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High Scale Boundary Conditions in Extensions of the Standard
Model

Abstract: The recent discovery of the Higgs boson by the ATLAS and CMS exper-

iments and the subsequent measurements of it properties are the latest vindications

of the Standard Model of particle physics. The SM has a number of well known

flaws, and the continuing dearth of Beyond the Standard Model signatures from

experiment has led to investigations into whether the SM is valid up to very high

scales. The motivation for much of this work comes from the quartic Higgs coupling

λ and its β function, which run to an extremely small values at high scales. These

may be hints of new UV dynamics, in particular the Multiple Point Principle which

posits the existence of a second degenerate minimum in the effective potential at

the Planck scale, and Asymptotic Safety, where the dimensionless couplings of the

potential run towards an interacting UV fixed point. In this work we will investi-

gate the possibility for similar high scale boundary conditions in extensions of the

Standard Model. Specifically, we look at the Real Singlet model, the Complex Sin-

glet model, the Type-II Two Higgs Doublet Model, and the Inert Doublet Model.

We will apply the relevant theoretical constraints to the parameter space of theses

models, as well as experimental constraints such as those from ATLAS, CMS, LEP,

the Tevatron, WMAP, Planck and LUX. Points that pass these constraints will also

be investigated for their validity under a number of high scale boundary conditions

on its scalar sector, and the valid parameter space will be checked for signatures in

the mass spectrum that can be probed by current and future collider experiments.

Keywords: Beyond the Standard Model Physics, particle physics phenomenol-

ogy, Higgs physics, dark matter physics





Declaration of originality

I declare that the research that is presented in this thesis is my original work and

has not previously been presented for a degree. Citations are provided whenever

other published work is presented. Chapters 2 to 4 provide an introduction to the

theoretical concepts found in my research, whilst chapter 5 detail the numerical

framework that underpins that research. Chapters 6 to 8 detail work that was done

in collarboration with Dr David J Miller. Chapter 7 is built from our paper High

scale boundary conditions with an additional complex singlet [1], whilst chapter 8

details work from our paper High Scale Boundary Conditions in Models with Two

Higgs Doublets [2].





For Mum and Dad





Acknowledgments

Firstly, I’d like to thank David Miller, who has been an excellent supervisor and

friend throughout the course of my PhD. I don’t think I could have done this

without him.

Thanks must also go to Christopher Craig and Gemma Craig, my friends

and family. Your love means the world to me and for it i’ll be forever thankful.

I’d also like to thank my friends and fellow PhD students: Euan Mclean,

Dan Smaranda, Dan Hatton, Stephen Brown, Will Breadon Madden, as well as

Liam Moore, Sven-Patrik Hallsjö, Stephen Ogilvy, Gavin Kirby and all those that

have shared this journey with me.

Special mention goes to Karl Nordstrom, Sarah Karodia and Andres Luna. I’ve

had to deal with some extremely difficult times during the course of my PhD, times

that were made easier by your unwavering support and friendship. I will cherish

this time we have had together and I’ll never forget what all of you have done for me.

Taylor, your kindness and understanding has made this last portion of my

PhD some of the happiest times of my life. I love you so much.

Lastly, my Mum and Dad. You both were with me during the some worst

days of my life, caring for me and supporting me without question. You are the

best parents anybody could ask for and I don’t know if I could have got through all

of this without your love. Thank you.





Contents

1 Introduction 1

2 The Standard Model 5

2.1 Introduction to the Standard Model . . . . . . . . . . . . . . . . . . 5

2.2 Symmetries of the Standard Model . . . . . . . . . . . . . . . . . . . 6

2.2.1 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Non-Abelian Theories . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Lagrangian of the Standard Model . . . . . . . . . . . . . . . . . 11

2.3.1 The Gauge Sector Lg . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 The Higgs Sector LH . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 The Yukawa Sector LY . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Renormalization in the Standard Model . . . . . . . . . . . . . . . . 16

2.5 Problems with the Standard Model . . . . . . . . . . . . . . . . . . . 18

2.5.1 The Free Parameters and Structure of the Standard Model . 18

2.5.2 The Hierarchy Problem . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Experimental and Cosmological Observations and The Stan-

dard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 High Scale Boundary Conditions in the Standard Model 23

3.1 High Scale Behaviour of the Standard Model . . . . . . . . . . . . . 24

3.2 The Multiple Point Principle . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Asymptotic Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Grand Unification Theories 33

4.1 Introduction to Grand Unification Theories . . . . . . . . . . . . . . 33

4.1.1 Gauge Coupling Unification . . . . . . . . . . . . . . . . . . . 34

4.1.2 GUT Model Building . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 SU(5) GUT Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 The SU(5) Lagrangian . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Spontaneous Symmetry Breaking . . . . . . . . . . . . . . . . 43

4.2.3 Problems with the Georgi-Glashow Model . . . . . . . . . . . 44

4.3 SO(10) Grand Unification . . . . . . . . . . . . . . . . . . . . . . . . 46



4 Contents

5 Numerical Investigation Framework 51

5.1 Building the Models Using SARAH and FlexibleSUSY . . . . . . . . 52

5.2 Parameter Space Scan . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Theoretical Constraints . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Experimental Constraints . . . . . . . . . . . . . . . . . . . . 54

5.2.3 High Scale β Function Constraints . . . . . . . . . . . . . . . 55

6 The Real Singlet Extension of the Standard Model 57

6.1 Numerical Analysis and Constraints . . . . . . . . . . . . . . . . . . 59

6.2 The Broken Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 The Dark Matter Phase . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 The Complex Singlet Extension of the Standard Model 73

7.1 Numerical Analysis and Constraints . . . . . . . . . . . . . . . . . . 75

7.2 The Broken Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 The Dark Matter Phase . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 The Two Higgs Doublet Model 93

8.1 The Two Higgs Doublet Model . . . . . . . . . . . . . . . . . . . . . 94

8.2 The Inert Doublet Model . . . . . . . . . . . . . . . . . . . . . . . . 96

8.3 Numerical Analysis and Constraints . . . . . . . . . . . . . . . . . . 97

8.4 The Multiple Point Principle in the Type-II Two Higgs Doublet Model 99

8.5 Asymptotic Safety in the Type-II Two Higgs Doublet Model . . . . . 101

8.6 The Multiple Point Principle in the Inert Doublet Model . . . . . . . 105

8.7 Asymptotic Safety in the Inert Doublet Model . . . . . . . . . . . . . 106

8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9 Summary and Conclusions 113

A The SU(5) Gell-Mann Matrices 117

B Renormalisation Group Equations of the Standard Model at Two

Loops 119

B.1 Gauge Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Quartic scalar couplings . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.3 Yukawa Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



Contents 5

C Renormalisation Group Equations of the Real Singlet Model at

Two Loops 123

C.1 Gauge Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.2 Quartic scalar couplings . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.3 Trilinear Scalar couplings . . . . . . . . . . . . . . . . . . . . . . . . 124

C.4 Yukawa Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

D Renormalisation Group Equations of the Complex Singlet Model

at Two Loops 127

D.1 Gauge Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D.2 Quartic scalar couplings . . . . . . . . . . . . . . . . . . . . . . . . . 127

D.3 Yukawa Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

E Renormalisation Group Equations of the Type-II Two Higgs Dou-

blet Model at Two Loops 131

E.1 Gauge Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.2 Quartic scalar couplings . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.3 Yukawa Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 151





Chapter 1

Introduction

The Standard Model of particle Physics [3–5] is an enormously successful description

of the strong and electroweak interactions, that has been verified by experimental

tests to an incredibly high precision. Arguably the most significant verification of

the Standard Model (SM) is the recent confirmation of the existence of the Higgs

boson by the ATLAS and CMS collaborations at the LHC [6,7].

The numerous successes of the SM are impressive, but there are a number of

experimental and theoretical issues that it is not able to explain. One of the most

glaring omissions is its lack of gravitational interactions. It also lacks a mechanism

to explain the small but non-zero masses of the neutrinos. Neither does it provide

a valid candidate for Dark Matter or Dark Energy, a solution to the strong CP

problem nor an explanation for the observed matter antimatter asymmetry. From

a theoretical point of view, the SM has 19 free parameters (the quark and lepton

masses, Higgs mass, CKM mixing angles and phases, the gauge coupling constants,

and the vacuum expectation value) that have to be determined from experiment and

plugged into the model. Even some fundamental issues, such as the quantisation of

electric charge or why the electron and proton have equal but opposite charge, have

no explanation with the SM.

The combined ATLAS and CMS determination of the Higgs mass mh = 125 ±
0.23 GeV [8] is in a phenomenologically difficult range for many of the most popular

frameworks for Beyond the Standard Model (BSM) physics, which try to address

the SM’s problems. Unlike the other particles of the SM, the mass of the Higgs is

not protected from the effect of radiative corrections by a symmetry, so it should

be sensitive to new physics at higher mass scales ΛUV . In principle this scale could

be as large as the Planck mass MPl = 2.4 × 1018 GeV, the energy scale at which

gravitational contributions become significant, but its experimentally verified mass

is much lighter. This seems to require an extremely precise fine-tuning of mass

parameter to rectify, a problem that is known as the Hierarchy Problem [9–11].

Supersymmetric models (SUSY) [12–14] add a symmetry between fermions and
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bosons which introduces new loop corrections that go towards cancelling out the

loop corrections, quadratic in ΛUV , that would increase the Higgs mass. These

models can provide a Higgs with a mass that is compatible with experiment but

it often requires some residual fine tuning or the introduction of non-minimal field

content [14–16] to evade increasingly strong collider constraints on the parameter

space.
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Figure 1.1: Three-loop running of (a) the SM Higgs quartic coupling λ and (b) its β

function with 3σ uncertainties from the top pole mass mt (dashed) and the strong

coupling constant αs (dotted). Calculated using SARAH 4.9.3 [17] and Flexible-

SUSY 1.6.1 [18–21].

The current lack of experimental evidence for phyics beyond the Standard Model

has left open the possibility that the SM is valid up to very high scales, such as the

Grand Unification (GUT) scale MGUT ≈ 1016 GeV or even the Planck scale. For

the SM to be a viable model up to a scale such as MPl it is desirable, but not

required, that the dimensionless couplings of the model, for example the gauge

couplings, Yukawa couplings, or the Higgs quartic coupling λ, remain perturbative

to that scale. In the case of λ this means λ ≤ 4π at all scales. The SM potential

must be either completely stable, which requires λ > 0 for all scales, or metastable

with a lifetime much longer than the age of the universe [22]. Figure 1.1a shows

that using the central experimental value of the top pole mass mt and the strong

coupling constant αS(MZ) results in λ turning negative at around 1010 GeV. If we

insist upon an absolutely stable vacuum in the SM up to the Planck scale then the

bounds upon the top mass become [15],
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mt < 171.36± 0.46 GeV, (1.1)

which is now in tension with the experimental value of mt by around 2.6σ. This

suggests that the SM has a metastable electroweak vacuum, but it could also be an

indication that there are unknown degrees of freedom which alter the running of the

couplings and stabilise the potential.

Figure 1.1a highlights another interesting feature of the SM Higgs quartic cou-

pling, namely the very small values of λ at high scales. This is even more remark-

able given the feature shown in figure 1.1b, that the running of λ flattens out at

the same high scales e.g βλ (MPl) ≈ 0. This has led to a number of investigations

into whether they are boundary conditions that are enforced by some high scale

dynamics at MPl [23–29].

We are primarily interested in two possibilties for the existence of high scale

boundary conditions: the Multiple Point Principle (MPP), which posits the ex-

istence of a second minimum in the effective potential that is degenerate with the

electroweak minimum [30], and Asymptotic Safety, where the couplings of the model

run toward a UV interacting fixed point [31]. Both of these force the β functions

of the quartic couplings to run to zero at MPl, whilst the MPP also requires λ

to be zero at MPl. The MPP hypothesis has been used in the SM to predict a

Higgs mass of mh = 129 ± 1.5 GeV [15], and a model with asymptotic safety in

the SM due to gravitational contributions gave a predicted Higgs mass range of

126 < mh < 174 GeV. Whilst both of these are now very much in tension with

experiment they are both close enough to warrant further investigation.

Grand Unification Theories (GUTs) are another set of extensions of the SM

that is motivated by the high energy behaviour of couplings. Specifically, these

models are motivated by the running of the SM gauge couplings, shown in figure

1.2. The strong, weak and electromagnetic couplings approach each other at around

1015 GeV. One interpretation of this feature is that the SM is an effective field theory

of some larger model. In this scenario the SM gauge group SU(3)C×U(2)L×U(1)Y

is embedded into a larger gauge group G, under which the gauge couplings of the SM

g1, g2, g3 are unified under one coupling constant gGUT at some high scale MGUT .

GUTs can provide answers to a number of the problems encountered by the SM.

The quantisation of electric charge and the parity of the proton and electron charges

arises naturally from embedding the quarks and leptons into a representation of a

larger group such as SU(5) or SO(10) [32]. Many GUT models include a heavy right
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αi = g2
i /4π with renormalisation scale µ.

handed neutrino that can be used to generate non-zero neutrino masses via a seesaw

mechanism [33,34]. GUTs also predict the existence of magnetic monopoles [35] and

the decay of the proton [36], both of which can be verified experimentally.

In this thesis we will investigate simple extensions to the Standard Model, fo-

cusing on their compatability with various high scale boundary conditions that can

arise from the MPP, asymptotic safety, and gauge coupling unification. We will also

investigate whether these scenarios are viable under a number of theoretical and

experimental constraints, such as those from collider and dark matter experiments.

In Chapter 2 we will begin by summarising the Standard Model and reflecting on

its various problems and inadequacies. In Chapter 3 we will detail our investiga-

tion into high scale boundary conditions in the SM, whilst Chapter 4 will review

a particular type of high scale boundary condition: gauge coupling unification and

Grand Unification Theories. In Chapter 5 we will outline our general approach to

the parameter space scans that make up much of our model investigations. Our re-

sults for the Real Singlet model will be discussed in Chapter 6, the Complex Singlet

model in Chapter 7 and the Two Higgs Doublet Model in Chapter 8. Chapter 9 will

summarise our findings.



Chapter 2

The Standard Model

Contents
2.1 Introduction to the Standard Model . . . . . . . . . . . . . . 5

2.2 Symmetries of the Standard Model . . . . . . . . . . . . . . 6

2.2.1 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . 8

2.2.2 Non-Abelian Theories . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Lagrangian of the Standard Model . . . . . . . . . . . . 11

2.3.1 The Gauge Sector Lg . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 The Higgs Sector LH . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 The Yukawa Sector LY . . . . . . . . . . . . . . . . . . . . . 14

2.4 Renormalization in the Standard Model . . . . . . . . . . . . 16

2.5 Problems with the Standard Model . . . . . . . . . . . . . . 18

2.5.1 The Free Parameters and Structure of the Standard Model . 18

2.5.2 The Hierarchy Problem . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Experimental and Cosmological Observations and The Stan-
dard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Introduction to the Standard Model

The Standard Model (SM) is our most successful description of the strong, weak and

electromagnetic fundamental forces. The particle content on the SM is split into

two classes: fermions, which obey the Pauli Exclusion Principle, and bosons, which

do not. Fermions are further grouped into three generations of quarks and leptons.

Quark interactions are mediated by both the strong and electroweak forces, whilst

leptons do not interact via the strong force.

Both the quarks and the leptons have up and down types. The up type (u, c, t)

quarks have electric charges of 2/3e, where e = 1.602×10−19C is the electron charge,
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while the down type (d, s, b) quarks each have −1/3e charge. The neutrinos, which

interact only via the weak force and as such have zero electric charge, comprise the

up type leptons whilst the down type (e, µ, τ) leptons have −e charge.

The boson sector is mostly comprised of the spin-1 vector gauge bosons that

mediate the interactions of the SM. The photon γ is the mediator of the electro-

magnetic force, the charged W± and neutral Z bosons are the force carriers of the

weak force, and the gluons g mediate the strong force. The spin-0 Higgs boson is

a neutral scalar boson that is associated with the generation of mass. The massive

particles of the SM get their mass through the Higgs mechanism, which we shall

discuss in more detail in section 2.3.2.

2.2 Symmetries of the Standard Model

The Lagrangian of the Standard Model LSM is an object that encodes the model’s

structure and interactions. The observed physical symmetries of the SM are repre-

sented by symmetries of the Lagrangian under transformations of its field content.

Symmetries can be classified in a number of different ways. For example, discrete

symmetries are those which take specific values, such as the discrete rotational sym-

metry of a triangle. The Standard Model exhibits a number of discrete symmetries,

such as parity P, the reversal of the spatial coordinates of a field. Charge con-

jugation C describes the symmetry of interactions when particles are changed to

anti-particles, or vice versa. Interactions are symmetric under time reversal T if

they remain unchanged when the direction of time is flipped. All of the observables

of the SM are invariant under the product of all three of these transformations,

namely CPT, however weak interactions violate both C and P and in some cases

the product CP, and therefore T.

Transformations that can take any value, such as a rotational symmetry param-

eterised by a rotation angle, are called continous symmetries. These can be further

categorised as global transformations, which do not depend on space-time coordi-

nates, and local transformations which do depend on them. For example, a field

φ = (φ1, . . . φn) could be invariant under the infinitesimal global transformation,

φ→ φ′ = φ+ δφ. (2.1)

This symmetry can be described by a Lie group G which has the following

properties,
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• if g1 and g2 are elements of the group G, then h = g1g2 is also an element of

the group.

• if g1, g2, g3 are elements of G, then g1 (g2g3) = (g1g2) g3.

• there is an identity element e of G which satisfies gie = gi for all elements gi
of G.

• for every element gi in G, there is another element hi such that gihi = e.

A Lie group has an infinite number of elements and as such can be used to

describe continuous symmetries. The infinitessimal global transformation δφ can be

parameterised by,

δφi = iεaΩa
ijφj , (2.2)

where a ranges over the number of transformations, and the parameters εa are not

dependent on space-time coordinates. Ωa
ij are called the generators of the group G.

These generators are represented as n× n matrices (we will discuss representations

further in Chapter 4). The Lie algebra of G describes such an infinitesimal global

transformation under G and is defined by its Lie bracket, a commutation relation

between its generators,

[
Ωa,Ωb

]
= ifabcΩc. (2.3)

If the structure constant fabc is zero then the group is Abelian, otherwise it is non-

Abelian.

Under local transformations the parameters ε are dependent on space-time co-

ordinates x, and the infinitesimal transformation becomes,

δφ = iεa (x) Ωaφ. (2.4)

Models whose Lagrangian is invariant under local transformations are known as

gauge theories. The Standard Model falls under this catagory and is invariant under

a number of gauge transformations, each of which describes a fundamental class of

interactions of the model. In section 2.3 we will discuss the gauge structure of the

SM further by looking in detail at its Lagrangian and its invariance under the SM

gauge transformations.

The particles of the Standard Model are also associated with representations of

the Poincaré group, a non-Abelian Lie group that describes the model’s symmetry
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under both the Lorentz transformations and four-dimensional space-time transla-

tions. The Lorentz group SU(2)⊕SU(2) of symmetries under rotations and boosts

is therefore a subgroup of the Poincaré group and the various particles of the SM

provide different representations under this group. The spin-0 particles are under the

scalar representation (0, 0), which describes the Higgs field in the SM and transforms

trivially under Lorentz transformations. The spin-1 vector bosons are the (1/2, 1/2)

representation of the Lorentz group. The spin-1/2 fermions are the left-handed and

right-handed Weyl spinor representations ψL → (1/2, 0) and ψR → (0, 1/2), which

have two degrees of freedom each. These representations are not equal, meaning

that transformations between left and right-handed Weyl spinors are not invariant.

Theories that can be built from these spinors, such as the SM, are therefore known as

chiral theories. Weyl spinors on their own are useful objects for describing massless

fermions, however if we try to build mass terms for charged fermions we introduce

mixing between left and right spinors. The massive fermions of the SM are Dirac

spinors, which transform under (1/2, 0) ⊕ (0, 1/2), a combination of Weyl spinors

with four degrees of freedom. The Dirac γ matrices are a useful tool when working

with Dirac spinors, and are defined via the Clifford algebra anti-commutation rela-

tion {γµ, γν} = 2gµν , where gµν = diag (−1, 1, 1, 1) is the Minkowski metric. They

can be built in the Weyl basis from the Pauli spin matrices σi,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.5)

using σµ =
(
1, σi

)
and σ̄µ =

(
1,−σi

)
, resulting in,

γµ =

(
0 σµ

σ̄µ 0

)
. (2.6)

In this work we will often discuss the massive fermions of the SM using Weyl spinors,

which we can project out of Dirac spinors using a projection operator made from

these matrices,

PL,R =
1

2

(
I± iγ0γ1γ2γ3

)
=

1

2

(
I± γ5

)
. (2.7)

2.2.1 Quantum Electrodynamics

Quantum Electrodynamics (QED) is a useful example of the local gauge invariance

principle. We begin by looking at the Lagrangian for a free Dirac spinor ψ,
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L = iψγµ∂µψ −mψψ, (2.8)

where ψ = ψ†γ0 is the adjoint Dirac spinor. The symmetry tranformations for ψ

and ψ are δψ = iαψ and δψ = −iαψ respectively. If α is independent of space-

time coordinates then the Lagrangian is invariant under these tranformations and

the theory is said to be globally U(1) symmetric. However, if α = α(x) depends

on space-time coordinates then the Lagrangian is no longer invariant under these

transformations. Invariance is restored by promoting the partial derivative to a

covariant derivative of the form,

Dµ = ∂ + igAµ, (2.9)

which transforms as δDµψ = iα(x)Dµψ. Here we have introduced a gauge field Aµ
that transforms as δAµ = 1

g∂µα and couples to the Dirac field as,

LA = gψγµψAµ. (2.10)

The introduction of the gauge field also necessitates an extra term that describes

the propagation of Aµ, which in QED is the photon. This term is constructed from

the field strength tensor,

Fµν = ∂µAν − ∂νAµ = [Dµ, Dν ] , (2.11)

which is manifestly gauge invariant. The full, locally gauge invariant QED La-

grangian is given by,

LQED = −1

4
FµνF

µν + iψγµDµψ −mψψ. (2.12)

Expanding this Lagrangian highlights that the requirement of local gauge invariance

results in an interaction term between the fermionic field ψ and the gauge field Aµ.

QED is a locally gauge invariant U(1) theory with an associated electromagnetic

charge Q. Mass terms for photons of the form m2
AAµA

µ are forbidden by gauge

invariance, and since U(1) is an Abelian group, so are interactions between photons.

