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by Salma Islam

The main focus of this work is to make use of a novel tool in the cosmologist’s toolbox

when it comes to constraining the parameters of the peculiar velocity fields of the nearby

Universe called ROBUST, whose unique properties and lack of reliance on secondary

distance indicators sets it apart from other available constraining techniques, rendering

it potentially very useful for future upcoming surveys such as the LSST and the SKA.

While ROBUST proves itself more than adequate in constraining parameters in a mock

controlled environment with the IRAS PSCz survey, it begins to struggle when applied to

the real-world 2MRS survey, primarily due to an inherent fault in the survey that causes

it to not function properly with the program. These problems persist even when we

begin to make use of one of the ancillary tools developed in conjunction with ROBUST,

namely relative entropy, despite it once again continuing to function adequately across

multiple mock realisations.

It is the conclusion of this work that while ROBUST is not successful in recovering

values for the cosmological parameters we seek to constrain, this does not necessarily

negate its viability for use with upcoming surveys, as it has proven itself successful in

determining exclusion intervals on the value of the linear redshift distortion parameter

β for real world surveys that are in very good agreement with the generally small values

computed by contemporary velocity-velocity constraining tehniques such as VELMOD

and χ2-minimisation, while also confidently ruling out the results of older density-density

constraining techniques such as POTENT that favour values closer to unity.
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tortion parameter, relative entropy
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t Time s
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vLG Peculiar velocity in the Local Group frame kms−1

xl



Symbols

vpec Peculiar velocity kms−1

W̃ (kR) Fourier transform of top-hat window of radius R

wL(r) Luminosity-based galaxy weight

Ylm Spherical harmonics

Z Corrected distance modulus

z Redshift

zu Upper redshift limit kms−1

xli





Dedicated to my late grandfather Medhat Islam, and my father

Sherief Islam, whose unceasing encouragement to look up into the

heavens and wonder and contemplate my place in it has made me

who I am today. I wouldn’t change it for anything.

Also for my recently departed grandfather Ahmed Gaber Barakat
who never got to see this published as he had wished, but never

stopped believing in me and waiting to see me so that he could hold
this and ask me all about it. I missed you by a few days Geddo, but
look forward to meeting you again in a better place so that I can
do just that and share with you all you want. I miss you so much.

xliii





Preface

In recent years the statistical analysis of galaxy redshift surveys has led to the con-

straining of several cosmological parameters in the current ΛCDM model, allowing us

to learn more about the Universe as a whole, be it learning more about the underlying

dark matter distribution in the nearby Universe, analysing and constraining the peculiar

velocity fields of galaxies as a function of luminosity or by means of standard candles

such as Type Ia supernovae, identifying all kinds of selection effects that inhibit our

ability to effectively constrain parameters, the list is endless. This thesis aims to detail

the work and research that has been done so far with regards to some of the statistical

tools available (particularly a brief look into the use of χ2 minimisation techniques, and

a more in depth look into the application of the ROBUST method) to constrain the

linear redshift distortion parameter β and the attempts made to confirm the results

published by fellow colleagues in the field, a task that in itself was initiated as part of an

MSc summer project that was meant to lay the foundations from which this particular

doctorate of research was borne [95].

In this thesis we will study one particular aspect of dark matter cosmology: the peculiar

velocity field. In being better able to define this field, we will have a better handle

on the distribution of dark matter that generates it. In order to do this, we need to

identify and constrain something called the linear redshift distortion parameter,

upon which the peculiar velocity field is linearly dependent. Although several methods

exist with which this parameter can be constrained, we will focus on two avenues:

� Applying a velocity-velocity interpolation technique such as χ2-minimisation us-

ing current redshift surveys and standard candles such as Type Ia supernovae to

determine the most probable value of the parameter that fits observed data,

� Applying the statistical tool ROBUST as developed by Rauzy and Hendry [160]

to determine the most probable value of the distortion parameter using galaxy

luminosity functions.
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Preface

While velocity-velocity interpolation techniques such as χ2-minimisation and VELMOD

are nothing new, having been frequently used in the works of other cosmologists and

astrophysicists alongside other methods to constrain a vast array of cosmological param-

eters such as the dark matter/energy densities ΩM and ΩΛ, they possess a limitation in

that additional information in the form of secondary distance indicators (such as Type

Ia Sne) are required in order for these comparisons to work. ROBUST is unique in that

not only is it a novel approach to constraining parameters using the luminosity functions

of the underlying data, but it also removes these limitations and makes full use of the

surveys at hand to constrain whatever parameter we desire effectively.

It is the purpose of this thesis to explore the possibilities of ROBUST for use with real

world datasets, as it has not seen much use outside of mock simulated runs. In particular

we aim to investigate the following:

� While still in the simulated run stage, we shall explore the efficacy of ROBUST

in recovering the linear redshift distortion parameter, and observe the sensitivity

of the method to varying mock survey sizes, redshift reconstruction and distance

errors.

� Considering that ROBUST requires galaxy luminosity functions to operate, we

will explore how efficiently ROBUST returns a value for the distortion parameter

when various luminosity functions are applied. In particular we will explore the

effects when both Gaussian and Schechter luminosity functions (both of which are

typical of various surveys and galactic environments) are used.

� Finally take ROBUST out of the mock simulation stage, and proceed to apply the

method to real world datasets and observe the results returned. Specifically we

will work with the IRAS PSCz survey of Enzo Branchini augmented with B-band

magnitudes and attempt to reconstruct his distortion parameter value of β=0.55 ±
0.06, and then proceed to utilise the 2MRS survey of Hudson et. al in conjunction

with a velocity field map developed by Carrick et. al [25] to attempt to reconstruct

their obtained distortion parameter value of β=0.43 ± 0.021.

� Should time permit, we will also aim to make use of one of the ancillary tools

made available when utilising ROBUST and its various statistics, namely relative

entropy and fold in its functionality into our ROBUST analyses to see how well

the results that it returns (be it for the PSCz or the 2MRS) help to either reinforce

or reject the results for β that ROBUST returns on its own.
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Chapter 1

A Brief Overview of Cosmology

1.1 Cosmology in the Modern Day

The avenue of cosmology is one that has been studied for many a century in many

different guises, be it religious, philosophical or scientific. The word cosmology itself

comes from the Greek: ‘cosmologia’, which means order or orderly arrangement, and

‘logos’, which means word, reason or plan. As such, cosmology means the study of the

Universe in its totality, and has come a long way since those first Greek philosophers

looked up at the sky and wondered how the heavens worked, and there has never been

a better time than the present to be at the cosmological vanguard.

The reason for this is simple: cosmology has advanced in leaps and bounds over the

past century, starting with Edwin Hubble’s discovery that the Universe was expanding

in 1929 [84], followed by observations by Fritz Zwicky in 1937 that there appeared to be

missing mass in the Universe [217], and Vera Rubin’s publishing of her observed velocity

rotation curves of the Andromeda Galaxy in 1970 that defied Newtonian mechanics.

More specifically, Rubin’s observations as plotted in Figure 1.5 appeared to imply that

for the galaxy as a whole to be rotating at the speeds she observed over increasing

distance from the galactic centre, the galaxy needed to be embedded within a halo of

invisible matter [165]. This supposed invisible or missing mass was confirmed in the

1980s when dark matter became recognised as the matter that stabilised the observed

clustering of galaxies.

After several attempts to define a cosmological model to properly describe the Universe

with dark matter, another cosmological landmark would be reached in 1998 with the

startling discovery of accelerated Universal expansion, and the supposed dark energy
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Figure 1.1: Velocity-Distance Relation among Extra-Galactic Nebulae. Radial veloc-
ities, corrected for solar motion, are plotted against distances estimated from involved
stars and mean luminosities of nebulae in a cluster. The black discs and full line repre-
sent the solution for solar motion using the nebulae individually; the circles and broken
line represent the solution combining the nebulae into groups; the cross represents the
mean velocity corresponding to the mean distance of 22 nebulae whose distances could

not be estimated individually [84].

that fuels it, paving the way for the now current Double Dark Theory and newer cos-

mological models that continue to be refined and tested as we see just how much more

there is out there to discover and explore.

1.2 The Concept of Universal Expansion and the Cosmo-

logical Principle

As we touched upon in the introduction, Edwin Hubble’s study of the velocities of

extra-galactic nebulae, specifically their recessional velocities with increasing distance,

led him to plotting the graph seen in Figure 1.1, from which he noted the existence

of a roughly linear relation between their velocities and distances, with that relation

appearing to dominate the distribution of velocities [84]. Put another way, the further

away an extra-galactic nebula appeared to be from us as the observer, the faster it

appeared to be moving away from us, with this bulk motion dominating over whatever

so-called ‘peculiar velocities’ that nebula might additionally be exhibiting in its local

neighbourhood due to gravitational influences from other nearby objects.
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It is worth noting that while Hubble’s 1929 publication was the one that gained the

most traction in the scientific community at the time, with his observed linear relation

ultimately being named after him, exactly the same results were noted and observed by

both the American philosopher Vesto Slipher in 1917 [181] and by the Belgian priest

Georges Lemâıtre in 1927 [118]. Lemâıtre in particular failed to gain any notice in

the scientific community due to his results being published in a rather obscure Belgian

journal – not receiving an English translation until 1931 [119].

As such, this relation would ultimately be defined as Hubble’s Law (refer to Section 2.2

for a brief treatment of the equation itself and its integral use in our work), but would

also serve as the means for a very important inference in cosmology, namely that our

Universe is expanding, and has been doing so since the beginning of time.

When thinking about Universal expansion it would be incorrect to think of it in terms

of a typical explosion, which has a physical origin in both time and space that we

identify; because although the Universal expansion does indeed have an origin in time

t (over 13Ga ago with the occurrence of the Big Bang), it has no physical origin in

space. A more correct analogy would be to consider a hypothetical spherical balloon

capable of expanding indefinitely: with all of our Universe as we know it existing on

the surface of this balloon. This way, the Universal expansion has an origin in time t

(when the balloon first started to expand), but no physical origin in space as a spherical

surface mathematically has none. Consequently as this hypothetical ‘balloon’ continues

to expand over time, everything will continue to move further away from each other, yet

still allow for peculiar motions over relatively smaller cosmological distances (say over

distances of several Mpc) to continue to occur without impediment. A good example of

this would be that even though the Universe is indeed expanding, the Milky Way and

Andromeda galaxies are due to collide with each other as Andromeda is moving towards

us as opposed to further away, and this collision will happen . . . though mercifully for

us not for another 4 billion years at least.

This balloon analogy also provides us with two very interesting points to consider. If

our balloon was to continue to expand to infinity there will come a point after which

over a large enough scale distance, wherever you happen to be on this balloon – be it

the top, or bottom or somewhere on its equator – the Universe immediately around

you will start to look the same or, put another way, the Universe around you will be

homogenous over a large enough scale distance. We can see proof of this in some of

the images taken from the many iterations of the Hubble Deep Field (using the space-

based telescope of the same name) over varying patches of the sky, such as in Figures

1.2 and 1.3. Specifically, Figure 1.2 depicts images taken from the Hubble Deep Field,

HDF (panel (a)) and the Hubble Deep Field South, HDF-S (panel (b)). The HDF is
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an image of a small region in the constellation Ursa Major, constructed from a series

of observations by the Hubble Space Telescope in late 1995. It covers an area of about

2.6 arcminutes on a side, equivalent to about one 24-millionth of the whole sky, which is

equivalent in angular size to a tennis ball at a distance of 100 metres [31]. Three years

after the HDF observations were taken, a region in the southern celestial hemisphere

was imaged in a similar way and was named the HDF-S. The key thing to take away

from both these images is that whether you are observing a patch of sky in either the

northern or southern hemispheres the distribution of galaxies observed is generally the

same.

This is all the more apparent in Figure 1.3 with the results depicted from the Hubble

Ultra Deep Field, UDF (panel(a)) and Hubble eXtreme Deep Field, XDF (panel(b)).

The photo of the UDF is an image of a small area of space in the constellation Fornax,

created using Hubble Space Telescope data from 2003 and 2004. By collecting faint

light over many hours of observation, it revealed thousands of galaxies, both nearby and

very distant, making it the deepest image of the Universe ever taken at that time. The

XDF was assembled in 2012 by combining 10 years of NASA Hubble Space Telescope

photographs taken of a patch of sky at the center of the original Hubble Ultra Deep

Field, and is a small fraction of the angular diameter of the full moon [137]. Even

though we are looking deeper into space with the XDF, observing galaxies as they were

at least 13 billion years ago, its similarity to the UDF is unmistakable, lending further

credence to the concept that the Universe we inhabit is indeed homogeneous.

The second point to consider with our balloon is that irrespective of where you are on the

balloon, the Universe will continue to look the same and exhibit the same behaviours and

large scale structures whether you choose to observe in front of you or behind you i.e., the

Universe is also isotropic over the same large scale distances. Universal homogeneity

and isotropy as a result lend credence to one of the key cornerstones of observational

cosmology, namely the cosmological principle. The cosmological principle states that

our place in the Universe is in no way special, or any more important than if we were

to inhabit another location in the Universe entirely [121]. It is worth noting however

that the cosmological principle is not exact, and as briefly touched upon in this section,

the existence of peculiar motions and large-scale structures would cause homogeneity

to break over a small enough distance, say, like within the Local Group of galaxies

within which both the Milky Way and Andromeda amongst others are members. It

is indeed these peculiar motions and distortions of these galactic motions over smaller

cosmological distances that will make up the bulk of the analysis of this particular work.

Despite this, the concept of an expanding Universe does lead to an interesting puzzle. In

order for us to be able to model and constrain this expansion, we will require an evolving
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(a) The Hubble Deep Field, created in 1995 and constructed
from multiple observations over ten days of a small patch of

sky near the constellation Ursa Major [31].

(b) The southern successor to the Hubble Deep Field, called
Hubble Deep Field South.

Figure 1.2: Images of the Hubble Deep Field and Hubble Deep Field South. Though
both images represent deep observations of small regions of space in the northern and
southern hemispheres respectively, the similarities between the images lend credence to

the concept of a homogeneous Universe.
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(a) The Hubble Ultra Deep Field, crafted together from multi-
ple Hubble Telescope images taken over the years of 2003/2004
of a small region of space in the constellation Fornax. This im-

age is estimated to contain around 10000 galaxies [137].

(b) The Hubble eXtreme Deep Field, focusing on a small cen-
tral region of the Hubble Ultra Deep Field and is the culmi-
nation of multiple observations of that small region of space

taken over 10 years [137].

Figure 1.3: Images of the Hubble Ultra Deep Field and Hubble eXtreme Deep Field.
Much like the photos of the HDF and HDF-S, the similarities between the images
continue to lend credence to the concept of a homogeneous Universe, especially holding

true even as we probe very deep into space and far back in time with the XDF.
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coordinate system with which to track real-space positions over increasing cosmological

time.

1.3 ‘de Sitter Space’ and the FLRW Metric

More specifically, we require a large-scale notion of space and time that allows us to

relate observations we make here and now to physical conditions at some location that

is distant in space and time. We thus require the interval or proper time between events

(or measurements), which we can express in the form of a metric given by:

− ds2 = c2dτ2 = c2dt′2 − dx′2 − dy′2 − dz′2 = gµνdx
µdxν , (1.1)

where dashed coordinates are local to the object, undashed refer to the global coordinates

we will use, and gµν is the metric tensor, which is found in principle by solving Einstein’s

gravitational field equations [145]. Thankfully a simpler solution that closely matches

what is observed in reality is available to us if we choose to consider the most symmetric

form of this metric.

In order to do that let us first consider our own reality for a moment. Einstein postulated

in 1905 that, as a consequence of his study of the electrodynamics of moving bodies, we

actually inhabit a four dimensional Universe as opposed to just three, comprising of the

three physical dimensions with which we are familiar - positional cartesian coordinates

for example being defined by (x, y, z), and the additional fourth dimension being that of

time t, with the fusing of these dimensions into one entity hereafter being referred to as

spacetime [55]. As a result of this, in order to be able to properly define the spacetime

coordinate of any object in our Universe, we can express it as a 4D coordinate of the

form (x, y, z, t), and this idea can be easily extended to higher dimensional spacetime

constructs if needed.

Now let us consider for a moment a ‘hyper’ 4D surface that exists in Euclidean 5D-space.

As we just established a spacetime coordinate in 5D-space would be expressed as five

positional coordinates, with the sixth one being time. To that effect in a 5D space the

distance to an object, or in this instance the spacetime curvature R, would be given by:

x2 + y2 + z2 + w2 − v2 = R2, (1.2)

where x, y, z, w and v refer to the positional coordinates of our surface. Consequently

the metric of this spacetime curvature R can be defined by:

ds2 = dx2 + dy2 + dz2 + dw2 − dv2 (1.3)
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Here, we have made the last positional coordinate v imaginary (hence the negative sign

in Equation 1.2) since we are dealing with a theoretical 4D surface. This also serves to

allow us to re-obtain the 4D Einstein spacetime signature with which we are familiar

with in our own Universe (i.e. expressing every spacetime position in our Universe as

a set of four coordinates) [145]. The square 4× 4 diagonal matrix of this metric would

collapse down to Einstein’s special relativity case of the metric as given by:
+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 ,

(refer to Einstein’s seminal work on general relativity [56] for an extensive look at the

subject and all relevant derivations) which will be maximally symmetric, and as a con-

sequence of that, would qualify for being a homogeneous interpretation of our own

Universe since in this instance all our spacetime points are manifestly equivalent [145].

This special case of symmetrical spacetime was derived by Willem de Sitter in 1917/18,

and was thus named de Sitter Space (refer to de Sitter’s papers [48] and [49] for his

in-depth derivations and treatment of the subject).

If we were to take the five dimensional coordinates expressed in de Sitter space and

instead choose to express them in polar coordinates we would get:

v = R sinhα

w = R coshα cosβ

z = R coshα sinβ cos γ

y = R coshα sinβ sin γ cos δ

x = R coshα sinβ sin γ sin δ,

(1.4)

which by the theoretical definition of polar coordinates will be an orthogonal coordinate

system (i.e. the dot product of the partial derivatives of these coordinates will be equal

to zero as they are all perpendicular to each other), which means that we can express

the squared length of any vector expressed in this system as the sum of the individual

derivatives squared, just as in Pythagorean calculations. As a result we can re-express

our de Sitter metric as:

ds2 = −R2dα2 +R2 cosh2 α
(
dβ2 + sin2(β)

[
dγ2 + sin2 γdδ2

])
, (1.5)

which, if we substitute β, γ and δ with polar coordinate notation with which we are

more familiar: r, θ and φ respectively, and recall the definition of ds2 from Equation 1.1
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we get:

c2dτ2 = c2dt2 −R cosh2

(
ct

R

)(
dr2 + sin2(r)

[
dθ2 + sin2 θdφ2

])
, (1.6)

where

α =
ct

R

This equation now gives us a different means of interpreting our de Sitter metric. Specif-

ically we can rewrite it like this:

(interval)2 = (time interval)2 − (scale factor)2(comoving interval)2, (1.7)

where the universal scale factor R(t) can now be defined as:

R(t) = R cosh

(
ct

R

)
(1.8)

It is the appearance of this scale factor R(t) in de Sitter’s work in 1917/18 that led him

to the conclusion that our Universe must be expanding just like Slipher and Lemâıtre,

and it is indeed this ‘de Sitter effect’ that Hubble was attempting to observe in his own

work in 1929 [84] [145].

Equation 1.7 in particular is actually the descriptive definition of what is known as the

Friedmann-Lemâıtre-Robertson-Walker Metric (or FLRW Metric), which was

developed in 1935 by Howard P. Robertson in collaboration with Alexander Friedmann,

Georges Lemâıtre and Arthur Geoffrey Walker. It is an exact solution of Einstein’s field

equations of general relativity for the case of a homogeneous, isotropic, expanding or

contracting Universe that is path connected, but not necessarily simply connected. The

mathematical expression of the FLRW metric can be expressed as:

c2dτ2 = c2dt2 −R2(t)
[
dr2 + S2

k(r)dψ2
]
, (1.9)

where dψ is the angle that separates two points on the sky, such that

dψ2 = dθ2 + sin2 θdφ2

when expressed in spherical polar coordinates [145]. The function Sk(r) is an interesting

part of the FLRW metric due to its definition being reliant on a variable k, taken to

describe the curvature of the Universe we are modelling. More specifically Sk(r) allows

for positive or negative curvature of the comoving part of the FLRW metric and can
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take on three different values:

Sk(r) ≡


sin r (k = +1)

r (k = 0)

sinh r (k = −1),

(1.10)

corresponding to a ‘closed’, ‘flat’ and ‘open’ Universe respectively [145]. But what do

these different Universes mean or represent?

1.3.1 A Question of Spacetime Curvature and the Fate of the Universe

As raised in the previous section, the FLRW metric which describes a homogeneous

and isotropic expanding Universe allows for the modelling of Universes with specific

curvatures or geometries. The curvatures in question are as follows (with a graphical

depiction of those curvatures shown in Figure 1.4) and are summarised in Table 1.1:

1. A value of k > 0, which results in a ‘closed’ spherical Universal geometry. In

such a geometry the angles of a drawn triangle would add up to more than 180◦,

and the circumference of a circle would be less than 2πr. In a closed Universe

the currently observed rate of expansion would eventually be superseded by the

gravitational forces of all the matter in that Universe, causing it to collapse back

in on itself, possibly leading to another Big Bang.

2. A value of k = 0, which results in a ‘flat’ Universal geometry. This is the easiest

one to understand and can be imagined easily on a piece of paper, where a drawn

triangle will have internal angles that sum up to ≡ 180◦ and the circumference

of a circle will equal to 2πr just like conventional mathematics dictates. In a

flat model the Universe is expected to continue to expand ... but only up to a

point. Specifically once the forces driving the Universal expansion become perfectly

balanced with the gravitational pull of all existing matter, the expansion will halt

with the Universe remaining at a fixed size until the end of time.

3. A value of k < 0, which results in an ‘open’ hyperbolic or saddle-based geometry.

In such a ‘concave’ geometry the angles of a drawn triangle sum to less than 180◦

and the circumference of a circle is larger than 2πr. An open Universe model is

inherently the most depressing, as it predicts that the Universe will continue to

expand indefinitely with gravitational forces not being able to curtail the expansion

at all. Over time all galaxies and large scale structure will continue to smooth out

and move further and further away from each other, leading to the eventual ‘heat-

death’ of the Universe. All the stars will run their course and exhaust their supplies

12
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Curvature Geometry
Angles of
triangle

Circumference
of circle

Type of
Universe

k > 0 Spherical > 180◦ c < 2πr Closed
k = 0 Flat = 180◦ c = 2πr Flat
k < 0 Hyperbolic < 180◦ c > 2πr Open

Table 1.1: Summary of possible Universe curvatures and geometries for use in the
FLRW metric [121].

Figure 1.4: Depiction of the three possible Universal curvatures in relation to dif-
ferent densities of the Universe, denoted as Ω0 here. The density of the Universe also
determines its geometry. If the density of the Universe exceeds the critical density (see
Section 1.4 for an introduction to that variable), then the geometry of space is closed
and positively curved like the surface of a sphere. This implies that initially parallel
photon paths converge slowly, eventually cross, and return back to their starting point
(if the Universe lasts long enough). If the density of the Universe is less than the critical
density, then the geometry of space is open, negatively curved like the surface of a sad-
dle. If the density of the Universe exactly equals the critical density, then the geometry
of the Universe is flat like a sheet of paper. Thus, there is a direct link between the
geometry of the universe and its fate. Image reproduced from the works of NASA and

the WMAP team [138].

of hydrogen fuel, ejecting all their energy and heat into space, and there will no

longer be any matter-dense regions remaining rich enough to kick-start further

stellar evolution and large-scale structural development of any kind [121].
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1.4 The Friedmann Equation and Critical Density

Having now defined a metric with which we can model and describe an expanding

Universe of our choice, we now have the means to define the set of comoving coordinates

we discussed at the end of Section 1.2 so that we can track the movements of objects

across time as the Universe continues to expand. More specifically, with the introduction

of the Universal scale factor R(t), we can now express all position vectors at a given

time t as just the scaled versions of their values at a reference time t0 such that:

x(t) = R(t)x(t0) (1.11)

If we were to differentiate this with respect to t to obtain the velocity vector we would

get:

ẋ(t) = Ṙ(t)x(t0) =

[
Ṙ(t)

R(t)

]
x(t), (1.12)

where the characteristic time of the expansion, otherwise known as the Hubble time

H(t) is given as:

H(t) =
Ṙ(t)

R(t)
,

and the parameter H0 - commonly known as the Hubble constant - is the value of H(t)

given at the current epoch [145]. We will discuss the attempts over the past century to

define the true value of H0 in Section 2.2.

Having now defined our comoving coordinate system we are now in a position where

we can begin to describe our expanding Universe mathematically. While a rigorous

treatment of this would require us to use the principles of general relativity and solve

Einstein’s gravitational field equations, we will proceed with a simpler, approximate,

and heuristic treatment by considering the laws of energy conservation for any object in

the Universe instead. More specifically, the law of energy conservation states that the

total energy of an object U is given as the sum of its kinetic T and potential energies

V , the latter corresponding in this case to its gravitational potential energy such that:

U = T + V (1.13)

The kinetic energy of an object of mass m is easily given by:

T =
1

2
mẋ2, (1.14)
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and its gravitational potential energy (assuming that this object is spherical and of

density ρ, existing a small distance x away from a theoretical ‘particle’ of mass m) is

given by:

V = −GMm

x
= −4πGρx2m

3
, (1.15)

where

M =
4

3
πρx3,

and G is Newton’s gravitational constant given as G = 6.672 × 10−11m3kg−1sec−2.

Substituting these into Equation 1.13 gives:

U =
1

2
mẋ2 − 4π

3
Gρx2m, (1.16)

and making use of our definition of comoving coordinates in Equation 1.12 we can rewrite

this as:

U =
1

2
m
[
Ṙx2

]
− 4π

3
GρR2x2m, (1.17)

Multiplying each side through by 2/mR2x2 and rearranging the terms will then give:(
Ṙ

R

2
)

=
8πG

3
ρ− kc2

R2
(1.18)

which, substituting our expression for the Hubble time yields:

H2 =
8πG

3
ρ− kc2

R2
(1.19)

where

kc2 = − 2U

mx2
,

and k continues to be the same Universal curvature parameter we defined earlier. Con-

sidering that we established that k will either be positive, negative or 0, we can rewrite

this equation one last time to get:

H2 =
8πG

3
ρ− const

R2
(1.20)

Equation 1.20 is known as the Friedmann Equation, which was developed by the

Russian physicist and mathematician Alexander Friedmann in 1922 (albeit published

in German [68], the 1999 English translation can be referred to here: [69]) and is one

of the cornerstone equations of modern cosmology. It provides us with a useful means

of describing an expanding Universe of specific density and curvature, and solving for

the various parameters will help give us a gauge on the age of the Universe, the rate
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of its expansion and its ultimate fate. While admittedly Friedmann derived Equation

1.20 using the more rigorous treatment we mentioned earlier: utilising the principles

of general relativity and Einstein’s gravitational field equations, the same result can be

achieved through the principles of energy conservation, as we have just demonstrated

[121].

Due to the existence of the variable k in the Friedmann equation we are now presented

with something interesting to consider. Supposing that the Universe we are inhabiting

is flat with k = 0, then the constant term on the right hand side vanishes. Rearranging

Equation 1.20 to accommodate for this we get the following:

ρc =
3H2

8πG
(1.21)

where ρc is defined as the critical density necessary to yield a flat Universe. It is

often common to redefine ρc to be dimensionless by defining it as the ratio of density to

critical density via:

Ω ≡ ρ

ρc
=

8πGρ

3H2
, (1.22)

where Ω is taken to be the total energy density of the Universe, and by solving the

Friedmann Equation for the present day value of the scale factor, R0, yields a value of

Ω = 1 for a flat Universe [145].

If we were also to define a dimensionless form of the Hubble parameter h, such that

h ≡ H0

100kms−1Mpc−1
,

where h can also be used to parametrise our ignorance of the true value of H0 [81], we

can solve Equation 1.21 for the critical density ρc such that:

ρc = 1.878× 10−26h2kgm−3.

Measuring the density of our Universe to see how well it compares with ρc is no easy

task, but the methods used can generally be boiled down to one of two approaches:

1. The accounting approach in which one attempts to estimate the mass of a

given (large) volume of the Universe by measuring the masses of objects within the

volume. Masses may be estimated directly (e.g. by the measurement of kinematic

properties such as galaxy motions within clusters) or indirectly by assuming a

relation between the luminosities and masses of individual galaxies within the

volume. This indirect method suffers from our lack of knowledge of the fraction of

dark matter present in and around galaxies (refer to Section 1.5 for an in depth
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introduction to this curious cosmological entity). However, the technique can still

be used, with an appropriate assumption about the luminous to dark matter ratio,

to estimate the total mass in the volume [37].

2. The geometrical approach which makes use of the idea of converging/diverging

parallel lines, in a smilar fashion to our depiction of different Universal geometries

in Figure 1.4. For example, if the Universe is closed and the parallel lines converge,

the observed density of distant galaxies should be less than that expected by

extrapolating the local density of galaxies backwards in time. On the other hand,

in an open Universe, the diverging parallel lines would cause the observed density

of distant galaxies to be greater than expected [37].

To date, both of these techniques return values for the density of the Universe entirely

consistent with, or extremely close to, the critical density ρc, lending credence to the

theory that we are actually inhabiting a flat Universe [37]. Further compelling evidence

for us indeed existing in a flat Universe would be obtained from the results of WMAP

and Planck (space-based probes analysing the primordial blackbody radiation of the

early Universe) from 2003 through to 2016, which we will explore in more detail in

Section 1.7.

As it stands, our current understanding of the Universe (which we will delve into in

more detail in upcoming sections of this chapter) appears to suggest that it consists

of three key components: the luminous baryonic matter that we can directly observe,

dark matter - a curious addition to our cosmological modelling that is used to explain

the strange additional peculiar motions most objects in the Universe appear to exhibit,

and an illusive vacuum energy component called dark energy that is used to model the

accelerated Universal expansion that was detected using supernovae in 1998. As a result

of this, if we are to continue to presume that we are inhabiting a flat Universe, then the

sum of the energy densities of these components must equal 1. Put another way:

Ω ≡ Ωb + Ωm + ΩΛ ≡ 1, (1.23)

where Ωb, Ωm, and ΩΛ represent the energy densities of baryonic matter, dark matter

and dark energy respectively. Constraining the values of these various energy densities

and by proxy the value of H is one of the key targets of modern cosmology ... as the

knowledge of the fate of our Universe depends upon it, after all.
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1.5 The Mystery of Dark Matter

The quest for the identity of dark matter is an interesting one that has spanned well

over 70 years, where it was first noted by F. Zwicky in 1937 when, while studying

nebulae clusters, he reported a discrepancy between the nebulae mass calculated from

observed individual nebulae luminosities, and the average individual mass calculated

from observed nebulae cluster sizes. This discrepancy was on the order of a factor of

500, which was significantly larger than the variational factor of 3 which had been noted

so far for Kapteyn stellar systems [217]. This was echoed in similar studies by F. D.

Kahn and L. Woltjer in Princeton University [101] whereupon when they attempted

to estimate the reduced mass of the Milky Way and M31 ‘Andromeda’ galaxies (i.e.

to calculate their masses as if they were one ‘fused’ object as opposed to two entities

separated by a considerable distance) using an estimate of their shared centre of gravity

and applying Kepler’s third law, they calculated a reduced value of M∗ ≥ 1.8×1012M�,

which was six times larger than observed values [101]. So where was all this missing

matter? The idea of hidden or invisible matter began to take a vague shape. This

idea began to gain more support when in 1970, scientist Vera Rubin published her

observed velocity curves for the Andromeda Galaxy. Newtonian laws predicted that all

bodies moving around a centre must move more slowly with increasing distance from the

centre. Consequently it was expected that the velocities of the monitored HII regions of

Andromeda would decrease with increasing distance from the central core of the galaxy

[165]. This was not what Rubin saw however, as can be noted in Figure 1.5. What she

saw in fact was completely contradictory: the bodies moving around the outskirts of

the galaxy were moving at approximately the same speed as the bodies orbiting near its

centre (approximately 270kms−1±10kms−1 [165]), therefore suggesting that some extra

matter had to exist that would provide these bodies with the ‘extra motion’ that they

were exhibiting [166].

By 1974, all of these peculiarities led to one apparently inescapable alternative, as noted

by Einasto et. al [54] in their discussion of dynamical evidence for the existence of

massive coronas in galaxies:

“A longstanding unresolved problem in galactic astronomy is the mass dis-

crepancy observed in clusters of galaxies. The virial mass of the cluster per

galaxy and the mass-luminosity ratio are considerably larger than the cor-

responding quantities for individual galaxies. This discrepancy cannot be

a result of expansion or be because of the recent origin of clusters: these

ideas contradict our present knowledge of the physical evolution and ages of
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Figure 1.5: Rotational velocities for M31, as a function of distance from the centre
of the galaxy as provided from the works of Rubin and Ford [165].

galaxies. Therefore it is necessary to adopt an alternative hypothesis: that

the clusters of galaxies are stabilised by hidden matter.” [54]

By the 1980s this hidden matter, or dark matter as it were, was accepted by scientists

to exist, but many questions as to its exact identity, spatial distribution, energy density

and how to model it still remained unanswered.

1.6 A Question of Cosmological Models

The first question that was posed as to the identity of dark matter was whether it was

baryonic or non-baryonic in nature. Attempts to model a Universe where the dark matter

was due to purely baryonic adiabatic fluctuations was ruled out relatively quickly in the

1980s when the resultant models failed to predict what was actually being observed [157].

More specifically, for any model in which only baryons and adiabatic fluctuations were

considered, they did not generate enough significant thermal fluctuations or variations in

the Cosmic Microwave Background Radiation (CMBR) necessary to generate the large

scale galactic structures and galaxy formations that we observe in the current day [157].
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Acronym Cosmological Model Flourished

HDM Hot Dark Matter, Ωm = 1 1978-1984
SCDM Standard Cold Dark Matter, Ωm = 1 1982-1992
CHDM Cold+Hot Dark Matter, Ωm = 0.7, Ων=0.2-0.3 1994-1998
ΛCDM Cold Dark Matter, Ωm ∼ 1

3 , ΩΛ ∼ 2
3 1996-today

Table 1.2: The development of cosmological models to the present date [157].

So now the next question was ... what kind of non-baryon could be a dark matter

candidate?

The first attempt to answer this question came in 1982 in the form of the theorist

Zel’dovich with his proposal of a hot dark matter theory. Hot dark matter (HDM)

is postulated to be composed of high energy particles formed shortly after the Big

Bang that are travelling at ultra-relativistic speeds or, very very close to the speed

of light, c. To that effect Zel’dovich theorised that the Universe was dominated by

light neutrinos making up most of the dark matter distribution [215]. However, the

small scale fluctuations predicted by this model would have been damped out by the

relativistic motion of these neutrinos, ultimately predicting a galaxy distribution that

would be much more anisotropic and non-homogeneous than the one that was being

observed, such as in Figure 1.6, leading to this model being eventually ruled out in the

later 1980s [157]. With the ruling out of neutrinos with masses on the order of a few

tens of eV, the focus moved to another potential candidate: Weakly Interacting Massive

Particles (WIMPS). This covered several possibilities: the neutrino once again, this time

on a massive scale (an order of 100eV), and the gravitino, the theoretical supersymmetric

partner of the graviton. This was the beginnings of the cold dark matter model (CDM),

that dealt with particles that moved more sluggishly in the early Universe. At the same

time, theorists began to suggest an Ωb of 0.2, where Ωb is the critical energy density

ratio for baryonic matter as discussed at the end of Section 1.4. In other words, the

observable Universe was thought to consist of 20% regular matter and 80% cold dark

matter. At the time, this model was consistent with the inferred proportions of luminous

and dark matter and gas in clusters, and it also predicted the characteristic luminosities

of the bright galaxies observed in the day.

In 1984, the proposed CDM model began to take firmer hold, with the dark matter can-

didates including axions (another hypothetical elementary particle) and stable photinos

(the theoretical WIMP supersymmetric partner of the photon), which better fit the

observed mass range of galaxies, and was also consistent with the large-scale cluster-

ing, superclustering and voids being observed in the distribution of galaxies in redshift

surveys [15].
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Figure 1.6: A slice from the CfA galaxy redshift survey completed in 1982, depicting
the affectionately named ‘Matchstick Man’ in a non-random, non-isotropic observed

distributon of galaxies, apparent filaments and voids [86].

One such set of surveys was the CfA (Centre for Astrophysics) surveys, which were

started in 1977, and its first run being completed in 1982. The first slice of the survey is

depicted in Figure 1.6, where the galaxy distribution is clearly anything but random and

isotropic, appearing to be distributed on ‘bubble-like surfaces’ [86] to create filaments

and voids, and an affectionately nicknamed ‘Matchstick Man’.

However, the CDM model was not without its inconsistencies, particularly over smaller

cosmological scales or where actual galaxy formation was concerned. Some of these

challenges included, but are not limited to:

� The ‘Cuspy Halo Problem’ as noted by Gentile et. al, where the density distribu-

tions of dark matter halos in CDM simulations are seen to be much more peaked

than what is observed in galaxies when their rotation curves are observed [71].

� The ‘Missing Satellites Problem’ of Klypin et. al, where CDM simulations pre-

dicted much larger numbers of small dwarf galaxies orbiting larger galaxies like

the Milky Way than are observed [103].

� The ‘Disk of Satellites’ problem as discussed by Pawlowski et. al, where they noted

that dwarf galaxies around the Milky Way and Andromeda galaxies are observed
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to be orbiting in thin, planar structures whereas CDM simulations predict that

they should be distributed more randomly about their parent galaxies [144].

� The ‘Galaxy Morphology’ problem noted by Kormendy et. al. Specifically they

noted that if galaxies grew in a hierarchical fashion over time, then massive galaxies

would require many mergers, with CDM simulations predicting that that many

major mergers would indelibly create a classical bulge in the newly formed central

core of the merged galaxy. However they indicate that about 80% of observed

galaxies are bulgeless, and giant pure disc galaxies are commonplace, in complete

contradiction to CDM simulations [107].

While some solutions have been proposed to these problems, there remains uncertainty

as to whether these challenges can indeed be solved without resorting to abandoning the

CDM model in its entirety, so another possible alternative needed to be found.

In the 1990s, such an alternative cosmological model was indeed proposed: the warm

dark matter model (WDM or CHDM - Cold/Hot Dark Matter), which was designed to

bridge the gap between the relativistic inconsistencies of the HDM models and galaxy

clustering and hierarching inconsistencies of the CDM models while still predicting a

Universe similar to what we observe today [179]. It was hoped that the WDM model

would resolve the issues of these competing models by warming and smoothing out the

particles that constitute the CDM [136], but the publication of the Wilkinson Microwave

Anisotropy Probe (WMAP) results in 2003 rather put a stop to that (see the work of

Spergel et. al [182] for a discussion of the preliminary results and observations from

the probe for that first year run. Additional media and maps can be found at the fol-

lowing link provided by the Goddard Space Flight Centre: https://www.nasa.gov/

centers/goddard/news/topstory/2003/0206mapresults.html). In particular, their

calculations for the re-ionisation period of the Universe, the period of time in the early

Universe when hydrogen became cool enough to interact with itself, put serious con-

straints on the WDM model; ultimately jeopardising it. Based on the results of WMAP,

the WDM model would have to rapidly increase its ionisation factor in order to match

the new constraints and correlate with the calculated re-ionisation period of the Uni-

verse, and this unfortunately was something that the WDM model by its very design

could not do, leading to its ruling out just like the HDM model [207].

The CDM model, challenges and all, was once again ready to be adopted as the most

statistically probable model for the Universe, with the concept of cosmic inflation being

used to explain the small-scale anisotropies observed by WMAP in the CMBR (refer to

Section 1.7 for a brief summary of the relevant theory) until 1998. Recall from Section 1.4

where we utilised the Friedmann Equation to derive the critical energy density parameter
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Figure 1.7: Pie chart depicting the distribution of baryonic matter, dark matter and
dark energy in the Universe, as provided by Spergel et. al [182] and the team behind

WMAP at NASA [206].

Ω, and how its value is reliant on the observed curvature of the Universe k and the energy

densities of its constituent components. In particular as mentioned in Section 1.3.1 for

a presumed flat Universe, a slow-down in its expansion is expected before eventually

stopping entirely and maintaining an equilibrium state with the gravitational forces

exerted by all objects in the Universe. When a few astronomers took it upon themselves

to study supernovae for such evidence that the Universal expansion was indeed slowing

down, they discovered something rather startling. The Universal expansion was not

slowing down at all. It was in fact, accelerating.

1.7 The Breakthrough: Dark Energy and the Double Dark

Theory

It was the breakthrough of the decade. Not only was the expansion accelerating, but it

had been accelerating for some time: starting at least when the Universe was 10 billion

years old [70]. Now a new objective was set: attempt to identify what is causing this

phenomenon. Over time, a description of the ‘culprit’ came into view: whatever it was

accounted for over two-thirds of the cosmic energy density, rendering previous estimates

of the dark matter energy density Ωm = 0.8 impossible. More specifically by utilising

supernovae to constrain both Ωm and this ‘culprit’, denoted as ΩΛ, A. V. Fillipenko was

able to compute values for both these parameters as Ωm = 0.3 and ΩΛ = 0.7 [63].

The ‘culprit’ also exhibited other curious properties: it was apparently gravitationally

repulsive, did not appear to cluster in galaxies, and was last seen stretching space-time
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apart [23]. Theorists named the phenomenon dark energy, with a critical energy

density denoted by ΩΛ, and the ΛCDM model was born, otherwise known as the Double

Dark Theory that described a Universe that consisted of both dark energy and cold

dark matter alongside baryonic matter. However, theorists felt that the direct evidence

provided by the supernovae was not compelling enough to state as fact that dark energy

existed as a reason for the cosmic acceleration. That would change however with the

data provided by WMAP in 2008 [157] as it provided two key pieces of information

that would change the case for the existence of dark energy from possibility to very

compelling.

The first piece of information was a result of combining data from WMAP, the Sloan

Digital Sky Survey (SDSS) and other sources to report evidence of a phenomenon known

as the Integrated Sachs-Wolfe effect, where they found that the gravitational repulsion

of dark energy slowed down the collapse of overdense regions of matter in the Universe

[66]. The second piece of evidence came from the WMAP (and further updated in 2013

with Planck) images of the Cosmic Microwave Background.

The CMBR is a relic from some 400,000 years after the Big Bang and is black-body

radiation from the primordial plasma of that era. As the Universe cooled below about

3000K the plasma became transparent to photons, allowing them to propagate freely

through space. To that effect the CMBR actually represents the surface of last scattering,

beyond which the Universe becomes opaque and we are unable to look any further back

into the past.

The thermal fluctuations mapped in the CMBR, known as the CMB anisotropy, are

on the order of 10−5K, and reflect the slight variations in density and motion of the

early Universe. It is effectively a blueprint for the large-scale structures of galaxies and

clusters that we see today. A key element of the CMBR lies in the angular size of these

aforementioned anisotropies, whose intrinsic sizes are well determined by plasma physics.

The conversion from physical scale into angular scale on the sky for these anisotropies

will depend heavily on the curvature of the Universe (as discussed in Section 1.3.1) and

the distance to the surface of last scattering [82]. More specifically over cosmological

distances as large as the redshift-distance to the surface of last scattering 400,000 years

after the Big Bang (taken to be approximately at a redshift of z ≈ 1100 [187]), the

spacetime curvature dominates, with small angular sizes on the order of 0.5◦ of these

CMB anisotropies being equated with a closed Universe model with k = 1. Similarly

larger observed angular sizes on the scale of approximately 1◦ of these anisotropies would

indicate a flat k = 0 Universe [83], while anything larger than 1.7◦ for these anisotropies

(the angular size that indicates the particle horizon length i.e. the maximum distance
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over which particles could have traveled to the observer in the age of the Universe [187])

would indicate an open Universe model with k = −1 [83].

The most recently published WMAP results have since confirmed an angular anisotropy

size of 1◦, indicating that the Universe is flat, and has estimated an energy density for ΩΛ

at 0.742±0.030 [157], and consequently has lent credence to the theory of inflation, where

in the first few moments after the Big Bang, a false vacuum environment was generated

that accelerated expansion and stretched away any large-scale spatial curvature that

would have made the Universe anything other than flat. Such an inflation period could

not have been driven without some form of energy or particle (an inflaton, as it is

termed) that does not cluster in galaxies, is gravitationally repulsive, and stretches out

the curvature of space-time, which is exactly what dark energy is defined to be. This

helped to solidify the status of the ΛCDM model as the accepted cosmological model of

the Universe today.

Although cosmologists are confident that the statistics continue to favour the ΛCDM

model in most data runs from WMAP and Planck etc. [157], there continues to be an

irony that up until the current day, the identity of dark matter continues to remain

elusive, consequently leaving the certainty of ΛCDM always in doubt. While successful

measurements of what has been called the ‘Casimir Effect’ by Steven Lamoreaux in 1996

[114] (said effect being defined by the Dutch physicist of the same name in 1948 as a

small attractive force between two extremely close parallel uncharged perfectly conduct-

ing plates arising due to quantum vaccuum fluctuations of the surrounding electromag-

netic field [27][26]) has lent credence to the existence of, and our ability to measure,

vacuum energy in a laboratory environment; it becomes a far more challenging matter

to measure this energy on the macro scales over which dark energy itself operates. It

is also worth noting that since ΛCDM is effectively an extension of previously estab-

lished CDM models, it also continues to suffer from the same sort of challenges that

we discussed in brief in Section 1.6 such as the ‘Cuspy Halo’ and ‘Missing Satellites’

problems etc.. Similarly as pointed out by Bullock and Boylan-Kolchin in their review

of small-scale challenges to the ΛCDM paradigm [21], other anomalies such as the ob-

served planar and orbital configurations of Local Group satellites (what they termed the

‘Satellite Planes’ problem), and the tight baryonic/dark matter scaling relations obeyed

by the galaxy population such that reobtaining the slope and scatter of the baryonic

Tully Fisher relation predicted for such populations becomes problematic (termed the

’Regularity in the face of Diversity’ problem)[156]; have been less thoroughly explored

in the context of ΛCDM theory, necessitating the use of future surveys to discover faint

dwarf galaxies and precisely measure their masses and density structures in order to test

possible solutions for these challenges [21][156].

25



Chapter 1. A Brief Overview of Cosmology

(a) The Cosmic Microwave Background as imaged by WMAP in 2003 [206]. The colour
variations depicted here indicate slight variations in the photon temperatures across the sky
- known as the CMB anisotropy - consequently reflecting slight variations in the density and
motion of the early Universe. These variations, which occur at the level of 10−5K, reveal the

blueprint for the large-scale structure of galaxies and clusters that we see today.

(b) The Cosmic Microwave Background as imaged by Planck in 2013 [151]. Unlike WMAP,
the photon temperature variations depicted in this map correspond to fluctuations on the
order of millionths of a degree Kelvin, an increase in sensitivity of at least a factor of 10,
leading to even more accurate analyses of current day large-scale structures of galaxies and
clustering, and providing greater insight into the nature of the density fluctuations present

soon after the birth of the Universe [60].

Figure 1.8: The evolution in detail of the CMBR over the past decade.
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As always with cosmology however, theories will continue to be refined as the search for

the identity of dark matter and dark energy continues alongside continued attempts to

constrain their energy densities so that we can fine tune our understanding of our own

Universe and what fate indeed awaits it ... just going to show how much more there is

out there to discover and explore.
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Chapter 2

A Cosmologist’s Toolbox

In order for any sort of cosmological analysis to be viable, we need to be able to determine

the velocities of, and distances to objects in our Universe. Without such rulers and

abilities to track the motion of the smallest particles to the largest galactic structures,

none of the discoveries and theoretical models of our Universe presented up to this point

would have been possible. Here we will introduce some of the various distance and

velocity measuring techniques that are at our disposal, focusing in particular on the

tools that we will make use of in future sections of this work.

2.1 Light Propagation and Redshift

Redshift is the term used to describe the amount by which the wavelength of light from

a receding object in space is lengthened [5]. In its simplest form, if we choose to consider

an object in a static Universe such as a star that emits light as it moves away from us,

that movement will cause the observed wavelength of that emitted light to be stretched

(reduced in frequency) while it travels towards us as the observers, while a star moving

towards us would instead have the wavelength of the emitted light squashed (increased

in frequency) when it is observed. All objects that emit light have a characteristic set

of absorption and emission lines in their observed spectra. Consequently for a receding

object we can expect these observed spectral lines to shift towards the lower frequency

‘red’ end of the spectrum, experiencing a redshift, while an incoming object would

cause those observed spectral lines to shift towards the higher frequency ‘blue’ end of

the spectrum, exhibiting a blueshift.
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Since Edwin Hubble deduced that most objects in the Universe appear to be receding

away from us, it has become the convention to define the redshift z of an object as:

z =
λobs − λem

λem
, (2.1)

where λobs and λem represent the wavelength of light at the time of observation and

emission respectively. However this formulation for z is overly simplistic since our Uni-

verse is not static and is in fact expanding. Consequently there are actually three main

factors that go into the composition of an object’s observed redshift, namely:

1. Relativistic Doppler redshift, where the peculiar recessional velocities inherent

to the object at the moment that light was emitted will cause changes in the

wavelengths of light observed and is most valid over small scale distances in the

Universe where v � c. More specifically if an object appears to be receding at a

velocity v then its Doppler redshift is consequently given by:

z =
v

c
, (2.2)

where c is the speed of light. It should be noted that Equation 2.2 only holds

true for low redshifts of z < 1 because at z ∼ 1 and larger, the equation reduces

to objects possessing speeds of c or larger which, by the rules of relativity is

impossible. To accommodate for this Equation 2.1 can be rewritten as:

1 + z =
λobs
λem

(2.3)

and the special relativity result as developed by Einstein for calculating an object’s

relativistic Doppler redshift from its recessional velocity is given as:

1 + z =

√
1 + v/c

1− v/c
, (2.4)

for which the expression v/c is taken to be small [55][121].

2. Cosmological redshift, where the observed expansion of the Universe will also

cause the wavelengths of light emitted from an object to be further stretched with

this redshift becoming more dominant over its relativistic Doppler counterpart

over larger scale distances. The cosmological redshift can be expressed in terms of

the scale factor a such that:

1 + z =
anow
athen

, (2.5)
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where anow denotes the present-day value of the scale factor, often denoted as a0,

and athen denotes the scale factor of the Universe at the time the light was emitted

[200].

3. Gravitational redshift, also known as the ‘Einstein shift’, which is the phe-

nomenon wherein which the wavelengths of light emitted from an object are

stretched as they pass through strong gravitational fields, be they the gravita-

tional fields of dwarf stars (which are relatively weak), or the much stronger fields

emitted from the surface of neutron stars or the event horizon of a black hole as

they travel towards us [3]. With regards to the former, the gravitational redshift

can be approximated as:

z ∼ GM

rc2
, (2.6)

where r is the photon’s starting distance from the object emitting the gravitational

field of mass M , while for stronger gravitational fields emitted by neutron stars

and black holes the gravitational redshift is given by:

1 + z =
1√

1− 2GM

rc2

, (2.7)

with such redshifts usually being very large [38].

The compilation of massive redshift surveys of objects in the observable Universe and

their unmistakable importance in observational cosmology will be detailed in Section

2.10.

