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Abstract

One of the most important interfaces in a computer system is the interface between hardware
and software. This interface is the contract between the hardware designer and the programmer
that defines the functional behaviour of the hardware. This thesis examines two critical aspects
of defining the hardware-software interface: quality and performance.

The first aspect is creating a high quality specification of the interface as conventionally de-
fined in an instruction set architecture. The majority of this thesis is concerned with creating a
specification that covers the full scope of the interface; that is applicable to all current imple-
mentations of the architecture; and that can be trusted to accurately describe the behaviour of
implementations of the architecture. We describe the development of a formal specification of
the two major types of Arm processors: A-class (for mobile devices such as phones and tablets)
and M-class (for micro-controllers). These specifications are unparalleled in their scope, ap-
plicability and trustworthiness. This thesis identifies and illustrates what we consider the key
ingredient in achieving this goal: creating a specification that is used by many different user
groups. Supporting many different groups leads to improved quality as each group finds dif-
ferent problems in the specification; and, by providing value to each different group, it helps
justify the considerable effort required to create a high quality specification of a major processor
architecture. The work described in this thesis led to a step change in Arm’s ability to use formal
verification techniques to detect errors in their processors; enabled extensive testing of the spec-
ification against Arm’s official architecture conformance suite; improved the quality of Arm’s
architecture conformance suite based on measuring the architectural coverage of the tests; sup-
ported earlier, faster development of architecture extensions by enabling animation of changes
as they are being made; and enabled early detection of problems created from architecture ex-
tensions by performing formal validation of the specification against semi-structured natural
language specifications. As far as we are aware, no other mainstream processor architecture has
this capability. The formal specifications are included in Arm’s publicly released architecture
reference manuals and the A-class specification is also released in machine-readable form.

The second aspect is creating a high performance interface by defining the hardware-software
interface of a software-defined radio subsystem using a programming language. That is, an in-
terface that allows software to exploit the potential performance of the underlying hardware.
While the hardware-software interface is normally defined in terms of machine code, periph-
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eral control registers and memory maps, we define it using a programming language instead.
This higher level interface provides the opportunity for compilers to hide some of the low-level
differences between different systems from the programmer: a potentially very efficient way
of providing a stable, portable interface without having to add hardware to provide portability
between different hardware platforms. We describe the design and implementation of a set of
extensions to the C programming language to support programming high performance, energy
efficient, software defined radio systems. The language extensions enable the programmer to
exploit the pipeline parallelism typically present in digital signal processing applications and to
make efficient use of the asymmetric multiprocessor systems designed to support such applica-
tions. The extensions consist primarily of annotations that can be checked for consistency and
that support annotation inference in order to reduce the number of annotations required. Reduc-
ing the number of annotations does not just save programmer effort, it also improves portability
by reducing the number of annotations that need to be changed when porting an application from
one platform to another. This work formed part of a project that developed a high-performance,
energy-efficient, software defined radio capable of implementing the physical layers of the 4G
cellphone standard (LTE), 802.11a WiFi and Digital Video Broadcast (DVB) with a power and
silicon area budget that was competitive with a conventional custom ASIC solution.

The Arm architecture is the largest computer architecture by volume in the world. It be-
hooves us to ensure that the interface it describes is appropriately defined.
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Chapter 1

Defining interfaces between hardware and
software

1.1 Introduction

Computer systems consist of large stacks of different kinds of technology: from chemical and
lithographic processes used to manufacture silicon chips at the bottom of the stack; through
pipelining and out-of-order execution in microprocessors; through programming languages and
operating systems; all the way up to applications and user-interfaces at the top of the stack.
Between each of these layers is an interface that abstracts away some of the details of the layer
below to insulate the layer above from changes in the layer below.

This thesis is concerned with one of the most fundamental of these interfaces: the interface
between hardware and software. This interface is important because it is used by many different
groups: processor designers; tool creators writing assemblers, compilers, JITs and debuggers;
operating system writers; creators of processor simulators; verification engineers creating test
suites for processors and simulators; library writers; etc. Given its importance, it is essential that
this interface is well defined and that it is designed in a way that enables efficient implementation
of the interface.

This thesis explores two key aspects of this interface that are of critical importance to indus-
try:

Creating high quality definitions of the hardware-software interface The first and primary
aspect is creating high quality specifications of microprocessors that are complete enough
and accurate enough that they can be used for formal verification. Section 1.2 describes
the development of formal, executable specifications of the Arm v8-A and v8-M processor
architectures; steps taken to test the specifications; use of the specifications to formally
validate commercial Arm processors against the specification; and formal validation of
the specifications.

1



2 CHAPTER 1. DEFINING INTERFACES BETWEEN HARDWARE AND SOFTWARE

This specification is now part of Arm’s official specification and it has been released pub-
licly in Arm’s Architecture Reference Manuals [3,4] and in machine readable form [5,99].
As far as we are aware, the resulting specification is the most complete and most trust-
worthy specification of any mainstream processor architecture. The formal specification
and the validation methodology we developed led to a step change in Arm’s ability to
formally validate the processors they design. The methodology has been deployed on five
commercial processors developed by Arm and is being rolled out onto the next generation
of Arm processors and to Arm’s other design centres in France and the USA.

Defining high performance hardware-software interfaces The second aspect of the hardware
software interface considered in this thesis is defining an interface that allows software to
exploit the potential performance of the underlying hardware. Section 1.3 describes the
use of programming language extensions and compiler technology that allow complex
parallel hardware to be programmed in a simple, portable way without sacrificing perfor-
mance.

We demonstrate how raising the boundary between software and hardware can expose the
potential performance of the hardware to the programmer while allowing the hardware
designer to use a broad variety of techniques to provide an efficient, high-performance
system.

The SoC-C language and compiler were significant components of Arm’s Ardbeg project:
a project that developed hardware, software and tools for creating software defined ra-
dios [120].

1.1.1 Organisation

The remainder of this thesis is structured as follows: Sections 1.2 and 1.3 describe each aspect
of defining the hardware-software interface: the related work, contributions, limitations and
potential future work. Section 1.4 concludes and considers limitations that apply to the entire
body of work. Parts I and Part II contain the published work consisting of four peer-reviewed
papers and one granted US patent.

1.2 Creating high quality definitions of hardware-software in-
terfaces

The main aspect of defining the hardware-software interface considered in this thesis is the cre-
ation of trustworthy formal specifications of processor architectures. The three publications ex-
ploring this aspect develop, extend and apply techniques to create, test, use and formally validate
formal specifications of complex, real-world artefacts. Besides these technical contributions, the
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papers also describe and form part of the social process of building trust and consensus around
the specification.

Three key properties of a processor specification are its scope, its applicability and its trust-

worthiness.

The scope of a specification is the set of features that one can reason about. For example,
a certified compiler such as CompCert [72] only requires a specification of those instructions
that the compiler could generate. But in order to reason about arbitrary user-mode binaries, one
would need a specification of the entire instruction set. And to reason about Operating System
code, the scope of the specification is dramatically increased and includes a specification of
instructions for changing execution mode (e.g., entering/leaving supervisor mode), interrupt
handling mechanisms, page faults, mechanisms for changing memory protection, etc. Prior to
our work, all formal specifications of the Arm architecture were targeted at reasoning about the
behaviour of instructions with no support for system-level features such as memory protection
or taking an exception in response to a page fault.

The applicability of a processor specification is whether the specification applies to the target
processor. Most changes to architecture specifications are backward compatible extensions and
so most proofs about code for one architecture version are valid when executing that code on
a processor implementing a later architecture version. But architecture revisions also remove
instructions, add restrictions or change functionality so proofs based on the ARMv6 specification
(1996) or the ARMv7-A specification (2007) are not necessarily sound for ARMv8-A (2013).
This is especially true for Arm’s micro-controller architecture that has a completely different
exception model from Arm’s mainstream architecture.

The trustworthiness of a processor specification is whether the specification can be trusted
to reflect the behaviour of all processors implementing the specification. The Arm HOL specifi-
cation of Fox and Myreen [46] is noteworthy for the degree of testing performed: systematically
testing all user-mode, integer instructions against three actual processors. This is a critical step
and must be repeated against as many expressions of the architecture as possible (processors,
implementations, test suites, etc.) and must go beyond simply testing user-mode instructions
and test the full scope of the specification: floating point and vector instructions, exceptions,
interrupts, privilege checks, virtual memory, etc.

The effort required to create a specification increases with the desired scope, applicability
and trustworthiness of the specification. Worse, since Arm regularly releases extensions and cor-
rections to the architecture, the challenge of retaining applicability to current processors is more
of a continuous process than a one-off sprint. Our solution to this problem has been to change
Arm’s existing architecture specification process so that machine-readable, executable specifi-
cations can be automatically generated from the same materials used to generate conventional
documentation. These changes required not just technical solutions but also the development of
a process for agreeing on and building trust in the specifications.
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A key aspect of this process was the decision to create a single specification that is shared
between multiple groups. We found that doing this creates a virtuous cycle where each time
one group finds and fixes a bug in the specification, it improves the utility of the specification
for other groups and, over time, enables more demanding groups to make use of the specifica-
tion (Figure 1.1). For example, the “ISA-Formal” team (Paper II) required that each instruction
specification that they used be correct and required clarifications about the intended priority of
different forms of underspecification while those creating testsuites required that the exception
model be correct since many architectural tests revolve around checking that the correct ex-
ception is generated at the right time and is accompanied by the correct exception syndrome
information. In addition, the sharing of a specification created an understanding across the
different user groups of which parts of the specification were trustworthy and which required
further work before they could be trusted.

Figure 1.1: Virtuous cycle created by multiple users sharing a common specification

Supporting multiple groups is also essential to build the business case for the consider-
able cost of creating, debugging and maintaining a large specification. Figure 1.2 provides
an overview of the variety of different uses that our specification currently supports.

These benefits are not without a cost: the specification language is a compromise between
all the different user groups. Some groups would find it more convenient if the specification was
written in some other language and they require tools to translate the specification into the form
their tools require but the advantages of having a single specification outweigh the costs.
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1.2.1 Literature survey

Some of the earliest formal specifications of computer architecture were Falkoff et al.’s use of
APL to describe the IBM System/360 [37] and Bell and Newell’s “Instruction Set Processor”
(ISP) notation [14] that was used to write specifications for 14 systems including the PDP-8,
PDP-11 and CDC 6600 and that later gave rise to Barbacci’s machine readable “Instruction Set
Processor Semantics” (ISPS) [11] that targets compiler-related uses. ISP followed in the Al-
gol language tradition and is similar to the less formal pseudocode notations typically used in
ISA definitions in the present day. ISP was used during design of the PDP-11 and included
in the manufacturer’s processor handbook [28]. Some of the earliest uses of formal seman-
tics were for automatic reasoning about programs such as Samet’s development of Translation
Validation [106, 107] (later reinvented and refined by Pnuelli [94] and Necula [87]) and auto-
matic derivation of compiler code generators by Fraser [48] (based on ISP specifications of the
IBM-360 and PDP-10) and Cattell [24] (based on ISPS specifications of the IBM-360, PDP-8,
PDP-10, PDP-11, Intel 8080, and Motorola 6800).

Since those early days, many other uses of formal specifications have been found includ-
ing verifying compilers [70, 72, 86]; verifying assembly language functions against a specifi-
cation [80]; verifying operating systems [31, 53, 68, 110]; discovery, verification and synthesis
of peephole optimisations [9, 66, 78]; automatic generation of binary translations between ar-
chitectures [10]; verifying processor pipelines [17, 42, 64, 101]; automatic generation of test
cases [51,79]; decompilation of binaries [85,89]; and abstract interpretation of binaries [95,96].

Creating a specification that can support this broad range of potential uses affects how the
specification is written. If a formal specification is being used to mechanically verify hardware
or software in a theorem prover, it is common to write the specification using the language of the
theorem prover using either a deep or shallow embedding [21]. If a shallow embedding is used,
it is also necessary to overcome mismatches between the semantic features of the specification
using the theorem prover’s language. For example Goel et al. [54, 55] use abstract stobjs to
encode state and constrained functions to encode undefined behaviour, Fox and Myreen [46] use
monads to encode state and exceptions.

A significant limitation of embedding a specification in a theorem prover is that it limits
reuse of the specification: it is hard to use the same specification with other theorem provers
or for non-proof purposes. This is a significant problem because it fragments efforts at creat-
ing specifications between the user communities of the major interactive theorem provers (e.g.,
ACL2 [67], Coq [27], HOL [57], Isabelle-HOL [88]), model checkers (e.g., JasperGold R© [23]
and SymbiYosys [121]) and SMT solvers (e.g., Z3 [33] and CVC4 [13]). Embedding a spec-
ification in a theorem prover also has the problem of impacting readability: the specification
is only really usable to those familiar with a particular theorem prover. This almost certainly
necessitates the creation of multiple specifications: one for each tool one wishes to use plus an-
other for humans to read. Having multiple separate specifications leads to a further problem of
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trust: how can one trust that the different versions of the specification are consistent with each
other? To address these limitations, we follow the common approach of writing the specifica-
tion in an external Domain Specific Language (DSL) specifically designed for writing processor
specifications [11,25,38,45,124] and mechanically translate the specification into the languages
of different formal verification tools. In Mishra and Dutt’s taxonomy [83], the DSL described
in this thesis would be classified as a “Behavioural Architecture Description Language.” That
is, it describes the externally visible behaviour of a processor without necessarily reflecting the
hardware structures that might implement it. In contrast, a “Structural Architecture Description
Language” closely reflects the hardware structure they describe and are primarily used to gener-
ate and verify hardware designs. Structural specifications reveal implementations details mak-
ing them suited to specifying microarchitecture while behavioural specifications abstract away
inessential differences between different implementations making them best suited to specifying
processor architecture.

A major challenge tackled in the papers in this section is how to create a trustworthy formal
specification of the entire architecture that includes all instructions, address translation, memory
protection, interrupts, exceptions, etc. Most processor specifications in existence are for sim-
pler architectures such as the IBM/360 [37] or are for a subset of the architecture such as the
instruction set [40, 46] or are only for outdated (and smaller) architectures such as the ARMv6
architecture [111].

Fonseca et al.’s empirical study of the correctness of formally verified systems found bugs in
specifications [41]. One way of establishing trust in a specification is by testing specifications
against existing implementations [8, 40, 46, 56, 98, 111]. The quality of testing depends on the
accuracy of the test oracle [12] and on the completeness of the tests used. Formal verification of
a processor against a specification [42,64,101] has the desirable side-effect of detecting bugs in
the specification and ensuring compatibility.

Creating a fully verified stack of hardware and software eliminates the need to trust the pro-
cessor specification. Notable steps in this direction are: the “CLI stack” of Computational Logic
Inc. [16] that consisted of FM8502 processor, the Piton assembler and a code generator for the
micro-Gypsy language (a Pascal derivative); and the Verisoft project that produced the VAMP
out-of-order processor implementing the DLX ISA [17] and PikeOS hypervisor [109]. More re-
cently, the CakeML project succeeded in creating a formally verified processor “Silver” [77] and
a formally verified compiler for a dialect of ML [70] that can compile itself and so the compiler
can both generate code for Silver and the compiler can run on Silver itself.

There are two main classes of formal ISA specifications: specifications of the system-level
features such as address translation or taking an exception and specifications of the instruction
set.
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System-Level Specifications

A major milestone for an executable processor specification is demonstrating that it can boot
an operating system up to the first command prompt: demonstrating the ability to take inter-
rupts, implement virtual memory, etc. Fox’s MIPS specification [45] written in L3 has been
shown to boot FreeBSD. Fox’s Arm specifications [45] contains some system features but lack
memory protection and address translation or the ability to take an exception in response to a
failed permission check. Our specification is more complete (the v8-A architecture specifica-
tion includes all 1280 instructions, all four privilege levels, both secure and non-secure modes,
address translation, reset, interrupts and exceptions) and has been more thoroughly tested (we
test all four levels and both security modes and we test that privilege checks deny access when
appropriate). Armstrong et al. [8] develop formal specifications of Arm v8-A, RISC-V, MIPS
and CHERI-MIPS written in Sail that have been shown to boot Linux, seL4 or FreeBSD. The
Arm v8-A model is a translation of our ASL specification implying that our specification can
also boot Linux.1

Goel’s x86-64 specification [56] is embedded in ACL2 and includes key parts of the system
architecture including paging, segmentation and both user/supervisor levels. The specification
has been used to verify both user-mode code and system-mode code: a “zero-copy” program that
duplicates memory by manipulating the page table to create aliases in the virtual address space.
Instead of embedding the specification inside any particular theorem prover (such as ACL2),
our specification is written in a simple, imperative specification language and different backends
translate it into the languages required by different users: C++, Verilog, SMT2 and Sail [8, 59].
We believe that using a DSL and actively pursuing and supporting different user groups is critical
to creating a trustworthy specification: each different use stresses the specifications in different
ways and finds different classes of bugs in the specification.

The Verisoft-XT project developed a substantial specification of x86 processors encompass-
ing the concurrency model, 140 general-purpose and system programming instructions and se-
curity mechanisms such as memory protection and hypervisor support [34]. Their goal was to
enable the formal verification of low level software (hypervisors). Like our work, the Verisoft-
XT specification is written in a domain specific language in order to keep the specification read-
able and compact. The specification differs in having a different scope: it adds a concurrency
model and parts of the platform architecture such as the APIC interrupt controller but it supports
only a fraction of the full x86 instruction set. The more significant difference lies in trustworthi-

ness. While Degenbaev [34, Chapter 19] describes techniques that they could potentially apply
to test their specification; we developed and applied multiple approaches including testing using
Arm’s architecture conformance suite, formal validation of processors against the specification
and formal validation of the specification itself. We consider this investment in trustworthiness
to be critical when creating a specification that will be used for formal verification purposes.

1This has since been confirmed within Arm with assistance from Armstrong.
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We are not aware of any x86 processor specification that can boot an operating system.
Running an operating system on an x86 processor specification would require not only the x86-
64 features needed to run an OS but, since x86 processors power up in a legacy mode, one would
also require support for legacy modes to support the boot process.

Instruction Set Specifications

Over a period of more than 18 years, Fox and others at the University of Cambridge have de-
veloped and used specifications of multiple versions of the Arm processor architecture starting
with an ARMv3 specification written in HOL [47] that was used to formally verify the ARM6
processor microarchitecture [42, 43], later updated to support the ARMv4–ARMv7 architecture
versions [46] and tested against actual hardware. This specification was then converted to a
domain specific language L3 [44, 45] that can be translated to HOL and a specification of the
integer AArch64 instructions from the ARMv8 architecture was added. For a long time, this
was the most complete and highest quality formal specification of the Arm architecture and this
series of specifications has been used in the formal verification of microkernels [110], hyper-
visors [31] and compilers [70, 86]. Our specification is more complete (the v8-A architecture
specification includes both AArch32 and AArch64 modes and all instructions); has been more
thoroughly tested; and, like the original Fox specification, has been further validated through its
use in the formal validation of Arm processors.

There are a number of notable specifications of the x86 instruction set. RockSalt [84] is a
formally verified implementation of Software Fault Isolation that relies on the ability to perform
an analysis of (a subset of) x86 machine code. A key part of RockSalt is an x86 instruction
specification that covers 130 instruction encodings with semantics for 70 instructions. This
specification is written in an embedded DSL in Coq and has been validated by extensive testing
against executions of (compiled) randomly generated C programs and constrained random se-
quences of the implemented instructions. An important difference from our work is the reduced
scope: RockSalt only describes a small subset of the x86 instruction set and does not describe
system architecture features such as address translation.

Goel’s x86-64 specification [56] embedded in ACL2 includes 413 instructions (as well as
the system architecture features mentioned above) and has been verified against real proces-
sors using the Pin binary instrumentation tool. Both the ACL2 and RockSalt specifications are
embedding within a theorem prover enabling them to formally verify their reasoning about the
specification including reasoning about any transformations/analysis they perform on the speci-
fication. This is a powerful capability that our Arm specifications lack.

Heule [62] used synthesis techniques to generate specifications of 1,795 variants out of 3,684
instruction variants in the x86-64 Haswell ISA. This specification formed the basis for two
recent specifications that describe the complete x86-64 user-space instruction set: Roessle et
al.’s Chum specification [105] to support decompilation of binaries using HOL; and Dasgupta
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and Adve’s specification written using the K-framework [32]. Both specifications stand out for
the completeness of their support of the instruction set and the degree of testing performed on
their specifications.

Recently, Huang et al. have generalized the notion of Instruction Set Architecture (ISA) to an
“Instruction-Level Abstraction” (ILA) [63] that extends the familiar instruction model found in
programmable processors to semi-programmable accelerators. They have demonstrated that this
framework can be used to formally specify and verify both accelerators (for image processing,
machine learning and cryptography) and general-purpose processors (RISC-V). Zhang et al.
have further extended the ILA framework with a memory consistency model and associated
verification tools [123].

An, apparently promising, alternative approach to creating a processor specification is to
generate it automatically based on experiments run on particular processors [52, 62]. This ap-
proach can lead to overfitting: Godefroid identified a number of instructions whose functional
behaviour differed across the range of processors used in their experiments [52].

1.2.2 Overview of published work

The specifications described in this thesis are written using a Domain Specific Language called
the Arm Architecture Specification Language (ASL).2 ASL is an executable, strongly-typed, im-
perative language with support for dependent types and for throwing and catching exceptions.
For the first 20–25 years of Arm’s history, specifications were created after the corresponding
implementation as documentation of what had been built. This pattern has changed as a re-
sult of the work described in this thesis and specifications are now written and tested before
implementation starts.

The ASL language was created by reverse engineering a specification language from the
pseudocode notation used in Arm’s existing documentation, fixing the pseudocode in the doc-
umentation and evolving that pseudocode into a formal specification. This choice of evolution,

not revolution enabled a smooth transition from the official, informal pseudocode to a formal
specification with trust in the specification gradually increasing as new user groups successfully
used the specification. An earlier, more revolutionary, attempt to replace Arm’s architecture
specification with a more formal specification had failed to gain traction and had been aban-
doned. We believe that a major factor was that replacing the specification required buy in from
multiple groups at once whereas the slower, incremental process of submitting bugfixes and fo-
cussing on providing value to one group at a time deferred the need for Arm architects to make
a decision until after support had been built across the company. An early example of building
cross-company support is that a member of the validation team that writes architectural testsuites
asked if it was possible to measure coverage of their tests against the architecture. Measuring
coverage was not a high priority for me at the time but it helped people who had helped me, it

2There is no connection to the ASL specification language that was the subject of the author’s M.Sc. thesis [97].
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took little effort to implement and it led both to the validation team championing the work and
to practical help from the validation team. Thereafter, I sought to repeat this experience with
other groups in order to establish the virtuous cycle of Figure 1.1.

This section presents three papers that tackle different aspects of creating, using and check-
ing this specification.

Paper I “Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture”
[98] describes the first 5 years of the project to change Arm’s existing architecture specification
process so that machine-readable, executable specifications can be automatically generated from
the same materials used to generate Arm’s conventional architecture documentation.

The focus of this paper is on the different methods (summarised in Figure 1.2) used to im-
prove our trust in the specification and the various uses of the specification.

A key contribution of this work was a scalable, sustainable methodology for creating high
quality formal specifications. To achieve the broad scope required, we developed methods for
defining and testing the system architecture by extending the specification with a programmable
monitor and stimulus generator. To the best of our knowledge, such testing has not previously
been applied to architecture specifications. A major output of this work was the creation of
formal specifications of Arm’s v8-A and v8-M processor architectures — a critical prerequisite
for the formal verification of Arm processors.3 The formal specification now forms part of Arm’s
official architecture specification and has been publicly released in machine readable form [5].

Paper II “End-to-End Verification of ARM Processors with ISA-Formal” [101] describes a
collaboration with formal verification engineers in Arm’s Processor Design Division to develop
a repeatable method of formally validating the instruction pipelines of Arm processors against
the Arm v8-A and v8-M specifications described in Paper I.

The ISA-Formal method described in the paper uses a bounded model checker that uses
symbolic techniques to validate sequences of instructions up to some bound. The approach was
tested on a small scale on three processors using hand-written System Verilog assertions that
implemented partial specifications of a few dozen instructions. To turn the approach from a
promising idea into a viable verification flow that could be broadly applied, two problems had
to be overcome:

Scaling The Arm v8-A specification has over 1,280 instruction encodings; the Arm v8-M spec-
ification has over 380 instruction encodings. Each instruction has many potential effects:
writing registers, writing flags, accessing memory, raising exceptions, etc. Manually writ-
ing properties to check each instruction for each possible effect would be a monumental
task and the result would inevitably contain bugs and divergences from Arm’s official
specification. The solution was to find a way of automatically translating the specifica-
tion from ASL to a language that commercial model checkers would accept (Verilog).

3Adaptations to the formal v8-A specification to include the v8-R architecture are underway.
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Defining a standard verification interface Arm designs large numbers of processors to target
different niches with radically different pipeline structures. Defining a standard verifi-
cation interface was critical to creating a verification flow that can be applied across the
entire range. This was created by refactoring the manual interface used with the System
Verilog assertions into a higher level interface that the machine-generated Verilog could
interface with.

Paper III “Who guards the guards? Formal Validation of the ARM v8-M Architecture Spec-
ification” [100] tackles a fundamental problem with executable architecture specifications: they
contain little or no redundancy. This lack of redundancy is especially problematic when extend-
ing the architecture because existing test suites do not cover any new extensions so testing is not
able to detect when an extension breaks cross-cutting properties involving security, the ability
to return from exceptions, etc. The paper describes the creation of a meta-specification of the
architecture and tools to verify that the architecture specification satisfies the meta-specification.
Despite the high level of testing already performed on the specification, this found a further
12 confirmed bugs.

1.2.3 Contributions

The contributions of the published work in this section consist of both technical developments
and a significant impact on the design and verification practices of the world’s largest processor
designer that affects both the creation of processor architecture specifications and the verification
of processors.

• I created a methodology to develop high quality processor architecture specifications with
a particular focus on features of the system architecture (e.g., page table walks, memory
protection, privilege checks and system registers) [98, 100]. This methodology involves
reverse-engineering a language “hidden within” the pseudocode previously used, filling
gaps in the specification, building tool chains to read and execute the specification, build-
ing monitors and stimulus generators to support testing of system architecture, testing
the specification, measuring the coverage of processor test suites, automatically translat-
ing the specification to Verilog and to the SMT-Lib2 format and formal validation of the
specification. In addition to these technical developments, I developed a process to build
consensus around the specification and to create a virtuous cycle where multiple groups
share a common specification such that bug reports and fixes from one group benefit all
other groups.

I applied the methodology to both the Arm A-class and M-class specifications and the
methodology has been adopted by the teams responsible for developing new architecture
extensions including TrustZone for M-class (TZM) [4] that added new privilege levels
to the micro-controller architecture; and the Scalable Vector Extension (SVE) [113] that
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added 488 new instructions to the v8-A architecture. The executable specification is used
within Arm as a “golden reference”. The A-class specification has been publicly released
in machine-readable form under a liberal license.