2.2.2 Non-Abelian Theories

The previous discussion of local gauge invariance in an Abelian U(1) theory such

as QED can be extended to non-Abelian theories, such as the SU(3)C and SU(2)L
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gauge symmetries that describe the strong and weak interactions of the SM. We

begin by considering the Lagrangian for a field Ψi which is a vector of dimension n,

L = Ψi (i(γµ)ij∂µ −mδij) Ψj , (2.13)

where δij is the Kronecker delta. The field Ψi and its adjoint Ψi transform under

a non-Abelian SU(N) symmetry as δΨi = iεa(x)Ωa
ijΨj and δΨi = −iεa(x)Ωa

ijΨj ,

where Ωij are the group generators. Since the transformations in question are non-

Abelian, their associated Lie algebra is defined by a Lie bracket with a non-zero

structure constant fabc.

As in the abelian case, we need to introduce a covariant derivative to ensure

local gauge invariance. It takes the form,

(Dµ)ij = ∂µδij + ig (Ωa)ij A
a
µ. (2.14)

In QED the gauge field was the photon, but in the non-Abelian case there are m

gauge fields Aaµ, a = (1, . . .m). Local gauge invariance requires that the covariant

derivative transform as δ (DµΨ) = iεa(x)ΩaDµΨ. The commutator of the covariant

derivative is,

[Dµ, Dν ] = ig
(
∂µA

a
νΩa − ∂νAaµΩa + ig

[
Ωb,Ωc

]
AbµA

c
ν

)
, (2.15)

from which we can calculate the non-Abelian field strength tensor,

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.16)

The field strength tensor of non-Abelian theories differs further in that it must

transform like Ψ to maintain local gauge invariance, specifically δF aµν = −fabcεbF cµν .
We now have all of the pieces we need to write the full locally gauge invariant non-

Abelian Lagrangian,

L = Ψi (i(γµ)ijDµ −mδij) Ψj −
1

4
F aµνF

aµν . (2.17)

Crucially, this Lagrangian includes terms such as gfabc∂µAaνAµbAνc that are not

present in the QED Lagrangian, meaning that the gauge fields carry their own

charge and interactions between them are allowed under a non-Abelian symmetry.
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2.3 The Lagrangian of the Standard Model

The SM is a renormalizable quantum field theory built upon the gauge groups,

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.18)

where SU(3)C describes the strong interactions and SU(2)L × U(1)Y describes the

electroweak interactions. The Lagrangian of the SM is made up of all of the allowed

renormalizable operators with this symmetry and can be conveniently split into four

parts:

LSM = Lg + Lf + LY + LH . (2.19)

We will now look at each of these terms in more detail.

2.3.1 The Gauge Sector Lg
The gauge sector of the SM Lagrangian describes the gauge bosons that are associ-

ated with the interactions of the SM symmetry groups,

Lg = −1

4
GαµνG

µν
α −

1

4
Wα
µνW

µν
α −

1

4
BµνB

µν , (2.20)

where Gαµν , Wα
µν and Bµν are the SU(3)C , SU(2)L and U(1)Y field strength tensors.

Gaµ is the gluon field that describes the 8 gauge bosons of the strong SU(3)C interac-

tions, the W i
µ field describes the 3 weak SU(2)L bosons, and Bµ is the hypercharge

U(1)Y boson field. They transform under the gauge symmetries as,

δGaµ =
1

g3
∂µγ

a + ifabcγbGcµ (2.21)

δW i
µ =

1

g2
∂µω

i + iεijkωjW k
µ

δW i
µ =

1

g1
∂µβ,

where g3, g2 and g1 are the coupling constants that determine the strength of the

SU(3)C , SU(2)L and U(1)Y interactions respectively, εijk is the SU(2)L structure

constants, and γa, ωi and β are the SU(3)C , SU(2)L and U(1)Y infinitesimal trans-

formations.

The fermions ψf of the SM transform under the fundamental or trivial repre-

sentations of the SM groups, and are coupled to the gauge bosons via,
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SU(3)C SU(2)L U(1)Y

qL 3 2 1/6

lL 1 2 −1/2

uR 3 1 2/3

dR 3 1 −1/3

eR 1 1 −1

Table 2.1: Standard Model matter content and their representations under SU(3)C

and SU(2)L, as well as their U(1)Y hypercharge. qL = (uL, dL) and lL = (νL, eL)

are the left-handed quarks and leptons, uR is the right-handed up quarks, dR the

right-handed down quarks, and eR the right-handed electron. These representations

are identical for each the three generations of matter.

Lf =
∑
f

iψ̄fγ
µDµψf . (2.22)

The covariant derivative,

Dµ = ∂µ − ig3T
a
αβG

a
µ − ig2τ

i
jkW

i
µ − ig1Y Bµ, (2.23)

extends the partial derivative to ensure local invariance under the SM gauge sym-

metries by adding interactions with their respective field strength tensors. T a =

(1/2)λa and τ i = (1/2)σi are the generators of the fermion’s representation under

SU(3) and SU(2), where λa and σi are the Gell-Mann∗ and Pauli matrices, and

Y is its U(1) hypercharge. As we have discussed previously, left-handed and right-

handed fermions behave diferently in electroweak processes. The SM represents this

by having the left-handed fermions transform under the fundamental representa-

tion of SU(2)L whilst right-handed fermions are trivial under this symmetry. The

fermion sector is further complicated by the existence of three generations which are

identical to each other in their interactions except for their masses. The represen-

tations of the SM matter content under SU(3)C ×SU(2)L×U(1)Y are summarised

in Table 2.1

∗The Gell-Mann matrices for SU(5) are given in Appendix A
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2.3.2 The Higgs Sector LH

The symmetries of nature are rarely exact. For example, the isospin symmetry

between the proton and neutron is broken, as evidenced by the mass difference be-

tween them. The gauge symmetry of the SM is preserved only if all of its fields are

massless. For example, a simple mass term for gauge bosons of the typeW a
µMabW

µb

would break gauge symmetry. The problem is that this goes against current exper-

imental observations, as we have extremely precise measurements of the masses of

the W± and Z bosons as well as all of the SM fermions [37].

We rectify this problem in the theory by spontaneously breaking the SM gauge

symmetry down to a smaller subgroup, giving masses to the W and Z bosons in the

process. The specific symmetry breaking chain is,

SU(3)C × SU(2)L × U(1)Y −→ SU(3)C × U(1)Q, (2.24)

where U(1)Q is the QED symmetry associated with electromagnetic charge Q. The

Higgs Mechanism breaks the electroweak symmetry by introducing a complex scalar

field H in the (2, 1/2) representation of SU(2)L × U(1)Y . [38–40]. The Lagrangian

for the Higgs field is given by,

LH = |DµH|2 − V (H) , (2.25)

where the scalar potential is,

V (H) = −µ
2

2
H†H +

λ

4

(
H†H

)2
. (2.26)

The Higgs field develops a non-zero vacuum expectation value (vev) 〈H〉 = µ/
√
λ ≈

174 GeV if the mass term µ2 is positive, breaking the electroweak symmetry down

to U(1)Q. We can expand H around the vev v,

H =

(
χ−

(v + h+ iσ)/
√

2

)
, v =

√
µ2

λ
. (2.27)

The massless Nambu-Goldstone bosons χ−, σ become the longitudinal components

of the W± and Z bosons. The full kinetic term in the scalar potential is given by,

DµH = ∂µH −
i

2
g2τ

jW j
µH − ig1Y BµH. (2.28)

After spontaneous symmetry breaking LH contains mass terms for W± and Z,
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LH ⊃
v2

8

[
g2

2W
1
µW

1µ + g2
2W

2
µW

2µ +
(
g2W

3
µ − g1Bµ

) (
g2W

3µ − g1B
µ
)]
. (2.29)

We now have two massive vector bosons,

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, Zµ =

1√
g2

2 + g2
1

(
g2W

3
µ − g1Bµ

)
, (2.30)

with tree-level masses,

MW =
g2v

2
, MZ =

√
g2

2 + g2
1v

2
=

MW

cos θW
, (2.31)

where tan θW = g1/g2 is the weak mixing angle, and the massless gauge boson of

U(1)Q,

Aµ =
1√

g2
2 + g2

1

(
g2W

3
µ + g1Bµ,

)
(2.32)

which we identify as the photon. The U(1)Q electromagnetic charge operator Q is

given by a linear combination of the weak isospin I3 and the hypercharge Y ,

Q =
1

2
Y + I3. (2.33)

The final degree of freedom left after spontaneous symmetry breaking is associated

with fluctuations around the vev v, which manifests as a real scalar boson h with a

tree-level mass of mh =
√

2λv. We call this the Higgs boson. The observation of a

scalar resonance at a mass of mh = 125 GeV by the ATLAS and CMS collaborations

at the LHC is used to fix the mass of the Higgs, which is a free parameter in the

SM.

2.3.3 The Yukawa Sector LY

A mass term for fermions of the type ψ̄LMψR would break the SU(2)L × U(1)Y

electroweak symmetry, much in the same way as mass terms for gauge bosons. The

SM’s solution to this problem is also the same; to couple the fermions to the Higgs

field. The Yukawa sector of the SM Lagrangian consists of all of the allowed gauge

invariant operators that couple the SM fermions to the Higgs field,

LY =
1√
2

∑
i,j

Y ij
u q̄

i
LH

cujR + Y ij
d q̄

i
LHd

j
R + Y ij

e l̄
i
LH

cejR + h.c, (2.34)
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where i = 1, 2, 3 are the generation indices of the SM fermions and the Higgs conju-

gate term is Hc = iσ2H∗. Y ij
u , Y ij

d and Y ij
e are the 3×3 Yukawa matrices of the up

quarks, down quarks and leptons respectively, which determine the strength of in-

teractions between these fermions and the Higgs field. After electroweak symmetry

breaking LY contains the terms,

LY = − v√
2
ūiLY

ij
u u

j
R −

v√
2
d̄iLY

ij
d d

j
R −

v√
2
ēiLY

ij
e e

j
R + h.c+ . . . . (2.35)

We need to diagonalise the quark mass matrices to get the mass eigenstates of

the three generations (u, d), (c, s) and (b, t). We do this by exploiting the fact that

there exists diagonal mass matrices such asMu,Md, as well as corresponding unitary

matrices Uu, Ud such that,

YuY
†
u = UuM

2
uU
†
u, YdY

†
d = UdM

2
dU
†
d . (2.36)

We then end up with quark mass terms of the form,

LY, mass = −mu
j ū

j
Lu

j
R −md

j d̄
j
Ld

j
R + h.c+ . . . , (2.37)

where mu
j and md

j are the diagonal elements of v√
2
Mu and v√

2
Md. The rotation

matrix between these mass eigenstates and the weak eigenstates is known as the

Cabbibo-Kobayashi-Maskawa matrix [41,42],

VCKM = U †uUD =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb.

 (2.38)

We can paramaterise this matrix using three mixing angles θ12, θ13, and θ23, as well

as a complex phase δ,

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12c23 − c12s23s13e
iδ −c12c23 − s12s23s13e

iδ c23c13.

 (2.39)

This parametrisation makes clear that the potentially complex nature of these mix-

ing effects can be a source of CP violation within the SM.
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Figure 2.1: Examples of a one-loop Feynman diagram.

2.4 Renormalization in the Standard Model

The Standard Model is an interacting quantum field theory, which means that an-

alytical calculations for observables are, in general, not possible. Instead, we calcu-

late observables using perturbative expansions in the various couplings of the model.

These calculations are made easier using Feynman diagrams that represent the var-

ious terms in the expansion and can be converted into the corresponding integrals

using the appropriate Feynman rules. These calculations include the tree-level di-

agrams as well as loop diagrams, such as the one shown in figure 2.1, that depict

the emission and absorbption of virtual particles. These loop calculations involve

divergent loop momenta integrals that are dependent on the momentum scale, such

as,

∫ qmax d4q

(2π)4

1

q2 (q − p)2 '
∫ qmax q3dq

(2π)4

1

q4
∼
∫ qmax dq

q
∼ log

qmax

Q
, (2.40)

where q is the internal momentum in the loop. The process of renormalization deals

with these divergent terms in a model by absorbing the divergences into its bare

parameters, leaving behind finite terms that correpsond to physical observables.

The precise way in which the divergent terms are cancelled and collected is known

as the renormalization scheme. We can implement this approach in the SM by

rewriting the Lagrangian in terms of the physical parameters and collecting up the

bare parameters into counterterms. We can then rewrite the bare couplings of the

Lagrangian g0 in terms of the renormalized coupling gR and its counterterm δg,

g0 = (1 + δg (µ)) gR (µ) = Zg (µ) gR (µ) . (2.41)

QED is an instructive example of the use of counterterms: the bare fields ψ and Aµ
are related to the renormalized fields by,



2.4. Renormalization in the Standard Model 17

ψ =
√
Z2ψR, Aµ =

√
Z3Aµ,R, (2.42)

where Zi = 1 + δi. The bare mass m is written as,

m = ZmmR, (2.43)

and the bare electric charge e is written as,

e = ZeeR. (2.44)

We can now rewrite the Lagrangian in terms of the physical, renormalized pa-

rameters and their counterterms, omitting the renormalized subscript and using

Z1 = ZeZ2

√
Z3,

LQED = −1

4
FµνF

µν + iψγµ∂µψ −mRψψ − eRψγµAµψ (2.45)

−1

4
δ3FµνF

µν + iδ2ψγ
µ∂µψ − (δm + δ2)mRψψ − eRδ1ψγ

µAµψ.

Now, as long as we include the Feynman diagrams for the counterterms, any calcu-

lation that we do using this renormalized Lagrangian will have finite results.

After renormalization the parameters of the SM depend on the renormalization

scale µ. We can capture how these paramters evolve with energy by exploiting the

fact that the bare parameters do not depend on µ,

µ
d

dµ
g0 = µ

d

dµ
(Zg (µ) gR (µ)) = 0. (2.46)

We build the Callan-Symanzik equations by applying this princple to a bare n point

Green’s funtion Gn0 , resulting in [43],(
µ
∂

∂µ
+
n

2
γA + β (gR)

∂

∂gR

)
GnR = 0, (2.47)

where γA is the anomalous dimension, which describes the scale dependence of

dimensionful objects, and β (gR) is the β function, which describes the evolution

with energy of dimensionless parameters,

γA =
µ

ZA

dZA
dµ

, β (gR) = µ
dgR (µ)

dµ
. (2.48)

The complete set of β functions that describe the scale dependence of all of the

dimensionless parameters of a model is called the Renormalization Group Equations
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(RGEs). In this work we will use the RGEs of the SM, as well as those of other

models, to investigate their behaviour at scales that cannot currently be probed

experimentally.

2.5 Problems with the Standard Model

The Standard Model is an extremely successful model of three of the four fundamen-

tal interactions of nature. Most notably, the SM cannot describe gravity because

there is no renormalisable quantum field theory formulation of gravitational inter-

actions. Beyond this omission, there are a number of theoretical and experimental

issues with the SM that we will discuss in more detail here.

2.5.1 The Free Parameters and Structure of the Standard Model

The SM has 19 free parameters, detailed in Table 2.2. The values of these free

parameters are determined by experiment and have no theoretical motivation under

the current structures of the SM. Neither does the SM have an explanation for the

quantisation of electric charges nor a mechanism to explain why the proton and

electron have equal and opposite charges. Countless models have been developed

that try to put these problems onto a more solid theoretical footing, one class of

which is GUT models that embed the SM within a larger gauge group such as SU(5)

or SO(10). We will discuss these models later.

2.5.2 The Hierarchy Problem

Figure 2.2: Examples of one-loop corrections to the squared Higgs mass δm2
H from

(left to right) Higgs self interactions, the top quark, and the W,Z gauge bosons.

One issue of the Standard Model in particular has driven much of the research

into beyond the standard model physics, namely; why is the scale associated with

the weak bosonsMW ≈ 100 GeV so low compared to other fundamental mass scales

such as the Planck scale MPl = 2.4 × 1018 GeV? This is known as the Hierarchy
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Input Parameter Measured Value

mMS
u (µ = 2 GeV) 2.2+0.6

−0.4 MeV

mMS
d (µ = 2 GeV) 4.7+0.4

−0.4 MeV

mMS
c (mc) 1.28± 0.03 GeV

mMS
s (µ = 2 GeV) 96+8

−4 MeV

mMS
b (mb) 4.18+0.04

−0.03 GeV

mt (Pole Mass) 173.1± 0.6 GeV

me (Pole Mass) 0.511 MeV

mµ (Pole Mass) 105 MeV

mτ (Pole Mass) 1.78 GeV

mH (Pole Mass) 125.09± 0.24 GeV

v 246.2 GeV

g1 (MZ) 0.356

g2 (MZ) 0.649

g3 (MZ) 1.218± 0.006

θ12 13.02± 0.04◦

θ13 2.36± 0.08◦

θ23 0.20± 0.02◦

θ̄ ≈ 0

Table 2.2: The current values and uncertainties of the free parameters of the Stan-

dard Model, taken from the PDG [37]. θ̄ is the coefficient of the strong CP term

allowed by the symmetries of the SM.
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Problem and the recent observation of a scalar with a mass of 125 GeV has only

added to the focus on this issue.

The hierarchy problem is usually formulated as a quadratic dependence of the

Higgs mass on any new physics scales up to and including the Planck scale. The

fermions and massive gauge bosons are protected by symmetries of the SM, inas-

much as they are proportional to the vev and the masses go to zero when these

symmetries are unbroken. The mass of the Higgs mH is not protected by any such

symmetry. To illustrate this problem let’s consider a fermion f that couples to the

Higgs. Calculating the one-loop corrections to mh results in an unphysical ultravi-

olet divergence. One way to deal with this is to introduce a large ultraviolet cutoff

scale ΛUV that regulates the divergence. the correction becomes [44],

m2
H = m2

H0
− |yf |Nc

8π2
Λ2
UV + . . . . (2.49)

Here yf is the Yukawa coupling for the fermion and Nc is the number of colours.

Figure 2.2 shows some examples of one loop contributions to the squared Higgs

mass, including one from the top quark that contributes the most due to its large

Yukawa coupling. Regulating UV divergences using a cutoff like this is a useful

way to visualise the problem, but in practice it breaks both gauge and Lorentz

invariance. For most applications dimensional regularisation is used instead; loop

integrals are calculated in d = 4 − 2ε dimensions and the divergences manifest

themselves as 1/ε poles in the limit ε→ 0. The 1/ε poles are then subtracted away

using counterterms. In this work we will use the MS renormalization scheme, under

which the counterterms subtract away a rescaled pole 1/ε̄ = 1/ε + γE + log (4π),

where γE is the Euler-Mascheroni constant.

The heart of the hierarchy problem is that one must fine tune the bare mass

mH0 to an extremely high degree to counter such loop corrections and to bring the

physical Higgs mass down to 125 GeV. This fundamental fine tuning problem of the

physical Higgs mass is present regardless of how you choose to regularise the theory.

Potential solutions to this problem usually introduce new fields or symmetries with

the aim of cancelling out the offending loop corrections. One of the most popular

approaches is to invoke Supersymmetry (SUSY), which relates bosons and fermions

by a symmetry [12, 44]. The SM spin 1/2 fermions are embedded within chiral

supermultiplets alongside their spin 1 partners, known as sfermions, whilst the gauge

bosons of the SM are embedded within gauge supermultiplets with their spin 1/2

SUSY partners, called gauginos. These new SUSY fields introduce loops that help to
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cancel out the SM UV loops and bring the Higgs mass down towards its experimental

value.

If supersymmetry were an exact, unbroken symmetry of nature then the masses

of the SM particles and their SUSY partners would be degenerate. The fact that

we haven’t observed any evidence of the existence of SUSY partners suggests that

supersymmetry, if it is realised in nature, must be broken, with a characteristic

breaking scale MSUSY .

SUSY was investigated for other reasons before its utility as a solution to the

hierarchy problem was understood [45]. The supersymmetric algebra is the maximal

extension of the Poincarè algebra of spacetime transformations that extends the

traditional spacetime degrees of freedom to include fermionic degrees of freedom.

It could be argued that the largest possible spacetime symmetry would be the one

that best describes nature, therefore supersymmetry should be realised in some way.

However, this argument is somewhat aesthetic and is often overlooked as a motivator

of SUSY in favour of the model’s obvious phenomenological power.

Unfortunately, despite the numerous compelling theoretical arguments in its

favour, the fact remains that there has been no experimental observation of evidence

of supersymmetry [16]. The SUSY model space has been gradually narrowed by

results from LEP, the Tevatron, and the ATLAS and CMS experiments at the

LHC, and although it is still possible for SUSY models to evade the tightening

constraints from these experiments it often requires the introduction of non-minimal

field content or a fine-tuning of parameters [14–16]. In this work we focus on non-

supersymmetric extensions of the SM, and until strong experimental evidence makes

a clear case for the existence of supersymmetry it is important to investigate if these

models can also account for what is currently known about low energy phenomena.

2.5.3 Experimental and Cosmological Observations and The Stan-
dard Model

As we discussed previously, the SM’s enduring experimental success is impressive,

but it has ran into difficulty with some recent observations. Most notably is the

observation of neutrino oscillations which suggest that neutrinos have extremely

small masses [46–48]. Neutrinos are massless in the SM, but one can extend it with

a right handed neutrino which can either be a Dirac or Majorana fermion. In the

Majorana case the mass term for the neutrinos looks like,
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Lν =
(
νL νR

)( 0 m

m M/2

)(
νL

νR

)
, (2.50)

whereM is the Majorana mass. Diagonalising the mass matrix gives the eigenvalues

≈ (m2/M,M). If we associate M with a large mass scale such as MGUT or MPl

then we get one light mass eigenstate that is predominantly the left-handed neutrino

and one very heavy right handed neutrino. This is known as the seesaw mechanism.

This can be added to the SM, but an intermediate scale that can facilitate this

mechanism arises naturally from SO(10) GUT models, which we will discuss later.

There are a number of cosmological observations that the SM is unable to ex-

plain, which suggests the existence of physics beyond the Standard Model. Most

notably, the SM has no mechanism to explain the various experimental evidence for

the existence of large amounts of dark matter in the universe [49]. In this work we

will investigate a number of models that attack this problem by introducing new

scalar field content.