2.2 Hubble’s Law

Edwin Hubble’s discovery that the Universe was expanding in 1929 through the study

of the line spectra and redshift of galaxies was one of the most iconic landmarks of the

century for cosmology. In noting that the majority of observable bodies were indeed

moving away from us, Hubble deduced the relation that the recessional velocity of a

galaxy, denoted cz, is proportional to the distance that the light had travelled from the

galaxy in the rest frame of the observer [177] such that:

cz = H0d, (2.8)
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where H0 is the eponymous Hubble constant, and the subscripted “0” refers to the

current epoch, since the constant is thought to change over time [81] and is denoted by:

H0 = 100hkms−1Mpc−1 (2.9)

where the h is used to parametrise our ignorance of the true value of H0 [81]. Our uncer-

tainty on the true value of H0 dates back to when it was first defined by Hubble in 1929

[84]. His initial value for the expansion rate of the Universe was set at 500kms−1Mpc−1,

from which the expansion age of the Universe was inferred to be 2 Ga. This proved to

be problematic when geologists used radioactive carbon dating of rocks to prove that

the Earth was at least 3 Ga old [87]. Further problems arose with this value of H0

astronomically, because the size of the Milky Way was fairly well established by this

time, and Hubble’s calibration implied that the Milky Way was far larger than any

other nearby galaxy except possibly Andromeda, which also wasn’t true. In 1956, Allan

Sandage published a new value for H0 at 180kms−1Mpc−1 [93], and so began the great

debate over the true value of the constant. Throughout the coming years, the value

would continue to be lowered, where in 1958 Sandage would further constrain H0 to a

lower value of 75kms−1Mpc−1 [168] before lowering it yet again in a 1974 collaboration

with G. A. Tammann to H0 =55kms−1Mpc−1 [169]. Come the 1990’s, the problem of

the value of H0 would be resolved by the HST Key Project: the telescope that bears

Hubble’s name. They determined a best fit value of H0 = 71 ± 7kms−1Mpc−1, which

most recent attempts to calculate other values for H0 seem to fall close to [87]. For a

comprehensive list of published values of H0 over the past century complete with asso-

ciated references, confidence errors and details of the methodologies used, refer to the

list compiled by John Huchra at the Harvard-Smithsonian Center for Astrophysics [88]

to see how the value has continued to fluctuate over time.

One of the key things that can be taken away from the list compiled by Huchra is that

there are two general methodologies that can be used to infer the value of H0: direct

and indirect inference. More specifically the value of H0 can be determined indirectly

from e.g. measurements of the CMBR at high redshift or from large scale structure sur-

veys at intermediate and lower redshifts [142]. Conversely it can be measured directly

by measuring the velocities and distances to so-called “standard candles” in the nearby

Universe (objects in space whose distances are known to very high accuracy and have

very clearly defined luminosities) such as Type Ia supernovae (refer to Section 2.5 for a

brief introduction into their use as standard candle field probes). Both these methodolo-

gies have their advantages and disadvantages. Direct measurements are independent of

the cosmological model being assumed such as ΛCDM, but are very prone to systematic

errors related to local bulk flows in the nearby Universe or whatever assumptions are

being presumed for the standard candles being utilised in the analysis [142]. Similarly,
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indirect measurements from the CMBR or large scale structure surveys are very robust

and precise, but are completely reliant on the underlying cosmological model being cor-

rect - thus resulting in discrepancies being observed in values of H0 that are measured

at either high redshift or intermediate to lower redshifts [142].

A typical example of this would be results recently released from Planck in 2013 analysing

the CMBR that point to a lower H0 value of 67.3±1.2kms−1Mpc−1 [153], while direct

measurements by Riess et. al utilising Type Ia supernovae in the nearby Universe

produced a larger value of H0 = 73.8 ± 2.4kms−1Mpc−1 [164], with the two values

being inconsistent at the 2.4σ confidence level [142]. This discrepancy could be due

to the underlying ΛCDM model being incorrect on a fundamental level as previously

mentioned, or due to inaccuracies or biases in the methodologies being used.

With respect to the latter it must be noted that as cosmologists continue to refine the

methodologies at their disposal, computed values of H0 began to improve. In particular

George Efstathiou used improved distance calibrations for Type Ia supernovae to re-

compute H0 to 72.5± 2.5kms−1Mpc−1 [53], while Clarkson et. al showed that applying

relativisitic corrections to the distance to the surface of last scattering of the CMBR

increases the best-fit Planck value of H0 by 5% [32], slowly beginning to bring computed

vales of H0 closer in agreement with the value obtained by the HST Key Project.

For the purpose of this work (and for the sake of scaling simplicity in our future com-

putational endeavours) we will use a Hubble value of

H0 = 100kms−1Mpc−1, (2.10)

performing the necessary corrections and rescaling of real-space distances of galaxy sur-

veys as required should the need arise.

2.2.1 Modifying Hubble’s Law

Value of H0 aside, this version of Hubble’s Law as presented in Equation 2.8 poses a

fundamental problem. It is incapable of describing the peculiar motions exhibited by

galaxies as they recede at velocity cz through a varying mass density field such as those

observed in reality, making accurate cosmological analyses of galactic kinematics and

dynamics problematic at best. Additionally it is difficult to decompose the observed

velocity of a galaxy into its receding component due to its redshift, and its peculiar

component. If one is to accurately model observed galactic behaviour and large scale

structure in the Universe and potentially verify the validity of the ΛCDM model, a
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modified version of this Law that allows for the accurate inclusion of these peculiar

motions is absolutely essential.

Thankfully the cosmological principle does provide us with a solution. Specifically the

cosmological principle emphasises that the typical size of the peculiar velocity is inde-

pendent of the real-space position of the galaxy in space [121], and therefore logically the

peculiar velocity should be independent of the real-space position which, as established

in Equation 2.8, is proportional to the Hubble distance. As such, the law can now be

modified to describe both the receding and peculiar forms of this motion as follows:

cz = H0d+ vpec, (2.11)

with H0 remaining as stated in Equation 2.10. Now armed with this modified form

of Hubble’s Law, studying galaxy kinematics becomes a relatively simpler affair, and

now opens the door to the sort of integral kinematic analyses upon which this work

will be completely reliant, namely constraining the parameters of observed peculiar

velocity fields in current redshift and redshift-distance surveys within a ΛCDM modelled

methodology. The parameter values obtained by us in this work will serve as a means

of testing and fine tuning the methodologies we will develop here as we compare them

against parameter values computed in other works and collaborations. It is our hope

that the methodologies discussed in future sections are successful, opening them for

future use by others in various cosmological survey analyses and peculiar field velocity

probes, without the modified Hubble Law none of which would be possible.

2.3 Apparent, Absolute Magnitudes with the Distance Mod-

ulus Law

The distance modulus of an object, denoted µ, is the difference between its apparent

magnitude, i.e. its brightness as observed on Earth, and its absolute magnitude: what

its brightness would be if it was placed at a distance of 10 parsecs away from Earth

(or 10pc, where 1pc is defined as the distance at which 1 astronomical unit, 1AU - the

distance between the Earth and the Sun, subtends an angle of 1 arcsecond on the sky),

an equivalent distance of 32.6 light-years. If the distance modulus of an object is known,

then we can calculate its distance as follows:

d = 100.2(µ+5) (2.12)
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Similarly, we can rearrange Equation 2.12 to get

µ = 5 log d− 5, (2.13)

but since we will often be working in distances of Mpc throughout this work, Equation

2.13 needs to be reworked to reflect this:

µ = 5 log dL + 25, (2.14)

where dL is the luminosity distance of the objects we are using. More generally the dL

of an object can be calculated from its observed intrinsic luminosity L and its measured

flux S via the equation:

dL =

√
L

4πS
, (2.15)

As can be expected, the accuracy of distances computed in this manner will rely heavily

on the accuracy of the luminosity information of the available objects such as super-

novae, consequently having a knock-on effect on the values of cosmological parameters

constrained using this information.

2.4 A Question of Selection Effects: Malmquist Bias

One thing as cosmologists that we need to consider when dealing with any kind of

cosmological survey is the influence of selection effects on the data we observe and

analyse. In particular, consider an area of the sky that is filled with galaxies of varying

brightnesses such as what we might see in any of the images of the Hubble Deep Field

(as can be seen in Section 1.2). Observational equipment will always have a limiting

faint magnitude limit below which no galaxy will be observed, as it is too faint to be

seen. This holds true for faint galaxies that are very far away as well as for faint galaxies

that are much closer and should be able to be seen if our equipment was sensitive

enough. Conversely, very bright galaxies that are both far away and nearby will always

be observed as they fall well above our limiting magnitude threshold, which consequently

means that there will always be a bias towards luminous galaxies being observed more

often than dim ones. This bias, known as Malmquist Bias and developed by the

Swedish astronomer of the same name in 1922 and expanded thoroughly upon in 1925

[127] [128], will have an effect on the calculations of the average absolute magnitude and

average distance to a group of stars. More specifically because of the luminous galaxies

that are at a further distance, it will appear as if the sample of galaxies we are observing

is farther away than it actually is, and that each galaxy is intrinsically brighter than it
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actually is [127]. In order for us to be able to perform any useful analyses we need to be

able to properly define the kinds of Malmquist bias that exist and correct accordingly

for them.

While the traditional Malmquist correction as defined by Malmquist himself ∆M is

given as:

∆M = M −M0, (2.16)

where ∆M is the difference between an average value of absolute magnitude M and

the true intrinsic value of absolute magnitude M0 [127], it does lend itself to the bias

appearing in three different forms. Averaging over an entire sample of galaxies to obtain

its luminosity function would introduce an integral bias. Similarly, in the absence of

interstellar extinction an absolute magnitude can be uniquely derived from an apparent

magnitude and distance where we can average over any of the two variables while keeping

the other fixed. This would introduce a differential bias that would consequently have

two types: magnitude-dependent and distance-dependent depending on which variable

you choose to keep fixed [22]. In particular, the traditional Malmquist correction of

Equation 2.16 is the explicit definition of such a distance-dependent bias.

In order to be able to properly perform any sort of correction for this bias, the following

assumptions need to be made:

1. There exists no interstellar absorption,

2. The luminosity function is independent of distance,

3. For a given area on the celestial sphere, the spatial density of stars depends only

on distance,

4. There is completeness to an apparent magnitude limit mlim,

5. Stars are of the same spectral type, with intrinsic mean absolute magnitude M0

and dispersion σ,

6. The luminosity function can be approximated as a Gaussian with mean M0 [22].

With these (admittedly very ideal) assumptions in mind, we can integrate the luminosity

function over all distances and magnitudes greater than mlim to obtain ∆M such that:

∆M = −σ2

[
d lnA(mlim)

dmlim

]
, (2.17)

where A(mlim) is the total number of galaxies brighter than mlim [127] [22]. If one

were to make the further simplifying assumption that the spatial density of galaxies is

36



Chapter 2. A Cosmologist’s Toolbox

homogeneous then this relation can be simplified even further to yield:

∆M = −1.382σ2, (2.18)

where σ is the observed dispersion as before [127] [22]. This is known as a homoge-

neous Malmquist correction but it does not hold well over large scales where the

effects of clustering would render the spatial density of galaxies inhomogeneous. This

can be solved however if one were to assume a prior distribution and likelihood on the

logarithmic true distances of the galaxies instead, utilising the observed distribution of

‘raw’ distance estimates to provide a good approximation to the prior distribution as-

sumed, such as done in the works of Landy & Szalay [115]. In principle this improved

prior would take into account the effects of clustering and selection that render the

observed spatial distribution inhomogeneous, thus leading to the definition of an imho-

mogeneous Malmquist correction which can better correct for what is observed in

reality [79].

In future sections we will make use of a methodology of our own to analyse surveys,

namely the ROBUST method as developed by Rauzy & Hendry [160], which by its

very construction is such that no Malmquist corrections of any kind should be required.

We will delve more deeply into the underlying theory and derivation of this method in

Chapter 4.

2.5 SNIa as Standard Candle Field Probes

Ever since the first exploding star was observed in 1885, the urge to classify these ‘su-

pernovae’ according to their emission spectra began to grow [43]. In 1941, Rudolph

Minkowski concluded (based on a sample of 14 objects) that there existed at least two

different types of supernovae: provisionally called Type I and Type II [133]. Type I

supernovae were broadly classified by their lack of hydrogen emission lines in their ob-

served spectra and their homogeneity in brightness, whereas Type II supernovae exhib-

ited strong hydrogen emission lines and a completely heterogeneous range of brightnesses

[133]. In 1964/65 Fritz Zwicky would expand this two-type classification to include sev-

eral more categories with unique properties: namely Type III, IV and V, though these

later additions would all continue to share the same feature of hydrogen emission lines

with Type II [218]. While the discussion of the properties of the various classification

typings of supernovae is an interesting avenue in and of itself, for the purpose of this work

we will only focus on the supernovae type most commonly used in probing the nearby

Universe, namely Type I, and more specifically a certain subset of Type I designated as

Type Ia.
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While there exist at least two agreed upon subsets of Type I supernovae: Type Ia and

Ib where the former exhibits hydrogen emission lines in their spectra, while the latter

does not, they both share one thing in common: their origins lie in the explosion of

a white dwarf star [43]. White dwarf stars are the stellar core remnants of stars that,

by the end of their evolutionary cycle, did not possess enough mass to collapse into a

neutron star or a black hole and instead collapsed into an extremely dense stellar remnant

composed primarily of electron-degenerate matter (high-energy electron plasma). In

particular their masses do not generally exceed 1.44 times the mass of the Sun (1.44M�)

otherwise known as the Chandrasekhar limit [28], though that mass is packed into a

volume equivalent to that of the Earth.

For Type Ia supernovae specifically to occur requires a white dwarf star to be part of

a binary system, though the companion star in the system need not be a white dwarf

itself. Due to the high density of the white dwarf its powerful gravitational force will

cause it to draw mass from its orbiting companion onto itself, eventually leading to that

white dwarf’s mass exceeding the Chandrasekhar limit. Once that limit of 1.44M� is

exceeded a nuclear chain reaction is triggered which causes the white dwarf to explode

[85]. Because Type Ia supernovae all trigger the same kind of nuclear chain reaction

within a white dwarf star, the resultant brilliance of the explosion is also inherently the

same. Put another way, Type Ia supernovae are characterised by a very high intrinsic

luminosity which as a result makes them excellent distance indicators.

As a consequence of these high intrinsic luminosities, Type Ia supernovae possess char-

acteristic light curves (i.e. plots of their luminosity as a function of time after the

explosion) such as the ones depicted in Figure 2.1, where due to the high luminosity, the

scatter in the peak blue-band luminosity σB on such a plot is assumed to be relatively

small: about 0.4 − 0.5 magnitudes [17]. However by the mid 1990s, there was enough

variation in observed luminosity peaks in SNIa data to begin to introduce uncertainties

and limit the effectiveness of the supernovae as good distance indicators.

Thankfully these uncertainties can be resolved by using various fitting techniques to

constrain the models and parameters of these light curves, consequently minimising

the breadth of the blue-band luminosity peak and increasing the precision of distance

indication to within 7 − 10% [35]. Examples of fitting techniques that can be used to

constrain these light curves include SiFTO as developed by Conley et. al which models

supernovae light curves by manipulating spectral templates (refer to Conley et. al’s work

[35] for an in depth discussion on the features of SiFTO), as well as SALT and SALT2

as developed by Guy et. al in 2005 and 2007 respectively, which empirically model SNIa

luminosity variations as a function of phase, wavelength, a shape parameter, and a color

parameter [73] [74]. Regardless of the fitting technique used, it is necessary to try to
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Figure 2.1: A typical B-band light curve for Type Ia supernovae, based on the obser-
vations of 22 SNe Ia [18]. The timescale used here is in units of days with the y-axis
denoting changes in observed magnitude over time. Typically approximately 10 days
after the initial explosion (the beginning of the curve) the peak B-band luminosity of
the supernova is observed, denoted at tB=0. The constraining of errors and the breadth
of this luminosity peak is integral for accurate distance estimations to such supernovae.
This peak is maintained for several days before the supernova starts to dim considerably
as the explosive energy is radiated into space, denoted by the steep plunge in the curve
after tB ≈ 15, eventually flattening out into a continual linear decline in brightness that

has been observed to continue out to a tB of 300 to 400 days [18].

reduce the margin of error in the distance measurements of these supernovae as much as

possible, as this will have a knock-on effect on the value of any cosmological parameter

we are attempting to calculate within this work.

2.6 The Tully-Fisher Relation for Spiral Galaxies

The Tully-Fisher relation, as developed by R. Brent Tully and J. Richard Fisher [195],

serves as an empirical relation between the intrinsic luminosity of a galaxy (or its inherent

mass) and its rotational or angular velocity, indicating a positive correlation between

the two variables. While the luminosity of a galaxy can be determined well enough from

photometric observations, determining its rotational velocity requires a little thought.

Consider the example of a rotating spiral galaxy that is almost edge-on with an observer

on Earth in a Universe that is not expanding. As such a galaxy continues to rotate we

would observe half of the spiral disk as blueshifted as it spins towards us, while the other

half would be redshifted as it spins away. Consequently by making use of the Doppler
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shift and redshift equations from Section 2.1, the angular velocity for both halves of the

galaxy can be determined, from which the average rotational velocity for the galaxy as a

whole can be computed. Having noted throughout this work that the Universe is indeed

expanding, we find that this fundamental concept continues to hold true regardless. In

an expanding Universe a rotating spiral that is continuing to move further away from

an observer would exhibit one half of its disk appearing to receded from us more slowly

(i.e. the side of the galaxy rotating towards us exhibiting a smaller redshift) while the

other half would appear to be receding from us more quickly, i.e. exhibiting a higher

redshift. Applying the Doppler shift equations while taking into account the additional

speed from Universal expansion would still give the galaxy angular velocities we require

to make use of the empirical relation derived by Tully and Fisher.

As a result the Tully-Fisher relation (hereafter denoted as TF) serves as a very useful

tool for determining galaxy distances once their luminosities have been determined from

their rotational velocities, particularly their luminosity distances dL and distance moduli

µ; helping to provide a more fundamental understanding of galactic structure in the

Universe as a whole [195]. Specifically, the disk surface brightness distribution of a

typical spiral galaxy can be modelled via an exponential law as:

I(R) = I(0) exp

[
−R
RD

]
, (2.19)

where I(0) is the central surface brightness and RD is the disk scale length. Consequently

the luminosity of the entire disk is achieved via integrating over the whole volume:

LD =

∫
Disk

I(R)dA =

∫ 2π

0

∫ ∞
0

I(R)RdRdθ = 2πI(0)R2
D (2.20)

While an exponential law models out to R = ∞, the galaxy luminosity will tend to

converge after a few scale lengths, say R = αRD, at which point the rotational velocity of

the galaxy should be at its maximum, Vmax. For a spiral galaxy to remain stable, its total

rotational velocity as calculated via Doppler shift should be equal to its gravitational

acceleration as defined by Newtonian mechanics, therefore for an object of mass m within

a rotating galaxy moving at velocity v at distance r from the centre of the galaxy:

mv2

r
=
GMrm

r2
, (2.21)

which simplifies to

v2 =
GMr

r
(2.22)

where Mr is the mass of the galaxy inside and up to the defined radius r and G is the

gravitational constant. Consequently substituting our maximum rotational velocity out
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to αRD yields:

V 2
max =

GMαRD

αRD
(2.23)

Squaring Equation 2.23 and substituting in our final result from Equation 2.20 yields

the following:

V 4
max =

G2M2
αRD

α2R2
D

=
G2M2

αRD

α2
· 2πI(0)

LD
(2.24)

We can define the parameter η as the disk mass-to-light ratio via:

η =
MD

LD
≈ MαRD

LD
(2.25)

and substitute η into Equation 2.24 to obtain:

V 4
max =

2πI(0)G2η2L2
D

α2LD
, (2.26)

and if we assume that η and I(0) are the same for all galaxies that we get the equivalence

relation:

LD ∝ V4
max (2.27)

In most cases the exponent of 4 tends to hold true, however generally speaking the values

of η and I(0) are not equal for spiral galaxies, causing the exponent to vary slightly [78].

More specifically, it must be noted that there are various forms of the TF relation

available, all of which are dependent on which variables one uses to relate to the other. In

their work, Tully and Fisher made use of optical luminosities to derive their relation [195],

but subsequent work has shown the relation to be tighter and exhibiting an exponential

slope more in line with our theoretical approximation of α = 4 in Equation 2.27 when

defined using microwave to infrared (K band) radiation (a good proxy for stellar mass),

and even tighter when luminosity is replaced by the galaxy’s total baryonic mass (the

sum of its mass in stars and gas) [130]. This latter form is known as the Baryonic Tully-

Fisher Relation (BTFR), and as noted by Torres-Flores et. al, the relation states that

the baryonic mass of a spiral galaxy is typically proportional to its velocity to the power

of 3.5-4, slightly lower than the standard TF relation [190]. Additionally, more recent

work performed by Zaritsky et. al has suggested that the BTFR may actually be better

modelled by a linear relationship with a gradient of 3.5±0.2 as opposed to a power law

[208], bringing into doubt the validity of the relation.

This can perhaps be more easily illustrated in Figure 2.2, depicting distance moduli of

galaxies (determined from their luminosities) vs. their rotational velocities for samples

of galaxies where only their stars are considered, only the mass of gas within those

galaxies are considered, or the total baryonic mass is considered with both low and
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Figure 2.2: The TF relations constructed from the H-band and I-band data of Bothun
et. al [16] and Pildis, Schombert and Eder respectively [150]. The usual TF relation is
apparent for massive galaxies in panel (a), however it breaks down at the low mass end.
Panel (b) exhibits no ‘H I TF relation’ for massive galaxies, though there does appear
to be a slight one for lower mass objects. The Baryonic TF relation which follows
by summing stellar and gas mass nicely recovers a continuous relation over the entire
observed mass range as seen in panel (c), however utilising lower mass-to-light ratios
for the galaxy stars in panel (d) causes a noticeable discontinuity in slope, implying
that the higher mass-to-light ratios adopted in panel (c) are more appropriate. Figure

has been reproduced from the works of McGaugh [129].
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high mass-to-light ratios galaxies, depicted as Υo. In each panel the presumed ideal TF

exponent of α=4 is plotted. While the TF relation appears to be in good agreement with

the observed data in panel (a), the relation breaks considerably for lower mass stars,

and shows very poor agreement across the board in panel (b) where only the mass of

gas within the surveyed galaxies are considered. This agreement improves considerably

however in panels (c) and (d) when the total baryonic mass of the galaxies are considered,

suggesting that the disk mass is the fundamental quantity of interest in the TF relation,

although the slightly better agreement with the theoretical slope of the higher mass-to-

light ratio galaxies in panel (c) would appear to suggest that their use with the BTFR

is more appropriate than galaxies with lower mass-to-light ratios [129].

The takeaway from this is simple. While both the TF and BTFR remain fundamentally

useful tools for distance determination, the keeping of both relations in the general form

of L ∝ V 4 remains up for debate to this day [129].

Curiosities with the value of the power law (or linear) exponent put aside for a moment,

there remains another problem with the Tully-Fisher relation. While the relation is an

excellent cosmological probe for galaxy distances, its key drawback lies in the fact that

it does not apply well to elliptical galaxies due to their not exhibiting large systematic

rotational velocities. Additionally their stars move rapidly on a variety of often very

complex orbits determined by the elliptical galaxy’s gravitational potential [78]. To

that effect another relation is required tailored specifically to ellipticals such that their

parameters can also be usefully constrained. This is where the Faber-Jackson relation

comes into play.

2.7 The Fundamental Plane and Faber-Jackson Relation

for Elliptical Galaxies

The Faber-Jackson relation, as developed by S. M. Faber and Robert E. Jackson [61],

is an early empirical power law relation between the luminosity L of an elliptical galaxy

and its central stellar velocity dispersion, σ. σ is defined as the spread of velocities

of stars within the elliptical, specifically where these stars will have individual orbital

velocities around the elliptical’s centre of mass. By measuring the radial velocities of

these stars the velocity dispersion can be estimated and used to derive the elliptical’s

total mass via the virial theorem. In the case of distant galaxies where individual stars

may be difficult to resolve σ can be determined from Doppler (or redshift) broadening

in the spectrum of the integrated starlight [7].
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Much like the TFR, the Faber-Jackson relation (hereafter denoted FJR) also demon-

strates a positive correlation between the two variables meaning that it can also be

utilised as a tool for determining distances to external galaxies. Specifically, if we were

to observe the spectrum along the line of sight through the centre of an elliptical galaxy,

we will see a central velocity dispersion, or spread of orbital velocities, σ0. Applying the

virial theorem we can show that:

σ2
0 ≈

GMvirial

5R
(2.28)

This result will mainly depend upon the ellipticity, or triaxiality, of the galaxy in question

but will generally simplify to:

σ2
0 ∝

GMvirial

R
, (2.29)

where R is the radius of the galaxy. The value of R that will be utilised here will depend

upon the surface brightness profile that is modelled. If we were to model that profile

using the de Vaucouleurs law, then galaxy luminosity would be derived via:

I(R) = I(Re) exp

[
−b
(
R

Re

) 1
n

− 1

]
, (2.30)

with n = 4, b ≈ 2n − 0.327 and Re being the effective radius containing half the

luminosity of the galaxy in question. As with the derivation of the TFR, if we are to

assume that the luminosity of the elliptical galaxy will begin to converge after a few

scale disk lengths, expressing it as a multiple of Re, then we can model the relation of

galaxy luminosity as:

L ∝ IeR2
e, (2.31)

where Ie is the surface brightness at R = Re. If we proceed to square Equation 2.29 and

substitute in Equation 2.31, as well as our disk mass-to-light ration parameter η from

Equation 2.25 we obtain:

σ4
0 ∝

G2M2

R2
e

∝ G2η2L2Ie
L

(2.32)

Assuming once again that η and Ie are the same for all ellipticals we obtain the Faber-

Jackson Relation:

L ∝ σ40 (2.33)

wherein which the brighter the elliptical galaxy is, the more massive it is and the faster

the stars in its central region are moving [78]. However, this relation manifests a con-

siderable amount of scatter from the modelled exponent of 4 due to, once again, η and

Ie not being equal for all ellipticals. There are two possible ways to tweak this relation

to account for this:
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1. Define the radius of an elliptical galaxy out to a fixed isophotal value, effectively

defining a standard galaxy size which would reduce the effect of variation in surface

brightness profiles between galaxies. This is called the Dn − σ relation, where Dn

is the isophotal diameter chosen.

2. Account for the variance in Ie across ellipticals by including the effective radius

Re as a term in the FJR. [78]

The latter method serves as the foundation from which the Fundamental Plane relation

for ellipticals is defined, with the FJR now being understood to be a projection of that

plane:

L ∝ σ2.650 R0.65
e (2.34)

Much like the TFR and BTFR however the FJR, and by extension the Fundamental

Plane relation, are not necessarily perfectly modelled by an exponential power law with

a set exponent. More specifically Minkowski noted in 1962 that the correlation between

elliptical luminosity and velocity dispersion is poor and that extending the observations

to more objects, especially at low and medium absolute magnitudes is important [134]. It

becomes increasingly apparent that the value of the exponent is indeed heavily reliant on

the range of galaxy luminosities that is being fitted, as Davies et. al reported an exponent

value of γ=2 for low-luminosity elliptical galaxies [46], while Schechter calculated a value

of γ=5 for luminous elliptical galaxies [171].

2.8 Different Coordinate Systems

Various coordinate systems are used throughout this work to define the positions of the

galaxies and supernovae being used, where there is often a need to convert between one

system and the other. While the means of transforming from one system to another

will not be described either here or in later chapters, we will introduce the key concepts

behind the different systems we will use here, alongside a broad description of some of

their key properties and characteristics.

2.8.1 Celestial and Equatorial Coordinate Systems

The concept of the celestial sphere has been fundamental to positional astronomy from

pre-Babylonian times through to the Middle Ages and beyond to the Early-Modern

era; and still remains useful today [135]. At the centre of the sphere is the Earth,

and the surface of the sphere acts as the reference against which all celestial bodies
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Figure 2.3: Diagram of the celestial sphere with respect to the ecliptic. The ecliptic
is at an angle of 23.5◦ to the celestial equator (otherwise known as the Earth’s visible
horizon), indicative of the tilt of the Earth and the consequent path the Sun draws along
the celestial sphere throughout the year as a result. Right ascension and declination
angles (otherwise known as equatorial coordinates) are measured with respect to the
celestial equator with the vernal (spring) equinox as the origin point, while celestial
latitude and longitude angles are measured with respect to the ecliptic, again with the

vernal equinox as the origin point [135].

observed from the centre are located. Since the heavens appear to rotate around the

Earth once every twenty-four hours, the celestial sphere is considered to possess this

particular motion. The axis of rotation terminates in the north and south celestial

poles; equidistant between the poles, the sphere is encircled by the celestial equator. At

a fixed angle of 23.5◦ to the equator is another great circle of the celestial sphere, the

ecliptic. This represents the annual path of the sun. The two points where the ecliptic

and equator cross therefore mark the position of the sun at the spring (vernal) and

autumn equinoxes [135]. Both the celestial and ecliptic systems are depicted in Figure

2.3.

As a result, the position of any point on the surface of the sphere (and hence that of any

celestial body which is referred to it) can be given with reference to the equator or the

ecliptic. In the equatorial co-ordinate system, position is specified by right ascension

and declination with reference to the celestial equator, while in the celestial coordinate

system celestial longitude and latitude angles are given with respect to the ecliptic. In
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Figure 2.4: Diagram of the galactic sphere with respect to the celestial sphere, specif-
ically the celestial equator. The centre of the galaxy at RA=17h 45.6m and DEC=-
28.94◦ acts as the origin point of the plane. With the galactic North Pole located at
RA=12h 51.4m and DEC=+27.13◦ [12], this causes the galactic plane as whole to be

inclined at an angle of approximately 63◦ to the celestial equator [198].

either system right ascension/celestial longitude is the angular distance along the equator

or ecliptic from the vernal equinox (taken to be in the direction of the constellation Ares);

and declination/celestial latitude is the distance north or south of the equator or ecliptic

along a great circle passing through the point in question and the two celestial poles

[135]. The angles of right ascension and declination can be expressed either in degrees

or in hours, arcminutes (′) and arcseconds (′′). The relationship between these two

measurements is as follows:

1hr = 15◦ 1′ =
1

60

◦
(2.35)

1′′ =
1

60

′
=

1

3600

◦
(2.36)

2.8.2 The Galactic Plane

The galactic plane in essence is much like the celestial coordinate system in that it is

measured in degrees of galactic longitude (the equivalent of right ascension) and latitude

(the equivalent of declination), except that it is a sphere that is centred on the galactic

centre of the Milky Way as opposed to being centred on Earth. The centre of the

Milky Way is given at right ascension 17h 45.6m and declination of −28.94◦ in the

constellation of Sagittarius, with the North Pole of the Galactic Plane at right ascension
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and declination angles of 12h 51.4m and +27.13◦ respectively [12]. Consequently when

you combine these two measurements together the galactic plane as a whole appears

to be inclined at an angle of approximately 63◦ to the celestial equator as depicted in

Figure 2.4.

2.8.3 The Supergalactic Plane

The supergalactic plane is somewhat harder to define, as can be expected of structures

with poorly defined disks. Although it was noted by William Herschel more than 200

years earlier, the major planar structure of the local Universe, i.e. the supergalactic

plane (SGP) was recognised by Vaucouleurs [197] following an analysis of the radial

velocities of nearby galaxies [112].

Although the SGP is relatively easy to see in Figure 2.5, it is not as easy to describe

geometrically. Lahav et. al reported in their studies of the SGP using data from the

Optical Redshift Survey (ORS) and the Infrared Astronomical Satellite (IRAS) that the

structure of the SGP is not well described by a homogeneous ellipsoid, although it does

appear to be a flattened structure [112]. The directions of the principal axes also vary

with radius, consequently causing the structure of the SGP to change shape with radius

as well, varying between a flattened pancake and a dumbbell, the latter at a radius of

∼50h−1Mpc. This consequently calls into question the ‘connectivity’ of the plane beyond

a distance of ∼40h−1Mpc. However if we choose to consider the plane as a whole only

out to that limiting distance of ∼40h−1Mpc, the centre of the SGP is given in galactic

coordinates at l=137.37◦, b=0◦, with its North Pole given at l=47.37◦, b=+6.32◦ [39]

which, when combined together, results in the SGP being aligned almost at a right

angle to the galactic plane. When plotted with respect to the celestial equator as in

Figure 2.6, the supergalactic plane runs through the Virgo cluster (the dense collection

of objects on the left side of the sphere), and extends northward, passing close to the

north celestial pole. It can be traced around to the southern galactic cap, although

the density of galaxies in the anti-Virgo region is significantly reduced compared to the

north [167]. The general planar structure of the SGP and the clustering of large galactic

structures and superclusters along the equator of the SGP can be seen in Figure 2.7.
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Figure 2.5: The distribution of galaxies projected on the sky in the IRAS and ORS
samples, with the supergalactic plane being seen prominently as a thick clustering
line along the centre of the great circle. This is an Aitoff projection in supergalactic
coordinates, with SGL=90◦; SGB=0◦ (close to the Virgo cluster) in the centre of the
map. Objects within 2000kms−1 are shown as circled crosses; objects between 2000
and 4000kms−1 are indicated as crosses, and dots mark the positions of more distant
objects. Only catalogued galaxies from both the IRAS and ORS samples are used,
leading to very prominent zones of avoidance in both figures. Figure reproduced from

the work of Lahav et. al [112].
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Figure 2.6: All-sky Aitoff projection map showing the positions of ∼5700 galaxies
with measured redshifts less than 3000 kms−1. The figure is plotted in equatorial
coordinates, with the center of the figure at 6h and 0◦. The dotted lines denote the
location of the galactic plane and lines of b=±20◦. The Virgo cluster is the densest
collection of objects on the left side of the figure. The supergalactic plane runs through
Virgo, and can be traced most of the way around the sky. Figure reproduced from the

works of Salzer and Haynes [167].

Figure 2.7: Distribution of nearby groups of galaxies over the celestial sphere in Su-
pergalactic coordinates. Group of galaxies shown here are within 10-16 Mpc. Note the
marked concentration of galaxies and clusters toward the Supergalactic plane (horizon-

tal line) [59].
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2.9 An overview of supernovae catalogues

Having discussed the importance of supernovae, specifically Type Ia, as cosmological

field probes due to their intrinsic luminosities and high accuracy distance estimates in

Section 2.5, developing extensive catalogues of as many nearby and distant supernovae as

possible for further use only makes sense. By analysing the velocities of these supernovae

once their distances are determined, various cosmological models and parameters can be

tested and constrained. As such we will take a moment to briefly discuss and introduce

some of the supernovae catalogues and datasets that we will be making use of throughout

this work, and discuss some pertinent cosmological results that have been computed from

their use.

2.9.1 The Tonry et. al Supernova Data Set

The Tonry et. al Supernova data set is a compilation of 230 Type Ia Sne developed during

2003 at varying redshifts between 0.1 and 1.8 which has been utilised in confirming the

results of Riess [163], Perlmutter [149] and others that supernova luminosity distances

imply an accelerating Universe. Specifically, the discovery and addition of 8 Type Ia

Sne between redshifts z = 0.3 − 1.2 to this set has served to extend the redshift range

over which Type Ia Sne can be consistently observed to z ≈ 1, where the signature

of cosmological effects has the opposite sign of some plausible systematic effects. As a

result, these measurements not only provide another quantitative confirmation of the

importance of dark energy as a cosmological indication of an acelerating expanding

Universe, but also constitute a powerful qualitative test for the cosmological origin of

this acceleration [189].

More specifically Tonry et. al utilised these supernovae to obtain a value for the dark

matter energy density as Ωm=0.28±0.05, and consequently constrained the dark energy

density ΩΛ via the variable: ΩΛ−1.4Ωm =0.35±0.14. These values are in good agreement

with the WMAP probes of the CMBR and their computed values of Ωm ∼0.3 and

ΩΛ ∼0.7 for a flat ΛCDM Universe where Ω=1 [189]. Figure 2.8 depicts Tonry et. al’s

constraining of both dark matter and dark energy densities in a presumed flat Universe

(denoted by the dashed straight line which restricts the summation of Ωm and ΩΛ from

ever exceeding 1) using all supernovae in their set that exhibited redshifts larger than

z > 0.01 and extinction values less than 0.5 magnitudes.

The Tonry et. al set has been constructed from several datasets over the past two

decades (refer to the seminal work of Tonry [189] for more information on the assembly
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Figure 2.8: Probability contours for the most statistically viable values of ΩΛ vs.
ΩM as obtained using the Type Ia supernovae of the Tonry et. al dataset (black
lines), presented at the 1, 2 and 3σ confidence levels respectively. The adopted a prior
assumption of ΩMh=0.20±0.03 from the 2dF galaxy redshift survey and the works of
Percival et. al [148] is also presented in grey out to the same number of confidence
contours. The assumption of a flat Universe is depicted via the dashed straight line
that restricts the summation of ΩM and ΩLambda from exceeding 1. The intersection
of both these sets of probability contours and our flat Universe assumption dashed line
lends itself to values of ΩM ∼0.3 and ΩΛ ∼0.7, in very good agreement with the values

obtained by WMAP. Figure reproduced from the works of Tonry et. al [189].

techniques used), and can be viewed and downloaded in its entirety at http://vizier.

u-strasbg.fr/viz-bin/VizieR-3?-source=J/ApJ/594/1/table8

2.9.2 The Union2.1 Compilation

The Union2.1 Compilation, developed in 2012 by Suzuki et. al [186] is an update of

both the Union1 and Union2 Compilations of supernovae as developed by Kowalski et.

al in 2008 [108] and Amanullah et. al in 2010 respectively [2], which now brings together

data for 833 supernovae drawn from 19 datasets, as is noted in Figure 2.9 which plots

the distance moduli of all supernovae in the initial Union1 and final Union2.1 datasets

as a function of redshift. The reason for the augmentation is due to the fact that Type

Ia SNe are an excellent probe of dark energy, as they measure the magnitude-redshift

relation with very good precision over a wide range of redshifts, from z = 0 up to z ∼ 1.5

and possibly beyond [186].
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(a) Plot of distance moduli of Union1 supernovae as a function of increasing redshift [108].

(b) Plot of distance moduli of updated Union2.1 compilation supernovae as a function of
increasing redshift [186].

Figure 2.9: Evolution of the Union compilations from Union1 (2008) to Union2.1
(2012) and the various datasets integrated into the compilations over time. Figures

obtained from the Supernova Cosmology Project [185].
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Figure 2.10: Probability contours for the most statistically viable values of ΩΛ vs.
ΩM as obtained using the Union2.1 compilation (blue), presented at the 1, 2 and 3σ
confidence levels respectively. Previous attempts to constrain parameters by means of
the CMBR and BAOs are also presented to the same number of confidence contours
in orange and green respectively. The assumption of a flat Universe is depicted via the
dashed straight line that restricts the summation of ΩM and ΩLambda from exceeding 1.
The intersection of all three of probability contours with the flat Universe assumption
dashed line continues to lend itself to values of ΩM ∼0.3 and ΩΛ ∼0.7, in very good
agreement with the values obtained by WMAP. Figure obtained from the Supernova

Cosmology Project [185].

More specifically, much like the Tonry et. al datasets before it (which have indeed been

incorporated into the Union compilations), the Union2.1 supernovae have been used to

successfully constrain ΩΛ to a value of 0.724+0.071
−0.077 at the 68% confidence level (refer to

Figure 2.10), which continues to be in excellent agreement with the results obtained

from WMAP and from BAOs - baryon acoustic oscillations, which are regular, periodic

fluctuations in the density of the visible baryonic matter of the Universe [186].
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It should be noted in Figure 2.9 that at redshift values larger than ∼0.2 in both the

Union1 (panel (a)) and Union2.1 datasets (panel (b)), the linear predictions of an

isotropic homogeneous Universe begin to break as clustering effects and the influence of

large scale galactic structures begin to affect the distribution of supernovae at higher red-

shifts. This highlights the importance for our work going forward and our assumptions

of homogeneity and continuous isotropy as discussed in Section 1.2 that we continue to

work at low redshifts and restrict ourselves to analysing the nearby Universe alone. To

that effect the Union2.1 compilation will be filtered accordingly. The full list of super-

novae in the Union2.1 (and indeed Union1 and Union2) compilations can be found at

http://supernova.lbl.gov/Union

2.9.3 The SAI Supernova Catalogue

The Sternberg Astronomical Institute catalogue is a Russian repository of multiple su-

pernovae catalogues such as LEDA, NED and the SDSS amongst others that, up until

late 2014, was being updated regularly as new supernovae were found [191]. As of Oc-

tober 2014 the catalogue consists of 6545 SNe at varying distances and also includes the

relevant data of the parent galaxies hosting those supernovae. The catalogue can be

viewed and downloaded in its entirety at http://www.sai.msu.su/sn/sncat/

2.10 An overview of redshift and peculiar velocity surveys

Having established the integral equation behind calculating the redshift z of an object

in space from its observed photometry in Section 2.1 and consequently inferring their

recessional velocities, generating redshift surveys from optical observations and by ex-

tension, generating peculiar velocity surveys from those redshifts are just as essential to

our understanding of the Universe as our use of Type Ia supernovae catalogues are in

probing cosmological parameters. They are especially important since at any scale larger

than relatively nearby, it is extremely difficult to calculate the true real-space position

of an object but measuring its redshift is relatively simpler and can be directly done.

As a result large redshift surveys of galaxies such as the ‘work-in-progress’ SDSS (Sloan

Digital Sky Survey) or the 2dFS (2 degree Field Survey) or many others are essential

in mapping the ‘luminous’ or baryonic distribution of matter in the Universe and by

proxy, probing the distribution of the hidden or dark matter that directly influence the

recessional and peculiar velocities observed. Additionally they serve as useful tools to

investigate the evolution of galaxies and large scale galactic structures over time as one

probes larger and larger redshifts [6].
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To be more specific, the vital importance of galaxy redshift and peculiar velocity surveys

can be summarised in a few key reasons:

� Redshift surveys have unprecedented quantity and quality: taking the 2dF

survey as an example, it contains over a quarter million galaxies with a predicted

final survey size of ∼800,000 objects once the final runs of the SDSS are completed.

The unprecedented number of objects in such a survey as well as the homogeneous

selection criteria enable the precise statistical analysis of their distribution.

� The Universe at z ≈ 1000 is well specified: data obtained from both WMAP

and Planck over the years have established a set of cosmological parameters that

may be taken as the initial condition of the Universe from the point-of-view of

the structure evolution towards z = 0. In a sense, the origin of the Universe at

z ≈ 1000 (approximate redshift of the surface of last scattering of the CMBR) and

the evolution of the Universe after that epoch to the present are now equally impor-

tant, but they constitute well separable questions that particle and observational

cosmologists focus on, respectively.

� Gravitational growth of dark matter is well understood: In addition,

extensive numerical simulations of structure formation in the Universe has sig-

nificantly advanced our understanding of the gravitational evolution of the dark

matter component in the standard gravitational instability picture (refer to Sec-

tion 3.2 for an introduction to this concept and the key derivations behind it).

In fact, we even have very accurate and useful analytic formulae to describe the

evolution deep in its nonlinear regime. Thus we can now directly address the evo-

lution of visible objects from the analysis of their redshift surveys separately from

the nonlinear growth of the underlying dark matter gravitational potentials.

� Formation and evolution of galaxies: In the era of precision cosmology among

others, the scientific goals of research using galaxy redshift surveys are gradually

shifting from inferring a set of values of cosmological parameters using galaxies

as their probes to understanding the origin and evolution of galaxy distribution

given a set of parameters accurately determined by the other probes like CMB and

supernovae. [113]

For more information about the importance of redshift and peculiar velocity surveys, as

well as in depth discussions on various topics and cosmological methodologies related

to their use, refer to the 1995 seminal paper of Strauss and Willick [184], which also

served as the starting point for reading and research into this particular work. While

a full review of that paper is outwith the scope of this work due to its length, the first
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sections can be summarised thus: the relevant background cosmological concepts such

as the Hubble Law and the growth of large scale structure out of small perturbations

is covered in brief, followed by the basics of Big Bang cosmology such as the definition

of the Robertson-Walker metric, the Friedmann equation, discussing the gravitational

instability paradigm and delving into power spectra and their use in determining the

underlying dark matter distribution of the nearby Universe. A history of redshift surveys

as of the date of the paper is then discussed as well as many of the practical issues needing

to be addressed in their quantitative analysis. This is followed by a qualitative tour of

the structures that we see within 8000kms−1 as revealed to us from these surveys, as

well as the various statistical measures that can be inferred from these surveys [184].

We will now briefly discuss the key redshift surveys that we will be using throughout

this particular work to constrain various cosmological parameters in later sections.

2.10.1 IRAS PSCz Galaxy Catalogue

The Infrared Astronomical Satellite Point Source Catalog Redshift Survey (IRAS PSCz)

is a redshift survey of IRAS galaxies out to 0.6 Jy (Jy - or Jansky - being a unit of

spectral flux density). It contains 15,411 galaxies (14,677 with redshifts) that span over

84% of the sky as can be seen in Figure 2.11, and boasts a level of completeness and

uniformity to within a few percent at high latitudes, and to within 10% at low latitudes.

The maximal sky coverage of the PSCz allows for indepth mapping of the local galaxy

density field and by proxy allows for high accuracy probing of the local gravity field

as well. Additionally the high level of completeness and flux uniformity of the survey

within well-defined areas and redshift ranges has allowed for in depth statistical studies

of the IRAS galaxy population and its distribution to be performed [170]. The IRAS

PSCz was initially published by Saunders et. al in 2000 and has since been augmented

with data from the CfA (amongst other survey sources) to include 15795 galaxies, all

normalised and corrected to account for certain cosmological parameters and assumed

Universal models. The full catalogue can be accessed via the Strasbourg Astronomical

Data Center at http://cdsweb.u-strasbg.fr/Cats.html

2.10.2 2MASS

The 2 Micron All Sky Survey (2MASS) as developed by Skrutskie et al. [180] is a near

all-sky infrared survey that improves on the accuracy and coverage of its predecessor:

the Two Micron Sky Survey (TMSS) which was constructed in 1969. Initialised in 1997

and completed in 2001, it achieves this by uniformly scanning the entire sky in three

near-infrared bands (see Table 2.1) to detect and characterise point sources brighter
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Figure 2.11: An Aitoff projection of the distribution of galaxies in the IRAS PSCz
catalogue as a function of distance. The gaps in the map are due to the Milky Way
obscuring that region of the sky and is termed the ‘Zone of Avoidance’. The IRAS
PSCz is considered complete and uniform in flux density to within a few percent at

high galactic latitudes and to within 10% at low galactic latitudes otherwise [170].

than about 1 mJy in each band, with signal-to-noise ratio (SNR) greater than 10, using

a pixel size of 2.0”, thus achieving an 80,000-fold improvement in sensitivity relative to

earlier surveys [24].

The overall sky coverage of this survey comes to � 95% for galactic latitude |b| >
10◦ and approx. 95% for |b| < 10◦, with no gaps larger than 200 square degrees,

essentially generating a point source catalogue that contains accurate positions and

fluxes for nearly 300 million stars and other unresolved objects, and an extended source

catalogue containing positions and total magnitudes for more than 1,000,000 galaxies

and other nebulae, as can be seen in Figure 2.12. The immediate benefits of the survey

include:

� An unprecedented view of the Milky Way nearly free of the obscuring effects of

interstellar dust, which will reveal the true distribution of luminous mass, and thus

the largest structures, over the entire length of the Galaxy.

� The first all-sky photometric census of galaxies brighter than Ks=13.5 mag, includ-

ing galaxies in the 60◦-wide ‘Zone of Avoidance’, where dust within the Milky Way

renders optical galaxy surveys incomplete. The catalogue of more than 1,000,000

galaxies will provide a rich statistical database, including photometric measure-

ments in three wavelengths and a few structural parameters for large samples of

galaxies in differing environments, measured at wavelengths which are sensitive to

the stellar populations dominating the luminous mass.
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Magnitude Limits

Band Wavelength (µm) Point Sources (SNR = 10) Extended Sources

J 1.25 15.8 15.0
H 1.65 15.1 14.3
Ks 2.17 14.3 13.5

Table 2.1: The magnitude limits of the 2MASS survey for unconfused sources outside
of the Galactic Plane (|b| > 10◦), and outside of any confusion-limited areas of the sky

outside of the Galactic Plane [24].

Figure 2.12: Full-sky distribution of extended sources in the 2MASS survey. The
faint blue band in the extended source map traces the Galactic plane as represented by
the Point Source Catalog. Intensity is proportional to source density. The images are a
color composite of source density in the J (blue), H (green), and Ks (red) bands [180].

� The statistical basis to search for rare but astrophysically important objects, which

are either cool, and thus extremely red (e.g., extremely low-luminosity stars and

brown dwarfs), or heavily obscured at optical wavelengths (e.g., dust-obscured

Active Galactic Nuclei (or AGNs) and globular clusters located in the Galactic

plane). [24]

The survey can be accessed in its entirety alongside in-depth documentation and all

publications released to date at

http://www.ipac.caltech.edu/2mass/overview/about2mass.html [25].
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2.10.3 Sloan Digital Sky Survey

The Sloan Digital Sky Survey, or SDSS, is on ongoing optical redshift survey and is one of

the most ambitious astronomical surveys ever undertaken. The survey aims to map one-

quarter of the entire sky in detail, determining the positions and absolute brightnesses

of hundreds of millions of celestial objects across all optical wavebands (namely u, g, r

i and z). More specifically, the SDSS operates by using five specific colour filters as it

observes the night sky, with each one designed to only let in and observe optical light

of a certain wavelength or colour. The individual colour names and wavelengths of the

different filters are given in Table 2.2 alongside the effective optical magnitude limits

determined by the survey for those filters (at 95% completeness for point sources). The

SDSS will also measure the distances to more than a million galaxies and quasars at

high redshifts [174].

The SDSS is continually being updated with new data runs, with DR14 being the most

current data set at the time of submission of this work, though we have focused on

its predecessor, DR13, for this section. For the sake of completeness however, we will

include a projection of the additions to the sky provided by the DR14 in Figure 2.14, as

an indication of the continuing progression and development of the scope of the SDSS.

Benefits of the SDSS include but are not limited to:

� Creating a 3D picture of the Universe through a volume one hundred times larger

than that explored to date,

� Providing unprecedented information of the distribution of matter at the edge

of the visible Universe through its recorded distances to over 100,000 quasars

(extremely luminous active galaxies) at high redshift,

� Being the first large-area survey of its kind to use electronic light detectors, so the

images it produces will be substantially more sensitive and accurate than earlier

surveys, which relied on photographic plates. As such the results of the SDSS

(which is predicted to be in excess of 15 terabytes at the end of the survey) will

also be made electronically available to both the scientific community and the

general public, both as images and as precise catalogues of all objects discovered.

[174]

By systematically and sensitively observing a large fraction of the sky, the SDSS will have

a significant impact on astronomical studies as diverse as the large-scale structure of the

Universe, the origin and evolution of galaxies, the relation between dark and luminous

matter, the structure of our own Milky Way, and the properties and distribution of the
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Filter Wavelength (Å) Magnitude limit

Ultraviolet (u) 35430 22.0
Green (g) 47700 22.2
Red (r) 62310 22.2

Near Infrared (i) 76250 21.3
Infrared (z) 91340 20.5

Table 2.2: The optimal optical wavelengths at which SDSS’s five filters work best.
The sensitivity of each filter falls off slowly at shorter and longer wavelengths. [173].
The optical magnitude limits listed here are at 95% completeness for point sources

[175].

Figure 2.13: Current sky coverage of the SDSS DR13 when combined with the DR12
and all previous data runs as of 2015 [175].

Figure 2.14: Current sky coverage of the SDSS as of 2018. Sky coverage of all previous
data runs including DR13 are included here, with DR14 additions represented in blue

[176].
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dust from which stars like our own Sun were created. The SDSS will be a new reference

point, a field guide to the Universe that will be used by scientists for decades to come

[174].

Data Release 13 (DR13) is the first data release of the fourth phase of the Sloan Digital

Sky Survey. It includes SDSS data taken through June 25, 2015, and encompasses more

than one-third of the entire celestial sphere, as seen in Figure 2.13. The total unique

area covered by this DR reaches 14,555 square degrees, and encompasses over 1.2 billion

objects.

This DR can be accessed in its entirety at http://www.sdss.org/dr13/data_access/.

