a laser wavelength of 670nm. The etch process featured following 

conditions: SiCl4 flow rate 20sccm, RF power 60W and chamber pressure 4mTorr with a 

self bias of 260V. The etch rate is then roughly 4nm/minute with an rms surface roughness 

around 0.3 to 0.7nm [225]. 

Metallisation RC (Ω.mm) Rsh (Ω.sq) ρc (Ω.cm2) 

Au/Ge/Ni 0.72 385 1.39x10-5 

Au/Ge/Ni 0.93 368.75 2.44x10-5 

Table 6.10: TLM results on 6-1073-6 Freescale Semiconductor material using dry etch and a AuGeNi 

ohmic contact annealed at 360⁰⁰⁰⁰C for 60s. 

As shown in table 6.1, the contacts have relatively high specific contact resistivity values, 

but are ohmic and can be used as a benchmark. 

Device material x319 was then used to test the dry etch process with PdGe based ohmic 

contacts. The same dry etch strategy with ionised SiCl4 gas was used for the PdGe-based 
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ohmic contacts. Since the purpose of the research was to make the contacts scaled, a Pd/Ge 

layer thickness of 25nm/60nm was chosen to reduce the vertical height of the ohmic 

contact. This contact strategy didn't have the lowest specific contact resistivity when tested 

on highly doped GaAs but it was ohmic nonetheless. A temperature test between 300°C 

and 420°C was carried out using dry etched Pd/Ge contacts on x319 and the results are 

shown in Table 6.11. 

 Metallisation RC (Ω.mm) 

300⁰C Pd/Ge 25/60nm 8317.5 

340⁰C Pd/Ge 25/60nm 6097.88 

380⁰C Pd/Ge 25/60nm Not measurable 

420⁰C Pd/Ge 25/60nm Not measurable 

420⁰C 300s Pd/Ge 25/60nm 3906.38 

Table 6.11: Dry etch test using a Pd/Ge ohmic contact on GaO/GaGdO gate dielectric MOSFET device 

material 

The measurements showed non-ohmic behaviour to the point where some data could not 

be extracted. This means that either there is a residual layer or that the dry etch process 

induces damage into the material. The residual layer is potentially an effect of the dry etch 

as higher concentrations of C, O, Cl, GaO, GaH, GaCl, Al and Si were found on the 

surface just after RIE etching in previous work by X. Li et al. [226]. In order to clarify 

whether the Pd/Ge ohmic contact stack was causing the non-ohmic behaviour, the same 

experiment was repeated on x319 device material using the original Pd/Ge/Ti/Pt stack 

(50/120/30/30nm) since this had been tried and tested with device material (x266). Similar 

non-ohmic behaviour was observed excluding the contact stack as a potential fault.   

Ion Gun etch on IM-InGaAs20 

There are two potentially damage inducing processes, which could lead to non ohmic 

behaviour. One is the actual dry etch process, which leaves a thin layer of etch residue 

behind, which needs to be cleared prior to the metal deposition. This is done by making use 

of an in-situ ion gun in the Plassys 1 metallisation tool. To determine whether the damage 

is induced by the ion gun process, Pd/Ge/Ti/Pt contacts were made on 20nm 1x1019cm-3 

In0.53GaAs (IM-InGaAs20). The ohmic contact stack and semiconductor material are the 

same as the Pd/Ge/Ti/Pt test on IM-InGaAs20 material using a wet etch clean, which then 

allows for a direct comparison between dry etch and wet etch.   
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Two samples were made; one had a surface clean using the ion gun (Figure 6.27), the other 

one had a wet etch clean and no exposure to the ion gun (Figure 6.28). 

 

Figure 6.27: TLM result of Pd/Ge/Ti/Pt ohmic contact structure using ion gun sample cleaning on n-

In 0.53GaAs annealed for 60s at 360⁰⁰⁰⁰C, 380⁰⁰⁰⁰C, 400⁰⁰⁰⁰C and 420⁰⁰⁰⁰C 

S11056 normal wet etch sample clean: 

  

Figure 6.28: TLM result of Pd/Ge/Ti/Pt ohmic contact structure using wet etch sample cleaning on n-

In 0.53GaAs annealed for 60s at 360⁰⁰⁰⁰C, 380⁰⁰⁰⁰C, 400⁰⁰⁰⁰C and 420⁰⁰⁰⁰C  

Comparing Figures 6.27 and 6.28, the values for the contact resistance and specific contact 

resistivity are clearly higher when using the ion gun. This shows the ion gun is doing 

significant damage to the surface of the semiconductor. However, the contacts still show 

ohmic behaviour, which means the actual RIE dry etch must have some damaging effects. 
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Comparison of wet etch, dry etch and ion gun etch on x266 device material 

To investigate the effects of dry etch of GaGdO stopping on AlGaAs, x266 device material 

was used. Three samples were prepared: a full dry etch process, a wet oxide etch, a wet 

oxide etch and ion gun treatment. The full dry etch featured non-ohmic contact behaviour 

and is therefore not shown. The wet oxide etch and wet oxide etch with ion gun treatment 

are shown in Figures 6.29 and 6.30 respectively. 

  

Figure 6.29: TLM results of Pd/Ge/Ti/Pt ohmic contact structure on x266 device material used as a 

benchmark for Ion gun and dry etch damage tests 

Figure 6.30: TLM results of a Pd/Ge/Ti/Pt ohmic contact structure on x266 device material using a wet 

etch and ion gun surface clean. 
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The results for the wet etch (Figure 6.29) are comparable to the results previously found on 

x266 material (Figure 6.19). Remarkably there is an improvement of about one order of 

magnitude in specific contact resistivity when the ion gun is used. This potentially does 

some further cleaning of the sample or removes some wide bandgap material. The Pd/Ge 

contact would benefit from having low bandgap material as the specific contact resistivity 

on highly doped In0.53GaAs (Figure 6.28) is over one order better compared to wide 

bandgap device material. However, the dry etch strategy works for a Au/Ge/Ni ohmic 

contact. This is possibly due to the large alloying into the channel material and effectively 

by-passing the residual layer or the damage induced by the dry etch. Forming contacts on 

self-aligned devices on GaGdO device material will then be challenging and future work 

should focus on reducing the damage from a dry etch.  

Conclusion 

Two different anisotropic etches were used: a RIE etch technique and an ion gun etch 

technique. The RIE etch resulted in non-ohmic contact behaviour but the ion gun etch 

improved the specific contact resistivity about one order.  The ion gun etch was performed 

after a wet etch of gate dielectric and therefore more research is needed in order to perform 

a dry etch only gate dielectric removal. Dry etch techniques featuring optimized low 

damage etch processes could reduce the specific contact resistivity of buried channel 

devices even further, however the tendency is to move away from the buried channel 

device architecture towards a surface channel device architecture, which has the lower 

bandgap channel directly under the dielectric layer. The PdGe-based ohmic contact can 

therefore be implemented in the current GaGdO MOSFET device structures but only when 

a wet etch of the gate dielectric is used.  

6.3.2  Non Alloyed Contacts 

The non alloyed ohmic contacts feature no additional doping or reduction of bandgap 

barrier lowering and are therefore not suited for wide bandgap material. However, the non 

alloyed contacts form ohmic contacts on doped, low bandgap material (IM-InGaAs20). 

Five main non alloyed contact structures have been tried on this material: Au, Ti/Pt, TiW, 

Al and Ni. The choice of metals used, was dominated by the availability of metals in the 

metal deposition tools at the JWNC cleanroom. The non alloyed contacts featuring Au 

were mainly used to build and test scaled ohmic contact structures chapter 7. The material 

has not been used for full optimisation of the ohmic contacts, it is mainly used as a proof of 

concept. The Au ohmic contact structure was used as a benchmark while the Ti/Pt, Ni and 
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Al were used as Si processing compatible ohmic contact structures using e-beam metal 

deposition featuring different work functions. The TiW contact structure was used to test a 

Si compatible sputtered ohmic contact.  

6.3.2.1  E-Beam evaporated metals 

Table 6.12 shows the results for the Si compatible ohmic contact structures of Ti/Pt, Al and 

Ni. The Ti layer helps the removal of remaining native oxides and helps the Pt to bond to 

the semiconductor material. The Ni contact has been measured twice both unannealed and 

annealed at 250⁰C for 60s. This is based on previous work using “nickelide” ohmic contact 

structures [216, 217]. A HCl:H2O 1:100 30s clean was used for the samples to remove the 

native oxides and the metals where then e-beam evaporated. Patterns were formed using 

lift off. Only the best results are discussed in this chapter as a more detailed study is 

performed in the scaled ohmic contact chapter 7.  

Metallisation RC (Ω.mm) Rsh (Ω.sq) ρc (Ω.cm2) 

Ti/Pt 10/80nm 0.17 401.37 7.76x10-7 

Al 100nm 0.65 242.08 1.76x10-5 

Ni 100nm 0.42 222.83 8.02x10-6 

Ni 100nm 

(annealed) 

0.68 189.31 2.56x10-5 

Table 6.12: Overview of Si-compatible non alloyed ohmic contacts to highly doped In0.53GaAs material 

The result shows a promising specific contact resistivity for the Ti/Pt contact structure, 

making this a potential candidate for further optimisation. The Al and Ni ohmic contact 

structures show increased values for the specific contact resistivity compared to the Ti/Pt 

contact structure. Alloying the Ni ohmic contact structure didn't improve the performance 

and even seemed to affect the sheet resistance. A potential cause is that a Ni-As forms a 

low resistivity alloy, which laterally alloys hence reducing the sheet resistance. 

The Au contacts were predominantly used to verify scaled structures and allow for proof of 

concepts. The same HCl:H2O 1:100 30s surface cleaning was used.  

Metallisation RC (Ω.mm) Rsh (Ω.sq) ρc (Ω.cm2) 

Au 100nm 0.15 307.2 7.19x10-7 

Table 6.13: Overview of Au contacts to highly doped In0.53GaAs material 
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The contacts show reduced specific contact resistivity for ordinary TLM's in all cases. 

However, there is a difference between non-isolated and isolated (mesa) TLM structures. If 

there would be no lateral current flowing along the contact edges the sheet resistance for a 

normal TLM should be the same as the isolated TLM structures. The sheet resistance 

increases when measuring isolated contacts. This is an indication that contacts measured 

with normal TLMs have a certain error, which has to be compensated, which is explained 

further in chapter 7. 

The Au contact structure was also used to test c760 material with a 2.5nm InAs top layer. 

The lower bandgap should pin in the conduction band resulting in decreased specific 

contact resistivity values. A Au contact of 100nm thickness was e-beam evaporated after a 

surface clean experiment of varying HCl:H2O 1:100 etch times, as shown in Figure 6.31. 

  

Figure 6.31: Surface cleaning study on n-InAs material using HCl:H 2O wet etch and 100nm Au ohmic 

contact structure.  

A specific contact resistivity of 3x10-7
Ωcm2 is observed on a sample, which didn’t receive 

any native oxide etch. The specific contact resistance depends on the oxide etch time, 

which indicates that the oxide etch might actually remove or at least damage the thin 

2.5nm InAs layer. Growing a thicker layer of InAs might solve this problem and the 

reduced specific contact resistivity values suggest that this material is promising to reach 

the ITRS [1] requirements.  
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6.3.2.2  Sputtered metals 

The contact using a TiW metal structure was chosen based on the work by U. Singisetti et 

al. [113], which showed very low specific contact resistivities. The work features mainly 

two different metals: Mo and TiW. These metals have a work function close to the electron 

affinity of In0.53GaAs (4.5 eV), which should reduce the Schottky barrier when the Fermi 

level of the semiconductor is unpinned. Since at the time of the experiment Mo was not 

available in the metal deposition tools, TiW was chosen to investigate the quality of sputter 

deposition based ohmic contacts. Sputtering has the disadvantage of depositing a uniform 

layer across the sample. This prevents the use of a lift off technique and subtractive 

patterning techniques have to be used. First, the In0.53GaAs goes through a substrate 

cleaning cycle including a native oxide etch using HCl:H2O 1:100, secondly a 100nm TiW 

layer is deposited, thirdly a PMMA mask is spun, e-beam exposed and developed and 

finally the TiW layer is etched in a dry etch tool. The TLM structures on the sample were 

measured without annealing the sample first, and were measured again after a 400⁰C for 

60s anneal. The first run showed poor edge definition on the TLMs Figure 6.32, the cause 

of this problem was the PMMA being damaged by the dry etch. The solution was to do a 

post bake of 1h 180⁰C after the sample has been developed.  

 

Figure 6.32: Dark field image of poor edge definition after dry etching TiW using a PMMA mask 

The anneal of 400⁰C 60s was based on previous work done at the University of Glasgow 

by X. Cao.[136] The work investigates the sputter-induced damage caused by direct 

current magnetron sputter coating of W on GaAs based HEMT's. Post sputter annealing 

was found to significantly reduce the damage, therefore the sample also received a 400⁰C 

60s anneal. There should be no alloying as the melting points of refractory metals or 

compounds such as TiW are generally above 800⁰C. The results are shown in Table 6.14. 
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 Metallisation RC (Ω.mm) Rsh (Ω.sq) ρc (Ω.cm2) 

Non Annealed TiW 100nm 2.95 1020.34 8.53x10-5 

400⁰C 60s TiW 100nm 1.08 2215.67 5.42x10-6 

Table 6.14: TLM results of samples s11082 with non-annealed and annealed TiW ohmic contacts on 

highly doped In0.53GaAs 

According to the contact resistance and specific contact resistivity values, the damage gets 

annealed out to a certain degree. However, lower specific contact resistivity values are 

shown using Au and Ti/Pt ohmic contact structures on the same material. The sheet 

resistance measured is significantly higher indicating damage in the semiconductor 

material after dry etch. Also annealing the sample seems to damage the substrate 

substantially. Due to the lack of a damage free metal etch, the sputtering technique was not 

further researched or optimised. However, further optimisation of a damage free metal etch 

could potentially allow a sputtered metal to be investigated in the future. 