Another weakness of the SM is that the amount of CP violation that can occur

in the CKM matrix is not sufficient to explain the observation that the universe is

dominated by baryons and not anti-baryons [50]. The Sakharov conditions [51] are

those that must exist in the early universe to generate an appropriate baryon anti-

baryon asymmetry. Specifically, baryon number, C, and CP must be violated in the

early universe, and there must be interactions that are out of thermal equilibrium. In

this work we will look at the complex singlet extension of the SM, which introduces

new sources of CP violation in its Higgs sector that can account for the baryon

anti-baryon asymmetry.
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Figure 3.1: Vacuum stability for the SM in theMh−Mt plane, taken from [15]. The

right plot expands the rectangular region highlighted in the left plot. The dotted

lines are contours that show the scale up to which the vacuum remains stable, and

the ellipses show the 1, 2, 3σ experimental regions for Mh,Mt.
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Figure 3.2: Vacuum stability for the SM in the λ (MPl) − yt (MPl) plane, taken

from [15]. The right plot expands the rectangular region highlighted in the left plot.

The dotted lines are contours The dotted lines are contours that show the scale up

to which the vacuum remains stable, and the thin ellipses near the centre of the

plot show the 1, 2, 3σ regions for λ (MPl) , yt (MPl) that correspond to the central

experimental values of Mh,Mt.

3.1 High Scale Behaviour of the Standard Model

As we discussed in the introduction, the experimentally measured mass of the Higgs

boson, and its seemingly very SM-like nature [8,52–54], makes life difficult for some

of the most popular extensions of the SM. The Higgs mass determination also places

the SM potential in an interesting position in terms of vacuum stability. Figure 3.1

shows that the experimentally measured Higgs and top quark pole masses suggest

the universe lies in a critical metastable region near the boundary of stability with

a lifetime that is much longer than the age of the universe [15], which the Planck

Collaboration estimates to be 13.813 ± 0.038 × 109 years old [55]. Figure 3.2 is a

vacuum stability plot, focussing on the values of the Higgs quartic coupling λ and

the top quark Yukawa yt at the Planck scale. The current situation leaves us with

a very small, negative value of λ (MPl).

Any instability of the SM potential is sometimes interpreted as a sign that some

new physics must come into play at intermediate scales, stabilising the potential.

However, the same properties of the SM Higgs sector have also encouraged explo-

ration into whether it could be the fundamental description of nature up to energies
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Figure 3.3: Three loop running of the Standard Model couplings with renormalisa-

tion scale µ. Here gi are the gauge couplings, λ is the Higgs quartic coupling and

Yi are the Yukawa couplings of the top and bottom quarks, as well as the τ lepton.

such as the Planck scale. To investigate this possibility we need to compute the

changes in all of the SM couplings from low scales such as MZ all the way up to

MPl. To that end we utilise the RGEs of the Standard Model at three-loop accuracy.

We provide the two-loop RGEs in Appendix B [56–59].

The running of the SM couplings shown in Figure 3.3 hide some intriguing hints

of potential new dynamics at high energy scales. Not only does λ run to a very

small value at MPl, but its β function runs flat at high scales. This has led to a

number of investigations into whether these features are boundary conditions that

are a consequence of new physics at the Planck scale [23–29].

As far as the Standard Model is concerned, we are primarily interested in the

following possible boundary condidions,

λ (MPl) = 0, (3.1)

βλ (MPl) = 0. (3.2)

There are a number of possible models for how these boundary conditions on the

Higgs sector can come about. We will discuss two of them in more detail in the

following sections; the Multiple Point Principle (MPP) and Asymptotic Safety (AS).
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Figure 3.4: λ (MPl) = 0 (red) and βλ (MPl) = 0 (black) in the mh −mt plane. The

dashed lines show 3σ variations in αS (MZ) = 0.1181 ± 0.0013. Ellipses show the

experimentally allowed values of mt and mh with 1σ (dark grey) and 3σ (light grey)

uncertainty.

Figure 3.4 shows contours corresponding to the boundary conditions 3.2 in the

mh−mt plane, indicating that, assuming the central values of mt and αS , a heavier

Higgs than experimentally observed is needed to satisfy both conditions. These

contours were calculated using SARAH 4.9.3 [17] and FlexibleSUSY 1.6.1 [18–21],

and use the three-loop RGEs of the SM to run betweenMZ andMPl. FlexibleSUSY

calculates the Higgs mass to two-loop order, whilst the top pole mass includes three-

loop QCD corrections. This plot broadly agrees with a similar plot in [23], however

we use a different value of the uncertainty in αS (MZ) = 0.1181±0.0013 that reflects

a recent change in its estimation [60]. The authors of [23] also use the Planck scale,

mPl =
√

~c
G = 1.22×1019 GeV, as their high scale where the boundary conditions are

checked, wheras we use the reduced Planck scale, Mpl =
√

~c
8πG = 2.4 × 1018 GeV,

where the additional factor of 1/8π is a convention that is used to simplify the

Einstein field equations. Figure 3.4 shows that it is possible to get λ (Mpl) = 0

using a value of mh within 3σ and a top pole mass 171 < mt < 174 GeV, whilst also

getting a value of βλ that is extremely small.

It is possible that the mechanisms that may be fixing our boundary conditions
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uncertainty.

can become significant at scales lower than MPl. Figure 3.5 shows points on the

mh − mt plane that give λ = βλ = 0, within 1σ uncertainty, simultaneously at

different high scales MUV . It is possible to obtain points that meet both conditions

and provide an experimentally viable Higgs mass at around MUV ≈ 5× 1017. It is

interesting to note that this is a scale that arises in string scenarios [61, 62].

3.2 The Multiple Point Principle

The effective potential of the SM includes quantum contributions that can modify

its shape from the classical case. It is given by [63–65],

Veff (φ) =
1

2
m2 (φ)φ2 +

1

4
λ (φ)φ4 +

1

16π
V1 + . . . . (3.3)

Here we show the one-loop effective terms V1 that, using the MS renormalisation

scheme, takes the form,

V1 (φ) =
ni
4
M4
i (φ)

[
ln

(
M2
i

µ2

)
− Ci

]
, (3.4)
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Figure 3.6: Illustration of some of the possible shapes of the effective potential that

the Standard Model can accomodate, taken from [65]. The left plot shows a stable

vacuum and the right plot shows a metastable configuration. The middle vacuum

configuration has two degenerate minima, one at the Fermi scale and one at the

Planck scale. This is a hallmark of the Multiple Point Principle. These are for

illustrative purposes only, they are not to scale.

where Mi is the scale at which the corrections become significant, µ2 is the MS

renormalisation scale, and ni and Ci are numerical constants. The loop-corrected

mass term m2 and quartic coupling λ both depend on the value of the Higgs field

φ.

It is possible for the SM effective potential to have more than one minimum,

as shown in figure 3.6. The premise of the MPP assumes that nature would prefer

the configuration illustrated by the middle plot: a potential configuration where

there are two degenerate minima, one at the electroweak scale and one at a much

higher scale such as MPl [30]. This scenario would result in a vacuum on the cusp

of stability, just as we see in figures 3.1 and 3.2.

The MPP argues that the Higgs potential parameters should be fixed to allow

for different phases to coexist, much like ice, water and vapour can exist for specific

values of temperature and pressure. In the language of thermodynamics, couplings

such as λ and the top Yukawa yt would correspond to intensive variables such as

temperature and pressure, whilst variables such as 〈|φ|2〉 would be extensive. By

fixing the values of the extensive variables we often reach a situation where the

intensive variables take specific values, such as those that correspond to the triple

point of water. The transition between two phases, represented by the two minima,

may be strongly first order, so that the range of extensive variable values that result

in the existence of two degenerate minima should be large. To put this analogy

into more concrete terms we consider the Feynman path integral that describes the
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behaviour of the SM [30],

∫
DADψDφ exp (iS [A,ψ, φ]) , (3.5)

where A represents the gauge fields, ψ the fermions and φ the Higgs field. S [A,ψ, φ]

is the action. In our triple point analogy this would correspond to the statistical me-

chanics canonical partition function with fixed intensive parameters such as temper-

ature. Fixed extensive parameters would correspond to a microcanonical ensemble

with fixed energy, and the analogous path integral would look like,

∫
DADψDφδ (I [A,ψ, φ]− I0) , (3.6)

where δ (I [A,ψ, φ]− I0) are delta functions and,

I [A,ψ, φ] =

∫
d4xL (x) , (3.7)

is the extensive variable that is fixed to I0. We are also free to insert the exponen-

tiated SM action as a factor, which gives us,

∫
DADψDφ exp (iS [A,ψ, φ]) δ (I [A,ψ, φ]− I0) . (3.8)

We can approximate the microcanonical ensemble with a canonical one by Fourier

transforming the delta function,

δ (I − I0) =
1

2π

∫
d
(
m2
Hl

)
exp

(
im2

H (I − I0)
)
. (3.9)

We find that when we use this delta function in our path integral the result is

dominated by a small range of the bare Higgs mass squared m2
H . This lets us use

just the dominant value of m2
H , as long as we ensure that it gives the correct average

value of 〈I〉 = I0 by adjusting the parameters of the SM, such as λ and yt. This very

often results in an effective potential that has two minima, and the correct average

value of I will only occur if the two of them have very similar energy densities. If

the differences in the average densities of the Higgs field 〈|φ|2〉 at the two phases is

small then the degenerate vacua situation is very unlikely to occur. Therefore the

difference 〈|φ|2〉2 − 〈|φ|2〉1 must be of the order M2
Pl to be at all likely.

We want the first vacuum at the electroweak symmetry breaking scale 〈|φ|〉1 ≈
246 GeV and the second vacuum to exist at 〈|φ|〉2 ≈MPl. At the scale of the second

vacuum the effective potential is dominated by the quartic Veff ≈ 1
16λ (φ)φ4, the

derivative of which is,
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dVeff
dφ
|〈φ〉2 =

1

4
λ (φ)φ3 +

1

16
βλφ

4. (3.10)

The existence of the second degenerate minima at MPl requires that Veff (MPl) =
dVeff
dφ (MPl) = 0, which means that both conditions of Equation 3.2 must be satisfied.

An analysis of the MPP hypothesis, using one-loop RGEs, gave an early predic-

tion of the Higgs mass of mh = 135 ± 9 GeV [30]. A more recent calculation using

two-loop RGEs and an up to date value of the top pole mass gave a prediction of

mh = 129± 1.5 GeV [15]. Unfortunately this is no longer compatible with the very

precise combined ATLAS and CMS determination of the Higgs mass but it is close

enough to warrant further investigation. These have usually taken the approach of

extending the SM field content with the aim of altering the running of λ enough

to satisfy both of the MPP boundary conditions, as well as providing a valid mass

spectrum [66–72].

3.3 Asymptotic Safety

As we discussed in chapter 2, one of the primary motivators of research into BSM

physics has been the sensitivity of the Higgs mass to quadratic corrections from

new physics scales up to and including the Planck scale. One approach to tackle

this has been to look for models that extend the SM and its gauge group such

that the model is valid up to infinite energies. Such a model would mitigate any

quadratic corrections and would remain well behaved up to any energy scale we may

be interested in.

The principle behind asymptotic safety is that models remain not only well be-

haved and predictive, but interacting up to very high scales [73,74]. In renormalisa-

tion group terms, this means that running couplings run towards an interacting UV

fixed point. Recently there has been a burst of interest in Totally Asymptotically

Safe (TAS) models, in which all of the dimensionless couplings run to interacting

UV fixed points [75–82].

TAS should not be confused with Total Asymptotic Freedom (TAF), which re-

quires that all of the couplings run to zero at high scales. This is another class of

models that are valid up to infinite energies, but in this case the UV fixed point is

non-interacting. TAF models run into a problem with the SM U(1)Y hypercharge

coupling, which is known to run towards a Landau pole at extremely high energy

scales. One way to fix this problem is to embed the hypercharge gauge group into a
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larger non-abelian group, such as a Pati-Salam SU(4)C × SU(2)L × SU(2)R group

or a Trinification model that uses the SU(3)C × SU(3)L × SU(3)R group [83–86].

We will illustrate the principles of TAS models using an example outlined in [78].

Consider a gauge coupling αg = g2/16π2 and a Yukawa coupling αy = y2/16π2. The

one-loop β functions for these couplings are,

βg =
dαg
d lnµ

= (−B + Cαg −Dαy)α2
g, (3.11)

βy =
dαy
d lnµ

= (Eαy − Fαg)αy, (3.12)

where the coefficients B,C,D,E, F are model dependent. D,E and F are greater

than zero regardless of the matter content of the model, and the Yukawa coupling

αy always negatively contributes to the running of the gauge coupling αg. We want

βg = βy = 0, which can arise at a number of fixed points. The Gaussian fixed point,

(αg, αy) = (0, 0) , (3.13)

is the simplest of these, and is an asymptotically free UV fixed point if B > 0. An

interacting fixed point for the gauge coupling is,

(αg, αy) = (B/C, 0) . (3.14)

This is the Caswell-Banks-Zak fixed point [87, 88] and it requires BC > 0 and

B/C � 1 to be physically valid. It is impossible to get a UV Caswell-Banks-Zak

fixed point because it has been shown that if B < 0 then C > 0 [77], so BC is

always negative in the UV case.

If we want βg = βy = 0 as well as a non-zero gauge and Yukawa coupling we

end up with a relationship between the gauge and Yukawa couplings of the form

αy = F
Eαg. Substituting this into the gauge β function gives,

βg =
(
−B + C ′αg

)
α2
g, C ′ = C −DF

E
. (3.15)

The fixed point is now,

(αg, αy) =

(
B

C ′
,
B

C ′
F

E

)
. (3.16)

We can now get the interacting UV fixed point of the asymptotic safety scenario by

requiring B < 0, C ′ < 0. Much of the research into TAS models has investigated
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whether this condition can be met in extensions of the SM. These models usually

introduce a large amount of new field content, such as new scalars or new vector-like

fermions, in a variety of different representations of the SM gauge group.

In this work we are primarily interested in asymptotically safe quartic couplings

in the Higgs sector, so the models we will look at are somewhat simpler than TAF

or TAS models. A possible source of a UV fixed point in the potential of the SM

is the contribution to the running of λ from gravitational interactions at very high

scales [31,89–92]. In this scenario the running of the quartic coupling βSMλ is altered

by additional terms βgravλ that become significant at scales above some transition

scale such as MPl,

µ
dλ

dµ
= βSMλ + βgravλ = βSMλ +

a

8π

µ2

M2
Pl

λ. (3.17)

Here the coefficient a is dependent on the exact model used to describe high scale

behaviour, and its value and sign determines the nature of the gravitational con-

tribution to the running. It is now possible for λ to run towards an interacting

UV fixed point. The approach outlined in [31] predicts a range of possible values

for the Higgs mass 126 < mh < 174 GeV, where the lower limit is achieved when

λ (MPl) = βλ (MPl) = 0. Once again we are left with an intriguing prediction that

is close enough to the experimental results to be worthy of further investigation.
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4.1 Introduction to Grand Unification Theories

The Standard Model gauge group SU(3)C × SU(2)L × U(1)Y does not describe

the very different properties of the weak and electromagnetic interactions that we

see at low energies. As we discussed in chapter 2, at those scales the electroweak

SU(2)L × U(1)Y symmetry is spontaneously broken to the electromagnetic U(1)Q

group via the Higgs mechanism, a process that gives masses to the weak W and Z

gauge bosons, as well as the masses of the SM fermions via Yukawa interactions. This

is an example of a gauge symmetry arising from the breaking of a larger symmetry

at a higher energy scale, a theoretically attractive idea that has been a powerful

motivator of particle physics research in the past, and one that drives much of the

current theoretical and experimental research into BSM models.

One class of models that continues this trend are Grand Unification Theories.

(GUTs), which posit that the SM is a subgroup of a larger theory under which the

strong and electroweak interactions are unified at some high scale MGUT . The SM

gauge group is a very successful description of much of what we observe at exper-

iments, however from a theoretical point of view its gauge structure appears as a
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Figure 4.1: Two loop running of the Minimal Supersymmetric Standard Model gauge

coupling constants αi = g2
i /4π with renormalisation scale µ.

somewhat arbitrary choice by nature. Our understanding of the origins of the sym-

metries of the SM would be on a firmer footing if we discovered some experimental

evidence that the SM gauge group naturally arose via spontaneous symmetry break-

ing from a larger gauge group, one which also provides an explanation for some of

the unanswered questions of the SM. This is the central idea behind GUTs, and in

this chapter we will discuss some of the motivations for these models as well as the

model building techniques used to construct them. We will then discuss in detail

two of the most common gauge groups used to construct GUT models: SU(5) and

SO(10).

4.1.1 Gauge Coupling Unification

We’ve already discussed the main physical motivator for GUTs; the hints of gauge

coupling unification shown in Figure 1.2. Running the SM up to high energies

suggests that all three of the gauge couplings may be unified to a single coupling

at a high scale of MGUT ≈ 1015 GeV, however it is important to note that a unified

gauge coupling constant can be defined in a variety of ways. For example, we could

argue that the couplings are unified when α1 (MGUT ) = α2 (MGUT ) = α3 (MGUT ) =

αGUT , where αi = g2
i /4π, or we could define some combination of the couplings gi
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and designate gGUT to be the scale at which this combination are minimised. These

are just some of any number of arbitrary definitions that can be used to determine

whether the gauge couplings unify at high energies.

Definitions such as the ones we have discussed are often used to argue that the

SM couplings do not unify at a high scale unlike supersymmetric models, such as

the Minimal Supersymmetric Standard Model (MSSM) shown in Figure 4.1, which

seems much closer to unification at around MGUT ≈ 2 × 1016 GeV. However, as is

made clear in [93], these arguments are oversimplifications. It makes more physical

sense to consider a matching between the GUT coupling and the SM (or MSSM)

couplings that accounts for the heavy fields that are integrated out in the low energy

EFT.

To illustrate this, let’s consider the two-loop renormalisation group equations for

the SM coupling constants gi, where i = 1, 2, 3 corresponds to the U(1)Y , SU(2)L

and SU(3)C gauge groups, and we use the SU(5) GUT normalisation g1 =
√

3/5g′.

They are [58],

dgi
dt

= β
(1)
i + β

(2)
i =

big
3
i

(4π)2
+

g3
i

(4π)4

 3∑
j=1

Bijg
3
j +

∑
a=u,d,e

Cai Tr
(
Y †a Ya

) (4.1)

where t = lnµ for renormalisation scale µ and Ya are the Yukawa matrices for the

quarks and leptons. The coefficients of the one-loop β
(1)
i and the two-loop β

(2)
i

functions are bi, Bij and Cai . They depend on group theoretic factors of the field

content, such as the quadratic Casimir operators and indices of their representations

[57]. Near MGUT the one-loop coupling at low energy gi and the coupling at the

GUT scale gGUT are related by threshold corrections λi (MGUT ) that account for

the increasing significance on the running of heavy fields at high energies,

g−2
i (MGUT ) = g−2

GUT (MGUT )− λi (MGUT )

48π2
(4.2)

where [94],

λi (MGUT ) = lVni − 21lVni ln

(
MVn

MGUT

)
+ lSni ln

(
MSn

MGUT

)
+ 8lFni ln

(
MFn

MGUT

)
(4.3)

depends on a sum over the n heavy fermions Fn, vector bosons Vn and scalars Sn
as well as the indices li of their representations in the SM group i. The difference

between each gauge group’s threshold corrections, ∆λij = λi − λj , allows us to
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visualise the size of the corrections needed to achieve coupling unification in a model

independent way. We now have a simple relation between ∆λij and the gauge

couplings gi,j ,

∆λij (MGUT )

48π2
= g−2

i (MGUT )− g−2
j (MGUT ) . (4.4)

Figure 4.2 shows ∆λ plots for the SM and the MSSM. The distance from the

origin indicates the size of the threshold corrections a GUT model would have to

provide to achieve gauge coupling unification. With plots like these we can check if

SM coupling unification is possible within a given GUT scenario by matching the

SM thresholds to the values of λi we calculate for the GUT model in question, which

requires knowledge of the heavy spectrum of the GUT that is integrated out in the

low energy EFT description.

The contribution of threshold corrections to the running of the gauge couplings

is something that is often neglected in GUT model building. Comparing the cor-
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rections that arise from the running of the couplings in the low energy EFT to the

threshold corrections that the heavy field content of a GUT model provides is a

more robust method of determining whether or not the model is compatible with

gauge coupling unification.

4.1.2 GUT Model Building

Like any gauge theory, GUT models describe physical symmetries via infinitesimal

transformations, and as such are built from representations of Lie Algebras. As we

discussed in chapter 2, the generators of a Lie Algebra g satisfy the commutation

relation,

[Ti, Tj ] = fijkTk, (4.5)

where fijk are the structure constants. The representation of a Lie algebra is a

map of the group of linear transformations onto a vector space V that preserves the

commutation relation of the algebra. The dimension of the representation is equal

to the dimension of the V . The direct sum of two representations is given by,

D1(g)⊕D2(g) =

(
D1(g) 0

0 D2(g)

)
(4.6)

which can be generalised to a sum of n representations. A representation that cannot

be decomposed in this way is called an irreducible representation (or irrep), and any

reducible representation can be decomposed into a direct sum of irreps. It is also

possible to build a higher dimensional representation from the tensor product of two

or more representations D1(g)⊗D2(g).

These days the construction of representations and the calculation of their irreps

is usually offloaded to publically available codes, such as LieART [95]. The decom-

position of representations can be visualised using a pictorial tool, called Young’s

tableaux, that visualises representations of groups such as SU(N) as a series of

boxes. For example, in SU(3) the fundamental representation 3 is given by,

3 = , (4.7)

whilst the conjugate 3 is

3̄ = . (4.8)
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There are a number of rules for manipulating these diagrams. An SU(N) represen-

tation can have at most N − 1 boxes in any column and each row must be shorter

than the row above, so diagrams such as are invalid. To decompose tensor prod-

ucts we begin by putting letters (a, b, . . . ) etc into the 1st, 2nd etc rows of the 2nd

diagram, e.g for 3⊗ 3̄,

⊗ a
b
.