For more information pertaining to the contents and observations of this data run, specif-

ically the location and format of the data now publicly available, as well as providing

references to the important technical papers that describe the targeting, observing, and

data reduction methods used, refer to the work of Albareti et. al and the references

therein [1].
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Chapter 3

Probing Peculiar Velocity Fields

of the Nearby Universe

3.1 The Importance of Probing Peculiar Velocity Fields

As we established in Section 2.2, over large scale cosmological distances the relation

between redshift space and real space is easily defined via the Hubble Law. On smaller

scales however, gravitational instabilities give rise to galaxy peculiar velocities which

need to be corrected for and constrained in order to perform any useful cosmological

analyses. To that effect the mapping of the distribution of galaxies and their peculiar

velocity fields constitutes a major research area in modern astronomy. More specifi-

cally, the measurements of peculiar motions provide a fundamental tool to probe the

mass distribution in the local Universe [20], with redshift surveys providing one of the

only truly useful sources for directly determining that distribution. Once identified, the

underlying cosmological model parameters driving that distribution (such as those that

will be discussed later in this chapter) can be constrained. This can be achieved for ex-

ample via methods that quantify the amplitude of clustering in the matter distribution

such as baryonic acoustic oscillations (BAOs) - measurements of the spatial distribution

of galaxies to determine the rate of growth of cosmic structure within the overall ex-

pansion of the Universe [36]. Put another way, and as noted by Schmoldt et. al [172],

redshift surveys (and their associated reconstructed peculiar velocity fields) provide the

only possibility to determine the 3D density fields of luminous matter. These in turn are

crucial for studies of mass concentrations, the mass power spectrum, dynamical analyses

to probe the relationship between dark and luminous matter, and many other areas of

observational cosmology [172]. Consequently the importance of probing the peculiar
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velocity fields of the Universe around us via redshift and redshift-distance surveys can-

not be overstated enough for our continued evolving understanding of the Universe and

future discoveries to come.

In this chapter we will briefly discuss the gravitational instability paradigm that gives

rise to the velocity distortions observed in these surveys, while also discussing a selection

of the various cosmological parameters that can be constrained from such a paradigm

and how we intend to make use of one parameter in particular, the linear redshift

distortion parameter β, in this work going forward.

3.2 Defining Gravitational Instability

Gravitational instability is a universally accepted concept that provides a theoretical

framework for the formation of structures in the Universe (for an introduction and more

extensive treatment of the subject, consult the seminal work of Strauss & Willick [184]

and the references therein) and is what is responsible for generating the distortions

that give rise to peculiar velocity fields as we know them today. In the early Universe,

minute irregularities in the distribution of matter (and consequently the mass density

field) caused gravitational fluctuations, where areas with more matter would exert a

more powerful gravitational force on neighbouring regions, drawing in more matter and

consequently causing an even bigger irregularity in the mass density field. It is these

irregularities in the mass density field, and the corresponding gravitational fluctuations

over large scales that cause bodies to exhibit the peculiar or ‘extra’ component in their

total bulk motion that is observed in galaxy redshift surveys and so forth. These irreg-

ularities in the density field can be modelled by means of the equation:

δ(r, t) =
ρ(r, t)− ρ̄(t)

ρ̄(t)
, (3.1)

where δ is the fractional mass density difference or contrast at different points in the

field at a given point in time, and ρ̄(t) is the scalar mean mass density. If we assume

that these density perturbations are small enough that they can be treated according

to the linear theory of gravitationally evolving cosmological density and perturbation

fields (developed by Jim Peebles in 1980 in his seminal book describing the large scale

structure of the Universe [147]) then we can proceed to make a few more assumptions

about our Universe, namely:

1. The Universe is a perfect CDM pressureless fluid (meaning all perturbation or

fluctuation terms arising from pressure are deemed negligible) consisting only of

baryonic matter and dark matter with no dark energy component (i.e. ΩΛ = 0),

64



Chapter 3. Probing the Peculiar Velocity Field

2. The velocity field flow is irrotational (meaning it exhibits no vorticity over large

scales and thus the field can be derived from a scalar potential only [184]),

3. The gravitational perturbations exhibited will still converge at large scales to the

perturbations predicted by the Zel’dovich approximation (see Section 3.4 for an

introduction to its underlying theory), despite its root mean square field value

being larger than 1 on small scales. [131]

From these we can begin to define gravitational instability by first writing down the

equations of mass continuity, force and gravitation (Poisson’s equation for fluids) re-

spectively in an expanding Universe such that:

∂ρ

∂t
+∇ · (ρv) = 0, (3.2)

∂v

∂t
+ (v · ∇)v +∇ϕ = 0, (3.3)

∇2ϕ = 4πGρ, (3.4)

where ρ is the scalar mass density field, v is the velocity field and ϕ is the gravitational

potential and as per our first assumption, all terms dependent on pressure have been

deemed negligible and thus dropped [184]. If we then proceed to expand these three

equations to first order, convert to comoving coordinates and subtract the zeroth order

solutions (which in itself involves subtleties having to do with the gravitational potential

of a uniform universe [184]), both the mass continuity and force equations simplify to:

∂δ

∂t
+

1

a
∇ · v = 0, (3.5)

and
∂v

∂t
+
ȧ

a
v +

1

a
∇ϕ = 0 (3.6)

respectively, where δ is the dimensionless density contrast established in Equation 3.1

and a is the scale factor. If we then proceed to take the time derivative of the continuity

equation (Equation 3.2) and substitute that into the divergence of the force equation

(Equation 3.3) in conjunction with the Poisson equation (Equation 3.4) we obtain:

∂2δ

∂t2
+

2ȧ

a

∂δ

∂t
= 4πGρ0δ. (3.7)

where the second left hand ‘drag’ term denotes the expansion of the Universe [184]. As

noted by Jim Peebles this approximation satisfies our requirement that our velocity field

be irrotational, and infers that the angular momentum of observed bound structures

can only be gained by non-linear tidal interactions between different overdensity pertur-

bations in higher order perturbation theory [147]. Since Equation 3.7 is a second-order
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partial differential equation that is dependent on time t only, this allows us to separate

the spatial and temporal dependencies such that:

δ = A(x)D1(t) +B(x)D2(t), (3.8)

where D1 and D2 are growing and decaying modes respectively relative to the scale factor

a [184][177]. In particular the decaying mode is representative of the rotational modes

of the velocity field which as a result have short damping scales in t (once again keeping

with our second assumption that the velocity field be irrotational on large scales). In

the case of our perfect pressureless CDM Universe as per our first assumption where

ΩΛ = 0, analytic expressions for D1(t) and D2(t) can be obtained where in the special

case of a flat Universe we find that:

∂2δ

∂t2
+

4

3t

∂δ

∂t
=

2

3t2
δ, (3.9)

which has an analytic solution in terms of power laws of t such that:

δ(x, t) = A(x)t
2
3 +B(x)t−1. (3.10)

For more general cosmological models, the solution for δ will rely on the values chosen

for Ωm and ΩΛ. In particular the growth is seen to be faster with increasing Ωm while

for Ωm < 1 the ‘drag’ term of Equation 3.7 (i.e. the Universal expansion) starts to

dominate over the gravitational attraction of matter causing the predicted gravitational

clustering to halt at an approximate redshift of z ≈ 1/Ωm− 1 [184]. As we progress into

late times in t, the growing mode of Equation 3.8 starts to dominate with the decaying

vorticity mode vanishing such that we can rewrite Equation 3.5 to model the peculiar

velocity field as:

∇ · v = −aδ Ḋ1

D1
= −aH0fδ, (3.11)

Here we are effectively modelling the divergence of the velocity field (i.e. its rate of flow

or change) as being proportional to the fractional mass density contrast, where a0 is a

linear constant taken to be the present-day value of the scale factor R(t) (as defined

in Section 1.3), H0 is the present-day value of the Hubble constant as these values are

thought to change over time and epoch [81], and f is a growth factor that takes into

consideration whatever cosmological model we are using to describe the rate of expansion

of the Universe (in this case, we are using the ΛCDM model). More specifically f is

given as:

f ≡ 1

H0D1

dD1

dt
=

d lnD1

d ln a
, (3.12)
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and was estimated by Lahav et. al [111] as a function of Ωm and ΩΛ (the critical energy

density ratios of baryonic matter and dark energy respectively) to be:

f(Ωm,ΩΛ) = Ω0.6
m +

ΩΛ

70
(1 +

1

2
Ωm). (3.13)

However, since we are working at low redshift in the nearby Universe, the dynamic

influence of ΩΛ becomes negligible [111], so the growth factor reduces to:

f = Ω0.6
m , (3.14)

meaning we can now re-write Equation 3.11 to obtain:

∇ · v = −a0HoΩ
0.6
m δ(r), (3.15)

and by using the results of the theory of electrostatics; specifically the ‘Divergence

Theorem’ that states that the flux of a vector field through a closed surface S is equal

to the integral of the divergence of that field over a volume V for which S is a boundary

[65], we can now model a solution for the peculiar velocity field as follows:

v(r) =
H0Ω0.6

m

4π

∫
δ(r′)(r′ − r)

|r′ − r|3
d3r′, (3.16)

where r is the position of the galaxy, and r′ is a position in space [184]. This corner-

stone equation essentially defines an integral over a volume of space within which the

peculiar velocity field v(r) at every point is strictly dependent upon the mass distribu-

tion δ(r) everywhere else within that volume. The presence of the cubed denominator

indicates that the influence of more distant matter on the peculiar velocity field at a

given point diminishes rapidly as you integrate over the whole volume. Equation 3.16

serves as the fundamental basis from which many different cosmological parameters can

be constrained and estimated as the peculiar velocity field is probed, three key statistical

measures of which we will discuss in the next section.

3.3 Exploring Cosmological Parameters

3.3.1 Bulk Flow

This measure, defined as the average streaming motion within a certain volume, is prob-

ably the easiest statistic to estimate from the observed radial component of peculiar

velocities. In the Cosmic Microwave Background radiation (CMB) restframe, the bulk
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motions are expected to converge to zero with increasing volume. The rate of conver-

gence depends on the fluctuations in the matter distribution on various scales, i.e., the

power spectrum of the large scale matter fluctuations. Put another way, the rate of

convergence of the bulk flow will be heavily reliant on the variable Ωm, which in turn

will be reliant on the sort of cosmological model and Universal curvature and geometry

being assumed here as was discussed previously in Chapter 1. This dependence on cos-

mological models has motivated several attempts to measure the dipole component of

the local peculiar velocity field and to determine the volume within which the streaming

motion vanishes. Theoretically, the mean square bulk velocity within a sphere of radius

R, is given by

Vb =
Ω1.2
m

2π2

∫ ∞
0

P (k)W̃ 2(kR)dk, (3.17)

where Ω1.2
m is a scalar value representing the amplitude of the mass power spectrum

(refer to Section 3.3.2), P (k) is the mass fluctuation power spectrum and W̃ (kR) is the

Fourier transform of a top-hat window of radius R [210].

As of yet, bulk flow measurements have produced conclusive and consistent results only

on scales . 60h−1Mpc, but failed to do so on scales & 100h−1Mpc (consult the overview

literature of Zaroubi [210] and the references therein for a more extensive treatment on

the subject). A summary of recent bulk flow measurements within top-hat windows of

varying radius R are given in Table 3.1.

3.3.2 The Mass Power Spectrum

The power spectrum of mass and density fluctuations is the most common statistic used

to quantify the large-scale structure of the Universe [147]. This statistic is useful for

several reasons. If the initial fluctuations were a Gaussian random field as commonly

assumed (in other words, a random field where the underlying defining variables of that

field - in this case the intial fluctuations - can be modelled as Gaussian probability dis-

tributions), then the initial power spectrum fully characterises the statistical properties

of the field, and it reflects the origin of fluctuations in the early Universe that go on

to fuel the large-scale cosmic growth and structure observed in the present day [104].

To that end Equation 3.17 suggests that one can estimate the bias free , Ω1.2
m weighted,

matter power spectrum directly from the measured peculiar velocities (refer to Section

3.3.3 for a brief definition of the Kaiser linear biasing model applied here).

Most of these power spectrum estimations are determined by applying likelihood analy-

ses; which assume that both the underlying velocity field and the errors are drawn from

independent random Gaussian fields. The observed peculiar velocities then constitute

a multi-variate Gaussian data set, albeit with sparse and inhomogeneous sampling; and
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Survey Vb (kms−1) R (h−1Mpc) Comments

Tonry et. al [188] 350 30 SBF∗

Dekel et. al [51] 370 60 M3? (TF† + Dn − σ)
Giovanelli et. al [72] 200 60 SFI (TF)
Courteau et. al [40] 70 60 Shellflow (TF)
da Costa et. al [42] 220 60 ENEAR (Dn − σ)

Riess et. al [162] ≈ 0 100 SNIa•

Colless et. al [33] ≈ 0 ∼ 110 EFAR (FP�)
Hudson et. al [92] 600 140 SMAC (FP)
Lauer & Postman et. al [116] 700 150 LP (BCG‡)
Willick [203] 700 150 LP10K (TF)
Dale et. al [44] ≈ 0 ∼ 150 SCI/SCII (TF)

Turnbull et. al [196] ≈ 250 ∼ 60 SNIa
Feindt et. al [62] ≤ 240 90-240 SNIa
Hoffman et. al [80] 250 50 Cosmicflows-2 (CR/)
Magoulas et. al [126] ≈ 400 N/A 6dFGSv (ML/)

Table 3.1: Summary of recent Bulk Flow measurements. ∗ Surface Brightness Fluc-
tuations. ? Mark III dataset. † Tully-Fisher Measurement. • Supernovae Type 1a. �

Fundamental Plane Measurement. ‡ Brightest Cluster Galaxy Measurement. / Con-
strained Realisations. / Maximum Likelihood Approach [210] [196] [62] [80] [126].

this probability distribution function is then reinterpreted as a likelihood function of the

measured radial velocities given a model power spectrum. Maximising the likelihood

with respect to the model free parameters yields a best fit power spectrum [210].

Estimations of the matter power spectrum exist for the Mark III ([104], [214]), SFI

([67]) and ENEAR catalogues ([212]), as well as additional estimations constrained from

analysing the temperature fluctuations or anisotropies of the CMBR using both WMAP

across its many year runs (refer to [183], [105] and [106] and their associated papers for

more in depth discussions on the additional parameters constrained and the method-

ologies used) and more recently with Planck in 2014 and 2016 (refer to [152] and [154]

and their associated papers for more extensive results). All of these measurements have

consistently produced power spectra with amplitudes larger than those measured by

other data sets, with galaxy redshift surveys for example usually favouring the standard

ΛCDM model (Ωm = 0.3, ΩΛ = 0.7 and h=0.65) [210].

3.3.3 The Linear Redshift Distortion Parameter β

Although we know that the Universe consists of both luminous baryonic matter and non-

baryonic dark matter, only the luminous matter can be observed directly. Therefore if

we are to determine the distribution of dark matter, we must establish a relationship

69



Chapter 3. Probing the Peculiar Velocity Field

between it and the distribution of luminous matter that we observe. The simplest argu-

ment would be that the distribution of observed galaxies also contains the information

about the dark matter distribution [184]:

δg(r) = δ(r), (3.18)

but on the macro scale, this argument is no longer valid due to the effects of dark matter

causing galaxies to gather in filaments and clusters and superclusters. To combat this

effect, it was suggested by Kaiser et. al that galaxies will only form at the high-density

peaks of the mass density field [102], such that galaxy clusters are said to be biased with

respect to the mass distribution. This came to be known as the linear bias model,

where the galaxy and dark matter distribution are related as follows:

δgalaxies(r) = bδdarkmatter(r) (3.19)

where b is a linear biasing parameter. It must be noted that Kaiser observed that

the value of b was heavily reliant on the assumed mass density coherence length (a

characteristic length over which the mass density field is assumed to be coherent and

continuous). As a result of this Kaiser determined that his assumption that this linear

biasing model remains independent of scale only really holds true out to distances of

5h−1Mpc ≤ r ≤ 7h−1Mpc [102], with the linear biasing parameter becoming increasingly

dependent on redshift over larger scales (for an overview of the various linear biasing

models that have been developed to accommodate for this dependence, refer to the

works of Basilakos & Plionis [8] and the references therein for a comprehensive look at

the subject).

Let us assume for now that we are working at small enough distances for the linear

biasing model to remain independent of scale. In that situation the following expression

can be applied:

β =
f(Ωm,ΩΛ)

b
, (3.20)

and substituting from Equation 3.14 we get:

β =
Ω0.6
m

b
, (3.21)

where β is the redshift distortion parameter. Following on the theorems of electro-

statics and the divergence theorem as before, we can rewrite our solution for the peculiar

velocity field to indicate its linear dependence on β:

v(r) =
H0β

4π

∫
δ(r′)(r′ − r)

|r′ − r|3
d3r′ (3.22)
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It is this parameter β that we have selected for analysis in this work; wishing to in-

vestigate other methods for estimating β in order to better understand the nature of

the peculiar velocity field, and consequently learn more about the mass distribution of

a particular region of space. Knowing that more accurately will also give us a clearer

picture of the distribution of dark matter due to its linear dependence on the observed

peculiar velocities of galaxies. While we will be primarily focusing on various applica-

tions of the ROBUST method of Rauzy and Hendry [160] to constrain β, we will briefly

discuss some of the various methods and techniques that have been applied in the past

to constrain β across various surveys, and provide a summary of β values calculated to

date using these methods.

3.4 Constraining β

There are several methods for correcting for redshift distortions and recovering real space

density and peculiar velocity fields of galaxies, and thus using these data to constrain

cosmological parameters such as β. These can be roughly divided into two types: 1.

Basis Function Methods and 2. Iterative Methods [172], both of which make use of

either linear theory or the Zel’dovich approximation, the latter of which was developed

by the Soviet physicist of the same name in 1970.

Zel’dovich adapted existing linear perturbation theory by choosing to define the actual

position r of an object as a function of its Lagrangian coordinate q (a set of coordinates

that are invariant with time) and time t, such that r = r(t,q). Where only the growing

perturbations are considered, his solution for the position r becomes:

r = a(t)q + b(t)p(q), (3.23)

where a(t)q describes the cosmological expansion and the second term describes the

perturbations [216]. The functions a(t) and b(t) are known; b(t) is growing faster than

a(t) due to gravitational instability, and the vector function p(q) depends upon the

initial perturbation. The simple form of Equation 3.23 which is linear in t implies

that all objects (at least initially) move with constant velocity, with an allowance for

multiple objects to have their own velocity trajectories that will intersect at some point

in the future such that regions of high (if not infinite) density can form [178]. This

is particularly convenient for a simple reason. Considering what happens when these

trajectories intersect, the resultant collisions would cause effects such as multistream

configurations (non-constant velocity flows) to occur that can continue to be modelled

using r = r(t,q), and would not be unlike the peculiar velocity fields we observe today

(which themselves have their origin in minute irregularities in the mass density field in
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the early Universe as per the paradigm of gravitational instability (see Section 3.2)).

Put another way, the Zel’dovich approximation gives us another way (more specifically

a kinematical approach [146]) to model the full motion of an object over time, while also

allowing for relatively well predicted modelling of evolving large scale cosmic structure

- far better than what can be achieved with the gravitational instability paradigm or

Eulerian kinematics alone (the process of describing the position of an object as a set

of coordinates in which the properties of the object - in this case its velocity - are

assigned to points in space at each given time). With respect to the latter, the Zel’dovich

approximation has the advantage of breaking down much later than Eulerian linear

theory, allowing for predictive modelling over longer periods of cosmological time [146].

Consequently with given r(t,q), it is possible to calculate the distribution of velocity

and density anywhere in space, with r(t,q) containing the whole picture of the motion

as well as well-modelled predictions for large scale clustering effects that will form over

large scales of cosmological time [216] [178]. Consequently the Zel’dovich approximation

provides an intuitive way to understand the emergence of large scale cosmic structure,

and accurately predicts the rich structure of voids, clusters, sheets and filaments observed

in the Universe [201].

Regardless of the theory or approximations used however, both the Basis Function and

Iterative methods used to constrain cosmological parameters are ultimately very limited

in their ability to reconstruct the high-density regions of the real space density and

peculiar velocity fields [172].

3.4.1 Basis Function Methods

When transforming the measured redshift space density field into a combination of

angular and radial basis functions, the distortion is concentrated in the radial part

and its correction becomes an algebraic matrix inversion problem. Some versions of

this method transform the angular part of the density field into basis functions while

expressing the radial in differential equations which are then solved numerically (see the

work of Nusser and Davis [140]), while others transform both the angular and radial

parts into basis functions, using a combination of spherical harmonics and spherical

Bessel functions (refer to the works of Fisher et. al [64] and Zaroubi et. al [213]). The

underlying theory of the latter approach lies in expressing the mass overdensity as a

Fourier-Bessel expansion:

δ(r, ω) =
∑
lmn

Ylm(ω)jl(klnr)δlmn, (3.24)
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where ω denotes the angular coordinates, Ylm are spherical harmonics, jl are spherical

Bessel functions, kln are a set of wavenumbers that depend on the boundary conditions

assumed, and δlmn are the expansion coefficients [172]. Once the expansion coefficients

are known, the linear theory velocity field is easily calculated in terms of these as:

v(r, ω) = H0β
∑
lmn

δlmn∇
[
Ylm(ω)

jl(klnr)

k2
ln

]
(3.25)

The problem is to determine the expansion coefficients δlmn from redshift survey data,

especially correcting for distortions of redshift space (s, ω) relative to real space (r, ω)

arising from the velocity field [172]. In addition, such a Fourier-Bessel expansion as

above will contain spurious extra power from shot noise that needs to be eliminated.

This shot noise arises due to the continuous discrete summations over multiple Bessel

functions and spherical harmonics, which causes an artificial contribution or ‘white noise’

to start appearing in the data; which generally tends to the reciprocal of the square root

of the number of Bessel functions and spherical harmonics summed [94]. This spurious

power can be suppressed by means of a Wiener Filter Φ, as defined by the American

mathematician of the same name during the 1940s and published in 1949 [202]:

Φ =
power in signal

power in (signal + noise)
(3.26)

but this in itself is not without its problems. One of the main drawbacks of the Wiener

filter is that it suppresses the amplitude of the estimated signal. The suppression factor

is roughly equal to:
Signal2

Signal2 + Noise2
, (3.27)

therefore in the limit of very poor signal-to-noise ratio data, which in the context of the

sorts of cosmological parameters we are studying corresponds to galaxy peculiar veloci-

ties, and in view of the typically quite large uncertainties on galaxy distance estimators,

the estimated field approaches a value of zero [211].

3.4.2 Iterative Method - POTENT

As stated in Section 3.2, in the linear regime of gravitational instability, a simple relation

between peculiar velocity, v, and mass density contrast, δm, can be easily obtained from

mass conservation, with the differential form of that relation being expressed as:

∇ · v = −a0HoΩ
0.6
m δ(r), (3.28)
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Equation 3.28 can be used to perform what is called a density-density comparison, which

is typically performed in the following way:

1. Reconstruct the 3D velocity field from observed galaxy radial velocities,

2. Differentiate v(r) and use Equation 3.28 to compute δg. More specifically δg is the

galaxy density contrast, which can be related to the mass density contrast δm(r)

by means of our previously discussed linear biasing model over small scales such

that δg = bgδm, where bg is the galaxy biasing parameter [20]. To that effect we

can rewrite Equation 3.28 such that:

∇ · v = −
[
a0HoΩ

0.6
m

bg

]
δg(r) (3.29)

3. Compare the computed δg to observed galaxy density fields [20].

Step 1 is the least trivial to implement and requires some additional theoretical assump-

tions. The POTENT method as developed by Bertschinger & Dekel [10] is one such

density-density comparison technique that makes the assumption that the velocity field

v(r) is irrotational, i.e.

∇× v = 0 (3.30)

Any vorticity mode is expected to decay in the linear regime as the Universe expands,

therefore based on Kelvin’s circulation theorem the velocity flow should remain vorticity-

free in the quasi-linear regime (i.e. at larger cosmological scales) provided that the flow

remains laminar [50]. Irrotationality implies that the velocity field can be derived from

a scalar potential:

v(x) = −∇Φ(x), (3.31)

so the radial velocity field u(x) should contain enough information for a full reconstruc-

tion [10][50]. To that effect the radial component of the velocity field, defined by u(r, θ, φ)

(the only component we can directly compute using redshift surveys, by subtracting the

peculiar motions of us as the observer from the observed recessional velocity cz while also

correcting for local bulk flow motions), can be used to calculate the velocity potential

Φ via:

Φ(r) = −
∫ r

0
u(r′, θ, φ)dr′, (3.32)

where differentiating Equation 3.32 via Equation 3.31 will then yield the full 3D velocity

field [50].

However, since a continuous radial velocity field u(r) cannot be easily observed due to

all the additional motions that need to be corrected for, noisy data arises for a non-

uniform and sparsely sampled set of galaxies. Therefore an integral component of the
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POTENT method involves turning available data into a continuous radial velocity field

via smoothing methods [184]. Dekel, Bertschinger & Faber use a tensor window function

smoothing that takes into account the radial nature of the observed velocity field [10].

More specifically, they take the observed velocity field and cut it into spherical shells,

then calculate the multipole coefficients of the radial velocity distribution across each

shell, or ‘window’. This has the advantage of retaining all details of the velocity field

flow, and to calculate the statistical distribution of those multipoles is a relatively simple

affair [161]. However this produces additional sources of error in the resultant smoothed

velocity field:

� Statistical noise in the velocity field due to the error in the individual peculiar

velocities. One minimises this noise by weighting each galaxy by the inverse square

errors of those velocities.

� Malmquist bias (as discussed in Section 2.4), both homogeneous and inhomoge-

neous, resulting from the peculiar velocity errors.

� Sampling gradient bias, due to the inhomogeneous sampling of the velocity field

within a smoothing window. This is minimised using equal volume weighting,

wherein which a weighted mean is used to properly account for the relative con-

tributions of each galaxy to the velocity field. This is achieved by weighting the

average absolute magnitude or luminosity function of the galaxies (from which

their real-space distances and consequently their peculiar velocities will be deter-

mined) by 1/Vmax where Vmax is the maximum volume over which the galaxies

could have been seen. Brighter galaxies will have a larger volume over which they

can be observed or detected, and thus they will be given a smaller weight since

these brighter objects will be more fully sampled [14][184].

As a result of these concerns and smoothing effects, the many applications of POTENT

to various data sets have consistently led to large values of β being constrained that are

consistent with unity [20]. This is particularly problematic as it basically implies that

all observed peculiar motions are driven exclusively by dark matter such that Ωm ∼ 1,

which is inconsistent with the values of Ωm ∼ 0.3 constrained by WMAP and Planck via

their analyses of the CMBR for our assumed Universal model of ΛCDM where Ω = 1.

3.4.3 Iterative Method - VELMOD

While Equation 3.28 serves as the differential form of the relation between peculiar

velocity and mass density contrast, the principles of the theory of electrostatics can be
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applied as before to derive the integral form of that relation as:

v(r) =
Ω0.6
m

4π

∫
d3r′

δm(r′)(r′ − r)

|r′ − r|3
, (3.33)

which serves as the basis of another form of iterative analysis, namely velocity-velocity

comparisons [20]. In this approach, the observed galaxy distribution is used to infer

the mass density field from which peculiar velocities are obtained and compared to the

observed ones [210]. One of the most well known forms of this sort of comparison is

the VELMOD method as derived by Willick et. al [205]. While we won’t delve into the

specific derivations of VELMOD and the extensive discussions of its applications (refer to

the works of Willick et. al [205] and the references therein for that), we will briefly cover

the main points of how VELMOD operates here. VELMOD uses a so-called “Method

II approach” as defined in the works of Strauss & Willick in 1995, wherein which we

take the Tully-Fisher observables (apparent magnitude m and velocity width η) and the

redshift of an object and quantify the probability of observing the former given the latter

for a particular model of the velocity field and a TF relation [184]. This probability is

then maximised with respect to the free parameters of the velocity model and the TF

relation [20]. Specifically, for a galaxy with given angular coordinates (l, b), redshift cz,

apparent magnitude m and velocity width parameter η ≡ log10(W ) − 2.5, where W is

twice the rotational velocity of the galaxy, the joint probability of said galaxy having a

certain apparent magnitude at a given redshift and velocity width parameter is defined

by:

P (m|η, cz) ' 1√
2πσe

exp

[[
− 1

2σ2
e

{
m−

[
M(η) + 5 logw + 3× 5

ln 10
∆2
v

]}2
]]
, (3.34)

where w is the solution to the equation cz = w+u(w), i.e. it is the distance inferred from

the redshift and peculiar velocity model; ∆v ≡ σv/[w(1 + u′)], where u′ = (∂u/∂r)r=w,

is the effective logarithmic velocity dispersion; and

σe ≡

[
σ2
TF +

(
5

ln 10

)2

∆2
v

] 1
2

(3.35)

is the effective TF scatter, including the contribution due to σv [205]. This probabilistic

approach allows a statistical treatment for effects such as small scale velocity noise,

inaccuracy of the velocity model and the existence of triple-values regions that spoil

the uniqueness of the redshift-distance mapping [20]. Also unlike POTENT, VELMOD

doesn’t require smoothing of the TF data which, along with the allowance for triple-

valued regions and small-scale velocity noise, allows one to probe the velocity field of
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high density regions, thus allowing one to exploit the denser sampling of surveys such as

the PSCz galaxy catalogue. Another convenient feature of VELMOD is that it does not

require an a priori calibration of the TF relation, which is a common issue of concern in

peculiar velocity studies. Instead, a fit of the parameters of the TF relation is performed

simultaneously with a fit of the parameters of the velocity field [20].

Velocity-velocity methods such as VELMOD have been applied to many current galaxy

catalogues and consistently yielded systematically lower values of β in the range of 0.4-

0.6 irrespective of the velocity tracers, modelled gravity field and comparison techniques

used [210][20]. However, some of these analyses have shown evidence for a poor match

between models and data, which would render the estimate of β meaningless [20].

Examples of this can be found in the works of Davis, Nusser & Willick where they com-

pared the gravity field derived from the IRAS 1.2Jy survey using ITF (Inverse Tully

Fisher relation) with the peculiar velocities obtained from the Mark III catalogue, and

noted that the coherent dipole residuals they found were indicative of significant dis-

crepancy between the modelled and observed velocity fields [47]. To that end, Strauss

& Willick also considered the IRAS 1.2Jy velocity predictions and the Mark III dataset

and compared them using VELMOD, only being able to obtain a good fit to the data

when they introduced a physically motivated, external quadrupole contribution to the

modelled velocity field [205] [204] [20].

3.4.4 Best of Both Worlds - UMV

The unbiased minimal variance (UMV) method, as developed by Zaroubi et. al [209],

acts as a sort of intermediary solution that is the best of, or compromise between, both

worlds. With the UMV method, both velocity-velocity and density-density comparisons

can be carried out within the same methodological framework. Similar to a Wiener

Filter, the UMV estimator is derived by requiring the linear minimal variance solution

for a given cosmological field, and an assumed prior model specifying the covariance

matrix of that underlying field. More specifically for an underlying cosmological field

s with a set of observations d (where d can either be directly sampled from s or from

any field linearly related to s) we are interested in measurements that can be modelled

mathematically as a linear convolution or mapping of the underlying field such that:

d = o+ ε = Rs+ ε, (3.36)

where o = Rs, and R is an M ×N matrix that represents the response or point spread

function, and ε is the noise vector associated with the data [209]. Leading on from

this the unbiased minimal variance estimator sUMV is defined such that sUMV = Hd,
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where H is the N × M matrix that minimises the variance of the residual r, where

r = s− sUMV , satisfying the constraint:

[
sUMV

]
N = [Hd]N = s, (3.37)

where [...]N is the ensemble average over multiple noise realisations [209]. In effect we

are seeking H that minimises:

〈[
rr+ + λHd

]
N
〉

=
〈[(

s− sUMV
) (
s− sUMV

)+
+ λHd

]
N

〉
, (3.38)

where the + exponent denotes the complex conjugate of the transpose of the underlying

signal and λ is a Lagrange multiplier [209]. Minimising Equation 3.38 with respect to H

and using the result in conjunction with Equation 3.37 to solve for H and λ one obtains

the solution for the UMV estimator:

sUMV =
〈
so+

〉 〈
oo+

〉−1
d (3.39)

This estimator allows one to reconstruct an unbiased cosmological field at any point in

space from sparse, noisy and incomplete data and to map it into a dynamically related

cosmic field (to go from peculiar velocities to overdensities, for example [211]). However,

unlike the Wiener filter, the minimisation is carried out with the added constraint of

an unbiased reconstructed mean field [210]. Specifically for a group of catalogue data

points consisting of a set of observed radial peculiar velocities u◦i , measured at positions

ri with estimated errors εi, assumed to be uncorrelated, then the observed velocities are

thus related to the 3D underlying velocity field v(r), or to its radial component ui via

the equation:

u◦i = v(ri) · ri + εi ≡ ui + εi, (3.40)

As per the definitions of gravitational instability we established earlier, the peculiar

velocity field v(r) and the density fluctuation field δ(r) are related via δ = f(Ωm)−1∇·v,

where f(Ωm) ≈ Ω0.6
m and Ωm is the matter mean-density parameter [209][211]. Under the

assumption of a specific theoretical prior for the power spectrum P (k) of the underlying

density field, we can write the UMV estimator of the 3D velocity field as:

vUMV (r) = 〈v(r)ui〉 〈uiuj〉−1 u◦j (3.41)

and the UMV estimator of the density field as:

δUMV (r) = 〈δ(r)ui〉 〈uiuj〉−1 u◦j (3.42)
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As was touched upon briefly in Section 3.4.1, one of the drawbacks of a Wiener Filter is

that it suppresses the amplitude of the estimated signal (see Equations 3.26 and 3.27).

By contrast, the UMV estimator as defined above has been specifically designed to

not alter the values of the reconstructed field at the locations of the data points, thus

avoiding spurious suppression effects. An unbiased estimate of the reconstructed field at

any point in space is then obtained by interpolating between the data points, according

to the correlation function assumed a priori [211].

The fields reconstructed from this estimator are compared with those predicted from

the IRAS PSCz galaxy redshift survey to constrain the value of β. For example, the

analysis of the SEcat catalogue for the first time leads to consistent β values from

the comparison of the density and the velocity fields yielding β = 0.57+0.11
−0.13 and β =

0.51± 0.06, respectively [210].

3.4.5 Applying χ2-minimisation

To constrain β, recall Equation 3.22 which describes the linear dependence of β on the

mean density function Ωm, and consequently its dependence on the peculiar velocity

field. An extension of this theory suggests that the difference between the observed

peculiar velocity values and those calculated via interpolation from the surrounding

galaxy distribution and their respective velocities is about a factor of β. Using a χ2

minimisation to determine this value of β is consequently quite useful.

The basic concept of this technique is simple, and is not unlike a simplified variant of a

velocity-velocity comparison method. Consider a galaxy catalogue of peculiar velocities

and 3D positional coordinates. To constrain β, a group of secondary distance indicators

such as Type 1a supernovae (whose distances are typically known to within 8% as was

discussed in Section 2.5) are embedded amongst these galaxies, and their peculiar veloci-

ties are interpolated based on the velocity field generated from the surrounding galaxies.

The computed supernovae velocities are then rescaled by a factor of β due to our afore-

mentioned linear dependence until we reach a value for which the computed velocities

closest match that which are observed in the actual catalogue. More specifically,

utrialpec (i|β) = βupredpec (SNi|β = 1), (3.43)

where our re-scaled β will take a value between 0 and 1 incrementally increasing accord-

ing to the number of trials we perform. We take this range [0,1] in particular because

as previously mentioned in Section 3.4.2, a value of β ∼ 1 represents a scenario in which

there is no contribution to the peculiar velocity field from luminous matter; a problem-

atic scenario at best given what we observe in the Universe. Similarly a value of β ∼ 0
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indicates that galaxies do not exhibit any peculiar velocities at all, which we again know

is not true considering the large scale cosmic bulk flows observed in the Universe. As a

result a β range of [0,1] represents the two extreme limits which we know cannot be true,

but in between which the ‘true’ value of β must reside. Therefore the χ2 calculation

would be as follows:

χ2 =

nsn∑
i=1

[
vobspec(i)− utrialpec (i|β)

]2
σ2
i

, (3.44)

where σ refers to the radial redshift reconstruction error and Sne distance errors involved

in reconstructing the peculiar velocity fields and nsn signifies the number of Type Ia

Sne being used for the analysis. Consequently χ2 will be minimised at the value of

β for which the differences between the observed and predicted β-dependent peculiar

velocities are minimised, with a confidence interval as defined by σχ2 = βopt±(χ2
min+1).

The degrees of freedom ν inherent to this χ2 statistic, i.e. the number of values in the

final calculation of χ2 that are free to vary, will determine what the minimum value of

χ2 should be. In this example that would be equal to the number of Sne used during the

analysis minus the number of parameters held fixed which, in this instance, would be

three: the two sources of error used in the construction of σ and the observed peculiar

velocities vobspec; in other words χ2
min = ν = nsn− 3. As a general rule of thumb, should

the value that χ2 minimises to be on the order of the number of degrees of freedom

ν, then we can accept the value of β constrained here as the correct value, whereas

should the minimum value of χ2 be on the order of double the number of degrees of

freedom or larger then the value of β constrained is more likely to be rejected unless

a more thorough investigation of the sources of error involved in the analysis and their

associated estimations is performed [199].

Table 3.3 in Section 3.4.7 presents previous attempts to constrain β using χ2-minimisation.

3.4.6 Only the Beginning - A Brief Overview of More Recent Methods

The methods that we have discussed in detail over the past few sections to constrain β

are by no means exhaustive, though frequently used up to the present day (look to the

2015 works of Carrick et. al [25] for example and their use of VELMOD to constrain β

for the 2M++ density field). As we continue to improve the techniques currently at our

disposal we have also progressed in leaps and bounds in developing new experimental

techniques to constrain β, amongst other cosmological parameters, and while delving

into all of the most recent developments would make for a fascinating study in and

of itself, that is not the purpose of this work. As such we will merely provide a brief

descriptive overview of some of the newer methods available here, with links to the

appropriate references for further reading. Table 3.4 in Section 3.4.7 will summarise
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some of the recent results for β obtained from these newer methodologies but, as the

title of this section suggests, this is only the beginning. As we continue to find new ways

to probe the peculiar velocity field of our nearby Universe and get a better handle on

the cosmological parameters that fuel it, we will never be at a loss for new things to

understand and explore.

Recent developments in β-constraining techniques include, but are not limited to:

1. Analysing the clustering signal of LRGs (Luminous Red Galaxies) in redshift sur-

veys in order to recover the values of Ωm and β. More specifically we make use

of the Alcock-Paczyński cosmological test, which is an evaluation of the ratio of

observed angular size of a galaxy to its radial/redshift size. The main advantage

of this test is that it does not depend on the evolution of the galaxies, but only on

the geometry of the Universe [123]. By taking into consideration the influence of

linear clustering evolution constraints, β can be constrained effectively [132] [29].

2. Reconstructing the density and peculiar velocity fields of a redshift survey such

as 2MASS by means of expanding them using Fourier-Bessel functions, while also

making use of a distortion matrix to deconvolve the parameter β from the density

field in particular [58].

3. Analysing the 3D power spectrum of redshifts from SDSS galaxies. This is achieved

by applying the Karhunen-Loève Transform (KLT), which represents the spectrum

as an infinite linear combination of orthogonal functions, analogous to a Fourier

series representation of a function on a bounded interval, which are then solved

in order to recover the signal of β amongst other parameters from the spectrum

[155]. The key difference between using KLT and more traditional methods like

Fast Fourier Transform (FFT) lies in the fact that KLT is better able to reconstruct

a weak signal from extremely noisy data, whereas FFT would fail (refer to the work

of Maccone [125] for an in depth look into the math and theory behind KLT, how

it is derived, and its importance in astronomy and cosmology in general).

4. Making use of the clustering dipole of redshift surveys to determine β. More

specifically, one wishes to compare the peculiar velocities of galaxies with their

gravitational accelerations (as induced by the density field) in order to constrain

β. To that effect, one can use the motion of the Local Group (LG) for that purpose.

Its peculiar velocity is known from the dipole component of the CMBR, whereas

its acceleration can be estimated with the use of the so-called clustering dipole of

surveys such as 2MASS [11].

5. Measuring the growth rate of large scale structures around cosmic voids to con-

strain β. More specifically, by measuring the cross-correlation function between
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the centres of observed voids in redshift surveys and the complete galaxy catalogue

itself, it is expected to exhibit a clear anisotropy that is characteristic of the linear

redshift distortion parameter β. By measuring the projected cross-correlation and

then de-projecting it we are able to estimate the un-distorted cross-correlation

function. With a sufficiently well-measured cross-correlation function one should

be able to measure the linear growth rate of structure β by applying a simple linear

Gaussian streaming model to the redshift space distortions [77] [75].

3.4.7 Attempts to constrain β to date

Table 3.2 and Table 3.4 present a selection of current attempts to constrain β using the

methods we have discussed both in detail and in summary in this chapter, with Table 3.3

specifically showing previous attempts to constrain β using χ2 minimisation techniques.

The Radburn-Smith value of β = 0.55 ± 0.06 [158] is highlighted in bold as it will be

used as our benchmark value for future computations performed in this work.

It should be noted that the majority of values reported in Table 3.3 have been calcu-

lated using objects at low redshift, where the effects of the breakdown in isotropy and

homogeneity at lower redshift may affect the value of β being constrained, if at all.

Having now discussed in broad strokes the importance and usefulness of probing peculiar

velocity fields of the nearby Universe in astronomical and cosmological terms, in addi-

tion to exploring some of the various methods and analyses available to us to attempt to

constrain various cosmological parameters such as the linear redshift distortion param-

eter β, we will now discuss an alternative method of our own. The ROBUST method

as developed by Rauzy and Hendry [160] provides us with another independent means

of constraining parameters such as β without the need for secondary distance indica-

tors such as SNIa or the Tully-Fisher relation, and only utilises the galaxy catalogue in

question.

It is the purpose of this work to explore the workings of ROBUST and apply its method-

ology to various mock and real-world data catalogues, comparing our calculated values

with those obtained above (specifically using χ2-minimisation to benchmark compare

our results with previously established values for various surveys) as a means of testing

the suitability of ROBUST for use with future survey endeavours such as the LSST

(Large Synoptic Survey Telescope) and future data runs of the SDSS. To be clear, we

are not just looking to re-enact ROBUST as it has been used in prior works such as

Rauzy and Hendry [160] and the works of Johnston et. al [98] but to instead extend its

use to entire galaxy populations, i.e. in principle utilising the same galaxies that have

been used to reconstruct a β-dependent estimate of the density field from e.g. IRAS
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Method Compared data β

δ − δ Comparison

POTENT Mark III vs. IRAS 1.2Jy 0.89± 0.12

UMV SEcat vs. PSCz 0.57+0.11
−0.13

v − v Comparison

VELMOD Mark III vs. IRAS 1.2Jy 0.50± 0.07
VELMOD SFI vs. PSCz 0.42± 0.07

ITF Mark III vs. IRAS 1.2Jy ?†

ITF SFI vs. IRAS 1.2Jy 0.6± 0.1
UMV SEcat vs. PSCz 0.51± 0.06

Table 3.2: Summary of β values calculated from various basis and iterative methods.
† Inconsistent flow fields (probably due to problematic calibration of Mark III) [210].

Work Data β

Hudson [89] Dn − σ, IRTF, ESO, UGC 0.50± 0.06
Riess et. al [162] SNIa, IRAS 1.2Jy 0.40± 0.15
Riess et. al [162] SNIa, ORS 0.30± 0.10

Blakeslee et. al [13] SBF, IRAS 1.2Jy 0.42+0.10
−0.06

Blakeslee et. al [13] SBF, ORS 0.26± 0.08
Hudson et. al [91] SMAC, IRAS 1.2Jy 0.39± 0.17

Radburn-Smith et. al [158] SNIa, IRAS PSCz 0.55 ± 0.06
Hudson & Pike [90] SNIa, SBF, TF, 2MASS 0.49± 0.04

Park & Park [143] PS,SFI 0.49+0.08
−0.05

Neill et. al [139] SNIa, IRAS PSCz 0.50

Table 3.3: β values obtained from χ2 minimising. SBF represents surface brightness
fluctuation, and PS denotes power spectrum [177]. The result highlighted in bold

signifies the value of β we will use as a benchmark for our future computations.

Work Data β

Ross et. al [132] 2dF-SDSS LRG, QSO (2SLAQ) 0.45± 0.05
Chuang & Wang [29] SDSS LRG 0.44± 0.15
Erdog̃du et. al [58] 2MASS, Fourier-Bessel 0.54± 0.12
Pope et. al [155] SDSS, KLT 0.45± 0.12
Bilicki et. al [11] 2MASS XSC, LG motion 0.43± 0.03

Hawken et. al [77] VIPERS, voids 0.423+0.104
−0.108

Hamaus et. al [75] SDSS, voids 0.457+0.056
−0.054

Table 3.4: β values from a selection of more recent methodologies briefly introduced
in Section 3.4.6.

83



Chapter 3. Probing the Peculiar Velocity Field

PSCz or the 2MRS, to estimate and constrain β. This would be instead of comparing the

β-dependent reconstructed velocity field with a sparsely sampled set of peculiar velocity

estimates from e.g. Type Ia Sne.

We also intend to evaluate how well ROBUST can constrain β in the situation where

we have a much less precise galaxy distance indicator (such as a broader luminosity

function for galaxies in a redshift survey), but conversely the survey in question has a

much larger sample of galaxies to which that is applied.
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Introducing the ROBUST

Method

While we have dedicated sections of the previous chapter to detailing some of the various

methods available to us to constrain cosmological parameters such as β, we have estab-

lished that they are not without their problems. Basis Functions in particular suffer

from shot noise that needs to be suppressed, which in itself introduces additional errors

as the amplitude of the signal one is attempting to recover from the data is affected

[172]. Moreover the smoothing techniques required for POTENT to reliably observe a

continuous radial velocity field for its measurements are also fraught with additional

sources of error being introduced such as Malmquist biases that need to be accounted

for, with various prior distributions of luminosity functions and assumed likelihoods of

distances being required [184] [79]. The same is true of UMV which will not function

adequately without assumed priors on the covariance of the variables of the underlying

cosmological field one is attempting to recover, despite it being constructed to be the

‘happy medium’ solution between POTENT and VELMOD [209]. While the aforemen-

tioned VELMOD is indeed constructed to not require any smoothing of the data used,

its computed values for parameters such as β have been inconsistent with POTENT,

and have shown indications of poor matches between models and data that require the

use of additional quadrupole contributions to fix the mismatch.

The main takeaway from the above is simple. In order for us to be able to use galaxy

peculiar velocity data to constrain cosmological parameters effectively, it would be ideal

to make use of methods that require as little to no smoothing of the observed data as

possible such as to minimise reconstruction errors and/or shot noise, while also making

use of as few a priori assumptions and likelihoods on the underlying data as possible.

This will ideally prevent additional biases or errors being introduced that are a result
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of possibly assuming the wrong initial model or conditions. In keeping such smoothing

methods and prior likelihoods and assumptions to a minimum the potential application

of such a method can also be broadened considerably. Thankfully we are now in a

position where such methods can indeed be constructed and tested, one such method of

which, the ROBUST method of Rauzy & Hendry, we will discuss in detail below.

4.1 Underlying Theory of ROBUST

To begin with, let us consider a redshift-distance survey of galaxies that we require to be

complete up to a limiting magnitude given by mlim or, put another way, the selection

function in apparent magnitude ψ(m) is well defined by a sharp cut-off such that:

ψ(m) = θ(mlim −m),

where θ is the Heaviside function (otherwise known as a unit step function which, in

this instance, will take a value of 0 for all observed magnitudes fainter than mlim, and

a value of 1 otherwise). If we then make the assumption that the distribution of

absolute magnitudes M, i.e. its luminosity function F (M) is independent

of the spatial position r = (r, l, b) of the galaxies (which makes sense when one

considers the cosmological principle), then we are in a position where we can write the

probability density function (or PDF) of such a survey as the product of the probabilities

of those two variables such that:

dP ∝ dPr × dPM = ρ(r, l, b)r2 cos b dl db dr × f(M)dM, (4.1)

where ρ(r, l, b) is the spatial distribution function of the galaxies in polar coordinates

[160]. Further incorporating our aforementioned requirement of completeness and ac-

counting for selection effects we can rewrite Equation 4.1 such that:

dP =
1

A
h(µ, l, b) cos b dl db dµf(M)dMθ(mlim −m), (4.2)

where µ is the distance modulus, h(µ, l, b) is the line of sight distribution of µ, and A

is a normalisation constant such that the integral of the PDF is equal to 1 [160]. The

important thing to note here is that now, due to observational selection effects in appar-

ent magnitude, a correlation will be introduced between absolute magnitude

M and µ. We will make use of this in later sections of this chapter.
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The milestone of the ROBUST method lies in the defining of a random variable ζ such

that:

ζ =
F (M)

F (Mlim)
, (4.3)

where F (M) is the cumulative distribution function (or CDF) of absolute magnitudes

such that:

F (M) =

∫ M

∞
f(x)dx,

and Mlim ≡ Mlim(µ) is the absolute magnitude limit at which a galaxy at a distance

modulus µ can be observed in the survey due to instrumental precision or redshift

selection effects [160]. Differentiating ζ yields:

dζ =
f(M)

F [Mlim(µ)]
dM,

which, due to the definition of ζ as the ratio of magnitudes up to an assumed magnitude

limit will have a value on the interval [0,1]. If we then choose to substitute the volume

element dµdζ into Equation 4.2 (multiplying dµ into our previous differentiation of ζ)

the PDF will reduce to the following:

dP =
1

A
h(µ)F [Mlim(µ)] dµ︸ ︷︷ ︸

dPµ

×θ(ζ)θ(1− ζ)dζ, (4.4)

where

A =

∫
h(µ)F [Mlim(µ)] dµ,

where θ remains the Heaviside function as before, and dPµ now describes the observed

spatial distribution function of the galaxies in the survey [160]. Equation 4.4 now allows

us to deduce two very important features of our random variable ζ, namely:

1. ζ will be uniformly distributed on the interval [0,1],

2. ζ and µ are statistically independent, i.e. the distribution of ζ is indepen-

dent of the spatial distribution of the galaxies in the survey, just like our initial

assumption on the distribution of absolute magnitude made earlier [160].

We can make use of the first property to measure the completeness of a redshift survey

up to a given apparent magnitude, while the second property can be used to fit pecu-

liar velocity field models and constrain the cosmological parameters on which they are

dependent. We will now delve into how both of these can be achieved.
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4.2 Testing for Completeness, Tc

Let us first consider a magnitude-complete redshift-distance galaxy survey whose

magnitudes have been corrected to account for Galactic extinction effects and have also

been k-corrected (in others words, adjustments have been made to the photometric

magnitudes and colours of the galaxies to take into account the effect of the redshift on

the galaxy’s spectrum; correcting the magnitudes to be in the rest frame of each galaxy

[4]). These corrected magnitudes mcor would be written as:

mcor = m− kcor(z)−Ag(l, b),

where z is the observed redshift and Ag(l, b) is the Galactic extinction correction [159].

We can then infer the corrected distance moduli Z of the galaxies in the survey to be:

Z = m−M = µ(z) + kcor(z) +Ag(l, b), (4.5)

which we can substitute into our definition of ζ and Equation 4.4 to obtain:

ζ =
F (M)

F [Mlim(Z)]
, (4.6)

and

dP =
1

A
h(Z, l, b)F [Mlim(Z)] dl db dZ × θ(ζ)θ(1− ζ)dζ, (4.7)

with

A =

∫
h(Z, l, b)F [Mlim(Z)] dl db dZ,

and our two properties from before continuing to hold true, with the caveat that now

instead of µ, both ζ and Z(l, b) are statistically independent.