6.3.2.3  Conclusion 

Future different MOSFET device structures featuring highly doped, narrow band 

source/drain regions will allow for non alloyed contact deposition as additional doping or 

band gap lowering is no longer required. Four different ohmic contact structures were 

deposited using e-beam evaporated metals with different work functions and one ohmic 

contact structure was deposited using sputtering. The e-beam evaporated metal structures 

were; Ti/Pt 10nm/80nm, Al 100nm, Ni, 100nm and Au 100nm and the sputtered metal 

structure was TiW 100nm. The best ohmic contacts were formed using the Au and Ti/Pt 

ohmic contact, which had a specific contact resistance in the region of 7.5x10-7
Ωcm2. The 

Ni contact, which theoretically has a work function similar to Au had a specific contact 

resistivity, which was one order higher than the Au contact and deteriorated in 

contradiction to the results found in literature. The poor results of the annealed Ni sample 

are probably due to migration of Ni, which led to a decreased semiconductor sheet 

resistance. The Al contact with the lowest theoretical work function featured the highest 

specific contact resistivity. Therefore, the influence of the work function of the metal is not 

conclusive and is therefore probably not the crucial factor, which determines the quality of 

the ohmic contact on highly doped In0.53GaAs.  
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The results of the sputtered contacts were subject to the quality of the metal etch and 

before any conclusive results can be drawn the metal etch should be optimised. However, 

the contacts showed promising specific contact resistivity values and the sputtered contacts 

should be considered in future work. 

6.3.3  Device Results 

6.3.3.1  Scaling of Flatband Mode III-V MOSFETs with a GaO/GaGdO gate 

dielectric stack and an In0.3GaAs channel 

Introduction 

The purpose of this study is to determine whether the flatband III-V MOSFET device 

structure can be scaled along both the gate length and source/drain separation. This is an 

important step towards a device that has the dimensions required by the ITRS [1] for sub 

22nm technology generations. Scaling down the access regions could result in significant 

short channel effects. It is believed that the short channel effects arise from the 2-

dimensional nature of the channel charge control associated with the proximity of the 

source and drain alloyed contact regions to the gate of the device. Devices with gate 

lengths of 90nm, 180nm, 270nm and 1 µm each with a range of source/gate and drain/gate 

separation have been designed, fabricated and tested.  The dimensions of the source/gate 

and drain/gate separations are explained in Table 6.16. Originally both Si-compatible and 

Au/Ge/Ni source/drain ohmic contacts were planned to be tested on 6-1073 material using 

the Au/Ge/Ni contacts as a benchmark. However, the Pd/Ge/Ti/Pt contacts are not 

compatible with the dry etch process (chapter 4.4.3 and section 6.3.1.2) and therefore have 

not been tested as the reduced feature size impedes the use of a wet etch for gate dielectric 

removal. 

The motivation for utilizing a GaO/GaGdO gate dielectric stack and an In0.3GaAs channel 

is that the GaGdO dielectric stack [105] has a proven low interface state density when 

deposited on a GaAs surface layer. This constrains the channel composition to In0.3Ga0.7As 

for the flatband mode architecture, and therefore lower drive current. Higher In 

concentration causes lattice mismatches to occur between the channel and the 

GaAs/AlGaAs buffer layer. This introduces defects in the channel reducing the 

performance of the device. However, this choice of gate dielectric enables a decoupling of 

device short channel effects (SCE) from gate oxide trap issues, which both adversely affect 

key performance metrics such as subthreshold swing (SS).   
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The materials used for all device fabrication have the layer structure using a Al0.45GaAs 

wide bandgap layer and In0.3GaAs channel.  The 10nm GaGdO stack with dielectric 

constant of ~20, together with the underlying semiconductor layers, which spatially 

separate the device channel from the gate dielectric, result in an equivalent oxide thickness 

of 3.4nm. The full layer structure can be seen in the appendix under the materials section. 

  

a) Ec, Ef and ns profiles for Vg = 0.4V b) Ec, Ef and ns profiles for Vg = 1.2V 

  

c) Ec, Ef and ns profiles for Vg = 2V d) Channel carrier concentration against Vg 

Figure 6.33: Poisson - Schrodinger simulation of a 5nm GaGdO gate dielectric device material 

Based on Poisson-Schrodinger simulations, a positive Vt is expected for this layer structure 

as is shown in Figure 6.33d. This means that the channel features little charge population at 

0V and the device is then pinched off, resulting in an enhancement mode MOSFET device. 

Increasing the Vg above the Vt level Figure 6.33a results in the conduction band at the 

bottom of the channel bending below the Fermi level aided by the lower δ-doping layer. 

The carrier concentration distribution is then mainly situated near the bottom of the 

channel away from the oxide/semiconductor interface. The carrier concentration 

distribution shifts towards the oxide/semiconductor interface as Vg increases towards the 
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saturation voltage Vg = 2V Figure 6.33c with a flatband voltage predicted to occur at Vg = 

1.2V Figure 6.33b. The bulk of the carrier concentration, as observed in Figure 6.33 a,b,c, 

is in the channel at Vg below 2V, which reduces the influence of surface states at the 

semiconductor/oxide interface. This is an advantage of the buried channel architecture 

compared to an inversion mode device and as a result larger mobility values in the channel 

can be achieved.   

The process flow comprises the formation of ohmic contacts of varying separations, 

between, which Pt/Au gates are subsequently aligned. A RIE dry etch process using 

ionised SiCl4 gas, as previously discussed in section 6.3.1.2, was used for gate dielectric 

etch in the source/drain regions prior to electron beam evaporation of NiGeAu-based 

contact metallization, which was annealed at 360⁰C [106].   A “wrap-around” device 

design, shown in the micrograph of Figure 6.34 is utilized to obviate the need for an 

isolation level. Figure 6.34 also shows the relaxed 1 µm gate length/ 1µm gate/source and 

gate/drain devices.  In all cases the gate is lithographically aligned centrally between the 

source and drain contacts, with equal source/gate and gate/drain spacings. Low contrast of 

PMMA does not allow for a separation between source and drain smaller than 500nm and 

therefore the source and drain have been written and processed independently over 2 

different lithography steps. Table 6.15 summarises the gate length (LG) and source/gate 

(LSG) separations of the III-V MOSFETs investigated in this work.   

 
Figure 6.34: wrap 

around device design and relaxed device 

geometry 

Lg Lsg 

90nm 90nm 190nm 1μm 

180nm 180nm 280nm 1μm 

1μm 1μm 1μm 1μm 

Table 6.15: Summary of Lg and Lsg sizes used for 

scaled flatband mode III-V MOSFETs with 

GaO/GaGdO gate dielectric stack 
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Device results 

The main device characteristics will be discussed using the devices with 1µm access 

regions in order to eliminate potential short channel effects. This data can also be directly 

compared against the work performed by R. Hill et al. [4] using an identical layer structure 

and to the devices using a Al2O3 gate dielectric, as shown in section 6.3.3.2. The devices 

with a scaled access region below 1μm will be discussed separately. The motivation for 

choosing the source/gate and gate/drain spacings of the gate length+100nm were in an 

attempt to mitigate against the lateral alloying of the ohmic contact metal, which can be 

seen in Figure 6.35.  This contact metal alloying compromises the performance of the most 

aggressively scaled devices due to poor alignment ( +/- 30nm) and large lateral alloying of 

the NiGeAu contacts.  

  
(a) (b) 

Figure 6.35: Effects of laterally alloyed NiGeAu on source/drain 270nm gap (a), including a 90nm 

overlapping gate (b) 

 

The benchmark data used is previous Glasgow work [4], which features low subthreshold 

swing, high  transconductance, low Ron and a high peak mobility of 5230cm2/V.s. The 

main difference between this work and the work in [4] is the oxide etch. This work uses a 

dry etch to remove the oxide to obtain little lateral removal of the oxide in the access 

regions allowing for more aggressively scaled devices. However, a dry etch technique can 

potentially increase contact resistance, due to contamination of the surface prior to contact 

deposition [226], resulting in larger Ron and lower gm values compared to wet etched 

devices. 
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90nm, 180nm and 1µm gate length III-V MOSFETs with source/gate and 

source/drain separations equal to 1µm. 

Figure 6.36 shows the Ids(Vds,Vgs) characteristics of typical 1µm, 180nm and 90nm gate 

length devices, each with 1µm source/gate separations.   

 

(a) (b) (c) 

Figure 6.36: Ids(Vds,Vgs) characteristics of typical III-V MOSFETs with 1µm source/gate separations 

for gate lengths of (a) 1µm; (b) 180nm; (c) 90nm 

Figure 6.37 shows the log Ids,(Vg - Vt) curves for these devices with 1.2V drain bias.  The 

threshold voltage was determined to be the gate bias required to reduce the drain current 

(measured at Vds = 1.2V) to 1µA/µm. 

  

Figure 6.37: logId/(Vg-V t) curves for 1µm, 180nm and 90nm gate length devices with 1µm source/gate 

separations 

Table 6.16 summarizes the on-state and off-state performance of the dry etch scaled 

devices compared to the work of [4].  

 

LG = 90 nm
LG = 180 nm
LG = 1 µm

Vd = 1.2 V

LG = 90 nm
LG = 180 nm
LG = 1 µm

LG = 90 nm
LG = 180 nm
LG = 1 µm

Vd = 1.2 V
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 90nm  180nm 1µm 1µm [4] 

Vt (V) -0.29 -0.01 +0.31 +0.26 

Id,sat (mA/mm) 288 260 286 407 

SS (mV/dec)  78 76 68 102 

gm (mS/mm) 346 384.6 357 477 

Ron (Ω.µm) 2503 2387 2703 1920 

Ion/Ioff 2.54x101 3.0x104 1.2x106 6.3x104 

Table 6.16: Summary of device metrics for flatband mode III-V MOSFETs with GaO/GaGdO gate 

dielectric stack with Lsg = 1μm 

The detailed performance of the dry etched device with 1µm access regions is discussed 

below.  

Vt: The Vt is comparable between dry etch and wet etched contacts for a device with a 

1µm Lg. This indicates that the oxide quality and underlying semiconductor material is not 

affected by the source/drain oxide etch. Scaling the Lg from 1µm to 90nm results in a 

voltage drop by 0.6V for Vt. The voltage drop is possibly due to a loss in electrostatic 

control. The loss in electrostatic control could be due to a loss of metal work function or 

from the buried channel layer structure. The barrier layer between the channel and the 

oxide helps to decouple the channel from gate oxide traps, but has the drawback that the 

channel is further away from the gate metal increasing potential electrostatic control issues. 

The layer structure should ideally be optimised with the smallest barrier layer between the 

channel and oxide as possible and care has to be taken to avoid residue forming on the 

oxide, which can decrease the impact of the metal work function.  

Id,sat: The Id,sat is comparable between the different gate lengths, suggesting the limiting 

factor for Id,sat is the maximum carrier concentration in the access regions. The larger Id,sat 

values in [4] can be explained by the lower total on resistance and the lower contact 

resistance value of 0.41Ω.mm [4] compared to 0.79Ω.mm.   
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Subthreshold performance: The flatband mode III-V MOSFET architecture using a dry 

etch technique delivers excellent off-state performance for gate lengths down to 90nm, 

with no appreciable degradation of subthreshold swing (SS), measured at both low and 

high drain bias with reducing gate length. These are some of the lowest subthreshold swing 

data ever obtained for III-V MOSFET devices. The channel is capable of switching off 

suggesting the gate oxide traps have little influence on the channel. Even with lower Id,sat 

and higher Ron values the Ion/Ioff ratio of these devices is superior to [4] for a 1µm gate 

length device with 3µm source/drain pitch.  The Ion/Ioff ratio was determined with 

following parameters; Ioff, Vgs = 0V and Vd = 2V; Ion, Vgs = 1.2V and Vd = 2V.   

Ig: Low gate leakage current in the order of 30pA was recorded, which suggests a high 

quality oxide with a high-k value for the GaO/GaGdO dielectric stack. The low gate 

leakage is confirmed by the low subthreshold swing values with good uniformity across 

the sample.  

RSD: Increased Ron and RC values compared to wet etch devices confirm the detrimental 

effects of a dry etch technique compared to a wet etch technique. The contact resistance 

measured by TLM measurements is relatively high at 0.79Ω.mm with a corresponding 

specific contact resistivity of 1.81x10-5
Ω.cm-2. This value is rather high compared to the 

specific contact resistivity calculated from [4], which is 3.74x10-6Ω.cm-2. However, 

aggressively scaled devices using wet etch would not be feasible due to the lateral etching 

and therefore dry etch has been used.    

The devices show comparable performance to [4] with excellent off-state performance but 

with slightly increased contact resistance. In order to analyse the potential short channel 

effects the devices with scaled access regions will be discussed. 

90nm and 180nm gate length III-V MOSFETs with source/gate and source/drain 

separations equal to the gate length and the gate length + 100nm. 

The advantage of the scaled access regions is an increase of gm and Id,sat as the overall 

contribution of the access region resistance becomes smaller but this could result in short 

channel effects. An inversion mode MOSFET device is considered to be short, when the 

channel length is the same order of a magnitude as the width of the source/drain depletion-

layer. Flatband MOSFET devices do not have the conventional depletion-layers as there is 

no p-n junction and should then be less susceptible to short-channel effects. The short-

channel effects can still occur from the depletion region caused by the ohmic 
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contact/semiconductor interface, which will become more prevalent when access regions 

are being scaled. The short-channel effects manifest themselves as a limitation on electron 

drift characteristics in the channel and a shift of Vt [204]. The main different short-channel 

effects are: DIBL and punchthrough, surface scattering, velocity saturation, impact 

ionization and hot electrons.  