• I created a highly effective, repeatable, formal validation methodology [101] that could
be applied in an industrial setting to formally validate processors against the formal spec-
ification of the architecture. The methodology was applied to five commercial processors
(Arm’s Cortex A32, A35, A55, R52 and M33). The methodology has proved to be very
effective at finding complex bugs that other techniques might have missed and also at find-
ing simple bugs earlier in development than traditional test-based validation techniques.
This led to a step change in Arm’s use of formal verification techniques on its processors.
The methodology is being rolled out onto the next generation of processor development
projects. Beyond Arm, the ISA-Formal validation approach has already been adapted for
use on RISC-V processors in the “riscv-formal” flow [122] and a company “Symbiotic
EDA” has been created to provide formal validation services to RISC-V implementers.

• There have been two significant public releases of Arm’s specification. In 2017, Arm
publicly released around 90% of the v8.2-A specification and subsequent public releases
included the v8.3, v8.4 and v8.5 extensions [5]. In addition, Arm has released the entire
v8.5-A specification to the REMS group at Cambridge University. With my assistance,
they have created tools to (mostly) automatically translate the specification from ASL
to their “Sail” ISA specification language and they have created translators to convert
Sail to C, Isabelle and Coq [7, 8, 59]. The process of performing this translation lead to
several Sail language extensions that were necessary to handle the size and complexity
of a commercial processor architecture. The C code generated from their tools has been
tested using Arm’s internal architecture conformance test suite; is able to boot the Linux
kernel; and the translated code has been used to prove properties about the virtual memory
system using Isabelle. Cambridge University has publicly released both the translated
specification and their tools [104]. We hope that this will lead to many new uses of the
specification. (This work is described in a recent POPL paper [8] that is not included in
this thesis.)

To our knowledge, no other major processor company has these capabilities or has chosen
to release a formal specification of its architecture.

1.2.4 Limitations and further work

This work has transformed the use of formal specification and verification within Arm and has
created a single reference that those outside Arm can freely use.
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Future work that is already underway includes: extending the range of uses by, for example,
using the specification as a reference for traditional test-based verification of processors; for-
mally specifying the ASL language used in the specification; continuing the work reported in
Paper III to check more of the v8-M architecture and to start checking the v8-A architecture.

Future work that is still in the proposal stages includes improving the performance of simu-
lators perhaps using Pydgin [76].

The most significant limitations of this work are associated with underspecification: where
the specification allows for a range of allowed behaviours. Forms of underspecification found in
Arm specifications includes implementation defined behaviour; unknown values4; unpredictable
behaviour; and non-determinism in exception raising. This is the subject of ongoing discussion
with Arm architects. The main challenge in clarifying underspecification is in creating a defini-
tion that is simultaneously useful to programmers; applicable to existing implementations; and
provides the desired degree of implementation freedom to hardware designers. For example, the
notion of unknown values is used both to describe the non-determinism of register values when
hardware is powered up and also to describe situations where different microarchitectural states
can lead to different values. Teasing apart these different notions of “unknown” apart would
enable each notion to have a narrower, more useful definition.

The interaction of underspecification with security is especially important. Arm’s Architec-
ture Reference Manual [3] says “An UNKNOWN value must not return information that cannot
be accessed at the current or a lower level of privilege . . . ” but such statements are hard to test.
In practice, individual processor implementations tend to choose a deterministic value such as a
zero value but that does not help those verifying the security of software that must run on any
implementation.

Some other limitations of the specifications in this work include: they do not capture the se-
mantics of weak memory [1,40,108]; they do not specify the assembly language syntax; limited
testing of multiprocessor, debug and performance monitoring features; they lack specifications
for interrupt controllers, I/O MMUs, Arm’s “TrustZone” support in interconnect, and other fea-
tures needed to reason about low-level system software.

Architecture specifications have traditionally limited themselves to the functional behaviour
of processors. This traditional view excludes timing information and speculation induced ef-
fects since details such as the execution time of an instruction is viewed as a detail of a specific
implementation, not an architectural requirement. The growing awareness of microarchitectural
side-channel attacks [50] has lead to the notion of “data independent timing” in Arm v8.4-A
where the execution time of certain instructions is independent of the data being processed by
the instruction. The discovery of speculative side-channel attacks such as “Meltdown” [75],
and “Spectre” [69] lead to the further addition of speculation barrier instructions that control
speculative memory accesses. A critical next step will be finding a way to formally specify

4Other ISA specifications use the term “undefined values” for what Arm calls “unknown” values.
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the semantics of these extensions (and of existing features such as flushing caches, branch pre-
dictors, etc.) in order to support reasoning about side channels in software. Cock et al. [26]
measured the impact of mitigations such as deterministic scheduling, scheduled delivery, cache
colouring and TLB flushing on the channel capacity of known side channels. In addition to
measuring and mitigating high-level microarchitecture details, they found new channels caused
by the low-level implementation details such as an impact of branch mispredictions on the cy-
cle counter reinforcing the need for thorough verification of processor implementations against
such a semantics. McIlroy et al. [81] is an early step towards such a semantics but their empha-
sis on determinism limits them to describing just one processor instead of the full envelope of
behaviour allowed by the architecture.

Finally, when we started this work, Arm relied on the fact that the definition of the archi-
tecture was, in effect, spread across several artefacts within Arm: the Architecture Reference
Manual, a “golden simulator,” and a test suite. Our goal is to turn the formal specification into
a “perfect” specification against which these other artefacts are measured. This would automat-
ically guarantee consistency but, by reducing redundancy, it brings the risk of creating a single
point of failure. Our efforts in creating a meta-specification in Paper III and in recruiting many
different user groups are intended to reduce this risk.

1.2.5 Conclusions

This section is concerned with creating complete specifications of commercially important pro-
cessor architectures and in establishing trust in those specifications. The central idea is of cre-
ating a single specification that is used by many different teams in order to create a virtuous

cycle. This approach has proved effective in transforming the approach of the largest designer
of microprocessors in the world to formal specification and verification and has resulted in the
creation of a formal specification of unparalleled scope, applicability and trustworthiness that
can be used both inside and outside the company.

1.3 Defining high performance hardware-software interfaces

The previous section focuses on functional aspects of the interface but does not mention non-
functional aspects such as the timing or energy requirements of an instruction or the silicon area
required to implement an instruction.

In general purpose microprocessors, portability between different hardware designs is usu-
ally achieved by adding hardware such as pipeline interlocks to hide pipelining hazards and
register renaming to hide out of order execution from the programmer. This portability comes at
the cost of extra hardware to give the illusion of sequential execution and a significant fraction
of the potential parallelism of the hardware is lost. One way to exploit the potential performance
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is to expose all the hardware features to the programmer but that decreases portability because
programs will only work on systems providing the same features. Some Very Large Instruction
Word (VLIW) processors [39] tackle this problem by requiring programmers to program them
in a high level language such as LISP or C instead of using assembly level: tackling performance
portability with programming language extensions and compiler technology. This section ap-
plies a similar approach to the problem of programming asymmetric multiprocessing (AMP)
systems designed to handle Digital Signal Processing (DSP) pipelines.

The physical layer of the cell radio interface that lies at the heart of modern cellphones is
traditionally implemented using a combination of hardware blocks that provide little or no con-
figurability or programmability and are therefore limited to implementing a small number of
protocols and require modifications to the chip if a bug is found or the protocol specification is
changed. Software Defined Radio (SDR) aims to disrupt this model by replacing most of the
fixed function blocks with programmable processors. SDR applications can have extremely high
processing requirements (in excess of 10Gops per second) and, to compete with conventional
fixed-function hardware designs, they must operate on tight power budgets (a fraction of a Watt).
Achieving such extreme performance on such a small power budget requires that the hardware
platform exploits numerous techniques to save energy and boost performance: processors pro-
vide a high degree of data and instruction level parallelism; each processor is provided with
private data and instruction memories to which they have faster, more efficient access; DMA
engines are provided to copy data from one processor’s private memory to another’s; some fixed
function accelerators are provided for functionality that is required by a large number of different
protocols (e.g., an accelerator for error correction such as a Turbo decoder); and a simple RISC
control processor is charged with loading programs into each processor’s instruction memories,
with sequencing different parts of the algorithm across the platform and with handling small, low
performance parts of the protocol. Figure 1.3 illustrates a communication-processing subsystem
that might be used in a Software Defined Radio (SDR) system.

The approach explored in this section is to support porting software from a conventional
computer (e.g., a desktop computer) to such specialised architectures by adding a small number
of annotations to the program. These annotations guide the compiler to adapt the program to the
particular compute system. The goal of this work was not to completely automate the mapping
of software to such hardware but, rather, to provide the programmer with an interface that allows
them to use their insight into the trade-offs to unlock extremely high levels of performance by
making small changes in the annotations.

The language and compiler were developed as part of Arm’s “Ardbeg” research project to
develop a Software Defined Radio (SDR) platform. This project developed five co-designed
components: a DSP engine based on a 512-bit SIMD vector unit that could sustain over 10
billion multiplies per second at less than 300mW in 65nm technology [120]; a programming
model and tools for the DSP engine; a system architecture combining multiple DSP engines,
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accelerators, DMA engines, private memories and a control processor (see Figure 1.3); a pro-
gramming model and tools for the system architecture; and software to test and demonstrate the
capabilities of these components including implementations of the physical layer processing of
4G cellphones, 802.11a WiFi and DVB digital video broadcast. This section is concerned with
the system programming model and tools.

1.3.1 Literature survey

Programming DSP and SDR systems is conventionally performed in a very low-level way: code
uses numerous techniques such as double-buffering, DMA-transfers, interrupt handlers, etc. to
make efficient use of the available hardware and achieve maximal parallelism. Programming
in this fashion results in software whose structure is determined by the hardware platform and
by the decision of which tasks to map to each part of the system. This need to match software
structure to hardware structure means that porting the application to different hardware or even
experimenting with a different mapping is a significant and error prone effort.

Our solution to these problems is to draw on a number of techniques familiar in the program-
ming language, computer architecture and systems communities:

• The (synchronous) remote procedure call (RPC) [19] model simplifies triggering code
execution on remote processors by making it look like a function call. Greater parallelism
can be achieved by sacrificing some of this simplicity and using asynchronous RPCs [2].

• Software distributed shared memory [15,65,73] simplifies a potentially complex memory
topology to look like a single shared address space by introducing data copies at the right
places to implement cache coherency.

• Providing efficient compiler support for domain specific languages and library-specific
optimisations by annotating libraries with information to guide optimisation of applica-
tions using the library [61, 93, 118].

• “Decoupling” transformations to introduce pipeline parallelism into sequential programs
by splitting programs into independent threads communicating via FIFO queues [22, 30,
35, 90, 92, 112, 114, 114, 116]. The techniques used range from entirely manual, through
requiring some annotation to fully automatic.

• Double-buffering and other zero-copy interfaces efficiently implement FIFO queues by
queuing buffer pointers instead of copying data [117].

• There has been a long-running dispute over the relative merits of thread-based and event-
based systems [29, 71, 91, 119] based on their impact on programming, ease of program
analysis, and efficiency. Decoupling transformations introduces threads but, on resource-
constrained systems, event-based systems have compelling performance advantages [49].
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Cooperatively threaded code can be transformed to event-based code using variations on
Duff’s device [36, 115] or equivalent compiler transforms.

• Type inference mechanisms such as that found in the Hindley-Milner type system [82]
provides a way of inferring annotations without sacrificing significant expressiveness.

1.3.2 Overview of published work

Paper IV draws on all these influences to provide a way of mapping software defined radio ap-
plications onto heterogeneous multiprocessor systems. The paper describes the design and im-
plementation of a set of extensions to the C programming language that tackle the performance
portability problem by allowing the programmer to lightly annotate their program to indicate
the desired mapping of tasks and variables onto the system. The SoC-C model is of a program
running on a single control processor and performing remote procedure calls to accelerators,
DSP engines and DMA engines. The SoC-C compiler takes care of (radically) restructuring the
program to run efficiently.

SoC-C was a reaction against the dataflow-based stream programming model exemplified by
StreamIt [58]. We chose a sequential communication language instead of a dataflow language
because we found it hard to express global control (i.e., conditionals that span multiple pipeline
stages) over pipeline stages that execute asynchronously with respect to each other. Using de-
coupling to introduce parallelism, gives the ease of expression of global control that imperative
languages provide combined with the pipeline parallelism that stream languages provide.

Several alternative approaches to decoupling programs exist [22, 30, 35, 90, 114, 116]. A
distinctive feature of our approach is that the annotations can indicate that a non-FIFO com-
munication mechanism should be used — we found that this was helpful in avoiding “loss of
decoupling” [18] where parallelism collapses because the start of the pipeline requires results
from the end of the pipeline.

Patent I [103] tackles a problem we identified after some experience of using SoC-C. We
realised that the control processor was becoming a bottleneck: when a task finished on one ac-
celerator, there was an unavoidable delay of 50-60 cycles before the next task in the sequence
was started. Figure 1.4a illustrates this with an example task invocation pattern where the com-
pletion of a first task A triggers an interrupt that causes the control processor to configure and
start a second task B.

Patent I describes an extension of Paper IV that is able to exploit a variety of different sim-
ple task triggering hardware mechanisms to reduce this delay between tasks to a few cycles.
Figure 1.4b illustrates this with an improved invocation pattern where the completion of task A
directly triggers the start of a second task B that had been configured while task A was executing.
The “description of embodiments” section in columns 11–28 of Patent I describes how acceler-
ator interfaces can often be viewed as a FIFO task queue (typically with a modest capacity of
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(a) Unoptimised execution: The Control Processor CP initiates tasks on the data engine DE0 and receives
interrupts when each task completes.

(b) Optimized execution: The Control Processor CP performs setup of task B while task A is running on
data engine DE0. The completion of task A directly triggers the start of task B without the intervention
of CP.

(c) Highly optimized execution of a multiprocessor example using inter-engine event triggering mecha-
nism. Edges between data engines are labelled with the event number that is sent when the source task
completes. The Control Processor CP performs setup of tasks (e)-(j) to run on data engines P, Q and R;
data engines use the event triggering mechanism to allow completion of tasks to directly trigger the start
of new tasks on other engines. The CP only receives one interrupt from the six tasks and the latency
between tasks is reduced to a few cycles (the latency of event signalling and of task startup/shutdown.

Figure 1.4: Illustration of the effect of optimization of task invocations. The control processor
(CP) and each data engine (DE0, P, Q and R) are on the vertical axis and time is on the horizontal
axis. These figures are reproduced from Figures 5a, 5c and 7 in Patent I.
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0–3 pending tasks). Modeling these queues explicitly enables the data queue optimizations in
Paper IV to be adapted to the optimization of task queues.

A synchronous RPC can be viewed as putting an RPC request into a task queue and then
waiting for an RPC request from the accelerator (column 13). This model enables the compiler
to optimize a sequence of synchronous RPCs

by first splitting the RPCs into a sequence of RPC-put/get pairs

then reordering the puts and gets to eliminate the inter-task latency

obtaining the benefits of asynchronous RPCs without the usual programmer burden.

Even with these optimizations, the cost of creating a task queue entry can be significant when
it occurs on the critical path. A further set of optimizations (columns 21–23) describe how the
zero-copy optimizations applied to data queues can also be applied to task queues by further
splitting each of the RPC-put/get operations into two parts.

This exposes the expensive task creation step (RPC_acquireRoom) providing opportunities
for the compiler to reschedule sequences of RPC operations to remove task creation from the
critical path. A key part of these transformations is tracking the data dependencies and the
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number of pending tasks to determine which reorderings are safe to perform and to allow the
RPC sub-operations to be reordered with respect to non-RPC operations.

If accelerators are able to send events to each other when a task completes and to delay
task start until an event arrives, then it is possible to optimize more complex patterns of task
invocation involving multiple accelerators as illustrated in Figure 1.4c (columns 16–19).

The key to implementing such transforms was the realization that many different hardware
mechanisms for task configuration and sequencing can be modelled as FIFOs; that this uniform
model allows extensive optimisation of task creation and task triggering; and that this enables
the use of a broad range of optimizations more normally used for instruction scheduling. One
of the main technical challenges is that the FIFOs are finite (and usually quite small) so it is
essential to reason about how full the FIFOs are relative to their individual capacity in order to
avoid introducing potential deadlock and other problems.

1.3.3 Contributions

The technical contributions of this section include a set of annotations and inference techniques
to define the mapping of an application onto a high-performance, energy-efficient parallel sys-
tem, a set of compiler techniques to implement the annotations efficiently and a unified model
of hardware interfaces that enabled these techniques to be applied to a broad range of different
accelerators in such systems.

In addition to these technical contributions, the work played a key role as part of a commer-
cial system development. From an early stage in the Ardbeg project, the team recognised that
long-term success depended not just on the high performance DSP accelerators but also on the
ease with which the overall system could be programmed. The SoC-C compiler described in this
section was a key part of the overall project. The Ardbeg project was spun out of Arm in 2009
to create “Cognovo Ltd” that specialised in the creation of Software Defined Modems although
SoC-C was not part of that spinout. Cognovo successfully manufactured a chip capable of im-
plementing the 4G LTE standard based on the Ardbeg reference design. Cognovo was acquired
by the Swiss wireless modem company “u-blox” for $16.5M in 2012.

1.3.4 Limitations and further work

One of the major limitations of our work is that SoC-C maintains a clear separation of the coor-
dination and control language (SoC-C) from the language used to program the DSP engines. In
a software defined radio application, each DSP task typically contains considerable data paral-
lelism and may contain some potential pipeline parallelism but the only way for the programmer
to exploit this pipeline parallelism would be to split the tasks into subtasks to expose this poten-
tial to SoC-C. A more unified description of the control language with the DSP language would
expose more optimisation opportunities.
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General Purpose Graphics Processing Units (GPGPUs) have similar characteristics to SDR
systems: they have complex memory hierarchies, multiple processors and are often programmed
using the same techniques of pipeline parallelism and double-buffering. At the time that we
performed the work (2006–2008), users of such systems often struggled with the quantity and
complexity of “boilerplate” code that had to be written to copy data from the main processor
over to the GPGPU, to invoke tasks on the GPU and to wait for the GPGPU to finish. In the-

ory, this is the problem that SoC-C is designed to handle although, in practice, we expect that
SoC-C would, at least, need extensions to express data parallelism to be useful. In the inter-
vening 10 years, OpenCL has been extended with explicit task queues and the SYCL embedded
domain-specific language (EDSL) [60] that enables the programmer to dynamically specify the
dependencies between tasks. Use of SYCL does not enable the rich set of compile-time trans-
formations performed by SoC-C but it has the advantage of not requiring a custom compiler.
Similarly, OpenMP has been extended with better support for expressing task-parallelism such
as explicit tasks and task synchronization [20]. This provides OpenMP with a lot of the expres-
sive power of SoC-C (in addition to the data-parallelism support it already provided) although it
would be useful to add the annotation checking and inference of SoC-C to OpenMP.

Finally, SoC-C is not a fully automatic solution: the programmer must choose the mapping of
tasks and data to the hardware platform. It would be interesting to add a profile-driven mapping
algorithm on top of SoC-C to automatically discover efficient mappings; this would benefit from
SoC-C’s ability to detect invalid mappings.

1.3.5 Conclusions

This section explores the definition of high performance hardware-software interfaces by raising
the level of the interface. The paper and patent in this section of the published work describe
programming language extensions and compiler technology that allow software to exploit the
potential performance of the hardware but, at the same time, provide a high degree of portability.

1.4 Conclusions

This thesis is concerned with defining the hardware-software interface in modern microproces-
sors and makes contributions in two key aspects:

• Creating high quality definitions of the interface resulting in: a methodology for creating
a formal specification of unparalleled scope, applicability and trustworthiness; a method-
ology for formally validating commercial processor pipelines against the formal specifica-
tion; and the public release of the formal specification of a major commercial architecture.

• Defining high performance hardware-software interfaces resulting in a set of language
extensions and compiler techniques for tackling the performance portability problem in
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high performance, energy efficient asymmetric multiprocessor systems used for software
defined radio.

1.4.1 Limitations and further work

The two individual parts of this thesis identified individual limitations. One common limitation
is that all this work was performed at a single company and that company inevitably has certain
preconceptions about the hardware-software interface based on its particular role in the computer
industry and on its business model. For example, a software team with no ambitions for formal
verification might place more value on other aspects of the architecture specification such as
the clarity of the English prose; and performance portability may be more important to the
hardware vendor wishing to sell an upgraded system than it is to a programmer who may be
perfectly content with the previous system.

There are also many other facets of the hardware-software interface that have not been ex-
plored in this thesis. Two key aspects for the future are security and supporting significantly
more parallelism in the hardware-software interface.
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Three papers are presented in this section.
Paper I “Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture”

[98] describes the process of creating a specification and of thoroughly testing the specification.
Paper II “End-to-End Verification of ARM Processors with ISA-Formal” [101] describes a

collaboration with formal verification engineers in Arm’s Processor Design Division to find a
way to formally verify the pipeline of Arm processors against the formal specification.

Paper III “Who guards the guards? Formal Validation of the ARM v8-M Architecture Spec-
ification” [100] describes the use of formal verification tools to formally validate the formal
specification described in Papers I and II.
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Trustworthy Specifications of ARM R© v8-A and
v8-M System Level Architecture

Alastair Reid
Research, ARM Ltd.
first.last@arm.com

Abstract—Processor specifications are of critical importance
for verifying programs, compilers, operating systems/hypervisors,
and, of course, for verifying microprocessors themselves. But to
be useful, the scope of these specifications must be sufficient for
the task, the specification must be applicable to processors of
interest and the specification must be trustworthy.

This paper describes a 5 year project to change ARM’s exist-
ing architecture specification process so that machine-readable,
executable specifications can be automatically generated from the
same materials used to generate ARM’s conventional architecture
documentation. We have developed executable specifications of
both ARM’s A-class and M-class processor architectures that
are complete enough and trustworthy enough that we have
used them to formally verify ARM processors using bounded
model checking. In particular, our specifications include the
semantics of the most security sensitive parts of the processor: the
memory and register protection mechanisms and the exception
mechanisms that trigger transitions between different modes.
Most importantly, we have applied a diverse set of methods
including ARM’s internal processor test suites to improve our
trust in the specification using many other expressions of the
architectural specification such as ARM’s simulators, testsuites
and processors to defend against common-mode failure. In the
process, we have also found bugs in all those artifacts: testing
specifications is very much a two-way street.

While there have been previous specifications of ARM pro-
cessors, their scope has excluded the system architecture, their
applicability has excluded newer processors and M-class, and
their trustworthiness has not been established as thoroughly.

Our focus has been on enabling the formal verification of
ARM processors but, recognising the value of this specification
for verifying software, we are currently preparing a public release
of the machine-readable specification.

I. INTRODUCTION

Recent years have seen an increasing focus on verification of
machine-code programs [1], compilers [2], operating system
kernels [3], hypervisors [4] and processors [5]. These activ-
ities rely on having correct specifications of the meaning of
machine-code and one of the first steps in such verification
efforts is creating a specification of the computer architecture
of interest.

Three key properties of a processor specification are its
scope, its applicability and its trustworthiness.

The scope of a specification is the set of features that
one can reason about. For example, a certified compiler
such as CompCert [2] only requires a specification of those
instructions that the compiler could generate. But in order to
reason about arbitrary user-mode binaries, one would need
a specification of the entire instruction set. And to reason

about Operating System code, the scope of the specification
is dramatically increased and includes a specification of in-
structions for changing execution mode (e.g., entering/leaving
supervisor mode), interrupt handling mechanisms, page faults,
mechanisms for changing memory protection, etc. To date,
all formal specifications of the ARM architecture have been
targetted at reasoning about user-mode programs and have not
included a specification of these system-level features.

The applicability of a processor specification is whether the
specification applies to the target processor. Most changes to
architecture specifications are backward compatible extensions
and so most proofs about code for one architecture version are
valid when executing that code on a processor implementing
a later architecture version. But architecture revisions also
remove instructions, add restrictions or change functionality
so proofs based on the ARMv6 specification (1996) or the
ARMv7-A specification (2007) are not necessarily sound
for ARMv8-A (2013). This is especially true for ARM’s
Microcontroller architecture which has a completely different
exception model from ARM’s mainstream architecture.

The trustworthiness of a processor specification is whether
the specification can be trusted to reflect the behaviour of all
processors implementing the specification. The ARMv7 HOL
specification of Fox and Myreen [1] is noteworthy for the de-
gree of testing performed: systematically testing all user-mode,
integer instructions against three actual processors. This is a
critical step and must be repeated against as many expressions
of the architecture as possible (processors, implementations,
testsuites, etc.) and must be used to test the full scope of the
specification.

The effort required to create a specification increases with
the desired scope, applicability and trustworthiness of the
specification. Worse, since ARM regularly releases extensions
and corrections to the architecture, the challenge of retaining
applicability to current processors is more of a continuous pro-
cess rather than a one-off sprint. Our solution to this problem
has been to change ARM’s existing architecture specification
process so that machine-readable, executable specifications
can be automatically generated from the same materials used
to generate conventional documentation.

This paper describes our work over the last 5 years on trans-
forming the ARM processor specifications from documents
intended for human consumption into trustworthy machine-
readable specifications.

Creating this specification required understanding and cod-
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ifying the precise meaning of various notations used in the
documentation; inferring the lexical, syntax, type rules and
semantics from examples in the documentation; making the
specification conform to these rules; filling gaps in the original
specification; and creating a frontend and several backends to
allow the specification to be executed.

Using ARM’s specifications directly addresses the issues
of scope and applicability but the resulting formal part of
the specification is just one part of the whole specification
and, like any large specification, may contain bugs wrt the
informal parts of the specification or with the architects’
informal intent. To address the issue of trust, we have used
a diverse set of testing methodologies to compare against
as many different expressions of the specification as possi-
ble: testsuites, simulators and processors. We have simulated
billions of instructions and used bounded model checking
to compare the RTL of five ARM processors currently in
development against the specification [6]. Bugs found in the
process have been fixed in the master copy of the specification
from which ARM’s architecture specification documents are
generated. This process has the effect of distilling more of
the architectural intent into the formal part of ARM’s official
specification.

The structure of this paper is summarized in Figure 1 which
gives an overview of the specifications, tools, verification IP,
and testing we created or used in the process of this project.
Section II gives a brief overview of the structure and content
of the different ARM Architectures. Sections III and IV
describe the steps we took to convert ARM’s existing informal
documentation into machine-readable, executable, trustworthy
specifications of the ARM-v8A and ARM-v8-M architectures;
Section V discusses related work; and Section VI concludes.

This paper deals with the Instruction Set Architecture (ISA),
Exceptions, Memory Protection/Translation and Security. It
does not deal with multiprocessor features and, in particular,
the Memory Ordering Model [3], [7], [8]. And it does not deal
with debug or performance monitoring features.

II. ARM SPECIFICATIONS

ARM Architecture specifications have two main sections: Ap-
plication Level Architecture and System Level Architecture.

The Application Level Architecture (aka the Instruction
Set Architecture or ISA) consists of all instructions and all
user-mode registers (the integer and floating point register
files, condition flags, stack pointer and program counter). ISA
specifications consist of instruction encodings, matching rules
to match encodings to opcodes and the semantics of instruction
execution.

The System Level Architecture defines Memory Translation
and Protection, Synchronous Exceptions (e.g., page faults
and system traps), Asynchronous Exceptions (e.g., interrupts),
Security (e.g., register banking and access protection of reg-
isters), and System Registers and System Operations (which
are used to control and read the status of all the system-
level features), In other words, the facilities needed to support
Operating Systems, Hypervisors and Secure Monitors.