In the case where our survey is indeed complete up to a given apparent magnitude, it

becomes possible for ζ to be estimated without any prior knowledge of the cumulative

luminosity function F (M). In particular, for an M -Z plot such as that in Figure 4.1,

we can assign each galaxy on the plot a pair of coordinates of the form (Mi, Zi) which

is associated with the region Si = S1 ∪ S2, where S1 and S2 are defined as:

S1 = {(M,Z) such that M ≤Mi and Z ≤ Zi}

S2 =
{

(M,Z) such that Mi < M ≤M i
lim and Z ≤ Zi

}
The variables M and Z are considered independent in each region Si since the cut-

off in apparent magnitude is dominated by the S1 and S2 region border constraints

M ≤ M i
lim(Zi) and Z ≤ Zi [159]. The expected number of points ri belonging to the
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Figure 4.1: Plot of the variable Z plotted vs. absolute magnitude M for a theoretical
galaxy survey. The procedure for calculating ri and ni in Equations 4.8 and 4.9 is also

illustrated. Figure reproduced from the work of Rauzy [159].

region S1 is then given by:

ri
Ngal

= F (Mi)×
1

A

∫ Zi

−∞
h(Z, l, b) dZ dl db, (4.8)

where Ngal is the number of galaxies in the survey. Similarly ni, the expected number

of galaxies in the region Si = S1 ∪ S2 is given by:

ni
Ngal

= F [Mlim(Zi)]×
1

A

∫ Zi

−∞
h(Z, l, b) dZ dl db (4.9)

ri and ni are easily determined from Figure 4.1 by simply counting the number of galaxies

in each region, and an unbiased estimator of the variable ζ̂ can then be calculated for

each galaxy such that:

ζ̂i =
ri

ni + 1
, (4.10)

where ζ̂i can essentially be considered the normalised rank of each galaxy on the interval

[0,1], where the absolute magnitudes are sorted by increasing order within each region

Si [160]. Utilising the rank-based statistics works of Efron & Petrosian [52] where we
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test for the independence of rank-based variables, we can infer that when M and Z

are independent of each other (as they are here due to how the regions S1 and S2 are

constructed), then the normalised rank ζ̂i will equal any of its possible values with equal

probability. Put another way, when M and Z are independent, it won’t matter which

galaxy on the M -Z plot is selected, as the probability of picking it will be the same,

and consequently the probability of that galaxy being assigned a particular value of ζ

will also be the same [52]. Moreover since we have also established that ζ is uniform on

[0,1], then the mean (or expectation Ei) and variance Vi of ζ is given as:

Ei =
1

2
Vi =

1

12
· ni − 1

ni + 1

Utilising all of the above we can now construct a completeness statistic, denoted Tc,

given by:

Tc =

Ngal∑
i=1

(
ζ̂i −

1

2

)
Ngal∑

i=1

Vi

 1
2

(4.11)

where, much like ζ before it and on which it relies, Tc can be computed without any prior

knowledge or assumptions made about the model of the luminosity function F (M), or

indeed made about the spatial distribution h(Z, l, b) of these galaxies either. This gives

Tc a unique advantage in that it also allows for clustering effects and galaxy evolution

over time to be considered, as well as various selection functions to be applied, without

any bias being introduced to either ζ or Tc [159].

We can now apply Tc to a survey over incremental increases of apparent magnitude and

monitor how Tc behaves. Considering how we have constructed it we expect it to behave

thusly: as long as the magnitude m∗ we are testing at is brighter than mlim (i.e. below

the assumed completeness limit of the survey), then the sample we are testing is also

presumed to be complete, and Tc is expected to have a mean of 0 and a variance of

unity. However, if m∗ becomes fainter than mlim, then the incompleteness introduces a

deficit of galaxies in Figure 4.1 whose M are fainter than Mlim(Z), which will result in

a lack of galaxies with values of ζ̂i that are close to unity, as illustrated in Figure 4.2.

In his work defining this completeness statistic, Rauzy notes that Tc is expected to be

systematically negative for all magnitudes greater (or fainter) than mlim, with a plot of

Tc being characterised by a plateau of zero mean for all m∗ above mlim, followed by a

significant falloff beyond mlim such that

Tc ' 0 for m∗ ≤ mlim Tc < 0 for m∗ > mlim,
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Figure 4.2: ζ-Z diagram for two values of the limiting apparent magnitude m∗.
For m∗ greater than the completeness limit mlim, the number of galaxies fainter than
Mlim(Z) is underestimated due to incompleteness, inferring a systematic lack of points

(or galaxies) with a value of ζ̂i close to unity. This effect is particularly visible at high
Z (i.e. distant galaxies). Figure reproduced from the works of Rauzy [159].

where Tc < −1, Tc < −2 and Tc < −3 are taken to be the confidence levels of rejection

at the 1σ, 2σ and 3σ levels respectively, as depicted in Figure 4.3 when Tc was applied

to the elliptical and spiral galaxies of the Second Southern Sky Redshift Survey (SSRS2)

to determine the survey’s completeness limit [159].

It should be noted that although Tc by its very construction requires no prior knowledge

of the luminosity function or spatial distribution of a redshift survey, and allows for the

inclusion of clustering effects and galaxy evolution etc. without introducing any bias

into Tc, it only remains viable for so long as the following conditions are met:

1. The distances of the galaxies are required, which necessitates that a cosmological

model of some sort (defining H0, Ωm, ΩΛ etc.) be specified, and that the contribu-

tions of peculiar velocities to the individual redshifts are deemed to be negligible.

Additionally the k-corrections and Galactic extinction corrections are essential.

2. The shape of the luminosity function of the galaxies must be invariant with time,
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Figure 4.3: Completeness test Tc applied to the 1373 E/SO galaxies (top) and the
2780 spiral galaxies (bottom) of the SSRS2 sample with redshifts between 2500 < cz <
15000kms−1. The systematic falloff at mlim=15.35 is present in both sets. Figure

reproduced from the work of Rauzy [159].

3. The luminosity function of the galaxy population must remain independent of the

spatial positions of the galaxies [159].

For a more in depth discussion of statistical completeness tests and their applications in

astronomy in general, refer to the work of Russell Johnston that gives a broad overview of

the statistical tools developed over the past century [97], in addition to his collaborative

efforts with Lúıs Teodoro and Martin Hendry that delve more specifically into the use of

Tc and a variant thereof, denoted Tv, and how both can be expanded to include the use

of both a faint and a bright limit to create more powerful tools to determine the true

completeness limits of a survey while also characterising its systematic errors [98] [99]

[100]. As we will be making use of the introduction of a bright completeness limit into

our surveys in future chapters, we will briefly cover its definition and construction here
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Figure 4.4: Schematic illustrating the construction of regions S1 and S2 when a bright
limit is introduced. These regions are uniquely defined for a slice of fixed width, δZ, in
corrected distance modulus, and for ‘trial’ bright and faint apparent magnitude limits
mb
∗ and mf

∗ , respectively. Also shown are the true bright and faint apparent magnitude

limits mb
lim and mf

lim, within which the rectangular regions S1 and S2 contain a joint
distribution of M and Z that are separable (i.e. independent). Figure reproduced from

the works of Johnston et. al [98].

before moving on to the modelling of peculiar velocity fields using the second property

of ζ.

4.2.1 Defining Tc with Two Limits

Where Figure 4.1 was constructed with only a faint apparent limit (mf ) in mind, Figure

4.4 depicts how easily this can be extended to include the presence of a bright apparent

limit as well, denoted as mb, where a fixed range of corrected distance moduli δZ are

considered.

Much like before, for a given value of δZ, every galaxy in Figure 4.4 with coordinates

(Mi, Zi) can have its regions S1 and S2 defined such that

S1 =
{

(M,Z) : M b
lim ≤M ≤Mi, Zi − δZ ≤ Z ≤ Zi

}
,
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S2 =
{

(M,Z) : Mi < M ≤Mf
lim, Zi − δZ ≤ Z ≤ Zi

}
,

where in the case where there is no bright limit, the above region definitions will revert to

their faint limit only cases [98]. In a similar fashion ri, the expected number of galaxies

in region S1 will be defined as:

ri
Ngal

=

∫ Zi

Zi−δZ
h̄(Z ′)dZ ′

∫ Mi

Mb
lim

f(M)dM, (4.12)

and the expected number of galaxies ni in the region Si = S1 ∪ S2 being given by:

ni
Ngal

=

∫ Zi

Zi−δZ
h̄(Z ′)dZ ′

∫ Mf
lim

Mb
lim

f(M)dM (4.13)

The integrals of Equations 4.12 and 4.13 can be rewritten such that:∫ Mi

Mb
lim

f(M)dM = F [Mi(Zi)]− F
[
M b
lim(Zi)

]
, (4.14)

and ∫ Mf
lim

Mb
lim

f(M)dM = F
[
Mf
lim(Zi)

]
− F

[
M b
lim(Zi)

]
(4.15)

with our unbiased estimator for ζ̂i and our definition of Tc (with its expectation Ei

and variance Vi) continuing to be as defined in Equations 4.10 and 4.11 respectively.

With regards to ζ̂i in particular, the introduction of a bright limit has merely changed

the definition of the random variable ζ itself and the membership criteria of the two

regions S1 and S2. Consequently, provided that both mf
∗ ≤ mf

lim and mb
∗ ≥ mb

lim, ζ̂i will

continue to be uniformly distributed on [0,1], and continue to be uncorrelated with (or

independent from) Zi, just as before [98].

Given that the construction of Tc is not altered or affected by the introduction of a bright

limit to the data, we can expect Tc to behave as previously established, fluctuating

around a plateau of 0 until the faint magnitude limit of the survey is reached, upon

which the statistic exhibits a systematic ‘freefall’ for all magnitudes fainter than mf
lim.

As illustrated in Figure 4.5 where the faint limit of the SDSS-DR1 sample of early-type

elliptical galaxies is computed with a bright limit applied, this is indeed the case though

it is worth noting that in the case where the completeness is computed without using

a bright limit, Tc has a harder time recovering the true faint limit at the 3σ confidence

level. Tc however does exhibit its characteristic falloff once the test magnitudes exceed

the published faint limit, indicating how the effectiveness of Tc is reliant on how best

the luminosity function of the survey in question can be modelled. If it is adequately

described by just a faint apparent magnitude limit, such as the SSRS2 in Figure 4.3, then
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Figure 4.5: Performance of the Tc statistic applied to the SDSS-DR1 early-type
elliptical galaxies. In the lefthand panel Tc is computed by fixing the bright magnitude
limit to equal the published value of 14.55mag. The behaviour of Tc is consistent
magnitude completeness up to and including the published faint limit of 17.45mag with
the statistic dropping rapidly thereafter - indicating the onset of incompleteness. In
the righthand panel Tc is computed using only a faint limit. Tc deviates significantly
from its expected value for a complete set at magnitudes which are much brighter than
the published faint magnitude limit, though Tc exhibits an even stronger freefall onc
the published faint limit is exceeded. Figure reproduced from the works of Jonhston

et. al [98].

the one-limit version of Tc will recover the completeness limit effectively. Conversely if

the survey is properly described by both a faint and a bright apparent magnitude limit

then using the two-limit version of Tc will more effectively recover the completeness limit

than the one-limit variant.

Having now defined our completeness statistic Tc and demonstrated how it may be

constructed and applied in both the one and two limit case, we will now proceed to make

use of it in conjunction with our second property of ζ, namely its statistical independence

from µ or Z to model peculiar velocity fields and constrain their cosmological parameters,

focusing on β in particular.

4.3 Constraining β with ROBUST

Recalling from Equation 3.22 where we established that the peculiar velocity field v(r)

of a region of space is linearly dependent on the mass distribution of galaxies in that

region of space multiplied by a factor of β, the linear redshift distortion parameter, we
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have a means by which to describe a one-parameter velocity model for this field. More

specifically for a β-dependent velocity field vβ(r), there exists a solution β∗ that scales

the velocity field to match what is observed in reality such that

vβ∗(r) ≡ v(r).

This means that for a given value of the parameter β, the model-dependent variables

µβ and Mβ (which as we established in Section 4.1 will be correlated in some manner

due to observational selection effects) can be calculated via the distance modulus law

(refer to Section 2.3) to obtain:

µβ = 5 log10

cz

H0
+ 25− uβ, Mβ = m− µβ, (4.16)

where the β-dependent velocity uβ is defined as:

uβ = −5 log10

(
1−

vβ
cz

)
, (4.17)

and vβ � cz. The β-dependent distance modulus and absolute magnitude µβ and Mβ

are related to the ‘true’ M and µ via

µβ = µ+ uβ∗ − uβ, Mβ = uβ∗ + uβ. (4.18)

Recalling the definition of ζ from Equation 4.6 as the ratio of magnitudes in a survey up

to an assumed limiting magnitude Mlim(µβ), we can calculate ζ from µβ and Mβ such

that:

dP =
1

A
h(µ)F [Mlim(µβ)] dµCβθ(ζβ)θ(1− ζβ)dζβ, (4.19)

where Cβ has the following form when (vβ∗ − vβ)� cz:

Cβ =
f(M)

f(Mβ)
' 1 + (uβ − uβ∗) (ln f)′ (Mβ) (4.20)

Because Mβ (and consequently (ln f)′(Mβ)) is correlated with µβ (ala Section 4.1) and

is therefore also correlated with ζβ as per the first property of ζ, Cβ essentially becomes

the correlation coefficient between ζβ and the modelled β-dependent velocity

field uβ for all cases where β 6= β∗. Conversely for the case where β = β∗, then Mβ

and ζβ become statistically independent and fully separable on an M-Z plot,

such that ζβ ≡ ζ is independent from the spatial distribution of galaxies and

from any β-dependent velocity field uβ(r) [160].

Another way to think about this would be to consider either Figure 4.1 or 4.3. As

we continue to alter our value of β being applied to the velocity field, it will cause
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the corrected distance moduli Z and the absolute magnitudes M of the galaxies in the

survey to alter and move around the M -Z plot. As a result we are essentially wanting

to find the optimal value of β, β∗, such that the distribution of M and Z in the plot

will be fully separable due to them being statistically independent.

As a result, any test of independence between ζβ and uβ will yield an unbiased estimate

of the optimal value of β, β∗, given the unbiased nature of ζ̂i as defined earlier [160].

More specifically, when two variables are statistically independent then the coefficient

of correlation between them reduces to 0, therefore for β = β∗ we can define:

β = β∗ ⇔ ρ(ζβ, uβ) = 0, (4.21)

where

ρ(ζβ∗ , uβ∗) =

n
n∑
1

ζiui −
n∑
1

ζi

n∑
1

ui√√√√n
n∑
1

ζ2
i −

(
n∑
1

ζi

)2

×

√√√√n
n∑
1

u2
i −

(
n∑
1

ui

)2
= 0, (4.22)

and n is the number of galaxies in the survey [117].

Having now defined our correlation coefficient parameter ρ(ζβ, uβ), we can now apply

it to a galaxy survey with a velocity field model such as that given in Equation 4.17

and monitor its behaviour. Considering that (much like our χ2-minimisation techniques

of Section 3.4.5) β will be increased incrementally on the interval [0,1], we expect our

logarithmic velocity model of Equation 4.17 to also exhibit a monotonic increase in

value, which consequently would cause a plot of ρ(ζβ, uβ) vs. βtrial to also exhibit a

similar monotonic increase in its value as we continue to scale over different trial values.

It follows from this that the behaviour of ρ(ζβ, uβ) does not need necessarily to follow

a linear progression in value over trial values of β as this will be dependent on the sort

of underlying velocity field being modelled. For the sake of simplicity however we will

be making use of the logarithmic model defined above in future computational chapters

of this work, though the robustness of the parameter does indeed permit us to model

whatever field we like, should we wish to.

Figure 4.6 illustrates the use of the correlation coefficient parameter to constrain a value

of β for the IRAS 1.2Jy galaxy sample, obtaining a value of β∗ around 0.1-0.15. The

plot of ρ exhibits the monotonic increase we expected of it, though it must be noted

that the value of β∗ constrained here is inordinately low. In particular this value of

β∗ ∼0.1-0.15 is inconsistent with the published value of β = 0.50 ± 0.04 for the IRAS

sample using VELMOD and Tully-Fisher data [204]. Rauzy & Hendry however theorise
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Figure 4.6: Observed coefficient of correlation ρ(ζβ , uβ) for the IRAS 1.2Jy survey
sample as a function of the parameter β, returning a value of β∗=0.1-0.15 as the value
for which ζ and the underlying peculiar velocity field uβ are completeley separable.
Confidence levels of rejection on β at the 1, 2 and 3σ levels are denoted in dotted lines,
and the means by which these confidence levels are constructed are discussed in Section

4.3.1. Figure reproduced from the works of Rauzy & Hendry [160].

that the reason behind this discrepancy lies in the effective depth of the survey being

analysed. More specifically, in their work Strauss & Willick analysed the IRAS 1.2Jy

galaxy sample out to a limiting redshift of cz ≤ 7500kms−1 when applying VELMOD,

while Rauzy & Hendry applied the ROBUST method to the sample on a redshift range of

1000 ≤ cz ≤ 12000kms−1 [204][160]. When they repeat their analysis with a considerably

truncated sample of the IRAS 1.2Jy out to 500 ≤ cz ≤ 5000kms−1, the value of β∗

returned by ROBUST improves to ∼0.35 as shown in Figure 4.7, which is in better

agreement with the published results of Strauss & Willick. What this would appear to

suggest is that the predicted IRAS velocity field model, while successful in reproducing

the cosmic flow locally, fails to describe the kinematics on larger scales [160].

Having now established the fundamental idea behind the ROBUST method and how it

can be utilised to compute an unbiased estimate of the parameter β we now need to turn

our attention to how to determine the confidence intervals on the values it computes.

98



Chapter 4. Introducing the ROBUST Method

Figure 4.7: The confidence levels of rejection for β for both the full (black) and
truncated (grey) samples of the IRAS 12Jy galaxy sample, plotted as a probability
function defined by 1− 2Prob (ρ ≤ −|ρobs(β)|), such that the minimum of the function
indicates the optimal value of β∗. Confidence intervals at the 1, 2 and 3σ levels are
denoted by dotted lines, and the means of their construction are discussed in Section

4.3.1. Figure reproduced from the works of Rauzy & Hendry [160].

4.3.1 Determining the Error on β

Determining the errors, or confidence intervals on the values of β computed by ROBUST

is actually a rather simple affair, as we can exploit the characteristics of the variable ζ

utilised in ρ(ζβ, uβ), namely its uniform distribution on [0,1], and its statistical indepen-

dence from µ or Z to our advantage. Before we address this however let us discuss how

we would determine the errors on β. We proceed by computing the normalised CDF of

the values of ρ(ζβ, uβ) such that

FX(ρi) =
P (X) ≤ ρi

Ngal
, (4.23)

where in effect for each value of ρi computed for a galaxy we count the number of galaxies

that have a value of ρ ≤ ρi, normalised over Ngal. When plotted, you obtain a CDF

similar to that depicted in Figure 4.8. As per the basic rules of statistics a value of ρi on

this plot corresponding to, say, a CDF value of 0.75 indicates that 75% of all correlation

coefficient values of ρ in the distribution exist below this ρi. If we assume a Gaussian

prior on the distribution of errors around β, we can compute either the one-sided 1,
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Figure 4.8: Sample cumulative distribution function of ρ with the one-sided 95%
confidence level (2σ) on β depicted (black dotted line). Figure reproduced from the

work of Rauzy & Hendry [160].

2 and 3σ confidence intervals on our values of ρ by utilising the CDF values of 0.68,

0.95 and 0.997 respectively, or the two-sided confidence intervals by utilising the same

values, except symmetric around the midpoint of CDF=0.5. This would correspond

to CDF intervals of [0.16,0.84], [0.025,0.975] and [∼0.01,∼0.99] to determine the 1, 2

and 3σ confidence intervals on ρ respectively. Once we have identified these values,

extrapolating the confidence intervals on β∗ becomes a simple matter of referring to the

points on the β-ρ plot of Figure 4.6 and identifying which trial values of β correspond

to the calculated confidence values of ρ.

Having now established how we can compute our confidence intervals on β, we will now

discuss our aforementioned ability to make use of the characteristics of ζ to achieve this.

In particular consider the two following cases:

1. We know that ζ is uniform and will take a value on the interval [0,1], and that by the

works of Efron & Petrosian [52], all these values are equally likely when randomly

selecting a galaxy on a ζ-µ or ζ-Z plot such as depicted in the upper panel of Figure

4.2 for a magnitude complete survey. We also know that for the optimal β value

of β∗, the two distributions of ζ and µ/Z will be completely separable and thus

the distribution of one is completely independent of the distribution of the other.

Therefore, if we were to generate a random string of numbers on the interval [0,1]
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and assign these values instead to the galaxies as their computed values of ζ, there

should be no alteration to the uniform distribution being observed in the plot,

and more importantly no alteration to the values of ρ(ζβ, uβ) calculated

thereafter. We would then proceed to compute the normalised CDF for this

iteration of ρ as normal and identify its confidence intervals on β as discussed

earlier. If we repeat this multiple times using newly generated random number

strings each time and observe the confidence intervals on ρ (and consequently β)

calculated, this will give us a very good handle on the error bars on β. This is

known as ζ-resampling, or Monte Carlo simulations.

2. As a variant of the above point, consider that instead of resampling values of ζ

from a new uniform distribution on [0,1] and assigning them to the galaxies in

our sample, we choose to take the already existing values of ζ and scramble them:

reassigning them at random to different galaxies. Proceeding on what we have

established above, our uniform distribution of ζ values should continue to remain

unaffected by this scrambling, and therefore the values of ρ calculated thereafter

will also remain unchanged. With every repetition of this we would randomly

reassign our existing ζ values again to new galaxies and observe the behaviour of

our normalised CDFs of ρ as normal to gain a handle on the error bars on β. This

is known as ζ-scrambling, or bootstrap resampling.

We will make use of both Monte Carlo simulations and bootstrap resampling in future

computational chapters of this work to observe how well both of these methods can

constrain the error on β, and whether there is indeed any preference between the two.

In the case of using mock galaxy data requiring multiple mock realisations or simulations

to determine β, the constraining of errors on β is even simpler to do, as one only needs

to take note of the optimal value of β∗ calculated in each mock, then plot a histogram

of these values once all mocks are completed. By modelling a best-fit Gaussian curve

to such a histogram the standard deviation of the Gaussian model σ will consequently

indicate the 1σ confidence interval on β∗.

4.4 Strength of ROBUST

The strength of the ROBUST methodology lies, rather unsurprisingly, in its robustness.

We have made no prior assumptions on the spatial distribution of galaxies and their

luminosity function, allowing for the effects of galaxy clustering and evolution effects to

be considered without introducing bias to our method, therefore eliminating the need

for additional corrective procedures such as Malmquist corrections, homogeneous or

101



Chapter 4. Introducing the ROBUST Method

otherwise. We only require that the cumulative luminosity function of the galaxies be

statistically independent from their observed spatial distribution. Additionally, although

ROBUST requires that the survey being used be magnitude complete in order for it to

function effectively, we have illustrated how we can make use of ROBUST, and more

specifically the completeness statistic derived from it, Tc, to compute both the faint

and bright limits of said survey without much difficulty and proceed without further

impediment. Also, in ROBUST only requiring us to make use of the survey and all

the information contained within it for it to function, we have eliminated the need

for secondary distance indicators such as Type Ia Sne or the Tully-Fisher relation to

determine accurate distances to galaxies in the survey, as ROBUST can function without

them.

With regards to the functioning of the correlation coefficient parameter ρ in particular,

we have established its ability to recover a value of β for the IRAS 1.2Jy sample over

small redshift scales without having to make use of the Tully-Fisher information of

those galaxies (or indeed any of the priors made on the Tully-Fisher relation itself)

as required by methods such as VELMOD, and still be in good agreement with those

published values [204]. This in itself leads to an interesting point. The flux information

of a survey such as IRAS becomes more poorly defined over larger distances and yet

despite this, ROBUST was still able to recover a value for β when the entire sample was

used, albeit one that was in poorer agreement with the published value of Strauss &

Willick. When one considers the number of galaxies in IRAS we can infer that even with

a broadly defined luminosity function that would result in poorer distance indicators on

galaxies over larger distances, the sheer number of galaxies in the survey actually helps

to balance this out with ROBUST being able to constrain β to a degree regardless.

We will be making use of this characteristic in later sections when we experiment with

altering the size of the galaxy samples we choose to apply ROBUST to, and altering the

width of the luminosity functions we model to mock catalogues as we observe how well

ROBUST continues to constrain β.

Having now established how ROBUST works, and the potential it presents to constrain

β effectively with minimal a priori assumptions or models required, we will now proceed

to apply ROBUST to the IRAS PSCz, and 2MRS surveys. With regards to the former,

we will make use of mock simulations initially, assuming a ‘true’ value of β while exper-

imenting with altering mock galaxy catalogue sizes, varying luminosity functions, and

altering various reconstruction and distance errors applied to the galaxies to see how

well ROBUST continues to constrain values of β; while also observing to what level it

remains in good agreement with our presumed ‘true’ value.
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Once we have ascertained the viability of ROBUST from mock simulations of the IRAS

PSCz, we will proceed to use the entirety of the survey up to its magnitude completeness

level to seek to constrain β in its real-world setting and compare how well our value

lies in agreement with published values for the IRAS PSCz. We will then proceed to

apply ROBUST to the 2MRS, computing values of β for that survey as well. It is our

hope that ROBUST proves itself successful in recovering β effectively from all of the

aforementioned surveys, securing its potential as a powerful statistical tool for probing

the velocity fields and cosmological parameters of upcoming future surveys such as the

LSST, the Square Kilometre Array project (SKA) and (looking to the more immediate

future) future data runs of the SDSS.
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Chapter 5

Applying χ2 to the IRAS PSCz

Survey

Before we actually begin to apply ROBUST to either the IRAS PSCz or the 2MRS

surveys, we will first dedicate this chapter to a real-world application of χ2-minimisation

to the IRAS PSCz; with the goal of establishing or constraining a benchmark value for

the linear redshift distortion parameter β from which we then draw our assumed ‘true’

value of β from for ROBUST to attempt to recover. It will also serve as the testing

ground for various coordinate conversion methods that are necessary to properly embed

real-world Type Ia Sne into any given survey, given the typical lack of consistency in

coordinate and velocity frames between datasets. In particular we will make use of the

coordinate conversion calculator provided by NASA [30] to cross-check the coordinates

computed from our conversion techniques to ensure they are correct before proceeding

with the χ2-minimisation. The results generated will be presented in Section 5.2, with

a flowchart of the typical methodology we will implement here presented in Figure 5.1.

Aside - choosing the appropriate software

Before any analysis is attempted it would be prudent to decide upon a program or

analysis software that would be most suited to our needs. Considering the general scope

and size of the different galaxy surveys we will be analysing throughout this thesis and

the statistical analyses and mathematical calculations that will be performed, it was

decided that Matlab would be used for the following reasons:

� Matlab is specifically designed to work with large datasets, particularly in the

matrix formats in which most of our available datasets exist, and supports a wide
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1. Select galaxy survey

Is survey complete and
corrected for βtrue?

1.5 Correct and re-
strict survey velocities

2. Select Sne
from real datasets

Are coord/vel frames
of data sets correct?

2. Embed Sne
into the survey

2.5 Convert coor-
dinates/velocities

3. Compute vobspec(i|βtrue),
interpolate 3D vtrialpec (i|β)

4. Rescale vtrialpec via βtrial

5. Apply χ2 to vobspec(i|βtrue)
and vtrialpec (i|βtrial)

Has χ2 minimised?

Optimal β computed

4.5 Alter value of
βtrial over [0,1]

Yes

No

Yes

No

Yes

No

Figure 5.1: Flowchart illustrating typical χ2-minimisation methodology using real
world data.
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range of matrix manipulation techniques that can be performed with ease alongside

basic and complex mathematical and statistical calculations.

� The software also provides logical libraries and the ability to perform logical op-

erations such as searches, complex condition searching and exclusions and counts,

all of which will be of great use when applying the ROBUST methodology

� In working with the software and discovering the existence of the bsxfun function

which is specifically designed to optimise the calculation runtime on large matrices,

this allows us to work with even larger datasets such as 2MASS and the SDSS in

less time, further broadening our research prospects.

With our computational software now selected, we will proceed to apply χ2-minimisation

to the IRAS PSCz, after briefly introducing the sets of real-world Type Ia Sne that we

will make use of going forward.

5.1 Using Real-World Sne Sets

An Alternative to Tonry - the Radburn-Smith Sne subset

The Tonry et. al supernovae dataset, as introduced in Section 2.9.1, has served as a

cornerstone for many cosmological analyses over the years, however due to it consisting

primarily of high-redshift Sne, it does not lend itself naturally to our work. We are

focusing primarily on the low redshift Universe, not venturing out beyond a redshift of

0.1, or equivalent distance of 30000kms−1. As discussed in Section 3.3.3 this is to monitor

the effect, if any, of the breakdown in isotropy and homogeneity on the value of the

linear redshift distortion parameter β that we are attempting to constrain. Additionally

as noted when one plots the general distribution of PSCz galaxies in the survey as a

function of distance, the level of completeness of the PSCz and our confidence in the

reliability of its reconstructed peculiar velocity fields starts to fall off considerably after

an approximate distance limit of 15000kms−1. As a result a restricted subset of the

Tonry et. al set is required.

The Type Ia Sne set developed by Radburn-Smith et. al in their seminal paper which

calculated a value of β using the IRAS PSCz survey (see Section 2.10.1) of β=0.55

±0.06 [158] is exactly the set we need. Specifically, it is a restricted version of the Tonry

et. al set wherein which only all Sne within 150h−1Mpc are considered, thus keeping all

objects within our low redshift limit of z≈0.1. In addition, all Sne which exhibit V-band

extinction values larger than 1.0 mags are excluded due to their associated errors most
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likely being underestimated [158]. This produces a usable set of 98 SNe with which we

can usefully constrain β with and will as such use going forward.

5.2 Constraining β with the RS Sne Set

Being aware that the PSCz survey is complete with a reliable reconstructed peculiar

velocity field out to approximately a distance of 15000kms−1 (or conversely a redshift

of 0.05), the Radburn-Smith set (henceforth named the RS set) needs to be restricted

out to that same distance/redshift limit. This is to ensure that the RS Sne are fully

embedded within the PSCz survey and that a velocity interpolation scheme can work

as efficiently as possible. We then proceed to apply a framework of coordinate frame

conversions and velocity interpolations as required, the results of which can be observed

in Figure 5.2, alongside a comparison chart of our interpolated velocities for the RS Sne

alongside their ‘observed’ velocities as calculated from the Hubble Law for our assumed

‘true’ value of β = 0.55. Should our assumed value of β indeed be correct, then the

comparison plot should exhibit a near 1:1 ratio, which shall be illustrated by means of a

red line in an attempt to fit the data. It should be noted that the area of each individual

circle on these velocity comparison plots is proportional to the associated reconstruction

errors for each Sne. Put another way, the smaller the circle, the smaller the associated

error and the more confident we are of the true peculiar velocity of that particular Sne

lying in an increasingly small range on the plot.

5.2.1 The Curiosity of Large χ2 Values

While we obtain a β value of 0.553 ± 0.04 as demonstrated in the top panel of Figure

5.2 (the error bars have been calculated at the 1σ level by determining the β-intercept

points on our χ2 parabola at χ2
min ± 1), which is in excellent agreement with the value

obtained by Radburn-Smith there are a few peculiarities that must be addressed. As

we established in Section 3.4.5, our expected minimum value of χ2 should be on the

order of the numbers of degrees of freedom, or nsn− 3 to be more exact considering the

fixed parameters used in this analysis, with values approaching more than double this

amount causing us to favour rejecting our β of 0.55 as the correct value for the IRAS

PSCz [199]. Having determined in the previous section that we have 98 usable Sne from

the RS set we should consequently expect to see a minimum χ2 ideally on the order

of 95 or smaller, yet this is clearly not the case as seen in the top panel of Figure 5.2,

where the minimum is on the order of nearly double that. These larger values could be

indicative of several things:

108



Chapter 5. Applying χ2 to the PSCz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Trial value of 

150

200

250

300

350

400

2

2 plot for optimal  for the PSCz using RS et. al Sne

opt = 0.553  0.04

-500 0 500 1000

vpec
PSCz

 (kms-1)

-3000

-2000

-1000

0

1000

2000

3000

vp
ec

S
N

Ia
 (

km
s-1

)

Comparison of SNIa to PSCz predicted peculiar velocities for =0.553

Figure 5.2: Results of utilising real-world Sne sets to constrain β for the PSCz. Upper
panel depicts the χ2 plot indicating the optimal value of β, with χ2

min at β = 0.553±
0.04 providing the optimal value of β at the 1σ error level. The lower panel depicts
the comparison between observed and interpolated velocities. Areas of individual plot
points are proportional to the associated reconstruction errors of each individual Sne
used, with the red line indicating the linear regression (or goodness-of-fit) between both

sets of velocities.
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1. Our underlying null hypothesis of β=0.55 as per the results of Radburn-Smith is

incorrect in some fashion as previously mentioned,

2. There is some underlying irregularity in the data being used here,

3. Our target Sne analysis sample is too small for use

With regards to the first point this is unlikely when one considers that that the Radburn-

Smith value of β has ben independently verified by Zaroubi et. al using an unbiased

version of the Weiner filter [211], and has also been calculated by Radburn-Smith himself

using independent means via the equation:

βI =
Ω0.6
m

bI
=

Ω0.6
m σ8

σ8,I
, (5.1)

where σ8 is the rms (root mean square) amplitude of the mass fluctuations, δm, averaged

within a top-hat sphere of 8h−1Mpc radius. By utilising data from WMAP and other

CMB and non-CMB sources a value of Ω0.6
m σ8 has been derived as 0.38 ± 0.04 (see the

works of Spergel et. al [182] and the references therein for a more in-depth discussion

and analysis of the preliminary telemetry received from the WMAP probe), and by

directly integrating the PSCz power spectrum (see the works of Hamilton & Tegmark

and the references therein), σ8,I was found to be 0.80 ± 0.05 [76], thus giving us a final

β value of 0.48 ± 0.06, which is also in good agreement with the value obtained via

Radburn-Smith’s velocity-velocity comparisons [158]. Consequently it is unlikely that

our underlying null hypothesis is incorrect in this instance and is not the cause of our

inordinately large χ2 values.

With regards to the second possibility: the existence of some kind of irregularity in

the raw data, the fact that the RS Sne is a subset of an already well established data

set, namely the Tonry et. al set which has been used in multiple analyses of import

makes this unlikely. In addition, the IRAS PSCz survey is a well established survey

which continues to be used to this day without problem for all kinds of cosmological and

redshift/peculiar velocity analyses due to its all-sky properties. While it is possible that

the source of the irregularity exists instead in the coordinate transformation matrices

that we are applying, this is also very unlikely. By making use of the online positional

coordinates calculator LAMBDA provided by the Goddard Space Flight Centre [30],

excellent agreement is observed with the RS Sne when their galactic latitude and lon-

gitude angles are transformed into the cartesian supergalactic coordinates necessary to

properly embed them within the PSCz survey, rendering the possibility of the problem

lying in those transformation matrices even less likely.
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With regards to the third option, it is indeed possible that utilising a target Sne sample

of only 98 objects to analyse and constrain β for a redshift survey containing over 15000

objects in and of itself is not sufficient for χ2 to be able to return the smaller values we

expect of it. It has been noted by Radburn-Smith in his paper that the value of β he

obtained was not affected by the applied ‘cull’ of Sne that exhibited V-band extinction

values larger than 1.0 mags [158], thus giving us a means of increasing the size of our

base analysis sample and noting whether this has any effect on the value of β returned

by χ2. To that effect, we will reinstate the culled Sne into our sample, now giving us a

sample size of 145 Sne to work with before distance restrictions are applied. Once our

distance restriction of 15000kms−1 is applied we have a usable sample of 105 objects.

While not ideal, the addition of these few extra objects may affect the χ2 value size

enough to give us an indication as to whether we are indeed working with too small a

sample or not. We reapply our developed framework and velocity interpolation scheme

and proceed with our χ2 analysis, the results of which can be seen in Figure 5.3.

There are two key things that we can take away from Figure 5.3. Firstly, we can

confirm Radburn-Smith’s prior observations that our addition of the culled Sne with

large V-band extinction values had minimal effect on the value of β obtained by χ2,

namely β=0.541 ± 0.04 with our error bars once again calculated at the 1σ level

using the β-intercepts to our χ2 plot at χ2
min± 1, which continues to be in very good

agreement with all previously discussed values in this section, thus suggesting that the

theorised underestimation of the associated extinction errors have very little bearing on

the calculation of β. However as can be noted from the Figure, the χ2 values have not

reduced, continuing to exhibit a similar deviation of nearly double what our expected

minimum value of χ2 should be (around nsn − 3 = 100 or so in this instance) when

compared to the analysis when the extinction Sne were culled from the sample. This

unfortunately makes it unclear as to whether the addition of these few extra Sne has had

any effect (most likely not), or whether indeed having access to a much larger external

Sne sample would cause our χ2 values to worsen or improve. The latter possibility will

be addressed in Section 5.3.

5.2.2 Analysing Linear Regression

The second main peculiarity in these results that needs to be addressed is the less than

ideal fit of our predicted velocities against what is observed (i.e. the linear regression

between the two sets of data), both in the situation where the culled version of the RS set

is used or its counterpart complete with extinction Sne. As can be seen in both bottom

panels of Figures 5.2 and 5.3, there exists a noticeable number of outliers, specifically

Sne whose associated errors are quite large that deviate quite significantly from the 1:1
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Figure 5.3: Results of utilising RS Sne set with the ‘culled’ extinction Sne reinstated
into the set to constrain β for the PSCz. Upper panel depicts the χ2 plot indicating
the optimal value of β, with χ2

min at β = 0.541± 0.04 providing the optimal value of
β at the 1σ error level. The lower panel depicts the comparison between observed and
interpolated velocities. Areas of individual plot points are proportional to the associated
reconstruction errors of each individual Sne used, with the red line indicating the linear

regression (or goodness-of-fit) between both sets of velocities.

112



Chapter 5. Applying χ2 to the PSCz

ratio we expect to see as denoted by the red line, and not enough Sne whose velocities

have been well constrained with small errors lying along our expected ratio line. This

once again lends itself to one of several possibilities, considering that we are now dealing

with velocity comparisons:

1. There is a fundamental error in the velocity interpolation schemes being applied

to calculate the β-dependent peculiar velocities of the Sne based on the underlying

reconstructed peculiar velocity field of the PSCz galaxies,

2. The redshift reconstruction and Sne distance errors we are applying as part of the

χ2 analysis are incorrect in some fashion,

3. There exists some other irregularity in the data in the form of incorrectly trans-

formed velocity reference frames or incorrect coordinate transformations, although

we have already established that this is unlikely given our successful recovery of

positional coordinates when checked against available calculator resources such as

LAMBDA.

4. Once again our assumed true value of β=0.55 is incorrect in some fashion, though

as previously discussed this is highly unlikely to be the case given that this value

of 0.55 has been independently verified by others.

In considering the first option, it is worth briefly discussing the sort of interpolation

scheme being applied to determine the peculiar velocities of the Sne once they have

been embedded into the PSCz survey. We first begin by assuming a linear weighting

interpolation scheme defined by the following:

Starting with the x-component of the velocity:

vpredx (SNj) =

n∑
i=1

aijv
pred
x (PSCz, i), (5.2)

where the weighting factor aij is assumed to take the form:

aij ∝
1

d2
ij

,

and

aij =

1
d2ij

npscz∑
k=1

1
d2kj

, (5.3)

where k is a dummy variable summing over all galaxies, npscz is the number of galaxies

in the IRAS PSCz survey and dij , the distance between each supernova and galaxy is
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given by:

dij =
√

(xSN − xgal)2 + (ySN − ygal)2 + (zSN − zgal)2 (5.4)

In effect we are calculating the distances between each supernova and each of the galaxies

in the survey, and normalising our results so that each weight takes on a value between

0 and 1 and the sum of the weights is equal to unity. The more PSCz galaxies there

are surrounding each supernova, the more accurately we will be able to interpolate

its velocity, since the closer a galaxy is to a supernova, the more significantly will its

gravitational influence affect the supernova’s velocity than those which are farther away,

meaning that their peculiar velocities can be expected to be more similar, if not the same

due to the distribution of the mass in their vicinity. The weighting factor is designed

to reflect this in the calculation: aij ∼ 0 means dij is very large, and the galaxy is very

distant, while aij ∼ 1 means dij is very small, and the galaxy is close by. By altering

the exponent of dij used in the weighting factor we are effectively restricting the sphere

of interest within which we are working, and limiting our list of usable galaxies to those

which are relatively closer by. We have chosen an exponent of 2 for this work to obtain

a sphere of considerable and useful size, and effectively screen out whichever galaxies

are too far away for our purposes.

Substituting the weights into Equation 5.2 we get:

vpredx (SNj) =

n∑
i=1


1

d2
ij

npscz∑
k=1

1

d2
kj

 vobsx (PSCz, i) (5.5)

Since k is a dummy variable, we can take it out of the sum and rearrange to get the

x-component of our interpolated velocity:

npscz∑
k=1

1

d2
kj

vpredx (SNj)︸ ︷︷ ︸
vintx

=

n∑
i=1

1

d2
ij

vobsx (PSCz, i) (5.6)

The above is repeated with the y and z components, and resultant reconstructed 3D

velocity is stored in a matrix V:

V =


vxinterp

vyinterp

vzinterp


Since we require the line-of-sight component of this 3D velocity, we dot product it with

the unit vector in the direction of the supernova from the centre of the supergalactic
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plane (the plane on which our version of the PSCz is defined):

upredpec (β) = V ′ · ni, (5.7)

where V ′ is the transpose of our matrix V , and the unit vector ni is given by:

ni = (cos θi cosφi, sin θi cosφi, sinφi).

We have now calculated the interpolated line-of-sight velocity we need for the χ2 min-

imisation.

The above linear weighting scheme has been tested rigorously throughout the develop-

ment of this work; where we have generated mock galaxy positions that are coincident

in position with PSCz galaxies and utilised the aforementioned scheme to calculate the

line-of-sight velocity at that position and compare it with the value stored on file for the

survey. In all instances the scheme has demonstrated its ability to accurately recover

values for the line-of-sight peculiar velocity that are within 4-5 decimal places of the

values stored on file, making it unlikely that the interpolation scheme is to blame for

the deviations exhibited between observed and predicted values.

This now leads to the second possibility: that the estimated errors being associated

with the Sne as part of the χ2 analysis are incorrect in some manner. As touched upon

in Section 3.4.5, the two main sources of error included in this analysis are a redshift

reconstruction error, whose value is meant to describe the scale length over which we can

safely assume that the underlying reconstructed peculiar velocity field of the IRAS PSCz

can be deemed reliable, and a radial Sne distance scatter which is meant to encapsulate

our uncertainty on the true distances to Type Ia Sne. With regards to the former, we

can make use of the works of Branchini et. al wherein they determined the redshift

reconstruction 1σ error of the peculiar velocity fields of surveys such as the IRAS PSCz

to be approximately ∼ 150kms−1 [19], while with respect to the latter, we have already

discussed in Section 2.5 that the distances of Type Ia Sne are known to within 8%.

Since we can take the redshift reconstruction error described here to be global with

regards to the PSCz, we decided on formulating the errors associated with each Sne

such that σ2
i = 1502 +N[0, σd(i)]

2, where the latter term indicates a randomly generated

Gaussian error on the order of 8% that is then added to our available Sne distances

where σd = dSN × 0.08, dSN being the Sne distance.

In experimenting with varying both the global reconstruction error applied to the data,

and the level of uncertainty in our Sne distances it was found that this current setup

for error estimation was the one that most successfully reduced the χ2 residuals to the
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levels currently exhibited in the top panels of Figures 5.2 and 5.3; put another way, these

error values are the ones that cause the value of χ2 to minimise the most despite its still

significantly overlarge value compared to what is expected. All other attempts to vary

the errors applied during our χ2 analysis only served to considerably worsen the residuals

calculated and consequently caused even more significant deviations and outliers to be

exhibited in the linear regressions presented in the bottom panels of Figures 5.2 and 5.3

when both predicted and observed peculiar velocities were plotted.

While having been unable to adequately determine what is causing our χ2 analyses to

return minimum values large enough to favour rejecting our assumed true β value of 0.55

as per the rules of thumb established by Wall [199] despite all independent evidence to

the contrary, or what is causing the somewhat poor fit between predicted and observed

peculiar velocities of the Sne and the numerous outliers and discrepancies in velocity

values when one applies a goodness-of-fit test in the form of linear regression, there is

one other possibility that is worth considering: namely that perhaps our β statistic by

its very nature and construction is not as sensitive to the χ2-minimisation methodology

as one would like. This manifests itself as a weaker signal being recovered by χ2 that is

represented by the larger range of χ2 values observed, eventhough the parabolic minimum

is at a value for β that is in good agreement with what we are looking for; although

this does nothing to explain the observed outliers and velocity discrepancies when one

attempts to fit the data with linear regression.

If we choose to proceed on the assumption that perhaps our β parameter is indeed not

as sensitive to the χ2 methodology as one would like, we can still continue to make

use of the RS Sne set moving forward due to it returning values of β that are in good

agreement with our assumed true value of β=0.55; just making a point of keeping an

eye on χ2 as and when we use it to see whether we continue to observe weak recovered

signals and somewhat anomalous goodness-of-fit testing with linear regression.

A More Recent Alternative - the Unified Supernova Cata-

logue

While reaffirming the results of Radburn-Smith et. al and our consequent making use of

their value of β as a benchmark for any future computations in this work has been useful,

it also makes sense for us to try to confirm that value on our own, using Sne catalogues

either of our own making or just simply using more recent surveys that are readily

available. Looking up more recent Sne catalogues for use with χ2 to generate results

of our own that are not solely ‘replicating or re-proving the works of those that came
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before us’ was challenging however. When searching through VizieR finding catalogues

of Type Ia Sne that contained both position and redshift-distance information returned

fewer results than one would have hoped. While extensive catalogues exist that are

older than the Tonry et. al and Union compilations that have been previously discussed,

more recent surveys either contain fewer than the 100 or so Sne that we have been using

up to this point (which beats the purpose), or do not possess enough Sne that have

both the positional and redshift-distance information necessary for us to populate them

successfully amongst the PSCz galaxies. We eventually managed to locate one survey

that met our purposes, the unified supernova catalog of Lennarz et. al [120] (hereafter

called the USC) which draws from three primary online supernovae catalogues: the

Central Bureau for Astronomical Telegrams (CBAT), the Asiago Supernova Catalog

(ASC) and the (now obsolete) SAI Supernova Catalog described in Section 2.9.3 (SSC),

with its most recent drawing of data being downloaded in June of 2011 [120]. The

catalogue consists of over 5000 Sne, though of those not all have redshift-distance and

directional coordinates listed, requiring us to filter out all those that do. We were

able to locate 444 Sne whose redshifts are within 15000kms−1, have clearly established

right ascension and declination information (and indeed galactic latitude and longitude

information as calculated and provided by VizieR) and distances in Mpc, and we will

therefore make use of this set of Sne going forward to constrain a value of β of our

own, while also making use of the considerably larger number of available usable Sne

to determine whether the increased number will have any effect on the values of χ2

returned, as discussed at the end of Section 5.2.1.

5.3 Constraining β with the USC Sne Set

Once embedded into the supergalactic frame of the PSCz utilising the relevant coordinate

conversion equations, we can proceed with our velocity interpolation scheme to determine

the β-dependent predicted peculiar velocities of these 444 Sne and compare those with

their observed peculiar velocities as established via the Hubble Law and apply χ2 and

linear regression as normal. The results are presented in Figure 5.4.

These results are curious for two main reasons. Firstly, our value of β utilising this

more recent set of Sne suggests a smaller optimal value of β of 0.44±0.04 which, while

smaller than the value obtained by Radburn-Smith et al, is interestingly more in line

with more recent estimations of β from utilising χ2 with the 2MRS (as shall be seen

in future sections of this work) or indeed some of the more recent results calculated for

β using alternate means as discussed in Section 3.4.7 and its accompanying tables of

recent values, and this is by no means a bad thing.
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Figure 5.4: Results of utilising the USC Sne set to constrain β for the PSCz. Upper
panel depicts the χ2 plot indicating the optimal value of β, with χ2

min at β = 0.444±
0.04 providing the optimal value of β at the 1σ error level. The lower panel depicts
the comparison between observed and interpolated velocities. Areas of individual plot
points are proportional to the associated reconstruction errors of each individual Sne
used, with the red line indicating the linear regression (or goodness-of-fit) between both

sets of velocities.
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However the more pertinent anomaly here is two-fold: firstly is the appearance of χ2

values so large that our assumed value of β=0.55 is rejected out of hand, let alone a

value of β that is more in line with more recent values obtained by alternate means. This

would appear to suggest that utilising a larger sample of Sne to perform this analysis

has only served to considerably worsen and weaken the signal of β we are attempting to

recover, though it is equally likely that there is an inherent fault to this subset of the USC

that, unbeknownst to us, makes it a poor candidate for use with the IRAS PSCz unlike

its RS counterpart. The second is the absolutely abysmal fit observed between both

the predicted and observed peculiar velocities when linear regression is applied, where

only a handful of the Sne with low associated errors lie along the predicted 1:1 ratio red

regression line depicted in the lower panel of Figure 5.4, with discrepant velocities and

outliers with large associated errors dominating throughout the plot.

It is worth pointing out that, as per the investigations carried out in Sections 5.2.1 and

5.2.2, and having already ruled out the possibility that problems reside in either the

velocity interpolation schemes or the coordinate transformation matrices we are using

that would cause such wildly discrepant pairs of velocities to be observed, we have

continued our use of a global redshift reconstruction error of 150kms−1 as recommended

in the works of Branchini et. al with this particular survey [19], and kept the Sne

distance errors at 8% as we established in previous sections. It should be noted once

again that any attempt to alter the reconstruction errors applied from their established

form of 1502 + N[0, σd]
2 (the latter term being a Gaussian-drawn term of mean 0 and

standard deviation defined by the Sne distance error σd) only caused the calculated

parabolas generated by the USC set to worsen considerably, both in the range of χ2

values exhibited and the value of βopt returned, suggesting that the initial errors we

applied would appear to be the most ideal. As was discussed previously, we expect the

minimum value of this particular χ2 parabola to be on the order of 440 or so (continuing

to subtract nsn − 3 degrees of freedom to represent our main sources of error being

applied during our analysis and other fixed variables) yet this clearly is not the case,

reinforcing the idea that perhaps the USC Sne should be discontinued from further use,

irrespective of the arguably weak signal of β it may be recovering and as such, we shall

do so from this point forward.

Having now somewhat successfully recovered previously published values of β for the

IRAS PSCz using χ2-minimisation and the RS Sne set, although with a potential caveat

that β itself may not be very sensitive to such a methodology, we shall now move on to

analysing the PSCz survey with an alternative technique called ROBUST and explore

its effectiveness in recovering β.
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Probing the Peculiar Velocity

Field of the PSCz with ROBUST

Having successfully applied χ2-minimisation to the IRAS PSCz survey and confirmed

the Radburn-Smith value of β = 0.55± 0.06 for that survey, we now have a benchmark

value with which we can rigorously test our ROBUST methodology from Chapter 4 in

both a mock and real-world environment. Having already established the software we

will be using for our work we will proceed in this chapter as follows: Section 6.1 will

detail the various implementations of ROBUST available to us, and Sections 6.2 through

6.5 will detail the results of each implementation. We will continue to make use of any

mock methodologies discussed to explore the effects of altering different variables such

as mock galaxy sample sizes and luminosity function widths etc. on the accuracy and

precision with which ROBUST can estimate the value of β. Anomalies noted in our

results will be explored and their root causes determined and eliminated to the best of

our abilities.

