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Abstract 

Since the activities of market participants can be influenced by financial 

outcomes, providing accurate forecasts of these financial outcomes can help 

participants to reduce the risk of adjusting to any market change in the future. 

Predictions of financial outcomes have usually been obtained by conventional 

statistical models based on researchers’ knowledge. With the development of data 

collection and storage, an extensive set of explanatory variables will be extracted 

from big data capturing more economic theories and then applied to predictive 

methods, which can increase the difficulty of model interpretation and produce 

biased estimation. This may further reduce predictive ability. To overcome these 

problems, variable selection techniques are frequently employed to simplify 

model selection and produce more accurate forecasts. In this PhD thesis, we aim 

to combine variable selection approaches with traditional reduced-form models 

to define and forecast the financial outcomes in question (market implied ratings, 

Initial Public Offering (IPO) decisions and the failure of companies). This provides 

benefits for market participants in detecting potential investment opportunities 

and reducing credit risk.  

Making accurate predictions of corporate credit ratings is a crucial issue for both 

investors and rating agencies, since firms’ credit ratings are associated with 

financial flexibility and debt or equity issuance. In Chapter 2, we attempt to 

determine market-implied credit ratings in relation to financial ratios, market-

driven factors and macroeconomic indicators. We conclude that applying variable 

selection techniques, the least absolute shrinkage and selection operator (LASSO) 

and its extension (Elastic net) can improve predictive power. Moreover, the 

predictive ability of LASSO-selected models is clearly better than that of the 

benchmark ordered probit model in all out-of-sample predictions. Finally, fewer 

predictors can be selected into LASSO models controlled by BIC-type tuning 

parameter to produce more accurate out-of-sample prediction than its 

counterpart AIC-type selector.  

Next, the LASSO technique is further applied to binary event prediction. A bank’s 

decision to go public by issuing an Initial Public Offering (IPO) is the binary object 

in Chapter 3, which transforms the operations and capital structure of a bank. 

Much of the empirical investigation in this area focuses on the determinants of 
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the IPO decision, applying accounting ratios and other publicly available 

information in non-linear models. We mark a break with this literature by offering 

methodological extensions as well as an extensive and updated US dataset to 

predict bank IPOs. Combining the least absolute shrinkage and selection operator 

(LASSO) with a Cox proportional hazard, we uncover value in several financial 

factors as well as market-driven and macroeconomic variables, in predicting a 

bank’s decision to go public. Importantly, we document a significant improvement 

in the model’s predictive ability compared to standard frameworks used in the 

literature. Finally, we show that the sensitivity of a bank’s IPO to financial 

characteristics is higher during periods of global financial crisis than in calmer 

times.  

Moving to another line of variable selection techniques, Bayesian Model Averaging 

(BMA) is combined with reduced-form models in Chapter 4. The failure of 

companies is closely related to the health of the whole economy, since the 

beginning of the most recent global crisis was the bankruptcy of Lehman Brothers. 

In this chapter, we forecast the failure of UK private firms incorporating with 

financial ratios and macroeconomic variables. Since two important financial crises 

and firm heterogeneities are covered in our dataset, the predictive powers of 

candidate models in different periods and cross-sections are validated. We first 

detect that applying BMA to the discrete hazard models can improve the predictive 

performance in different sub-periods. However, comparing the results with 

classified models, it should be noted that the Naive Bayes (NB) classifier provides 

slightly higher predictive accuracy than BMA models of discrete hazard models. 

Moreover, the predictive performance of the discrete hazard model and its BMA 

version are more sensitive to adding time or industry dummy variables than other 

competing models. Considering financial crisis or firm heterogeneity can influence 

the predictive power of each candidate model in the out-of-sample prediction of 

failure.  
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Chapter 1 Introduction 

1.1 General background 

Financial forecasting has significant ability to influence future activities for 

market participants. Providing accurate forecasts generally helps market 

participants to reduce uncertainty around costs, identify market tendencies, and 

manage efficient plans, which can frequently be achieved by statistical models in 

financial research. Such models can be explanatory or predictive, and serve to 

evaluate and develop theories in terms of causality or prediction (Shmueli 2010). 

Compared with explanatory models, predictive models have some attractive 

characteristics (Shmueli and Koppius 2011). First, more underlying patterns and 

relationships in a large, complex dataset can be captured by predictive analytics, 

and hence new causality would be suggested. As data storage and computing 

techniques advance, many individuals can be recorded and the substantial 

features of each individual can be tracked simultaneously in the dataset (Giraud 

2015). Thus, an extensive set of potential variables capturing diverse economic 

theories can be extracted from the dataset and applied to building a model. 

Predictive models are able to reduce the interference from superabundant 

outliers in the dataset and simplify the constructed model. Moreover, predictive 

models can evaluate the predictive ability of predictors with high explanatory 

ability. Finally, more accurate forecasts can be provided by predictive models. In 

this thesis, we focus on exploring the properties of predictive models in empirical 

analysis to clarify important predictors and produce more accurate prediction for 

specific financial outcomes.  

Considering bias-variance trade-off, two types of techniques are developed to 

provide more accurate forecasts and a sparser representation in predictive models 

(Shmueli and Koppius 2011). The first is called the shrinkage approach, which 

contains principal components regression, ridge regression and its extensions and 

so on. In this approach the bias is allowed, and the variance is reduced, and the 

major patterns are therefore captured to produce improved prediction. The 

second is related to ensemble technique in machine learning, for example bagging 

(Breiman 1996), boosting (Schapire 1999) and Bayesian derivatives. This method 

tends to combine several predictions from different models to generate more 

accurate prediction. We choose in particular in this thesis two variable selection 



Chapter 1  1.1 General background 

2 

techniques from these predictive models, where the least absolute shrinkage and 

selection operator (LASSO) is related to shrinkage approach and Bayesian model 

averaging (BMA) is derived from Bayesian theory.  

The least absolute shrinkage and selection operator (LASSO), developed by 

Tibshirani (1996), can be regarded as a hybrid of variable selection and shrinkage 

estimators. It enables estimation and variable selection simultaneously in the non-

orthogonal setting. If the tuning parameter exceeds a threshold value in LASSO, 

the coefficients of non-relevant independent variables are forced to zero in the 

model and the less shrinkage is allowed to be placed on the important predictors. 

Therefore, the multi-collinearity problem can be solved, and a more interpretable 

and sparser model can be generated after the LASSO estimator. Moreover, due to 

the smooth form of the penalty function, LASSO can select fewer independent 

variables and is a more stable model in comparison with best-subset and stepwise 

selection methods. Since LASSO can successfully be applied with an extensive set 

of predictors, the outstanding flexibility of LASSO can adjust to any changes to 

variables in the application. In addition, due to the exclusion of interfering 

information, the predictive performance will be better than in the conventional 

models.  

Before LASSO was developed, best-subset (Hocking and Leslie 1967) and stepwise 

selection (Draper and Smith 1966) methods as representatives of variable selection 

techniques in predictive models were developed in the 1960s and generally 

implemented into scientific research due to their simple application and ease of 

interpretation. However, these methods have some disadvantages compared with 

LASSO. Tibshirani (1996) and Zou (2006) demonstrate that subset variable 

selection is not stable during the discrete process, even if the dataset changes 

slightly. When potential independent variables are large, the computation of 

subset selection is complex, which is always substituted by the stepwise subset 

selection (Tian et al. 2015). Fan and Li (2001) further mention that stochastic 

errors are omitted, and estimation is biased in the application of stepwise 

selection, since it is just based on correlation between latent variables.  

Moving to the other type of variable selection techniques in this thesis, Bayesian 

Model Averaging (BMA) is one part of the averaging approach, which is extended 

from the usual Bayesian inference methods. It captures parameter uncertainty in 
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one model through the prior distribution and solves model uncertainty by posterior 

parameter using Bayes’ theorem (Fragoso et al. 2018). It should be noted that 

variable selection procedure in BMA is entirely different from LASSO. If 

researchers focus on variable or model selection, the variable or model with the 

highest posterior probability will be chosen and then this will be used to generate 

predictions. This compromise between selection and prediction can be easily 

completed by the Stochastic Search Variable Selection (SSVS) (Lamon and Clyde 

2000) or the Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm 

(Jacobson and Karlsson 2004). In other words, it allows for direct model selection, 

combined estimation and prediction together, and further suggests that 

parameter and model uncertainty are taken into account in inferences and 

predictions. Considering the model evaluation, Madigan and Raftery (1994) 

confirm that the BMA approach can produce predictions with lower risk under a 

logarithmic scoring rule than using a single model.  

In this thesis, we aim to apply these variable selection techniques to determine 

and forecast some corporate events such as Market Implied Ratings (MIRs), Initial 

Public Offering (IPO) decisions and the failure of a firm. It is known that even 

financial analysts or outsider investors cannot get the full information about 

companies from published information. This implies that these market 

participants are likely to miss investment chances or take more credit risks in the 

financial market. To reduce these risks and assess a company from various points 

of view, specific events in a firm’s life (such as equity or debt issuance) are now 

considered as the primary signal of the firm’s operating information available to 

outsiders (Sena 2002). An increasing number of researchers have emphasised 

specific corporate events to evaluate the financial health of companies (Eckbo 

2009).  

1.2 Structure  

In order to better organize this thesis, we divide the systematically empirical 

forecast exercise into three main chapters. In Chapter 21, we investigate the 

determinants of market implied ratings (MIRs) in relation to firm-specific factors, 

                                         
1 This chapter is based on a research paper co-authored with my supervisors Serafeim Tsoukas and 

Georgios Sermpinis, where is published on Journal of Empirical Finance. 
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market-driven indicators and macroeconomic predictors, and then forecast them. 

Graham and Harvey (2001) demonstrate that credit ratings have considerable 

influence on debt issuance and capital structure. Making accurate predictions of 

corporate credit ratings is a crucial issue to both investors and rating agencies. 

Compared with conventional long-term credit ratings, MIRs can be published with 

high frequency, incorporating market information into data-intensive rating 

models, which provide more timely information about credit quality at short and 

medium term horizons (Rösch 2005, Tsoukas and Spaliara 2014). Hence, we employ 

the literature of credit ratings as foundations to evaluate the predictive 

performance of all candidate models that capture volatile market changes. Since 

MIRs are assigned into ordinal categories, ordered probit models are applied as 

the benchmark to define and forecast MIRs (Pasiouras et al. 2006, Hwang et al. 

2010, Mizen and Tsoukas 2012, Hwang 2013). The variable selection technique 

(LASSO) and its extension (the Elastic net) are then added into the ordered probit 

model and continuation ratio model to determine and forecast MIRs.  

From the conclusions of Chapter 2, we first indicate that MIRs can be affected by 

several firm-specific, market-driven and macroeconomic variables. Meanwhile, 

we confirm LASSO models can provide better predictive performance on the out-

of-sample MIRs than the ordered probit model and simultaneously the most 

important predictors can be selected in LASSO models. We also demonstrate that 

the more accurate out-of-sample prediction and fewer predictors can be produced 

in the LASSO models with BIC-type tuning parameter selector than their LASSO 

counterparts with AIC-type selector. To validate our results, different robustness 

tests are applied, and our main results are robust to the above modifications. 

Thus, LASSO-selected models provide better predictive performance in ordinal 

financial outcomes.  

In Chapter 3, a bank’s IPO decision is chosen as a targeted event for empirical 

investigation. A bank is a financial intermediary whose core activity is to provide 

loans to borrowers and collect deposits from savers. The operating status of a 

bank is associated with the allocation of financial resources and the growth of 

investment in financial markets, which influence the cost of financial 

intermediation and the stability of the whole financial market. Since equity 

finance in the USA has become an important source of funding for banks, a bank’s 

decision to go public has been attracting more attention from academics. We 
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apply accounting ratios and other publicly available information in Cox 

proportional hazard model and its penalized model to identify the factors that 

influence a bank’s IPO decision and predict the IPO decision. Since our dataset 

extends from 1996 to 2016, covering the key years of the banking crisis (2007-

2009), we separate the dataset into pre-crisis, crisis and post-crisis periods and 

assess how market conditions influence the probability of banks going public. 

According to the results, we first document that selected variables are indicators 

affecting the probability of a bank’s IPO decision and further detect that a bank’s 

IPO decision is more sensitive to the change in its financial health in extreme 

economic events than in non-crisis periods. Moving to the analysis of predictive 

performance, we observe a significant increase in the percentage of correct out-

of-sample forecasts of IPO decisions for banks by adding the LASSO estimator into 

the Cox proportional hazard model. On the other hand, we indicate that the Cox 

proportional hazard model underperforms discrete hazard and logistic models and 

the Cox model with LASSO estimator outperforms discrete hazard, logistic models 

and their LASSO version. This highlights the effect of LASSO on our algorithms. In 

line with the conclusion in Chapter 2, the LASSO models controlled by BIC-type 

tuning parameter selector can provide a sparser model and higher predictive 

power in out-of-sample forecasts than their counterpart with AIC-type selector. 

Both Chapters 2 and 3 confirm that the LASSO technique can identify the most 

relevant predictors from an extensive set of candidate variables without 

considering a pre-selection of these potential variables (van de Geer 2008), 

enhance the predictive ability (Fan and Li 2001, Tian et al. 2015) and sidestep the 

problem of multi-collinearity (Tibshirani 1996).  

Next, in Chapter 4 we forecast the failure of private firms by firm-specific and 

macroeconomic indicators in the UK. The UK as a developed European country 

entered into economic recession from 2008 with the signal that the real Gross 

Domestic Product (GDP) growth rate was extremely low. According to the US 

market performance after the financial crisis, increased credit risk for UK firms 

can be supposed. Therefore, providing precise forecasts of UK firms’ failure is 

necessary for their managers, potential investors or policy makers, helping them 

reduce the probability of being exposed to credit risk and preventing economic 

depression. To distinguish this work from the literature, we choose private firms 

with small and medium-scale operating in several industries in the UK, because 
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the growth of these firms has become the main power in economic development 

(Beck et al. 2005). The data period from 1991 to 2009 covers two important 

financial crises in UK economic history: the 1991–1993 European Exchange Rate 

Mechanism (ERM) currency crisis and the 2008-2009 global financial crisis (GFC). 

This provides an opportunity for us to detect whether the predictive powers of all 

candidate models are sensitive to financial crises. Meanwhile, we divide our 

dataset into two cross-sections, to capture two dimensions of firm heterogeneity 

(size and age). This could help us detect whether the cross-sectional differences 

affect the predictive ability of each model. To evaluate the predictive ability, we 

apply a combined model by discrete hazard model and BMA model to solve the 

parameter and model uncertainty and assess the predictive performance of firms’ 

failure compared with the discrete hazard model and traditional classifiers, the 

Naive Bayes (NB) classifier and the k-nearest neighbours (k-NN) classifier. 

From the main conclusions, the top two models providing higher predictive ability 

in firms’ failure are the BMA of discrete hazard models and the NB classifier. The 

NB classifier outperforms the BMA version of discrete hazard model in some sub-

samples while the predictive ability of the BMA version of discrete hazard model 

is comparable with that of the NB classifier. It should be noted that adding BMA 

into the discrete hazard models can increase the predictive accuracy in out-of-

sample prediction and solve parameter and model uncertainty. The results also 

suggest that financial crisis and firm heterogeneity can affect the predictive 

power of each candidate model. We also observe that considering time effects or 

industry effects can improve the accuracy of out-of-sample prediction in different 

periods, especially for discrete hazard model and its BMA version.  

In the last chapter, we conclude all empirical work and suggest some topics for 

future research.  

 



Chapter 1  References 

7 

References 

Beck, T., Demirguc-Kunt, A. and Levine, R. (2005) 'SMEs, Growth, and Poverty: Cross-Country 
Evidence', Journal of Economic Growth, 10(3), 199-229. 

 

Breiman, L. (1996) 'Bagging Predictors', Machine Learning, 24(2), 123-140. 

 

Draper, N. R. and Smith, H. (1966) Applied Regression Analysis, New York: John Wiley & Sons. 

 

Eckbo, B. E. (2009) Handbook of Corporate Finance: Empirical Corporate Finance. Vol. 1, 
Amsterdam: Elsevier North-Holland. 

 

Fan, J. and Li, R. (2001) 'Variable Selection via Nonconcave Penalized Likelihood and Its Oracle 
Properties', Journal of the American Statistical Association, 96(456), 1348-1360. 

 

Fragoso, T. M., Bertoli, W. and Louzada, F. (2018) 'Bayesian Model Averaging: A Systematic 
Review and Conceptual Classification: BMA: A Systematic Review', International Statistical 
Review, 86(1), 1-28. 

 

Giraud, C. (2015) High-dimensional Statistics, Boca Raton: CRC Press. 

 

Graham, J. R. and Harvey, C. R. (2001) 'The Theory and Practice of Corporate Finance: Evidence 
from the Field', Journal of Financial Economics, 60(2), 187-243. 

 

Hocking, R. R. and Leslie, R. N. (1967) 'Selection of the Best Subset in Regression Analysis', 
Technometrics, 9(4), 531-540. 

 

Hwang, R.-C., Chung, H. and Chu, C. K. (2010) 'Predicting Issuer Credit Ratings Using a 
Semiparametric Method', Journal of Empirical Finance, 17(1), 120-137. 

 

Hwang, R. C. (2013) 'Forecasting Credit Ratings with the Varying-Coefficient Model', Quantitative 
Finance, 13(12), 1947-1965. 

 

Jacobson, T. and Karlsson, S. (2004) 'Finding Good Predictors for Inflation: A Bayesian Model 
Averaging Approach', Journal of Forecasting, 23(7), 479-496. 

 

Lamon, E. C. and Clyde, M. A. (2000) 'Accounting for Model Uncertainty in Prediction of 
Chlorophyll in Lake Okeechobee', Journal of Agricultural, Biological, and Environmental 
Statistics, 5(3), 297-322. 

 

Mizen, P. and Tsoukas, S. (2012) 'Forecasting US Bond Default Ratings Allowing for Previous and 
Initial State Dependence in an Ordered Probit Model', International Journal of Forecasting, 
28(1), 273-287. 

 

Pasiouras, F., Gaganis, C. and Zopounidis, C. (2006) 'The Impact of Bank Regulations, 
Supervision, Market Structure, and Bank Characteristics on Individual Bank Ratings: A Cross-
Country Analysis', Review of Quantitative Finance and Accounting, 27(4), 403-438. 

 



Chapter 1  References 

8 

Rösch, D. (2005) 'An Empirical Comparison of Default Risk Forecasts from Alternative Credit 
Rating Philosophies', International Journal of Forecasting, 21(1), 37-51. 

 

Schapire, R. E. (1999) 'A Brief Introduction to Boosting', in Proceedings of the 16th international 
joint conference on Artificial intelligence - Volume 2, Stockholm, Sweden, 1624417: Morgan 
Kaufmann Publishers Inc., 1401-1406. 

 

Sena, V. (2002) 'Empirical Corporate Finance: Volumes I, II, III and IV. Edited by Brennan (Michael 
J.)', 112(Generic), F358-F360. 

 

Shmueli, G. (2010) 'To Explain or to Predict?', Statistical Science, 25(3), 289-310. 

 

Shmueli, G. and Koppius, O. R. (2011) 'Predictive Analytics in Information Systems Research', MIS 
Quarterly, 35(3), 553-572. 

 

Tian, S., Yu, Y. and Guo, H. (2015) 'Variable Selection and Corporate Bankruptcy Forecasts', 
Journal of Banking and Finance, 52, 89-100. 

 

Tibshirani, R. (1996) 'Regression Shrinkage and Selection via the Lasso', Journal of the Royal 
Statistical Society. Series B (Methodological), 58(1), 267-288. 

 

Tsoukas, S. and Spaliara, M.-E. (2014) 'Market Implied Ratings and Financing Constraints: 
Evidence from US Firms: Market Implied Ratings and Financing Constraints', Journal of 
Business Finance & Accounting, 41(1-2), 242-269. 

 

van de Geer, S. A. (2008) 'High-Dimensional Generalized Linear Models and the Lasso', The 
Annals of Statistics, 36(6), 614. 

 

Zou, H. (2006) 'The Adaptive Lasso and Its Oracle Properties', Journal of the American Statistical 
Association, 101(476), 1418-1429. 

 



 

9 

 

 

Chapter 2 Modelling market implied ratings 
using LASSO variable selection techniques 

 

Abstract 

Both investors and rating agencies are interested in the accurate forecasting of 

corporate credit ratings to manage credit risk. In this chapter, financial factors, 

market-driven indicators and macroeconomic predictors are applied to determine 

market implied credit ratings. Adding a variable selection technique, the least 

absolute shrinkage and selection operator (LASSO) into reduced-form models can 

significantly improve predictive power. Moreover, when we compare our LASSO 

models with the benchmark ordered probit model, it can be shown that the former 

models have superior predictive ability and outperform the latter model in all out-

of-sample predictions.  

Key words: Market implied ratings, LASSO, Financial ratios, Forecasting   
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2.1 Introduction 

Credit ratings are regarded as a measurement of the creditworthiness of a firm, 

and they are widely used to quantify the credit risk for the firm’s external 

investors. They show the likelihood that a given borrower will default. They are 

generally issued by rating agencies such as Standard and Poor’s, Moody’s and Fitch 

according to the assessment of a firm’s ability and willingness to fulfil debt 

servicing obligations in a specific period. This ability has significant potential to 

affect the pricing of credit risk and the allocation of investment strategies. 

According to the Financial Crisis Inquiry (2011), credit rating agencies as a key 

factor added to the most recent financial crisis in the US, since the updating of 

ratings was unable to adjust quickly to market changes. The users of credit ratings 

blindly rely on these ratings as early warning signals to identify credit risks in 

financial markets, which become the other element of this financial turmoil. 

Hence, rating accuracy and the process by which firms are assigned their ratings 

have been widely contested in the US. Fitch has recently developed a new model 

to derive Market Implied Ratings (MIRs) from bond and equity prices. The 

appealing advantage of these ratings in comparison with the conventional agency 

ratings is that they adjust instantaneously to market changes.  

In this chapter, we aim to develop methodological extensions by adding a variable 

selection approach, the least absolute shrinkage and selection operator (LASSO), 

and its most promising derivation, the Elastic net, to ordered probit and 

continuation ratio models. The task in hand involves forecasting Fitch’s CDS and 

Equity implied ratings (CDSIRs and EQIRs respectively hereafter). The major 

research contribution is to exploit LASSO properties and define the underlying 

structure of CDSIRs and EQIRs.1 Firm-specific ratios from accounting reports and 

other publicly available information have been implemented in previous studies 

to predict credit ratings. The most important determinants for predicting bond 

ratings are identified by various techniques (OLS, multinomial and ordered 

logit/probit models) in this work (see for instance the early studies by Pogue and 

Soldofsky 1969, Pinches and Mingo 1973, Kaplan and Urwitz 1979, Kao and Wu 

1990). The results suggest that a firm’s financial situation and the economic 

                                         
1 With respect to the latter aim of this study, for reasons of space we do not report estimated 

coefficients of the prediction models. These results are available upon request.  
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environment can influence its ratings and the forecasting of default. Mizen and 

Tsoukas (2012) confirm the importance of capturing dynamic settings in ratings 

during model estimation and demonstrate that controlling state dependence can 

increase the percentage of correct prediction by the models. 

In another line of credit ratings research, an increasing number of applied rating 

predictors as input in a model can be observed in literature, since researchers 

tend to capture more economic theories to define or forecast ratings. This gives 

us the opportunity to ask whether the predictors used are relevant in a piece of 

work. On the one hand, if only the subset of applied factors is related to ratings, 

it means that potentially important determinants of ratings are omitted, leading 

to a decrease in prediction accuracy. On the other hand, when the extensive set 

of predictors can explain rating, the multi-collinearity problem is likely to be met, 

resulting in biased estimation. If the multi-collinearity problem is not at work, a 

sparse representation cannot be provided due to a large number of applied 

predictors, which means that these models cannot be easily explained and readily 

used by market participants and rating agencies.  

Our methodology carefully follows the literature that examines the determinants 

of credit ratings, but we add to it in two important ways. First, a methodological 

contribution is made by deriving a simple and more intuitive, yet innovative 

model, which is based on the variable selection technique, developed by 

Tibshirani (1996)—the least absolute shrinkage and selection operator (LASSO). 

Fan and Li (2001) and Tian et al. (2015) indicate that the most important 

predictors can be automatically selected from an extensive set of candidate 

variables and the predictive performance can simultaneously be improved in 

LASSO. Furthermore, LASSO does not depend on strict presumptions such as a pre-

selection of the variables considered, and it is statistically consistent even under 

infinity observations (van de Geer 2008). It should be noted that LASSO can solve 

the problem of multi-collinearity that is fairly common in probit/logit models. In 

addition, LASSO technique is computationally efficient even when a large set of 

potential predictors are used. Our study is the first to provide a systematic 

empirical analysis of LASSO techniques in MIRs forecasts. In doing so, we 

investigate the relative importance of several time-varying covariates from an 

extensive set of firm-specific factors, market-specific predictors and macro-

economic indicators applied to predict market implied ratings. After model 
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estimation, a parsimonious set of predictors will be produced which can be readily 

employed by investors, managers and credit risk agencies.  

Second, our panel dataset is constructed by market implied ratings instead of the 

standard long-term ratings. Compared with long-term ratings, MIRs represent an 

innovation to the ratings industry to address the issue of staleness in their long-

term counterparts. Rösch (2005) and Tsoukas and Spaliara (2014) state that MIRs 

depend on proprietary and data-intensive rating models that incorporate market 

information into a model-based credit assessment. The most attractive 

characteristic of these ratings is that they can adjust immediately to market 

changes. Hence, we build on the foundations of the literature on implied ratings 

by investigating the forecasting power of models that capture volatile market 

changes.  

To preview our findings, market implied ratings can be explained by several 

financial factors along with market-driven and macroeconomic indicators. 

Importantly, applying the LASSO techniques can considerably enhance the 

predictive power of our models in out-of-sample predictions compared to the 

benchmark (ordered probit model) which is commonly adopted in the literature. 

Moreover, the predictive performance of the LASSO models controlled by BIC-type 

tuning parameter selector are superior to their LASSO counterparts with AIC-type 

selector for the dataset and periods under our study. Thus, we suggest that LASSO-

selected models can be implemented in future research to produce improved 

rating prediction.  

The rest of the chapter is structured as follows. The literature of forecasting credit 

ratings and variable selection techniques is presented in section 2. We discuss the 

data and summary statistics in section 3. Following that, we describe our 

methodology in section 4. The empirical results and robustness tests are reported 

in section 5. The main conclusion is demonstrated in the final section.   

2.2 Literature  

The ways in which rating agencies use public information in setting quality ratings 

and researchers provide accurate prediction of ratings in the literature are 

contentious issues. Verifying the categories of credit ratings of companies is the 
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extended work of identifying the default probabilities of companies in credit risk 

management. Horrigan (1966) first introduced the work of predicting bond ratings 

through accounting data and financial ratios from balance sheets and 

subordination. To provide a better set of financial ratios explaining credit ratings, 

Horrigan tested different combinations of predictor and kept the best one with 

the highest value of R-squared. This set was constructed by total assets, net worth 

to the book value of total debt, net operating profit to sales, working capital to 

sales adjusted industrial effects, and sales to net worth adjusted industrial 

effects. A dummy variable represented the subordination status of bond ratings, 

which produces about 60% correct out-of-sample prediction of newly issued and 

changed ratings. Unlike Horrigan's study (1966), Pogue and Soldofsky (1969) 

estimated the conditional probability that a bond would be assigned the higher 

rating by employing financial ratios and then converted the estimated probability 

into different rating categories to assess the predictive performance. In their 

conclusion, they demonstrate that leverage, the variation of earnings, the size of 

firm and profitability can influence bond ratings. Since bond ratings are related 

to the default risk, West (1970) adopted the four components of risk premiums 

(earnings volatility, capital structure, reliability and marketability) from Fisher's 

study (1959) into Horrigan’s study to predict bond ratings again. He showed that 

the predictive accuracy of the Fisher model is higher than that of Horrigan’s 

model.  

With the development of econometrics, some researchers emphasised using 

multiple discriminant analysis (MDA) to categorize bonds into different rating 

levels. Based on the theory of MDA, there is no need to transform ordinal data 

into interval scale since the analysis of MDA focuses on differences in each 

category in dependent variables. In other words, MDA ignores the ordinal 

properties of ratings and just regards different rating categories as various 

segmentations of a single risk dimension. Pinches and Mingo (1973) implemented 

two methodological steps to categorize the ratings of bond issues. The factor 

analysis was used first to identify relatively important predictors and then these 

predictors were employed in multiple discriminant analysis to evaluate newly 

issued bond ratings. They concluded that about 70% correct predictions in actual 

ratings can be observed and around 60% correct forecasts in newly issued bonds. 

To find more potential relationships between credit ratings and financial ratios, 
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Altman and Katz (1976) included 30 independent variables in MDA to determine 

the bond ratings of electric firms and confirmed that 14 predictors survived in the 

model and the predictive power in out-of-sample dataset increased to around 75%. 

Ang and Patel (1975) compared the predictive performance of methodologies 

applied in the studies of Horrigan (1966), Pogue and Soldofsky (1969), West (1970) 

and Pinches and Mingo (1973) in bond ratings. They confirmed that these models 

could be used in the prediction of short-term financial loss probability but they 

did not perform well in long-term prediction.  

McKelvey and Zavoina (1975) developed a model known as the ordered probit 

model, for ordinal dependent variables, which assumed that the unobserved 

dependent variables were on an interval scale that could be measured by a linear 

model. They then divided these dependent variables with different cut-points to 

detect the ordinal dependent variable. This model provided a new opportunity for 

researchers to determine the ordinal ranks of credit ratings, and it is frequently 

used as a benchmark model to analyse credit ratings. Kaplan and Urwitz (1979) 

argued the disadvantages of using OLS and MDA models for analysing bond ratings 

and then implemented the probit models to estimate bond ratings. They point out 

that the results of financial ratios are similar to the conclusions reached by Pinches 

and Mingo (1973) and the market beta is one determinant of ratings. The 

predictive ability of the probit model is not significantly different from previous 

studies. Ederington (1985) further compared the application of four models on 

bond ratings, which contained a linear regression model, an ordered probit model, 

a linear discriminant model and a multinomial logit model. He confirmed that the 

ordered probit model clearly outperformed the regression model and the 

unordered logit model clearly dominated the discriminant model. Gentry et al. 

(1988) confirmed the predictive power of cash flow ratios during bond ratings 

categorization by using the probit model and suggested that involved inventories, 

other current liabilities, dividends, long-term financing and fixed coverage 

charges should be considered in the future prediction of bond ratings. 

Previous research frequently emphasised analysing credit ratings under the 

assumption that rating standards are consistent. With an increasing number of 

downgrades in bond ratings, the performance of the debt market is gradually 

attracting researchers’ attention. Blume et al. (1998) tried to confirm whether 

the credit quality of corporate debt had worsened over time. They used three-
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year averages of financial ratios in an ordered probit model and detected that 

rating standards had become stricter. In this situation, they reported that firms 

were less likely to be assigned higher ratings levels in the mid-1980s and early 

1990s. Following the variable selection criterion in the work of Blume et al. 

(1998), Poon (2003) constructed the global sample dataset by averaging three-

year financial ratios and then applying the ordered probit model to detect the 

indicators of credit ratings. He demonstrated that a government’s credit risk is an 

important determinant of long-term ratings and it has a positive relationship with 

long-term ratings. 

From the abovementioned literature, it can be seen that different statistical 

models capturing the characteristics of a dataset provide various ratings 

predictions and researchers cannot successfully suggest a preferred model. 

Kamstra et al. (2001) applied ordered logit regression (similar to the ordered 

probit model) combining methods to improve the predictive accuracy of bond 

ratings in the transportation and industrial sectors and confirmed that combined 

forecasts outperform their input forecasts. More recently, ordered probit 

methodologies have been commonly applied by for instance Amato and Furfine 

(2004) Hwang et al. (2009) and Hwang et al. (2010) to forecast credit ratings.  

Amato and Furfine (2004) confirmed that credit ratings change based on the state 

of the business cycle, by analysing US firms in the ordered probit model. Moreover, 

they demonstrated procyclicality in the ratings of investment grade firms or newly 

assigned firms. Hwang et al. (2009) documented an analysis on the S&P’s long-

term issuer credit rating. They used a stepwise selection model on 24 latent 

independent variables to select relatively important ones before applying a 

mollified ordered probit model. In particular, there were two market-driven 

variables, three accounting variables and industry effect variables in the final list 

of independent variables. The estimated coefficients of final predictors met 

expectations. The predictive accuracy of long-term ratings can reach up to around 

72.84% and 77.16% using different cut-off values in the ordered probit model. 

Hwang et al. (2010) constructed a prediction model by changing the linear 

regression function in the common ordered probit model into a semiparametric 

function and confirmed this developed model can outperform the original one in 

out-of-sample prediction. It was identified in both studies that some indicators 
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are essential in forecasting credit ratings, such as the size of the company, 

balance sheet position, stock market performance and industry effects.  

Altman and Kao (1992) report strong evidence that there was some serial 

correlation of ratings changes if the primary change was a downgrade, but no 

autocorrelation when the primary change was an upgrade, according to the two 

time periods examined, from 1970 to 1979, and from 1980 to 1985. As previously 

indicated, the balance sheet always shows the performance of a firm in a specific 

previous time period. This means that current credit ratings may be related to 

previous credit ratings and other previous accounting information about the 

corresponding firm. Parnes (2007) confirmed this changing tendency using several 

nonlinear models, which illustrate a clear positive autocorrelation among 

downgrade probabilities. By using the internal correlations model he also showed 

that time-series fluctuation is a more significant property in credit ratings than 

cross-ratings correlations.  

Hwang (2013b) considered the autocorrelation of credit ratings in the dynamic 

ordered probit model (DOPM). In the empirical results, the out-of-sample total 

error rate was smaller and there was lower volatility compared with the simple 

DOPM under independence assumption. Hwang (2013a) further modified the DOPM 

by using smooth functions of macroeconomic variables to represent coefficients 

of firm-level independent variables in the DOPM, which is called the dynamic 

ordered varying-coefficient probit model (DOVPM). The latent coefficient 

functions in DOVPM can be measured by applying a local maximum likelihood 

method. The conclusion of this paper illustrated that the macroeconomic situation 

definitely influences the changing tendency of firm-level predictors. At the same 

time, the performance of DOVPM is obviously better than DOPM when it comes to 

predictive accuracy and total error rates of the prediction in the out-of-sample 

dataset. Both studies provide evidence that capturing the dynamic features of 

long-term ratings can increase predictive accuracy (see Hwang 2013b, Hwang 

2013a). This conclusion is further supported by Mizen and Tsoukas (2012), who 

documented that the predictive performance in long-term ratings can be improved 

by considering the persistence of ratings. Tsoukas and Spaliara (2014) attempted 

to discover the relation between market implied ratings and financial constraints 

by adopting the ordered probit model. Their conclusion was that financial ratios 

are critical in ratings forecasts if a firm is likely to encounter financial difficulties. 
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Moving to the literature of implied ratings, almost all studies focus on detecting 

the differences between long-term agency ratings and market implied ratings. 

Breger et al. (2003) indicated that bond spreads have explanatory ability to define 

the cut-off points of categorized bonds and suggested that implied ratings perform 

better in identifying default probability compared with other ratings. After that, 

Rösch (2005) confirmed this finding and demonstrated that the default probability 

can be appropriately reflected by implied ratings in comparison with standard 

ratings. Castellano and Giacometti (2012) observed that the changes in credit 

ratings could be predicted by market implied ratings. 

The variables selection techniques are not widely applied in determining or 

predicting credit ratings. Only a small amount of work can be found that studies 

bankruptcy. Amendola et al. (2012) first employed the LASSO approach to 

estimate the default probabilities of Italian companies in the limited liability 

sector. According to their conclusion, the LASSO approach can provide a superior 

predictive performance and more stable error rates than previous default models. 

Härdle and Prastyo (2013) aimed to forecast the default probability of Southeast 

Asian firms by adding LASSO and elastic net in the logit model and confirmed that 

adding these penalty functions into the model can clearly improve the predictive 

accuracy. To provide general evidence supporting the predictive ability of LASSO 

on default risk, Tian et al. (2015) studied a comprehensive U.S. bankruptcy 

database and concluded that accuracy in out-of-sample prediction is superior than 

in previous models (like reduced-form models with the distance to default) in 

estimating default by combining reduced model with the LASSO technique. 

Importantly, the first study of LASSO was developed by Tibshirani (1996). He 

suggested two reasons why LASSO should be created on the basis of Ordinary Least 

Squares (OLS). First, OLS estimates have low bias but large variance. However, in 

LASSO, non-relevant variables in the regression would be forced to 0, which allows 

bias and reduces the variance of predicted value. It can improve the predictive 

power of OLS. The second reason is the power of interpretation. Faced with vast 

predictors in OLS estimates, there exist complex and important elements 

illustrating how predictors affect the dependent variable. In LASSO, due to zero 

coefficients of some predictors, the strongest effects can be determined 

objectively, which make the analysis more reasonable.  
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Zou and Hastie (2005) combined LASSO with ridge regression to produce the Elastic 

net, which is a good hybrid of sparsity and regulation. There exist some advantages 

of using the Elastic net. First, it can select correlated independent variables in 

the grouping effect. In addition, the penalty function is strictly convex, thus a 

unique global minimum would be calculated. Finally, it is useful to solve the 

problem that the number of predictors is bigger than the number of observations. 

Although the Elastic net is not very widely used in econometrics, it has been 

employed on microarray data and in gene selection. 

From the above review, the determinants of credit ratings prediction are 

provided, which is helpful to identify relevant predictors in market implied 

ratings. Meanwhile, the development of econometric methods in credit ratings is 

shown, which gives us the opportunity to make a methodological contribution. We 

will discuss the applied dataset and estimation strategy in the following sections. 

2.3 Data and summary statistics 

2.3.1 Data sources  

Fitch’s database is employed to extract the data on market implied ratings, which 

refers to solicited ratings for all traded companies in the US. This database 

provides information on the CDS and Equity implied ratings assigned to each issuer 

as well as the date that the rating became available. From 2002 to 2008, both CDS 

and Equity implied ratings are reported on a monthly basis.2 Following normal 

practice in the literature, we categorize our firms into rating buckets without 

consideration of notches (i.e. + or -). According to the studies of Amato and 

Furfine (2004) and Mizen and Tsoukas (2012), this classification considers large 

cumulative changes of ratings rather than small movements notch by notch and 

avoids very few observations in one rating category. Therefore, seven rating 

                                         
2 The research aims to study the structure and predictability of the implied ratings in the years 

preceding the recent global financial crisis. Our choice to focus on a time window ending in 2008 
is motivated by two important considerations. First, the global financial crisis and the collapse of 
Lehman Brothers constituted a shock that may have acted as a confusing factor in the 
determination of credit ratings. In fact, it can be argued that the misinterpretation of the credit 
ratings by investors was one of the main contributors to the crisis. Second, the data were 
downloaded early in 2010 from a research project supported by Fitch: the coverage period is 
therefore 2002-2008.  
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categories are created, ranging from AAA to Below CCC, which are assigned 

numerical values in Table 2-1, starting with 1 to AAA, 2 to AA…, 7 to Below CCC.3  

Table 2-1 Rating categories 

Market Implied Ratings Corresponding numerical values 

AAA 1 

AA 2 

A 3 

BBB 4 

BB 5 

B 6 

Below CCC 7 

Notes: The table presents the rating categories and the corresponding numerical values. 

In our work, the independent variables can be divided into three parts: accounting 

variables, market-driven indicators and macroeconomic predictors. Firm-specific 

accounting data are taken from Fitch’s Peer Analysis Tool. Quarterly corporate 

historical data for all companies rated by Fitch can be accessed in this database. 

MIRs of firms are linked with Fitch’s balance sheet statements and profit and loss 

accounts of corresponding firms. Hence, we merge the monthly MIRs data and 

quarterly firm-level accounting data to construct our dataset. 4  For the final 

dataset, each firm with CDSIRs and EQIRs data and financial and market data can 

be observed every month. Following applied selection criteria in the literature, 

we keep companies with complete records on our explanatory variables and firm-

months without negative sales and assets. To reduce the potential influence of 

outliers, the regression variables are winsorized at the 1st and 99th percentiles.  