The ARM architecture comprises three main processor
classes: “A-class” processors support Applications (character-
ized by having an operating system that uses address transla-
tion to provide virtual memory); “R-class” processors support
Real-Time systems that cannot handle the timing variability
associated with virtual memory and use memory protection
instead; and “M-class” microcontrollers are optimized for
programming interrupt-driven systems in the C language. The
A-class specification consists of two parts: AArch32 supports
32-bit programs and is generally backward compatible with
ARM’s traditional architecture; and AArch64 which supports
64-bit programs.

The A- and R-class architecture [9] share the same ISA and
exception model but have different memory protection/trans-
lation models. The M-class architecture [10] has a subset of
the A-class ISA but has significant differences from A-class
at both the Application Level and System Level.

A. ISA Differences between A/R- and M-class

The M-class architecture only supports the Thumb R© (aka
“T32”) variable-length instruction encodings whereas the A/R-
class architecture also supports the A32 and A64 encodings.

Much more significantly though, the specifications identify
certain instruction encodings as UNPREDICTABLE for which
a processor is free to do anything that can be achieved at the
current or a lower level of privilege using instructions that
are not UNPREDICTABLE and that does not halt or hang the
processor or parts of the system.

In the M-class architecture, many of the instruction encod-
ings which access the stack pointer (R13) or the program
counter (R15) are UNPREDICTABLE but the same encodings
are well defined in the A/R-class architecture. This is a
significant difference — it would be unsound to use the
A-class specification to reason about Thumb machine code
intended for an M-class processor.

More broadly, when performing formal verification, it is
essential to ensure that the specification version being used
matches the architecture version supported on the target pro-
cessor because later specifications are almost but not entirely
backward compatible. This is obvious but easily overlooked.

B. System Differences between A-, R- and M-class

The R/M-class architectures support memory protection based
on setting attributes and protection for a small number of
contiguous memory regions whereas the A-class architecture
supports both address translation and memory protection for
a large number of memory pages.

M-class processors automatically save the callee-save reg-
isters on the stack on taking an exception whereas A/R pro-
cessors require registers to be saved in software. This allows
M-class processors to respond more quickly to interrupts and
also allows exception handlers to be written in plain C with
no assembly language or special calling conventions. This
has a large impact on the architecture specification since it
introduces many corner cases associated with the effect of
triggering memory faults while saving or restoring registers.
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Bounded Model Checker §IV-D

ARM CPU RTL

Fig. 1: Overview of specifications, tools, verification IP and testing. This flow was applied separately to the v8-A specification
and to the v8-M specification. Section numbers indicate which section primarily discusses each aspect.

M-class processors have an orthogonal set of 8 execu-
tion states composed of combinations of three properties:
privileged/unprivileged, secure/non-secure and handler/thread.
A/R-class processors have a more traditional set of nested
execution states EL0, EL1 (supervisor), EL2 (virtualization)
and EL3 (secure monitor) with increasing levels of privilege
at each level.

A consequence of these differences is that the M-class
system specification is completely different from the A/R-class
system specification.

III. EXECUTABLE SPECIFICATIONS

We faced five major challenges in turning ARM’s
documentation-based specification into an executable
specification: (1) Scale: ARM specifications are very
large; (2) Informality: ARM specifications are written in
“pseudocode”; (3) Gaps: key parts of the specification only
existed in natural language specification; (4) System Register
Specifications; and (5) Implementation Defined Behaviour.

A. ARM Specifications Are Large

One of the main challenges in creating machine-readable
specifications of the ARM Architecture is the scale of the
problem. The A and M-class architectures together consist
of over 6,000 pages of documentation, 1,570 instruction en-
codings, over 50,000 lines of pseudocode, over 4,500 system
register fields grouped into 772 system register, and 112
system operations. To this specification that ARM publishes,
we added an additional 8,190 lines of support pseudocode
which were required to make the execution executable. (A
more detailed breakdown of the size of the specification is
given in table 2a and table 2b.)

B. Pseudocode

A secondary challenge in creating a machine readable spec-
ification was that the bulk of the specification is written in
what the ARM documentation refers to as “pseudocode”.
For example, the T32 CMP instruction is specified with the

following encoding diagram and pseudocode in the v8-A
architecture. (The same instruction is UNPREDICTABLE in
v8-M if “m == 13”.)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 type Rm

CONDITIONAL
n = UInt(Rn); m = UInt(Rm);
(shift t, shift n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE;
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), ’1’);
PSTATE.<N,Z,C,V> = nzcv;

Fortunately for us, this “pseudocode” was fairly complete
and it appeared possible to implement a conventional parser,
typechecker and interpreter for pseudocode (a tool we call “Ar-
chitecture Explorer”). Through a process of experimentation,
discussion and negotiation with the architecture designers, we
were able to infer consistent indentation rules, precedence
rules, a type-system and semantics and to clean up the specifi-
cations to use the resulting simpler, more consistent language
that is now internally referred to as ARM Specification Lan-
guage (ASL).

At a high level, ASL is an indentation-sensitive, imperative,
strongly typed, first-order language with dependent types (to
reason about length of bit vectors), type inference, exceptions,
enumerations, arrays, records, no pointers. Unusually for an
otherwise simple language, ASL allows overloading of array
syntax for function calls: the use of “R[m]” and “R[n]”
on lines 4 and 5 of the example above are both function
calls. This syntactic sugar provides an initial impression that
registers (and memory) are simple arrays, while allowing one
to dig deeper and understand register banking, virtual memory,
etc. We refer readers to Fox and Myreen [1] or to ARM’s
specification [9, Appendix G] for a more detailed description
of ASL.

The initial cleanup of syntax and type errors resulted in
changes to approximately 12% of the lines of code but,
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ARMv8-A ARMv8-M
AArch32 AArch64 Shared Support Spec Support

Instrs. 18318 5757 4998
Integer 23 352 246
Float Point 1179 953 76
Exceptions 1474 1611 235 781
Registers 310 446 398 2011 461
Memory 1584 1169 393 369 481
Debug 675 537 1103
Instr. Fetch 199 367 128
Test Monitor - - - 1323 - 1893
Misc. 1647 1137 2984 1678 415 1434

Total 24315 10657 5489 3200 9898 4990

(a) Size of ASL specification (lines of code)

v8-A v8-M

Registers 586 186
Fields 3951 622

Constant 985 177
Reserved 940 208
Impl. Defined 70 10
Passive 1888 165
Active 68 62

Operations 112 10

(b) Size of System Register specification

Fig. 2: Size of ARM Specifications

since ARM specifications are extensively reviewed before
release, these were all fairly low-grade errors: they confused
automatic tools but few were likely to confuse a human reader.
The process of cleaning up the specification also uncovered
a number of instances of “implement by comment” where
comments were used instead of pseudocode: these parts had to
be rewritten before the code could be executed. These simple
comments often turned out to be surprisingly complicated and
the process of writing code would identify corner cases or the
need to modify other parts of the specification.

C. Gaps in the specification

Some parts of the architecture were only defined in English
and the information to implement them was typically scattered
throughout the documentation. An example is the specification
of the “top-level” step of fetching an instruction, decoding
and executing it, and incrementing the program counter was
not written in ASL and the description was scattered across
the specification document. The exact specification of this
step took some time to develop as it includes details like
dealing with page faults that occur during instruction fetch, not
incrementing the PC after a branch instruction or exception,
conditional execution of instructions and its interaction with
UNDEFINED encodings, and testing for pending interrupts.

D. System Register Specification

The major negative surprise of this project was how hard it
was to specify something as apparently simple as a register.

The A-class architecture specification comprises 586 system
registers which are used to read the status of and to control
the behaviour of the processor (such as whether the MMU or
cache is turned on) and to perform operations such as flushing
the cache or invalidating the TLB. The main properties of these
registers are captured in the architecture specification by tables
specifying the opcode to access each register, its name, size
(32/64-bits) whether it is read-only and the reset value of the
register. For each register, there is a description consisting of a
register diagram which identifies the name and extent of any

used bits in the register. And each such field of contiguous
bits has a natural language specification.

The challenge in creating a machine-readable specification
for system registers is that different fields within the register
can behave in several different ways. After some experimen-
tation we settled on identifying five major types of field.
i) Constant fields have an architecture defined value and cannot
be changed.
ii) Reserved fields are not used in the current version of
the architecture but could be assigned a meaning in future
versions of the architecture. These are like constant fields but,
to maintain forward compatibility, software should not assume
that the field is constant and should avoid changing the value
of that field.
iii) Implementation Defined fields have an implementation
defined value that programs may read to determine whether
the processor has some ISA or system level feature.
iv) Passive fields behave like a global variable and simply store
the value last written to the field. The value written often
has a significant effect such as enabling address translation
but this effect is completely captured by the ASL functions
implementing the affected behaviour.
v) Active fields do not behave like a global variable: reading
the field may not see the last value written to the field; writing
to the field may be disabled by the value of some other register;
etc. These are used for everything from system timer registers
(which decrement every cycle) to allowing a hypervisor to
intercept interrupts targetted at the guest operating system.

Fields that are Constant, Reserved, Implementation Defined
or Passive are easy to describe completely and are described in
a simple table-based format but 68 of the fields of system reg-
isters are Active fields whose behaviour can only be captured
by writing ASL getter and setter functions to implement the
natural language specification. The process of implementing
registers with active fields proved to be quite error prone as
the behaviour of the fields was rather subtle.

It was also hard to find the correct design point. We chose
to identify just 5 classes of field but we could have identified
further common patterns within the Active class. For example,
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there are some pairs of registers that have complementary ef-
fects such as enabling and disabling exceptions. If this pattern
is a one-off, it is probably best described as an Active register
but if the pattern occurs in several pairs of registers, then the
argument for recognizing it as a new class of field becomes
stronger. As the number of tools using the system register
specification grows, we expect that we will identify a number
of patterns that are useful to recognise explicitly because that
enables tools to make more use of the specification without
having to embed the ASL parser/interpreter.

One significant aspect of system registers not yet captured
in the executable specification is what Lustig et al. [8] call a
memory transistency model which captures places where the
specification allows reordering of writes to system registers
with respect to other instructions and requires insertion of
instruction barrier instructions (ISB) to restrict.

E. Implementation Defined Behaviour

The specification allows for some implementation defined
behaviour such as whether a particular feature is implemented
or the number of memory protection regions supported. This
behaviour is often specified by “stub functions” returning
booleans or an enumerated value and with a natural language
definition. We had to implement these stub functions before
we could execute the specification. In most cases, these feature
test functions could be implemented by testing a corresponding
implementation defined field.

F. Executable Specification

After creating all the tooling, bugfixes, etc. described above,
there were some further steps required to make the specifi-
cation executable so that it could be tested. We had to add
additional infrastructure such as generating decode trees for a
set of encodings to identify which instruction to execute; ELF
readers to load test programs into memory; a physical memory
implementation which allocates pages of memory on demand.
and breakpoint and trace facilities to use when debugging.

We also introduced a continuous integration flow where ev-
ery specification change runs regression tests. This was critical
for confining new code to the ASL subset of pseudocode.

G. Machine Readable Specifications

Our primary goal in doing the above was not to make the
specification executable but, rather, to improve its quality so
that the specification is useful to many potential users. To
support these uses, we generate a variety of machine-readable
outputs.
i) IP-XACT is a standard XML-based format for describing
registers in a chip [11]. It is used by debuggers needing to
view or change the value of a register.
ii) Callgraph summaries are convenient summaries of the
function calls and variable accesses performed by each in-
struction and function in the specification. One use of these
summaries is in generating a summary of the list of exceptions
that an instruction can raise — for inclusion in documentation.
iii) Abstract Syntax Trees are a complete dump of Architecture
Explorer’s internal representation after typechecking. We have

provided these to the University of Cambridge REMS group
who are in the process of transforming them into a form
suitable for formal verification of machine-code programs.

IV. TRUSTWORTHY SPECIFICATIONS

ARM spends considerable effort on reviewing specifications. It
also benefits from feedback from users of the specifications:
processor designers, verification engineers, implementers of
simulators, compiler writers, etc. Nevertheless, the sheer size
of the specification made it unlikely that the specifications are
bug-free. This was especially true of the relatively fresh v8-M
specification since it had not yet had the benefit of feedback
from users of the specification.

This Section describes the steps we have taken to test the v8-
A and v8-M specifications using testsuites, random instruction
sequences, information flow analysis and using bounded model
checking to compare against the Verilog implementation of
processors. One of the recurring themes of this project was
that this testing process improves the specification and our
trust in the specification — but it also improves the tools,
verification IP, etc. that is being used to test the specification
which creates a virtuous cycle of improving any other uses of
those tools and artifacts.

A. Using ARM Processor testsuites

ARM performs extensive testing of its processors and simu-
lators (it is estimated that more than 80% of the engineering
effort of designing a new processor is spent on testing the
processor). One part of this testing process is use of ARM’s
Architecture Validition Suite (AVS) which consists of pro-
grams that test the architectural conformance of individual
instructions, memory protection, exception handling and all
other aspects of the architecture. Excluding multiprocessor and
debug tests, the AArch64 AVS consists of over 11,000 test pro-
grams with a combined runtime of over 2.5 billion instructions;
the M-class AVS consists of over 3,500 test programs with a
combined runtime of over 250 million instructions. Almost all
of these tests were considered to be free of assumptions about
instruction timing or implementation defined behaviour. (ARM
has a large number of other tests which were less appropriate
to run because they are aimed at testing micro-architectural
performance optimizations in particular processors.)

Using ARM’s official Architecture Validition Suite has some
significant advantages: the suite is very thorough, checks many
corner cases, and has good control and data coverage of
the architecture; the suite is self-checking: each test prints
“PASSED” or “FAILED” when it runs; and, since the purpose
of the tests is to test processors, it was possible to compare the
behaviour against actual processors for additional confidence.
The primary disadvantage of using the AVS was that the
tests are “bare metal” tests that exercise the System Level
Architecture and require a large test harness to run.

As we started using Architecture Explorer to develop new
architecture extensions (such as the new security features of
v8-M), we encountered a chicken-and-egg problem: the AVS
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is extended with new tests only once the architecture specifi-
cation is available but we were still writing the specification.
Worse, v8-M is not entirely backward compatible with the
previous architecture version so we could not even run the old
tests. This led us to use a hybrid approach: we temporarily
created a modified specification supporting the old memory
protection design so that we could use the old tests; and we
created a temporary test suite to test the new security features
of v8-M (see Section IV-C) before the official test suite was
developed. Once updated AVS tests became available, we
switched to using the official test suite.

1) Programmable Monitor and Stimulus Generator: Part
of the development of every ARM processor is creating a test
harness which allows the AVS to be run. This test harness
consists of a programmable monitor and stimulus generator
that allows programs to monitor their own behaviour at a very
low-level. The test monitor design dates back to the earliest
days of ARM and each successive architecture extension
typically adds new test features.

The monitor consists of 177 memory mapped registers of
which 45 are Active. The main features of the test monitor are
(i) Console FIFO for writing ASCII text to log file.
(ii) Memory attribute monitors which record the attributes of
memory accesses in a given range of addresses. This allows
test programs to verify that the MMU/MPU is correctly asso-
ciating attributes such as cacheability of an access with each
address. These checkers are repeated for each bus interface.
(iii) Memory abort generators to trigger a bus fault response
if the processor accesses a specified range of addresses.
(iv) Interrupt generators to test triggering, prioritization and
nesting of interrupts.
(v) Reset generators to schedule resets.

2) Optimizing the simulator: During this testing process,
we slowly built our capability from being able to execute
one instruction to being able to execute most usermode in-
structions, to being able to execute entire tests and then entire
testsuites. As we did so, we were increasingly limited by the
performance of our interpreter which initially ran at a few
hundred instructions per second. Over time, we have optimized
this in a variety of ways increasing performance to 5kHz (v8-
A) and 50kHz (v8-M). The main optimizations applied are: (i)
Memoizing a few critical functions associated with the current
configuration or execution state (this has not been yet been
applied to v8-A); (ii) Implementing a few critical arithmetic
functions as builtin primitives even if they can be defined
in ASL; (iii) Creating a C++ code generator and runtime
(including ELF reader, etc.).

3) Testing the specification: One of the issues found while
testing the specification initially manifested as a failing AVS
test. On closer inspection, we found a mismatch between
the English text and the pseudocode and that the test had
originally followed the pseudocode and ARM’s reference
simulator followed the English text. This mismatch had been
“fixed” by changing the test to match the simulator. Consulting
the architects, we learned that the pseudocode was correct and

the English text was wrong and so the English text, the test
and the simulator were fixed to match the architects’ intent.

The pass rate of our specifications on the AVS is summa-
rized in Table I. We have achieved a 100% pass rate for the
v8-A and v8-M ISA tests and for the v8-M System tests. For
the v8-A System tests, there remain some failing tests in areas
related to interprocessing (switching between 32-bit and 64-
bit modes) and prioritization of multiple exceptions within the
same instruction. These results omit debug and multiprocessor
tests which are just under 50% of the total number of tests.

ARMv8-A ARMv8-M

ISA
Integer 100% 100%
Floating Point 100% 100%
SIMD 100% 100%

System
Exceptions 100% 100%
Memory 99% 100%
Interprocessing 98% -

TABLE I: Pass rate for AVS testsuite

4) Testing the testsuite: Testing the specification with a
testsuite has the side-effect of testing the testsuite. We found
two classes of problems in the process of diagnosing test
failures. The first is that a test may depend on some property
not guaranteed by the architecture but which had been true in
every tested processor. For example, a test might check that a
reserved field of a register is always zero and will then fail on
later versions of the architecture. Secondly, many of the M-
class AVS tests depended on UNPREDICTABLE behaviour
but this had not been observed before because, in practice,
UNPREDICTABLE behaviour can depend on the particular
pipeline state when an instruction runs.

To improve testing of the AVS, we extended the interpreter
to collect line coverage information as it executes. A rare
example of a coverage hole we found was in a floating point
test which tested with inputs that produced the result +0.0 but
did not test with inputs that produced the result −0.0 — with
the result that one of the branches associated with rounding
was not being exercised. The AVS development team now
routinely measure the architectural coverage of testsuites.

B. Random Instruction Sequence Testing

Random Instruction Sequence (RIS) testing is a complemen-
tary technique to the directed testing of using hand-written
tests based on generating random sequences of instructions.
ARM’s RIS tool [12] uses templates that specify the desired
distribution of instructions, the likelihood of reuse of a given
register, etc. Automatically generating random tests is different
from hand-writing tests because it requires an accurate simula-
tor to define the correct behaviour of a test. Also, because RIS
generates random sequences of instructions, it is necessary to
run the same test on multiple systems (processors, simulators
or the specification) and compare execution traces. So at least
two models are needed to develop RIS tests.
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We were able to use the executable specification as part
of the process for testing new RIS tests by extending the
simulator to generate a trace and extending the existing trace
comparision script to accept those traces. This process was
especially useful for the v8-M specification because the v8-M
support in ARM’s reference simulator was new and had not
been fully debugged. Using RIS to test the simulator against
the executable specification was an effective way of testing
the RIS tests, the simulator and the specification.

This process was able to uncover subtle errors in the
specification. For example, v8-M’s new security features splits
some of the system registers into two banked registers –a
non-secure register and a secure register– and the appropriate
register is automatically accessed depending on the current
security mode. But instructions that switch between secure
and non-secure registers start in one mode and end in a
different mode and the normally convenient automatic banking
mechanism obscures exactly which of the two registers is
being accessed. RIS testing found an error in the specification
of the Test Target (TT) instruction which queries the security
state and access permissions of a memory location.

C. Information Flow Analysis for v8-M

The most significant new feature of the v8-M microcontroller
specification is a set of security extensions to enable secure
Internet of Things applications.

To improve confidence in both the extensions and in the way
they were expressed in the ASL specification, we modified the
interpreter to generate dynamic dataflow graphs on which we
could perform information flow analyses. Most of the analyses
performed can be characterized as a non-interference property:
ensuring that non-secure modes cannot see secure data and that
non-secure data can only influence secure code in safe ways.

An example scenario tested in this process involved in-
formation leaks via interrupts. Interrupts automatically save
integer registers on the stack of the interrupted code and zero
the integer registers but, in order to keep interrupt latency
low, floating point registers are lazily saved on the stack only
when/if the interrupt handler uses a floating point instruction.
We wanted to ensure that lazy FP state preservation did not
introduce security holes. We wrote tests that iterated over all
combinations of initial mode, final mode, whether FP registers
had been modified and scanned the dynamic dataflow graph
for information leaks.

This form of testing caught two classes of bugs. First, it
caught bugs in how the architecture specification implemented
the architectural intent — resulting in fixes to how the speci-
fication was written. Second, and more importantly, it caught
bugs in the architectural intent by identifying potential security
attacks that had not been considered before.

D. Bounded Model Checking of Processors

We have been using both the v8-A and the v8-M architecture
specifications to perform bounded model checking of pipelines
for processors currently under development at ARM [6]. This
has primarily focused on verifying the ISA-implementation

parts of the processor, not the memory system, security
mechanisms or exception support. This process has been very
effective at detecting bugs in various stages of processor
development. But, besides verifying processors, it has another
important side-effect of performing a very thorough check
that the architecture specification and our tooling agrees with
how the processor implementors interpret the specification.
We found no errors in the published part of the specification
in this process but we did find a rather subtle bug in our
understanding of conditional UNDEFINED encodings and
UNPREDICTABLE encodings.

The M-class specification requires that conditional execu-
tion of an UNDEFINED instruction behaves as a no-op if the
condition does not hold and we had assumed that the same was
true for UNPREDICTABLE instructions. During verification
of a processor, the model checker detected an apparent bug
that involved a conditional UNPREDICTABLE encoding but,
through discussion between the processor designers and the
architects, we learned that there had been a recent clarifi-
cation of the architecture which said that conditional UN-
PREDICTABLE encodings are UNPREDICTABLE even if the
condition does not hold.

This error in our interpretation of the specification had
not been detected by testing because it is very, very hard to
construct useful tests of the UNPREDICTABLE instructions
because they are almost entirely unconstrained and can branch,
change registers, trigger exceptions, etc.

E. Summary

Large specifications are as likely to contain errors as large
programs so we have used many different approaches to test
the specifications. In the process, we realized that although
ARM publishes an official specification, the full requirements
are really distributed around many different places in the
company: the AVS suite, the reference simulator ARM uses
for processor verification, and the processor implementations.
The act of testing all these different instantiations of the
specification against each other has the effect of centralizing
this specification in a single location.

V. RELATED WORK

The most closely related work is that of Goel et al. [13]
who have created an executable specification of many key
parts of the x86-64 ISA and system architecture including
paging, segmentation and both user/supervisor levels. Their
model has been verified against real processors using the Pin
binary instrumentation tool and they have added a syscall
emulation layer to let them run real programs including
(amusingly) a SAT solver. This is a monumental piece of
work that sets the standard against which other architecture
specifications should be judged. Despite the similarities, our
different project priorities have led to many differences: (1)
They have a specification of user and supervisor levels, we
also have a specification of hypervisor and secure monitor
levels. (2) They have used their specification to formally
verify software using theorem proving, we have used our
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specification to formally verify hardware using bounded model
checking. (3) They have implemented syscall emulation to let
them use user-level programs as tests, we have implemented a
test monitor and debugged the EL2/EL3 levels to allow us to
run ARM’s Architecture Conformance Suite which explores
the dark corners of the architecture by running bare-metal
programs. (4) They have focussed on modelling the x86-64
64-bit ISA, we have modelled the A64, A32 and T32 ISAs.
(5) They have consulted processor designers to understand
Intel’s architecture specification document, we have had all
our bugfixes and clarifications reviewed by ARM’s architects
and incorporated into ARM’s official architecture specification
document.

The most closely related ARM specifications are the
Fox/Myreen ARM v7-A ISA specification in HOL [1] and
Flur et al.’s ISA and concurrency specification in Sail [3] both
of which were tested against actual processors using random
and directed tests (8400 tests in Flur et al., 281,307 tests in
Fox/Myreen). In addition to user-mode instructions, our speci-
fication covers both the ARMv8-M architecture and the larger
ARMv8-A architecture, includes floating point, Advanced-
SIMD and the System Level Architecture. We have tested the
entire specification in multiple ways and with a larger range
of values and simulated more than 2.5 billion instructions in
the process. And we have used a model checker to compare
the ISA specification against actual implementations for all
instructions, all execution modes, all integer inputs and a
subset of floating point inputs [6].

Shi [14] extracted the ISA pseudocode from ARM’s v6
Architecture Reference Manual, automatically translated the
code to Coq and used that to verify that the ARM model in
the SimSoC simulator written in C faithfully implemented the
Coq specification. This is an impressive piece of work, and it
would be interesting to repeat their work using our new, more
trustworthy specification or to extend their proof to cover the
system level architecture.

The other major ARM ISA specification that we are aware
of is embedded in the CompCert compiler and is used in
the proof that the compiler faithfully translates the input C
program to ARM assembly code. This specification is limited
to a subset of the user-mode ARMv6 specification and there
is no published statement of how it was validated.

Hunt created a specification of the FM8501 processor [5]
and used it to formally verify the processor. The process of
formal verification greatly increases the trust we can place
in the corresponding parts of the specification because it
ensures that all the corner cases in both the processor and
the specification have been explored.

More broadly, anyone wrestling with a large specification is
obligated to find ways to verify that the formal specification
captures the (informal) requirements.

VI. CONCLUSIONS

Historically, ARM’s specification efforts have focused on a
single set of products: the ARM Architecture Reference Man-
uals [9], [10]. However, there are many more potential uses of

the specification if the specification is delivered in a flexible,
machine-readable format – for example, formal verification
of hardware and software, tools that manipulate instruction
encodings, debug tools, creating hardware verification tests.
Traditionally, all these other users manually transcribe parts of
the specification into some other notation: HOL, C, Verilog,
spreadsheets, etc. This process is laborious and error-prone
but, worse, it is fragmented: bugfixes or clarification found by
one group are not necessarily propagated to other groups or
to the master specification. Our primary goal in this project
was to enable formal verification of ARM processors against
the specification. But, by supporting as many of these uses
as possible, we created a virtuous cycle where bugfixes or
improvements were incorporated into the central specification
so that all users benefit from bugfixes as well as to amortize
the development effort across many uses.

This paper describes the steps required to create trustworthy
specifications of the full v8-M and v8-A architectures includ-
ing the instruction set architecture, memory protection and
translation, exceptions and system registers. While checking
that a formal specification captures the architects’ informal
intent is an unending process, we believe that our specification
is the most trustworthy and complete system specification of
any mainstream processor architecture.

We are currently working with Cambridge University on
a public release of our specification suited to verification of
machine code programs.
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Abstract. Despite 20+ years of research on processor verification, it
remains hard to use formal verification techniques in commercial proces-
sor development. There are two significant factors: scaling issues and
return on investment. The scaling issues include the size of modern
processor specifications, the size/complexity of processor designs, the
size of design/verification teams and the (non)availability of enough for-
mal verification experts. The return on investment issues include the
need to start catching bugs early in development, the need to continue
catching bugs throughout development, and the need to be able to reuse
verification IP, tools and techniques across a wide range of design styles.