6.1 Implementing ROBUST with the PSCz Survey

As discussed in Chapter 4, for a magnitude complete survey with known limits,

the functionality of ROBUST lies in the assumed independence of the distribution of

absolute magnitudes of galaxies from their spatial positions, such that a correlation will

be introduced between these two variables should the wrong value of β be applied to the

data. Considering the reliance of ROBUST on the luminosity function information of a

survey, this gives us several avenues of experimentation to consider, in order to evaluate

the effectiveness of ROBUST:
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1. Mock Method 1: We adopt βtrue of 0.55 as before and an assumed known lumi-

nosity function model, and utilise Matlab to assign ‘mock’ apparent magnitudes

to the PSCz galaxies for an assumed, known faint limit. We then proceed to ap-

ply ROBUST, calculating the correlation coefficient ρ(ζ, β) over trial values of β

on [0,1], correcting distances and peculiar velocities as appropriate and identify

the value of βtrial for which ρ(ζ, β) = 0. This is repeated over multiple mocks,

generating new mock magnitudes to be assigned to the galaxies each time. We

will proceed to experiment with assigning mock magnitudes to the PSCz galaxies

drawn from the following:

(a) A Gaussian luminosity function, whose mean and standard deviation will be

in keeping with the identified luminosity function of early-type galaxies of the

SDSS, namely N[-21,1] [9],

(b) A Schechter luminosity function, whose definition and description of its var-

ious parameters will be presented in Section 6.3.1.

2. Mock Method 2: We proceed to repeat the above while also establishing a

bright limit to the mock magnitudes being generated by Matlab and rerun RO-

BUST, taking note of any alterations to the values of β recovered. Much like

Method 1, this will also be repeated with both a Gaussian and Schechter luminos-

ity function over multiple mock trials, while also serving as the testing ground for

our completeness statistic Tc and its viability in identifying the proper magnitude

limits of a survey. With these limits identified we can also explore the viability of

ROBUST and its effectiveness in recovering β when various correct and incorrect

magnitude limits are applied to the data.

While the fundamental methodology behind these methods is inherently the same, some

key differences remain. In particular, Methods 1 and 2 are dealing exclusively with

mock magnitudes that are generated by Matlab to be assigned to the PSCz galaxies

with a given faint (and bright) limit being considered during generation, thus negating

any need for us to apply Tc to determine any limits. This does however give us the

means to experiment with varying the number of PSCz galaxies used during the RO-

BUST analysis, as well as altering the widths and parameters of both our Gaussian and

Schechter LFs and observing how well ROBUST continues to recover our assumed true

value of β. With regards to Method 2 specifically, the introduction of a bright limit

to the data is particularly important as it will serve as our means of testing Tc and its

ability to recover the actual magnitude limits of our data, mock or otherwise, while also

giving us the ability to monitor how well ROBUST functions when both the correct

and incorrect limits are applied and how well it continues to recover β. We will also

continue to experiment with varying mock sample and sizes and altering LF parameters
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and widths when a bright limit is applied and take note of how the recovered value of

β is affected. Flowcharts indicating a typical application of our mock methodologies is

presented in Figure 6.1.

6.2 Applying Mock Method 1a) - ‘Faint Limit Only Gaus-

sian’ Mock Magnitudes

It must be noted that the peculiar velocities reconstructed in Branchini et. al from

the IRAS PSCz require a scaling correction from β = 1 to β = 0.55 before any mock

analyses can be performed, which is easily achieved by means of the modified Hubble

Law reiterated here for ease of access:

cz = H0d+ [vpec(β = 1)× βtrue] ,

where we continue to take the Hubble constant as before as

H0 = 100kms−1Mpc−1.

This now only leaves the matter of generating mock magnitudes to be assigned to the

positions of the PSCz galaxies. For each galaxy of given real-space distance d we can

make use of the normrnd function in Matlab to generate a random number (in this

case a mock absolute magnitude) from a normal distribution with mean and standard

deviation given by µ and σ respectively. We then proceed to apply the distance modulus

law of Equation 2.14 such that:

m = M + 5 log d+ 25, (6.1)

where m and M represent apparent and generated absolute magnitude respectively.

Provided that the computed apparent magnitude m for a given galaxy is brighter than

a specified faint limit (or for later on also fainter than a given bright limit) then it is

assigned to the galaxy, otherwise normrnd is used to generate a new mock absolute

magnitude. A flowchart depicting a typical mock magnitude generation scheme for the

PSCz is given in Figure 6.2.

Having previously established that we would be making use of the identified Gaussian

luminosity function of early-type galaxies of the SDSS of the form N[-21,1] to generate

mock magnitudes at the positions of the PSCz galaxies [9]; and knowing that we are

working with all such galaxies that are within a distance restriction of 15000kms−1

to ensure the reliability of the reconstructed peculiar velocity field, we can apply the
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1. Select ‘true’ value
of β for recovery

Survey cor-
rected for βtrue?

1.5 Correct czgal, vpec

2. Generate
‘mock’ magnitudes
from mf and mb

3. Assign magni-
tudes to galaxies

4. Compute uβ,
corrected Mβ and Zβ

5. Generate ζ statis-
tics for galaxies

6. Compute ρ(ζβ, uβ)

Does ρ(ζβ, uβ) = 0?

Optimal β computed

3.5 Alter value of
βtrial over [0,1]

No

Yes

Yes

No

Figure 6.1: Flowchart illustrating typical ROBUST methodology for use with gener-
ated mock magnitudes assigned to galaxies utilising either just a faint, or faint+bright
magnitude limits during generation. Note that mf and mb stands for faint and bright

apparent magnitude limit respectively [Methods 1a), 1b), 2a) and 2b)].
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1. Generate M using
normrnd(mu,sigma)

2. Calculate m =
M + 5 log d + 25

Is mbright ≤ m ≤ mlim?

3. Assign
M,m to galaxy

New M required

Yes

No

Figure 6.2: Flowchart illustrating typical mock magnitude generation and assignment
to PSCz galaxies.

distance modulus law such that:

m = M + 5 log d+ 25

= −21 + 5 log

(
15000

H0

)
+ 25

= −21 + (∼ 10) + 25 = 14,

giving us a general ballpark value for a mock faint limit for the PSCz galaxies of 14.

Despite us making use of the luminosity function of an optical survey (the SDSS) to

generate our mock magnitudes for the PSCz galaxies (taken from an infrared survey),

this ballpark value is actually in good agreement with the published faint limit of the

IRAS 1.2Jy sample as identified in the works of Rauzy & Hendry; given as mlim = 14.3

[160], therefore we will make use of this faint apparent magnitude limit in all analyses

going forward. The initial results of Mock Method 1 using the entirety of the PSCz

(over 12000 galaxies) with a mock Gaussian luminosity function are depicted in Figure

6.3.

It is immediately clear that ROBUST has successfully recovered our assumed true value

of β with a very well constrained confidence interval, and the mock ρ(ζ, β) plots exhibit

the monotonic increase in value over [0,1] that we expected to see given the logarithmic

velocity model that is being applied as per Equation 4.17, reiterated here once again for

ease of access:

uβ = −5 log10

(
1−

vβ
cz

)
,
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Mock Set Size 1000 2000 5000 All (12000+)

Value of β 0.57± 0.37 0.56± 0.16 0.55± 0.09 0.55± 0.06

Table 6.1: Summary of estimated values of β detailing the effect of varying mock
galaxy sample sizes on computed β using ROBUST during Mock Method 1a) imple-

mentation.

where vβ is the β-dependent radial peculiar velocity of the survey galaxies.

It is worth noting that this initial run was done making use of only 50 mocks, primarily

due to the concern of computational time constraints, with a run utilising 50 mocks

taking approximately 12 minutes to complete. Yet despite the somewhat ‘coarse’ nature

of the underlying histogram when modelled to the smooth Gaussian (red line), the error

bar returned on β is shown to be very well constrained at ±0.06. For the sake of

argument we will proceed to redo this particular run utilising 200 mocks to compare

and contrast the error bars on β generated in each. Ideally with the larger number of

mocks used we should see a much smoother and Gaussian-shaped underlying histogram

depicting βopt that models far better than its 50 mock counterpart. The results of this

higher mock run is presented in Figure 6.4, being completed in 90 minutes.

As expected the larger number of mocks utilised in this particular run does lend itself to

a ‘smoother’ looking histogram when compared to its 50 mock counterpart that models

better with the best-fit Gaussian curve, however there is no noticeable change in either

the mean value of βopt returned by ROBUST nor the confidence intervals on β, remaining

the same at β=0.55 ±0.06. Given the considerably longer run times involved with using

200 mocks we will continue to move forward with our analyses making use of 50 mocks

only, now confident that despite the underlying coarseness of the histograms presented

we are using a sufficient number of mocks to get an accurate handle on not just the

value of β but its associated error bars as well.

This now opens the door for us to experiment with varying the number of survey galaxies

ROBUST utilises for its analysis and take note of any changes in the value of β recovered.

To that effect we rerun our ROBUST analysis using 1000, 2000, 5000 and all survey

galaxies of the PSCz with the results illustrated in Figure 6.5. A summary of the

estimated values of β of each rerun is provided in Table 6.1.

A few interesting things can be taken away from Figure 6.5, namely that ROBUST

continues to recover a mean estimated β that is equal to the true value of β even when

a relatively small number of survey galaxies are being used, however the confidence

interval on our computed β values broadens considerably as a result. When one considers

the varied breadths of the luminosity functions modelled to real-world galaxy surveys
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Figure 6.3: Initial results of Method 1a). Upper panel depicts the ρ plots for all 50
mocks generated, lower panel depicts the zero-intercept of each mock plot as a function
of trial value of β plotted as a histogram with best-fit Gaussian (red line) modelled to
the data. Optimal value of β returned for Method 1a) is β = 0.55±0.06, as determined
from the Gaussian model. Luminosity function used during data generation is Gaussian

of the form N[-21,1].
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Figure 6.4: Results of Method 1a) redone with 200 mocks instead of 50. Upper panel
depicts the ρ plots for all 200 mocks generated, lower panel depicts the zero-intercept
of each mock plot as a function of trial value of β plotted as a histogram with best-fit
Gaussian (red line) modelled to the data. Optimal value of β returned for Method 1a)
is β = 0.55±0.06, as determined from the Gaussian model. Luminosity function used

during data generation is Gaussian of the form N[-21,1].
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Figure 6.5: Method 1a) results with varied mock set sizes. Left-hand panels illustrate
the ρ plots for all 50 mocks, right-hand panels depict the histograms of optimal value of
β with best-fit Gaussian (red line). Set sizes used are noted on each plot. Luminosity

function generated continues to be Gaussian of form N[-21,1].
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Gaussian LF Width 0.5 1 2 3

Value of β 0.56± 0.03 0.55± 0.06 0.55± 0.14 0.57± 0.21

Table 6.2: Summary of estimated values of β detailing the effect of varying mock
generated Gaussian LF width σ on computed β using ROBUST during Mock Method

1a) implementation. Entirety of PSCz survey is utilised for this analysis.

in general (and which we will explore in more detail next) if we are to continue to

use ROBUST in the future then we must ensure that the surveys we use have a bare

minimum of at least 2000 viable galaxies if we wish to constrain parameters such as β

with an acceptable level of accuracy. Given the expected size of future surveys such as

the LSST [124], and even more recent data runs of the SDSS this should not present an

issue.

We can now proceed with varying the value of σ utilised by normrnd when generating

Gaussian magnitudes to assign to the PSCz galaxies and observe what changes are

observed in the values of β recovered by ROBUST. The results of altering the LF width

are presented in Figure 6.6, with a summary of the estimated values of β presented in

Table 6.2.

Much like our experimentation with varying the number of galaxies used by ROBUST in

its analysis, we can take note of a few interesting things. ROBUST successfully continues

to recover a mean estimate for the value of β that is consistent with our assumed true

value of β, though our confidence intervals on our values continue to worsen considerably

as we make our luminosity function broader. It is important to mention that the entirety

of the PSCz survey was utilised during this analysis, which will also have a limiting effect

on the broadness of our confidence intervals. Put another way, were we to use a smaller

number of galaxies with an LF whose σ is as broad as 2 or 3, we should expect the

confidence intervals computed on β to be even broader than those exhibited here. To

that end, provided that we have a survey that is sufficiently large (minimum of 2000

galaxies as established earlier), this would appear to suggest that ROBUST will be

capable of reliably estimating the value of β provided that the luminosity function is not

poorly defined or overly broad. The broader the modelled luminosity function appears

to be, the greater the number of galaxies that ROBUST will need to make use of in order

for it to estimate β reliably. This will be both undeniably useful and important to bear

in mind when we eventually move on to using ROBUST with large real-world datasets

whose luminosities are described by a luminosity function that may be significantly

broader than what is found for, say, the SDSS data.
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Figure 6.6: Method 1a) results with varied mock generated Gaussian LF widths.
Left-hand panels illustrate the ρ plots for all 50 mocks, right-hand panels depict the
histograms of optimal value of β with best-fit Gaussian (red line). LF widths generated

are noted on each plot. Entirety of the PSCz survey is utilised for this analysis.
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6.3 Applying Mock Method 1b) - ‘Faint Limit Only Schechter’

Mock Magnitudes

To truly determine the usefulness of ROBUST however, we need to determine the extent

of its functionality with luminosity functions beyond those of a simple Gaussian. To that

effect making use of another commonly utilised function, namely a Schechter function

and generating mock magnitudes from such a distribution to assign to the PSCz galaxies

is the next logical step for our experimentations with ROBUST. Unfortunately, Matlab

does not possess a function of its own similar to normrnd that can automatically generate

random values from a Schechter distribution, primarily because such a distribution is not

a typical statistical distribution used by the program. Consequently generating mock

Schechter magnitudes will require a little bit of thought.

6.3.1 Defining the Schechter Luminosity Function

In brief, a Schechter luminosity function provides a parametric description of the number

density of galaxies as a function of their luminosity such that:

n(x)dx = φ∗xα exp−x dx, x =
L

L∗
, (6.2)

where φ∗ is a normalisation constant. While this constant is not universal and varies

with different populations and environments, one measurement from field galaxies for

this constant is given as φ∗ = 1.2 × 10−2h3Mpc−3 [122]. The form of the function is

described with an exponential law at bright magnitudes, and a power law defined with

a slope of α at fainter magnitudes, with the ‘knee’ of the function being indicative of

L∗, the characteristic galaxy luminosity where the power-law form of the function cuts

off, as seen in the first panel of Figure 6.7. This equation can also be written more

conveniently in terms of absolute magnitudes instead of luminosities, giving:

Φ(M) = 0.4 ln 10φ∗[100.4(M∗−M)](1+α) exp
(
− 100.4(M∗−M)

)
, (6.3)

where M∗ is the characteristic absolute magnitude or ‘knee’ of the function. In order to

be able to randomly assign magnitudes drawn from such a luminosity function, we need

to first assign specific assumed true values to the different parameters of the function

and then generate a CDF, or cumulative distribution function, for it. This CDF takes

values on the interval [0,1] as seen in the second panel of Figure 6.7, allowing us to
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Figure 6.7: A sample Schechter distribution with M∗=-21 and slope α=1.09, with
the CDF generated from such a distribution normalised on [0,1]
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Mock Set Size 1000 2000 5000 All (12000+)

Value of β 0.54± 0.07 0.55± 0.03 0.55± 0.02 0.55± 0.01

Table 6.3: Summary of estimated values of β detailing the effect of varying mock
galaxy sizes on computed β using ROBUST during Mock Method 1b) implementation.

exploit the randperm function of Matlab which allows us to generate as many unique

random numbers between [0,1] as we choose. These numbers can then be mapped to the

CDF we have generated to infer the absolute Schechter magnitudes that we need. The

parametric values chosen to be assigned to the different components of the function are

as follows:

φ∗ = 1.2× 10−2h3Mpc−3

α = 1.09, M∗ = −21 + 5 log(h), h =
H0

100
,

where H0 is the Hubble constant as before [122].

Having now established the means by which we will assign mock Schechter magnitudes

to the PSCz galaxies, we can now proceed to repeat our above mock runs with ROBUST

and see how well it continues to recover our assumed true value of β. While we will also

rerun these analyses with varying mock galaxy sample sizes for the sake of completion,

we will also experiment with altering the exponent of the modelled power law α of the

Schechter function (analogous to us altering the Gaussian width σ earlier) and see what

changes are observed.

Our initial results with ROBUST utilising mock Schechter magnitudes are presented in

Figure 6.8. Our results continue to be very promising. ROBUST once again successfully

recovers a mean estimate for β that is consistent with the assumed true value of β,

and manages to do so within an even more tightly constrained confidence interval than

when we used a Gaussian LF. The slight ‘S-shape’ curve exhibited by the mock ρ(ζ, β)

plots is most likely due to the nature of the LF we are using, yet the typical monotonic

increase in the plots across increasing values of βtrial on [0,1] is still generally observed

as expected. Consequently we expect to see similar behaviour from ROBUST when we

begin varying the sample galaxy sizes and altering the value of the power-law slope α.

The results of both these analyses are presented in Figures 6.9 and 6.10, with summaries

of the estimated values of β of each presented in Tables 6.3 and 6.4.
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Figure 6.8: Initial results of Method 1b). Upper panel depicts the ρ plots for all 50
mocks generated, lower panel depicts the zero-intercept of each mock plot as a function
of trial value of β plotted as a histogram with best-fit Gaussian (red line) modelled to
the data. Optimal value of β returned for Method 1b) is β = 0.55±0.01, as determined
from the Gaussian model. Luminosity function used during data generation is Schechter

of the form estimated S[-21,1.09].
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Figure 6.9: Method 1b) results with varied mock set sizes. Left-hand panels illustrate
the ρ plots for all 50 mocks, right-hand panels depict the histograms of optimal value of
β with best-fit Gaussian (red line). Set sizes used are noted on each plot. Luminosity

function generated continues to be Schechter of form estimated S[-21,1.09].
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Figure 6.10: Method 1b) results with varied mock Schechter power law slopes α.
Left-hand panels illustrate the ρ plots for all 50 mocks, right-hand panels depict the
histograms of optimal value of β with best-fit Gaussian (red line). α values generated

are noted on each plot. Entirety of the PSCz survey is utilised for this analysis.
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Schechter Power
Law Slope α

0.5 1 2 3

Value of β 0.55± 0.01 0.55± 0.01 0.55± 0.01 0.55± 0.02

Table 6.4: Summary of estimated values of β detailing the effect of varying Schechter
power law slope α on computed β using ROBUST during Mock Method 1b) implemen-

tation. Entirety of PSCz survey is utilised for this analysis.

Once again there are a few points of interest that can be taken away from Figures 6.9

and 6.10. Unlike the Gaussian luminosity function we applied earlier we continue to

see a very tightly constrained confidence interval on our recovered values of β, quite

a marked improvement in accuracy when one also considers the number of galaxies we

allow ROBUST to use during its analysis that would also lend to an improved confidence

interval. In particular even when we use a comparatively small number of galaxies our

constrained value of β has a confidence interval that is comparable to the one computed

by ROBUST when the entirety of the PSCz is used with mock Gaussian magnitudes.

Also unlike Method 1a) where the confidence interval on β was heavily reliant on the

Gaussian LF width used, there does not appear to be any noticeable alteration in the

value of β and confidence intervals recovered by ROBUST when the power law slope α of

the Schechter function is varied. This continues to suggest that ROBUST is more than

capable of effectively recovering a mean estimate of β consistent with our assumed true

value of β irrespective of the number of galaxies used or the kind of luminosity function

that is applied, although the quality of the results returned by ROBUST improves

considerably the more galaxies are available for analysis, and the better defined the

luminosity function of the underlying galaxies is.

All of the above however has been established for a mock luminosity function that is

well defined by a faint limit only. Considering the existence of surveys like the SDSS

that are modelled by a luminosity function that is defined by both a faint and a bright

limit, it makes sense to explore ROBUST’s ability to work with mock surveys where

both such limits are in play, and observe how well it continues to recover our assumed

true value of β. This provides us with the means of testing the extent of ROBUST’s

usefulness as a statistical tool to constrain cosmological parameters for a broader range

of real-world surveys in future chapters.
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Figure 6.11: Sample scatter plots of the ROBUST variable ζ plotting against distance
moduli µ for the case where the correct magnitude limits have been defined (top panel)

and where the incorrect limits have been defined (bottom panel).

6.4 Applying Mock Method 2a) - ‘Faint+Bright Limit Gaus-

sian’ Mock Magnitudes

While it is possible that any mock (or indeed true) luminosity function that is determined

for the PSCz is best described by a faint limit alone, in the case where the data is indeed

best described by the existence of both a faint and bright limit, then this will have a

significant impact on the functioning of ROBUST. This goes back to Section 4.1, where

we discussed one of the key characteristics of the variable ζ: namely that a scatter

plot of ζ vs. distance moduli µ should be uniformly distributed on [0,1] IF the correct

magnitude limits are applied. Any incompleteness in the survey will manifest in such a

scatter plot as either an under or oversampling, such as that seen in Figure 6.11, and

such a deviation in the values of ζ will carry over into the calculations of ρ, affecting the

final value of β recovered.

As such it would be prudent to explore the effects adding a bright limit to a survey

would have on the functioning of ROBUST, though this does come with an important

caveat. It is worth pointing out that our Tc methodology as it is currently designed is

not set up for the identification of a bright limit in a survey. In and of itself this is
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not necessarily surprising when one considers a typical M -Z plot such as that in Figure

4.1. There, a naturally occurring faint limit is to be expected due to instrumental

limitations or distance restrictions, while there really is no such thing as a naturally

occurring bright limit as such, which would make it difficult for Tc as it stands to be

able to accurately identify it. This is even more relevant here since we are dealing with

mock generated magnitudes assigned to the PSCz galaxies with a predetermined faint

limit already applied, but no imposed bright limit. As such if we are wishing to explore

the effects of a bright limit on the functioning of ROBUST it would be wiser to instead

artificially impose an arbitrary bright limit of some value, and observe the results that

ROBUST returns instead of utilising Tc. We can also continue to make use of the

underlying theory from Section 4.1 that dictates that a scatter plot of ζ vs. distance

moduli µ should continue to be uniformly distributed provided that the correct bright

and faint limits are applied, and see how well this continues to hold true as we alter the

arbitrary bright limit value that we choose to apply.

If we are to arbitrarily apply a bright limit to the data this does pose an important

question however: what value of ∆Z should be used.

6.4.1 A question of ∆Z

Recall the schematic from Section 4.2.1 illustrating how we construct the S1 and S2

sets for use with Tc (or indeed ROBUST) when a bright limit is applied as shown again

in Figure 6.12. Whereas before the S1 and S2 sets necessary for our analyses would

only require the distance moduli and magnitude information for the particular galaxy

we are defining the regions around in addition to ML, here more variables are in play to

define S1 and S2 correctly. Specifically not only do we need to know the magnitude and

distance of our target galaxy in addition to ML and MB, but we also need to define a

‘height’ for these regions, i.e. the range of distance moduli over which we wish to define

these sets. If we make ∆Z too small, then we risk throwing away a significant amount of

the survey, affecting the final values of ρ calculated. In the first instance we will apply

a large ∆Z=5 to our region definitions and run ROBUST with an arbitrary bright limit

of mb=8 to see what values for ρ and optimal β are returned.

The results are presented in Figure 6.13, alongside scatter and histogram plots for the

(ζ, µ) distribution of galaxy points and ζ values respectively in Figures 6.15 and 6.14 to

analyse whether any deviations from uniformity have occurred.

The results returned by ROBUST when we apply an arbitrary bright limit of mb=8 are

interesting for a few reasons. They indicate that ROBUST continues to recover a mean

estimate of β consistent with βtrue with no noticeable change in the confidence interval,
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Figure 6.12: Schematic illustrating the construction of regions S1 and S2 when a
bright limit is introduced. These regions are uniquely defined for a slice of fixed width,
δZ, in corrected distance modulus, and for ‘trial’ bright and faint apparent magnitude
limits mb

∗ and mf
∗ , respectively. Also shown are the true bright and faint apparent

magnitude limits mb
lim and mf

lim, within which the rectangular regions S1 and S2

contain a joint distribution of M and Z that are separable (i.e. independent). Figure
reproduced from the works of Johnston et. al [98].

but it isn’t clear whether the introduction of a bright limit had any significant impact

on the analysis. On the one hand this could indicate as mentioned previously that the

PSCz is more than adequately defined by the existence of a faint limit alone, however

Figures 6.15 and 6.14 show something curious.

At a glance it appears that the presented scatter of (ζ, µ) values is uniformly distributed,

but on closer inspection of the associated histogram one can begin to take note of a slight

undersampling of data points occurring near the ζ value of 0. If our distribution is indeed

uniform then for the PSCz survey which contains a total of 12087 galaxies that ROBUST

can analyse given our redshift restriction, we should expect to see ∼1209 galaxies in each

bin, as signified by the red line. Given ROBUST’s success in recovering our assumed

true value of β this could once again suggest that the addition of a bright limit has had

no material impact on its analysis despite the slight deviation from uniformity observed.

In order for us to determine whether this is indeed the case we will proceed to vary the

arbitrary bright limit applied to the data. In particular we will make use of some bright
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Figure 6.13: Initial results of Method 2a). Upper panel depicts the ρ plots for all 50
mocks generated, lower panel depicts the zero-intercept of each mock plot as a function
of trial value of β plotted as a histogram with best-fit Gaussian (red line) modelled to
the data. Optimal value of β returned for Method 2a) is β = 0.56±0.07, as determined
from the Gaussian model. Luminosity function used during data generation is Gaussian
of the form N[-21,1], with mf and mb given as 14.3 and 8 respectively. Bright limit was

applied arbitrarily during S1, S2 set generation.
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Figure 6.14: Scatter plot of ζ vs. µ for a faint limit of 14.3 and an arbitrary bright
limit of 8.
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Figure 6.15: Histogram of ζ scatter points generated from a fixed faint limit of 14.3,
an assumed bright limit of 8 and ∆Z=5, binned into 10 intervals on [0,1]. The thick
red line denotes our expected number of galaxies per histogram bin for the distribution

to be uniform.
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Bright Limit 0 5 8 10

Value of β 0.55± 0.06 0.55± 0.06 0.56± 0.07 0.64± 0.07

Table 6.5: Summary of estimated values of β detailing the effect of varying applied
apparent bright magnitude limit on computed β using ROBUST during Mock Method

2a) implementation. Entirety of PSCz is utilised for this analysis with ∆Z=5.

limits that are brighter or ‘closer’ to our predetermined faint limit of 14.3 and see if this

introduces any bias whatsoever in the values of β recovered by ROBUST, as well as use

values that are considerably fainter and take note of any changes observed. It should

be noted that we will continue to keep our region widths fixed at ∆Z=5. Considering

that we also made use of histogram plots to indicate the level of uniformity of our

(ζ, µ) distributions for our bright limit of 8, we will also present similar histograms and

scatter plots for the different bright limits applied and see if any useful patterns can be

determined. The results of varying the bright limit retroactively applied to the PSCz

are presented in Figure 6.16, our monitoring of (ζ, µ) scatter plots and histograms are

presented in Figure 6.17 and a summary of the estimated values of β are given in Table

6.5.

The result of applying the incorrect bright limit to the data is striking, as can be seen in

the bottom panels of Figure 6.16, where for mb=10 ROBUST returns a mean estimate

for β that is inconsistent with our assumed true value of β as the plot of ρ(ζ, β) has

shifted significantly to the right; returning a β value of 0.64±0.07. When one considers

the arbitrary bright limit of 10 and a ∆Z value of 5 being applied in this instance this is

actually not surprising. Our ∆Z of 5 is larger than the difference between our faint and

bright limits of 10 and 14, meaning that the shape of the S1 and S2 sets will be affected

as a result, as can be seen in a sample M -Z plot in Figure 6.18.

For a random galaxy (highlighted in green) on the M -Z plane where a faint and bright

limit of 14 and 10 respectively are applied to the data (represented by the blue lines

restricting the usable distribution), the applied ∆Z of 5 causes the shapes of S1 and S2 to

alter from square/rectangular to triangular or trapezoidal when the bright limit comes

into play. In the absence of the bright limit we are effectively creating volume-restricted

subsets of the galaxy data we are working with (represented by the rectangular regions

outlined in black) wherein we can make their absolute magnitudes M and their corrected

distance moduli Z completely separable within those regions when we generate our ζ

statistic for a clearly defined set of distance moduli and absolute magnitudes. With the

bright limit in play however its interference and changing of the shapes of the regions

introduces potential ‘imbalancing’ and incompleteness that may render the separability

of our parameters less valid, which would consequently have a negative knock-on effect
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Figure 6.16: Method 2a) results with varied bright limits applied. Left-hand panels
illustrate the ρ plots for all 50 mocks, right-hand panels depict the histograms of optimal
value of β with best-fit Gaussian (red line). LF is of the form N[-21,1], with mf and
mb noted on each plot. Entirety of the PSCz is utilised for this analysis with ∆Z=5.
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Figure 6.17: Monitoring of ζ behaviour with varied Gaussian bright limit. Left-hand
panels illustrate the (ζ, µ) scatter plot for all galaxies used, right-hand panels depict the
histograms of ζ value distribution over [0,1]. The thick red line denotes our expected

number galaxies per histogram bin for a uniform distribution.
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Figure 6.18: Sample M -Z plot depicting the trapezoidal nature of the S1 and S2 sets
(denoted in dark red and orange respectively) when an overly large ∆Z is applied in the
presence of both a faint and bright limit (represented by blue lines), creating potential
‘imbalance’ and possibly affecting the separability of M and Z within those regions for

a randomly selected galaxy on the M -Z plane, highlighted in green.

on the generation of the ζ statistics necessary for ROBUST to function correctly. While

the bottom panels of Figure 6.16 indicate that this is indeed the case, what is puzzling

is the bottom panels of Figure 6.17, where the associated scatter plots and histograms

of the (ζ, µ) distribution show a relatively uniform distribution for that bright limit of

10. This suggests one of two possibilities: firstly, that ROBUST is being affected by

the value of ∆Z being applied or secondly, that the mere presence of the bright limit is

introducing an unnecessary bias that, while for brighter limits of 8 and larger was one

that ROBUST was able to work with without a problem, is affecting ROBUST’s ability

to work effectively.

In order to determine which is indeed the case, having already experimented with various

bright limits, we will now proceed to alter the values of ∆Z applied during during S1, S2

region definition while continuing to utilise an arbitrary true bright limit for the PSCz,

mb=8 and note any change in the values of β recovered by ROBUST. The results of

altering ∆Z on computed values of β are presented in Figure 6.19, with a summary of

estimated values of β given in Table 6.6.
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Figure 6.19: Method 2a) results with varied ∆Z applied. Left-hand panels illustrate
the ρ plots for all 50 mocks, right-hand panels depict the histograms of optimal value
of β with best-fit Gaussian (red line). LF is of the form N[-21,1], with mf , mb and ∆Z

used noted on each plot. Entirety of the PSCz is utilised for this analysis.
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∆Z 1 5 10 20

Value of β 0.56± 0.06 0.56± 0.07 0.57± 0.06 0.57± 0.06

Table 6.6: Summary of estimated values of β detailing the effect of varying applied
∆Z on computed β using ROBUST during Mock Method 2a) implementation. Entirety
of PSCz is utilised for this analysis with mf and mb fixed at 14.3 and 8 respectively.

The results depicted in Figure 6.19 indicate something rather interesting. Even when

a relatively small value of ∆Z is applied such as 1, the mean estimates of β computed

continue to be consistent with the assumed true value of β even in the presence of a

fixed bright limit. Irrespective of the value of ∆Z applied, both the recovered values

of β and its confidence interval remain tightly constrained over our 50 mock trials.

While on the one hand this would appear to indicate that ‘throwing away’ considerable

amounts of the survey by applying a small ∆Z is not a major issue as β continues to be

recovered effectively, it further delineates the necessity for our underlying assumption;

that distance moduli µ and absolute magnitude be independent of each other, that the

correct magnitude limits be maintained otherwise under/oversampling will introduce

bias into our calculations for ρ. This furthermore reinforces our suspicion that it is

indeed the mere presence of a bright limit being arbitrarily applied to the data that is

causing the bias to appear in the results returned by ROBUST more so than the value of

∆Z, lending further credence to our assumption that the PSCz is sufficiently modelled

by a faint limit alone.

For the sake of completion we will now proceed to repeat all of the above with mock

generated Schechter magnitudes assigned to the PSCz galaxies, and see if the introduc-

tion of a bright limit in that scenario will continue to manifest the same sort of biases

we have observed so far on the values of β recovered by ROBUST.

6.5 Applying Mock Method 2b) - ‘Faint+Bright Limit Schechter’

Mock Magnitudes

As with Method 2a) since our Tc methodology is not designed to easily identify a bright

limit in our data, we will continue to arbitrarily apply bright limit values of our own to

our Schechter mock magnitudes and observe what changes occur in the results returned

by ROBUST, starting with an initial arbitrary applied limit of mb=7. The results of

this are presented in Figure 6.20, alongside scatter and histogram plots of the (ζ, µ)

distribution and ζ values of the galaxies respectively in Figures 6.21 and 6.22 to analyse

any deviations from uniformity as per usual.
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Figure 6.20: Initial results of Method 2b). Upper panel depicts the ρ plots for all 50
mocks generated, lower panel depicts the zero-intercept of each mock plot as a function
of trial value of β plotted as a histogram with best-fit Gaussian (red line) modelled to
the data. Optimal value of β returned for Method 2a) is β = 0.53±0.01, as determined
from the Gaussian model. Luminosity function used during data generation is Schechter
of the form S[-21,1.09], with mf and mb given as 14.3 and 7 respectively. Bright limit

was applied retroactively during S1, S2 set generation.
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Figure 6.21: Scatter plot of ζ vs. µ for a faint limit of 14.3 and an assumed bright
limit of 7 for mock generated Schechter magnitudes.
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Figure 6.22: Histogram of ζ scatter points generated from a fixed faint limit of 14.3,
an assumed bright limit of 7 and ∆Z=1, binned into 10 intervals on [0,1]. The thick
red line denotes our expected number of galaxies per histogram bin for the distribution

to be uniform.
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Bright Limit 0 7 8 10

Value of β 0.55± 0.01 0.53± 0.01 0.49± 0.03 N/A

Table 6.7: Summary of estimated values of β detailing the effect of varying applied
apparent bright magnitude limit on computed β using ROBUST during Mock Method

2b) implementation. Entirety of PSCz is utilised for this analysis with ∆Z=5.

As before, ROBUST continues to successfully recover a mean estimate of β consistent

with βtrue, albeit at a slightly smaller value of β = 0.53± 0.01, but there is something

very interesting to note in Figures 6.21 and 6.22 in particular. The introduction of

that bright limit of 7 has introduced a very noticeable undersampling for low values of

ζ followed by a significant oversampling observed at consequent values to attempt to

compensate for it, resulting in a very stark deviation from uniformity for those values

and yet despite this, ROBUST continues to operate effectively. This once again suggests

a couple of things: firstly that our Schechter function is far more sensitive to the use of

a bright limit than its Gaussian counterpart and secondly, that our arbitrary limit used

in this instance is too bright, even though ROBUST manages to function despite its

interference (possibly explaining the slightly lower value returned here). To determine

whether the latter is indeed the case we will proceed to experiment with varying the

bright limit applied to the data and note any change in the values of β returned by

ROBUST. As before with its Gaussian counterpart we will also monitor the behaviour

of the relevant (ζ, µ) scatter plots and the histograms of ζ value distribution to see if

we continue to observe the same patterns we saw before. The results of varying our

presumed applied bright limit are presented in Figure 6.23, the tracks of (ζ, µ) scatter

behaviour and uniform histograms in Figure 6.24 and a summary of the estimated values

of β provided in Table 10.7. It should be noted that ∆Z was fixed at a value of 5 for

this analysis.

Once again the results returned by ROBUST are rather striking. While ROBUST

continues to successfully return mean estimates of β consistent with the true value of β

for all arbitrary bright limits brighter than 7, as we encroach beyond that limit ROBUST

continues to return poorer and poorer results, with an mb=10 failing to return any

value at all as the mock plots of ρ(ζ, β) are all consistently positive and exhibit no

zero-intercept whatsoever, as can be seen in the bottom panels of Figure 6.23. The

almost ‘flat’ nature of the S-curves exhibited in the bottom panels of the figure make

it difficult to accurately determine where the approximate zero-intercept would be (at

an also admittedly very negative value of β which, as we have established in earlier

chapters, is not possible). What continues to be puzzling however is that despite our

previous supposition that the Schechter function is sensitive to the presence of a bright
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Figure 6.23: Method 2b) results with varied bright limits applied. Left-hand panels
illustrate the ρ plots for all 50 mocks, right-hand panels depict the histograms of optimal
value of β with best-fit Gaussian (red line). LF is of the form S[-21,1.09], with mf and
mb noted on each plot. Entirety of the PSCz is utilised for this analysis with ∆Z=5.
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Figure 6.24: Monitoring of ζ behaviour with varied Schechter bright limit. Left-hand
panels illustrate the (ζ, µ) scatter plot for all galaxies used, right-hand panels depict the
histograms of ζ value distribution over [0,1]. The thick red line denotes our expected

number of galaxies per histogram bin for a uniform distribution.
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∆Z 1 5 10 20

Value of β 0.54± 0.01 0.54± 0.01 0.54± 0.02 0.55± 0.01

Table 6.8: Summary of estimated values of β detailing the effect of varying applied
∆Z on computed β using ROBUST during Mock Method 2b) implementation. Entirety
of PSCz is utilised for this analysis with mf and mb fixed at 14.3 and 6 respectively.

limit, and which is readily apparent in Figure 6.24 as we continue to see the same under

and oversampling of ζ points causing significant deviations from uniformity, ROBUST

still manages to function effectively for limits brighter than 7.

It should be noted that even for the arbitrary bright limit of mb=7, unlike its Gaussian

counterpart, the deviation from uniformity presented in the histogram of ζ value distri-

bution does indeed appear to be significant enough to introduce a slight biasing in the

results returned by ROBUST, depicted by the fact that the corresponding ρ(ζ, β) plots

are shifted upwards very slightly, consequently altering the zero-intercepts computed for

βopt. While this in itself does not completely negate the viability of mb=7 as a bright

limit for the PSCz it does enforce the idea that the inclusion of a bright limit is likely

unnecessary especially when a Schechter function is in use, as ROBUST has shown in

previous sections that it can function perfectly well without its inclusion. It also further

reinforces the paramount importance of applying the correct apparent magnitude limits

to our survey if we are to expect ROBUST to function correctly. If again for the sake

of argument we continue to apply a bright limit of some kind, say a slightly reduced

limit of mb=6, we can now proceed to experiment with varying our value of applied ∆Z

as before, effectively varying how much of the survey is included in the generation of

the S1 and S2 sets and consequent ζ statistic computation. Much like in the previous

section we will look to see whether the value of ∆Z applied has any noticeable effect on

the value of β returned by ROBUST or not like its Gaussian counterpart. We can also

monitor whether the biasing introduced by using this arbitrary limit is removed. The

results of varying ∆Z with a fixed applied bright limit of 6 are presented in Figure 6.25,

with a summary of estimated values of β in Table 6.8 as before.

Much like what was seen when we varied ∆Z with our Gaussian luminosity function,

there continues to be no noticeable difference in the values of β returned by ROBUST,

once again suggesting that even when a considerable amount of the survey is not being

used in the definition of our S1 and S2 sets (small values of ∆Z) ROBUST is still ca-

pable of running effectively. Similarly even when overly large values of ∆Z are applied,

rendering the shape of S1 and S2 trapezoidal in nature, this continues to have no effect

on the functionality of ROBUST, which is promising behaviour. Additionally having
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Figure 6.25: Method 2b) results with varied ∆Z applied. Left-hand panels illustrate
the ρ plots for all 50 mocks, right-hand panels depict the histograms of optimal value
of β with best-fit Gaussian (red line). LF is of the form S[-21,1.09], with mf , mb and

∆Z used noted on each plot. Entirety of the PSCz is utilised for this analysis.
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brightened our bright limit to mb=6 has completely removed the biasing that was exhib-

ited in ROBUST prior to this (this in spite of deviations from uniformity in our (ζ, µ)

distributions that have been observed already), further lending credence to our suspicion

that the inclusion of a bright limit to our data only serves to add unnecessary bias to the

results returned by ROBUST, while also serving as a reminder that it is very sensitive

to the use of the correct faint and bright limits at all times.

In summary, throughout all of our mock realisations and experimentations with different

luminosity functions and their associated parameters, we have established that ROBUST

is more than capable of recovering a value of β from the PSCz, and recovering it well

the more galaxies are available for it to analyse. We have also determined that even

if broad luminosity functions are used this will have little effect on the functioning of

ROBUST, provided that the survey is suitably large enough to account for any bias

that might be introduced with the use of such a poorly defined function. Furthermore

we have highlighted the paramount importance of utilising the correct magnitude limits

for a survey, as any error in these limits will introduce significant bias. We have also

determined that at least as far as the PSCz itself is concerned, it is more than sufficiently

modelled with just the inclusion of a faint apparent magnitude limit when working with

its luminosity information, though the inclusion of a bright limit does not necessarily

impact the functioning of ROBUST, provided that it does not encroach too much onto

the distribution of points on a typical M -Z plot. In particular should we choose to model

a Schechter function to any galaxy surveys moving forward we need to be especially

careful of the bright limit we choose to apply as the function has proven itself to be quite

sensitive to the addition of such a limit, while conversely ROBUST has demonstrated

that, when the correct limits are in play, it is more than capable of operating effectively

irrespective of the value of ∆Z utilised, which will be of great use moving forward.

With all of this information in hand, we will now proceed to work directly with the

PSCz and all available luminosity information for it, and apply ROBUST to determine

a real world value of βopt for the survey.
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Applying ROBUST to the IRAS

PSCz Survey

Now that we are working directly with the PSCz, we can make use of known optical

B-band magnitude information for the survey, assign those magnitudes to their correct

galaxies then proceed to apply Tc to determine the faint (and bright, if necessary) limits

of the survey and restrict it as required. We then proceed to apply ROBUST as normal

over various values of βtrial on [0,1] to determine βopt, as presented in summary format

in Figure 7.1.

7.1 Making use of MC Simulations and Bootstrap Resam-

pling

Having established our basic methodology from previous chapters and having now made

the move to utilise the real world PSCz survey with ROBUST to compute an optimal

value for β, we are no longer in a position where we can constrain our errors, or confidence

intervals, on β by repeating our analysis multiple times and modelling a Gaussian to the

values we obtain as we have been doing up to this point. However as discussed in Section

4.3.1, we can make use of the uniform distribution of our statistic ζ on the interval [0,1]

to infer a confidence interval on β in the following two ways:

1. Monte Carlo simulations: making use of the random function in Matlab, we

can generate a new uniform distribution of random values on the interval [0,1]

and assign these numbers as ζ values to our galaxies. Due to our statistic ζ and

distance moduli µ being independent of each other by their very construction, the

use of a newly generated distribution of numbers should have no effect on the
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1. Compute real-
space positions of
galaxies from mB

Are coord/vel frames
of data sets correct?

2. Match mB posi-
tions to stored SGP

survey positions

1.5 Convert coor-
dinates/velocities

3. Generate set
of matched-

magnitude galaxies

4. Determine
mlim,mbright via Tc

5. Compute uβ,
corrected Mβ and Zβ

6. Generate ζ statis-
tics for galaxies

7. Compute ρ(ζβ, uβ)

Does ρ(ζβ, uβ) = 0?

Optimal β computed

4.5 Alter value of
βtrial over [0,1]

No

Yes

Yes

No

Figure 7.1: Flowchart illustrating typical ROBUST methodology using real world
data and magnitude-position galaxy matching. Note that mB indicates B-band appar-

ent magnitude.
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values of ρ(ζ, β) calculated afterwards. Repeating this multiple times will give us

a set of ρ values we can then use to construct a CDF from which our confidence

intervals on ρ (and consequently our optimal value of β) can be determined.

2. Bootstrap resampling: making use of the randperm function in Matlab, we

instead reorder the ζ values we already have computed for the PSCz galaxies and

reassign them to different galaxies. Much like with Monte Carlo simulations this

rearranging of values should have no effect on the values of ρ computed afterwards

due to the inherent independence of ζ and µ. Repeating this rearranging over

several trials will once again provide us with a set of ρ values from which a CDF

(and consequently our confidence intervals) can be constructed.

Before we proceed with applying either of these techniques to the PSCz, it makes sense

to determine the validity of both by applying them in a mock setting. Put another way,

we already know from our mock runs that our confidence intervals on β (whether we

choose to apply a Gaussian or Schechter LF) should be on the order of ∼ ±0.05 or so for

a Gaussian and ∼ ±0.02 for a Schechter. Consequently if we were to make use of some

of our mock results from previous sections and apply MC simulations and bootstrap

resampling to them, if applied correctly, we should obtain similar confidence intervals.

To that effect, bearing in mind the PSCz being well defined with the use of a faint limit

alone, we will now make use of the results presented both in Figures 6.3 and 6.8, to

determine the confidence intervals on our values of β for both a Gaussian and Schechter

LF respectively. The computed CDF plots for ρ using both methods for both a mock

Gaussian and Schechter LF are presented in Figures 7.2 and 7.3 respectively, while the

extrapolated confidence intervals on β from the aforementioned figures are presented in

Figures 7.4 and 7.5. A summary of the extrapolated confidence intervals on β for both

applications of mock LFs using both methods is given in Table 7.1.

The results presented across all the Figures are very telling. Irrespective of the kind of

method used to determine the confidence intervals on β, both of them are successful in

returning the kind of intervals that are in excellent agreement with those we observed

in our mock scenarios with both a Gaussian and Schechter LF; while any difference

being determined between either method by Matlab is deemed small enough to not be

significant. Additionally it is worth bringing up that there is no difference noted in

computation time by Matlab whether we choose to apply MC simulations or bootstrap

resampling, making both of them equally valid for use going forward as we prepare to

apply ROBUST to real world data.

Having now verified both methods available to us to correctly determine the error bars

on β, we can now proceed to prepare the PSCz for use with ROBUST.
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Figure 7.2: Computed CDFs for ρ(ζ, β) utilising one mock trial with the symmetrical
68%, 95% and 99.7% confidence intervals marked off with blue, red and green dotted
lines respectively. Top panel CDF is generated from applying MC simulations, bottom
panel CDF is generated from applying bootstrap resampling. LF function utilised is

Gaussian of the form N[-21,1] with no bright limit applied.
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Figure 7.3: Computed CDFs for ρ(ζ, β) utilising one mock trial with the symmetrical
68%, 95% and 99.7% confidence intervals marked off with blue, red and green dotted
lines respectively. Top panel CDF is generated from applying MC simulations, bottom
panel CDF is generated from applying bootstrap resampling. LF function utilised is

Schechter of the form S[-21,1.09] with no bright limit applied.
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Figure 7.4: Extrapolated confidence intervals on β utilising values of ρ(ζ, β) generated
from one mock trial with the symmetrical 68%, 95% and 99.7% confidence intervals
marked off with blue, red and green dotted lines respectively. Top panel intervals are
generated from applying MC simulations, bottom panel intervals are generated from
applying bootstrap resampling. LF function utilised is Gaussian of the form N[-21,1]

with no bright limit applied. Entirety of the PSCz was utilised for this analysis.
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Figure 7.5: Extrapolated confidence intervals on β utilising values of ρ(ζ, β) generated
from one mock trial with the symmetrical 68%, 95% and 99.7% confidence intervals
marked off with blue, red and green dotted lines respectively. Top panel intervals are
generated from applying MC simulations, bottom panel intervals are generated from
applying bootstrap resampling. LF function utilised is Schechter of the form S[-21,1.09]

with no bright limit applied. Entirety of the PSCz was utilised for this analysis.
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Value of β 1σ error 2σ error 3σ error

Gaussian LF

MC Simulations 0.57 ± 0.03 +0.06
−0.07 ± 0.08

Bootstrap Resampling 0.57 ± 0.03 +0.06
−0.07 ± 0.08

Schechter LF

MC Simulations 0.55 +0.008
−0.007

+0.016
−0.015 ± 0.02

Bootstrap Resampling 0.55 +0.008
−0.007

+0.016
−0.015 ± 0.02

Table 7.1: Summary table of extrapolated confidence intervals obtained on β us-
ing both MC simulations and bootstrap resampling for both an applied Gaussian and

Schechter LF.

7.2 Preparing the PSCz for use with ROBUST

In preparing the PSCz catalogue for use with ROBUST, having magnitude data for

the available galaxies is key. Unfortunately therein lies the first of many problems

in attempting to adapt this survey with use for ROBUST, beginning with the lack

of available luminosity information for the PSCz survey in any band as provided by

Branchini. Further delving into available data for the original PSCz survey from which

the Branchini catalogue was developed via the VizieR archives yielded lists of B-band

magnitudes for the survey, as well as additional flux information in the 25µm, 65µm and

100µm bands from which magnitude information could be extrapolated. However rather

frustratingly another problem presented itself; namely that no marker information or

cartesian positional information was made available between the Branchini PSCz survey

and the original PSCz survey on VizieR for us to be able to match up which B-band

magnitude or flux belonged to which galaxy. Galaxy names as assigned in the VizieR

PSCz survey (which are also incomplete) were eliminated in the Branchini PSCz survey,

essentially making them nameless and unmatchable, and all attempts to track down the

original form of the survey as developed by Branchini himself to determine his galaxy

identities were unsuccessful. However a simple Aitoff projection of the original survey

galaxies and our current Branchini PSCz survey, as seen in Figure 7.6 makes it clear

that several matches DO indeed exist . . . the problem simply lies in figuring out which

PSCz galaxy matches to which VizieR ones.
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Figure 7.6: Aitoff projection of the Enzo Branchini PSCz data set - blue dots, against
the original survey retrieved via VizieR - green crosses.
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7.3 The problem of magnitude-galaxy matching

We decided upon a few different ways by which we would attempt to solve this matching

issue. The first involved taking the position information of the original survey galax-

ies provided in galactic ascension and declination angles from VizieR, and converting

them to their equivalent cartesian supergalactic coordinate counterparts, again using the

necessary conversion matrices. We then attempt to match our values with the super-

galactic cartesian positions already provided in the Branchini PSCz survey. Curiously

no matches were returned despite experimenting with multiple tolerance levels for ac-

curacy (allowing for the use of PSCz galaxies that are not exactly coincident with our

converted positions but are instead relatively close by, say, within a few hundreds of

kms−1). Matches only began to appear when a tolerance error of 400kms−1 or more was

applied, implying that the matching Branchini galaxies were at least 400kms−1 away

from their original VizieR counterparts, which is in poor agreement with what is shown

in the Aitoff projections.

The second technique we decided to implement was somewhat of a reverse of the first,

wherein we instead converted the Branchini supergalactic positions into their equivalent

galactic ascension and declination angles, and compared the values with the original

VizieR survey to see if any matches appeared. With a tolerance level of 0.1◦ used,

matches appeared for over 10000 of the Branchini galaxies, which is far more in line

with the Aitoff projection and we began to populate a modified catalogue accordingly.

With this success however came another curiosity.

Instances of multiple matches began to appear which is a natural, if somewhat curi-

ous, consequence of implementing this reverse technique. It is essentially implying that

several of the VizieR PSCz galaxies (we observed instances of 3-4 multiple matches)

lie along the same line of sight as the Branchini galaxy we are attempting to match up

which, while plausible, still occurred with enough frequency to be a source of puzzlement.

While we considered going with a ‘first come first served’ approach wherein we would

take our first match in line and assign it to the galaxy we ultimately decided against

pursuing this avenue due to the possible errors that would be introduced by assigning

the wrong magnitude to the wrong galaxy, and consequently decided to abandon this

attempt for the time being.

A final gambit that was considered for implementation was to scrap the use of the Bran-

chini survey in its entirety, and to instead make use of the VizieR survey exclusively,

which provides heliocentric redshifts and B-band magnitudes for all PSCz galaxies. In

principle one would take the redshift information provided for these galaxies and extrap-

olate from that both a real-space position and a radial peculiar velocity by means of a
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distance convergence loop (this concept will be introduced in more detail in Section 8.4),

and then use all of that in conjunction with the provided B-band magnitudes to first

apply Tc and determine the true faint apparent magnitude limit of the B-band data and

then proceed to run ROBUST and constrain a value for β. It was ultimately decided that

we would not pursue this avenue due to the lack of essential peculiar velocity information

necessary for ROBUST to function (in that regard the Branchini PSCz survey we have

been using up to this point has been extremely useful and responsible for streamlining

a lot of our velocity-related computations), and while it is possible in principle for us to

recover that information ourselves by means of our aforementioned distance convergence

loops, the exhaustive computation times required as well as additional mitigating time

constraints in completing the rest of this work made it an unwise course to pursue at

this time.