Monthly data on market indicators and macroeconomic variables are downloaded 

from Bloomberg. Our combined sample ultimately comprises data for 211 firms 

operating in all sectors of the US economy except agriculture, forestry and fishing 

and public administration. The number of observations on each firm in this 

unbalanced panel vary between 1 and 63. Two features of our dataset make our 

                                         
3 In EQIRs we do not observe any ratings in the last category, hence six groups are generated for 

this type of implied ratings. 

4 For each firm, the quarterly data is repeated every month during the same quarter if the monthly 
data is not observed. 
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work attractive. First, both investment and speculative grades ratings are included 

in our dataset, which covers the whole spectrum of firms in line with previous 

studies (see for instance Amato and Furfine 2004). Second, there is no significant 

difference between the distribution of standard long-term ratings in CDS data and 

the distribution of agency ratings in the general bond population (see Reyngold et 

al. 2007). Thus, our empirical analysis from both the CDSIRs and the EQIRs 

databases has a representative base.  

2.3.2 Choice of explanatory variables 

Both business and financial risks are incorporated into previous empirical research 

to determine credit ratings. The business risk is a measure of industry 

characteristics, firm size, management capability and organizational indicators. 

Financial risk is related to the quality of a firm’s accounting procedures, 

profitability, cash flow situation and its overall financial policy. Market-related 

information is also considered in candidate models. Meanwhile, we check the 

material issued by rating agencies, especially Fitch, to verify what matters when 

assigning a market implied rating. In other words, the extensive selection of our 

explanatory variables is guided both from the existing empirical literature (see for 

example Kaplan and Urwitz 1979, Ederington 1985, Poon 2003, Chava and Jarrow 

2004, Amendola et al. 2012, Mizen and Tsoukas 2012, Hwang 2013a, Creal et al. 

2014, Doumpos et al. 2015, Tian et al. 2015), and the common practice of rating 

agencies (see Liu et al. 2007, Reyngold et al. 2007).5  

2.3.2.1 Firm-specific variables 

We apply 16 firm-specific accounting variables as potential predictors of ratings, 

which measure different aspects of firms’ financial health such as size, leverage, 

coverage, cash flow, profitability and liquidity. Specifically, the firm size (DETA) 

is calculated by the natural logarithm of firms’ real total assets, which indicates 

the scale of the firm. When firm size increases, the rating of the firm would be 

expected to improve. Next, we measure leverage using a number of ratios: The 

ratio of total assets over equity (AE), the ratio of long-term debt over total assets 

(LDA), the ratio of short-term debt to total assets (SDA), the ratio of total debt to 

                                         
5 The expected relationship between these variables and MIRs is presented in Table A1 in Appendix 

A. The Table also provides a detailed description of the variables used in this study.  
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total assets (TDA), and the ratio of total debt to earnings before interest, taxes, 

depreciation, amortization, and restructuring or rent costs (TDEBITDA). The 

negative relationship between leverage and MIRs would be expected, since higher 

values for these ratios are likely to increase financial risk and hence should worsen 

the rating. The next two measures proxy the creditworthiness of the firm, as they 

show the firm’s ability to generate income to meet interest rate obligations: the 

ratio of earnings before interest and tax over interest expenses (EBITINT) and the 

ratio of earnings before interest, taxes, depreciation, amortization and 

restructuring or rent costs to interest expenses (EBITDAINT). If these ratios 

increase, this firm would have more ability to cover its obligations and reduce 

default risk, which would improve its rating. Further, cash flow is measured by 

the following ratios: cash flow from operating activities over total assets (CFOA), 

and cash and equivalent over total assets (CASHEQA). The positive relationship 

between these ratios and rating upgrades would be expected, since more cash 

flow would reduce liquidity risk and then improve ratings. The next five ratios 

explain the profitability of a firm: the ratio of operating income to net sales (OM), 

the ratio of net income without dividends over total capital (ROC), the ratio of 

net income over shareholders’ equity (ROE), the ratio of net income over total 

assets (ROA) and the ratio of the funds from operations to total debt (FFD). With 

the improvement in operation performance, more profitability should be 

expected, which implies an improvement of ratings. Finally, liquidity is expressed 

by the ratio of cash from operations to liabilities (LIQ), which shows the ability of 

a firm to satisfy its short-term obligations as they become due. A firm operating 

with higher levels of liquidity is likely to be assigned the higher-level rating.  

2.3.2.2 Market-driven indicators 

Since stock prices have the ability to reflect publicly available information, it is 

reasonable that market-driven variables can affect the rating of a company as 

indicated previously. Thus, we apply the following market indicators: excess 

return (EXRET) as calculated by the monthly stock return on a firm minus the S&P 

500 index return and the relative size of a firm in the market (RSIZE) measured by 

each firm’s market equity value over the total market equity value. Both variables 

are expected to be positively associated with the improvement of ratings. Next, 

the volatility of stock return (STD) is expressed by the standard deviation of each 

company’s monthly stock returns. The systematic risk of each firm (BETA) is 



Chapter 2  2.3 Data and summary statistics 

22 

employed, which is extracted from the Capital Asset Pricing Model for each firm. 

Finally, the 1-year and 5-year default probabilities (PD1 and PD5) are taken from 

Fitch’s Peer Analysis Tool. An increase in these variables indicates the growth of 

default probability, which would worsen ratings.  

2.3.2.3 Macroeconomic influences 

An extensive set of macro-economic variables as potential predictors is applied to 

determine market implied ratings. Specifically, returns on the S&P 500 index 

(RLSP) are calculated as the evaluation of the stock market performance. Short-

term interest rates are measured by the three-month commercial paper rate 

(CPFFM), three-month Treasury bill rate minus federal funds rate (TB3) and the 

one-year constant maturity treasury rate (GS1). The general price level is 

employed, as measured by the growth rate in the narrow money stock (MB) and 

inflation rate (INFL). Aggregate economic activity is proxied by the rate of change 

in industrial production (DLIP), the index of the growth rate of real GDP (DLGDP), 

the average of monthly Chicago Fed National Activity Index over the year (CFNA), 

the average monthly unemployment rate over the year (UNRATE) and the Chicago 

Board Options Exchange (CBOE) volatility index (VIX). All macro-variables, apart 

from VIX, are reported in percentages. The eleven macroeconomic variables 

measure different aspects of the aggregate economy’s performance. Their 

relationship with the market implied ratings could be either positive or negative 

since ratings tend to improve during good times, but agencies have been observed 

to tighten their standards during these periods. Hence, the relationship between 

ratings and macro-economic variables is an issue that will be determined 

empirically.  

2.3.3 Summary statistics 

The distribution of firms by rating categories for CDSIRs and EQIRs are reported in 

Table 2-2 and Table 2-3 respectively. Based on these tables, there is no significant 

difference in the distribution of firms across the rating categories and most firms 

are assigned A and BBB ratings.   
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Table 2-2 CDSIRs of firms by year 

 
 

AAA AA A BBB BB B 
Below 
CCC 

Number of 
Observations 

2002  4 35 46 32 20 1 0 138 

2003  10 44 68 65 32 7 0 226 

2004  11 41 60 70 35 10 0 227 

2005  9 34 57 71 29 10 1 211 

2006  9 24 52 63 26 4 1 179 

2007  14 45 54 63 28 13 6 223 

2008  12 19 13 33 13 3 1 94 

Number of 
Observations 

 
69 242 350 397 183 48 9 1298 

Note: This table presents the distribution of firms by rating category for CDSIRs by year. 

Table 2-3 EQIRs of firms by year 

 AAA AA A BBB BB B 
Below 
CCC 

Number of 
Observations 

2002 1 13 55 103 76 16 0 264 

2003 2 19 91 106 43 5 0 266 

2004 1 20 100 99 42 6 0 268 

2005 0 10 70 87 38 4 0 209 

2006 0 11 80 74 29 4 0 198 

2007 1 19 91 80 41 8 0 240 

2008 0 5 29 37 23 1 0 95 

Number of 
Observations 5 97 516 586 292 44 0 1540 

Note: This table presents the distribution of firms by rating category for EQIRs by year.  

At the next stage, summary statistics for our explanatory variables are 

documented in Table 2-4 and Table 2-5. To capture any differences across ratings 

categories, the sample is separated into investment grades and non-investment 

grades and then statistics are presented. We report p-values for the tests of 

equality of means across the above-mentioned groups in the last columns of the 

tables. It can be observed that firms in the investment grade group experience 

better financial conditions, as measured by the accounting ratios from the balance 

sheet. This is consistent with our expectations. The significant differences 

between the two groups can be confirmed from tests, which suggest that there 

exists a link between better financial health and an improved rating. In other 

words, the cross-sectional variation can be observed in market implied ratings. 
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Moving to the market indicators, it can be confirmed that improved market 

conditions are associated with the rating changes, which also suggests a relation 

between the market climate and the ratings.  

Table 2-4 Descriptive statistics-CDSIRs 

Variable Mean 
Standard 
Deviation Minimum Maximum p-value 

 (1) (2) (3) (4) (5) 

DETA      

Investment grade 9.6388 1.0132 7.2272 12.2084 

0.0000 Non-investment grade 8.9536 0.9959 6.2539 12.2087 

AE      

Investment grade 3.2256 3.6336 1.3324 73.7340 

0.0000 Non-investment grade 5.0224 8.8729 1.3283 123.5602 

LDA      

Investment grade 20.2416 11.2733 0.0000 79.3983 

0.0000 Non-investment grade 30.1868 19.4641 0.0000 110.4453 

SDA      

Investment grade 3.5941 3.9838 0.0000 23.5410 

0.0000 Non-investment grade 3.2961 4.1573 0.0000 23.4635 

TDA      

Investment grade 24.3546 11.9238 1.3017 87.0595 

0.0000 Non-investment grade 37.4629 20.8746 0.6518 126.8760 

TDEBITDA      

Investment grade 2.3395 1.2107 0.3200 19.6400 

0.0000 Non-investment grade 4.1208 2.8918 0.3200 23.0700 

EBITINT      

Investment grade 13.3805 19.0270 0.1541 209.3023 

0.0000 Non-investment grade 7.2685 15.2730 0.1248 210.4054 

EBITDAINT      

Investment grade 16.0444 21.9950 0.6500 235.4000 

0.0000 Non-investment grade 9.0872 14.5213 0.3100 196.7000 

CFOA      

Investment grade 6.9186 6.2625 -41.0623 38.4372 

0.0000 Non-investment grade 7.1077 7.2097 -13.4106 65.9955 

CASHEQA      

Investment grade 8.6116 9.6531 0.0238 71.8277 

0.0000 Non-investment grade 6.5258 8.1009 0.0030 64.0272 

OM      

Investment grade 13.9496 9.7304 -13.5155 53.0189 

0.0000 Non-investment grade 10.3893 9.9617 -20.2276 52.6046 

ROC      

Investment grade 3.7919 5.3598 -34.1330 35.7771 

0.0000 Non-investment grade 2.1389 7.0866 -36.3880 34.5209 

ROE      
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Notes: This Table reports the summary statistics of the explanatory variables used in the empirical 
models. Column 5 reports the p-value for the test of equality of means between the investment grade 
and non-investment grade categories. Investment grade refers to ratings from AAA to BBB. Non-
investment grade refers to ratings BB and below. A detailed description of the variables used in this 
study is given in Table A1 in the online Appendix A. 

  

Investment grade 12.5162 35.3349 -361.1511 452.2565 

0.0000 Non-investment grade 9.5597 46.9441 -359.7868 516.7883 

ROA      

Investment grade 3.9430 4.4180 -26.4074 22.0518 

0.0000 Non-investment grade 2.5165 5.5633 -23.8888 23.2336 

FFD      

Investment grade 40.7412 32.5483 -16.2800 267.1700 

0.0000 Non-investment grade 24.4291 26.0776 -17.8000 225.3200 

LIQ      

Investment grades 12.02064 10.94679 -13.3151 59.8763 

0.0000 Non-investment grade 11.55889 12.65565 -13.56745 62.18169 

EXRET     
 

Investment grade 0.0117 0.0646 -0.3525 0.4527 

0.0149** Non-investment grade 0.0195 0.1108 -0.3526 0.4673 

RSIZE      

Investment grade 0.2170 0.2641 0.0103 1.7570 

0.0000 Non-investment grade 0.1107 0.1812 0.0041 1.7495 

STD      

Investment grade 0.0159 0.0079 0.0041 0.1134 

0.0000 Non-investment grade 0.0256 0.0151 0.0041 0.1141 

BETA      

Investment grade 0.9366 0.6368 -0.8663 4.4144 

0.0000 Non-investment grade 1.0795 0.9672 -0.8799 4.9196 

PD1      

Investment grade 24.0820 70.0007 2.0000 3000.0000 

0.0000 Non-investment grade 162.7669 489.4410 2.0000 3000.0000 

PD5     
 

Investment grade 260.5300 310.3217 14.0000 4495.0000 

0.0000 Non-investment grade 793.0404 907.6053 14.0000 5464.0000 



Chapter 2  2.3 Data and summary statistics 

26 

Table 2-5 Descriptive statistics-EQIRs 

Variable Mean 
Standard 
Deviation Minimum Maximum p-value 

 (1) (2) (3) (4) (5) 

DETA      

Investment grade 9.5314 1.0515 7.0031 12.2084 

0.0000 Non-investment grade 8.8701 0.9461 6.2539 12.2087 

AE      

Investment grade 3.4552 4.7315 1.3283 116.1204 

0.0000 Non-investment grade 5.3173 9.3934 1.3283 123.5602 

LDA      

Investment grade 20.9162 12.5949 0.0000 110.1548 

0.0000 Non-investment grade 32.5301 19.9743 0.0000 110.4453 

SDA      

Investment grade 3.7397 4.1512 0.0000 23.5410 

0.0000 Non-investment grade 3.0151 3.9714 0.0000 23.4635 

TDA      

Investment grade 25.3924 13.5320 1.3017 126.8209 

0.0000 Non-investment grade 40.3718 21.1606 0.6518 126.8760 

TDEBITDA      

Investment grade 2.5062 1.4809 0.3200 20.4000 

0.0000 Non-investment grade 4.4812 3.0369 0.3200 23.0700 

EBITINT      

Investment grade 13.2588 20.3637 0.1601 210.4054 

0.0000 Non-investment grade 5.3897 10.2101 0.1248 157.3792 

EBITDAINT      

Investment grade 15.7294 21.3681 0.4100 235.4000 

0.0000 Non-investment grade 7.2437 11.9978 0.3100 171.8000 

CFOA      

Investment grade 7.8973 6.5051 -41.0623 40.5546 

0.0000 Non-investment grade 5.9413 7.0742 -41.0623 65.9955 

CASHEQA      

Investment grade 8.6834 9.6845 0.0030 71.8277 

0.0000 Non-investment grade 5.7724 7.3325 0.0033 58.4741 

OM      

Investment grade 13.0445 9.5560 -16.9133 53.0189 

0.0000 Non-investment grade 10.3826 10.3917 -20.2276 52.5504 

ROC      

Investment grade 3.8570 5.6971 -35.0754 35.7771 

0.0000 Non-investment grade 1.5077 7.1322 -36.3880 34.5140 

ROE      

Investment grade 13.3395 36.3731 -361.1511 473.0769 

0.0000 Non-investment grade 7.5924 48.9666 -359.7868 516.7883 

ROA      

Investment grade 4.1096 4.6843 -26.4074 23.2190 

0.0000 Non-investment grade 1.8536 5.4585 -26.4074 23.2336 

FFD      

Investment grade 38.8160 31.7571 -16.2800 267.1700 

0.0000 Non-investment grade 21.6264 24.5682 -17.8000 224.0300 

LIQ      

Investment grade 13.5432 11.8937 -13.5675 62.1817 

0.0000 Non-investment grade 9.495881 11.69661 -13.56745 57.22284 

EXRET      

Investment grade 0.0140 0.0723 -0.3525 0.4648 

0.5831 Non-investment grade 0.0181 0.1089 -0.3526 0.4673 

RSIZE      

Investment grade 0.2047 0.2687 0.0088 1.7570 

0.0000 Non-investment grade 0.0922 0.1307 0.0041 1.6261 

STD      

Investment grade 0.0172 0.0085 0.0041 0.1134 0.0000 
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Notes: This Table reports the summary statistics of the explanatory variables used in the empirical 
models. Column 5 reports the p-value for the test of equality of means between the investment grade 
and non-investment grade categories. Investment grade refers to ratings from AAA to BBB. Non-
investment grade refers to ratings BB and below. A detailed description of the variables used in this 
study is given in Table A1 in the online Appendix A. 

2.4 Methodology 

We predict the changes in market implied ratings with ordered probit (OP) and 

continuation ratio (CR) models combined with LASSO or the Elastic net. The 

proposed methodology aims to select the most important predictors and provide 

accurate MIRs forecasts. LASSO, originally proposed by Tibshirani (1996), is an 

extended form of an OLS regression which performs both variable selection and 

regularization through a shrinkage factor. It is capable of enhancing the accuracy 

and interpretability of classical regression methods (Tibshirani 1996). To maintain 

the properties of LASSO and capture the ordinal ranking of MIRs, penalty functions 

from LASSO or its variant (Elastic net) are added into OP or CR models. This helps 

us reveal the relation between the potential predictors (at the firm and macro 

level) and identify their significance in predicting MIRs. As a benchmark to our 

study, we rely on the standard OP model. A description of the empirical modelling 

strategy follows. 

2.4.1 OP 

MIRs as a branch of credit ratings are discrete-valued signs and have an ordinal 

ranking. To meet the ordinal property of MIRs, OP is applied naturally as a 

benchmark in the relevant literature (Kaplan and Urwitz 1979, Gentry et al. 1988, 

Blume et al. 1998, Amato and Furfine 2004, Hwang et al. 2009). OP takes into 

account both the existence of ordinal ranking and the difference between any two 

adjacent ratings.6  We define the categorical variable 𝑦𝑖𝑡  =  1, 2. . . , 7 according to 

                                         
6 For details on the exposition of the OP, see Maddala (2008), pp 47-48. 

Non-investment grade 0.0250 0.0155 0.0041 0.1141 

BETA      

Investment grade 0.9081 0.7224 -0.8757 4.8848 

0.0000 Non-investment grade 1.1028 0.9284 -0.8799 4.9196 

PD1      

Investment grade 24.1369 54.1782 2.0000 3000.0000 

0.0000 Non-investment grade 215.5352 567.0797 2.0000 3000.0000 

PD5      

Investment grade 250.8945 299.6934 14.0000 4495.0000 
0.0000 Non-investment grade 1010.6400 970.2219 17.0000 5464.0000 
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the rating assigned to each firm. We assume that there is an unobservable 

dependent variable 𝑦𝑖𝑡
∗  associated with 𝑦𝑖𝑡, which can be expressed as:  

𝑦𝑖𝑡
∗ = 𝑋𝑖𝑡𝛽1 + 𝑋𝑖𝑡−1𝛽2 + 𝑋𝑖𝑡−2𝛽3 + 𝑋𝑖𝑡−3𝛽4 + 𝑊𝑖𝑡𝛽5 + 𝑊𝑖𝑡−1𝛽6 + 𝑊𝑖𝑡−2𝛽7 + 𝑊𝑖𝑡−3𝛽8 +

𝑍𝑖𝑡𝛽9 + 𝑍𝑖𝑡−1𝛽10 + 𝑍𝑖𝑡−2𝛽11 + 𝑍𝑖𝑡−3𝛽12 + 𝑦𝑖𝑡−1𝛽13 + 𝜀𝑖𝑡,                                                      (1)  

where 𝑖 = 1, 2, … , 𝑁represents firms, and 𝑡 = 1, 2, … , 𝑇represents different time 

periods. In this context, 𝑡 is the month end for monthly data. 𝛽 are vectors of 

unknown parameters to be estimated. 𝑋 denotes a set containing 16 accounting 

variables, which can be divided into broad groups of size, leverage, coverage, cash 

flow, profitability and liquidity. 𝑊 and 𝑍 contain 6 market-driven variables and 

11 macroeconomic variables, respectively. Following the literature (Güttler and 

Wahrenburg 2007), all predictors in 𝑋, 𝑊 and 𝑍 are lagged three periods denoted 

by 𝑡 − 1, 𝑡 − 2 and 𝑡 − 3 to mitigate potential time tendency. To capture potential 

non-linear influences, we allow for non-linear transformation of the variables and 

therefore the square of each predictor is considered and included.7 Thus, the total 

number of firm-specific accounting, market-driven and macroeconomic variables 

is 2648. 𝑦𝑖𝑡−1 is an indicator of the firm’s rating in the previous time periods. We 

consider 4 lags to control for state dependence. The concern about persistency in 

ratings is an important dimension of time-series variation and the use of models 

with lagged rating categories is the standard way of addressing this issue.9 The 

error term 𝜀𝑖𝑡 in equation (1) is assumed to be a normally distributed residual with 

a zero mean and unit variance. In our data 𝑦𝑖𝑡
∗  is not observed. Thus, what is 

observed are the market implied ratings assigned to firms, which can take 𝑀 

                                         
7 This approach is justified theoretically since some variables may have a positive effect up to a 

certain (turning) point and a negative one thereafter. 

8 We consider 16 accounting variables, 6 market-driven variables, 11 macroeconomic variables and 
their first three lags (in total, 132 variables). We also consider the square of these variables, thus 
in equation (1) we have in total 268 variables made up by 264 firm-specific accounting, market 
driven and macroeconomic variables and 4 state dependence variables. We use the same set of 
predictors throughout.  

9 State dependence captures previous rating state and indicates the realization of a rating in the 
previous time period. Following Contoyannis et al. (2004) and Mizen and Tsoukas (2012), state 
dependence is controlled for by applying dummy variables representing the first lags of each 
category in the dependent variable. Given that we observe limited observations in the extreme 
high and low rating categories, these ratings in the state dependence variables are merged into 
5 groups, such as above AA ratings, A rating, BBB rating, BB rating and below B ratings. In 
addition, to avoid the dummy variable trap we omit one baseline rating category. Therefore, the 
lagged rating category BBB is not included in the models because it is regarded as the baseline 
category of lagged MIRs.   
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values. The relation between the observed variable 𝑦𝑖𝑡 and the latent variable 𝑦𝑖𝑡
∗  

it is assumed to be given by: 

𝑦𝑖𝑡 = 𝑚 𝑖𝑓 𝛼𝑚−1 < 𝑦𝑖𝑡
∗ ≤ 𝛼𝑚 𝑓𝑜𝑟 𝑚 = 1, … , 𝑀                                                                        (2) 

For a set of parameters 𝛼0  to 𝛼𝑀 , where 𝛼0<𝛼1<…<𝛼𝑀 , 𝛼0 = −∞ and 𝛼𝑀 = ∞. 

Assuming a standard normal distribution for 𝜀𝑖𝑡, the conditional probabilities can 

be derived as: 

𝑃𝑟(𝑦𝑖𝑡 = 𝑚) = Φ(𝛼𝑚 − 𝑋𝑖𝑡𝛽1 − 𝑋𝑖𝑡−1𝛽2 − 𝑋𝑖𝑡−2𝛽3 − 𝑋𝑖𝑡−3𝛽4 − 𝑊𝑖𝑡𝛽5 − 𝑊𝑖𝑡−1𝛽6 −

𝑊𝑖𝑡−2𝛽7 − 𝑊𝑖𝑡−3𝛽8 − 𝑍𝑖𝑡𝛽9 − 𝑍𝑖𝑡−1𝛽10 − 𝑍𝑖𝑡−2𝛽11 − 𝑍𝑖𝑡−3𝛽12 − 𝑦𝑖𝑡−1𝛽13) − Φ(𝛼𝑚−1 −

𝑋𝑖𝑡𝛽1 − 𝑋𝑖𝑡−1𝛽2 − 𝑋𝑖𝑡−2𝛽3 − 𝑋𝑖𝑡−3𝛽4 − 𝑊𝑖𝑡𝛽5 − 𝑊𝑖𝑡−1𝛽6 − 𝑊𝑖𝑡−2𝛽7 − 𝑊𝑖𝑡−3𝛽8 −

𝑍𝑖𝑡𝛽9 − 𝑍𝑖𝑡−1𝛽10 − 𝑍𝑖𝑡−2𝛽11 − 𝑍𝑖𝑡−3𝛽12 − 𝑦𝑖𝑡−1𝛽13),                                                              (3)  

Where Φ(.) is the standard normal distribution function. We can evaluate the 

above probabilities for any combination of parameters in the vectors 𝛼 and 𝛽. 

2.4.2 OP with LASSO  

According to Tibshirani (1996), LASSO is a method of regression that enables 

estimation and variable selection simultaneously in a non-orthogonal setting. By 

controlling penalty power, LASSO selects variables by forcing some coefficients to 

zero and shrinking others. This reduces the variance of the estimated value and 

increases the accuracy of the regression prediction. The LASSO estimator resolves 

the 𝑙1-penalized OP problem of estimating 𝛽 by maximizing a likelihood function. 

In particular, the maximization of the likelihood proceeds subject to the 

constraint  ∑ |𝛽𝑞|
𝑝
𝑞=1 ≤ 𝑠, where 𝑠  is a user-specified tuning parameter and 𝑞 =

1, 2. . . 𝑝  indicates the number of surviving predictors with non-zero estimated 

coefficients. This penalty corresponds to the L1 norm, and therefore it is often 

referred to as the L1 penalized model. The OP with LASSO (L1 penalized OP model) 

can then be expressed as:  

𝛽̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽 (ℓ(𝛽|𝑦𝑖𝑡, 𝛢) − 𝜆 ∑|𝛽𝑞|

𝑝

𝑞=1

),                                                                                 (4) 
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where ℓ(𝛽|𝑦𝑖𝑡, 𝛢) is the likelihood function of OP and 𝛢 contains the pool of the 

potential predictors (Xit, Xit-1, Xit-2, Xit-3, Wit, Wit-1, Wit-2, Wit-3, Zit, Zit-1, Zit-2, Zit-3, yit-1). All 

explanatory variables are standardized before applying the LASSO estimator. In 

equation (4), λ stands for the tuning parameter. As λ increases, the sum of 

absolute values of estimated coefficients is reduced, and shrinkage of coefficients 

is achieved. If λ exceeds a threshold value in the corresponding models, some 

estimated coefficients are set to zero ultimately. This “L1 norm penalty” or the 

constraint formulation in LASSO generates a more interpretable and sparser 

model.  

As already noted, compared with other independent variable selection methods, 

LASSO can provide more stable and restricted models (Tibshirani 1996, Fan and Li 

2001, Zou 2006, Tian et al. 2015). It is also a computationally simple and efficient 

method (Efron et al. 2004). Several approaches, such as cross validation and 

information criteria, have been proposed in selecting latent models with minimum 

prediction errors or maximum log-likelihood estimation. Zou et al. (2007) provided 

an efficient approach for obtaining the optimal LASSO fit with the Akaike 

information criterion (AIC) (Akaike 1974) and the Bayesian information criterion 

(BIC) (Schwarz 1978). Sun and Zhang (2012) noted that the computational cost of 

applying cross-validation in penalized models is considerable, while the theory of 

applying cross-validation is poorly understood. Therefore, AIC and BIC are used in 

the present study to select the tuning parameter and further detect the “best” 

model among a series of candidate models in OP with LASSO.10 The “best” model 

in variable selection procedure will be the one that achieves the minimum AIC or 

BIC value. The exact algorithm behind this process is presented in Appendix C. 

These models are benchmarked with their LASSO 10-cross validation counterparts.  

2.4.3 OP with Elastic net 

Elastic net is a LASSO variant introduced by Zou and Hastie (2004) that can further 

improve the accuracy of the estimation in the presence of highly correlated 

predictors. The Elastic net allows “grouping” of variables in the model by adding 

a 𝑙2 -penalty from ridge regression. The OP with Elastic net resolves the 𝑙1 -

                                         
10 It is well-known that AIC and BIC have different properties in model selection (for details see Shao 

1997, Yang 2005, Zhang et al. 2010).   
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penalized and 𝑙2 -penalized OP problem of estimating 𝛽  to maximize the OP 

likelihood function. The maximization of the likelihood proceeds subject to the 

following constraints (penalty functions) ∑ |𝛽𝑞|𝑝
𝑞=1 ≤ 𝑠1 and ∑ (𝛽𝑞

2)𝑝
𝑞=1 ≤ 𝑠2, where 

𝑠1  and 𝑠2  are user-specified tuning parameters. These penalty functions 

correspond to the L1 and L2 norm. The OP with Elastic net model is presented 

below: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽 (ℓ(𝛽|𝑦𝑖𝑡, 𝛢) − 𝜆1 ∑|𝛽𝑞|

𝑝

𝑞=1

− 𝜆2 ∑(𝛽𝑞
2)

𝑝

𝑞=1

),                                                    (5) 

where ℓ(𝛽|𝑦𝑖𝑡, 𝛢) is the likelihood function of the OP and 𝐴 contains the pool of 

the potential predictors (Xit, Xit-1, Xit-2, Xit-3, Wit, Wit-1, Wit-2, Wit-3, Zit, Zit-1, Zit-2, Zit-3, 

yit-1).  

Equation (5) can be converted as follows: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽 (ℓ(𝛽|𝑦𝑖𝑡, 𝛢) − 𝜆 ∑ {𝛼|𝛽𝑞| +
1

2
(1 − 𝛼)(𝛽𝑞

2)}

𝑝

𝑞=1

),                                        (6) 

where 0 ≤ 𝛼 ≤ 1. 

Equation (5) is the vanilla version of Elastic net. The factor 𝜆2 ∑ (𝛽𝑞
2)𝑝

𝑞=1  allows 

correlated variables in the corresponding models, which are drawn from ridge 

regression. If 𝛼 is equal to 0, the Elastic net keeps the 𝑙2-penalty in the model in 

equation (6) (ridge regression). Similarly, if 𝛼 is equal to 1, the 𝑙1-penalty will only 

be kept in the Elastic net and equation (6) reduces to a simple LASSO estimator. 

The 𝑙2-norm constraint ensures a unique global minimum in the strictly convex loss 

function. As in the OP with LASSO estimator, the AIC-type and BIC-type tuning 

parameter selectors are employed for selecting the model with the minimum value 

(see Appendix C). As before, all predictors are standardized before applying the 

Elastic net estimator.  
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2.4.4 CR with LASSO 

The CR, originally proposed by Fienberg (1980), was designed for ordinal outcomes 

in which the categories represent the progression of events or stages in some 

process. It estimates the probability of one particular category given the 

categories preceding or following it. More specifically, it is centred on the binary 

choice on each ordinal category, which provides the conditional probability of 

estimating categories. Fienberg (1980), Hardin and Hilbe (2018) and Long and 

Freese (2006) argued that the CR is superior compared to the binary logistic 

regression. It is applicable in multi-classification problems where an individual can 

jump to the discrete rating category without having to pass the intermediate 

rating categories.11 Similar to the binary logistic regression, the CR creates binary 

choices on each ordinal category and these choices make it possible to calculate 

the relevant conditional probabilities. The conditional probability that an 

individual drops a level, given that this individual has been at a higher level, is 

based on “conditional incremental thresholds”. The CR may be regarded as an 

advanced version of the proportional odds model (the ordered logistic model), 

which preserves the parsimony of the cumulative odds model and considers the 

ordinal categories of MIRs. These assigned integer values of categories in the CR 

can be controlled by users, implying that the estimated coefficients in the CR are 

influenced by the direction chosen for modelling the response variable. In our 

work, the backward formulation of CR of Archer and Williams (2012) is applied. 

The progression through the levels of MIRs from investment grade quality (AAA-

BBB) to sub-investment grade quality (BB-Below CCC) is expressed by increasing 

integer values. This helps estimate the odds of lower MIRs rating compared with 

higher MIRs rating. The above can be expressed as follows: 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑦𝑖𝑡 = 𝑚|𝑦𝑖𝑡 ≤ 𝑚, 𝑋 = 𝛢 )) = 𝑙𝑜𝑔 (
𝑃𝑟(𝑦𝑖𝑡 = 𝑚|𝑦𝑖𝑡 ≤ 𝑚, 𝑋 = 𝛢)

𝑃𝑟(𝑦𝑖𝑡 < 𝑚|𝑦𝑖𝑡 ≤ 𝑚, 𝑋 = 𝛢)
) 

= 𝑋𝑖𝑡𝛽1 + 𝑋𝑖𝑡−1𝛽2 + 𝑋𝑖𝑡−2𝛽3 + 𝑋𝑖𝑡−3𝛽4 + 𝑊𝑖𝑡𝛽5 + 𝑊𝑖𝑡−1𝛽6 + 𝑊𝑖𝑡−2𝛽7 + 𝑊𝑖𝑡−3𝛽8 +

𝑍𝑖𝑡𝛽9 + 𝑍𝑖𝑡−1𝛽10 + 𝑍𝑖𝑡−2𝛽11 + 𝑍𝑖𝑡−3𝛽12 + 𝑦𝑖𝑡−1𝛽13 ,                                                               (7)  

                                         
11 Market implied ratings share this property.  
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where Α = 𝑋𝑖𝑡, 𝑋𝑖𝑡−1, 𝑋𝑖𝑡−2, 𝑋𝑖𝑡−3, 𝑊𝑖𝑡, 𝑊𝑖𝑡−1, 𝑊𝑖𝑡−2, 𝑊𝑖𝑡−3, 𝑍𝑖𝑡, 𝑍𝑖𝑡−1, 𝑍𝑖𝑡−2, 𝑍𝑖𝑡−3, 𝑦𝑖𝑡−1 . 

In equation (7), the dependent variable 𝑦𝑖𝑡 belongs to one of the ordinal rating 

categories 𝑚 described in equation (2). For each unit observation, rather than 

modelling the response 𝑦𝑖𝑡 directly, each variable 𝑦𝑖𝑡 is equal to 1 if the response 

falls in category 𝑚, and 0 otherwise. Thus, conditional likelihood is calculated as 

in multiple logistic regressions. The above equation can be transformed into the 

following version to derive the conditional probability: 

𝑃𝑟(𝑦𝑖𝑡 = 𝑚|𝑦𝑖𝑡 ≤ 𝑚) =
𝑒𝑎

1 + 𝑒𝑎
,                                                                                                   (8) 

where 𝑎 = 𝑋𝑖𝑡𝛽1 + 𝑋𝑖𝑡−1𝛽2 + 𝑋𝑖𝑡−2𝛽3 + 𝑋𝑖𝑡−3𝛽4 + 𝑊𝑖𝑡𝛽5 + 𝑊𝑖𝑡−1𝛽6 + 𝑊𝑖𝑡−2𝛽7 +

𝑊𝑖𝑡−3𝛽8 + 𝑍𝑖𝑡𝛽9 + 𝑍𝑖𝑡−1𝛽10 + 𝑍𝑖𝑡−2𝛽11 + 𝑍𝑖𝑡−3𝛽12 + 𝑦𝑖𝑡−1𝛽13. 

The parameters can be estimated with maximum likelihood. Similar to OP with 

LASSO, the maximization of the likelihood proceeds subject to the constraint 

∑ |𝛽𝑞|𝑝
𝑞=1 ≤ 𝑠 , where 𝑠  is a user-specified tuning parameter. This algorithm 

combined with LASSO can produce shrinkage coefficients that improve the model’s 

predictive ability. The resultant model, a CR model, in which a 𝑙1 -penalized 

constraint is added to the corresponding likelihood function, is the L1-penalized 

continuation ratio model. The estimation is presented in equation (9) below:  

𝛽̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽 (ℒ(𝛽|𝑦𝑖𝑡, 𝛢) − 𝜆 ∑|𝛽𝑞|

𝑝

𝑞=1

),                                                                                (9) 

where ℒ(𝛽|𝑦𝑖𝑡, 𝛢) is the likelihood function of CR and 𝛢 contains the pool of the 

potential predictors (Xit, Xit-1, Xit-2, Xit-3, Wit, Wit-1, Wit-2, Wit-3, Zit, Zit-1, Zit-2, Zit-3, yit-1). All 

explanatory variables are standardized before applying the LASSO estimator. In 

line with the abovementioned LASSO counterparts, the AIC-type and the BIC-type 

tuning parameter selectors assist with selecting the best model.12 All predictors 

are standardized before applying the LASSO estimator. 

                                         
12 For more details, see Appendix C. 
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2.4.5 CR with Elastic net 

To achieve CR with Elastic net, both 𝑙1 -penalty and 𝑙2 -penalty are added to 

maximum likelihood of CR to obtain estimated coefficients, are explained by 

equations (10) and (11) below:  

𝛽̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽 (ℒ(𝛽|𝑦𝑖𝑡, 𝛢) − 𝜆1 ∑|𝛽𝑞|

𝑝

𝑞=1

− 𝜆2 ∑(𝛽𝑞
2)

𝑝

𝑞=1

).                                                 (10) 

Similar to the OP with Elastic net, equation (10) is converted as follows: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽 (ℒ(𝛽|𝑦𝑖𝑡, 𝛢) − 𝜆 ∑ {𝛼|𝛽𝑞| +
1

2
(1 − 𝛼)(𝛽𝑞

2)}

𝑝

𝑞=1

),                                     (11) 

where 0 ≤ 𝛼 ≤ 1, ℒ(𝛽|𝑦𝑖𝑡, 𝛢)  is the likelihood function of CR and 𝛢 contains the 

pool of the potential predictors (Xit, Xit-1, Xit-2, Xit-3, Wit, Wit-1, Wit-2, Wit-3, Zit, Zit-1, Zit-2, Zit-3, 

yit-1). All explanatory variables are standardized before applying the Elastic net 

estimator. Similar to the aforementioned LASSO counterparts, the AIC-type and 

the BIC-type tuning parameter selectors assist with selecting the best model. Once 

again, before implementing the Elastic net estimator, all predictors are 

standardized.  

2.5 Empirical results 

2.5.1 Accuracy 

Accuracy Ratios (ARs) are applied to evaluate the predictive ability of all 

candidates for firms’ CDSIRs and EQIRs in Table 2-6. ARs can be calculated by the 

sum of all diagonal terms divided by the total number of observations in each 

contingency table (see Appendix B), which indicates the percentage of correct 

prediction. It can be expressed as 𝐴𝑅 =
1

𝑇
∑ 1(𝑞̂𝑡 = 𝑞𝑡)𝑇

𝑡=1  where 𝑞̂𝑡 is the predicted 

rating and 𝑞𝑡 represents the actual outcome. We report statistics for all candidate 

models for both in- and out-of-sample predictions. The out-of-sample forecast of 

ratings is calculated by an expanding window method based on the past and 

current information available up to time 𝑇 . This method allows successive 
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observations to be included in the initial sample prior to forecast of the next step 

ahead prediction of the rating while keeping the start date of the sample fixed. 

By this method, we forecast future ratings 𝑞̂𝑡+1, 𝑞̂𝑡+2 etc. The initial estimation 

window is from 2002 to 2005 and the first prediction date is 2006. We then 

increase 𝑇 by one each time (one month) until 𝑇 reaches 2008.  In addition, we 

report at the foot of each panel the number of surviving variables.13  

Table 2-6 Accuracy Ratios and selected variables  

Notes: This Table reports the Accuracy Ratios and the number of surviving variables for each model 
under study. “OP” stands for the ordered probit model. “OP_LASSO” refers to the ordered probit model 
with LASSO estimator. “OP_ELASTIC NET” stands for the ordered probit model with Elastic net estimator. 
“CR_LASSO” indicates the continuation ratio model with LASSO estimator. “CR_ELASTIC NET” is the 
continuation ratio model with Elastic net estimator. “AIC” is the AIC-type tuning parameter selector. 
“BIC” is the BIC-type tuning parameter selector. *** denotes that the Stuart-Maxwell null hypothesis of 
no difference of each category between two predictions is rejected at the 1% significance level. ** 
denotes that the Stuart-Maxwell null hypothesis of no difference of each category between two 
predictions is rejected at the 5% significance level. * denotes that the Stuart-Maxwell null hypothesis 
of no difference of each category between two predictions is rejected at the 10% significance level. 

