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Abstract 

Hydrogel systems are of growing interest as extracellular matrix (ECM) mimetics 

due to their intrinsic and controllable properties (e.g. water content, stiffness 

and/or architecture) (Chaudhuri et al., 2016; Tse & Engler, 2010). Moreover, these 

systems can be further tailored with biologically active ligands (e.g. cell-adhesion 

motifs, protease-degradable peptides) and they can be used to instruct cell 

behaviour (DeVolder & Kong, 2012; Lutolf & Hubbell, 2005).  

In order to sophisticate hydrogels as ECM mimetics, significant efforts have been 

made to incorporate proteins or protein fragments into a hydrogel backbone 

(Almany & Seliktar, 2005; Francisco et al., 2014; Mikaël M. Martino et al., 2011; 

Seidlits et al., 2011; Watarai et al., 2015). By incorporating full-length proteins, 

hydrogels could present binding domains for different molecules, which traditional 

peptide ligands lack. To this end, our work focuses on the formulation of hydrogels 

based on one of the major constituents of the ECM, fibronectin (FN).  

Fibronectin is a glycoprotein that presents binding sites for heparin, collagen, 

other fibronectin molecules and growth factors, amongst others (Pankov, 2002). 

In addition, it has been shown that the exploitation of growth factor-fibronectin 

synergistic interactions can alter cell behaviour (e.g. improve cell migration, 

proliferation or differentiation) (Llopis-hernández et al., 2016; M. M. Martino & 

Hubbell, 2010). 

In this work, we have developed and optimised two strategies to covalently link 

fibronectin to synthetic (polyethylene glycol, PEG) and natural (hyaluronic acid, 

HA) polymers to form three-dimensional microenvironments to promote 

vascularisation.  

FNPEG hydrogels were formed using a Michael-type addition reaction that takes 

place at physiological pH and temperature. Using this approach, fibronectin was 

incorporated up to one mg·mL-1. The mechanical properties of this system were 

characterised together with the degradation profile when using protease-sensitive 

crosslinkers. Cytocompatibility was also studied using murine myoblasts and 

human endothelial cells. In addition, the interaction between vascular endothelial 

growth factor (VEGF) and fibronectin within FNPEG hydrogels was also explored, 

carrying out release and binding experiments. Fibronectin-VEGF interactions were 

investigated with endothelial cells, carrying out experiments of endothelial cell 



sprouting (i.e. angiogenesis) and endothelial cell reorganisation into multicellular 

structures (i.e. vasculogenesis assays). 

FNHA hydrogels were also fabricated, using a norbornene-modified HA and 

a ultraviolet (UV)-initiated thiol-ene chemistry. In this case, fibronectin was 

tethered to the HA backbone at different concentrations and up to two mg·mL-1. 

The mechanical properties of these hydrogels were characterised using different 

amounts of fibronectin. The morphology and yes associated protein (YAP) 

localisation of mesenchymal stem cells (MSCs) were studied using this system in 

two-dimensional (2D) cultures. Also, cytocompatibility of the hydrogels with MSCs 

was assessed in a three-dimensional (3D) culture system. 

In conclusion, this thesis presents a new family of ECM mimetics that incorporate 

fibronectin covalently bound to the PEG or HA backbone for the 3D encapsulation 

of cells and molecules. Moreover, the interaction between fibronectin and VEGF 

was studied with the intention to use these fibronectin-based hydrogels as 

efficient 3D proangiogenic microenvironments.     
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1 Chapter One: Introduction 

This chapter will provide a general description of the cell microenvironment and 

its components. Furthermore, the role of biochemical and biophysical cues in the 

cell microenvironment will be discussed along with critical considerations on how 

to engineer biomaterials to recapitulate some aspects of the cell 

microenvironment with a focus on the blood vessel microenvironment. 

1.1 The Cell Microenvironment 

Cells are the basic structural, functional and biological units of all known living 

organisms; they reside within a highly dynamic, heterotypic and intricate 

collection of biochemical and biophysical cues - called the cell microenvironment 

(Figure 1.1).  

The cell microenvironment is hierarchically organised to form the tissues in the 

body. There are many different tissues and so, there are many different 

organisations of cells and matrices; from tissues with mostly ECM and low amounts 

of cells (e.g. the connective tissue) to densely packed cell groups with a thin ECM 

membrane (e.g. epithelia).  

Cell microenvironments are highly diverse, although the cell microenvironment of 

animals share some composition and function features. In general, there are three 

key components: (i) neighbouring cells, (ii) extracellular matrix (ECM) and (iii) 

soluble factors (Cipitria & Salmeron-Sanchez, 2017; Dalby, García, & Salmeron-

Sanchez, 2018; Rice et al., 2013). All three components provide a myriad of 

biochemical and biophysical cues that act synergistically or antagonistically to 

regulate cell behaviour and consequently, cell function (i.e. migration, spreading, 

proliferation, differentiation, self-renewal and apoptosis). All three components 

will be discussed in the following sections, focusing on some important aspects for 

the understanding of this manuscript.   

 

 

 

 

 



 

 

 

Figure 1.1 The cell microenvironment is the complex interplay of neighbouring 
cells, soluble molecules and the extracellular matrix. 

Cells live within a dynamic and intricate assemblage of biochemical and biophysical 
cues. In general there are three key components of the cell microenvironment: 
neighbouring cells, soluble molecules and the ECM. All three components act 
together to regulate tissue homeostasis. 

 

1.1.1 Neighbouring Cells 

Cells in the body do not live isolated, they are gregarious entities capable of 

communication between similar and different types of cells. Cell-cell 

communication is a vital aspect of cell function over the cell lifecycle. It plays 

critical roles in tissue development and morphogenesis (Dejana, 2004). 

A cell can communicate with its neighbours via direct (e.g. cell-cell contact) 

and/or indirect (e.g. mediated by soluble factors) interactions. This subsection 

will focus on direct cell-cell communication, while indirect cell-cell 

communication will be discussed later (in section 1.1.2). 

Direct cell-cell communications include direct physical contact with the other cell 

through junctions or distant physical contact with other cells via mechanical 

communication through the fibrous portion of the ECM. There are three different 

types of cell junctions: tight junctions, anchoring junctions and gap junctions 

(Alberts et al., 2002).  

Tight junctions are the closest cell-cell contacts and consist of a collection of 

proteins forming complexes that link together both cell membranes and 
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cytoskeletons of adjacent cells. This type of junction is typical of epithelial cells 

that are tightly packed together. Tight junctions hold cells together and obstruct 

the transportation of soluble molecules and water through the gaps between cells. 

In this manner, tight junctions separate tissues and cavities from their 

surroundings (Fanning et al., 1998; Utech, Bruwer, & Nustrat, 2006). 

Anchoring junctions direct cell-cell and cell-ECM adhesions. There are three 

identified anchoring junctions: adherens junctions, desmosomes and 

hemidesmosomes. Adherens junctions and desmosomes are typically mediated by 

adhesion proteins such as cadherins and related proteins. These junctions are 

involved in the maintenance of tension and shape of tissues and cell-cell signalling 

(Leckband & de Rooij, 2014). 

Gap junctions are mainly composed of connexin proteins arranged as channels or 

open pores that cross the cell membrane and through which ions and small 

molecules can pass at will (Hervé & Derangeon, 2013). As a consequence, gap 

junctions play crucial roles coupling metabolic activities of adjacent cells (e.g. 

synchronising contractions of cardiomyocytes (Haraguchi, Shimizu, Yamato, 

Kikuchi, & Okano, 2006)).   

In addition to the abovementioned cell-cell interactions, it is worth mentioning 

that there is another type of direct cell contact mediated by the immunoglobulin 

and selectin superfamilies, which are involved in the immune response by the 

immune system and will not be discussed here.  

Endothelial cells 

Endothelial cells are one the major cell constituents of blood vessels (i.e. arteries, 

veins and capillaries). Endothelial and hematopoietic cells share a common 

precursor cell, the hemangioblast, which has mesodermal origin (Hirschi, 2012). 

Embryonic hemangioblasts can be identified by expression of two markers, the 

transcription factor Brachyury (Bry) and Flk-1, which is characteristic of 

endothelial cells (Huber, Kouskoff, Fehling, Palis, & Keller, 2004). Hemangioblasts 

are considered multipotent cells as Bry+ Flk-1+ cells can also generate vascular 

smooth muscle cells and Flk-1+ cells can form skeletal and cardiac muscle cells 

(Hirschi, 2012) (Figure 1.2). 

VEGF signalling is essential for endothelial and hematopoietic cell generation as 

Flk-1 deficient mice resulted in absence of blood islands during embryonic 

ontogeny with deleterious effects (Shalaby et al., 1995). The formation of 



hemangioblasts from the mesoderm is activated by bone morphogenetic protein 4 

and mediated by Gata2 transcription factor, which initiates Flk-1 and stem cell 

leukaemia (Scl) expression (Lugus et al., 2007).   

 

Figure 1.2 Endothelial cell origin and differentiation. 

The epiblast gives rise to the three primary germ layers and thus, the mesoderm. 
From the mesodermal precursor derives the hemangioblast, which is the common 
ancestor of hematopoietic and endothelial cells. The hemangioblast is pluripotent as 
it can commit to several lineages such as the vascular smooth muscle cell. The 
precursor of the endothelial cell is the angioblast, which can give rise to aortic 
endothelial cells, vascular endothelial cells or lymphatic endothelial cells. 

 

The endothelium is the inner cellular lining of the blood vessel and it is formed by 

a monolayer of endothelial cells. This continuous endothelial cell monolayer 

presents cells linked to each other by different cell junctions (Dejana, 2004). Tight 

junctions (mainly occludins) in endothelial cells help to seal the endothelial cell 

monolayer by the close juxtaposition of neighbouring cells’ plasma membranes 

and, adherens junctions (primarily vascular endothelial cadherin, VE-cadherin) 

anchor their cytoplasmic part to a network of catenins, which are connected to 
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the actin cytoskeleton (Chavez, Smith, & Mehta, 2011; Dejana, 2004; Utech et al., 

2006).  

Endothelial cells have essential roles in the regulation of a myriad of properties 

such as vessel permeability, immune response or haemostasis. These key roles are 

due to their location (i.e. at the interface between the circulatory system and the 

tissue). The modulation of these processes highly depends on the activation or not 

of the endothelial cell. Quiescent endothelium has anticoagulant, vasodilatory and 

anti-adhesive functions with a moderate level of permeability, while activated 

endothelial cells have pro-coagulant, vasoconstricting and pro-adhesive functions 

with high transmigration of immune cells (Aird, 2008). 

The most important property that is regulated by endothelial cells at the interface 

between blood and tissues is semi-permeability, which involves the transport in 

and out of the blood vessel of fluids, ions, macromolecules and cells (Claesson-

Welsh, 2015).  

During homeostatic conditions, a physiological flux takes place in capillaries, 

which are the major exchanging component of the circulatory system (Aird, 2007b; 

Chavez et al., 2011). Generally, fluids and small soluble molecules move passively 

between endothelial cells and this movement is regulated by endothelial 

junctions. Adherens junctions (i.e. cadherins and catenins) become 

phosphorylated-dephosphorylated in response of changes in Ca2+ levels, providing 

vessel permeability. Tight junctions (occludins and claudins) are responsible for 

maintaining the endothelial barrier and apical-basal polarity (Chavez et al., 2011; 

Claesson-Welsh, 2015). Consequently, the degree of permeability depends on the 

presence of junctions and transcytosis machinery. For example, VEGF stimulation 

regulates phosphorylation-dephosphorylation of junctions and thus, increases 

permeability. In a similar way, pro-inflammatory molecules like histamine or 

thrombin increase permeability by opening adherens junctions (Bates, 2010) 

(Figure 1.3). 



 

Figure 1.3 Different functions of endothelial cells upon activation. 

Endothelial cells function differently when activated by different factors such as 
shear stress or hypoxia. Activated endothelial cells allow permeation of soluble 
molecules and macromolecules via adherens junctions, caveolae and transcytosis. 
Moreover, they secrete more Von Willebrand factor (vWF) that promotes coagulation 
by stabilisation with Factor VIII and the platelet activating factor (PAF). In basal 
conditions (quiescence), endothelial cells secrete prostacyclin (PGI2) that inhibits 
platelet aggregation. NO is constitutively produced by activated endothelial cells (via 
nitric oxide synthase, eNOS and, the cytokine induced iNOS), which relaxes smooth 
muscle cells. In response to shear stress, thrombin or hypoxia, endothelial cells 
produce endothelin-1, which is a major vasoconstrictor. 

 

Endothelial cells are attached to the basal lamina, and altogether constitute the 

intima. The basal lamina can be considered the scaffold of every blood vessel. The 

inside of this scaffold is lined with endothelial cells whereas the outer part is 

covered with smooth muscle cells (SMCs) or pericytes (Félétou, 2011). Endothelial 

cells are able to synthesise all the proteins that constitute the basal lamina and 

many relevant proteins for its remodelling like MMPs, which can degrade the basal 

lamina and therefore are key players in angiogenesis and the overall plasticity of 

blood vessels (Kiran, Viji, Kumar, Prabhakaran, & Sudhakaran, 2011) (see Figure 

1.7  in “The ECM of the blood vessel” subsection for more information). 

Endothelial cell morphology varies through the vascular hierarchy (i.e. capillaries, 

major and minor arteries and veins), however they are usually flat and to some 

extent elongated. Endothelial cells are found orientated along the axis of the 

blood vessel wall and so minimising shear stress forces exerted by the blood flow 

(Aird, 2007a; Félétou, 2011). There are several markers that are uniformly 
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expressed in the endothelium such as the platelet/endothelial cell adhesion 

molecule 1 (PECAM-1) or CD31, which is also expressed in monocytes; VE-cadherin, 

flk-1, Tie-2, Tie-1 and E-selectin (Garlanda & Dejana, 1997). 

1.1.2 Soluble Molecules 

In the body, cells come across numerous soluble molecules from their surrounding 

aqueous milieu. These molecules include basic nutrients (e.g. oxygen, glucose, 

amino acids) and signalling molecules (e.g. growth factors, cytokines, 

chemokines, hormones).  

Amongst the basic nutrients, oxygen is not highly soluble in water and it is 

considered the easiest to be consumed in the media. The need of oxygen is a 

challenge when trying to engineer multicomponent and thick tissue constructs. 

Biomaterials capable to allow blood vessel penetration or the de novo formation 

of blood vessels are needed in order to overcome this challenge.  

The concentration of oxygen – also referred as oxygen tension – has variable 

effects depending on the cell type or tissue affected. For example, low oxygen 

tension or hypoxia conditions has been shown to maintain stem cell pluripotency 

(Ezashi, Das, & Roberts, 2005; Forristal, Wright, Hanley, Oreffo, & Houghton, 

2010), stimulate proliferation of cardiomyocytes (Nakada et al., 2017) or promote 

tumour angiogenesis (Dewhirst, Cao, & Moeller, 2008).      

Cytokines are essential modulators of inflammation that participate in acute and 

chronic inflammation through an intricate set of interactions (Turner, Nedjai, 

Hurst, & Pennington, 2014). Key pro-inflammatory cytokines include interleukin-

1 (IL-1), IL-6 and tumour necrosis factor alpha (TNFα). But cytokines not only 

participate in inflammatory processes. For instance, TNFα promotes proliferation 

of cells and induces cytolytic and cytostatic activities (Gupta, 2002). TNFα is also 

involved in lipid metabolism (X. Chen, Xun, Chen, & Wang, 2009) and insulin 

resistance (Borst, 2004). Moreover, other cytokines like IL-6 or IL-3 have shown 

activity promoting haematopoietic stem cell proliferation (Leary et al., 1988; 

Nitsche et al., 2003).  

Chemokines (or chemotactic cytokines) are small proteins (1-12 kDa) produced 

mainly to recruit leukocytes in an injury or infected region. Chemokines induce 

integrin expression (e.g. lymphocyte-associated antigen 1 (LFA-1), a β2 integrin). 

Although chemotaxis is the fundamental role of chemokines, they also exhibit 



other activities such as the maintenance of homeostasis in haematopoiesis or the 

initiation of adaptive immune responses (Esche, Stellato, & Beck, 2005; Mendelson 

& Frenette, 2014).  

Growth factors are the most widely studied soluble molecules for the engineering 

of the cell microenvironment. Each cell has its own growth factor 

microenvironment during tissue development, being secreted by the same cell 

(autocrine signalling), neighbouring cells (paracrine signalling), adjacent cells 

(juxtacrine signalling) and/or the circulatory system (endocrine signalling).  

Many different growth factor families have been studied (Smith et al., 2014), but 

those widely studied in the context of 3D engineered biomimetic systems include 

bone morphogenetic proteins (BMPs) (Shekaran et al., 2014a), fibroblast growth 

factors (FGFs) (Tanihara, Suzuki, Yamamoto, Noguchi, & Mizushima, 2001), 

vascular endothelial growth factors (VEGFs) (Bao et al., 2017; Impellitteri, 

Toepke, Lan Levengood, & Murphy, 2012; E. A. Phelps, Landazuri, Thule, Taylor, 

& Garcia, 2010) or transforming growth factors (TGFs) (Jha et al., 2015). These 

growth factors can be found diffusing in the media or bound to the ECM (Dalby et 

al., 2018).  

Growth factors play key roles in many cell processes by regulating their spatial 

supply, timing and bioactivity. For instance, VEGF has demonstrated to promote 

endothelial cell proliferation (S. Wang et al., 2008) but also, gradients of VEGF 

concentration have been shown to drive blood vessel growth in hypoxia conditions 

(Ferrara, Gerber, & LeCouter, 2003). Growth factors often have crosstalk effect 

to further regulate cell function (Cao et al., 2003; Kano, 2005). Taking into 

account the important roles that growth factors exert, the controlled release, 

delivery and secretion of these molecules is an area of intense research when 

engineering the cell microenvironment. 

Vascular Endothelial Growth Factor (VEGF) 

VEGF is a glycoprotein composed of two identical subunits. This homodimer of 

approximately 40-45 kDa can bind to heparin. The human VEGFA gene presents 

eight exons separated by seven introns. Alternative splicing of this gene generates 

different isoforms: VEGF121, VEGF165, VEGF189 and VEGF206; each isoform contains 

121, 165, 189 and 206 amino acids, respectively. For example, VEGF165 lacks amino 

acids encoded in exon six, whereas VEGF121 lacks residues set in exons six and 

seven. 
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VEGF121 is highly acidic and cannot bind to heparin. This isoform is found freely 

diffusing through the ECM. VEGF isoforms 189 and 206 are highly basic and present 

high affinity towards heparin. These isoforms are found completely sequestered 

within the ECM. VEGF165 present intermediate properties, it is found both bound 

to the ECM and also in soluble form (Ferrara et al., 2003). The loss of the heparin-

binding property results in a significant decrease in VEGF’s mitogenic activity 

(Keyt & Berleau, 1996).  

VEGF can also bind other proteins of the ECM such as fibronectin via its FNIII12-14 

domain, which has been reported as a promiscuous growth factor binding site (M. 

M. Martino & Hubbell, 2010; Moulisová et al., 2017). 

The regulation of VEGF gene expression is governed by oxygen tension, growth 

factors and oncogenes. VEGF is produced in hypoxia conditions to favour 

angiogenesis in that region by activating endothelial cells that will migrate 

towards the VEGF gradient produced (C. Lin, McGough, Aswad, Block, & Terek, 

2004). Different growth factors such as TGFs or FGFs – among others - regulate the 

expression of VEGF, which suggest autocrine or paracrine signalling that 

collaborates with the low oxygen tension to increase VEGF release (Ferrara et al., 

2003; Ferrara & Kerbel, 2005). Oncogenic mutations and amplification of Ras 

promote VEGF production, which consequently leads to tumour progression (S. H. 

Lee, Jeong, Han, & Baek, 2015) (Figure 1.4).  

 

 

 



 

Figure 1.4 Role of VEGFA signals on different cell types. 

VEGF receptors 1 and 2 (VEGFR1, VEGFR2) are expressed in the cell surface of most 
endothelial cells and VEGFA binds both. VEGFR2 is the master mediator of 
endothelial cell proliferation, survival, angiogenesis and vascular permeability. In 
opposition, VEGFR1 (both membrane bound and soluble) performs an inhibitory role 
by sequestering VEGF and preventing its binding to VEGFR2. However, VEGFR1 plays 
a role in mediating monocyte migration. In addition, in hematopoietic stem cells and 
leukemic cells, VEGFR1 and VEGFR2 mediate migration and survival. Other cells like 
tumour cells and cancer associated fibroblasts together with hypoxia conditions 
promote the production of VEGFA. 

 

VEGF exhibits a myriad of activities (Ferrara et al., 2003). It is well known that 

VEGF promotes growth of endothelial cells and, it is also key in the survival of 

endothelial cells both in vitro – by preventing apoptosis - and in vivo, where VEGF 

inhibition results in an increase in apoptosis in neonatal but not adult mice (Gerber 

et al., 1999). VEGF induces vessel leakage and endothelial fenestration (Roberts 

& Palade, 1995). Among others, VEGF induces vasodilation in vitro due to the 

production of nitric oxide by the endothelial cell  (Ku, Zaleski, Liu, & Brock, 1993). 

VEGF also affects non-endothelial cells and there are studies suggesting that VEGF 

has a neuroprotective role (Storkebaum & Carmeliet, 2004). 

1.1.3 The Extracellular Matrix 

The ECM is usually defined as all secreted molecules that are immobilised outside 

of a cell, which includes growth factors, cytokines and cell adhesion molecules. 

Actually, it is a dynamic 3D mesh-like structure that provides not only physical 

support to cells but, actively regulates cell behaviour and tissue homeostasis 
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(Frantz, Stewart, & Weaver, 2010). Some of its functions are: (i) to confer a well-

defined architecture separating one tissue from another, (ii) to maintain an 

appropriate level of hydration and the local pH of the surroundings; (iii) to provide 

diffusion of nutrients and waste, along with soluble signals - like growth factors 

or chemokines; (iv) to make available receptors for cells and other molecules (e.g. 

other proteins); (v) to degrade, on demand, during tissue development and 

remodelling (e.g. after damage) (Mouw, Ou, & Weaver, 2014). 

A matured ECM can dynamically respond to surrounding stimuli like applied force, 

injury or even physiological stresses such as disease. All these diverse functions 

are attained through its sophisticated composition and architecture, which are 

furthermore tissue-specific. Every tissue presents its unique ECM signature to 

enable the exact requirements of the tissue. For instance, the ECM in bones and 

teeth is mostly constituted by an inorganic part (e.g. calcium deposits) that 

confers strength to them; other tissues like cartilage are more elastic and 

lubricated – and mainly composed of proteoglycans. 

The composition and roles of the ECM exist within a dynamic state regulated by 

cells. ECM homeostasis is widely accepted to be crucial for the maintenance of 

tissue functions and cell behaviour (Bowers, Banerjee, & Baudino, 2010). All these 

aspects of the ECM are described below.  

Composition of the ECM 

In a broad sense, the ECM components can be categorised into proteins and 

glycosaminoglycans (GAGs). ECM proteins include collagen, elastin, laminin and 

fibronectin (FN), among others (Figure 1.5). 

Collagen is the most abundant protein in mammals, representing 25% of our total 

protein mass (Hynes, 2009). Primarily found in skin and bone, there are twenty-

eight different collagen molecules. The structure of collagen is a triple-stranded 

helix formed by three polypeptide chains, called α-chains. Procollagen is the term 

used to describe the triple helix formed in collagen, which allows for a tightly 

packed structure that helps during its self-assembly. Once secreted, proteolytic 

enzymes modify procollagen to allow it to form longer fibrils. Then, these fibrils 

(tens of nanometres in diameter) aggregate to form collagen fibres (hundreds to 

thousands of nanometres in diameter), which are further organised to improve the 

tensile strength of the ECM (Brinckmann, 2005). 



Collagens are organised in classes according to their properties. In this manner, 

fibrillar collagens (types I, II, III, V and XI) are the majoritarian, covering 90% of 

body collagens (Frantz et al., 2010; Mouw et al., 2014). Classical examples of 

fibrillar collagens are those forming tendons and ligaments. Fibril-associated or 

FACIT collagens (types IX, XII, XIV, XVI and XIX) do not form fibrils but they are 

involved in the assembly of collagen fibrils. Network-forming collagens (types IV, 

VII, VIII and X) form mesh-like structures involved in the formation of sheet-like 

structures; like the one formed in basement membranes (BMs). Multiplexins are 

another class of collagens (types XV and XVIII) that play a critical role in 

neovascularisation. Multiplexins are a special group of collagens because they 

have GAGs attached, and so they can also be classified as proteoglycans. 

Membrane-associated or MACIT collagens (types XIII, XVII, XXIII) are cell surface 

molecules with extracellular and intracellular domains (Mouw et al., 2014).  

Laminins are a family of glycoproteins consisting of sixteen heterotrimeric 

isoforms (Aumailley, 2013; Rhodes & Simons, 2007). Laminins present five α-

chains, four β-chains and three ϒ-chains; one of each type assemble to form one 

large coiled-coil trimer with typically three short arms and one large arm (cross-

shaped structure, although there are laminins presenting Y-shape (three arms) or 

rod-shape (single arm) structures) (Colognato & Yurchenco, 2000). Laminins are 

basically found in basement membranes and have shown to have adhesive and 

signalling functions. They mainly act as bridges between molecules, although 

Laminin-111 self-assemble into aggregates (Mouw et al., 2014; Rhodes & Simons, 

2007). 