Figure 6.38 shows the Ids(Vds,Vgs) characteristics of typical 180nm and 90nm gate length 

devices with source/gate (LSG) separation equal to the gate length (LG) and equal to the 

gate length + 100nm.  

  

(a) LG = 180nm, LSG = 280nm; (b) LG = 180nm, LSG = 180nm 

  

(c) LG = 90nm, LSG = 190nm (d) LG = 90nm, LSG = 90nm 

Figure 6.38: Ids(Vds,Vgs) characteristics for various III-V MOSFETs 

Figure 6.39 shows the logIds,(Vg-Vt) curves for these devices with 0.7V drain bias.  The 

threshold voltage, Vt, was determined as above, for a drain voltage, Vds = 0.7V. 

LG = 180 nm
LSG = 280 nm
LG = 180 nm
LSG = 280 nm

LG = 180 nm
LSG = 180 nm
LG = 180 nm
LSG = 180 nm

LG = 90 nm
LSG = 190 nm
LG = 90 nm
LSG = 190 nm

LG = 90 nm
LSG = 90 nm
LG = 90 nm
LSG = 90 nm
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Figure 6.39: logId/(Vg-V t) curves for 180nm and 90nm gate length devices with source/gate spacings of 

Lg and Lg+100nm.  The data was obtained for drain bias of 0.7V. 

 Table 6.17 summarises the on-state and off-state performance of these devices.  

LG 

(nm) 

LSG  

(nm) 

Id,sat 

(µA/µm) 

gm,max 

(µS/µm) 

Vt (V) SS @ Vds = 0.7V  

(mV/dec) 

180 280 364 494 +0.01 84 (-0.41V) 

180 180 415 477 -0.01 80 (-0.39V) 

90 190 408 446 -0.35 202 (+0.15V) 

90 90 305 288 - - 

Table 6.17:  Summary of on-state and off-state characteristics of 180nm and 90nm gate length devices 

with aggressively scaled source/gate separations.  The gate voltage relative to the threshold voltage (Vg- 

V t) at which the sub-threshold swing was determined is shown in brackets for each data point. 

The data shows a number of trends.  Firstly, reducing the source/gate separation results in 

increased output conductance, and more pronounced on-state breakdown.  Nevertheless, 

the 180nm gate length devices with 180nm source/gate separation still retain good off-state 

performance as indicated by the sub-threshold swing.   

Both aggressively scaled 90nm gate length devices suffer significant on-state and off-state 

issues, with a negative shift in threshold voltage and increased sub-threshold swing in the 

devices with 190nm source/gate separation, and an inability to control the current in the 

90nm source/gate separation device.   

LG = 90 nm; LSG = 90 nm
LG = 90 nm; LSG = 190 nm
LG = 180 nm; LSG = 180 nm
LG = 180 nm; LSG = 280 nm

Vd = 0.7 V

LG = 90 nm; LSG = 90 nm
LG = 90 nm; LSG = 190 nm
LG = 180 nm; LSG = 180 nm
LG = 180 nm; LSG = 280 nm

Vd = 0.7 V
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Even though there is a negative voltage shift, the Vt numbers stay similar for a 90nm Lg 

device with Lsg = 190nm and 1μm. This suggests that there are little short-channel effects 

taking place from reducing the source/gate and drain/gate gap size. On-state breakdown 

and shift in Vt of scaled devices suggests however that there are potentially some short-

channel effects from scaling the gate length.  

Conclusion 

A number of conclusions can be drawn from this study.  First, the utilization of a gate 

dielectric and device architecture with known low interface state density is vital when 

exploring device scaling issues, in particular where off-state performance metrics such as 

sub-threshold swing are important.  The 1 µm source/gate separation devices show that the 

flatband mode architecture appears to be robust to scaling at least to 90nm, with the layer 

design and doping strategy adopted in this work.  In addition, whilst the more aggressively 

scaled 180nm devices have encouraging off-state performance, on-state breakdown is a 

significant issue, which will have to be mitigated by device re-engineering, with particular 

emphasis on minimizing the lateral diffusion of the ohmic contacts.  The 90nm 

aggressively scaled devices appear to be suffering significantly from this issue and in the 

most extreme case, to the extent that the devices cannot be turned off.  

6.3.3.2  Surface Channel Al2O3 gate dielectric stack MOSFET devices 

Introduction 

The advantage of a GaO/GaGdO gate dielectric stack is that it forms an interface with low 

density of states on GaAs [101]. The quality of the oxide deteriorates when moving from a 

GaAs to an InxGa1-xAs interface. To counter this problem the GaO/GaGdO gate dielectric 

stack MOSFET devices have a buried-channel quantum-well structure with a thin GaAs 

layer underneath the oxide. The buried-channel structure allows increasing the indium 

concentration to a maximum of 30% in the channel region while maintaining a GaAs/oxide 

interface. The drive current of the device is determined by the drift velocity and the 

number of carriers. The drift velocity is dependent on the mobility and applied field. 

Therefore, the indium concentration should be as high as possible in the channel region to 

benefit from the higher mobility values. The buried channel device structure has the 

drawback of having a relatively large distance between the channel and the metal/oxide 

interface. This limits the potential to scale the devices as the electrostatic control of the 

gate reduces as the distance between the channel and the metal/oxide interface increases. 

This distance will adversely affect the CET value, which will also limit the maximum 
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channel thickness for scaled devices with Lg values under 100nm. Further disadvantages of 

the GGO device structure are a relatively high access resistance. The wide bandgap 

GaAs/AlGaAs layer underneath the oxide makes ohmic contact formation more difficult 

because of the larger Schottky barrier. The ohmic contact issue was overcome by using a 

NiGeAu alloy, which alloys into both the channel and access region. This ohmic contact 

structure is not Si-processing compatible and the compatible alloying metals have far less 

vertical and lateral alloying resulting in increased contact resistance values. 

To solve the scaling problems of a buried-channel structure the buffer layer between the 

oxide and the channel is removed, resulting in a surface channel device improving the 

electrostatic control. The indium concentration of the channel is increased from 30% to 

53% for extra drive current. However, the GGO gate dielectric is not suitable for this 

device structure and an alternative Al2O3 gate dielectric is used. The Al2O3 grown by 

atomic layer deposition (ALD) has better gate dielectric properties than MBE grown GGO 

on In0.53GaAs and features a relatively low interface state density [205]. Also the lattice of 

the layer structures corresponds with the lattice of InP, which makes integration of this 

structure on a 200mm Si-platform possible [234]. The heterostructure, delta doping layer 

and the channel thickness have been optimised with the aid of 1D Poisson – Schrodinger 

simulations [207] resulting in the c707 and c764 layer structures, which are described in 

the list of materials in the appendix.  

The layer structure is optimised to obtain a positive Vt as shown by the 2D carrier 

concentration of the channel and is plotted as a function of Vg in Figure 6.40d. The 

oxide/semiconductor interface states can trap electrons and the corresponding charge 

population can have detrimental effects on the performance of the gate oxide. These effects 

can be observed in a CV measurement by a stretch out and frequency dispersion of the CV 

data, which was discussed in more detail in chapter 5.5. At Vg = 0V there is no significant 

charge population in the channel and the device is then fully pinched off. Increasing the Vg 

above the Vt level (Figure 6.40a) results in the conduction band at the bottom of the 

channel bending below the Fermi level aided by the δ-doping layer. The carrier 

concentration distribution is then mainly situated near the bottom of the channel away from 

the oxide/semiconductor interface. This will potentially help to reduce the detrimental 

effects of the interface scattering. The carrier concentration distribution shifts towards the 

oxide/semiconductor interface as Vg increases as shown at flatband and at Vg = 2V (Figure 

6.40b,c).     
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a) Ec, Ef and ns profiles for Vg = 0.4V b) Ec, Ef and ns profiles for Vg = 0.9V 

  

c) Ec, Ef and ns profiles for Vg = 2V d) Channel carrier concentration against Vg 

Figure 6.40: Poisson - Schrodinger simulation of Al2O3 device material 

The advantage of this structure is that the ohmic contacts are directly deposited on narrow 

band-gap material reducing the Schottky barrier height. The higher mobility also results in 

a lower access region resistance, which should aid reducing the total on resistance. The 

disadvantage of this structure is that any defects coming from the oxide/semiconductor 

interface will directly affect the channel resulting in a reduction of the drive current and an 

increased sub-threshold slope value (SS). The sub-threshold swing is mainly determined by 

the interface state density (Dit) in the oxide, preventing the device from switching off. A 

good quality oxide interface is then key as the flatband devices have no p-n junctions to aid 

the sub-threshold performance.  

The device fabrication consists of two lithography steps using a wrap around gate. First, a 

combined gate/marker level using a e-beam evaporated Platinum/Gold gate stack using E-

beam lithography and lift-off.  The second step consist of source/drain ohmic contacts, 
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which are patterned by E-beam lithography and are lithographically aligned by making use 

of Penrose [208] patterns to aid marker alignment accuracy. Prior to metal deposition the 

Al 2O3 layer is etched using a selective wet etch in dilute KOH. A Pd/Ge/Ti/Pt 

(10nm/25nm/30nm/30nm) ohmic contact is then deposited by e-beam evaporation and 

annealed in a RTA at 400°C for 10s under nitrogen atmosphere.  

The impact of scaling the gate lengths has been investigated by using following gate 

lengths: 100nm, 300nm, 500nm, 1µm, 2µm and 20µm. The access regions have been kept 

at 1µm to allow for rapid turnaround and stable processing. The design also includes TLM 

and capacitor structures to measure the ohmic contacts and oxide quality.  

Device results 

The devices in this work use a similar device layer structure (c707) and processing as in 

the work presented by S. Bentley et al. [206]. The main difference is the source/drain 

ohmic contact, which in this case is a Si-processing compatible Pd/Ge/Ti/Pt alloy. TLM 

measurements indicate that Id,sat should be approximately 280 mA/mm using Pd/Ge/Ti/Pt 

ohmic contacts on c764 material. To compare the Pd/Ge/Ti/Pt device results to the 

Ni/Ge/Au device results, device data measured by S. Bentley on c764 material are used, 

which varies from the results from the c707 device results [206]. 

The output and transfer characteristics of a MOSFET device with Lg = 20µm can be seen 

in Figure 6.41.  

  

a) Output characteristics b) Transfer characteristics (Vd= 1V) 

Figure 6.41: I-V Characteristics of a c764 Lg=20µm device using Pd/Ge/Ti/Pt contacts 

On first inspection of Figure 6.41, it is clear that the devices show reduced gm, Id,sat and 

IdVg response compared to the Ni/Ge/Au [206] devices. This indicates that the source/drain 

ohmic contacts are worse than the Ni/Ge/Au contacts on c707 material. However, on 
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resistance (Ron) on c707 is significantly lower at 3030Ω.µm than on both c764 devices for 

Lg = 20µm hence limiting the comparison between the two wafers. The main device 

parameters are shown in Table 6.18 and show a relatively high contact resistance value for 

the source/drain ohmic contacts. The contact resistance of the Pd/Ge/Ti/Pt is high 

compared to the Ni/Ge/Au resulting in a decrease of gm and Id,sat. The sub-threshold slope 

should not be affected by the ohmic contacts but is predominantly dictated by off state 

leakage current.  

c764 Ni/Ge/Au Pd/Ge/Ti/Pt 

gm (mS/mm) 103 92.3 

Id,sat (mA/mm) 122 103 

SS (mV/dec) 169 244.5 

Ron (Ω.mm) 8.54642 11.0744 

RSD (Ω.mm) 0.94 1.82 

Rsh (Ω/sq.) 333.38 369.42 

Table 6.18: Comparison of device parameters between Ni/Ge/Au [206] and Pd/Ge/Ti/Pt source/drain 

contacts on c764 Lg = 20µm devices 

The detailed performance will be discussed by making use of the device data over different 

gate lengths. Table 6.19 shows a summary of the device parameters over different gate 

lengths. 

Lg 100nm 300nm 500nm 1µm 2µm 20µm 

gm (mS/mm) 112.6 180 188 192.2 188.85 92.3 

Id,sat (mA/mm) 155.7 182 188.9 210 188.2 103.1 

SS (mV/dec) 566.7 269.4 236.3 250.4 234.2 244.5 

Ron (Ω.mm) 4.1451 4.295 3.4387 3.6004 4.1166 11.0744 

Vth (V) -1.34 -0.22 -0.22 -0.19 -0.16 -0.11 

Table 6.19: Overview of detailed device performance of MOSFET devices with variable gate lengths on 

Al 2O3 gate dielectric stack device material. Access regions are 1µm. 

a) Vt:  The device results show a dependence between Lg and Vt. Reducing the size of the 

gate from 20µm down to 300nm shows a steady decrease in the value of Vt. This is 

possibly due to a loss in electrostatic control from reducing the gate length. The layer 

structure has been optimised for an ideal large scale device and this will have to be taken 
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into account when scaling down MOSFETs to sub 100nm gate pitches. There is a sudden 

drop in Vt when the gate is scaled to Lg = 100nm due to an over etch of the gate oxide. 