The decomposition begins by taking the first row boxes and attaching it to the right

of the first diagram to build and sum all possible legal diagrams that contain no

duplicate letters in the same column. The process is continued for the next letter

with the stipulation that, from right to left reading downwards, the letters must be

organised alphabetically. Looking at our 3⊗ 3̄ example,

⊗ a
b

= a
b

⊕ a
b
. (4.9)

The representations that remain after this process are the irreducible representations

of the original tensor product. Their dimensions can be calculated by first putting

N , for SU(N), in the top left box then counting up along the top row and down

each column. These numbers are then multiplied together. Next we fill the boxes

again by counting the number of boxes to the right of a box in the same row, plus

below in the same column, then adding one to the result. These numbers are then

multiplied. The ratio of the results gives the dimension of the representation. This

process is best illustrated by examples,

3 4
2

/
3 1
1

=
2× 3× 4

3
= 8, (4.10)

3
2
1

/
3
2
1

= 1. (4.11)

These rules allow for the calculation of the irreducible representations for a tensor

product of SU(N) representations, catagorised by their dimension. The result for

our previous example in SU(3) is therefore,

3⊗ 3̄ = 8⊕ 1. (4.12)

Irreducible representations are of particular importance in gauge theories as the

creation operators of a particle are given by their irreducible representations in the
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Poincaré group (the group of translations, boosts and rotations in Minkowski space)

as well as its internal SM gauge symmetries, such as SU(3)C .

4.2 SU(5) GUT Models

GUT model building starts with a search for a gauge group G that has the SM

gauge group as a subgroup, one from which we can construct representations that

can accommodate the SM field content. The larger symmetry must also have the

same or higher rank as the SM group, which is rank 4, and must also allow complex

representations to accomodate the chiral structure of the SM fields. The simplest

simple Lie group that meets these requirements is SU(5), which was first investigated

as a potential GUT model by Georgi and Glashow [32]. The generators of SU(5)

are related to 24 generalised Gell-Mann matrices λa,

Ta =
λa
2
, a = 1...24. (4.13)

These generalised Gell-Mann matrices are given in Appendix A. Since SU(5) has

the SM group as a subgroup, its generators can be constructed from the SU(3)C

and SU(2)L generators. The SU(3)C generators TCa are the 8 λ matrices that have

non-zero entries in the first three rows and columns, whilst the SU(2)L generators

TLa are the 3 combinations of the λ matrices which have non-zero entries in the last

two rows and columns, i.e

[
TCa
]
ij

=

[
λa
2

]
ij

, a = 1...8 (4.14)

[
TL1
]
ij

=

[
λ22

2

]
ij

,
[
TL2
]
ij

=

[
λ23

2

]
ij

,
[
TL3
]
ij

=

[√
10λ24 −

√
6λ15

8

]
ij

, (4.15)

where i, j = {1, 2, 3}. The remaining generators are representations of new gauge

bosons which mediate interactions that violate the conservation of baryon number.

All of the above generators commute with the U(1)Y hypercharge generator.

The left handed quarks and leptons are embedded into the conjugate fundamen-

tal 5 representation ΨL and a 10 representation χL,
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ΨL =



dc1

dc2

dc3

e

−ν


L

, χL =



0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 u3 0 ec

−d1 −d2 d3 −ec 0


L

(4.16)

where the superscript c denotes the charge conjugate of the field. One of the ad-

vantages of embedding the SM fields in this way is that their correct charges arise

naturally, which we can illustrate by building the 5̄ and 10 charge operators. The

charge operator for the 5 representation is constructed from the sum of the third

SU(2)L generator and the weak hypercharge generator,

Q5 = TL3 + Y = −
√

2

3
λ15. (4.17)

In matrix form this is,

Q5 =



−1
3 0 0 0 0

0 −1
3 0 0 0

0 0 −1
3 0 0

0 0 0 1 0

0 0 0 0 0


, (4.18)

which is related to the charge operator for the 5̄ by complex conjugation. The

action of Q5̄ gives the correct charges for the anti-down quark, electron and electron

neutrino. To build the charge operator for the 10 representation we exploit the fact

that it can be written as the antisymmetric tensor product of two 5 representations,

e.g,

10⊕ 15 = 5⊗ 5. (4.19)

We can then build the generators of the 10 from the generators of the 5,

T̃a =
λa
2
⊗ 1 + 1⊗ λa

2
. (4.20)

So the charge operator for the 10 is given by,

Q10 = −
√

2

3

[
λ15

2
⊗ 1 + 1⊗ λ15

2

]
. (4.21)
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The action of this charge generator gives the correct charges for embedded quarks

and leptons. To see this, take the row and column values for a particular particle in

10 and add up the corresponding diagonal terms in Q5. For example, the uc3 is at

row 1, column 2 of the 10 representation. Adding the 1st and 2nd diagonal terms

of Q5̄ gives −1
3 + (−1

3) = −2
3 , the correct charge of the anti-up quark.

By embedding the Standard Model groups into SU(5) we also gain a natural

explanation as to the fractional nature of the quark charges. The generators of

an SU(N) group must be traceless, so the charge operator for the fundamental 5

representation of SU(5) must also be traceless,

3Qdc +Qe+ = 0 i.e Qec =
Qdc

3
. (4.22)

A similar relation holds for the 10 representation. This property means that the

Georgi-Glashow Model also predicts the equality of the proton and electron charges,

something that has no explanation in the Standard Model.

4.2.1 The SU(5) Lagrangian

Much like we did with the SM, The SU(5) Lagrangian can be split into four sectors,

L = Lfermion + Lgauge + LHiggs + LY uk. (4.23)

In order to ensure local gauge invariance, covariant derivatives are required for both

ΨL and χL,

DµΨ = ∂µΨ− igAµΨ (4.24)

Dµχ = ∂µχ+ 2igAµχ. (4.25)

The action of these covariant derivatives on ψL and χL allows for interactions be-

tween fermions and gauge fields, which in the Georgi-Glashow model are embedded

within a 24 adjoint representation Aµ,

Aµ =

 Gµ
Xµ√

2
,
Yµ√

2
X̄µ√

2
,
Ȳµ√

2

Wµ

2

+

√
3

5
Bµ

(
− I3

3 0

0 I2
2

)
, (4.26)

where I3 and I2 are the 3 × 3 and 2 × 2 identity matrices. This representation is

given in block form to make clear that it embeds the SM gluon and electroweak
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gauge fields Gµ, Wµ and Bµ, but it also includes exotic coloured gauge fields Xµ

and Yµ.

The kinetic term for the gauge fields is the standard SU(N) kinetic Lagrangian,

Lgauge = −1

2
Tr(AµνAµν), (4.27)

where Aµν is the gauge field tensor,

Aµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (4.28)

The fermion sector of the SU(5) Lagrangian is,

Lfermion = iΨ̄γµDµΨ +
i

2
Tr(χ̄γµDµχ)

= iΨ̄γµ∂µΨ +
i

2
Tr(χ̄γµ∂µχ) + Lfermionint . (4.29)

The covariant derivatives bring about the interaction terms,

Lfermionint = gΨ̄γµAµΨ− gTr(χ̄γµAµχ). (4.30)

Expanding this out makes explicit the interactions between fermions and gauge

fields,

Lfermionint = − g
[
ūγµGµu+ d̄γµGµd

]
− g

[
ψLγ

µWµψL + l̄Lγ
µWµlL

]
−

√
3

5
g[−1

2
(ν̄Lγ

µBµνL + ēLγ
µBµeL)

+
1

6
(ūLγ

µBµuL + d̄Lγ
µBµdL) +

2

3
ūRγ

µBµuR

− 1

3
d̄Rγ

µBµdR − ēRγµBµeR] +
g√
2

[d̄Rγ
µXµeR

+ d̄Lγ
µXµeL + ūLγ

µXµuL] +
g√
2

[−ν̄RγµYµdR
+ ūLγ

µYµeL + ūLγ
µYµdL] + h.c, (4.31)

where ψL and lL are the left handed quark and lepton doublets. The majority of the

terms above are analogous to SM interactions, however the X and Y bosons mediate

baryon number violating interactions that result in proton decay (see section 4.2.3).
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4.2.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking in the Georgi-Glashow Model takes place in two

stages. The overall breaking scheme is,

SU(5)
Σ−→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Φ−→ SU(3)C ⊗ U(1)Q. (4.32)

Firstly, a Higgs field Σ in the adjoint 24 representation, breaks SU(5) to the SM

group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . Electroweak symmetry breaking is handled in a

similar way to the SM and is mediated by Φ, in the fundamental 5 representation,

which contains both the SM electroweak Higgs doublet and a new scalar Higgs

triplet,

Φ =



H1

H2

H3

φ+

φ0


. (4.33)

The potential for Σ is,

VΣ = −µ
2

2
Tr(Σ2) +

a

4
Tr(Σ2)2 +

b

4
Tr(Σ4). (4.34)

The vacuum expectation value of Σ breaks the SU(5) symmetry in the hypercharge

direction and can be written as,

〈Σ〉 =
vΣ√
30

Diag(2, 2, 2,−3,−3). (4.35)

The full Higgs potential describes both the adjoint field and the fundamental 5 field

Φ, as well as mixed terms containing both Higgs fields.

VΦΣ = −µ
2

2
Tr(Σ2) +

a

4
Tr(Σ2)2 +

b

4
Tr(Σ4)

−µΦ

2
Φ†Φ +

λ

4

(
Φ†Φ

)2
+ αΦ†ΦTr(Σ2)− βΦ†Σ2Φ. (4.36)

The second Higgs field Φ gains a vev of the type,
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d

u

u

e+

ū

u

X

Figure 4.3: An example of proton decay via an X boson to a positron and π0

〈Φ〉 =
vΦ√

2



0

0

0

0

1


, (4.37)

which spontaneously breaks the SM group down to SU(3)C ⊗ U(1)Q, analogous to

the SM Higgs mechanism. The Yukawa sector of the SU(5) Lagranigan is given by,

LY uk = YdΨ̄RχLΦ† + Yuχ
T
LCχLΦ + h.c

= YdΨ̄Riχ
ijΦ†j + Yuεijklm(χT )ijCχklΦm + h.c, (4.38)

where Yd and Yu are Yukawa interaction matrices, C is the conjugation matrix,

and ε is the anti-symmetric Levi-Civita tensor. The Yukawa Lagrangian includes

interactions between the fermions and the coloured Higgs triplet H = (H1, H2, H3),

LY ukH = YdΨ̄Riχ
iαHα + Yuεijklα(χT )ijCχklHα

= Yd(ūLdR + ūLe
+
R + d̄Lν

C
R )H + Yu(ūRdL + ūRe

+
L )H. (4.39)

These interactions break baryon number conservation in a similar manner to the

coloured X and Y gauge fields, introducing another mediator for proton decay.

4.2.3 Problems with the Georgi-Glashow Model

As we have seen, the running of the couplings suggests some sort of unification of

the Standard Model interactions under a larger internal symmetry. Georgi-Glashow
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SU(5) unification is the minimal model for this process, nevertheless it leads to some

impressive results such as an explanation for the quantisation of electric charge and

the fractional charges of the quarks. The Standard Model has no explanation for

this property, and yet the simplest GUT predicts it as a direct consequence of the

structure of its generators.

However, there are a number of issues with this model in its simplest form.

Quarks and leptons share representations in all GUT models, leading to proton

decay that is mediated by the X and Y fields, an example of which is shown in figure

4.3. Since QCD is non-perturbative at the mass scale of the proton, calculations

of the proton decay are extremely difficult and computationally expensive, and are

usually done using lattice QCD techniques [96]. However, we can approximate these

interactions in analogy with the weak decay of the muon, which can be written

as [97],

Γ
(
µ− → e+ν̄eνµ

)
=

g4
2

192π3

m5
µ

M4
W

, (4.40)

where the decay is suppressed by the fourth power of electroweak scale MW . The

proton width estimation looks like,

Γ
(
p→ e+µ0

)
≈ 3

400π3

m5
p

M4
GUT

, (4.41)

where MGUT ≈ MX is the mass of the proton decay mediator. Unfortunately,

SU(5) GUTs with no modifications predict a proton lifetime of τp ≈ 1024 years,

much shorter than the current experimental lower limits of τp ≈ 1034 years [98].

SU(5) GUT models also introduce a doublet-triplet splitting problem in the

Higgs sector. The problem is that we have an experimentally verified light scalar,

the SM Higgs, sharing a representation with a Higgs Triplet that has to be of the

order MGUT so as not to get an extremely short proton lifetime. The model needs a

very large fine tuning to accomodate this hierarchy. Non-minimal solutions to this

problem usually introduce new field content and symmetries [99–103]. The Yukawa

interactions in SU(5) also predict a relationship between quark and lepton masses

at the GUT scale, specifically,

mb (MGUT ) = mτ (MGUT ) , (4.42)

ms (MGUT ) = mµ (MGUT ) ,

md (MGUT ) = me (MGUT )
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Figure 4.4: Example of the two-loop RGE running of the gauge coupling constants

in an SO(10) model with an intermediate Pati-Salam scale, taken from [106].

These relations cannot be made to agree with experiment in a simple Georgi-Glashow

model. A possible solution is to introduce a 45 Higgs representation that Yukawa

couples to the fermions and adjusts the GUT scale mass relations [104]. Like the

SM, the Georgi-Glashow model in its minimal form does not incorporate neutrino

masses. It is possible to accomodate a seesaw mechanism by adding new fields in

the 15 representation of SU(5) [105].

Its clear that the minimal non-supersymmetric SU(5) GUT is experimentally

excluded by proton lifetime estimates and quark-lepton mass relations. Whilst we

have discussed non-minimal extensions to the model that can help ameliorate some

of these issues, there are other avenues towards grand unification that we can explore.

One such avenue is SO(10) GUTs, which we will discuss in more detail in the next

section.

4.3 SO(10) Grand Unification

SO(10) GUTs embed the Standard Model field content into the spinor 16 represen-

tation [107],

16 = (uc1, d
c
1, d1, u1, ν

c, ec, d2, u2, u
c
2, d

c
2, d3, u3, u

c
3, d

c
3, e, ν)L . (4.43)
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One of the most appealing properties of SO(10) models is that not only does the 16

embed all of the SM fields, but the remaining field has the SM quantum numbers

of a right handed neutrino. Combine this with the fact that breaking the Rank 5

SO(10) group down to the Rank 4 SM group requires a rank reducing intermediate

step, then it’s clear that this class of models can naturally accomodate neutrino

masses and oscillations via a Type-I or Type-II seesaw mechanism [108].

An intermediate scale also allows for a much more convincing form of gauge

coupling unification in SO(10) without the need for supersymmetry, an example

of which is shown in Figure 4.4. Notice that the gap between the SM U(1)Y and

the SU(2)L/R couplings at the intermediate scale gives an indication of the size of

threshold corrections required for such a unification.

SO(10) models usually have a grand unification scale of the order MGUT ≈
1016 GeV, somewhat higher than for SU(5), which can help to ensure a proton

lifetime estimate that is experimentally valid. The intermediate scale MR in non-

supersymmetric SO(10) models is usually quite distant from the GUT scale, unlike

their SUSY counterparts which often have intermediate scales that are much closer

to MGUT . This causes difficulties in generating neutrino masses of the correct order

[109]. This problem with SUSY SO(10) models can be addressed by additions to

the Higgs sector [34] or by invoking split supersymmetry [110].

It is instructive to investigate SO(10) by looking at two of its maximal subgroups;

firstly there is SU(5)× U(1), under which the spinor representation decomposes to

the SU(5) representation 5̄, 10 and a singlet,

16 = 5̄⊕ 10⊕ 1. (4.44)

Secondly, SO(10) can be spontaneously broken to a Pati-Salam (PS) subgroup

SU(4)C ⊗ SU(2)L ⊗ SU(2)R. PS models treat the SM as an effective field theory

of a left-right symmetric model that treats lepton number as a fourth colour [111].

The SM fields are embedded within the Q = (4, 2, 1) and Qc = (4̄, 1, 2) under

(SU(4)C , SU(2)L, SU(2)R),

Q =

(
u1 u2 u3 e−

d1 d2 d3 νe

)
, Qc =

(
uc1 uc2 uc3 e+

dc1 dc2 dc3 νce

)
. (4.45)

SO(10) differs from SU(5) GUT models in that there are a number of different

mechanisms to break SO(10) down to the SM. Figure 4.5 shows the myriad different

ways that the SO(10) group can be broken to the SM group [112]. Here we will
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Figure 4.5: Illustration of the various SO(10) breaking schemes, taken from [112].

discuss just one of these breaking schemes, that of [113]. In it SO(10) is broken

down to the PS group which in turn is broken to the SM group at an intermediate

scale MR. The breaking scheme is,

SO(10)
210−−→ PS

126,45−−−−→ SM
10−→ SU(3)C ⊗ U(1)Q, (4.46)

where the numbers above the arrows are the dimensions of the Higgs representations

that spontaneously break each symmetry. The 10 representation is responsible for

electroweak symmetry breaking, as it contains two scalars Hu = (1, 2, 1/2) and

Hd = (1, 2,−1/2) of the type found in Two Higgs Doublet Models. They have

different couplings to the SM fermions in such models, but if we wish to break

to the SM we require H∗u = Hd. However, if 10 is a real representation then

the VEVs of the two doublets are equal, which ultimately leads to the prediction

mt/mb = 1 [114]. This is well known to be incorrect. So we require a complex 10,

with some sort of symmetry that excludes couplings that involve 10∗. If we impose a

Peccei-Quinn (PQ) U(1)PQ symmetry [115] and give appropriate PQ charges to the

16, 10, 45 and 126 then the problem with the Higgs fields is solved. Not only that,

but the addition of a PQ symmetry can be used to solve the strong CP problem

and provides an axion dark matter candidate [116].

The most common breaking chains used in SUSY SO(10) models have SU(5)⊗



4.3. SO(10) Grand Unification 49

U(1) as an intermediate group. Unfortunately this is not a suitable candidate for

non-SUSY GUT model building as it would inherit the previously discussed prob-

lems of a non-supersymmetric SU(5) model, namely that the problems with gauge

coupling unification and the difficulties with experimental proton lifetime estimates

and quark-lepton mass relations. There are many examples of non-SUSY SO(10)

models that do not break to the PS group at an intermediate scale. A number of

these models, with either one or two intermediate mass scales, were investigated

in [117] for their ability to provide two-loop gauge coupling unification as well as

for their prospects in delivering a realistic mass spectrum. It found that a number

of models with a minimal Higgs sector were able to meet such criteria.
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In the following chapters we will investigate whether high scale boundary con-

ditions can be realised in a number of different extensions of the Standard Model,

specifically the Real Singlet, Complex Singlet and Two Higgs Doublet Models. In

each of these cases we will use a number of publically available tools and codes to

build each of our models and perform a numerical scan of their parameter spaces,

calculating each point’s mass spectrum and checking its validity under theoretical

constraints such as perturbativity and vacuum stability. We are also interested in

whether the points that pass the theoretical constraints are valid under the increas-

ingly tight experimental constraints that are relevant to extensions of the SM, such

as those from ATLAS and CMS or those from dark matter relic density measure-

ments from Planck and WMAP and direct detection constraints from LUX. Finally,

but most interestingly, we will investigate those points that survive for their validity

under the high scale β function constraints that are a hallmark of the Multiple Point

Principle and Asymptotic Safety.

In this chapter we will describe the general framework that we will use in our

investigation of high scale boundary conditions in SM extensions, beginning with

the calculation of the vertices, mass matrices, corrections and renormalisation group

equations that we will use to build a mass spectrum for each of our models.
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5.1 Building the Models Using SARAH and Flexible-

SUSY

The initial step in each of our analyses is to build the model in question. SARAH [17]

is a Mathematica package designed to facilitate the study of general extensions of

the SM, whether they be supersymmetric or non-supersymmetric in nature. The

derivation of the Lagrangian of the model is fully automated, requiring only its

fundamental properties as input. Specifically, SARAH requires definitions of the

model’s global and gauge symmetries, the field content and their properties such as

gauge quantum numbers, VEVs and mixings, as well as the model’s scalar potential.

From these basic properties the Lagrangian is derived, along with the vertices of the

fermion, boson and scalar interactions, the tadpole equations and their one-loop

corrections, mass matrices and the one-loop self energies of all particles. SARAH

can also calculate the renormalisation group equations up to the two-loop level using

generic formulae for both SUSY and non-SUSY models.

The output that SARAH produces can be used by a number of different tools,

many of which we will discuss in due course. The most important of these tools,

from the point of view of our analysis, is FlexibleSUSY [18–21], a Mathematica and

C++ tool that uses the SARAH model files to create a C++ spectrum generator

that numerically calculates the pole masses and couplings when given the input

parameters for a point in phase space. FlexibleSUSY takes SARAH output of the

tree-level mass matrices, electroweak symmetry breaking conditions, one-loop self

energies and corrections to the tadpole equations, as well as the two-loop renormali-

sation group equations, converts them to C++ code and creates a modular spectrum

generator that can be easily modified by the user. FlexibleSUSY can also incorpo-

rate some extra corrections that SARAH does not calculate, such as the two-loop

corrections to the Higgs masses.

We are particularly interested in the relationship between physics at high scales

such as MPl and low scale physics that can be probed by current experiments. The

spectrum generators that FlexibleSUSY builds allow us to probe this relationship

by iteratively running parameters up and down between scales. The user can define

boundary constraints at three different scales: the low scale MZ , the SUSY scale

MSUSY which is associated with the mass of SUSY particles, and a high scale such

as MGUT or MPl. These boundary constraints, along with the renormalisation

group equations, form a boundary value problem which the spectrum generator
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attempts to solve by finding the values of parameters that are consistent with all

of the constraints. FlexibleSUSY does this by integrating the RGEs to a given

scale using an adaptive Runge-Kutta algorithm and iterating this calculation until

the constraints are met and the parameters converge. During each iteration the

parameters are run to the low scale and the mass spectrum is calculated, any low

scale constraints are imposed and the parameters are run up to the high scale. High

scale constraints are applied, then parameters are run to the SUSY scale and the

SUSY scale constraints are imposed. At this point the EWSB conditions are solved

at the one loop level. This process is repeated until convergence is reached. At this

point the physical mass spectrum is calculated. The model input parameters can be

set at any of the defined scales, a function that we will use to set the quartic Higgs

couplings at the high scale.

5.2 Parameter Space Scan

The primary aim of this work is to investigate the possibility and consequences of

boundary conditions that are applied at the high scale of extensions of the SM. To

do that we will perform a number of scans of those models’ parameter space via

a toolchain that begins with the random generation of the model input parameter

space. Each point in the parameter space is defined by a set of input parameters

that include the parameters of the potential, the VEVs of the model, and additional

SM parameters such as the top pole mass mt and the strong coupling constant αS .

At this stage we can apply any constraints on the input parameters at the scale at

which the model is initiated, such as those that can arise from the Multiple Point

Principle, or vacuum stability conditions at MPl. We generate each point in the

parameter space as an SLHA input file [118] that details the input parameters as

well as the SM inputs and the FlexibleSUSY model settings.