In Table 2-6, no significant differences are indicated between all competing 

models in in-sample predictions, since they provide a similar in-sample 

performance for both types of market implied ratings. With reference to CDSIRs, 

the accuracy ratio of in-sample predictions can reach approximately 90% and for 

EQIRs about 95% correct predictions can be found across competing models in 

Table 2-6. This tendency cannot be observed in out-of-sample predictions. We 

find that LASSO models are able to clearly produce more accurate out-of-sample 

prediction than the benchmark model (OP) in both types of market implied ratings. 

For CDSIRs, our results indicate that the accuracy ratio in out-of-sample prediction 

rises from 22% in the OP model to 84% in the LASSO models. This increasing 

                                         
13 The surviving variables are defined as predictors with non-zero estimated coefficients after the 

penalized procedure. In the benchmark model, we do not drop any variables since OP does not 
penalise regression coefficients.  

  OP OP_LASSO OP_ELASTIC NET CR_LASSO CR_ELASTIC NET 

   AIC BIC AIC BIC AIC BIC AIC BIC 

 
In-sample 
prediction 

90.23% 90.30%* 89.39%*** 90.30% 89.39%*** 89.80%*** 89.48%*** 89.63%*** 89.48%*** 

CDSIRs 
Out-of-
sample 
prediction 

22.02% 31.56%*** 84.53%*** 31.56%*** 84.53%*** 58.80%*** 83.73%*** 60.92%*** 84.26%*** 

 
Surviving 
variables 

268 143 45 144 45 75 48 78 51 

 
In-sample 

prediction 
95.05% 95.00% 94.69%* 95.05% 94.52%** 95.19% 94.77% 95.16% 94.73% 

EQIRs 
Out-of-
sample 
prediction 

48.98% 84.77%*** 90.95%*** 80.88%*** 90.78%*** 85.45%*** 91.03%*** 80.80%*** 90.95%*** 

 
Surviving 
variables 

268 167 95 181 87 152 83 187 91 
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tendency in the forecast of EQIRs also can be found. The ratio increases from 49% 

in the OP model to 91% in the LASSO models. 

Next, the within performance of the LASSO models are compared by considering 

different tuning parameter selectors. The predictive performance in the out-of-

sample for the LASSO models with BIC-type tuning parameter selector are superior 

to their counterparts with AIC selector in CDSIRs. For EQIRs, there exists little 

difference in the correct predictions among LASSO candidate models. It is 

interesting to note that the LASSO models with BIC-type tuning parameter selector 

consistently choose a smaller number of predictors than their AIC-type 

counterparts. This does not seem to affect their forecasting performance for EQIRs 

but leads to more accurate predictions for CDSIRs.14  

2.5.2 Statistical significance 

To evaluate the relative performance of the models presented in the previous sub-

section, we employ the Stuart–Maxwell test. This approach will help us formally 

test for the statistical significance of difference between forecasts and further 

validate our main findings. The Stuart–Maxwell test (Stuart 1955, Maxwell 1970) is 

a generalized version of McNemar’s test (McNemar 1947), which is associated with 

multiple (𝑘) categories and tests whether the difference between two related 

samples from an ordinal field is statistically different from zero. The Stuart–

Maxwell tests the null hypothesis of equal marginal proportion for each category 

between the forecasts of two models (model A vs model B). Under the null 

hypothesis, the statistic is distributed as chi-square with 𝑘 − 1  degrees of 

freedom. A statistically significant Stuart–Maxwell test statistic indicates that the 

forecasts of the first model (A) are different from those of the second model (B). 

For the CDSIRs, our results indicate a statistically significant difference in out-of-

sample predictions between the OP model and other competing models in Table 

2-6. This statistically significant difference can also be confirmed for the EQIRs. 

However, this tendency cannot be clearly observed in the in-sample forecasts of 

all competing models for both CDSIRs and EQIRs. Combining these statistics with 

the accuracy ratios, it can be suggested that adding LASSO or the Elastic net 

                                         
14 Tables B1 to B36 in Appendix B illustrate the contingency tables of the predicted against the actual 

outcome for both in- and out-of-sample results for the various models presented in Table 2-6.   
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estimator to the OP model or the CR model can produce different out-of-sample 

predictions that are more accurate than those generated by the OP. 

2.5.3 Robustness tests 

The findings of the previous section are further validated by carrying out several 

robustness tests. In the first test, an alternative choice of tuning parameters 

selector, namely cross validation, is applied to LASSO models. Next, we employ 

an alternative benchmark for forecasting, namely the Principal Component 

Analysis. In a further test a tuning-free version of the LASSO estimator is 

considered. Following that, alternative measures of predictive ability are 

employed. Furthermore, we limit our data to investment grade ratings. Finally, 

random effects in panel data are considered.  

2.5.3.1 Cross validation 

It is well accepted that the finite-sample performance of estimators such as LASSO 

or Elastic net are controlled by the choice of tuning parameter selector. Motivated 

by this consideration, we present forecasts where cross validation, one of the most 

commonly used model selection criteria, is employed (see for instance Stone 1977, 

Yang 2007). Following the relevant literature on model selection (see for example, 

Kohavi 1995), the ten-fold stratified cross validation (10-fold CV) is applied as a 

comparable application of tuning parameter selector.  

Our main findings are supported by the Accuracy Ratios and Stuart–Maxwell test 

statistics, in Table 2-7. In the in-sample forecast exercises, similar predictive 

power is observed in all candidates. In the out-of-sample prediction, however, for 

the CDSIRs, the percentages of correct predictions in all competing LASSO models 

are higher than in the benchmark model. This tendency can also be observed in 

the EQIRs. To sum up, there are significant gains in predictive ability once the 

LASSO is applied even when cross validation is employed. We conclude that our 

main results are robust for alternative tuning choices.  

  



Chapter 2  2.5 Empirical results 

38 

Table 2-7 Accuracy Ratios and selected variables (10-fold cross validation) 

  OP OP_LASSO 
OP_ELASTIC 
NET 

CR_LASSO 
CR_ELASTIC 
NET 

 
In-sample 
prediction 

90.23% 90.32%** 90.33%** 89.53%*** 89.48%*** 

CDSIRs 
Out-of-sample 
prediction 

22.02% 35.10%*** 35.28%*** 84.53%*** 84.26%*** 

 
Surviving 
variables 

268 130 134 48 51 

 
In-sample 
prediction 

95.05% 94.88% 94.90% 95.13% 95.08% 

EQIRs 
Out-of-sample 
prediction 

48.98% 90.86%*** 90.86%*** 89.68%*** 90.36%*** 

 
Surviving 
variables 

268 135 136 137 145 

Notes: This Table reports the Accuracy Ratios and the number of surviving variables for each model 
under study. “OP” stands for the ordered probit model. “OP_LASSO” refers to the ordered probit model 
with LASSO estimator. “OP_ELASTIC NET” stands for the ordered probit model with Elastic net estimator. 
“CR_LASSO” indicates the continuation ratio model with LASSO estimator. “CR_ELASTIC NET” is the 
continuation ratio model with Elastic net estimator. “AIC” is the AIC-type tuning parameter selector. 
“BIC” is the BIC-type tuning parameter selector. *** denotes that the Stuart-Maxwell null hypothesis of 
no difference of each category between two predictions is rejected at the 1% significance level. ** 
denotes that the Stuart-Maxwell null hypothesis of no difference of each category between two 
predictions is rejected at the 5% significance level. * denotes that the Stuart-Maxwell null hypothesis 
of no difference of each category between two predictions is rejected at the 10% significance level.   

2.5.3.2 Principal Component Analysis with OP 

One of the most popular statistical procedures for variable selection is the 

Principal Component Analysis (PCA). PCA converts a set of possibly correlated 

variables to a smaller set of uncorrelated variables called Principal Components 

(PC). The first PC accounts for as much of the variability in the dataset as possible 

and each succeeding component turn attains the highest possible variance under 

the constraint that it is orthogonal to the preceding components. PCA is probably 

the most popular dimension reduction procedure in Economics and Finance and 

has been applied successfully to a series of forecasting problems (see Stock and 

Watson 2002, Ludvigson and Ng 2009, Bailey et al. 2016). In our application, we 

are dealing with a large set of possibly correlated variables and thus a natural 

candidate to benchmark our procedure is the PCA. We select the PCs that account 

for 70%, 80% and 90% of the variability in our dataset and combine them with OP.  

Comparing Table 2-8 and Table 2-6 (where the accuracy ratios of OP and OP with 

LASSO are presented), it can be noted that PCA has the ability to improve the out-

of-sample predictive accuracy of the OP model. For our OP combined with LASSO 

models, there is the single case that the predictive performance provided by PCA 

is better than LASSO models, in terms of the out-of-sample for CDSIRs. In that 

case, OP based on the PCs explaining 70% and 90% of the variability, indicates 

higher accuracy ratios compared to the LASSO model with the AIC-type tuning 
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parameter selector (but not under the BIC-type selector). It is also important to 

note that PCA with OP presents lower in-sample accuracy ratios in all cases. These 

results make it possible to argue that our LASSO formulations are robust in relation 

to an alternative benchmark.  

Table 2-8 PCA combined with OP 

  PCA with OP 

  (1) (2) (3) 

CDSIRs In-sample prediction 45.94% 51.36% 57.39% 
 Out-of-sample prediction 45.71% 32.01% 46.33% 
 Selected principal components 16 25 45 
 PCs cumulative percentage of total variation 70.92% 80.00% 90.31% 

EQIRs In-sample prediction 63.61% 72.00% 76.93% 
 Out-of-sample prediction 63.37% 54.74% 51.69% 
 Selected principal components 15 23 41 
 PCs cumulative percentage of total variation 71.23% 80.43% 90.20% 

Notes: This Table reports the Accuracy Ratios and the number of PCs. “OP” stands for the ordered 
probit model. “PC” refers to the principal components and “PCA” stands for principal component 
analysis.      

2.5.3.3 A tuning-free version of the LASSO 

While the results presented so far are robust for different tuning choices, including 

cross validation, it is important to note that the latter is computationally costly 

and theoretically less well developed, especially for the purpose of variable 

selection and the estimation of regression coefficients (see Sun and Zhang 2012). 

Thus, to further alleviate potential concerns regarding the choice of the tuning 

parameter, we employ the scaled LASSO, developed by Sun and Zhang (2012), 

without depending on model selection criteria such as AIC, BIC or CV.1516  

Table 2-9 presents the relevant Accuracy Ratios and the results of the Stuart–

Maxwell statistical tests. All candidate models provide similar accuracy ratios in 

in-sample predictions. In the out-of-sample evidence, the percentage of correct 

predictions in the scaled LASSO is higher than in the OP for the CDSIRs and EQIRs. 

Once again, this finding is consistent with our main results, indicating that our 

findings are robust when using the scaled LASSO.  

  

                                         
15 Another tuning-free version of the LASSO estimator is the square-root LASSO of Belloni et al. 

(2011).  

16  For the scaled LASSO, the authors generated the gradient descent algorithm in a convex 
minimization of a penalized joint loss function. 
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Table 2-9 Accuracy Ratios and selected variables (scaled LASSO) 

  OP SCALED_LASSO 

 In-sample prediction 90.23% 87.98%*** 

CDSIRs Out-of-sample prediction 22.02% 39.26%*** 

 Surviving variables 268 124 

 In-sample prediction 95.05% 93.93%*** 

EQIRs Out-of-sample prediction 48.98% 89.26%*** 

 Surviving variables 268 121 

Notes: This Table reports the Accuracy Ratios and the number of surviving variables for each model 
under study. “OP” stands for the ordered probit model. “SCALED_LASSO” refers to the scaled LASSO for 
tuning-free parameter. *** denotes that the Stuart-Maxwell null hypothesis of no difference of each 
category between two predictions is rejected at the 1% significance level. ** denotes that the Stuart-
Maxwell null hypothesis of no difference of each category between two predictions is rejected at the 
5% significance level. * denotes that the Stuart-Maxwell null hypothesis of no difference of each category 
between two predictions is rejected at the 10% significance level.    

2.5.3.4 Alternative measures of predictive ability 

2.5.3.4.1 

Thus far, the relative performance of the estimated models has been evaluated in 

terms of an informal goodness of fit indicator, by comparing predicted and 

observed ratings. It is possible, however, to give a more quantitative measure of 

the predictive ability of our models. We therefore check the robustness of our 

measure of predictive power by using a measure based on a technique proposed 

by Merton (1981) and used in Henriksson and Merton (1981), Pesaran and 

Timmermann (1994), Kim et al. (2008) and Mizen and Tsoukas (2012). Specifically, 

let 𝐶𝑃𝑗 be the proportion of the correct predictions made by 𝑞̂𝑡 when the true 

state is given by 𝑞𝑡  =  𝑗. From the definition of conditional probability, 𝐶𝑃 is 

computed as 𝐶𝑃𝑗 =
1

𝑇
∑ 1(𝑞̂𝑡=𝑗)(𝑞𝑡=𝑗)𝑇

𝑡=1
1

𝑇
∑ 1(𝑞𝑡=𝑗)𝑇

𝑡=1

and Merton’s correct measure, expressed 𝐶𝑃, 

is given by 𝐶𝑃 =
1

𝐽−1
[∑ 𝐶𝑃𝑗

𝐽
𝑗=1 − 1]  where 𝐽  is the number of categories, and 

−
1

𝐽−1
< 𝐶𝑃 < 1. In the contingency table (see Appendix B) 𝐶𝑃 is the unweighted 

average of 𝐶𝑃𝑗s minus one (to correct for the phenomenon that certain categories 

are over-represented). The 𝐶𝑃𝑗 s are calculated as the proportion of correct 

predictions divided by the total of each row. This modifies the measure of 

predictive ability to discount the influence of the dominant outcome. A high 𝐶𝑃 

score indicates that the predictor is accurate for all rating categories. 

The Accuracy Ratios when we account for the influence of the dominant outcome 

by reporting the Merton’s correct predictions are shown in Table 2-10. The 
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corresponding Stuart–Maxwell statistical tests are also documented. The test 

produces 𝐶𝑃 ratios that confirm our main findings. In the in-sample exercise, 

there is little difference between the OP and the LASSO models. In contrast, the 

predictive ability of the out-of-sample predictions is superior when penalty 

functions are applied.  

Table 2-10 CP Ratios and selected variables  

Notes: This Table reports the CP ratios and the number of surviving variables for each model under 
study. “OP” stands for the ordered probit model. “OP_LASSO” refers to the ordered probit model with 
LASSO estimator. “OP_ELASTIC NET” stands for the ordered probit model with Elastic net estimator. 
“CR_LASSO” indicates the continuation ratio model with LASSO estimator. “CR_ELASTIC NET” is the 
continuation ratio model with Elastic net estimator. “AIC” is the AIC-type tuning parameter selector. 
“BIC” is the BIC-type tuning parameter selector. *** denotes that the Stuart-Maxwell null hypothesis of 
no difference of each category between two predictions is rejected at the 1% significance level. ** 
denotes that the Stuart-Maxwell null hypothesis of no difference of each category between two 
predictions is rejected at the 5% significance level. * denotes that the Stuart-Maxwell null hypothesis 
of no difference of each category between two predictions is rejected at the 10% significance level. 

2.5.3.4.2 

An alternative measure for our forecasts can be constructed based on the 

misclassification rate of Hastie et al. (2009): 𝑇−1 ∑ 1{𝑞𝑡̂ ≠ 𝑞𝑡} 𝑇
𝑡=1 .17 In the spirit of 

Diebold and Mariano (1995), we estimate the misclassification rate for each point 

and model and then we test if the mean difference of these rates 

( 1{𝑞𝑡̂
𝑀𝑜𝑑𝑒𝑙 𝐴 ≠ 𝑞𝑡} − 1{𝑞𝑡̂

𝑀𝑜𝑑𝑒𝑙 𝐵 ≠ 𝑞𝑡} ) between two models is zero. If this is 

statistically different from zero it indicates that the two models generate 

different forecasts. Table 2-11 and Table 2-12 present the relevant p-values for 

our out-of-sample forecasts.   

                                         
17 Using the notation from the previous sub-section, let stand for the target variable and denote the 

forecast.  

  OP OP_LASSO OP_ELASTIC NET CR_LASSO CR_ELASTIC NET 

   AIC BIC AIC BIC AIC BIC AIC BIC 

CDSIRs 

In-sample 
prediction 

69.29% 66.89%* 61.04%*** 66.95% 61.05%*** 63.29%*** 61.84%*** 62.74%*** 61.84%*** 

Out-of-
sample 
prediction 

18.22% 25.49%*** 61.01%*** 25.49%*** 61.01%*** 45.70%*** 64.16%*** 47.94%*** 63.42%*** 

Surviving 
variables 

268 143 45 144 45 75 48 78 51 

EQIRs 

In-sample 

prediction 
78.30% 77.16% 74.46%* 77.19% 74.25%** 78.58% 74.51% 78.45% 74.39% 

Out-of-
sample 
prediction 

35.49% 66.50%*** 70.10%*** 63.42%*** 69.93%*** 67.29%*** 70.23%*** 62.39%*** 70.10%*** 

Surviving 
variables 

268 167 95 181 87 152 83 187 91 
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Table 2-11 Equal performance tests of out-of-sample prediction of CDSIRs 

  OP OP_LASSO OP_ELASTIC NET CR_LASSO CR_ELASTIC NET 

   AIC BIC AIC BIC AIC BIC AIC BIC 

OP  ~ 7.60*** 38.38*** 7.60*** 38.38*** 23.66*** 38.57*** 24.79*** 38.75*** 

OP_LASSO 

AIC  ~ 32.58*** ~ 32.58*** 19.31*** 32.75*** 20.40*** 32.90*** 

BIC   ~ 
-
32.58*** ~ 

-
17.08*** -1.62 

-
16.01*** -0.69 

OP_ELASTIC 
NET 

AIC    ~ 32.58*** 19.31*** 32.75*** 20.40*** 32.90*** 

BIC     ~ 
-
17.08*** -1.62 

-
16.01*** -0.69 

CR_LASSO 

AIC      ~ 17.36*** 4.95*** 17.43*** 

BIC       ~ 
-
16.27*** 1.73* 

CR_ELASTIC 
NET 

AIC        ~ 16.35*** 

BIC         ~ 

Note: This table reports the test of equality of the mean difference in losses for two models. *** denotes 
that the null hypothesis of equal performance of two models is rejected at the 1% significant level. ** 
denotes that the null hypothesis of equal performance of two models is rejected at the 5% significant 
level and * denotes that the null hypothesis of equal performance of two models is rejected at the 10% 
significant level. ~ indicates that the two models generate the same set of forecasts. 

Table 2-12 Equal performance tests of out-of-sample prediction of EQIRs 

  OP OP_LASSO OP_ELASTIC NET CR_LASSO CR_ELASTIC NET 

   AIC BIC AIC BIC AIC BIC AIC BIC 

OP  ~ 23.65*** 26.97*** 21.38*** 26.80*** 23.72*** 27.02*** 21.26*** 26.97*** 

OP_LASSO 

AIC  ~ 6.03*** -5.83*** 5.82*** 1.79* 6.09*** -5.82*** 6.03*** 

BIC   ~ -8.79*** -1.41 -5.46*** 1.00 -8.66*** ~ 

OP_ELASTIC 
NET 

AIC    ~ 8.64*** 6.29*** 8.85*** -0.26 8.79*** 

BIC     ~ -5.25*** 1.73* -8.51*** 1.41 

CR_LASSO 

AIC      ~ 5.57*** -6.37*** 5.46*** 

BIC       ~ -8.71*** -1.00 

CR_ELASTIC 
NET 

AIC        ~ 8.66*** 

BIC         ~ 

Note: This table reports the test of equality of the mean difference in losses for two models.  *** denotes 
that the null hypothesis of equal performance of two models is rejected at the 1% significance level.  ** 
denotes that the null hypothesis of equal performance of two models is rejected at the 5% significance 
level, * denotes that the null hypothesis of equal performance of two models is rejected at the 10% 
significance level. ~ indicates that the two models generate the same set of forecasts. 

We note that in almost all cases, our forecasts are statistically different. These 

results complete the picture by further demonstrating the superiority of LASSO as 

a variable selection technique and the effectiveness of the BIC criterion in tuning 

the LASSO parameters. To sum up, the results are robust when carrying out an 

alternative test to evaluate the forecasting performance based on the proportion 

of correct predictions for each of the various rating categories.  

2.5.3.5 Investment grade ratings 

Much of the previous related literature studied employs data with investment 

grade ratings. However, Amato and Furfine (2004) report that selection bias is like 
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to be generated if researchers emphasise analysing one category. On the other 

hand, it is well accepted that firms with varying levels of financial health have 

different ability to withstand the effects of changes in financial and business risk 

on their creditworthiness. This implies that pooling together both categories may 

lead to misspecification of our model. Therefore, all speculative grade ratings are 

removed, and our models are re-estimated.  

The results in Table 2-13 validate our main findings. First, similar accuracy ratios 

can be observed in all models considering the in-sample forecast evaluations. 

Moving to the out-of-sample, for the CDSIRs, both versions of the CR with LASSO 

provide more accurate forecasts. On the other hand, for EQIRs all LASSO models 

display better predictive performance than their OP benchmark. In conclusion, 

even when limiting our sample to investment grade ratings only, the out-of-sample 

predictions demonstrate that the LASSO models outperform the benchmark 

model.  

Table 2-13 Accuracy Ratios and selected variables (investment-grade ratings) 

Notes: This Table reports the Accuracy Ratios and the number of surviving variables for each model 
under study. “OP” stands for the ordered probit model. “OP_LASSO” refers to the ordered probit model 
with LASSO estimator. “OP_ELASTIC NET” stands for the ordered probit model with Elastic net estimator. 
“CR_LASSO” indicates the continuation ratio model with LASSO estimator. “CR_ELASTIC NET” is the 
continuation ratio model with Elastic net estimator. “AIC” is the AIC-type tuning parameter selector. 
“BIC” is the BIC-type tuning parameter selector. *** denotes that the Stuart-Maxwell null hypothesis of 
no difference of each category between two predictions is rejected at the 1% significance level. ** 
denotes that the Stuart-Maxwell null hypothesis of no difference of each category between two 
predictions is rejected at the 5% significance level. * denotes that the Stuart-Maxwell null hypothesis 
of no difference of each category between two predictions is rejected at the 10% significance level. 

2.5.3.6 Accounting for the panel data dimension 

As a final robustness test, a random-effects version of the ordered probit model 

is considered to capture the panel data dimension of the dataset. The Accuracy 

Ratios and the corresponding Stuart–Maxwell statistical tests are reported in Table 

2-14. The conclusion is consistent with other robustness tests which show that the 

  OP OP_LASSOO OP_ELASTICT NET CR_LASSO CR_EALSTIC NET 

   AIC BIC AIC BIC AIC BIC AIC BIC 

 
In-sample 
prediction 

90.76% 90.45%** 89.38%*** 90.14%*** 89.42%*** 90.56%** 89.44%*** 90.74% 89.40%*** 

CDSIRs 
Out-of-
sample 
prediction 

49.18% 77.04%*** 84.33%*** 84.22%*** 84.87%*** 82.81%*** 85.53%*** 80.41%*** 84.66%*** 

 
Surviving 
variables 

266 143 19 94 43 98 39 122 28 

 
In-sample 

prediction 
95.80% 95.61%* 95.02%** 95.49% 94.95%** 95.59% 95.05% 95.72% 94.97%* 

EQIRs 
Out-of-
sample 
prediction 

57.82% 87.72%*** 92.28%*** 90.99%*** 92.28%*** 90.69%*** 92.28%*** 86.44%*** 92.28%*** 

 
Surviving 
variables 

266 137 74 143 77 135 61 153 68 
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main findings remain unchanged: when we apply the LASSO or Elastic net 

estimator the models have superior predictive ability compared to the ordered 

probit model, even when random effects are included. We conclude that our 

findings are robust in estimating the models with random effects to deal with the 

panel data nature of the sample.  

Table 2-14 Accuracy Ratios and selected variables (random effects) 

  OP_re OP_re_LASSO  
OP_re_ELASTIC 

NET 
 

   AIC BIC AIC BIC 

 
In-sample 
prediction 

83.62% 84.10%*** 83.00%*** 84.03%** 83.00%*** 

CDSIRs 
Out-of-sample 
prediction 

21.84% 25.29%*** 65.08%*** 25.46%*** 65.08%*** 

 
Surviving 
variables 

268 143 45 144 45 

 
In-sample 
prediction 

93.17% 94.27%*** 93.71%*** 93.31%*** 93.98%*** 

EQIRs 
Out-of-sample 
prediction 

48.98% 82.99%*** 89.59%*** 12.44%*** 89.26%*** 

 
Surviving 
variables 

268 167 95 181 87 

Notes: This Table reports the Accuracy Ratios and the number of surviving variables for each model 
under study. “OP_re” stands for the ordered probit model with random effects. “OP_re_LASSO” is the 
ordered probit model with LASSO estimator and random effects. “OP_re_ELASTIC NET” stands for the 
ordered probit model with Elastic net estimator and random effects. “AIC” is the AIC-type tuning 
parameter selector. “BIC” is the BIC-type tuning parameter selector. *** denotes that the Stuart-
Maxwell null hypothesis of no difference of each category between two predictions is rejected at the 
1% significance level. ** denotes that the Stuart-Maxwell null hypothesis of no difference of each 
category between two predictions is rejected at the 5% significance level. * denotes that the Stuart-
Maxwell null hypothesis of no difference of each category between two predictions is rejected at the 
10% significance level. 

2.5.4 Discussion 

In the previous sections, a forecasting exercise on CDSIRs and EQIRs prediction was 

presented. For both types of market implied ratings all models provide similar in-

sample predictive performance. In the out-of-sample evidence, for CDSIRs, we 

note that a better predictive performance can be produced by the LASSO models 

with BIC-type tuning parameter selector than their benchmarks. Meanwhile, these 

LASSO models controlled by BIC-type selector tend to choose a smaller set of 

surviving variables than their counterparts with the AIC-type selector. This lends 

support to the argument that the models with BIC-type tuning parameter selector 

make better use of the available information. Moving to the EQIRs, a similar 

pattern can be observed. The models with the BIC-type tuning parameter selector 

outperform their counterparts with the AIC-type selector with fewer predictors in 

terms of accuracy.  
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To conclude, we note that the LASSO models are able to provide more accurate 

out-of-sample forecasts on the CDSIRs and EQIRs ratings and they outperform the 

OP model. This is of particular interest given that the OP model dominates the 

related literature in predicting credit ratings. From the LASSO models under study, 

the optimized models with BIC-type tuning parameter selector seem able to 

provide better forecasts while at the same time using fewer predictors. These 

results are robust when modifying the tuning parameters, considering a tuning-

free version of LASSO, evaluating the predictive performance of the models using 

a different statistical measure and restricting the dataset to investment grade 

ratings. 

2.6 Conclusion 

Providing a reasonable accuracy ratio in credit ratings prediction is critically 

important for both market participants and rating agencies since these predictions 

will be used as a reference for evaluating credit risk. Following the most recent 

financial crisis, the performance of conventional credit ratings has been heavily 

criticized because of their out of date nature. In this work, market implied ratings 

have been chosen as the target since they can immediately adjust to market 

change compared with traditional credit ratings. To achieve more accurate 

forecasts of market implied ratings, a variable selection technique, the least 

absolute shrinkage and selection operator (LASSO), and its most promising 

derivation, the Elastic net, are applied to ordered probit and continuation ratio 

models modelling market implied ratings. All LASSO models select the most 

relevant predictors from a set of 268 variables and forecast the MIRs for a period 

of six years (2002 to 2008). This marks a break with the existing literature which 

typically depends on discrete limited dependent variable models.   

Our results using monthly data from the US are interesting in several respects. 

First, market implied ratings can be explained by accounting variables along with 

market-driven and macroeconomic indicators. Second, the predictive 

performance produced by the LASSO models are clearly better than that produced 

by ordered probit models, mostly adopted in previous studies. Finally, the LASSO 

models controlling by BIC-type tuning parameter selector can provide more 

accurate out-of-sample predictions than their counterparts with AIC-type selector 
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for the dataset and periods under study. Hence, LASSO-selected models attain an 

improved forecasting power.  

These results suggest risk managers and academics should further explore the 

properties of variable selection models during credit risk assessment. Researchers 

apply an explanatory variables set in limited dependent variable models based on 

their a priori knowledge, which can cause misspecifications. Meanwhile, the 

unknown factors affecting credit ratings will change over time or under different 

regulations. On the other hand, variable selection approaches such as LASSO are 

more flexible and can disclose the underlying structure of the problem, resulting 

in a sparse representative and improved predictive ability.  
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Appendix 

Appendix A 

Table A1: Expected signs and variables definition 

Covariates 
Predicted 
relationship Definition  

Firm-specific 
variables (16) 

   

Size (1)    

DETA + Logarithm of real total assets 
Leverage (5)    

AE - Total assets/Equity 
LDA - Long-term debt/Total assets 
SDA - Short-term debt/Total assets 
TDA - Total debt/Total assets 
TDEBITDA - Total debt/Earnings before interest, taxes, 

depreciation, amortization, and restructuring or 
rent costs 

Coverage (2)    

EBITINT + Earnings before interest and tax/Interest expenses 
EBITDAINT + Eearnings before interest, taxes, depreciation, 

amortization, and restructuring or rent 
costs/Interest expenses 

Cash flow (2)    

CFOA + Cash flow from operating activities/Total assets 
CASHEQA + Cash and equivalent/Total assets 
Profitability (5)    

OM + Operating income/Net sales  
ROC + Net income less dividends/Total capital 
ROE + Net income/Shareholders’ equity 
ROA + Net income/Total assets  
FFD + Funds from operations/Total debt 
Liquidity (1)    

LIQ + Cash from operations/Liabilities 
Market-driven Variables (6)  
EXRET + Monthly stock return-the S&P 500 index return 
RSIZE + Firm equity value/Total market equity value 
STA - The standard deviation of a company’s monthly 

stock returns 
BETA - Systematic risk in the Capital Asset Pricing Model 

PD1 - 1-year default probability 

PD5 - 5-year default probability 
Macroeconomic Variables (11) 
RLSP ~ Return on S&P 500 index 
CPFFM ~ 3-month commercial paper rate 
TB3 ~ 3-month Treasury bill rate minus federal funds rate 
GS1 ~ 1-year constant maturity treasury rate 
MB ~ Growth rate in the narrow money stock 
INFL ~ Inflation rate 
DLIP ~ Rate of change in industrial production 
DLGDP ~ Real GDP growth 
CFNA ~ Average Chicago Fed National Activity Index  
UNRATE ~ Average unemployment rate  
VIX ~ The Chicago Board Options Exchange volatility index 

Notes: “+” indicates that the Market Implied Ratings would improve if the covariates rose. “-” indicates that the Market 
Implied Ratings would worsen if the covariates rose. “~” indicates uncertainty in the sign. 
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Appendix B 

We cross tabulate predicted against observed CDSIRs outcomes in contingency Table B1 to B12 
for the in-sample prediction. 
 
Table B1: In-sample Prediction in Ordered Probit Model in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 64 169 1 0 0 0 0 234 

AA 34 879 71 11 0 0 0 995 

A 0 45 1591 69 0 0 0 1705 

BBB 0 1 67 1804 23 0 0 1895 

BB 0 0 0 50 783 8 0 841 

B 0 0 0 0 11 133 4 148 

Below CCC 0 0 0 0 0 5 2 7 

Total 98 1094 1730 1934 817 146 6 5825 

AR= 90.23% 
CP= 69.29% 
 
 
Table B2: In-sample Prediction in Ordered Probit Model with LASSO by AIC-typing Tuning Parameter Selector 
in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 59 174 1 0 0 0 0 234 

AA 26 887 70 12 0 0 0 995 

A 0 45 1592 68 0 0 0 1705 

BBB 0 1 67 1805 22 0 0 1895 

BB 0 0 0 53 781 7 0 841 

B 0 0 0 0 11 135 2 148 

Below CCC 0 0 0 0 0 6 1 7 

Total 85 1107 1730 1938 814 148 3 5825 

AR= 90.30% 
CP= 66.89% 
 
 
Table B3: In-sample Prediction in Ordered Probit Model with LASSO by BIC-typing Tuning Parameter Selector 
in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 6 227 1 0 0 0 0 234 

AA 6 905 56 28 0 0 0 995 

A 0 41 1567 97 0 0 0 1705 

BBB 0 1 60 1813 22 0 0 1895 

BB 0 0 0 55 779 7 0 841 

B 0 0 0 0 11 137 0 148 

Below CCC 0 0 0 0 0 7 0 7 

Total 12 1174 1684 1993 812 151 0 5825 

AR= 89.39% 
CP= 61.04% 
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Table B4: In-sample Prediction in Ordered Probit Model with Elastic Net by AIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 60 173 1 0 0 0 0 234 

AA 27 886 70 12 0 0 0 995 

A 0 45 1592 68 0 0 0 1705 

BBB 0 1 67 1805 22 0 0 1895 

BB 0 0 0 53 781 7 0 841 

B 0 0 0 0 11 135 2 148 

Below CCC 0 0 0 0 0 6 1 7 

Total 87 1105 1730 1938 814 148 3 5825 

AR= 90.30% 
CP= 66.95% 
 
 
Table B5: In-sample Prediction in Ordered Probit Model with Elastic Net by BIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 6 227 1 0 0 0 0 234 

AA 6 905 56 28 0 0 0 995 

A 0 41 1567 97 0 0 0 1705 

BBB 0 0 60 1813 22 0 0 1895 

BB 0 0 0 55 779 7 0 841 

B 0 0 0 0 11 137 0 148 

Below CCC 0 0 0 0 0 7 0 7 

Total 12 1173 1684 1993 812 151 0 5825 

AR= 89.39% 
CP= 61.05% 
 
 
Table B6: In-sample Prediction in Continuation Ratio Model with LASSO by AIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 40 193 1 0 0 0 0 234 
AA 18 893 61 23 0 0 0 995 
A 0 42 1569 94 0 0 0 1705 
BBB 0 0 60 1813 22 0 0 1895 
BB 0 0 0 55 779 7 0 841 
B 0 0 0 0 11 137 0 148 
Below CCC 0 0 0 0 0 7 0 7 
Total 58 1128 1691 1985 812 151 0 5825 

AR= 89.80% 
CP= 63.29% 
 
 
Table B7: In-sample Prediction in Continuation Ratio Model with LASSO by BIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 19 214 1 0 0 0 0 234 

AA 14 897 55 29 0 0 0 995 

A 0 41 1567 97 0 0 0 1705 

BBB 0 0 60 1813 22 0 0 1895 

BB 0 0 0 55 779 7 0 841 

B 0 0 0 0 11 137 0 148 

Below CCC 0 0 0 0 0 7 0 7 

Total 33 1152 1683 1994 812 151 0 5825 

AR= 89.48% 
CP= 61.84% 
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Table B8: In-sample Prediction in Continuation Ratio Model with Elastic Net by AIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 33 200 1 0 0 0 0 234 
AA 21 890 61 23 0 0 0 995 
A 0 41 1569 95 0 0 0 1705 
BBB 0 0 60 1813 22 0 0 1895 
BB 0 0 0 55 779 7 0 841 
B 0 0 0 0 11 137 0 148 
Below CCC 0 0 0 0 0 7 0 7 
Total 54 1131 1691 1986 812 151 0 5825 

AR= 89.63% 
CP= 62.74% 
 
 
Table B9: In-sample Prediction in Continuation Ratio Model with Elastic Net by BIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 19 214 1 0 0 0 0 234 
AA 14 897 56 28 0 0 0 995 
A 0 41 1567 97 0 0 0 1705 
BBB 0 0 60 1813 22 0 0 1895 
BB 0 0 0 55 779 7 0 841 
B 0 0 0 0 11 137 0 148 
Below CCC 0 0 0 0 0 7 0 7 
Total 33 1152 1684 1993 812 151 0 5825 

AR= 89.48% 
CP= 61.84% 
 
 
Table B10: In-sample Prediction in Principal Component Analysis_16 PCs with Ordered Probit model in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B Below CCC Total 

AAA 37 156 40 1 0 0 0 234 
AA 35 271 446 243 0 0 0 995 
A 3 200 774 721 7 0 0 1705 
BBB 5 33 536 1,255 64 2 0 1895 
BB 0 1 55 433 304 48 0 841 
B 0 0 5 39 66 35 3 148 
Below CCC 0 0 0 1 3 3 0 7 
Total 80 661 1856 2693 444 88 3 5825 

AR= 45.94% 
CP= 19.08% 
 
 
Table B11: In-sample Prediction in Principal Component Analysis_25 PCs with Ordered Probit model in 
CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B Below CCC Total 

AAA 31 186 17 0 0 0 0 234 
AA 42 440 420 93 0 0 0 995 
A 1 184 873 626 21 0 0 1705 
BBB 0 9 619 1188 74 5 0 1895 
BB 0 0 9 356 417 57 2 841 
B 0 0 0 19 81 43 5 148 
Below CCC 0 0 0 0 4 3 0 7 
Total 74 819 1938 2282 597 108 7 5,825 

AR= 51.36% 
CP= 25.00% 
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Table B12: In-sample Prediction in Principal Component Analysis_45 PCs with Ordered Probit model in 
CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B Below CCC Total 

AAA 47 184 3 0 0 0 0 234 
AA 70 483 397 45 0 0 0 995 
A 2 109 1027 550 17 0 0 1705 
BBB 0 17 582 1240 54 2 0 1895 
BB 0 0 10 245 514 68 4 841 
B 0 0 0 37 77 32 2 148 
Below CCC 0 0 0 0 4 3 0 7 
Total 119 793 2019 2117 666 105 6 5825 

AR= 57.39% 
CP= 29.51% 
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We cross tabulate predicted against observed CDSIRs outcomes in contingency Table B13 to 
B24 for the out-of-sample prediction. 
 