While we were unsuccessful in our attempts to constrain a real-world value of β for the

PSCz due to missing position marker information, Chapter 6 has still served as a strong

foundation for the usefulness of ROBUST as a whole and its versatility in recovering

β irrespective of the kind of luminosity function applied to a survey or the number of

galaxies that indeed exist within that survey.

Thankfully there do exist other extensive redshift velocity surveys with which we can

apply ROBUST and attempt to constrain a value of β such as the 2MRS and SDSS.

We will now dedicate the next chapter to our efforts in applying ROBUST to the 2MRS

in particular and calculating real-world values of β, exploring any anomalies that we

discover along the way.
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Probing the Peculiar Velocity

Field of 2MASS with ROBUST

8.1 An aside: Thinking in cubes

Before exploring the intricacies of working with real data using ROBUST, it is worth

considering what effect working with such large data sets will have on computational

speed.

Irrespective of the considerable size and depth of the 2MASS/2MRS survey which we

covered in Sections 2.10.2 and 2.10.3, upcoming galaxy surveys such as WALLABY,

the SKA and LSST projects are expected to produce terabytes, if not petabytes, of

information daily that can span up to billions of objects at a time. When one considers

the typical weighting matrices necessary to calculate the predicted peculiar velocities

of mock objects embedded into a given redshift survey, they rely on determining the

separation between the object we are considering and ALL the galaxies in the survey for

each individual object; despite the fact that at significantly large distances the weighting

contributed by these more distant galaxies towards the peculiar velocity at that point

is statistically negligible and not worth considering, consequently lending themselves

towards computationally exhaustive and time consuming runs. If we can find a way to

determine the velocities of the mock objects using only the closest surrounding survey

objects that would be more statistically significant, then we will effectively reduce the

number of computations that need to be done per object and decrease the script runtimes

by a drastic amount.
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Figure 8.1: Embedding a blank mesh grid into an existing galaxy survey to begin
generating a 3D velocity field map. Basic map grid points are indicated in green, while

a random selection of galaxies within 200kms−1 of the survey are indicated in blue.
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As an alternative solution consider the following: imagine a large region of space that

we have populated with galaxies from a redshift survey and for each of which we know

their coordinates in space and the individual components of their peculiar velocities.

Now imagine placing a cube whose width is comparable to that of the redshift survey

inside the survey, and that this large cube contains thousands of points spaced at regular

intervals as shown in a simplified manner in Figure 8.1. This effectively creates a mas-

sive cube that contains thousands of smaller cubelets. We know nothing about these

points beyond their position in space, however using previously established methods

and weighting schemes we can calculate the predicted peculiar velocity of the vertices

of each cubelet using the predicted peculiar velocities of the survey galaxies around

them. We would now effectively have a 3D velocity grid map generated from these

galaxies that we can use to efficiently determine the interpolated peculiar velocity of

any object we wish to embed in it. Since this map is being generated with the same

weighting schemes that were used in ROBUST and the χ2 scripts, this step would ad-

mittedly take a long time to do depending on the size and resolution (grid spacing) of

the map, but the benefit that is to be gained from this is that once this map has been

generated, it never has to be done again, making the one-off long map generation

runtime worth it in the long run.

Now we have our map. Let us now imagine that we take an object that we know nothing

about beyond its observed redshift and direction on the sky. We want to calculate what

its peculiar velocity is. To do this, based on its position we can place it on our map and

see that it will fall within one of the potentially thousands of mini-cubelets that inhabit

this map, such as shown in Figure 8.2.

The beauty of this idea is that for any trial value of β we already know the peculiar

velocity components of each vertex of this mini-cubelet that the object resides in, and

that these components have been calculated to very high accuracy from a massive galaxy

survey already. So now we have 8 points surrounding our object that are both known to

high accuracy and are also (relatively speaking) extremely close to the object meaning

that when we apply our weighting schemes, the contribution of these 8 points to the

peculiar velocity of the object will be more statistically significant than if we were to use

every galaxy in a large survey as we were doing before. The potential here to reduce the

number of computations being done and overall running times is not to be overlooked.
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Figure 8.2: A selection of galaxies (marked in blue) that, due to their positions, reside
within a certain mini-cubelet, marked in solid green.

8.2 Carrick et. al and the 2M++ velocity field

While a significant amount of development time during this work was dedicated towards

developing a grid interpolation scheme that would streamline the application of RO-

BUST to any survey (the PSCz and 2MASS surveys in particular), and generate the

required velocity grid maps as mentioned in the previous section, many problems and

debug issues manifested that began to bring into question the feasibility of using this

technique for the remainder of the project. In fact such were the number of problems and

coding issues that developing the velocity grid maps was ultimately shelved in favour

of more standard methods and for the sake of completing this work within the allotted

time.

In that regard, the work of Carrick et. al [25] as published in 2015 during our own

development efforts and the creation of the 2M++ velocity survey and its associated

cubic grid granted us an unexpectedly pleasant reprieve. The 2M++ survey is an amal-

gam of 2MASS, with additions from the SDSS and 6dFS surveys. It is a subset of

the 2MRS which exhibits superior sampling to PSCz and far greater depth than its

2MASS equivalent [25]. K band magnitudes from 2MASS are supplemented with data

from SDSS-D7 and 6dFS-D3 such that Ks < 11.5 in regions not covered by SDSS and
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6dFS and Ks < 12.5 elsewhere (i.e. drawn from 2MRS alone). Galaxy redshift cloning

techniques were used to populate empty regions such as the Zone of Avoidance due to ex-

tinction levels [25]. The luminosity function used to model this catalogue is a Schechter

given by:

Φ(M) = 0.4 log(10)n∗100.4(1+α)(M∗−M) exp
(
− 100.4(M∗−M)

)
(8.1)

Magnitude incompleteness was accounted for using a luminosity-density weighting scheme

where the weight assigned to each galaxy’s luminosity is based on the fraction of the

total luminosity expected, given the magnitude limit of the survey, to the luminosity

one expects to observe at a given distance:

wL(r) =
Laverage

Lobserved(r)
=

∫∞
Lmin

LΦ(L)dL∫∞
4πr2fmin

LΦ(L)dL
. (8.2)

The value of β obtained by Carrick (0.431±0.021 as calculated from using the Tully-

Fisher relation and χ2-minimisation with Type Ia Sne) is reliant on the magnitude

incompleteness modelling used here [25]. In applying the Tc completeness statistic men-

tioned in Section 4.2, we can do two key things: firstly confirm (or improve upon) the

magnitude limits of the survey to ensure ROBUST constrains β as efficiently as possible

across the various magnitude passbands, and also use the results returned by Tc to check

the validity of the underlying assumption of ROBUST that the modelled Schechter lu-

minosity function used here is truly independent of the spatial position of the galaxies.

In validating this assumption we lay out the key groundwork necessary for ROBUST

to operate effectively once it is applied to the 2M++. The survey in itself is limited

to a distance of 125h−1Mpc to ensure number and magnitude completeness as much

as possible, which is comparable to our limiting of the PSCz survey to 15000kms−1 to

ensure uniform sampling.

From this, an iterative procedure was used where the now weighted galaxies have their

distances reconstructed from their observed redshifts, after which said galaxies are pop-

ulated onto a cubic grid (refer to [25] and the references therein for full details of the

iterative procedure). The mean mass density contrast function of the galaxies is then

calculated and used to determine the line of sight peculiar velocities of the galaxies as

per the equation:

v(r) =
β∗

4π

∫
d3r′δ∗g(r

′)
(r− r′)

|r− r′|3
; (8.3)
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β∗ χ2/(D.O.F)

Forward Likelihood (LW)
A1 0.440±0.023 -
SFI++ Galaxy Groups 0.429±0.022 -
SFI++ Field Galaxies 0.423±0.045 -
All 0.431±0.021 -

Forward Likelihood (NW) 0.439±0.020 -

Inverse VELMOD (LW) 0.387±0.048 -

χ2 (LW) 0.444±0.026 2194/2899

χ2 (NW) 0.442±0.028 2200/2899

Table 8.1: Summary of best fit values of β∗ using different weighting schemes, methods
of analysis and peculiar velocity datasets. Results obtained using luminosity weighting
are indicated by (LW), whereas those obtained using number weighting are indicated
by (NW). Unless explicitly indicated, all datasets were used for the method mentioned
with the exception of Inverse VELMOD which used all individual galaxies from SFI++

[25]

where β is scaled from 0 to 1 across multiple iterations. The ‘true’ β value for the survey

was obtained/constrained using multiple techniques as seen in Table 8.1. Consult Carrick

et al. and the references therein for more information on the relevant techniques used.

We can use the populated 2M++ cubic grid developed by Carrick to interpolate the

velocities of the 2MASS galaxies available to us for use in ROBUST and χ2-minimisation

and also compare the values of β that we constrain across the different magnitude

passbands with their published values.

8.3 Preparing 2MASS for use with ROBUST in conjunc-

tion with 2M++

Preparing the 2MRS survey for use with ROBUST in conjunction with the Carrick

velocity grid would require some thought given the limitations of the hardware available

to us, not to mention the sheer size of the velocity grid itself. The grid is a cube

256Mpc wide, consisting of ‘cubelets’ made of grid points 1Mpc apart, where each grid

point contains the interpolated peculiar velocity cartesian components that make up

the velocity grid as a whole. As such the total number of grid points available in the

file comes to 2573, or approximately 17 million, which is impossible for Matlab to hold

in internal memory all at once without crashing. To combat this problem the velocity

grid was divided into slices 16Mpc wide, reducing the amount of data being held in

Matlab from nearly 17 million entries down to slightly over 1.1 million, which is at the
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uppermost limit of what the program can hold at once. As a result when we come to

run our interpolation schemes, we will instead load in the velocity grid one slice at a

time, populate the slice with all the 2MRS galaxies that would reside within it, run the

interpolation using the available grid points, save out the relevant variables, clear out

the current slice file and galaxies and load in the next one and so on.

Reference frames was the next issue. The Carrick grid is in the Local Group (LG) frame

and uses its own coordinate conversion equations for the individual grid points given by

the following:

X =
(i− 128)× 400

256

Y =
(j − 128)× 400

256

Z =
(k − 128)× 400

256
,

where i, j and k are given in galactic coordinates as cited in the work of Carrick [25] and

can be accessed in further detail at http://cosmicflows.iap.fr/download.html. We

need to ensure the 2MRS galaxies (currently in the galactic frame) are converted using

these equations to ensure the galaxies are embedded properly into the velocity grid and

the interpolation runs correctly.

8.4 An aside: Distance convergence loops

Another key issue that needs to be considered while preparing a survey of this size (or

indeed any survey for that matter) for use with ROBUST, is the distinction between an

object’s real-space position and redshift. Recalling the Hubble Law given as:

cz = H0d+ vpec,

the difference between an objects real-space position (as given by H0d) and its redshift

(cz) is its peculiar velocity. The only instance in which these two variables would be

the same is when the object in question is stationary in space. While for the purpose

of determining the magnitude limits of a survey (see Section 8.5 for our determination

of limits for 2MRS) it can be deemed acceptable to assume that both the real-space

position and redshift of a galaxy are coincident (particularly if you only have the redshift

on hand for calculations) simply because the error introduced with respect to magnitude

calculations is minimal in the larger scale of things, the same cannot be said when it

comes to actual velocity interpolations. Consider the Carrick grid whose cubelets are
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1Mpc wide, and the average peculiar velocity of a galaxy as per the PSCz catalogue

which can be in the range of ±400-600kms−1 or possibly larger. The larger the peculiar

velocity of a galaxy the greater its shift from its observed redshift meaning that it

potentially resides in another cubelet than the one dictated by its observed redshift

alone. This fundamentally alters the velocity values of the surrounding grid points we

are using to interpolate with and introduces unnecessary errors that can be avoided. As

such, distance convergence loops need to be introduced into our calculations to ensure

as high a level of accuracy as possible, as demonstrated in Figure 8.3, where we initially

assume that the real-space position and observed redshift are indeed coincident, identify

the cubelet in which the galaxy resides, interpolate its peculiar velocity accordingly, then

apply the Hubble Law to redetermine the real-space position of the galaxy, as observed

redshifts are constant. Over multiple iterations the value for real-space distance will

converge to a point, as will the ‘true’ peculiar velocity of the galaxy, which can then be

used in ROBUST with confidence in their accuracy.

Three considerations for this technique need to be taken on board while applying these

loops: what convergence limit should be applied, what is the maximum number of

iterations that we should allow before we discount the galaxy as failing to converge, and

how do we prevent errors occurring from galaxies shifting into another slice file or falling

off the grid entirely?

The first point is important as it defines how long on average a convergence loop will run

before the limit is achieved and has a knock-on effect on overall computation times for

the entire survey. On the other hand we need a limit that is small enough to ensure as

high a level of accuracy as possible. In analysing the general run-time of an individual

loop we decided that a convergence limit of 10kms−1 was sufficient, as we observed that

most galaxies converged within a maximum of 10-15 loops at worst with no considerable

effect on overall run times, with those needing more iterations being few and relatively

far between.

The second point arises from initial test runs of the convergence loop sequences, wherein

a handful of galaxies failed to converge at all, and instead demonstrated behaviour

wherein they kept bouncing back and forth between the same two values (effectively

bouncing between the two nearest grid points in the Carrick velocity file) without ever

converging, causing an infinite loop that Matlab would get stuck in. While we remain

unsure as to what was causing these infinite bounces to occur, we suspect that the

problem may reside in the cartesian velocity values of the grid points themselves for

that particular cubelet being similar, such that when a new real-space position was

calculated the consequent peculiar velocity that was assigned in the next loop would

simply return it back to its initial position and so on and so on. It has been theorised
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Assume cz and ‘true’
distance are coincident

Calculate galaxy coordinates

Interpolate peculiar velocity

Apply Hubble’s Law to
calculate new distance

Calculate difference
between new and as-

sumed ‘true’ distances

Is the difference
larger than the

convergence limit?

Assume new distance
is ‘true’ distance

Save out cz, correct true
distance, coordinates and v

Yes

No

Figure 8.3: Flowchart for a typical distance convergence loop.

that the large-scale bulk flow of our Local Universe towards the constellation Virgo

(also denoted as the Virgo-centric infall) may be what is preventing these particular

galaxies from converging as the infall continues to ‘pull’ them along the flow, while

the interpolation scheme attempts to have them ‘bounce back’ to where they should

be, resulting in the infinite ‘non-convergent’ loops that we observe. Given that the

similarity of velocity values on the Carrick grid is not something that we have active

control over (nor over the Virgo-centric infall) it was instead decided to monitor the

number of iterations the convergence loop was going through per galaxy. If more than

50 iterations were required without a convergence having been achieved we flagged the

galaxy as ‘non-convergent’ and forcibly broke the loop to move onto the next galaxy.
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Once all galaxies were analysed we identified all those that were flagged and removed

them from the survey. In multiple test runs the number of flagged galaxies came to less

than 100 in a survey containing over 40000 galaxies, so their exclusion was deemed to

have no measurable negative impact on the running of ROBUST as a whole.

As for the third and final point, making allowances for a galaxy to possibly shift from

one slice file to another as it bounces towards a distance convergence is important to

prevent Matlab from crashing out due to non-existent grid points that have not been

loaded in. This was easily implemented by designing a tracker that monitors the real-

space x-axis position of the galaxy in the loop relative to slice file, each of which are

16Mpc wide and increase in value in increments of 16 from 0 to 256 accordingly along

the x-axis. Unfortunately should a galaxy (presumably already near one of the edges

of the Carrick grid) fall off the grid entirely along any axis it was decided that such a

galaxy should also be flagged as ‘non-convergent’ and discounted alongside the others

that failed to reach convergence. In monitoring the number of galaxies that fell off the

grid in this way they reached an average of 50 per test run, making their exclusion also

have no harmful impact on our calculations.

8.5 Identifying the magnitude limits of the 2MRS survey

As discussed previously in Section 4.2, exploiting the characteristics of the ζ variable

from which our ρ estimator is constructed in ROBUST gives us the means to test and

determine the completeness of any given survey up to and including a certain magnitude

limit. The completeness statistic Tc is consequently of paramount importance if we wish

ROBUST to recover β effectively, even more so since we are now working with real data

and no longer generating mock magnitude data for which an arbitrary faint (and/or

bright) limit has already been implemented, rendering the need for such completeness

statistics moot.

A cursory glance at plots of absolute magnitude vs. distance moduli in the three infrared

bands of the 2MRS galaxies as shown in Figure 8.4 indicate clearly that a faint magnitude

limit does exist for the survey across all three bands, so we proceed to apply our Tc

statistic over a range of faint magnitude limit values in an effort to determine which one

is the true limit. Recall that Tc is defined via:

Tc =

Ngal∑
i=1

(
ζ̂i −

1

2

)
Ngal∑

i=1

Vi

 1
2

, (8.4)

180



Chapter 8. Probing 2MASS with ROBUST

-28 -26 -24 -22 -20 -18 -16

Absolute Magnitude

28

29

30

31

32

33

34

35

36

D
is

ta
nc

e 
m

od
ul

i 

M-z plots for 2MRS IR data in K Band
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M-z plots for 2MRS IR data in H Band
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M-z plots for 2MRS IR data in J Band

Figure 8.4: M -Z plots for the 2MRS galaxies in the K (top panel), H (middle panel)
and J infrared bands respectively (bottom panel).
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Figure 8.5: Tc plots identifying the faint magnitude limits in the K, H and J infrared
bands for the 2MRS survey. Magnitude limits at the 3σ confidence level are marked
off via the dashed orange lines for all bands, given as Klim=11.55, Hlim=11.86 and

Jlim=12.55 respectively.

where Vi is the variance defined as:

Vi =
1

12
· ni − 1

ni + 1
(8.5)

and ni is the sum of the elements contained in sets S1 and S2 as defined previously in

Figure 4.1 [98].

Choosing to run Tc across a range of apparent magnitude values from [5,15], the results

are presented in Figure 8.5 which show a relatively clear fall-off at the 3σ level across all

three bands. The returned magnitude limits, marked off via the dashed orange lines are

given as Klim=11.55, Hlim=11.86 and Jlim=12.55. The limit value returned for

the K band is slightly fainter than the limit published by Carrick of 11.42 as discussed

in Section 8.2, requiring us to ascertain whether this is a valid limit for ROBUST to use.

Working off of the (ζ, µ) scatter plots we presented throughout Chapter 6, we will analyse

the uniformity of ζ value distribution at the returned limits while making use of two

additional statistical tools at our disposal to verify the validity of these values: namely

χ2-minimisation and Kolmogorov-Smirnov testing (hereafter denoted as KS testing).
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Figure 8.6: Monitoring of ζ behaviour at the K (top panels), H (middle panels) and
J limits returned by Tc (bottom panels). Left-hand panels illustrate the (ζ, µ) scatter
plot for all galaxies used, right-hand panels depict the histograms of ζ value distribution
over [0,1]. The thick red line denotes our expected number of galaxies per histogram

bin for a uniform distribution.
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Figure 8.7: χ2 track of ζ value distribution vs. expected number of values per his-
togram bin across varying values of apparent magnitude for the K (solid blue), H (solid
red) and J (solid green) infrared bands of the 2MRS respectively. KS cut-off points
after which the null hypothesis of uniformity is rejected at the 95% confidence level for
all bands is represented by the associated coloured dashed vertical line. KS limits are

given as Klim = 11.56, Hlim = 11.89 and Jlim = 12.55.

For the former, consider the ζ value histograms across the various bands in Figure 8.6

where the red line denotes our expected number of ζ values per histogram bin. If one

were to apply χ2-minimisation we would expect to find that χ2 remains minimised for

all apparent magnitude values brighter than mlim for which the histogram distribution

remains uniform, as the difference between the histogram bin numbers and expected

number of ζ values per histogram bin would be minimal. Conversely for all apparent

magnitude values fainter than mlim we would expect to see χ2 start to increase con-

siderably as undersampling and bias starts to appear in the distribution, therefore the

value of mlim for which this change in χ2 occurs would serve as indication for what the

true faint limit for that particular band should be.

For the latter, the KS test serves as a statistical tool by which one can determine whether

two samples differ significantly from one another. In this instance we are looking to

determine whether our ζ values are drawn from a uniform distribution, so we are looking

to compare them with a standard continuous uniform distribution and take note of any

statistically significant difference between the two. To that effect we can make use of

the kstest2 function in Matlab which utilises the two-sample Kolmogorov-Smirnov test
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to return a test decision for the null hypothesis that our two sample distributions (in

this case our ζ values and a test uniform distribution) are drawn from the same source.

Matlab returns a logical value of 1 if the null hypothesis is rejected with 95% confidence

and 0 otherwise. Therefore for all apparent magnitude values that are brighter than

mlim we expect the KS test to return 0, and to return 1 for all values brighter than

mlim, the point at which the KS test flips over signifying the true faint limit for that

particular band once again. The results of applying χ2-minimisation and the KS test

for a range of apparent magnitude values within which the limits returned by Tc are a

part are presented in Figure 8.7; the χ2 track for all three bands being represented by

solid coloured lines, and the flip point for the KS test in each band being represented

by the associated coloured vertical dashed line.

It is interesting to note that while the KS test returns a ‘flip point’ in all three bands

that is in excellent agreement with the faint limits returned by Tc, Klim = 11.56,

Hlim = 11.89 and Jlim = 12.55 respectively compared to Klim=11.55, Hlim=11.86

and Jlim=12.55 as returned by Tc, the χ2 track returns values that are slightly fainter

(by approximately 0.2 magnitudes) before it starts to increase considerably. This would

appear to suggest that the KS test is a stronger statistical tool than χ2 as it is more sensi-

tive to changes between the two distributions, while χ2 requires more drastic differences

between the two samples to manifest before it begins to alter.

Considering the excellent agreement with Tc returned by the two-sampled KS test how-

ever we will proceed with the assumption that these limits are indeed viable for ROBUST

to use, so with our magnitude limits of the 2MRS now in hand, in addition to real-space

positions and peculiar velocities for the majority of the galaxies in the survey, ROBUST

can now be run, and an optimal value of β generated which should hopefully be in con-

currence with the published Carrick value of 0.43± 0.021. A summary flowchart of the

methodology that will be applied going forward is presented in Figure 8.8.
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Figure 8.8: Flowchart for the application of data slicing, distance convergence loops
and ROBUST methodology for the 2MRS survey.
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Figure 8.9: Plots of ρ for the 2MRS survey across the K, H and J infrared bands,
shown in blue, red and green respectively.

8.6 Applying ROBUST

Having all what we need to run ROBUST and constrain its errors effectively either via

Monte Carlo simulations or bootstrap resampling, we proceed to run the program for

the 2MRS across all three bands for 1000 trial values of β. The results returned by

ROBUST are presented in Figure 8.9, and are puzzling for several reasons.

Recalling from the works of Carrick et. al [25] that the luminosity function modelled to

the 2M++ is Schechter in nature we should expect to see somewhat ‘S-shaped’ curves

in the ρ(ζ, β) plots across all three wavebands yet this is clearly not the case, despite

the somewhat monotonic increase in values over the interval of [0,1]. Secondly, while

we see clear β intercepts at ρ(ζ, β) = 0 in all three bands, these are at inordinately low

values of β that are not consistent with the value of 0.43± 0.021 computed by Carrick,

nor with the values calculated via other methods as discussed previously in Section 3.4.

Additionally while the signal recovered by ROBUST is relatively strong and clear for

these low values of β there is a noticeable increase in noise in the recovered signal as

we continue to increase the value of β over [0,1], consequently making it considerably

harder to ascertain whether there is any sort of β-intercept at the computed Carrick

value.
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Figure 8.10: Monitoring of (ζ, µ) distribution of the 2MRS galaxies in the K band
for various trial values of β. The trial values of β used are noted on each panel.

When we consider the (ζ, µ) distribution of the 2MRS galaxies in, say, the K band

across several values of β as presented in Figure 8.10, the source of the noise starts to

becomes apparent. The range of distance moduli presented in each panel is inordinately

large, implying that several of the 2MRS galaxies continue to move implausibly closer

to us as the observer as we increase the value of β. This would appear to suggest that

as β increases the β-dependent peculiar velocities of the 2MRS galaxies increase by a

significant enough amount that we see the ‘packed’ distributions presented in the various

panels, consequently disrupting uniformity and causing the increased level of noise seen

in Figure 8.9.

While it is not immediately clear what might be causing the 2MRS galaxies to shift so

significantly as we alter the value of β it must be noted that the entirety of the 2MRS

survey was utilised for this analysis without any distance restrictions applied, giving

ROBUST over 43000 galaxies to work with. While once again recalling from Section

8.2 that the 2M++ survey is limited to a distance of 125h−1Mpc to ensure number and

magnitude completeness as much as possible, this restriction may not be sufficient to

ensure the reliability of the underlying reconstructed peculiar velocity field of the Carrick

grid for ROBUST to operate effectively. It may be wise to consider applying distance
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restrictions similar to those that were applied to the IRAS PSCz and observe the results

that ROBUST returns and whether there is any improvement (refer to Section 8.6.1).

Before we proceed to experiment with applying our aforementioned distance restrictions

to the 2MRS, it is worth attempting to identify what the confidence intervals on our

current ρ(ζ, β) plots are in all three wavebands, if at the very least to exclude at the

3σ confidence level values of β that are unlikely to be considered for the survey. To

that end we will make use of both Monte Carlo simulations and bootstrap resampling to

determine the one-sided confidence intervals on ρ(ζ, β), the results of which are presented

in Figure 8.11.

As was observed in Section 7.1 and consequently reinforced here, the use of either Monte

Carlo simulations or bootstrap resampling return confidence intervals that are in excel-

lent agreement with each other, in this instance excluding all values of β > 0.64 as

denoted in the Figure via the black dashed lines representing the confidence intervals in

each band. This exclusion of higher values of β from consideration for the 2MRS is at

the very least consistent with the results returned by VELMOD and other methods as

discussed in Section 3.4 that favour lower values of β for redshift-velocity surveys, while

further rejecting the results favoured by POTENT of β=1 that, as previously discussed,

is not possible. Despite establishing an ‘exclusion zone’ on our value of β this still does

leave a lot of noisy data within which the true value of β might reside, lending credence

to our suspicion that perhaps the underlying reconstructed peculiar velocity field be-

ing used with the Carrick grid requires a distance restriction of some sort in order for

ROBUST to operate more effectively.

8.6.1 Redshift Restricting the 2MRS

Recalling that we restricted the IRAS PSCz survey out to 15000kms−1 to ensure the reli-

ability of the underlying reconstructed peculiar velocity field for interpolation purposes,

we will proceed to restrict out the number of galaxies ROBUST utilises for its analysis in

a similar manner: implementing a distance restriction of 500 ≤ cz ≤ 15000kms−1. The

lower bound of 500kms−1 was selected as a precaution to ensure that no potential galax-

ies with anomalously large peculiar velocities and small real-space distances or redshifts

near the core of the survey make it into the analysis and introduce potential sources of

error or bias. Applying this redshift restriction provides ROBUST with nearly 30400

galaxies to work with, the results of that analysis being presented in Figure 8.12.

With the redshift restricted subset of the 2MRS now in play, we do observe a notable

reduction in the amount of noise for all values of β < 0.6. This lends credence to our

suspicion that the underlying reconstructed peculiar velocity field of the Carrick grid has

189



Chapter 8. Probing 2MASS with ROBUST

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Trial values of 

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

K Band
H Band
J Band

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Trial values of 

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

K Band
H Band
J Band

Figure 8.11: One-sided confidence intervals calculated on β via bootstrap resampling
(top panel) and Monte Carlo simulations (bottom panel) for the K, H and J bands
depicted in blue, red and green respectively. The 3σ confidence intervals for all three
bands are denoted via the black dashed lines, indicating all values of β > 0.64 are to

be excluded from consideration for the 2MRS survey with 99.7% confidence.
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Figure 8.12: Plots of ρ for the redshift restricted 2MRS survey across the K, H and
J infrared bands, shown in blue, red and green respectively.

been made more reliable with this restriction applied such that we now see a consistent

ρ(ζ, β) intercept for values of β ∼ 0.05 in all three wavebands, though once again this

is not consistent with the value published by Carrick. Additionally the general shape

of the ρ plot has altered drastically with this restriction in place. In particular for all

values of β ≤ 0.6 we observe parabolic behaviour as opposed to the general ‘S-shaped’

curves we expect to see given the Schechter function that is known to be modelled to

the 2M++, consequently denoting a deviation from our expected monotonic increase in

values of ρ as well.

It should be noted that the reduction in noise in the signal recovered by ROBUST is

mirrored in the (ζ, µ) distribution of the 2MRS galaxies as presented in Figure 8.13 for

various values of β, where the scatter plots for β values less than 0.6 are more in line

with the plots we observed in earlier chapters. In particular the 2MRS galaxies are not

shifting around as drastically as they were before and are exhibiting a sensible range

of distance moduli and general uniformity, allowing ROBUST to operate effectively.

Conversely for β values larger than 0.6 we see a return of the ‘packed’ distributions we

saw in the previous section as the galaxies start to shift more significantly to implausibly

closer distances, and the resultant overly large β-dependent peculiar velocities of those
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Figure 8.13: Monitoring of (ζ, µ) distribution of the redshift restricted 2MRS galaxies
in the K band for various trial values of β. The trial values of β used are noted on each

panel.

particular galaxies cause an increase in the amount of noise in the signal recovered by

ROBUST as the uniformity of the distribution is disrupted.

Given the reduced noise exhibited in Figure 8.12 it is once again worth identifying the

confidence (or exclusion) intervals on β and observing whether the values returned via

bootstrap resampling or Monte Carlo simulations are consistent and exclude the noisier

values of β. The confidence intervals computed for this restricted subset of the 2MRS

are presented in Figure 8.14, and do indeed favour the exclusion of all values of β > 0.6

from consideration for the survey due to the increased noise in the recovered signal.

This is once again consistent with results returned by VELMOD and other contemporary

methods that favour smaller values of β for surveys while further reinforcing the rejection

of β results of unity favoured by POTENT.

8.6.2 Restricting czcorr instead of czobs

Having made the decision to restrict our observable redshifts in such a manner as to

ensure the reliability of the underlying reconstructed peculiar velocity field when apply-

ing ROBUST and having seen a noticeable improvement in the noise reduction in the
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Figure 8.14: One-sided confidence intervals calculated on β via bootstrap resampling
(top panel) and Monte Carlo simulations (bottom panel) for the K, H and J bands
depicted in blue, red and green respectively. The 3σ confidence intervals for all three
bands are denoted via the black dashed lines, indicating all values of β > 0.6 are to
be excluded from consideration for the redshift restricted 2MRS survey with 99.7%

confidence.
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Figure 8.15: Plots of ρ for the restricted 2MRS survey utilising corrected redshifts
across the K, H and J infrared bands, shown in blue, red and green respectively.

ρ(ζ, β) plots returned by ROBUST as a result; an interesting question arises. What

would happen if instead of utilising the observed redshifts of the 2MRS galaxies and

holding them as constant as we have been doing so far, we choose to rather hold their

real-space distances fixed instead, and utilise the modified Hubble Law to correct their

redshifts accordingly, and then restrict those corrected redshifts instead? Correcting

the 2MRS redshifts in such a manner and then restricting them reduces the number

of available galaxies for analysis substantially (from an initial survey size of over 43000

objects we are now left with a little over 29000), though as has been established in pre-

vious chapters this is still more than enough for ROBUST to operate effectively. The

results of running ROBUST utilising corrected redshifts, czcorr as opposed to observed

redshifts, czobs is presented in Figure 8.15.

The results are striking. On the one hand we observe the typical monotonic increase

that we expect to see given the logarithmic velocity model that we are using in the

construction of ρ(ζ, β), and yet ROBUST fails to return any value for βopt whatsoever,

given the consistently negative behaviour of ρ across all three bands bar at the very

beginning, which can barely be seen along the left y-axis of the Figure, suggesting a

dubious βopt of 0 across all three bands. Indeed the ‘noise’ exhibited by ρ is peculiar

and not like the more ‘Gaussian’ noise exhibited in previous sections; suggesting that
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Figure 8.16: Monitoring of (ζ, µ) distribution of the restricted 2MRS galaxies utilising
corrected redshifts in the K band for various trial values of β. The trial values of β

used are noted on each panel.

the use of corrected redshifts is more of a hindrance than a useful solution with said

noise being consistent throughout.

This is further mirrored by the associated (ζ, µ) distributions of the 2MRS galaxies at

various values of βtrial as presented in Figure 8.16, where for all trial values presented,

much like when the entirety of the 2MRS survey was used initially without any redshift

restrictions, we see a return of the ‘packed’ distributions and the extreme shifting of

certain galaxies to implausibly low distance moduli. This would suggest that the use of

corrected redshifts has had no useful bearing on the running of ROBUST but rather, has

been more counter-productive than useful. This is further delineated by the fact that

any attempt to construct confidence or exclusion intervals on our value of β would be

meaningless considering the consistent negative behaviour displayed and the clear lack

of any sensible zero-intercept as the returned intervals would automatically exclude all

values of β on the interval [0,1]. To that end we will instead proceed to explore a couple

of other avenues that might be used to rectify and/or justify ROBUST’s behaviour thus

far.
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8.6.3 Experimenting with µ instead of uβ

While redshift restricting the 2MRS survey has somewhat improved the results returned

by ROBUST for lower values of β we are still left with no clear reason as to why we

are not seeing the monotonic increase in values of ρ that we expect, nor why we are

still getting inordinately small values of β ∼ 0.05 returned across all three wavebands.

Perhaps we would be well served to reconsider the underlying theory on which ROBUST

itself is reliant, in particular our use of β-dependent peculiar velocities interpolated onto

the 2MRS galaxies and our projected logarithmic velocity model such that:

uβ = −5 log10

(
1−

vβ
cz

)
,

and

β = β∗ ⇔ ρ(ζβ, uβ) = 0.

When one recalls one of the key properties of the ζ statistic from Section 4.1, namely

that ζ and µ are statistically independent of each other, i.e. the distribution of

ζ is independent of the spatial distribution of the galaxies for a given survey provided it

is magnitude complete and also independent of luminosity function, it makes sense that

one should be able to calculate ρ such that

β = β∗ ⇔ ρ(ζβ, µβ) = 0,

considering their statistical independence, and that ROBUST should still be able to

return a valid result given how ζ is constructed. To that end we will experiment with

running ROBUST on the redshift restricted subset of the 2MRS, where it calculates

the correlation coefficient ρ(ζ, µβ) using the β-rescaled distance moduli of the galaxies

as opposed to their β-dependent peculiar velocities, and observe what results ROBUST

returns. The results of this alternate analysis are presented in Figure 8.17.

Offhand it becomes clear that ROBUST is now returning a strong signal of monotonically

increasing values of ρ over the interval [0,1], not unlike the mock Gaussian runs with the

IRAS PSCz in Chapter 6 though the same sort of noise we have observed in previous

runs for values of β > 0.6 continues to manifest again, albeit at a more reduced level.

This is once again mirrored in the (ζ, µ) distribution plots for the 2MRS galaxies as

presented for various values of β in Figure 8.18, where for values of β smaller than 0.6

we continue to see the uniform scatter and distribution of both galaxies and distance

moduli that we have come to expect; while at values larger than 0.6 we once again see

a returned of the ‘packed’ distribution that disrupts uniformity and introduces noise to

the data.
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Figure 8.17: Plots of ρ for the redshift restricted 2MRS survey where β-dependent
distance moduli µβ were utilised in the calculation of ρ(ζ, β) instead of β-dependent
peculiar velocities uβ across the K, H and J infrared bands, shown in blue, red and

green respectively.

While the monotonic increase in ρ is promising it still remains puzzling as to why the

plots are not more ‘S-shaped’ in nature given their Schechter origins. Unfortunately

however we are unable to recover any value of β for the 2MRS as no zero intercept of

any kind is exhibited by ρ(ζ, β) in any waveband, and a backwards extrapolation of the

plots available to us would return values of β for the 2MRS that are negative which, as

we have established previously, is not only inconsistent with the values of β published

by Carrick et. al and their contemporaries, but is also impossible given how β itself is

defined. While in and of itself this does not negate the viability of using µβ to calculate

ρ for ROBUST, we need additional testing measures to determine whether or not its

use is truly valid. Such a testing measure (relative entropy) will be explored in depth in

Chapters 9 and 10.

In the meantime one possible avenue for determining the validity of using µβ would be

to once again calculate the confidence or exclusion intervals on β and see if they return

values that are consistent with excluding all noisy values of β larger than 0.6 as we

have observed in previous sections. The confidence intervals returned for ρ(ζ, β) using

bootstrap resampling and Monte Carlo simulations are presented in Figure 8.19.
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Figure 8.18: Monitoring of (ζ, µ) distribution of the redshift restricted 2MRS galaxies
where β-dependent distance moduli µβ were utilised in the calculation of ρ(ζ, β) instead
of β-dependent peculiar velocities uβ in the K band for various trial values of β. The

trial values of β used are noted on each panel.

Unsurprisingly the exclusion intervals returned by both methods, while consistent with

each other, are not at all in keeping with the exclusion values we have calculated thus far

for β, returning β ∼> 0.1 for exclusion in the K and H bands, and returning no exclusion

range for the J band whatsoever. This is due majorly in part to the consistently positive

nature of the ρ plots across all three wavebands returning no zero intercept of any kind,

though considering this is because we are using µβ to calculate ρ(ζ, β) to begin with,

that only lends itself to the supposition that perhaps we should not be using µβ to

calculate ρ in the first place, despite its statistical independence from ζ. As mentioned

previously, this supposition will be explored in more depth in Chapter 11.

Despite ROBUST’s inability to recover an actual value of βopt for the 2MRS that is

in good agreement with the value published by Carrick, it is worth pointing out that

(for all cases where the proper theory was applied) it at the very least has been able to

confidently exclude at the 3σ level all values of β ≥ 0.6 from consideration for use with

the 2MRS survey which, while not an ideal result, is still very useful in validating the β

results returned by others in their current works while reinforcing the general rejection

of larger values of β equal to unity as returned by POTENT.
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Figure 8.19: One-sided confidence intervals calculated on β via bootstrap resampling
(top panel) and Monte Carlo simulations (bottom panel) for the K, H and J bands
depicted in blue, red and green respectively. The 3σ confidence intervals for all three
bands are denoted via the black dashed lines, indicating all values of β ∼> 0.1 are to
be excluded from consideration for the redshift restricted 2MRS survey in the K and

H band where µβ is used to calculate ρ(ζ, β) instead of uβ with 99.7% confidence.
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8.6.4 Confirming the χ2 results of Carrick

Given the peculiar results returned by ROBUST thus far, it is worth exploring whether

the underlying 2M++ interpolation/velocity grid of Carrick that we are utilising is

indeed valid. Should there be an inherent fault in the grid then this would have a

knock-on effect on the peculiar velocities that are interpolated for each galaxy and

consequently have a negative effect on the values of ζ and ρ(ζ, β) that are computed

later, and would go a long ways towards explaining ROBUST’s odd behaviour. To that

end we will utilise the Carrick grid and analyse it using χ2-minimisation once we have

selected an appropriate set of Type Ia Sne to embed within the grid and interpolate and

scale their β-dependent peculiar velocities.

While Carrick et. al made use of the ‘First Amendment’ A1 Sne set in their seminal work

to compute β that consists of 245 Sne within 200h−1Mpc and draws from 3 independent

datasets [25], we were unfortunately unable to retrieve this particular dataset from ViZier

to use in conjunction with χ2. Consequently we will instead make use of the RS subset

of the Tonry et. al Sne catalogue that we utilised in Chapter 5 with consistent good

results when utilised with the IRAS PSCz survey. In order to cover all our bases we will

run this analysis using two different methods:

� Method 1: Embed the RS set amongst the 2MRS galaxies, whose peculiar velocities

have been interpolated using the Carrick grid.

� Method 2: Embed the RS set directly into the Carrick grid, performing all nec-

essary interpolation measures using only the one 1Mpc cube within which each

individual Sne is located.

Method 1 in particular provides an additional avenue within which we can test the

reliability of our velocity interpolation schemes and distance convergence loops that we

have applied earlier, as a successful recovery of the Carrick value will at least exclude the

possibility that the problems manifesting in ROBUST are due to some errors residing in

those scripts that have been passed on onto the final interpolated peculiar velocities for

the 2MRS galaxies. Method 2 conversely will serve as the means of directly identifying

whether the problem does indeed reside within the Carrick grid or not. The results of

applying χ2-minimisation utilising Method 1 are presented in Figure 8.20, alongside a

comparison chart of our interpolated velocities for the Sne alongside their ‘observed’

velocities as calculated from the Hubble law for our assumed ‘true’ value of β = 0.43.

Should our assumed value of β indeed be the correct value, then these comparison plots

should exhibit a 1:1 ratio, as denoted by the red line. It should be noted that the area of

each individual circle on these velocity comparison plots is proportional to the associated
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reconstruction errors for each Sne. Put another way, the smaller the circle, the smaller

the associated error and the more confident we are of the true peculiar velocity of that

particular Sne lying in an increasingly smaller range on the plot.

The results shown in Figure 8.20 are very promising. We are successfully able to return

a value of β = 0.445±0.04 at the 1σ error level which is in excellent agreement with the

value of β = 0.43± 0.021 established by Carrick et al. with a relatively decent fit with

our expected linear regression 1:1 comparison ratio in velocities being observed, though

certain velocity discrepancies and outliers with large associated errors continue to persist

in the plot. It must be noted that this ratio is not completely in keeping with similar

results generated by Radburn-Smith in his seminal paper, but this is most likely due to

the fact that we are utilising the Carrick grid (or indeed in this case the 2MRS galaxies

whose velocities have been interpolated from said grid) for our interpolation purposes

instead of the PSCz survey utilised by him and his colleagues. Each survey has its own

unique properties and indeed are tracing different velocity and mass distributions in

different regions of the nearby Universe, so some deviations are to be expected.

It is also worth pointing out that the same velocity interpolation scheme described in

Section 5.2.2 is what is applied throughout this Chapter with regards to the Carrick

grid, albeit with us only making use of the 8 cubelet vertices closest to each galaxy in

question, and that this scheme has once again been rigorously tested in a mock environ-

ment utilising mock galaxies with positions coincident with cubelet vertices in order to

determine whether the scheme can successfully recover 3D peculiar velocity components

for that position that are in line with the values stored in the Carrick file. As before,

the scheme has proven itself more than capable of recovering the peculiar velocity com-

ponents expected of it to within 4-5 decimal places, thus confirming that all deviations

and outliers noted in our linear regression plot is not due to a fundamental error in the

interpolation scheme being utilised, or its associated coordinate transformation matrices.

The one frustrating property that continues to persist however is the inordinately large

χ2 values, this time on the order of 250 or so instead of our expected ∼100 which once

again favours the value of β=0.43 for rejection, were it not for the fact that Carrick him-

self has independently verified this value by utilising Forward Likelihood and VELMOD

[25]. This could once again lend credence to our thought that perhaps β is not very

sensitive to χ2, though this remains unclear.

The results of our analyses using Method 2 are presented in Figure 8.21 and are just

as encouraging, albeit with a couple of curiosities. To begin with we are successful

in recovering a value of β in keeping with that computed by Carrick, namely β =

0.426 ± 0.035 at the 1σ error level. This leads to a couple of important conclusions,

specifically that whether we go for the indirect approach of Method 1 (using the 2MRS
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Figure 8.20: Successful recovery of the value of β = 0.445±0.04 via χ2-minimisation
using Method 1 (top panel), alongside a comparison of RS Sne velocities computed via
interpolation in Method 1 (x-axis) with those computed using the Hubble Law (y-
axis). Areas of individual plot points are proportional to the associated reconstruction
errors of each individual Sne used, with the red line indicating the linear regression (or

goodness-of-fit) between both sets of velocities.
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Figure 8.21: Successful recovery of the value of β = 0.426 ± 0.035 via χ2-
minimisation using Method 2 (top panel), alongside a comparison of RS Sne veloci-
ties computed via interpolation in Method 2 (x-axis) with those computed using the
Hubble Law (y-axis). Observed ‘squashing effect’ is due to the existence of a singular
outlier in the data. Areas of individual plot points are proportional to the associated
reconstruction errors of each individual Sne used, with the red line indicating the linear

regression (or goodness-of-fit) between both sets of velocities.
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galaxies) or use the Carrick grid directly ala Method 2 we continue to achieve a value

of β that is in excellent agreement with the Carrick value. This serves as a means of

confirming that our interpolation schemes and distance convergence loops must indeed

be functioning correctly and without error as the difference in value between the two

Methods is almost negligible. The success of our χ2 analysis using Method 2 also serves

to indicate that there cannot be any underlying fault or errors in the Carrick grid itself,

otherwise we would have failed to recover a value of β in such close agreement to their

own. This unfortunately once again points to a problem in either the underlying theory

or the functioning of ROBUST itself, which is where we will begin to focus our efforts

in future sections.

While we have successfully recovered β using Method 2, the bottom panel of Figure

8.21 exhibits a strange ‘squashing effect’, which appears to be the result of a strange

outlier in the data that is generated when we interpolate velocities using Method 2

as opposed to Method 1. It is worth noting however that even with the existence of

this outlier in the data the observed goodness-of-fit with our linear regression model is

still somewhat decent, with a reasonable number of Sne with small associated errors

clustering in relative proximity to our predicted 1:1 ratio line for our assumed true β

of 0.43. The reason for the existence of this outlier is not fully clear considering that

we are increasingly confident in the functioning of our interpolation schemes and may

be due to some unique properties of that particular Sne once it is embedded directly

into the Carrick grid. When we isolate this particular outlier and remove it from the

grid we get a distribution of velocities similar to that achieved earlier as depicted in

Figure 8.22. Our ratio of observed to interpolated velocities continues to exhibit a

somewhat 1:1 distribution that is clearer to see, further signifying that our interpolation

scheme appears to be functioning correctly for the most part, though the persistence

of velocity discrepancies and outliers muddling the fit to our linear regression model

remains puzzling.

With the consistently less than ideal linear regression fitting and weak recovered χ2

signals for β that have been observed throughout this work both here and in Chapter

5, it is worth considering whether our underlying assumptions as to the linearity of

our reconstructed peculiar velocity fields are valid, as any deviation from said linearity

would cause further sources or velocity perturbations to occur which would go some way

towards explaining some of the velocity discrepancies and outliers noted in our plots so

far. This possibility will be addressed in further detail as a future avenue of exploration

at the tail-end of this work in Chapter 13.

In summary, we have been able to successfully recover Carrick’s value of β to within

acceptable agreement limits, while also utilising a different Sne set than that used by
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Figure 8.22: Comparison of RS Sne velocities computed via interpolation in Method
2 (x-axis) with those computed using the Hubble Law (y-axis) with the outlier removed.
Areas of individual plot points are proportional to the associated reconstruction errors of
each individual Sne used, with the red line indicating the linear regression (or goodness-

of-fit) between both sets of velocities.

them in their work. This lends credence to the validity of their published value while also

confirming that our interpolation schemes are functioning correctly and that indeed no

underlying fault can be observed in the Carrick grid (given the successful recovery of β

using Method 2). While this unfortunately does not bring us any closer to understanding

why ROBUST is continuing to return such noisy or inconsistent results we do have some

additional avenues to explore that may explain its strange behaviour.

� Having now confirmed that there is no issue in either our interpolation schemes or

in the Carrick grid itself, there may be an inherent fault in the 2MRS survey itself

that prevents it from being fully compatible for use with ROBUST.

� There may be an error in our underlying theory upon which ROBUST is reliant,

namely our assumption that the luminosity distribution of a galaxy survey and

the 3D spatial positions of its component galaxies are independent of one another.

This shall be explored in detail in Chapter 12.

Before we proceed to explore any possible errors in the underlying theory however,

ROBUST itself offers us a secondary means by which we can test and/or confirm the
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validity of all of our results generated thus far. This alternative is called relative entropy,

and after introducing the general theory behind its use in the following chapter, we will

proceed to apply relative entropy to both the IRAS PSCz in a mock setting to fully

explore its usefulness before consequently applying it to the 2MRS and seeing how well

it validates the results that we have observed up to this point.
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Chapter 9

A ROBUST Alternative -

Relative Entropy

While we were successfully able to establish the usefulness of ROBUST as a statistical

tool to probe the peculiar velocity fields of the PSCz in multiple mock simulations

where galaxy set size, luminosity function and reconstruction errors were varied without

any alteration on the ‘true’ value of β recovered, applying it to real world data has

been problematic at best. This has included the lack of galaxy-magnitude matching

information necessary for us to utilise ROBUST with the B-band magnitude information

of the PSCz, and 2M++ returning a result inconsistent with that determined by Carrick

using VELMOD and χ2-minimisation, the latter of which we confirmed for ourselves;

suggesting either an inherent problem in the ROBUST methodology itself as opposed to

the Carrick grid or an inherent fault within the 2MRS survey itself that causes it to not

lend itself well for use with ROBUST. Various experimentation attempts have failed to

bring our value of β∗ any closer to ∼0.43. It may also be that our correlation coefficient

parameter ρ is not sensitive enough to changes in β in the 2MRS survey in order for it

to be able to recover a value effectively.

The take away from the above is clear. In order for us to truly be able to determine

whether the problem lies in the ROBUST methodology or elsewhere, we need an in-

dependent means of verifying the values of β ROBUST returns, one that in itself also

shares some of the characteristics of our ζ statistic. If this independent means were

also to return the same value of, say, β ∼0.05 for the 2M++ then we can at least say

in confidence that the problem does not lie within ROBUST itself. Thankfully, such a

methodology does indeed exist that we can make use of, namely the concept of relative

entropy between two variables.
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9.1 Underlying Theory of Relative Entropy

While entropy by its strictest definition is a measure of the amount of disorder or chaos

in a system, with all systems tending towards a state of high entropy over time, what we

will be applying here is slightly different. Working from the basics of information theory

we can start by defining two probability distributions µ1 and µ2 that are absolutely

continuous with respect to one another such that

µ1 ≡ µ2.

In other words, there exists no event E for which µ1(E) = 0 and µ2(E) 6= 0, or µ1(E) 6= 0

and µ2(E) = 0 [109]. We also define an additional probability measure λ such that

λ ≡ µ1, λ ≡ µ2,

meaning that for example, λ may be µ1, µ2 or (µ1 + µ2)/2. By the Radon-Nikodym

theorem (refer to the work of Kullback for the explicit definition of this theorem and its

consequent derivatives [109]) we can now define two generalised probability densities for

µ1 and µ2, denoted f1(x) and f2(x) such that:

µi(E) =

∫
E
fi(x)dλ(x), i = 1, 2 (9.1)

for all possible events, E [109]. The function fi(x) is also called the Radon-Nikodym

derivative as it can be expressed as

dµi(x) = fi(x)dλ(x), fi(x) =
dµi
dλ

.

If we now choose to define our hypotheses Hi, i = 1, 2, which indicates the likelihood of

a variable X being from the statistical population with probability measure µi then by

applying Bayes’ theorem it follows that:

P (Hi|x) =
P (Hi)fi(x)

P (H1)f1(x) + P (H2)f2(x)
[λ] , i = 1, 2, (9.2)

from which we can obtain

ln
f1(x)

f2(x)
= ln

P (H1|x)

P (H2|x)
− ln

P (H1)

P (H2)
[λ] , (9.3)

where P (Hi), i = 1, 2 is the prior probability of Hi and P (Hi|x) is the conditional

probability of Hi given X = x [109]. The right hand side of Equation 9.3 is a measure

of the difference between the logarithm of the odds in favour of H1 after the observation

of X = x and before the observation. This difference, which can be positive or negative,
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may be considered as the information resulting from the observation X = x, and we

define the logarithm of the likelihood ratio: ln [f1(x)/f2(x)] to be the information in X =

x for discrimination in favour of H1 against H2. It can also be thought of as the weight

of evidence for H1 given x [109]. Therefore the mean information for discrimination in

favour of H1 given H2 for given x occurring within events E for µ1 is given by:

I(1 :2;E) =
1

µ1(E)

∫
E

ln
f1(x)

f2(x)
dµ1(x)

=
1

µ1(E)

∫
E

f1(x) ln
f1(x)

f2(x)
dλ(x), µ1(E) > 0,

= 0, µ1(E) = 0,

(9.4)

where

dµ1(x) = f1(x)dλ(x).