Elastins are hydrophobic proteins present in tissues like skin or blood vessels 

because they confer the ability to momentarily stretch (Eble & Niland, 2009). 

Tropoelastin is the precursor molecule of elastins, which is secreted into the 

extracellular space where tropoelastins crosslink to each other to form networks 

of elastin sheets and fibres (Mithieux & Weiss, 2006). Elastins are composed of 

two types of segments that alternate along their polypeptide chain; one is a α-

helix rich in alanine and lysine residues – where the crosslinks are formed; the 

other is a hydrophobic segment responsible for the elastic properties of the 

molecule (Mithieux & Weiss, 2006). The random coil structure of elastin molecules 

crosslinked into a network is thought to be responsible for their ability to stretch 

like rubber. Elastin is the most abundant ECM protein in arteries, constituting 50% 

of the dry weight in major arteries (Karnik, 2003).  
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Glycosaminoglycans (GAGs) are long, linear carbohydrate chains formed by two 

repeating disaccharide units: N-acetylglucosamine (GlcNAc) or N-

acetylgalactosamine (GalNAc) and glucuronic or iduronic acid. GAGs form a highly 

hydrated mesh or gel-like structure, in which the fibrous proteins are embedded. 

The polysaccharide chains of GAGs are too stiff to fold into compact structures 

like polypeptides typically form, so they tend to adopt extended conformations 

occupying large relative volumes. They are highly negatively charged and can 

attract cations (such as Na+), which confers osmotic pressure to the matrix; this 

swelling pressure, due to the entry of water, enables the matrix to stand 

compressive forces (Mouw et al., 2014).   

Hyaluronan is the simplest GAG, being a linear polysaccharide and composed of 

GlcNAc β1-3 GlcA β1-4 repeating bonds. It is not sulphated nor associated with a 

core protein. Hyaluronan is mainly found in skin, skeletal tissues and synovial 

fluid. One of the most important functions of HA in the body is its ability to 

immobilise large amounts of water and hence, change ECM’s volume and 

compressibility. In cartilage for instance, HA functions as an aggregation centre 

for aggrecan, embedded within a collagenous network (Esko, Kimata, & Lindahl, 

2009). In synovial fluid, HA provides lubrication to the joint, serving as a shock 

absorber and reducing friction while allowing bone movement (Kogan, Šoltés, 

Stern, & Gemeiner, 2007). 

HA is not only an inert molecular filling of the connective tissue, it mediates many 

other activities and plays important roles in embryogenesis, cell motility and 

signal transduction (Hascall & Esko, 2017). HA is also associated with cancer 

invasiveness and metastasis (Hirose et al., 2012). Moreover, depending on the size 

of the molecule HA can play very different roles. Large HA molecules are anti-

angiogenic and immunosuppressive, while intermediate size HA molecules (25-50 

repeating units) are inflammatory and immunostimulatory and highly angiogenic; 

small HA molecules are antiapoptotic and promote the production of heat shock 

proteins (Kogan et al., 2007; Stern, Asari, & Sugahara, 2006).  



 

Figure 1.5 The extracellular matrix composition. 

The ECM is a dynamic and complex structure that brings together collagens, laminins, 
fibronectins, proteoglycans, soluble molecules and cell surface receptors like 
integrins, among others.  

 

The rest of GAGs are covalently linked to proteins to form proteoglycans. The 

main functions of proteoglycans come from the biochemical and hydrodynamic 

features of GAGs, which provide hydration and compressive resistance by binding 

water (Esko et al., 2009; Mouw et al., 2014). Some of the most important 

proteoglycans include heparan sulphate, chondroitin sulphate, dermatan 

sulphate, hyaluronan and keratin sulphate. Heparan sulphate proteoglycans are a 

major constituent of basement membranes; they can be cell surface-bound (e.g. 

syndecans), glycophosphatidylinositol-linked (e.g. glypicans), or secreted 

molecules (e.g. perlecans, collagen XVIII or agrin). Chondroitin sulphate 

proteoglycans are components of the neural ECM and cartilage. Lecticans are the 

most common chondroitin sulphate proteoglycans, consisting of aggrecan, 

veriscan, neurocan and brevican. Lecticans have binding domains for hyaluronic 

acid, lectins and growth factors (Esko et al., 2009). 

The function of proteoglycans and GAGs is not limited to provide a hydrated space 

around cells, their polysaccharide chains can vary the pore size and charge density 

of the network and thus, regulate the diffusion of molecules, i.e. they can act as 

molecular filters such as perlecan in the basal lamina of the kidney glomerulus 

(Morita, 2005).  

Proteoglycans have a role in chemical signalling, binding various secreted signal 

molecules such as certain growth factors. Besides binding, proteoglycans can also 
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regulate the activity of other secreted proteins by: (i) immobilising the protein 

close to where it was produced and restricting its action; (ii) sterically blocking 

the activity of the protein; (iii) providing a reservoir of the protein to postpone its 

release; (iv) protecting the protein from proteolysis and thus, prolonging its 

action; (v) concentrating the protein to enhance its presentation to cell-surface 

receptors. Chemotaxis is an example of this last function, where heparin sulphate 

proteoglycans can immobilise different chemokines at an inflammatory site to 

stimulate white blood cells to migrate into the inflamed tissue (Esko et al., 2009; 

Frantz et al., 2010; Mouw et al., 2014). 

Note that not all proteoglycans are excreted components of the ECM, some of 

them are constituents of the cell membrane, with the core protein inserted into 

the lipid bilayer, such as syndecans. Syndecans can serve as receptors for different 

matrix proteins; they can be found in focal adhesions, where they modulate 

integrin function by interacting with fibronectin on the cell surface (Afratis et al., 

2017). Syndecans can also bind some growth factors and present them to their 

respective receptors (Chung, Multhaupt, Oh, & Couchman, 2016). 

Fibronectin 

Fibronectin is also a protein component of the ECM. As this protein has a central 

role in this thesis, it will be described in more detail in this section. 

Fibronectin is a glycoprotein consisting of two subunits (each subunit of 

approximately 240 KDa) that form a homodimer linked via two disulphide bonds 

at the C-termini. Each monomer is formed by the repetition of three different 

modules (types I, II and III) (Figure 1.6). Fibronectin contains twelve type I, two 

type II and fifteen to seventeen type III domains. All type I and type II modules 

present two intramolecular disulphide bonds that stabilise the tertiary structure 

of the protein. Type III domains are formed by seven β-barrel strands that lack 

disulphide bonds. All forms of fibronectin are encoded by a single gene, which 

contains around 50 exons; alternative splicing produce the different isoforms of 

fibronectin (Pankov, 2002). Cellular fibronectin presents two extra type III 

modules called EDA and EDB, which are not found in plasma fibronectin (Zollinger 

& Smith, 2017).   

Fibronectin is essential in embryogenesis and wound healing. The inactivation of 

the FN gene in mice is deleterious at early stages as demonstrated by George et 



al. more than twenty years ago (George, Georges-Labouesse, Patel-King, Rayburn, 

& Hynes, 1993).  

 

Figure 1.6 Fibronectin interacts with many different molecules. 

Sketch of the fibronectin modular configuration with some of the molecules that can 
interact with fibronectin. FN type I domains are depicted in yellow, FN type II domains 
in blue and FN type III modules in red. Asterisks (*) mark the presence of cysteine 
residues. Adapted from (Pankov, 2002). 

 

Fibronectin exists in soluble and fibrillar forms. Plasma fibronectin is soluble and 

circulates in the bloodstream to enhance blood clotting and, subsequently, wound 

healing and phagocytosis. Fibronectin’s dimeric structure plays a key role in 

fibronectin fibril assembly, whilst the monomer alone is not able to form fibrils.  

The FNI1-5 repeats together with the FNIII1 module are essential for fibronectin 

self-association (Schwarzbauer, 1991). Fibrillogenesis is also mediated by cells via 

interactions between integrins (mainly α5β1 integrin) and the RGD (Arg-Gly-Asp) 

cell attachment domain, which is located at the FNIII9-10 modules (Leiss, 

Beckmann, Girós, Costell, & Fässler, 2008; Pankov, 2002). Integrins that bind to 

the RGD site on fibronectin can bind to fibronectin even when the synergy site – 

PHSRN motif (Pro-His-Ser-Arg-Asn), located in the FNIII9 repeat- is not present but, 

the synergy site is required to initiate fibril assembly (Benito-Jardón et al., 2017; 

Singh, Carraher, & Schwarzbauer, 2010). Through focal adhesions, cells are able 

to exert forces on fibronectin and these cell contractile forces can lead to 

conformational changes on fibronectin that can expose cryptic domains (Gee, 

Ingber, & Stultz, 2008; Ingham, Brew, Huff, & Litvinovich, 1997).  
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Fibronectin is important during the process of collagen matrix deposition. 

Collagens can interact with fibronectin at the FNI6, FNII1-2 and FNI7-9 (these 

domains are called the collagen binding site) (Kadler, Hill, & Canty-Laird, 2008). 

Collagen matrix is not deposited in the absence of fibronectin, although once a 

collagen matrix has been deposited it provides a structure that limits the 

capability of fibronectin to stretch (Sottile, 2002).   

Apart from collagen, fibronectin also binds fibrin, gelatin, tenascin and heparan 

sulphate (Pankov, 2002). Fibronectin can bind bacteria such as Staphylococcus 

aureus (Hoffmann, Ohlsen, & Hauck, 2011). 

Fibronectin plays an important role as a provisional matrix that promotes or allows 

other matrices structures during matrix formation or remodelling due to its ability 

to bind many other ECM components (Singh et al., 2010). This characteristic of 

fibronectin is important in wound healing and diseases such as cancer (K. Wang, 

Seo, Fischbach, & Gourdon, 2016).  

Fibronectin is a substrate for cell adhesion as mentioned above. The importance 

of the RGD sequence that fibronectin shares with other ECM components like 

vitronectin is mainly due to the discovery of integrins (Serini, Valdembri, & 

Bussolino, 2006). The RDG loop of fibronectin can be found in the FNIII10, which is 

a promiscuous binding site for integrins such as α5β1, α3β1, α8β1 and αvβ3 (Pankov, 

2002).  

Integrin binding to fibronectin is conformation dependent and, there are integrins 

that can bind only the RGD sequence and integrins that bind both the RGD and the 

PHSRN synergistic motif. If fibronectin is undeformed, the synergy site is 

approximately 32 Å near the RGD sequence. This allows the binding of integrin 

α5β1. When fibronectin stretches, it can acquire a state where both PHSRN and 

RGD are undeformed but the distance between them increases to 55 Å. It is in this 

state where the binding of integrin α5β1 is reduced but other integrins like αvβ3 – 

that do not require the PHSRN motif to engage with fibronectin – can still bind 

(André Krammer, Craig, Thomas, Schulten, & Vogel, 2002). García’s group 

demonstrated that, by altering the conformation of the FNIII9-10 modules, α5β1 

versus αvβ3 integrin binding could be controlled. This conformational switch was 

shown to affect important cellular pathways leading to proliferation or 

differentiation (Keselowsky, Collard, & García, 2003, 2005). In addition, Barker’s 

group engineered fibronectin fragments that support specific integrin engagement 



(α5 versus αv). By using this approach, they showed that spontaneous epithelial to 

mesenchymal transition could be prevented (Markowski, Brown, & Barker, 2012). 

More recently, Segura’s group showed that engineering fibronectin fragments with 

specific binding to either α3/α5β1 or αvβ3 was enough to control vessel formation 

and vascular permeability (S. Li et al., 2017).     

Fibronectin can mediate cell signalling by presenting growth factors to adherent 

cells. Fibronectin specifically binds growth factors in the FNIII12-14 repeats and, it 

has been shown that this is a promiscuous binding site. Fibronectin is capable to 

bind most growth factors from the platelet-derived growth factor, vascular 

endothelial growth factor and fibroblast growth factor superfamilies. Moreover, 

fibronectin is able to bind some growth factors form the transforming growth 

factor-β and neurotrophin families (M. M. Martino & Hubbell, 2010; Mikaël M 

Martino et al., 2011).  

Fibronectin presents two VEGF binding sites. One is constitutively active and the 

other is regulated by heparin (Mitsi, Hong, Costello, & Nugent, 2006). Enhanced 

activity of growth factors has been shown when these are bound to fibronectin in 

the ECM compared to growth factors in their soluble form. Sobel’s group showed 

that the biological activity of VEGF increases when it is bound to fibronectin. In 

addition, they showed that VEGF bound to fibronectin also increased migration 

and differentiation of endothelial progenitor cells (Wijelath et al., 2002, 2004, 

2006).  

Biochemical roles of the ECM  

One important biochemical role of the ECM is to provide adhesion ligands to bind 

cell surface receptors (e.g. integrins) to form focal adhesions or hemidesmosomes. 

These ECM-cell interactions are essential for the transduction of 

microenvironmental cues from the ECM or mediated by the ECM and, play 

important roles in cell spreading (Caliari, Vega, Kwon, Soulas, & Burdick, 2016), 

migration (Hakkinen, Harunaga, Doyle, & Yamada, 2011) or differentiation 

(Trappmann et al., 2012). Most of the ECM components present adhesion ligands 

including collagen, laminin, fibronectin and GAGs. The absence of cell adhesion 

cues could lead to loss of cells or unwanted cell behaviours in different cell types. 

Many studies have demonstrated the importance of cell adhesion sites in the 

regulation – in space and time - of cell morphology, migration and differentiation 

(Cosgrove et al., 2016; Hahn, Miller, & West, 2006; Khetan & Burdick, 2010; S. Li 

et al., 2017; Schultz, Kyburz, & Anseth, 2015; Wade, Bassin, Gramlich, & Burdick, 

2015). 
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Another important biochemical role of the ECM is to act as a reservoir for soluble 

molecules (e.g. growth factors) by sequestering and storing them (Brizzi, Tarone, 

& Defilippi, 2012). In this manner, the ECM is able to spatially distribute these 

signalling molecules and regulate their bioactivity and stability (Hynes, 2009). The 

sequestration of soluble molecules by the ECM is usually facilitated by non-

covalent interactions (e.g.  electrostatic or hydrogen bonds) (Jha et al., 2015). 

Examples of these interactions include TGF-β1 and  BMP-2 to collagen II, VEGFs 

and platelet derived growth factors (PDGFs) to fibronectin or VEGFs, FGFs and 

PDGFs to heparin (M. M. Martino & Hubbell, 2010; Sawicka, Seeliger, Musaev, 

Macri, & Clark, 2015; Wijelath et al., 2006; Jia Zhu & Clark, 2014a). 

Biophysical roles of the ECM 

From a biophysical point of view, the ECM provides structural presentation of 

macromolecules, mechanical stiffness and variations of these in space and time. 

Some components of the ECM can assemble into fibres. Fibres within the ECM are 

hierarchically organised forming anisotropic structures, although this organisation 

differs from tissue to tissue (Mouw et al., 2014). Structural variations in the ECM 

across a broad range of length scales can lead to changes in cell and tissue 

function. For instance, fibre organisation is an important characteristic of collagen 

I fibres and, their orientation and alignment guide cells through the organisation 

of their ligands, directing cell migration and polarity (Chaubaroux et al., 2015; 

Riching et al., 2015). Another important physical characteristic of the ECM is the 

presence of pores. The density and size of the pores within the ECM will define 

the available space where the cells are confined and can determine cell growth 

(Jana, Cooper, & Zhang, 2013). 

Tissues in the body have mechanical properties within different order of 

magnitude, from compliant or “soft” tissues like brain or fat – with elastic moduli 

≤ 1 kPa -  to stiff or “hard” tissues like bone – with elastic moduli in the range of 

the GPa. 

Many studies have shown that, the stiffness of a two dimensional (2D) substratum 

can regulate almost every aspect of cell behaviour; from migration (Pelham & 

Wang, 1997) or proliferation (Goldshmid & Seliktar, 2017; Her et al., 2013) to cell 

differentiation. Subsequently, a material with stiffness closer to bone will drive 

mesenchymal stem cell (MSC) differentiation towards the osteocyte lineage (A. J. 

Engler, Sen, Sweeney, & Discher, 2006).  



Mechanical fields should be distinguished from mechanical properties. Cells 

experiment a huge range of stress and strain forces in vivo and, these forces are 

regulated by the mechanical properties of their local microenvironment. For 

instance in the vasculature, blood cells withstand shear forces from the flowing 

blood. Heart and lungs experiment cycles of tensile stress and strain and, cartilage 

and bone experience compressive forces during movement. The study of the 

effects of mechanical fields on cell behaviour have shown that 

mechanotransduction is relevant for tissue development and regeneration 

(Humphrey, Dufresne, & Schwartz, 2014; N. Wang, Tytell, & Ingber, 2009).  

In vitro studies have demonstrated that shear stress modulates endothelial cell 

adhesion and smooth muscle cell-endothelial cell interactions (Hur et al., 2012; 

Qi et al., 2011). Shear stress also promotes cancer cell migration (H. J. Lee et al., 

2017). Tensile forces have shown to promote maturation of cardiomyocytes 

(Tallawi, Rai, Boccaccini, & Aifantis, 2015), myotube differentiation from 

myoblasts (Ahmed et al., 2010) and MSC commitment to the SMC lineage 

(Rothdiener et al., 2016). Compressive stress have been also shown to promote 

muscle regeneration (Cezar et al., 2016).  

Likewise, electrical fields have shown to regulate cell function. Electrical fields 

have demonstrated their efficacy in the maturation of cardiac, musculoskeletal 

(Park et al., 2008) and neural tissues (J.-F. Feng et al., 2012). Being particularly 

important in the communication, synchronisation and beating of cardiomyocytes 

(Tandon et al., 2009). 

The ECM of the blood vessel 

Generally, blood vessels are composed of three concentric layers, which are the 

tunica intima, the tunica media and the tunica adventitia (Figure 1.7). These 

layers are separated by two membranes, the membrane limitans interna and the 

membrane limitans externa. A monolayer of endothelial cells forms the tunica 

intima, where endothelial cells can be found lining the internal surface of the 

vessel. The tunica media accommodates the mural cells that basically, are smooth 

muscle cells in larger blood vessels and pericytes in capillaries. Usually, the tunica 

media is thicker in arteries than in veins (Eble & Niland, 2009).  

The tunica adventitia links the vessel tube to its surroundings (e.g. connective 

tissue) and it is generally thicker in veins than arteries. This general structure 

changes depending on the type of blood vessel to ensure that they fulfil their own 

tasks properly. For example, the endothelial cell lining of capillaries is continuous 

in most tissues; however, the capillaries of endocrine and exocrine glands are 
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often fenestrated and, capillaries in liver, spleen and bone marrow are even 

discontinuous. These changes increase the exchange rate of hormones and 

metabolites (Eble & Niland, 2009; Rhodes & Simons, 2007).    

 

 

Figure 1.7 The ECM of the blood vessel. 

This sketch shows the general composition of a vessel section with its three main 
layers: tunica intima, tunica media and tunica adventitia. The structure and 
thickness of these layers vary depending on the type of vessel (capillary, vein or 
artery). On the top sketch, coloured in blue, there are pericytes supporting the blood 
vessel. Vascular smooth muscle cells (depicted as striated structures) are found in 
the tunica media. Endothelial cells are found forming a monolayer at the tunica 
intima. 

 

The tunica intima consists of a single sheet of endothelial cells that are attached 

to a basement membrane. Underneath this basement membrane there is a thin 

layer of endothelial connective tissue together with the inner limiting membrane. 

The basement membrane serves as foundation for endothelial cells to anchor and 



as tissue border between the endothelium and the vascular connective tissue (Eble 

& Niland, 2009; Folkman & D’Amore, 1996). 

The word “endothelium” was first used in 1865 by the anatomist Wilhem His (Aird, 

2007a); since then and up to the early 70s this layer was considered a mere passive 

membrane separating blood cells form the vascular ECM (ECM). Now, the 

endothelium is known for playing major roles in vascular homeostasis such as the 

control of blood fluidity (e.g. thrombosis, fibrinolysis) and the aggregation of 

platelets, the regulation of vascular tone and also is an important regulator of 

inflammation, angiogenesis or immunology (endothelial cells are also present in 

lymphatic vessels) (Félétou, 2011). 

The ECM components of blood vessels are: collagen, laminin, fibronectin, elastin, 

nidogen, GAGs, perlecan and syndecans (Rhodes & Simons, 2007), which have been 

described above (section 1.1.3). 

1.2 Engineering Biomimetic Materials 

Having stated the challenges in understanding the cell microenvironment, this 

section will focus on describing the state of the art in engineering biomimetic 

materials to study and comprehend the cell microenvironment. These biomatrices 

are not only designed to recapitulate the properties of the in vivo ECM but also to 

create new synthetic constructs not available in nature, to be able to deconstruct 

the cell microenvironment and perform fundamental studies on cell behaviour.  

Many studies in the last decade have focused on the development of biomaterials 

to study how biochemical cues (e.g. chemical functional groups, adhesion ligands 

or soluble factor immobilisation) affect cell behaviour and also, how biophysical 

cues (e.g. architecture, topography, mechanical properties or degradability) 

influence cell function (Murphy, McDevitt, & Engler, 2014). 

1.2.1 Classification of biomimetic materials 

Biomimetic materials could be defined as those with architecture, composition, 

properties and/or functions similar to native materials (Caliari & Burdick, 2016). 

From a material’s perspective, biomimetic materials can be classified as metallic, 

ceramic or polymeric materials. Traditionally, metallic and ceramic materials 

(e.g. titanium, bioactive glasses) have been used to mimic hard tissues like bone 

(El-Rashidy, Roether, Harhaus, Kneser, & Boccaccini, 2017; Pobloth et al., 2018), 

while polymeric materials (e.g. 3D polymeric scaffolds or hydrogels) have been 
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also used to engineer soft tissues (Berkovitch, Yelin, & Seliktar, 2015; Qian et al., 

2018; Rose et al., 2017). 

Again, from a material’s point of view, the ECM is a gel-like scaffold, full of water. 

Because of that, hydrogels have been extensively used to engineer the 3D cell 

microenvironment (Caliari & Burdick, 2016; Khetan & Burdick, 2009a). Hydrogels 

are water-swollen 3D polymeric network materials (H. Gulrez, Al-Assaf, & O, 2011) 

with many advantages to be used to engineer the cell microenvironment; including 

their high water content, their structural similarity with the natural ECM, their 

biocompatibility, easy handling and shaping and their potential biochemical and 

biophysical tunability (Khetan & Burdick, 2009b; Kyburz & Anseth, 2015). 

Hydrogels can be classified as: physically or chemically crosslinked (according to 

their crosslinking strategy); anionic, cationic or neutral (according to their 

electrical properties), electrically conductive, magnetically responsive, or 

photosensitive (according to their physical characteristics) and, naturally or 

synthetically derived (according to their origin) (H. Gulrez et al., 2011). The latter 

classification will be used to describe some relevant hydrogels. 

Naturally derived hydrogels 

Naturally derived hydrogels are materials extracted from natural sources and, 

both animal and plant sources can be used. A typical mammalian source for 

hydrogels is decellularized ECM, which is obtained by removing antigens and cells 

from the tissues using primarily detergents. Decellularized ECM can maintain some 

properties of the original tissue or organ such as composition – i.e. containing the 

same proteins, adhesion ligands and some soluble molecules - or architecture, e.g. 

keeping the natural organ’s vascular network (Yu, Alkhawaji, Ding, & Mei, 2016). 

Many organs and tissues have been used to obtain decellularized ECM such as 

heart, liver, cartilage or dermis (Yu et al., 2016). For instance, Taylor and 

colleagues repopulated a whole decellularized rat heart with neonatal cardiac 

cells and endothelial cells by perfusion and, observed native-like organisation with 

macroscopic contractions and primitive pumping functions (Ott et al., 2008). 

Similar studies have been shown similar results for other decellularized tissues, 

e.g. blood vessel (Quint et al., 2011) or diaphragm (Gubareva et al., 2016). 

Despite the many encouraging results obtained from decellularized matrices in 

vitro, these studies rarely surpass preclinical characterisation. This is due to 

batch-to-batch variability, which is donor dependent and is not completely 



understood. Therefore, there is a difficulty trying to identify the relevant 

components that make those matrices effective. 

In contrast, purified components from natural tissues are more relievable, have 

better defined composition and can be better controlled in comparison to 

decellularized matrices. These types of hydrogels can be further categorized into 

protein-based or polysaccharide-based hydrogels. Protein-based hydrogels are 

matrices formed by an individual protein such as collagen, gelatin, elastin and 

fibrin, or mixtures of proteins (Koike et al., 2004; Mason, Starchenko, Williams, 

Bonassar, & Reinhart-King, 2013; Nakatsu et al., 2003; Stratesteffen et al., 2017). 

These hydrogels are usually fabricated by self-assembly or cross-linking through 

amino acid sequences under physiological conditions. They are widely used as 

biomimetic materials due to their biocompatibility, fibrous nature and thus, 

architecture and topography. They also provide inherent cell adhesion ligands and 

can be enzymatically degraded, allowing matrix remodelling and cell migration. 

However, there is batch-to-batch variability and degradation within this type of 

hydrogels is poorly controlled. 