This can possibly be addressed by moving from a wet etch to a dry etch.  

b) Id,sat: The Id,sat measured from the TLM's is considerably higher than the Id,sat extracted 

from the Lg = 20µm devices. The MOSFET devices have been built and measured on the 

same sample as the TLM's and therefore the access region of the devices should be 

identical to the gaps between the TLM's in terms of carrier concentration and sheet 

resistance. The reduction in Id,sat is then the effect of the gate region on the channels 

performance, reducing the maximum current. The most likely explanation is that there is 

an increase in trapped charges when depositing a gate metal onto an oxide/semiconductor 

interface. The trapped charge then limits the maximum carrier concentration, resulting in a 

reduced Id,sat in the gate region. Id,sat is improved when scaling down the devices as the area 

underneath the contact becomes relatively smaller compared to the access region Table 

6.19. The Id,sat value is then determined by the quality of the ohmic contacts. 

c) Sub-threshold performance: The values for the sub-threshold swing are consistently 

around the 200mV/dec mark even for the scaled devices. These values are large compared 

to the values extracted from the buried-channel devices indicating a worse 

oxide/semiconductor interface. This is potentially due to a leaky oxide or increased trapped 

charges. Slightly lower values were found in the work done by S. Bentley indicating that 

the quality of the oxide/semiconductor interface will be critical to improve sub-threshold 

performance.  The results for the 100nm device indicate that the oxide is poor and confirm 

the wet etch issues. 

d) Ig: Typically the number for Ig,max on buried channel devices is in the order of  

1x10-9A/cm-2 or smaller. The values measured on the devices are in the range of  

2x10-4A/cm-2 in saturation regime and do not scale with Lg. These increased values explain 

the poor sub-threshold performance. There is a reasonably large non-uniformity between 

individual devices of over 2 or 3 orders of magnitude suggesting that the uniformity of the 

oxide needs to be improved. The high leakage current also prevented from performing C-V 

measurements on this sample.  

g) RSD: The contact resistance using a Pd/Ge/Ti/Pt contact structure on identical c764 

substrate material is nearly twice as high as the NiGeAu contacts. The contact resistance 

values are 0,94Ω.mm and 1.82Ω.mm for the NiGeAu and Pd/Ge/Ti/Pt respectively. This is 
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possibly due to the non optimised etch for Pd/Ge/Ti/Pt contacts, which feature very little 

lateral alloying into the channel unlike the NiGeAu contact structure. The lack of available 

substrate material meant that the annealing time and temperature was based on previous 

results on doped In0.53GaAs material and the wet etch was based on previous work using 

NiGeAu contact structures. The contact still needs to be further optimised to achieve lower 

contact resistance values. A Pd/Ge/Ti/Pt annealing temperature test was then performed on 

c707 material and compared to the NiGeAu results [206] using a AZ400K developer [239], 

for 2min45s, as a wet oxide etch. The contact resistance using NiGeAu contact structures is 

0,57Ω.mm and this corresponds to a specific contact resistivity of 3.9x10-6Ω.cm2 for a 

sheet resistance of 768.9Ω/sq. The optimal annealing temperature for the Pd/Ge/Ti/Pt 

contact is around 350°C for 60s, which results in a contact resistance of 0.46Ω.mm and a 

specific contact resistivity of 6.1x10-6
Ω.cm2 for a sheet resistance of 460Ω/sq as seen in 

Figure 6.42.  

  

Figure 6.42: TLM results of a scaled Pd/Ge/Ti/Pt ohmic contact structure on Al2O3 device material 

annealed for 60s at 300⁰⁰⁰⁰C, 350⁰⁰⁰⁰C, 400⁰⁰⁰⁰C and 450⁰⁰⁰⁰C 

The difference in sheet resistance can have various causes: the lateral alloying reduces the 

actual gap size and increases the contact width, which has to be compensated for, making 

TLM measurements less reliable. The c764 didn't suffer from the sheet resistance variation 

over temperature and it's then assumed that this is a wafer dependent issue.  

Regardless of the sheet resistance variation, the ohmic contact parameters for a 

Pd/Ge/Ti/Pt structure are in line with the Ni/Ge/Au contact results. The Pd/Ge/Ti/Pt 

contacts can therefore be used as an alternative Si-compatible contact to the Ni/Ge/Au for 
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rapid turnaround MOSFET devices. Further optimisation of the oxide etch and annealing 

times and temperatures is needed to reduce the contact resistance. 

Comparing the ohmic contact results to MOSFET devices, with high concentration Indium 

channel materials and Pd/Ge ohmic contacts, the results are similar to the work done by X. 

Gong [240] and H.-C. Chin [238], on Si-implanted In0.7GaAs, with respective RS/D values 

of 2.25Ω.mm [240] and 1Ω.mm [238]. The work done by T. D. Lin [45] shows that 

specific contact resistivity values as low as 1.86.10-6
Ω.mm can be obtained, resulting in 

high gm (700ms/mm) and Id,sat (960mA/mm) values, for self aligned inversion mode 

MOSFET devices. Other Si-compatible ohmic contact strategies such as nickelide 

source/drain regions have shown reasonably high contact resistances, on Si-implanted 

In0.7GaAs, of 7.6Ω.mm [216]. So far the values required by the ITRS have only been 

approached with contacts with regrown source drain regions [49, 246] or recess gate device 

structures [50, 241, 242, 243, 244, 245] and should be the main focus in future work. 

Conclusion 

The surface-channel flatband architecture has shown promising mobility values with 

corresponding high carrier concentrations. Well behaved surface channel MOSFET 

devices were made with both NiGeAu and Pd/Ge/Ti/Pt based ohmic contacts. The 

performance of the Pd/Ge/Ti/Pt contacts is inferior to the NiGeAu but can be improved 

after optimising various parameters such as annealing temperature, oxide etch and the ratio 

of Pd/Ge layer thickness, however the stringent ITRS requirements are unlikely to be met 

and alternative contact strategies such as regrowth should be considered. The Al2O3 gate 

stack also requires an improvement to challenge the GaO/GaGdO gate dielectric stack in 

terms of leakage and density of states. Future work should focus on reducing ohmic 

contact resistance and improving the Al2O3 gate dielectric stack.      
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7  Scaled ohmic contacts 

7.1  Introduction 

As the size of MOSFETs decreases following the ITRS [1] technology generations, the 

resistance of source/drain contacts is critical as their dimensions scale down as well. The 

most common method of determining the ohmic contact resistance (TLM [85]) generally 

uses structures, which are at least two times larger in dimension than the transfer length in 

order to eliminate current crowding effects [88]. Another issue is that nearly all the current 

measurement methods such as TLM, CTLM and CBKR (chapter 5) utilise an 

approximation in the calculations, where it is assumed that the sheet resistance underneath 

the contact (Rsk) is the same as the bulk semiconductor sheet resistance between the 

contacts (Rsh). This approximation impedes the use of an accurate simulation showing the 

behaviour of the contact resistance below the transfer length as the sheet resistance 

underneath the contact can vary from the bulk semiconductor sheet resistance. There are, 

however measurement methods, which include the sheet resistance underneath the contact 

such as: FCTLM [209], 6 – terminal CBKR [210], end resistance measurement [220] and 

CTLM using a curve fitting based technique [42]. Apart from the FCTLM structure, these 

measurement structures have dimensions well above two times the transfer length of the 

ohmic contact and the behaviour of scaled contacts below the transfer length has to be 

modelled. This work focuses on the actual ohmic contact resistance of a scaled sub-

micrometer contact and is then compared to the results obtained from ordinary 150µm x 

150µm pad sized TLMs. The results from the ordinary TLMs are then used in a simulation 

to predict the impact of current crowding effects and then compare them to the measured 

results from the scaled contacts. If the two deviate the resistance underneath the contact is 

likely to be different from the bulk semiconductor sheet resistance. The difference between 

predicted and measured transfer length can then be used to extract the sheet resistance 

underneath the contact. This experimental investigation necessitated the realisation of a 

new type of test structure based around physically small ohmic contacts. A new TLM test 

structure was therefore designed and tested and is described in the following sections. 

7.2  Theory 

7.2.1  Extraction of sheet resistance underneath a contact (Rsk) 

As discussed in chapter 5.3.2, one way of determining the sheet resistance underneath the 

contact is the contact end resistance extraction method. Another way is scaling the contacts 
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below the transfer length, where the transfer length can be determined experimentally from 

the point where the current crowding effects start to take place. The sheet resistance 

underneath the contact can then be found in a similar way as used in the contact end 

resistance method. The total resistance for contacts with a length greater than two times LT 

is given in Equation 5.15 and can be split up using a standard linear function: R�x� � A 6 Bx         (7.1), 

where R is the total resistance (RT), x is the gap size between the TLM contacts, B is 

determined by the normalised bulk semiconductor sheet resistance (Rsh/W) and A is equal 

to the contact resistance of  two contacts (2.RC). Solving the total resistance equation for 

RT = 0 Ω.mm gives an absolute value (Lx); L� � �.¿$E.�F/�¿$¢/� � �.¿$E.�F¿$¢ 	          (7.2) 

The ratio between LT and Lx will then directly determine the ratio between Rsh and Rsk. The 

value of Rsk can then be found by combining the results from ordinary contacts and the 

scaled ohmic contacts. Equation 7.2 does not take the metal sheet resistance (Rm) into 

account. In order to incorporate the metal sheet resistance, the RC factor in Equation 5.15 

has to be adjusted according to the model presented by Scott et al. [82] using Equation 

5.10. This includes the contact length (d), which will determine whether current crowding 

effects take place. The complete equation for the total resistance including the metal sheet 

resistance and current crowding effects then becomes: 

R" �	 �¿$E.¿~�2�¿~�2¿$E��.>���	� �ÁF��.�FC£.�¿~2¿$E�.�!R�	� �ÁF� �	 ¿$E.¿~�.�FC£.�¿~2¿$E�.�!R�	� �ÁF�6	 �¿~�2¿$E��.>���	� �ÁF��.�FC£.�¿~2¿$E�.�!R�	� �ÁF�   (7.3) 

 

This equation can be simplified when d>>10.LT; the sinh(d/LT) factor becomes large and the first 

term then becomes small and can be ignored leaving: 

R" �		 �¿~�2¿$E��.>���	� �ÁF��.�FC£.�¿~2¿$E�.�!R�	� �ÁF� � 
�¿~�2¿$E��.�F�.�¿~2¿$E� . coth� ��F�    (7.4) 

 

With the condition d>>10.LT, the coth(d/ LT) factor becomes 1 and so (7.4) reduces to: 

R" �	 �¿~�2¿$E��.�F�.�¿~2¿$E�           (7.5) 

 

Substituting (7.3) into (7.2) gives: 

 

L� �	 �.¿v¿$¢/� � �./Ï~�ÐÏ$E�4.ÁFÂ.�Ï~ÐÏ$E�Ï$¢Â �	 �.�¿~�2¿$E��.�F¿$¢.�¿~2¿$E�        (7.6) 
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All the parameters apart from Rsk can be extracted from the ordinary TLM structure and the scaled 

structure. The absolute value Lx is the extrapolated value from the ordinary TLM’s where RT = 

0Ω.mm. Rsh can measured using a Van der Pauw structure or alternatively can be extracted from 

the TLM result. 

Rm can be found by measuring the metal sheet resistance and LT is found by the transfer length 

extracted from the scaled TLM structures. The Rsk value is extracted from Equation 7.6 by solving 

the following quadratic equation: 

 

�*.¿$¢�.�F �	¿~�2¿$E�¿~2¿$E          (7.7) 

The value for Rsk will then be a positive value, ignoring the negative term of the quadratic 

equation: 

 

R�O �	 ·Á*.Ï$¢�.ÁF ¸2M·Á*.Ï$¢�.ÁF ¸�2	N.¿~.·Á*.Ï$¢�.ÁF ¸@N.¿~�
�       (7.8) 

The specific contact resistivity value can then be extracted from LT given in Equation 5.10 

 

7.2.2  Random Error analysis on a TLM measurement including Rsk 

When using the TLM method to extract the specific contact resistivity and sheet resistance 

an error analysis should be taken into account [211]. The work by H-J. Ueng et al. [211] 

considers the Berger model only and has to be expanded to take the sheet resistance 

underneath the contact into account from the Reeves model. As described in equation 5.22, 

the Rsk value can be found by comparing the measured LT with Lx. The random error is 

then found by extrapolating a straight line with correlated errors for the Lx value. Solving 

the linear Equation 7.1 for Lx, we can find: 

A = 2.RC           (7.10) 

B = Rsh/W           (7.11) 

Lx = -A/B           (7.12) 

This is a negative value, however when calculating the Rsk value we use the absolute value. 

By differentiating equation 7.12 the uncertainty in Lx can be derived: 
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Δ	L� � /9�*9+ 4 ΔA 6 /9�*9m 4ΔB 6 /9�*9�4 ΔW       (7.13) 

Δ	L� � Ñ9�1|�9+ ÒΔA 6 Ñ9�1|�9m ÒΔB 6 Ñ9�1|�9�ÒΔW  

After derivation: 

ΔL� � /rm4 	ΔA 6 / +m�4 	ΔB 6 / +�m4 	ΔW      (7.14) 

Finding relative error: 

��*�* �	 /£|4	�+2/ 1|�4	�m2/ 1Â|4	��/1|4   

��*�* �	/�++ 4 6	/�mm 4 6	/��� 4        (7.15) 

The total random error is then given by: 

ΔA � �σ+|Ô�,ÔÏ 	6 	σ+|ÔÂ�         (7.16) 

ΔB � �σm|Ô�,ÔÏ 	6	σm|ÔÂ�         (7.17) 

From [211]: 

σm|Ô�,ÔÏ �	/ �√\√0	�~%*4-B�σ�� 6	σ¿�         (7.18) 

σ+|Ô�,ÔÏ �	/ �√0	4-B�σ�� 6	σ¿�         (7.19) 

σm|ÔÂ � / r√0	4 /m�4 σ�        (7.20) 

σ+|ÔÂ � / r√0	4 /+�4 σ�        (7.21) 

The relative error for Lx can now be found by using Equation 7.15 and substituting ∆A and 

∆B by (7.16) and (7.17) using Equations 7.18, 7.19, 7.20, 7.21. 