5.2.1 Theoretical Constraints

Once the input parameter space is generated, we run each point through our spec-

trum generator. A number of checks on the theoretical constraints of the model are

performed at this point. First we determine whether the dimensionless couplings of

the model point remain perturbative up to the defined high scale. This amounts to

requiring that their value remains below
√

4π at all scales, which is checked when

the couplings are run to a new scale during each iteration. We calculate the mass
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spectrum for the points that have remained perturbative after we achieve conver-

gence of the couplings, and discard those that do not converge or do not remain

perturbative.

Next, we check whether the parameter point can meet the requirement of a SM-

like Higgs. To do this we look for scalars that have masses within the range 124.7 <

mh < 127.1 GeV. We use this more generous range rather than the experimental

bounds mh = 125.09 ± 0.23 GeV to account for any theoretical uncertainty in the

calculation of the mass spectrum and renormalisation group running of the model

couplings. Any points that cannot meet this requirement are discarded as they

cannot be reconciled with the experimental observation of the Higgs boson at the

ATLAS and CMS experiments.

We also require that the potential of the model remains bounded from below at

all scales up to the Planck scale. The specifics of the vacuum stability conditions

that a point needs to satisfy are model dependent, and we will detail them in the

the model-specific chapters that will follow. Whilst boundedness from below is a

necessary condition for a stable vacuum, it does not guarantee that the electroweak

symmetry breaking minimum of the effective potential is the global minimum. Ad-

ditional minima can have values of the effective potential that are lower than the

EWSB minimum, resulting in a metastable or unstable vacuum. We incorporate

Vevacious [119] into our analysis, which constructs the one-loop effective potential,

finds all of the extrema of the tree-level potential and uses them to begin minmising

the one-loop potential. If the calculation discovers that multiple minima exist, Veva-

cious calculates the tunneling lifetime between the lowest minimum and the EWSB

minimum at the one-loop level and determines whether the potential is metastable

or unstable.

5.2.2 Experimental Constraints

Once we have found the points in the parameter space that satisfy the theoretical

constraints of perturbativity, vacuum stability and the existence of an SM Higgs,

we continue by applying to these regions a variety of experimental constraints. Ar-

guably the most important restrictions on the Higgs sector of new physics models

come from collider experiments, so in our analysis we incorporate these constraints

using HiggsBounds [120] and HiggsSignals [121]. Higgsbounds compares the Higgs

sector of a model from 95% C.L exclusion limits from both neutral and charged

Higgs searches at LEP, the Tevatron and the LHC experiments. It requires as in-
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put the model’s scalar mass spectrum mhi , their total decay widths Γtot (hi), the

branching ratios BR (hi → . . .) and the SM normalised production cross sections

σ (hi) /σSM (hi) for all of the relevant production modes. HiggsBounds then out-

puts whether a parameter point is excluded at 95% C.L along with details on which

analyses were most sensitive for each of the Higgs bosons of the model. HiggsSig-

nals uses the same input to calculate a χ2 value that quantifies how compatible the

parameter point is with the SM Higgs production observed at the LHC.

If the scalar sector of the model has a possible dark matter candidate it is impor-

tant that we apply constriants from a number of different dark matter experiments.

We use micrOMEGAS to do this, a code that calculates the properties of a model’s

cold dark matter candidate. SARAH can output the model files that micrOMEGAS

requires for each parameter point, which include a description of the particle con-

tent, the parameters and the relevant vertices. The code uses CalcHEP [122] to

calculate the tree-level cross sections of the DM particle, which are then used to

determine the relic density, indirect detection rates and scattering cross sections for

direct detection experiments. In our analysis we compare the calculated value of

the relic density to the combined WMAP [123] and Planck [55] result,

Ωh2 = 0.1199± 0.0027. (5.1)

We usually require that valid points satisfy Ωh2 + 3σ to allow for the possibility

that the stated DM candidate is not the only field in the DM sector, and that there

exists some other, as yet unidentified, source of the relic density. We also apply

direct detection constraints from the LUX experiment [124] by calculating the DM

candidate’s spin-independent nucleon scattering cross section and excluding those

points with values larger than the mass-dependent constraints from LUX.

5.2.3 High Scale β Function Constraints

The final set of constraints that we apply to our data are restrictions on the value of

a model’s quartic Higgs coupling β functions at the Planck scale, which are a conse-

quence of both the Multiple Point Principle and the Asymptotic Safety scenario. We

are particularly interested in the scalar mass spectrum of parameter points that can

pass through such constraints. In general, we require that the quartic β functions

are zero at the Planck scale, but it is important to consider the uncertainties that

enter into their calculation and how those uncertainties factor into our determina-

tion of β (MPl) = 0. Figure 5.1 compares the size of the loop contributions that
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Figure 5.1: Comparison of the loop contributions that make up βλ of the Standard

Model (a) shows the one, two and three-loop contributions, whilst (b) focuses the

value of these terms around MPl. The green curve in (a) is obscured by the red

curve.

make up the β funtion of the quartic Higgs coupling in the SM, βλ. This example

shows that both the two and three loop terms are, as expected, smaller than the

one-loop term, and that β(3)
λ is much smaller than β(2)

λ .

Our analysis uses two-loop renormalisation group equations for the Real Singlet,

Complex Singlet and Two Higgs Doublet Models, so we could estimate the three-

loop contribution using β(3) (MPl) ≈ β(2) (MPl) × αS (MPl). We could then use

this as our zero estimation, however this constraint would be too restrictive and

would not account for the range of uncertainties that enter the calculation of all of

the model’s coupled RGEs as well as uncertainties in the UV dynamics and mass

spectrum. Therefore we will use a somewhat looser, but still very small, constraint

throughout our analyses, specifically we will use the difference between the one and

two-loop β function values as our zero condition. Points that provide β functions

with smaller values than this error will be considered valid.
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In Chapter 3 we investigated the possibility that the SM is a valid description of

physics up to very high energy scales, such as the Planck scale. We also considered

whether the intruiging high scale behaviours of the Higgs quartic coupling and its β

function can be explained by interpreting them as high scale boundary conditions of

some new physics that makes its presence felt atMPl. We found that it is somewhat

difficult for a pure Standard Model that has both λ (MPl) = 0 and βλ (MPl) = 0

to be simultaneously compatible with experimental constraints on the masses of the

Higgs and the top quark. The logical next step in our investigation is to extend the

SM by introducing new fields with the aim of building a model that satifies some

generalisation of the high scale conditions that we looked at in the SM case, but is

also compatible with all of the current experimental constraints. Not only do we

want a model that results in valid SM Higgs and top masses, but we also want to

find regions of parameter space that are compatible with other constraints, such as

those from colliders or direct and indirect dark matter detection experiments. We

are particularly interested to see if applying some or all of our high scale boundary

conditions can give us predictions for the allowed masses of the new scalars that are

introduced in our models.

The most sensible approach to investigating the possibility of high scale bound-

ary conditions in extensions of the SM is to begin with the minimal model. Specif-

ically, we add a real scalar field that is a singlet under the SM gauge symmetries.
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The real singlet model’s scalar Lagrangian contains both the SM Higgs doublet Φ

and the real scalar S [125],

L (φ, S) = (DµΦ)†DµΦ + ∂µS∂µS − V (Φ, S) . (6.1)

The most general, renormalisable scalar potential is,

V (Φ, S) = µ2Φ†Φ +m2
SS

2 + λ
(

Φ†Φ
)2

+ λSS
4 (6.2)

+k1Φ†ΦS + k2Φ†ΦS2 +
1

3
κS3.

This can be simplified by imposing a Z2 symmetry, under which the SM fields

are even and the new scalar is odd, to eliminate the cubic terms in Eq 6.2. During

electroweak symmetry breaking, the real singlet field can acquire a non-zero vacuum

expectation value (vev) vS alongside the SM Higgs vev v = 246 GeV. The scalar

fields are then given by,

Φ =

(
0

h1+v√
2

)
, S =

h2 + vS√
2

. (6.3)

Expanding around the minimum gives us the mass matrix,

M2 =

(
2λv2 k2vvS

k2vvS 2λSv
2
S

)
(6.4)

There are two possible phases of this model. We are in the Broken phase if vS 6= 0,

the scalars are allowed to mix and the mass eigenstates h, H are given at tree level

by,

m2
h = λv2 + λSv

2
S −

√(
λv2 − λSv2

S

)
+ (k2vvS)2 (6.5)

m2
H = λv2 + λSv

2
S +

√(
λv2 − λSv2

S

)
+ (k2vvS)2.

They are related to the gauge eigenstates ρ = (h1, h2) via a mixing matrix,(
h

H

)
= Rρ =

(
cosα − sinα

sinα cosα

)(
h1

h2

)
, (6.6)

where −π
2 ≤ α ≤ π

2 is the mixing angle. If vS = 0 then we are in the Dark Matter

(DM) phase, where no mixing is allowed and one of the two scalars is a possible

dark matter candidate.
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Broken Phase Input

λ (MPl) 0.0− 1.0

λS (MPl) 0.0− 1.0

k2 (MPl) −1.0− 1.0

vS 0.0− 2000 GeV

DM Phase Input

λ (MPl) 0.0− 1.0

λS (MPl) 0.0− 1.0

k2 (MPl) −1.0− 1.0

mS 0.0− 2000 GeV

Table 6.1: Input parameter ranges for the numerical analysis of the (left) Broken

phase and (right) the Dark Matter phase of the Real Singlet Model.

Clearly the addition of just one real scalar field is enough to significantly com-

plicate the potential, even if we employ the simplifying symmetries discussed previ-

ously. The potential is then described by 4 parameters. In the broken phase these

are,

λ, λS , k2, vS , (6.7)

while in the DM phase they are,

λ, λS , k2,mS . (6.8)

In the broken phase the bilinear terms µ2 and m2
S are fixed through the potential

minimisation conditions, known as the tadpole equations,

∂V

∂Φ
= µ2 +

λv2

2
+
k2v

2
S

2
= 0 (6.9)

∂V

∂S
= m2

S + 2λSv
2
S +

k2v
2

2
= 0, (6.10)

whereas in the DM phase only µ2 is fixed via its tadpole equation, since mS is an

input parameter.

6.1 Numerical Analysis and Constraints

We are interested in the effect of boundary conditions on the quartic potential

parameters on the real singlet model at the Planck scale MPl. Specifically, we

investigate some or all of the following conditions:

λ, λS , k2 = 0 (6.11)

βλ, βλS , βk2 = 0. (6.12)



60 Chapter 6. The Real Singlet Extension of the Standard Model

To investigate these scenarios we fix all of the quartic scalar couplings at MPl,

as well as low scale values of vS , defining a parameter space which we scan over.

For each point in this space we calculate the β functions at the two-loop level

using SARAH 4.12.2 [17] to investigate their evolution with energy. SARAH also

calculates the mass matrices, tadpole equations, vertices and loop corrections we

need to calculate mass spectra. We use FlexibleSUSY 2.0.1 [18–21] to build the

spectrum generator needed to get the mass spectrum for each point. The code

runs the potential parameters between MZ and MPl repeatedly until convergence

is reached and the various outputs and pole masses can be calculated. Table 6.1

shows the input parameter ranges for both phases of the model.

For our purposes, valid points in parameter space must result in a vacuum that is

bounded from below up toMPl. To that end we require that the potential couplings

satisfy the following conditions at all scales:

λ, λS ≥ 0 (6.13)√
λλS + k2 ≥ 0. (6.14)

We also require that all of the dimensionless couplings remain perturbative up to

MPl, which for the quartic potential couplings implies,

λ, λS , k2 ≤
√

4π. (6.15)

We further check for vacuum stability of our points using Vevacious [119] which

minimises the one-loop effective potential and checks that the electroweak symme-

try breaking minimum is the global minimum. Points are considered valid if the

associated vacuum is stable up to MPl. We also require that one of the two scalars

of the model is a valid SM Higgs candidate, with mass in the range 124.7 GeV

≤ mh,H ≤ 127.1 GeV. We allow for a wider range of Higgs masses than the experi-

mental uncertainty as an estimate of the theoretical uncertainty associated with the

calculation of the mass spectrum.

The constraints that we have outlined so far apply strong constraints which

invalidate much of the parameter space. In addition to these we also apply exper-

imental constraints from the LHC, LEP and Tevatron to investigate if parameter

points which pass through our theoretical constraints are also phenomenologically

viable. We employ HiggsBounds [120] and HiggsSignals [121] to do this, both of

which require the following as inputs:



6.1. Numerical Analysis and Constraints 61

mh,H , Γtotal (h) , Γtotal (H) , (6.16)

BR (h,H → SM) , BR (h→ HH) , BR (H → hh) ,
σ (h,H)

σSM (h,H)
,

i.e the masses of the two scalars, their total decay widths, their branching ratios to

SM fields, their branching ratios to each other and their production cross section

for all production modes, normalised with respect to the SM production rates eval-

uated using mh,H . We use sHDECAY [126–128] to calculate the total widths and

branching ratios for each of the parameter points that passes through our theoretical

constraints. The couplings of the scalars h(H) to the SM particles are modified with

respect to their equivalents in the SM by the mixing matrix element R11(R21). The

cross section ratios required by HiggsBounds/HiggsSignals are given by the square

of these suppressing matrix elements R2
11(R2

21). If the decay of the heavier scalar to

two light scalars, e.g H → hh, is kinematically allowed then it is given by [125],

ΓH→hh =
|gHhh|2
8πmH

√
1− 4m2

h

m2
H

, (6.17)

where the coupling gHhh associated with the H → hh decay is given by,

gHhh = − sinα

2vvS
(sinαv + cosαvS)

(
m2
h +

m2
H

2

)
. (6.18)

HiggsBounds calculates 95% exclusion limits for the decay of new scalar states using

analyses of LHC, LEP and Tevatron results. HiggsSignals calculates a χ2 statistic

which compares a paramater point to the observed SM Higgs production at the LHC,

which we use to exclude points that do not provide a valid SM Higgs candidate.

If we are in the DM phase we must also include constraints from the dark matter

relic density. To do this we use micrOMEGAS [129] to calculate the relic density for

our points and compare them to the combined WMAP [123] and Planck [55] result,

Ωh2 = 0.1199± 0.0027. (6.19)

We consider a point excluded if the calculated relic density is greater than Ωh2 + 3σ

so as to ensure that a DM candidate does not overclose the universe, but we allow

for the possibility that there may be some other contributions to the relic density

which we are not taking into account here.

We also consider dark matter direct detection constraints that place limits on the

spin independent cross section σSI of weakly interacting massive particles (WIMPs)
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on nucleons. The strongest of those constraints comes from the LUX experiment

[124]. We use micrOMEGAS again to calculate σSI for our points and exclude those

with a result larger than the limits from the LUX 2016 data.

6.2 The Broken Phase
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Figure 6.1: Compatible values of the Higgs quartic coupling λ (MPl) against βλ (MPl)

in the broken phase. (a) includes points that are stable and perturbative up toMPl

and include a SM Higgs candidate, whilst (b) also enforces all relevant experimental

constraints discussed in section 6.1. Blue points obey βλ,λS ,k2 < 1.0 at MPl whilst

red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.

Here we present the results of our numerical investigation of the broken phase

of the real singlet model. In this phase the two scalars are free to mix, and we

want one of the mass eigenstates to be a valid SM Higgs candidate whilst the other

scalar can be lighter or heavier than the SM Higgs. We apply both the theoretical

and experimental constraints discussed in section 6.1 to the results of our parameter

space scan. Our primary interest is the behaviour of the quartic Higgs couplings

and their β functions at the Planck scale and whether they are compatible with the

existence of high scale dynamics, such as the Multiple Point Principle or the Aysmp-

totic Safety scenarios that we discussed previously in the context of the Standard

Model in chapter 3. It is important, therefore, that we clarify what it means for

a β function to be zero at the Planck scale. We estimate the uncertainty in the

calculation of the β functions at MPl using the difference between the one and two

loop RGE calculations. We consider a β function to be zero if it is smaller than
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Figure 6.2: Compatible values of the Higgs quartic coupling λS (MPl) against

βλS (MPl) in the broken phase. (a) includes points that are stable and perturbative

up to MPl and include a SM Higgs candidate, whilst (b) also enforces all relevant

experimental constraints discussed in section 6.1. Blue points obey βλ,λS ,k2 < 1.0

at MPl whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.

this truncation error. In the case of the real singlet model these constraints are the

following,

βλ (MPl) < 0.0009 (6.20)

βλS (MPl) < 0.019

βk2 (MPl) < 0.0045.

Figures 6.1 to 6.3 show the relationship between the Planck scale values of the quartic

Higgs couplings λ, λS and k2 and their β functions in our parameter space scan

results. The plots on the left of each figure show those points that are compatible

with the theoretical constraints discussed in section 6.1, specifically the requirement

of perturbativity, a valid SM Higgs candidate, and a stable vacuum up to the Planck

scale, whilst the plots on the right also include the relevant experimental constraints.

The points that are compatible with all of the high scale boundary conditions of

Eq. 6.20 are highlighted in red. The results suggest that it is entirely possible to

find points that can accommodate our high scale boundary conditions and can also

survive the very stringent constraints that arise from experiment. These points also

exhibit very small values of the quartic couplings at MPl, which is consistent with
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Figure 6.3: Compatible values of the Higgs quartic coupling k2 (MPl) against

βk2 (MPl) in the broken phase. (a) includes points that are stable and perturbative

up to MPl and include a SM Higgs candidate, whilst (b) also enforces all relevant

experimental constraints discussed in section 6.1. Blue points obey βλ,λS ,k2 < 1.0

at MPl whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.

the asymptotic safety scenario’s requirement of an interacting UV fixed point in the

scalar sector.

Figures 6.4 to 6.6 show the range of allowed masses for the additional Higgs

mH against the Planck scale values of the quartic couplings. The vast majority

of the points that survive the high scale boundary conditions have an additional

scalar that is heavier than the SM Higgs, with a upper limit of mH ≈ 1000GeV.

Additionally, the experimental constraints place a lower limit on the heavy Higgs

mass of mH ≈ 200GeV. The results of our investigation of the broken phase of the

real singlet model suggest that a combination of our high scale boundary conditions

and the relevant experimental constraints limit the mass of the additional heavy

Higgs to a range of 200 . mH . 1000GeV.

6.3 The Dark Matter Phase

There is no mixing of the scalars in the Dark Matter phase of the real singlet model,

meaning that the non-SM Higgs becomes a potential dark matter candidate with

mass mDM . Figures 6.7 to 6.9 show the quartic Higgs couplings λ, λS and k2 and

their β functions, highlighting the points that can satisfy the high scale boundary

conditions of Eq. 6.20 on top of the theoretical and experimental constraints dis-
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Figure 6.4: Compatible values of the Higgs quartic coupling λ (MPl) against ad-

ditional Higgs mass mH in the broken phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also en-

forces all relevant experimental constraints discussed in section 6.1. Blue points obey

βλ,λS ,k2 < 1.0 atMPl whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045

at MPl.

cussed in section 6.1. As is the case in the broken phase, the valid points exhibit

very smal but non-zero values of the quartic couplings, which is in keeping with

the existence of an interacting fixed point at high scales that is a requirement of

the Asymptotic Safety scenario in the scalar sector. Figures 6.10 to 6.12 show the

possible dark matter candidate masses mDM against the various quartic couplings.

A small number of points survived all of our constraints with masses between the

SM Higgs mass and mDM ≈ 500GeV. However, it is interesting to consider the

possibility that new physics at or around the UV scale could alter the running of

the couplings by imposing threshold corrections that would affect our calculation of

the high scale boundary conditions we are using. Without knowing the exact nature

of the new UV physics, we cannot precisely determine these corrections, but what

we can do is estimate the implications of these threshold corrections by loosening

our boundary conditions by some amount, in our case by multiplying our current

values of Eq. 6.20 by ten. Figures 6.13 to 6.15 show that by relaxing our high scale

boundary conditions we open up the mass range for the DM candidate, allowing for

masses just below the SM Higgs mass up to around mDM ≈ 1000GeV.
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Figure 6.5: Compatible values of the Higgs quartic coupling λS (MPl) against ad-

ditional Higgs mass mH in the broken phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also en-

forces all relevant experimental constraints discussed in section 6.1. Blue points obey

βλ,λS ,k2 < 1.0 atMPl whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045

at MPl.

6.4 Conclusions

We have investigated the possibility of high scale boundary conditions on the Higgs

quartic couplings and their β functions in the Real Singlet Extension of the Standard

Model, which can arise due to UV scale dynamics such as the Multiple Point Prin-

ciple or Asymptotic Safety. Our analysis was agnostic as to which of these scenarios

is responsible for high scale conditions in the β functions of the quartic couplings,

and we focused on whether points that could satisfy those constraints were also

compatible with the theoretical constraints of perturbativity, vacuum stability and

the existence of a valid SM Higgs candidate, and with experimental constraints such

as those from colliders, the dark matter relic density, as well as results from dark

matter direct detection experiments. We investigated both the broken phase, in

which the two scalars of the model are allowed to mix, and the Dark Matter phase,

where the additional VEV is zero and one of the scalars is a potential dark matter

candidate.

Our results suggest that the boundary conditions can be realised in both the bro-

ken and DM phases of the model, even after all of the theoretical and experimental

constraints have been applied. In the broken phase we found that the valid region
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Figure 6.6: Compatible values of the Higgs quartic coupling k2 (MPl) against ad-

ditional Higgs mass mH in the broken phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also en-

forces all relevant experimental constraints discussed in section 6.1. Blue points obey

βλ,λS ,k2 < 1.0 atMPl whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045

at MPl.

of parameter space corresponded to masses of the additional heavy Higgs within

the range 200 . mH . 1000GeV. Also, the Planck scale quartic Higgs couplings of

valid points were found to be very small but non-zero, which is consistent with the

interacting UV fixed point that is a requirement of the Asymptotic Safety scenario.

In the DM phase we found a somewhat smaller number of points that survive the

strict limits placed upon the parameter space by our various constraints. Those

that we did find had DM candidate masses ranging from the SM Higgs mass to

mDM ≈ 500GeV. We loosened our high scale boundary conditions in an attempt

to estimate the effect of threshold corrections that would arise from unknown UV

physics, the result of which was an increase on our upper mass limit to around

mDM ≈ 1000GeV.