Polysaccharide-based hydrogels such as alginate, chitosan or hyaluronic acid (HA), 

are formed using mild conditions and are also biocompatible (Jana et al., 2013; 

Jha et al., 2016; Rowley & Mooney, 2002). Moreover, they are usually less 

immunogenic than protein-based hydrogels and their mechanical properties can 

be better controlled. Many widely used polysaccharide-based hydrogels (e.g. 

chitosan, alginate) do not present adhesion ligands and are not biodegradable. As 

a consequence, they need to be modified to incorporate such features (Q. Feng, 

Zhu, Wei, & Bian, 2014; Jha et al., 2016; Lam, Truong, & Segura, 2014; Rowley & 

Mooney, 2002; W. Wang et al., 2015). 

Normally, polysaccharide-based hydrogels are chemically cross-linked using 

genipin or glutaraldehyde to toughen them, since their physically cross-linking via 

temperature or pH can be mechanically insufficient for 3D cell culture (Shankar 

et al., 2017).  

Some approaches to strengthen these hydrogels include the incorporation of 

functional groups such as acrylates, thiols or maleimides (Caliari & Burdick, 2016; 

Khetan et al., 2013a). These functionally derived macromers allow the fabrication 

of polysaccharide-based hydrogels with more refined physicochemical properties. 
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Synthetic hydrogels 

Synthetic hydrogels are those fabricated by crosslinking bioinert monomers or 

macromers through synthetic chemical reactions. Synthetic hydrogels present 

their own advantages compared to naturally derived hydrogels. For instance, the 

composition of these hydrogels can be finely controlled and the chemistries used 

to fabricate them can be used to custom-design different physicochemical 

properties of the hydrogels. This improves reproducibility during fabrication. Even 

though synthetic hydrogels are bioinert and non-degradable, they can be tailored 

to incorporate bioactivity ligands such as adhesion cues or degradable peptides 

(Guvendiren & Burdick, 2013; Kyburz & Anseth, 2015; Lutolf & Hubbell, 2005; 

Raeber, Lutolf, & Hubbell, 2005). 

Many synthetic polymers have been used to study cell fate like poly(ethylene 

glycol) (PEG) (Cruz-Acuña et al., 2017), poly(acrylamide) (PA) (Tse & Engler, 

2010), poly(vinyl alcohol) (PVA) (Nuttelman, Mortisen, Henry, & Anseth, 2001) or 

poly(N-isopropyl acrylamide) (PNIPAAm) (Jha, Jackson, & Healy, 2014) and 

derivatives.   

PA has been widely used to study cell behaviour in 2D cultures since it can be 

finely controlled and it is possible to crosslink proteins on top. While PA systems 

have been very useful to elucidate how stiffness affects cell behaviour on 2D 

substrates (Denisin & Pruitt, 2016; Elosegui-Artola et al., 2016), PEG hydrogels are 

commonly used as 3D environments to study cell behaviour (Lutolf & Hubbell, 

2005; Raeber et al., 2005). In addition, PEG can be crosslinked to form hydrogels 

via several cytocompatible chemistries such as Michael-type addition reaction or 

thiol-ene reaction (Junmin Zhu, 2010). 

Supramolecular hydrogels – i.e. rationally designed, custom made and 

peptide/protein based hydrogels - are another important group of synthetic 

hydrogels. They can be engineered to be stimuli-responsive, that can be 

remodelled by cells and, create dynamic cell microenvironments (Alakpa et al., 

2016; M. Zhou et al., 2009). Controlling the self-assembling process of 

supramolecular hydrogels can lead to materials with properties that are difficult 

to obtain using traditional synthetic hydrogels (Inostroza-Brito et al., 2015). These 

supramolecular hydrogels can recapitulate the hierarchical organisation and 

disposition of biological cues (e.g. biodegradability, adhesion, growth factor 

immobilisation) of native tissues – from the nano to the macro scale. Among its 



limitations, supramolecular hydrogels present weak mechanical properties and, at 

present they are not cost-effective. 

Poly(ethylene) Glycol 

Amongst synthetic hydrogels, PEG hydrogels have been widely used in literature. 

PEG hydrogels are biocompatible, nontoxic and bioinert, which means that they 

are resistant to unspecific cell adhesion or protein adsorption (Krsko & Libera, 

2005). In addition, PEG hydrogels can be crosslinked under mild or physiological 

conditions, so cells can be encapsulated in situ without important loss of viability. 

PEG has been approved by the Food and Drug administration (FDA) and the 

European medicine agency (EMA) for oral and topical applications and it can be 

found in cosmetics, soaps and drug formulations. 

PEG’s monomer, ethylene glycol, presents a simple structure (C2nH4n+2On+1). This 

structure matches the structure of poly(ethylene oxide) (PEO). Although the name 

PEG is typically used when referring to polymers with molecular weights less than 

or equal to 20 kDa, PEG and PEO are often used interchangeably. PEG is also an 

amphoteric compound (i.e. can act as either a base or an acid, depending on the 

medium). It is soluble in many organic solvents and also in aqueous media. Plus, 

PEG’s hydrophilic feature is one of the main reasons for its use in biomedical 

applications, including drug delivery and tissue engineering. The hydrophilic 

character of PEG confers similar structural and physicochemical properties of the 

ECM (Krsko & Libera, 2005). PEG polydispersity index is relatively low, between 

1.01 and 1.1, which offers high control over its physicochemical properties 

compared to other polymers (Pfister & Morbidelli, 2014).  

PEG hydrogels have been fabricated using many different functional groups at the 

end of the macromer, including acrylate, maleimide, norbornene, thiol or amine, 

among many others. Therefore, there is an extensively developed chemistry for 

the gelation of PEG chains. While different gelation methods exist such as ionic, 

physical or covalent; the chemically covalent-bonded hydrogel presents a 

relatively stable structure with tuneable properties (Pfister & Morbidelli, 2014).   

There are three main categories of covalent PEG polymerization: the free-radical 

or chain-growth photopolymerization, the step-growth and the mixed-mode 

polymerizations. The first one is based on the photocleavage of initiator molecules 

in the presence of UV light to form free radical species capable to react with 

acrylate or vinyl groups on PEG molecules. The crosslink is formed quickly so it is 

suitable for cell encapsulation (Junmin Zhu, Tang, Kottke-Marchant, & Marchant, 

2009).  



51 
 

The second occurs when at least two functional macromers contain mutually or 

complementary reactive groups that could be added in a balance or imbalance 

molar ratios. This reaction could be performed at physiological moieties and it 

permits more control over the density of the network than the 

photopolymerization approach. Indeed there is no need for using an initiator, 

which are usually cytotoxic. The Michael-type addition reaction is a type of step-

growth polymerization broadly used in PEG-hydrogels and it can be performed at 

physiological conditions (Fu & Kao, 2011); but compared with the free-radical 

photopolymerization, takes longer to achieve a gelation. Another kind of step-

growth polymerization technique is the click chemistry. This methodology creates 

well-defined architectures and better swelling capacities. The reaction occurs 

between an azide and alkyne groups that are “clicked” in the presence of a 

catalyst. This type of chemistry required a copper catalyst which is cytotoxic and 

consequently, was not suitable for cell encapsulation. Nevertheless, Bertozzi and 

colleagues developed a copper-free click chemistry that allowed cell 

encapsulation (Baskin et al., 2007).  

Finally the mixed-mode polymerization was developed by Anseth and colleagues 

using a thiol-acrylate photopolymerization and no use of initiator is required 

(Salinas & Anseth, 2008).  

These approaches have been used to create a large amount of PEG hydrogels with 

the incorporation of different bioactive molecules. Hubbell and co-workers 

developed a series of PEG hydrogels crosslinked by Michael-type addition reaction 

using a vinyl sulfone-PEG polymer and a PEG-dithiol with cell-adhesive sequences 

and degradable peptides; they showed tuneable capacities of the gels in terms of 

elastic moduli or swelling ratio and also they studied their biological functions in 

vitro and in vivo (Elbert, Pratt, Lutolf, Halstenberg, & Hubbell, 2001; Simon C. 

Rizzi et al., 2006; Simone C. Rizzi & Hubbell, 2005). In addition, García and 

colleagues used a Michael-type addition reaction with maleimide-functionalized 

PEG as a specific reaction for thiol groups in a fast and physiological pH conditions 

in comparison to PEG-acrylate or PEG-vinyl macromers (Edward A. Phelps et al., 

2012). This group have also demonstrated the ability of these maleimide-thiol PEG 

hydrogels to release bioactive molecules such as VEGF, showing an improvement 

of vessel growth formation in studies in vivo (Edward A. Phelps, Templeman, 

Thulé, & García, 2015).  



Seliktar and coworkers have shown the capacity to crosslink a whole protein to 

the PEG backbone (Almany & Seliktar, 2005). They performed a 

photopolymerization reaction between PEG-diacrylate and the cysteines of a 

previously denatured fibrinogen to accomplish a 3D scaffold. With the addition of 

the entire protein, they added an ample number of bioactive sites for cell culture 

studies (Dikovsky, Bianco-Peled, & Seliktar, 2006). In a similar way, Zhou et al. 

designed a genetically modified protein with terminal cysteines to bind it 

covalently with a PEG-maleimide monomer showing its suitability for cell culture 

studies (Du et al., 2014).  

In conclusion, the use of PEG hydrogels in Tissue Engineering has a well-developed 

chemistry with a large amount of possibilities. The addition of different bioactive 

molecules to the PEG backbone is an important field for study cell-matrix 

interactions.  

1.2.2 PEGylation 

PEGylation, i.e. the incorporation of PEG molecules to a certain compound, is a 

versatile technique due to the variety of chemistries that can be used. PEGylation 

is a common strategy in drug delivery due to the improvements in 

pharmacokinetics properties that PEG confers. Covalent linkage of PEG is shown 

to increase the half-life circulation of therapeutic proteins in vivo (F M Veronese 

& Mero, 2009). This could point toward a prolongation of the therapeutic effects 

and a dosage reduction of the PEGylated drug. At present, there are several 

PEGylated drugs on the market (e.g. Adagen® (approved in 1990), Puricase1® 

(approved in 2010)) (W. Li, Zhan, De Clercq, Lou, & Liu, 2013).   

There are three main strategies to PEGylate molecules: non-specific, site-specific 

and non-covalent PEGylation Figure 1.8. Because of their relevance, this section 

will focus on non-specific and site-specific PEGylation strategies. 

 



53 
 

 

Figure 1.8 Schematic of the different PEGylation strategies. 

Non-specific PEGylation takes advantage of the affinity of active esters towards 
primary amines; site-specific PEGylation presents a more selective chemistry, 
targeting specific groups on proteins and, non-covalent PEGylation offers a more labile 
strategy of PEGylation. 

 

Non-specific PEGylation was one of the first strategies developed. Active esters 

were obtained by reacting PEG-carboxylic acid with N-hydroxysuccinimide (NHS) 

to achieve succinimidyl esters. These active esters can react with primary amines 

in mild conditions and form amide bonds. Lysine residues are very common in 

protein amino acid sequences and, therefore PEGylation through the amine group 

leads to complex mixtures of proteins with different degrees of PEGylation. 

However, this strategy has shown success by bringing the first PEGylated drug to 

the market (Adagen®). 

Site-specific PEGylation was developed later and there are five main strategies: 

N-terminal PEGylation, thiol PEGylation, active site protection, genetically 

modified proteins and enzymatic PEGylation (Hermanson, 2013a; F M Veronese & 

Mero, 2009; Francesco M. Veronese, 2001). 

N-terminal PEGylation was developed to have a more selective chemistry towards 

the amino group (Hermanson, 2013b). As there only is one amino terminal group, 

the PEGylation sites considerably decrease compared to the non-specific 

PEGylation at amino groups. 

Thiol PEGylation exhibits good selectivity, although there is rarely a single free 

cysteine residue available through the amino acid sequence to react. Cysteine 

residues are usually paired with another cysteine to form disulphide bridges 

(Shaunak et al., 2006). PEG-maleimide is the most widely used PEG for site-

specific thiol PEGylation (Fontaine, Reid, Robinson, Ashley, & Santi, 2015; Fu & 



Kao, 2011). The double bond of the maleimide group and the thiol group react by 

Michael's addition to form a thioether bond. Some strategies in literature have 

tried to open the disulphide bridge to expose the thiol group and thus, tackle the 

problem of cysteine residues’ scarcity. The main drawback of disulphide bridge 

opening is the modification of the secondary structure that can potentially 

terminate some functional aspects of the protein (C. Zhang, Hekmatfar, 

Ramanathan, & Karuri, 2013). 

The active site protection strategy selectively blocks the undesired sites from 

being PEGylated. One of the most widely used protection groups is 9-

fluorenylmethoxycarbonyl (FMOC) (Miller, 2015). FMOC deprotection is usually 

achieved by the addition of piperidine. 

Genetically modified proteins present a different approach for PEGylation, where 

you can potentially add free cysteine residues (Yang et al., 2003) or delete lysine 

residues (Yamamoto et al., 2003) to increase PEGylation selectivity. A more 

generic approach for the PEGylation of recombinant proteins is the addition of a 

histidine tag sequence at either the C-terminal or N-terminal ends of the protein. 

Enzymatic PEGylation is a highly specific strategy because enzymes are selective 

catalysts. One of the most used enzymes for PEGylation is transglutaminase, which 

can catalyse the addition of PEG-amine to glutamine residues (Fontana, Spolaore, 

Mero, & Veronese, 2008). Glyco-PEGylation, i.e. PEGylation at glycosylation sites, 

is of growing interest because the linkage of glycans to proteins is well studied 

(Pasut & Veronese, 2012). 

1.2.3 Biochemically Engineered Constructs 

The biological/biochemical properties of biomimetic materials greatly influence 

cell response and so, they need to be carefully incorporated (Cosgrove et al., 

2016; Petrie, Capadona, Reyes, & García, 2006; Rao, Peterson, Ceccarelli, 

Putnam, & Stegemann, 2012). There are numerous approaches to engineer 

biomaterials that mimic certain biochemical cues of the cell microenvironment 

but, due to the scope of this text only adhesion ligands and growth factor 

immobilisation will be discussed.  

Adhesion Ligands 

Most of cells within their microenvironment rely on adhesion as one of the primary 

steps to maintain cell activity and their biological functions. Because of that, 

adhesion is a major aspect that needs to be counted in when designing biomimetic 

constructs (Hersel, Dahmen, & Kessler, 2003).  
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Biologically active peptides are widely used as an easy way to incorporate 

adhesion cues into non-adhesive hydrogels (e.g. PEG-based systems (Edward A. 

Phelps et al., 2012; Raeber et al., 2005) or alginate hydrogels (Rowley & Mooney, 

2002; W. Wang et al., 2015)). Peptides consisting of a number of selected amino 

acids can often mimic some functional units of full-length proteins. The use of 

short sequences also reduces complexity and makes synthesis and purification 

simpler in comparison to full-length proteins. In addition, biologically active 

peptides are custom-designed and can be engineered in a controlled manner. Many 

types of adhesive peptides have been used in literature including: Arg-Gly-Asp 

(RGD), Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER), Ile-Lys-Val-Ala-Val (IKVAV) , Arg-Glu-

Asp-Val (REDV) or Tyr-Ile-Gly-Ser-Arg  (YIGSR) (Assal, Mie, & Kobatake, 2013; 

Petrie et al., 2006; Shekaran et al., 2014a; Taubenberger et al., 2016; Tocchio et 

al., 2015; W. Wang et al., 2015). 

Numerous studies have shown that the type, concentration and spatial disposition 

of the adhesive ligand can affect adhesion, spreading, migration, proliferation and 

differentiation of cells (Fischer-Cripps, 2011; Kuen et al., 2004; Maheshwari, 

Brown, Lauffenburger, Wells, & Griffith, 2000; Xuan Wang et al., 2013; Ye et al., 

2015).  

3D bulk hydrogels have been modified to incorporate adhesive cues. These 

peptides are usually mixed with the polymer to be integrated during gelation, 

resulting in a homogeneous distribution of the ligand through the hydrogel. One 

of the most common approaches to incorporate biochemical cues within 3D 

hydrogel constructs is thiol-based chemistries such as thiol-acrylate 

photopolymerisation, thiol-maleimide Michael-type addition reaction or thiol-

norbornene step-growth photopolymerisation. Advances in photopolymerisation 

chemistries such as the one developed by Anseth’s group, where a copper-free 

photo cross-linking process was used to improve cytocompatibility, have allowed 

3D cell encapsulation using traditional click chemistries (Deforest, Polizzotti, & 

Anseth, 2009).  

Not only cell-ECM adhesive motifs are used in biomimetic constructs, cell-cell 

interactions are also studied by using, for example, N-cadherin peptide mimetics, 

which have shown to promote chondrogenesis in HA hydrogel systems (Kwon et 

al., 2018). 



More sophisticated systems incorporate protein fragments to study more complex 

interactions, such as the incorporation of the synergy site of fibronectin, the 

incorporation of adhesive fragments to study the effect of specific integrins or the 

integration of heparin-binding sites (Jha et al., 2015; M. M. Martino & Hubbell, 

2010; Mikaël M. Martino et al., 2011; Petrie et al., 2006; Roy, Wilke-Mounts, & 

Hocking, 2011). 

Moreover, many efforts are being taken to incorporate full-length ECM proteins in 

order to obtain systems that recapitulate better complex interactions within the 

ECM in a highly controllable manner. For instance, fibrinogen was covalently 

linked to a PEG network for cardiac repair (Almany & Seliktar, 2005; Kerscher et 

al., 2016), fibronectin has been incorporated to a HA system (Seidlits et al., 2011) 

and laminin has been also incorporated into a PEG backbone (Francisco et al., 

2014). Yet, these examples are relatively rare in the literature, in part because it 

is easier to use biologically active peptides. Subsequently, there is a need for more 

comprehensive studies of cell behaviour within this type of matrices, where there 

is a high control over the physicochemical properties of the material but 

recapitulates more complex biological interactions.    

Growth Factor Immobilisation 

Growth factors, as explained in previous sections, have important roles in cell 

function, being specially critical in cell fate determination. For instance, BMP-2 

promotes osteogenesis (Shekaran et al., 2014b) and VEGF promotes angiogenesis 

(Zisch, 2003). The ECM is able to regulate the distribution and activation of growth 

factors by either sequestration or diffusion of the molecules (Figure 1.9).  
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Figure 1.9 Soluble versus matrix-bound growth factor delivery. 

Soluble growth factor supplementation generally requires high doses and exhibits 
low efficiency when compared to matrix-bound growth factor delivery. When the 
growth factor is bound to the ECM, the crosstalk between integrins and growth 
factors is possible (taken from (Dalby et al., 2018)).  

 

The free diffusion of growth factors plays important roles in tissue homeostasis. 

For example, soluble growth factors create gradients that can guide tissue repair 

(Roam et al., 2015).  Many examples in literature can be found about free diffusion 

of growth factors through hydrogels used as systems for their release (Mellott, 

Searcy, & Pishko, 2001; Tanihara et al., 2001). However, this section aims to focus 

on growth factor immobilisation that mimic ECM sequestration capabilities.  

The immobilisation of growth factors presents several advantages, including the 

prolongation of growth factor presentation and the prevention of its enzymatic 

degradation (Cipitria & Salmeron-Sanchez, 2017; Dalby et al., 2018). Growth 

factors can be immobilised physically through hydrophobic or electrostatic 

interactions, chemically by covalent bonding or using molecules with high affinity 

towards them like proteins (e.g. fibronectin, collagen, GAGs or synthetic materials 

such as custom-designed peptides) (Anjum et al., 2016; Impellitteri et al., 2012; 

Leslie-barbick, Moon, & West, 2009; M. M. Martino & Hubbell, 2010; Mikaël M. 

Martino, Briquez, Maruyama, & Hubbell, 2015; Nie, Baldwin, Yamaguchi, & Kiick, 

2007; Watarai et al., 2015; Jia Zhu & Clark, 2014b) (Figure 1.10).    



Among the limitations of these immobilisation approaches are: the 

presentation/release of growth factors cannot be spatiotemporally controlled and 

the need of high amounts of growth factor that is required to fabricate these 

systems. 

 

Figure 1.10 Strategies for growth factor presentation. 

Systems can be engineered to load growth factors and control their delivery and 
presentation. Using layer-by-layer (a) growth factors can be entrapped and released in 
a tuneable manner; (b) materials can incorporate molecules that naturally bind growth 
factors like heparin or heparin-binding domains. (c) Growth factors can be immobilised 
via chemical linkage, (d) materials can also incorporate protein fragments that contain 
both growth factor binding affinities and integrin binding motifs; (e) materials can 
covalently immobilise growth factors but incorporate degradable sequences to control 
their release through MMP secretion. (f) Growth factors can be engineered to exhibit 
increased affinity for its usual binding domain. Taken from (Dalby et al., 2018).  

 

In order to increase the efficiency of growth factors, material systems have been 

engineered to contain integrin binding motifs as well as growth factors. For 

instance, when VEGF is presented with the RGD motif in a hydrogel system, 

vascularisation is promoted more efficiently (E. A. Phelps et al., 2010). Also, 

specific integrin binding can modulate endothelial cell response in hydrogels 

loaded with VEGF (S. Li et al., 2017). When VEGF is bound to collagen presents 

long-term activation of the VEGF receptor 2 of endothelial cells in comparison to 

soluble VEGF (T. T. Chen et al., 2010). These examples show how strategies based 

on materials can be utilised to improve the efficiency or activity of growth factors.     
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1.2.4 Biophysically Engineered Constructs 

Biochemical and biophysical cues overlap powerfully in the cell microenvironment 

and it is difficult to distinguish to which degree one affects the other and vice 

versa. Because of that, the design of constructs with specific biophysical features 

have demonstrated to be critical to control cell fate. This subsection will describe 

some biophysical features that can be controlled with an emphasis in mechanical 

properties and degradability. 

As mentioned before, cells are able to sense structural and topographical features 

(Dalby, Gadegaard, & Oreffo, 2014). One related parameter incorporated to 

engineered biomimetic constructs is microporosity. The ECM is a highly porous 

mesh-like structure filled with water, where soluble molecules freely diffuse 

through the spaces. This porosity provides a large surface area for cells to interact 

and thus, influencing cell behaviour. Some important parameters in porous design 

include pore size, interconnectivity and percentage of porosity, all of which have 

demonstrated to modulate cell behaviour (Annabi et al., 2010; Q. Zhang, Lu, 

Kawazoe, & Chen, 2014). As a general rule, an increase in porosity, pore size or 

interconnectivity leads to enhanced tissue ingrowth, cell infiltration and diffusion 

of molecules; although this could change depending on the application (Engelmayr 

et al., 2008). There are many approaches for the engineering of porous hydrogel 

structures such as solvent casting, particle leaching or freeze-drying. In addition, 

with the emergent printable approaches for biomimetic hydrogel materials, there 

is a potential for the fabrication of well-defined porous tissue-like structures (Loh 

& Choong, 2013). 

Another advantage of fabricating porous structures is to improve transport – e.g. 

nutrients and waste. Native tissues are usually surrounded by capillaries that 

facilitate oxygen transport and nutrients/waste diffusion. Vascularisation of tissue 

constructs is a critical parameter in tissue regeneration due to the many 

pathological outcomes of ischemia. Because of that, there is a preference for 

interconnected and highly porous structures in tissue engineering.  

Mechanical Properties 

As mentioned in section 1.1.3, many studies have confirmed the influence of 

mechanical properties in cell behaviour, mainly using 2D materials with well-

defined stiffness (Discher, 2005; A. J. Engler et al., 2006).  



3D systems have been also used as more relevant models than 2D substrata to 

study the role of mechanical cues in cell behaviour. To that end, 3D cell 

microenvironments with precisely controlled mechanical properties have been 

used until now. This include the use of hydrogels with linear elasticity (Huebsch 

et al., 2010), viscoelasticity (Bennett et al., 2018; Chaudhuri et al., 2015, 2016; 

Gong et al., 2018) and spatiotemporally controlled mechanical properties (Doyle, 

Carvajal, Jin, Matsumoto, & Yamada, 2015) – e.g. stiffness gradients, material 

stiffening, material softening. 

Elasticity represents the ability of a material to resist deformation (when a force 

is applied) and return to its original state after this force is removed. Elasticity is 

usually described by stress-strain curves and typically characterised by stiffness 

or Young’s modulus.        

Stiffness of hydrogels can be controlled by modulating polymer concentration, 

density of crosslinking or molecular weight of polymers. Hydrogels with stiffness 

ranging between Pa to MPa have been reported using either naturally derived or 

synthetic hydrogels (Huebsch et al., 2010). When cells are cultured within these 

hydrogels respond to fluctuations in stiffness with changes in morphology, 

spreading, migration and differentiation (Boontheekul, Hill, Kong, & Mooney, 

2007; Charras & Sahai, 2014; Her et al., 2013; Pek, Wan, & Ying, 2010). 

For example, alginate hydrogels were fabricated within a wide range of stiffness 

(2.5 to 110 kPa) and MSCs encapsulated showed adipogenic-like phenotype when 

culturing them within 2.5-5 kPa hydrogels, whereas osteogenesis was observed 

using 11-30 kPa (Huebsch et al., 2010). Similar results have been obtained using 

other 3D hydrogel systems like RGD-functionalised PEG hydrogels (Parekh et al., 

2011). 

In addition, hMSCs cultured in stiff HA hydrogels showed low cell spreading and 

nuclear translocation of the yes associated protein (YAP) and the transcriptional 

coactivator with PDZ-binding motif (TAZ), conflicting the results obtained in 2D 

(Caliari et al., 2016).  