��*�* �	 Õ/
�√S	4-m�Ô��2	ÔÏ�Ö2Ñ/ £√S	4/1Â4ÔÂÒ+ 6 Õ· �√�√S	�~%*¸-m�Ô��2	ÔÏ�Ö2Ñ/ £√S	4/|Â4ÔÂÒm 6 Ñ/ £√S	4ÔÂÒ�   

           (7.22) 
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��*�* �	/ r√04×Õ/�+	4-B�σ�� 6	σ¿�Ö 6 ·/ r�4 σ�¸ 6 Õ/ �√\m	�~%*4-B�σ�� 6	σ¿�Ö 6
·/ r�4 σ�¸ 6 ·/ r�4 σ�¸Ø        (7.23) 

��*�* �	/ r√04×ÕÑ/�+	4 6 / �√\m	�~%*4Ò-B�σ�� 6	σ¿�Ö 6 ·/ \�4 σ�¸Ø	    (7.24) 

Working out (7.16) using (7.2) and (7.3) we find the relative error for Lx: 

��*�* �	/ r√04Ù×Ñ· �¶¾B¿$¢	¸ 6 / �√\�¿$¢	�~%*4Ò-/¿$¢� 4� σ�� 6	σ¿�Ø 6 ·/ \�4 σ�¸Ú  (7.25) 

Variables used: 

N: Number of measurements of different gap spacings 

W: TLM width 

ρc: Specific contact resistivity found by using Berger model 

Rsh: Sheet resistance of the semiconductor layer  

dmax: Maximum gap size of TLM 

σd: Absolute error of the gap size between TLM's. (standard deviation) 

σ�� �	 Û���U��0@r            (7.26) 

σW: Absolute error of the contact width of the TLM (standard deviation) 

σ�� �	 Û���U��0@r            (7.27) 

σR: Absolute error of the measurement of the resistance of the TLM (standard deviation) 

σ¿� �	 Û��¿U��0@r            (7.28) 
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To find the random error for Rsk we can use the principles of error propagation using 

Equation 2: 

 R�O Ü �¿$E¿$E � r� 	/	�*Ü
ÝÁ*Á* 4	·¿$¢ÜÝÏ$¢Ï$¢ ¸	·	�FÜÝÁFÁF ¸        (7.29) 

When adding or dividing, the relative errors have to be added up. 

�¿$E¿$E � r� /��*�* 6	�¿$¢¿$¢ 6	��F�F 4         (7.30) 

The unknown factor here is the relative random error from the transfer length extraction 

method. The transfer length is found by matching simulated data to measured data of 

scaled contacts, which makes it hard to define the right error. First, there is the random 

error by measuring the scaled ohmic contacts and secondly, there is the error of matching 

the curves. The relative error for LT can be determined by finding the error related to the 

scaled ohmic contacts. However, the error of the curve fit is more difficult to determine 

and in this case the relative errors of the LT and Lx extraction are added. This error will be 

significantly larger than the relative error of Rsh. Hence it is crucial to have excellent 

lithography and repeatability of the scaled ohmic contacts. Increasing the number of 

measurements for different scaled contact lengths will help to diminish the random error of 

the Rsk extraction method. 

7.3  Experimental 

To be able to investigate the current crowding effects, ohmic contacts have to be built with 

contact lengths smaller than the transfer length. The transfer length varies with the quality 

of the ohmic contact but is generally between 2µm and 0.5µm. Therefore, physically small 

ohmic contacts with contact lengths starting from 100nm have been designed and 

manufactured and were then compared to simulated data extracted from ordinary TLMs 

with contact lengths of 150µm. To enable a comparison between each, ohmic contact 

metals were chosen, which do not diffuse into the underlying semiconductor material. In 

this way lateral alloying is addressed and the properties of the semiconductor material 

underneath the contacts should be identical for both scaled and ordinary TLM test 

structures, allowing for a direct comparison between ordinary and scaled ohmic contacts. 

The ohmic contacts on both test structures can be affected by the processing, resulting in 

ohmic contacts, which are most probably not going to be optimal in terms of specific 

contact resistivity. As the aim of the experiment was primarily to investigate the current 
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crowding effects, it was not felt that this was a significant impediment, at least in the first 

instance. 

Two types of designs were used in this work. The main difference between the two designs 

is how the large measurement pads connect to the scaled ohmic contacts. Both have their 

advantages and disadvantages and are described in following sections. The ohmic contacts 

were measured using an Agilent B1500 series semiconductor parameter analyser with a 

four probe configuration to account for the series resistance of the cables, probes and 

connectors.  

7.3.1  Scaled structure first version 

7.3.1.1  Design  

The scaled TLM’s in this design make contact via a big pad through a narrow line onto a 

mesa, as shown in Figure 7.1. The narrow lines are the ohmic contact structures and have 

contact lengths of 100nm, 200nm, 500nm and 1µm. This frame should allow the current 

crowding effects to be monitored together with the contact resistance RC. The mesas are 

varied with different widths: 5µm, 4µm, 3µm, 2µm, 1µm and 0.5µm. The gap sizes 

between the TLM pads are identical to the ordinary TLMs, which are present on the same 

cell and therefore are subjected to the same processing steps. The ordinary TLMs are then 

used to determine the specific contact resistance, sheet resistance and contact resistance. 

The IM-InGaAs20 material is used, which enables the formation of well isolated mesas. 

The full layer structure can be found in the list of materials.  
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Figure 7.1: Design of first aggressively scaled TLM structure 

7.3.1.2  Fabrication 

The fabrication process consists of four main steps: marker definition and deposition, mesa 

isolation, ohmic contact definition and metallisation and measurement contact pad 

definition and metallisation. The marker layer is used to align subsequent levels. The 

markers are formed by depositing a bi-layer of PMMA on the substrate, E-beam 

patterning, resist development and metal deposition and lift off of a 100nm thick layer of 

gold. The choice of metals and its thickness is key for the automatic alignment of the 

Vistec VB6 E-beam tool as thinner layers provide insufficient contrast for automatic image 

processing using SEM images from the E-beam tool. The mesa etch level includes the 

deposition of a bi-layer PMMA resist, E-beam patterning using marker alignment, resist 

development and a mesa etch. The mesa etch is an optimised wet etch using a 1:1:100 

H2O2: orthophosphoric acid: H2O solution for 45s. This removes the In0.53GaAs and 

In0,52AlAs layer providing an electrical isolation between scaled ohmic contact lines. After 

the etch the resist mask is removed using acetone and IPA before the next processing step. 

The metal deposition was originally intended to form ohmic contacts and contact pads at 

the same time. However, processing issues, explained in the section below, prevented this. 

Therefore, the ohmic contact step involves the deposition of a bi-layer of PMMA resist, E-

150µm 

150µm 

0.5 to 5µm 

100nm to 1µm 

Contact separation in µm 
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beam patterning using marker alignment, resist development and lift-off based metal 

deposition. The last step is identical to the previous step, however different windows are 

opened in the resist allowing for the deposition of contact pad metal. The advantage of the 

extra step is that the ohmic contact metal can be different than the pad metal. 

- Dose test 

In order to create sub-micrometer features, dose tests were carried out alongside the work 

published by O. Ignatova [212]. Two resist thicknesses of 150nm and 280nm were used in 

this work, however for the scaled ohmic contacts a layer thickness of 280nm was used to 

obtain a large enough undercut for the lift-off of a 100nm thick layer of ohmic contact 

metal. Dose tests were performed to achieve contact lengths of 100nm, 200nm, 500nm and 

1µm. The feature sizes were examined using a Hitachi S4700 SEM and analysed using 

automatic image processing using a macro on ImageJ software.  

- Backscattering effects 

The close proximity of relatively large contact pads resulted in a greater exposure dose of 

the scaled ohmic contact area due to backscattering effects. This led to larger ohmic 

contact lengths and made the process unreliable and therefore it was decided to write the 

ohmic contacts and the pads in different steps. The effects of the backscattering can be 

observed in Figure 7.2 and manifest themselves as rounded edges and a non perfectly 

rectangular shape of the gap between the metal contact pads. 

 

Figure 7.2: SEM micrograph of scaled ohmic contact with overexposed area's due to backscattering 

effects 

- Alignment 

Rounded 

Edge 

Increased contact 

length 

Reduced  

gap  
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The markers used in this work allow for a lithography alignment accuracy of +/- 100nm. 

This resulted in ohmic contacts sometimes being on the edge or not touching the contact 

pads, as shown in Figure 7.3a. This problem was solved by moving the ohmic contact 

wires back by 500nm, as shown in Figure 7.3b resulting in a higher yield. The different 

gap sizes between the contacts then have to be taken into account when analysing the data. 

  

(a) (b) 

Figure 7.3: SEM micrograph of alignment issues on scaled ohmic contacts 

- Access resistance 

A potential additional series resistance could arise where the scaled ohmic contact is 

connected to the contact pad. This resistance would be in series with the RC value and 

therefore has to be kept to a minimum. This can be done by minimising the distance 

between the contact pad and the mesa structure.  

-  Mesa etch variability 

The mesa etch is a wet etch process, as described in chapter 4.5, which can laterally etch 

material underneath the resist profile. Variability in processing can cause the mesa to 

become wider or smaller than originally intended by over 1 µm. As the contact width plays 

a crucial role in the accurate extraction of RC, it is important that relative errors are 

minimised. Having an absolute error of over 1µm will then cause unreliable measurement 

data and therefore a second design was made with contact widths of 150µm, which reduces 

the relative error of the contact width significantly. 

Pad and 

Ohmic Contact 

500nm pad 

overlap 
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7.3.2  Scaled structure second version 

7.3.2.1  Design 

The purpose of designing a new scaled ohmic test structure is to reduce the mesa etch 

variability and eliminate series resistances between the ohmic contact and the measurement 

pad.  The high resolution ohmic contact will be made in the same metal run as the pad 

metal hence assuring there will be little resistance between the ohmic contact and pad 

layer. One approach is to use Si3N4 as a mask and use the insulating properties of Si3N4 to 

isolate the pad from the active In0.53GaAs material. This strategy has the advantage of not 

needing a mesa etch either and passivates the semiconductor material at the same time. 

However, there is still an isolation etch present, which is necessary to prevent the current 

to flow through the scaled ohmic contact on the opposite side of the TLM pad as shown on 

Figure 7.4. The opposite high resolution ohmic contact could become a parallel resistance 

and therefore influencing the measurement in a detrimental way.  This design has one great 

disadvantage over the previous: ohmic contacts that require alloying and, which react with 

the In0.53GaAs layer underneath are unsuitable. This means the current NiGeAu and PdGe 

contact strategies cannot be tested using this structure, which is still possible with the 

previous one. But it should provide a reliable test bed to show the effects of scaling 

contacts. 

20nm  undoped In0.52AlAs

2µm 6µm 8µm4µm

20nm  1.1019 cm-3 Si doped In0.53GaAs

Isolation etch

Contact

metal

Contact

metal

Contact

metal

Contact

metal

Contact

metal

 

Figure 7.4: Design of second aggressively scaled TLM structure 

7.3.2.2  Fabrication 

The process consists of four E-beam runs similar to the previous design: markers, isolation 

etch, ohmic contacts and contact pads. However, there is an additional Si3N4 run and Si3N4 

etching is required. The Si3N4 is deposited, using ICP-CVD, after the isolation etch and a 

clean of the sample. With the Si3N4 in place the PMMA layer, which will be used to write 
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the ohmic contact lines is deposited. After E-beam patterning and development, the sample 

will undergo a low damage RIE dry etch using SF6 [222] to remove the Si3N4 in the 

corresponding areas. This up to date is still a slightly damaging process (chapter 4.4.3), so 

the ohmic contacts will probably be slightly worse because of this processing step. 

However, this is not necessarily a bad thing, the worse the contact is, the clearer the scaling 

effects become, as long as the contact still has ohmic contact behaviour. The last step is 

applying a new layer of PMMA in which the big pad areas will be written. Similar to the 

previous step the ohmic contact wires are moved 500nm back to compensate for any 

alignment issues. After developing and ashing the sample the pad and ohmic contact areas 

are exposed and the contact metal contact gets deposited. The full process can be found in 

appendix A.2 and is shown in Figure 7.5. The different processing steps also allowed for 

the integration of different test structures such as CTLM and CBKR. These could then be 

measured alongside the ordinary and scaled TLMs. 

  

a) Isolation etch b) Si3N4 deposition 

  

c) Si3N4 Etch d) Metal contact deposition  

Figure 7.5: Scaled ohmic contact structure processing steps on IM-InGaAs20 substrate 

Contact length verification 

The contact length dimensions used in this design cannot be measured using ordinary top 

down SEM images as used in the first design. This is due to the fact that theoretically the 

Si3N4 etch is anisotropic and should feature a vertical etch profile, however in practice the 

etch profile is not perfectly vertical. The contact length observed from the top will 

therefore be bigger than the actual contact length at the metal/semiconductor interface. 

This problem was addressed by preparing small samples, using Focussed Ion Beam 

milling, in order to measure the contact lengths at the interface between the metal and the 

semiconductor using cross section TEM. The respective contact lengths and cross section 
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TEM images are shown in Figure 7.6, which also show the non-vertical Si3N4 etched 

profile. Nearly all the contact lengths correspond to the original design apart from the 

200nm contact and therefore a 250nm contact length will be used in the simulations. 

 

 
 

a) Measured contact length between 90nm and 

100nm 

b) Measured contact length between 240nm and 

260nm 

  

c) Measured contact length between 475nm and 

490nm 

d) Measured contact length between 990nm and 

1000nm 

Figure 7.6: Detailed micrograph of TEM cross section scaled contact lengths of 100nm, 200nm, 500nm 

and 1000nm 

Fabrication issues 

The initial test samples, using a Ti/Pt (10nm/80nm) contact metal, went through a full 

cycle of processing however the last layer failed, as shown in Figure 7.7. The Ti/Pt peeled 

off the Si3N4 and actually seemed to have ruptured the Si3N4 as well. The cause of this 

problem could be either metal stress related or unclean surface prior to Si3N4 deposition. 

To mitigate these problems, the metal contact was changed to gold (100nm) and an extra 

ash and surface clean was introduced prior to Si3N4 deposition. The ohmic contact was no 

longer Si processing compatible but it was used as a proof of concept. After this, the metal 

peeling issue reduced dramatically resulting in far better yield. 