Table B13: Out-of-sample Prediction in Ordered Probit Model in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 9 14 4 1 23 22 11 84 
AA 24 38 51 8 43 48 22 234 
A 1 35 50 65 8 42 45 246 
BBB 0 0 36 82 58 40 139 355 
BB 0 0 0 10 37 14 76 137 
B 0 0 0 0 5 13 34 52 
Below CCC 0 0 0 0 0 3 20 23 
Total 34 87 141 166 174 182 347 1131 

AR= 22.02% 
CP= 18.22% 
 
 
Table B14: Out-of-sample Prediction in Ordered Probit Model with LASSO by AIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 1 20 15 22 20 6 0 84 
AA 0 62 64 49 39 20 0 234 
A 0 1 94 71 45 33 2 246 
BBB 0 0 1 107 109 75 63 355 
BB 0 0 0 0 57 20 60 137 
B 0 0 0 0 1 17 34 52 
Below CCC 0 0 0 0 0 4 19 23 
Total 1 83 174 249 271 175 178 1131 

AR= 31.56% 
CP= 25.49% 
 
 
Table B15: Out-of-sample Prediction in Ordered Probit Model with LASSO by BIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 84 0 0 0 0 0 84 
AA 0 212 22 0 0 0 0 234 
A 0 12 224 10 0 0 0 246 
BBB 0 0 12 340 3 0 0 355 
BB 0 0 0 5 132 0 0 137 
B 0 0 0 0 4 48 0 52 
Below CCC 0 0 0 0 0 23 0 23 
Total 0 308 258 355 139 71 0 1131 

AR= 84.53% 
CP= 61.01% 
 
 
Table B16: Out-of-sample Prediction in Ordered Probit Model with Elastic Net by AIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 1 20 15 22 20 6 0 84 
AA 0 62 64 49 39 20 0 234 
A 0 1 94 71 45 33 2 246 
BBB 0 0 1 107 109 75 63 355 
BB 0 0 0 0 57 20 60 137 
B 0 0 0 0 1 17 34 52 
Below CCC 0 0 0 0 0 4 19 23 
Total 1 83 174 249 271 175 178 1131 

AR= 31.56% 
CP= 25.49% 
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Table B17: Out-of-sample Prediction in Ordered Probit Model with Elastic Net by BIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 84 0 0 0 0 0 84 
AA 0 212 22 0 0 0 0 234 
A 0 12 224 10 0 0 0 246 
BBB 0 0 12 340 3 0 0 355 
BB 0 0 0 5 132 0 0 137 
B 0 0 0 0 4 48 0 52 
Below CCC 0 0 0 0 0 23 0 23 
Total 0 308 258 355 139 71 0 1131 

AR= 84.53% 
CP= 61.01% 
 
 
Table B18: Out-of-sample Prediction in Continuation Ratio Model with LASSO by AIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 3 42 39 0 0 0 0 84 
AA 0 137 89 8 0 0 0 234 
A 0 2 170 73 1 0 0 246 
BBB 0 0 6 218 131 0 0 355 
BB 0 0 0 2 93 42 0 137 
B 0 0 0 0 1 32 19 52 
Below CCC 0 0 0 0 0 11 12 23 
Total 3 181 304 301 226 85 31 1131 

AR=58.80% 
CP=45.70% 
 
 
Table B19: Out-of-sample Prediction in Continuation Ratio Model with LASSO by BIC-typing Tuning Parameter 
Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 2 81 1 0 0 0 0 84 
AA 0 206 28 0 0 0 0 234 
A 0 12 215 19 0 0 0 246 
BBB 0 0 10 339 6 0 0 355 
BB 0 0 0 4 133 0 0 137 
B 0 0 0 0 4 46 2 52 
Below CCC 0 0 0 0 0 17 6 23 
Total 2 299 254 362 143 63 8 1131 

AR= 83.73% 
CP= 64.16% 
 
 
Table B20: Out-of-sample Prediction in Continuation Ratio Model with Elastic Net by AIC-typing Tuning 
Parameter Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 3 46 35 0 0 0 0 84 
AA 0 142 87 5 0 0 0 234 
A 0 2 173 70 1 0 0 246 
BBB 0 0 6 227 122 0 0 355 
BB 0 0 0 2 98 37 0 137 
B 0 0 0 0 1 34 17 52 
Below CCC 0 0 0 0 0 11 12 23 
Total 3 190 301 304 222 82 29 1131 

AR= 60.92% 
CP= 47.94% 
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Table B21: Out-of-sample Prediction in Continuation Ratio Model with Elastic Net by BIC-typing Tuning 
Parameter Selector in CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 2 81 1 0 0 0 0 84 
AA 0 209 25 0 0 0 0 234 
A 0 12 218 16 0 0 0 246 
BBB 0 0 10 341 4 0 0 355 
BB 0 0 0 5 132 0 0 137 
B 0 0 0 0 4 47 1 52 
Below CCC 0 0 0 0 0 19 4 23 
Total 2 302 254 362 140 66 5 1131 

AR= 84.26% 
CP= 63.42% 
 
 
Table B22: Out-of-sample Prediction in Principal Component Analysis_16 PCs with Ordered Probit model in 
CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 15 47 21 1 0 0 0 84 
AA 2 85 122 25 0 0 0 234 
A 4 24 145 72 1 0 0 246 
BBB 0 10 124 211 10 0 0 355 
BB 0 0 12 70 53 2 0 137 
B 0 0 2 11 31 8 0 52 
Below CCC 0 0 0 3 13 7 0 23 
Total 21 166 426 393 108 17 0 1131 

AR= 45.71% 
CP= 21.11% 
 
 
Table B23: Out-of-sample Prediction in Principal Component Analysis_25 PCs with Ordered Probit model in 
CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B Below CCC Total 

AAA 67 17 0 0 0 0 0 84 
AA 89 130 15 0 0 0 0 234 
A 45 98 81 22 0 0 0 246 
BBB 46 114 126 64 5 0 0 355 
BB 4 29 21 64 18 1 0 137 
B 0 5 5 17 22 2 1 52 
Below CCC 0 0 0 5 10 8 0 23 
Total 251 393 248 172 55 11 1 1131 

AR= 32.01% 
CP= 17.21% 
 
 
Table B24: Out-of-sample Prediction in Principal Component Analysis_45 PCs with Ordered Probit model in 
CDSIRs 

 Predicted CDSIRs 

Actual CDSIRs AAA AA A BBB BB B Below CCC Total 

AAA 6 42 29 7 0 0 0 84 
AA 0 77 108 49 0 0 0 234 
A 0 12 99 131 4 0 0 246 
BBB 0 2 44 237 70 2 0 355 
BB 0 0 0 29 87 18 3 137 
B 0 0 0 6 31 11 4 52 
Below CCC 0 0 0 0 8 8 7 23 
Total 6 133 280 459 200 39 14 1131 

AR= 46.33% 
CP= 27.02% 
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We cross tabulate predicted against observed EQIRs outcomes in contingency Table B25 to B36 
for the in-sample prediction. 
 
Table B25: In-sample Prediction in Ordered Probit Model in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 3 12 0 0 0 0 0 15 
AA 0 409 32 0 0 0 0 441 
A 0 19 2492 115 0 0 0 2626 
BBB 0 0 70 2915 56 0 0 3041 
BB 0 0 0 46 1273 14 0 1333 
B 0 0 0 0 14 173 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 3 440 2594 3076 1343 187 0 7643 

AR= 95.05% 
CP= 78.30% 
 
 
Table B26: In-sample Prediction in Ordered Probit Model with LASSO by AIC-typing Tuning Parameter Selector 
in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 2 13 0 0 0 0 0 15 
AA 0 410 31 0 0 0 0 441 
A 0 16 2495 115 0 0 0 2626 
BBB 0 0 72 2910 59 0 0 3041 
BB 0 0 0 50 1269 14 0 1333 
B 0 0 0 0 12 175 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 2 439 2598 3075 1340 189 0 7643 

AR=95.00% 
CP=77.16% 
 
 
Table B27: In-sample Prediction in Ordered Probit Model with LASSO by BIC-typing Tuning Parameter Selector 
in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 15 0 0 0 0 0 15 
AA 0 412 29 0 0 0 0 441 
A 0 18 2492 116 0 0 0 2626 
BBB 0 0 84 2895 62 0 0 3041 
BB 0 0 0 55 1262 16 0 1333 
B 0 0 0 0 11 176 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 445 2605 3066 1335 192 0 7643 

AR=94.69% 
CP=74.46% 
 
 
Table B28: In-sample Prediction in Ordered Probit Model with Elastic Net by AIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 2 13 0 0 0 0 0 15 
AA 0 410 31 0 0 0 0 441 
A 0 16 2498 112 0 0 0 2626 
BBB 0 0 71 2911 59 0 0 3041 
BB 0 0 0 49 1269 15 0 1333 
B 0 0 0 0 12 175 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 2 439 2600 3072 1340 190 0 7643 

AR=95.05% 
CP=77.19% 
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Table B29: In-sample Prediction in Ordered Probit Model with Elastic Net by BIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 15 0 0 0 0 0 15 
AA 0 412 29 0 0 0 0 441 
A 0 20 2490 116 0 0 0 2626 
BBB 0 0 92 2888 61 0 0 3041 
BB 0 0 0 58 1259 16 0 1333 
B 0 0 0 0 12 175 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 447 2611 3062 1332 191 0 7643 

AR=94.52% 
CP=74.25% 
 
 
Table B30: In-sample Prediction in Continuation Ratio Model with LASSO by AIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 3 12 0 0 0 0 0 15 
AA 0 409 32 0 0 0 0 441 
A 0 15 2501 110 0 0 0 2626 
BBB 0 0 72 2914 55 0 0 3041 
BB 0 0 0 47 1273 13 0 1333 
B 0 0 0 0 12 175 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 3 436 2605 3071 1340 188 0 7643 

AR=95.19% 
CP=78.58% 
 
 
Table B31: In-sample Prediction in Continuation Ratio Model with LASSO by BIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 15 0 0 0 0 0 15 
AA 0 412 29 0 0 0 0 441 
A 0 15 2495 116 0 0 0 2626 
BBB 0 0 82 2897 62 0 0 3041 
BB 0 0 0 55 1263 15 0 1333 
B 0 0 0 0 11 176 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 442 2606 3068 1336 191 0 7643 

AR=94.77% 
CP=74.51% 
 
 
Table B32: In-sample Prediction in Continuation Ratio Model with Elastic Net by AIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 3 12 0 0 0 0 0 15 
AA 0 409 32 0 0 0 0 441 
A 0 16 2497 113 0 0 0 2626 
BBB 0 0 70 2918 53 0 0 3041 
BB 0 0 0 49 1272 12 0 1333 
B 0 0 0 0 13 174 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 3 437 2599 3080 1338 186 0 7643 

AR=95.16% 
CP=78.45% 
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Table B33: In-sample Prediction in Continuation Ratio Model with Elastic Net by BIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 15 0 0 0 0 0 15 
AA 0 412 29 0 0 0 0 441 
A 0 16 2494 116 0 0 0 2626 
BBB 0 0 83 2896 62 0 0 3041 
BB 0 0 0 56 1263 14 0 1333 
B 0 0 0 0 12 175 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 443 2606 3068 1337 189 0 7643 

AR=94.73% 
CP=74.39% 
 
 
Table B34: In-sample Prediction in Principal Component Analysis_15 PCs with Ordered Probit model in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 14 1 0 0 0 0 15 
AA 3 152 278 8 0 0 0 441 
A 0 148 1651 817 10 0 0 2626 
BBB 0 4 559 2318 160 0 0 3041 
BB 0 0 0 612 674 47 0 1,333 
B 0 0 0 7 113 67 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 3 318 2489 3762 957 114 0 7643 

AR= 63.61% 
CP= 31.99% 
 
 
Table B35: In-sample Prediction in Principal Component Analysis_23 PCs with Ordered Probit model in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 15 0 0 0 0 0 15 
AA 0 174 258 9 0 0 0 441 
A 1 102 1929 589 5 0 0 2626 
BBB 0 1 433 2440 164 3 0 3041 
BB 0 0 0 408 864 61 0 1333 
B 0 0 0 5 86 96 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 1 292 2620 3451 1119 160 0 7643 

AR= 72.00% 
CP= 41.86% 
 
 
Table B36: In-sample Prediction in Principal Component Analysis_41 PCs with Ordered Probit model in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 15 0 0 0 0 0 15 
AA 0 286 154 1 0 0 0 441 
A 0 74 2052 500 0 0 0 2626 
BBB 0 0 393 2465 183 0 0 3041 
BB 0 0 0 272 990 71 0 1333 
B 0 0 0 9 91 87 0 187 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 375 2599 3247 1264 158 0 7643 

AR= 76.93% 
CP= 48.97% 
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We cross tabulate predicted against observed EQIRs outcomes in contingency Table B37 to B48 
for the out-of-sample prediction. 
 
Table B37: Out-of-sample Prediction in Ordered Probit Model in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 7 51 45 11 0 0 0 114 
A 28 13 248 172 38 0 0 499 
BBB 11 26 17 185 123 34 0 396 
BB 0 9 14 11 78 40 0 152 
B 0 0 0 1 2 17 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 46 100 324 380 241 91 0 1182 

AR= 48.98% 
CP= 35.49% 
 
 
Table B38: Out-of-sample Prediction in Ordered Probit Model with LASSO by AIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 93 21 0 0 0 0 114 
A 0 7 434 58 0 0 0 499 
BBB 0 0 21 334 41 0 0 396 
BB 0 0 0 17 121 14 0 152 
B 0 0 0 0 0 20 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 101 476 409 162 34 0 1182 

AR=84.77% 
CP=66.50% 
 
 
Table B39: Out-of-sample Prediction in Ordered Probit Model with LASSO by BIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 109 5 0 0 0 0 114 
A 0 8 475 16 0 0 0 499 
BBB 0 0 39 349 8 0 0 396 
BB 0 0 0 26 124 2 0 152 
B 0 0 0 0 2 18 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 118 519 391 134 20 0 1182 

AR=90.95% 
CP=70.10% 
 
 
Table B40: Out-of-sample Prediction in Ordered Probit Model with Elastic Net by AIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 85 29 0 0 0 0 114 
A 0 5 411 82 1 0 0 499 
BBB 0 0 18 319 59 0 0 396 
BB 0 0 0 16 121 15 0 152 
B 0 0 0 0 0 20 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 91 458 417 181 35 0 1182 

AR=80.88% 
CP=63.42% 
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Table B41: Out-of-sample Prediction in Ordered Probit Model with Elastic Net by BIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 109 5 0 0 0 0 114 
A 0 9 474 16 0 0 0 499 
BBB 0 0 39 349 8 0 0 396 
BB 0 0 0 27 123 2 0 152 
B 0 0 0 0 2 18 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 119 518 392 133 20 0 1182 

AR=90.78% 
CP=69.93% 
 
 
Table B42: Out-of-sample Prediction in Continuation Ratio Model with LASSO by AIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 93 21 0 0 0 0 114 
A 0 6 436 57 0 0 0 499 
BBB 0 0 21 335 40 0 0 396 
BB 0 0 0 15 126 11 0 152 
B 0 0 0 0 0 20 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 100 478 407 166 31 0 1182 

AR=85.45% 
CP=67.29% 
 
 
Table B43: Out-of-sample Prediction in Continuation Ratio Model with LASSO by BIC-typing Tuning Parameter 
Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 109 5 0 0 0 0 114 
A 0 8 475 16 0 0 0 499 
BBB 0 0 39 349 8 0 0 396 
BB 0 0 0 25 125 2 0 152 
B 0 0 0 0 2 18 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 118 519 390 135 20 0 1182 

AR=91.03% 
CP=70.23% 
 
 
Table B44: Out-of-sample Prediction in Continuation Ratio Model with Elastic Net by AIC-typing Tuning 
Parameter Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 86 28 0 0 0 0 114 
A 0 7 410 82 0 0 0 499 
BBB 0 0 18 321 57 0 0 396 
BB 0 0 0 18 119 15 0 152 
B 0 0 0 0 1 19 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 94 456 421 177 34 0 1182 

AR=80.80% 
CP=62.39% 
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Table B45: Out-of-sample Prediction in Continuation Ratio Model with Elastic Net by BIC-typing Tuning 
Parameter Selector in EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 109 5 0 0 0 0 114 
A 0 8 475 16 0 0 0 499 
BBB 0 0 39 349 8 0 0 396 
BB 0 0 0 26 124 2 0 152 
B 0 0 0 0 2 18 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 118 519 391 134 20 0 1182 

AR=90.95% 
CP=70.10% 
 
 
Table B46: Out-of-sample Prediction in Principal Component Analysis_15 PCs with Ordered Probit model in 
EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 0 51 61 2 0 0 0 114 
A 0 18 357 119 5 0 0 499 
BBB 0 0 84 269 43 0 0 396 
BB 0 0 7 80 65 0 0 152 
B 0 0 0 1 12 7 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 0 70 509 471 125 7 0 1182 

AR= 63.37% 
CP= 32.39% 
 
 
Table B47: Out-of-sample Prediction in Principal Component Analysis_23 PCs with Ordered Probit model in 
EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 4 76 34 0 0 0 0 114 
A 2 120 355 22 0 0 0 499 
BBB 0 16 206 173 1 0 0 396 
BB 0 0 32 83 36 1 0 152 
B 0 0 0 1 12 7 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 6 213 627 279 49 8 0 1182 

AR= 54.74% 
CP= 28.04% 
 
 
Table B48: Out-of-sample Prediction in Principal Component Analysis_41 PCs with Ordered Probit model in 
EQIRs 

 Predicted EQIRs 

Actual EQIRs AAA AA A BBB BB B 
Below 
CCC Total 

AAA 0 1 0 0 0 0 0 1 
AA 10 80 24 0 0 0 0 114 
A 2 150 323 24 0 0 0 499 
BBB 0 14 210 171 1 0 0 396 
BB 0 0 25 92 35 0 0 152 
B 0 0 0 4 14 2 0 20 
Below CCC 0 0 0 0 0 0 0 0 
Total 12 245 582 291 50 2 0 1182 

AR= 51.69% 
CP= 22.22% 
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Appendix C  

In this section, we report the procedure for selecting tuning parameters.  

In our study, we select the tuning parameter with the aid of the AIC (Akaike 1974) and the BIC 

(Schwartz 1978). These are presented below:  

𝐴𝐼𝐶 = −2 ∗ log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2 ∗  (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑤𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙) 

and, 

𝐵𝐼𝐶 = −2 ∗ log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2 ∗  (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑤𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙) ∗

log(𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠)  

The number of used parameters within the model is the number of non-zero estimated coefficients 

of used parameters (Efron et al. 2004 and Zou et al. 2007). We follow the parametrization 

procedure of Wurm et al. (2017). The exact algorithm for the LASSO tuning parameter based on 

the AIC and the BIC criteria is presented below:   

1. Estimate the intercept-only model by maximum likelihood (see equation (4) for the OP 

with LASSO or equation (9) for the CR with LASSO).  

2. Select a sequence of tuning parameters  𝜆𝑖  (𝑖 = 1 𝑡𝑜 𝑛). 

For each tuning parameter 𝜆𝑖, there exists a set of selected independent variables and 

corresponding estimated coefficients. In other words, different potential models including 

different selected predictors controlled by the sequence of tuning parameters 𝜆1, 𝜆2, … , 𝜆𝑛 

are constructed. 

3. Calculate the AIC or BIC for each potential model. 

4. Choose the models with minimum value of AIC or BIC from the aforementioned series. 

These two models (one based on AIC-type tuning parameter selector and one based on BIC-

type tuning parameter selector) are applied in our study.  

Similarly, for the Elastic net estimator we follow Wurm et al. (2017): 

1. Estimate the intercept-only model by maximum likelihood (see equation (6) for the OP 

with Elastic net or equation (11) for the CR with Elastic net).  

2. Select a sequence of tuning parameters  𝛼1, 𝛼2, … , 𝛼10.  



Chapter 2  Appendix 

67 

3. For each 𝛼𝑖 (𝑖 = 1 𝑡𝑜 10), a sequence of tuning parameters  𝜆𝑖  (𝑖 = 1 𝑡𝑜 𝑛) is selected. For 

each tuning parameter  𝜆𝑖 , there is a set of selected independent variables and the 

corresponding estimated coefficients. For each of these models, we generate an AIC and 

BIC value.  

4. The minimum AIC and BIC values are assigned to the corresponding 𝛼𝑖.  

5. The 𝛼𝑖 (𝑖 = 1 𝑡𝑜 10) with the minimum AIC and the one with the minimum BIC value are 

selected. These two models are applied in our study.  
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Chapter 3 What influences a bank’s decision to 
go public?  

 

Abstract 

A bank’s decision to go public by issuing an Initial Public Offering (IPO) transforms 

its operations and capital structure. Much of the empirical investigation in this 

area focuses on the determinants of the IPO decision, applying accounting ratios 

and other publicly available information in non-linear models. We mark a break 

with this literature by offering methodological extensions as well as an extensive 

and updated US dataset to predict bank IPOs. Combining the least absolute 

shrinkage and selection operator (LASSO) with a Cox proportional hazard, we 

uncover value in several financial factors as well as market-driven and 

macroeconomic variables, in predicting a bank’s decision to go public. 

Importantly, we document a significant improvement in the model’s predictive 

ability compared to standard frameworks used in the literature. Finally, we show 

that the sensitivity of a bank’s IPO to financial characteristics is higher during 

periods of global financial crisis than in calmer times.  

 

Key words: Equity financing, US banks, financial ratios, LASSO, forecasting   
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3.1 Introduction  

Market finance in the USA has become an important source of funding for banks. 

According to the Federal Reserve Board, over the period 1996 to 2016 the net new 

issuance of US financial corporate equities outstanding more than tripled, from 

less than $50 billion to over $150 billion. The same body reports that the market 

value of total US corporate equity issues rose from about $8 trillion in 1996 to 

around $36 trillion in 2016. This implies that market participants have taken 

advantage of economic conditions as interest rates fell to historic lows. But not 

all banks were in a position to benefit from these unusual conditions. Using new 

estimation techniques over an extensive sample that covers both periods of crisis 

and calmer times, the present study aims to identify the factors that influence a 

bank’s desire to issue an equity IPO. 

Our study considers the influence of bank-level financial information as well as 

market-level indicators; we ask how these explicators influence the decision at 

the level of the bank to issue stocks for the first time. The focus is on the decision 

of a bank to go public by issuing an Initial Public Offering (IPO), which is a 

financially significant step for a bank and provides new opportunities for financial 

flexibility, increased liquidity, better diversification, and attracting potential 

investors (Amihud and Mendelson 1988, Pagano 1993, Lowry 2003, Bodnaruk et al. 

2008, Kim and Weisbach 2008, Lowry et al. 2017). In addition, Houge and Loughran 

(1999) demonstrate that a bank’s IPO decision can help managers to satisfy 

regulatory capital requirements, sell overvalued stock, and take advantage of 

better growth opportunities. After going public, Harris and Raviv (2014) indicate 

that the conditions of underlying market discipline and capital markets have more 

considerable influence on a public bank’s ability to take risk than on a private 

bank. Samet et al. (2018) further clarify that public banks are able to take less 

credit risk during non-crisis periods compared to private banks. Moreover, if banks 

go public, market discipline can improve credibility and transparency in the 

banking industry and force public banks to maintain operational quality because 

of regular announcements of their financial health (Delis et al. 2011).  

In this chapter, we extend the literature methodologically, by developing a series 

of Cox proportional hazard, discrete hazard and logistic models combined with a 

more intuitive, yet innovative model, which is based on the variable selection 
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technique, pioneered by Tibshirani (1996)—the least absolute shrinkage and 

selection operator (LASSO). Our study, as far as we know, is the first to apply this 

methodology to analyse the timing of a bank’s decision to issue for the first time 

in the public market. This model, also known as L1 norm penalty, has proved very 

useful in identifying the most relevant predictors from an extensive set of 

candidate variables, without considering a pre-selection of these potential 

variables (van de Geer 2008). The LASSO selection approach has a number of 

appealing characteristics: it not only helps identify the most relevant predictors 

from an extensive set of candidate variables, but it also improves the predictive 

power (Fan and Li 2001, Tian et al. 2015). In addition, LASSO does not require 

strict assumptions such as a pre-selection of the variables considered, and it is 

consistent statistically, as the number of observations approaches infinity (van de 

Geer 2008). Importantly, LASSO can potentially sidestep the problem of multi-

collinearity, which is fairly common in reduced-form models, and it is 

computationally efficient even when considering a large set of potential 

predictors.  

An additional important contribution of the present chapter is that we test our 

preferred estimator with superior predictive ability utilising a panel of US banks 

over an extensive time period. This approach not only allows us to compare our 

results with previous research, but also consider different time periods. 

Intuitively, banks respond in a different manner to extreme economic events as 

opposed to non-crisis periods, when they time their IPOs. Our sample covers the 

most recent global financial crisis as well as calmer (pre- and post-crisis) periods. 

We argue that across time periods, there is a differential sensitivity to bank and 

market information when it comes to the probability of banks going public.  

To preview our findings, we discover value in several bank-specific financial 

factors as well as market-driven and macroeconomic variables in predicting the 

decision of banks to go public. In terms of the models’ predictive ability, when we 

apply the LASSO estimator in a Cox proportional hazard model, we note a 

significant improvement in predicting a bank’s IPO and the penalized Cox 

proportional hazard model outperforms other candidates. Specifically, we note 

improvements compared to a Cox proportional hazard, discrete hazard and logistic 

models with or without LASSO. On the other hand, we show that the Cox 

proportional hazard model underperforms discrete hazard and logistic models, 
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which highlights the effect of LASSO on our algorithms. Our L1 penalized models 

are tuned through the AIC and the BIC criteria. We observe increased 

predictability on our dataset when the latter criterion is applied. Finally, when 

we apply the model with superior predictive ability to the data and split our 

sample into crisis and non-crisis periods, we find that the above variables become 

more potent in determining banks’ IPOs. This finding signifies the ability of banks 

to time their IPOs relative to the economic conditions. 

The rest of this work is laid out as follows. In section 2, we present an overview 

of the relevant literature. The data statistics and methodologies are introduced 

in Sections 3 and 4 respectively. Section 5 explains the empirical results of the 

forecasting simulation and Section 6 presents the econometric results of an 

empirical application. Section 7 provides conclusions.  

3.2 Literature 

The literature of determining IPO decisions contains two parts: one is associated 

with the evaluation of the motivations of a firm making an IPO decision and the 

other is related to empirical works to validate these motivations. The reasons for 

a firm to make an IPO decision are documented first. These are related to how a 

private firm assesses the costs and benefits of being a public firm. They can be 

categorized into six groups: capital structure; diversification; control 

consideration; fixed cost and loss confidentiality; adverse selection; and potential 

investors and customers.  

The preliminary and intuitive reason for a firm going public is to access different 

sources of capital, which can support the subsequent growth of this firm (Lowry 

et al. 2017). Röell (1996) confirms that intensifying competition among financial 

suppliers in the public market makes for more efficient investment and means 

that private capital can be negotiated at better rates. This can encourage private 

firms to go public. Lowry (2003) and Kim and Weisbach (2008) also suggest that a 

private firm is more likely to decide IPO issuance in order to access more current 

and future investment, reduce financial constraints and increase its value. 

However, as the cost of capital in the public market increases, more companies 

are likely to stay in the private market, since producing efficient information in 
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the public market (which may be not liquid) is costly (Modigliani and Miller 1963, 

Grullon et al. 2015).  

When it comes to diversification, becoming a public firm can provide diversified 

opportunities for the owners and reduce their unsystematic risk due to trading 

holding shares in the secondary market. Pagano (1993) applies a simple illustrative 

model to analyse the importance of diversification in the decision to go public. He 

concludes that a firm has greater likelihood of going public to diversify portfolios 

if borrowing constraints and a lack liquidity have been experienced. Bodnaruk et 

al. (2008) use all detailed IPO data in Sweden from 1995 to 2001 to estimate the 

influence of controlling diversification of owners on the IPO process. They indicate 

that shareholders with less diversification are more likely to obtain positive profits 

after going public and that they then tend to sell their shares during the IPO 

process. Their findings further support the argument that diversification is a major 

element in the decision to go public.   

Moving to control consideration, owners of private firms going into the public 

market may find it easy to transfer control. Zingales (1995) posits that the decision 

about an IPO can be regarded as the first step in selling a firm with maximized 

profits, since initial holders of a private firm can transform the scale of cash flow 

rights and manage rights maintained through issuing IPOs. Brau and Fawcett (2006) 

examine the principal motivation of a firm for going public, using surveys for 336 

chief financial officers (CFOs). Their main conclusion is that the significant 

consideration of a firm going public is to promote future acquisitions. Minimizing 

the cost of capital cannot be considered to be an important motivation. Hsieh et 

al. (2011) advise that the decision regarding an IPO enables potential buyers to 

evaluate the true value of a targeted firm and choose the optimal form of 

restructuring. Thus, the IPO process can lower the uncertainty of valuation of a 

firm in the public and help create a more appropriate acquisition strategy, which 

can improve the value of the firm. 

The fixed cost and loss confidentiality referring to regulation in the public market 

also influences the IPO decision. High explicit fixed costs have to be spent by a 

firm during IPO issuance, including various initial fees to pay for achieving 

certification in the public market and other variable expenses have to be made to 

keep this certification every year (Ritter 1987). Pagano and Roell (1998) confirm 
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that large direct costs with fixed components are an important factor in a firm’s 

decision to go public, since these costs are treated as necessary expenses to get 

certification in the public market. The decision to issue IPOs may negatively affect 

the operating performance of the company in the long run, since the fixed costs 

are a burden for a company with poor profitability (Brau et al. 2003). After going 

public, public firms are obliged to disclose some inside or sensitive information to 

maintain the efficiency of scrutiny, which causes loss of confidentiality. Campbell 

(1979) demonstrates that owners of a firm can utilize inside information to 

improve profits and thus a firm is less able to finance in the public market with 

an increased degree of confidentiality. Since the disclosed information may be 

related to scheduled or ongoing Research & Development (R&D) projects or an 

investment plan, it lessens the proportion of tax elusion and evasion (Pagano et 

al. 1998), leads to fierce competition in the entire industry and reduces the 

potential revenue of this listed firm (Maksimovic and Pichler 2001). To keep more 

potential profits from suffering from confidentiality issues, private firms are likely 

to stay in the private market. 

We turn now to explaining the correlation between adverse selection and IPO 

issuance. It is well accepted that the process of IPO issuance can generate 

information asymmetry, since managers or initial owners normally have more 

information about the true value of targeted firms which are public than outside 

investors. Potential investors prefer to use a lower price to purchase IPOs in order 

to protect their potential profits, and this becomes a factor associated with the 

under-pricing of IPOs (Rock 1986). This under-pricing of IPOs prevents small and 

young firms from going public and as such firms are unwilling to release efficient 

information into the financial market, this leads to adverse selection. Lowry 

(2003) concludes that adverse selection costs negatively affect the decision 

regarding IPOs. Brau et al. (2003) also demonstrate that the adverse selection cost 

becomes a relatively serious obstacle for young and small companies going public 

since they have a limited tracking record and poor visibility. 

Investors and customers as outsiders of a firm is the other motivation for an IPO 

decision. It is possible for investors to miss the investment opportunities offered 

by a company due to financial fraction. Going public through IPO issuance becomes 

the appropriate market strategy for a firm to show its major influence to other 

firms in its sector and hence this decision can attract more attention from latent 
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investors and customers in the public market (Lowry et al. 2017). This issue of 

IPOs also can be regarded as advertising to expand client groups, improve client 

loyalty and increase stock liquidity (Lowry et al. 2017). When clients buy shares 

in this firm, the benefits of issuing IPOs can be further extended, which can 

improve income and lower the cost of capital. As the operation of private firms 

going public improves, more investors have more confidence investing in them. 

To confirm these motivations, there is a large amount of empirical work about 

determining IPO decisions. Pagano et al. (1998) present the first systematic study 

on the determinants of firms’ IPOs and suggest determinants of IPOs can be found 

through ex ante and ex post features of IPOs for Italian companies. According to 

the reliable dataset extracted from three databases, they measure the 

performance of a firm based on size, capital expenses, future investment 

opportunities in the corresponding industry, leverage, profitability and the level 

of concentration. They then employ the probit model to analyse the decision of 

firms to go public, looking at each year from 1982 to 1992. Through hypothesis 

tests, it can be seen that size, growth rate, profitability and future investment 

opportunities are statistically significant in their work, which indicates a positive 

relationship with the probability of IPOs. Therefore, they conclude that larger 

firms, those with higher growth rates, or improved future investment 

opportunities, are more likely to go public. Following a similar objective, Fischer 

(2000) extracts balance sheet information from technology-based German 

companies between 1993 and 1997 as a dataset to analyse the decision about IPOs 

in a logistic model. In his conclusion, a technology firm operating with a higher 

proportion of intangible assets or R&D intensity is more likely to go public, which 

does not prove that firms with a greater level of confidentiality are less likely to 

be public. This may be caused by considerations which have been overlooked, such 

as the degree of concentration or market competition. The second finding of 

Fischer (2000) is that managers or initial owners prefer to list their firm in the public 

when other stock market segments are booming. 

Since the financial information of private firms is not easy to collect, Boehmer 

and Ljungqvist (2004) employ social media to collect data and improve the data 

quality of 330 privately-held German firms, and then determine the probability of 

IPOs from 1984 to 1995. Despite the extremely original source of the dataset, the 

major distinction of this work in comparison to the previous literature is the 
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application of the hazard model, which is a branch of survival analysis. It focuses 

on analysing the segment of time before a targeted event occurs, which can be 

linked with potential elements mentioned by relevant hypothesis. The major 

conclusion is that firms operating with larger future investment opportunities and 

higher valuations were more likely to complete IPOs. Several other studies confirm 

the importance of financial health in determining access to the public market in 

the UK and India (Gill de Albornoz and Pope 2004, Mayur and Kumar 2013). One 

other conclusion of these works that should be mentioned is that a firm operating 

with higher probability was less likely to go public from 1990 to 2000 in the UK 

(Albornoz and Pope, 2004). In a slightly different setting, Helwege and Packer 

(2003) exploited the requirements of the Securities and Exchange Commission to 

obtain information about US public firms. The authors show that variables 

measuring size, profitability, leverage, interest coverage, R&D investment, 

capital structure, growth rate, future investment opportunities, ownership 

information and riskiness all have an important role in influencing the decision to 

issue an IPO.1  

As well as evaluating the importance of financial information, Chemmanur et al. 

(2010) apply annual data drawn from the Longitudinal Research Database (LRD) 

containing all private and public enterprises related to manufacturing industry 

during the period 1972 – 2000. Following previous research, they include both a 

dynamic probit model and a Cox proportional hazard model to define the elements 

of the decisions regarding IPOs. It is interesting that there is no significant 

difference in conclusions between the probit model and a Cox proportional hazard 

model. They detect that total factor productivity is a key contributor to the 

probability that a firm will issue IPOs. They find that a private firm which is larger, 

with a better growth rate and higher total factor productivity is more likely to go 

public compared to its counterparts. Moreover, they show that if a private firm 

operates in an industry which is facing a higher degree of information asymmetry 

or costly evaluation of projects for outsiders, it is less likely to go public. 

Combined with the analysis of post-IPO performance, the authors conclude that a 

firm is more likely to issue an IPO at the peak of its productivity cycle.  

                                         
1 This lends support to the finding of Pagano et al. (1998) and further demonstrates that issuing IPOs 

can be regarded as a primary mechanism to raise outside equity.  
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Taken from a different perspective, researchers have sought to explain the 

influence of the market environment on firms’ IPO decisions. Subrahmanyam and 

Titman (1999) first demonstrated that public financing is more attractive than 

private financing if valuable information can be cheaply obtained and then 

confirmed that companies benefit more by issuing IPOs in a large, liquid public 

market. These benefits can encourage private companies to go public by issuing 

IPOs. Pástor and Veronesi (2005) further indicated that private firms are more 

likely to make IPO decisions when market conditions improve, or stock prices 

increase. In contrast to this, Helwege and Liang (2004) indicated that clusters of 

IPOs in stock markets are positively associated with investor optimism and are not 

related to the characteristics of industries such as profitability or growth 

opportunities.   

Some work has also been done on distinguishing private firms’ choices between 

IPO issuance and takeover. Brau et al. (2003) applied logistic regression for US 

companies, 1984-1998. They conclude that the level of concentration, the relation 

with the technology industry, hot issue period of IPOs, the cost of debt, company 

size and the proportion of insider ownership can result in a higher likelihood of 

private companies issuing IPOs. Nevertheless, firms operating in industries with 

high future investment opportunities, financial services, highly leverage or greater 

liquidity for trading insiders are more likely candidates for takeover. Adjei et al. 

(2008) collected the accounting information of firms going public by reverse merge 

or IPOs from 1990 to 2002 and then determined the decision of these firms to 

choose IPO. They suggested that private firms which were larger, had a longer 

history and better operating performance were on average more likely to issue 

IPOs to go public and more likely to fulfil the requirements of targeted stock 

exchange. 

Contrary to the above literature about the determinants of IPO decisions, the 

opposite direction, explaining why firms delisted from the public market, is 

similarly an interesting one to explore. The related studies look at the reasons for 

firms going public to determine why they go private. Bharath and Dittmar (2010) 

examined the decision of public companies to go private between 1980 and 2004 

in the US based on the reverse motivations of private firms going public. To 

construct the dataset, the legal definition of going private according to the 

Securities and Exchange Commission was applied, keeping the unique criteria in 
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data collection. Following this, similar predictors were drawn from the Securities 

Data Corporation (SDC) database and Securities and Exchange Commission to 

measure size, growth rate and leverage and so on in the Cox proportional hazard 

model. In their conclusion, information and liquidity were proved to be important 

elements for private firms going public, while the ability to gain capital and 

controlling power were regarded as crucial determinants of public firms going 

private. At the same time, they confirm the predictive ability of the Cox 

proportional hazard model, which can achieve around 80% correct prediction of 

firms going private. 

While the literature on firms’ IPOs is vast, the decision of banks to go public is 

less well studied. Kashian and Ahmad (2010) used quarterly data of twenty-three 

credit unions provided by SNL Financial Services in a Cox proportional hazard 

model, capturing duration dependence, and they demonstrated that the quality 

of both assets and loans was linked to the IPO decision for credit unions that had 

converted into mutual savings institutions. They also observed that banks with 

either low or very high ratios of equity to assets were less likely to make IPO 

decisions. On the other hand, the return on equity, the ratio of total loans to total 

assets and the size of the institution were not important determinants of a bank’s 

decision to go public. Francis et al. (2009) used 272 US bank IPOs and 440 bank 

mergers and acquisitions from the Securities Data Company (SDC) Global New 

Issues database in the logistic regression to distinguish IPO decisions from mergers 

and acquisitions from 1985 to 1999. They demonstrated that a bank is less likely 

to go public during difficult economic times. In addition, Geyfman (2014) 

employed a cross-sectional dataset which included 208 large commercial banks 

with more than $200 million in assets in 20 transition economies in Central and 

Eastern Europe and the former Commonwealth of Independent States in 2010. The 

author found that banks operating in advanced and mature markets are more 

inclined to go public, highlighting the role of financial architecture.  

The above review suggests the relevant predictors and econometric methods in 

IPO decisions. It provides us with a chance to make a methodological contribution 

on this topic. The dataset used and the estimation strategy will be discussed in 

the following sections. 
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3.3 Data and summary statistics 

3.3.1 Data description 

Our dataset is drawn from the quarterly accounting reports taken from the Orbis 

Bank Focus database, published by Bureau van Dijk Electronic Publishing (BvDEP). 

The Bank Focus database provides information on almost 40,000 institutions across 

the globe, with detailed coverage in the US. Moreover, the accounting information 

for each bank can be compared directly in the BvDEP since it has adjusted the 

differences in accounting and reporting criteria and converted into standardized 

format. High-quality information can be offered in the BvDEP since it is constantly 

updated with the latest accounting and regulatory disclosures. We rely on Orbis 

Bank Focus to identify banks’ IPO date over the period 1996–2016. The distribution 

of public and private banks studied is presented in Table 3-1.  

Table 3-1 The distribution of banks 

Year Public Banks  Private Banks  
Public banks 
percentage 

Total 

1996 176 345 33.78% 521 

1997 194 406 32.33% 600 

1998 203 467 30.30% 670 

1999 222 603 26.91% 825 

2000 229 677 25.28% 906 

2001 242 742 24.59% 984 

2002 265 6007 4.23% 6272 

2003 276 6177 4.28% 6453 

2004 285 6265 4.35% 6550 

2005 301 6477 4.44% 6778 

2006 251 5705 4.21% 5956 

2007 256 5824 4.21% 6080 

2008 237 5377 4.22% 5614 

2009 257 5832 4.22% 6089 

2010 275 5847 4.49% 6122 

2011 283 5755 4.69% 6038 

2012 301 6278 4.58% 6579 

2013 307 6290 4.65% 6597 

2014 319 6265 4.85% 6584 

2015 298 5966 4.76% 6264 

2016 292 5766 4.82% 6058 

Note: This table presents the distribution of banks by year. 
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Data on market indicators and macroeconomic variables are sourced from 

Bloomberg. These data items are reported quarterly. Following commonly used 

selection criteria in the literature, we exclude banks that do not have complete 

records on our explanatory variables and bank quarters with negative sales and 

assets. To control for the potential influence of outliers, we winsorize the 

regression variables at the 1st and 99th percentiles.  

3.3.2 Choice of explanatory variables 

Our models are supplied with forty-two potential explanatory variables, which can 

be divided into the following broad categories: bank-specific indicators, industry-

specific predictors and macroeconomic variables. The choice of the explicators is 

based on a series of related studies (see for instance Pagano et al. 1998, Brau et 

al. 2003, Helwege and Packer 2003, Pástor and Veronesi 2005, Adjei et al. 2008, 

Tregenna 2009, Chemmanur et al. 2010, Kashian and Ahmad 2010, Geyfman 2014). 