Stiffness plays important roles in cell function, as stated before. However, soft 

tissues and most hydrogels are viscoelastic. Viscoelastic materials show both 

elastic (characterised by stiffness or storage modulus) and viscous (characterised 

by viscosity or loss modulus) properties. Viscoelastic hydrogels exhibit stress 

relaxation or creep behaviours. Stress relaxation is observed when stress 

decreases in response to the same amount of strain applied, whereas creep 
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behaviour is detected when materials deform permanently under the same 

mechanical stress.       

The viscoelastic properties of a hydrogel can be modulated by controlling its 

composition, concentration, molecular weight or crosslinking type/density. Many 

studies have demonstrated the importance of the viscoelastic properties in cell 

behaviour including cell spreading, cell proliferation and cell differentiation. For 

instance, Mooney and colleagues developed an alginate hydrogel system in which 

the stress relaxation was controlled independently of stiffness, adhesion ligand 

density or degradability. In this work, they showed how spreading and 

proliferation of fibroblasts was greater in hydrogels with faster relaxation times. 

Moreover, encapsulated MSCs showed osteoblastic commitment within hydrogels 

with faster relaxation (Chaudhuri et al., 2015, 2016). 

Degradability 

Degradation is a crucial parameter in tissue homeostasis. The ECM is a dynamic 

entity that is being remodelled in a spatiotemporal manner. Many of the 

macromolecules that compose the ECM are enzyme-sensitive, especially to cell-

secreted proteases such as MMPs. Proteases are capable of cleaving proteins 

within an specific site and, the secretion of these enzymes allows a cell-mediated 

degradation of the ECM. By degradation, cells can control their local 

microenvironment and receive instantaneous feedback from it. Degradation is in 

this sense involved in cell behaviour (e.g. spreading, migration and 

differentiation) (Khetan et al., 2013b; Silva et al., 2016). ECM remodelling is 

critical in tissue homeostasis and tissue repair (Page-McCaw, Ewald, & Werb, 

2007). Subsequently, uncontrolled degradation could lead to disease. 

Engineering the degradability of biomaterials is important to be able to control 

cell motility, soluble molecules immobilisation or material properties. Two 

important challenges when engineering degradable materials are the degradation 

by-products and degradation kinetics. Degradation by-products must be 

compatible with cell viability and the degradation kinetics needs to match the one  

of native tissues.   

Degradation by-products not only need to be cytocompatible, they can carry 

instructive cues that modulate cell behaviour. The latter type of by-products are 

also called matrikines and matricryptins (Ricard-Blum & Salza, 2014). For 

example, calcium and phosphate ions are released upon mineralised matrix 



degradation, promoting osteogenesis (Alford, Kozloff, & Hankenson, 2015). In 

addition, endostatin (one of the degradation products of collagen) has shown 

antifibrotic activity in both dermal and pulmonary fibrosis (Yamaguchi et al., 

2012). 

The degradation profile depends on the hydrogel type, crosslinking method and 

environmental conditions. Several methodologies have been developed to control 

the degradability of engineered hydrogels, such as enzymatic degradation, 

hydrolytic degradation or photolytic degradation (Ozcelik, 2015). 

Several studies incorporate enzyme-sensitive peptides as enzymatically 

degradable crosslinkers. For example, PEG-based hydrogels have been crosslinked 

with MMP-degradable peptides by several methods (L. Lin, Marchant, Zhu, & 

Kottke-Marchant, 2014; Edward A. Phelps et al., 2012; Watarai et al., 2015). 

Degradation is strongly linked with the type of MMP-sensitive peptide used (J. 

Patterson & Hubbell, 2010) and, when used in combination with RGD-ligands and 

VEGF, MMP-degradable hydrogels promoted the sustained release of VEGF for two 

weeks and enhanced vascularisation in vivo (J. Patterson & Hubbell, 2010). In 

addition, other degradable peptides have been used to control degradability like 

peptides sensitive to plasmin or elastase (Aimetti et al., 2009; Roam et al., 2015). 

The spatial control of degradable peptides plays an important role in cell 

behaviour. Burdick and colleagues used a partially crosslinked acrylate-HA with 

MMP-degradable peptides. After cell encapsulation, sequential crosslinking of the 

remaining acrylate groups inhibited MSC spreading even in the presence of 

adhesive ligands (Khetan, Katz, & Burdick, 2009). This strategy was also used to 

produced HA hydrogels with patterning of MMP-sensitive peptides that controlled 

MSC spreading and differentiation (Khetan & Burdick, 2010). 

Hydrogels have been also engineered to release molecules (e.g. drugs) or cells 

upon degradation. These systems are designed to respond to high levels of 

proteases, which typically occur in cancer and other diseases. However, the 

activity of the proteolytic enzymes and thus the effectivity of the release are very 

much influenced by the local environment. Using this strategy, Purcell et al. 

modified HA hydrogels with dextran sulphate to sequester recombinant tissue 

inhibitor of MMP-3 (rTIMP-3). These gels were used in a porcine myocardial 

infarction model. When injected, the rTIMP-3 was released as a response of the 

high MMP levels in the surroundings and inhibited the action of MMPs, which 



63 
 

contributed to attenuate adverse post-myocardial infarction remodelling (Purcell 

et al., 2014).  

Hydrolytically degradable hydrogels are those containing hydrolysable linkages 

such as ester or hydrazone. Hydrolytic degradation can occur in relatively mild 

conditions and does not involve catalytic molecules (Zustiak & Leach, 2010).  

For example, HA hydrogels have been modified with glycidyl methacrylate (GMA) 

in order to obtain hydrolytically degradable hydrogels. The degradation rate in 

this system can be controlled by varying the ratio of high molecular weight and 

low molecular weight GMA-HA molecules (Jennifer Patterson et al., 2010). The 

use of hydrolytically degradable hydrogels is an effective method to control bulk 

degradation of hydrogels. However, it can be affected by multiple factors such as 

the local pH of the environment. 

Photolytic degradation offers good control over the spatial and temporal 

degradability properties of hydrogel materials. Anseth and colleagues conjugated 

a photodegradable acrylic monomer with nitrobenzyl ether-derived (ortho-

nitrobenzyl, o-NB) groups into a PEG macromer. Then, using in situ 

photodegradation they were able to create channels that allowed encapsulated 

fibrosarcoma cells to migrate through them (Kloxin, Kasko, Salinas, & Anseth, 

2009).   

Kasko and co-workers used a series of o-NB molecules to immobilise several 

therapeutic agents into PEG hydrogels with different photodegradation 

sensitivities. The release profile of the therapeutic agents was controlled by 

varying the exposure time or wavelength and intensity of light and thus, achieving 

complex release profiles (Griffin & Kasko, 2012). However, the nitrobenzene 

moieties used in the abovementioned examples can absorb light and therefore, 

limit its penetration. This can cause a lost in degradation depth. To overcome this 

limitation, near-infrared (NIR) light has been used to engineer materials with 

controlled degradability upon exposure to NIR light (Peng et al., 2011; Qin, Wang, 

Rottmar, Nelson, & Maniura-Weber, 2018). NIR light presents a better applicability 

in vivo due to its good tissue penetrability and causing less cellular photodamage. 

Yet, the thermal effects of NIR need to be further studied. 

Dimensionality 

Most of our knowledge about the cell microenvironment comes from studies onto 

2D surfaces where cells grow in monolayer. 2D systems offer an over-simplistic 



model to study cell behaviour, far away from what is occurring in vivo – an actual 

3D microenvironment.  

Cells cultured on 2D surfaces can only interact with the substrate through their 

ventral side, whereas in 3D systems all sides of the cells are in contact with the 

material. On 2D, cells acquire an apical-basal polarity that is unnatural. In 

addition, cells on 2D systems can spread and migrate freely while within 3D 

systems have spatial constraints – by the surrounding matrix - and cells need to fit 

through the existing pores or to degrade the existing matrix to migrate. As a 

consequence, cell migration speed is extremely different and the response to 

stiffness changes comparing 2D versus 3D. Furthermore, soluble factors can diffuse 

freely in a 2D cell culture system, whereas in 3D the diffusion of soluble molecules 

is governed by immobilisation from matrix components and, physical barriers 

(Baker & Chen, 2012). 

Accordingly, cells in 3D matrices display behaviours more similar to what happens 

in vivo compared to 2D substrates and thus, these systems represent a more 

relevant model for the study of cell function. Classical examples show that 

dedifferentiated chondrocytes can recover their phenotype in 3D matrices (Benya 

& Shaffer, 1982) or that human breast epithelial cells, which exhibit a tumorigenic 

phenotype cultured in 2D surfaces, recover their normal phenotype in 3D systems 

(Petersen, Ronnov-Jessen, Howlett, & Bissell, 1992; Weaver et al., 1997). In 

addition, many examples in literature have demonstrated that tumour models 

work better in 3D environments (Fischbach et al., 2009; Roudsari, Jeffs, Witt, Gill, 

& West, 2016; Song, Park, & Gerecht, 2014; Stock et al., 2016; Taubenberger et 

al., 2016). 

Numerous efforts have been done to recapitulate the 3D cell microenvironment 

using biomimetic materials, which are typically hydrogels. But the cell 

microenvironment changes over time, leading to a continuous and dynamic 

variation of the ECM properties. In cases such as modelling the tumour 

microenvironment or drug screening, it could be desirable to be able to track the 

4D evolution of cell behaviour and thus, is important to engineer biomatrices that 

can be controlled in 4D (i.e. systems with time-modulated features) (Brown & 

Anseth, 2017).      
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1.3 Engineering pro-angiogenic microenvironments 

Angiogenesis is a complex, multicellular process throughout which new blood 

vessels are formed from pre-existing ones. The product of angiogenesis is a new 

vascular network that supports tissue’s demand of oxygen and nutrients (Rhodes 

& Simons, 2007).  The ultimate goal of therapeutic angiogenesis is restoring blood 

flow in ischemic tissues (i.e. where endogenous tissue is insufficiently perfused) 

by promoting the formation of new vessels (Briquez, Clegg, Martino, Gabhann, & 

Hubbell, 2016; Carmeliet, 2003; Rufaihah & Seliktar, 2016).  

The process of angiogenesis is regulated by an intricate collection of biochemical 

and biophysical cues and it happens within a 3D and dynamic setting, the ECM.  

During angiogenesis, the growth of healthy and functional vessels relies on the 

highly synchronised interplay of different cell types and growth factors. In this 

scenario, endothelial cells are activated upon certain signals (e.g. hypoxia, growth 

factors). These activated endothelial cells can assemble into new tube-like 

structures (vessel morphogenesis) and then, associate with mural cells (e.g. 

pericytes) during vessel maturation. Pericytes produce a myriad of regulatory 

signals; some of them involve the TGF-b1/TGF-R, Angiopoietin/Tie2 and 

EphrinB2/EphB4 pathways, which guide endothelial cells to quiescence during 

vessel stabilisation (Patan, 2000; Ribatti, Nico, & Crivellato, 2011).  

Vascular endothelial growth factor (VEGF) is a master regulator of physiological 

angiogenesis (e.g. reproductive angiogenesis) and also pathological angiogenesis 

(e.g. tumour-related angiogenesis). VEGF itself is able to start the complex 

cascade of events that leads to vascular growth. Furthermore, the formation of 

VEGF gradients within the matrix leads to sprouting of new capillaries (Ferrara et 

al., 2003; L. Li, 2003). The endothelial cells that are activated by VEGF become 

tip cells (or leader cells), which are capable of sensing the VEGF concentration 

gradient within the matrix through thin filopodial extensions, migrating towards 

it. This process is regulated by Notch signalling. Tip cells upregulate the Notch 

ligand Delta-like-4 (Dll4), which activates Notch1 in contiguous cells, guiding them 

to function as stalk cells (or follower cells). Stalk cells then start proliferating to 

form the main trunk of the new vessel, right behind the tip cell (Eilken et al., 

2017; Gerhardt, 2008).  



Cells are capable of secreting proteases that degrade the BM (i.e. collagen IV and 

laminin-1) and expose the endothelial cells that are sprouting (tip cells) to the 

interstitial ECM (mainly composed of collagen I and elastin) (Eble & Niland, 2009). 

By doing so, tip cells are able to migrate and stalk cells proliferate, forming the 

new vessel. Adhesive proteins like fibronectin and vitronectin link collagen I to 

cell-surface integrins that are essential for vascular development. Integrins are 

transmembrane receptors involved in cell adhesion. Integrins are capable of 

transducing mechanical forces coming from the ECM to the cytoskeleton (i.e. 

mechanotransduction), leading to changes in cell signalling (Serini et al., 2006). 

The cytoplasmic domains of integrins interact with signalling molecules such as 

the focal adhesion kinase (FAK) and Src, which are critical for the crosstalk 

between integrin and growth factor receptors signalling. Normally, of the integrins 

that are expressed on endothelial cells, α5β1 binds to fibronectin (Wijelath et al., 

2006) while α1β1 and α2β1 bind to collagen, α3β1, α6β1 and α6β4 to laminin, and 

αvβ3 to several ECM substrates (including fibronectin). This lets endothelial cells 

to sense a number of changes in their local microenvironment and adjust their 

behaviour accordingly. 

The ECM naturally regulates the distribution and activity of growth factors through 

changes in their local concentration, availability and therefore, signalling. In order 

to recapitulate this feature of the ECM, biomaterials have been functionalised 

with specific growth factor binding sites (Jha et al., 2014; M. M. Martino, Briquez, 

Ranga, Lutolf, & Hubbell, 2013; M. M. Martino & Hubbell, 2010; Mikaël M Martino 

et al., 2011; Rice et al., 2013).  

Most of the angiogenic growth factors (e.g. VEGF, PDGF or FGF) have the 

capability to bind certain sites on the ECM and they usually interact first with the 

ECM before finding a cell surface receptor.  

VEGF165, FGF-2 and PDGF-BB have affinity to heparan sulphate proteoglycans and 

these growth factors and several others have been shown to bind fibronectin 

(Llopis-hernández et al., 2016; M. M. Martino & Hubbell, 2010; Moulisová et al., 

2017), vitronectin (Byzova et al., 2000), fibrinogen (M. M. Martino et al., 2013) or 

tenascin C (Laporte, Rice, Tortelli, & Hubbell, 2013). Once bound, the release of 

growth factors depends on the action of proteases that can specifically cleave 

certain sites of ECM proteins . This allows the spatiotemporal regulation of growth 

factor delivery in a very tight manner. 

In order to mimic these exquisite ECM-growth factor interactions, biomaterials 

have been decorated with heparin or heparin sulphate-like molecules (Tae et al., 
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2007), which possess the natural ECM’s ability to sequester certain growth factors 

and control their delivery. For example, Peattie’s group fabricated a HA hydrogel 

tethered with increasing amounts of heparin and were able to accomplish 

sustained release of VEGF and FGF-2 (Pike et al., 2006). Similarly, Nie et al. 

prepared a crosslinked heparin hydrogel showing controlled release of bFGF (Nie 

et al., 2007). Tanihara et al. also showed the ability of a bFGF loaded heparin-

alginate hydrogel to improve angiogenesis in vivo (Tanihara et al., 2001).   

These examples show how the integration of natural growth factor binding 

domains (either by the incorporation of promiscuous heparin binding domains, 

heparan sulphate or growth factor-binding peptides (Impellitteri et al., 2012)) 

within biomaterial matrices permits the efficient release of low amounts of growth 

factors.   

Apart from the control of growth factor availability, ECMs can also modulate 

growth factor signalling via the interaction among ECM proteins, growth factors, 

cell-adhesion proteins, cell-adhesion receptors and growth factor receptors. It has 

been shown that VEGF binds to fibronectin forming molecular complexes, which 

induce the formation of clusters between integrins and VEGF receptors (VEGFR) 

(Mikaël M. Martino et al., 2011; Wijelath et al., 2006). 

Growth factor receptors and integrins share some of the molecules involved in 

their respective signalling pathways; therefore, the clusters formed between 

integrins and growth factor receptors substantially enhance signalling (Comoglio, 

Boccaccio, & Trusolino, 2003; Yamada & Even-Ram, 2002). This synergistic 

signalling has been exploited to lower the dosage of growth factors used in 

biomaterials. For example, Hubbell’s group engineered hydrogel matrices 

incorporating the heparin-II binding domain of fibronectin showing that this 

promiscuous growth factor-binding fragment works better when tethered next to 

the cell-adhesion fragment of fibronectin (FN type III 9-10th repeats) and showing 

wound healing and bone repair in vivo (Mikaël M. Martino et al., 2011). 

In conclusion, in order to develop efficient pro-angiogenic microenvironments, it 

is necessary to understand how growth factors are presented by the natural ECM 

during physiological angiogenesis. In particular, microenvironments capable of 

mimicking growth factor-ECM’s interactions in a simple way will be highly relevant 

in future for clinical translation.  



1.4 Full-length proteins of the ECM to recapitulate native 

microenvironments 

During decades collagen type I has been the protein of choice for the fabrication 

of scaffolds to simulate the natural microenvironment provided by the ECM and to 

study cell behaviour in vitro. Collagen I can form hydrogels by a change of pH. 

This strategy can be used to fabricate collagen sponges and to encapsulate cells 

in situ (Shekaran et al., 2014a). Another example is fibrinogen, which can be 

converted to fibrin by using the enzyme thrombin (which is the basis of fibrin-

based blood clots). Fibrinogen has been used to study critical processes such as 

wound healing and angiogenesis. Moreover, fibrin hydrogel’s formation allows the 

encapsulation of cells. (Kniazeva & Putnam, 2009; Nakatsu et al., 2003) 

Polymerisation of other ECM proteins such as fibronectin (reviewed in (Llopis-

Hernández, Cantini, González-García, & Salmerón-Sánchez, 2015) or laminin 

(Hochman-Mendez, Lacerda de Menezes, Sholl-Franco, & Coelho-Sampaio, 2014; 

Menezes, Ricardo Lacerda de Menezes, Assis Nascimento, de Siqueira Santos, & 

Coelho-Sampaio, 2010) have been described but, these examples refer to protein 

mats (flat, 2D sheets of proteins) that cannot be used as 3D environments for cell 

encapsulation studies.  

As described in section 1.1.3, fibronectin is a key protein of the ECM. Its cell-

adhesion motif – RGD – has been extensively used as the archetype of cell 

adhesion. Consequently, several systems have used the RGD peptide as a way to 

incorporate fibronectin (or vitronectin) into both 2D and 3D matrices (Bayless, 

Salazar, & Davis, 2000; Ferreira et al., 2007; Peyton, Raub, Keschrumrus, & 

Putnam, 2006; C. Zhang, Hekmatfer, & Karuri, 2014). By using this approach - 

although it has provided considerable amount of data about cell adhesion 

mechanisms – the full fibronectin molecule is reduced to just three amino acids.  

The cell-binding domain of fibronectin is located at the FNIII9-10 domains. This 

domain also contains the synergy site of cell adhesion (PHSRN motif), which 

enhances some cellular activities. For instance, Petrie and colleagues showed that 

the recombinant fragment FNIII7-10 of fibronectin – which contains both the RGD 

and PHSRN motifs in the native structural form – exhibited increased adhesion 

strength, cell proliferation, focal adhesion kinase (FAK) activation and specificity 

for α5β1 integrin compared to both RGD and RGD-linker-PHSRN peptides (that 

showed specificity for αvβ3 integrin) (Petrie et al., 2006).  
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Fibronectin also contains in its structure two heparin-binding domains. The 

heparin-binding II domain, which is located in the FNIII12-14, has been reported to 

bind several growth factors (M. M. Martino & Hubbell, 2010). Martino and 

colleagues demonstrated that the recombinant fragments of fibronectin including 

both the cell-adhesion domain and the heparin-binding II domain promoted wound 

healing and bone regeneration more efficiently than each fragment alone (using 

fibrin hydrogels) (Mikaël M. Martino et al., 2011). 

Fibronectin also contains a collagen-binding domain, which is located in the 

FNI6FNII1-2FNI7-9 domain. In vivo, fibronectin is one of the first proteins to be 

secreted when a tissue is developing or regenerating (acting as a transient 

primitive ECM). Moreover, collagen cannot assemble in vivo if there is not 

fibronectin deposited first (reviewed in (Zollinger & Smith, 2017)). 

Fibronectin also contains fibronectin-binding sites, which allow the assemblage of 

this protein into networks (Pankov, 2002; Singh et al., 2010). Moreover, 

fibronectin also contains cryptic domains that are exposed under certain 

conditions (Ingham et al., 1997; Roy et al., 2011).   

As a consequence, the incorporation of full-length proteins in general and 

fibronectin in particular is of critical importance. There is a need for new matrices 

that incorporates the complexity of full-length proteins but within controllable 

microenvironments.  

Seliktar’s group worked on the incorporation of full-length fibrinogen into 

synthetic PEG matrices instead of working with fibrin hydrogels (Almany & 

Seliktar, 2005; Dikovsky et al., 2006); laminin was incorporated into PEG hydrogels 

as well (Francisco et al., 2014) and, fibronectin has also been incorporated into a 

hyaluronic acid hydrogel (Seidlits et al., 2011). Although there are a few examples 

in literature, the incorporation of full proteins is not trivial and more work needs 

to be carried out to achieve better matrices with controllable properties for the 

study of cell behaviour.  

 

 

 



1.5 Hypothesis and aims 

The cell-material interface is an intricate and dynamic microenvironment where 

both material and cell mutually dictate one another’s fate. The material through 

its physicochemical properties (e.g. degradability, stiffness, adhesion, 

architecture or porosity) and the cell by modifying its surroundings (e.g. 

degradation, secretion of molecules).  

During the last decade, there has been a lot of effort trying to reproduce the 

physicochemical properties of the ECM and consequently, materials (mostly 

hydrogels) have appeared as three-dimensional environments that can be finely 

engineered to recapitulate many properties of the ECM. Additionally, the 

incorporation of biological molecules such as peptides derived from ECM proteins 

(e.g. RGD, IKVAV, GFOGER) has led to an improvement in material’s chemical 

properties, acting as better ECM mimetics for the interaction with cells. 

Furthermore, these new microenvironments can be loaded with soluble molecules 

and also control their release.  

Despite all the advances achieved, materials still lack certain complexity, and 

they are not able to reproduce some central features of the ECM such as the 

interaction between proteins and soluble molecules or some specific cell-protein 

interactions. For instance, many groups use the RGD peptide as a cell-adhesion 

mimetic of the fibronectin protein; however, the cell attachment domain of 

fibronectin (FNIII9-10) contains the synergy site (PHSRN motif), which has been 

shown to increase cell spreading and fibril assembly. Additionally, the full-length 

fibronectin molecule contains many other binding sites and even splicing variants 

that cannot be recapitulated using a peptidomimetic. 

In order to comprehend better tissue homeostasis, tissue repair and disease, there 

is a need for 3D microenvironments that can mimic better some of the more 

complex cell-ECM interactions that occur naturally. This will be extremely useful 

not only to improve our understanding of these interactions but to be able to use 

them as therapeutic strategies to tackle disease and tissue repair.  

The main goal of this work is to engineer a new family of highly tuneable hydrogel 

materials that incorporate full-length fibronectin. Fibronectin is an important 

protein from the ECM that – due to its structure - can bind growth factors in close 

proximity to integrin binding and thus, this system can be used as a tool to 

synergistically enhance growth factor’s activity in 3D.   

The specific aims of this work are: 
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• Design a strategy to covalently link fibronectin to a hydrogel polymeric 

network. 

• Engineer the system to control physicochemical properties such as stiffness 

and degradability. 

• To present VEGF in synergy with integrins via fibronectin binding of growth 

factor in close proximity to integrins.  

• Explore the effect of the VEGF-fibronectin interaction in angiogenic and 

vasculogenic in vitro models. 

• Explore the effect of the VEGF-fibronectin interaction in an in vivo model. 
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2 Chapter two: Materials and methods 

2.1. Materials 

All the materials used during this thesis are listed in the following tables: 

Table 2.1 List of polymers used.  

Reagent Product Provider Notes 

4-arm-PEG-Maleimide 4arm-PEG-MAL-20K-5g LaysanBio PEG-MAL, 20 kDa 

SH-PEG-SH PSB-613 Creative PEGworks PEGdiSH, 2 kDa 

Sodium hyaluronate HA60K Lifecore Bimomedical 75 kDa as per CoA 

 

Table 2.2 List of cells and cell culture reagents used. 

Reagent Product Provider Notes 

C2C12s 91031101 Sigma Murine 

Dermal fibroblasts HDFp Caltag Medsystems Human, pooled donor 

Human umbilical vein endothelial cells 

(HUVECs) 

ZHC-2301 Caltag Medsystems Human, pooled donor 

MSCs PT-2501 Lonza Human, single donor 

Dulbecco’s modified Eagle’s medium 41965-039 Gibco DMEM 

α-MEM 12561056 Gibco  

Human large vessel endothelial medium ZHP-2353 Caltag Medsystems HLVE 

Penicillin/Streptomycin 15140-122 Gibco P/S 

Foetal Bovine Serum  10500-064 Gibco FBS 

 

Table 2.3 List of kits used. 

Reagent Product Provider Notes 

DyLight™ 488 NHS Ester 46402 ThermoFisher  

ELISA kit Reagent Diluent DY995 R&D Systems  

ELISA kit Substrate  DY999 R&D Systems  

ELISA kit Stop Solution DY994 R&D Systems  

LIVE/DEAD® kit Calcein-AM C3099 ThermoFisher  

LIVE/DEAD® kit Ethidium homodimer-1 E1169 ThermoFisher  

Micro BCA™ assay kit 23235 ThermoFisher  

 



Table 2.4 List of antibodies and other reagents used for immunodetection.  