This paper describes how ARM has overcome these issues in
our Instruction Set Architecture Formal Verification framework “ISA-
Formal.” This is an end-to-end framework to detect bugs in the data-
path, pipeline control and forwarding/stall logic of processors. A key
part of making the approach scale is use of a mechanical translation of
ARM’s Architecture Reference Manuals to Verilog allowing the use of
commercial model-checkers. ISA-Formal has proven especially effective
at finding micro-architecture specific bugs involving complex sequences
of instructions.

An essential feature of our work is that it is able to scale all the
way from simple 3-stage microcontrollers, through superscalar in-order
processors up to out-of-order processors. We have applied this method
to 8 different ARM processors spanning all stages of development up to
release. In all processors, this has found bugs that would have been hard
for conventional simulation-based verification to find and ISA-Formal is
now a key part of ARM’s formal verification strategy.

To the best of our knowledge, this is the most broadly applicable
formal verification technique for verifying processor pipeline control in
mainstream commercial use.

1 Introduction

Modern microprocessor designs apply many optimizations to improve perfor-
mance: pipelining, forwarding, issuing multiple instructions per cycle, multiple
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independent pipelines, out-of-order instruction completion, out-of-order instruc-
tion issue, etc. All of these optimizations are supposed to be invisible to the
programmer in a uniprocessor context: the overall effect should be the same as
executing instructions one at a time in program order. But each of these opti-
mizations introduces corner cases that potentially change the behaviour and the
different optimizations interact with each other in complex ways.

For example, in a pre-release version of one of ARM’s dual-issue processors,
there was a defect in the inter-pipeline forwarding control logic that resulted in
an instruction reading its input value from the wrong place if the instruction was
preceded by a conditional instruction whose condition did not hold (and whose
results should therefore not be used as inputs). The shortest instruction sequence
which could demonstrate this defect was 5 instructions long. The particular set
of instructions that could trigger the defect was fairly narrow because it was
necessary that the instructions used particular parts of the pipeline, and the
instruction sequence had to be aligned such that the first of these instructions
executed in pipeline 0.

For traditional simulation-based verification to detect this defect you would
need a detailed understanding of the micro-architecture of that particular proces-
sor, of the corner cases caused by the forwarding paths and of the kinds of errors
one is likely to make in implementing forwarding control logic. Creating such
tests is not only hard and unreliable, but it is also expensive because the tests
would be specific to the particular micro-architectural choices in a processor and
different tests must be created for each processor.

This paper describes the “ISA-Formal” verification technique that we have
developed at ARM for verifying that processors correctly implement the Instruc-
tion Set Architecture (ISA) part of the architecture specification. Our method
uses bounded model checking to explore different sequences of instructions and
was able to detect the above defect prior to release of the RTL to manufacturers.

The effectiveness of ISA-Formal is important to its adoption within ARM
but it is not the most important requirement we had to satisfy in order to make
formal verification a useful part of ARM’s processor development flow. Before
ISA-Formal could be deployed widely within ARM, we had make it work within
the constraints of commercial processor development:

(1) Processor development takes a long time (2 years or more) and it is impor-
tant to be able to be able to detect bugs at all stages of processor development.
We have applied ISA-Formal all the way from incomplete designs that still con-
tain bugs through to complete, heavily tested designs.

(2) Verifying a processor takes longer than design: the long tail of processor
development is developing new tests for the processor and fixing any bugs. It
is important that useful results can be obtained even in the early stages of
verification — before the complete test infrastructure has been developed. ISA-
Formal is able to find bugs involving instructions for which we do not have a
specification; all we need is a specification of any instruction whose result could
be affected by the bug.
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(3) Verification teams work in parallel with design teams so it is important
that verification teams are able to continue searching for new bugs even when
there are multiple outstanding bugs waiting to be fixed. Some bugs can take
months to be fixed if they are not critical to immediate project milestones. ISA-
Formal is able to work round known bugs in the processor.

(4) Any verification technique requires significant investment so reusability
not only of the technique but also of the infrastructure is critical. We are able
to reuse the tools across ARM v8-A/R (Application/Real-time) class and across
v8-M (Microcontroller) class processors. The only part that needs to be cus-
tomized for each processor is the Verilog abstraction function that extracts the
effective architectural state from the micro-architectural state of a processor.
This portability has been a great benefit while developing the technique because
it allowed several processor teams to pool resources: one team worked on how to
verify floating point instructions while another worked on branches and another
worked on load-store instructions.

(5) Modern processor architectures and modern processors are large: the
ARM v8-A ISA specification is over 2500 pages long, the v7-M ISA specification
is over 600 pages long (almost half the length of the entire specification). It
is important that verification techniques scale both in terms of human effort
and computing resources. We have written a tool to automatically translate
the source of the ARM Architecture Specifications to Verilog; and we split the
verification task into thousands of small properties allowing effective use of large
compute clusters.

We demonstrated these properties in three small-scale trials on different
processors and have since refined and applied the technique on five further
ARM processors: checking almost the complete instruction set architecture of
these processors ranging from simple 3-stage microcontrollers up to sophisti-
cated 64-bit out-of-order processors. ISA-Formal is now a key part of ARM’s
formal verification strategy.

We characterise our approach as “end-to-end verification” because it focusses
on directly verifying the path from instruction decode through to instruction
retire against the architectural specification in contrast to hierarchical or block-
level verification which focusses on verifying individual blocks against micro-
architectural specifications and then verifying that the composition of those
blocks meets the overall specification.

ISA-Formal is strongly based on techniques developed in the academic com-
munity; our contribution is a description of the techniques needed to make it scale
and of the challenges and solutions in creating a portable approach which can be
applied in a commercial setting to a wide range of processor micro-architectures.

The remainder of this paper is structured as follows: Sect. 2 discusses related
work; Sect. 3 illustrates the basic idea, demonstrating how ISA-Formal can be
applied manually, to a single instruction and discusses the kinds of bugs it was
able to discover in real processors; Sect. 4 describes how we scaled this idea up to
handle full ISA specifications; Sect. 5 describes adaptations to handle a variety of
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different micro-architectural features; Sect. 6 reports on the results of applying
this method to multiple processors; Sect. 7 concludes.

2 Related Work

Our work builds heavily on the pioneering work from the ‘90’s such as Burch-
Dill’s automatic verification based on flushing refinements [5] and Srinivasan’s
verification based on completion refinements [19]. These and many other works
used different notions of correctness of which Aagard et al. [1,2] give a useful
taxonomy and establish conditions under which different notions of correctness
are equivalent.

Our approach focusses on verifying RTL (Verilog) in contrast to work which
verifies a high-level model of the microarchitecture design against a specifica-
tion. For example, Lahiri et al. [14] verified the microarchitecture of the M*-core
processor core (an early RISC-style architecture) and [13] verified the microar-
chitecture for an out-of-order processor through a series of successive refinements
but neither verified against the RTL of an actual processor. In our experience,
most errors are introduced while translating the microarchitecture design into
RTL and during subsequent optimisation so verifying before RTL misses a lot
of bugs. The challenge of verifying actual RTL is that it makes it hard to use
abstraction techniques such as using uninterpreted functions because the actual
RTL of an efficient processor tends not to have convenient blocks which match
directly with parts of the original specification.

Many approaches to verifying pipeline control logic have used theorem prov-
ing techniques to tackle the difficult problems of handling pipeline forwarding
and hazards in in-order processors [12,21] and, later, for out-of-order proces-
sors [7–9,16]. Theorem proving techniques are powerful and tend to suffer less
machine-scaling issues than more automated techniques but their reliance on ver-
ification experts leads to severe human-scaling issues: it is hard to hire enough
experts. We prefer to ride Moore’s law and use more CPU-intensive but more
automatable approaches.

There has been considerable commercial interest recently in formal verifi-
cation of floating point units such as Kaivola et al. [10], KiranKumar [11] and
Slobodova et. al [18]. This is impressive and important work but essentially
orthogonal to our own: while it tackles the scaling issues that occur when ver-
ifying commercial processors, it focusses on individual blocks processing a sin-
gle instruction with relatively simple input-output signals while our approach
focusses on the entire pipeline and especially the control logic to handle interac-
tions between instructions. We describe how we deal with verification of pipelines
containing floating point units in Sect. 5.1.

3 Illustration: Hand-Written Properties

The basic approach to verification that we use in ISA-Formal is based on the
above prior work. We start with the processor in a simple, well-defined state
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uArch0 with no instructions in the pipeline. We then execute for a number of
cycles where each cycle may issue an instruction. This serves to put the processor
into a more complex state where hazards, forwarding, etc. can occur. And finally,
we execute an instruction In and test whether the instruction executes correctly.
This is done by applying an abstraction function abs which extracts the archi-
tectural state of the processor immediately before In executes and immediately
after In executes. We do not flush the pipe before or after In.

uArch0 uArch1 uArchn−1 uArchn

Archn−1 Archn

I1 In

abs abs

In

A key part of making this scalable is that, instead of allowing the formal
verification tool to choose any instruction for In, we enumerate all the instruc-
tion classes supported by the architecture and perform a separate check for
each instruction class. Proving these simpler results is helpful early in processor
development by making it easy to focus on checking the currently implemented
instructions. Later in development, the pattern of failing instructions is a useful
guide in localizing the fault: if all branch instructions are failing, there is no
need to worry about bugs in the ALU. And as the size of the verification task
scales up, splitting the verification task into many small properties lets us make
more effective use of our verification cluster which is optimized for running many
independent processes across hundreds of machines.

To make this more concrete, consider the task of checking an addition instruc-
tion in the classic 5-stage pipeline illustrated in Fig. 1. This consists of 5 pipeline
stages responsible for instruction fetch (IF), decode (ID), execute (EX), memory
access (MEM) and writeback of results (WB). Values are read from the register
file at the ID/EX boundary and results are written to the register file at the
MEM/WB boundary. Forwarding paths (aka bypass logic) are used to reduce
the number of stalls by allowing the result of one instruction to be used as an
input to the ALU if required by the next instruction. Conventionally, most of
the control signals from decode and those that control the pipeline and forward-
ing paths are not shown — although that is where many of the most difficult
bugs lie. We use this simple microarchitecture to explain the technique, Sect. 5
discusses how we adapt the approach to handle more realistic microarchitectures
including dual issue, out-of-order retire and register renaming.

Our first challenge is to implement the abstraction function abs which is
responsible for converting the micro-architectural state of the processor into
an architectural state. To verify an addition instruction, the function abs must
extract the current values of the integer registers.

Many simple processors commit their results in order in a single pipeline
stage. This means that, at the beginning of the cycle where the add instruction
commits, the micro-architectural register file should contain the same values as
the architectural register file before the add executes and, at the end of the
cycle, the micro-architectural register file should contain the same values as the
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Fig. 1. A 5-stage processor pipeline, with forwarding paths, omitting I-Fetch

architectural register file after the add executes. We can therefore obtain the
state before by reading the state at the end of the writeback stage and the state
after by reading from the end of the Mem stage.

The other part of the input state of the processor that we require is the opcode
of the current instruction. The opcode is normally discarded shortly after instruc-
tion decode and is not available at the point where an instruction commits. We
therefore need to implement a “pipeline follower” which copies the opcode from
one stage to the next and implements the same pipeline stall/flush logic as the
datapath. This is similar to the introduction of “ghost state” in Lahiri et al. [13].
The followers and abstraction logic for the pre/post-states are illustrated in Fig. 2

Fig. 2. A 5-stage processor pipeline with state abstraction and follower

Of course, modern ARM processors are considerably more challenging than
a simple 5-stage pipeline: Sect. 5 describes the variations on the above approach
required to apply ISA-Formal in practice.

Our second challenge is to create a specification of the addition instruction.
For any individual instruction, the specification can often be written as a short
piece of purely combinational logic. For example, ARM’s 16-bit encoding of the
instruction “ADD Rd, Rn, Rm” has opcode 0b0001100 | Rm << 6 | Rn << 3 |
Rd and adds the contents of registers Rn and Rm and writes the result to register
Rd.
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This can be implemented by the following System-Verilog.

assign ADD_retiring = (pre.opcode & 16’b1111_1110_0000_0000)
== 16’b0001_1000_0000_0000;

assign ADD_result = pre.R[pre.opcode[8:6]]
+ pre.R[pre.opcode[5:3]];

assign ADD_Rd = pre.opcode[2:0];

To complete the example, we add assertions that the abstracted result
matches the result of the specification when retiring an add instruction.

assert property (@(posedge clk) disable iff (˜reset_n)
ADD_retiring |-> (ADD_result == post.R[ADD_Rd]));

The above specification is remarkably simple so it is worth examining what
kinds of defect this specification could catch.

Decode Errors. Most obviously, this specification would detect any error in
instruction decoding. But many decode errors are also caught by other verifi-
cation methods such as directed or random testing so, at first sight, this does
not seem especially useful. However, the instruction decoder is responsible not
just for determining how to execute the current instruction but also for setting
signals that determine whether it is safe to apply optimizations involving later
instructions. A property like the above found a decoder bug involving one such
signal that determined whether two adjacent instructions could be fused into
a single micro-op: the signal was being incorrectly set for one instruction. This
defect had been missed despite extensive testing of the processor: there were tests
to ensure that the optimization did happen but testing is ill-suited to checking
that it never happens in any other circumstance.

Datapath Errors. An error in a datapath would be caught by this kind of check
although, in practice, many errors of this kind are caught by other verification
methods already in use.

Interactions between Instructions. Most usefully, and unlike methods based
on Burch-Dill flushing, this specification will detect errors caused by interactions
between instructions such as errors in the forwarding logic that can supply inputs
to this instruction. The example given in the introduction of a sequence of five
instructions which triggered an error in the forwarding control logic was detected
by a hand-written property like the above. Bugs like this are significantly more
important to catch because the forwarding paths vary from one processor to
another, the control logic is difficult to get right and the errors are hard to catch
by conventional tests.

We currently use bounded model checking which verifies that a sequence of
n instructions does not go wrong but to show that any sequence does not go
wrong, we would need to find invariants about the processor and use those to
get unbounded proofs. Going further, in order to complete ISA verification, we
would need to verify that instructions are not lost, duplicated or reordered (we
have done this for some processors) and, to complete verification of the core,
we would need to verify exception taking mechanisms, the instruction fetch unit
and the memory management unit.
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4 Generating Verification IP with Architecture Explorer

The main challenge in applying the above approach to a full processor is one
of scaling. The ARM v8-M architecture has 384 instruction encodings and the
instruction set part of the architecture specification is over 600 pages long [4];
and the ARM v8-A/R architecture has 1280 instruction encodings and is over
2500 pages long [3]. Some of the encodings explicitly disallow using certain reg-
isters as sources or destinations to the instructions, many of the instructions
are conditional and there are a variety of other complications and corner cases.
In addition, changes are regularily added to the architecture specification. All
these reasons make the prospect of writing, testing and maintaining a Verilog
specification like that shown above unattractive.

Over the last 5 years we have developed tools which transform ARM’s official
Architecture Reference Manuals into executable specifications of the v8-A/R and
v8-M architectures [17]. A key part of making this specification useful was to test
it thoroughly before using the specification to verify anything else. In many ways,
this is like Fox and Myreen’s testing of their ARM ISA specification [6] except
that we were able to use ARM’s internal architecture conformance testsuite
(that is normally used to test processors) to test the specifications with billions
of instructions that probe each instruction’s corner cases.

The core of this specification is ARM’s Architecture Specification Language
(ASL) that grew out of the pseudocode used in earlier versions of the architecture
reference manuals. At a high level, ASL is an indentation-sensitive, imperative,
strongly typed, first-order language with type inference, exceptions, enumera-
tions, arrays, records, and no pointers. All integers in ASL are unbounded and
there is direct support for N-bit bitstrings and functions are allowed to be poly-
morphic in the width of a bitstring. For example, memory read returns a value
of type bits(8*size) where size is constrained to be 1, 2, 4 or 8.

The task of scaling the ISA-Formal approach up to handle the full instruction
sets with all their complexities is therefore one of translating the rich, expressive
ASL language to combinational System-Verilog using the synthesizable subset
of Verilog that is accepted by commercial Verilog model checkers. The chal-
lenge in doing this is that synthesizable Verilog is intended to describe hardware
and imposes several limitations upon us; (1) Verilog integers are finite and the
bitwidth is a part of the type; (2) Combinational Verilog is normally written in
a declarative style with no assignments or control flow and few function calls;
(3) Synthesizable Verilog does not support unbounded for-loops or while-loops;
(4) Synthesizable Verilog does not support exceptions; (5) The width of bit-
strings in Verilog must always be a manifest constant and there is no form of
polymorphism over bitwidths of functions.

We were able to overcome the first four issues using relatively conventional
compiler techniques. (1) We use a global flow-insensitive value range analysis to
compute the required width of most integer variables and use a large, but safe
bound for any integers with unknown range. (2) Verilog includes a rarely used
procedural subset which most of the language can be translated into. (3) User-
supplied bounds on loops can be used to unroll all loops. (4) A whole-program
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transformation which adds additional flags and control flow to make exception
and return-related control flow explicit.

The most challenging problem was dealing with bitstring polymorphism. Vir-
tually all polymorphism was caused by instructions which could operate on data
of different widths such as 8, 16, 32 or 64-bit load instructions. This obser-
vation enabled us to eliminate almost all polymorphism by automatically spe-
cializing such instruction encodings to create a separate instruction for each
data width and then to use alternate passes of constant propagatation and a
“monomorphization” pass which identifies calls to polymorphic functions where
the bitwidth is a manifest constant and replaces the call with a call to a
monomorphic instance of the polymorphic function. The remaining polymor-
phism is handled by a set of ad-hoc transforms in the Verilog backend.

5 Applying ISA-Formal to CPUs

In practice, few processors are as simple as the 5-stage pipeline sketched in
Fig. 1 and we have had to develop a number of techniques in writing abstraction
functions to deal with complex functional units, out-of-order retire, dual issue
pipelines, instruction fusion, and register renaming.

5.1 Complex Functional Units

For the most part, our end-to-end approach to verification works: commercial
model checkers are able to handle the complexity of most components without
assistance. However, for complex functional units such as floating point and the
memory system we choose to use other more scalable verification techniques such
as the end-to-end memory-system verification technique described by Stewart
et al. [20]. This modular approach lets ISA-Formal verification focus on control
logic and forwarding paths that controls, feeds and is fed by these complex units.

In order to make ISA-Formal modular, we partition the specification on func-
tion call boundaries into different parts “Instruction Set Architecture (ISA),”
“Floating Point,” “Exception,” “Address Translation,” etc. and only generate
Verilog for the “ISA” part. Any functions on the interfaces to other partitions
are written by hand and many are just a few lines long: returning some compo-
nent of the result of the pre-state or changing some component of the post-state.

On the interfaces, we adopt a variety of approaches to filling the resulting
gaps in the generated Verilog using interface properties, subset behaviour check-
ing and abstract functions. In general, these approaches will prevent us from
detecting bugs in some parts of the processor using ISA-Formal. We tackle this
by tracking which parts of the processor are not being checked by ISA-Formal
and ensuring that an alternative verification technique is used on those parts.

Interface Properties. For some components such as the memory system, we
were already creating interface specifications which were sufficiently strong that
we could use the interface specification instead of the memory system. This only
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required us to convert the architectural view of the memory system to the micro-
architectural view by translating requests/responses between representations.

Subset Behaviour Checking. For components such as floating point units, a
specification of the full behaviour would still be too complex to use in verification
but is quite simple if we restrict ourselves to a subset of the full behaviour. For
example, if we restrict the inputs to ±{0, 1,∞,S-NaN,Q-NaN} then it is easy
to create specifications of all the FP instructions for this subset and perform
some verification. Obviously, this would not be sufficient to detect errors in the
floating point unit itself, but this subset gives enough different values that errors
in the control and forwarding logic can be detected.

We could use SystemVerilog assumptions to restrict inputs to the chosen set
of inputs, but this would restrict all of the checks that ISA-Formal performs on
instructions: whether the instruction sets condition flags, raises an exception,
accesses memory, which registers are written, etc. Instead, we add an additional
signal indicating whether the inputs are in the supported subset and use that
signal only to restrict checks of the values written to floating point registers.

Abstract Functions. The final option is to use the processor as an oracle.
That is, we add logic to track the inputs and outputs from some functional unit
and then use the output value if the inputs of a function in the architectural
specification match the actual inputs of a functional unit in the processor. Since
we are choosing to trust the behaviour of that unit, this cannot detect errors in
the unit but it can detect errors in the surrounding control and forwarding logic.

5.2 Out of Order Completion

In an in-order core, all instructions retire strictly in-order, but some slower
instructions may complete out of order. Retiring a load (say) after the memory
protection check but before the data returns from the memory system allows
independent instructions to continue without waiting for the access to complete.
Such optimizations are important to verify because they introduce difficult cor-
ner cases in the design such as ensuring that the result of the load is written
back even if the processor takes an exception.

The difficulty in verifying out-of-order completing instructions is that it is
hard to construct the post-state: by the time that the load instruction completes,
some of the instructions issued after load will also have completed. This is further
complicated because some load instructions may be split into multiple micro-ops
which complete independently.

Our solution to this is to take a snapshot of the pre-state when the load
instruction retires. As each micro-op for the instruction under test completes, the
snapshot is updated with the change. Finally, when the last micro-op completes,
the final post-state is available and the instruction can be checked against the
architecture specification.
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5.3 Dual Issue Pipelines

Dual issue pipelines decode and execute two consecutive instructions in parallel.
To handle dual issue pipelines, we add a further abstraction function to extract
the intermediate state between execution of the two instructions. Our initial
approach to checking these was to create two copies of the combinational logic
implementing the specification: one copy for each pipeline. This worked but
consumed a lot of memory and would scale badly for 3 or more-issue processors
so, instead, we use a single copy of the specification and insert multiplexors to
select which pre/post state is used with the specification.

The most serious problem encountered occurs if the second instruction can
suppress part of the behaviour of the first instruction. For example, if both
instructions modify the carry flag, then the final value written will be the result of
the second instruction. In this case, the carry flag value from the first instruction
may not be available at the writeback stage and we need to identify the correct
signal to use and add a pipeline follower to propagate the value down to the
point of serialization. Any error in choice of signal is detected when that signal
is used as part of the pre-state of the second instruction.

5.4 Instruction Fusion

A high-performance processor might wish to fuse commonly occuring pairs of
consecutive instructions into a single instruction. For example Malik et al. [15]
describes a processor that detects sequences of dependent ALU instructions
such as

SUB R4, R1, R2 ; R4 := R1 - R2
ADD R4, R4, R3 ; R4 := R4 + R3

and fuses them into a single macro-operation that reads three inputs from the
register file and performs two add/subtract operations.

Optimizations of this kind raise a potential problem in sequences where the
results of the first instruction are overwritten by the second instruction because
the processor may not calculate the post-state of the first instruction or the
pre-state of the second instruction.

Our solution is to add additional verification logic to calculate the missing
intermediate state. The correctness of this logic is verified when checking that
all uses of the SUB instruction (i.e., the first instruction of the pair) is correct
and that justifies use of the result when checking that the SUB/ADD fused pair
(i.e., the first/second instruction pair) gives the correct overall result.

5.5 Register Renaming

Processors with out-of-order instruction issue differ significantly from processors
with in-order issue because they speculatively execute instructions past branch
instructions. To allow them to recover from mis-speculation, they use a regis-
ter rename table that maps architectural registers such as “X0” to one of a
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large pool of physical registers. As instructions are decoded, source registers are
“renamed” using this table; free physical registers are allocated and the rename
table is updated with mappings from destination register names to these physi-
cal registers. Instructions typically execute as soon as their input dependencies
are satisfied but, to preserve the illusion that instructions execute in program
order, a reorder buffer (ROB) only commits instructions in program order.

Despite the added complexity of speculative execution, register renaming
and reorder buffers, it is actually simpler to apply ISA-Formal to out-of-order
processors because they have a single clearly identified point of serialization
implemented in the reorder buffer. In contrast, in-order processors have a variety
of different mechanisms to support a limited degree of out-of-order execution
such as varying pipeline length or supporting out-of-order completion of slow
instructions and these different mechanisms are scattered across the processor.

5.6 Debugging Abstraction Functions

From the above, it should be apparent that creating the abstraction code remains
a difficult task and involves a lot of work with the CPU designers to get right.
While debugging these abstraction functions, we have found that it is useful to
start by using hand-written properties like those described in Sect. 3 for instruc-
tions that touch the major parts of the processor. For example, a data-processing
instruction, a load, a store, a floating point move, etc.

It is significantly easier to debug the abstraction function using hand-written
specifications than using a mechanical translation from the specification. Once
we have debugged the abstraction functions, we switch to using the machine-
generated specifications exclusively, and rarely look at the generated code.

5.7 Handling Known Problems

One of the major difficulties we experienced before developing ISA-Formal was
that formal verification tools would report variations on the same defect over
and over again. This was a problem early in development when we might know
that part of the processor was missing or incomplete; and it is a problem at any
stage that once the bug report has been filed, the verification team wants to
focus on finding other problems until the bug has been dealt with.

A critical technique for handling known problems is to maintain a list of
assumptions corresponding to each individual bug or feature. As each bug is
fixed, we remove the corresponding assumption and confirm that the bug has
been fixed. Using assumptions is a simple technique but it greatly increases our
ability to use formal verification to detect errors early in development and it
very effectively decouples processor design from verification allowing the tasks
to proceed in parallel.

6 Results

This section describes the results of applying ISA-Formal in three small-scale
trials and five full-scale uses. These eight trials and uses cover the full lifetime of
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ARM processor developments; they cover both application processor targetted
at mobile phones, etc. and microcontrollers targetted at embedded uses; and
they cover micro-architectures ranging from 3-stage, in-order pipelines through
dual-issue, in-order pipelines to out-of-order pipelines.

6.1 ARM’s Development Phases

ARM’s development process involves four stages of roughly equal length: Develop
and Test (D&T), Alpha, Beta and Access. The goal of each stage is to create
a basic pipeline design in D&T; make it feature complete by the end of Alpha;
improve power, performance and area through Beta; and to improve confidence
in the design through the access period where the design is made available to
the lead partners for that processor for evaluation and feedback. Testing steadily
increases throughout this process and each stage applies roughly an order of
magnitude more testing than the previous stage.

6.2 Small-Scale Trials

We carried out three small-scale trials on processors that were already in the
access phase to demonstrate the ability of ISA-Formal to detect defects that
were hard to detect by other means. These trials consisted of developing hand-
written properties like those described in Sect. 3 and demonstrated the ability
to detect defects that had been found by other means as well as new defects.

The defect described in the introduction is an example of a bug we detected
during this trial process. The trigger sequence of the defect is conditional exe-
cution of instructions executing in two pipeline stages with a combination of
taken and not-taken instructions. In a 2-pipeline design, the size of the small-
est trigger sequence is 5 instructions: one to set up the condition, two (one per
pipe) to generate values that might be forwarded, and two (one per pipe) to
consume forwarded values. (There are several variations on that basic pattern.)
Using traditional simulation-based verification, patterns like this would have to
be tested on all combinations of instructions that have forwarding paths between
them in that particular micro-architecture and each processor will have a differ-
ent set of forwarding paths. There are many, many sequences of instructions like
this to be tested so defects of this form are typically only found during soak-
testing during the Access phase. Using ISA-Formal, we created hand-written
properties for one or two instructions corresponding to each major unit in the
datapath (the ALU, shifter, multiplier, etc.), we created abstraction functions
for each of the two pipelines, and, since we left the opcode received from the fetch
unit unconstrained, the commercial bounded-model-checker explored sequences
of instructions up to some bound. We ran about a dozen properties through
the model checker and after two minutes proof time detected the failing trigger
sequence.