If we are dealing with only one probabilistic event E, then we can rewrite our variable

I as I(1 : 2), denoting the mean information for discrimination in favour of H1 against

H2 per observation from µ1 such that

I(1 :2) =

∫
ln
f1(x)

f2(x)
dµ1(x) =

∫
f1(x) ln

f1(x)

f2(x)
dλ(x)

=

∫
ln
P (H1|x)

P (H2|x)
dµ1(x)− ln

P (H1)

P (H2)
,

(9.5)

where I(1 :2) can also be called the information measure of µ1 with respect to µ2 [109].

The boxed equation in Equation 9.5 can also be considered as a directed divergence,

and is more commonly called the Kullback-Leibler Divergence (as originally derived

by Kullback and Leibler in their seminal work in 1951 [110]) or relative entropy (or

Kullback-Leibler risk in some literature [34]) between two probability distributions µ1

and µ2 where, with regards to our purposes for this work, µ1 represents the observed

distribution of the data we have, and µ2 represents our theoretical model for that distri-

bution [96]. If we choose to express this integral as a summation of n observations over

our two probability distributions we would get:

S [(µ1, µ2)] =

n∑
i=1

µ1(i) ln

(
µ1(i)

µ2(i)

)
, (9.6)

where S [(µ1, µ2)] is our relative entropy variable. More specifically, this variable will

provide us with a measure of how well one distribution relates to another, and for the

case where both variables are completely uncorrelated with each other, S [(µ1, µ2)] will

be at its minimum value, or minimum disorder or entropy. Consequently with regards

to our own work the purposes for which we will want to make use of this statistic are
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such as to find the value of β that not only causes our correlation coefficient ρ to be 0,

but also minimises S [(µ1, µ2)]. In order to achieve this we need to define a new variable

which we can utilise to verify the correctness of our central ζ statistic while also serving

as a test of independence for it.

9.2 A New Statistic, χ, and Applying Relative Entropy

Recall from Section 4.1 where we established the two key characteristics of our ζ variable

for ROBUST, namely that for a magnitude complete survey:

1. ζ will be uniformly distributed on the interval [0,1],

2. ζ and µ (or Z) are statistically independent.

Now let us consider a new variable, χ, defined as the cumulative redshift distribution of

galaxies in a survey such that:

χ =
H(z)

H(zu)
, (9.7)

where

H(z) =

∫ zu

z

h(z′)dz′, (9.8)

and zu is taken to be a pre-established upper redshift limit (in the case of for example

the PSCz survey this would take on the value of 15000kms−1 we established earlier to

ensure the reliability of the reconstructed peculiar velocity fields being used) [96]. Due

to the applied normalisation over H(zu), χ now shares the same property as ζ, namely

that it will be uniform on the interval [0,1]. Consequently it can be easily inferred that

for a magnitude complete survey, a plot of ζ vs. χ such as that depicted in Figure 9.1

will also be perfectly uniform on a unit square provided that the correct value of β is

applied during the construction of the ζ statistic. It also follows that for all values of

β 6= β∗ a correlation will be introduced between the two variables causing a deviation

from a perfect uniform distribution.

This is where we can begin to make use of relative entropy. In particular for the case

where we have the correct β∗, if we were to impose a mesh grid onto our unit square

such as that depicted in Figure 9.2, a perfectly uniform distribution would be such that

the number of galaxies in each small square would be equal. More specifically, we can

calculate the probability pi for each cell from the observed (ζ, χ) distribution such that:

pi =
N(cmn)

Ngal
, (9.9)
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Figure 9.1: Example illustrating a typical (ζ, χ) distribution for a complete data-set
for an MGC mock catalogue. The left-hand distribution shows ζ and χ estimated at
the apparent magnitude limit of the survey mlim = 20.0 and appears to be a random
uniform distribution. Correlations between ζ and χ are shown on the right-hand panel
where ζ and χ have been estimated at m∗ = 20.5 (beyond the limit of the survey).

Figure reproduced from the work of Johnston [96].

where N(cmn) is the number of galaxies within the cell, c, located at (m,n), and Ngal

is the total number of galaxies for the whole (ζ, χ) distribution [96]. It therefore follows

that the theoretical model we expect to see in this case would also satisfy the condition

qi =
1

Ctot
, (9.10)

where Ctot is the total number of cells that make up the imposed mesh [96]. We can

now apply these definitions to compute the relative entropy of ζ and χ to obtain:

S [(ζβ, χ)] =

n∑
i=1

pi ln

(
pi
qi

)
(9.11)

Due to the quantity qi always being less than 1 by its very definition, S [(ζβ, χ)] will

always have the property of being negative, only ever tending to 0 in the case where

pi = qi. Since it is the convention that all systems tend towards increasingly positive

entropy over time, we can represent this with a simple change of sign:

S [(ζβ, χ)] = −
n∑
i=1

pi ln

(
pi
qi

)
, (9.12)

which also gives it the property of having maximum entropy at the maximum value of

S [(ζβ, χ)] [96].
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Figure 9.2: Example of measuring the entropy of a typical (ζ, χ) distribution for a
complete data-set taken at the m∗ = mlim = 20.0 of an MGC mock catalogue. We
calculate the total entropy of this distribution by imposing a grid with a predetermined
mesh size. In this example we have split the grid into 0.1 × 0.1 mesh. We then count
the number of objects contained in each box, pi, and calculate the relative entropy.
We then determine the total entropy by summing each p1, p2, ... pi, ..., pn. Figure

reproduced from the work of Johnston [96].

An example of this relative entropy measure applied to multiple mocks of the Millennium

Galaxy Catalogue (MGC) is illustrated in Figure 9.3, where it successfully constrains

the mock assumed ‘true’ values of β̂ (in this instance a measure of galaxy evolution

as opposed to the linear redshift distortion parameter with which we are familiar) over

multiple realisations.

It should be noted that the shape of the plot of relative entropy will be heavily reliant

on the sort of parameter we are attempting to constrain, but the key point to take away

is that for the correct value of β̂, or β∗ as we require, it should produce a clear minimum

in the plot when reached. Once this minimum is established and the optimal value of β

is determined, we now need to compute the confidence intervals on β. Thankfully this

is simple to do.
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Figure 9.3: Relative entropy S, vs. trial β̂ (in this instance a statistic used as a
measure of galaxy evolution) using MGC mocks for three different values of assumed

‘true’ βtrue. For each trial β̂ we have applied 50 mock realisations with successive values
of βtrue = 1.0, 2.0 and 3.0. In each case we can clearly see that the relative entropy
approach minimises at the correct value. Figure reproduced from the work of Johnston

[96].

9.3 Determining the Error on β

Much like before in Section 4.3.1, establishing out confidence intervals on β as deter-

mined via relative entropy is a very simple affair, due to us continuing to make use of the

ζ statistic as part of its definition. In particular we can continue to make use of Monte

Carlo simulations, resampling new ζ values from newly generated uniform distributions

on [0,1] with each iteration, and expect to see no deviation from a perfect uniform ζ-

χ distribution on a unit square, and consequently no variation in the relative entropy

measurements computed thereafter. Similarly should we apply bootstrap resampling

and choose to scramble our ζ values to different galaxies on said ζ-χ plot, there should

continue to be no deviation in either distribution or relative entropy over multiple real-

isations. We will consequently make use of both when determining our error bars on β

in future relative entropy chapters.
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The same is also true where mock simulations are used, such as those depicted in Figure

9.3. As before, all that is required for us to compute our confidence intervals is to plot

a histogram of the β values across all simulations that minimise S [(ζβ, χ)], and then

model a best-fit Gaussian curve to the data where its standard deviation σ will indicate

the 1σ confidence interval on β.

Having now established our derivation of relative entropy and how it can be applied in

tandem with ROBUST to verify the values of β it returns, we will now proceed to apply

S [(ζβ, χ)] to mock simulations of the PSCz using both our mock Gaussian and Schechter

luminosity functions, while also experimenting with varying imposed mesh sizes to our

ζ-χ plots to observe what effect this has on the β values returned by S [(ζβ, χ)]. Once we

have established the ideal mesh size and demonstrated that we can successfully recover

our assumed βtrue of 0.55± 0.06, we will then proceed to apply S [(ζβ, χ)] to the 2M++

and see whether the values of β returned are in good agreement with the values computed

by ROBUST.
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Chapter 10

Probing the Peculiar Velocity

Field of the PSCz with Relative

Entropy

Much like Chapter 6 where we probed the velocity field of the PSCz utilising ROBUST

and the correlation coefficient ρ(ζ, β), we will proceed with much of the same frameworks

that were developed therein, and adapt them where necessary to allow for the use of

relative entropy. To that end this chapter will be structured in a very similar manner to

its ROBUST counterpart, with Section 10.1 discussing the various mock methodologies

at our disposal to apply to the PSCz, while Sections 10.2 through 10.5 will detail the

results of each application. While we will also continue to explore the effects of varying

mock survey size, Gaussian luminosity function widths and Schechter function parame-

ters on the results returned by relative entropy, we will also dedicate Section 10.2.2 to

exploring the effects that varying the number of squares (or altering the mesh size) on

our 1×1 ζ-χ grid (refer to Figure 9.2) will have on the accuracy and precision of the

results returned by relative entropy. As before, any anomalies observed in our results

will be explored and their root causes determined and eliminated to the best of our

abilities.

10.1 Implementing Relative Entropy with the PSCz Sur-

vey

As discussed in Chapter 9, for a magnitude complete survey with known limits,

the functionality of relative entropy lies in the assumed independence of the distribution
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of the β-dependent ζ statistics of galaxies as determine by ROBUST from the cumulative

distribution of their redshifts as denoted by χ, such that a correlation will be introduced

between these two variables should the wrong value of β be applied to the data. Once

again bearing in mind the reliance of ROBUST on the luminosity function information of

a survey, this gives us several avenues of experimentation to consider, in order to evaluate

the effectiveness of relative entropy when it is used in conjunction with ROBUST:

1. Mock Method 1: We adopt βtrue of 0.55 as before and an assumed known lumi-

nosity function model, and utilise Matlab to assign ‘mock’ apparent magnitudes to

the PSCz galaxies for an assumed, known faint limit. We then proceed to utilise

the available redshift information for the galaxies from the survey to calculate the

statistic χ before then applying ROBUST as far as calculating the β-dependent

ζ values for the galaxies over trial values of β on [0,1], correcting distances and

peculiar velocities as appropriate. With ζ and χ now calculated we can then apply

relative entropy and identify the value of βtrial on [0,1] for which S[(ζβ, χ)] is min-

imised. This is repeated over multiple mocks, generating new mock magnitudes

to be assigned to the galaxies each time. We will proceed to experiment with

assigning mock magnitudes to the PSCz galaxies drawn from the following:

(a) A Gaussian luminosity function, whose mean and standard deviation will be

in keeping with the identified luminosity function of early-type galaxies of the

SDSS, namely N[-21,1] [9],

(b) A Schechter luminosity function, whose standard parameters will be defined

as before, namely S[-21,1.09] (refer to Section 6.3.1 for a more in depth defi-

nition of the variables and parameters of a typical Schechter function).

2. Mock Method 2: We proceed to repeat the above while also establishing a

bright limit to the mock magnitudes being generated by Matlab and rerun RO-

BUST and the application of relative entropy, taking note of any alterations to the

values of β recovered. Much like Method 1, this will also be repeated with both a

Gaussian and Schechter luminosity function over multiple mock trials.

Flowcharts indicating a typical application of our mock methodologies is presented in

Figure 10.1.
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1. Select ‘true’ value
of β for recovery

Survey cor-
rected for βtrue?

1.5 Correct czgal, vpec

2. Generate
‘mock’ magnitudes
from mf and mb

3. Assign magni-
tudes to galaxies

4. Compute uβ,
corrected Mβ and Zβ

5. Generate ζβ
statistics for galaxies

6. Generate χ statis-
tics for galaxies

7. Compute relative
entropy, S[(ζβ, χ)]

Has S[(ζβ, χ)]
minimised?

Optimal β computed

3.5 Alter value of
βtrial over [0,1]

No

Yes

Yes

No

Figure 10.1: Flowchart illustrating typical ROBUST/relative entropy methodology
for use with generated mock magnitudes assigned to galaxies utilising either just a faint,
or faint+bright magnitude limits during generation. Note that mf and mb stands for
faint and bright apparent magnitude limit respectively [Methods 1a), 1b), 2a) and 2b)].

217



Chapter 10. Probing the PSCz with Relative Entropy

10.2 Applying Mock Method 1a) - ‘Faint Limit Only Gaus-

sian’ Mock Magnitudes

Having already previously established in Chapter 6 the means by which we will randomly

assign mock magnitudes to the PSCz galaxies (refer to Figure 6.2) and identified a

sensible value for the faint limit that we would make use of (mlim=14.3) once we have

adequately redshift restricted the PSCz survey to ensure the reliability of the underlying

reconstructed peculiar velocity field, we will now proceed to make use of the entirety

of the survey (over 12000 galaxies) to apply relative entropy with a mock Gaussian

luminosity function and an arbitrary mesh size of 10 - i.e. 100 equal size squares overlain

on our 1×1 ζ-χ grid, the results of which are presented in Figure 10.2.

While it is immediately clear that relative entropy has successfully managed to recover

a mean estimate for β that is in good agreement with our assumed value for βtrue, there

are a few points of interest to take note of. To begin with, unlike the relative entropy

plots presented in Chapter 9 there appears to be a considerable amount of noise in the

mock plots presented here. This could possibly be due to the sort of luminosity function

being modelled here, in particular the specific parameters being applied such as the

Gaussian standard deviation, though it could also be due to the grid resolution, or mesh

size, that we are applying. Both of these possibilities will be explored later on in this

section.

The second matter of interest is the considerably larger confidence interval returned on

β especially compared with its ROBUST counterpart. This however is possibly due to

the number of trial values of β being applied in this instance, namely ten values on

the interval [0,1], thus chosen in consideration of computational time constraints (a 50-

mock run utilising only ten values of β completes in approximately 12 minutes, while a

similar 50-mock run utilising 50 values completes in over 90 minutes). Bearing in mind

that when we proceed to apply relative entropy (only once) to the 2MRS in Chapter

11 we will be utilising 1000 trial values of β on the interval [0,1] instead of 10, we fully

anticipate the broadness of the confidence intervals returned therein to be smaller.

10.2.1 The curiosity of small S[(ζ, χ)] values

The third point of consideration, again when compared with the sample relative entropy

plots presented in the previous chapter, is that the signal recovered by relative entropy

when applied here is considerably weaker than one would expect, especially when com-

pared to the signals returned by ROBUST when applied exclusively using ρ(ζ, β). The

range of values exhibited by S[(ζ, χ)] is on the order of 10× 10−3 whereas in Chapter 9
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Figure 10.2: Initial results of Method 1a). Upper panel depicts the S[(ζβ , χ)] plots
for all 50 mocks generated, lower panel depicts the minimum of each mock plot as
a function of trial value of β plotted as a histogram with best-fit Gaussian (red line)
modelled to the data. Optimal value of β returned for Method 1a) is β = 0.55±0.26, as
determined from the Gaussian model. Luminosity function used during data generation

is Gaussian of the form N[-21,1] while arbitrary mesh size applied is 10.
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the range exhibited in Figure 9.3 was on the order of 0-0.4, a good two orders of magni-

tude larger. On the one hand this is possibly due to the fact that the β parameter being

constrained in that particular figure is tracing a different quantity altogether from our

linear redshift distortion parameter (in actual fact the former parameter is being used

as a measure of galaxy evolution), while additionally the underlying redshift surveys

being utilised for the analysis are also different from what we are using here (the MGC

as opposed to the PSCz). While both of these possibilities combined may indeed be

contributing significantly to the weaker signals being returned by relative entropy here,

when one takes a moment to observe the behaviour of randomly selected PSCz galaxies

on both the M -Z and the ζ-χ plane, the primary source of the weak signal starts to

become more apparent.

Figure 10.3 presents three different instances of 5 randomly selected PSCz galaxies being

tracked in both the M -Z and the ζ-χ plane (the latter for an arbitrary mesh size of 10, as

denoted by the grey lines) over incrementally increasing values of β on the interval [0,1],

with ten values being used in total. While some galaxies across all three instances present

a noticeable shift across the M -Z plane as the value of β (and consequently the value of

their β-dependent peculiar velocity) is increased, this is not necessarily represented by

an equivalent shift in the ζ-χ plane. Taking for example the purple coloured galaxy in

the first instance (top row of Figure 10.3), it exhibits a decent track of movement across

the M -Z plane, yet remains inside the same grid square on the ζ-χ plane. Considering

that the value of S[(ζ, χ)] is reliant on the galaxy in question moving across grid squares

in order for any change in entropy to be noted, this minimal movement on the part

of this particular galaxy would manifest as an extremely weak signal when recovered

using relative entropy. Conversely if one considers the blue coloured galaxy in the third

instance (bottom row of Figure 10.3), it exhibits a very stark shift across the M -Z plane,

indicative of it possessing a very large peculiar velocity, and this manifests equivalently

in the ζ-χ plane where the galaxy crosses over at least three grid squares as the value

of βtrial is incrementally increased on [0,1]. Consequently this particular galaxy would

return a stronger S[(ζ, χ)] signal when relative entropy is applied.

The takeaway from the above is clear. Unless the PSCz galaxies being analysed have

significantly large peculiar velocities, then they will not move around enough on the

ζ-χ grid for a strong S[(ζ.χ)] signal to be returned. When one considers that the

general range of peculiar velocities noted for the PSCz galaxies are on the order of 400-

600kms−1 or smaller, the weaker signal we are observing begins to make more sense. It

would appear that the galaxies do not generally have peculiar velocities large enough

to produce a consistently stronger signal for S[(ζ, χ)], at least not with how our linear

redshift distortion parameter β and our zeta statistic ζβ are currently being defined and

constructed.

220



Chapter 10. Probing the PSCz with Relative Entropy

-22.4 -22.2 -22 -21.8 -21.6 -21.4 -21.2 -21 -20.8 -20.6 -20.4

Absolute Magnitude

29

30

31

32

33

34

35

36

D
is

ta
nc

e 
M

od
ul

i 7

Track of M-z movement for random Marseilles galaxies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Value of 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
 o

f 
@

Track of 1  movement for random Marseilles galaxies

-23.5 -23 -22.5 -22 -21.5 -21 -20.5 -20 -19.5

Absolute Magnitude

30

31

32

33

34

35

36

D
is

ta
nc

e 
M

od
ul

i 7

Track of M-z movement for random Marseilles galaxies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Value of 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
 o

f 
@

Track of 1  movement for random Marseilles galaxies

-22 -21.5 -21 -20.5 -20 -19.5 -19

Absolute Magnitude

32.5

33

33.5

34

34.5

35

35.5

36

D
is

ta
nc

e 
M

od
ul

i 7

Track of M-z movement for random Marseilles galaxies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Value of 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
 o

f 
@

Track of 1  movement for random Marseilles galaxies

Figure 10.3: Three different instances of 5 randomly selected PSCz galaxies whose
movements are being tracked in both the M -Z (left side panels) and the ζ-χ planes
(right side panels) respectively. An arbitrary mesh size of 10 was applied to the ζ-χ
grid, as denoted by the grey lines. Each circle denotes the position of each galaxy for
a value of βtrial being increased incrementally on the interval [0,1], with ten values of

βtrial being used in total.
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Grid Resolution 5 10 20 30

Value of β 0.57± 0.26 0.52± 0.29 0.57± 0.31 0.58± 0.32

Table 10.1: Summary of estimated values of β detailing the effect of varying arbitrarily
applied grid resolutions to the construction of the ζ-χ grid for use in computation of β

with relative entropy. Entirety of PSCz survey is utilised for this analysis.

10.2.2 A question of grid resolution size

This does however raise an interesting question. If one were to alter the grid resolution

(or mesh grid size) being arbitrarily applied when we are constructing the ζ-χ grid for

use with relative entropy, would this cause any change in the range of values returned for

S[(ζ, χ)]? Should the underlying plane be overlain with, say, 400 grid squares (equivalent

of a grid resolution of 20) instead of 100, one would expect a stronger signal as a galaxy

(even one with an inherently smaller peculiar velocity) would cross over more squares

as the value of βtrial is altered over [0,1]. To that end, we will proceed to experiment

with altering the arbitrarily applied grid resolution when relative entropy is run, and

take note of any changes observed in the values of S[(ζ, χ)]. The results of running

relative entropy with varying arbitrary grid resolutions for the standard mock Gaussian

LF of N[-21,1] as applied before are presented in Figure 10.4 while our monitoring of

ζ-χ histograms are presented in Figure 10.5, with a summary of the estimated β values

obtained presented in Table 10.1.

The results of varying the applied grid resolution are interesting for several reasons.

While we were correct in our assumption that increasing the applied resolution would

cause a stronger signal in S[(ζ, χ)] to appear when relative entropy was run, this appears

to have come at the expense of accuracy as the amount of noise presented in the left-

hand panels of Figure 10.4 increases significantly. When one considers the shrinking size

of individual grid squares as we increase the resolution this is not necessarily surprising.

As the grid squares become smaller and smaller, the likelihood of finding PSCz galaxies

inhabiting them decreases substantially, causing the value of βopt we are attempting to

recover to become dominated and washed out by Poisson fluctuations and shot noise,

as symbolised by the increasingly messy nature of the plots presented. This is also very

noticeable in Figure 10.5 where as the resolution is increased the uniformity of the ζ-

χ distribution becomes increasingly erratic as said shot noise and Poisson fluctuations

start to dominate. This was also apparent during the Matlab runs themselves where on

more than one occasion the script would crash out due to ‘galaxies not inhabiting grid

squares’ causing zeroes and infinities to appear in the calculations that it cannot handle.

Conversely when we make the grid resolution considerably smaller we see a decrease in
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Figure 10.4: Results of varying grid resolution during use in relative entropy. Left-
hand panels illustrate the S[(ζ, χ)] plots for all 50 mocks, right-hand panels depict the
histograms of optimal value of β with best-fit Gaussian (red line). Grid resolutions
applied are noted on each plot. Entirety of the PSCz survey is utilised during analysis.
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Figure 10.5: Monitoring of ζ-χ behaviour with varied grid resolution. Panels depict
the bivariate histograms of ζ-χ value distribution over [0,1]. The thick red line denotes

our expected number galaxies per histogram bin for a uniform distribution.

the noise (also mirrored in the considerably more uniform distribution of ζ-χ values in

the bivariate histogram in the upper left panel of Figure 10.5), but this once again comes

at the expense of our S[(ζ, χ)] values becoming even smaller. Again when one considers

the now overly large size of the grid squares overlain on the ζ-χ this makes sense as

now, not enough of the galaxies are able to move across enough squares (due to their

generally small peculiar velocities and the now larger distance that must be traversed)

to cause any change in relative entropy to be observed.

With regards to the recovered β values themselves, while the mean estimates recovered

by relative entropy are in general good agreement with our assumed value of βtrue

(though the mean value does gradually worsen as we increase the resolution), the broad

confidence intervals returned here make it all the more apparent that our choice of

arbitrary grid resolution is important if we wish for relative entropy to return as accurate

a result as possible. Bearing in mind the problems of Poisson fluctuations and shot noise,

and now having a better understanding of why the values of S[(ζ, χ)] returned by relative

entropy are as small as they are, we will continue to proceed with our analyses in the

rest of the chapter with an applied grid resolution of 10, as this appears to be the ‘happy
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Mock Set Size 1000 2000 5000 All (12000+)

Value of β 0.54± 0.50 0.59± 0.44 0.58± 0.30 0.55± 0.26

Table 10.2: Summary of estimated values of β detailing the effect of varying mock
galaxy sample sizes on computed β using ROBUST during Mock Method 1a) imple-

mentation.

medium’ that we can best make use of.

Having now established the grid resolution we will utilise going forward we can now

begin to experiment with varying the number of galaxies relative entropy utilises for its

analysis and take note of any changes observed in the value of βopt returned. As such we

will rerun our analyses using 1000, 2000, 5000 and all survey galaxies of the PSCz with

the results presented in Figure 10.6 alongside our monitoring of ζ-χ behaviour in Figure

10.7, with a summary of the estimated values of β returned for this analysis presented

in Table 10.2.

In keeping with the ROBUST behaviours we observed in Chapter 6, relative entropy is

successful in recovering β estimates that are in good agreement with our assumed value of

βtrue, with the confidence intervals returned in each instance improving as mock survey

set size is increased. This is also mirrored in the decrease in data noise observed in the

S[(ζ, χ)] plots as we increase survey size, and the ζ-χ behaviour of the PSCz galaxies

where the noise exhibited in the bivariate histograms of Figure 10.7 drops considerably

for a set applied grid resolution of 10. It does however appear that in order for us to be

able to constrain β with as sensible a confidence interval as possible with relative entropy

we are required to use the entirety of the PSCz survey, unlike its ROBUST counterpart

which was able to constrain β sensibly with a bare minimum of 2000 galaxies only. When

one considers the strength of the S[(ζ, χ)] signal recovered here in comparison with the

stronger ρ(ζ, β) signals recovered in Chapter 6 this is not all that surprising. In addition

when one bears in mind the size of the 2MRS (over 43000 galaxies available) when we

come to apply relative entropy to it in Chapter 11 this should not present much of an

issue and we expect the value of β constrained for that survey to have a sensibly tight

confidence interval.

We can now proceed with varying the value of σ utilised by normrnd when generating

Gaussian magnitudes to assign to the PSCz galaxies and observe what changes are

observed in the values of β recovered by relative entropy. The results of altering the LF

width are presented in Figure 10.8 alongside our standard monitoring of ζ-χ behaviour

in Figure 10.9, with a summary of the estimated values of β presented in Table 10.3.
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Figure 10.6: Method 1a) results with varied mock set sizes. Left-hand panels illustrate
the S[(ζ, χ)] plots for all 50 mocks, right-hand panels depict the histograms of optimal
value of β with best-fit Gaussian (red line). Set sizes used are noted on each plot.

Luminosity function generated continues to be Gaussian of form N[-21,1].
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Figure 10.7: Monitoring of ζ-χ behaviour with varied mock set size. Panels depict
the bivariate histograms of ζ-χ value distribution over [0,1]. The thick red line denotes

our expected number galaxies per histogram bin for a uniform distribution.

Gaussian LF Width 0.5 1 2 3

Value of β 0.57± 0.13 0.55± 0.26 0.46± 0.42 0.52± 0.47

Table 10.3: Summary of estimated values of β detailing the effect of varying mock
generated Gaussian LF width σ on computed β using relative entropy during Mock

Method 1a) implementation. Entirety of PSCz survey is utilised for this analysis.

Once again as with its ROBUST counterpart, relative entropy succeeds in recovering

mean estimates for β that are in good agreement with our assumed true value of β, with

a Gaussian width of 0.5 resulting in the most tightly constrained and parabolic plots

of S[(ζ, χ)] seen thus far. Conversely as the Gaussian width is increased our confidence

interval on β starts to broaden considerably as expected, once again symbolised by

the increased noise in the S[(ζ, χ)] plots. A slight curiosity does present itself however

in Figure 10.9, particularly with regards to the bivariate histogram plots for a mock

Gaussian width of 0.5 and 1. There, a slight undersampling can be noted causing a

deviation from uniformity and yet, relative entropy still manages to successfully recover

the true value of β that we are looking for. This would suggest that, much like ROBUST,

relative entropy is somewhat forgiving with its required uniform distribution, still being
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Figure 10.8: Method 1a) results with varied mock Gaussian LF widths. Left-hand
panels illustrate the S[(ζ, χ)] plots for all 50 mocks, right-hand panels depict the his-
tograms of optimal value of β with best-fit Gaussian (red line). LF widths generated

are noted on each plot. Entirety of the PSCz survey is utilised for this analysis.
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Figure 10.9: Monitoring of ζ-χ behaviour with varied mock Gaussian LF widths.
Panels depict the bivariate histograms of ζ-χ value distribution over [0,1]. The thick red
line denotes our expected number galaxies per histogram bin for a uniform distribution.

able to function adequately despite the undersampling noted here. This would be of

invaluable use should relative entropy be extended for use with other large-scale surveys

such as the SDSS and LSST where the inherent modelled luminosity functions may be

of varying definition and breadth.

10.3 Applying Mock Method 1b) - ‘Faint Limit Only Schechter’

Mock Magnitudes

As before, in order to truly determine the robustness of relative entropy as a statisti-

cal tool, we will now proceed to repeat all of the above while instead assigning mock

generated Schechter magnitudes to the PSCz galaxies. Having already determined the

optimal grid resolution to use for our analyses we will focus instead on the effects of

altering mock survey set sizes as before, as well as the effects of altering the power law

slope parameter α as part of the Schechter function definition and observe any changes

noted in the values of βopt recovered by relative entropy. Our initial results utilising a

Schechter function are presented in Figure 10.10 and are interesting for a few reasons.
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Figure 10.10: Initial results of Method 1b), depicting the S[(ζ, χ)] plots for all 50
mocks generated. Optimal value of β returned for Method 1b) is β = 0.5, as deter-
mined from analysing plot minima. Luminosity function used during data generation
is Schechter of the form estimated S[-21,1.09]. Entirety of the PSCz was used for this

analysis.

To begin with, while relative entropy once again promisingly returns an estimate for

β that is in good agreement with our assumed true value, the general shape of the

S[(ζ, χ)] plots exhibited here are more of a parabola with a ‘kink’ in it, not entirely

unlike their sample relative entropy counterparts presented near the end of Chapter 9.

This in itself is in keeping with the different ‘S-shaped’ ρ curves that we observed with

ROBUST when we modelled Schechter magnitudes to the PSCz in Chapter 6, wherein

the typical nature of such an LF is what is contributing to the change in shape that

we see. Secondly, the signal recovered by relative entropy here is stronger than its

Gaussian counterpart - at least one order of magnitude stronger. This suggests once

again that, like its ROBUST counterpart, the Schechter function is more receptive and

sensitive to changes in β, making it ideal for use with relative entropy going forward,

particularly when one considers that the modelled LF of the 2M++ survey that we are

using in conjunction with the 2MRS is Schechter in nature. The third thing of note

is our inability to recover a confidence interval on the mean estimate for the value of

β, although this is clearly due to the lack of variance in plot minima as seen in Figure

10.10, all of which return a minimum at β=0.5, consequently hindering Matlab’s ability
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Mock Set Size 1000 2000 5000 All (12000+)

Value of β 0.51± 0.09 0.51± 0.05 0.5 0.5

Table 10.4: Summary of estimated values of β detailing the effect of varying mock
galaxy sample sizes on computed β using relative entropy during Mock Method 1b)

implementation.

Schechter Power
Law Slope α

0.5 1 2 3

Value of β 0.5 0.5 0.51± 0.04 0.53± 0.08

Table 10.5: Summary of estimated values of β detailing the effect of varying Schechter
power law slope α on computed β using relative entropy during Mock Method 1b)

implementation. Entirety of PSCz survey is utilised for this analysis.

to generate a histogram of βopt with a best-fit Gaussian modelled to it. Additionally if

we are wanting to identify a more accurate value for βopt should this behaviour continue

would necessitate the use of more trial values of β on the interval [0,1] which, due to

time constraints is computationally exhaustive. We will take note of this sort of plot

behaviour as we proceed to experiment with varying mock survey set sizes or altering

the parameters of our modelled Schechter and see what we can make of it.

Our results from varying mock survey set size and altering our modelled Schechter power

law slope are presented in Figures 10.11 and 10.13 respectively, alongside our standard

monitoring of ζ-χ behaviour in Figures 10.12 and 10.14 respectively, with a summary of

the estimates of β returned by relative entropy in both cases presented in Tables 10.4

and 10.5.

Starting with our varying of mock sizes, a lot of peculiarities of note begin to arise.

While in the first instance relative entropy still succeeds in recovering estimates for β

that are consistent with our assumed βtrue, it very clearly struggles to return any values

for S[(ζ, χ)] for values of β larger than 0.6 when a mock survey set size of only 100

galaxies is used. Why this is is unclear, although it does render the β estimate returned

by relative entropy for those mocks somewhat suspect since the entire range of trial

values of β was not utilised. It could very well be that the small number of galaxies

utilised during the analysis may be the cause, and this suspicion is played out when

one considers the estimates returned on β for larger and larger mock set sizes where,

not only is the entire range used, but the general shape and ‘tightness’ of the kinked

parabolas in Figure 10.11 become better defined and a clear strong signal with minimal

noise is observed. At the very least this lends further confidence to our assertion that
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Figure 10.11: Method 1b) results with varied mock set sizes. Left-hand panels illus-
trate the S[(ζ, χ)] plots for all 50 mocks, right-hand panels depict the histograms of
optimal value of β with best-fit Gaussian (red line) when available. Set sizes used are
noted on each plot. Luminosity function generated continues to be Schechter of form

S[-21,1.09].232
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Figure 10.12: Monitoring of ζ-χ behaviour with varied mock set size. Panels depict
the bivariate histograms of ζ-χ value distribution over [0,1]. The thick red line denotes

our expected number galaxies per histogram bin for a uniform distribution.

relative entropy (just like ROBUST) will function more adequately the more galaxies it

has on hand to analyse.

What is even more puzzling however is that our assumption that a Schechter function

is more receptive or sensitive to changes in β when relative entropy is applied does not

appear to be entirely true. While the overall signal returned by relative entropy con-

tinues to be stronger than its Gaussian counterpart, there is a very evident discrepancy

in Figure 10.12 where the introduction of the χ statistic has introduced a very notice-

able undersampling for all experimented mock survey set sizes that completely disrupt

uniformity at low values of ζ across the entire range of χ values on [0,1]. This undersam-

pling actually goes some way towards explaining the ‘blanks’ or gaps in the associated

S[(ζ, χ)] plots for these mock survey sizes, as the lack of galaxies inhabiting those partic-

ular grid squares on a ζ-χ grid would cause zeroes to appear in the final relative entropy

calculations, which Matlab proceeds to interpret as a blank or disconnect on the final

plots. Why this undersampling appears when relative entropy is used in conjunction

with a Schechter function is unknown, though it is possible that the very nature of the

function may be playing a role in disrupting uniformity when used in conjunction with
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Figure 10.13: Method 1b) results with varied Schechter power law slope. Left-hand
panels illustrate the S[(ζ, χ)] plots for all 50 mocks, right-hand panels depict the his-
tograms of optimal value of β with best-fit Gaussian (red line) when available. Power

law slopes used are noted on each plot.
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Figure 10.14: Monitoring of ζ-χ behaviour with varied Schechter power law slope.
Panels depict the bivariate histograms of ζ-χ value distribution over [0,1]. The thick red
line denotes our expected number galaxies per histogram bin for a uniform distribution.

the χ statistic. It is interesting to note however that despite the significant deviation

from uniformity displayed here, relative entropy still manages to recover the value of

βtrue we are seeking, at the very least lending further credence to our suspicion that

relative entropy is fairly robust and forgiving in its requirement for ζ-χ uniformity in

order for it to operate effectively.

Altering our Schechter power law slopes unsurprisingly does nothing to alter the devia-

tions from uniformity noted thus far as exhibited in Figure 10.14, though the recovered

estimates for the value of βopt continue to be consistent with our assumed βtrue when-

ever a confidence interval can be calculated. The only thing of note to be taken away,

and once again in keeping with results observed in Chapter 6, is that as we continue to

increase the value of the power law slope α we see a gradual broadening in the shape

of the kinked parabolas as seen in Figure 10.13, though since the entirety of the PSCz

survey is being utilised for that analysis, the general tightness of the plots continues to

be very well defined and clear, with a strong signal of S[(ζ, χ)] continuing to be recovered

throughout.
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Bright Limit 0 5 8 10

Value of β 0.58± 0.32 0.58± 0.25 0.55± 0.27 0.56± 0.27

Table 10.6: Summary of estimated values of β detailing the effect of varying applied
apparent bright magnitude limit on computed β using relative entropy during Mock
Method 2a) implementation. Entirety of PSCz is utilised for this analysis with ∆Z=5.

10.4 Applying Mock Method 2a) - ‘Faint+Bright Limit

Gaussian’ Mock Magnitudes

With all of the above analyses having been performed for the case of mock magnitudes

generated with a faint limit only, we will now proceed to repeat all of the above while

introducing an arbitrary bright limit to the data and taking note of any changes observed

in the values of βopt returned by relative entropy for both mock Gaussian and Schechter

magnitudes. Given the increased sensitivity that we have observed when mock Schechter

magnitudes are modelled to the PSCz galaxies in particular, it will be interesting to see

how the introduction of an arbitrary bright limit will alter the results returned in the ζ-χ

plane, especially when one considers how much more sensitive a Schechter LF appears to

be in the presence of a bright limit when analyses were run exclusively using ROBUST,

unlike its Gaussian counterpart which appeared to be more forgiving.

Having already determined in Section 6.4.1 that the value of ∆Z applied when construct-

ing the S1 and S2 sets required for ROBUST to run and generate ζ in the presence of a

bright limit has no bearing on the final results returned, we will proceed to fix our value

of ∆Z used in our calculations at 5, and vary our arbitrarily applied bright limit; taking

note of any changes observed in the value of β returned by relative entropy. Starting

with our mock Gaussian magnitude case, our initial results from applying an mb of 8 to

the data and applying relative entropy are presented in Figure 10.15.

Much like its faint limit counterpart in Section 10.2, relative entropy continues to suc-

cessfully recover a mean estimate for β that is in good agreement with our assumed

βtrue, and offhandedly it does not appear that the introduction of an arbitrary bright

limit had any apparent effect on the results returned by relative entropy at all. Whether

this is indeed the case is presented in Figure 10.16 where we begin varying the applied

bright limit, with Figure 10.17 continuing our standard procedure of monitoring the

ζ-χ behaviour of the galaxies in the presence of a bright limit, with a summary of all

estimates recovered for the value of β presented in Table 10.6.
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Figure 10.15: Initial results of Method 2a). Upper panel depicts the S[(ζ, χ)] plots for
all 50 mocks generated, lower panel depicts the minimum of each mock plot as a function
of trial value of β plotted as a histogram with best-fit Gaussian (red line) modelled to
the data. Optimal value of β returned for Method 2a) is β = 0.55±0.27, as determined
from the Gaussian model. Luminosity function used during data generation is Gaussian
of the form N[-21,1], with mf and mb given as 14.3 and 8 respectively. Bright limit was

applied arbitrarily during S1, S2 set generation.
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Figure 10.16: Method 2a) results with varied bright limits. Left-hand panels illustrate
the S[(ζ, χ)] plots for all 50 mocks, right-hand panels depict the histograms of optimal
value of β with best-fit Gaussian (red line). LF is of the form N[-21,1], with mf and
mb noted on each plot. Entirety of the PSCz is utilised during analysis with ∆Z=5.
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Figure 10.17: Monitoring of ζ-χ behaviour with varied bright limit. Panels depict
the bivariate histograms of ζ-χ value distribution over [0,1]. The thick red line denotes

our expected number galaxies per histogram bin for a uniform distribution.

The results returned in Figure 10.16 continue to be promising, with relative entropy

successfully recovering mean estimates for β that are consistent with all that has come

before, though there is something interesting to note with regards to the application

of an mb=10 in particular. Recalling from the lower panels of Figure 6.16 in Chapter

6 where an mb=10 was applied to the data when we were analysing exclusively with

ROBUST, we observed a noticeable shift in the ρ(ζ, β) plots, causing a value of β to

be generated that was not consistent with βtrue and yet here, when relative entropy is

applied, we observe more of an increase in the general noise of the data than we see a

noticeable shift in the range of the S[(ζ, χ)] plots themselves. The source of this noise

becomes all the more apparent in the lower panels of Figure 10.17 where, for an applied

mb=10, we begin to observe a clear undersampling of galaxies in the ζ-χ plane across all

values of ζ for low values of χ that disrupts uniformity in that area. On the one hand

this is further indication that this particular bright limit is unnecessary as it appears to

be encroaching on the distribution of galaxies on the M -Z plane as discussed previously

(and indeed further reinforces our belief that the PSCz is more than adequately modelled

with a faint limit alone), and yet despite this disruption in uniformity relative entropy

continues to show its robustness by succeeding in recovering the value of β we are looking

239



Chapter 10. Probing the PSCz with Relative Entropy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Trial value of 

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
E

nt
ro

py
 (

S
[

,
])

mb = 7, mf = 14, Z = 5

Figure 10.18: Initial results of Method 2b), depicting the S[(ζ, χ)] plots for all 50
mocks generated. Optimal value of β returned for Method 2b) is β = 0.5, as deter-
mined from analysing plot minima. Luminosity function used during data generation
is Schechter of the form estimated S[-21,1.09], with mf and mb given as 14.3 and 7
respectively. Bright limit was applied arbitrarily during S1, S2 set generation. Entirety

of the PSCz was used for this analysis.

for. This makes relative entropy as a statistical tool all the more useful for us as it has

proved that it can be used in conjunction with ROBUST to not only strengthen the

results that ROBUST returns on its own, but to potentially also correct some of the

deviated results that it generates due to the use of incorrect limits etc..

10.5 Applying Mock Method 2b) - ‘Faint+Bright Limit

Schechter’ Mock Magnitudes

Given the very sensitive behaviour we have observed prior to this when modelling mock

Schechter magnitudes to the PSCz galaxies, introducing arbitrary bright limits to the

data and running relative entropy should prove interesting. Once again having fixed our

value of ∆Z=5, we proceed to apply an arbitrary mb=7 to our Schechter data as we did

in Chapter 6, the results of which are presented in Figure 10.18.
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Bright Limit 0 7 8 10

Value of β 0.5 0.5 0.5 0.5

Table 10.7: Summary of estimated values of β detailing the effect of varying applied
apparent bright magnitude limit on computed β using relative entropy during Mock
Method 2b) implementation. Entirety of PSCz is utilised for this analysis with ∆Z=5.
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Figure 10.19: Method 2b) results with varied bright limits. Panels illustrate the
S[(ζ, χ)] plots for all 50 mocks. LF is of the form S[-21,1.09], with mf and mb noted

on each plot. Entirety of the PSCz is utilised during analysis with ∆Z=5.

We continue to see much of the same behaviours that we noted previously: while relative

entropy successfully recovers an estimate for β that is consistent with our assumed βtrue,

with our S[(ζ, χ)] plots exhibiting a far stronger signal than their Gaussian counterparts,

the return of the ‘kinked’ parabolas renders it difficult to establish a sensible confidence

interval on our returned value of 0.5, as noted by the lack of histogram in Figure 10.18.

What is not inherently clear however is whether the introduction of that arbitrary bright

limit of mb=7 did indeed have any effect on the functioning of relative entropy, which

we proceed to explore in Figure 10.19 where we begin to vary our applied bright limit,

with Figure 10.20 presenting our monitoring of ζ-χ behaviour throughout, and Table

10.7 displaying a summary of the estimates of β recovered.
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Figure 10.20: Monitoring of ζ-χ behaviour with varied bright limit. Panels depict
the bivariate histograms of ζ-χ value distribution over [0,1]. The thick red line denotes

our expected number galaxies per histogram bin for a uniform distribution.

The results returned by relative entropy are very telling. While we continue to return

estimates for β that are consistent with βtrue when one considers the number of trial

values of β being utilised on the interval [0,1], the shape of the returned S[(ζ, χ)] plots

once again render it difficult to sensibly determine a confidence interval on βopt. What

is more interesting to note however, is that the use of arbitrary bright limits that are

brighter than an mb of 10 once again do not appear to have any appreciable impact on the

functioning of relative entropy. As can be noted in Figure 10.20, while the introduction

of those bright limits has not had any effect on the clear undersampling seen in the

left-hand panels, their presence has not worsened the undersampling either, as relative

entropy continues to function as normal. As before, the undersampling presented in these

ζ-χ plots is also responsible for the previously discussed ‘blanks’ or plot disconnects seen

at higher values of βtrial in Figure 10.19. Looking at the particular case of mb=10, while

the relevant S[(ζ, χ)] plots at that limit show no aberrant behaviour, the associated ζ-χ

plot at that limit (lower panels of Figure 10.20) not only exhibits the aforementioned

undersampling but also starts to show indication of oversampling, noted by the diagonal

clustering of points on the ζ-χ plane at low values of both ζ and χ. This would once again

appear to suggest that, much like its Gaussian counterpart in both this chapter and in
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all instances in Chapter 6, an arbitrary limit of mb=10 is encroaching too much upon

the distribution of galaxies on the M -Z plane and is consequently creating a disruption

from uniformity, although it should be noted that this deviation does not appear to

be significant enough in either instance to prevent relative entropy specifically from

operating adequately, unlike ROBUST exclusively. This lends further credence to our

belief that when used in conjunction with ROBUST, relative entropy not only provides

the means to further prove upon the results that it returns on its own, but also manages

to help successfully recover the value of β we are looking for even in situations wherein

ROBUST would find it difficult when working alone.

In summary as before, throughout all of the mock realisations preformed in this chapter

with different luminosity functions and the varying of their associated parameters, we

have managed to established that relative entropy serves as a very useful ancillary sta-

tistical tool to be used in conjunction with ROBUST to recover our assumed true value

of β = 0.55±0.06 for the PSCz, and recovering it well the more galaxies are available for

analysis. The size of available mock survey sets continues to prove crucial particularly

when broad luminosity function parameters are used as it serves to help counteract the

potential biases introduced from using such poorly defined functions. Much like what

was established in Chapter 6 relative entropy still requires the identification and use of

the correct magnitude limits for the survey, though it has proved itself decidedly more

forgiving of the use of potentially incorrect bright limits, unlike its ROBUST counterpart

which is far more sensitive to the bias introduced when being utilised exclusively on its

own, irrespective of the kind of luminosity function modelled to the PSCz. In addition,

we have determined that the accuracy of relative entropy is not only just reliant on

the number of available values of βtrial on the interval [0,1] for it to use, but also on

the applied mesh size or grid resolution applied to the ζ-χ grid when constructing our

S[(ζ, χ)] statistic. Finding the balance between a poorer recovered signal (too large a

resolution) and a signal overly dominated by shot noise and Poisson fluctuations (too

fine a resolution) is paramount in order for relative entropy to operate effectively.

With all of this information in hand, we will now proceed to work directly with the

2MRS and apply relative entropy to determine whether at the very least we can confirm

our ROBUST exclusion intervals on β in the KHJ bands or whether indeed by its mere

inclusion, manage to successfully recover a value for βopt that is in good agreement with

the published Carrick et. al value of β = 0.43± 0.021 for the survey.
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Applying Relative Entropy to

2MASS

Having now established the optimal conditions necessary for relative entropy to function

adequately within a mock environment, we will now proceed to apply relative entropy

to the 2MRS, and see if the results returned help to either confirm or exclude the

various experimentations and restrictions we applied to the survey when we merely

used ROBUST and the correlation coefficient ρ(ζ, β) on their own. On the basis of

the results generated in the sections going forward, we will be in a better position

to determine whether there indeed is an inherent fault in (or peculiar properties to)

the 2MRS that prevent it from being used ideally with either ROBUST exclusively or

ROBUST in conjunction with relative entropy, or whether indeed we need to go back and

examine the fundamental principles upon which ROBUST itself is defined. A flowchart

illustrating the methodology we will apply going forward is presented in Figure 11.1.

For each run of relative entropy completed, we will constrain our errors on β as before

using Monte Carlo simulations (bootstrap resampling is to be foregone in this chapter

due to the size of the survey at hand and the number of computations over the ζ-

χ grid required for it to generate our required confidence intervals on S[(ζ, χ)] being

computationally exhaustive and time consuming), and monitor the ζ-χ behaviours of

the galaxies over each, noting any peculiarities along the way.

11.1 Redshift Restricting the 2MRS

Having already established in Section 8.6.1 that applying an observed redshift restric-

tion of 500 ≤ cz ≤ 15000 substantially improves the signal returned by ROBUST and
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rick grid slice file
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galaxies for ith slice file

3. Run distance
convergence loops

4. Save out corrected cz,
vpec, d and KHJ mags

All grid slice files/-
galaxies analysed?

1.5 Move onto next
grid slice file i=i+1

5. Compute uβ, cor-
rected Mβ and Zβ

6. Generate ζβ statis-
tics for galaxies
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Figure 11.1: Flowchart for the application of data slicing, distance convergence loops
and the ROBUST methodology in conjunction with relative entropy for the 2MRS

survey.
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Figure 11.2: Plots of S[(ζ, χ)] for the redshift restricted 2MRS survey across the K,
H and J infrared bands, shown in blue, red and green respectively.

minimises the observed noise at lower levels of β, we will forego applying relative entropy

to the entire unrestricted survey as we did initially in Chapter 8 and start directly with

the restricted variant. The results of running relative entropy on this restricted survey

with a previously established grid mesh size of 10 to be used during the construction of

the ζ-χ grid is presented in Figure 11.2.

The results presented here are curious for several reasons. To start, due to the unusual

generally monotonic increase in the plots of S[(ζ, χ)] in all three wavebands, relative

entropy returns a value of βopt that is consistent with zero for the survey, which is

neither in keeping with the low values of β ∼ 0.05 returned by ROBUST exclusively

nor the published results of Carrick. Furthermore it is not in keeping with established

theory on how the linear redshift distortion parameter itself is defined and the value it is

expected to take. In addition, considering the Schechter origin of the underlying 2M++

grid being utilised here (as discussed in Section 8.2) we were expecting to see a general

plot shape not unlike the ‘kinked’ parabolas observed in Chapter 10. It is however

interesting to note that relative entropy starts to exhibit the same strange behaviour

as noted by ROBUST for values of β > 0.6, where we begin to observe a noticeable

increase in the noise of the plots (though not nearly as pronounced as their ROBUST-

only counterparts), and quite a significant spike in the data when that limit of 0.6 is
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Figure 11.3: One-sided confidence intervals calculated on relative entropy produced
β via Monte Carlo simulations for the K, H and J bands depicted in blue, red and green
respectively. The 3σ confidence intervals for all three bands are denoted via the black
dashed lines, indicating all values of β > 0 are to be excluded from consideration for
the redshift restricted 2MRS survey in the K, H and J bands with 99.7% confidence.

exceeded. This behaviour is once again mirrored in the ζ-χ distributions of the galaxies

for various values of βtrial, as presented in Figure 11.4, where for values of βtrial larger

than 0.6 we start to see the beginnings of noticeable oversampling at very low values

of both ζ and χ, which would consequently introduce noise into the signal of S[(ζ, χ)]

recovered by relative entropy.

Due to the peculiar plots returned by relative entropy, when one proceeds to apply Monte

Carlo simulations to the data to determine the confidence (or exclusion) intervals on our

value of βopt, all values on the interval [0,1] are automatically excluded, as can be noted

in Figure 11.3, which makes sense given the nature of the S[(ζ, χ)] plots generated. While

the inability of relative entropy to return results that are consistent with ROBUST does

not entirely negate the values of βopt returned in Section 8.6.1, particularly when one

takes note of the similar behaviour between the two methods for all values of β > 0.6, it

does significantly lessen their reliability, consequently making the possibility that there

is an inherent fault in the 2MRS or in our ROBUST methodology all the more likely.
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Figure 11.4: Monitoring of (ζ, χ) distribution of the redshift restricted 2MRS galaxies
in the K band for various trial values of β. The trial values of β used are noted on each

panel.

11.2 Restricting czcorr instead of czobs

While the initial ROBUST results returned when we opted to use czcorr instead of czobs

were dubious at best, we can still make use of relative entropy to determine whether that

avenue of experimentation should be dropped from consideration entirely from this point

going forward should the program return results that are just nonsensical and dubious.

The results of running relative entropy on the restricted corrected redshift variant of the

2MRS is presented in Figure 11.5, and the plots speak for themselves.