Reagent Product Provider Notes 

4',6-diamidino-2-phenylindole, 

dihydrochloride 

62247 ThermoFisher DAPI, 

Dilution 1:5000 

Mouse-anti-FN (cell adhesion site, 

monoclonal) 

HFN7.1-s Developmental Studies 

Hybridoma Bank 

Dilution 1:330,  

Mouse-anti-FN (gelatin binding 

site, monoclonal) 

MAB1892 Millipore Dilution 1:1000,  

Mouse-anti-FN (heparin binding 

site II, monoclonal) 

P5F3 Santa Cruz 

Biotechnology 

Dilution 1:2000,  

Rabbit-anti-FN (polyclonal)  F3648-.2ML Sigma Dilution (1:400, IF) 

(1:1000, ELISA),  

Goat-anti-mouse-Alexa Fluor 488 A-11001 ThermoFisher Dilution 1:200 

Rabbit-anti-mouse-Cy3 315-165-003 Jackson 

Immunoresearch 

Dilution 1:200 

Goat-anti-rabbit-Cy3 111-165-003 Jackson 

Immunoresearch 

Dilution 1:200 

Goat-anti-mouse-HRP 626520 Invitrogen Dilution 1:10000 

Goat-anti-rabbit-HRP 31460 Invitrogen Dilution 1:10000 

Mouse-anti-Vinculin (monoclonal) V9131-.2ML Sigma Dilution 1:400 

Rabbit-anti-YAP (polyclonal) H-125 Santa Cruz 

Biotechnology 

Dilution 1:200 

NucBlue R37605 ThermoFisher  

Phalloidin A12379 ThermoFisher Dilution 1:300 

Rhodamine R415 ThermoFisher Dilution 1:200 

Triton-X100 T8787 Sigma  

Tween 20 P2287 Sigma  

Vectashield H1000 Vectorlabs  

 

Table 2.5 List of proteins and peptides used. 

Reagent Product Provider Notes 

α-chymotrypsin C4129 Sigma Bovine 

Bovine Serum Albumin A7979 Sigma BSA 

Collagenase I 17100-017 Gibco  

Fibronectin 663 YoProteins Human, from plasma 

VEGF-A 293-VE-050/CF R&D Systems Isoform 165 

VPM peptide Custom synthesised GensScript GCRDVPMSMRGGDRCG 
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Table 2.6 List of other materials and reagents used. 

Reagent Product Provider Notes 

1,4-dithiothreitol R0861 ThermoFisher DTT 

2-Hydroxy-4′-(2-hydroxyethoxy)-2-

methylpropiophenone 

410896-10G Sigma Irgacure-

2959 

5-norbornene-2-carboxylic acid 446440 Sigma  

Anhydrous Dimethyl Sulfoxide 276855 Sigma DMSO 

Benzotriazole-1-yl-oxy-tris-(dimethylamino)-

phosphonium hexafluorophosphate 

8510040025 Sigma BOPS 

Cytodex-3 microcarriers C3275 Sigma  

D2O 191701 Sigma  

Dowex® resin 50Wx8 44514-100G-

F 

Sigma  

Dulbecco’s phosphate buffer solution 14190-094 Gibco DPBS 

Iodoacetamide I1149-5G Sigma IAA 

L-Cysteine 44889 ThermoFisher  

NaCl S/3160/53 Fisher  

NaOH S/4920/53 Fisher  

Optimal cutting temperature compound 361603E VWR OCT 

Rain-X 80199200 Rain-X  

Tetrabutylammonium  86854 Sigma TBA 

Tris(2-carboxyethyl)phosphine hydrochloride 75259-5G Sigma TCEP 

Trypan blue T8154 Sigma  

Trypsin-EDTA T4049-

100ML 

Sigma 0.25% 

Urea U5378 Sigma  

 

2.2 Methods 

2.2.1 Fibronectin PEGylation 

Fibronectin (YoProteins, 3 mg/mL) was PEGylated by modifying a procedure from 

Seliktar’s group (Almany & Seliktar, 2005) (Figure 2.1). Fibronectin was denatured 

in denaturing buffer (5 mM TCEP, 8 M urea, pH 7.4) for 15 min at room 

temperature (RT). Then 4-arm-PEG-Maleimide (PEGMAL, 20kDa, LaysanBio) was 

incubated for 30 min and RT at a molar ratio FN:PEGMAL 1:4. The PEGylation was 

stopped using 1 M NaOH (pH 8.5). After PEGylation, remaining non-reacted 

cysteine residues were blocked by alkylation using 14 mM iodoacetamide (IAA, 



Sigma). The product of the reaction was dialysed using (Mini-A-Lyzer, MWCO 10 

KDa, ThermoFisher) against DPBS for one hour at RT. Then, the protein solution 

was precipitated using cold ethanol. Briefly, nine volumes of cold absolute ethanol 

were added to the protein solution and mixed using a vortex mixer. The mixture 

was then incubated at -20°C overnight and centrifuged at 15000 g and 4°C for 15 

min. The supernatant was discarded and the protein pellet was further washed 

with 90% cold ethanol and centrifuged again at 15000 g and 4°C for 5 min. Pellets 

were dried and solubilised using 8 M urea at a final protein concentration of 2.5 

mg/mL. Once the protein was dissolved, the solution was dialysed against DPBS 

and stored in the freezer or immediately used.      

 

Figure 2.1 Schematic illustration of the fibronectin PEGylation work-flow.  

(a) Native fibronectin was used to conjugate with PEG molecules because it contains 
two disulphide bonds (four cysteine residues) in each fibronectin module types I and 
II as marked with asterisks on the right image. (b) To expose thiols, TCEP was used as 
a denaturant as it can catalyse the rupture of a disulphide bond in water. (c) 
PEGylation was carried out using Michael-type addition reaction between maleimide 
groups of 4-arm-PEG-maleimide macromers and thiol groups on fibronectin. (d) 
Alkylation reaction was assessed in order to block the thiol groups that did not react 
during the PEGylation step.  

2.2.2 Cell culture  

C2C12 cells (Sigma) between passages 4 and 7 were used for early adhesion studies 

and viability for PEG hydrogels. C2C12s were grown in DMEM high glucose without 

pyruvate and 20% FBS.  
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HUVEC cells (Caltag Medsystems) between passages 1 and 5 were used for viability 

and angiogenesis/vascularisation in vitro assays. HUVECs were grown in growth 

media (HLVC media).  

HDFs (Caltag Medsystems) between passages 1 and 6 were used for angiogenesis 

studies. Cells were grown in DMEM high glucose without pyruvate and 10% FBS until 

seeding. Once seeded, HLVC media was used. 

hMSCs (Lonza) between passages 4 and 7 were grown in 10 mm petri dishes using 

α-MEM and 10% FBS. 

All media used were supplemented with 1% penicillin/streptomycin.   

2.2.3 Cell adhesion assay on PEGylated fibronectin 

PEGylated and fibronectin was adsorbed onto glass coverslips at 20 µg/mL for one 

hour at RT. Native fibronectin was adsorbed at the same concentration and time 

as a control. After adsorption, samples were washed twice with DPBS and kept in 

the incubator (37ºC, 5% CO2) until seeding. C2C12 cells were seeded onto the glass 

coverslips at 10,000 cells/cm2 using FBS free media. Cells were let to attach for 

three hours (37ºC and 5% CO2). After that time, cells were fixed with 4% 

paraformaldehyde for 30 min at RT and kept at 4ºC. Conditions were tested in 

triplicate, twice. 

2.2.4 Enzyme-linked immunosorbent assay  

Enzyme-linked immunosorbent assay (ELISA) plates were coated with the capture 

antibody rabbit-polyclonal-anti-FN (Sigma) overnight at RT. Then, the capture 

antibody was washed three times with washing buffer (0.05% Tween 20 in DPBS). 

After washing, the plate was blocked using 1% BSA for one hour at RT. After 

blocking, the plate was washed three times using washing buffer. Then, samples 

(PEGylated fibronectin or native fibronectin) were added to the plate for one hour 

at RT. After sample incubation the plate was washed three times with washing 

buffer. Then, the primary antibodies (either HFN7.1 (1:330), P5F3 (1:2000) or 

MAB1892 (1:1000)) were added for one hour at RT. After incubation, samples were 

washed three times using washing buffer. Then, secondary antibody (goat-anti-

mouse-HRP (1:10000)) was added for one hour at RT and was washed three times 

with washing buffer. After that, substrate solution (1:1 V/V Reagent A:Reagent B, 

R&D Systems) was added for 20 min. The reaction was stopped using 4 N sulphuric 



acid (Stop solution, R&D Systems). The ELISA plate was read at 450 nm and 540 

nm using a plate reader (BIOTEK).   

2.2.5 Atomic force microscopy (AFM) imaging 

Proteins (either PEGylated fibronectin or native fibronectin) were adsorb onto PEA 

spin coated glass coverslips for 10 min at 20 µg/mL and RT as described (Salmerón-

Sánchez et al., 2011). AFM in AC mode (Nanowizard-3, JPK) was used to obtain 

phase and height images of the fibronectin-coated PEA samples. A pyramidal tip 

(silicon nitride, MPP-21220, f0 =59-69 Hz, Bruker) was used. Images were processed 

using the JPKSPM data processing software. 

2.2.6 PEG Hydrogel formation 

PEG hydrogels were formed using Michael-type addition reaction under 

physiological pH and temperature. Briefly, a final concentration of 1 mg/mL of 

PEGylated fibronectin was added to different amounts of PEGMAL (3%, 5% or 10% 

(w/V), Table 2.7). The crosslinker was added always at the end at a molar ratio 

1:1 maleimide:thiol to ensure full crosslinking. Crosslinkers used were either PEG-

dithiol (PEGSH, 2 KDa, Creative PEGWorks) or mixtures of PEGSH and protease-

degradable peptide flanked by two cysteine residues (VPM peptide, 

GCRDVPMSMRGGDRCG, purity 96.9%, Mw 1696.96 Da, GenScript) (Table 2.8). Cells 

and/or soluble molecules such as growth factors were always mixed with the 

protein and PEGMAL before adding the crosslinker. Once the crosslinker was 

added, samples were incubated for 30 min at 37°C to allow gelation. PEG only 

hydrogels were produced as well without the addition of the PEGylated 

fibronectin. The final volume of the hydrogels prepared was always 50 µL unless 

otherwise noticed.    

Table 2.7 Hydrogels used according to the amount of PEGMAL. 

FNPEG hydrogels 3% FNPEG 5% FNPEG 10% FNPEG 

Fibronectin (mg/mL) 1 1 1 

PEGMAL (mg/mL) 30 50 100 

PEG hydrogels 3% PEG 5% PEG 10% PEG 

Fibronectin (mg/mL) - - - 

PEGMAL (mg/mL) 30 50 100 
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Table 2.8 Percentages of crosslinker used for FNPEG and PEG hydrogels. 

Percentage of crosslinker  

(from total amount of crosslinker needed) 

VPM (%) PEGSH (%) 

0VPM 0 100 

0.1VPM 10 90 

0.2VPM 20 80 

0.3VPM 30 70 

0.5VPM 50 50 

 

2.2.7 Water sorption 

Hydrogels were formed and immersed in MilliQ water up to a week using filtered 

Eppendorf tubes. Empty baskets were weighed before starting the experiment and 

then, for every timepoint samples were centrifuged at 6500 rpm for 5 min to 

remove the supernatant from the basket so only the hydrogel sample would remain 

into the basket holder. Then, sample and basket were weighed. The amount of 

water absorbed was calculated as follows: 

Equation 2.1 Percentage of water absorbed after hydrogel formation. 

𝑾𝒂𝒕𝒆𝒓 𝑺𝒐𝒓𝒑𝒕𝒊𝒐𝒏 (%) =  
𝒎𝒕 − 𝒎𝟎

𝒎𝟎
∗ 𝟏𝟎𝟎 

Being mt the weight of the hydrogel at a certain time and m0 the weight of the 

hydrogel after formation. 

2.2.8  Protein quantification 

Protein from supernatants (in solution) was collected and quantified using 

bicinchoininc acid. Micro bicinchoninic acid protein assay kit (Micro BCA™, Thermo 

Fisher Scientific) was used following manufacturer’s instructions. Briefly, standard 

and samples were loaded onto a 96-well microplate and were mixed with the same 

volume of working reagent (25:24:1 (V:V:V) of Reagents A:B:C from the kit). Then, 

the microplate was sealed and incubated for two hours at 37°C. After incubation, 

the microplate was let to cool down for 20 min at RT, protected from light. The 

absorbance at 562 nm was measured using a plate reader (BIOTEK). Bovine serum 

albumin (BSA, 2mg/mL) was use to prepare the standard curve. Conditions were 

prepared in triplicate and samples were measured in triplicate.  



2.2.9 Polyacrylamide gel electrophoresis 

The polyacrylamide gel electrophoresis (PAGE) was run using 0.1% SDS in a Trys-

Glycine running buffer (Bio-Rad). Samples were loaded using a reducing loading 

buffer prepared by mixing Laemmli buffer (4X, Bio-Rad) and β-mercaptoethanol 

(350 mM, Bio-Rad), following manufacturer’s instructions (three parts of sample 

and one part of loading buffer). Fifteen microliters of each sample (sample + 

loading buffer) were loaded and 5 µL of the marker (colour prestained protein 

ladder, broad range (11-245 kDa, New England Biolabs P7712S) were used. A 

gradient precast gel (BioRad, 4-20% TGX-PAGE) was used to run the samples. The 

running conditions were 100 V, 1800 min. Gels were incubated in fixing solution 

(45% methanol, 45% water, and 10% glacial acetic acid (V/V/V)) during 30 min at 

RT. Then, gels were stained with 0.025% Coomassie Blue G250 (Bio-Rad) in 10% 

acetic acid overnight at RT using an orbital shaker. Finally, each gel was destained 

twice in 10% acetic acid (30 min and 60 min, respectively) and transferred to 

water. Images of the gel were taken using the scanner of a canon image runner 

advance C5235i multifunctional laser printer. Each condition was run in triplicate 

in the same gel except for the protein ladder, which was run twice in the same 

gel. 

2.2.10 Preparation of cryo-sections 

Hydrogels were embedded in OCT (optimal cutting temperature compound, VWR) 

and flash frozen by immersion in liquid nitrogen to preserve the structure of the 

gel. Samples were stored at -80°C until use. A cryostat (Leica, -20°C) was used to 

cut the samples. Sections of 40 and 100 µm of thickness were prepared on 

microscope slides (Superfrost® slides, ThermoFisher). 

2.2.11 Immunofluorescence 

Fibronectin was detected via immunofluorescence (IF) in hydrogel samples. 

Hydrogel samples or hydrogel sections were blocked with blocking buffer (1% BSA) 

for 30 min at RT. Then, primary antibody rabbit polyclonal-anti-FN (Sigma) was 

added and incubated for one hour at RT. After the addition of the primary 

antibody, samples were washed three times using washing buffer (0.5% Tween 20 

in DPBS). Then, secondary antibody goat-anti-rabbit-Cy3 was incubated for one 

hour at RT (protected from light). After that, samples were washed three times 

using washing buffer. Images were taken at 10X, 20X and 40X using a ZEISS 

AxioObserver Z.1. 
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In order to study cell adhesion, C2C12s were stained for vinculin, actin and nuclei 

using a standard immunostaining procedure. Briefly, samples were permeabilised 

for 5 min using 0.1% Triton-X100, washed twice with DPBS and blocked with 

blocking buffer for 30 min at RT. After blocking, samples were incubated with 

primary antibody anti-vinculin (1:400) for one hour at RT and washed three times 

with washing buffer (0.5% Tween 20 in DPBS). Then secondary antibody Cy3-anti-

mouse (1:200) and AlexaFluor-488 Phalloidin (1:200) were added to the samples 

for 1h at RT protected from light. After that, samples were washed three times 

using washing buffer and mounted using VECTASHIELD mounting media with DAPI. 

Images were taken at 63X magnification using an epifluorescence microscope.  

IF to detect YAP was performed as follows. First, cells were permeabilised with 

0.1% Triton-X100 for 5 min and blocked with 3% BSA for 45 min. After blocking, 

the primary antibody rabbit-anti-YAP was added and incubated overnight at 4ºC 

(dilution 1:200). Then, the primary antibody was washed with washing buffer 

three times. After washing, a secondary antibody goat-anti-rabbit-Alexa Fluor 488 

was added for two hours  at RT (dilution 1:200). Three washes with washing buffer 

follow the antibody incubation. Then, rhodamine phalloidin was added for 20 min 

(dilution 1:200) and DAPI staining for 10 min (dilution 1: 5000). Images were taken 

using an epifluorescence microscope at 20X magnification. 

2.2.12 AFM nanoindentation  

Nanoindentation was assessed using atomic force microscopy in force spectroscopy 

mode (AFM/FS, Nanowizard-3, JPK). Cantilevers (Arrow-TL1-50, spring constant ~ 

0.03 N/m, Nano World innovative technologies) were functionalised manually with 

silicon oxide microbeads (20 mg/mL, size 20 µm, monodisperse, Corpuscular Inc.). 

The actual stiffness of the cantilever was estimated using the thermal calibration 

method. Samples tested were 100 µm sections of the hydrogels fully swollen in 

milliQ water. Measurements were carried out in immersion. Indentation of at least 

500 nm were assessed using constant force. The area of the sample was mapped 

defining squared areas (2500 µm2, 25 measurements). Five maps per replicate 

were measured and at least three replicates per sample were tested, unless 

otherwise noticed. The analysis (JPKSPM processing software) was performed 

using the Hertz model for a spherical indenter to fit the curves obtained.  



2.2.13 Enzymatic degradation 

Hydrogels were formed and swollen in DPBS for three days to ensure hydrogels 

were fully swollen before starting the enzymatic degradation. All samples were 

weighed before starting the degradation. Then, samples were covered with 

protease (collagenase type I (Gibco) or α-chymotrypsin (from bovine pancreas, 

Sigma), 50 U/mL in DPBS, 37°C). For every timepoint all supernatants were 

removed by centrifugation at 6500 rpm for 5 min and samples were weighed. To 

continue the experiment fresh protease solution was added. The degradation rate 

was calculated as follows: 

Equation 2.2 Percentage of mass lost during degradation. 

𝑀𝑙𝑜𝑠𝑠 (%) =  
𝑀𝑖 − 𝑀𝑡

𝑀𝑖
∗ 100 

Being Mloss the percentage of mass lost during degradation, Mi the mass after 72 

hours swelling in milliQ water (initial mass) and Mt, the mass at the different 

timepoints after the addition of the protease solution. 

2.2.14 Growth factor labelling 

In order to study growth factor binding and release, VEGF (carrier free, R&D 

Systems) was fluorescently labelled with an amino reactive dye (DyLight® NHS 

Ester, Thermo Fisher Scientific) following manufacturer’s instructions. Briefly, 

VEGF was prepared for buffer exchange using dialysis membrane tubes (Mini-A-

Lyzer, COMW 10 kDa, ThermoFisher) against 0.05 M Sodium borate buffer at pH 

8.5 for two hours at RT. Then, the appropriate amount of dye was added (as 

calculated by manufacturer’s guidelines) to the VEGF solution. The dye and the 

growth factor were let to react for one hour at RT, protected from light. Then, 

the non-reacted dye was removed by dialysis against DPBS for three hours, adding 

fresh DPBS every hour. The labelled VEGF was aliquoted and stored at -20°C until 

use. The labelled VEGF will be named VEGF-488 from hereafter.    

2.2.15 Growth factor binding isotherms 

Hydrogels were prepared as explained in section 2.2.6 with a final hydrogel 

volume of 50 µL. Hydrogels were immersed in 10 mM L-cysteine solution for two 

hours to make sure all the maleimide groups from the hydrogels were reacted. 

After that, samples were washed three times in DPBS and immersed in VEGF-488 

solutions of different concentrations (5, 10 and 15 µg/mL). Once immersed, 

samples were incubated for 20 hours at 37°C protected from light. Then, the 

supernatant was taken and read using a plate reader (Ex/Em 493/518 nm). All 
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conditions were prepared in quadruplicate and all samples were measured twice. 

The initial solutions were also measured and used as standard curve to be able to 

correlate fluorescence intensity with concentration of VEGF-488. The 

fluorescence intensity of hydrogels immersed in DPBS (without VEGF-488) was 

measured to normalise the data. 

The percentage of VEGF-488 bound was calculated as follows: 

Equation 2.3 Amount of VEGF-488 retained in hydrogels. 

𝑚𝑉𝐸𝐺𝐹𝑏𝑜𝑢𝑛𝑑 = 𝑚𝑉𝐸𝐺𝐹𝑖 − 𝑚𝑉𝐸𝐺𝐹𝑠 

Where mVEGFbound is the final mass of VEGF-488 retained in the hydrogels, mVEGFi is 

the initial total mass of VEGF-488 added to the samples in solution and mVEGFs is 

the total mass of VEGF-488 measured in the supernatant after incubation. 

Once calculated the amount of VEGF-488 retained in the samples, the percentage 

of VEGF-488 bound to hydrogels was calculated as follows: 

Equation 2.4 Percentage of VEGF-488 bound to hydrogels. 

𝑽𝑬𝑮𝑭𝒃𝒐𝒖𝒏𝒅 (%) = 𝟏𝟎𝟎 − 𝑽𝑬𝑮𝑭𝒔𝒐𝒍𝒖𝒃𝒍𝒆 (%) 

Where VEGFbound is the percentage of VEGF retained in the hydrogel and VEGFsoluble 

is the percentage of VEGF measured from the supernatants after the incubation 

of the VEGF with the hydrogel. 

2.2.16 Growth factor release assays 

Hydrogels were prepared as explained in section 2.2.6 incorporating VEGF-488 to 

the mixture before adding the crosslinker. The final concentration of VEGF-488 

loaded was 10 µg/mL and hydrogels were made with a final volume of 50 µL. Then, 

samples were immersed in DPBS and incubated at 37°C protected from light. At 

every timepoint all the DPBS solution was taken and used to measure the 

fluorescence (Ex/Em 493/518 nm). Fresh DPBS was added after each timepoint. A 

standard curve using VEGF-488 was prepared and empty (not loaded with growth 

factor) hydrogels were used as controls. All conditions were prepared in triplicate 

and each sample was measured three times. 

The cumulative release was calculated as follows: 



Equation 2.5 Percentage of VEGF released from hydrogels. 

𝑽𝑬𝑮𝑭𝒓𝒆𝒍𝒆𝒂𝒔𝒆𝒅(%) = (𝒎𝑽𝑬𝑮𝑭𝒔 ∗ 𝟏𝟎𝟎) 𝒎𝑽𝑬𝑮𝑭𝒊⁄  

Where VEGFreleased is the percentage of VEGF-488 released from hydrogels, mVEGFs 

is the amount of VEGF-488 measured in the supernatant and mVEGFi is the amount 

of VEGF-488 initially loaded. 

2.2.17 Cell viability  

Cytocompatibility of hydrogels with C2C12s was tested using Live/Dead® assay 

(ThermoFisher) following manufacturer’s instructions. Briefly, C2C12 cells were 

encapsulated at 8·106 cells/mL according to Garcia et al. (Salimath & García, 

2016) and incubated within the hydrogels at different timepoints. For every 

timepoint cells were stained using a Live/Dead® assay kit (ThermoFisher). Briefly, 

samples were washed twice in DPBS and then immersed in 2 µM Calcein-AM and 4 

µM Ethidium homodimer-1 and incubated for 15 min. Samples were washed twice 

before imaging with epifluorescence microscope. 

Cytocompatibility of hydrogels with HUVECs was also tested using a cell density of 

106 cells/mL at different timepoints. To assess viability a Live/Dead® assay was 

performed as explained above. Samples were washed twice using DPBS before 

imaging with a confocal microscope (ZEISS CLSM 880) at 10X magnification. 

Cytocompatibility of hydrogels with hMSCs was tested in HA hydrogels using a cell 

density of 106 cells/mL at different timepoints. To test viability a Live/Dead® 

assay was performed as explained above. Samples were imaged using a confocal 

microscope (Leica) at 10X and 20X magnification.  

2.2.18 Angiogenesis assays 

Angiogenesis is a multistep process that involves endothelial cell activation and 

sprouting from the parent vessel. This is followed by migration, proliferation, 

reorganisation and alignment. Finally, tube formation (lumen formation) and 

anastomosis (vessel fusion) with other vessels. Endothelial cell sprouting is, 

therefore, one of the first steps that occurs in the angiogenic process.  

To test whether or not endothelial cells can be activated and form sprouts in 3D, 

usually cells are seeded on top of beads and encapsulated within different 

matrices, this creates a confluent endothelial cell monolayer on the outer part of 

the bead, simulating the parent vessel. From that monolayer, endothelial cells 

are able to receive different signals (e.g. a VEGF gradient) and migrate towards it 

forming many different sprouts (Juliar, Keating, Kong, Botvinick, & Putnam, 2018; 
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Nakatsu et al., 2003; Rioja, Tiruvannamalai Annamalai, Paris, Putnam, & 

Stegemann, 2016).   