The same experience was repeated on all three processors: bugs were found
with relatively little effort with the bulk of the work being done by junior engi-
neers supervised by formal experts and with input from the microarchitects.
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Fig. 4. Defect detection by time

The consistent combination of low human effort and low machine effort was an
important part of demonstrating that ISA-Formal could detect difficult defects
that, at best, would have been caught only during the Access phase.

6.3 Production Usage

Based on the success of the small-scale trials, ARM decided to adopt ISA-Formal
as part of the formal verification strategy on five processors that were in earlier
stages in their development: three in D&T, one in Alpha and one in Access. This
work used the tool described in Sect. 4 to generate Verilog for all instructions
directly from ARM’s official Architecture Reference Manuals allowing engineers
to focus on developing abstraction functions and testing the processor.

Defects have been found in all five processors with the distribution roughly
in proportion to the effort invested in that processor. The small-scale trials
had demonstrated that ISA-Formal can detect difficult to detect defects late in
processor development; the production usage demonstrated that ISA-Formal is
effective at detecting defects in earlier phases of development. Figures 3 and 4
show the distribution of confirmed, distinct defects detected using ISA-Formal
by phase and by time. Figure 3 shows that ISA-Formal is capable of catching
many defects early in development (overcoming the problem of being able to
find many distinct defects in parallel with development) and that it is capable of
finding defects late in development even after extensive testing by other methods.
Figure 4 shows that ISA-Formal is able to start detecting defects in just a few
weeks work and continues to find bugs as processors are developed.

We also found that ISA-Formal was able to detect issues affecting all areas
of the instruction set: FP/SIMD, Memory, Branches, Integer, Exceptions and
System instructions (e.g., memory fence instructions). Figure 5 shows the dis-
tribution of bugs found by ISA-Formal by the area of the processor affected
(combining results for all processors). (The “Integer” category includes both
integer datapath instructions and basic pipeline control issues — it is often hard
to separate the two since integer instructions are so fundamental to a processor.)
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FP/SIMD 25%
Memory 21%
Branch 21%
Integer 18%
Exception 8%
System 7%

Fig. 5. Defect detection by area

Processor Lines of code

#1 2400
#2 2250
#3 4600
#4 1000
#5 2500

Fig. 6. Size of verification code

It is encouraging to note that the two largest sources of detected bugs were
FP/SIMD instructions and memory instructions. As Sect. 5.1 explains, we do
not test the FPU or the memory subsystem but, despite this, we are still able
to test and find defects in the forwarding, pipeline control and register logic
connected to these units.

The effort of creating, testing and debugging the machine-readable specifi-
cation and a tool to translate it to Verilog is considerable but can be shared
across multiple processors and can be used for other purposes within the com-
pany (e.g., documentation, testing of architecture extensions, etc.). The primary
cost of implementing ISA-Formal on a new processor is the effort required to
implement the pipeline follower and abstraction function on each processor. As
a rough indication of the effort required, Fig. 6 shows the number of lines of
code required for each (anonymized) processor. Most processors need around
2,500 lines of support code: a fairly modest cost. The outliers are processor #4
which has not yet added a follower for floating point registers and processor #3
which is a more complex processor than the other four.

Beyond the bug numbers, we found that applying ISA-Formal early in the
development was capable of finding bugs that would not normally be caught
until much later. For example, very early in development of an out-of-order
processor, ISA-Formal found a bug that occurred when all the free registers in
the physical register pool were in use. This was found before the processor could
even execute load-store instructions so we would not normally be catching such
bugs that early.

7 Conclusions

Two barriers to widespread industry adoption of formal verification techniques
to check processors are scaling and return on investment issues. The end-to-end
approach to verification that we adopt tackles both issues: it allows machine-
generation of verification IP from the architecture specification, it allows engi-
neers to detect bugs that affect actual instruction sequences very early in deploy-
ment, and it encourages creation of reusable tools, techniques and IP that can
be used across an unusually wide range of micro-architectural styles.

This paper describes the steps needed to turn the basic idea into a scal-
able, reusable technique: automation, dealing with a range of different micro-
architectural design techniques, and initial bringup issues. We have applied this
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method to 8 different ARM processors spanning all stages of development up to
release. In all processors, this has found bugs that would have been hard for con-
ventional simulation-based methods to find and ISA-Formal is now a key part
of ARM’s formal verification strategy.

To the best of our knowledge, this is the most broadly applicable formal ver-
ification technique for verifying processor pipeline control in mainstream com-
mercial use.
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Who Guards the Guards? Formal Validation of the Arm v8-M
Architecture Specification
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Software and hardware are increasingly being formally verified against specifications, but how can we verify
the specifications themselves? This paper explores what it means to formally verify a specification. We solve
three challenges: (1) How to create a secondary, higher-level specification that can be effectively reviewed
by processor designers who are not experts in formal verification; (2) How to avoid common-mode failures
between the specifications; and (3) How to automatically verify the two specifications against each other.

One of the most important specifications for software verification is the processor specification since it
defines the behaviour of machine code and of hardware protection features used by operating systems. We
demonstrate our approach on ARM’s v8-M Processor Specification, which is intended to improve the security
of Internet of Things devices. Thus, we focus on establishing the security guarantees the architecture is
intended to provide. Despite the fact that the ARM v8-M specification had previously been extensively tested,
we found twelve bugs (including two security bugs) that have all been fixed by ARM.

CCS Concepts: • Computer systems organization→ Architectures; Reduced instruction set computing; •
Hardware → Theorem proving and SAT solving; • Software and its engineering → Consistency; Software
verification; Formal software verification;

Additional Key Words and Phrases: ISA, Specification, Formal Verification
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Alastair Reid. 2017. Who Guards the Guards? Formal Validation of the Arm v8-M Architecture Specification.
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1 INTRODUCTION
The last decade has seen formal verification techniques scaling to the point where it is possible
to formally verify realistic compilers [Leroy 2009], operating system kernels [Klein et al. 2009],
hypervisors [Dam et al. 2013] and processors [Reid et al. 2016]. These efforts are impressive but
we must beware that the correctness of their proofs ultimately rests on the correctness of the
specifications they depend on. This is worrying because these specifications are, themselves, large
and complex artifacts with all the risks of bugs that we expect in large, complex software. This risk
is only likely to increase as more effective formal verification techniques and tools allow larger,
more complex projects to be verified against larger, more complex specifications.
Bugs in specifications are not just a theoretical possibility. In previous work [Reid 2016], we

reported that correcting errors in the ARM v8-A Architecture Reference Manual [ARM Ltd 2013]
resulted in changes to 12% of the lines of code in ARM’s processor specification. The CompCert
compiler [Leroy 2009] required a bugfix despite being formally verified and the bug can be traced to
the architecture specification not describing the full behaviour of an instruction [CompCert 2016].
In an empirical study of the correctness of three formally verified distributed systems [Fonseca
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et al. 2017], no protocol bugs were found in the verified systems but 16 bugs were found in the
Trusted Computing Base (i.e., the unverified glue code, build system, and specifications used to
build the code and in the proof) including two bugs in the specifications. If we are to trust the
guarantees claimed for formally verified software, it is essential that we verify the large, complex
specifications on which our formal correctness claims are founded.
Three common ways that bugs are found in specifications are by testing specifications against

existing implementations [Flur et al. 2016; Fox and Myreen 2010; Goel et al. 2014]; by testing speci-
fications using testsuites used to test implementations [Reid 2016]; or as a side effect of attempting
to formally verify an implementation against a specification [Reid et al. 2016]. Unfortunately, these
approaches can still miss bugs either because test suites are incomplete or because of common
mode failure (i.e., the specification and the implementation do the same wrong thing).

This situation is bad for programmers relying on specifications because, no matter how careful
they are, they are reliant on the quality of the specification available to them. For example, Dun-
lap [Dunlap 2012] describes a bug in the Xen hypervisor that arose because of an inconsistency
between the Intel and AMD specifications of the SYSRET instruction allowing a privilege escalation
when run on Intel processors. The problem is that neither AMD’s specification of x86-64 nor Intel’s
specification of x86-64 fully captures the range of implementations of the architecture.

The situation is also bad for architects extending specifications. Reliance on testsuites or verifi-
cation against implementations creates a “chicken and egg” problem because implementors and
test writers do not want to work on unstable, incomplete specifications but architects want to test
changes to the specification while they are still developing the changes.
Our solution to this problem is to write high-level properties about the specification and to

formally verify that the specification satisfies those properties.
One of the most important specifications that formal verification of software depends on is

the processor specification that defines the boundary between software and hardware and on
which formal proofs about the entire software and hardware stack are founded. In this paper, we
consider properties about ARM’s v8-M architecture specification [ARM Ltd 2016] that extends
ARM’s microcontroller specification with additional security features that software can use to
improve the trustworthiness of Internet of Things devices.

We focus on cross-cutting features of the architecture and specify properties of the architecture
as a whole involving exceptions, privilege and security.

Cross-cutting features [Kiczales et al. 1997] are difficult for humans because they require under-
standing of interactions between many disparate parts of the architecture and so subtle errors can
slip through the cracks. The flip side of this is that writing cross-cutting properties can also scale
well: a single cross-cutting property can catch an error in many parts of the architecture. We do
not attempt to state properties about more cleanly decomposable parts of the architecture such
as whether an ADD instruction performs addition. We believe that these properties are adequately
served by existing techniques and that they would not give the same degree of leverage as our
cross-cutting properties.

We developed sets of properties by examination of natural language text in the ARM architecture
reference manual, by examining recently discovered bugs in the specification, and by discussion
with the architects of the specification.

The central design challenge we face is to create a set of properties that:

• express the major guarantees that programmers depend on;
• are concise so that architects can easily review and remember the entire set of properties;
• are stable so that architecture extensions don’t invalidate large numbers of rules;
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• and that describe the architecture differently from the existing specification to reduce the
risk of common-mode failure.

The ARM formal specification is split intomany functions all rooted in a single top-level transition
function that specifies any state change that the processor can make due to executing instructions,
taking interrupts, etc. The classic compositional approach would be to tackle the problem hier-
archically: stating and proving properties about the little functions at the bottom of the call tree
of the specification, then using these properties as the basis for proofs about the functions in the
next layer up the call tree and gradually working our way up the tree until all the properties of the
specification have been stated and proved.

This conventional approach has a number of problems:
• It is not how the architects view the architecture. The architects describe the architecture at a
high level in terms of the net effect of the architecture using statements like “if X happens
then Y will happen” or “Y cannot happen unless X is enabled.” Walking through the call tree
or the individual lines of code in the specification is a secondary activity during their internal
discussions. This observation is reflected in the natural language part of ARM’s architecture
specification and, we believe, reflects the way the architects think about the specification.
Our experience is that, when dealing with domain experts, there is significant benefit from
formalizing their view of the domain instead of forcing them to use a different view.
• It does not aid understanding. The problem we face in gaining confidence that the ARM
specification is correct stems from all the fine detail in the existing specification: it is hard to
see the forest for the trees. Adding properties to each function continues this problem: we
better understand each tree but we still cannot see the forest.
• It increases the maintenance burden. Annotating every function with what would typically be
multiple preconditions and postconditions would require significant specification and review
effort. In addition, the internal structure of the specification is less stable than the boundary
of the specification: functions are refactored, function arguments and results are added or
removed, etc. The more that is written and proved about each individual function, the more
there is to update as the specification evolves.

Accordingly, we adopt an “end to end” approach to writing properties: we only write properties
that apply to the whole system. To make this practical, we extended conventional specification
techniques based on predicates over the state with a novel kind of property inspired by coverage-
based testing techniques.

Our verification is based on translating the specification plus the properties into verification con-
ditions that an SMT solver can check. This allows the verification process to be entirely automated
and requires no expert intervention.

The specification had previously been extensively tested [Reid 2016; Reid et al. 2016] but, despite
this, we found a dozen bugs including two security bugs. Due to extensive testsuites used in ARM
processor development and to redundancy between the natural language part of the specification
and the formal part of the specification, these bugs had not impacted processors but they are
important to anyone verifying software or hardware against the formal part of the specification.
To our knowledge, no realistic architecture specification has been subjected to this degree of

formal verification before.
The remainder of this paper is structured as follows: Section 2 describes the coverage properties

we use to write end-to-end properties; Section 3 sketches the ARM microcontroller architecture,
describes how ARM writes architecture specifications and provides an introduction to how we
write end-to-end properties; Section 4 further illustrates our approach with examples; Section 5
describes the design and implementation of our system; Section 6 describes our experience of using
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the system; Section 7 describes related work; Section 8 describes limitations and future work; and
Section 9 concludes.

2 COVERAGE PROPERTIES
The classic approach to writing properties is to write invariant properties and function properties
using predicates that refer only to the state of the system before and after the state transition
function. Our decision to limit ourselves to writing end-to-end properties makes it very hard to
capture key properties only in terms of states. For example, some properties will only apply if
the system takes a certain kind of transition such as taking a reset or an exception but these are
hard properties to observe from the state alone. In principle, we could reverse engineer the initial
conditions under which these events could occur but then we would be reasoning about when we
think certain transitions occur instead of what the specification actually says.
Our solution to this problem takes its inspiration from the approach used in coverage-based

testing techniques that use measurement of the coverage of the system under test to determine
whether the tests are hitting the relevant parts of the system. For example, many programmers have
added an ad-hoc “debug printf” to a program to confirm that a test hits some line of code or some
condition. More rigorous applications of this approach are built into hardware design languages
such as System Verilog [IEEE 2013] that provides a rich set of functional coverage mechanisms
for tracking how many tests hit each case or combination of cases. Inspired by these test-based
mechanisms, we augment the traditional Hoare-style properties about states with the ability to
observe execution paths. The property Called(f) is satisfied for any execution of the function under
test that calls the function f. For example, to state that an exception causes register R[0] to be set to
zero, one could write the following (where ExceptionEntry is the name of the function that is called
when an exception is taken).

Called(ExceptionEntry)⇒ R[0] = 0

In some cases, finer-grained observation is important and we specify an additional predicate P that
tests the values of the parameters when a function is called. For example, the function ExceptionEntry

has a boolean parameter isSecure that specifies whether a secure or non-secure exception should be
taken so the property

Called(ExceptionEntry when isSecure)⇒ R[0] = 0

weakens the statement to say that R[0] is set to zero for secure exceptions.
Similarly, it is useful to write properties about function return and the values returned. We write

Returned(f when P) to say that a function f returned successfully with values that satisfy the predicate
P. (ARM’s specification language includes exceptions so it is possible for a function to be called but
not to return.)

We feel that observing execution paths in this way is a satisfactory compromise on our commit-
ment to writing end-to-end properties: we mostly focus on the overall properties of the architecture
but we allow references to some of the inner structure of the specification when required. In
practice, we find that only a small fraction of the functions need to be observed in this way.

3 FORMALIZING ARM SPECIFICATIONS
The Internet of Things (IoT) adds network access to microcontroller-based systems: a class of
devices that are small, cheap and energy efficient but not previously required to be secure. To meet
this challenge, ARM created the “M-class” of processor that retains the positive characteristics but
adds extensive security features. This does not eliminate the IoT security challenge but it gives
software developers a sound foundation to build on.
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The challenge in designing security features is that security is asymmetric: the designer has to
get everything right but the attacker only has to find a single weakness to gain access. This makes
the design and programming of Internet of Things devices appealing targets of formal verification
research.

This section gives a brief introduction to the essential aspects of ARM’s microcontroller specifi-
cation referred to in this paper, describes how ARM writes architecture specifications and provides
an introduction to their formalization.

3.1 The ARM v8-M Security, Privilege and Exception Model
ARM’s v8-M architecture specification applies to ARM’s 32-bit microcontrollers such as the recently
announced Cortex-M23 and Cortex-M33 processors that are designed for embedded, low-cost
devices at different performance points with a focus on security. Our focus in this paper is on
writing and proving properties about specifications but, in order to explain the examples, it is
necessary to describe a few key architectural concepts.
• An exception can be triggered by memory protection faults, security faults, interrupts, etc. If
the cause of the exception was a fault then an appropriate field of the Fault Status Register is
set to 1. Each exception has a priority and the processor selects the highest priority exception
to work on. On taking an exception, the processor automatically saves the current context
(user registers) onto the current stack and reads the address of the exception handler from an
exception vector table in memory.
• A derived exception occurs if the act of taking an exception triggers a further exception. Two
particular ways that derived exceptions occur are if saving the current context to the stack
triggers a fault such as a stack overflow or if reading the exception vector triggers a fault. A
cascade of up to two derived exceptions can result from an initial exception.
• Lockup occurs if a derived exception has lower priority than the original exception since
there is then no way to report the derived exception. When in lockup, the processor sets the
program counter to a distinctive lockup address and stops executing instructions.
• A processor can be in Privileged or Unprivileged mode. Privilege corresponds to the traditional
protection mechanisms used by operating systems: only privileged execution mode is allowed
to access system registers (including the memory protection registers).
• Orthogonally, a processor can be in Secure or NonSecure mode. The two modes share user
registers but the stack pointer and many of the system control and status registers are banked:
there are two copies and which copy is accessed depends on the current mode. Security goes
beyond traditional processor-based protection and enforces access checks in peripherals and
memory devices so that when a DMA controller or processor is executing in non-secure
mode they cannot access secure peripherals or memory containing secrets such as crypto
keys.
• An external debugger may request that the processor halt and can then examine and modify
the processor and memory state. When the processor is halted, it is said to be in Debug State.
It is possible to disable debugging of the processor when it is in Secure mode.

Inclusion of all these features makes the architecture more complex than a classic RISC archi-
tecture. There are multiple motivations for these features ranging from optimisations that can be
performed in stacking/unstacking registers that make interrupt response faster and more deter-
ministic; enabling interrupt handlers to be written in plain C code; and adding security features. It
also means that some of the corner cases arising from the interaction of features only have to be
handled correctly once by the hardware designers instead of having to be handled in many different
software stacks. However, the combination of four different privilege/security modes, priority,
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derived exceptions, debug, lockup and security adds considerable complexity to the architecture
that makes testing and formal verification of the architecture specification desirable.

3.2 ARM’s Specification Language
ARM’s architecture specifications consist of two parts: a detailed, executable formal specification
and a natural language part.

The formal part of ARM’s specifications is written in ARM’s Architecture Specification Language
(ASL) that grew out of the pseudocode used in earlier versions of architecture reference manuals.
At a high level, ASL is an indentation-sensitive, imperative, strongly-typed, first-order language
with type inference, exceptions,1 enumerations, arrays, records, and no pointers. All integers in
ASL are unbounded and there is direct support for N-bit bitvectors and functions are allowed to
be polymorphic in the width of a bitvector. For example, memory read returns a value of type
bits(8∗size) where size is constrained to be 1, 2, 4 or 8.
To make this more concrete, here is a small example of an ASL function that is called when a

processor exception is triggered. The function pushes the current state onto the stack and, if this
does not trigger a memory access fault, it calls the function ExceptionTaken that adjusts registers,
swaps stacks, reads the address of the exception handler from memory and branches to it.

ExcInfo ExceptionEntry(integer exceptionType, boolean toSecure, boolean commitState)
// PushStack() can abandon memory accesses if a fault occurs during the stacking sequence.
exc = PushStack(commitState);
if exc.fault == NoFault then

exc = ExceptionTaken(exceptionType, FALSE, toSecure, FALSE);
return exc;

The ARM v8-M formal specification is over 15,000 lines of code consisting of over 300 instructions
and over 250 functions. This makes it one of the largest formal specifications we are aware of. The
most important functions in the specification are: (1) The function that defines the initial state of
the system. This function is called TakeColdReset and it specifies how the processor performs a “cold”
reset (i.e., when first powered up). (2) The transition function. This function is called TopLevel and
it specifies all types of transition that the specification can make: instruction fetch, instruction
execute, entering and returning from processor exceptions, warm reset, entering/leaving Debug
State, etc.

3.3 Rule Based Specification
ARM’s architecture reference manuals also contain natural language statements about the architec-
ture. Starting with the v8-M Architecture Reference Manual [ARM Ltd 2016], these are structured
into a number of labelled “rules.” Labels begins with the letter “R” for normative statements and
with the letter “I” for informative statements and are followed by four randomly chosen letters.

We found that many of these rules simply repeated information found in the formal specification
in much the same structure as the formal specification. These were not very useful for our purposes
because they were somewhat low level and, worse, they were prone to common-mode failure wrt
the formal specification. However, a small number of the rules stated high level properties about
the architecture. For example, the following rule describe properties of how a processor can exit
the Lockup state.

1The presence of “exceptions” in both the processor architecture and in ASL can lead to confusion as to which kind of
exception we are referring to. In the remainder of this paper, we use “processor exception” and “ASL exception” to avoid
confusion.
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RJ R JC

Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

We interpret this to mean that the only way to exit from a lockup state is if one of the four
listed conditions occurs. By examining the ASL specification, we found tests that could be used to
formalize this statement:
• The variable LockedUp indicates whether the processor is in lockup.
• A cold reset is specified by TakeColdReset and a warm reset is specified by the function TakeReset;
• The variable Halted indicates whether the processor is in Debug state.
• Taking a processor exception is initiated by the function ExceptionEntry.

Based on this, one could choose to formalize the original statement in the following Hoare-triple
{ Invariants ∧ LockedUp }
TopLevel();
{ ¬ LockedUp⇒ Called(TakeColdReset) ∨ Called(TakeReset) ∨ (¬Halted' ∧ Halted) ∨ Called(ExceptionEntry) }

where Invariants is the conjunction of all the invariants for the system and Halted' represents the
value of Halted before the function is called. (This omits the requirement that preemption must be
by a higher priority exception. This is a general requirement on all processor exceptions and we
chose to specify it in a separate property.)
Even for this simple rule, we found this notation to be quite unwieldy so we introduced some

syntactic sugar to let us write properties in a more structured way.
• Each property is labelled for ease of reference.
• Instead of using the v ′ convention for accessing the old value of a variable v , we provide an
operator Past(e ) that refers to the value of an expression e before the function under test was
called.
• Following the example of System Verilog Assertions [IEEE 2013], we define syntactic sugar
for some common uses of the Past operator.

Stable(e ) =̂ Past(e ) = e

Changed(e ) =̂ Past(e ) , e

Rose(e ) =̂ Past(e ) < e

Fell(e ) =̂ Past(e ) > e

By abuse, Rose and Fell can also be applied to boolean expressions.
• We separate the assumptions from the consequences of those assumptions to improve read-
ability.
• We omit the name of the function under test because we wish to test the same invariants on
both the reset function and the transition function and because there is only one transition
function.

In our notation the above property is written as follows.2

2To avoid distraction, we have simplified the ASL language slightly in this paper: omitting explicit type conversions and
using mathematical symbols such as =, , and ∧ where the concrete syntax uses conventional programming notation such
as “==”, “!=” and “&&”.
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property R_JRJC
assume Fell(LockedUp);
Called(TakeColdReset) ∨ Called(TakeReset) ∨ Rose(Halted) ∨ Called(ExceptionEntry);

We feel that this is a reasonably close match to the structure of the original natural language
statement.
Invariants: Invariants are properties that should initially be valid and then their validity should
be preserved by any action the processor takes. An example invariant is that a processor can be in
Lockup or it can be Halted but it cannot be both. In our notation, this property is written like this.

invariant dbg_lockup_mutex
¬(Halted ∧ LockedUp);

Unpredictable Behaviour: ARM’s specifications are deliberately incomplete and do not specify
what a processor should do in all circumstances. ARM labels these gaps in the specification as
UNPREDICTABLE and the processor is free to do anything that can be achieved at the current or a
lower level of privilege using instructions that are not UNPREDICTABLE and that does not halt or hang
the processor or parts of the system.

Most unpredictable behaviour in the ARM specification is associated with attempting to do some-
thing that is nonsensical and that can be easily avoided by the programmer. In ASL, unpredictable
behaviour is marked by the statement UNPREDICTABLE;. To let us distinguish executions that do not
execute this statement, we add a new property Predictable that is true for executions that do not
execute UNPREDICTABLE;.
Implicit assumptions: All of the properties that we wish to prove about the transition function
only hold under the restrictions that the initial state satisfies the invariant, and the execution is
Predictable. These restrictions could be added to each individual property by adding the following
assumptions:

assume Past(Invariants);
assume Predictable;

where Invariants represents the conjunction of all the invariant properties. Such assumptions would
be the same for all properties and would only serve to add noise to our properties so, instead, we
choose to leave these restrictions implicit and add them in our proof tool (see Section 5.3).

4 EXAMPLES
This section illustrates the use of the notation introduced in the previous section to write further
properties about the architecture and it will look at the challenges in formalizing rules found in the
natural language part of the specification.

4.1 The Exception Entry Bug
One of our motivating examples in this work was trying to detect a bug that had recently been
found in the v8-M specification and to prove that any bugfix does, indeed, fix the bug.
In order to write a property that would detect what the specification did wrong we asked the

v8-M architects how they could tell that the bug had occurred (but not to describe the bug itself).
They told us that the bug involved what state is saved on taking a processor exception. From
testing, they knew that the state was usually saved correctly but, under some circumstances, the
specification was not saving information about which stack the interrupted context was saved on.
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The current stack selection is recorded in the field SPSEL of the register CONTROL. On entry to
a processor exception handler, the current stack selection that was active before the exception is
recorded in bit two of the register LR. Using our notation, we formalized the property like this.

property exn_entry_spsel
assume Called(ExceptionEntry);
assume ¬Called(TakeReset);
assume ¬Called(ExceptionReturn);
Past(CONTROL.SPSEL) = LR<2>;

Having specified the required property, we used our tool to attempt to rediscover the bug. Our
tool generated a counterexample that the architecture development team confirmed as a possible
symptom of the bug they had previously found. In particular, the bug occured if the attempt to
save the state of the processor on the original stack failed and the processor exception could not be
escalated to an appropriate handler (e.g., because the processor was already in the highest priority
exception handler). In this case, the processor enters the Lockup state and stops execution but even
in this desperate circumstance, it is required that the originating mode and security level are saved
correctly in LR to enable the problem to be diagnosed through the debugger.

After confirming that the properties could detect the original bug, we applied a bugfix proposed
by the architecture team and repeated the check. To our relief, all of the processor exception entry
properties were found to hold: our first formal verification that a bugfix actually fixed a specification
bug.

4.2 Property Groups
Properties often share a number of assumptions and triggering conditions so we find it useful to
group multiple properties together to allow them to share common antecedents.
For example, when a processor exception is taken, the processor doesn’t just save the current

stack selection, it also saves the current security state, the exception mode, whether the floating
point state is “dirty”, etc. We provide some syntactic sugar for writing sets of related properties
sharing a common set of antecedents. The first sub-property in the following is equivalent to the
exn_entry_spsel property above.

rule exn_entry
assume Called(ExceptionEntry);
assume ¬Called(TakeReset);
assume ¬Called(ExceptionReturn);

property spsel: Past(CONTROL.SPSEL) = LR<2>;
property secure: Fell(IsSecure())⇔ (LR<0> = '1');
property mode: Past((CurrentMode() = PEMode_Handler))⇔ LR<3> = '0';
property ftype: Past(CONTROL.FPCA) = NOT LR<4>;

4.3 Entry to Lockup
One of the more challenging rules to formalize was the following rule that describes entry to Lockup.
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RVGNW

Entry to lockup from a processor exception causes:
• Any Fault Status Registers associated with the exception to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

Each bullet in this rule required careful interpretation/debugging in order to understand it.