To begin with the bank accounting variables, which measure various aspects of 

banks’ health, these potential predictors are related to the determinants of 

CAMELS ratings. Specifically, they are aimed at assessing the overall safety and 

soundness of banks, covering capital adequacy; asset quality; management 

quality; earnings; liquidity; and sensitivity to market risk. Next, our industry-

specific variables capture market concentration. Finally, we allow for fourteen 

macro-economic covariates that are likely to influence the timing of a bank’s IPO.2  

3.3.3 Summary statistics 

We report summary statistics of the variables used in the empirical models in 

Table 3-2. We also present p-values for the tests of equality of means across the 

public and private banks in column 6 of Table 3-2. We observe, as expected, that 

public banks’ size, growth rate, market share and income diversification are 

higher compared to private banks. On the other hand, capital, leverage and 

deposits in public banks are lower than in private banks. These statistics imply 

that public banks may absorb more growth opportunities from the stock market to 

                                         
2 For detailed definitions and abbreviations of all variables see Table A.1 in the Appendix. Table A.2 

presents the cross-correlations between bank-specific variables. It is generally observed that 
some variables exhibit relatively high correlation with each other, with some exceptions for 
variables that measure similar dimensions (e.g. banks’ profitability using ROAA and ROAE). We 
note, however, that our preferred empirical methodology will carefully address this issue. 
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enhance their performance and reduce risk. Overall, the tests point to significant 

differences between the two groups, which indicate that there is a correlation 

between banking activities and the decision about IPOs. Moving to the industry-

specific indicators, we find significant differences between public and private 

banks, suggesting a link between the market climate and a bank’s likelihood of 

going public.  
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Table 3-2 Summary statistics 

Notes: This Table reports summary statistics of the explanatory variables used in the empirical models. 
Column 6 reports the p-value for the test of equality of means between the public and private groups. 
A detailed description of the variables used in this study is given in Table A.1 in the Appendix. 

Variable Status  Mean 
Standard 
Deviation Minimum Maximum p-value  

 (1) (2) (3) (4) (5) (6) 

Bank-specific       

LNDETAS Public 14.334 1.475 10.896 19.800 0.000 
 Private 12.120 1.188 9.328 16.760  
LNDETAS2 Public 24.063 2.949 17.187 34.996 0.000 
 Private 19.635 2.375 14.052 28.915  
GROAS Public 2.212 4.303 -7.052 34.731 0.000 
 Private 1.553 4.037 -9.679 28.596  
LOAAS Public 65.881 10.779 18.460 86.760 0.000 
 Private 62.668 14.066 12.921 89.681  
EQAS Public 9.965 2.349 4.376 28.822 0.000 
 Private 10.766 3.154 4.473 52.197  
LIQASTAS Public 5.336 3.890 1.018 35.805 0.000 
 Private 9.039 7.126 1.055 51.237  
NETLOADEPSTFUN Public 78.688 13.754 25.987 126.787 0.000 
 Private 72.917 16.755 16.893 113.334  
NETLOATAS Public 65.881 10.779 18.460 86.760 0.000 
 Private 62.668 14.066 12.921 89.681  
DEPSTFUNTAS Public 84.054 5.154 38.180 92.784 0.000 
 Private 86.148 4.462 21.859 93.437  
LIQASDEPSTFUN Public 6.341 4.663 1.291 50.953 0.000 
 Private 10.474 8.235 1.350 60.950  
ROAA Public 0.966 0.565 -5.249 2.890 0.012 
 Private 0.950 0.741 -5.681 5.072  
ROAE Public 10.011 6.114 -52.624 26.988 0.000 
 Private 9.309 7.562 -52.168 35.841  
NETINTMAR Public 3.960 0.762 1.500 7.350 0.000 
 Private 4.057 0.825 1.381 7.999  
TCAPTAS Public 10.354 2.059 5.432 29.297 0.000 
 Private 11.101 3.035 5.526 50.690  
TIER1CAPTAS Public 9.286 2.080 4.311 28.643 0.000 
 Private 10.314 3.063 4.643 50.146  
LOALOSPROLOA Public 0.108 0.155 -0.129 1.442 0.000 
 Private 0.090 0.159 -0.144 1.671  
PROGRO Public 0.720 9.249 -44.202 64.424 0.369 
 Private 0.647 10.513 -49.428 66.672  
OPEXPTAS Public 0.754 0.209 0.313 2.256 0.211 
 Private 0.755 0.267 0.270 6.032  
COSINC Public 64.386 12.073 35.777 158.992 0.000 
 Private 68.609 15.566 31.229 178.738  
OVHTAS Public 0.754 0.209 0.313 2.256 0.211 
 Private 0.755 0.267 0.270 6.032  
MSAS Public 0.112 0.415 0.001 6.978 0.000 
 Private 0.004 0.011 0.000 0.249  
DEPLOA Public 127.984 29.081 71.429 372.021 0.000 
 Private 144.767 46.532 80.322 450.640  
DEPLOAGRO Public -0.108 3.774 -13.184 16.239 0.000 
 Private 0.179 5.210 -17.411 21.725  
INCDIV Public 22.592 11.542 -2.613 81.469 0.000 
 Private 16.400 10.111 -5.800 95.082  
Industry-specific       

HHI3 Public 8.439 2.124 4.610 12.368 0.000 
 Private 3.153 1.579 1.739 94.565  
HHI5 Public 9.415 1.827 6.209 12.972 0.000 
 Private 3.731 1.584 2.292 94.568  
CON3 Public 48.917 6.158 36.667 60.279 0.000 
 Private 29.781 4.725 22.743 98.826  
CON5 Public 62.483 4.487 54.539 70.307 0.000 
 Private 39.698 4.855 32.906 99.603  
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3.4 Methodology  

3.4.1 Cox proportional hazard model (CPH) 

The advantage of hazard analysis compared to simple regressions is its ability to 

explicitly account for time and handle censored observations and time-varying 

covariates (Guo and Brooks 2009). In the Cox hazard model (Cox 1972), the 

dependent variable is constructed by the time spent by a bank in the first group 

(has not issued an IPO or 0) and the IPO status for a bank (1). When firms leave 

this group for any other reason than by issuing an IPO, they are considered 

censored. Simple regression models consider these banks to still be in the first 

group. In hazard models, information from censored and uncensored observations 

is combined in order to estimate consistent parameter estimates and provide 

accurate forecasts.  

The CPH studies the effect of variables upon the time a specified event (IPO 

issuance) takes to happen. More specifically in the CPH model, the baseline 

function is not pre-specified and can take any form. Thus, unrealistic assumptions 

or approximations on the form of the dataset are not necessary. In our context, 

the CPH model is the likelihood of a bank issuing its equity IPO in a given quarter 

(last quarter) conditional on the fact that this bank did not undertake IPO in any 

of the previous quarters. Thus, the probability that a bank will issue an IPO takes 

the form:  

𝑃𝑟(𝑌𝑖,𝑡 = 1|𝑌𝑖,𝑡−1 = 0, 𝑋𝑖,𝑡) = ℎ(𝑡, 𝑋𝑖,𝑡) = ℎ0(𝑡, 0) exp(𝛽′𝑋𝑖,𝑡),                                          (1) 

where 𝑌𝑖,𝑡 is equal to 1 if a bank issues IPO in the public market and 0 otherwise; 

ℎ(𝑡, 𝑋𝑖,𝑡) is the hazard rate at time 𝑡 for a bank controlling by a set 𝑋𝑖,𝑡 of time-

varying indicators including bank-specific, industry-specific and macroeconomic 

variables; 𝛽 is a vector of unknown parameters to be estimated and ℎ0(𝑡, 0) is the 

baseline hazard function without any restriction. The model is estimated by 

maximizing a partial-likelihood function. 
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3.4.2 Discrete hazard model (DH) 

A bank can issue an IPO at any time within a quarter, but this event can only be 

observed when the information is released at the end of the corresponding 

quarter. The DH model is a discrete-time extension of the CPH that can capture 

this characteristic of our dataset and its estimation can be applied by the 

complementary log-log (cloglog) model (Grilli 2005, Jenkins 2005, Rabe-Hesketh 

and Skrondal 2012). It can contain time-varying explanatory variables in a 

discrete-time estimation without any correction (unlike CPH) while it is 

computationally efficient for large datasets (Allison 1982, Rabe-Hesketh and 

Skrondal 2012). Our model takes the form: 

𝑐𝑙𝑜𝑔𝑙𝑜𝑔(ℎ(𝑡)𝐷) = 𝑙𝑛{−𝑙𝑛 (1 − ℎ(𝑡)𝐷)} = 𝛾0 + 𝛾′𝑋𝑖,𝑡,                                                          (2) 

where 𝛾0 is the baseline hazard rate without any assumption; 𝛾 are estimated 

coefficient vectors and 𝑋𝑖,𝑡 is our dataset.  

3.4.3 Logistic model 

Our dependent variable is binary and thus we also consider the logistic model, 

which is commonly used in the literature. The probability that a bank will issue an 

IPO based on the logistic model is:  

𝑃𝑟(𝑌𝑖,𝑡 = 1|𝑋𝑖,𝑡) =
𝑒𝛿0+𝛿′𝑋𝑖,𝑡

1 + 𝑒𝛿0+𝛿′𝑋𝑖,𝑡
,                                                                                                (3) 

where 𝛿0 is the intercept to be estimated; 𝛿 are the estimated coefficient vectors 

in the logistic model and 𝑋𝑖,𝑡 is our dataset.  

3.4.4 LASSO 

LASSO is a method of regression that enables estimation and variable selection 

simultaneously in a non-orthogonal setting (Tibshirani 1996). Based on a shrinkage 

factor, LASSO selects variables by forcing some coefficients to zero and shrinking 

others. The variance of the estimated value is decreased while the accuracy of 

the regression prediction is increased. Given a linear regression with standardized 
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predictors and centred response values, LASSO resolves the 𝑙1 -penalized 

regression problem of estimating Β to minimize: 

 

∑(𝑌𝑖,𝑡 − Β′𝑋𝑖,𝑡)
2

𝑁

𝑖=1

, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|Β𝑞|

𝑝

𝑞=1

≤ 𝑠.                                                                              (4) 

The above can be written in Lagrangian form as: 

Β̂ = arg 𝑚𝑖𝑛Β (∑(𝑌𝑖,𝑡 − Β′𝑋𝑖,𝑡)
2

𝑁

𝑖=1

+ λ ∑|Β𝑞|

𝑝

𝑞=1

).                                                                     (5) 

where 𝑖 = 1, 2, … , 𝑁 represents banks, 𝑞 = 1, 2. . . 𝑝 indicates the surviving number 

of predictors with non-zero estimated coefficients and 𝑡 = 1, 2, … , 𝑇 represents 

different time periods. In equation (5), λ is the tuning parameter. The process of 

controlling different values of λ can be regarded as the procedure for selecting 

the number of independent variables in LASSO. As λ increases, the sum of absolute 

values of estimated coefficients is reduced, and shrinkage of coefficients is 

achieved. If λ exceeds a threshold value in the corresponding model, some 

estimated coefficients are ultimately set to zero. This procedure, the L1 norm 

penalty, generates a more interpretable and sparser model. Several approaches, 

such as cross-validation and information criteria, have been proposed in selecting 

the shrinkage factor λ. Zou et al. (2007) provided an algorithm to obtain the 

optimal LASSO fit with the Akaike information criterion (AIC) (Akaike 1974) and 

the Bayesian information criterion (BIC) (Schwarz 1978).3 Sun and Zhang (2012) 

noted that the computational cost of applying cross-validation in penalized models 

is considerable, while the theory of applying cross-validation is poorly understood. 

Therefore, the AIC and the BIC are used in selecting the tuning parameter λ in the 

LASSO and CPH, the DH and the logistic model combinations presented below. 

As discussed above, LASSO provides more stable and restricted models (Tibshirani 

1996, Fan and Li 2001). In addition, it is a computationally simple and efficient 

                                         
3 It is well-known that AIC and BIC have different properties in model selection (for details see Yang, 

2005; Shao, 1997 and Zhang et al, 2010).   
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method (Efron et al. 2004). Hence, these elements can lead to superior 

predictability for its outputs (Tibshirani 1996, Zou 2006).  

3.4.5 L1 Penalized Semi-Parametric Cox Proportional Hazard 
Model (Penalized CPH model) 

Tibshirani (1997) added the LASSO constraint form into the estimation of the CPH 

regression parameter and derived the L1 Penalized Semi-Parametric Cox 

Proportional Hazard Model. The LASSO estimator of the estimated coefficient 𝛽 in 

the semi-parametric Cox proportional hazard model is: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙(𝛽) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|𝛽𝑞|

𝑝

𝑞=1

≤ 𝑠,                                                                               (6) 

where the likelihood function 𝑙(𝛽)  is 𝑙(𝛽) = ∑ {𝛽′𝑋𝑖,𝑡 −𝑌𝑖 𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

log (∑ exp(𝛽′𝑋𝑗,𝑡)𝑌𝑗≥𝑌𝑖  )} in the semi-parametric Cox proportional hazard model 

and 𝑋𝑗,𝑡 contains the pool of the potential predictors in equation (1).      

The above can be written in Lagrangian form as: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛 {−𝑙(𝛽) + λ ∑|𝛽𝑞|

𝑝

𝑞=1

}.                                                                                             (7) 

In equation (7), as λ increases, the sum of absolute values of estimated 

coefficients is decreased, and shrinkage of coefficients is achieved. If λ exceeds 

a threshold value in the corresponding models, some estimates are ultimately 

shrunk to zero. This “L1 norm penalty” generates a more interpretable and sparser 

Cox model. All explanatory variables are standardized before applying the LASSO 

estimator. 

3.4.6 L1 Penalized Discrete Hazard Model (Penalized DH model) 

In the L1 Penalized Discrete Hazard Model, the LASSO parameter of the coefficient 

𝛾 is estimated by maximizing the log-likelihood function with a L1-norm penalty 
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placed on the sum of the absolute value of the covariate parameters. The model 

can be expressed as:  

𝛾 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙(𝛾) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|𝛾𝑞|

𝑝

𝑞=1

≤ 𝑠,                                                                                (8) 

where the log-likelihood function 𝑙(𝛾)  is equal to ∑ 𝑤𝑖,𝑡 ln{𝐹(𝛾0 + 𝛾′𝑋𝑖,𝑡)}𝑖∈𝑄 +

∑ 𝑤𝑖,𝑡 ln{1 − 𝐹(𝛾0 + 𝛾′𝑋𝑖,𝑡)}𝑖∉𝑄  where 𝑄 is the set of all observations that 𝑌𝑖,𝑡 = 1 

and 𝐹(𝛾0 + 𝛾′𝑋𝑖,𝑡) = 1 − exp{− 𝑒𝑥𝑝(𝛾0 + 𝛾′𝑋𝑖,𝑡)}  and 𝑤𝑖,𝑡  represents the optional 

weights in the discrete hazard model and 𝑋𝑖,𝑡 is the same used in equation (2).   

Or alternatively as:  

𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛 {−𝑙(𝛾) + λ ∑|𝛾𝑞|

𝑝

𝑞=1

}.                                                                                               (9) 

In line with this, all predictors are standardized before applying the LASSO 

estimator in this model. 

3.4.7 L1 Penalized Logistic Model (Penalized Logistic Model) 

The logistic model can be combined with LASSO as: 

𝛿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙(𝛿) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|𝛿𝑞|

𝑝

𝑞=1

≤ 𝑠,                                                                               (10) 

where 𝑙(𝛿)  is ∑ (𝑌𝑖,𝑡 (log (
𝑒

𝛿0+𝛿′𝑋𝑖,𝑡

1+𝑒
𝛿0+𝛿′𝑋𝑖,𝑡

)) + (1 − 𝑌𝑖,𝑡) (log (
1

1+𝑒
𝛿0+𝛿′𝑋𝑖,𝑡

)))  in the 

corresponding logistic model and 𝑋𝑖,𝑡 is the same in equation (3). All independent 

variables are standardized before implementing the LASSO estimator in the 

logistic model. 

The Lagrangian form is determined as: 



Chapter 3  3.5 Predictive ability 

87 

𝛿 = 𝑎𝑟𝑔𝑚𝑖𝑛{−𝑙(𝛿) + λ ∑|𝛿𝑞|

𝑝

𝑞=1

.                                                                                                (11) 

3.5 Predictive ability 

We begin our analysis by presenting a forecasting simulation exercise to determine 

which model has the superior predictive ability. To measure the predictive 

performance of all competing models, we calculate the area under receiver 

operating characteristic curve (AUC), the accuracy ratio, and the brier score (see 

Duffie et al. 2007, Tian et al. 2015).4 

3.5.1 CPH and penalized CPH 

Table 3-3 reports the AUC, the accuracy ratios and the brier scores for CPH and 

the penalized CPH. We benchmark their performance with a DH model, a logistic 

model and their two penalized variants. For the out-of-sample predictions of IPO 

decisions for banks, we use the past and current information and roll forward one 

step ahead of the prediction of the IPO decision. The initial estimation window is 

from 1996 to 2009.  

Table 3-3 Accuracy ratios and the number of surviving variables in the CPH model and its 
penalized versions 

Notes: CPH model represents the Cox proportional hazard model and DH model refers to the discrete 
hazard model. “AUC” refers to the area under receiver operating characteristic curve. “AR” stands for 
accuracy ratio. “BS” represents the brier score. “AIC” is the AIC-type tuning parameter selector. “BIC” 
is the BIC-type tuning parameter selector. 

                                         
4 For a detailed description of the tests see section B in the Appendix.  

Model   CPH 

model 

Penalized CPH 

model 

DH 

model 

Penalized DH 

model 

Logistic 

model 

Penalized Logistic 

model 

   AIC BIC  AIC BIC  AIC BIC 

AUC In-sample  0.238 0.779 0.779 0.746 0.745 0.745 0.749 0.748 0.689 

 Out-of-

sample 

0.210 0.793 0.797 0.450 0.533 0.533 0.466 0.455 0.577 

AR In-sample -0.524 0.557 0.557 0.492 0.489 0.489 0.497 0.497 0.379 

 Out-of-

sample  

-0.581 0.586 0.594 -0.101 0.067 0.067 -0.068 -0.090 0.153 

BS In-sample 0.756 0.112 0.112 0.101 0.105 0.105 0.101 0.102 0.111 

 Out-of-

sample  

0.707 0.109 0.109 0.205 0.195 0.195 0.203 0.202 0.182 

Surviving 
variables 

 42 23 21 42 35 5 42 39 8 
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In the in-sample, we note that the CPH presents an AUC of 24% and the penalized 

CPH lies at 78%, which is three times larger. Applying penalty function from LASSO 

seems to significantly improve the accuracy of the CPH model. The same trends 

can be observed from the accuracy ratios. For the brier scores, the value of about 

0.76 reduces to about 0.11 in penalized CPH models, which confirms that the 

penalized CPH model can outperform the CPH. In the out-of-sample, we note a 

similar improvement in terms of accuracy for the penalized CPH model compared 

to its simple CPH counterpart, since the predictive ratio grows from 20% in the 

CPH to approximately 80% in the penalized CPH model. The penalized CPH models 

are tuned, based on the AIC and BIC criteria. We note that the BIC models present 

slightly better accuracy in the out-of-sample. The BIC models also select a lower 

number of predictors compared to the AIC.  

Concerning our benchmarks, we note that the DH model and the logistic model 

can provide more accurate in-sample and out-of-sample predictions than the 

simple CPH model. Adding the LASSO estimator in the DH model can improve the 

proportion of correct out-of-sample predictions from 45 percent to 53 percent. 

This increase in predictive performance by adding the LASSO estimator can also 

be noted in the logistic model, which confirms that predictive ability can be 

improved by adding LASSO. In general, we note that in the out-of-sample the 

penalized CPH model has the more accurate forecasts for the measures retained.  

3.5.2 Predictive Deciles 

To confirm the above-mentioned results, IPO decisions by out-of-sample 

prediction decile is reported in Table 3-4. The decile method is frequently 

implemented in the default prediction (Shumway 2001, Chava and Jarrow 2004, 

Bharath and Shumway 2008, Tian et al. 2015, Traczynski 2017). The small changes 

in the predicted probabilities of IPO decisions do not have considerable influence 

on the decile in which a firm quarter lies in the distribution. The lowest probability 

of IPO decisions for banks would be included in the tenth decile and the highest 

would be in the first. Thus, the high proportion of banks appearing in the high 

probability for IPO decisions decile suggests high out-of-sample accuracy. 
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Table 3-4 IPO decision by out-of-sample prediction decile 

Decile 
CPH 
model 

Penalized CPH 
model 

DH 
model 

Penalized DH 
model 

Logistic 
model 

Penalized Logistic 
model 

  AIC BIC  AIC BIC  AIC BIC 

1 0 64.22% 64.22% 11.01% 15.60% 15.60% 11.01% 13.76% 17.43% 

2 0 4.59% 4.59% 5.50% 11.01% 11.01% 5.50% 4.59% 9.17% 

3 0 4.59% 4.59% 10.09% 10.09% 10.09% 11.01% 11.93% 14.68% 

4 0 5.50% 6.42% 8.26% 8.26% 8.26% 8.26% 7.34% 8.26% 

5 0 2.75% 1.83% 8.26% 6.42% 6.42% 11.01% 7.34% 7.34% 

6-10 100% 18.35% 18.34% 56.88% 48.62% 48.62% 53.21% 55.03% 43.13% 

AUC 0.210 0.793 0.797 0.450 0.533 0.533 0.466 0.455 0.577 

Notes: CPH model represents the Cox proportional hazard model. DH model refers to the discrete hazard 
model. “AUC” refers to the area under receiver operating characteristic curve. “AR” stands for accuracy 
ratio. “BS” represents the brier score. “AIC” is the AIC-type tuning parameter selector. “BIC” is the 
BIC-type tuning parameter selector. 

From Table 3-4, we note that there is no observation in the first five percentiles 

in the CPH model, which suggests the lowest percentage of correct out-of-sample 

prediction among all candidate models (which is consistent with the AUC values 

in the previous sections). The highest percentage of correct out-of-sample 

prediction is about 80%, which can be observed from the first five deciles in the 

penalized CPH model. This confirms the main conclusion from the above-

mentioned evaluation methods (AUC, accuracy ratio and brier score) and 

demonstrates that the penalized CPH model outperforms all models studied in 

out-of-sample predictability. 

3.6 An empirical application using US data 

Our findings thus far show that the penalized CPH model has substantial predictive 

ability compared to other models. We now present empirical evidence using data 

for US banks. Our extensive sample period covers the global financial crisis (2007-

2009) which coincided with the collapse of the sub-prime mortgage lending market 

(Bekaert et al. 2014, Acharya and Mora 2015, Dungey and Gajurel 2015, 

Ramcharan et al. 2016). We therefore have a unique opportunity to examine the 

sensitivity of our findings to different economic conditions. Motivated by this 

consideration, we split our sample into three parts: the pre-crisis period (1996-

2006), the crisis period (2007-2009) and the post-crisis period (2010-2016). In the 

sub-sections below, we discuss our findings for each sub-sample separately. Table 
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3-5 to Table 3-7 report the estimates of predictors, employing the CPH model and 

its corresponding penalized versions5 for each sub-period.6 A positive coefficient 

indicates that an increase in that explanatory variable will improve the likelihood 

of the IPO issue for a bank in any given quarter for a bank.  

3.6.1 The pre-crisis period 

To begin with the analysis of the CPH model, as shown in column 1 of Table 3-5, 

we observe that most bank-specific determinants behave according to our 

expectations. Specifically, an increase in the bank’s size (LNDETAS) reduces the 

likelihood of the IPO issue in any given quarter and the estimate of LNDETAS2 

illustrates a non-linear effect. These findings can be interpreted as follows. As 

banks grow in size they are less likely to issue IPOs, but once they attain a certain 

size threshold, the probability of issuing an IPO is positively associated with the 

bank’s size.7 This finding is not only statistically significant, but also economically 

important. A unit increase in LNDETAS is associated with a reduction of 76% in the 

likelihood of IPO issuance. As for banks’ profitability (NETINTMAR), we find that it 

is negatively related to the probability of issuance. TIER1CAPTAS measures a 

bank’s leverage and its estimated coefficient is positive and highly significant. A 

unit increase in this indicator (TIER1CAPTAS) improves the chances of an IPO 

issuance by 25%. This finding illustrates that banks with higher leverage are more 

likely to go public. The above findings on leverage and profitability suggest that 

banks with lower profitability and higher leverage are likely to make an IPO issue 

to diversify the credit risk (Gill de Albornoz and Pope 2004, Kim and Weisbach 

2008). Finally, a decrease in capital (TCAPTAS) is likely to increase the probability 

of a bank going public. This is linked with the preliminary and intuitive 

consideration of going public, which is to tap into different sources of capital 

(Lowry et al, 2017).  

                                         
5 As an additional test, we replaced all macroeconomic determinants with time-fixed effects. Our 

results remain unaffected in all models.  

6 We opt for estimated coefficients instead of hazard ratios, since the direction of effects is more 
important than their magnitude. 

7 There is a line of thinking that argues the idea of “too big to fail” (TBTF) in the banking industry. 
Boyd and Heitz (2016) note that larger banks suffer more costs than benefits from TBTF in 
comparison with small and medium-sized banks. Therefore, larger banks may not go public 
because of the burden of the TBTF cost.  
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Table 3-5 The estimates of candidate models in the pre-crisis period 

Variable CPH model 
Penalized CPH 
model_AIC 

Penalized CPH 
model_BIC 

 (1) (2) (3) 

LNDETAS -1.4340*** -2.607E-07***  
 (0.0000) (0.0000)  
LNDETAS2 0.7176***   
 (0.0000)   
GROAS 0.0098 0.0111***  
 (0.2758) (0.0000)  
LOAAS -0.0434 -1.129E-06***  
 (0.4133) (0.0000)  
LIQASTAS -0.0220   
 (0.7749)   
NETLOADEPSTFUN 0.0373 -0.0039 -0.0035*** 
 (0.3979) (1.0000) (0.0000) 
NETLOATAS NA   
    
DEPSTFUNTAS 0.0356 -0.0135 -0.0135*** 
 (0.4663) (1.0000) (0.0000) 
LIQASDEPSTFUN 0.0292   
 (0.6115)   
ROAA 0.3717   
 (0.3247)   
ROAE 0.0055   
 (0.8340)   
NETINTMAR -0.3862*** -0.1439 -0.1567 
 (0.0141) (1.0000) (1.0000) 
TCAPTAS -0.2128**  -0.0330*** 
 (0.0499)  (0.0000) 
EQAS 0.0665   
 (0.2318)   
TIER1CAPTAS 0.2208** 0.0480 0.0840*** 
 (0.0490) (1.0000) (0.0000) 
LOALOSPROLOA 0.4510 -0.2152***  
 (0.5053) (0.0000)  
PROGRO -0.0056 -0.0028***  
 (0.3047) (0.0000)  
OPEXPTAS 1.2440 0.4969*** 0.4868*** 
 (0.1140) (0.0000) (0.0000) 
COSINC 0.0037   
 (0.7937)   
OVHTAS NA 0.0300 0.0386 
  (1.0000) (1.0000) 
MSAS -1.4630** -0.9438*** -0.9142*** 
 (0.0338) (0.0000) (0.0000) 
DEPLOA 0.0009   
 (0.7583)   
DEPLOAGRO 0.0041   
 (0.7011)   
INCDIV -0.0133   
 (0.2292)   
HHI3 3.8430 -0.0246***  
 (0.5143) (0.0000)  
HHI5 -4.0980   
 (0.4938)   
CON3 -0.4539   
 (0.4614)   
CON5 0.5354   
 (0.4179)   
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RSP500 0.0034 0.0085*** 0.0074*** 
 (0.7727) (0.0000) (0.0000) 
CPI 0.1336 0.2122*** 0.1632*** 
 (0.5310) (0.0000) (0.0000) 
GRGDP 0.1943 0.0456*** 0.0580 
 (0.2679) (0.0000) (1.0000) 
LNGDPCAP -0.4085 -1.8429*** -2.2406*** 
 (0.8069) (0.0000) (0.0000) 
GRGNP -0.5861 -0.2704*** -0.3669 
 (0.3543) (0.0000) (1.0000) 
INTR_10Y 1.1540   
 (0.4249)   
INTR_10Y2 -11.6200   
 (0.3525)   
INTR_3M -0.0796   
 (0.8650)   
INTR_3M2 4.4950   
 (0.3156)   
SLYC NA -0.1343***  
  (0.0000)  
SLYC2 3.0640 3.4246***  
 (0.6633) (0.0000)  
GRM1 0.0239  -0.0169*** 
 (0.7645)  (0.0000) 
GRM2 -0.1683 -0.1844*** -0.1637 
 (0.3716) (0.0000) (1.0000) 
HPI 0.1482 0.0656 0.0926 
 (0.1351) (1.0000) (1.0000) 

Notes: CPH model represents the Cox proportional hazard model. “AIC” is the AIC-type tuning parameter 
selector. “BIC” is the BIC-type tuning parameter selector. P-values related to z-statistics reported in 
the parentheses are Huber–White robust estimates, clustered at the firm level. *** denotes significance 
at the 1% level. ** denotes significance at the 5% level. * denotes significance at the 10% level. 

At the next stage, we add the penalized function into the CPH model. It should be 

noted that all surviving predictors after the penalty estimation are efficient 

variables that have predictive ability regarding the banks’ decision to issue an IPO. 

Thus, p-values are calculated under post-selection after fitting the LASSO with a 

fixed value of tuning parameter, since the estimated coefficients are shrunk in 

LASSO estimation to select the “best” model. Compared to the CPH model, there 

exist 22 surviving explanatory variables in the L1 penalized CPH model with AIC-

type and 16 in the BIC-type tuning parameter selector. All surviving determinants 

in the L1 penalized model contain bank-specific, industry-specific and 

macroeconomic factors.  

In the L1 penalized CPH model with AIC-type tuning parameter selector, as shown 

in column 2, LNDETAS, GROAS and MASA are selected, and they are statistically 

significant. The sign of LNDETAS and MASA is negative, which is consistent with 

the findings in the baseline model (CPH). The estimate of GROAS shows that an 

increase in asset growth rate can lead to an increased likelihood of banks going 
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public. This is in line with previous work which notes that banks with more 

investment opportunities are more likely to raise external finance (Pagano et al. 

1998). PROGRO measures the productivity growth rate and its estimate 

demonstrates that a bank with a higher productivity growth rate is less likely to 

go public. This suggests that banks can operate efficiently using internal funds and 

therefore may be less inclined to source external finance. As for operating 

expenses, OPEXPTAS is positive and statistically significant, which implies that a 

bank with lower management efficiency is more likely to go public.  

With respect to industry and macroeconomic indicators, HHI3 is the only industry-

specific variable that is kept in the model and that is statistically significant under 

post-selection. The negative estimate of this predictor illustrates the high degree 

of concentration in the banking industry that may prevent private banks going 

public. This confirms the findings of Grullon et al. (2015) that in industries with a 

relatively high concentration level in the US, firms can acquire more profits from 

mergers and acquisitions than from IPOs. Almost all macro-economic predictors 

are selected after the penalty. Overall, it appears that banks time their decision 

to go public and the probability of issuing is positively correlated with booming 

economic conditions.  

In the L1 penalized CPH model with BIC-type tuning parameter selector, as 

reported in column 3, the selected predictors are slightly different from those in 

the model with the AIC-selector. In particular, no industry-related variables are 

included, while bank-specific variables such as liquidity, profitability, capital, 

leverage, operating expenses management and market share of a bank are found 

to be important determinants of the bank’s IPO. Finally, several macroeconomic 

variables such as RSP500, CPI, LNGDPCAP and GRM1 are chosen in the model and 

are statistically significant under post-selection in line with the model that uses 

the AIC-type selector.  

3.6.2 The crisis period  

Starting with the analysis of the CPH model, as reported in column 1 of Table 3-6, 

most bank-specific variables are statistically significant. Importantly, the absolute 

value of these variables is higher compared to the pre-crisis period. This is a key 

finding which suggests that bank-specific variables are quantitatively more 
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important predictors of IPOs during extreme economic conditions.8 For example, 

the estimate of GROAS is only 0.0098 and not statistically significant in the pre-

crisis period, while it increases to 0.1764 and becomes statistically significant at 

the 1% level in the crisis period.  

Table 3-6 The estimates of candidate models in the crisis period 

Variable CPH model 
Penalized CPH 
model_AIC 

Penalized CPH 
model_BIC 

 (1) (2) (3) 

LNDETAS -1.737E+03*** -0.0062* -0.0072* 
 (0.0000) (0.0940) (0.0560) 
LNDETAS2 NA   
    
GROAS 0.1764*** -0.0244  
 (0.0000) (0.9060)  
LOAAS -1.1290*** -0.0191*  
 (0.0000) (0.0980)  
LIQASTAS -31.0100*** -0.1885* -0.1905** 
 (0.0000) (0.0940) (0.0390) 
NETLOADEPSTFUN 1.1890*** -0.0016  
 (0.0000) (0.9030)  
NETLOATAS NA -0.0008  
  (0.8690)  
DEPSTFUNTAS 1.6790*** -0.0715 -0.1137* 
 (0.0000) (0.9020) (0.0530) 
LIQASDEPSTFUN 25.1600***   
 (0.0000)   
ROAA -21.1700***   
 (0.0000)   
ROAE 1.9640***   
 (0.0000)   
NETINTMAR 3.6150***   
 (0.0000)   
TCAPTAS 0.2698** 0.1632*  
 (0.0228) (0.0990)  
EQAS 1.9360***   
 (0.0000)   
TIER1CAPTAS 0.1859   
 (0.1663)   
LOALOSPROLOA -5.6620***   
 (0.0000)   
PROGRO -0.1182*** 0.0143  
 (0.0000) (0.6290)  
OPEXPTAS 19.7500***   
 (0.0000)   
COSINC 0.0707   
 (0.2069)   
OVHTAS NA   
    
MSAS 11.5500***   
 (0.0000)   
DEPLOA NA   
    

                                         
8 We report formal tests for the equality of coefficients across the sample periods in Table A.3 in the 

Appendix. 
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DEPLOAGRO -0.1145***   
 (0.0000)   
INCDIV -0.1053** 0.0426* 0.0556* 
 (0.0188) (0.0970) (0.0590) 
HHI3 1.306E+05***   
 (0.0000)   
HHI5 NA   
    
CON3 NA   
    
CON5 NA  -0.0171 
   (0.9390) 
RSP500 5.011E+04***   
 (0.0000)   
CPI -1.589E+04*** -0.4462  
 (0.0000) (0.1530)  
GRGDP -2.026E+05*** 0.4019*  
 (0.0000) (0.0920)  
LNGDPCAP NA   
    
GRGNP NA  3.1577 
   (0.1270) 
INTR_10Y NA   
    
INTR_10Y2 -2.9830   
 (0.6816)   
INTR_3M NA   
    
INTR_3M2 NA   
    
SLYC NA   
    
SLYC2 NA -19.6895 -31.4148 
  (0.1870) (0.7370) 
GRM1 -2.388E+04***   
 (0.0000)   
GRM2 -1.916E+04***   
 (0.0000)   
HPI NA   
    

Notes: CPH model represents the Cox proportional hazard model. “AIC” is the AIC-type tuning parameter 
selector. “BIC” is the BIC-type tuning parameter selector. P-values related to z-statistics reported in 
the parentheses are Huber–White robust estimates, clustered at the firm level. *** denotes significance 
at the 1% level. ** denotes significance at the 5% level. * denotes significance at the 10% level. 

Next, we find that in the L1 penalized CPH model with the AIC-type selector, 

LNDETAS, LOAAS, LIQASTAS, TCAPTAS, INCDIV and GRGDP are all statistically 

significant under post-selection from 13 surviving predictors in column 2. For the 

BIC-type selector counterpart, only four bank-specific variables are statistically 

significant among all seven selected variables, namely LNDETAS, LIQASTAS, 

DEPSTFUNTAS and INCDIV. The smaller set of industry-specific and macroeconomic 

variables can be kept after the LASSO estimator in the crisis period than those in 

the pre-crisis period (compared in Table 3-5 and Table 3-6), which indicates that 
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bank-specific conditions are more important than the economic environment for 

banks’ IPO decisions in the crisis period.  

3.6.3 The post-crisis period  

We now focus on the aftermath of the crisis. To begin with the analysis of the CPH 

model, as reported in column 1 of Table 3-7, most bank-specific variables enter 

with expected sign and retain their significance. However, the coefficients are 

significantly smaller compared to their counterparts in the crisis period. Regarding 

the industry-specific and macroeconomic variables, they are both statistically 

significant and the absolute value of the above-mentioned variables in the post-

crisis period is lower than in the crisis period. This indicates that while bank 

information and market conditions are important in affecting the probability of 

an IPO, they are less important than during the crisis period.  

Table 3-7 The estimates of candidate models in the post-crisis period 

Variable CPH model 
Penalized CPH 
model_AIC 

Penalized CPH 
model_BIC 

 (1) (2) (3) 

LNDETAS 6.3560***  -0.0007 
 (0.0002)  (0.3240) 
LNDETAS2 -3.1730***   
 (0.0002)   
GROAS 0.0002   
 (0.9897)   
LOAAS -0.3259*** -0.0143***  
 (0.0065) (0.0000)  
LIQASTAS -2.3900***   
 (0.0000)   
NETLOADEPSTFUN 0.2474*** -1.062E-07  
 (0.0078) (1.0000)  
NETLOATAS NA   
    
DEPSTFUNTAS 0.4191*** -0.0279 -0.0369* 
 (0.0002) (1.0000) (0.0640) 
LIQASDEPSTFUN 2.1610*** 0.0229  
 (0.0000) (1.0000)  
ROAA 1.5470***   
 (0.0002)   
ROAE -0.2509***   
 (0.0000)   
NETINTMAR 0.8035**   
 (0.0367)   
TCAPTAS 0.9610*** 0.0325***  
 (0.0000) (0.0000)  
EQAS -0.3103*** -0.0078  
 (0.0026) (1.0000)  
TIER1CAPTAS -0.6686***   
 (0.0003)   
LOALOSPROLOA -2.8330***   
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 (0.0005)   
PROGRO -0.0314*** -0.0120***  
 (0.0000) (0.0000)  
OPEXPTAS -2.1830   
 (0.2147)   
COSINC 0.0125   
 (0.4718)   
OVHTAS NA   
    
MSAS -6.2670*** -0.4111  
 (0.0000) (1.0000)  
DEPLOA -0.0193* -0.0095*** -0.0023 
 (0.0755) (0.0000) (0.5630) 
DEPLOAGRO -0.0525**   
 (0.0147)   
INCDIV 0.0497***   
 (0.0094)   
HHI3 19.9700   
 (0.4986)   
HHI5 74.1200***   
 (0.0001)   
CON3 -10.7400**  -0.0442 
 (0.0484)  (0.5500) 
CON5 -17.7200*** -0.1094*** -0.0600 
 (0.0000) (0.0000) (0.4740) 
RSP500 0.3170***   
 (0.0008)   
CPI 0.3504 -0.1486***  
 (0.2414) (0.0010)  
GRGDP -4.7710***   
 (0.0008)   
LNGDPCAP -78.1600** -0.7421*** -0.8477 
 (0.0235) (0.0000) (0.7980) 
GRGNP 19.6100***   
 (0.0008)   
INTR_10Y 0.0011  0.0950** 
 (0.9998)  (0.0450) 
INTR_10Y2 -514.5000   
 (0.1355)   
INTR_3M -26.4500*** -0.3214  
 (0.0092) (0.0000)  
INTR_3M2 3.091E+03*** 49.3428***  
 (0.0002) (0.0000)  
SLYC NA   
    
SLYC2 465.0000 3.1383  
 (0.1384) (1.0000)  
GRM1 -1.4570*** -0.0738***  
 (0.0002) (0.0000)  
GRM2 2.3200*** -0.0242 -0.1523* 
 (0.0016) (1.0000) (0.0910) 
HPI -1.1830** 0.0120  
 (0.0359) (0.9960)  

Notes: CPH model represents the Cox proportional hazard model. “AIC” is the AIC-type tuning parameter 
selector. “BIC” is the BIC-type tuning parameter selector. P-values related to z-statistics reported in 
the parentheses are Huber–White robust estimates, clustered at the firm level. *** denotes significance 
at the 1% level. ** denotes significance at the 5% level. * denotes significance at the 10% level. 
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Moving to the analysis of penalized models, in the L1 penalized CPH model with 

the AIC-type selector, as shown in column 2, nine indicators of 18 surviving 

variables are statistically significant under post-selection. On the other hand, only 

three variables are statistically significant under post-selection from 8 selected 

variables in the penalized model with BIC-type selector. It should be noted that 

the number of selected industry-specific and macroeconomic predictors increases 

after financial crisis compared Table 3-6 and Table 3-7. Comparing the magnitudes 

of the selected variables, we find, once again, that they are higher in the crisis 

period than in the post-crisis period. 