Chapter 7  Scaled ohmic contacts 
 

205 
 

 

Figure 7.7: SEM micrographs of the scaled ohmic contact structure showing the missing  Ti/Pt metal 

and damage to the Si3N4 layer. 

7.3.3  Summary 

Both designs have their advantages and disadvantages. The main disadvantage of the 

second design is the added complexity of the Si3N4 layer and etch. This led to processing 

issues at the initial stages, which were resolved by changing the process and metal. As 

previously stated the second design should feature a smaller variability in measurement 

due to the wider contact width. However, the first design could be further optimised if 

possible using dry etch of to obtain an anisotropic mesa etch with reduced lateral etching, 

hence reducing the variability between the contacts as well. 

7.4  Experimental results 

The results are split up in three sections, which cover the data from the two designs and a 

comparison between the different contact resistance extraction methods. The different 

sections relate to the individual samples with their respective sample numbers. The first 

section covers the results from the first design, the second section (Design 2a) features a 

comparison between the second design and the end resistance extraction method and the 

final section (Design 2b) compares the scaled devices using the second design to the results 

obtained from a CTLM structure. The CBKR structure was tested but featured very poor 

yield and unrealistic contact resistance values. This is possibly due to the fact a wet etch is 

used, which does not comply with the exact dimension required by a CBKR structure [96]. 

Both test structures feature twelve scaled TLM structures for each contact length and each 

result shown for the scaled structures has been measured using a minimum of eight 

structures. Given the larger size of the CTLM structure only two structures were measured.     
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7.4.1  First design results 

The metallisation used on this sample is a Ti/Pt bi-layer with a thickness of 90nm 

(Ti:10nm/Pt:80nm). The results of the different measurements are shown in Table 7.1 with 

the standard deviation included to the measured results. The simulated data does not 

include the standard deviation and can therefore be recognised more easily. The average ρc 

and LT values are not given for the Scaled TLM data because of the fact that the current 

crowding effects will affect these values and produce an erroneous outcome. Also the 

extracted values for standard deviation do not take into account any variability of the 

contact dimensions or position. 

The results from the ordinary TLM data are poor with relatively high sheet resistance and 

specific contact resistivity, as shown in Table 7.1, compared to results obtained in chapter 

6.3.2 on the same material. The minimum correlation between the data points of various 

gap sizes is 0.99 for the ordinary TLM data and 0.9 for the scaled data set. The transfer 

length measured from the ordinary TLM measurements indicates that the contact lengths 

for the scaled TLMs are well below the transfer length (d < 2µm). If the sheet resistance 

underneath the contact is then equal to the bulk sheet resistance, the current crowding 

effects should become very clear on the scaled contacts. However, observing the behaviour 

of the scaled contacts in Figure 7.8, it appears that the transfer length derived from the 

ordinary TLM measurement does not correspond with the actual scaled contact 

measurement. The transfer length estimated from the scaled contact structures is more in 

the region of 200nm. This would mean the actual transfer length is one order of magnitude 

smaller than measured from the TLM data. Since the transfer length is in direct 

relationship with Rsk and Rsh, as shown in Equation 5.22, the resistance underneath the 

contact would be around 5kΩ. However, the contact resistance values extracted from the 

scaled structures are well below the contact resistance obtained from the ordinary TLM 

measurement. This is possibly due to the fact that the actual mesa width differs from the 

design and is indicated by the larger value and great variability in sheet resistance when 

measuring scaled contacts, which also explains the lower correlation value compared to the 

ordinary TLM measurement. An accurate transfer length and resulting Rsk and ρc values 

can therefore not be extracted as curve fitting needs to take place. The choice was then 

made to abandon this design and focus on the second design, which should feature less 

variability between scaled contact measurements.  
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 Ordinary TLM Scaled TLM 

RC (Ω.mm) 1.11 ±  0.19  - 

Rsh (Ω/sq) 525.31 ± 62.49 739.19 ± 150 

ρc (Ω.cm2) 2.52x10-5 ± 1.46x10-5 - 

LT (µm) 2.17 ± 0.66 - 

 

Table 7.1: Summary results of scaled ohmic contacts sample s4126 

 

Figure 7.8: Contact Resistance comparison between scaled TLM structures and simulated data based 

on the ordinary TLM measurements on sample s4126 

7.4.2  Second design results 

7.4.2.1  Design 2a 

The aim of this experiment is to compare the results from the ordinary TLM measurement 

method to the end resistance measurement method. Two different measurement methods 

using the end resistance to extract the contact resistance were used; one proposed by 

Reeves et al. [81] and one proposed by Berger et al. [89]. The measured data from the 

scaled structure results were then compared to the contact resistance extracted with 

ordinary TLM structure and the end resistance measurement on the same material. In order 

to make a direct comparison the contact resistance below, the transfer length has to be 

simulated. The simulation makes use of the Berger Model [89] and uses the specific 

contact resistivity and sheet resistance to calculate the normalised contact resistance when 

scaled below the transfer length. 
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The metallisation used on this sample is gold with a layer thickness of 100nm. The 

correlation between the data points of various gap sizes of the ordinary TLM data and the 

scaled data set is at least 0.99. The sheet resistance was extracted with a Van der Pauw 

[100] measurement and had a value of 211Ω/sq., which corresponded to the sheet 

resistance extracted by the TLMs and the end resistance measurements. Therefore, the 

different measurement methods can be directly compared.  

The results from the scaled data, illustrated in Table 7.2, show that the measured contact 

resistance was consistently lower than the simulation suggests. In case of the Berger [89] 

and Reeves [81] measurement method, it was found that the contact resistance results were 

not at all corresponding to the data of the scaled structure and the transfer length for these 

measurements were unrealistically high. This is due to an incorrect end resistance 

measurement when the specific contact resistivity is low [213]. As seen in previous design, 

the actual transfer length differs from the scaled data, which is more in the region of 

200nm instead of 751nm. The actual transfer length is then extracted using the solver 

function in excel (2007), which is found by matching the simulated data for the smallest 

contact length to the measured data. The error of the ρc, Rsk and LT values, in this case, is 

found using error propagation based on the standard deviation of the contact resistance 

value for the smallest contact and is therefore not a direct result from a measurement.  

The actual transfer length was then found to be 188nm and this has consequences for the 

sheet resistance underneath the contact and the specific contact resistivity. The specific 

contact resistivity value drops to 3x10-7
Ω.cm2 and the sheet resistance value increases to 

856Ω/sq. The reduced specific contact resistivity indicates that the metal/semiconductor 

interface features a lower barrier height than previously indicated by the ordinary TLM 

measurement. The increased sheet resistance underneath the contact could be caused by 

either damage induced by the dry etch and metal deposition, reduced mobility of the 

material due to impurities at the surface compared to the Si3N4 passivated surface between 

the contacts and potentially the depletion layer under the metal could also contribute to an 

increased sheet resistance. In order to assess the damage induced by the dry etch a Van der 

Pauw measurement [100] of Si3N4 deposited and Si3N4 etched samples should be taken, 

which is addressed in the next sample.  



Chapter 7  Scaled ohmic contacts 
 

209 
 

 Ordinary 

TLM 

(Ω.mm) 

Re [81] 

(Ω.mm)  

Re [89] 

(Ω.mm) 

Scaled TLM 

(Ω.mm) 

Rsk adjusted 

(Ω.mm) 

RC (Ω.mm) 0.16 ± 0.006 0.16 ± 0.005 0.16 ± 0.004  0.16 ± 0.006 

ρc (Ω.cm2) 1.21x10-6  

± 8x10-8 

8.08x10-5  

± 5.0x10-6 

9.97x10-5  

± 4.5x10-5 

 3.03x10-7 

 ± 1.10-7 

Rsh (Ω/sq) 214.43 

±1.79 

213.47 ± 

2.42 

210.9 ± 1.19 253.48 ± 

11.41 

214.43 

±1.79 

Rsk (Ω/sq) 214.43 

±1.79 

3.18 ± 0.18 2.50 ± 0.50  856 ± 342 

LT (µm) 0.751 ± 

0.029 

50.5 ± 5 63.3 ± 4.0  0.188 ± 

0.060 

 

Table 7.2: Summary results of scaled ohmic contacts sample s10294 

 

Figure 7.9: Contact resistance comparison between the simulated data of ordinary TLM and end 

resistance (Reeves and Berger) and measured scaled data on sample s10294. 

7.4.2.2  Design 2b 

The main objective of this sample is to compare the results from a CTLM measurement 

method to the scaled TLM measurements. The CTLM method is based on the TLM 

principle and should therefore, in theory, have similar results to the ordinary TLM 
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measurement. However, the CTLM method requires a correction factor because of the non 

linearity between measurements featuring different gap spacings. In most cases the results 

for RC, Rsh, LT and ρc are obtained by applying the correction factor to the measured total 

resistance values (RT) for different gap spacings and then extrapolating the data. The value 

for Rsh is then found by the slope and the value of LT is found by the intersection of the 

extrapolated data and the x-axis. The RC and ρc are then calculated using Rsh and LT and 

are given in Table 7.3. Also the RT values have been recalculated and are compared to the 

original measured, which gives the correlation value.  

There is an alternative method to extract the contact resistance proposed by Marlow and 

Das [214].  It is based on a circular centre contact with radius R1, a gap spacing s and an 

infinitely large contact area. The equation for the total resistance is then shown in Equation 

7.31 and includes the sheet resistance underneath the contact (Rsk) and the modified Bessel 

functions I0, I1, K0 and K1.  

RP �	¿$¢�� ln /¿£2�¿£ 4 6 ¿$E.�F��¿£
#(·Ï£ÁF¸#£·Ï£ÁF¸6 ¿$E.�F���¿£2��

Þ(·Ï£ÁF¸Þ£·Ï£ÁF¸     (7.31) 

When R1 and (R1+s) are greater than LT by a factor of at least four, the Bessel functions 

approximate unity [215] and become 1. The simplified Equation 7.32 can then be used to 

perform a least square fit to the experimental data.  In this case, the fit is performed in 

Matlab using a “lsqcurvefit” function and the results are shown in Table 7.3 together with 

the original data. The results are then compared to the original data by calculating the 

correlation between the measured data and the recalculated RT values based on the results 

from the least square fit. 

RP �	¿$¢�� �ln /¿£2�¿£ 4 6 LP Ñ/ r¿£4 6 / r�¿£2	��4Ò�     (7.32) 

The RC, Rsh, LT and ρc values can also be directly calculated from the RT values by 

reworking Equation 7.7 using two different measurements with respective gap spacings (sa, 

sb). Solving the equation for LT gives: 
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LP �	 ßà
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æ
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æ      (7.33) 

And the sheet resistance can be found by: 

R�� �	 ��¿F%Q��/�Ï£Ð	$%�Ï£ 42Õ�FÑ/ £Ï£42/ £�Ï£Ð	$%�4ÒÖ
      (7.34) 

The results of the direct calculation are included in Table 7.3 and to extrapolated data using 

excel LINEST function and a MATLAB least square curve fit. The difference between the 

extraction methods is minimal and stays within the standard deviation margin of the 

various extraction methods. The results of directly calculated extraction method feature the 

highest correlation compared to the measured data and are therefore retained as a 

comparison to the scaled and ordinary TLM method in Table 7.4. 

CTLM gap Extrapolated Calculated Matlab fitted 

Correlation  99.998923% 99.998928% 99.998926% 

RC (Ω.mm) 0.103± 0.02 0.110 ± 0.02  0.108 ± 0.017 

ρc (Ω.cm2) 3.39x10-7 ± 1.15x10-7 4.33x10-7 ± 1.39x10-7 3.69x10-7 ± 1.12x10-7 

Rsh (Ω/sq) 320.01 ± 1.57 316.87 ± 1.42 319.70 ± 1.53 

LT (µm) 0.322 ± 0.068 0.369 ± 0.064 0.337 ± 0.053 

Table 7.3: Summary CTLM results of sample s12829 

The contact resistance value measured by CTLM is then compared to the result from the 

ordinary and scaled TLM, where the ordinary TLM without the isolation etch features the 

highest RC value and the CTLM features the lowest RC value. These two measurements 

also feature the lowest and highest sheet resistance values. The sheet resistance value with 

a Si3N4 layer has been measured using a Van der Pauw structure and was found to be 

286Ω/sq. The further the sheet resistance deviates from this value, the more inaccurate the 

extraction for the RC becomes. Therefore, the CTLM and non-isolation ordinary TLM are 

less reliable even though the standard deviation of the measurements is low. The reason of 
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the decreased sheet resistance for a non –isolated TLM is obvious: the current can travel 

with a wider path through the semiconductor material than the contact width due to lateral 

current spreading [92]. The increased sheet resistance for the CTLM measurement is 

probably due to differences in gap spacing or contact pad dimensions. The error caused by 

the differences in these dimensions is further amplified by the need for a correction factor 

(chapter 5.3.2.2). The correction factor includes the dimensions of both the gap spacing 

and the radius of the inner contact pad. Slight differences due to misalignment or 

overexposure of the resist then cause a bigger error compared to the ordinary TLM 

measurement.  