Angiogenic sprouting was assessed using bead microcarriers. Briefly, HUVECs were 

mixed with dextran-coated Cytodex 3 microcarriers (Sigma) at a final 

concentration of 400 cells per bead in one millilitre of growth medium. Cells and 

beads were mixed gently every 20 min for four hours at 37°C. Then, cells and 

beads were transferred to a 25 cm2 tissue culture flask with growth medium and 

left overnight in the incubator (37°C and 5% CO2). Before encapsulation, cell-

coated beads were washed three times with growth medium. Finally, cell-coated 

beads were loaded into hydrogels at a final concentration of 400 beads/mL. Once 

the hydrogels were prepared, twenty thousand human dermal fibroblasts were 

seeded on top. Growth media supplemented with different concentrations of VEGF 

(0, 50, 500 ng/mL, R&D Systems) was changed every other day. The assay was 

monitored every day for four days. Samples were fixed using 4% para-

formaldehyde for 30 min at RT and stained for actin (AlexaFluor-488 Phalloidin 

dilution 1:300) and nucleus (NucBlue, LifeTechnologies) for one hour. Samples 

were washed three times with 0.5% Tween20 in DPBS and mounted onto bottom 

glass petri dishes using VECTASHIELD mounting medium (VectorLabs). Samples 

were imaged using confocal microscopy (ZEISS LSM 880) at 10X magnification.   

 

Figure 2.2 Sketch of the 3D angiogenesis assay. 

Endothelial cells were seeded on top of dextran-coated beads to form a monolayer 
on the outer layer of the bead. Endothelial cell-coated beads were encapsulated 
then within hydrogels and VEGF was supplemented in the cell culture media. After 
4 days, cell sprouting was assessed using fluorescence images. 
 

2.2.19 Vascularisation assays 

For vascularisation studies, HUVECs were encapsulated (5·106 cells/mL) in situ 

within hydrogels loaded with 200 pmol/mL VEGF-A165 (R&D Systems) or unloaded 



hydrogels (without growth factor). Samples at days one, two and three were fixed 

with 4% paraformaldehyde for 30 min at RT and stained for actin and nucleus as 

explained in section 2.2.18 (on page 84). Samples were imaged using confocal 

microscopy (ZEISS LSM 880) at 10X magnification.   

2.2.20 Chorioallantoic membrane assay 

Among various animal model systems designed to study the mechanisms underlying 

angiogenesis, the chick embryo has been a useful model for the analysis of the 

angiogenic potential of soluble factors, cells and biomaterials. The chorioallantoic 

membrane (CAM) allows gas exchange between the chick embryo and the 

atmosphere that surrounds the egg ( and effectively working as a lung for the 

developing embryo). The CAM consists of three germ layers (ectoderm, mesoderm 

and endoderm). The ectoderm faces the shell membrane and is underlined by the 

capillary plexus, which starts to form between days 5-6 of embryonic development 

(E5-6) by both angiogenesis and vasculogenesis. Consequently, due to the fast 

developing vascular system present within the CAM, the chick embryo is a 

commonly used host to perform pro-angiogenic and anti-angiogenic assays 

(Deryugina & Quigley, 2008; Moreno-Jimenez, Kanczler, Hulsart-Billstrom, Inglis, 

& Oreffo, 2017). 

Fertilised eggs were received at day eight post-fertilisation (E8). Eggs were kept 

in an incubator (37.5 ºC, 50-60% relative humidity (RH)). To perform the CAM 

assay, eggs were candled to detect and mark the air sac of the embryo and then, 

the egg shell was cut on top of the air sac to expose the CAM. Once the membrane 

was exposed, each sample was laid carefully on top of the membrane Figure 2.3. 

The samples used were: 5% PEG 0.5VPM, 5%PEG 0.5VPM with 2.5 µg/mL VEGF165, 

5% FNPEG 0.5VPM, 5% FNPEG 0.5VPM with 2.5 µg/mL VEGF165 and an empty 

condition, where the CAMs were exposed but no material was placed on top. After 

that, the exposed area of the egg with the sample was sealed and labelled. All 

eggs were incubated (37.5 ºC, 50-60% RH) for four days (E12), when the 

membranes were imaged using a stereomicroscope (Leica MZ APO) using X8 and 

X16 magnifications. Six replicates per condition were used; two pictures per 

replicate at each magnification used were taken (trying to cover as much area of 

the CAM as possible and imaging under the hydrogel and far away from the 

hydrogel).  
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Figure 2.3 Sketch of the chick chorioallantoic membrane assay. 

Left image shows the structure of the chick embryo. At day 7-8 post-fertilisation, the 
egg shell is cut on top of the air cavity to expose the CAM, where the hydrogel sample 
is deposited carefully. Right picture shows the CAM of the chick embryo, which is a 
well vascularised membrane. 

  

2.2.21 Norbornene-modified hyaluronic acid (NorHA) synthesis 

Prior to NorHA synthesis, HA was modified using tetrabutylammonium salt (HA-

TBA) in order to solubilise HA in DMSO for the reaction. Briefly, sodium 

hyaluronate (Na-HA, Lifecore Biomedical, ~75 kDa) was dissolved in deionised (DI) 

water at a concentration around 20-50 mg/mL. Once dissolved, Dowex resin 

(50Wx8, Sigma) was added to the solution at a ratio 3:1 (w/w) resin to Na-HA for 

two hours while stirring at RT. Then, the mixture HA/resin was filtered using a 

kitasatos flask (whatman paper #2, vacuum). After that, a solution of TBA in DI 

water was prepared (1:1 V/V, for 1 g HA typically 12 mL TBA diluted solution). 

Neutralisation of the HA solution was performed using TBA solution, until pH 7.02-

7.05. Once neutral, the solution was partitioned into 50 mL tubes, frozen (-80°C, 

overnight) and lyophilised (four days, < 130E-03 mBar, -80°C). The product of 

lyophilisation was stored at -20°C until use. 1H-NMR spectrum of HA-TBA was 

performed dissolving 5 mg of HA-TBA in 700 µL of D2O; the spectrum obtained was 

used to confirm the degree of modification.  

Norbornene-modified hyaluronic acid (Nor-HA) was synthesised mixing HA-TBA 

with 5-norbornene-2-methylamine (Nor-amine) and anhydrous DMSO (~5 mL per 

0.1 g HA-TBA, via cannulation) in a round bottom flask under inert atmosphere. 

Once HA was fully dissolved a benzotriazole-1-yl-oxy-tris-(dimethylamino)-

phosphonium hexafluorophosphate (BOP, in DMSO) solution was added via 

cannulation to the HA/Nor-amine solution and it was reacted for two hours at RT. 



After reaction, the solution was quenched with cold DI water and transferred to a 

pre-soaked dialysis tube (MWCO 6-8 kDa). Dialysis was performed for five days in 

DI water (adding ~5 g NaCl in the dialysis water, changing water twice daily). 

Then, the dialysed product was filtered using a kitasatos flask (whatman paper 

#2, vacuum). The filtrated product was dialysed again in DI water for three to five 

days. The dialysed product was partitioned into 50 mL tubes, frozen overnight and 

lyophilised in four days. 

2.2.22 HA hydrogel photopolymerisation 

Solutions containing NorHA (2 wt.%), DTT, Irgacure-2959 (0.05 wt.%) and DPBS 

were prepared using different formulations (Table 2.9). Once dissolved, 70 µL of 

the solution were placed on a polydimethylsiloxane (PDMS) mould and the samples 

were covered with a glass coverslip treated with Rain-X. Then, samples were 

photopolymerised (Excellitas Omnicure S1500, filter 320-390nm, 10 min, 10 

mW/cm2).   

For fibronectin-HA hydrogels, fibronectin was denatured using 20 mM TCEP (15 

min, RT, shaking). Then, the denatured fibronectin was mixed with the HA solution 

for 10 min and hydrogels were formed by photopolymerisation (10 min, 10 

mW/cm2). 

Table 2.9 HA hydrogels formulations used.  

* Fibronectin was used at different concentrations. Unless otherwise noted, fibronectin was used 

at 50 µg/mL. **SH groups coming from the crosslinker, either DTT or VPM were used. 

HA hydrogels FNHA 0VPM FNHA VPM 

Nor-HA (mg/mL) 20 20 

FN* (µg/mL) 50 50 

SH**:Norbornene ratio 0.6:1 0.6:1 

 

For cell encapsulation experiments, cells were trypsinised and resuspended in HA 

polymer solution at a final density of 5·105 cells/mL. The solution with cells was 

added to a 6 mm cylindrical mould and irradiated for 10 min at 10 mW/cm2. The 

newly formed gels were immediately transferred to a 24-well plate with growth 

medium.   

2.2.23 Dynamic mechanical analysis (DMA) tests 

Mechanical tests were performed using a TA instruments DMA Q800 in compression 

mode. Briefly, a force ramp of 0.5 N/min was applied up to 15 N of force were 
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reached . The compressive modulus (E) was obtained from stress-strain curves and 

calculated as the slope between 10-20% strain using TA instruments software. 

Conditions were prepared in triplicate. Each sample was measured twice. 

2.2.24 Cell adhesion assay on NorHA hydrogels 

For cell adhesion experiments, hMSCs were grown in 10 mm petri dishes using 

growth medium (α-MEM and 10% FBS). All hydrogels were polymerised and 

maintained in DPBS until seeding. Cells were seeded on top of the hydrogels at a 

density of 5,000 cells/cm2 for three or twenty-four hours in medium without 

serum. Glass controls were seeded at the same cell density using growth medium. 

2.2.25 Image analysis 

Cell morphology analysis  

Cell shape descriptors were measured using ImageJ 1.51v (National Institutes of 

Health, US). Briefly, actin cytoskeleton images were binarized using a threshold 

function. Then, the wand tracing tool was used to select the outline of the cell 

and the measure function was used to calculate parameters such as cell area, 

aspect ratio and roundness. The aspect ratio is defined as the ratio between the 

major and minor axis of the shape selected and the roundness was calculated as 

follows: 

Equation 2.6 Roundness calculation. 

𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 = (4 ∗ 𝑎𝑟𝑒𝑎) (𝜋 ∗ (𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠)2)⁄  

FA analysis 

Vinculin images were used for the FA analysis. They were uploaded to the Focal 

Adhesion Analysis Server (Berginski & Gomez, 2013) along with the corresponding 

actin cytoskeleton image to use as a cell mask. The results obtained include a 

binarized image of the FAs and measurements for several parameters, from which 

the FA number per cell, the FA area and size were used. 

Viability from Live/Dead® staining 

The percentage of viability was calculated from the images taken using ImageJ. 

For single images (taken with epifluorescence microscope), each channel was 

filtered using a gaussian blur filter with a sigma ball radius of two and then, the 

find maxima process was utilised to count cells.  

When analysing stacks of images, for each channel the maximum intensity Z-

projection images were obtained using ImageJ. Then, a Gaussian blur filter was 



passed (sigma ball radius of two) and the number of cells in each channel was 

counted using the find maxima process.  

In both cases the total number of cells was calculated using Equation 2.7.  

Equation 2.7 Calculation of total number of cells for Live/Dead® staining. 

𝑁𝑡𝑜𝑡𝑎𝑙 =  𝑙𝑖𝑣𝑒𝑐𝑒𝑙𝑙𝑠 + 𝑑𝑒𝑎𝑑𝑐𝑒𝑙𝑙𝑠 

Being livecells the total number of cells quantified using the live channel stack and 

deadcells the total number of cells quantified using the dead channel. 

Then, the percentage of cell viability was calculated as per Equation 2.8. 

Equation 2.8 Calculation of viability (%) for Live/Dead® staining. 

𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  (𝑙𝑖𝑣𝑒𝑐𝑒𝑙𝑙𝑠 𝑁𝑡𝑜𝑡𝑎𝑙⁄ ) ∗ 100 

Cell morphology analysis (vasculogenesis assay) 

Stacks obtained from confocal imaging were analysed using ImageJ 1.51v. Briefly, 

actin cytoskeleton stacks were opened and segmented using the trainable weka 

segmentation 3D plugin. Once the stacks were converted to 8-bit segmented 

stacks, the segmented objects were quantified using the 3D objects counter tool 

with the following parameters: volume (V, µm3), number of voxels/object, surface 

(S, µm2), number of voxels/surface and centroids. Prior to the quantification a 

size exclusion filter was applied, so objects smaller than 500 voxels were not 

counted (i.e. to avoid quantification of segmented background noise). The 

sphericity (Ψ) of the objects was calculated as follows: 

Equation 2.9 Sphericity calculation. 

𝛹 = [𝜋
1

3⁄ ∙ (6 ∙ 𝑉)
2

3⁄ ] 𝑆⁄  

Capillary formation analysis (CAM assay) 

Images obtained from the stereomicroscope at X16 magnification were used for 

the quantification. Images (RGB colour format) were split into the three RGB (red, 

green and blue) channels. The green channel was chosen for the segmentation as 

it was the one with best contrast to detect the capillaries. Segmentation was 

assessed manually, tracing a black line on top of each capillary. The result of the 

segmentation was used to quantify the number of branches, the number of 

junctions and the number of triple points per image via the skeletonize tool on 

ImageJ.  

YAP localisation  

For YAP localisation experiments, hMSCs were grown in 10 mm petri dishes using 

growth medium. All hydrogels were polymerised and maintained in DPBS until 
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seeding. Cells were seeded on top of the hydrogels at a density of 5,000 cells/cm2 

for three hours in medium without serum.   

The quantification of YAP was assessed from the fluorescence images using 

ImageJ. The nuclear/cytoplasm ratio was defined using Equation 2.10:  

Equation 2.10 YAP’s integrated density fluorescence nucleus/cytoplasm ratio. 

𝑌𝐴𝑃𝑛𝑢𝑐/𝑐𝑦𝑡 𝑟𝑎𝑡𝑖𝑜 = [(𝑌𝐴𝑃𝑛𝑢𝑐 𝐴𝑛𝑢𝑐⁄ ) (𝑌𝐴𝑃𝑐𝑦𝑡 𝐴𝑐𝑦𝑡⁄ )]⁄  

Being YAPnuc the integrated density of YAP in the nucleus, Anuc the area of the 

nucleus; YAPcyt the integrated density of YAP in the cytoplasm (defined as per 

Equation 2.11) and Acyt the area of the cell cytoplasm (defined as per Equation 

2.12).  

Equation 2.11 YAP’s integrated density fluorescence in the cytoplasm. 

𝑌𝐴𝑃𝑐𝑦𝑡 =  𝑌𝐴𝑃𝑐𝑒𝑙𝑙 − 𝑌𝐴𝑃𝑛𝑢𝑐 

Being YAPcell the integrated density of YAP in the entire cell. 

Equation 2.12 Definition of cytoplasmic area. 

𝐴𝑐𝑦𝑡 =  𝐴𝑐𝑒𝑙𝑙 − 𝐴𝑛𝑢𝑐 

Being Acell the area of the entire cell. 

2.2.26 Statistical analysis 

The statistical analysis was performed using GraphPad Prism 6.01 software. All 

experiments were carried out in triplicate unless otherwise noticed. All graphs 

represent mean ± standard deviation (SD) unless otherwise noted. The goodness 

of fit of all data-sets was assessed via D’Agostino-Pearson Normality test. When 

comparing three or more groups: normal distributed populations (homoscedastic 

data) were analysed via analysis of variance test (ANOVA test) performing a 

Tukey’s post hoc test to correct for multiple comparisons; when populations were 

heteroscedastic (i.e. not distributed normally), a Kruskal-Wallis test was used with 

a Dunn’s post hoc test to correct for multiple comparisons. When comparing only 

two groups, parametric (normal distributed population, t-test) or non-parametric 

(Mann-Whitney test) tests were performed. Differences among groups are stated 

as follows: for p-values <0.05 (*), when p-values <0.01 (**), for p-values < 0.005 

(***), for p-values < 0.001 (****), when differences between groups are not 

statistically significant (n.s).      
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3 Chapter Three: Engineering Fibronectin-based 

PEG Hydrogels  

3.1 Introduction 

Scaffolds for Tissue Engineering are usually fabricated from either synthetic 

polymers or biological components. On the one hand, synthetic materials offer 

controllable physicochemical properties but lack biological functionalities for cell 

instruction. On the other hand, biological materials present many interesting 

biological capabilities; however, they offer physicochemical features that vary 

from batch to batch, making it difficult to predict outcomes (more information in 

section 1.2). 

In this sense, biosynthetic hydrogels present the advantages of both natural and 

synthetic materials. Biosynthetic hydrogels are generally fabricated by using the 

backbone of a synthetic polymer, which are then decorated with biologically 

active ligands (Almany & Seliktar, 2005; Cruz-Acuña et al., 2017; Shekaran et al., 

2014a). Here, we focus on the stable incorporation of the full-length fibronectin 

protein into a PEG hydrogel network. Fibronectin is an abundant glycoprotein from 

the ECM and its generally studied as a paradigm protein for cell adhesion due to 

its RGD and PHSRN motifs (Hersel et al., 2003; Petrie et al., 2006; Salinas & 

Anseth, 2008). Moreover, fibronectin contains other binding sites such as the 

heparin-binding site that has been shown to promiscuously bind growth factors (M. 

M. Martino & Hubbell, 2010). The use of fibronectin to present growth factors in 

synergy with integrins has been used in literature (Llopis-hernández et al., 2016; 

Mikaël M. Martino et al., 2011; Moulisová et al., 2017). 

This chapter focuses on the incorporation of fibronectin into a PEG hydrogel 

system using a thiol based Michael-type addition reaction that takes place at 

physiological pH and temperature (Edward A. Phelps et al., 2012). This hydrogel 

system aims to provide a highly tuneable platform for cell encapsulation with the 

distinct advantage that, due to the presence of fibronectin, can bind growth 

factors in synergy with integrins.      

To be able to covalently link the protein, we first functionalised it in a PEGylation 

step to subsequently homogenise it within the PEG solution to achieve gelation. 

The PEGylated fibronectin was tested to study biological activity using ELISAs, AFM 



and studying cell adhesion. Then, fibronectin-based PEG hydrogels were 

characterised to test their mechanical performance, degradability features and 

their ability to allow in situ encapsulation of cells. 

3.2 Materials and methods 

The materials and methods used for the work discussed in this chapter are 

described in Chapter 2; more specifically fibronectin PEGylation is described in 

section 2.2.1, cell culture in section 2.2.2, cell adhesion assays in section 2.2.3, 

ELISA assays in section 2.2.4, AFM imaging in section 2.2.5, hydrogel formation in 

section 2.2.6, water sorption tests in section 2.2.7, BCA assay in section 2.2.8, 

SDS-PAGE in section 2.2.9, preparation of cryo-sections in section 2.2.10, IF assays 

in section 2.2.11, nanoindentation measurements in section 2.2.12, degradation 

experiments in section 2.2.13, viability assays in section 2.2.17, image analysis in 

section 2.2.25 and statistical analysis in section 2.2.26.  

3.3 Results 

3.3.1 Fibronectin PEGylation and hydrogel formation 

Fibronectin-PEG Hydrogel fabrication 

Fibronectin-based PEG hydrogels are made from PEGylated fibronectin monomers 

that are subsequently crosslinked to a PEG network utilising Michael-type addition 

reaction at physiological pH and temperature. Figure 3.1shows the series of steps 

followed to covalently link PEG molecules to the fibronectin monomer and 

hydrogel formation. Fibronectin was initially denatured (at ~pH 7.4) using TCEP 

as denaturant and urea as chaotropic agent. This chemical denaturation allows 

the exposure of thiol groups present in the fibronectin structure. After 

denaturation, the PEGylation step was carried out forming thioether bonds 

between the maleimide groups present on PEG molecules and the previously 

exposed thiol groups on fibronectin. As a final step, all the non-reacted thiol 

groups were blocked via alkylation using iodoacetamide Figure 2.1.   



95 
 

 

Figure 3.1 Fibronectin-PEG hydrogel formation process. 

(a) The fabrication of fibronectin-PEG hydrogels needs of the exposure of thiol groups 
on fibronectin prior to the PEGylation of the molecule. Then, PEGylated fibronectin 
is incorporated to a PEG network formed by 4-arm-PEG-maleimide and a thiolated 
crosslinker (PEG-dithiol or protease-degradable peptide flanked by two cysteine 
residues). (b) Structure of the 4-arm-PEG-maleimide, (c) structure of the PEG-dithiol 
and (d) macroscopic picture of a fibronectin-PEG hydrogel. Scale bar: 5 mm. 

 

Exposure of binding sites on PEGylated fibronectin 

The biological activity of the PEGylated fibronectin was tested via ELISA to study 

the availability of certain domains of fibronectin (Figure 3.2). In addition, C2C12 

cells were seeded on top of PEGylated fibronectin coated glass to test cell 

morphology and adhesion (Figure 3.3 and Figure 3.4). Finally, the capability of 

PEGylated fibronectin to form networks was also tested using poly(ethyl) acrylate 

(PEA). PEA has shown to spontaneously organise fibronectin molecules into fibrillar 

networks, whereas when fibronectin is adsorbed on other surfaces it retains its 

globular conformation (Ballester-Beltrán et al., 2012; Salmerón-Sánchez et al., 

2011). The fibrils observed on PEA are similar as those formed in vivo where 

fibronectin fibrillogenesis occurs. This phenomenon called material-driven 

fibronectin fibrillogenesis has been used as a strategy to make the growth factor 

binding site of fibronectin more available compared to fibronectin’s globular 

conformation. The conformation of fibronectin on this surface has demonstrated 

to enhance BMP-2 and VEGF activities in vivo (Llopis-hernández et al., 2016; 

Moulisová et al., 2017). (Figure 3.5).   



 

 

 

Figure 3.2 Native and PEGylated fibronectin present similar domain exposure in 
solution. 

(a) Sketch of the ELISA procedure, were native or PEGylated fibronectin in solution 
were captured using a polyclonal antibody anti-FN (in black) and different monoclonal 
antibodies anti-FN (in red) were used to study the availability of different domains. 
The detection was assessed via a secondary antibody with a horse radish peroxidase 
enzyme bound (in grey); (b) scheme of the affinity for the three different antibodies 
anti-FN used. (c) Absorbance (in arbitrary units, a.u.) of the ELISA with HFN7.1 
antibody, (d) absorbance of the ELISA using P5F3 antibody and (e) absorbance values 
of the ELISA with MAB1892 antibody. Graphs (c-e) show mean ± SD (n=3). 

 

As can be seen in Figure 3.2, native and PEGylated fibronectin were compared 

using three different monoclonal antibodies that recognise three different areas 

on fibronectin. HFN7.1 antibody recognises the cell-adhesion domain, P5F3 

antibody recognises the heparin-II binding domain and MAB1892 antibody 

recognises the gelatin binding domain. When studying the availability of the cell 

adhesion domain, both native and PEGylated fibronectin present high 

accessibility, with absorbance values close to saturation at all concentrations 

tested. In addition, although the absorbance measurements were low and close to 

blank at all concentrations tested, both native and PEGylated fibronectin showed 

similar values for the availability of the heparin-II binding domain. When testing 

the accessibility of the gelatin binding domain, differences were observed 

between native and PEGylated fibronectin. Native fibronectin showed high 

absorbance values, close to saturation at all concentrations tested, whereas 

PEGylated fibronectin presented low absorbance values close to blank values.     
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Figure 3.3 shows the comparison of C2C12 cell morphology when seeded on top of 

either native fibronectin or PEGylated fibronectin coated glass. Cells seeded on 

both surfaces presented similar actin and vinculin staining, with developed actin 

fibres and formation of focal adhesions. Cell area, cell size (via aspect ratio) and 

roundness were quantified from the images taken, not revealing any statistical 

differences between native and PEGylated fibronectin. Furthermore, by using the 

vinculin staining, FAs were segmented and several parameters were studied such 

as the number of FAs and the area and size distribution of FAs (Figure 3.4).  

From the segmented vinculin images it was possible to assess that FAs formed in 

the native or PEGylated fibronectin conditions were distributed similarly, with 

clear FA complexes forming at the edges of the cell. When comparing the number 

of FAs formed per cell tested, in both cases the number of FAs was similar and 

ranging between 300 and 500 per cell. The distribution of the FA areas and sizes 

were also similar when comparing native and PEGylated fibronectin conditions, 

showing a relatively high frequency of mature FAs (with areas and sizes larger 

than 2.0 µm2 and 2.0 µm, respectively).  

Fibronectin fibrillogenesis capability was assessed by using a polymer-based 

method previously published (Salmerón-Sánchez et al., 2011). Briefly, PEA 

polymer coatings have shown to trigger spontaneous fibronectin fibrillogenesis, 

which has been shown to expose the growth factor binding site of this protein.   

(Llopis-hernández et al., 2016; Moulisová et al., 2017). Figure 3.5 shows phase 

images obtained via tapping mode using AFM. These pictures show that both native 

and PEGylated fibronectin are able to form fibrillar networks when adsorbed onto 

PEA polymer coatings.  

    

 

 

 

 



 

Figure 3.3 Similar cell morphologies shown using either native or PEGylated 
fibronectin.  

C2C12 cells seeded on top of glass coverslips coated with either native or PEGylated 
fibronectin at 20 µg/mL for one hour. Then, C2C12 cells were seeded on top for 
three hours to study cell morphology. Two representative fluorescent images per 
condition tested are shown; from left to right: DAPI (blue), actin cytoskeleton 
(green), vinculin (red) and merged (all three channels). From the pictures cell area, 
aspect ratio and roundness were quantified. Scale bar: 50 µm. Graphs show mean ± 
SD of n ≥ 10. Statistics show results from a parametric t-test, where n.s shows no 
differences between groups.   
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Figure 3.4 No differences shown in focal adhesion (FA) formation comparing native 
and PEGylated fibronectin.  

Images show two representative cells of either native FN or PEGylated FN with 
binarized FAs obtained from analysis of the vinculin staining. Scale bar: 50 µm. 
Graphs (mean ± SD) show the average number of FAs, the frequency distribution of 
the focal adhesion area and size per cell analysed (n ≥ 10) (left to right, 
respectively). Differences were analysed via parametric t-test.  