3.7 Conclusion  

The decision of a bank to go public by issuing an IPO is an important operational 

threshold event, which can lead to various investment and development plans for 

market participants. This chapter uses quarterly data for US banks as original input 

in benchmark models and all competing models. Our study, as far as we know, is 

the first to apply an innovative methodology to analyse the timing of a bank’s 

decision to issue for the first time in the public market. 

 We find that several bank-specific financial factors, market-driven and 

macroeconomic variables are important in predicting the decision of banks to go 

public. In terms of the models’ predictive ability, when we apply the LASSO 

estimator in a Cox proportional hazard model, we note a significant improvement 

in predicting a bank’s IPO. The L1 penalized semi-parametric Cox proportional 

hazard model provides the most accurate out-of-sample prediction among all 

candidate models. On the other hand, we show that the Cox proportional hazard 

model underperforms discrete hazard and logistic models, which highlights the 

effect of LASSO on our algorithms. Our L1 penalized models are tuned through the 

AIC and the BIC criteria. We observe increased predictability on our dataset when 

the latter criterion is applied.  Finally, when we split our sample into crisis and 

non-crisis periods, we find that bank-specific and macro variables become more 

potent in determining banks’ IPOs, which signifies the ability of banks to time 

their IPOs relative to the economic conditions. 
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Appendix  

Section A 

Table A.1 Variables definition and expected relationship 

Variable Definition Label  
Expected 
sign 

Bank-specific (24)    
Size The logarithm of total real assets  LNDETAS + 
 The logarithm of the square of real 

total assets  
LNDETAS2 ~ 

 The rate of growth of real assets  GROAS + 
Liquidity Loans / assets  LOAAS + 
 Liquid asset / total assets  LIQASTAS - 

 Net loans / deposits and short-term 
funding  

NETLOADEPSTFUN + 

 Net loans / total assets NETLOATAS + 

 Deposits and short-term funding / total 
assets  

DEPSTFUNTAS - 

 Liquid assets / deposits & short-term 
funding 

LIQASDEPSTFUN - 

Profitability  The average return on equity  ROAA - 
 The average return on assets ROAE - 

 Net interest margin NETINTMAR - 
Capital Capital to assets ratio  TCAPTAS ~ 
 Equity / assets  EQAS ~ 
Leverage  Tier 1 ratio TIER1CAPTAS + 
Credit risk Loan loss provisions / loans LOALOSPROLOA + 
Productivity growth Rate of change in inflation-adjusted 

gross total revenue / the number of 
employees  

PROGRO - 

Operating expenses 
management 

Operating expenses / total assets  OPEXPTAS + 

 Operating costs / Operating income 
ratio  

COSINC + 

 Overheads to total assets  OVHTAS + 
Market share  Market share (in terms of assets) of 

individual banks  
MSAS ~ 

Deposit Total deposits / total loans DEPLOA ~ 
 The growth rate of deposits DEPLOAGRO ~ 
Income 
diversification 

Non-interest income to total operating 
revenue 

INCDIV - 

Industry-specific (4)    
Concentration The three-firm Herfindahl-Hirschman 

index  
HHI3 - 

 The five-firm Herfindahl-Hirschman 
index  

HHI5 - 

 The assets of the three largest banks / 
the assets of all banks in the same 
dataset 

CON3 - 
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 The assets of the five largest banks / 
the assets of all banks in the same 
dataset 

CON5 - 

Macroeconomic (14)    
Stock market 
performance 

The return of S&P500 RSP500 + 

Inflation rate Current period inflation CPI ~ 
GDP growth rate The real gross domestic product (GDP) 

growth rate 
GRGDP ~ 

GDP per capita The logarithm of GDP per capita LNGDPCAP ~ 
GNP growth rate The GNP growth rate GRGNP ~ 
Interest rate 10-year government bond yield  INTR_10Y ~ 
 The square of 10-year government 

bond yield 
INTR_10Y2 ~ 

 3-month interbank rate  INTR_3M ~ 

 The square of 3-month interbank rate INTR_3M2 ~ 
Slope of the yield 
curve 

The difference between the 10-year 
government bond yield and the three-
month interbank rate 

SLYC ~ 

 The square of the abovementioned 
yield curve 

SLYC2 ~ 

Market growth The growth rate in money supply (M1) GRM1 ~ 
 The growth rate in money supply (M2) GRM2 ~ 
House price growth 
rate 

All-Transactions House Price Index for 
the United States 

HPI + 

Notes: “+” indicates that the probability of a bank going public would improve if the covariates rose. 
“-” indicates that the probability of a bank going public would reduce if the covariates rose. “~” 
indicates uncertainty in the sign. 
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Table A.2 Cross-Correlations 

 

Note: All bank-specific variables are as defined in Table A.1. The number in each cell indicates the 
correlation between the row and column variables. 
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LNDETAS 1.00

LNDETAS2 1.00 1.00

GROAS -0.06 -0.06 1.00

LOAAS -0.16 -0.16 0.03 1.00

LIQASTAS 0.07 0.07 0.16 -0.19 1.00

NETLOADEPSTFUN -0.04 -0.04 0.01 0.92 -0.20 1.00

NETLOATAS -0.16 -0.16 0.03 1.00 -0.19 0.92 1.00

DEPSTFUNTAS -0.34 -0.34 0.05 -0.01 0.06 -0.39 -0.01 1.00

LIQASDEPSTFUN 0.09 0.09 0.15 -0.20 0.99 -0.16 -0.20 -0.06 1.00

ROAA 0.04 0.04 -0.11 -0.13 -0.09 -0.14 -0.13 0.07 -0.10 1.00

ROAE 0.04 0.04 -0.04 -0.06 -0.07 -0.11 -0.06 0.16 -0.08 0.87 1.00

NETINTMAR -0.35 -0.35 0.00 0.03 -0.11 -0.05 0.03 0.23 -0.13 0.42 0.31 1.00

TCAPTAS -0.11 -0.11 -0.05 -0.05 0.05 0.07 -0.05 -0.35 0.08 0.00 -0.26 0.06 1.00

EQAS 0.07 0.07 -0.05 -0.17 0.02 -0.02 -0.17 -0.40 0.06 0.01 -0.31 0.09 0.83 1.00

TIER1CAPTAS -0.22 -0.22 -0.04 -0.09 0.04 0.02 -0.09 -0.30 0.07 0.00 -0.26 0.09 0.97 0.83 1.00

LOALOSPROLOA 0.13 0.13 -0.02 0.07 0.00 0.10 0.07 -0.12 0.01 -0.52 -0.52 -0.10 0.04 0.01 0.00 1.00

PROGRO 0.00 0.00 0.07 0.02 0.02 0.02 0.02 -0.01 0.02 0.03 0.04 0.01 0.00 0.02 0.00 0.07 1.00

OPEXPTAS -0.02 -0.02 -0.02 -0.02 0.15 -0.01 -0.02 -0.01 0.17 -0.12 -0.09 0.35 -0.01 -0.03 -0.03 0.05 0.02 1.00

COSINC -0.11 -0.11 0.12 0.02 0.16 0.02 0.02 -0.01 0.17 -0.74 -0.63 -0.19 0.03 0.01 0.03 0.12 -0.04 0.56 1.00

OVHTAS -0.02 -0.02 -0.02 -0.02 0.15 -0.01 -0.02 -0.01 0.17 -0.12 -0.09 0.35 -0.01 -0.03 -0.03 0.05 0.02 1.00 0.56 1.00

MSAS 0.73 0.73 -0.04 -0.13 0.06 -0.04 -0.13 -0.23 0.07 0.10 0.09 -0.20 -0.09 0.04 -0.19 0.05 0.03 0.05 -0.10 0.05 1.00

DEPLOA 0.00 0.00 0.01 -0.88 0.20 -0.92 -0.88 0.31 0.18 0.09 0.06 0.03 -0.04 0.04 0.01 -0.07 -0.01 0.00 0.02 0.00 -0.02 1.00

DEPLOAGRO 0.03 0.03 0.31 -0.02 0.20 -0.02 -0.02 0.01 0.20 -0.04 -0.04 -0.05 -0.04 -0.06 -0.04 0.11 -0.02 -0.04 -0.02 -0.04 -0.01 0.05 1.00

INCDIV 0.51 0.51 -0.06 -0.13 0.26 -0.04 -0.13 -0.22 0.29 0.11 0.15 -0.26 -0.09 -0.10 -0.17 0.07 0.02 0.52 0.09 0.52 0.44 0.00 0.04 1.00
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Table A.3 Tests of equality of estimated coefficients 

 
CPH in the pre-crisis 
period 

CPH in the crisis 
period 

CPH in the post-crisis 
period 

 (1) (2) (3) 
LNDETAS 0.0000 0.0000 0.0312 
LNDETAS2 NA NA NA 
GROAS 0.0000 0.0000 0.0000 
LOAAS 0.2648 0.1121 0.4351 
LIQASTAS 0.0000 0.0000 0.0000 
NETLOADEPSTFUN 0.2005 0.2395 0.0842 
NETLOATAS NA NA NA 
DEPSTFUNTAS 0.0004 0.0001 0.0230 
LIQASDEPSTFUN 0.0000 0.0000 0.0000 
ROAA 0.0039 0.0009 0.0011 
ROAE 0.0000 0.0000 0.0000 
NETINTMAR 0.0319 0.0735 0.4098 
TCAPTAS 0.0000 0.0030 0.0000 
EQAS 0.0002 0.0008 0.0000 
TIER1CAPTAS 0.0000 0.0000 0.0000 
LOALOSPROLOA 0.0483 0.0654 0.0215 
PROGRO 0.0000 0.0000 0.0000 
OPEXPTAS 0.2972 0.7541 0.3845 
COSINC 0.6639 0.3804 0.3694 
OVHTAS NA NA NA 
MSAS 0.1303 0.1434 0.0479 
DEPLOA NA NA NA 
DEPLOAGRO 0.1029 0.0336 0.0461 
INCDIV 0.2599 0.8992 0.3605 
HHI3 0.0000 0.0000 0.0000 
HHI5 NA NA NA 
CON3 NA NA NA 
CON5 NA NA NA 
RSP500 0.0016 0.0332 0.0006 
CPI 0.0000 0.0000 0.0000 
GRGDP 0.0006 0.3827 0.0003 
LNGDPCAP NA NA NA 
GRGNP NA NA NA 
INTR_10Y NA NA NA 
INTR_10Y2 0.2820 0.3028 0.2114 
INTR_3M NA NA NA 
INTR_3M2 NA NA NA 
SLYC NA NA NA 
SLYC2 NA NA NA 
GRM1 0.0070 0.0000 0.0017 
GRM2 0.0265 0.0871 0.0130 
HPI NA NA NA 

Notes: Column (1) refers to the test of the coefficient equality for one variable in three sub-periods. 
Column (2), reports the test of the coefficient equality for one variable between pre-crisis and crisis 
periods. Column (3) shows the test of the coefficient equality of one variable between crisis and post-
crisis periods. 
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Section B 

Accuracy ratios 

AUC is a non-parametric measure generated from the receiver operating characteristic curve, 

which is commonly employed to assess the ability of a model to discriminate between binary 

events. It is already applied in related studies to evaluate the predictive ability to identify a 

default event. The receiver operating characteristic curve is the plot of the likelihood of verifying 

true-positive (in practice, a bank issues IPO and the model classifies it as an expected event) and 

false-positive (in practice, a bank issues IPO but the model classifies it as an expected non-event) 

for a whole range of probable threshold points of probability values. If AUC is equal to 1, this 

represents a perfect prediction. If AUC is equal to or less than 0.5, it means that the corresponding 

model had no predictability. If the value of AUC is above 0.8, the predictive ability may be 

considered to be accurate (Hosmer Jr et al. 2013). The accuracy ratio is defined as the double 

difference between the value of AUC and 0.5, which is a frequently applied measure for corporate 

bankruptcy model evaluation. Thus, a value of 1 for accuracy ratio illustrates a perfect forecast, 

while a value of 0 for this shows a random forecast. To confirm the conclusions from AUC and the 

accuracy ratio, the brier score is included, to measure how close the predicted probability of a 

bank issuing IPOs in order to go public is to a bank staying in the private market. It is equal to the 

average of the squared differences between the forecast probabilities and the actual outcomes (1 

if a bank issues IPO and 0 if a bank does not issue it). The brier score can be expressed as 

1

𝑁
∫ (𝑝𝑡 − 𝑜𝑡)2𝑁

𝑡=1
, where 𝑝𝑡 is the forecast probability of a bank issuing IPO and 𝑜𝑡  is the 

corresponding actual event. The lower the brier score is for a series of predictions, the better the 

predictions are deemed to be.  
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Chapter 4 Predicting failure: evidence from UK 
firms 

 

Abstract  

The accurate prediction of failure for a private firm can be considered an early 

signal which enables market participants to manage their credit risks and reduce 

potential loss. Due to the importance of failure prediction, firm-specific and 

macroeconomic indicators are implemented in this empirical exercise. We 

observed that adding Bayesian Model Averaging (BMA) can improve the predictive 

performance of a discrete hazard model in out-of-sample predictions of firms’ 

failure. In addition, to confirm the accuracy of simple classifiers in failure 

prediction, two classifiers (the Naive Bayes classifier and the k-nearest neighbours 

classifier) are implemented compared to hazard models. According to the results, 

the Naive Bayes classifier frequently outperforms other models in failure 

prediction. Moreover, the predictive power of each candidate model can be 

influenced by financial crisis or firm heterogeneity in the out-of-sample prediction 

of failure.  

 

Key words: Failure prediction, UK firms, Financial ratios, Bayesian Model 

Averaging, Classifier 
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4.1 Introduction  

It is well accepted that the failure of a firm can bring with the unimaginable loss 

of wealth, in some cases potentially constituting a financial crisis. The timely 

detection and accurate prediction of a firm’s failure are essential for the actions 

of market participants. Firms’ managers, as insiders, can use reliable and efficient 

failure prediction of their firm in their internal performance evaluations to check 

management performance, and they can also use this failure prediction as an early 

warning mechanism, implementing remedial actions within their companies (Geng 

et al. 2015). Moreover, accurate failure prediction for firms can lower the 

probability of firms’ outsiders (for example investors and creditors) being exposed 

to default risks and losses. Such prediction can also encourage policymakers to 

announce new regulations or policies adapted to market changes which can 

stabilize the financial market. As the Gross Domestic Product (GDP) growth rate 

dropped to below zero in 2008, the UK economy entered recession, which implies 

that more UK firms were likely to face higher default risks. Lang and Stulz (1992) 

indicate that the failure of a firm has a contagion effect on other firms with similar 

cash flow features. Hence, market participants can utilize the correct failure 

prediction of companies to seek to address the critical situation. This will prevent 

more similar companies from facing insolvency in the future. Thus, providing 

accurate failure prediction regarding firms has once again become important.  

According to a comprehensive review of bankruptcy prediction techniques (Ravi 

Kumar and Ravi 2007), numerous studies have been dedicated to the study of 

failure prediction for companies. Such studies apply firm-specific financial ratios 

and other publicly available information in reduced-form models, structure 

models and machine learning models. The methodologies used in this chapter are 

in line with the literature on failure prediction for companies. The objective for 

this work is to detect a model which provides more accurate predictions of private 

firms’ failure in the UK, incorporating several time-varying covariates from a set 

of firm-specific and macro-economic predictors. In this chapter we aim to make 

several contributions to existing literature. First, a Bayesian technique, namely 

Bayesian Model Averaging (BMA), is added to the discrete hazard model in order 

to solve the parameter and model uncertainty in a straightforward and formal 

way. In reduced-form models, variable selection depends on the background of 

researchers, which may not include the “true” model which reflects reality. 
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Ignoring parameter and model uncertainty can lead to overconfidence in 

predictions and reduce out-of-sample predictive ability. BMA is an advanced 

version of Bayesian inference, which directly allows for model combination, 

combined parameter estimation and prediction (Roberts 1965) with reduced 

overconfidence in the parameter estimation, fewer omissions of explanatory 

variables and increased applicability. Meanwhile, Madigan and Raftery (1994) 

confirm that BMA can produce more reliable results than a single model if scoring 

rules are employed to validate predictions. Thus, to validate the efficiency and 

performance of BMA in failure prediction, a combined model, known as the BMA 

version of discrete hazard models, was implemented in comparison with the 

benchmark model, the discrete hazard (DH) model. This benchmark model 

contains the timing of non-interested events compared to simple logit or probit 

models.  

Second, the basic classifiers, namely the Naive Bayes (NB) classifier and the k-

nearest neighbours (k-NN) classifier, are also applied as competing models in this 

work. We aim to test the accuracy of these simple classifiers in corporate failure 

prediction by comparing with the DH model and its BMA version. The NB classifier 

is also developed from Bayes' theorem, like BMA, and the k-NN classifier is 

exploited from pattern recognition. The studies of Henley and Hand (1996) and 

Sarkar and Sriram (2001) indicate that both models can produce reliable failure 

predictions of companies. As for the NB classifier, it can successfully handle 

missing values and irrelevant predictors in datasets and produce the minimum 

error rate during estimation compared with other classifiers such as decision trees 

and neural network classifiers (Han et al. 2011). Furthermore, the computation of 

the NB classifier is simple due to its class conditional independence assumption 

and it is still able to perform without satisfying this assumption (Domingos and 

Pazzani 1997). As for k-NN classifier, it is a non-parametric method in machine 

learning models, which can easily be implemented. There are no strict 

assumptions in the k-NN classifier (Murphy 2012) and hence this classifier is more 

flexible. Moreover, the k-NN classifier is robust when it comes to a noisy dataset 

and efficient in large datasets (Kuramochi and Karypis 2005).  

The dataset (1991-2009) covers two important financial crises in the UK’s 

economic history, the 1991–1993 European Exchange Rate Mechanism (ERM) 

currency crisis and the 2008-2009 global financial crisis (GFC). The causes and 
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scope of these two financial crises are different, which may affect the predictive 

performance of candidate models in different ways. Therefore, to investigate the 

influence of these financial crises on failure prediction, our dataset is separated 

into three sub-samples: the post-ERM currency crisis period, the pre-global crisis 

period and the non-crisis period.  

Meanwhile, this dataset is composed mostly of unlisted UK firms with different 

economic scales operating in several industries. These companies are generally 

younger and smaller than listed counterparts, which implies that asymmetric 

information can easily be observed. In other words, compared to public firms, 

unlisted firms are more likely to face financial constraints and suffer higher 

liquidity risks because of more asymmetric information. Due to the existence of 

asymmetric information, outsiders to private firms have difficulty accessing 

available information in order to evaluate a firm’s operation, which suggests that 

it might be more difficult to predict the failure of private firms than that of public 

firms. Beck et al. (2005) and Ayyagari et al. (2007) suggest that the operation of 

private firms, in particular small and medium enterprises, can influence 

employment and economic development in a country. According to the special 

role of private firms in the market, our work on developing appropriate credit risk 

models to produce correct failure prediction of these firms is very beneficial. This 

study can help to close the existing gap in the literature concerning failure 

prediction, where evaluations of UK private firms and of the two major financial 

crises in UK’s recent history are still lacking. 

Furthermore, since our panel data contains firm heterogeneity, it would be 

expected that the various internal and external causes of a firm’s failure can be 

observed (Ropega 2011). Ultimately, the probability of small (young) firms failing 

will be distinct from that of old (large) firms. Therefore, we choose two cross-

sectional dimensions to split our dataset. With respect to firm size, the dataset is 

separated into small and large firms. The dataset is then divided into old and 

young firms based on their age. To further analyse whether the position of a firm 

can lead to failure, time or industry dummy variables are included, in line with 

the studies of Chava and Jarrow (2004), Hillegeist et al. (2004) and Traczynski 

(2017). 
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In general, our results show that adding BMA into the DH model can improve the 

predictive accuracy in out-of-sample failure prediction compared to the DH 

model. However, when comparing all candidate models, the NB classifier 

outperforms the others in failure predictions in most samples. The BMA version of 

DH models is the only model that takes parameter and model uncertainty into 

account, which means it could provide comparable predictive ability compared to 

the NB classifier in certain situations. Our results also indicate that the two 

financial crises and firm heterogeneity can influence the predictive power of each 

candidate model. Controlling time effects or industry effects increases the out-

of-sample prediction performance in different sub-samples, especially for the 

benchmark model and its BMA version. 

The rest of the work is organized as follows. We document the relevant literature 

on failure prediction for firms in section 2. Following that, data and summary 

statistics are discussed in section 3. Section 4 introduces in detail the 

methodologies used. In Section 5 the empirical results are reported, with section 

6 concluding this work. 

4.2 Literature  

Before applying statistical methodologies to identify a company’s failure, since 

the 1930s researchers have been studying the difference in financial ratios 

between “successful” and “failed” firms (FitzPatrick 1932, Smith and Winakor 

1935). This provides the foundation for later researchers using financial ratios or 

other information to determine and forecast the failure of a firm.  

The use of accounting information to predict bankruptcy is derived from Beaver 

(1966). Altman (1968) extended this analysis to multiple discriminant analysis and 

forecasts the bankruptcy of a firm based on several accounting-based financial 

ratios. This method is called Z-score analysis and became the classical model to 

group failed and non-failed companies. The predictive accuracy of the Z-score 

model1 is more accurate than Beaver’s study (1966). The Z-score model is modified 

to the Zeta credit risk model, providing more accurate prediction of bankruptcy 

                                         
1 In conclusion of this study, it is recommended that five ratios be used in the Z-score model: working 

capital to total assets, retained earnings to total assets, earnings before interest and taxes to total 
assets, market value equity to book value of total liabilities, and sales to total assets. 
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up to five years prior to failure (Altman et al. 1977). Edmister (1972) applied 19 

financial ratios and transforms them into zero-one in the step-wise multivariate 

discriminant analysis to reduce the biased estimation by correlation between 

variables and then predict the failure of a firm. For the same purpose of lowering 

the influence of correlation in discriminant analysis, Libby (1975) employed 

principal components analysis to generate five variables from fourteen financial 

factors to predict the failure of a company, and shows the usefulness of accounting 

information in the prediction of companies’ failure. Scott (1981) compared 

existing research (see for instance Beaver 1966, Altman 1968, Deakin 1972 and 

Wilcox 1973) and concluded that these works can be applied empirically and 

explained theoretically for bankruptcy prediction.  

In comparison with the ordinal output of discriminant analysis, Ohlson (1980) 

combined the logit model with different financial ratios to develop the O-score 

model and achieved the default probability of a firm. In this work, he concluded 

that the predictive power of this model was robust for large sample estimation 

and suggested that adding variables to the model could increase the predictive 

power of this model to a certain degree. Zmijewski (1984) utilised the probit 

model to examine the biased estimation from non-random samples. Zavgren 

(1985) applied seven financial ratios to both logit and probit models to calculate 

bankruptcy probability and then indicated that these models more accurately 

identify the financial risk than dichotomous classification from a discriminant 

analysis. Due to the simple application and easy explanation, logit or probit 

models are generally used to predict the probability of bankruptcy (see Keasey 

and McGuinness 1990, Tennyson et al. 1990, Kolari et al. 2002, Jones and Hensher 

2004, Canbas et al. 2005).  

These studies confirm that accounting information from the balance sheets of a 

company can be applied in one model to predict the failure probability of the 

corresponding company. It has long been known that the balance sheet reflects 

the previous information of a firm and may not give enough support to show its 

current performance. Thus, market-driven variables drawn from stock price as a 

complement of accounting information are gradually included in the reduced-form 

models to improve the accuracy of the out-of-sample test. Queen and Roll (1987) 

mentioned a dynamic forecasting model to address the bias in the static model 

solely dependent on market information to predict the bankruptcy of a firm, and 
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they illustrated the importance of market information in bankruptcy prediction. 

Dichev (1998) and Griffin and Lemmon (2002) confirmed the correlation between 

stock market information and bankruptcy risk of insolvent and risky companies by 

using the Z-score model (Altman 1968) and conditional logit model (Ohlson 1980).  

To produce more consistent estimates and more efficient out-of-sample 

prediction, hazard models are widely used in the study of forecasting bankruptcy, 

since these can capture the timing of alternative outcomes in the work. Shumway 

(2001) employed market-driven variables and accounting variables extracted from 

previous studies and confirmed that the predictive ability of discrete hazard 

outperforms discriminant analysis and logit models. Since a company is faced with 

various competitive pressures from peers in an industry, Chava and Jarrow (2004) 

investigated the importance of industry effects in the prediction of bankruptcy, 

by adding industry effects to Shumway’s model. In this study, a relatively higher 

forecasting accuracy of bankruptcy is achieved than in previous studies. Despite 

industry effects, Pesaran et al. (2006) described the existence of a fundamental 

relationship between the default probabilities of a firm and the corresponding 

internal and external business cycles, especially in times of severe financial 

turmoil. Furthermore, business cycles are related to countries. Bhattacharjee et 

al. (2009) directly detected the relationship between the failure of a UK listed 

firm and the macroeconomic environment by applying hazard models. They 

explicitly stated that unstable economic conditions, especially in the US business 

cycle, can improve the likelihood of a firm going bankruptcy in the UK. The 

survival analysis has gradually become another important methodology for 

predicting failed events in finance (Beaver et al. 2005, Duffie et al. 2007, Bharath 

and Shumway 2008, Campbell et al. 2008, Ding et al. 2012, Bauer and Agarwal 

2014). 

The selection of explanation variables and statistical methodologies depends on 

researchers’ subjective knowledge so these may not be the “true” models to solve 

the targeted issue. Ignoring parameter and model uncertainty may cause 

overconfidence in forecasts form models and lower out-of-sample predictive 

ability. To solve parameter and model uncertainty, Bayesian Model Averaging 

(BMA) is developed as a method of selecting a subset of potential regressors, but 

it allows that all inference is averaged over models, using the corresponding 

posterior model probabilities as weights. It captures parameter uncertainty in a 
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model through prior distribution and then model uncertainty is obtained by 

posterior parameter using Bayes’ theorem (Fragoso et al. 2018). BMA is not widely 

applied to failure prediction. Traczynski (2017) employed BMA with discrete 

hazard model to explain model uncertainty in the default of US firms and detected 

that the ratio of total liabilities to total assets and the volatility of market returns 

have a role to play in failure prediction. He also suggested that considering 

industry-specific effects in the BMA model may provide more accuracy in out-of-

sample prediction. 

In another approach to failure prediction (structural models), Black and Scholes 

(1973) and Merton (1974) applied the option pricing theory to calculate the 

probability of default from a company’s market value if the value of a company 

cannot meet the required payments under the strong assumption of a frictionless 

market. Jarrow and Turnbull (1995) and Duffie and Singleton (1999) further 

indicated that default intensity can be identified from financial securities in the 

market regardless of whether default events are experienced by issuers. Thus, 

financial participants start to evaluate potential loss and credit risk using market-

based measures and some financial agencies issue the default probability of a 

company on the basis of option-pricing structural models such as KMV (Crosbie and 

Bohn 2003). Since structural models rely on an assumption that all information can 

be reflected in stock prices, this limits the application of these models to listed 

firms.  

Unlike reduced-form and structural models relying on certain assumptions, 

another dimension of modelling firm failure is related to machine learning models, 

which can deal with a huge number of factors in the model. Most of these models 

can be categorised into data mining fields such as intelligent techniques. It can 

be exemplified by the Naive Bayes (NB) classifier, the k-nearest neighbours (k-NN) 

classifier, neural network (NN), decision trees, case-based reasoning, evolutionary 

approaches, data envelopment analysis (DEA) and quadratic programming (QP), 

other intelligent techniques such as support vector machine, fuzzy logic 

techniques and so on. These studies do not focus on detecting the relationship 

between potential factors and firms’ bankruptcy but they tend to improve the 

predictive performance.  
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Frydman et al. (1985) introduced Recursive Partitioning Algorithm (RPA) into the 

prediction of financial distress for companies and compared it with discriminant 

analysis. They concluded that the RPA model could produce more accurate in-

sample and out-of-sample forecasts than discriminant analysis. Messier and 

Hansen (1988) employed the induction algorithm in loan default and bankruptcy 

forecast and obtained better performances in comparison with discriminant 

analysis. Cronan et al. (1991) further studied the results of RPA compared to those 

of discriminant analysis, logit, probit, and ID3 decision tree algorithm when it 

came to mortgage, commercial, and consumer lending problems, and confirmed 

the outperformance of RPA in comparison to other models.  

Tam (1991), Coats and Fant (1993), Udo (1993), Wilson and Sharda (1994), Lacher 

et al. (1995), Lee et al. (1996), Etheridge and Sriram (1997) and Yang et al. (1999) 

demonstrated neural network models, which outperformed other previous models 

in terms of differently corresponding dimensions of verification such as prediction 

accuracy, adaptability and robustness. In contrast to these conclusions, a 

significant difference in predictive ability of bankruptcy between neural network 

and discriminant analysis for Italian companies (Altman et al. 1994) cannot be 

observed. Bryant (1997) developed a Case-based Reasoning (CBR) system in the 

prediction of bankruptcy, which did not outperform logit regression. A similar 

conclusion was also reached by Jo et al. (1997).  

Meanwhile, genetic algorithms (GA) have been gradually implemented in 

bankruptcy prediction. Varetto (1998) demonstrated that GA could not 

consistently produce better performances than discriminant analysis during the 

evaluation of insolvency risk and he demonstrated that discriminant analysis is 

relatively stable and has generalized ability in the estimated procedure of risk. 

Nanda and Pendharkar (2001) aimed to clarify how the misclassification cost 

matrix is applied for bankruptcy prediction and suggested that GA was the best 

model, providing the highest percentage of correct predictions compared to 

statistical linear discriminant analysis and goal programming. They further 

demonstrated that taking into account asymmetric misclassification costs can 

increase the percentage of correct bankruptcy prediction. Shin and Lee (2002) 

further confirmed the usefulness of GA in bankruptcy prediction.  
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During recent decades, the support vector machine (SVM) as a specific algorithm 

of the supervised learning model with the maximum margin hyperplane has 

attracted more attention from researchers and it is frequently employed in 

forecasting firms’ failure. Min and Lee (2005) suggested that the predictive 

accuracy of SVM for firms’ bankruptcy is better than that of multiple discriminant 

analysis, logistic regression analysis and three-layer fully connected back-

propagation neural networks. An increasing number of researchers tend to 

combine SVM with other algorithm techniques to improve its predictive 

performance when it comes to firms’ failure since the model form, parameter 

setting, and features selection can significantly affect the predictive ability of 

SVM and ultimately confirm the efficiency of SVM in bankruptcy prediction (Zhou 

et al. 2014).  

From this literature review of intelligent techniques, it can be observed that the 

applied algorithm is gradually complex and abstruse, which implies that it may 

not be easy for market participants to use. According to the results obtained in 

the study of Barboza et al. (2017), the predictive performance of reduced-form 

methodologies is not constantly worse than in other machine learning models. In 

other words, the complicated machine learning models do not imply better 

predictive performance when it comes to the failure of firms, since more outliers 

may be captured in the dataset. Thus, some research still emphasises and 

promotes the application of a simple method in bankruptcy prediction. The Naive 

Bayes (NB) classifier and the k-nearest neighbours (k-NN) classifier as the basic 

and simple machine learning models are now attracting more attention from 

researchers.  

Sarkar and Sriram (2001) indicated that the predictive performance of banks’ 

failure provided by the Naive Bayes classifier and composite attribute model are 

comparable, which is similar to the prediction provided by decision tree 

classification algorithm C4.5. Twala (2010) investigated the predictive 

performance of five classifiers containing both the NB classifier and the k-NN 

classifier for credit risk. He demonstrated that the NB classifier is the most 

effective classifier in credit risk prediction and its performance can be improved 

by applying classifier ensembles. Henley and Hand (1996) implemented k-NN with 

an adjust Euclidian distance metric to solve the credit scoring problem and 

suggested k-NN is capable of solving this problem with a lower risk rate in 
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comparison with linear regression, logit, decision trees and decision graphs. Park 

and Han (2002) employed an Analytic Hierarchy Process weighted k-NN model to 

forecast bankruptcy again and demonstrated that this model was the best one 

considering classification accuracy among regression, logit, weighted k-NN and the 

pure k-NN classifier. In order to compare the NB classifier and the k-NN classifier 

in detail, Islam et al. (2010) already reviewed the theory of these classifiers and 

then applied them to a dataset credit card approval prediction, which indicated 

the advantages and disadvantages of these models in detail. 

This previous work provides us with a foundation for choosing related variables to 

predict the failure of firms and indicates a methodological gap in failure 

prediction. We will discuss our data and methodologies in the following sections. 

4.3 Data and summary statistics 

4.3.1 Data sources 

In this study, firms are defined as having failed in a particular year if the company 

is in receivership, liquidation or has been dissolved, and its last accounts were 

reported in the previous year (Bunn and Redwood 2003, Bridges and Guariglia 

2008, Guariglia et al. 2016). A firm which has been taken over is not included as 

a failure in this work since takeovers can be considered as evidence of continuing 

success (i.e. the firm will continue to operate) rather than failure. 

The FAME database provided by Bureau van Dijk Electronic Publishing is applied 

to extract firm-specific accounting data from the balance sheet and profit and 

loss statements of companies in UK and Ireland. In this database, the turnover, 

pre-tax profits and shareholders’ funds in a company are at least £1.5m, £150,000 

and £1.5m respectively. Meanwhile, these firms should be recorded within the last 

five years. If a firm has been inactive for more than four years, its record cannot 

be observed from FAME. This implies that a firm that failed before 2006 may be 

omitted if only the 2010 version of FAME is used. To solve this potential problem, 

Javorcik and Li (2013), Guariglia et al. (2016) and Görg and Spaliara (2018) suggest 

that different versions of the database be included in order to check the status of 

a company. Thus, the FAME editions of October 2010, October 2008 and February 
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2005 and archived editions of 1998 and 1994 are used to track the status of a firm 

continuously.  

Almost all firms in this database are not in the public market or alternative 

exchanges such as the Alternative Investment Market (AIM) and the Off-Exchange 

(OFEX) market. It is an attractive characteristic of our dataset that considerable 

diversity in the relationship between financial conditions and failed probability 

can be observed there, because of a high degree of information asymmetry in 

these private firms. Importantly, the operation of these unlisted firms is highly 

correlated with the development of the economy (Beck et al. 2005, Ayyagari et 

al. 2007). The special role of private firms in the economy makes this study 

appealing. Following common selection criteria in the literature, companies that 

do not have complete records on our explanatory variables, and firm-years with 

negative sales and assets are excluded.  

In addition, the data period spans from 1991 to 2009 and thus two important 

financial crises in UK economic history are covered in the applied dataset: the 

1991–1993 European Exchange Rate Mechanism (ERM) currency crisis and the 2008-

2009 global financial crisis (GFC). In the early 1990s, the UK as the member of the 

ERM had to comply with its restrictions, which caused high interest rates and the 

devaluation of the pound. Meanwhile, the activity of currency speculators further 

increased the pressure on the pound. Both these factors forced the UK to exit the 

ERM and the country entered into recession in the early 1990s. The cause of the 

GFC was different from the causes of the ERM currency crisis, since the GFC was 

set off by the crisis in the subprime mortgage market in the US and the bankruptcy 

of Lehman Brothers. As these two financial crises have different causes and scope, 

our dataset is separated into sub-samples to make clear the influence of financial 

crises on failure prediction of private firms in the UK. 

To control for the potential influence of outliers, we winsorize the regression 

variables at the 5th and 95th percentiles. Consolidated firms are only kept in the 

dataset to prevent double-counting firms and subsidiaries or operations abroad. 

Since private firms are incorporated in the dataset, some market-driven factors 

cannot be applied in this work. Thus, macroeconomic variables as another part of 

explanatory variables are sourced from Bloomberg. Our combined panel has an 

unbalanced structure containing a total of 80,585 annual observations (firm-years) 
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on 18,744 UK and Irish firms. We have an entry for each firm-year with financial 

and market data.  

4.3.2 Choice of explanatory variables 

Previous research on the failure prediction of firms has accounted for both 

business and financial risks. In this work, business risk is related to macro-

economic conditions and industry characteristics, while financial risk includes the 

assessment of a firm’s accounting procedures, its profit and loss situation and its 

overall financial policy. Thus, the selection of independent variables is guided by 

the existing failure prediction literature (see for instance Altman 1968, Altman et 

al. 1977, Ohlson 1980, Altman 1993, Shumway 2001, Griffin and Lemmon 2002, 

Chava and Jarrow 2004, Jiménez and Saurina 2004, Duffie et al. 2007, Campbell 

et al. 2008, Bhattacharjee et al. 2009, Bonfim 2009, Margaritis and Psillaki 2010, 

Traczynski 2017). The expected relationship between applied predictors and 

firms’ failure is presented in Table 4-1, which provides a detailed description of 

the variables used in this study. All firm-specific ratios are presented as 

percentages and the macroeconomic variables are de-trended by the Hodrick-

Prescott filter.    
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Table 4-1 Expected signs and variables definition 

Variable  Definition  

Expected 

relationship 

Firm-specific variables (10) 

AGE  Firm ages - 

Size (2)   

LNTA  The logarithm of the ratio of total assets to GDP deflator - 

LNSALE The logarithm of total turnover over GDP deflator - 

Liquidity (1)   

WCTA (%) Working Capital / Total Assets - 

Leverage (2)   

TLTA (%) Total Liabilities/ Total Assets  + 

CLTA (%) Current Liabilities / Total Assets + 

Profitability (3)    

RETPROTA (%) Retained profits / Total Assets - 

GROPROTA (%) Gross Profits / Total Assets - 

SALETA (%) Total Turnover / Total Assets - 

Collateral (1)   

TANTA The tangible assets / total assets  + 

Macroeconomic Variables (8) 

RGDPGR_UK The growth rate of real GDP in UK. ~ 

RGDPGR_US  The growth rate of real GDP in US. ~ 

RINTR 

The yield on 10-year Treasury bonds in UK less the annual 

rate of inflation (CPI) ~ 

REER The real effective exchange rate in UK ~ 

REER_VOL The volatility of the real effective exchange rate ~ 

LNRET The logarithm of FTSE 100 return ~ 

VOL The volatility of Stock Price Index for United Kingdom  ~ 

CIEA The coincident indicator for economic activity in UK ~ 

Notes: “+” indicates that the probability of a firm failing would increase if the covariates rise. “-” 
indicates that the probability of a firm failing would reduce if the covariates rise. “~” indicates 
uncertainty in the sign. 

4.3.2.1 Firm-specific variables 

There are 10 firm-specific accounting variables measuring the different financial 

conditions of firms, as predictors of the probability of failure. These are related 

to age, size, liquidity, leverage, profitability and collateral. The firm age (AGE) is 

defined as the difference between the current year and the date of incorporation. 

Young firms in general are not have efficient enough to compete with existing 

firms, which would lead us to expect them to face more default risk. The firm size 

is measured by two ratios, the natural logarithm of firms’ real total assets (LNTA) 

and the natural logarithm of firms’ turnover (LNSALE), which explain the scale of 
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a firm. A large firm would be expected to have lower probability of failure. Next, 

the liquidity of firms is specified by the ratio of working capital over total assets 

(WCTA), which indicates the percentage of remaining liquid assets in comparison 

with total assets. Lower levels of liquidity should increase the probability of 

failure of a company. The following two measures capture the leverage 

information of a firm: ratio of total liabilities to total assets (TLTA) and the ratio 

of current liabilities over total assets (CLTA). This metric enables comparisons of 

leverage to be made across different companies. The higher the ratio is, the higher 

the degree of leverage, and consequently, financial risk and the probability of 

failure increase. Further, we employ profitability as measured by the ratio of 

retained profits over total assets (RETPROTA), the ratio of gross profits to total 

assets (GROPROTA) and the ratio of total turnover over total assets (SALETA). 

These ratios can be regarded as indicators of the efficiency with which a firm 

arranges its assets to generate revenue. It is expected that firms with higher 

profitability are not likely to fail. Finally, the collateral condition of a firm is 

captured by the ratio of tangible assets over total assets (TANTA). Since tangibles 

are potentially good collateral and they are easy to monitor, firms with more 

tangibles are likely to use them as collateral to get riskier investment, which is in 

turn likely to increase the probability of failure. 