Contact 

Length 

Ordinary 

TLM 

No mesa 

Ordinary 

TLM 

mesa 

CTLM Scaled 

TLM 

TLM 

(1µm) 

 

TLM 

corrected 

(1µm) 

(Rsk) 

TLM 

corrected 

(1µm) 

(Rsk+Rm) 

RC 

(Ω.mm) 

0.268 ± 

0.02 

0.215 ± 

0.02 

0.111 ± 

0.02 

 0.1829 0.1816 0.1815 

ρc 

(Ω.cm2) 

3.30x10-6 

± 

0.54x10-6 

1.56x10-6 

± 

0.26x10-6 

4.33x10-7 

± 

1.39x10-7 

 1.32x10-6 

± 

0.59x10-6 

3.14x10-7 

± 

0.70x10-7 

3.42x10-7 

± 

0.43x10-7 

Rsh 

(Ω/sq) 

218.75 ± 

3.77 

299.13 ± 

4.66 

316.87 ± 

1.42 

262.07 

± 11.41 

260.91 ± 

9.32 

260.91 ± 

9.32 

260.91 ± 

9.32 

Rsk 

(Ω/sq) 

218.75 ± 

3.77 

299.13 ± 

4.66 

316.88 ± 

1.42 

 260.91 ± 

9.32 

1049.67 

± 191.86 

1141.26 

± 282.77 

LT (µm) 1.230 ± 

0.224 

0.720 ± 

0.060 

0.370 ± 

0.064 

 0.701 ± 

0.157 

0.173 ± 

0.039 

0.173 ± 

0.039 

 

Table 7.4: Summary results of scaled ohmic contacts sample s12829 
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Figure 7.10: Contact resistance comparison between the simulated data of ordinary TLM, isolated 

ordinary TLM, and CTLM and measured scaled data on sample s12829 

In order to investigate the current crowding effects, it was then decided to use the TLM 

results, however the contact resistance results differ slightly between the ordinary and 

scaled TLMs. It was chosen to use the results from 1µm scaled contact as any error in RC 

will influence the extraction of the actual transfer length. As explained in previous sample, 

the transfer length was found by fitting the simulated data of a 100nm contact to the actual 

measured value of the 100nm contact. The actual transfer length was then found to be 

173nm instead of the predicted ~700nm. This confirms the findings of the previous 

sample, where the actual transfer length was considerably shorter than the predicted 

transfer length by the ordinary TLM measurement even though the actual transfer length is 

in the range of 180nm for both samples. In order to investigate where the error can 

possibly come from, Hall measurements were taken to investigate the effect of depositing 

and etching Si3N4 on a n-type doped In0.53GaAs layer, as shown in Table 7.8. However the 

data recorded for the No Si3N4 sample proved to be unreliable for the carrier concentration 

and mobility measurement and have therefore been left out of Table 7.5.  
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 No Si3N4 Si3N4 Si3N4 etched 

Rsh (Ω/sq) 451 286 588 

Symmetry 1.13 1.17 1.12 

p-n carrier 

concentration (cm-2) 

 1.07x1013 4.34x1012 

µ (cm2/Vs)  2050 2450 

Table 7.5: Summary of hall measurement results of sample s12829 

The sheet resistance decreases after Si3N4 deposition and increases beyond its original 

value after a Si3N4 etch, indicating that there is some degree of processing damage. 

Looking further into detail after a Si3N4 etch the mobility only slightly decreases and the 

carrier concentration reduces by a factor of 2.5. Previous research by S. Bentley on highly 

doped In0.53GaAs material has shown that a RIE SF6 dry etch causes a carrier reduction 

over etch time, as shown in Figure 7.11, which can potentially cause an increased sheet 

resistance underneath the contact. However, the sheet resistance of the Si3N4 etched sample 

(588Ω/sq) is then still significantly smaller than the predicted Rsk value of about 1kΩ/sq. 

The following reasons can potentially induce an increased sheet resistance underneath the 

contact: Additional processing damage, increased surface trap density and a large depletion 

region width compared to the active semiconductor layer thickness. Also, the measurement 

error due to changed scaled contact dimensions should be investigated.  

 

Figure 7.11: Percentage of carrier concentration variation over time for a RIE SF6 Si3N4 dry etch 

Additional processing damage could be caused by the metal deposition technique used and 

will be hard to quantify. The damage could manifest itself as either out-diffusion of 



Chapter 7  Scaled ohmic contacts 
 

215 
 

semiconductor material or a reduced active layer thickness due to metal intrusion into the 

semiconductor layer, even when the sample is non alloyed. Both will result in a higher 

sheet resistance underneath the contact and could be investigated to a certain degree by 

using STEM and EELS. A grating structure with an area of 10 mm x10mm is required for 

sample preparation in order to use EELS and this structure was not present on the sample 

as the sample size is only 12mm x 12mm. Therefore, no STEM micrographs have been 

taken and no layer analysis using EELS was performed.  

Increased surface trap density could be caused by lattice mismatches between the metal 

and the semiconductor leading to a reduced carrier concentration. Also metal induced gap 

states can cause a reduction of carrier concentration at the metal/semiconductor surface 

leading to increased sheet resistance near the interface. The reduction of carrier 

concentration underneath a metal layer is hard to quantify as a Hall measurement cannot be 

taken. The impact of metal deposition on the sheet resistance is therefore unknown, 

however the sheet resistance underneath the contact should be influenced by a smaller 

amount on thicker doped semiconductor layers. In this work the doped layer is 20nm and 

an increase in sheet resistance of 400% is observed while in the work by M. Lijadi et al. 

[209], the doped layer thickness is 100nm and only an increase in sheet resistance of 20% 

is observed. This implies that there is a possibility that the deposited metal causes an 

increase in sheet resistance, however this is an assumption and an extensive research with 

different layer thicknesses should be performed. 

The depletion region underneath the metal may result in a lower carrier concentration and 

have a larger sheet resistance compared to the doped semiconductor region. On material 

with thin highly doped layers the depletion region could take up a significant thickness of 

the doped semiconductor layer. For example, the sample used has a 20nm 1x1019cm-3 Si 

doped In0.53GaAs surface layer. The depletion width formed by a contact, assuming 

Bardeen’s limit [203] for the built in potential, is 7nm. In the ideal theoretical case, this 

would mean that 35% of the total doped layer is a depletion region with reduced carrier 

concentration. Assuming the depletion region has an infinitely large sheet resistance 

compared to the bulk semiconductor sheet resistance this would mean the sheet resistance 

underneath the contact should become 904Ω/sq based on the bulk sheet resistance of the 

Si3N4 etched sample. This is close to the number obtained by the Rsk measurement, 

however this is a theoretical approach and in reality the depletion region is not equally 

distributed over the full depletion width. Therefore, this result should be compared to 
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different findings in literature: in the first case [209] the material used is p-type 

3.5x1019cm-3 GaAs0.5Sb0.5 with a layer thickness of 100nm. The calculated depletion 

region is 5nm compared to 100nm bulk semiconductor material. There should therefore, 

according to this theory, an increase of 5% in sheet resistance while there is a 20% increase 

in sheet resistance. In the second case [42], the top material is a 10nm 1x1019cm-3 doped 

Al 0.25Ga0.75N layer, with a calculated depletion width of 16.9nm. This is a HEMT layer 

structure and therefore has extra doping in a 2DEG layer 3nm under the doped layer. 

Nonetheless the sheet resistance should be significantly large if the depletion region would 

cause the increase in sheet resistance. However, there is a 269% increase in sheet 

resistance, which is a similar number to that observed in this work. Therefore, it is unlikely 

that the depletion region contributes to an increased sheet resistance but it cannot be ruled 

out completely either. The effect could be investigated by making samples with various 

layer thicknesses, but could potentially be misinterpreted for damage induced by metal 

deposition.         

As previously shown in section (7.2.1), the measurement error can be extracted for the 

sheet resistance underneath the contact for contacts with variable dimensions. As curve 

fitting is used, finding the measurement error for the extracted transfer length will be 

critical. Unfortunately, the transfer length is extracted by the measurement of scaled 

contacts, which have a non-linear relationship to contact resistance due to current crowding 

effects. The random error analysis can therefore not be used to extract the error of the 

transfer length when the contact length of the scaled contacts is variable. Therefore, the 

error of the transfer length is calculated using the standard deviation of the 100nm contact 

length and combining this with 10% variability in contact length. The variability of the 

contact width and gap size has not been taken into account in this case since these should 

play a minor role compared to the contact length variability. As a result, the relative error 

of the transfer length is then determined to be 32.65%, which can be used in Equation 7.30 

giving a relative error for Rsk of 27.81%. The minimum Rsk value is then 757.73Ω/sq, 

which is still larger than the measured sheet resistance value of the etched Si3N4 sample. In 

order to achieve a value of 588Ω/sq, the extracted transfer length should have a relative 

error of at least 60%, which means the contact has to be 90% larger. Even though there 

will be a variability in contact length due to processing a relative error of 90% was not 

observed and the variability of a deposited metal measured top down with a SEM was 

around 2.5%. Therefore, it is concluded that there is an actual increase in sheet resistance 
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due to metal deposition. This is confirmed by multiple different samples with Rsk values, 

which are significantly higher than the Rsh value. 

This sample features a similar sheet resistance underneath the contact as extracted by 

previous sample. Even though the relative error of the sheet resistance is quite large, there 

is a strong indication that the metal deposition introduces an increased sheet resistance 

underneath the contact. The most likely explanation for the increase in sheet resistance is 

potential intrusion of the metal into the semiconductor and a potential loss of carrier 

concentration due to increased surface states. This impedes the use of a TLM or CTLM 

structures as a correct measurement method to extract the specific contact resistivity and 

transfer length values. The CTLM structure also seems to be relatively more inaccurate 

compared to the TLM structure given the same processing. Misalignment and 

overexposure are therefore critical parameters when extracting the contact resistance with a 

CTLM measurement. 

7.5  Conclusion 

Two different designs were designed, fabricated and tested. The first design was dismissed 

due to large variability issues due to a mesa wet etch with inaccurate dimensions. Multiple 

samples were produced using the second design and featured lower transfer lengths than 

predicted by the TLM measurement. This means that the assumption that the sheet 

resistance below the contact is equal to the bulk sheet resistance is not valid. As a result, 

the specific contact resistivity and transfer length values extracted using an ordinary TLM 

or CTLM are inaccurate due to the approximations made in the model. Even though CBKR 

was not measured, it also uses the same model and will extract the specific contact 

resistivity and transfer length values with a similar inaccuracy. It is therefore critical to 

measure the sheet resistance underneath the contact in order to be able to predict the 

behaviour of the ohmic contact when the device is scaled following the ITRS node [1]. 

Also the metal sheet resistance could play a key role, however in this work the metal sheet 

resistance was very low compared to the sheet resistance and had little influence on the 

overall result. 
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8  Conclusion 

As discussed in the introduction, the aim of this thesis was to develop a Au-free ohmic 

contact to a n-type III-V MOSFET, which could be integrated in a 200mm Si pilot line. A 

literature study was performed to find suitable candidates for Si processing compatible and 

low resistance source/drain ohmic contacts. From this study, it was apparent that the device 

architecture would determine the most suitable ohmic contact: an alloyed Ge based ohmic 

contact for low doping and low In concentration device material and a non-alloyed ohmic 

contact for highly doped (>1019cm-3) high In concentration device material using 

source/drain regrowth.  

Both Pd/Ge and Ni/Ge based alloyed ohmic contacts have been investigated in this work. 

The Ni/Ge contact featured relatively high optimal annealing temperatures, which are in 

excess of the maximum annealing temperature of the GaGdO gate dielectric of 450⁰C. 

Therefore, the contact is less suitable for the MOSFET device structure with a GaGdO gate 

dielectric but could be further investigated on material with different gate dielectrics in the 

future. The optimal annealing temperature for a Pd/Ge ohmic contact was shown to be 

360⁰C and 400⁰C depending on the annealing time and semiconductor material. More 

extensive research was then carried out on different substrates with different layer 

structures, which are described in the appendix: x238, x266, IM-GaAs, IM-InGaAs500 and 

IM-InGaAs20, which included a vertical scaling study. The study showed that the 

thickness of the overall contact can be scaled when a ratio of 10/25 of Pd/Ge is maintained. 

The performance of the ohmic contact is predominately determined by the bandgap and the 

doping of the semiconductor material underneath the contact metal. The specific contact 

resistivity ranges between 5x10-5
Ωcm2 for x266 material to 1.58x10-6

Ωcm2 for x238 

material, which were measured using TLM structures. The specific contact resistivity value 

on the IM-InGaAs20 sample is relatively high compared to the results of the non-alloyed 

ohmic contacts on identical material. A chemical analysis revealed that Ge diffuses into the 

semiconductor material, which should improve the doping levels and consequently reduce 

the barrier width and specific contact resistivity. However, the specific contact resistivity is 

worse than the non-alloyed ohmic contacts and this is possibly due to an outdiffusion of Ga 

into the PdGe contact rendering this area p-type doped increasing the specific contact 

resistivity. The chemical analysis also revealed little alloying, between 5nm and 10nm, into 

the semiconductor material, which is an advantage over a NiGeAu contact. Therefore, the 

PdGe contact could potentially be used as a self-aligned ohmic contact but suffers from an 
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increased contact resistance compared to the NiGeAu contact as the semiconductor 

material in the channel material has a lower bandgap than the semiconductor material 

underneath the oxide, which is due to the buried channel layer structure. Removing the 

wider bandgap material prior to metal deposition could potentially improve the specific 

contact resistivity. An anisotropic dry etch is needed in order to prevent an undercut 

forming underneath the oxide.  Two different anisotropic etches were used: a RIE etch 

technique and an ion gun etch technique. The RIE etch resulted in non-ohmic contact 

behaviour but the ion gun etch improved the specific contact resistivity by about one order 

of magnitude.  The ion gun etch was performed after a wet etch of gate dielectric and 

therefore more research is needed in order to perform a dry etch only gate dielectric 

removal. The PdGe based ohmic contact can therefore be implemented in the current 

MOSFET device structures when a wet etch of the gate dielectric is used.  

Future different MOSFET device structures featuring highly doped, narrow band 

source/drain regions will allow for non alloyed contact deposition as additional doping or 

band gap lowering is no longer required. Four different ohmic contact structures were 

deposited using e-beam evaporated metals with different work functions and one ohmic 

contact structure was deposited using sputtering. The e-beam evaporated metal structures 

were; Ti/Pt 10nm/80nm, Al 100nm, Ni, 100nm and Au 100nm and the sputtered metal 

structure was TiW 100nm. The best ohmic contacts were formed using the Au and Ti/Pt 

ohmic contact, which had a specific contact resistance in the region of 7.5x10-7
Ωcm2. The 

Ni contact, which theoretically has a work function similar to Au had a specific contact 

resistivity, which was one order of magnitude higher than the Au contact and deteriorated 

on annealing in contradiction to the results found in literature. The poor results of the 

annealed Ni sample are probably due to migration of Ni, which led to a decreased 

semiconductor sheet resistance. The Al contact with the lowest theoretical work function 

featured the highest specific contact resistivity. Therefore, the influence of the work 

function of the metal is not conclusive and is therefore probably not the crucial factor, 

which determines the quality of the ohmic contact on highly doped In0.53GaAs.  