 

 

 

 



 

Figure 3.5 PEGylated fibronectin forms networks like native fibronectin on PEA 
surfaces.  

Native and PEGylated fibronectin were adsorbed on top of a PEA spin coated 
surface and the morphology of the coating was assessed. From left to right images 
show the phase signal in tapping mode AFM of native fibronectin and PEGylated 
fibronectin. Scale: 1 µm x 1 µm. 

 

3.3.2 Fibronectin-based PEG hydrogels characterisation 

Fibronectin is covalently bound to the hydrogel network 

Once the biological activity of PEGylated fibronectin was characterised, 

fibronectin PEG hydrogels were synthesised using 4-arm-PEG-maleimide, 

PEGylated fibronectin and PEG-diSH to form the hydrogel network, following 

protocol described in section 2.2.6. 

Figure 3.6 shows an immunostaining for fibronectin (in red) on cryo-sectioned 

hydrogels of different PEG percentages. These images showed the presence of 

fibronectin once the hydrogels are formed and also the distribution of fibronectin 

throughout the matrix is relatively homogeneous. Fibronectin was found to cover 

all the cryo-sections stained. Only PEG hydrogels (without fibronectin) did not 

show any staining.  
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Figure 3.6 Detection of fibronectin on fibronectin-PEG hydrogel cryo-sections.  

Fluorescent images showing the presence of fibronectin within hydrogel cryo-
sections. (a, d) 3% FNPEG, (b, e) 5% FNPEG and (c, f) 10% FNPEG hydrogels. 
Scale bar: 100 µm. 

 

 

Figure 3.7 Release of fibronectin shown only when fibronectin is not covalently 
bound to the PEG network.  

(a) Protein content in supernatants of immersed hydrogels at 24 h was measured 
via BCA assay. Conditions tested are: FNPEG (using PEGylated fibronectin), PEG + 
FN (PEG only hydrogel with native fibronectin physically trapped) and PEG (PEG only 
hydrogel). Graph shows mean ± SD (n=3), groups were compared via Kruskal-Wallis 
test and Dunn’s test; (b) supernatants were used to run a SDS-PAGE and were 
stained with Coomassie Blue. The Mw of the protein ladder is shown on the left. 
Samples are named: protein ladder (lanes M), FNPEG (lanes 1,5 and 9), PEG + FN 
(lanes 2,6 and 10), PEG (3,7 and 11) and positive control (native FN, lanes 4,8 and 
12).    

 

Figure 3.7 shows the release of fibronectin after 24 hours in immersion. In order 

to prove that fibronectin was covalently bound to the hydrogel network, three 

different hydrogel conditions were fabricated: an only PEG hydrogel (PEG, without 



fibronectin), a FNPEG hydrogel (using PEGylated fibronectin and thus, covalently 

bound to the PEG network) and a PEG hydrogel with fibronectin trapped into the 

mesh (PEG + FN, using native fibronectin, not covalently bound to PEG). These 

hydrogels were immersed in DPBS for 24 hours and the supernatants were tested 

for protein release (note that the only protein source in this experiment is 

fibronectin). BCA assay tested the amount of protein released and Figure 3.7a 

shows the absorbance values obtained during BCA. The PEG only condition 

presented absorbance values around 0.6, similar to the FNPEG condition. For the 

condition with trapped fibronectin (PEG+FN), the absorbance values obtained 

were relatively higher and around 0.8. These results were statistically significant, 

showing that the FNPEG hydrogels were not releasing fibronectin. These results 

were furthermore confirmed via SDS-PAGE (Figure 3.7b), where the supernatants 

were run and stained using a Coomassie blue staining. Only positive controls 

(where pure fibronectin was loaded) and the PEG+FN condition (with physically 

trapped fibronectin) showed presence of protein.   

 

Fibronectin-based PEG hydrogels physicochemical properties 

 

Figure 3.8 Degradation is governed by VPM peptide using collagenase type I that 
cannot cleave fibronectin.  

Degradation was carried with gels swollen at equilibrium in DPBS. Then 50 U/mL of 
collagenase I were added to each hydrogel (mean ± SD, n = 3). Comparison between 
(a) 5% FNPEG hydrogels with different ratios of degradable crosslinker (VPM) and (b) 
5% PEG hydrogels with the same crosslinker ratios were studied. Insets show in more 
detail the first timepoints of the degradation curve for all conditions tested. 

 

Degradability profiles were also studied (Figure 3.8 and Figure 3.9). Different 

ratios of degradable and non-degradable crosslinkers (i.e. VPM peptide and PEG-

diSH) were used. Collagenase type I was used as this enzyme can recognise the 

cleavage site on VPM peptide but cannot cleave fibronectin and, α-chymotrypsin 

was used as it can degrade both VPM peptide and fibronectin. Figure 3.8 shows 

the degradation profile obtained for hydrogels fabricated with different amounts 
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of VPM peptide as a crosslinker. In both PEG only and FNPEG hydrogels, the 

degradability of the hydrogels increased monotonically with the increase in VPM 

peptide ratio. Hydrogels gelled with 100% non-degradable crosslinker did not lose 

mass at the time points tested - note that a negative mass loss in this case means 

that the hydrogels increased mass (i.e. absorbed water). However, hydrogels 

fabricated using 10% of VPM peptide (0.1 VPM conditions, Table 2.8) lost around 

10-20% of the initial mass. When 20% VPM peptide (0.2 VPM conditions, Table 2.8) 

was incorporated into the system, around 30% mass was lost throughout the assay. 

At higher ratios, using 30 and 50% degradable crosslinker, degradability reached 

60 and 80%, respectively. Similar degradation profiles were obtained when using 

PEG and FNPEG hydrogels, meaning that the degradation profile in this case, using 

collagenase I, is governed by the amount of VPM crosslinker added.  

Figure 3.9 shows the comparison between using collagenase type I and α-

chymotrypsin. These two proteases were selected because of their differential 

ability to cleave fibronectin (i.e. collagenase I does not cleave fibronectin and α-

chymotrypsin cleaves fibronectin). Similar degradation rates were obtained in all 

conditions tested except for FNPEG 0VPM, where collagenase type I did not show 

degradation and α-chymotrypsin showed some degradation, with a percentage of 

mass loss around 40%. This experiment shows that the presence of full-length 

fibronectin also provides degradability to the hydrogel system. 

 

Figure 3.9 Fibronectin can be degraded in the system as shown by α-chymotrypsin 
degradation.  

Degradation was assessed using either collagenase I (cleaves only VPM peptide) or 
α-chymotrypsin (cleaves both VPM peptide and fibronectin) for seven days (50 
U/mL). Comparison between 5% FNPEG or 5% PEG with or without VPM crosslinker 
was studied. Samples ‘FNPEG 0VPM PBS’ and ‘PEG 0VPM PBS’ were incubated 
without protease solution as controls. Graphs show mean ± SD (n = 3), no 



statistically significant differences between enzymes were found in a parametric  t-
test. 

 

 

Figure 3.10 Mechanical properties can be controlled independently of the presence 
of fibronectin.  

Sections of 100 µm were swollen in milliQ water and used for indentation with the 
AFM. Cantilevers (k ~ 0.03 N/m) with a bead of 20 µm diameter were used to indent 
at least 500 nm. The Young’s modulus was obtained after fitting the force-
indentation curves according to the Hertz model using the JPK processing software. 
Mean ± SD (n > 100 curves). Significant differences were analysed by Kruskal-Wallis 
test followed by a Dunn’s post hoc test. 

 

The mechanical properties of the hydrogels were also characterised by using AFM 

as a nano-indenter (Figure 3.10). Hydrogels with different amounts of PEG were 

fabricated and cryo-sections of the hydrogels were obtained for mechanical 

testing (Figure 3.10a). Increasing the amount of PEG within the hydrogel system 

increases the Young’s modulus, independently of the presence of fibronectin. 

Hydrogels obtained using 3% PEG show an elastic modulus of around 2 kPa, 

hydrogels fabricated with 5% PEG present a Young’s modulus of approximately 6 

kPa and hydrogels prepared using 10% PEG polymer result in elastic modulus of 10-

12 kPa.  

How the incorporation of degradable crosslinker affects the mechanical properties 

of the hydrogel system was also studied (Figure 3.10b). In this case, hydrogels of 

5% PEG polymer were prepared and the amount of VPM peptide was varied from 0 

to 50%. Incorporation of VPM peptide up to 30% did not show any statistical 

differences compared to the non-degradable version of the hydrogel. An addition 

of 50% VPM peptide in the system slightly increased the Young’s modulus of the 

hydrogel from around 6 kPa (obtained for 0VPM and 0.3VPM conditions) to 8 kPa.   
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Figure 3.11 Water sorption increases with the percentage of PEG at 24 hours. 

Water absorption capacity (Equation 2.1Equation 2.1 Percentage of water absorbed 
after hydrogel formation.) was measured at 24 h for different percentages of PEG (3%, 
5% and 10%, both with and without fibronectin) and for 5% hydrogels it was measured 
presenting different ratios of degradable: non-degradable crosslinkers. Graphs show 
mean ± SD (n = 3), (*) p-value< 0.05 in an ANOVA test followed by a Tukey’s post hoc 
test. 

 

Water sorption of the hydrogels was also measured. The uptake of water was 

studied for hydrogels prepared with increasing amounts of PEG and also with 

different ratios of degradable:non-degradable crosslinkers. As can be seen in 

Figure 3.11, the percentage of water absorbed increased monotonically with the 

amount of PEG in the system, independently of the presence of fibronectin. This 

result is counterintuitive; less water absorption was expected when increasing the 

percentage of PEG in the system, because the modulus is increasing with the 

amount of PEG as seen in Figure 3.10. However, this result could be due to  the 

use of a hydrophilic crosslinker (PEG-dithiol polymer) instead of a short, 

hydrophobic crosslinker. The addition of increasing amounts of VPM peptide in the 

system seems not to have a significant effect in the water uptake at 24 hours, 

independently of the presence of fibronectin. 

 

 

 

 

 

 



  

Fibronectin-based PEG hydrogels allow in situ encapsulation of C2C12s 

 

 

Figure 3.12 Hydrogels allow in situ encapsulation of C2C12 cells with high viability.  

C2C12 cells were encapsulated within either 5% PEG 0VPM or 5% FNPEG 0VPM 
hydrogels at a final density of 8·106 cell/mL for seven days (in triplicates). 
Representative images of the Live/Dead® staining are shown where green represents 
living cells and red shows dead cells for days one, three and seven after 
encapsulation. Scale bar: 200 µm.  

 

After the physicochemical characterisation of the hydrogels, C2C12 cells were 

used to test cytocompatibility. The encapsulation procedure and gelation time 

could affect cell viability. In order to study this effect murine myoblasts were 

encapsulated within 5% hydrogels with and without fibronectin for seven days and 

Live/Dead® staining was carried out to quantify the percentage of viable cells. As 

can be seen in Figure 3.12, cells appear to be mostly viable (as seen by the green 

staining compared to the red staining). Figure 3.13 shows the percentage of 

viability obtained. After 24 hours, cells are approximately 90% viable and, after 3 

and 7 days the viability decreases slightly, always greater than 70%. 
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Figure 3.13 C2C12 cells were encapsulated with high viability.  

Images obtained from Live/Dead® staining of C2C12 cells encapsulated within 
hydrogels were used to quantify the percentage of viability. Mean ± SD (n ≥ 10 
images). Statistical differences shown via two-way ANOVA followed by a Tukey’s 
post hoc test. 

3.4 Discussion 

The design of protein-tethered synthetic hydrogels is a robust approach to 

engineer new hydrogel materials as they are able to promote cell adhesion and 

proliferation, present proteolytic sites and the potential ability for growth factor 

immobilisation, among other biological activities. All of this while providing 

mechanical and other physicochemical properties that are controlled based on 

their synthetic polymer composition.  

Fibronectin-based PEG hydrogels were fabricated following Almany et al. and 

Phelps et al. methods with some modifications (Almany & Seliktar, 2005; Edward 

A. Phelps et al., 2012). Fibronectin was covalently linked to a synthetic PEG 

backbone via Michael-type addition reaction between maleimide and thiol groups. 

Prior to gel formation, fibronectin was PEGylated. The PEGylation of proteins is a 

tool to improve the half-life of the protein but also to incorporate new functional 

sites to be able to perform different chemistries while maintaining the biological 

activity of the protein (see section 1.2.2).  

The PEGylation of fibronectin was previously reported by Karuri’s group, where 

they described two methods to link PEG to the fibronectin molecule: one using 

lysine residues and the other using cysteine residues (C. Zhang, Desai, Perez-Luna, 

& Karuri, 2014; C. Zhang et al., 2013). Both strategies resulted in biologically 

active fibronectin (e.g. cell adhesion, fibronectin fibril assembly) with some 

proteolytic stability. For the incorporation of PEG-diacrylate to fibronectin, 



Karuri’s team used β-mercaptoethanol (BME) as reductant, whereas Seliktar’s 

team used TCEP for the denaturation of fibrinogen (Almany & Seliktar, 2005; C. 

Zhang et al., 2013). TCEP was selected as denaturing agent due to its proven 

efficacy and the fact that it does not present thiol groups in its structure 

(compared to BME or DTT) that could interfere with the Michael-type addition 

reaction. Furthermore, TCEP is stable at larger ranges of pH (Getz, Xiao, 

Chakrabarty, Cooke, & Selvin, 1999; Han & Han, 1994).  

Fibronectin has also the capability of refolding after denaturation. Patel et al. 

characterised the differences between native fibronectin and refolded fibronectin 

(i.e. fibronectin after a denaturing-renaturing cycle) (Patel, Chaffotte, Amana, 

Goubard, & Pauthe, 2006; Patel, Chaffotte, Goubard, & Pauthe, 2004). Some of 

their findings were that: (i) there were not differences in the content of secondary 

structure, (ii) the affinity for gelatin was conserved, (iii) the unfolding was 

reversible, (iv) the refolded fibronectin can multimerise and (v) there was 

evidence of higher affinity of refolded fibronectin for heparin (explained by 

exposure of a third heparin binding domain called Hep III, which is hidden in the 

native Hep II domain).  

These findings suggest that the fibronectin structure can change during 

denaturation/PEGylation steps but still be able to maintain several biological 

activities. The selection of cysteine residues as target amino acid for the 

PEGylation step confers good selectivity as cysteine residues are localised within 

the fibronectin molecule. By using thiol-PEGylation we are targeting specific 

regions on fibronectin (all FNI and FNII domains contain two disulphide bonds, 

whereas FNIII do not contain any disulphide bond (Pankov, 2002)). Our ELISAs 

(Figure 3.2) confirm that the PEGylation occurred mainly at the FNI and FNII 

domains (e.g. when using MAB1892 there is a difference in antibody affinity 

comparing native and PEGylated fibronectin, while antibodies HFN7.1 and P5F3 

that target FNIII domains show similar affinity between native and PEGylated 

fibronectin). Although there were not differences observed when using P5F3 

antibody (which targets the growth factor binding domain) between native and 

PEGylated fibronectins, it is worth mentioning that the blank condition showed 

comparable absorbance values, which could point to a low affinity of the antibody 

to the targeted region. Moreover, when native fibronectin is in solution this 

domain is usually hidden due to the globular conformation that fibronectin 

presents in its soluble form and thus, PEGylated fibronectin was not expected to 

show higher availability of this domain in solution.  
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The biological activity of the cell adhesion domain was further tested (Figure 3.3 

and Figure 3.4), demonstrating that C2C12 cells are able to attach and form FAs 

on top of PEGylated fibronectin similarly as when they are on top of adsorbed 

native fibronectin. This could be due to the fact that the RGD sequence in its 

native conformation is part of a loop, without any secondary structure. There are 

some studies showing that the affinity for integrin α5β1 is mainly the one that 

decreases caused by an increase in the distance between the RGD sequence and 

the PHSRN synergy site (A. Krammer, Lu, Isralewitz, Schulten, & Vogel, 1999; Patel 

et al., 2006).  

Also, molecular imaging using AFM shows that our PEGylated fibronectin is able to 

assemble in a similar way as the natural fibronectin assembles when adsorbed on 

top of PEA coatings (Llopis-hernández et al., 2016). This suggests that there might 

be some self-assembling domains available (fibronectin-binding domains are 

located mainly near the amino terminal) but also, it could be due to fibronectin 

multimerization during the denaturation-renaturation process throughout 

PEGylation, as discussed by Patel and co-workers (Patel et al., 2006, 2004). 

Another possibility could be that, during the PEGylation step some fibronectin 

monomers could be linked via one PEG-MAL molecule, although the ratio used to 

PEGylate was 4:1 (meaning four molecules of PEG-MAL per fibronectin monomer), 

as this is a stochastic process, some fibronectin monomers could be linked via 

PEG-MAL molecules.          

Fibronectin and some of its fragments have been previously used to fabricate 

hydrogels (S. Li et al., 2017; Mikaël M. Martino et al., 2011; Seidlits et al., 2011). 

To our knowledge, fibronectin has not been incorporated to a synthetic hydrogel 

with controlled properties before. We used maleimide-thiol reaction as 

maleimides have higher affinity towards thiols and shorter gelation times at 

physiological pH than hydrogels fabricated using acrylates (Edward A. Phelps et 

al., 2012). Figure 3.6 shows the presence of fibronectin in the hydrogels prepared 

and Figure 3.7 shows the release of fibronectin in covalently bound fibronectin-

based PEG hydrogels compared to physically trapped fibronectin within a PEG only 

network, proving that fibronectin was covalently incorporated into the PEG 

backbone.  

Our fibronectin-based PEG hydrogel system was further engineered to incorporate 

increasing amounts of a protease-degradable crosslinker, VPM. By doing this, the 



system can be designed to be cell-degradable at different rates as can be seen in 

Figure 3.8. Stevens et al. and Jones et al. showed that, using the same degradable 

crosslinker (GPQ peptide) within a PEG hydrogel system but with different 

amounts is enough to modify the degradability from a few days to a few hours, 

respectively (Jones, Marchant, Von Recum, Gupta, & Kottke-Marchant, 2015; 

Stevens, Miller, Blakely, Chen, & Bhatia, 2015). Furthermore, the addition of 

fibronectin to the system incorporates another degradable signal. Figure 3.9 shows 

that, fibronectin can be degraded in the presence of the appropriate enzymes. 

Cells are also able to respond to the type of protease-degradable peptide used, 

being capable of secreting different MMPs as demonstrated by Jha et al. when 

comparing three different protease-degradable crosslinkers (Jha et al., 2016). 

Protease-induced matrix degradation also regulates cell traction, which is enough 

for MSCs to commit to different lineages (Khetan et al., 2013b). In addition, 

enzyme-mediated matrix degradation has demonstrated to have a role on the 

release of soluble molecules such as VEGF (Jha et al., 2016; Yao et al., 2006).     

The control over the mechanical properties of the hydrogel is key when mimicking 

a microenvironment (see section 1.2.4). Figure 3.10 shows that the Young’s 

modulus of this hydrogel system changes when varying the amount of PEG and 

independently of the presence of fibronectin. These results are in agreement with 

results obtained by other groups using PEG hydrogel systems where Young’s 

modulus of a few kPa were reported (Bott et al., 2010; Jones et al., 2015; Lutolf 

& Hubbell, 2003; Edward A. Phelps et al., 2012).  

Substrate mechanics (and ligand density) are important when trying to mimic the 

blood vessel microenvironment. For instance, Califano and Reinhart-King showed 

that endothelial cell network assembly was promoted on compliant materials (0.2 

and 1 kPa) in the presence of high amounts of collagen but there was not assembly 

on stiffer substrates (2.5, 5 and 10 kPa). However, they were able to induce 

endothelial cell assembly on stiff substrates just by lowering the amount of 

collagen incorporated (Califano & Reinhart-King, 2008). Also, soft (i.e. of 

approximately 2 kPa), degradable PEG hydrogels have shown to improve 

vascularisation in vivo compared to stiff (~18 kPa), degradable PEG hydrogels 

(Schweller, Wu, Klitzman, & West, 2017).    

All hydrogels tested appeared to be cytocompatible showing high cell viability at 

the timepoints tested (Figure 3.12 and Figure 3.13), even though the hydrogels 

were not formulated with degradable crosslinker.     
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3.5 Conclusions 

Overall, we describe a new procedure to incorporate fibronectin into a PEG 

synthetic matrix showing that the PEGylated protein retains several of the native 

capabilities of fibronectin such as the availability of the cell-attachment domain 

or the capability to assemble in fibres. By using PEGylated fibronectin, we were 

able to covalently link the protein to a synthetic PEG network. This PEG backbone 

was used as a versatile “blank slate” to control relevant physicochemical 

properties such as the mechanical properties or the degradability profile. Finally, 

this system has shown its suitability to encapsulate viable cells and thus, to serve 

as a potential 3D bio-functional microenvironment for endothelial cell 

encapsulation and assembly, which will be discussed in chapter 4.     
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4 Chapter Four: fibronectin-based PEG hydrogels 

for the promotion of angiogenesis 

4.1 Introduction 

The development of a microvasculature in engineered biomaterials is essential 

when fabricating thick scaffolds. Cells in vivo are normally in the vicinity of a 

blood vessel (within approximately 100 µm); therefore, a microvasculature is 

crucial for tissues thicker than 200 µm (Jain, Au, Tam, Duda, & Fukumura, 2005). 

This allows better nutrient and oxygen diffusion, which prevents cell necrosis. 

Hence, the capability of the bioengineered microenvironment to allow capillary 

growth should be considered before implantation. 

In general, there are two pathways from which capillaries are formed: 

vasculogenesis and angiogenesis. Vasculogenesis is usually defined as the de novo 

formation of blood vessels, whereas angiogenesis is defined as the formation of a 

new blood vessel that sprouts from an established one. During vasculogenesis, 

endothelial cell precursors coalesce forming what are called blood islands. Then, 

cells from each blood island start to migrate towards the periphery forming a 

hollow structure that will grow to form a tube-like construct (Ishak, Djuansjah, 

Kadir, & Sukmana, 2014; Ucuzian, Gassman, East, & Greisler, 2010). In later 

stages, mural cells migrate to help stabilise the newly formed capillary. In 

angiogenesis, endothelial cells respond to angiogenic signals (i.e. biochemical 

signals) such as VEGF or hypoxia (Gerhardt, 2008; Ribatti et al., 2011). During the 

process of angiogenesis the tip cell migrates in the direction of the angiogenic 

signal. Then, stalk cells start to actively proliferate and rearrange themselves to 

form a hollow tube right behind the tip cell. Later, mural cells help to stabilise 

the structure as in vasculogenesis (Carmeliet & Jain, 2011; Coultas, 

Chawengsaksophak, & Rossant, 2005; Ferrara & Kerbel, 2005; Jain et al., 2005; 

Silvestre, Lévy, & Tedgui, 2008; Ucuzian et al., 2010). 

VEGF is a crucial regulator of physiological and pathological angiogenesis (Ferrara 

et al., 2003; Storkebaum & Carmeliet, 2004). VEGF is generally considered the 

rate-limiting step of the angiogenic pathway, meaning that it is usually the slowest 

step - in a metabolic pathway - that causes the overall rate of the other reactions 

in the pathway (Ferrara et al., 2003; Ferrara & Kerbel, 2005). The sequestration 

and presentation of VEGF in a 3D biochemically engineered construct has been 



shown to promote endothelial cell activation and subsequently, formation of tube-

like structures via either vasculogenic or angiogenic pathways (Kano, 2005; E. A. 

Phelps et al., 2010; Edward A. Phelps et al., 2015). 

Here, we hypothesise that it could be valuable to exploit the known fibronectin-

VEGF affinity as a more biologically relevant way of sequestering VEGF compared 

to the mere covalent immobilisation. By sequestering VEGF using a natural ECM’s 

sequestering protein, could be possible to enhance endothelial cell response 

towards VEGF due to its presentation together with integrins, promoting 

synergistic signalling. This approach to exploit the activity of different growth 

factors using fibronectin has been shown successful in bone repair and also in 

wound healing (Llopis-hernández et al., 2016; M. M. Martino & Hubbell, 2010; 

Mikaël M. Martino et al., 2011; Moulisová et al., 2017).  

This chapter focuses on the interaction between fibronectin and VEGF, and their 

role in promoting angiogenesis/vascularisation. To that end, the release and 

binding of VEGF in fibronectin-based PEG hydrogels was studied, endothelial cells 

were also encapsulated and the promotion of angiogenesis and vascularisation was 

tested in vitro. Finally, the ability of this system to enhance angiogenesis in vivo 

– via CAM assay – was tested.   

4.2 Materials and methods 

The materials and methods used for the work discussed in this chapter are 

described in Chapter 2; more specifically VEGF labelling is described in section 

2.2.14, VEGF binding experiments in section 2.2.15, VEGF release experiments in 

section 2.2.16, cell culture in section 2.2.2, cell viability in section 2.2.17, 

fibronectin PEGylation in section 2.2.1, PEG hydrogel formation in section 2.2.6, 

vascularisation assays in section 2.2.19, angiogenesis experiments in section 

2.2.18, CAM assay in section 2.2.20, image analysis in section 2.2.25 and statistical 

analysis in section 2.2.26. 