In chapter 3 we investigated the potential existence of high scale boundary con-

ditions in the SM, and in this chapter we took what we learned there and applied

it to its simplest possible extension. We have found that whilst the SM cannot

successfully satisfy high scale constraints in its scalar sector, the flexibility provided

by even the simplest BSM model allows it to realise the conditions that are indica-

tive of certain UV scale dynamics. In the following chapters we will continue these

efforts, investigating high scale boundary scenarios in the Complex Singlet Model
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Figure 6.7: Compatible values of the Higgs quartic coupling λ (MPl) against βλ (MPl)

in the DM phase. (a) includes points that are stable and perturbative up to MPl

and include a SM Higgs candidate, whilst (b) also enforces all relevant experimental

constraints discussed in section 6.1. Blue points obey βλ,λS ,k2 < 1.0 at MPl whilst

red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.

in chapter 7 and various Two Higgs Doublet Models in chapter 8.
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Figure 6.8: Compatible values of the Higgs quartic coupling λS (MPl) against

βλS (MPl) in the DM phase. (a) includes points that are stable and perturbative

up to MPl and include a SM Higgs candidate, whilst (b) also enforces all relevant

experimental constraints discussed in section 6.1. Blue points obey βλ,λS ,k2 < 1.0

at MPl whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.
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Figure 6.9: Compatible values of the Higgs quartic coupling k2 (MPl) against

βk2 (MPl) in the DM phase. (a) includes points that are stable and perturbative

up to MPl and include a SM Higgs candidate, whilst (b) also enforces all relevant

experimental constraints discussed in section 6.1. Blue points obey βλ,λS ,k2 < 1.0

at MPl whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.
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Figure 6.10: Compatible values of the Higgs quartic coupling λ (MPl) against Dark

Matter candidate mass mDM in the DM phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 6.1. Blue points

obey βλ,λS ,k2 < 1.0 at MPl whilst red points obey βλ < 0.0009, βλS < 0.019,

βk2 < 0.0045 at MPl.
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Figure 6.11: Compatible values of the Higgs quartic coupling λS (MPl) against Dark

Matter candidate mass mDM in the DM phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 6.1. Blue points

obey βλ,λS ,k2 < 1.0 at MPl whilst red points obey βλ < 0.0009, βλS < 0.019,

βk2 < 0.0045 at MPl.
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Figure 6.12: Compatible values of the Higgs quartic coupling k2 (MPl) against Dark

Matter candidate mass mDM in the DM phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 6.1. Blue points

obey βλ,λS ,k2 < 1.0 at MPl whilst red points obey βλ < 0.0009, βλS < 0.019,

βk2 < 0.0045 at MPl.
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Figure 6.13: Compatible values of the Higgs quartic coupling λ (MPl) against Dark

Matter candidate mass mDM in the DM phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 6.1. Blue points

obey βλ,λS ,k2 < 1.0 at MPl, green points obey βλ < 0.009, βλS < 0.19, βk2 < 0.045

at MPl, whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.
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Figure 6.14: Compatible values of the Higgs quartic coupling λS (MPl) against Dark

Matter candidate mass mDM in the DM phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 6.1. Blue points

obey βλ,λS ,k2 < 1.0 at MPl, green points obey βλ < 0.009, βλS < 0.19, βk2 < 0.045

at MPl, whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.
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Figure 6.15: Compatible values of the Higgs quartic coupling k2 (MPl) against Dark

Matter candidate mass mDM in the DM phase. (a) includes points that are stable

and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 6.1. Blue points

obey βλ,λS ,k2 < 1.0 at MPl, green points obey βλ < 0.009, βλS < 0.19, βk2 < 0.045

at MPl, whilst red points obey βλ < 0.0009, βλS < 0.019, βk2 < 0.0045 at MPl.
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We extend the SM to include a complex scalar field S = S1+iS2 which is a singlet

under the SM gauge group (for other recent investigations into the phenomenology of

this model see e.g [127,130,131]). The addition of S complicates the scalar potential

and the resulting phenomenology significantly. This model contains a Z2 symmetry

S2 → −S2 (equivalent to S→ S∗) which is a consequence of the breaking of a global

U(1) symmetry by soft terms a1 and b1. The potential reads [132],

V (H,S) =
µ2

2
H†H +

λ

4

(
H†H

)2
+
δ

2

(
H†H

)
|S|2 +

b2
2
|S|2 +

d2

4
|S|4 (7.1)

+

(
b1
4
S2 + a1S + c.c

)
.

This model is analogous to one with two real scalar fields S1 and S2 where the

potential reads,

V (H,S1, S2) =
µ2

2
H†H +

λ

4

(
H†H

)2
+
δ

2

(
H†H

) (
S2

1 + S2
2

)
(7.2)

+b+S
2
1 + b−S

2
2 +

d2

4

(
S4

1 + S4
2 + S2

1S
2
2

)
+ 2a1S1.

Here we simplify the billinear terms in 7.2 by defining b+ = 1
2 (b2 + b1) and b− =

1
2 (b2 − b1). Electroweak symmetry breaking occurs by expanding the Higgs and

complex singlet fields around the minima,
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H =
1√
2

(
G+

v + h+ iG0

)
, S =

1√
2

[vs1 + s1 + i (vs2 + s2)] (7.3)

where v is the VEV for the SM Higgs h, and vs1 , vs2 are the VEVs for the real and

imaginary parts of S respectively. The Z2 symmetry requires the soft parameters b1
and a1 to be real.

After electroweak symmetry breaking there are two phases in the model de-

scribed by 7.1. These phases are categorised by the VEVs of the complex singlet.

When vs2 = 0 we find ourselves in the dark matter phase, where mixing is allowed

between h and the real part of the complex singlet field s1, whilst the imaginary part

s2 is a dark matter candidate. We are in the broken phase of the model if vs2 6= 0,

and here all three field fluctuations can mix. The mass eigenstates H = (h1, h2, h3)

are related to the gauge eigenstates ρ = (h, s1, s2) by a 3x3 rotation matrix R,

Hi = Rijρj (7.4)

R =


c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

 (7.5)

where si ≡ sinαi, ci ≡ cosαi and |αi| ≤ π
2 . The couplings of each of the scalars in

the model, λi, to the SM particles is scaled with respect to the SM scalar couplings

λSM by an element in R e.g,

λi = Ri1λSM . (7.6)

The matrix R also diagonalises the mass matrix M2, resulting in the Higgs masses

mhi , i = 1, 2, 3:

RM2RT = diag (mh1 ,mh2 ,mh3) . (7.7)

In the broken phase, the tree-level mass matrix M takes the form,

M2
broken =


µ2

2 +
δv2s1

4 +
δv2s2

4 + 3λv2

4
δvvs1

2
δvvs2

2
δvvs1

2 b+ +
3d2v2s1

4 +
d2v2s2

4 + δv2

4
d2vs1vs2

4
δvvs2

2
d2vs1vs2

4 b− +
d2v2s1

4 +
3d2v2s2

4 + δv2

4


(7.8)

whereas in the DM phase where vs2 = 0 the mass matrix becomes,
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M2
DM =


µ2

2 +
δv2s1

4 + 3λv2

4
δvvs1

2 0
δvvs1

2 b+ +
3d2v2s1

4 + δv2

4 0

0 0 b− +
d2v2s1

4 + δv2

4

 . (7.9)

Since we are interested in the high scale behaviour of the parameters of this model,

particularly the Higgs quartic couplings, its advantageous to use the following as

input parameters. In the broken phase we use,

λ, d2, δ, vs1 , vs2 , a1, (7.10)

whilst in the DM phase we use,

λ, d2, δ, vs1 , b−, a1. (7.11)

The parameter space is continuous insofar as the DM phase is the limit of the

broken phase when vs2 → 0, so the difference in the input parameters arises due to

the way in which the spectrum generator that calculates the mass spectrum of each

phase is built. Specifically we solve the EWSB tadpole equations for different mass

parameters in each phase, and in the DM phase the mass term b− feeds directly into

the mass dark matter candidate’s tree-level mass. In other circumstances it may

make more sense to use the Higgs masses, VEVs and mixing angles as inputs. Its

also useful to allow the top pole mass mt and the strong coupling constant αs (MZ)

to vary as input parameters by ±3σ of their central values during our scans in order

to take into account their contribution to the uncertainty in our results.

To investigate the RGE evolution of the scalar quartic couplings we use the β

functions, as calculated at the two-loop level using SARAH. The gauge coupling β

functions in this model are identical to those in the SM, whilst the running of the

Yukawa couplings is only slightly modified at the two loop level from the SM case

but not to an extent that impacts this work.

7.1 Numerical Analysis and Constraints

The focus of this article is the behaviour of the Higgs quartic couplings of the

complex singlet potential 7.1 and their β functions at high scales, as well as the

phenomenology that results. We are particularly interested in the effects of some or

all of the following boundary conditions existing at MPl,
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Broken Phase Input

λ (MZ) 0− 0.5

d2 (MPl) 0− 0.5

δ (MPl) 0− 0.5

vs1 0− 2000 GeV

vs2 0− 2000 GeV

a1 −
(
108 − 0

)
GeV3

DM Phase Input

λ (MZ) 0− 0.5

d2 (MPl) 0− 0.5

δ (MPl) 0− 0.5

vs1 0− 2000 GeV

b− 0− 105 GeV2

a1 −
(
108 − 0

)
GeV3

Table 7.1: Input parameter ranges for the numerical analysis of the (left) broken

and (right) DM phases.

λ, δ, d2 = 0, (7.12)

βλ, βδ, βd2 = 0. (7.13)

To investigate the possibility of this behaviour we scan the parameter space of the

model and calculate the resulting mass spectrum, applying a number of phenomeno-

logical and experimental constraints to each point. The input parameter ranges are

detailed in Table 7.1. We use the Mathematica package SARAH [17] to calculate

the β functions at two loops for all of the model parameters. SARAH also calculates

all of the mass matrices, tadpole equations, vertices and loop corrections required

by spectrum generators to calculate the mass spectrum for a given point in param-

eter space. We use FlexibleSUSY [18], which builds a spectrum generator using

the SARAH output, takes the potential parameters as inputs at various scales and

outputs the mass spectrum. We scanned over a number of parameter points and

ran the potential parameters between MZ and the reduced Planck scale MPl.

Valid points must result in a vacuum that is bounded from below up to MPl.

To that end the potential parameters must satisfy three conditions at all scales,

λ > 0 (7.14)

d2 > 0

δ +
√
λd2 > 0.

We also require that all of the dimensionless couplings of our model remain pertur-

bative up to MPl. Specifically for the Higgs quartic couplings, perturbativity at all
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scales requires,

λ, δ, d2 <
√

4π. (7.15)

We check for stability of the vacuum using Vevacious [119] which minimises the

one-loop effective potential for each of our parameter space points and checks if the

EWSB minimum is the global minimum. We accept points that provide a stable

vacuum up toMPl. The mass spectrum of valid points must contain a SM-like Higgs

candidate with mass mhSM ≈ 126 GeV to explain the observed signals at the LHC.

Perturbativity of the couplings, vacuum stability and the existence of a SM Higgs

candidate are strong theoretical constraints on the parameter space of this model,

invalidating the vast majority of the points investigated by our numerical analysis.

Our primary focus here are points that are phenomenologically compatible with

current experimental constraints. Here we discuss those contraints, which we apply

to those points that are theoretically valid under the theoretical conditions that we

have just discussed.

Some of the strongest constraints on models that include extra scalars come from

colliders such as the LHC, LEP and the Tevatron. We use HiggsBounds [120] and

HiggsSignals [121] to apply these constraints. The basic input for both HiggsBounds

and HiggsSignals is,

mhi , Γtotal (hi) , BR (hi → SM) , BR (hi → hjhk) ,
σ (hi)

σSM (hi)
(7.16)

i.e the scalar masses, their total decay widths, their branching ratios to SM particles

and other scalars, and their production cross sections for all production modes,

normalised to the SM production cross sections evaluated atmhi . We use sHDECAY

[126, 128, 133] to calculate the branching ratios and total decay widths for each of

our parameter space points. These inputs are used to calculate signal strengths that

can be compared to the experimental analyses from colliders to apply 95% exclusion

limits to our points. Since the couplings of the scalars in this model hi to the SM

particles are supressed with respect to the SM Higgs couplings by a factor Ri1, the

signal strength is reduced to,

µi = R2
i1

R2
i1Γ (hSM → SM)

R2
i1Γ (hSM → SM) +

∑
Γ (hi → hjhk)

(7.17)

which reduces further to R2
i1 when decays to new scalars are forbidden. The relevant

decay widths to new scalars are [127],
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Γ (hi → hjhj) =
g2
ijj

32πmi

√
1−

4m2
j

m2
i

(7.18)

Γ (hi → hjhk) =
g2
ijk

16πmi

√
1− (mj +mk)2

m2
i

√
1− (mj −mk)2

m2
i

(7.19)

where gijj and gijk are coupling strengths between the new scalars. The version of

HiggsBounds used in this work (4.3.1) only includes exclusion limits from collider

searches for decays to identical new scalars hi → hjhj (A beta version of Higgs-

Bounds 5 is now available which does support decays to different scalars, however

there are currently no experimental results available for such signatures. We also

note that HiggsBounds 4.3.1 and HiggsSignals 1.4.0 only include LHC Run-I data).

For recent work on di-Higgs production with different masses see [134]. HiggsSignals

uses the same input as HiggsBounds to calculate a χ2 value which gives a quantita-

tively measure of a SM Higgs candidate’s compatability with the signals observed

at the LHC.

The Dark Matter phase of the complex singlet model includes a scalar dark

matter candidate. In our numerical analysis of this case we calculate the relic density

for the DM candidate of each of our parameter points using micrOMEGAS [129]

and compare the results to the combined WMAP [123] and Planck [55] experimental

results,

Ωh2 = 0.1199± 0.0027. (7.20)

We exclude points with results greater than Ωh2 + 3σ, allowing for the possibility

that the scalar is not the only contribution to the dark matter relic density but

ensuring that our DM candidate does not overclose the universe.

Another constraint on a potential dark matter candidate comes from direct de-

tection experiments that place limits on the spin independent scattering cross section

σSI of weakly interacting massive particles (WIMPs) off nucleons. The strongest

constraints on WIMP dark matter from direct detection currently come from the

LUX experiment [124] and are dependent on the mass of the DM candidate. The

cross-section for a WIMP dark matter candidate off a proton can be calculated

using [135],
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σSI =
m4
p

2π (mp +mhDM )2

δ
(
b1 −m2

hDM

)
2m2

h1
m2
h2

2 ∑
i=u,d,s

fpi +
2

27
(3fG)

2

(7.21)

where mp is the proton mass, mhDM is the DM candidate mass, mhi are the remain-

ing two Higgs masses, and fpi, fG are proton matrix elements [136]. In this work

we use micrOMEGAS to calculate σSI off protons for each of our parameter points

and exclude those that result in a σSI larger than the relevant limit from the 2016

LUX data.

7.2 The Broken Phase

We now present results of our numerical analyses of the broken phase, in which

all three neutral scalars mix, applying the theoretical and experimental constraints

described in section 7.1. In this phase we call the SM-like Higgs mhSM , whilst the

remaining two scalars are identified as mhLight
and mhHeavy

, with mhLight
< mhHeavy

.

(Note that hLight may still be heavier than the SM-like Higgs, and correspondingly

hHeavy may be lighter.)

In figure 7.1 we see 1σ (green) and 3σ (yellow) regions in the mhSM −mt plane

of the broken phase that satisfy both boundary conditions λ (MPl) = βλ (MPl) = 0

for different values of vs1 and vs2 . The soft bilinear term a1 and the complex

singlet quartic coupling d2 are kept fixed, whilst each line corresponds to a different

high scale value of the Higgs portal coupling δ. We see it is possible to satisfy the

experimental constraints on the masses of both the top and the SM-like Higgs whilst

meeting both high scale boundary conditions.

This compatibility is possible for a relatively large range of extra scalar masses.

In Figure 7.3 we show light (a) and heavy (b) scalar masses resulting from a scan

of parameters and their corresponding high scale values of λ and βλ, once the the-

oretical and experimental constraints have been applied. We allowed d2 and δ (at

MZ) to vary between 0–0.5, the vevs vs1 and vs2 between 0-2TeV and a1 between

−(464 GeV)3 and zero. λ(MZ) takes values between 0.2 and 0.43, potentially dif-

fering from the SM central value due to variation in the top mass, αs, and the new

states (Figure 7.2 shows the valid ranges of αs (MZ) and mt from our numerical

analyses). Here we are interested in the points with λ = βλ = 0 at the Planck scale,

so those in dark blue to the left of the plots. For clarity of the plots we restrict them
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to only show scenarios for which βλ(MPl), βδ(MPl), βd2(MPl) ≤ 0.05, but note that

very few points exceed this value.

Before proceeding we should clarify what we really mean by a parameter, such as

λ or βλ, being zero atMPl. At first glance one might expect that we should set these

parameters to be exactly zero at the Planck scale. However, we must acknowledge

that the relation between these parameters and our calculated low scale masses is

necessarily perturbative. Therefore we should not restrict ourselves to keeping these

parameters exactly zero but allow small values consistent with our uncertainty.

To provide an estimate on the uncertainty in our RGE evolution, we consider

the difference between high scale parameters derived from the one-loop and two-loop

Higgs quartic coupling RGEs (fixed at the low scale) and consider our parameters

to be “zero” if they are smaller than this amount. For λ this allows relatively large

values of up to 0.067, while for βλ we have a much tighter constraint of

βλ . 0.00005, (7.22)

so only the very darkest points of Figure 7.3 satisfy βλ = 0. One should not confuse

this allowance with the uncertainty in λ or βλ due to the top quark mass or αs,

which are already taken into account when applying low energy constraints.

We note that Figure 7.3 contains a significant number of scenarios where the

lightest extra scalar is considerably lighter than the SM Higgs boson. Since the

model only couples the new scalars to the SM Higgs doublet, these scenarios escape

detection at the LHC if the mixing with the SM Higgs is very small. The relevant

quantity is the mixing matrix element R2
11, which we show in Fig. 7.4, demonstrating

that the lightest scalar is indeed very decoupled in these scenarios.

We are in principle also interested in the high scale constraints d2 = βd2 = 0

and/or δ = βδ = 0. However, we note that setting δ to zero at MPl decouples the

extra scalars from the SM altogether, and since βδ = 0 for this choice, δ remains

zero at all scales and the new scalars are unobservable. However, as argued above,

it is not unreasonable to consider δ small at the Planck scale, which is anyway phe-

nomenologically necessary to keep the observed Higgs “SM-like”. For non-zero values

of δ, it is also not possible to set d2 exactly to zero at MPl since it is immediately

driven negative by RG running and the vacuum destabilises according to Eq 7.14.

Again, we are forced to only consider d2 small at the Planck scale and posit some

new physics that causes this small deviation.

In Figure 7.5 we show the space of allowed d2 and δ and their high scale β

functions. As before, for clarity we exclude parameter points with β functions
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larger than 0.05 at MPl. As for βλ, the vast majority of the valid points have βδ
lower than this cutoff, but we note that βd2 was able to be somewhat higher than

0.05.

As one might expect, small values of the quartic couplings correspond with small

values of their respective β functions. It is also interesting to note that there exist

valid scenarios that simultaneously have small values of both λ, δ, d2 and βλ,δ,d2 at

the Planck scale. These results make it clear that it is possible to have a phenomeno-

logically valid mass spectrum in the broken phase that is compatible with both the

theoretical and experimental constraints whilst also allowing for the boundary con-

ditions λ = βλ = 0 to be at least approximately met.

In Figure 7.6 we demonstrate the different scalar mass hierarchies in the

mhLight −mhHeavy plane, for small values of λ and βλ at the high scale. The grey

bands for the SM Higgs mass cut the space into regions that have either two ad-

ditional Higgs masses that are less than mhSM (bottom-left quadrant), one less

than mhSM and one heavier (top-left), or two heavier additional scalars (top-right).

The effect of the experimental constraints described in Section 7.1 can be seen by

comparing Figures 7.6(a) and 7.6(b). In Figure 7.6(a) we apply only theoretical con-

straints (such as vacuum stability), while in 7.6(b) we also apply the experimental

bounds. Irrespectively, the majority of valid points fall into the top-left or top-right

quadrants. The blue points respect only the (unrestrictive) bound βλ < 0.05, while

red points have βλ < 0.00005 and are therefore consistent with zero. The smaller

cutoff excludes all of the points with two scalars lighter than mhSM and most of the

points where the SM Higgs is the lightest of the three. Indeed, the lighter additional

scalar mass never exceeds about 260GeV when the more restrictive cutoff is used.

The heavier scalar never falls below ∼ 140GeV and never exceeds ∼ 800GeV.

Using the difference between one- and two-loop running to estimate what con-

stitutes “small” for the β-functions of δ and d2, we find the constraints,

βδ (MPl) . 0.00025,

βd2 (MPl) . 0.001. (7.23)

No broken-phase parameter points survive if we include all three of the tightest

β-function constraints simultaneously in addition to the experimental constraints,

indicating that strictly enforcing all of these constraints is incompatible with exper-

iment. However, if the boundary conditions are imposed by some new UV theory

or principle, it may be that new physics exists at or around MPl that distorts the



82 Chapter 7. The Complex Singlet Extension of the Standard Model

running of the quartics as we approach. Without knowing the form of this UV

completion, we don’t know the size of these threshold corrections, so don’t know

how much deviation from zero we should allow in our boundary conditions. With

this in mind we may regard these constraints as too conservative. To investigate

their loosening, we somewhat arbitrarily relax our boundary condition cut-offs to

ten times our previous β function constraints. We now find the points that survive

and plot these in figure 7.7. Notice that this also loosens the constraint on βλ (MPl)

used in figure 7.6 and now a small number of points survive that have the SM Higgs

as the heaviest of the three scalars.

7.3 The Dark Matter Phase

In the dark matter phase only two of the three scalars are allowed to mix, with the

third becoming a dark matter candidate. We call the non-SM-like Higgs as hNew

whilst the DM scalar is hDM . Figure 7.8 shows high scale λ vs. either mhNew or

mhDM , including theoretical and experimental constraints, as well as each point’s

corresponding value of βλ (MPl). Figure 7.9 shows the valid ranges of d2 and δ as

well as their respective β-functions at MPl. These figures are analogous to Figures

7.3 and 7.5, and again for clarity we are restricting the β-functions at MPl to be

smaller than 0.05.

In contrast to the broken phase, most of the valid points have a additional Higgs

mhNew
greater than the SM Higgs mass, illustrated by the grey horizontal band,

with the majority of those points falling into a range between around mhSM and

approximately 500GeV. It’s interesting to note that the points that do result in

mhNew < mhSM have smaller values of λ (MPl) . 0.1. As was the case in the broken

phase, smaller values of the quartic couplings correspond to smaller β functions.