4.3.2.2 Macroeconomic indicators 

A list of macroeconomic factors, which measure different aspects of the aggregate 

economy’s performance, are considered as a potential influence on the probability 

of failure. Specifically, the growth rate of real GDP (RGDPGR_UK and RGDPGR_US) 

captures the aggregate business cycle in the UK and US respectively. The interest 

rate (RINTR) is measured by the yield on 10-year Treasury bonds in the UK minus 

the annual rate of inflation (CPI). Since the European Exchange Rate 

Mechanism (ERM) currency crisis is covered in the data period, the real effective 

exchange rate in the UK (REER) and the volatility of the real effective exchange 

rate (REER_VOL) are included in this study. The stock market performance is 

evaluated by the FTSE 100 return, which calculates logarithm returns on the FTSE 

100 index (LNRET). The volatility of the stock price index for the United Kingdom 

is represented by VOL. Aggregate economic activity is captured by a coincident 

indicator in the UK (CIEA). Their relationship with the probability of failure could 

be either positive or negative since probability would be lower during economic 
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prosperity, but firms may change their capital structure to achieve more profits 

and ultimately face more credit risk in the market. Hence, the relationship 

between the probability of failure and macroeconomic variables is an issue that 

will be determined empirically. 

In addition to these explanatory variables, industry dummy variables are 

constructed based on the four-digit UK SIC code information provided from FAME 

to classify firms. Time dummy variables are also considered to capture the specific 

feature of the probability of failure in each year.  

4.3.3 Summary statistics 

Table 4-2 reports the distribution of the percentage of surviving and failed firms 

annually in the full sample. It can be observed that the distribution of failed firms 

during the financial crisis is different from in other periods, which implies financial 

crisis affects the probability of a firm failing. 

Table 4-2 Firms by year 

Year 

The percentage 
of non-failed 
firms 

The percentage 
of failed firms Year 

The percentage 
of non-failed 
firms 

The percentage 
of failed firms 

1991 95.60% 4.40% 2001 83.71% 16.29% 

1992 95.66% 4.34% 2002 83.54% 16.46% 

1993 95.67% 4.33% 2003 83.56% 16.44% 

1994 91.23% 8.77% 2004 83.74% 16.26% 

1995 91.11% 8.89% 2005 88.35% 11.65% 

1996 91.14% 8.86% 2006 88.01% 11.99% 

1997 91.19% 8.81% 2007 87.82% 12.18% 

1998 91.28% 8.72% 2008 87.44% 12.56% 

1999 84.70% 15.30% 2009 87.93% 12.07% 

2000 83.68% 16.32%    

Note: This table presents the distribution of percentage of non-failed and failed firms by year. 

At the next stage, summary statistics related to the full sample for explanatory 

variables is reported in Table 4-3. The statistics splitting the sample between non-

failed firms and failed firms are presented to measure any differences across 
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operating statuses. We test the equality of means across the above-mentioned 

groups and corresponding p-values are reported in the final columns of the tables. 

It can be observed, as expected, that surviving firms have better financial 

characteristics, as measured by the balance sheet indicators. The results from 

equity tests suggest that significant differences between the two groups can be 

observed, which indicates that there is a correlation between better financial 

health and a reduced probability of failure. In other words, there is considerable 

cross-sectional variation in the probability of a firm failing. This gives us the 

opportunity to consider the influence of firm heterogeneity on failure predictions 

for candidate models. 
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Table 4-3 Descriptive statistics 

Variable  Mean 

Standard 

Deviation Minimum Maximum P-value 

 (1) (2) (3) (4) (5) 

AGE       

Non-failed firms 22.6570 16.0314 0.0000 68.0000  

Failed firms 19.9702 15.0966 0.0000 68.0000 0.0000 

Size (2)      

LNTA       

Non-failed firms 3.9043 1.1595 0.8311 6.3460  

Failed firms 3.6045 1.0473 0.8326 6.3439 0.0000 

LNSALE      

Non-failed firms 4.3554 1.1061 1.7038 6.9179  

Failed firms 4.0980 0.9947 1.7057 6.9117 0.0000 

Liquidity (1)      

WCTA (%)      

Non-failed firms 29.6667 14.5518 -1.0695 61.9880  

Failed firms 27.8332 14.4563 -1.0080 61.8729 0.0000 

Leverage (2)      

TLTA (%)      

Non-failed firms 73.2779 27.0327 13.3021 167.3826  

Failed firms 81.9776 26.3960 13.9838 167.2278 0.0000 

CLTA (%)      

Non-failed firms 49.8662 19.6798 13.1116 97.5595  

Failed firms 57.1058 19.4512 13.2031 97.4340 0.0000 

Profitability (3)       

RETPROTA (%)      

Non-failed firms 2.7953 5.9244 -18.2854 17.1717  

Failed firms 1.2631 6.4274 -18.2788 17.1046 0.0000 

GROPROTA (%)      

Non-failed firms 48.1921 25.4957 4.7934 131.1709  

Failed firms 47.4295 25.6442 4.8336 130.7475 0.0359 

SALETA (%)      

Non-failed firms 169.1523 64.9279 48.0219 392.1053  

Failed firms 176.8552 68.1927 48.1886 390.8996 0.0000 

Collateral (1)      

TANTA (%)      

Non-failed firms 28.2724 16.5645 2.1207 66.3787  

Failed firms 29.9559 16.9569 2.1269 66.3717 0.0000 

Notes: This Table reports the summary statistics of the explanatory variables used in the empirical 
models. Column 5 reports the p-value for the test of equality of means between the failed and non-
failed groups. 
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Moving to compare the ERM currency crisis and GFC periods, failed firms with 

opposite financial characteristics can be observed in Table 4-4. During the ERM 

currency crisis, failed firms were in the main young and small, with worse ways of 

operating, such as higher leverage and lower profitability. However, under a 

tightened credit supply, old and bigger firms, with lower leverage and higher 

profitability, tended to fail during the GFC. This tendency suggests the whole 

sample period should be separated into sub-sample periods to check the predictive 

ability of the models implemented.  

Table 4-4 Sample means  

Variable  

ERM 

currency 

crisis  

Non-ERM 

currency 

crisis P-value 

Global 

financial 

crisis 

Non-global 

financial 

crisis P-value 

 (1) (2) (3) (4) (5) (6) 

AGE  21.2714 22.6081 0.0000 24.7052 22.3243 0.0000 

LNTA  3.6121 3.9133 0.0000 4.0309 3.8744 0.0000 

LNSALE 4.0687 4.3669 0.0000 4.5032 4.3270 0.0000 

WCTA 30.6969 29.4263 0.0000 28.8288 29.5975 0.0002 

TLTA 81.1101 73.0857 0.0000 58.7676 74.9115 0.0000 

CLTA 51.4288 50.2254 0.0000 46.5853 50.6047 0.0000 

RETPROTA 1.9204 2.7762 0.0000 3.0687 2.6687 0.0000 

GROPROTA 52.5805 47.6772 0.0000 48.4509 48.1204 0.3613 

SALETA 168.6858 169.7576 0.1714 172.9032 169.4266 0.0002 

TANTA 31.0116 28.1070 0.0000 23.4429 28.7312 0.0000 

Notes: This table reports the sample means of the explanatory variables in different periods. The period 
from 1991 to 1993 is defined as the ERM currency crisis and otherwise non-ERM currency crisis. The 
global financial crisis is between 2008 and 2009 and otherwise non-global financial crisis. Column 3 
reports the p-value for the test of equality of means between firms during the ERM currency crisis and 
during the non-ERM currency crisis. Column 6 reports the p-value for the test of equality of means 
between firms during the global financial crisis and during the non-global financial crisis. 

4.4 Methodology  

4.4.1 Discrete Hazard (DH) model  

In line with previous studies of default prediction, a DH model as the discrete-

time version of survival models is used as the benchmark model in this work 

(Shumway 2001, Chava and Jarrow 2004, Beaver et al. 2005, Duffie et al. 2007, 

Campbell et al. 2008, Ding et al. 2012, Tian et al. 2015, Traczynski 2017). It 

captures the discrete-time characteristics of the dataset when rough timescales 

are applied in data collection; for example when the time of an event is expressed 

in weeks, months or years (Allison 1982, Shumway 2001, Rabe-Hesketh and 

Skrondal 2012). The DH model can also explain the clustered property of panel 
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data. In the work, dependent variable (𝑌𝑖,𝑡) is the failure, which is set to 1 in year 

𝑡 if a firm fails; otherwise it is equal to 0. Hence, this DH model for one-year-

ahead prediction of a firm failing is given by the following equation:  

𝑃𝑟(𝑌𝑖,𝑡 = 1|𝑌𝑖,𝑡−1 = 0, 𝑋𝑖,𝑡) = ℎ(𝑡, 𝑋𝑖,𝑡) 

ℎ(𝑡, 𝑋𝑖,𝑡)

1 − ℎ(𝑡, 𝑋𝑖,𝑡)
=

ℎ0(𝑡, 0)

1 − ℎ0(𝑡, 0)
exp (𝛽0 + 𝛽′𝑋𝑖,𝑡),                                                                         (1) 

where ℎ(𝑡, 𝑋𝑖,𝑡) is the hazard rate at time 𝑡 for a firm, controlling by a set 𝑋𝑖,𝑡 of 

time-varying indicators including firm-specific and macroeconomic variables , and 

ℎ0(𝑡, 0) is the baseline hazard function without any restriction. The hazard rate 

ℎ(𝑡, 𝑋𝑖,𝑡) indicates the interval hazard for the period between the beginning and 

the end of the 𝑗𝑡ℎ year after the first appearance of failure for a firm. In other 

words, it is the likelihood that firms fail at time 𝑡 conditional on the fact that they 

have survived in 𝑡 −  1, which takes the generalized linear model with logistic link 

(Shumway 2001, Chava and Jarrow 2004), written as: 

𝑙𝑜𝑔𝑖𝑡 (ℎ(𝑡, 𝑋𝑖,𝑡)) = 𝛽0 + 𝛽′𝑋𝑖,𝑡,                                                                                                    (2) 

where 𝛽0 can be regarded as the logit of the baseline hazard rate without any 

assumption, 𝛽 is a vector of unknown parameters to be estimated and  𝑋𝑖,𝑡 is the 

same dataset used in equation (1). According to equation (2), the parameter 

estimates can be achieved by maximizing the log-likelihood function: 

𝑙(𝛽̂) = ∑ (𝑌𝑖,𝑡 ∗ ln (
1

1 + exp (−(𝛽0 + 𝛽′𝑋𝑖,𝑡))
) + (1 − 𝑌𝑖,𝑡)

∗ ln (
exp (−(𝛽0 + 𝛽′𝑋𝑖,𝑡))

1 + exp (−(𝛽0 + 𝛽′𝑋𝑖,𝑡))
)).                                                                  (3) 

To capture the changes in the relationship between the potential position of a 

firm and probability of a firm failing, the time dummy factors and the industry 

dummy factors respectively are included in equation (2). Thus, we can construct 

another two DH models, which can be written as: 
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𝑙𝑜𝑔𝑖𝑡 (ℎ(𝑡, 𝑋𝑖,𝑡)) = 𝛽0 + 𝛽1
′𝑋𝑖,𝑡 + 𝛽2

′𝑇𝑖𝑚𝑒,                                                                             (4) 

and 

𝑙𝑜𝑔𝑖𝑡 (ℎ(𝑡, 𝑋𝑖,𝑡)) = 𝛽0 + 𝛽1
′𝑋𝑖,𝑡 + 𝛽2

′𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦,                                                                     (5) 

where 𝑇𝑖𝑚𝑒  and 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦  represent the time dummy and industry dummy 

variables respectively. Therefore, the corresponding estimated coefficients can 

be calculated by maximizing the log-likelihood functions: 

𝑙(𝛽̂) = ∑ (𝑌𝑖,𝑡 ∗ ln (
1

1 + exp (−(𝛽0 + 𝛽1
′𝑋𝑖,𝑡 + 𝛽2

′𝑇𝑖𝑚𝑒))
) + (1 − 𝑌𝑖,𝑡)

∗ ln (
exp (−(𝛽0 + 𝛽1

′𝑋𝑖,𝑡 + 𝛽2
′𝑇𝑖𝑚𝑒))

1 + exp (−(𝛽0 + 𝛽1
′𝑋𝑖,𝑡 + 𝛽2

′𝑇𝑖𝑚𝑒))
)),                                          (6) 

and  

𝑙(𝛽̂) = ∑ (𝑌𝑖,𝑡 ∗ ln (
1

1 + exp (−(𝛽0 + 𝛽1
′𝑋𝑖,𝑡 + 𝛽2

′𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦))
) + (1 − 𝑌𝑖,𝑡)

∗ ln (
exp (−(𝛽0 + 𝛽1

′𝑋𝑖,𝑡 + 𝛽2
′𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦))

1 + exp (−(𝛽0 + 𝛽1
′𝑋𝑖,𝑡 + 𝛽2

′𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦))
)).                                   (7) 

4.4.2 The Bayesian Model Averaging (BMA) version of DH models 

4.4.2.1 Bayesian Model Averaging (BMA) 

Bayesian Model Averaging (BMA) is a method related to identifying a subset of 

potential regressors, but it allows that all inference is averaged over models, using 

the corresponding posterior model probabilities as weights. Fragoso et al. (2018) 

state that BMA is derived from the usual Bayesian inference methods. It captures 

parameter uncertainty in a model through the prior distribution, and then model 

uncertainty is obtained by posterior parameter using Bayes’ theorem. In BMA, we 

suppose that 𝑀 =  (𝑀1, … , 𝑀𝑚) is our collection of candidate models with different 

predictors from vector 𝑋𝑖,𝑡  and 𝒚  is data information. 𝑌𝑖,𝑡  is a failed event, 
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presumed to be well-determined for every model. The 𝛽̂𝑀 for all candidate models 

𝑀 in BMA can be estimated: 

𝛽̂𝑀 = ∑ 𝛽̂𝑀𝑖
∗ 𝑝(𝑀𝑖|𝒚)

𝑚

𝑖=1

,                                                                                                                 (8) 

where 𝑝(𝑀𝑖|𝒚)  is the posterior probability of the model 𝑀𝑖  and 𝛽̂𝑀𝑖
 is the 

estimated parameter in the model 𝑀𝑖. 𝑝(𝑀𝑖|𝒚) can be computed by Bayes’ rule 

as:  

𝑝(𝑀𝑖|𝒚) =
𝑝(𝒚|𝑀𝑖)𝑝(𝑀𝑖)

∑ 𝑝(𝒚|𝑀𝑗)𝑝(𝑀𝑗)𝑚
𝑗=1

,                                                                                                   (9) 

where 𝑝(𝒚|𝑀𝑖) is the marginal distribution of the data under the 𝑖𝑡ℎ model, 𝑀𝑖, 

given previously and 𝑝(𝑀𝑚) is the prior probability for the model, 𝑀𝑖. 𝑝(𝒚|𝑀𝑖) is 

calculated by the integral:  

𝑝(𝒚|𝑀𝑖) = ∫ 𝑓(𝒚|𝛽𝑀𝑖
, 𝑀𝑖) ∗ 𝑓(𝛽𝑀𝑖

|𝑀𝑖)𝑑𝛽𝑀𝑖
,                                                                         (10) 

where 𝑓(𝒚|𝛽𝑀𝑖
, 𝑀𝑖)  is the likelihood of the data conditional on the model 𝑀𝑖, 

𝑓(𝛽𝑀𝑖
|𝑀𝑖) is the prior distribution of 𝛽𝑀𝑖

, and 𝛽𝑀𝑖
 is the estimated parameter 

vector from the model 𝑀𝑖. 

4.4.2.2 The BMA version of DH models 

From equation (3), the coefficients 𝛽 can only be estimated from one DH model. 

In order to generate the BMA version of DH models, equations (3) and (8) have to 

be combined and modified to fit the average situation. In line with the study of 

Traczynski (2017), a constraint has to be added to control the scale of the 

coefficients, which is that the variance of the potential variable 𝑌𝑖,𝑡
∗, measuring 

the financial conditions of firms in the log function, is set to 1 in every model. 

This can ensure that the interpretation of a predictor’s coefficient would be the 

change in standard deviations of a variable with a 1-unit change in that variable. 

Thus, the log-likelihood function of a model 𝑀𝑖 in the BMA version of DH models 

without considering time dummy and industry dummy variables can be written as: 
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ln (𝑓(𝒚|𝛽0,𝑀𝑖
, 𝛽𝑀𝑖

, 𝑀𝑖))

= ∑ (𝑌𝑖,𝑡 ∗ ln (
1

1 + exp (−(𝛽0,𝑀𝑖
+ 𝛽𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
))

) + (1 − 𝑌𝑖,𝑡)

∗ ln (
exp (−(𝛽0,𝑀𝑖

+ 𝛽𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
))

1 + exp (−(𝛽0,𝑀𝑖
+ 𝛽𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
))

)) , 

𝑌𝑖,𝑡
∗ = 𝛽0,𝑀𝑖

+ 𝛽𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝜀𝑖,𝑡,𝑀𝑖

, 

𝑌𝑖,𝑡 = 𝟏[𝑌𝑖,𝑡
∗ > 0], 

𝑣𝑎𝑟(𝑌𝑖,𝑡
∗) = 1,                                                                                                                                 (11) 

where 𝑋𝑖,𝑡,𝑀𝑖
 contains the predictors in model 𝑀𝑖, which is part of 𝑋𝑖,𝑡 in equation 

(1), 𝛽0,𝑀𝑖
 and 𝛽𝑀𝑖

 are the corresponding estimated parameter vectors in model 𝑀𝑖, 

𝜀𝑖,𝑡,𝑀𝑖
, is the error term and 𝟏[𝑌𝑖,𝑡

∗ > 0] is an indicator function. According to the 

work of Duffie et al. (2009), 𝛽0,𝑀𝑖
 and 𝛽𝑀𝑖

 are estimated by different prior 

formulations. The prior 𝑓(𝛽0,𝑀𝑖
) ∝ 1 is used for the estimated coefficients of 

baseline hazard rates and the g-prior proposed by Zellner (1986) is assigned for 

the estimation of coefficients on the covariates, 𝑓(𝛽𝑀𝑖
|𝑀𝑖) = 𝑁 (0, 𝑔(𝑋𝑖,𝑡,𝑀𝑖

′ ∗

𝑋𝑖,𝑡,𝑀𝑖
)

−1
), where 𝑁 is a multivariate normal distribution of the same dimension as 

𝛽𝑀𝑖
and 𝑔 is a scalar parameter controlling the weights of a prior in each posterior 

distribution of 𝑋𝑖,𝑡,𝑀𝑖
. The unit information prior, 𝑔 =

1

𝑛
, is used following the 

suggestion by Fernández et al. (2001), where 𝑛 is the number of observations in 

our sample. If the prior is set to 0, all posterior model parameter estimation of 

used predictors would be shrunk to 0, which implies that some applied predictors 

cannot be used to explain the failed probability of a firm.  

Thus, the prior overall parameters of model 𝑀𝑖 can be generated by the two priors 

conditional on 𝑓(𝛽0,𝑀𝑖
, 𝛽𝑀𝑖

|𝑀𝑖) = 𝑓(𝛽0,𝑀𝑖
) ∗ 𝑓(𝛽𝑀𝑖

|𝑀𝑖) ∝ 𝑁 (0, 𝑔(𝑋𝑖,𝑡,𝑀𝑖

′ ∗ 𝑋𝑖,𝑡,𝑀𝑖
)

−1
) 

and then the estimated coefficients 𝛽̂𝑝,𝑀𝑖
= 𝛽0,𝑀𝑖

, 𝛽𝑀𝑖
 in the BMA version of DH 

models are posterior modes, which can be calculated by maximizing the posterior 

log-likelihood function, written as: 
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𝑙(𝛽̂𝑝,𝑀𝑖
) = ln (𝑓(𝛽̂𝑝,𝑀𝑖

|𝒚, 𝑀𝑖)) = ln (𝑓(𝛽̂𝑝,𝑀𝑖
|𝑀𝑖)) + ln (𝑓(𝒚|𝛽̂𝑝,𝑀𝑖

, 𝑀𝑖)).                    (12) 

In line with the structure of the benchmark model, time dummy and industry 

dummy variables are also considered in the BMA version of the DH models. Thus, 

the log-likelihood function of the BMA version of the DH models including time 

dummy and industry dummy variables can be written respectively as: 

ln (𝑓(𝒚|𝛽0,𝑀𝑖
, 𝛽1,𝑀𝑖

, 𝛽2,𝑀𝑖
, 𝑀𝑖))

= ∑ (𝑌𝑖,𝑡 ∗ ln (
1

1 + exp (−(𝛽0,𝑀𝑖
+ 𝛽1,𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝛽2,𝑀𝑖

′ 𝑇𝑖𝑚𝑒))
)

+ (1 − 𝑌𝑖,𝑡) ∗ ln (
exp (−(𝛽0,𝑀𝑖

+ 𝛽1,𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝛽2,𝑀𝑖

′ 𝑇𝑖𝑚𝑒))

1 + exp (−(𝛽0,𝑀𝑖
+ 𝛽1,𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝛽2,𝑀𝑖

′ 𝑇𝑖𝑚𝑒))
)) , 

𝑌𝑖,𝑡
∗ = 𝛽0,𝑀𝑖

+ 𝛽1,𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝛽2,𝑀𝑖

′ 𝑇𝑖𝑚𝑒 + 𝜀𝑖,𝑡, 

𝑌𝑖,𝑡 = 𝟏[𝑌𝑖,𝑡
∗ > 0], 

𝑣𝑎𝑟(𝑌𝑖,𝑡
∗) = 1,                                                                                                                                 (13) 

and 

ln (𝑓(𝒚|𝛽0,𝑀𝑖
, 𝛽1,𝑀𝑖

, 𝛽2,𝑀𝑖
, 𝑀𝑖))

= ∑ (𝑌𝑖,𝑡 ∗ ln (
1

1 + exp (−(𝛽0,𝑀𝑖
+ 𝛽1,𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝛽2,𝑀𝑖

′ 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦))
)

+ (1 − 𝑌𝑖,𝑡) ∗ ln (
exp (−(𝛽0,𝑀𝑖

+ 𝛽1,𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝛽2,𝑀𝑖

′ 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦))

1 + exp (−(𝛽0,𝑀𝑖
+ 𝛽1,𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝛽2,𝑀𝑖

′ 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦))
)) , 

𝑌𝑖,𝑡
∗ = 𝛽0,𝑀𝑖

+ 𝛽1,𝑀𝑖

′ 𝑋𝑖,𝑡,𝑀𝑖
+ 𝛽2,𝑀𝑖

′ 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 + 𝜀𝑖,𝑡, 

𝑌𝑖,𝑡 = 𝟏[𝑌𝑖,𝑡
∗ > 0], 

𝑣𝑎𝑟(𝑌𝑖,𝑡
∗) = 1.                                                                                                                                 (14) 
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Estimated coefficient parameters in the BMA version of DH models can then be 

achieved by maximizing the corresponding posterior log-likelihood function, as in 

equation (12). 

4.4.3 Naive Bayes (NB) Classifier 

The NB classifier as a probabilistic learning method has been applied in the default 

prediction of firms (Sarkar and Sriram 2001), which can produce probabilistic 

predictions such as DH models. There exist some appealing features of the NB 

classifier. First, it is a simple generative classified approach derived from Bayesian 

theorem, which can be easy to implement, even for users without a specific 

background in statistics. Second, the computation of evaluating the NB classifier 

is simple and the missing values in the dataset can easily be handled in the NB 

classifier when an important presumption known as the class conditional 

independence is satisfied in the NB classifier (Han et al. 2011). This presumption 

is that all characteristics should be independent given a specific class. In reality, 

this assumption is easily broken. However, it does not bring considerable bias into 

the probability estimation and the NB classifier is still able to work well (Domingos 

and Pazzani 1997). This becomes the other important reason why this classifier 

can be widely applied. Moreover, Han et al. (2011) demonstrate that the NB 

classifier is able to produce the minimum error rate during estimation compared 

with decision tree and neural network classifiers, and it is also robust if irrelevant 

features are included.  

In our work, the NB classifier indicates how to classify the vector 𝑋𝑖,𝑡 of various 

characteristics (explanatory variables) 𝐾1, 𝐾2 … , 𝐾𝑛 in equation (1). The interested 

event, 𝑌𝑖,𝑡 only has two classes 𝐶𝑖,𝑡, non-failed class, 0 and failed class, 1 in this 

work. Thus, the NB classifier can classify an object to a specific class having the 

maximum posterior probability given potential features 𝑋𝑖,𝑡 =  {𝐾1, 𝐾2 … , 𝐾𝑛}. The 

posterior probability can be calculated by the Bayes rule. Based on the statement 

of the NB classifier (Han et al. 2011), this procedure can be explained by the 

following: 

𝑌𝑖,𝑡 = 𝐶𝑖,𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝐶𝑖,𝑡|𝑋𝑖,𝑡)) = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑋𝑖,𝑡|𝐶𝑖,𝑡) ∗
𝑝(𝐶𝑖,𝑡)

𝑝(𝑋𝑖,𝑡)
),                        (15) 
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where 𝑝(𝐶𝑖,𝑡|𝑋𝑖,𝑡) is the conditional probability given the vector 𝑋𝑖,𝑡, 𝑝(𝑋𝑖,𝑡|𝐶𝑖,𝑡) is 

equal to the posterior probability of the vector 𝑋𝑖,𝑡 conditioned on a specific class, 

𝐶𝑖,𝑡, 𝑝(𝐶𝑖,𝑡) is the prior probability of 𝐶𝑖,𝑡 and 𝑝(𝑋𝑖,𝑡) is the prior probability of the 

vector 𝑋𝑖,𝑡 . Since 𝑝(𝑋𝑖,𝑡)  is constant in equation (15), according to class 

conditional independence, 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑋𝑖,𝑡|𝐶𝑖,𝑡) ∗
𝑝(𝐶𝑖,𝑡)

𝑝(𝑋𝑖,𝑡)
) in equation (15) can be 

converted into 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑋𝑖,𝑡|𝐶𝑖,𝑡) ∗ 𝑝(𝐶𝑖,𝑡)). Hence, equation (15) can be written 

as: 

𝑌𝑖,𝑡 = 𝐶𝑖,𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑋𝑖,𝑡|𝐶𝑖,𝑡) ∗ 𝑝(𝐶𝑖,𝑡)) ∝ 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝐾1, … , 𝐾𝑛|𝐶𝑖,𝑡) ∗ 𝑝(𝐶𝑖,𝑡))

= 𝑎𝑟𝑔𝑚𝑎𝑥 (∏ 𝑝(𝐾1|𝐶𝑖,𝑡)

𝑛

𝑗=1

∗ 𝑝(𝐶𝑖,𝑡)),                                                        (16) 

where 𝐶𝑖,𝑡 is equal to 0 or 1, and 𝑋𝑖,𝑡 contains all potential factors influencing the 

probability of a firm failing in equation (1).  

To capture the influence of different years on the probability of failure, time 

dummy variables are included as the characteristics in the NB classifier to identify 

the failed event. The probability of a class can be obtained, conditional on 

potential features 𝑊𝑖,𝑡 =  {𝐾1, 𝐾2 … , 𝐾𝑛, 𝑇𝑖𝑚𝑒 𝑑𝑢𝑚𝑚𝑦}  and then the posterior 

probability of this class can be calculated. The procedure can be calculated by 

the following: 

𝑌𝑖,𝑡 = 𝐶𝑖,𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝐶𝑖,𝑡|𝑊𝑖,𝑡)) = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑊𝑖,𝑡|𝐶𝑖,𝑡) ∗
𝑝(𝐶𝑖,𝑡)

𝑝(𝑊𝑖,𝑡)
) 

= 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑊𝑖,𝑡|𝐶𝑖,𝑡) ∗ 𝑝(𝐶𝑖,𝑡)) ∝ 𝑝(𝐾1, … , 𝐾𝑛, 𝑇𝑖𝑚𝑒 𝑑𝑢𝑚𝑚𝑦|𝐶𝑖) ∗ 𝑝(𝐶𝑖)

= ∏ 𝑝(𝐾𝑛, 𝑇𝑖𝑚𝑒 𝑑𝑢𝑚𝑚𝑦|𝐶𝑖) ∗ 𝑝(𝐶𝑖).                                                         (17) 

If the industry effects are also considered in the NB classifier, the potential 

characteristics would be changed to 𝑍𝑖,𝑡 =  {𝐾1, 𝐾2 … , 𝐾𝑛, 𝐼𝑛𝑑𝑢𝑠𝑡𝑦 𝑑𝑢𝑚𝑚𝑦}. Thus, 

the process of getting a specific classification can be written as: 
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𝑌𝑖,𝑡 = 𝐶𝑖,𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝐶𝑖,𝑡|𝑍𝑖,𝑡)) = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑍𝑖,𝑡|𝐶𝑖,𝑡) ∗
𝑝(𝐶𝑖,𝑡)

𝑝(𝑍𝑖,𝑡)
) 

= 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑍𝑖,𝑡|𝐶𝑖,𝑡) ∗ 𝑝(𝐶𝑖,𝑡)) ∝ 𝑝(𝐾1, … , 𝐾𝑛, 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑑𝑢𝑚𝑚𝑦|𝐶𝑖) ∗ 𝑝(𝐶𝑖)

= ∏ 𝑝(𝐾𝑛, 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑑𝑢𝑚𝑚𝑦|𝐶𝑖) ∗ 𝑝(𝐶𝑖).                                                 (18) 

4.4.4 K-nearest neighbours (k-NN) classifier 

The k-NN classifier is a non-parametric method, which classifies the targeted 

objects into some groups based on closest training objects in the feature space. 

It has been implemented in credit risk identification (Davis et al. 1992, Henley 

and Hand 1996, Hand and Vinciotti 2003, Islam et al. 2010). The k-NN classifier 

does not have strict assumption and removes the functions used in the parametric 

method; hence, the flexibility of the k-NN classifier is relatively high and it is 

robust for a noisy dataset (Kuramochi and Karypis 2005). The logit of this classifier 

is distributing an unclassified object into the classification of the nearest of a 

series of already classified objects and then the whole training set is stored in the 

memory. Thus, it can be categorized in a memory-based learning or an instance-

based learning algorithm to generate a probabilistic framework (Aha 1997). In this 

work, following the description in Murphy (2012), the probability of a specific 

classification for an object in the k-NN classifier can be formally written as: 

𝑝(𝑌𝑖,𝑡 = 𝐶𝑖|𝑋𝑖,𝑡, 𝐷, 𝑘) =
1

𝑘
∑ 𝟏(𝑌𝑖,𝑡 = 𝐶𝑖)

𝑖𝜖𝑁𝑘(𝑋𝑖,𝑡,𝐷)

,                                                                  (19) 

where 𝑁𝑘(𝑋𝑖,𝑡, 𝐷) is a specific set where “k” observations in the training data are 

closest to 𝑋𝑖,𝑡. The set, 𝐷, is the distance measure for “closeness”, 𝑋𝑖,𝑡 is already 

defined in equation (1) and 𝟏(𝑒) is the indicator function defined as follows: 

𝟏(𝑒) = {
1 𝑖𝑓 𝑒 𝑖𝑠 𝑡𝑟𝑢𝑒
0 𝑖𝑓 𝑒 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒

.                                                                                                               (20) 

In equation (19), how to choose a suitable distance measure gauging “closeness” 

and how to decide the number of neighbourhoods “k” become statistical issues 

for researchers. For the first issue, Euclidean distance is frequently employed as 

a distance metric to define “closeness” (Han et al. 2011). It is expressed as 
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𝑑(𝐴, 𝐵) = √∑ (𝑎𝑖 − 𝑏𝑖)2𝑛
𝑖=1 , where 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛)  and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛)   are 

two observations in the dataset. For the second, most researchers prefer to choose 

the value of “k” by themselves to fit their purpose and application. Rodriguez et 

al. (2010) recommend that 10-fold cross-validation can be used in the k-NN 

classifier to objectively select “k”, since it can produce less bias and have less 

computational cost than other folds. In our work, the 10-fold cross-validation k-

NN classifier with Euclidian metric distance are applied. The “k” value can be 

automatically selected in the optimal model with the highest accuracy through 

10-fold cross-validation. 

In order to consider time and industry influences on the probability of failure, the 

probability of a specific classification for an object in the k-NN classifier can be 

written as  

𝑝(𝑌𝑖,𝑡 = 𝐶𝑖|𝑊𝑖,𝑡, 𝐷, 𝑘) =
1

𝑘
∑ 𝟏(𝑌𝑖,𝑡 = 𝐶𝑖)

𝑖𝜖𝑁𝑘(𝑊𝑖,𝑡,𝐷)

,                                                                (21) 

and  

𝑝(𝑌𝑖,𝑡 = 𝐶𝑖|𝑍𝑖,𝑡, 𝐷, 𝑘) =
1

𝑘
∑ 𝟏(𝑌𝑖,𝑡 = 𝐶𝑖)

𝑖𝜖𝑁𝑘(𝑍𝑖,𝑡,𝐷)

,                                                                  (22) 

where 𝑊𝑖,𝑡 is equal to {𝑋𝑖,𝑡, 𝑇𝑖𝑚𝑒 𝑑𝑢𝑚𝑚𝑦} and 𝑍𝑖,𝑡 is {𝑋𝑖,𝑡, 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑑𝑢𝑚𝑚𝑦}.  

4.5 Empirical results  

To measure the predictive performance of all competing models, the area under 

receiver operating characteristic curve (ROC curve) known as AUC and the brier 

score are calculated. AUC is a non-parametric measure generated from the 

receiver operating characteristic curve, which is frequently applied to evaluate 

the ability of a model to discriminate between binary events. It has already been 

used in relevant studies to evaluate the predictive ability to identify a default 

event (Shumway 2001, Chava and Jarrow 2004, Bharath and Shumway 2008, Tian 

et al. 2015, Traczynski 2017). The receiver operating characteristic curve is the 

plot of the likelihood of verifying true-positive (in practice, a firm fails, and the 

model classifies it as an interested event) and false-positive (in practice, a firm 
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fails but the model classifies it as an interested non-event) for a whole range of 

probable cut-points of probability values. If AUC is equal to 1, it represents a 

perfect prediction. If AUC is equal to or less than 0.5, it means that the 

corresponding model had no predictability. If the value of AUC is above 0.8, the 

predictive ability may be considered accurate (Hosmer Jr et al. 2013).  

In order to confirm the conclusions from AUC ratios, the brier score is applied, to 

measure how close the predicted probability of a firm’s failure is to its survival. 

It is equal to the average of the squared differences between the forecast 

probabilities and the actual outcomes (1 if a firm fails and 0 if a firm does not 

fail). The brier score can be calculated as 
1

𝑁
∫ (𝑝𝑡 − 𝑜𝑡)2𝑁

𝑡=1
, where 𝑝𝑡  is the 

predictive probability of a firm’s failure and 𝑜𝑡 is the corresponding actual event. 

The lower the brier score is for a series of predictions, the higher the accuracy 

ratio in out-of-sample predictions is deemed to be. 

4.5.1 Whole period (1991-2009) 

4.5.1.1 AUC and brier scores 

The statistics of out-of-sample predictions for all candidate models is reported. 

For the out-of-sample predictions of a failed event, an expanding window method 

is employed based on the past and current information available up to time 𝑇. It 

allows successive observations to be included in the initial sample prior to forecast 

of the next one-step ahead prediction of the failed event, while keeping the start 

date of the sample fixed. By this method, we forecast future failure 𝑓𝑡+1, 𝑓𝑡+2 etc. 

The initial estimation window is 1991 to 2005 and the first prediction date is 2006. 

We then increase 𝑇 by one each time until 𝑇 reaches 2009.  

Table 4-5 indicates all AUC and brier score values among all candidates with or 

without considering time or industry effects. Starting with the analysis of AUC 

measure, the out-of-sample prediction results suggest that the NB classifier 

outperforms other competing models. In comparison with results of models 

related to DH models, this suggests that the percentage of correct predictions 

increases from 67% in the DH model to 68% in the BMA version of DH models 

without considering time or industry effects. This difference is not large, but it 

can be considered a significant improvement in failure prediction, since Campbell 
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et al. (2008) and Traczynski (2017) argue that a 1% difference of predicted default 

probabilities is considerable for a firm, affecting its performance in the stock 

market. This implies that adding BMA into the DH model can improve the 

predictive performance regarding the failure of a firm. Considering two classifiers 

exclusively, the NB classifier produces the best predictive ability of a firm’s 

failure, 74% correct predictions, while the k-NN classifier provides the worst, only 

64% correct prediction. The brier scores further support the conclusion from AUC 

since a model with higher AUC value has a lower brier score and the brier scores 

of the NB classifier are the smallest of all competing models.  

Moving to consideration of time effects or industry effects, models referred to DH 

models are able to provide better predictive performance than the same model 

without time or industry effects in Table 4-5. The value of AUC grows from 69% in 

the DH model to 73% in the BMA version of DH models when time effects are 

controlled. The improvement of prediction is about 1% when comparing the BMA 

version DH models with the DH model considering industry effects. This means 

that between 1991 and 2009 controlling time effects is more important in out-of-

sample prediction than controlling industry effects. However, this trend cannot 

be observed in the results of the NB classifier and k-NN classifier. In particular, 

the NB classifier is still the best model for forecasting the failure of a firm. The 

same conclusion can be reached by comparing brier scores of all competing 

models. 

Table 4-5 AUC and brier scores for all competing models during 1991-2009 

  AUC 

 Brier 

scores   AUC 

 Brier 

scores 

DH 66.74% 0.0314 NB 74.06% 0.0218 

DH + time dummy 69.39% 0.1304 NB + time dummy 74.06% 0.0285 

DH + industry dummy 68.52% 0.0308 NB + industry dummy 72.95% 0.0322 

BMA_DH 67.88% 0.0288 KNN 64.00% 0.0240 

BMA_DH + time dummy 72.98% 0.0246 KNN + time dummy 63.90% 0.0241 

BMA_DH + industry 

dummy 69.33% 0.0286 

KNN + industry 

dummy 63.97% 0.0240 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented as 
“KNN”. “time dummy” model means models with time dummy variables. “industry dummy” represents 
that dummy variables are applied to capture industry effects. 

According to these results, we note that improved predictive ability can be 

observed directly by adding BMA into the benchmark model (DH model). The NB 
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classifier as a simple machine learning model can provide the best predictive 

performance of firms’ failure compared with other candidate models. Controlling 

time or industry effects can improve the predictive accuracy of the DH model and 

BMA version of DH models, especially time effects. However, adding time or 

industry effects cannot significantly influence the predictive ability of the NB 

classifier and the k-NN classifier. 

4.5.1.2 The decile method 

In order to confirm these measures of accuracy, the percentage of failed events 

occurring in each decile of the distribution of predicted values is also calculated 

(Shumway 2001, Chava and Jarrow 2004, Bharath and Shumway 2008, Tian et al. 

2015, Traczynski 2017). The decile method depending on the rank order of firm-

years is not significantly affected by small changes in the predicted probabilities 

of failure, since they are unlikely to change the decile in which a firm-year lies in 

the distribution. The lowest probabilities of failure would be included in the tenth 

decile and the highest probabilities would be in the first decile. Thus, the high 

proportion in high probability deciles suggests high accuracy of out-of-sample 

prediction.  

Table 4-6 and Table 4-7 report the percentage of failed events occurring in each 

decile of the predicted distribution for probability of failure and the corresponding 

AUC for each candidate model. Overall, all models can provide the highest 

percentage in the first decile compared with the rest of the deciles, and, among 

all models, the NB classifier provides the highest predictive accuracy in the first 

decile, 38%. Almost all failed events can be predicted in the first five deciles for 

all competing models. This suggests that candidate models have predictive 

accuracy in the failure of firms. It also can be confirmed that adding time or 

industry effects can improve the out-of-sample forecast accuracy of the DH model 

and BMA version of DH models in each decile prediction, but this influence cannot 

be observed clearly when it comes to the NB classifier and the k-NN classifier. 