Relative entropy once again returns a value of βopt for the 2MRS across all three wave-

bands that is consistent with a β of zero, and exhibits different behaviour to its counter-

part in the previous Section. The noise in the recovered S[(ζ, χ)] signals (while similar

to its ROBUST counterpart in appearance) is constant throughout, with no alteration

in behaviour as such for values of β > 0.6, manifesting instead two significant spikes in

the data at β values of ∼ 0 and ∼ 0.3. This is all the more apparent when one monitors

the ζ-χ behaviour of the galaxies over various values of βtrial as presented in Figure 11.6,

where consistent oversampling at low values of ζ and χ can be observed throughout.
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Figure 11.5: Plots of S[(ζ, χ)] for the restricted 2MRS survey utilising corrected
redshifts across the K, H and J infrared bands, shown in blue, red and green respectively.
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Figure 11.6: Monitoring of (ζ, χ) distribution of the restricted 2MRS galaxies utilising
corrected redshifts in the K band for various trial values of β. The trial values of β

used are noted on each panel.
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Figure 11.7: One-sided confidence intervals calculated on relative entropy produced
β via Monte Carlo simulations for the K, H and J bands depicted in blue, red and green
respectively. The 3σ confidence intervals for all three bands are denoted via the black
dashed lines, indicating all values of β > 0 are to be excluded from consideration for

the czcorr restricted 2MRS survey in the K, H and J bands with 99.7% confidence.

When one combines this once again with exclusion intervals generated via Monte Carlo

simulation (as presented in Figure 11.7) which once again exclude all values of β on the

interval [0,1] from consideration when czcorr is used, this helps to further prove that we

are better served in continuing to make use of czobs going forward as it behaves better

and as such we will discontinue considering the use of czcorr in any ROBUST or relative

entropy analyses going forward.

11.3 Experimenting with µ instead of uβ

While from the get go the initial results returned by the use of czcorr during analysis with

ROBUST were dubious, experimenting with µβ yielded some more promising results,

in that we obtained the monotonically increasing plots of ρ(ζ, β) that we were looking

for, albeit with no zero-intercepts returned to give us a value for βopt. Considering the

observed corrective or strengthening nature of relative entropy when it was applied to the

PSCz in Chapter 10 and how it served to enhance the robustness of our methodology, it

will be interesting to see the results it returns here when applied to our experimentation
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Figure 11.8: Plots of S[(ζ, χ)] for the redshift restricted 2MRS survey where β-
dependent distance moduli µβ were utilised in the calculation of ρ(ζ, β) instead of
β-dependent peculiar velocities uβ across the K, H and J infrared bands, shown in

blue, red and green respectively.

with µβ. Figure 11.8 shows the results returned by relative entropy, and they continue

to be both reassuring and puzzling.

On the one hand while the return of S[(ζ, χ)] plots that are quite similar to those

generated by relative entropy in Section 11.1 further reinforces our conclusion that we

were correct to dismiss the use of czcorr in any further analyses, its continued inability

to recover a value of βopt that is in agreement with ROBUST or the published Carrick

value is puzzling, if annoyingly consistent, returning an optimal β of zero once again. We

continue to observe the same spike in the data and increase in the noise of the recovered

signal for values of β > 0.6 that is once again mirrored in the ζ-χ distribution of the

galaxies over various values of βtrial on the interval [0,1] in Figure 11.9, where for values

of β > 0.6 we begin to observe a very significant oversampling at low values of ζ and χ

that consequently contributes to the noise observed in Figure 11.8.

The computed confidence intervals via Monte Carlo simulations are also annoyingly

consistent, once again excluding all values of β on the interval [0,1] from consideration

with the 2MRS survey, as seen in Figure 11.10. Considering the consistent behaviour of

relative entropy across both these instances, our assumption that there is an inherent
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Figure 11.9: Monitoring of (ζ, χ) distribution of the redshift restricted 2MRS galaxies
where µβ was in the calculation of ρ(ζ, β) instead of uβ in the K band for various trial

values of β. The trial values of β used are noted on each panel.

fault in the survey or something fundamentally wrong with the core principles upon

which ROBUST is founded is suddenly less clear.

In summary, despite the encouraging corrective and result-strengthening behaviour ex-

hibited by relative entropy in the previous chapter where it was able to ‘pick up the

slack’ where ROBUST on its own struggled when applied to the PSCz in multiple mock

realisations, the program has consistently failed to return any value for βopt that is

consistent either with ROBUST in Chapter 8 or with the published value of Carrick,

although the consistency of the results returned by relative entropy throughout needs

to be noted, especially with regards to showing the same rate of noise in the recovered

signal of S[(ζ, χ)] for larger values of β. At the very least this lends credence to the idea

that the exclusion intervals returned by ROBUST in that regard are valid, while the sig-

nificantly different behaviour of relative entropy for the case of czcorr further strengthens

our belief that that parameter should not be used at all going forward. Unfortunately

relative entropy’s inability to return any value of β other than 0 for the 2MRS leaves us

no closer to determining whether the fault lies in the 2MRS itself or within ROBUST

somewhere.
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Figure 11.10: One-sided confidence intervals calculated on relative entropy produced
β via Monte Carlo simulations for the K, H and J bands depicted in blue, red and green
respectively. The 3σ confidence intervals for all three bands are denoted via the black
dashed lines, indicating all values of β > 0 are to be excluded from consideration for
the restricted 2MRS survey in the K, H and J bands with 99.7% confidence when µβ

is utilised instead of uβ .

In order for us to truly be able to determine whether the latter is indeed the case we

now need to turn our attention to one of the key assumptions upon which the ROBUST

ζ statistic is constructed: namely that the luminosity of a galaxy is independent of its

real-space position.
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Experimenting with Distance

Dependent Luminosity Functions

In recalling the underlying theory upon which ROBUST is founded in Section 4.1 we

established, for a given redshift-distance survey of galaxies that is required to be com-

plete up to a given limiting magnitude mlim; or pair of limiting magnitudes mlim and

mbright, that the distribution of absolute magnitudes M , i.e. its luminosity function

F (M) is independent of the spatial positions of the galaxies. Put another way, we make

the assumption that the luminosity function modelled to a given redshift-distance galaxy

survey is universal across the whole survey. When one recalls the cosmological princi-

ple as discussed in Section 1.2 this assumption makes sense. Furthermore the advantage

of applying such an assumption to a given survey leads to the construction of the ζ

statistic upon which ROBUST is reliant and its two key properties, repeated here for

ease of access:

1. ζ will be uniformly distributed on the interval [0,1] in the presence of the correct

magnitude limits,

2. ζ and the distance moduli of galaxies µ are statistically independent, i.e. the distri-

bution of ζ is independent of the spatial distribution of the galaxies in the survey,

in keeping with the assumption made about the ‘universality’ of the modelled

luminosity function [160].

With regards to the former property, this has granted us the ability to usefully determine

the true magnitude limits of a survey by means of exploiting ζ in conjunction with the

completeness statistic Tc, while the latter property has been invaluable in determining

the optimal value of the linear redshift distortion parameter β when used in conjunction
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with the correlation coefficient ρ(ζ, uβ), wherein which the value for β that corresponds

to ρ = 0 (i.e. that ζ and the β-dependent reconstructed peculiar velocities of galaxies

are independent from each other) is taken to be the optimal value of β for the survey.

An interesting question is raised from all of this however, and it relates back to the

cosmological principle. While the cosmological principle holds on the macro scale with

the Universe looking the same regardless of the direction one chooses to observe along,

or regardless of WHERE in the Universe one chooses to observe from; over shorter scale

distances, say on the order of several Mpc or smaller, deviations from homogeneity and

isotropy begin to occur, primarily fuelled by variations in the local peculiar velocity and

matter density fields of the Universe, causing matter to clump and cluster in filaments,

voids and other cosmological structures as described briefly in Chapter 1. When one

takes a moment to consider these clustering and clumpings of matter and how they would

manifest in a typical survey, it is not unreasonable to wonder whether the assumption

of a universal luminosity function over said survey is completely valid given the more

non-uniform distribution of luminous matter.

The consequence of this is critical for the functioning of ROBUST, given the reliance of

the statistic ζ on its independence from µ and consequently from the luminosity function

F (M). Should F (M) not be universal, then this would introduce a very noticeable bias

into the functioning of ROBUST, making it more difficult for the program to efficiently

recover any value for β, mock or otherwise. To that end, and given the peculiar results

returned by ROBUST for the 2MRS in previous chapters both in isolation and when

used in conjunction with relative entropy, should it become apparent that the luminosity

function modelled to that survey is not indeed universal then we are at least in a better

position to rule out a fundamental flaw in the ROBUST methodology being the cause of

the strange results and instead lend credence to the theory that the 2MRS is inherently

flawed for use with ROBUST to begin with.

To determine whether this is indeed the case, we will proceed to make use of the base

mock methodologies we applied to the IRAS PSCz survey in Chapter 6 and generate

mock magnitudes to the positions of the 2MRS galaxies that are drawn from both a

universal and a distance-dependent luminosity function and observe the results returned

by ROBUST and relative entropy in both instances. Should the universal case return

results similar to those presented in Chapter 8 and Chapter 11, then we can rest assured

that our underlying assumption of ‘universality’ is valid and ROBUST is not inherently

flawed as a statistical tool. Conversely, should the distance-dependent case return results

for βopt that are in better agreement with the published results of Carrick, then we can

either at the very least rule out the use of the 2MRS survey with ROBUST and instead
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turn our attention to other available redshift-distance surveys that can be used, such as

the SDSS.

As such, the rest of this chapter will be structured as follows: after defining both the

universal and distance-dependent luminosity functions we will model, Section 12.1 will

deal with applying mock distance-dependent apparent magnitudes to both the IRAS

PSCz survey (to observe how well the results returned by ROBUST compare with those

returned by the program in Chapter 6 where universal Gaussian and Schechter functions

were modelled), and the redshift restricted 2MRS survey alongside its variant where µβ

was utilised in the construction of the ζ statistic instead of the β-dependent peculiar

velocities uβ. Section 12.2 will then proceed to repeat the analyses on the 2MRS survey

variants utilising mock generated universal magnitudes instead, and the results of both

sets of results from both Sections will be analysed and discussed. Throughout we will

also continue to make use of relative entropy and observe how its behaviour alters when

a distance-dependent luminosity function is introduced.

It should be noted that due to the use of relative entropy in all of the analyses going

forward and the computationally exhaustive and time consuming nature of the error

bar creation for those results with regards to bootstrap resampling, all confidence and

exclusion intervals generated on our ρ(ζ, β) and S[(ζ, χ)] plots from this point onward

will be generated using Monte Carlo simulations only. Given the extreme similarity in

confidence intervals returned by both bootstrap resampling and Monte Carlo simulations

in earlier chapters of this work, this is not foreseen to introduce any noticeable issues.

With regards to generating the necessary luminosity functions to draw apparent magni-

tudes from, we can continue to make use of the normrnd function that was used in Chap-

ter 6 to generate mock magnitudes to the IRAS PSCz. Specifically normrnd=N[mu,sigma]

allows for the use of functions for the definition of mu as well as integers, consequently

we will continue to model a universal Gaussian to the 2MRS of the form N[-21,1] in

keeping with the typical luminosity function of early-type SDSS galaxies [9]. For our

distance-dependent case, we will model a simple linear relation where the brightness of

the galaxies decreases with increasing distance such that, say, galaxies at a restricted

redshift distance of 500kms−1 have an apparent magnitude of -22, while galaxies at a re-

stricted redshift distance of 15000kms−1 have an apparent magnitude of -21. This yields

a simple line equation that can be easily substituted into mu to generate our required

apparent magnitudes while bearing in mind our pre-established faint limits for the IRAS

PSCz and 2MRS surveys respectively.
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12.1 Applying a Distance Dependent Luminosity Function

12.1.1 IRAS PSCz Survey

Having already established all we need in order to proceed, we will now generate mock

distance-dependent apparent magnitudes to the IRAS PSCz galaxies and apply both

ROBUST and relative entropy, taking note of the results for β returned by both in-

stances. The results are presented in Figure 12.1 and are very interesting for several

reasons.

Both ROBUST and relative entropy fail to return a mean estimate for the value of βopt

that is remotely consistent with our assumed true value of β for the PSCz (namely

β = 0.55 ± 0.06), with the former being consistently negative and parabolic in nature

across all trial values of β on the interval [0,1], and the latter generally returning a value

for βopt that is consistent with unity which, as we have established previously, is not valid.

This appears to suggest that even the introduction of a very slight distance-dependence

in the form of our simple linear relation is more than enough to introduce significant

bias into the functioning of both ROBUST and relative entropy. It is interesting to

note however that the general minima of the ROBUST parabolas in the upper panel of

Figure 12.1 are somewhat consistent with a value of β = 0.5, though considering how

the parameter ρ(ζ, β) is constructed and its reliance on a zero-intercept to determine

βopt, this is likely not of any material significance.

Due to the behaviour exhibited by both ROBUST and relative entropy, getting a handle

on the confidence interval for β is also equal parts difficult (given the lack of zero-

intercepts) and futile considering the level of bias introduced into the results, as such

we will forego calculating them here and, now aware of the sensitivity of ROBUST

to distance-dependent luminosity functions, cautiously proceed with applying the same

function to the 2MRS galaxies and observe the changes in the values of β returned by

both ROBUST and relative entropy for that survey.

12.1.2 Redshift Restricted 2MRS

The results of introducing the same linear distance dependence to the functioning of

both ROBUST and relative entropy are presented in Figure 12.2 and are equal parts

reassuring and puzzling.

On the one hand, the basic shape of the ρ(ζ, β) plots generated by ROBUST are very

similar to their Chapter 8 counterparts in Section 8.6.1, exhibiting the same parabolic

behaviour for low values of β and increased noise in the recovered signal for larger values
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Figure 12.1: Results of applying mock distance-dependent apparent magnitudes to
the positions of the PSCz galaxies on the value of βopt as returned by ROBUST (upper
panel) and relative entropy (lower panel) over several trial values of β on the interval
[0,1] over 50 mock realisations. Grid mesh size applied for calculating relative entropy

set at a value of 10 over all trials.
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Figure 12.2: Results of applying mock distance-dependent apparent magnitudes to
the positions of the redshift restricted 2MRS galaxies on the value of βopt as returned by
ROBUST (upper panel) and relative entropy (lower panel) over several trial values of β
on the interval [0,1] for the K (blue), H (red) and J (green) infrared bands respectively.

Grid mesh size applied for calculating relative entropy set at a value of 10.
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Figure 12.3: Monitoring of (ζ, µ) distribution of the redshift restricted 2MRS galax-
ies in the K band for various trial values of β when a distance-dependent luminosity

function is applied. The trial values of β used are noted on each panel.

of β, but the turnover point at which this change happens has lowered significantly from

β = 0.6 to β ∼ 0.4, most likely due to the introduction of our slight distance dependence.

Furthermore we now have estimated values for βopt in all bands returned as βopt ∼ 0.31,

βopt ∼ 0.34 and βopt ∼ 0.3 for the K, H and J bands respectively which, while still

not in good agreement with the published results of Carrick are a vast improvement over

the results returned by ROBUST using the raw data in Chapter 8. Whether we can

infer from this that the luminosity function of the 2MRS survey can indeed be modelled

by a distance-dependent function is yet to be made clear until we ratify these results

with those we shall present in Section 12.2 when we model a universal function to the

data. In the meantime the observation of increased noise in the recovered ρ(ζ, β) signal

is mirrored in the (ζ, µ) distribution of the galaxies as presented in Figure 12.3 where

for all values of β > 0.4 we see the return of the ‘packed’ distributions that signify that

the β-dependent peculiar velocities of the 2MRS galaxies are causing them to move to

inordinately close distance moduli relative to the observer.
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Figure 12.4: Monitoring of (ζ, χ) distribution of the redshift restricted 2MRS galax-
ies in the K band for various trial values of β when a distance-dependent luminosity

function is applied. The trial values of β used are noted on each panel.

What is even more striking than the results returned by ROBUST however are the

extremely noisy results returned by relative entropy across all three bands, which are

completely inconsistent with their Chapter 11 counterparts in Section 11.1. While it

is possible that some of this noise is due to the randomising nature of the normrnd

function being used to generate the mock apparent magnitudes being assigned to the

galaxies the fact that similar noise is not manifesting in the relative ROBUST plots

renders this unlikely. It is more likely that relative entropy itself is far more sensitive

to the use of a distance-dependent LF than ROBUST appears to be given the similar

plots the latter has returned, and this is further reinforced in the ζ-χ behaviour of the

galaxies when monitored over various trial values of β on the interval [0,1] as presented

in Figure 12.4. Once again for all values of β larger than 0.4 we begin to exhibit a

significant oversampling at low values of both ζ and χ, which contributes to the level of

noise observed in the recovered S[(ζ, χ)] signals.

It should be noted however that despite the very significant level of noise exhibited by

relative entropy, it does show signs of a ‘spike’ most clearly in the J band at the same

turnover point where the ROBUST plots begin to exhibit the same level of noise at
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around a β of 0.4 which, when cross-referenced with our calculated exclusion intervals

on β using Monte Carlo simulations as presented in Figure 12.5 results in all values of

β >∼ 0.3 being excluded from consideration with this variant of the survey. While on

the one hand this is once again in keeping with the results presented by VELMOD and

other more contemporary methods as previously discussed in earlier chapters, and helps

to further reinforce the rejection of the results returned by POTENT favouring a β of

unity, the exclusion of the Carrick value of β = 0.43±0.021 is concerning given how well

the ρ(ζ, β) plots for the 2MRS appear to match.

12.1.3 2MRS: Using µβ instead of uβ

The results of applying the same distance-dependent LF to the µβ variant of the 2MRS

and running both ROBUST and relative entropy are presented in Figure 12.6 and are

curious for several reasons.

Unlike the previous section when compared with their counterparts in Section 11.3, the

plots returned by ROBUST when a distance-dependent LF is applied are only similar

to a point, specifically where the ‘noise turnover’ occurs when the ρ(ζ, β) plots stop

exhibiting their monotonic increase over trial values of β on [0,1] and instead begin

to fall off as the noise increases in the recovered signal. It should be noted however

that the noise turnover point exhibited is the same, manifesting at a β ∼ 0.4 which

is at least consistent behaviour. Conversely much like their Section 11.3 counterparts

we continue to recover no values for βopt with the exception of the K band, which

recovers a value of βopt consistent with the β ∼ 0.05 that we observed in earlier sections

of Chapter 8. This lends itself to one of two possibilities: firstly that, much like our

(now discontinued) use of czcorr, perhaps the use of µβ in conjunction with ROBUST

and relative entropy is not conducive for our purposes despite the theory suggesting

that its use should be fine or secondly, that once again the introduction of a slight

distance-dependence to the performed analysis is introducing a significant bias into the

calculations. The ramifications of the second alternative are interesting, considering our

running hypothesis that the 2MRS survey may be best modelled by a distance-dependent

function given the results of the previous section. Once again however until we model a

universal function to the data for both variants we cannot say for certain what the most

likely scenario is.

As before, the increased noise noted in the ρ(ζ, β) plots is mirrored in their observed

(ζ, µ) distributions over various trial values of β as presented in Figure 12.7, where once

again for all trial values of β larger than 0.4 we see the return of the ‘packed’ distributions

indicative of significant galaxy shifting to implausibly small distance moduli as the value
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Figure 12.5: One-sided confidence intervals calculated on β via Monte Carlo simu-
lations for both ROBUST (upper panel) and relative entropy (lower panel) for the K,
H and J bands depicted in blue, red and green respectively. The 3σ confidence inter-
vals for all three bands are denoted via the black dashed lines, indicating all values
of β >∼ 0.3 are to be excluded from consideration for the redshift restricted 2MRS

survey with 99.7% confidence.
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Figure 12.6: Results of applying mock distance-dependent apparent magnitudes to
the positions of the redshift restricted 2MRS galaxies where µβ is utilised instead of uβ
on the value of βopt as returned by ROBUST (upper panel) and relative entropy (lower
panel) over several trial values of β on the interval [0,1] for the K (blue), H (red) and
J (green) infrared bands respectively. Grid mesh size applied for calculating relative

entropy set at a value of 10.
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Figure 12.7: Monitoring of (ζ, µ) distribution of the µβ reliant redshift restricted
2MRS galaxies in the K band for various trial values of β when a distance-dependent

luminosity function is applied. The trial values of β used are noted on each panel.

of β is increased, causing deviations from uniformity and a subsequent increase in the

noise of the signal recovered by ROBUST.

It is curious to note that once again, relative entropy struggles to return plots in all

bands that are remotely consistent with their counterparts in Chapter 11 though they

are quite similar to those presented in the previous section, as the S[(ζ, χ)] plots are

completely dominated by noise; exhibiting the same ‘spike’ at a noise turnover point of

β ∼ 0.4 that is consistent with that seen in ROBUST. While again it is possible that

the normrnd function is contributing to this noise, a glance at the ζ-χ behaviour of the

2MRS galaxies across trial values of β as seen in Figure 12.8 once again makes it clear

that the introduction of a slight distance-dependence is more than enough to cause a

very significant oversampling to occur at low values of ζ and χ for values of β > 0.4,

resulting in additional noise being exhibited in the plots returned by relative entropy.

When we compute our exclusion intervals on β using Monte Carlo simulations as pre-

sented in Figure 12.9, all values of β are excluded from consideration for the H and

J bands, and all values of β > 0.1 in the K band are excluded, rendering the value

returned by ROBUST for that band redundant. This inconsistency of behaviour lends
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Figure 12.8: Monitoring of (ζ, χ) distribution of the µβ reliant redshift restricted
2MRS galaxies in the K band for various trial values of β when a distance-dependent

luminosity function is applied. The trial values of β used are noted on each panel.

itself further to the idea that perhaps µβ, much like czcorr, is not valid for use with

either ROBUST or relative entropy, though once we see the results when a universal LF

is modelled we will know for certain.

12.2 Applying a Universal Luminosity Function

12.2.1 Redshift Restricted 2MRS

Having chosen to model the same universal mock Gaussian LF of N[-21,1] that we

applied to the IRAS PSCz in Chapter 6, the results of applying such a universal LF to

the redshift restricted 2MRS are presented in Figure 12.10 and are very promising.

We continue to see general shapes for the ρ(ζ, β) plots returned by ROBUST that are

similar not only to their counterparts in Chapter 8, but also to their distance-dependent

counterparts in this chapter, although admittedly with regards to both this case and the

latter the noticeable shift downwards and appearance of multiple zero-intercepts must be

noted. Of these intercepts we can recover values for βopt such that β = 0.32, β = 0.325
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Figure 12.9: One-sided confidence intervals calculated on β via Monte Carlo simu-
lations for both ROBUST (upper panel) and relative entropy (lower panel) for the K,
H and J bands depicted in blue, red and green respectively. The 3σ confidence inter-
vals for all three bands are denoted via the black dashed lines, indicating all values of
β >∼ 0.1 for the K Band only are to be excluded from consideration for the µβ reliant

redshift restricted 2MRS survey with 99.7% confidence.
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Figure 12.10: Results of applying mock universal apparent magnitudes to the po-
sitions of the redshift restricted 2MRS galaxies on the value of βopt as returned by
ROBUST (upper panel) and relative entropy (lower panel) over several trial values of β
on the interval [0,1] for the K (blue), H (red) and J (green) infrared bands respectively.

Grid mesh size applied for calculating relative entropy set at a value of 10.
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Figure 12.11: Monitoring of (ζ, µ) distribution of the redshift restricted 2MRS galax-
ies in the K band for various trial values of β when a universal luminosity function is

applied. The trial values of β used are noted on each panel.

and β = 0.3 for the K, H and J bands respectively, which are in very good agreement

with the distance-dependent results recovered earlier, though still not consistent with

the published value of Carrick. We continue to observe the same ‘noise turnover point’

at a β of 0.4 which is likewise mirrored in the (ζ, µ) distributions of the galaxies as seen

in Figure 12.11, where the ‘packed’ distributions of points are observed for all values of

β larger than 0.4.

The behaviour of relative entropy continues to be predictable as seen in the lower panel

of Figure 12.10, returning very noisy results across all three bands that fail to recover a

viable value for βopt and continue to exhibit the same clear spike in the returned S[(ζ, χ)]

plots (seen most clearly once again in the J band) at the same noise turnover point of

β = 0.4. After this point larger values of β start to return a clear oversampling of

galaxies on the ζ-χ plane as observed in Figure 12.12, which would add significant noise

to an already noisy and randomised Gaussian function.

The exclusion intervals for βopt for a mock universal luminosity function as calculated

using Monte Carlo simulations are presented in Figure 12.13, and generally exclude all
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Figure 12.12: Monitoring of (ζ, χ) distribution of the redshift restricted 2MRS galax-
ies in the K band for various trial values of β when a universal luminosity function is

applied. The trial values of β used are noted on each panel.

values of β ∼> 0.3 from consideration for use with the 2MRS in all three bands at the

3σ confidence level, once again rendering the estimates for βopt returned by ROBUST

redundant. While this is again in keeping with results presented using VELMOD and

other contemporary methods with the exception of POTENT, the repeated rejection of

the published Carrick value for βopt continues to be concerning when one considers the

similarity between the ρ(ζ, β) plots observed so far with respect to the 2MRS.

12.2.2 2MRS: Using µβ instead of uβ

The results of modelling a universal Gaussian luminosity function to the µβ reliant

redshift restricted variant of the 2MRS using both ROBUST and relative entropy are

presented in Figure 12.15, and continue to show more of the same kind of behaviour we

have come to expect thus far.

We continue to note the same deviation from monotonically increasing behaviour of the

ρ(ζ, β) plots across all three bands, with the noise turnover point continuing to manifest

at a β of 0.4; and the relative entropy plots continuing to be as noisy as ever with a very
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Figure 12.13: One-sided confidence intervals calculated on β via Monte Carlo sim-
ulations for both ROBUST (upper panel) and relative entropy (lower panel) for the
K, H and J bands depicted in blue, red and green respectively. The 3σ confidence
intervals for all three bands are denoted via the black dashed lines, indicating all values
of β >∼ 0.3 are to be excluded from consideration for the redshift restricted 2MRS

survey with 99.7% confidence.
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Figure 12.14: Monitoring of (ζ, µ) distribution of the µβ reliant redshift restricted
2MRS galaxies in the K band for various trial values of β when a universal luminosity

function is applied. The trial values of β used are noted on each panel.

clear spike in the data being observed at the same point again in all three bands. This

continued deviation from monotonic behaviour remains inconsistent with the behaviour

presented by ROBUST in Chapter 8 where the ‘raw’ luminosity information was used,

lending further credence to our theory that (despite the fact that throughout this chapter

both universal and distance-dependent modelled functions to the 2MRS have continued

to yield very similar results), µβ should not be considered as a parameter for use with

ROBUST and the construction of the underlying ζ statistic due to its inability to yield

consistent results throughout this work, despite promising initial signs.

As before we continue to see the same deviations from uniformity begin to manifest in

the (ζ, µ) distributions of the galaxies for all trial values larger than β > 0.4 as noted in

Figure 12.14, where the β-dependent peculiar velocities begin to dominate and introduce

noise into the recovered signal by ROBUST. Similarly we see a familiar oversampling of

ζ-χ points for low values of ζ and χ begin to manifest in the ζ-χ plane as seen in Figure

12.16, which would continue to contribute noticeably to the noise already present in the

data given how the mock apparent magnitudes are being generated.
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Figure 12.15: Results of applying mock universal apparent magnitudes to the posi-
tions of the µβ reliant redshift restricted 2MRS galaxies on the value of βopt as returned
by ROBUST (upper panel) and relative entropy (lower panel) over several trial values
of β on the interval [0,1] for the K (blue), H (red) and J (green) infrared bands re-
spectively. Grid mesh size applied for calculating relative entropy set at a value of

10.
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Figure 12.16: Monitoring of (ζ, χ) distribution of the µβ reliant redshift restricted
2MRS galaxies in the K band for various trial values of β when a universal luminosity

function is applied. The trial values of β used are noted on each panel.

When this is combined with the Monte Carlo generated exclusion intervals for βopt as

seen in Figure 12.17, we find that almost all values of β across the interval of [0,1]

are excluded from consideration for this variant of the 2MRS in all three bands, with

only values of β ∼ 0.05 somewhat making it into consideration, which is once again at

odds with the results generated by ROBUST using the raw luminosity data in Chapter

8, and also inconsistent with the K band only results returned by ROBUST for the

distance-dependent case of this variant presented earlier. Considering the sheer lack of

consistency presented by this case throughout this work, we now move to discount the

use of µβ in any further analyses with either ROBUST or relative entropy, due to its

inability to function adequately with either program.

The key takeaways from all of the above analyses would appear to be clear. Our baseline

assumption that the luminosity function of a survey is independent of the real-space

spatial positions of the galaxies is critical to the functioning of ROBUST with regards

to the IRAS PSCz survey, implying that it is best modelled with a universal luminosity

function (either Schechter or Gaussian) and a well-defined faint limit (the latter of

which we already proved in earlier chapters). The introduction of even a very slight
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Figure 12.17: One-sided confidence intervals calculated on β via Monte Carlo simu-
lations for both ROBUST (upper panel) and relative entropy (lower panel) for the K,
H and J bands depicted in blue, red and green respectively. The 3σ confidence inter-
vals for all three bands are denoted via the black dashed lines, indicating all values of
β >∼ 0.3 are to be excluded from consideration for the µβ reliant redshift restricted

2MRS survey with 99.7% confidence.
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linear distance dependence was more than enough to introduce bias significant enough

that neither ROBUST nor relative entropy were able to function properly and recover

reliable mean estimates for the value of βopt.

With regards to the 2MRS in particular, our assumption of universality would also

appear to be mostly valid, as the similarity of ROBUST plots between Chapters 8 and

the distance dependent and universal counterparts presented within this chapter suggest

that the raw luminosity data for the 2MRS is predominantly universal in origin. It must

be noted however that the similarity of the distance-dependent case of the redshift

restricted 2MRS to both its universal and ‘raw data’ counterpart could be indicative of

something interesting: namely that the slight distance dependence that we introduced

was not significant enough to introduce a major change to the runnings of ROBUST in

particular, though the downwards shifting of the ROBUST plots in this chapter would

appear to suggest that this may not necessarily be the case. It must also be noted that

the slight differences presented between the ‘raw data’ µβ variants of the 2MRS and

their universal and distance-dependent modelled counterparts would appear to suggest

that, despite the promising results initially returned in Section 8.6.3, any further use of

µβ in the construction of the ζ statistic for use with ROBUST must be discontinued.

Regardless of the case presented however, relative entropy consistently fails to return

values for βopt that are in agreement with its raw data counterparts when either a uni-

versal or a distance-dependent LF is modelled, suggesting that it is extremely sensitive

to both the existence of any sort of distance dependence in the modelled luminosity

function; and the existence of any randomly introduced noise when modelling apparent

magnitudes in a mock realisation, making it less useful as an ancillary tool for ROBUST

to make use of in that scenario. Why this holds true for the 2MRS and not the PSCz

where we were successfully able to make use of mock Schechter and Gaussian apparent

magnitudes modelled to the positions of those galaxies and recover mean estimates on

the value for βopt that were consistent with our assumed true value of β = 0.55 ± 0.06

for that survey is unclear. It could be that there is an inherent property to the 2MRS

that, when made to react with our mock modelled magnitudes causes the substantial

noise that we have seen throughout this chapter.

When one puts all of the above together we can more confidently say that our underlying

assumption of universality, the foundation upon which ROBUST is reliant, is most likely

not the problem causing the peculiar results returned by both ROBUST and relative

entropy in Chapters 8 and 11, that indeed the programs are functioning correctly; and

that there is possibly an inherent peculiar property or fault to the 2MRS survey that

unfortunately renders it not very compatible with any further use with either ROBUST

or relative entropy beyond the initial exclusion results presented in the aforementioned
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chapters which, at the very least, help to further reinforce the rejection of values of β

equal to unity returned by methods such as POTENT while allowing for the continued

existence of possible values of β for the survey that are consistent with β < 0.6 and

lower, such as those returned by VELMOD, χ2-minimisation and other constraining

techniques.
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Chapter 13

Conclusions and Future Avenues

While the subject of cosmology is almost as old as civilisation itself, it has taken many

leaps and bounds forward in recent years, giving us a clearer view of the heavens and

our place in it than we ever had before. In particular with the advent of deep and

highly detailed redshift-distance galaxy surveys of various patches of the Universe we

are now in the very desirable position of being able to probe the local peculiar velocity

and matter density fields of the nearby Universe and make use of various statistical tools

at our disposal to constrain various cosmological parameters that consequently give us

a better handle on understanding just how our Universe functions and how best it can

be modelled.

In attempting to constrain one such parameter, the linear redshift distortion parameter

β which helps to determine the ratio of luminous to dark matter in a region of space, we

have made use of two key statistical tools throughout this work: namely χ2-minimisation

and ROBUST (the latter being eventually supplemented with analyses using relative

entropy).

For its part, χ2-minimisation has proven itself to be a simple and effective velocity-

velocity comparison tool that can be used in conjunction with a variety of secondary

distance indicators, with Type Ia Sne being the most typically chosen due to their high

intrinsic luminosities and highly accurate distance estimates to within 7-8%. While

simple however it is not without its limitations, primarily its reliance on secondary

distance information with which to perform its comparisons. Should indicators be chosen

whose distances are not known to a high enough accuracy, then the functionality of χ2-

minimisation is significantly affected.

Despite these grievances however χ2-minimisation has proven itself capable not only of

reconfirming the Radburn-Smith et. al computed value for the IRAS PSCz survey of
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β = 0.55±0.06 with their own RS Sne set; it has also successfully validated the viability

of the Carrick et. al velocity grid as constructed from the 2M++ survey, confirming

their published value of β = 0.43± 0.021 for the 2MRS survey in particular.

In confirming all of the aforementioned published values for different surveys we were

able to set the benchmark values necessary with which to test the viability of the second

novel statistical tool at our disposal: namely ROBUST. ROBUST has served as the main

focus of this work due to its reliance on one key property for any given redshift-distance

survey, specifically that for a survey that is complete up to a given limiting magnitude

(or pair of faint and bright magnitudes), the luminosity function of the survey must be

independent of the real-space positions of the galaxies. In creating such a key property

we are consequently able to construct a statistic by which we can probe the parameters

of the peculiar velocity field of a survey (β in this instance) while making as few a priori

assumptions about the galaxies in the survey as possible.

We have since established that ROBUST functions effectively in a controlled mock en-

vironment when applied to mock subsets of the IRAS PSCz galaxies modelled with var-

ious luminosity functions, proving its robustness when the parameters of such functions

are altered to account for poorly defined functions, or when the mock subsets being

generated are reduced or increased in size potentially introducing further chance for

Malmquist bias to affect the results. In particular we take note of the fact that provided

the sample size being analysed is large enough (a minimum of 2000 galaxies) ROBUST

is more than capable of recovering our assumed true value for β with an increasingly

tightly constrained confidence interval, managing to account fairly well for the use of

broad and poorly defined functions though the latter will start to affect the accuracy of

the returned confidence intervals eventually. Additionally we observed that Schechter

functions are far more sensitive to the use of the correct faint and bright limits than its

Gaussian counterpart, manifesting significant bias in the results returned by ROBUST

if the wrong limits were applied. Having said that the bias introduced into ROBUST

only began to noticeably manifest for arbitrarily applied bright limits that were almost

as faint as our established faint limit for the survey; meaning that that limit was en-

croaching upon the distribution of galaxies in the M -Z plane, causing deviations from

the uniformity that ROBUST requires. This observation lends itself quite well to the

theory that the IRAS PSCz is best modelled by a faint limit alone but that so long as

an arbitrary bright limit is applied that is not too faint, then ROBUST will continue

to function properly, further cementing its usefulness. The final key observation to take

away from utilising ROBUST in a mock environment is that its functionality appears

to be completely independent from the value of ∆Z chosen to define the S1 and S2 sets

upon which the construction of the ζ statistic is reliant when a bright limit is in play. In

particular whether a small value of ∆Z is applied that practically throws away a large
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part of the survey from consideration for analysis, or a large value of ∆Z is applied

that in the presence of a bright limit causes the underlying S1 and S2 sets to become

trapezoidal in nature and potentially introduce deviations from uniformity; ROBUST

continues to successfully recover mean estimates for the value of β that are consistent

with our assumed value of βtrue, once again enhancing its usefulness.

Unfortunately in making the move to working with real data this is where ROBUST

begins to struggle, failing to return values of β for the 2MRS that are consistent with

the published and independently confirmed Carrick value despite our experimentation

with various parameters and distance restrictions to attempt to improve the returned

results. However it must be noted that ROBUST has proven itself capable of computing

one-sided exclusion intervals on β for the 2MRS that are in very good agreement with

recent values determined by other means, specifically excluding all values of β > 0.6

from consideration for acceptance as βopt. This is important as it serves as one of many

proverbial nails in the coffin for the density-density comparison method POTENT that

has continually favoured values of β close to unity; while further reinforcing the validity

of results returned by χ2-minimisation techniques and VELMOD amongst others which

favour values on the range of β ∼ 0.3− 0.4.

This behaviour is further ratified when one begins to make use of relative entropy to

complement the results returned by ROBUST. While in a mock environment relative

entropy behaves in a similar way to ROBUST, manifesting increased sensitivity to the

use of Schechter functions it also proves that it can serve as a viable strengthening

factor for the results returned by ROBUST, and can even pick up the slack so to speak

where ROBUST would struggle particularly in the presence of incorrect bright limits.

In particular however when applied to the 2MRS relative entropy fails to recover a

value of β that is consistent with the published Carrick value, but successfully returns

possible exclusion intervals that are comparable to those returned by ROBUST, once

again favouring results returned by VELMOD and others while further rejecting those

favoured by POTENT.

Our consequent exploration into the use of distance-dependent luminosity functions with

ROBUST and relative entropy was two-fold. In determining whether the underlying LF

of the 2MRS was indeed universal we could rule out whether the peculiar results being

returned by the program was due to a fundamental flaw in the underlying theory of

ROBUST itself, or due to an inherent peculiar property of the 2MRS that renders it not

very viable for further use. Secondly we could use our modelling of distance-dependent

LFs to test the limits of both ROBUST and relative entropy and what sort of potential

biases would be introduced as a result. With regards to the latter it becomes clear

that ROBUST is indeed sensitive to the introduction of even a mild linear dependence
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though this is more noticeable with the IRAS PSCz than it was with the 2MRS. Results

returned for the IRAS PSCz failed to recover a mean estimate for the value of β at

all, while relative entropy begins to exhibit significant noise across the board, theorised

to be due to the use of the normrnd function in Matlab to generate mock apparent

magnitudes and the consequent randomised noise that this introduces into the data.

In considering the 2MRS itself, the use of both mock universal and distance-dependent

apparent magnitudes being modelled to the galaxies returns consistent results from

ROBUST that are in relatively good agreement with the results returned by ROBUST

when analysing the raw data directly. As stated before this lends itself to one of two

possibilities: firstly that the raw 2MRS data does indeed appear to be relatively universal

in origin or second: that the introduced linear dependence is not significant enough to

materially impact the functioning of ROBUST thought this latter possibility seems to be

less likely when one considers the results more thoroughly. Relative entropy’s behaviour

for its part throughout this experimentation remains constant in that it is very averse

to the introduction of any sort of distance dependence into its analysis, which manifests

as constant noise across the board for all trial values of β on the interval [0,1], rendering

it effectively useless as an ancillary tool at least where distance-dependent luminosity

functions are involved.

Our final conclusion from analysing all of the information we have at hand tends us

towards stating that there is nothing inherently wrong with the functionality of RO-

BUST, and that its underlying assumption of luminosity function independence from

spatial position is valid and sensible. There unfortunately appears to be some inherent

peculiar property to the 2MRS that renders it not very viable for use with ROBUST

let alone relative entropy ... it is only a shame that we were unable to determine this

quicker so that we could move on to experimenting with other real world surveys and

see how well ROBUST and its ancillary tools fare with them.

All of the above discoveries lend themselves to a few potential avenues of work however

that may be pursued in the future:

1. Revisiting vorticity. The entirety of this work (and the functionality of RO-

BUST in particular) has its root in linear perturbation theory, specifically making

the assumption that the distances and scale lengths over which we are working are

large enough that the peculiar velocity field we are using can be deemed irrota-

tional over those lengths (i.e. ∇ × v = 0). Put another way, we have assumed

that the decaying vorticity mode of our linear perturbation theory as discussed in

Section 3.2 has a small enough dampening scale such that it vanishes over large dis-

tances, leaving only the linear gravitational growth term to dominate over time.

Should this key assumption not hold true at the relatively low redshifts within
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which we have been working, it would go a long way towards explaining some of

the peculiar results returned not just by ROBUST and relative entropy, but by

χ2-minimisation with its weakly recovered signals in β and the somewhat poor

linear regression fitting we have been observing. This supposition lends itself to

two key avenues of exploration to pursue:

� Redevelop our ROBUST framework within a perturbation theory model wherein

which the vorticity modes of the peculiar velocity field are considered, and see

whether the predicted additional velocities exhibited by the galaxies in a sur-

vey as a result help to improve upon the results for β returned by ROBUST

and relative entropy for the 2MRS.

� A simpler alternative to the theoretically and computationally exhaustive op-

tion listed above would be to consider cutting the 2MRS at lower redshifts

(i.e. excluding all galaxies that fall below a certain threshold limit from con-

sideration for use with ROBUST and relative entropy) where the velocity field

is indeed deemed to be rotational according to perturbation theory. While

we have already been applying this in practice with the 2MRS, generally

applying a redshift restriction limit of 500 ≤ cz ≤ 15000kms−1 throughout

all our analyses, it is possible that this lower exclusion limit of 500kms−1 is

not enough to completely remove all effects of vorticity from the field. Con-

versely it is also possible that our higher exclusion limit of 15000kms−1, while

in keeping with previous determinations that this limit ensures the reliability

of the underlying reconstructed peculiar velocity field, may also be too large;

consequently meaning that the effects of vpec at those distances will be less

significant on our analyses. To that end, experimenting with varying our ap-

plied redshift limits more extensively (while also observing and quantifying

how the luminosity function of the underlying survey is affected as a result,

if at all) may help improve the results returned by ROBUST and relative

entropy.

2. Making better use of available IRAS PSCz flux information. Through-

out Chapter 7 we attempted to make use of available optical B-band magnitude

information for the galaxies, despite the fact that the PSCz is at its core an in-

frared survey which, when one thinks about it, is rather counter-intuitive. The

result returned by ROBUST in this instance would be considerably different to

the value of 0.55 that we expect since optical magnitudes (and by extension an

optical survey) would be tracing a different matter distribution than their infrared

flux counterparts, putting it at odds with the underlying infrared survey. It would

be far wiser to forego the use of the optical magnitudes in their entirety and in-

stead focus on making use of the available infrared flux information for the PSCz
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galaxies in the 25µm, 60µm and 100µm ranges; converting those fluxes to their

corresponding apparent magnitudes and work from there, applying ROBUST and

relative entropy as normal.

3. Testing for memory leaks. As was discussed in Chapter 8, Matlab has demon-

strated an inability to hold the entirety of the Carrick grid in memory without

it being divided into smaller slices each 16Mpc wide. This is rather unusual for

Matlab as it has demonstrated in other disciplines that it is more than capable of

holding over 17 million data entries for analysis without issue. It is possible that

there is a fundamental error in our Matlab scripts somewhere that is causing a

memory leak to occur, preventing the entirety of the Carrick grid from being held

in memory as normal. As such it would be worth experimenting with creating a

mock galaxy catalogue of our own, consisting of over 43000 galaxies with mock

positions and peculiar velocities that mimic those seen in the 2MRS (not unlike

our analyses assigning mock magnitudes to the positions of the IRAS PSCz galax-

ies in Chapter 5) and seeing whether our velocity interpolation schemes, distance

convergence loops and ROBUST/relative entropy analyses can be carried out as

normal.

� As an aside to this it is worth pointing out that, while Matlab is quite good at

handling data matrices of considerable size and analysing them, other statisti-

cal programs now exist that are considerably more flexible and powerful such

as Python, which may not be as susceptible to the kinds of memory leaks we

experienced in this work. To that end it may be worth experimenting with

rewriting our Matlab scripts in Python or similar more powerful programs

moving forward to make future computational efforts easier.

4. Where the 2MRS failed another may succeed. We have made mention of the

various data runs of the SDSS throughout this work but due to time constraints

were unable to actually apply ROBUST or relative entropy to it properly and

document the results they return. Perhaps the use of a survey that is defined by

both a faint and a bright limit such as the SDSS will yield better results than

the 2MRS. It is also worth noting that since the SDSS is an optical survey it will

inherently trace a different mass distribution on the sky than its 2MRS infrared

counterpart, and that perhaps this signal can be more easily recovered by ROBUST

and relative entropy. It is worth noting that as of the time of writing, no value

for β has yet been constrained for any DR of the SDSS, making it a very enticing

target for future analysis.

5. Changing velocity models. We have been taking it for granted that the under-

lying peculiar velocity field of the 2MRS (and indeed the IRAS PSCz during our
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mock realisations) is best modelled by a logarithmic equation as defined back in

Section 4.3. There is no reason to suppose that this is completely accurate for ei-

ther survey, and ROBUST is set up to be able to operate with any kind of velocity

field model we wish to apply. It would be worth exploring the effects of altering

the underlying velocity field model of the 2MRS and observing what effects it has

on the values of βopt returned by either ROBUST or relative entropy. Perhaps

in altering said velocity field equation we may be more successful in recovering a

value for βopt that is in better agreement with the published Carrick value.

6. Experimenting more with distance dependence. Given the lack of notice-

able change in ROBUST when modelling universal or distance-dependent LFs to

the 2MRS it will be interesting to see how ROBUST reacts when more extreme

distance-dependent relations are modelled and whether it continues to be as ‘for-

giving’ and function adequately. Additionally it was already established by Carrick

et. al that the 2M++ survey of which the 2MRS is a part is best modelled by

a Schechter function, yet in our works we made use of modelling Gaussians due

to the ease of their generation within Matlab. When one considers the tenets

of the Central Limit Theorem - that with a large enough sample size containing

independently generated variables, the computed mean and deviation of such a

distribution will tend towards a Gaussian as the sample gets larger - and the fact

that the 2MRS survey we were utilising consisted of over 43000 galaxies to anal-

yse; making use of Gaussian functions did not appear to be unreasonable. For

the sake of completion however it would be wise to model various universal and

distance-dependent Schechter functions to the 2MRS galaxies and see how well

their results as returned by ROBUST and relative entropy compare to what has

been presented in this work.

7. Questioning Universality. Throughout the entirety of this work not only have

we made use of the assumption of universality when it comes to the LF of a sur-

vey, but we have also assumed that the computed magnitude limits of a survey as

returned by the completeness statistic Tc are also universal for a survey. This may

not necessarily be the case. Given the breakdown of homogeneity and isotropy

on smaller scale distances resulting in variations in the local peculiar velocity and

matter density fields of the nearby Universe it is conceivable that depending on

what direction along the sky one chooses to observe within a survey, the perceived

magnitude limit along that direction may be different than if one were to choose

another direction along the sky to observe along. This variance in magnitude

limit as determined by a ‘directional Tc’ would need to be accounted for within

the functioning of ROBUST, either within iterative running of the program along

various directional vectors and then summing the results, or perhaps by running
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ROBUST and relative entropy and then integrating the results over shells of in-

creasing distance, modifying the values of mlim (and mbright if necessary) utilised

as one goes along.

13.1 More Recent All-Sky Redshift-Distance Surveys to

Consider for Future Use

While we have made considerable use of the IRAS PSCz survey throughout this work,

and its usefulness as an all-sky survey in the infrared band cannot be understated for

observational cosmology and our ability to map the local galaxy density and velocity

fields (and consequently the local gravity fields as well); its age is beginning to show. In

particular the PSCz catalogue of Saunders et. al that we have been using was compiled

in 2000 [170] and a lot of developments have been had in the meantime. Since 2000

many more surveys have been generated such as 2MRS (see Section 2.10.2) and 2M++,

with others ongoing to this day such as the SDSS (whose most recent data runs we have

already briefly covered in Section 2.10.3), each of them larger and more in-depth and

detailed than those that came before it. It makes sense to briefly discuss and recommend

some of the more recent all-sky surveys that are now available for us to use, spiritual

successors to the IRAS PSCz that can help pave the way for more meaningful and

extensive uses for ROBUST, relative entropy and various other statistical tools in future

probings of the local density, peculiar velocity and gravity fields of the nearby Universe,

while also honouring the foundations set by the PSCz and its predecessors.

13.1.1 Cosmic-flows3

Developed in 2016 by Brent Tully, Hélène Courtois and Jenny Sorce as an expanded

compendium of galaxy distances that built upon the two prior releases of Cosmic-

flows developed by Tully in 2008 and 2013, unsurprisingly called Cosmic-flows [193]

and Cosmic-flows2 [194] (hereafter denoted CF and CF2 respectively), Cosmic-flows3

(CF3) is an all-sky infrared survey that contains over 17,600 galaxies, consequently pro-

viding the dense spatial coverage required for one to study the streams and eddies of the

local cosmic flow and constrain a whole host of parameters such as β and H0 to name

a few [41]. Some of the more pertinent additions to this iteration of the project when

compared to CF and CF2 include over 2200 distances that have been derived using the

Tully-Fisher relation and photometry at 3.6mm, in addition to over 8800 distances cal-

culated using the Fundamental Plane methodology from the 6dFGS collaboration [192].
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Figure 13.1: The density of galaxies in the GLADE catalogue, presented as an Aitoff
projection on the sky. Figure reproduced from the GLADE documentation works of

Dálya et. al [57].

Minor augmentations to Type Ia Sne compilations included in CF3 have also been in-

cluded, wherein a zero-point calibration of their luminosities has allowed for a value

for H0 to be constrained, given as 76.2 ± 3.4kms−1Mpc−1; while conversely by instead

imposing a restriction on the observed peculiar velocity monopole term representative

of global velocity infall or outflow in the local velocity field has allowed for a value of

H0=75± 2kms−1Mpc−1 to be constrained [192].

For a more in-depth introduction into the Cosmic-flows project since its inception in

2011, all relevant data-products, publications and project descriptions can be accessed

at https://www.ipnl.in2p3.fr/projet/cosmicflows/.

13.1.2 GLADE

Developed in 2018 by Dálya et. al, the Galaxy List for the Advanced Detector Era,

otherwise known as GLADE, is an all-sky optical survey with high completeness as de-

picted in Figure 13.1 that is primarily meant to be used in identifying gravitational wave

sources in order to support future electromagnetic follow-up projects of the LIGO/Virgo

Collaboration [57]; though its formidable size and depth lends itself well to providing the

input data necessary on the matter distribution of the local Universe for astrophysical

or cosmological simulations [45]. In particular GLADE has been constructed (combined

and matched) from four existing galaxy catalogues: GWGC, 2MPZ, 2MASS XSC and
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HyperLEDA, with further extension to GLADE being provided via incorporation of the

SDSS-DR12Q catalog. This results in GLADE containing over 3.2 million usable objects

for analysis, which is two orders of magnitude greater than the number of galaxies in

the GWGC catalogue alone (over 53,000 galaxies) [57]. Due to the sheer size of this

survey, GLADE is complete up to an optical luminosity distance of dL = 37+3
−4Mpc in

terms of the cumulative B-band luminosity of galaxies within luminosity distance dL,

and contains all of the brightest galaxies giving half of the total B-band luminosity up

to dL = 91Mpc [45].

The GLADE catalogue can be accessed in its entirety alongside all available documen-

tation and previous versions of the data at http://aquarius.elte.hu/glade/index.

html.

Whether one decides to more forward with any of the suggestions mentioned here with

either of these newer surveys is entirely up to the reader but one way or another the

truth is clear. There is still so much more out there for us to learn about and explore,

and so many tools at our disposal with which to probe our Universe and further our

understanding of it, ROBUST being one of them. With technology advancing at a

fantastic rate and petabytes of additional information becoming available every passing

day for us to analyse there is no better time or place to be a cosmologist, and it will be

interesting to see where we go next as we continue to look up into the stars.
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