The dark matter candidate mass mhDM has a lower limit of about 40GeV, as can be

seen in Figure 7.8(b), which is in keeping with the results of [130]. Here, however,

we point out that points at this low end of the mass range also have small values of

both βλ (MPl) and βδ (MPl).

Figure 7.10 examines the extra scalar masses when we restrict λ and βλ to be

consistent with zero. Again, for comparison, we show points with a very unrestrictive

βλ < 0.05 is blue before demonstrating the effect of the constraint βλ < 0.00005

in red. No points with mhNew < mhSM survive the stronger constraint on βλ, and

the majority of the points that do survive have almost degenerate masses of mhNew
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and mhDM . The tree level masses of mhNew (mhDM ) have a linear dependence

on a1 (b−) which appears to dominate when both of the additional scalars are

heavier than the SM Higgs. This degeneracy is visible in the parameter space where

only theoretical constraints are applied but is much more pronounced when the

experimental constraints are also in place, where much of the parameter space is

ruled out primarily via the WMAP and Planck relic density constraint. There is a

lower limit mhNew & 130GeV if we include only the theoretical constraints, which

rises to & 160GeV if we include experimental constraints. This lower limit in mhNew

is similar to the lower limit on mhHeavy in the broken phase that we discussed in

Section 7.2.

Looking at figure 7.10 might suggest that small values of the β functions at

the Planck scale correlates with a small mass difference ∆m = |mhNew − mhDM |.
However, while 80% of the points that pass through the constraint λ < 0.067, βλ <

0.00005 (red points) result in ∆m < 40 GeV, so do 67% of the (blue) points that

don’t. This tendency towards degeneracy is a feature of all of the points that satisfy

the theoretical constraints outlined in section 7.1. These points exhibit small values

of the soft U(1) breaking parameters a1 and b1, forcing a small ∆m [127]. It is

interesting to note that many points in the degenerate mass region can completely

account for the dark matter relic density, as shown in figure 7.11. The degeneracy

opens up co-annihilation channels involving both mhDM and mhNew that enter the

relic density calculation [137, 138]. These new channels help bring down the relic

density to within the 3σ range.

As in the broken phase, no DM phase points survive when we strictly apply our

β function constraints simultaneously with the experimental constraints. However,

we see scenarios survive if we relax the constraints by a factor of 10. These scenarios

are shown in Figure 7.12.

7.4 Conclusions

We have examined the Complex Singlet extension of the Standard Model with ad-

ditional constraints on the model’s quartic couplings at the Planck scale. These

boundary conditions may arise due to high scale requirements of the potential in

the Multiple Point Principle, or the evolution towards a UV fixed point, as in the

Asymptotic Freedom or Asymptotic Safety scenarios. Here we have not focused

on the precise mechanism by which these conditions may have arisen, but examine
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the boundary conditions themselves to see if they are compatible with theoretical

constraints and experimental observations.

The model exhibits multiple phases, including a “broken” phase, in which both

real and imaginary parts of the extra singlet gain a vev and the three scalars all

mix; and the “Dark Matter” phase, in which only the real part of the extra singlet

gains a vev, only two scalars mix and the remaining scalar provides a stable dark

matter candidate.

We investigate a wide range of parameter space in both phases, rejecting pa-

rameter choices that do not provide a SM-like Higgs with mass ≈ 125 GeV. We also

apply theoretical constraints, such as vacuum stability and perturbativity up to the

Planck scale MPl, and further experimental constraints such as Higgs production

and decay rates, and where appropriate constraints on the Dark Matter relic density.

We then examine the Planck scale values of the Higgs quartic couplings and their

corresponding β functions.

The addition of the complex singlet gives considerable flexibility for imposition

of the boundary conditions λ = βλ = 0 at the Planck Scale. Indeed, we find

regions of parameter space in both the broken and DM phases where this boundary

condition is realised while maintaining compatibility with current theoretical and

experimental constraints. Scenarios with all quartic couplings, including that of the

additional scalar and the Higgs portal interaction, exactly zero are not possible since

the Higgs portal never regenerates with RGE running once it is set to zero at MPl.

However, if some new physics theory at the high scale makes it simply very small,

then compatibility with all low energy observations can be restored.

In the broken phase we found that the majority of valid scenarios have one

additional Higgs that is lighter than the SM Higgs and one that is heavier. In

contrast, in the DM phase most scenarios have additional scalars that are heavier

than the SM-like Higgs and degenerate with one another. These scalars are all rather

decoupled and difficult to detect, but could possibly be investigated at the high

luminosity run of the LHC or at future colliders [139]. Imposing λ = βλ = 0 requires

the heaviest additional scalar in the broken phase to be lighter than about 600GeV,

with a lower upper limit of ∼ 500GeV in the DM phase. These results are in keeping

with previous work on vacuum stability in the complex singlet model [130].
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Figure 7.1: Points in the mhSM − mt plane that satisfy λ (MPl) = βλ (MPl) = 0

for δ (MPl) = 0.1, 0.08, 0.05, 0.01 with (a) vs1 = vs2 = 1 TeV (b) 1.5 TeV (c) 2

TeV and (d) 5 TeV. The green (yellow) region corresponds to ±1 (3)σ uncertainty

in αs (MZ) = 0.1181 ± 0.0013, whilst the ellipses show the experimentally allowed

values of mt and mhSM at 1σ (dark grey) and 3σ (light grey) uncertainty.
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Figure 7.2: Values of αS (MZ) and mt in the broken phase. Parameter points are

stable and perturbative up to MPl and include a SM Higgs candidate. All points

obey λ < 0.067 at MPl. Blue points obey βλ < 0.05 at MPl while red points obey

the more restrictive condition βλ < 0.00005.
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Figure 7.3: Higgs quartic coupling λ (MPl) and βλ (MPl) compared to the

light additional Higgs mass mhLight
or the heavy additional Higgs mass mhHeavy

.

Parameter points pass the theoretical and experimental constraints of Sec-

tion 7.1. The grey band shows the SM Higgs mass range. Only points with

βλ(MPl), βδ(MPl), βd2(MPl) ≤ 0.05 are shown.
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11. All points shown pass the theoretical and ex-

perimental constraints of Section 7.1. The grey band highlights the SM Higgs mass

range. Only points with βλ(MPl), βδ(MPl), βd2(MPl) ≤ 0.05 are shown.
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Figure 7.5: High scale Higgs quartic couplings d2 and δ with their β-functions.

Parameter points pass the theoretical and experimental constraints of Section 7.1.
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Figure 7.6: Compatible values of mhLight and mhHeavy in the broken phase for differ-

ent high scale βλ constraints. (a) includes points that are stable and perturbative

up to MPl and include a SM Higgs candidate, whilst (b) also enforces all experi-

mental constraints. All points obey λ < 0.067 at MPl. Blue points obey βλ < 0.05

at MPl while red points obey the more restrictive condition βλ < 0.00005. The grey

bands highlight the SM Higgs mass range.
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Figure 7.7: Compatible values of mhLight and mhHeavy in the broken phase with re-

strictions on βλ, βδ and βd2 . (a) includes points that are stable and perturbative up

to MPl and include a SM Higgs candidate, whilst (b) also enforces all experimental

constraints. All points obey λ < 0.067 at MPl. Blue points obey βλ,δ,d2 < 0.05 at

MPl while red points obey βλ < 0.0005, βδ < 0.0025 and βd2 < 0.01. The grey

bands highlight the SM Higgs mass range.
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Figure 7.8: High scale Higgs quartic coupling λ vs. the additional Higgs mass mhNew

or the DM scalar mass mhDM , with values of βλ. Parameter points pass the theoret-

ical and experimental constraints of Section 7.1, including dark matter relic density

and direct detection constraints. The grey band shows the SM Higgs mass range.
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Figure 7.9: High scale Higgs quartic couplings d2 and δ with their corresponding β-

functions, in the DM phase. Parameter points pass the theoretical and experimental

constraints of Section 7.1, including dark matter relic density and direct detection

constraints.
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Figure 7.10: Compatible values of mhNew and mhDM in the DM phase for different

high scale βλ constraints. (a) includes points that are stable and perturbative up

to MPl and include a SM Higgs candidate, whilst (b) also enforces all experimental

constraints. All points obey λ < 0.067 at MPl. Blue points obey βλ < 0.05 at MPl

while red points obey the more restrictive condition βλ < 0.00005. The grey bands

highlight the SM Higgs mass range.
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Figure 7.11: Comparison of dark matter relic density Ωh2 in the mhNew − mhDM

plane. Blue points result in Ωh2 < 0.128 whilst the red points satisfy the stronger

constraint 0.1118 < Ωh2 < 0.128. (a) includes points that are stable and pertur-

bative up to MPl and include a SM Higgs candidate, whilst (b) also enforces all

experimental constraints. The grey band highlights the SM Higgs mass range.
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Figure 7.12: Compatible values of mhNew and mhDM in the DM phase with restric-

tions on βλ, βδ and βd2 . (a) includes points that are stable and perturbative up to

MPl and include a SM Higgs candidate, whilst (b) also enforces all experimental

constraints. All points obey λ < 0.067 at MPl. Blue points obey βλ,δ,d2 < 0.05 at

MPl while red points obey βλ < 0.0005, βδ < 0.0025 and βd2 < 0.01. The grey

bands highlight the SM Higgs mass range.
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Another simple way to extend the SM is to add a second Higgs doublet. Su-

persymmetry is the most common motivation for this addition, but SUSY mod-

els often require a fine tuning of parameters or non minimal field content to

get a Higgs mass that is compatible with the combined ATLAS and CMS result

mh = 125.09±0.23GeV [8,15,16]. Non-supersymmetric Two Higgs Doublet Models

(THDMs) must account for the seemingly very SM-like nature of the Higgs [8,52–54]

and must evade strong experimental bounds on its interactions.

The aim of this chapter is to consider whether the Two Higgs Doublet Model

(THDM) can exhibit behaviour that is compatible with both the existence of bound-

ary conditions at the Planck scale and curent theoretical and experimental con-

straints. We will focus on two varieties of the Two Higgs Doublet Model; the Type-II

THDM and the Inert Doublet Model (IDM). The addition of a second scalar dou-

blet complicates the resulting scalar spectrum and new scalar sector interactions

can alter the high scale behaviour of the scalar potential.

Here we investigate the parameter space of both the Type-II THDM and the

IDM, looking for regions that can satisfy the theoretical constraints of pertubativ-

ity, vacuum stability, and the existence of a SM Higgs candidate, as well as the
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experimental constraints that come from collider and dark matter experiments. We

also look at the high scale behaviour and RGE running of the scalar quartic cou-

plings of both models to determine if they are compatible with high scale boundary

conditions and whether there are any associated consequences at low energies.

8.1 The Two Higgs Doublet Model

We will investigate the Two Higgs Doublet (THDM), specifically the effects of high

scale boundary conditions on its phenomenological viability at low energies. We

begin by considering the most general potential of the THDM

V (H1, H2) = m2
11H

†
1H1 +m2

22H
†
2H2 −

(
m2

12H
†
1H2 + h.c

)
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where

Hn =

(
χ+
n(

H0
n + iA0

n

)
/
√

2

)
, n = 1, 2 (8.2)

The parametersm2
11, m2

22 and λ1,2,3,4 are real, whilstm2
12 and λ5,6,7 can in princ-

ple be complex and induce CP violation. During electroweak symmetry breaking

the neutral components of the Higgs fields H0
n develop vacuum expectation values

〈Hn〉 = vn/
√

2. The relationship to the SM vev v =
√
v2

1 + v2
2 = 246 GeV is de-

termined by the Fermi constant but the ratio of the vevs, tanβ = v2/v1, is a free

parameter. The physical scalar sector of the model includes two neutral scalar Higgs

h and H, a pseudoscalar Higgs A and the charged Higgs H±.

Its clear that the THDM potential is considerably more complicated than its

Standard Model counterpart, so it is common to employ additional global symme-

tries to increase the predictivity of the model. One particularly interesting feature

of the THDM scalar potential is that there are only six possible types of global

symmetry that have a distinctive effect on the potential [140, 141]. Table 8.1 de-

scribes each of these symmetries as well as the associated values of the potential

parameters. In this work we implement a Z2 symmetry to forbid Flavour Chang-

ing Neutral Currents (FCNCs) by allowing only one type of fermion to couple to
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Symmetry m2
11 m2

22 m2
12 λ1 λ2 λ3 λ4 λ5 λ6 λ7

U(2) m2
11 0 λ1 λ1 − λ3 0 0 0

CP3 m2
11 0 λ1 λ1 − λ3 − λ4 0 0

CP2 m2
11 0 λ1 −λ6

U(1) 0 0 0 0

Z2 0 0 0

CP1 real real real real

Table 8.1: The six possible symmetries of the scalar potential of the THDM and the

corresponding relations between parameters in Eq 8.2.

u quarks d quarks leptons

Type-I H2 H2 H2

Type-II H2 H1 H1

Lepton-specific H2 H2 H1

Flipped H1 H1 H2

Table 8.2: Possible Yukawa assignments in the Z2 symmetric THDM.

one Higgs doublet, however we allow the soft Z2-breaking term m12 to be real and

non-zero. There are four distinct CP conserving scenarios, summarised in table 8.2,

that arise from different Z2 charge assignments. In this work we will focus on the

Type-II case.

For each parameter point the model is described by the bilinear terms m11 and

m22, which are fixed via the electroweak vacuum minimisation conditions, as well

as the input parameters,

m12, tanβ, λ1 (MPl) , λ2 (MPl) , λ3 (MPl) , λ4 (MPl) , λ5 (MPl) . (8.3)

We also use the top pole massmt and the strong coupling constant αS(MZ) as input

parameters, allowing them to vary between ±3σ of their central values to account

for the effect of their uncertainty on our results. Since we are interested in both

the high and low scale behaviour of the potential parameters of the THDM we use

SARAH [17] to calculate the two-loop β functions, which are used by FlexibleSUSY

[18–21] to run the couplings between MZ and MPl.
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8.2 The Inert Doublet Model

We can simplify the Two Higgs Doublet Model further by introducing an additional

unbroken Z2 symmetry, under which the new Higgs Doublet has odd parity whilst

all other fields have even parity. The scalar sector now consists of the SM Higgs

field H and an inert doublet Φ, where Yukawa couplings between the fermions and

the inert field are forbidden by the new symmetry. The inert doublet does not gain

a vacuum expectation value. The scalar potential is,

V (H,Φ) = m2
11H

†H +m2
22Φ†Φ + λ1

(
H†H

)2
+ λ2

(
Φ†Φ

)2
(8.4)

+λ3

(
H†H

)(
Φ†Φ

)
+ λ4

(
H†Φ

)(
Φ†H

)
+

(
λ5

2

(
H†Φ

)2
+ h.c

)
.

Once again the quartic coupling can have complex values, but in this work we will fo-

cus on the real-valued case. During electroweak symmetry breaking the neutral com-

ponent of the SM Higgs doublet acquires a vacuum expectation value v ≈ 246GeV.

In the Inert doublet case the neutral Higgs h corresponds to the SM Higgs boson

whilst H, A and H± are inert scalars. The lightest of these hLOP (Lightest Odd

Particle) is stable thanks to the Z2 symmetry and, assuming hLOP is one of the

neutral scalars H or A, it is a potential Dark Matter (DM) candidate.

The tree-level masses for the scalars are given by [142],

m2
h = m2

11 + 3λ1v
2 (8.5)

m2
H = m2

22 +
1

2
(λ3 + λ4 + λ5) v2

m2
A = m2

22 +
1

2
(λ3 + λ4 − λ5) v2

m2
H± = m2

22 +
1

2
λ3v

2.

In this model we fix the mass term associated with the SM Higgs doubletm2
11 via the

electroweak minimisation conditions. Each point is then described by the remaining

input parameters,

m22, λ1 (MPl) , λ2 (MPl) , λ3 (MPl) , λ4 (MPl) , λ5 (MPl) . (8.6)

As in the Type-II model, we use SARAH and FlexibleSUSY to calculate the mass

spectrum and to run couplings between the low and high scales of interest.
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Type-II Model Input

λ1,2 (MPl) 0.0− 1.0

λ3,4 (MPl) −1.0− 1.0

λ5,6,7 (MPl) 0.0

m12 0.0− 2000 GeV

tanβ 2.0− 50

Inert Model Input

λ1,2 (MPl) 0.0− 1.0

λ3,4 (MPl) −1.0− 1.0

λ5 (MPl) 0.0

m22 0.0− 2000 GeV

Table 8.3: Input parameter ranges for the numerical analysis of the (left) Type-II

Two Higgs Doublet Model and (right) Inert Doublet Model.

8.3 Numerical Analysis and Constraints

The main focus of this work is the possibility and consequences of boundary condi-

tions on all or some of the quartic couplings of the THDM and the IDM and their

β functions at the Planck scale,

λi (MPl) , βλi (MPl) = 0, i = 1 . . . 5. (8.7)

We use SARAH 4.12.2 [17] to calculate all of the model parameters, including mass

matrices, tadpole equations, vertices and loop corrections, as well as the two-loop β

functions for each model. FlexibleSUSY 2.0.1 [18–21] uses this output to calculate

the mass spectrum and to run the couplings between MZ and The Planck scale.

Table 8.3 shows the input parameter ranges used in our scans for both the Type-II

and Inert models.

Valid points in our parameter space scan must be perturbative up to the Planck

scale. For the Higgs quartic couplings this requires them to satisfy λi <
√

4π up to

MPl. We require points that are bounded from below at all scales up to MPl. To

that end we check if the boundedness conditions [143]

λ1 > 0, (8.8)

λ2 > 0,

λ3 > −2
√
λ1λ2

λ3 + λ4 − |λ5| > −2
√
λ1λ2

are met at all scales. We also use Vevacious [119] to check if the EWSB mini-

mum is the global minimum. Additionally, we require valid points to provide a SM



98 Chapter 8. The Two Higgs Doublet Model

Higgs candidate 124.7 ≤ mh ≤ 127.1GeV. This mass range accounts for both the

theoretical and experimental uncertainties in the Higgs mass.

Our aim is to find regions of parameter space that are compatible not only with

theoretical constraints such as perturbativity, vacuum stability and the SM Higgs

mass, but with current experimental constraints. We use 2HDMC 1.7.0 [144] to

calculate the relevant branching ratios required by HiggsBounds 4.3.1 [120] to apply

95 % confidence exclusion constraints from LHC Run-I, LEP and the Tevatron.

This same input is also used by HiggsSignals 1.4.0 [121] to perform a χ2 fit to the

observed SM signal at the LHC.

In the case of the Inert Doublet Model we apply constraints from analyses of

LEP data [142]. Invisible decays of the Z boson are important in the Inert model

as the Z → HA channel is possible. Subsequent decays of the pseudoscalar to

a fermion anti-fermion pair A → Hff̄ and missing energy are in tension with

experiment. These decays are required to be small, a constraint that we implemented

by requiring [145,146],

MH +MA ≥MZ . (8.9)

We also require max (MH ,MA) in the inert model to apply limits on the additional

neutral Higgs masses from LEP data [147]. Further LEP constraints from searches

for charginos and neutralinos are applied to the mass of the charged Higgs by requir-

ingMH± ≥MW . To ensure that our lightest odd particle is a neutral DM candidate

we insist on the following relation between the dark sector particles,

MH± > min (MH ,MA) . (8.10)

We also look at constraints from electroweak precision observables for both of our

models. The S, T and U parameters are calculated using 2HDMC using a reference

Higgs mass of mref
h = 120GeV and the results are checked against the current PDG

limits [37],

S = 0.05± 0.10 (8.11)

T = 0.08± 0.12

U = 0.02± 0.10.

Valid points result in values of the precision observables within the ±3σ range.
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In the THDM the existence of the charged Higgs bosons H± can affect the

calculation of flavour observables. To take this into account we use SuperIso [148–

150] to calculate the radiative B meson decay B → Xsγ, the leptonic B decays

B0
s → µ+µ−, B0

d → µ+µ−, and B → τν, the leptonic D decays D → µν, Ds → µν

and Ds → τν as well as the semileptonic decay B → Dτν, the kaon decay K → µν

and the pion decay π → µν. We then apply 95% confidence level constraints on the

branching ratios of these decays.∗

In the IDM we use micrOMEGAS [129] to calculate the DM relic density Ωh2,

using the lightest of the neutral scalars H and A as the stable DM candidate. We

compare the result to the combined experimental result from the WMAP [123] and

Planck [55] experiments,

Ωh2 = 0.1199± 0.0027. (8.12)

We pass points that give a value less than Ωh2 + 3σ to allow for the possibility that

the scalar DM candidate is not the only contribution to the relic density.

Dark matter direct detection experiments place constraints on the spin inde-

pendent WIMP-nucleon scattering cross-section. The strongest of these comes from

LUX [124] which gives constraints that are dependent on the mass of the WIMP

DM candidate. We use micrOMEGAS to calculate the scattering cross sections for

each of the points in our scan and exclude those that give values greater than the

LUX constraints.

8.4 The Multiple Point Principle in the Type-II Two

Higgs Doublet Model

We are interested in the high scale behaviour of the quartic couplings and their β

functions in Two Higgs Doublet Models which may arise from boundary conditions

at the Planck scale. There are a number of possible scenarios that may enforce

these conditions. One such scenario is the Multiple Point Principle (MPP) [30]

which posits that the effective potential has an additional minimum at a high scale

such as the Planck scale, degenerate to the electroweak minimum. Applying the

MPP in the SM leads to a prediction of the Higgs mass of mh = 129± 1.5 GeV [15],

which is not compatible with our current experimental value of mh but it is close
∗Specifically, we use the constraints detailed in Appendix H of the SuperIso manual http:

//superiso.in2p3.fr/superiso3.4.pdf

http://superiso.in2p3.fr/superiso3.4.pdf
http://superiso.in2p3.fr/superiso3.4.pdf
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Figure 8.1: (a) Example running of λ1, λ2 and λ̃ for a point that provides valid

masses for the SM Higgs and the top quark in the Type-II Two Higgs Doublet Model.

Boundedness from below and vacuum stability requires that all three couplings are

positive at all scales. (b) Results of our Multiple Point Principle scan in themh−mt

plane of the Type-II Two Higgs Doublet Model. The blue points provide valid SM

higgs masses whilst the red points also pass the vacuum stability conditions at all

scales. The ellipses show the experimentally allowed values of mt and mh at 1σ

(dark grey) and 3σ (light grey) uncertainty.

enough to have inspired a number of investigations into the MPP in extensions of the

SM [69,70,72,151], particularly in the THDM [66–68]. The ideal scenario here would

be to have a global minimum at a high scale Λ, degenerate with the electroweak

minimum, where all of the quartic couplings are zero at Λ, e.g λi = 0, i = 1 . . . 5.