These results also verify that simple machine learning models can provide better 

out-of-sample forecast performance than the benchmark model.  
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Table 4-6 Defaults by out-of-sample prediction decile among model related to the DH model 
during 1991-2009 

Decile DH 

DH + time 

dummy 

DH + 

industry 

dummy BMA_DH 

BMA_DH + 

time 

dummy 

BMA_DH + 

industry 

dummy 

1 23.95 23.19 27.76 25.86 30.80 28.90 

2 13.69 9.51 12.93 12.17 19.77 12.55 

3 11.79 16.35 11.03 13.69 11.79 11.41 

4 11.03 18.25 12.17 11.79 10.65 13.31 

5 9.89 9.51 9.13 9.51 6.84 8.37 

6-10 29.65 23.19 26.99 26.99 20.14 25.47 

AUC 66.74% 69.39% 68.52% 67.88% 72.98% 69.33% 

 Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
“time dummy” model means models with time dummy variables. “industry dummy” represents that 
dummy variables are applied to capture industry effects. 

Table 4-7 Defaults by out-of-sample prediction decile in the NB classifier and the k-NN 
classifier during 1991-2009 

Decile NB 

NB + time 

dummy 

NB + 

industry 

dummy KNN 

KNN + time 

dummy 

KNN + 

industry 

dummy 

1 38.02 38.02 31.94 19.77 19.39 19.77 

2 14.45 14.45 13.69 14.83 15.21 14.83 

3 8.75 8.75 13.69 13.31 12.93 13.31 

4 9.13 9.13 14.83 7.60 7.60 7.60 

5 11.03 11.03 8.75 8.37 8.75 8.37 

6-10 18.62 18.62 17.10 36.11 36.11 36.11 

AUC 74.06% 74.06% 72.95% 64.00% 63.90% 63.97% 

Notes: The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented 
as “KNN”. “time dummy” model means models with time dummy variables. “industry dummy” 
represents that dummy variables are applied to capture industry effects. 

4.5.2 The sub-sample periods 

The preceding analysis employed the full-time period (1991 to 2009) which spans 

the onset of the ERM currency crisis and the global financial crisis. It could on the 

one hand be argued that the failure probability for a firm reaches a high level 

during financial crisis and on the other that financial turmoil can provide new 

opportunities for a firm to survive. To detect the influence of crisis-related events 

on probability of failure, we drop the years 1991, 1992 and 1993 to construct the 

post-ERM currency crisis period, remove the years 2008 and 2009 to construct the 

pre-global crisis period and then omit both the ERM currency crisis and the global 

financial crisis to generate the non-crisis period.  
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4.5.2.1 The post-ERM currency crisis period (1994-2009) 

In this exercise, the in-sample spans from 1994 to 2005 while the years between 

2006 and 2009 act as the out-of-sample period. Table 4-8 presents the AUC values, 

while brier scores and the percentage of failed events occurring in each decile for 

each candidate model in the restricted dataset are reported in Table 4-9 and Table 

4-10 respectively.  

Table 4-8 AUC and brier scores for all competing models during 1994-2009 

  AUC 

 Brier 

score   AUC 

 Brier 

score 

DH 68.85% 0.0272 NB 72.61% 0.0247 

DH + time dummy 70.16% 0.0263 NB + time dummy 72.61% 0.0253 

DH + industry dummy 70.39% 0.0269 NB + industry dummy 69.86% 0.0457 

BMA_DH 73.55% 0.0243 KNN 64.97% 0.0243 

BMA_DH + time dummy 72.93% 0.0244 KNN + time dummy 64.92% 0.0243 

BMA_DH + industry 

dummy 74.26% 0.0242 

KNN + industry 

dummy 64.98% 0.0243 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented as 
“KNN”. “time dummy” model means models with time dummy variables. “industry dummy” represents 
that dummy variables are applied to capture industry effects. 

Table 4-9 Defaults by out-of-sample prediction decile among model related to the DH model 
during 1994-2009 

Decile DH 

DH + time 

dummy 

DH + 

industry 

dummy BMA_DH 

BMA_DH + 

time 

dummy 

BMA_DH + 

industry 

dummy 

1 27.00 25.48 28.90 30.42 32.32 32.70 

2 14.45 17.49 14.07 23.57 18.25 20.15 

3 12.17 14.83 14.45 9.13 11.03 13.69 

4 11.41 9.13 8.75 9.13 12.93 6.46 

5 7.98 7.98 9.51 6.84 5.32 7.22 

6-10 27.00 25.10 24.32 20.91 20.14 19.76 

AUC 68.85% 70.16% 70.39% 73.55% 72.93% 74.26% 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
“time dummy” model means models with time dummy variables. “industry dummy” represents that 
dummy variables are applied to capture industry effects. 
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Table 4-10 Defaults by out-of-sample prediction decile in the NB classifier and the k-NN 
classifier during 1994-2009 

Decile NB 

NB + time 

dummy 

NB + 

industry 

dummy KNN 

KNN + time 

dummy 

KNN + 

industry 

dummy 

1 31.18 31.18 28.14 24.33 24.71 24.71 

2 21.29 21.29 19.39 11.79 11.03 11.03 

3 10.27 10.27 10.27 8.75 9.13 9.13 

4 9.13 9.13 10.65 17.87 17.87 17.87 

5 7.98 7.98 6.46 6.46 6.46 6.46 

6-10 20.14 20.14 25.08 30.79 30.79 30.79 

AUC 72.61% 72.61% 69.86% 64.97% 64.92% 64.98% 

Notes: The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented 
as “KNN”. “time dummy” model means models with time dummy variables. “industry dummy” 
represents that dummy variables are applied to capture industry effects. 

Overall, the results in Table 4-8 compared to Table 4-5 suggest that removing the 

ERM currency crisis period can improve the predictive accuracy of all candidate 

models except the NB classifier. We observe that approximately 74% of predictions 

are correct in the BMA version of DH models, which provides the best predictive 

performance among all competing models. Adding time or industry dummy 

variables cannot improve the AUC value in the DH models. It is interesting that 

the AUC value in the BMA version of DH models is reduced by including time effects 

and increased by considering industry effects. This means that the industry 

position of a firm becomes an important factor influencing the probability of firms 

failing after the ERM currency crisis period. Similar to the previous results, adding 

time or industry effects does not enhance the correct out-of-sample predictions 

in the NB classifier and the k-NN classifier. The results of brier scores are 

consistent with those extracted from AUC values. Moving to the analysis in the 

decile method, results in Table 4-9 and Table 4-10 also support our findings in this 

period. The highest percentage (32%) of failed events can be observed in the first 

decile in the BMA version of DH models and it still outperforms others in out-of-

sample prediction measured by decile method.  

4.5.2.2 The pre-global crisis period (1991-2007) 

In this section, the years between 1991 and 2003 are chosen as the in-sample 

period and the remaining years constitute the out-of-sample period. Table 4-11 

reports the AUC and brier scores for all models and Table 4-12 and Table 4-13 



Chapter 4  4.5 Empirical results 

143 

indicate the percentage information of failed events occurring in each decile of 

the distribution of predicted values for all models.  

Table 4-11 AUC and brier scores for all competing models during 1991-2007 

  AUC 

 Brier 

score   AUC 

 Brier 

score 

DH 53.03% 0.0545 NB 69.92% 0.0475 

DH + time dummy 52.05% 0.1384 NB + time dummy 69.92% 0.0622 

DH + industry dummy 54.23% 0.0541 NB + industry dummy 67.90% 0.0617 

BMA_DH 55.37% 0.0517 KNN 63.01% 0.0476 

BMA_DH + time dummy 61.14% 0.0488 KNN + time dummy 63.01% 0.0477 

BMA_DH + industry 

dummy 57.48% 0.0518 

KNN + industry 

dummy 63.00% 0.0477 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented as 
“KNN”. “time dummy” model means models with time dummy variables. “industry dummy” represents 
dummy variables are applied to capture industry effects. 

Table 4-12 Defaults by out-of-sample prediction decile among model related to the DH 
model during 1991-2007 

Decile DH 

DH + time 

dummy 

DH + 

industry 

dummy BMA_DH 

BMA_DH + 

time 

dummy 

BMA_DH + 

industry 

dummy 

1 10.28 9.66 12.31 11.06 16.98 12.15 

2 8.26 4.83 7.48 7.94 14.49 9.97 

3 9.81 12.15 10.28 13.55 12.93 11.37 

4 11.53 14.02 11.68 14.02 11.06 14.64 

5 15.58 13.40 14.33 11.06 9.35 12.62 

6-10 44.55 45.95 43.93 42.37 35.21 39.26 

AUC 53.03% 52.05% 54.23% 55.37% 61.14% 57.48% 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
“time dummy” model means models with time dummy variables. “industry dummy” represents that 
dummy variables are applied to capture industry effects. 

Table 4-13 Defaults by out-of-sample prediction decile in the NB classifier and the k-NN 
classifier during 1991-2007 

Decile NB 

NB + time 

dummy 

NB + 

industry 

dummy KNN 

KNN + time 

dummy 

KNN + 

industry 

dummy 

1 25.23 25.23 25.39 19.63 19.47 19.78 

2 19.31 19.31 15.89 13.24 13.40 13.08 

3 13.08 13.08 9.81 11.99 11.99 12.15 

4 9.81 9.81 10.44 11.84 11.53 11.53 

5 8.26 8.26 10.12 5.30 5.76 5.45 

6-10 24.30 24.30 28.35 38.01 37.84 38.01 

AUC 69.92% 69.92% 67.90% 63.01% 63.01% 63.00% 
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Notes: The Naive Bayes classifier is assigned as “NB” model. The k-nearest neighbours classifier is 
represented as “KNN”. “time dummy” model means models with time dummy variables. “industry 
dummy” represents that dummy variables are applied to capture industry effects. 

From Table 4-11, it can be noted that, compared to Table 4-8, the predictive 

accuracy among all competing models is lower than in the post-ERM currency crisis 

period. The AUC results in Table 4-11 suggest that the NB classifier clearly 

outperforms the benchmark model, since the percentage of correct predictions 

increases from 53% in the DH model to 70% in the NB classifier. It is attractive that 

the BMA version of DH models produces about 10% more correct predictions than 

the DH model through controlling time effects. This trend cannot be achieved by 

considering industry effects in corresponding models. This indicates that the BMA 

version of the DH model can capture more features of the dataset and then 

produce more accurate out-of-sample predictions than the DH model under the 

consideration of time effects in the pre-global crisis period. The failure prediction 

provided by the NB classifier and k-NN classifier is still not sensitive to the 

consideration of time or industry effects. The results of brier scores and the decile 

method for candidate models still confirm the AUC results. In the decile method, 

if the AUC value is greater than 60% in a model, the highest percentage of failed 

events can be obtained in the first decile. 

4.5.2.3 The non-crisis period (1994-2007) 

In this section, the years 1991, 1992, 1993, 2008 and 2009 are removed to reduce 

the effect of two financial crises on out-of-sample predictions in failed events for 

firms. The in-sample spans from 1994 to 2005 while the years between 2006 and 

2007 act as the out-of-sample period. Table 4-14, Table 4-15 and Table 4-16 

respectively illustrate the corresponding AUC values, brier scores and the 

percentage of failed events occurring in each decile for all competing models in 

this dataset.  
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Table 4-14 AUC and brier scores for all competing models during 1994-2007 

  AUC 

 Brier 

score   AUC 

 Brier 

score 

DH 62.71% 0.0403 NB 70.65% 0.0367 

DH + time dummy 59.74% 0.0414 NB + time dummy 70.65% 0.0371 

DH + industry dummy 64.33% 0.0399 NB + industry dummy 68.29% 0.0568 

BMA_DH 65.22% 0.0380 KNN 66.55% 0.0360 

BMA_DH + time dummy 65.22% 0.0380 KNN + time dummy 66.49% 0.0360 

BMA_DH + industry 

dummy 66.68% 0.0378 

KNN + industry 

dummy 66.55% 0.0360 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented as 
“KNN”. “time dummy” model means models with time dummy variables. “industry dummy” represents 
that dummy variables are applied to capture industry effects. 

Table 4-15 Defaults by out-of-sample prediction decile among model related to the DH 
model during 1994-2007 

Decile DH 

DH + time 

dummy 

DH + 

industry 

dummy BMA_DH 

BMA_DH + 

time 

dummy 

BMA_DH + 

industry 

dummy 

1 20.59 20.59 24.37 22.27 22.27 26.05 

2 14.71 9.66 13.03 15.97 15.97 15.97 

3 10.92 12.18 12.61 15.97 15.97 13.03 

4 12.61 9.24 11.34 7.98 7.98 11.76 

5 8.40 11.76 7.14 5.88 5.88 5.04 

6-10 32.76 36.54 31.50 31.92 31.92 28.14 

AUC 62.71% 59.74% 64.33% 65.22% 65.22% 66.68% 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
“time dummy” model means models with time dummy variables. “industry dummy” represents that 
dummy variables are applied to capture industry effects. 

Table 4-16 Defaults by out-of-sample prediction decile in the NB classifier and the k-NN 
classifier during 1994-2007 

Decile NB 

NB + time 

dummy 

NB + 

industry 

dummy KNN 

KNN + time 

dummy 

KNN + 

industry 

dummy 

1 27.31 27.31 26.47 24.79 24.79 24.79 

2 19.33 19.33 18.49 16.81 16.39 16.81 

3 14.29 14.29 12.18 11.76 12.18 12.18 

4 10.50 10.50 8.40 7.98 7.98 7.56 

5 7.56 7.56 6.72 6.30 6.30 6.30 

6-10 21.00 21.00 27.72 32.34 32.34 32.34 

AUC 70.65% 70.65% 68.29% 66.55% 66.49% 66.55% 

Notes: The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented 
as “KNN”. “time dummy” model means models with time dummy variables. “industry dummy” 
represents that dummy variables are applied to capture industry effects. 
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The results in Table 4-14 demonstrate that competing models can provide more 

accurate predictions in this period compared with the pre-global crisis period and 

less accurate predictions compared with post-ERM currency crisis period. This 

suggests that the ERM currency crisis more heavily affected the prediction of 

failure for private firms than did the global financial crisis in the UK. The highest 

predictive accuracy in a firm’s failure is produced by the NB classifier and the 

lowest predictive performance is provided by the DH model. It should be noted 

that considering time effects does not improve the correct prediction in all 

candidate models. There exists about a 2% increase in the percentage of correct 

predictions in the DH model and the BMA version of DH models after controlling 

industry effects, while this tendency cannot be observed in the NB classifier and 

the k-NN classifier in Table 4-14. This suggests that controlling industry effects 

can provide better prediction in the non-crisis period. The brier scores meet the 

expectation that a model with higher AUC value has lower brier scores. For the 

decile method, the results in Table 4-15 and Table 4-16 support these conclusions. 

The highest percentage of failed events can be identified in the first decile of the 

distribution of predicted values among all competing models and the NB classifier 

provides the best performance in the decile measure.  

4.5.2.4 Discussion 

To sum up, the predictive performance in prediction of failure of all candidate 

models is influenced by financial crises, according to the out-of-sample 

evaluations. Among three sub-period samples, candidate models provide the best 

predictive performance during the post-ERM currency crisis period (1994-2009) 

and the worst predictive performance during the pre-global crisis period (1991-

2007). This suggests that the ERM currency crisis heavily influenced the operations 

of UK private firms and significantly reduced the predictive ability of candidate 

models compared with the global crisis in the UK. In other words, a financial crisis 

that begins in the UK has a greater effect on a private firm’s failure in the UK 

compared to a crisis that started elsewhere. It also can be observed that the NB 

classifier outperforms other models in failure prediction apart from the post-ERM 

currency crisis period. This indicates that the simple classifiers in machine 

learning techniques still have relatively high predictive accuracy regarding a firm’s 

failure. Due to the simple application, the NB classifier can be recommended for 

future prediction of failure. Similar to the results over the whole period, adding 
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BMA can improve the predictive power of the DH model when it comes to firms’ 

failure, since the BMA version of the DH model considers parameter and model 

uncertainty in prediction. Controlling time or industry effects can significantly 

improve accuracy of out-of-sample prediction in the DH models and its BMA 

version while it does not work on the NB classifier and k-NN classifier. In 

particular, industry effects have better predictive ability than time effects in the 

post-ERM currency crisis period and non-crisis period while time effects are more 

important in the pre-global crisis period and over the whole sample. 

4.5.3 The sub-samples in cross sections 

4.5.3.1 The sub-samples in firm size 

Since firm heterogeneity was identified in Section 3, we first separate firms into 

small and large firms to control cross-sectional difference.2 With respect to small 

firms, the AUC values, brier scores and the percentage of failed events occurring 

in each decile for all competing models are reported in Table 4-17, Table 4-18 and 

Table 4-19 respectively. For large firms, all information is documented in Table 

4-20, Table 4-21 and Table 4-22.  

Starting with small firms, we note that, among all candidate models in Table 4-17, 

the best predictive performance is provided by the BMA version of DH models. The 

AUC improves from about 69% in the DH model to around 73% in the BMA version 

of DH models without considering either time or industry effects. It confirms 

previous conclusions that adding BMA to the DH model can improve predictive 

ability. It is interesting to note that the NB classifier does not outperform the BMA 

version of DH models in terms of out-of-sample accuracy, even when time or 

industry dummy variables are included. For both the DH model and the BMA 

version of DH models, adding industry effects increases by about 2% in AUC. It 

means that controlling industry effects for small firms can improve the predictive 

ability of the DH and its BMA version. The predictive performance of the NB 

classifier and the k-NN classifier is not sensitive to adding time or industry effects. 

These results can be validated by brier scores (Table 4-17) and decile method 

                                         
2 In these sub-samples, the data period spanning from 1991 to 2005 is chosen as the in-sample 

period, while the remaining years between 2006 and 2009 are considered as the out-of-sample 
period. 
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(Table 4-18 and Table 4-19). The highest percentage of failures can be observed 

in the first decile of the distribution of predicted values in the BMA version of DH 

models and its first five deciles are about 80%.  

Table 4-17 AUC and brier scores for all competing models during 1991-2009_small firms 

  AUC 

 Brier 

scores   AUC 

 Brier 

scores 

DH 69.12% 0.0438 NB 70.23% 0.0309 

DH + time dummy 57.12% 0.4624 NB + time dummy 70.23% 0.0382 

DH + industry dummy 70.57% 0.0434 NB + industry dummy 68.85% 0.0424 

BMA_DH 72.53% 0.0375 KNN 64.31% 0.0331 

BMA_DH + time dummy 73.13% 0.0344 KNN + time dummy 64.23% 0.0332 

BMA_DH + industry 

dummy 73.14% 0.0373 

KNN + industry 

dummy 64.33% 0.0331 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented as 
“KNN”. “time dummy” model means models with time dummy variables. “industry dummy” represents 
that dummy variables are applied to capture industry effects. 

Table 4-18 Defaults by out-of-sample prediction decile among model related to the DH 
model during 1991-2009_small firms 

Decile DH 
DH + time 
dummy 

DH + 
industry 
dummy BMA_DH 

BMA_DH + 
time 
dummy 

BMA_DH + 
industry 
dummy 

1 24.24 6.06 24.85 25.45 28.48 27.27 

2 11.52 0.61 16.36 14.55 21.21 17.58 

3 19.39 21.21 16.97 21.21 12.12 17.58 

4 13.33 22.42 10.30 12.12 10.91 12.73 

5 6.67 11.52 9.70 9.70 9.70 7.88 

6-10 24.85 38.19 21.82 16.98 17.57 16.97 

AUC 69.12% 57.12% 70.57% 72.53% 73.13% 73.14% 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
“time dummy” model means models with time dummy variables. “industry dummy” represents that 
dummy variables are applied to capture industry effects. 

Table 4-19 Defaults by out-of-sample prediction decile in the NB classifier and the k-NN 
classifier during 1991-2009_small firms 

Decile NB 
NB + time 
dummy 

NB + 
industry 
dummy KNN 

KNN + time 
dummy 

KNN + 
industry 
dummy 

1 32.12 32.12 26.06 16.97 16.97 16.97 

2 14.55 14.55 19.39 18.79 18.79 18.79 

3 10.91 10.91 9.70 6.06 5.45 7.27 

4 6.06 6.06 7.88 13.94 14.55 12.73 

5 7.27 7.27 12.12 13.33 13.33 13.94 

6-10 29.10 29.10 24.85 30.90 30.90 30.30 

AUC 70.23% 70.23% 68.85% 64.31% 64.23% 64.33% 
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Notes: The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented 
as “KNN”. “time dummy” model means models with time dummy variables. “industry dummy” 
represents that dummy variables are applied to capture industry effects. 

Moving to large firms, comparing Table 4-17 and Table 4-20 shows that the 

predictive power of applied models is on average lower than in small firms except 

the NB classifier. The NB classifier provides the higher percentage of correct 

prediction in firms’ failure compared with other candidates in Table 4-20. It still 

confirms that adding BMA can improve predictive performance, since the AUC 

value increases from about 60% in DH models to about 67% in the BMA version of 

DH models. It is interesting to point out that the predictive powers of all models 

do not significantly change when considering time or industry effects in large 

firms. This implies that predictions of failure of large firms produced by all models 

are not sensitive to year and industry positions. The brier scores suggest a similar 

conclusion in Table 4-20. In Table 4-21 and Table 4-22, in terms of decile method, 

the highest predictive power can be observed in the first decile of the NB 

classifier, which is consistent with the above results. 

Table 4-20 AUC and brier scores for all competing models during 1991-2009_large firms 

  AUC 

 Brier 

scores   AUC 

 Brier 

scores 

DH 59.36% 0.0220 NB 72.37% 0.0147 

DH + time dummy 56.04% 0.5369 NB + time dummy 72.37% 0.0243 

DH + industry dummy 62.30% 0.0215 NB + industry dummy 73.37% 0.0222 

BMA_DH 67.10% 0.0203 KNN 62.35% 0.0163 

BMA_DH + time dummy 67.10% 0.0203 KNN + time dummy 62.90% 0.0163 

BMA_DH + industry 

dummy 67.68% 0.0201 

KNN + industry 

dummy 62.67% 0.0163 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented as 
“KNN”. “time dummy” model means models with time dummy variables. “industry dummy” represents 
that dummy variables are applied to capture industry effects. 
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Table 4-21 Defaults by out-of-sample prediction decile among model related to the DH 
model during 1991-2009_large firms 

Decile DH 
DH + time 
dummy 

DH + 
industry 
dummy BMA_DH 

BMA_DH + 
time 
dummy 

BMA_DH + 
industry 
dummy 

1 15.31 4.08 18.37 12.24 12.24 15.31 

2 8.16 5.1 10.20 15.31 15.31 16.33 

3 10.20 19.39 9.18 19.39 19.39 17.35 

4 15.31 27.55 16.33 19.39 19.39 16.33 

5 8.16 16.33 10.20 12.24 12.24 14.29 

6-10 42.86 27.54 35.71 21.42 21.42 20.40 

AUC 59.36% 56.04% 62.30% 67.10% 67.10% 67.68% 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
“time dummy” model means models with time dummy variables. “industry dummy” represents that 
dummy variables are applied to capture industry effects. 

Table 4-22 Defaults by out-of-sample prediction decile in the NB classifier and the k-NN 
classifier during 1991-2009_large firms 

Decile NB 
NB + time 
dummy 

NB + 
industry 
dummy KNN 

KNN + time 
dummy 

KNN + 
industry 
dummy 

1 36.73 36.73 31.63 20.41 20.41 20.41 

2 15.31 15.31 19.39 16.33 17.35 18.37 

3 10.20 10.20 11.22 4.08 5.10 4.08 

4 6.12 6.12 11.22 14.29 9.18 8.16 

5 9.18 9.18 10.20 7.14 9.18 10.20 

6-10 22.44 22.44 16.32 37.75 38.76 38.76 

AUC 72.37% 72.37% 73.37% 62.35% 62.90% 62.67% 

Notes: The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented 
as “KNN”. “time dummy” model means models with time dummy variables. “industry dummy” 
represents that dummy variables are applied to capture industry effects. 

4.5.3.2 The sub-samples in firm age 

In this section, we differentiate young from old firms in the same period. The in-

sample and out-of-sample periods are also the same as in the previous section. 

Table 4-23, Table 4-24 and Table 4-25 report the AUC values, brier scores and the 

percentage of failed events for young companies respectively. 
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Table 4-23 AUC and brier scores for all competing models during 1991-2009_young firms 

  AUC 

 Brier 

scores   AUC 

 Brier 

scores 

DH 61.86% 0.0404 NB 70.87% 0.0288 

DH + time dummy 56.79% 0.4620 NB + time dummy 70.87% 0.0431 

DH + industry dummy 64.86% 0.0394 NB + industry dummy 72.72% 0.0390 

BMA_DH 63.72% 0.0396 KNN 61.47% 0.0315 

BMA_DH + time dummy 69.98% 0.0321 KNN + time dummy 61.39% 0.0315 

BMA_DH + industry 

dummy 69.93% 0.0362 

KNN + industry 

dummy 61.45% 0.0315 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented as 
“KNN”. “time dummy” model means models with time dummy variables. “industry dummy” represents 
that dummy variables are applied to capture industry effects. 

Table 4-24 Defaults by out-of-sample prediction decile among model related to the DH 
model during 1991-2009_young firms 

Decile DH 
DH + time 
dummy 

DH + 
industry 
dummy BMA_DH 

BMA_DH + 
time 
dummy 

BMA_DH + 
industry 
dummy 

1 22.88 5.88 24.18 22.22 25.49 21.57 

2 9.80 1.96 12.42 10.46 17.65 20.26 

3 7.84 20.26 9.80 10.46 16.99 10.46 

4 9.80 22.88 11.11 11.11 10.46 15.03 

5 10.46 12.42 10.46 13.73 5.88 10.46 

6-10 39.21 36.59 32.02 32.03 23.53 22.22 

AUC 61.86% 56.79% 64.86% 63.72% 69.98% 69.93% 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
“time dummy” model means models with time dummy variables. “industry dummy” represents that 
dummy variables are applied to capture industry effects. 

Table 4-25 Defaults by out-of-sample prediction decile in the NB classifier and the k-NN 
classifier during 1991-2009_young firms 

Decile NB 
NB + time 
dummy 

NB + 
industry 
dummy KNN 

KNN + time 
dummy 

KNN + 
industry 
dummy 

1 38.56 38.56 31.37 13.07 13.07 13.07 

2 11.11 11.11 13.07 13.73 13.73 13.73 

3 5.88 5.88 17.65 11.76 11.76 11.76 

4 8.50 8.50 8.50 20.26 19.61 19.61 

5 10.46 10.46 9.80 9.15 9.80 9.80 

6-10 25.49 25.49 19.62 32.03 32.03 32.03 

AUC 70.87% 70.87% 72.72% 61.47% 61.39% 61.45% 

Notes: The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented 
as “KNN”. “time dummy” model means models with time dummy variables. “industry dummy” 
represents that dummy variables are applied to capture industry effects. 

Based on Table 4-23, adding BMA to the DH model improves the AUC value from 

about 62% to 64%. The predictive performance of the BMA version of DH models 
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cannot outperform that of the NB classifier, but it is better than that of the k-NN 

classifier in Table 4-23 according to both AUC and brier scores. Similar to sub-

samples of firm size, adding time effects does not increase the AUC values or 

decrease brier scores in the DH model, NB classifier and k-NN classifier. In this 

sample, industry effects have more power than time effects to increase AUC 

values for all candidates except the k-NN classifier. This suggests that industry 

effects are important in prediction of failure in the case of young firms. These 

results are also supported by decile methods in Table 4-24 and Table 4-25. In the 

NB classifier, the highest predictive ability can be observed in the first decile and 

about 80% correct prediction rate in the first five deciles. 

Table 4-26 AUC and brier scores for all competing models during 1991-2009_old firms 

  AUC 

 Brier 

scores   AUC 

 Brier 

scores 

DH 69.91% 0.0247 NB 74.69% 0.0163 

DH + time dummy 58.03% 0.4830 NB + time dummy 74.69% 0.0187 

DH + industry dummy 70.19% 0.0247 NB + industry dummy 70.67% 0.0288 

BMA_DH 73.56% 0.0203 KNN 64.94% 0.0179 

BMA_DH + time dummy 73.56% 0.0203 KNN + time dummy 64.06% 0.0182 

BMA_DH + industry dummy 72.87% 0.0203 KNN + industry dummy 64.19% 0.0182 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented as 
“KNN”. “time dummy” model means models with time dummy variables. “industry dummy” represents 
that dummy variables are applied to capture industry effects. 

Table 4-27 Defaults by out-of-sample prediction decile among model related to the DH 
model during 1991-2009_old firms 

Decile DH 
DH + time 
dummy 

DH + 
industry 
dummy BMA_DH 

BMA_DH + 
time 
dummy 

BMA_DH 
with 
industry 
dummy 

1 28.18 4.55 29.09 24.55 24.55 24.55 

2 12.73 2.73 13.64 17.27 17.27 19.09 

3 10.91 19.09 11.82 16.36 16.36 15.45 

4 12.73 23.64 10.91 16.36 16.36 13.64 

5 10.00 15.45 10.91 10.91 10.91 10.00 

6-10 25.46 34.54 23.63 14.55 14.55 17.27 

AUC 69.91% 58.03% 70.19% 73.56% 73.56% 72.87% 

Notes: “DH” means the discrete hazard model. “BMA_DH” represents the BMA version of DH models. 
“time dummy” model means models with time dummy variables. “industry dummy” represents that 
dummy variables are applied to capture industry effects. 
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Table 4-28 Defaults by out-of-sample prediction decile in the NB classifier and the k-NN 
classifier during 1991-2009_old firms 

Decile NB 
NB + time 
dummy 

NB + 
industry 
dummy KNN 

KNN + time 
dummy 

KNN + 
industry 
dummy 

1 38.18 38.18 28.18 27.27 26.36 26.36 

2 12.73 12.73 15.45 11.82 14.55 14.55 

3 10.91 10.91 17.27 10.91 3.64 2.73 

4 10.00 10.00 13.64 4.55 7.27 12.73 

5 10.00 10.00 7.27 13.64 12.73 8.18 

6-10 18.19 18.19 18.19 31.81 35.46 35.46 

AUC 74.69% 74.69% 70.67% 64.94% 64.06% 64.19% 

Notes: The Naive Bayes classifier is assigned as “NB”. The k-nearest neighbours classifier is represented 
as “KNN”. “time dummy” model means models with time dummy variables. “industry dummy” 
represents that dummy variables are applied to capture industry effects. 

Moving to old firms, it should be noted that the AUC values are generally higher 

than for young firms when we compare Table 4-23 and Table 4-26. This means 

that all candidates can more efficiently provide out-of-sample predictions for old 

firms. The NB classifier consistently provides the highest AUC value among all 

models. The predictive power of the DH model can be improved by adding BMA. 

It is interesting to note that adding time or industry effects does not improve 

predictive ability for all models with reference to old firms. Table 4-27 and Table 

4-28 report the percentage of correct prediction in each decile. It can be seen 

that the highest value of this correct prediction rate in the first decile is in the 

NB classifier and that in the top five deciles it is in the BMA version of DH models. 

This is not a very unexpected result since the AUC values are comparable in these 

two models.   

4.5.3.3 Discussion 

Considering firm heterogeneities in the dataset, our results indicate that all 

candidate models can provide higher predictive ability for small or old firms 

compared to large or young firms. It has been well known that the causes of firms’ 

failure are different between small (young) and large (old) firms. From these 

internal and external causes, there exists a similar cause for both small and old 

firms’ failure, which is the change in market conditions. Sipa et al. (2015) suggest 

that the operation of small firms is sensitive to the change in market conditions, 

since they do not have effective control and plentiful cash flow planning compared 

with large firms (Charitou et al. 2004). Thornhill and Amit (2003) suggest that the 
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failure of old firms is associated with an inability to adjust to market changes 

compared with younger firms, because old firms already have stable resources and 

competitive capabilities in an industry and they do not find it easy to change 

business direction. During the period when the data was applied, when two 

important financial crises occurred in the UK, small or old firms were more likely 

to fail than large or young firms because of the change in market conditions. 

According to our results, the candidate models can provide better predictive 

performance for small or old firms’ failure, which implies that the models applied 

can be used in future to detect the failure of small or old firms in periods of 

financial turmoil. Based on the prediction of failure, market participants can 

attempt rescue strategies in advance to keep economic vitality. In addition, for 

old and large firms, the predictions of failure are not be clearly affected by 

considering time or industry effects compared with small and young firms. This 

confirms that old and large firms have relatively more stable operating ability in 

comparison to young and small firms. 

4.6 Conclusion  

The failure of a firm should be carefully forecasted since it is an event which can 

bring significant wealth losses for market participants and even lead to economic 

depression. Thus, a reasonable margin of accuracy in failure prediction for firms 

can bring many benefits for the public. The prediction of failure for private firms 

in the UK is modelled by the discrete hazard (DH) model, the Bayesian Model 

Averaging (BMA) version of DH models, the Naive Bayes Classifier (NB) and the K-

nearest neighbour (k-NN) classifier in this chapter. Annual data of firm-specific 

factors and macroeconomic variables for a period of about twenty years (1991 to 

2009) is employed as the input in the benchmark model (the DH model) and all 

competing models. This model selection not only follows the literature of binary 

dependent variable models, but also compares predictive performance of the 

reduce-form models and simple machine learning models.  

First, the explanatory ability of financial ratios and macroeconomic predictors in 

the prediction of failure for the UK firms is confirmed. Second, the predictive 

performance of the DH model in prediction can be significantly improved by adding 

the BMA technique. Furthermore, the NB classifier produces higher predictive 

accuracy than other competing models in the out-of-sample prediction for a firm’s 
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failure. The non-strict assumption leads to the greater flexibility of the NB and k-

NN classifiers compared to reduced-form models when it comes to capturing the 

characteristics of the dataset. These classifiers do not however consider 

parameter uncertainty and model uncertainty. Among all candidate models, the 

BMA version of DH models is the only one in this study which considers parameter 

and model uncertainty. The BMA version of DH models can also produce 

comparable predictions with the NB classifier in some samples. In addition, 

controlling time dummy or industry dummy variables can provide better predictive 

performance than without adding them in different periods, especially for the DH 

model and its BMA version. Moreover, due to the two financial crises covered in 

the data period, according to the empirical results in different time periods, it 

can be confirmed that the predictive ability of all candidate models is affected by 

financial crises, especially the ERM currency crisis. Finally, to capture 

heterogeneities between firms, we distinguish the dataset into cross-sectional 

sub-samples based on firm size and age. We observe that the failure of a small or 

old private firm can be predicted more accurately than that of large or young 

private firms.  

These results suggest that the simple classifier, the NB classifier, still can be 

widely applied to the prediction of failure, since it does not require a priori 

knowledge of this method and does not need to satisfy assumptions carefully. Over 

time, the reasons causing the failure of firms will change, which implies that the 

“best” model would also change. To solve the parameter and model uncertainty, 

the BMA version of the DH model is a reasonable model selection to improve 

predictive accuracy in further research. 
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Chapter 5 Conclusion  

The market implied rating, IPO decisions and failure are important events in a 

firm’s operation, which are associated with its financial health and the economic 

environment. The accurate prediction of such events heavily influences the 

identification of potential investment opportunities and the reduction of credit 

risk for market participants, which are already achieved by reduced-form models 

in finance. To achieve more flexibility and more accurate prediction, the 

properties of variable selection techniques (LASSO techniques and model 

averaging approaches) are employed in this thesis.   

In Chapter 2, we made a methodological contribution with regards to the 

improvement of predictive power through applying variable selection techniques 

(the least absolute shrinkage and selection operator, LASSO, and its derivation, 

the Elastic net) to reduced-form models in order to forecast market implied 

ratings. Since market implied ratings updated in a timely fashion can reduce the 

outdated nature of ratings compared with long-term ratings, better forecasts of 

market implied ratings can be considered as more accurate and early signals of 

the change in credit risk. During the forecast exercise in Chapter 2, an extensive 

dataset containing firm-specific indicators, market-driven variables and 

macroeconomic factors were considered as potential predictors to determine and 

predict the market implied ratings extracted from Fitch’s database from 2002 to 

2008. Our results corroborate that LASSO models are able to select a small set of 

relevant predictors from the vast potential predictors, which suggests that market 

implied ratings are related to financial and business risks. It also implies that the 

sparse representation generated can in future be applied directly. Next, the 

predictive performances in the out-of-sample for LASSO models are clearly 

superior to those of the ordered probit model, which has mostly been adopted in 

the literature. This provides sufficient evidence that LASSO models can produce 

improved predictive ability, which can be implemented widely in subsequent 

research. Finally, we also confirm that the BIC-type tuning parameter selector can 

successfully use information from fewer predictors and then provide more 

accurate out-of-sample predictions than their counterparts with AIC-type 

selector.  
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Chapter 3 focused on applying LASSO to model binary events such as IPO decisions. 

The operating status of banks is linked to the entire economic efficiency. Making 

correct predictions of IPO decisions can be regarded as a way of assessing the 

health of banks. To investigate the probability of banks deciding to go public by 

IPO issuance, we applied bank-specific accounting ratios and other publicly 

available information in the semi-parametric Cox proportional hazard model, 

which is fundamental in the literature. We then extended this Cox model to its L1 

penalized versions by adding LASSO. Our results illustrate that a significant 

improvement in the predictive ability can be observed in the L1 penalized semi-

parametric Cox proportional hazard model incorporating fewer predictors 

compared to the standard frameworks used in the literature. To validate our 

conclusions, discrete hazard model, logistic model and their corresponding L1 

penalized models were implemented. They were however unable to perform 

better than the L1 penalized semi-parametric Cox proportional hazard model in 

out-of-sample predictions of IPO decisions for banks. This evidence further 

supports the argument that adding LASSO into reduce-form models can improve 

predictive ability. To explore the sensitivity of our findings to different economic 

conditions, we divided our sample into three parts: the pre-crisis period (1996-

2006), the crisis period (2007-2009) and the post-crisis period (2010-2016). It 

should be noted that the sensitivity of a bank’s IPO to financial characteristics was 

higher during the global financial crisis. Chapters 2 and 3 suggest that LASSO 

models can consistently produce improved predictive performance and 

simultaneously identify the most important predictors, which can be 

recommended in the forecast of both ordinal and binary financial outcomes in the 

future. 

In another attempt to produce more accurate predictions, in Chapter 4 we applied 

model averaging technique to predict the failure of private firms in the UK. 

Compared with listed firms, these unlisted firms have become a new powerhouse 

to boost the economy. Providing reasonable accuracy of prediction can help 

market participants identify potential credit risk and reduce loss. We employed 

accounting ratios and macroeconomic indicators in the discrete hazard (DH) 

model, the Bayesian Model Averaging (BMA) version of discrete hazard models, 

Naive Bayes (NB) classifier and k-nearest neighbour (k-NN) classifier to forecast 

the failure of private firms. Based on our results, we suggest that adding the BMA 
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approach can improve the predictive ability of the discrete hazard model. This 

means that the BMA version of DH models can perform better than the discrete 

hazard model and solve the parameter and model uncertainty at the same time. 

If time dummy or industry dummy variables are added, the accuracy ratios in out-

of-sample prediction are increased in our candidate models, especially for 

discrete hazard models and their BMA version. This means that time and industry 

effects should be considered in the forecast of failure. Furthermore, financial 

crisis can affect the predictive ability of all candidate models. Our results also 

indicate that firm heterogeneity is another factor affecting the predictive power 

for each candidate. We finally suggested that the BMA version of discrete hazard 

models and Naive Bayes Classifier can produce a comparably higher percentage of 

correct failure prediction. Both can be applied in failure prediction, while only 

the BMA version of discrete hazard models solves parameter and model 

uncertainty. 

In consequence, variable selection techniques such as LASSO or Bayesian Model 

Averaging can be combined in the reduced-form models to improve predictive 

performance and identify the most relevant predictors when an extensive set of 

predictors are used. Due to the flexibility of these variable selection techniques, 

the changed structure of financial outcomes can be captured over time. In future 

research, this work may be developed through several topics. One approach is to 

identify the important indicators by LASSO or Bayesian Model Averaging in a 

structural model and then predict an important event in the course of firms’ 

operation such as the issuance of bonds. In addition, it is possible to apply 

different types of variable selection techniques in other reduced-form models with 

continuous dependent variables and then examine the predictive performance or 

investigate the important determinants.    

 