The results of the sputtered contacts were subject to the quality of the metal etch and 

before any conclusive results can be drawn, the metal etch should be optimised. However, 

the contacts showed promising specific contact resistivity values and the sputtered contacts 

should be considered in future work. 
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Also devices were built on two different types of III-V MOSFET device structures: a 

buried channel flatband device structure and a surface channel device structure. The buried 

channel flatband MOSFET device structure featuring a GaGdO gate dielectric was used in 

a study to determine whether the devices could be scaled along both the gate length and 

source/drain separation. The surface channel device structure was used to investigate the 

benefits of lower bandgap material in the channel combined with a PdGe ohmic contact 

structure and a different gate dielectric using Al2O3. 

In order to build ohmic contacts to the source/drain scaled devices, the gate dielectric 

needed to be removed using a dry etch and therefore a NiGeAu contact is used in this 

study. From this study a number of conclusions can be drawn. First, the utilization of a 

gate dielectric and device architecture with known low interface state density is vital when 

exploring device scaling issues, in particular where off-state performance metrics such as 

sub-threshold swing are important.  The 1 µm source/gate separation devices show that the 

flatband mode architecture appears to be robust to scaling at least to 90nm, with the layer 

design and doping strategy adopted in this work.  In addition, whilst the more aggressively 

scaled 180nm devices have encouraging off-state performance, on-state breakdown is a 

significant issue, which will have to be mitigated by device re-engineering, with particular 

emphasis on minimising the lateral diffusion of the ohmic contacts.  The 90nm 

aggressively scaled devices appear to be suffering significantly from this issue and in the 

most extreme case, to the extent that the devices cannot be turned off. In future work these 

drawbacks can be mitigated when a dry etch compatible with a PdGe contact structure can 

be realised. 

The surface-channel MOSFET device architecture, which can potentially be integrated on 

a 200mm Si platform, has shown promising mobility values with corresponding high 

carrier concentrations. Well behaved surface channel MOSFET devices were made with 

both NiGeAu and Pd/Ge/Ti/Pt based ohmic contacts. The performance of the Pd/Ge/Ti/Pt 

contacts is low compared to the NiGeAu but can be improved after optimisation of various 

parameters such as annealing temperature, oxide etch and the ratio of Pd/Ge layer 

thickness, however the stringent ITRS requirements are unlikely to be met and alternative 

contact strategies such as regrowth should be considered. The Al2O3 gate stack also 

requires an improvement to challenge the GaO/GaGdO gate dielectric stack in terms of 

leakage and density of states. Future work should focus on reducing ohmic contact 

resistance and improving the Al2O3 gate dielectric stack. 
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The research described above was performed with contact dimensions well above the 

transfer length. However, the ohmic contacts have to be integrated in a scaled CMOS 

technology and therefore two different TLM-based designs with contact lengths scaled 

below the transfer length were designed, fabricated and tested. Once the contacts are scaled 

below two times the transfer length, current crowding effects start to dominate. The use of 

the scaled contact measurement method proved to have several advantages: the sheet 

resistance underneath the contact can be extracted and therefore the contact resistance can 

be calculated more accurately when ohmic contact regions are scaled even further. The 

results were then compared to the measurement results from TLM, CTLM and the end 

resistance measurement method.    

The first design was dismissed due to large variability issues due to a mesa wet etch with 

inaccurate dimensions. Multiple samples were produced using the second design and 

featured lower transfer lengths than predicted by the TLM measurement. This means that 

the assumption that the sheet resistance below the contact is equal to the bulk sheet 

resistance is not valid. There is a strong indication that the metal deposition introduces an 

increased sheet resistance underneath the contact. The most likely explanation for the 

increase in sheet resistance is potential intrusion of the metal into the semiconductor and a 

potential loss of carrier concentration due to increased surface states. This impedes the use 

of a TLM or CTLM structures as a correct measurement method to extract the specific 

contact resistivity and transfer length values. The end resistance measurement was found to 

have great measurement errors when the specific contact resistivity is low and therefore 

cannot be used to extract the sheet resistance underneath the contact. The CTLM structure 

also seems to be relatively inaccurate compared to the TLM structure given the same 

processing. Misalignment and overexposure are therefore critical parameters when 

extracting the contact resistance with a CTLM measurement. 

It is therefore critical to measure the sheet resistance underneath the contact in order to be 

able to predict the behaviour of the ohmic contact, when the device is scaled following the 

ITRS node [1]. Also, the metal sheet resistance could play a key role, however in this work 

the metal sheet resistance was very low compared to the sheet resistance and had little 

influence on the overall result. The increase in sheet resistance underneath the contact 

changes could not be explained conclusively in this work and should therefore be the main 

focus in future work.  
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The future work would then involve the measurement of ohmic contacts on materials with 

a different active layer thickness. The increase in sheet resistance underneath the contact 

could then be explained by comparing the experimental results to the results from a 1D 

Poisson-Schrodinger solver which takes the depletion region underneath the contact into 

account. Also TEM and EELs analysis could more accurately determine the layer thickness 

of the active material which can be fed back into the solver. 

The future work to develop a Si processing compatible ohmic contact has two possible 

fields of research. One field is the development of nickelide contacts to high Indium 

concentration InGaAs or InAs. Nickelide ohmic contact feature relatively high contact 

resistances on In0.53GaAs however moving to high indium concentrations could potentially 

result in very low specific contact resistivities in the range required by the ITRS standards. 

Also the addition of Ge to nickelide recipe could be explored to increase the doping in a 

surface channel device. The other field is to move away from tradiditional planar MOSFET 

devices to FinFETs. The wet etch required to etch the fin structures would mean that the 

structure of the device can be changed as there will no longer be an oxide layer grown on 

top of the layer structure. This would allow a HEMT like quantum well structure with a 

recessed gate, which features highly doped, high indium concentration source/drain ohmic 

contact areas. In situ deposition of metals, such as Mo and TiW, has already shown that the 

requirements for the ITRS can be met and this deposition technique should therefore be 

considered in future work.  
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9.2  Fabrication processes 

9.2.1  Standard clean 

- Clean sample 5 minutes Acetone in ultrasonic bath 

- Clean sample 5 minutes IPA in ultrasonic bath 

- Clean sample 2 minutes H2O 

9.2.2  Standard TLM (metal layer thickness > 150nm) 

- Standard clean 

- Spin 12% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o WOJ0001 belle file 

o Dose 450 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 
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- Ash sample  

o New asher 1 minute, 40 Watt 

- Wet etch 1:100 HCl:H2O duration dependant of material  

- Metallisation 

- Lift off after 1h in 50⁰C Acetone 

- Annealing 

- 50nm Si3N4 deposition 

- Measurement on probe station 

9.2.3  Standard TLM (metal layer thickness < 150nm) 

- Standard clean 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o WOJ0002 belle file 

o Dose 330 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 45s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Wet etch 1:100 HCl:H2O duration dependant of material  

- Metallisation 

- Lift off after 1h in 50⁰C Acetone 

- Annealing 

- 50nm Si3N4 deposition 

- Measurement on probe station 

9.2.4  Sputtered metal TLM 

- Standard clean 

- Wet etch 1:100 HCl:H2O duration dependant of material  
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- Metallisation 

- Spin 12% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o WOJ0003 belle file 

o Dose 450 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- 1h post bake 180⁰C 

- Dry etch  

- 1h in 50⁰C Acetone 

- Annealing 

- 50nm Si3N4 deposition 

- Measurement on probe station 

 

9.2.5  6-1073 MOSFET device 

- Standard clean 

- Spin 12% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o RHI0088 belle file 

o Dose dependent on feature size 

- Develop sample 

o 1:2 developer 60s at 23⁰C 
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o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o Old asher 2 minutes, 110 Watt 

- Metallisation Au/Ge/Au/Ge/Au/Ni/Au (10/10/10/10/20/11/80nm)  

- Lift off after 1h in 50⁰C Acetone 

- IPA clean 

- Standard clean  

- Spin 12% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o RHI0089 belle file 

o Dose dependent on feature size 

- Develop sample 

o 1:2 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o Old asher 2 minutes, 110 Watt 

- Metallisation Au/Ge/Au/Ge/Au/Ni/Au (10/10/10/10/20/11/80nm) 

- Lift off after 1h in 50⁰C Acetone 

- IPA clean 

- Standard clean 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o RHI0090 belle file 

o Dose dependent on feature size 

- Develop sample 

o 1:2,5 developer 45s at 23⁰C 
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o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o Old asher 2 minutes, 110 Watt 

- Wet etch HCl:H2O 1:100 (15s-30s depending on oxide thickness) + 30s water rinse  

- Metallisation 20nm Pt + 200nm Au 

- Lift off after 1h in 50⁰C Acetone 

- Annealing 400⁰C 10s 

- 50nm Si3N4 deposition 

- Measurement on probe station 

9.2.6  c707 MOSFET device 

- Standard clean 

- Spin 12% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o SB7001 belle file 

o Dose dependent on feature size 

- Develop sample 

o 1:2.5 developer 30s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o Old asher 2 minutes, 110 Watt 

- Metallisation 20nm Pt + 200nm Au 

- Lift off after 1h in 50⁰C Acetone 

- IPA clean 

- Standard clean 

- Spin 12% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 
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- VB6 patterning 

o SB7003 belle file 

o Dose dependent on feature size 

- Develop sample 

o 1:1 developer 30s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Wet etch AZ400k 2m45s + 30s water rinse  

- Metallisation 10nm Pd 25nm Ge 35nm Ti 35nm Pt 

- Lift off after 1h in 50⁰C Acetone 

- Annealing 400⁰C 10s 

- 50nm Si3N4 deposition 

- Measurement on probe station 

9.2.7  Scaled design (1) 

- Standard clean 

Markers: 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o WOJ0100 belle file 

o Dose 330 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Metallisation 100nm Au 
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- Lift off after 1h in 50⁰C Acetone 

- IPA clean 

Mesa etch: 

- Standard clean 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning (Markers) 

o WOJ0101 belle file 

o Dose 330 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Wet etch  

o 1:4 HCl:H2O 30s 

o 1:1:100 H2O2:Orthophosphoric Acid:H2O 45s 

o H2O rinse 60s 

- Strip PMMA 1h in 50⁰C Acetone 

- IPA clean 

High resolution Contacts: 

- Standard clean 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 2.5% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o WOJ0102 belle file 

o Dose dependant of feature size 

- Develop sample 
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o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Metallisation  

- Lift off after 1h in 50⁰C Acetone 

- IPA clean 

Contact Pads: 

- Standard clean 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o WOJ0103 belle file 

o Dose 330 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Metallisation  

- Lift off after 1h in 50⁰C Acetone 

- IPA clean 

Probe station TLM measurement 
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9.2.8  Scaled design (2) 

- Standard clean 

Markers: 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o WOJ0200 belle file 

o Dose 330 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Metallisation 100nm Au 

- Lift off after 1h in 50⁰C Acetone 

- IPA clean 

Isolation etch: 

- Standard clean 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning (Markers) 

o WOJ0201 belle file 

o Dose 330 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  
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o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Wet etch  

o 1:4 HCl:H2O 30s 

o 1:1:100 H2O2:Orthophosphoric Acid:H2O 45s 

o H2O rinse 60s 

- Strip PMMA 1h in 50⁰C Acetone 

- IPA clean + H2O clean 2 min 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Standard clean 

- 30nm Si3N4 deposition 

High resolution Contacts: 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 

o WOJ0202 belle file 

o Dose dependant of feature size 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Dry etch Si3N4 

- PMMA strip 1h in 50⁰C Acetone 

- IPA clean 

Contact Pads: 

- Spin 8% 2010 at 5000rpm. (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- Spin 4% 2041 at 5000rpm (Recipe 2 spinner) 

- 1 hour bake in 180⁰C oven 

- VB6 patterning 
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o WOJ0203 belle file 

o Dose 330 

o Beam current 64nA 

- Develop sample 

o 1:2.5 developer 60s at 23⁰C 

o IPA 30s  

o Blow dry + inspect 

- Ash sample  

o New asher 1 minute, 40 Watt 

- Metallisation  

- Lift off after 1h in 50⁰C Acetone 

- IPA clean 

Probe station TLM measurement 

9.3  List of materials 

9.3.1  University of Glasgow grown material 

9.3.1.1  x238 

- Buried channel architecture 

- Increased In content in channel 

- Layer structure: 
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9.3.1.2  x266, x319 

- Buried channel architecture 

- Reduced GaGdO gate dielectric 

- Layer structure: 
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9.3.1.3  c707, c764 

- Surface channel architecture 

- Al 2O3 gate dielectric 

- Layer structure: 
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9.3.1.4  c760,c783 

- Thin InAs surface layer 

- Layer structure 

 

 

9.3.2  Freescale grown material 

 

9.3.2.1  6-1073 

- Layer structure: 
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9.3.3  IMEC grown material 

 

9.3.3.1  IM-GaAs: 

- Low Rsh value 

- Layer structure: 

 

9.3.3.2  IM-InGaAs500: 

- Low Rsh value 

- Layer structure: 
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9.3.3.3  IM-InGaAs20: 

- Barrier layer: 20nm undoped In0.52AlAs 

- Isolation possible 

- Rsh around 300 Ω.cm2 with Si3N4 passivation 

- Layer structure: 

 

 

 

 

 

 

 