• Other rules detail which fields of the Fault Status Registers should be set but one consequence
of the first bullet is that at least one bit in Fault Status Register CFSR should be set after entry
to lockup (in configurations that provide the CFSR register).
• The second bullet turned out to be false: pending and active processor exception state should
be updated to reflect the attempted exception entry. The statement had been true in the
previous version of the architecture but had not been updated. We filed a bug against the
documentation.
• The third bullet suggested that we check that PC = 0xEFFFFFFE but this property failed with
counterexamples where PC was equal to 0xF0000002. On investigation, we found that the rule
was implicitly referring to the “debug view” of the program counter that, for historical reasons,
reads as four less than the “program view” that is accessed as PC. We filed a clarification
request against the documentation.
• The fourth bullet is untestable because setting a register to UNKNOWN is allowed to choose
any value — including the current value of the register. We are currently unable to formalize
this statement.
• The final sentence seemed to allow multiple intepretations including HFSR.FORCED must
become 0 or may become 0 or must not be changed. After consulting the architects, we
learned that it meant that HFSR.FORCED is not modified. We filed a clarification request against
the documentation.

Of course, the task of determining which interpretation to use is not quite as direct as suggested
above and in practice, we followed a more experimental methodology. We would typically formalize
several different interpretations of each clause of a rule; we test which interpretations hold for
the specification; and we consult the architects to confirm that the winning interpretation is the
intended interpretation. This lead to the following set of properties

rule lockup_entry
assume Rose(LockedUp);
assume ¬Called(TakeReset);

property R_VGNWa: HaveMainExt()⇒ CFSR , 0;
property R_VGNWc: _RName[RNamesPC] = 0xEFFFFFFE;
property R_VGNWe: Stable(HFSR.FORCED);

4.4 Exit from Lockup
The example rule in Section 3 described when a processor could exit the Lockup state. The following
rule describes one part of what a processor should do when that happens.
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RSPPN

On an exit from lockup by entry to Debug state, or by preemption by a higher priority processor
exception, the return address is 0xEFFFFFFE.

We initially formalized the debug part of this rule with the following property.

property R_SPPNa
assume Fell(LockedUp);
assume Rose(Halted);
LR = 0xEFFFFFFE;

Our tool reported that this property did not hold and, on investigation, we realized that we had
misinterpreted the phrase “return address.” When an ARM processor is executing instructions, the
return address is normally held in register LR but when an ARM processor is in Debug state, the
return address is held in the program counter and when an exception is taken, the return address is
held on the stack. The amended formalization read as follows for the debug case

property R_SPPN
assume Fell(LockedUp);
assume Rose(Halted);
_R[RNamesPC] = 0xEFFFFFFE;

We filed a clarification request against the documentation and recommended splitting these two
cases.

4.5 Lockup Invariants
Lockup occurs when a fault occurs and it is not possible to report the fault because the appropriate
fault handler is lower priority than the current execution priority. A consequence of this is that,
under normal circumstances, Lockup can only occur in the highest priority processor exception
handlers: Non-maskable Interrupt NMI and HardFault. We formalized this as follows using the
Interrupt Program Status Register IPSR to read the current processor exception handler and adding
the additional assumption that execution priority had not been boosted using the FAULTMASK

register.

invariant lockup_IPSR
assume LockedUp;
assume FAULTMASK.FM = 0;
IPSR ∈ {NMI,HardFault};

A further rule about Lockup states

RMBTM

When the PE is in lockup:
• DHCSR.S_LOCKUP reads as 1.
• The PC reads as 0xEFFFFFFE. This is an execute never (XN) address.
• The PE stops fetching and executing instructions.
• If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.
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We formalized this as follows.

rule R_MBTM
assume LockedUp;
invariant a DHCSR.S_LOCKUP = 1;
invariant b PC == 0xEFFFFFFE;
property c

assume Past(LockedUp);
¬ Called(FetchInstr) ∧ ¬ Called(DecodeExecute);

Attempting to prove these properties found that the DHCSR register was only partially imple-
mented in the specification and that PC referred to the debug view of the program counter and we
filed bugs against the specification and the documentation.

4.6 Preemption by Processor Exceptions
As a final example, an important property of the processor exception mechanism is that execution
can only be preempted by higher priority exceptions. Since higher priority is represented by smaller
numbers, this says that if a processor exception is successfully taken then the priority value must
be lower than it was before the transition. In formalizing and proving this statement, we found a
counterexample: the priority need not increase if the program triggers a derived exception while
attempting to perform a processor exception return (e.g., because of a memory fault while popping
the exception frame off the stack). Our amended statement is as follows.

property priority_increase
assume Called(ExceptionEntry);
assume !Called(ExceptionReturn);
ExecutionPriority() < Past(ExecutionPriority());

Interestingly, the complementary property does not always hold: exception return does not
always lead to a decrease in priority (that is, an increase in priority number) because an exception
handler can dynamically change the priority of an interrupt before returning.

4.7 Summary
This section described several properties we created by talking to the architects or by translating
natural language “rules” to our property notation. The process of formalizing and of attempting
to prove the properties found several bugs in both the formal part of the specification and in the
natural language part.

The bugs we found in the formal specification typically involved corner cases that trigger cascades
of derived processor exceptions, exceptions triggered when returning from an exception, exceptions
triggered because the vector table is in an unreadable part of the memory space, etc. These bugs
tend to creep into a specification because humans find it hard to think about all of the corner cases
and because it is natural to focus on your current task when extending the architecture and to
forget about all of the cross-cutting issues.

It is not surprising to find ambiguous, misleading and erroneous statements in natural language
specification — even one as heavily reviewed as the ARM specification. It took a process of ex-
perimentation to find the correct interpretation of some statements although, a bit like a good
crossword puzzle, our final solution was obvious once we knew what it was. Our property language
and checker allows us to perform those experiments and to confirm that those results are consistent
with the formal specification; and the act of formalizing the statements helps us formulate clearer,
more accurate natural language statements.
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⟨definition⟩ ::= ‘rule’ ⟨ident⟩
{ ‘var’ ⟨ident⟩ ‘:’ ⟨type⟩ ‘;’ }
{ ‘assume’ ⟨prop⟩ ‘;’ }
{ (‘property’ | ‘invariant’) ⟨ident⟩ ⟨expr⟩ ‘;’
}

| (‘property’ | ‘invariant’) ⟨ident⟩
{ ‘var’ ⟨ident⟩ ‘:’ ⟨type⟩ ‘;’ }
{ ‘assumes’ ⟨expr⟩ ‘;’ }
⟨expr⟩ ‘;’

⟨expr⟩ ::= ‘Past’ ‘(’ ⟨expr⟩ ‘)’
| ‘Rose’ ‘(’ ⟨expr⟩ ‘)’
| ‘Fell’ ‘(’ ⟨expr⟩ ‘)’
| ‘Stable’ ‘(’ ⟨expr⟩ ‘)’
| ‘Changed’ ‘(’ ⟨expr⟩ ‘)’
| ‘Called’ ‘(’ ⟨ident⟩ [‘when’ ⟨expr⟩] ‘)’
| ‘Returned’ ‘(’ ⟨ident⟩ [‘when’ ⟨expr⟩] ‘)’
| ‘PREDICTABLE’
| ‘Invariants’

Fig. 1. Property Syntax Extensions

5 DESIGN AND IMPLEMENTATION
This section describes the semantics and implementation of the property notation described in
earlier sections.

5.1 Property Language
Our notation for specifying invariants and properties extends the ASL specification language with
the ability to refer to the values of expressions before execution of the code under test; to test
whether an execution performs an action such as calling a function; and to name properties for
ease of reference. It also adds some syntactic sugar for defining groups of larger properties. The
grammar for these extensions is shown in Figure 1 which defines additional productions for the
⟨definition⟩ and ⟨expr⟩ non-terminals.
Our property language blends two different notions: conditions involving the state of the pro-

cessor before and after a processor transition; and conditions involving the execution path taken
while executing the state transition function. Defining the semantics of this combination requires
two steps:
• We extend the stateful semantics of the ASL language with generation of a trace during
execution. The details of this extension are unsurprising and results in a trace of function
call and return events. Function call events are represented byC⟨f , ā⟩ consisting of the name
f of the function and a binding ā of the function’s formal parameters to the values of each
actual parameter of the call. Function return events are represented by R⟨f , ā, r̄ ⟩ consisting
of the name f of the function and bindings ā and r̄ of the function’s formal parameters and
results to the names of each function argument and return variable in the function.
• We define the semantics of the Called and Returned operators in terms of this trace. For
any terminating execution producing a trace T , the Called(f when P) operator is satisfied if
T contains an element C⟨f , ā⟩ such that [[P]]ā is satisfied where [[_]]ρ is the semantics of
evaluating a expression wrt a binding ρ. Similarly, the Returned(f when P) operator is satisfied
if T contains an element R⟨f , ā, r̄ ⟩ such that [[P]]ā∪r̄ is satisfied.

5.2 Implementation
A key requirement for practical deployment is that all proofs should be performed automatically
without needing to train the authors of the architecture in the use of an interactive proof assis-
tant. Our implementation therefore is based on translating the architecture specification and the
properties to be checked into verification conditions suitable for SMT solvers. This translation
consists of three major steps: converting property specifications to ASL; a number of “lowering
passes” that convert complex language features into simpler language features; and converting the
simplified ASL specification to a verification condition expressed in the SMT-Lib language [Barrett
et al. 2016].
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5.2.1 Converting Properties to ASL. Properties are written using an extension of ASL so we
convert each extension into the original ASL language. This is done by introducing “ghost variables”
to collect information needed by the properties and adding code to initialize, update and test these
variables that should execute before, during and after the function under test. We introduce two
new functions SMTPre and SMTPost to hold the statements that execute before and after execution of
the function under test.
• The Past(e) operator is implemented by introducing a fresh global variable v and adding an
assignment v = e; to the SMTPre function. Occurrences of Past(e) are replaced by v.
• The Called(f when P) and Returned(f when P) operators are implemented by introducing a fresh
global boolean variable v initialized to FALSE and instrumenting each function with an assign-
ment v = v ∨ P;. The assignment is placed at the start of the function for Called and before each
Return statement for Returned. Occurrences of the operator are replaced by v.
• Invariant properties are evaluated before and after the function under test by creating two
fresh global variables pre and post adding assignments pre = P; and post = P; to SMTPre and to
SMTPost, respectively. Our proof frontend uses the conjunction of all the pre-variables and
(separately) all the post-variables when proving that properties hold.
• All function properties are evaluated after the function under test by creating a fresh global
variable v and adding an assignment v = P; to SMTPost. Our proof frontend replaces the property
name with v.

With this conversion, testing whether a property holds for some function f consists of checking
whether the corresponding global variable is TRUE after executing the sequence SMTPre(); f(); SMTPost();.

5.2.2 Simplifying ASL. The challenge in translating the rich, expressive ASL language to an SMT
problem is that SMT-Lib [Barrett et al. 2016] is a pure expression language and lacks polymorphic
types, dependent types, function calls, control flow, assignments, exceptions and structured data
types.
Before starting translation, we apply a number of “lowering passes” that convert complex

language features into simpler language features. The primary transformations performed in these
passes are
• Eliminating dependent types and polymorphism by specializing all instructions and creat-
ing monomorphic instances of all polymorphic functions. For example, the memory load
instruction can perform an 8, 16, 32 or 64-bit memory access based on a 2-bit size field of the
instruction encoding. This results in many intermediate variables and function arguments
whose width is dependent on the value of the size field. The specialization pass creates 4
separate instances of the instruction each of which accesses a single data width.
• Unrolling all loops. In our application, we were fortunate that it was always possible and often
trivial to find an appropriate loop bound. There was one use of recursion but the architects
were easily persuaded that rewriting it would make it easier to understand. Had this not been
the case, we would have resorted to bounded unrolling and bounded recursion depths as is
common practice elsewhere [Clarke et al. 2004].
• Eliminating unstructured control flow using a simplified form of if-conversion [Allen et al.
1983]. ASL does not have goto but it provides functions that return in the middle of a function
and provides exception throwing that can exit in the middle of a function. This is converted
to structured control flow by introducing an additional control variable into each function.
This variable is initially true but it is set to false in the event of function return or an ASL
exception and the variable is used as a guard to disable actions of statements if the variable
is false.
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• Global context-insensitive, flow-insensitive, structure-insensitive constant propagation and
dead code elimination to exploit the large number of constants introduced by the previous
passes. The choice of global/local and sensitive/insensitive propagation is based on our
understanding of the structure of the specifications we wish to reason about.

These preprocessing steps reduce the ASL specification to a simple monomorphic, imperative
language with functions, structured control flow and no loops or recursion.

5.2.3 Converting ASL to Verification Conditions. The remainder of the transformation is per-
formed by symbolically executing the specification using SMT expressions as symbolic values
and with each step of the evaluation extending a graph of SMT expressions representing the
data/control flow of the program. When control-flow splits, the control expression is remembered,
both control paths are executed using separate copies of the current execution environment, and
when control-flow joins, the two execution environments are merged by introducing if-then-else
nodes to select values from one path or the other. Function calls are handled in the usual way for an
interpreter: a fresh environment is created containing the values of the function arguments and the
function body is evaluated in that environment. Uninitialized variables and UNKNOWN expressions
are handled by introducing oracles (that is, fresh variables that are unconstrained).

Unfortunately, this conventional translation resulted in excessively large SMT problems and we
were unable to generate SMT problems for even the smallest architecture configuration.

To overcome this, we implemented four important optimisations:
• When merging environments, we omit the if-then-else node if neither environment has
changed the value of a variable.
• We perform “hash-consing” to avoid creating nodes that are identical to a previously con-
structed node. This increases the effectiveness of the first optimization in the case that both
branches set a variable to the same value.
• When evaluating an if-statement, if the control expression is definitely true or definitely false
then we avoid exploring the dead branch. This is a significant optimization.
• We perform a limited amount of constant folding to catch constant propagation opportunities
that were missed during preprocessing. Our primary goal in doing this is to evaluate boolean
conditions to make the third optimization more effective.

After implementing these optimisations, the generated SMT expression was still large: approx-
imately 30,000 terms for TakeColdReset and between 360,000 terms and 860,000 terms for TopLevel

depending on the architecture configuration tested. We found that the Z3 SMT solver [de Moura and
Bjørner 2008] was able to handle problems of this size but we found that even proving very shallow
properties took 30-60 minutes: this put the feasibility of tackling interesting properties in question.
To resolve this, we consulted one of the Z3 developers [Wintersteiger 2017] who suggested that we
further simplify the SMT expression by avoiding use of high-level constructs such as enumerated
types and arrays whenever possible. Replacing enumerated types with small bitvectors was an
easy change but to avoid arrays we had to construct expressions that closely resemble the way
that register files are typically implemented in hardware using address decoder trees to write array
elements and using trees of multiplexors to read array elements. These additional optimisations
reduced the need to switch between different theories when solving problems and resulted in a
performance improvement of approximately 5x. Solution times with the above optimisations are
detailed in Section 6.3.

5.3 Proof Frontend
The final part of our implementation is a proof frontend that uses the Z3 solver to prove that
invariant properties and function properties hold.
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For each invariant I , we check two properties (expressed here as Hoare triples)
{} TakeColdReset() {I }

{Invariants} TopLevel() {Predictable⇒ I }
For each function property P , we check the property

{Invariants} TopLevel() {Predictable⇒ P }
For each assertion or bounds check P , we check the properties

{} TakeColdReset() {P }
{Invariants} TopLevel() {P }

5.4 Debugging Properties
Given the large size of the state space, we found it hard to debug failing properties just by examining
the initial and final states. To help us understand counterexamples, we added the ability to emit
code that would set the processor registers to the final state.

A minor challenge in doing this is that the generated SMT problem loses several type distinctions
that were present in the original ASL: we solved this by emitting a file containing the ASL-level type
of every SMT variable that our proof tool could use to generate type-correct ASL code. This was
used with an interpreter for ASL that provides useful debugging features such as displaying the call
tree of an execution, displaying register reads/writes, an interactive mode, etc. Using the interpreter
to animate counterexamples proved to be essential for understanding bugs in the specification
and when testing speculative properties and invariants. It was also useful while developing the
transformation from ASL to SMT for identifying differences between the transformation and the
interpreter that indicated bugs in the transformation.
A more significant challenge is that ASL allows underspecification (i.e., the specification does

not completely constrain the behaviour in some circumstances). Our ASL interpreter handles
this by choosing just one possible behaviour whenever the specification provides a choice. In
contrast, the SMT solver explores all possible behaviours and may find a counterexample that is
allowed by the specification but that is not the behaviour chosen by the ASL interpreter. When the
underspecification affects the control path in the specification we can see significant divergence
between the interpreter and the SMT solver. This has prevented us from debugging some of the
failing properties found by our tool (Section 6) and is the subject of future work.

6 EXPERIENCE
We subjectively feel that our properties closely reflect the rules we formalized and, hence, the
way that architects view the architecture. More objectively, we evaluate the effectiveness of our
approach based on the ability of our properties to find bugs, and the efficiency of proof.

6.1 Formalizing Natural Language Specifications
Our original intention in this project was to focus on verifying properties that would be useful
to programmers or that the architects identified as having been hard to get right (e.g., based on
bugfixes to the specification). When we realized that some of the natural language rules in ARM’s
existing architecture specification could also be formalized using our tools, we shifted our focus to
formalizing those rules and added more structure to our notation to better match the style of those
rules.
We are also working with the team responsible for creating and maintaining the natural lan-

guage part of ARM’s architecture documents about two improvements to the rule style. The first
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improvement is adoption of a more structured approach where rules are categorized according to
the type of constraint expressed and each type is then written in a consistent way. For example,
responses to exceptional events might be written in a sentence structure like this:

R⟨label⟩

IF ⟨optional preconditions⟩ ⟨trigger⟩, THEN the ⟨system name⟩ shall ⟨system response⟩

(This approach is inspired by the “EARS” requirements specification style [Mavin et al. 2009]
used by Rolls Royce PLC to write the requirements of their avionics engine control systems.) The
second improvement is adoption of a standardized terminology to describe the triggers, actions and
responses. For example, there should be only one way to describe a signal becoming ‘1’, only one
way to describe a signal changing from ‘0’ to ‘1’ and only one way to describe a signal remaining
unchanged. These changes to improve consistency are motivated by a desire for clarity and ease of
understanding and is especially valuable for customers who are not native English speakers.

The more formal notation described in this paper is also a structured way of capturing rules: the
notation for properties and the assumptions they rely on provides a high level structure while the
ASL notation coupled with temporal operators such as Rose and Stable provides a standard way to
describe signal values and their changes.

We are starting to look at extending the formal notation with structures and operators directly
corresponding to the sentence structures and terminology used in the natural language rules.
Our hope is that we can narrow the gap between the two notations so that our formal properties
are “eyeball close” to the corresponding informal rule: that is, identically structured and using
corresponding terminology/notation so that humans can easily see that they have the samemeaning.
We don’t expect this to be possible for all rules but the experience reported in Section 4 suggests
that it should be possible.

An obvious further step would be to write rules in a style that can always be directly translated
to formal properties or, conversely, to write properties that can be automatically converted from
our formal notation to English sentences [Burke and Johannisson 2005, for example]. Our current
feeling is that this would be a step too far: it is possible and desirable to narrow the gap between
natural language and formal notation but there is a tension between the best way to express rules so
that humans from different technical backgrounds can understand them and the best way to express
properties to enable machine proofs. This tension is especially strong when the specification has to
deal with new concepts for which we do not have a good mathematical theory and may not yet
know how to formalize or prove a property. For example,
• We cannot currently formalize statements about UNKNOWN (see Section 4.3).
• The best way to formalize memory concurrency semantics is still an active area of research
with no clear agreement between an operational approach (e.g., [Flur et al. 2016]) and an
axiomatic approach (e.g., [Alglave et al. 2014]).
• It is not clear how to formalize statements about security properties of the architecture.

In such cases, we must start with a natural language specification, then formalize rules as techniques
and understanding develop and only then hope to find a way of structuring both the rules and the
properties to be “eyeball close.”

6.2 Bugs Found
We checked the properties on two configurations of the v8-M architecture: one with security
extensions enabled and one with security extensions disabled. The configuration with security
extensions had previously been heavily tested [Reid 2016] but the configuration without security
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extensions was relatively untested. In addition, debug features had only recently been implemented
and only partially tested.
We checked all properties on both configurations and, in the process, we found twelve bugs in

the formal part of the specification and 9 issues in the natural language part including:
• Trivial Bugs: Array bounds failures, a guarding test that was placed after the action it was
meant to guard instead of before the action, and an uninitialized variable.
• Unimplemented/untested functionality: Some parts of the debug specification were ignoring a
“debug disable” control signal;
• System register problems: We found several bugs in the machine-readable description of the
system registers. Some status fields in system registers gave incorrect information about the
state of the processor while others should have masked the status information based on a
control field but did not.
• Ambiguity of Natural Language: Some bugs were not in the ASL part of the specification but
in the natural language part that specifies the rules.
• Imprecision of Natural Language: Section 4 contains several examples where the specification
referred to the PC but meant the “debug view of the program counter.” These lead to consid-
erable confusion and attempts at bugfixes failed until we understood the subtle distinction
between the two.
• Processor exception entry: The example discussed in Section 4.1 was already known to the
architects but we were able to detect it using very high level properties without knowledge
of the details of the bug.
• Mixed logic polarity: The security parts of the specification use boolean variables where TRUE

indicates that something is secure and they also use variables where TRUE indicates that
something is not secure. That is, it uses both positive logic and negative logic. We found a
bug where a variable of one polarity was passed to a function that expected a variable of the
opposite polarity.
• Secure accesses from NonSecure processor : The most serious of the bugs we found was in the
configuration with security extensions disabled. In this configuration, the processor should
behave as though it was in the NonSecure state: all accesses should be non-secure. Our tool
found a case where the processor was treating accesses as secure.

The most difficult and tedious part of this process was in creating invariant properties. Many of
the invariant properties were added in response to puzzling counterexamples involving processor
states that seemed to be nonsensical. After some time staring at these examples, we would convince
ourselves that these nonsense states were unreachable and we would add and prove another
invariant.

6.3 Proof Time
We wrote a total of 59 function properties and invariants. In addition the specification already
contained assertions and we added additional array bounds checks during SMT generation. We
test each of the invariants on both the initial function TakeColdReset and on the transition function
TopLevel and we test the function properties on TopLevel as detailed in Section 5.3. We applied our tool
to two architecture configurations: “NS” with security extensions disabled and “S” with security
extensions enabled. Our SMT generator omits checks for assertions and bounds checks that are
provably satisfied at generation time so the number of assertions and of bounds checks varies
slightly between configurations.

For this experiment, we ran all properties on an Intel(R) Xeon X5670 at 2.93GHz equipped with
48GB memory. We attempted to prove 315 verification conditions. Each proof attempt was run
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Table 1. Number of properties of different classes for the TakeColdReset and TopLevel functions and number
of proofs that pass, fail or timeout in 30000s.

TakeColdReset TopLevel

Asserts Bounds Invariant Asserts Bounds Invariant Properties

Configuration = NS
Total 21 2 38 36 2 38 23
Passed 21 2 38 36 2 36 21
Failed 1
Timeout 2 1

Configuration = S
Total 18 3 38 32 3 38 23
Passed 18 3 38 29 3 33 19
Failed 2
Timeout 3 5 2

with a timeout of one day and we were able to prove 299 of them within the timeout. The results
are summarized in Table 1. The 3 failing properties are still being diagnosed but are probably due
to missing invariants. The presence of 7 timeouts on the invariants means that our proofs are not
yet sound but this has not prevented us from using the tool for finding bugs. The presence of 6
timeouts on assertions and properties means that some of those properties could yet fail if given
enough time to run the checks. Though less worrying, we hope to reduce the size of the SMT
problem we generate and that that will allow these proofs to terminate one way or the other in an
acceptable time.
To help understand the timeouts in Table 1, Figures 2a and 2b summarize what fraction of

properties can be proved in a given time interval for the “NS” and “S” configuration, respectively.
As one might expect, proofs about the reset function are fairly trivial and take just a fraction of a
second while the amount of choice present in the transition function makes proofs about TopLevel
take longer. The graphs show that the properties for the “NS” configuration are typically proved
3-10x times faster than the properties for the “S” configuration but even for the “S” configuration
most proofs are generated within 1000 seconds. The total time taken for all passing proofs is under
5 hours and using a 1000 second timeout would result in the tests that fail or timeout taking another
4 hours. In practice, the proof effort should parallelize nicely so the total elapsed time is primarily
bounded by the number of properties that fail or timeout.

6.4 Notation
As Section 5.2.2 shows the ASL language used in the main specification is a little awkward for the
work described in this paper: it would be easier to translate ASL to an SMT problem if all loops had
explicit bounds, if ASL did not support exceptions and did not allow return from the middle of a
function, if ASL did not provide unbounded integers, etc. On the other hand, simplifying ASL in
such ways would make the language less readable, less robust or require a more subtle semantics
(whose finer details might be lost on some readers).

ASL is a compromise specification language intended to be useful to multiple communities inside
and outside ARM: OS engineers, compiler engineers, hardware engineers, hardware verification
engineers, authors of tests, JIT writers, creators of simulators, documentation teams and formal
verifiers of software. Enabling new user groups and applications increases the utility of the spec-
ification, detects previously undiscovered bugs in the specification and, through successful use,
increases our confidence in the specification. The cost of these benefits is that each individual use
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is more difficult than if the specification and tools were optimized for that individual purpose. For
example, ARM’s hardware engineers engineers would generally find an unoptimized processor
implementation written in Verilog to be easier to understand and easier to verify against than
the ASL specification. This would lead to fragmentation of the specification since a specification
written in Verilog would only be useful to hardware engineers and other groups would use one or
more separate and incompatible specifications.

7 RELATEDWORK
There are two areas of closely related work: formal specification of processors and formal validation
of requirement specifications.

This paper is concerned with the general problem of trusting large specifications but its particular
focus is on specifications of processors. Most recent papers on creating processor specifications
describe how they tested their specification. The most extensively tested processor specifications are
the executable ARM specifications described in our previous work [Reid 2016; Reid et al. 2016] and
the executable x86-64 specifications created by Goel et al. [Goel et al. 2014]. Both have been verified
using substantial programs: Reid uses ARM’s architecture conformance testsuite while Goel runs
real programs including (amusingly) a SAT solver. ARM has publicly released their v8-A processor
specification in machine readable form. Reid et al. also formally verify ARM processor pipelines
against the instruction set part of the specification: this increases confidence in the instruction set
part of the specification but it says little about the system architecture part of the specification that
is our primary concern in this paper.
Other notable processor specifications are the Fox/Myreen ARM v7-A ISA specification in

HOL [Fox and Myreen 2010] and Flur et al.’s ISA and concurrency specification in SAIL [Flur et al.
2016] both of which were tested against actual processors using random and directed tests (8400
tests in Flur et al., 281,307 tests in Fox/Myreen). The other major ARM ISA specification that we
are aware of is embedded in the CompCert compiler and is used in the proof that the compiler
faithfully translates the input C program to ARM assembly code. This specification is limited to a
subset of the user-mode ARMv6 specification and there is no published statement of how it was
validated.
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It is clear that testing of processor specifications is becoming standard practice but all of the
above work consists of testing or formally verifying the specification against implementations of
that specification. They are therefore vulnerable to the problems we identified in the introduction:
(1) Testing of the specification cannot begin until the first implementation or a test suite is produced;
and (2) Testing against an implementation of the specification is vulnerable to common mode
failure. Our approach avoids these pitfalls by relying on formalization of high level properties that
the specification is intended to meet and it avoids the well known limitations of testing by using
formal verification techniques.