Unfortunately in this case there is a tension between the renormalisation group

running of λ1 and λ2 that results in an unstable vacuum configuration [67].

It is possible for degenerate vacua to exist within the THDM if we relax the

condition λi = 0. Specifically, by allowing λ1, λ2, λ3 and λ4 to be non-zero at Λ,

then the following conditions are consistent with the implementation of the MPP

at Λ;

λ5 (Λ) = 0 (8.13)

λ4 (Λ) < 0

λ̃ (Λ) =
√
λ1λ2 + λ3 + min(0, λ4) = 0

βλ̃ (Λ) = 0.
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To investigate whether these MPP conditions in the Type-II THDM are consistent

with the current experimental constraints on the SM Higgs mass mh and the top

pole mass mt, we generated points in the parameter space in the manner described

in section 8.3, applying the theoretical constraint of vacuum stability at all scales.

Figure 8.1a shows an example of the running of λ1, λ2 and λ̃ for a point that results

in experimentally valid values of the SM Higgs mass and the top pole mass, and is

also consistent with the MPP conditions 8.14. Vacuum stability requires that all of

these couplings remain greater than zero at all scales, but the negative running of λ̃

pulls it to negative values. Figure 8.1b shows the results of our investigation in the

mh−mt plane. The points that satisfy the vacuum stability conditions, highlighted

in red, have larger values of the top Yukawa yt which positively contribute to the

running of the quartic couplings. However, the larger yt corresponds to a top mass in

the range 220 . mt . 230 GeV which is not compatible with current experimental

bounds on the top pole mass.

8.5 Asymptotic Safety in the Type-II Two Higgs Doublet

Model
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Figure 8.2: Compatible values of the Higgs quartic coupling λ1 (MPl) against

βλ1 (MPl) in the Type II Two Higgs Doublet Model. (a) includes points that are sta-

ble and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 8.3. Blue points

obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.
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Figure 8.3: Compatible values of the Higgs quartic coupling λ2 (MPl) against

βλ2 (MPl) in the Type II Two Higgs Doublet Model. (a) includes points that are sta-

ble and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 8.3. Blue points

obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.

Another candidate for the high scale dynamics that enforces high scale boundary

conditions is the Asymptotic Safety scenario, in which the quartic couplings of the

Higgs sector run towards an ultraviolet interacting fixed point [75–82]. This may

be caused by gravitational contributions that become significant at very high scales,

altering the running of the couplings of the scalar potential [31, 89–92]. In the

context of Two Higgs Doublet Models, points in their parameter space that allow

for the possibility of a UV fixed point exhibit zero values for the β functions of the

Higgs quartic couplings at the Planck scale whilst allowing the couplings themselves

to be non-zero. It is important at this stage to be clear on what it means for a β

function to be zero. For each of the points in our parameter space scans we perform

a perturbative calculation of the RGE evolution of the model couplings, and we

accomodate the uncertainty associated with this calculation by allowing for small,

non-zero values of the β functions. To estimate this uncertainty in a consistent way

we use the difference between parameters atMPl calculated using one-loop and two-

loop RGEs, and we consider a parameter or β function to be zero if it is smaller that

this RGE truncation error. In the case of the THDM we calculated the following

constraints,
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Figure 8.4: Compatible values of the Higgs quartic coupling λ3 (MPl) against

βλ3 (MPl) in the Type II Two Higgs Doublet Model. (a) includes points that are sta-

ble and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 8.3. Blue points

obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.

βλ1 (MPl) < 0.0127 (8.14)

βλ2 (MPl) < 0.0064

βλ3 (MPl) < 0.0139

βλ4 (MPl) < 0.0030.

We now present the results of our numerical analysis of the Type-II Two Higgs

Doublet Model, in which we look for regions of parameter space that are compatible

with the high scale boundary conditions that can arise under the asymptotic safety

scenario. We apply all of the relevant theoretical and experimental constraints that

were described in Section 8.3 as well the βλi = 0 constraints shown in Eq. 8.14.

Figures 8.2 to 8.5 show the values of the four non-zero quartic Higgs couplings

λ1,2,3,4 and their β functions. The left plots include the theoretical constraints of

perturbativity, vacuum stability and a valid SM Higgs candidate, whilst those on

the right also include experimental constraints. Points in red provide values of the β

functions that are compatible with our asymptotic safety high scale boundary con-

ditions, whilst those in blue do not pass those constraints. Clearly there are regions
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Figure 8.5: Compatible values of the Higgs quartic coupling λ4 (MPl) against

βλ4 (MPl) in the Type II Two Higgs Doublet Model. (a) includes points that are sta-

ble and perturbative up to MPl and include a SM Higgs candidate, whilst (b) also

enforces all relevant experimental constraints discussed in section 8.3. Blue points

obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.

of parameter space where all of the β functions of the quartic Higgs couplings are

within the truncation errors, even after all of the relevant experimental constraints

have been applied. These regions correspond with very small but non-zero values of

the quartic couplings at MPl, which is consistent with a UV interacting fixed point.

Figure 8.6 shows the masses of the heavy neutral scalar mH against each of the

pseudoscalar Higgs mass mA, whilst Figure 8.7 compares the heavy scalar mass to

the charged Higgs mass mH± . As the scale associated with the the additional Higgs

becomes significantly larger than the electroweak scale, the scalar sector becomes

more decoupled and the masses of H, A, and H± become essentially degenerate.

A lower limit on the masses of the extra scalars of around mH,A,H± ≈ 330 GeV is

enforced once we apply the collider and flavour constraints. However, the points

that are consistent with our high scale β function conditions can have a range of

different masses, and those conditions do not seem to apply strong consraints upon

the scalar mass spectrum in the Type-II THDM.
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Figure 8.6: Compatible values of the heavy neutral Higgs mass mH against the

pseudoscalar HiggsmA in the Type II Two Higgs Doublet Model. (a) includes points

that are stable and perturbative up toMPl and include a SM Higgs candidate, whilst

(b) also enforces all relevant experimental constraints discussed in section 8.3. Blue

points obey βλ1,2,3,4 < 1.0 atMPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.

8.6 The Multiple Point Principle in the Inert Doublet

Model

In Section 8.4 we discussed the conditions that a THDM parameter point must

satisfy to be consistent with the MPP, specifically those detailed in Eq. 8.14. These

constraints also apply to the Inert Doublet Model. We performed an IDM parameter

space scan in the same way as the Type-II THDM case detailed in Section 8.4. We

applied the MPP conditions at MPl and required valid points to be stable up to the

Planck scale and to have a SM Higgs candidate. Figure 8.8 shows the running of the

quartic couplings λ1, λ2 and λ̃ for a point in our scan that provided a valid SM Higgs

and top mass. As in the Type-II model, a stable vacuum requires all three of these

couplings to be positive at all scales. Clearly this point fails our vacuum stability

test, and unfortunately it is representative of the other points in our scan. We

found no points that could simultaneously satisfy the constraints of perturbativity,

vacuum stability and the requirement of a realistic SM mass spectrum. Specifically,

there are points that provide valid SM Higgs and top masses, but all of these points

fail under the condition λ̃ > 0. In fact, we found no points that could satisfy

the MPP conditions outlined in Eq. 8.14 that remained stable up to the Planck
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Figure 8.7: Compatible values of the heavy neutral Higgs mass mH against the

charged Higgs mH± in the Type II Two Higgs Doublet Model. (a) includes points

that are stable and perturbative up to MPl and include a SM Higgs candidate,

whilst (b) also enforces all relevant experimental constraints discussed in section

8.3. Blue points obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127,

βλ2 < 0.0064, βλ3 < 0.0139, βλ4 < 0.0030 at MPl.

scale, regardless of their Higgs or top masses. Our results therefore suggest that the

multiple point principle cannot be implemented successfully in the Inert Doublet

Model.

8.7 Asymptotic Safety in the Inert Doublet Model

We now present the results of our numerical analysis of the Inert Doublet Model.

Figures 8.9 to 8.12 show points in the λi−βλi plane that satisfy both our theoretical

and experimental constraints as well as the asymptotic safety high scale boundary

conditions of Eq. 8.14. The situation is somewhat similar to the Type-II case

discussed in 8.5, inasmuch as there are points in the parameter space that are

compatible with the asymptotic safety scenario and that those points have very

small values of the quartic couplings.

Figure 8.13 shows the allowed masses of the dark matter candidate mLOP and

the charged Higgs mass mH± . The requirement that the LOP account for the dark

matter relic density and the results from dark matter direct detection experiments

places a lower limit on the LOP mass of mLOP ≈ 40 GeV. The relationship between

the masses of the additional scalars and the high scale boundary conditions imposed
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Figure 8.8: Example running of λ1, λ2 and λ̃ for a point that provides valid masses

for the SM Higgs and the top quark in the Inert Doublet Model. Boundedness from

below and vacuum stability requires that all three couplings are positive at all scales.

by asymptotic safety is similar to that which we found in the Type-II case, in that

those points that meet those constraints were found to have a range of possible

masses. It appears from our results that the existence of an interacting UV fixed

point for the quartic couplings is valid under both the Type-II model and the Inert

model, and that it places constraints on the high scale values of the quartic couplings,

however it does not seem to place strong constraints on the possible masses of the

new scalars.

8.8 Conclusions

We have investigated the Type-II Two Higgs Doublet Model and the Inert Doublet

Model with a focus on possible constraints on the quartic Higgs couplings and their β

functions as the Planck scale. These high scale conditions may be a consequence of a

second minimum in the potential that is degenerate with the electroweak minimum,

as is the case in the Multiple Point Principle, or they may be due to the couplings

running towards an interacting UV fixed point at MPl, as is the case under Aysmp-

totic Safety. In this work we have examined each of these models for their viability

under the constraints that would be evident if either of these scenarios described

high scale dynamics in nature. We also checked for their compatibility under the

theoretical constraints of perturbativity, vacuum stability, and the necessity of a SM

Higgs candidate, as well as experimental constraints such as those from colliders,

flavour physics and dark matter experiments.
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Figure 8.9: Compatible values of the Higgs quartic coupling λ1 (MPl) against

βλ1 (MPl) in the Inert Doublet Model. (a) includes points that are stable and

perturbative up to MPl and include a SM Higgs candidate, whilst (b) also en-

forces all relevant experimental constraints discussed in section 8.3. Blue points

obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.

Models with a second Higgs doublet have much more flexibility in their scalar

potential, which opens up the possibilities for how they can satisfy the boundary

conditions that are required by the MPP or by asymptotic safety. However, we

found that both the Type-II model and the Inert Doublet Model cannot satisfy

the conditions that would be imposed by the degenerate second vacuum at the

Planck scale of the MPP scenario. Specifically, we found no points in either model’s

parameter space that was consistent with the MPP whilst also having a valid SM

Higgs, an experimentally acceptable top quark mass, and a stable vacuum. In the

Type-II case we found that a stable vacuum would require a top mass on the order

of 230 GeV, whilst in the Inert case we found no points at all that could meet

our theoretical requirements. The results of our analysis would suggest that the

Multiple Point Principle is not compatible with the Two Higgs Doublet Models that

we investigated.

The asymptotic safety situation is somewhat better, as our parameter space

scans of both models found numerous points that were compatible with theoretical

and experimental constraints and also resulted in Planck scale values of the quartic

Higgs β functions that were compatible with the high scale condition βλi = 0 for

i = 1, . . . , 5. These points also have small but non-zero values of the corresponding
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Figure 8.10: Compatible values of the Higgs quartic coupling λ2 (MPl) against

βλ2 (MPl) in the Inert Doublet Model. (a) includes points that are stable and

perturbative up to MPl and include a SM Higgs candidate, whilst (b) also en-

forces all relevant experimental constraints discussed in section 8.3. Blue points

obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.

quartic couplings, which is entirely in keeping with the existence of an interacting

UV fixed point. The type-II case has a lower limit on the masses of the additional

scalars of mH,A,H± ≈ 330 GeV imposed by experimental constraints. In the In-

ert model the dark matter relic density and direct detectioon experiments place

contraints on the mass of the model’s dark matter candidate of mLOP ≈ 40 GeV.

Although our investigation found regions of parameter space that are compatible

with all of our constraints, they correspond to a range of masses for the extra Higgs,

with no apparent restriction on those masses coming from the high scale boundary

conditions.

Here we have discussed two minimal examples of the Two Higgs Doublet Model

class, and a logical next step would be to investigate models that expand upon them.

For example, would the situation regarding the Multiple Point Principle be changed

if we introduced field content, such as scalar singlets or vector-like fermions?
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Figure 8.11: Compatible values of the Higgs quartic coupling λ3 (MPl) against

βλ3 (MPl) in the Inert Doublet Model. (a) includes points that are stable and

perturbative up to MPl and include a SM Higgs candidate, whilst (b) also en-

forces all relevant experimental constraints discussed in section 8.3. Blue points

obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.
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Figure 8.12: Compatible values of the Higgs quartic coupling λ4 (MPl) against

βλ4 (MPl) in the Inert Doublet Model. (a) includes points that are stable and

perturbative up to MPl and include a SM Higgs candidate, whilst (b) also en-

forces all relevant experimental constraints discussed in section 8.3. Blue points

obey βλ1,2,3,4 < 1.0 at MPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.
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Figure 8.13: Compatible values of the Lightest Odd Particle mass mLOP against

the charged Higgs mass mH± in the Inert Doublet Model. (a) includes points that

are stable and perturbative up to MPl and include a SM Higgs candidate, whilst

(b) also enforces all relevant experimental constraints discussed in section 8.3. Blue

points obey βλ1,2,3,4 < 1.0 atMPl whilst red points obey βλ1 < 0.0127, βλ2 < 0.0064,

βλ3 < 0.0139, βλ4 < 0.0030 at MPl.





Chapter 9

Summary and Conclusions

In this thesis we investigated the possibility and consequences of high scale boundary

conditions in extensions of the Standard Model. The focus was on what, if any,

signatures that new dynamics at the UV scale would leave at energy scales that can

be probed by current experiments. We were motivated by the very small value of the

Higgs quartic coupling λ in the SM at scales nearingMPl and by its renormalisation

group running, which flattens outs at around the same high scale. These signs

could arise due to the existence of a second minimum at MPl, degenerate with the

electroweak minimum, as is predicted by the Multiple Point Principle, or it could

be due to an interacting UV fixed point, as in the Asymptotic Safety scenario. We

looked at a number of extensions of the SM, specifically the Real Singlet model

the Complex Singlet model, the Two Higgs Doublet Model and the Inert Doublet

Model. On top of the high scale boundary constraints we also applied a number of

model specific theoretical constraints, as well as experimental constraints including

collider and dark matter experiments. Here we will summarise our main results.

Real Singlet Model

We studied the possibility of high scale boundary conditions in the broken phase

of the real singlet extension of the SM under the following additional constraints:

pertubativity, global vacuum stability, the requirement of a SM-like Higgs in the

scalar mass spectrum, and collider constraints from the LHC, LEP and the Tevatron.

In the dark matter phase of the model we also applied relic density constraints from

the combined Planck and WMAP measurements, and direct detection constraints

on the spin independent cross section of the DM candidate on nucleons from the

LUX experiment. We found that the conditions that are consistent with asymptotic

safety, βλ (MPl) = βλS (MPl) = βk2 (MPl) = 0, can be satisfied in both the broken

phase and dark matter phases of the model. In the broken phase of the model, in

which both scalars are free to mix, we found that the region of parameter space that

met all of our constraints corresponded to an additional Higgs mass within the range



114 Chapter 9. Summary and Conclusions

200 . mH . 1000 GeV. There were fewer points in the valid parameter space of the

DM phase, with masses between the SM Higgs mass and approximately 500 GeV.

This upper limit increases to 1000 GeV if we loosen our β function constraints to

account for effects from unknown UV physics.

Complex Singlet Model

As in the real singlet case, the complex singlet model exhibits a broken phase if

both the real and imaginary parts of the field gain a vev and the three scalars of

the model can mix, as well as a DM phase in which the imaginary part of the

complex field is a potential WIMP dark matter candidate. Our investigation found

regions of parameter space in both phases that are compatible with theoretical and

experimental constraints, as well as our high scale conditions. In the broken phase

we found that the majority of valid points had one scalar that was lighter than the

SM Higgs and one that was heavier. The majority of valid points in the DM phase

have both additional scalars that are heavier than the SM Higgs. The condition

λ = βλ = 0 results in upper limits of the heavy Higgs of about 600 GeV in the

broken phase and 500 GeV in the DM phase. Scenarios in which all of the quartic

couplings and their β functions run to exactly zero at MPl were found not to be

possible because setting the Higgs portal coupling δ to zero at this scale does not

allow it to regenerate at lower scales. We found valid regions of parameter space

by allowing for small, non-zero values of the quartic β functions to account for

uncertainties in the high scale calculation.

Two Higgs Doublet Model

Our investigation of the Type-II Two Higgs Doublet Model included the theoretical

constraints of perturbativity, vacuum stability and a SM Higgs, as well as the col-

lider constraints from the LHC, LEP and Tevatron, electroweak precision observable

constraints, and those from flavour observables such as B → Xsγ. The results of our

scan suggested that the potentials of both the Type-II THDM and the Inert Doublet

Model cannot accomodate the conditions required by the degenerate minimum at

MPl that is a hallmark of the Multiple Point Principle whilst also providing valid

SM Higgs and top quark masses. On the other hand, we found that both models

could satisfy the βλi (MPl) = 0 conditions of Asymptotic Safety alongside all of the

other constriants. However, while the experimental constraints gave a lower limit

on the additional scalars of the Higgs sector of mH,A,H± ≈ 330 GeV, the high scale
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boundary conditions appeared not to impose any limits on the scalar mass spectrum.

Further Questions

In this thesis we have focused on models that introduce a somewhat minimal number

of extra fields into the scalar sector of the SM, with an eye on their implications for

high scale boundary conditions. One could expand upon this work by looking at

models with more complicated field content, such as those that contain a larger scalar

sector with both singlet and doublet fields, or those with new vector-like fermions.

These additions could affect the outlook for both the new UV physics scenarios that

were at the centre of our investigations by significantly altering the running of the

quartic and Yukawa couplings of the scalar potential. It would also be interesting to

look at whether these high scale conditions can be simultaneously reconciled with

others, such as gauge coupling unification, or with intermediate scales between the

low scale and MPl that introduce new gauge symmetries. If we could find models

that can incorporate these various different concepts it could be used as a stepping

stone towards Grand Unifcation Theories that are also compatible with the Multiple

Point Principle or Aysmptotic Safety.
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Appendix B

Renormalisation Group Equations

of the Standard Model at Two

Loops

The β functions of the Standard Model for number of fermions nf = 6, defined for

a coupling g as,

β(i)
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∂g
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, (B.1)

where i = 1, 2, . . . is the loop level, encode how a coupling’s value with energy

µ. Here we provide the two-loop β functions for all of the SM’s dimensionless

couplings [56–59].
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B.2 Quartic scalar couplings

β
(1)
λ = +

27

100
g4

1 +
9

10
g2

1g
2
2 +

9

4
g4

2 −
9

5
g2

1λ− 9g2
2λ+ 12λ2 + 12λTr

(
YdY

†
d

)
+ 4λTr

(
YeY

†
e

)
+ 12λTr

(
YuY

†
u

)
− 12Tr

(
YdY

†
d YdY

†
d

)
− 4Tr

(
YeY

†
e YeY

†
e

)
− 12Tr

(
YuY

†
uYuY

†
u

)
(B.8)

β
(2)
λ = −3411

1000
g6

1 −
1677

200
g4

1g
2
2 −

289

40
g2

1g
4
2 +

305

8
g6

2 +
1887

200
g4

1λ+
117

20
g2

1g
2
2λ−

73

8
g4

2λ+
54

5
g2

1λ
2 + 54g2

2λ
2

− 78λ3 +
1

10

(
225g2

2λ− 45g4
2 + 80

(
10g2

3 − 9λ
)
λ+ 9g4

1 + g2
1

(
25λ+ 54g2

2

))
Tr
(
YdY

†
d

)
− 3

10

(
15g4

1 + 5
(

16λ2 − 5g2
2λ+ g4

2

)
− g2

1

(
22g2

2 + 25λ
))

Tr
(
YeY

†
e

)
− 171

50
g4

1Tr
(
YuY

†
u

)
+

63

5
g2

1g
2
2Tr
(
YuY

†
u

)
− 9

2
g4

2Tr
(
YuY

†
u

)
+

17

2
g2

1λTr
(
YuY

†
u

)
+

45

2
g2

2λTr
(
YuY

†
u

)
+ 80g2

3λTr
(
YuY

†
u

)
− 72λ2Tr

(
YuY

†
u

)
+

8

5
g2

1Tr
(
YdY

†
d YdY

†
d

)
− 64g2

3Tr
(
YdY

†
d YdY

†
d

)
− 3λTr

(
YdY

†
d YdY

†
d

)
− 42λTr

(
YdY

†
uYuY

†
d

)
− 24

5
g2

1Tr
(
YeY

†
e YeY

†
e

)
− λTr

(
YeY

†
e YeY

†
e

)
− 16

5
g2

1Tr
(
YuY

†
uYuY

†
u

)
− 64g2

3Tr
(
YuY

†
uYuY

†
u

)
− 3λTr

(
YuY

†
uYuY

†
u

)
+ 60Tr

(
YdY

†
d YdY

†
d YdY

†
d

)
− 24Tr

(
YdY

†
d YdY

†
uYuY

†
d

)
+ 12Tr

(
YdY

†
uYuY

†
d YdY

†
d

)
− 12Tr

(
YdY

†
uYuY

†
uYuY

†
d

)
+ 20Tr

(
YeY

†
e YeY

†
e YeY

†
e

)
+ 60Tr

(
YuY

†
uYuY

†
uYuY

†
u

)
(B.9)

B.3 Yukawa Couplings
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Appendix C

Renormalisation Group Equations

of the Real Singlet Model at Two

Loops

Here we provide the two-loop β functions for all of the Real Singlet Model’s dimen-

sionless couplings, with nf = 6 [56–59].
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Appendix E

Renormalisation Group Equations

of the Type-II Two Higgs Doublet

Model at Two Loops

Here we provide the two-loop β functions for all of the Complex Singlet Model’s

dimensionless couplings, with nf = 6 [56–59].
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