We believe that our Called operator is a novel feature in formal specifications but it can be seen as
a adaptation of the coverage measurement features found in System Verilog [IEEE 2013] that allow
verification engineers to annotate Verilog programs with specific coverage goals. Verilog simulation
tools generate reports of howmany times each coverage goal was hit allowing verification engineers
to confirm that their test harness is exercising the desired behaviour. Alternatively, in software
testing, it is common to add debug printf statements to a program to confirm that a certain path is
being tested.

Another important part of processor architecture is the specification of the memory concurrency
semantics [Alglave et al. 2014; Flur et al. 2016; Sarkar et al. 2011]. These specifications are tested
extensively against commercial processors. More recently, the MemAlloy tool has been created for
automatically comparing memory consistency models [Wickerson et al. 2017]. Although different
in almost every detail, we see this as solving a similar problem: understanding if a specification is
correct without the need to wait until an implementation is available.
Our work can also be seen as a variant on formal validation of requirements specifications3.

The Alloy language and analyzer [Jackson 2002] is closest to the system described here. Alloy is a
simplified and improved descendant of the Z notation that allows definition of a model consisting
of some state and operations on those states states and one can verify expected properties using a
SAT solver. In some ways, Alloy is considerably more general and sophisticated than the system
described here: it provides a simple, mathematically clean language for specification. In other ways
the ASL language is more powerful because it provides specialized concepts for the task of defining
processor semantics such as bitvectors and dependent types, concepts like instructions and bitfields
of registers, etc. and it is imperative: these features allow the creation of detailed specifications of
large, complex architectures and proofs about specifications with very large state spaces.
The Formal Tropos language [Fuxman et al. 2001] is specifically designed to allow the form of

loose specification that characterizes the early stages of requirements engineering: it focusses on
entities and the relationships between them and allows the addition both of hard goals specified
using first order linear temporal logic and soft goals that might be subjective (e.g., a company
may have a goal of attracting new customers). The language provides a number of high level
abstractions of events such as notions of object creation, fulfillment of a goal, etc. that could
be expressed in temporal logic but whose inclusion improved readability; specifications can be
animated to check understanding; and model checking can be used to formally verify that properties
of the specification are true or can be satisfied. Support for temporal logic is the most obvious
difference from our system but we are not sure that model checkers would be able to cope with the
large state spaces of our specification because, even with explicit invariants, some of the properties
we wish to check are barely provable by an SMT solver. However, the rich set of abstractions for
3Strictly speaking, ARM says that the natural language rules and the formal ASL specification in ARM’s specifications
have equal weight: they are both part of the specification and both must be satisfied by an implementation. However, in
this work we have treated the natural language rules as a loose specification of the properties that the more precise ASL
specification is required to satisfy — much as a requirements specification can be seen as a loose specification for more
refined specifications developed as design and implementation proceeds.
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describing events appears useful and we are considering whether they can be adopted without
requiring the use of model-checking.

More broadly, it is common practice when creating specifications in a theorem prover to prove
that a new definition satisfies sets of properties such as commutativity, associativity, etc. [Pierce et al.
2016]. Like our properties about specifications, such properties may not completely characterize
the functions being developed but they give increased confidence that the functions are correct
and they are often useful when using those functions. The difference is that our specifications are
somewhat larger and that our properties make use of the ability of our property language to restrict
the set of execution paths taken by the function being checked.

8 LIMITATIONS AND FUTUREWORK
This is part of a long program of creating a complete and precise specification of the ARM archi-
tecture. The most significant limitation is that it has not yet been integrated with parallel work
on concurrent memory semantics [Alglave et al. 2014; Flur et al. 2016; Sarkar et al. 2011]. This
limitation shows up most clearly in situations where TopLevel performs multiple memory accesses in
a single transition (either because of executing ARM’s “load/store multiple” instructions or because
of pushing/popping context on/off the stack during exceptions). Our reasoning treats the entire
execution/exception as a single atomic transition while an external observer would see multiple
independent memory accesses.

We see this work as a step towards creating a set of properties that can be used to verify low-level
system code such as interrupt handlers, memory protection, etc. We hope that this could be used to
plug the gaps in formal proofs of software such as the seL4 OS kernel [Klein et al. 2009, Section 4.4]
that rely on manual inspection and thorough testing of a few pieces of low-level code instead of
providing a formal proof.

The current performance of our tool is adequate for daily or weekly checking of the specification
but it is currently too slow to use as a check on every commit to the specification repository. We
plan to implement a variation on DAG inlining [Lal and Qadeer 2015] to improve scalability.
We are considering how we could formalize the statement in Section 4.3 that says “EPSR.IT to

be become UNKNOWN.” This property cannot be checked in our current implementation because
it is a 2-safety property: detecting a violation would require comparing the result of traces from
two program traces [Clarkson and Schneider 2010].

9 CONCLUSION
Formal verification of programs is becoming more and more practical but, if the verification is
to be meaningful, it must be based on correct architecture specifications for the hardware that
the programs run on. That is, the specifications are a critical part of the Trusted Computing Base.
Unfortunately, the size and complexity of architecture specifications is such that it seems inevitable
that specifications will contain bugs and our previous work confirms this supposition [Reid 2016].
While it is common to debug specifications by testing the specification, this paper proposes a

different approach: we define a set of formal properties that should hold for the specification and
we formally verify that the architecture specification satisfies these properties. We think of the
relationship between the properties and the specification as being like the relationship between a
nation’s constitution and a nation’s laws: the constitution is concise enough that everyone can
read them while the laws are too large for effective review; the constitution can be used to test
whether existing or proposed laws are compatible with high level goals; and the constitution is
stable and changes very, very slowly.
We have extended ARM’s Architecture Specification Language with a property language that

is able to concisely express many of the properties currently written in natural language. Our
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extension’s power comes from a novel coverage operator that lets us express cross-cutting, end-to-
end properties. We are able to check that these properties hold by converting both the specification
and the properties to verification conditions that can be checked in a push-button manner using an
SMT solver. We have used this system to check ARM’s v8-M specification. Despite the fact that the
ARM v8-M specification had previously been extensively tested and reviewed, we found twelve
bugs in it, that have all been fixed by ARM.
To our knowledge, no realistic architecture specification has been subjected to this degree of

formal verification before.
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One paper and one patent are presented in this section.
Paper IV “SoC-C: efficient programming abstractions for heterogeneous multicore systems

on chip” [102] describes the design and implementation of a set of extensions to the C program-
ming language that direct the mapping of that program to different parts of a heterogeneous
multiprocessor system.

Patent I “Reducing inter-task latency in a multiprocessor system” [103] describes an exten-
sion of the technique described in Paper IV that is able to exploit simple task triggering hardware
to reduce the latency between tasks running on the different processors within the system.
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ABSTRACT
The architectures of system-on-chip (SoC) platforms found in
high-end consumer devices are getting more and more complex
as designers strive to deliver increasingly compute-intensive ap-
plications on near-constant energy budgets. Workloads running
on these platforms require the exploitation of heterogeneous par-
allelism and increasingly irregular memory hierarchies. The con-
ventional approach to programming such hardware is very low-
level but this yields software which is intimately and inseparably
tied to the details of the platform it was originally designed for,
limiting the software’s portability, and, ultimately, the architec-
tural choices available to designers of future platform generations.
The key insight of this paper is that many of the problems experi-
enced in mapping applications onto SoC platforms come not from
deciding how to map a program onto the hardware but from the
need to restructure the program and the number of interdepen-
dencies introduced in the process of implementing those decisions.
We tackle this complexity with a set of language extensions which
allows the programmer to introduce pipeline parallelism into se-
quential programs, manage distributed memories, and express the
desired mapping of tasks to resources. The compiler takes care
of the complex, error-prone details required to implement that
mapping. We demonstrate the effectiveness of SoC-C and its
compiler with a “software defined radio” example (the PHY layer
of a Digital Video Broadcast receiver) achieving a 3.4x speedup
on 4 cores.

Categories and Subject Descriptors: D.3.3 [Software]:
Programming Languages

General Terms: Languages

1. INTRODUCTION
In the next five years the peak available bandwidth to mo-

bile phones is expected to increase from less than 5 Mbps
today to 100 Mbps in 2012. The signal-processing through-
put to implement these protocols is expected to increase to
beyond 25 giga-operations per second. Commodity cameras
on phones already support 10M pixel resolution which fur-
ther drives the need for high-speed multimedia image pro-
cessing, high-definition video coding and 3D graphics. To
maintain the same form-factor, this massive performance
must be achieved without increasing battery size which lim-
its the power consumption to around 1 Watt.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

Modern DSP designs are starting to achieve the required
energy efficiency. For example, ARM’s prototype data pro-
cessing engine can sustain over 10 GMAC/s at less than
300mW in 65nm technology. The main problem is not cre-
ating energy-efficient hardware but creating efficient, main-
tainable programs to run on them. In order to save energy
and, to some extent, silicon area, high performance embed-
ded systems eschew features that characterize today’s high-
end multiprocessor systems: Homogeneous processors are
replaced by a heterogeneous mix of specialized processors
tuned to particular parts of the expected workload; General-
purpose processors programmed in C, C++, etc. are supple-
mented by special-purpose accelerator engines which may be
fixed-function, configurable or programmable using a C sub-
set; Shared memory is replaced by multiple private memo-
ries to decrease latency and energy and increase bandwidth;
and Hardware cache coherency is omitted to save area and
power consumed by cache coherence protocols. Omitting
these features from high performance embedded systems re-
quires programmers to adopt a very low-level, error-prone
programming style that limits portability and maintainabil-
ity. The key insight of this paper is that these problems come
not from deciding how to map the application onto the hard-
ware but from the restructuring of the code and the number
of interdependencies introduced in the process of implement-
ing those decisions. Rather than abandon features because
of their hardware cost, SoC-C moves their implementation
into the language so that the programmer can reason about
and optimize the mapping at a high level while the compiler
takes care of the complex, error-prone details required to
implement that mapping.

SoC-C is a set of language extensions that enables pro-
grammers to express efficient system-on-chip programs that
exploit the parallelism available in the platform, provides
programmers with control over how the many different pro-
cessing elements in the platforms are used, and requires lit-
tle or no restructuring when the application is subsequently
ported within a family of platform architectures.

This paper makes the following contributions: We de-
scribe channel-based decoupling: a novel spin on existing
ways to automatically introduce pipeline parallelism that
allows programmers to tradeoff determinism for scheduling
freedom and is capable of handling the complex control flow
that real applications require. We propose a novel way of ex-
pressing the data copying that must happen in a distributed
memory system. Our annotations express the programmer’s
intent allowing the compiler to detect missing or incorrect
copy operations. We describe an inference mechanism that
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// Data placement
declaration ::= type variable @ { memory1, ... memoryn } ;
expression ::= variable @ memory
statement ::= SYNC(variable[,memory[,memory]]

) @ processor ;
// Code placement
expression ::= identifier( expression, ... expression

) @ processor
// Fork-join parallelism
statement ::= parallel sections {

section { compound-statement } ;
. . .
section { compound-statement } ;

}
// Pipeline parallelism
statement ::= pipeline { compound-statement }
statement ::= FIFO ( variable ) ;

Figure 1: SoC-C syntax extensions.

significantly reduces the amount of annotation required to
map an application onto a hardware platform. We identify
the critical optimizations required to support the high level
programming model. With these optimizations, SoC-C can
achieve accelerator utilization levels of 94% and a speedup
of 3.4x on a platform with 4 accelerators on a real workload.

The paper is structured as follows. Section 2 describes a
set of obvious minimal extensions to C to support heteroge-
neous, distributed parallel systems and introduces an exam-
ple to illustrate why these extensions are necessary but in-
sufficient for programming complex SoCs. Thus motivated,
Sections 3–6 make a series of improvements showing how
each extension improves the running example and we eval-
uate the expressiveness of the extensions in Section 7. Sec-
tions 8 and 9 discuss optimizations and performance. Sec-
tion 10 discusses related work and Section 11 concludes.

This paper does not address how the best application
mapping can be generated automatically using program anal-
ysis, profiling, iterative compilation, etc. for two reasons.
The first is that the mechanism used to choose a mapping
is largely orthogonal to the mechanism used to act on those
decisions. The second is that there is no single obvious prop-
erty to optimize for in embedded systems. Depending on the
system one may want to optimize for some combination of
battery life, low-latency user experience, meeting real-time
deadlines, reducing number of retransmits, code size, etc.

2. A MINIMAL EXTENSION TO C
This Section considers minimal extensions to C to support
heterogeneous multiprocessor systems with distributed mem-
ory and shows that whilst these or similar extensions are
necessary (and form the basis of SoC-C), they are not suffi-
cient for creating high performance, maintainable programs.
This sets the stage for later sections which describe further
extensions and optimizations to tackle these problems.

The extensions considered in this Section are those re-
quired to introduce parallelism, control sharing of resources
and variables, communicate between threads, map data onto
memories and map code onto processors/accelerators. Our
descriptions of the extensions are brief because they are
based on extensions found in other languages such as OpenMP
(which inspired our notation), Concurrent Pascal, etc. Fig-
ure 1 summarizes all the extensions discussed in this paper.

Parallel sections introduce fork-join parallelism where
a single master thread forks multiple child tasks (which may
also fork child tasks) and waits for all children to complete.

complex_t samples[2048];
bool bits[3024];
int8_t bytes[378];
int timing_correction = 0;
while (1) {

ADC_get(&adc,&samples,2048);
AdjustTiming(timing_correction,samples);
FFT(samples);
timing_correction += FindTimeOffset(samples);
Demodulate(bits,samples);
ErrorCorrect(bytes,bits);

}

Figure 2: A simplified OFDM radio receiver.

The statement

parallel_sections{
section{ statement1 }
section{ statement2 }

}

executes statement1 and statement2 in parallel and com-
pletes when both statements complete. Parallel sections can
be implemented by forking one thread per section and then
waiting for all threads to complete. Since this is the basic
mechanism for expressing all parallelism, it is the program-
mer’s responsibility to avoid race conditions, deadlock, etc.

Channels synchronize/communicate between threads.
FIFO channels provide two operations: “fifo_put” atomi-
cally transfers data into the channel and “fifo_get” opera-
tions atomically transfers data out (blocking if the channel
is full/empty). This atomic-transfer semantics ensures that
each thread has exclusive access to the data.

Data placement annotations map variables to memo-
ries. A variable declaration of the form

type V @ M ;

instructs the SoC-C compiler and linker to place the variable
‘V’ in memory ‘M’.

Code placement annotations perform RPCs. A func-
tion call of the form

function(expr1, ... exprm) @ P

is compiled into a synchronous remote procedure call: the
function is invoked on processing element ‘P’. Unlike most
RPC implementations, the call-frame (i.e., which function to
call and any scalar and pointer arguments) is copied to the
processing element but bulk data structures are not copied.
This reflects our design goal of giving the programmer con-
trol over data copying to let them tune memory use and the
impact on timing.

To illustrate these minimal extensions, consider mapping
the sequential program in Figure 2 onto the architecture
shown in Figure 3. This program displays two different
types of data dependency which must be handled when par-
allelizing the program. There is forward dataflow within
a loop iteration carrying complex samples from the ADC
through timing correction, an FFT, demodulation and error
correction. There is also feedback loop from one iteration to
the next which continuously monitors changes in the timing
offset between the transmitter and the receiver (caused by
slight differences in clock rates, Doppler effects, etc.) which
is used to control timing correction in future iterations. For
simplicity, this example deals with fine timing correction
(errors less than half the sample rate which are dealt with
by applying a rotation to the complex samples) but ignores
coarse timing correction (which would adjust the ADC in-
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teraction) and channel equalization (which would correct for
some frequencies being received more strongly than others).

In SoCs with heterogeneous processors, the principal form
of parallelism used is pipeline parallelism: each engine is
dedicated to performing a set of tasks and engines commu-
nicate with each other via FIFO channels. Figure 4 shows
how the program can be rewritten to express pipeline paral-
lelism using the minimal subset of SoC-C described in this
Section. As can be seen, the parallel version of the program
is significantly longer than the sequential version and has
several more variables (both buffers and FIFOs). Looking
more closely, we identify the following problems:

FIFO channels create excessive synchronization In the
sequential version of the program, a feedback loop carries
the timing correction back for use in the next iteration. To
achieve exactly the same semantics, the parallel program
would need to use a FIFO channel but this would have forced
the first three sections to run sequentially because section 1
could not start the next iteration until section 3 had sent
the new timing correction — a problem known as loss of
decoupling [1]. To avoid this, the programmers used their
knowledge of radio systems to confirm that timing correc-
tions change slowly and so it would be acceptable to use
a slightly older timing correction if that leads to greater
parallelism. Since FIFO channels create too much synchro-
nization, they chose the other inter-thread communication
method of a shared variable accessed in a critical section.
Section 3 addresses this by supporting user defined channels
and zero-copy optimization.

Structure of the program is significantly changed. While
the sequential program was a single, short loop, the paral-
lel program contains four loops, the code is dominated by
communication and parallelism constructs and it takes more
effort to determine the flow of data through the program.

Equally seriously, this major restructuring was performed
to suit one particular architecture and achieve a reasonable
load balance given the current speed of each function. If the
architecture were to change or a function were optimized,
the program would have to be restructured accordingly — a
significant and error-prone undertaking. Section 4 addresses
this using decoupling to automatically introduce pipeline
parallelism under programmer control.

Fragmentation of variables. Each individual variable in
the sequential program has been fragmented into many sep-

int timing_correction = 0;
parallel_sections{

section{
complex_t samples1[2048] @ {M0};
int t1;
while (1) {
ADC_get(&adc,&samples1,2048);
critical(offset){

t1 = timing_correction;
}
AdjustTiming(t1,samples1) @ P0;
fifo_put(&f1,samples1);

}
}
section{

complex_t samples2[2048] @ {M0};
complex_t samples3[2048] @ {M1};
while (1) {
fifo_get(&f1,samples2);
memcpy(samples3,samples2,sizeof(samples2)) @ DMA;
FFT(samples3) @ P1;
fifo_put(&f2,samples3);

}
}
section{

complex_t samples4[2048] @ {M1};
complex_t samples5[2048] @ {M2};
bool bits1[3024] @ {M2};
int t2 = 0;
while (1) {
fifo_get(&f2,samples4);
memcpy(samples5,samples4,sizeof(samples4)) @ DMA;
t2 += FindTimeOffset(samples5)@P2;
critical(offset){

timing_correction2 = t2;
}
Demodulate(bits1,samples5) @ P2;
fifo_put(&f3,bits1);

}
}
section{

bool bits2[3024] @ {M2};
bool bits3[3024] @ {M3};
int8_t bytes[378] @ {M3};
while (1) {
fifo_get(&f3,bits2);
memcpy(bits3,bits2,sizeof(bits2)) @ DMA;
ErrorCorrect(bytes,bits3) @ Viterbi;

}
}

}

Figure 4: A parallel version of the program in Figure 2.

arate variables in the parallel program. This fragmentation
comes from two distinct sources: replicating variables that
are communicated between threads and replicating variables
between memory spaces. Whilst the replication is necessary,
the burden on the programmer is significant: they may use
the wrong version of a variable, they may fail to copy from
one version of a variable to the other, or they may perform
the copy but in the wrong direction. Sections 4 and 5 sepa-
rately address the two sources of fragmentation.

Performance issues In addition to the impact on the struc-
ture of the application, the choice of synchronous RPCs,
threads and FIFOs to express parallelism is convenient but
runs the risk of a high overhead from copying data and
swapping thread contexts. Section 8 shows that existing
optimizations can be used to allow the use of high-level con-
structs without excessive overhead.

3. USER DEFINED CHANNELS
In Section 2, we observed that FIFO channels introduced

too much synchronization and therefore used shared vari-
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typedef struct { lock_t lock; int data; } atomic_int_t;

void atomic_int_init(atomic_int_t *a, int x)
{ lock_init(&a->lock); a->data = x; }

void atomic_int_put(atomic_int_t *a, int x)
__attribute(( PUT(a, x) IN(x) ))

{ lock(&a->lock); a->data = x; unlock(&a->lock); }

void atomic_int_get(atomic_int_t *a, int *x)
__attribute(( GET(a, x) OUT(x) ))

{ lock(&a->lock); *x = a->data; unlock(&a->lock); }

Figure 5: Implementation of atomic channels showing

their dataflow annotations.

ables instead to achieve parallelism. The problem with us-
ing shared variables to communicate between threads is that
it is harder to determine the direction of dataflow through
shared variables, which makes it harder for programmers to
understand and makes dataflow analysis less precise. To ad-
dress this issue, SoC-C allows programmers to define new
channel types to express directional dataflow.

SoC-C provides the usual array of thread primitives (locks,
condition variables, etc.) to allow programmers to create
their own channel operations. More importantly, SoC-C pro-
vides annotations to allow the programmer to specify that a
function performs directional communication. Figure 5 con-
tains a simple example: an “atomic channel” which allows
one thread to pass data to another thread atomically. The
most important aspect of this example is the annotations.
The PUT(a,x) attribute specifies that the function argument
‘a’ is a channel used to communicate between threads and
that the function argument ‘x’ is the data transferred into
the channel. The PUT and GET attributes provide important
information for the decoupling transformation described in
Section 4 and the zero-copy transformation described in Sec-
tion 8.1. IN and OUT attributes indicate dataflow through
arguments in the usual way.

The PUT and GET attributes were originally added to
SoC-C to let us quickly prototype new types of channel
without the usual effort of having to add new intrinsic func-
tions to tables in the compiler. We have since realized that
most inter-thread communication and communication be-
tween threads and stream-oriented devices like Analog-to-
Digital Convertors (ADCs) is directional and can be mod-
elled as channels using our annotations. In addition to
atomic channels, some examples of channels we use are:

Channel interfaces to ADCs and DACs High rate ADCs
usually write data continuously into a circular buffer in mem-
ory. In addition to the channel and buffer arguments, it
takes a size argument indicating how many samples are re-
quired.

void ADC_get(adc_t *adc, buffer_t *buf, unsigned sz);

Although it interacts with hardware, this function has the
same semantics as any other“get” function: if the data is not
yet available, the thread blocks until the data is available.

Timed channels provide time-indexed access to data. FIFO
channels and atomic channels are at opposite ends of the
spectrum on how puts and gets are matched: a FIFO chan-
nel matches each get with a unique put; while an atomic
channel matches gets with the most recent put. Timed chan-
nels provide an intermediate semantic: data is timestamped
and a get is matched with the put closest to the requested
time.

void ts_put(tschan_t *c, int timestamp, void* v);
void ts_get(tschan_t *c, int timestamp, void* v);

The ts_get operation returns the entry with the closest
timestamp to the one specified. All ts_put operations must
use strictly increasing times and all ts_get operations must
use strictly increasing times. This restriction allows entries
to be discarded when they can no longer be accessed. Timed
channels allow for more parallelism between threads since,
after the first ts_put is performed, ts_get operations never
block because there is always an entry with a closest times-
tamp. The cost of this increased performance is less precise
synchronization between threads than with FIFO channels:
applications that use timed channels are unlikely to give de-
terministic results.

4. DECOUPLING
In Section 2, we observed that manually introducing pipeline
parallelism requires a significant restructuring of the pro-
gram. There are many papers on avoiding this cost by au-
tomating the transformation: Smith [10] applies the tech-
nique manually to Cray assembly code which they referred
to as “decoupling”; and Palacharla and Smith [9] use pro-
gram slicing to automatically decouple a program into two
threads communicating via FIFO channels: one containing
load-store operations, the other containing all other opera-
tions. Subhlok et al. [11] have proposed syntax extensions
for marking the start and end of pipeline stages within a
loop body. These tools allow the programmer to identify
what code should be in each section and then the compiler
inserts FIFO channel operations as required.

SoC-C’s approach is similar in that it requires the pro-
grammer to indicate the boundaries between threads. It
differs in that the programmer indicates the boundaries by
inserting the communication between sections and the com-
piler determines which code must be in each section — the
exact opposite of previous work. In practice, the difference
in annotations is usually small: we insert similar annotations
at similar parts of the program. We believe our emphasis on
communication brings an important benefit: the program-
mer is able to select an appropriate channel type in order
to reduce synchronization between sections . These decisions
necessarily involve the programmer because using any chan-
nel other than a FIFO channel can change the meaning of
the program. A secondary benefit is that our channel-based
decoupling transformation can be applied to code containing
complex control flow and is not restricted to being applied
to loops — constraints applied by most prior work.

Figure 6 shows the program in Figure 4 rewritten to use
our pipeline construct. There are three major differences.
(1) It is possible to write the program as a single loop be-
cause decoupling can automatically split it into four parallel
copies of the loop. (2) It is not necessary to introduce as
many intermediate variables (samples2, samples4, bits2)
because our transformation performs range-splitting to split
any local variable with disjoint live ranges into multiple vari-
ables. (3) It is necessary to use an atomic channel to express
the direction of dataflow for the a_timing variable.

SoC-C uses the syntax

pipeline{
compound_statement

}

to indicate that the body of the compound statement is to be
transformed into an equivalent set of parallel sections which
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atomic_int_t a_timing;
atomic_int_init(&a_timing,0);
pipeline {

complex_t samples1[2048] @ {M0};
complex_t samples3[2048] @ {M1};
complex_t samples5[2048] @ {M2};
bool bits1[3024] @ {M2};
bool bits3[3024] @ {M3};
int8_t bytes[378] @ {M3};
int t1;
int t2 = 0;
while (1) {

ADC_get(&adc,&samples1,2048);
atomic int get(&a timing,&t1);
AdjustTiming(t1,samples1) @ P0;
fifo put(&f1,samples1);
fifo get(&f1,samples1);
memcpy(samples3,samples1,sizeof(samples1)) @ DMA;
FFT(samples3) @ P1;
fifo put(&f2,samples3);
fifo get(&f2,samples3);
memcpy(samples5,samples3,sizeof(samples3)) @ DMA;
t2 += FindTimeOffset(samples5)@P2;
atomic int put(&a timing,t2);
Demodulate(bits1,samples5) @ P2;
fifo put(&f3,bits1);
fifo get(&f3,bits1);
memcpy(bits3,bits1,sizeof(bits1)) @ DMA;
ErrorCorrect(bytes,bits3) @ Viterbi;

}
}

Figure 6: A version of the program in Figure 2 written

using the pipeline construct.

communicate (only) using the channel operations already
present in the program. Since communication lies at the
boundaries between threads, the compiler uses a dataflow
analysis which “colors in” the code that lies between the
boundaries. This analysis identifies the set of operations
that are on the “producer” side of a channel and the set of
operations on the “consumer” side of a channel. Repeat-
ing this for all channels and considering shared variables,
the compiler partitions the operations into sets of opera-
tions which must be in the same thread. The body of the
pipeline construct is then transformed into parallel sections
replicating control flow and variables as required.

The decoupling algorithm must make two essential deci-
sions: “What variables and operations to replicate?” and
“What operations to place in the same thread?”.

The task of decoupling is to split the region of code into
as many threads as possible, without introducing timing-
dependent behaviour, using channels to communicate be-
tween threads. Comparing Figure 4 with Figure 6 we ob-
serve that the generated threads do not strictly partition
the statements in the original code: some variables and op-
erations (principally those used for control) have been pri-
vatized (i.e., replicated in multiple threads) while others re-
main shared. The choice of what to privatize is an essential
part of the transformation: if too much code or data is priva-
tized, the transformed program can run more slowly and use
more memory than the original program. While these deci-
sions could be controlled using annotations on every variable
and statement, SoC-C applies some simple default rules that
give the programmer control without requiring excessive an-
notation. By default, scalar variables and variables declared
inside the pipeline annotation may be privatized. Opera-
tions other than function calls may be privatized unless they
have side-effects or modify a non-duplicable variable.

The other essential decision that the transformation must

make is “What operations must be in the same thread as
each other?”. To avoid introducing timing-dependent be-
haviour, the compiler applies the following three rules:

1. To preserve data and control dependencies, any dependent
operations must be in the same thread as each other un-
less the dependency is from a ‘put’ operations to a ‘get’
operation on the same channel. This special treatment of
dependencies on channel operations has the effect of cut-
ting edges in the dataflow graph.

2. To avoid introducing race conditions, any operations which
write to a shareable, non-channel variable must be in the
same thread as all operations which read from or write to
that variable. Channels are excluded because all channel
operations are required to atomically modify the channel.

3. To avoid introducing unwanted non-determinism, all puts
to a given channel must be in one thread and all gets from
a given channel must be in one thread.

Our implementation of decoupling finds the unique, max-
imal solution in four stages: live range splitting of privati-
zable variables, dependency analysis, merging, and thread
production. To illustrate our method, we consider the fol-
lowing simple example.

1 pipeline{
2 for(int i=0; i<100; ++i) {
3 int x = foo();
4 if (i % 2 != 0) {
5 fifo_put(&f,x);
6 fifo_get(&f,&x);
7 bar(x);
8 }
9 }
10 }

The dependency analysis stage forms a large number of can-
didate threads by computing a backward data and control
slice [16] from each unprivatized operation ignoring data de-
pendencies on channel operations but including all other op-
erations in the slice. That is, we repeatedly apply rules (1–3)
to form candidate threads. In our running example, there
are four candidates: one each for foo(), fifo_put(&f,x),
fifo_get(&f,&x) and bar(x).

For example, the candidate for foo() is:

2 for(int i=0; i<100; ++i) {
3 int x = foo();
9 }

the candidate for fifo_put(&f,x) is:

2 for(int i=0; i<100; ++i) {
3 int x = foo();
4 if (i % 2 != 0) {
5 fifo_put(&f,x);
8 }
9 }

and the candidate for bar(x) is:

2 for(int i=0; i<100; ++i) {
3 int x;
4 if (i % 2 != 0) {
6 fifo_get(&f,&x);
7 bar(x);
8 }
9 }

The merging stage combines candidate threads by merging
threads that contain the same un-privatizable operation or
variable. For example, the candidate for foo() is merged
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with the candidate for the operation fifo_put(&f,x) be-
cause they both contain the operation foo(). This results
in the candidate thread:

2 for(int i=0; i<100; ++i) {
3 int x = foo();
4 if (i % 2 != 0) {
5 fifo_put(&f,x);
8 }
9 }

This is identical to the candidate for fifo_put(&f,x) be-
cause the candidate already contained the x=foo() oper-
ation. Similarily, the result of merging the candidate for
bar(x) with the candidate for the operation fifo_get(&f,&x)

is identical to the candidate for bar(x).
The thread production stage converts candidate threads

to threads by privatizing variables and combining the result
using parallel sections.

Syntactic sugar We have found that it is common for
pairs of put and get operations to be adjacent. In recog-
nition of this, we added a small piece of syntactic sugar:
“FIFO(x);”. This is equivalent to a put followed by a get
on variable x and that also declares and initializes a fifo
channel. This syntax is illustrated in Figure 7.

5. COMPILER-SUPPORTEDCOHERENCY
In Section 2, we saw that distributed memory leads to

variable fragmentation: if functions running on different pro-
cessors access the same variable, we must create a version
of the variable for each memory region. This is tedious and
error prone because it is hard to understand the original de-
sign intent. To address this problem, we extend the data
placement notation to allow the programmer to express the
fact that the additional variables are just versions of the
same variable. This preserves the structure of the original
design and allows the compiler to detect errors using a single
compile-time coherence protocol.

We allow the programmer to assign a variable to multiple
memory regions. For example, the declaration

bool bits[2048] @ {M2,M3};

introduces two copies of the variable bits: one in memory M2

(written bits@M2) and one in memory M3 (written bits@M3).
Semantically, the different versions of a variable behave

like copies in a coherent cache: an assignment to one ver-
sion of bits (logically) invalidates the contents of the other
version. An invalid version of a variable can be made valid
by synchronizing it with a valid version of the same variable.
The statement

SYNC(bits,M3,M2) @ DMA;

makes bits@M2 valid if bits@M2 was already valid and is an
error if bits@M0 was invalid. A SYNC statement is compiled
into a copy operation which, in this example, is to be per-
formed on engine DMA. Figure 7 illustrates how using variable
coherency annotations simplifies the task of keeping track of
all the different variables in Figure 6.

Adding support for multiple coherent versions of a vari-
able required the following compiler changes. Various triv-
ial changes to support the new syntax; to transform uses
of variables to use the appropriate version; and to trans-
form SYNC constructs into memcpy operations. Checking for
coherence errors is performed using a flow-sensitive, context-
insensitive, field-insensitive forward dataflow analysis:

atomic_int_t a_timing;
atomic_int_init(&a_timing,0);
pipeline {

complex_t samples[2048] @ {M0,M1,M2};
bool bits[3024] @ {M2,M3};
int8_t bytes[378] @ {M3};
int t1;
int t2 = 0;
while (1) {

ADC_get(&adc,&samples@M0,2048);
atomic_int_get(&a_timing,&t1);
AdjustTiming(t1,samples@M0) @ P0;
FIFO(samples@M0);
SYNC(samples,M1,M0) @ DMA;
FFT(samples@M1) @ P1;
FIFO(samples@M1);
SYNC(samples,M2,M1) @ DMA;
t2 += FindTimeOffset(samples@M2)@P2;
atomic_int_put(&a_timing,t2);
Demodulate(bits@M2,samples@M2) @ P2;
FIFO(bits@M2);
SYNC(bits,M3,M2) @ DMA;
ErrorCorrect(bytes@M3,bits@M3) @ Viterbi;

}
}

Figure 7: The effect of rewriting Figure 6 using
variable coherency annotations. Changes are high-
lighted in bold.

1. Each version of each variable can be valid or invalid;

2. A kill makes all versions of a variable invalid;

3. A def to a version of a variable makes that version valid
and all others invalid;

4. A SYNC statement copies validity from one version of a
variable to another;

5. A use checks that the version used is valid; and

6. When flow merges, a version is valid only if it is valid in
all incoming edges.

To illustrate the kind of errors these checks detect, suppose
the programmer had accidentally reversed the first two ar-
guments in the first call to memcpy in Figure 6. Since the
programmer’s intent is not clear, it would be hard for a
compiler to detect this error. In contrast, reversing the M0

and M1 arguments in the first SYNC statement in Figure 7
is detected as a coherence error by our compiler: the FIFO

on the previous line defines samples@M0 which invalidates
samples@M1 but the SYNC reads from samples@M1.

This coherency mechanism meets our primary goal of sup-
porting safe, statically checked use of distributed memory
between processors but within a single thread. Inter-thread
coherency checking would require dynamic checking of the
ownership of a variable and synchronization — which we
think is better expressed using channels. A consequence
of not supporting inter-thread coherence is that we per-
form coherence checking and transformation before decou-
pling to eliminate coherence annotations before creating new
threads.

6. PLACEMENT INFERENCE
Supporting multiple coherent versions of a variable helps

communicate the intent of the programmer and, hence, de-
tect errors but it requires that every single use of a variable
is annotated. To reduce this annotation burden, we replace
coherence checking with placement inference which exploits
the observation that the annotations contain a high degree
of redundancy:
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atomic_int_t a_timing;
atomic_int_init(&a_timing,0);
pipeline {

complex_t samples[2048];
bool bits[3024];
int8_t bytes[378];
int t1;
int t2 = 0;
while (1) {

ADC_get(&adc,&samples,2048);
atomic_int_get(&a_timing,&t1);
AdjustTiming(t1,samples) @ P0;
FIFO(samples);
SYNC(samples) @ DMA;
FFT(samples) @ P1;
FIFO(samples);
SYNC(samples) @ DMA;
t2 += FindTimeOffset(samples) @ P2;
atomic_int_put(&a_timing,t2);
Demodulate(bits,samples) @ P2;
FIFO(bits);
SYNC(bits) @ DMA;
ErrorCorrect(bytes,bits) @ Viterbi;

}
}

Figure 8: An OFDM radio receiver mapped onto
a complex architecture using the full set of SoC-C
annotations.

• If P can only access one memory M, and the program con-
tains an RPC “foo(x)@P,” then variable x must be placed
in memory M and that x must have a version in memory M.

• If there is only one valid version x@M of a variable at the
site of a SYNC(x) statement, then the only legal source of
the SYNC is x@M.

• If x@M is the only version of a variable whose use is reach-
able from a SYNC(x) statement, then the only sensible tar-
get of the SYNC is x@M.

These three observations follow a common pattern: if
there is only one valid choice, assume that choice is true.
Our coherence inference algorithm is similar to flow-sensitive
type inference: it uses annotations and the memory topol-
ogy to add constraints to the system (e.g., an RPC ‘f(x)@P’
provides the constraint that ‘x’ must be in a memory accessi-
ble by ’P’ while a reference to ‘x@M0’ provides the constraint
that ‘x@M0’ is valid. Having gathered all the constraints, we
use forward-chaining inference to add additional constraints.
When no more constraints can be inferred, we choose an
open question and test all possible answers to see if they
break the constraints. If precisely one possible solution does
not break the constraints, then we assume that it is the
correct solution and repeat the inference process. This is
repeated until no more open questions can be resolved in
this way. This process results in a unique solution if there
is one because it makes an assumption only if it can prove
that all other alternatives are invalid.

In practice we find that SoCs which have multiple memory
regions also have sufficiently restricted memory topologies
that the compiler can infer most annotations. For example,
Figure 8 shows the effect of applying our annotations to the
code in Figure 7: all data placement annotations can be
inferred in this example.

7. EVALUATING SOC-C ANNOTATIONS
Having completed our presentation of SoC-C, we consider
how effective the annotations are at expressing SoC pro-
grams. Comparing Figure 8 with the sequential code, we

see that to map and parallelize we added: 8 code placement
annotations; 0 data placement annotations; 3 SYNC state-
ments; 3 FIFO statements to pass data between threads;
and 2 put/get operations on atomic operations.

While annotations and additional statements have been
inserted, the structure of the code is unchanged; to port the
parallelized code to a new platform, the worst case is that
one would delete all the annotations and start again.

Most importantly, we claim that there is little redundancy
in the code: most of the changes are independent of the other
changes. This suggests that SoC-C allows programmers to
express design decisions rather than focussing on the me-
chanics of making the program correct and consistent.

8. KEY OPTIMIZATIONS
In Section 2 we identified two potential performance is-

sues in our choice of abstraction: the cost of copying buffers
into and out of channels; and the cost of using synchronous
RPC and threads. This Section describes the (previously
known) optimizations we apply to make the cost of these
abstractions acceptable.

8.1 Optimizing channels
The semantics of channels is that put operations transfer
data into the channel and get operations transfer data out.
This simple semantics ensures that each thread has exclusive
access to the data but a literal implementation would require
a lot of unnecessary data copying. Network stacks, filesys-
tems and embedded systems often provide a “zero copy” in-
terface which pass pointers instead of copying data. For
example the Task Transaction Interface [14, section 4.1.5]
splits “put” operations into two operations. “acquireRoom”
allocates the next empty buffer in a channel; the producer
should then write data into the buffer and call“releaseData”
to make the data available to the consumer. Similarily, “get”
operations are split into “acquireData” and “releaseRoom”.

Supporting this style of channel interface required three
changes. First, for all channels which hold large buffers, we
rewrote the channel implementation to support a zero-copy
interface. For example, the zero copy operations correspond-
ing to fifo_put are:

void fifo_acquireRoom(fifo_t *f, void* *room);
void fifo_releaseData(fifo_t *f, void* data);

Secondly, we added attributes to the “put” and “get” func-
tions identifying that these functions could be zero-copy op-
timized and naming the two associated functions. The aug-
mented set of attributes on the fifo_put function is:

void fifo_put(fifo_t *fifo, void *data)
__attribute(( PUT(fifo, data) IN(data)

ZEROCOPY(fifo1_acquireRoom,
fifo1_releaseData) ));

Finally, we modified the compiler to analyze the live range
of buffers passed to functions with ZEROCOPY attributes and
insert calls to the two functions at the starts of the live range
and at the ends of the live range.

The optimization cannot be used if the live range does not
end at a put (or start with a get), for example, if a variable is
put into multiple channels or is used after the put operation.
For bulk data types, the cost of not optimizing away the copy
may be significant so, when zero-copying cannot be used,
our compiler reports a warning prompting the programmer
to change their code.
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section{
complex_t *p_samples2;
complex_t *p_samples3;
while (1) {
fifo_acquireData(&f1,&p_samples2);
fifo_acquireRoom(&f2,&p_samples3);
memcpy(p_samples3,p_samples2,...) @ DMA;
fifo_releaseRoom(&f1,p_samples2);
FFT(p_samples3) @ P1;
fifo_releaseData(&f2,p_samples3);

}
}

Figure 9: The effect of zero-copy optimization.

Figure 9 shows the effect of applying zero-copy optimiza-
tion to the second code section in Figure 4. Using this trans-
formation typically reduces the channel operations to just a
small amount of book-keeping. For example, the put opera-
tion on an atomic channel is split into an operation to wait
for the buffer to become available followed later by an opera-
tion to release the buffer to other users of the channel. These
operations are exactly the same as the lock/unlock opera-
tions on a mutex that would normally have been used: our
optimizations result in the same low-level, efficient imple-
mentation that embedded programmers normally use with-
out the semantic complexity of using shared variables di-
rectly.

8.2 Optimizing thread implementation
SoC-C provides synchronous RPCs and uses threads to

express sequencing of operations and parallelism. In embed-
ded systems, it is more usual to provide asynchronous (aka
non-blocking) RPCs and use an event-driven programming
style to express sequencing of operations and parallelism.
SoC-C’s choice is simpler to use but a conventional thread
implementation would incur a large space overhead to store
thread contexts and a large time overhead performing con-
text switches when an engine sends an interrupt to signal
that it has completed a function call.

To achieve the simplicity of threads with the efficiency of
event-driven programming, we use an old trick: we trans-
form threads into event-driven programs [6]. Our compiler
transforms each thread into a state machine where states
represent points where the program may block on an event
and edges are labelled with event handlers which execute
code from the thread and update the current state. For ex-
ample, Figure 10 shows the state machine corresponding to
the code in Figure 9.

A typical execution sequence is as follows. The proces-
sor spends most of its time in a low-power state waiting
for an interrupt with all threads either blocked on a condi-
tion variable waiting for a processing element to complete
execution or blocked on a channel. On receiving an inter-
rupt signalling completion of a task, the processor invokes
an interrupt hander which acknowledges the interrupt and
invokes an event handler for the thread currently waiting for
that task to complete. This handler typically starts a new
task on a processing element and blocks waiting for the task
to complete or waiting for the processing element to become
available. If the event handler released a lock or put data
into a channel before it blocked, the handler may trigger
other event handlers: the completion of a single process-
ing element can cause a cascade of event handlers as results
propagate to other threads and buffers are freed. When all
event handlers in this cascade have executed, all threads are

true 
Æ 
fifo_acquireData(&f1,&p_samples2); 

data_available(&f1) 
Æ     
fifo_acquireRoom(&f2,&p_samples3);
 

task_completed(DMA) 
Æ 
fifo_releaseRoom(&f1,&p_samples2); 
FFT(p_samples3) @ P1; 

data_available(&f2) 
Æ      
memcpy(p_samples3,p_samples2,...) @

task_completed(P1) 
Æ 
fifo_releaseData(&f2,&p_samples3); 
 

Figure 10: The state machine for Figure 9.

once more blocked on a condition variable or a channel and
the control processor returns from the interrupt handler and
reenters a low-power state.

8.3 Dataflow Analysis and Phase Ordering
Our compiler relies on the ability to perform a sufficiently

accurate dataflow analysis. Since we wish to keep the pro-
grammer “in the loop”, we limited ourselves to a simple
dataflow analysis that was easy to understand. Accord-
ingly, our analysis is flow sensitive, field-insensitive, context-
insensitive. Our pointer analysis is just sufficient to analyze
programs that use pointers to pass arguments by reference;
programmers are encouraged to create abstract data types
to hide any other use.

The dataflow analysis used for decoupling and other trans-
formations requires programmer annotations on function ar-
guments. We rely on programmer annotation to determine
whether a pointer argument is an ‘in’ argument (indicated
by C’s const qualifier), an ‘out’ argument (indicated by an
attribute) or an ‘in-out’ argument (the default). Similarily,
if a function accesses a global variable, the function proto-
type must be annotated to indicate whether it is an ‘in’, ‘out’
or ‘in-out’ variable. If a function modifies just one field in a
struct or array, the argument is recorded as an ‘in-out’ argu-
ment indicating that the function does not “kill” the entire
argument. In practice, we find that most of this informa-
tion is already documented informally or can be obtained as
a side-effect of function compilation.

Our compiler performs the transformations described in
this paper in the following order: dataflow analysis, place-
ment inference/checking, splitting variables with multiple
placements into separate variables, zero-copy optimization,
decoupling and transforming threads into state machines.
Performing dataflow analysis early is important because it
allows us to analyze the code before additional pointers are
introduced and to give accurate programmer feedback. Co-
herency checking is performed before decoupling because co-
herency checking can only be applied within a thread. Zero-
copy optimization can be performed either before or after
decoupling; to allow it to be performed before decoupling,
the ‘releaseData’ and ‘acquireData’ operations need to be
annotated with ‘PUT’ and ‘GET’ attributes.

Our SoC-C compiler is written as a source to source com-
piler implemented using Necula et al.’s wonderful CIL [7] C
processing framework, 5800 lines of O’Caml code and around
5000 lines of runtime support code including device drivers.
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activity cycles
enter irq handler 10
clearing interrupts 20
start data engine 39
lock overhead 34-38
FIFO transfer overhead 54-55

Figure 11: Performance of SoC-C Implementation

9. PERFORMANCE EVALUATION
This Section evaluates the performance of SoC-C using

two criteria: we establish the efficiency of our implementa-
tion using microbenchmarks; and we measure how perfor-
mance of a high performance “software defined radio” appli-
cation scales with the number of processors.

All measurements were based on a multiprocessor sys-
tem being developed by ARM Ltd. to implement the phys-
ical layer processing of 3.9G mobile phones. This plat-
form centres around a configurable number of moderate-
frequency, highly parallel C-programmable data processing
engines implemented using ARM’s OptimoDE design tech-
nology. These processors exploit both data-parallelism us-
ing a very wide SIMD (512-bit) datapath and and exploit
instruction-level parallelism using VLIW instruction decod-
ing. These OptimoDE engines have a 512-bit data bus to
memory and are supported by a DMA engine capable of 512-
bit wide transfers. We evaluated using a platform configured
to use between 1 and 4 of these data engines as shown in Fig-
ure 3. SoC-C code runs on a Cortex-M3 RISC processor with
a 32-bit tightly coupled memory. The primary task of the
RISC processor is to control data engines, DMA, etc. and to
interact with processors executing the higher layers of the
network protocol stack. All measurements were made us-
ing cycle-accurate models of the data engines, DMA engine,
RISC processor and memory system and cycle-approximate
models of the peripherals.

9.1 Performance of the runtime system
One of the most important metrics is how long a data

engine spends idle between tasks. The control processor
must perform the following steps: 1) Complete the current
instruction and enter the interrupt handler; 2) Acknowl-
edge the interrupt to the device; 3) Execute the appropriate
event handler including constructing a call frame and start-
ing the data engine. Using the simulator we monitored the
start/stop signals from data engines, the interrupt signals
and the program counter on the control processor and ob-
tained very precise, repeatable measurements to be made
(Figure 11). The total time that a data engine is idle be-
tween tasks is 69 cycles.

In practice, it is usually necessary to use locks to prevent
two threads from using the same engine at once. Locking
increases the idle time by 50% to 103–107 cycles. When two
threads communicate via a FIFO queue, the time between
the completion of a task on one thread and the start of a
task in the other thread is 157–162 cycles.

In comparision, our experience is that commercial RTOSs
require more than 300 cycles to enter an interrupt handler
and trigger a thread context switch. The extra 150-200 cy-
cles may appear negligible until one considers that in that
time, our SIMD data engine could have performed another
4500–6000 fixed point multiply operations.

cores ideal time actual time utilization speedup
1 29286 31101 94% 1.00
2 15013 16865 89% 1.84
4 7876 9077 87% 3.43

Figure 12: Scaling of DVB application.

9.2 Scalability
This Section evaluates how well performance scales as the

number of processors is varied using the inner receiver of a
Digital Video Broadcast (DVB) physical layer as a bench-
mark. This has a similar structure and dataflow to our run-
ning example but, in addition, it performs: coarse-timing
correction to maintain synchronization over long time peri-
ods, demultiplexing of data, control bits and pilot channels;
channel equalization to correct for fading of individual fre-
quency channels; de-interleaving of the data to reduce sen-
sitivity to bursts of noise. Odd and even symbols require
slightly different processing requiring the compiler to decou-
ple code containing if-statements and the two paths have
slightly different execution times. Our receiver consists of
around 9000 lines of C code split into 17 DSP functions
which execute on the SIMD data engines. The total num-
ber of cycles of the functions and three DMA transfers is
29286 cycles of which 740 cycles are DMA transfer. Task
granularity varies considerably: there are 2 tasks of almost
7000 cycles, 3 tasks of more than 3000 cycles, 1 task of 1000
cycles and the remainder are 500 cycles or less.

We used SoC-C to combine these functions into a single-
threaded application and created two pipelined versions of
the program for platforms with two and with four SIMD
data engines by inserting FIFOs and atomic channels and
changing the placement annotations.

We measured the maximum sustainable rate at which a
stream of 2K point DVB symbols can be processed mea-
sured in cycles per symbol and calculated the best possible
time for a system with one DMA engine and N cores given
our code placement decisions and function runtimes and ig-
noring data dependencies which would prevent perfect par-
allelization. Ignoring data dependencies makes this number
a little conservative (too low). We calculated utilization as
the ratio between the ideal rate and the actual rate and
calculated speedup as the ratio of actual rate against the
actual rate of the 1-core variant. The results are summa-
rized in Figure 12. The results for a single core demonstrate
the effectiveness of our implementation strategy: the over-
head of using SoC-C is just 1800 cycles (6%) which matches
our expectation from the microbenchmarks. On two cores,
the application speeds up by a factor of 1.84 compared with
the single core version. We were unable to achieve perfect
speedup because the coarse granularity of tasks made it im-
possible to perfectly balance the load. On four cores, the
application speeds up by a factor of 3.43 compared with the
single core version despite coarse task granularity.

10. DISCUSSION AND RELATED WORK
SoC-C’s major influences are stream programming languages
such as StreamIt [5] which emphasize pipeline parallelism
and have a clear separation of the communication language
from the kernel language. We maintain the separation of
communication/control layer (SoC-C) from computation (code
called by RPCs) but we chose a sequential communication
language instead of a dataflow language because we found
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it hard to express global control (i.e., conditionals that span
multiple pipeline stages) over pipeline stages that execute
asynchronously with respect to each other. Using decou-
pling to introduce parallelism, gives the ease of expression of
global control that imperative languages provide combined
with the pipeline parallelism that stream languages provide.

Decoupling has been applied many times; we cite a rep-
resentative sample. Smith [10] applies the technique manu-
ally to Cray assembly code to separate load-store operations
from other operations to program Access-Execute proces-
sors; [9] automated this transformation; [4, 8, 2, 3] decouple
programs automatically based on load-balancing heuristics;
[11, 13] rely on programmer annotations to mark the begin-
ning and end of pipeline stages. All these papers rely on
partitioning of the operations into pipeline stages and then
inserting FIFO channels. Our channel-based decoupling al-
gorithm does the opposite: it relies on the programmer in-
serting channels and partitions the operations accordingly.
The difference is small but significant: making the channels
first-class concepts, instead of mere implementation details,
lets the programmer use different channel types to explicitly
relax synchronization between pipeline stages to avoid loss
of decoupling. We are not aware of any work that uses non-
FIFO channels when automatically decoupling a sequential
program though StreamIt’s “teleport messaging” [12] pro-
vides a related feature for dataflow languages.

Although SoC-C borrows syntax from OpenMP, the two
languages target very different systems and parallelism pat-
terns: OpenMP targets SMP systems and supports data
parallelism using annotations on for-loops; SoC-C targets
AMP systems and, hence, supports pipeline parallelism.

EXOCHI [15] also tackles the problem of programming
heterogeneous multicore systems but is complementary since
they focus on coping with multiple instruction sets/toolchains,
providing shared virtual memory and dynamically allocat-
ing tasks to accelerators whereas we focus on distributed
memory, static allocation of tasks and decoupling.

There has been a large body of work on software dis-
tributed shared memory and on reducing cache-coherency
traffic between threads using compiler techniques. SoC-C’s
approach is to express inter-thread communication (which
requires dynamic checks) using channels and restrict coher-
ence checking for intra-thread, inter-processor communica-
tion (which our compiler checks statically).

SoC-C handles data copying differently from many sys-
tems: RPCs normally copy bulk data structures; FIFO chan-
nels normally copy data both on a put and a get; private
memories are often used to store local copies of variables
whose master copy is in shared memory. Instead, SoC-C
gives explicit control over data copying and SoC-C provides
support to make this less burdensome and error-prone.

11. CONCLUSIONS
Mapping an application onto low-power, high-perform-

ance SoCs is a challenging problem due to the architectural
complexity needed to achieve high energy efficiency. A com-
mon approach to the problem of complex hardware is to use
software libraries to hide the complexity from the user. To
achieve significantly higher energy efficiency we take a differ-
ent approach: SoC-C provides the programmer with explicit
control over how an application is mapped onto an archi-
tecture without requiring significant manual restructuring.
Any language requires careful implementation and choice of

optimizations to minimize overhead: our compiler is able to
speedup a coarse-grained, real-world application by a factor
of 3.4 on a four-core platform achieving utilization of 87%.
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Reducing inter-task latency in a
multiprocessor system (Patent I)
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