4.3 Results 

4.3.1 Fibronectin-VEGF interactions 

Release of VEGF from fibronectin-based PEG hydrogels 

Fibronectin-based PEG hydrogels have been previously described as suitable 

microenvironments for 3D cell culture (see chapter 3). Fibronectin-based PEG 

hydrogels were studied as potential sequestering environments of growth factors, 

in particular VEGF for the study of angiogenesis and vasculogenesis in vitro. 
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Figure 4.1 shows the VEGF-488 release profile from different hydrogel 

formulations. As can be seen in Figure 4.1b, there is a difference in the amount 

of VEGF-488 released by only PEG hydrogels compared to FNPEG hydrogels. PEG 

hydrogels were able to release all the VEGF-488 loaded at the timepoints tested, 

whereas FNPEG hydrogels released around 50% of the initial amount of VEGF 

encapsulated. This could mean that FNPEG hydrogels are capable to retain up to 

half the amount added at the beginning. We also studied the effect on the release 

of VEGF with the addition of different amounts of degradable crosslinker. Figure 

4.1c shows the release profile for VEGF loaded FNPEG hydrogels. All the 

formulations tested presented a similar release profile of around 40-50% of VEGF-

488 released within the time frame studied. As can be seen in Figure 4.1d, the 

VEGF release profile for PEG hydrogels with different amounts of VPM peptide is 

also similar, with no significant differences. All PEG hydrogels formulations 

released around 75-100% of the VEGF-488 initially loaded.      

 

Figure 4.1 FNPEG hydrogels release less VEGF compared to PEG hydrogels.   

The release of VEGF from hydrogels previously loaded with the fluorescently labelled 
VEGF (VEGF-488) was studied as explained in sections 2.2.14 and 2.2.16. (a) 
Cumulative release of VEGF-488 from either FNPEG 0VPM or PEG 0VPM hydrogels 
(mean ± SD, n = 6); (b) Cumulative release of VEGF-488 from FNPEG hydrogels with 
different VPM crosslinker ratios (mean ± SD, n = 3); (c) cumulative release of VEGF-
488 from PEG hydrogels with different amounts of VPM (mean ± SD, n = 3). Each 
replicate was measured twice. Significant differences shown (****) in a t-test. 



Fibronectin-based PEG hydrogels uptake VEGF 

We also studied the ability of these hydrogels to uptake VEGF when immersed in 

VEGF solution. Figure 4.2 shows the results obtained for the uptake studies. As 

can be observed in Figure 4.2b, FNPEG hydrogels were able to uptake VEGF-488 

at higher percentages compared to their counterparts without fibronectin. This 

result was found consistent at all VEGF concentrations tested. Consequently, as 

Figure 4.2c shows, the amount of VEGF bound per hydrogel assayed was higher in 

FNPEG hydrogels. All these differences were found statistically significant.  

 

Figure 4.2 FNPEG hydrogels uptake more VEGF compared to PEG. 

The binding capacity of VEGF to either FNPEG 0VPM or PEG 0VPM was tested as 
explained in section 2.2.15. (a) Outline of the assay, where hydrogels were incubated 
within VEGF solutions of different concentrations and after 20 h the remaining soluble 
VEGF was measured. From that it was calculated (b) the percentage of VEGF bound 
(mean ± SD, n = 3) and (c) the amount of VEGF bound per sample (mean ± SD, n = 3). 
Significant differences were assessed by means of t-tests comparing FNPEG 0VPM and 
PEG 0VPM results at each concentration of VEGF used. 

 

4.3.2 Endothelial cell-loaded in fibronectin-based PEG hydrogels  

Endothelial cell viability  

With the purpose of testing endothelial cell viability, HUVECs were encapsulated 

within PEG and FNPEG hydrogels containing 0.5VPM. Live/Dead® staining was 

carried out at different timepoints. Figure 4.3 shows the results obtained. HUVECs 

were viable at all timepoints studied, obtaining viabilities of approximately 80%.  
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Figure 4.3 HUVECs encapsulated within hydrogels with high viability.  

Representative maximum Z-axis projection images from stacks of images showing in 
green alive cells and in red dead cells. Percentage of viability calculated from the 
images taken (mean ± SD, n = 9 images, conditions in triplicate).  

 

Endothelial cell reorganisation  

In order to study endothelial cell reorganisation in 3D, HUVECs were encapsulated 

in situ within different hydrogels with or without VEGF. Figure 4.4 shows 

representative images at day one post-encapsulation. As can be seen in this figure, 

HUVECs were well distributed throughout the stack (insets), with some 

differences. When looking at Matrigel conditions cells were predominantly 

isolated, i.e. single cells, relatively not interacting with each other. PEG only 

hydrogels presented some cell-cell interactions, but cells were found mainly 

isolated. FNPEG hydrogels presented many cell-cell interactions, forming groups 

of cells. These clusters of cells were more noticeable in the condition with VEGF. 

Figure 4.5 shows representative images of endothelial cells encapsulated at day 

two. Similar results were observed at day two in comparison with day one for the 

Matrigel and PEG only conditions. FNPEG samples presented more endothelial cell 

reorganisation (i.e. clusters of cells forming elongated structures) that was more 

visible in the condition with VEGF. Figure 4.6 shows the 3D reconstruction of cells 

within Matrigel condition versus FNPEG condition at day two to stress differences. 

Figure 4.7 shows images of encapsulated endothelial cells at day three. At this 

stage, cells cultured within FNPEG hydrogels did not show the same degree of 

reorganisation found at days one and two. Matrigel and PEG only conditions did 

not show many differences compared to previous days. However, Matrigel samples 

with VEGF presented an increase in cell-to-cell contacts and groups of 

approximately 2-4 cells.     



 

Figure 4.4 Study of endothelial cell rearrangement within hydrogels (day 
one). 

Representative images (from a stack imaged) of either Matrigel, 5% FNPEG 
0.5VPM or 5% PEG 0.5VPM, with or without VEGF at day one. Insets show 
the maximum intensity Z-axis projection of a stack. Images show in green 
the actin cytoskeleton and in blue the nucleus. Scale bar: 150 µm. Scale 
bar inset: 150 µm. 

 

Figure 4.5 Study of endothelial cell rearrangement within hydrogels (day 
two).  

Representative images (from a stack imaged) of either Matrigel, 5% FNPEG 
0.5VPM or 5% PEG 0.5VPM, with or without VEGF at day two. Insets show 
the maximum intensity Z-axis projection of a stack. Images show in green 
the actin cytoskeleton and in blue the nucleus. Scale bar: 150 µm. Scale bar 
inset: 150 µm. 
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Figure 4.6 3D reconstruction of representative stack from day two. 

Comparison of 3D cell organisation between Matrigel versus FNPEG at day 2, 

with and without VEGF. Scale bar: 800 x 800 x 200 µm. 

 

 

Figure 4.7 Study of endothelial cell rearrangement within hydrogels (day 
three).  

Representative images (from a stack imaged) of either Matrigel, 5% FNPEG 
0.5VPM or 5% PEG 0.5VPM, with or without VEGF at day three. Insets show 
the maximum intensity Z-axis projection of a stack. Images show in green 
the actin cytoskeleton and in blue the nucleus. Scale bar: 150 µm. Scale bar 
inset: 150 µm. 



 

Figure 4.8 Shape descriptors calculated from vascularisation experiments.  

Top row show the calculated volumes (µm3) for all objects imaged at days 1-3. Bottom 
row represents the calculated sphericity (Ψ) for all object imaged at days 1-3. Graphs 
show mean ± SD (datapoints in grey). For simplicity only non-statistically significant 
(n.s) differences are shown.  

 

 

Figure 4.9 Volume distribution obtained from vascularisation experiments.  

Graphs show the distribution of volumes (µm3) for FNPEG, PEG and Matrigel (with and 
without VEGF) at days 1-3. Volumes equal or larger than 50000 µm3 were categorised 
under the “50000” bin centre.   

 

From the quantification assessed (Figure 4.8 and Figure 4.9), the total volume of 

all objects found and the sphericity of these objects were studied. As can be seen 

in Figure 4.8, the largest volumes were found within FNPEG conditions at all 

timepoints tested. It is also worth noting that Matrigel condition showed a 
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noticeable increase in object’s volume at day three. When looking at the volume 

distribution (Figure 4.9), there can be found extremely large objects (≥ 50000 

µm3) in FNPEG samples.  

Sphericity calculations (Figure 4.8) show that FNPEG conditions present higher 

amount of cells with low sphericity, which could indicate more cell spreading or 

higher cell reorganisation into more elongated structures. 

Endothelial cell sprouting 

Endothelial cell angiogenic sprouting was also evaluated (Figure 4.10). To assess 

this, endothelial cells were seeded on top of collagen-coated dextran beads and 

then, these endothelial cell-coated beads were encapsulated within either FNPEG 

hydrogels or Matrigel, with or without VEGF. Results show that in the absence of 

VEGF, endothelial cells are not able to sprout even in the Matrigel condition. When 

using relatively low amounts of VEGF (50 ng/mL supplemented with the media), 

endothelial cells were capable of forming a few sprouts, being more noticeable in 

the Matrigel condition. The use of relatively high amounts of VEGF allowed 

endothelial cells to form many sprouts.   



 

Figure 4.10 FNPEG allow endothelial cell sprouting in 3D via encapsulated cell-
coated beads. 

Representative maximum intensity Z-axis projection images from manually 
taken stacks, showing in green the actin cytoskeleton and in blue the nuclei of 
HUVECs. Cultures were kept for 7 days. Different amounts of VEGF were added 
to growth media: 0VEGF (0 ng/mL of VEGF), 50VEGF (50 ng/mL of VEGF) and 
500VEGF (500 ng/mL of VEGF). Scale bar: 150 µm. 

 

Chorioallantoic membrane assay 

The angiogenic potential of these hydrogels was also assessed using the chicken 

chorioallantoic membrane assay, which is a classical model to study 

neovascularisation. The results obtained from this experiment can be found in 

Figure 4.11. Membranes were imaged and quantified manually.  
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Our results show that PEG only hydrogels did not affect the normal development 

of the membrane, presenting similar values as the empty condition (i.e. without 

material). PEG VEGF samples showed a slightly increase in the amount of 

branching as can be seen in the number of junctions observed. However, this was 

not enough to obtain a significant increase in the formation of new capillaries. 

However, the FNPEG condition (without VEGF) presents an average increase in 

capillary formation compared to PEG with VEGF; as can be seen in the average 

number of branches formed per image as well as in the number of junctions. The 

latter could be an indicator of the connectivity of the capillary plexus analysed. 

This result is encouraging although it is not statistically significant. FNPEG 

condition with VEGF was the best condition in terms of performance, presenting 

the highest average number of branches. Also, the highest number of junctions 

were found for this condition. In addition, FNPEG with VEGF performed better 

than PEG with VEGF but, when comparing FNPEG with and without VEGF there 

were not statistically significant differences.    



 

Figure 4.11 FNPEG hydrogels promote angiogenesis in vivo shown by CAM assay. 

Membranes were exposed and imaged. Conditions tested were: PEG (5% PEG 
0.5VPM), PEG VEGF (5% PEG 0.5VPM loaded with 2.5 µg/mL of VEGF), FNPEG (5% 
FNPEG 0.5VPM), FNPEG VEGF (5% FNPEG 0.5VPM loaded with 2.5 µg/mL of VEGF) and 
EMPTY (where the CAM was exposed but no material was used during the 
experiment). Left column shows colour images (RGB images) obtained from the 
microscope; middle column shows the green channel obtained from RGB images that 
was used for capillary segmentation and the right column shows the result from the 
skeletonise tool. Scale bar: 1 mm. Graphs show (from left to right): the number of 
branches per image and the number of junctions per image (mean ± SD, n= 6 
replicates). Significant differences shown as (*) p-value < 0.5, (**) p-value < 0.1 in 
an ANOVA test. 
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4.4 Discussion 

FNPEG hydrogels have shown their suitability as new 3D microenvironments for 

cell culture (see chapter 3). This chapter explores the idea of using fibronectin’s 

natural ability to sequester growth factors for the promotion of microvasculature 

growth. First, we tested the efficiency of VEGF sequestration by studying VEGF 

release and binding (Figure 4.1 and Figure 4.2). FNPEG hydrogels present 

relatively high ability to sequester VEGF, being able to retain up to 50% of the 

initial VEGF loaded. In our case VEGF is not covalently bound to the PEG network 

(VEGF presents free cysteine residues in its structure, (Edward A. Phelps et al., 

2015)) as PEG only formulations released all VEGF loaded. This could be due to 

the fast reactivity of the maleimide group and also, in our system we do not 

previously incubate VEGF with the PEGMAL polymer, so we do not encourage this 

binding. From the binding assays, we also found that FNPEG hydrogels were able 

to sequester soluble VEGF; this is important because when implanted in vivo, 

FNPEG hydrogels could be able to sequester many growth factors, as fibronectin’s 

heparin-II binding domain is a promiscuous growth factor binding site (M. M. 

Martino & Hubbell, 2010).  

The study of the pro-angiogenic activity of this system in vitro was assessed using 

HUVECs; which are a widely studied cell-model system (Hasenberg et al., 2015; 

Hendriks, Riesle, & Blitterswijk, 2010; Kiran et al., 2011; Saik, Gould, Keswani, 

Dickinson, & West, 2011). Vasculogenic experiments (Figure 4.4 to Figure 4.9) 

showed that endothelial cells were able to rearrange themselves within FNPEG 

hydrogels but not in Matrigel or PEG only hydrogels. The structures found within 

FNPEG hydrogels were even larger in the condition with VEGF. These results are 

in agreement with results shown by West’s group, where they covalently 

immobilized VEGF into a PEG network showing HUVEC reorganisation between 

days one and two (Leslie-Barbick, Moon, & West, 2009). These structures 

regressed by day three, where these large structures were no longer found. These 

results are in agreement with literature, where it is reported that endothelial cells 

need mural cells to stabilise these type structures. For instance, Peters et al., 

studied HUVECs in co-culture with mural cells, being able to study tubulogenesis 

at longer timepoints (i.e. seven and fourteen days) (Peters, Christoforou, Leong, 

Truskey, & West, 2016).      



The ability of HUVECs to sprout within our system was also tested using different 

VEGF concentrations in the media (Figure 4.10). The highest sprouting was found 

with the highest amount of VEGF in the media (500 ng/mL). This is not in 

accordance with literature, where usually it is found that high amounts of VEGF 

are detrimental for endothelial cell sprouting and, lower amounts of VEGF (in the 

range of 1 to 10 ng/mL) enhances sprouting significantly (S. Li et al., 2017; 

Nakatsu et al., 2003). That said, these examples use other hydrogel systems such 

as fibrin, which has been reported to also sequester growth factors (M. M. Martino 

et al., 2013). Generally, fibrin matrices contain higher amounts of fibrinogen 

compared to the amount of fibronectin incorporated in our system, so it is 

conceivable that the amount of growth factor readily sequestered within fibrin 

matrices could be higher compared to our system. Consequently, comparisons 

have to be taken carefully. 

The performance of FNPEG hydrogels was also tested in a more in vivo scenario 

(Figure 4.11) by using the chick CAM assay. The CAM is an extraembryonic 

membrane that facilitates gas diffusion and nutrient exchange until hatching. This 

membrane has a dense capillary network that is generally used to study 

angiogenesis and anti-angiogenesis in vivo. Among the most commonly tested 

things can be found: tissues, cells, drugs, soluble factors or biomaterials (Ribatti, 

2008, 2016).  

Our results from this experiment show that FNPEG with VEGF samples were able 

to promote the formation of a higher number of capillaries compared to PEG only 

with VEGF. This result could be due to a rapid release of VEGF from the PEG only 

condition, not being able to build the necessary VEGF gradient that is required for 

angiogenic sprouting. In addition, this result also suggests that the presence of 

fibronectin and subsequently binding of VEGF could enhance the effects of the 

latter via integrin recruitment near the growth factor bound to the fibronectin 

molecule.  

Our release studies showed that PEG samples release all VEGF loaded after 24 h, 

whereas FNPEG samples only released approximately 50% of the VEGF loaded at 

72 h (Figure 4.1) and these materials were incubated in ovo for four days.  

These results could indicate that a more sustainable release of VEGF, creating a 

biochemical gradient, could promote more neovessel formation.  

The need for a sustainable release of VEGF has been reported in literature. For 

instance, Li et al. fabricated gelatin hydrogels with heparin and showed that 



127 
 

gelatin-heparin hydrogels could sequester up to 40% of the VEGF initially used. 

When testing this via CAM assay, they found that gelatin-heparin with VEGF 

showed the highest number of vessel formation, compared to gelatin gels with 

VEGF (without the sequestering molecule heparin). Despite they do not show the 

quantification for the gelatin-heparin without VEGF to compare, they do show the 

results of an in vivo subcutaneous implantation; with similar results (Z. Li et al., 

2015).        

Koch et al. also studied the effect of VEGF immobilisation in collagen matrices via 

CAM assay. They found that the percentage of increase in capillary number 

compared to the empty control was higher in collagen matrices with VEGF 

covalently bound than in collagen samples with non-immobilised VEGF (Koch et 

al., 2006). Similarly, Zisch et al. studied the effect of covalently binding VEGF to 

a PEG network (Zisch, 2003). They found that VEGF covalently bound promoted 

more angiogenesis at the site where the hydrogel was placed compared to soluble 

VEGF where they found sprouting at the periphery of the hydrogel. The latter 

example could explain why we did not observe the expectable increase in capillary 

formation using PEG with VEGF; probably, a more vascularised capillary plexus 

was formed at the surroundings of the implanted hydrogels, that could not be well 

quantified as we took images covering under the hydrogel setting and far away 

from the hydrogel. Despite this, all these examples corroborate the need for a 

sustainable release of VEGF.     

4.5 Conclusions 

To conclude, we present a hydrogel system that can sequester VEGF using the 

natural capacity of fibronectin to bind promiscuously different growth factors. 

This system has shown to allow endothelial cell reorganisation in 3D at early 

timepoints without the addition of mural cells – although mural cells are needed 

for a more stable capillary formation at longer timepoints. Moreover, FNPEG 

hydrogels have shown that can promote endothelial cell sprouting both in vitro 

using endothelial cell-coated beads and in vivo via CAM assay. All these results 

suggest that the intrinsic ability of fibronectin to present VEGF promotes 

microvasculature growth. The results obtained are in accordance with results 

shown for fibronectin’s presentation of growth factors in synergy with integrins 

(Mikaël M. Martino et al., 2011; Moulisová et al., 2017).  
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5 Chapter Five: engineering fibronectin-based HA 

hydrogels 

Note: Part of the results presented in this chapter were carried out during an 

internship (September-December, 2016) in the Polymeric Biomaterials Laboratory 

within the Bioengineering Department of the University of Pennsylvania 

(Philadelphia, US) supervised by Prof. Jason Burdick.  

5.1 Introduction 

HA is a non-sulphated, nonimmunogenic glycosaminoglycan, found throughout the 

body in many tissues, from cartilage to the vitreous of the eye (more information 

in section 1.1.3). HA is also an important element of the ECM, in which its 

structural and biological properties have a role in cellular signalling, wound repair, 

tissue morphogenesis, and matrix organization (W. Y. J. Chen & Abatangelo, 1999; 

Kogan et al., 2007). Hyaluronidase is an enzyme found in the body that can rapidly 

degrade HA (Stern et al., 2006). HA and its derivatives have been clinically used 

as medical products for decades. For instance, dermal fillers such as Restylane® 

was approved in 2003 (Ballin, Cazzaniga, & Brandt, 2013) and SYNOJOINT™ (Teva 

Pharmaceuticals, USA), which is an injectable form of hyaluronic acid meant for 

its use in the treatment of pain in osteoarthritis and it was approved in 2018 . 

Recently, HA has become an important building block for the fabrication of new 

biomaterials that can be used in tissue engineering. In addition, HA can be 

modified in numerous ways, altering the properties of the resulting biomaterials, 

including their physicochemical features and biological activities. In this sense, 

HA can be crosslinked into a hydrogel to form a stable scaffold by different 

chemistries such as aldehyde (Cai, López-Ruiz, Wengel, Creemers, & Howard, 

2017), divinyl sulfone (Lai, 2014) or photo-crosslinking (Gramlich, Kim, & Burdick, 

2013). 

The use of radically induced thiol-norbornene click reactions lessens the problems 

of non-specific reactions due to the high reactivity of thiols to norbornenes and 

the low norbornene-norbornene reactivity (Hoyle & Bowman, 2010). The use of 

thiol-ene UV initiated polymerisation strategies have demonstrated to be a facile 

approach to encapsulate molecules and cells maintaining their bioactivity 

(Fairbanks et al., 2009; McCall & Anseth, 2012).  



In this chapter we demonstrate that full proteins such as fibronectin can be 

covalently linked into a HA hydrogel network by using a thiol-ene UV-

polymerisation, maintaining key properties of the fibronectin molecule such as 

the availability of the adhesion motif while being able to tune some 

physicochemical aspects of the hydrogel system like the mechanical properties. 

Moreover, both fibronectin and HA can bind growth factors, which adds higher 

versatility to this system as it can potentially sequester higher amounts of growth 

factors. This system aims to be used as a pro-angiogenic material, providing a 

more physiological-like microenvironment for wound healing purposes.           

5.2 Materials and methods 

The materials and methods used for the work discussed in this chapter are 

described in Chapter 2; more specifically the synthesis of norbornene-modified HA 

is described in section 2.2.21, the procedure to fabricate HA hydrogels via photo-

polymerisation is described in section 2.2.22, mechanical tests performed are 

described in section 2.2.23, cell adhesion experiments are described in section 

2.2.24, cell culture is described in section 2.2.2, cell viability tests are described 

in section 2.2.17, image analysis in section 2.2.25 and statistical analysis in section 

2.2.26. 

5.3 Results 

5.3.1 Fibronectin-based hyaluronic acid hydrogel characterisation 

Fibronectin-based HA formation via thiol-ene reaction 

HA was modified with norbornene groups following published protocol (Caliari et 

al., 2016; Gramlich et al., 2013). The synthesised NorHA (Figure 5.1a) can be 

reacted with thiolated compounds via ultraviolet light mediated thiol-ene addition 

reactions (Figure 5.1c) and form hydrogels (Figure 5.1d). By using this chemistry 

fibronectin can be incorporated throughout its cysteine residues that can be 

exposed via protein chemical unfolding.   
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Figure 5.1 Nor-HA synthesis and thiol-ene hydrogel polymerisation.  

(a) Fibronectin-based HA hydrogel formation procedure. (b) Nor-HA was synthesised 
as explained in section 2.2.21; (c) scheme of the thiol-ene UV-polymerisation 
reaction. (d) Macroscopic image of a FNHA hydrogel (scale bar: 6 mm). 

 

Fibronectin is covalently bound to hyaluronic acid 

Figure 5.2 shows the presence of fibronectin after fibronectin-HA hydrogels were 

fabricated. As can be seen in Figure 5.2a-d, fibronectin was detected in all 

fibronectin-HA hydrogels while it was not detected in HA only hydrogels (Figure 

5.2e). Furthermore, in order to test the fibronectin covalent bonding to the NorHA 

backbone, HA hydrogels were prepared encapsulating native fibronectin (i.e. with 

no cysteine residues exposed and thus, with no capability to bind NorHA) and, 

after several washes, fibronectin was stained via immunofluorescence. Figure 5.2f 

shows that there were no traces of fibronectin within the hydrogels after all the 

washes, meaning that fibronectin was not covalently bound to the hydrogel. 

 



 

Figure 5.2  Fibronectin is bound to HA hydrogels. 

(a, c) FNHA 0VPM surface and cross-section; (b, d) FNHA VPM surface and cross-
section; (e) HA only and (f) HA with non-crosslinked fibronectin. Scale bar: 500 
µm. 

 

Mechanical properties of Fibronectin-based HA hydrogels can be controlled 

The mechanical properties of these hydrogels were tested using DMA in 

compression mode. As shown in Figure 5.3, the elastic modulus increases 

monotonically with the increase in crosslinking density up to 1. The crosslinking 

density was defined by the ratio between thiol and norbornene groups so, when 

the system reaches maximum crosslinking density (i.e. there are equal number of 

norbornene groups and thiol groups and all have reacted, ratio 1:1 

thiol:norbornene). Once the maximum crosslinking density is reached, the 

mechanical properties decrease, as there are more thiol groups than norbornene 

groups, not all crosslinkers are fully reacted. This result is in agreement with 

literature (Gramlich et al., 2013). Crosslinking ratio of 0.6 was selected to 

fabricate fibronectin-HA hydrogels, which were mechanically tested as well 

(Figure 5.3b). As can be observed in Figure 5.3b, all HA hydrogels presented similar 

elastic modulus (no significant differences), independently of the final 

concentration of fibronectin used.  
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Figure 5.3 The elastic modulus can be controlled independently of the amount of 
fibronectin used. 

Hydrogels with different amounts of fibronectin crosslinked were fabricated and used 
to measure their mechanical properties using DMA in compression mode. (a) Elastic 
modulus of HA hydrogels (without fibronectin) using different crosslinking densities 
(XDTT is the ratio SH from DTT to Norbornene from HA). (b) Elastic modulus of 
fibronectin-HA hydrogels using different concentrations of fibronectin. Graphs show 
mean ± SD (n=3, measured twice); n.s, not statistically different via ANOVA test and 
Tukey’s post hoc test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.3.2 Mesenchymal stem cells and fibronectin-based HA hydrogels  

Mesenchymal stem cells seeded on fibronectin-based HA hydrogels 

 

 

Figure 5.4 MSCs attach to FNHA hydrogels in 2D. 

hMSCs were seeded on top of FNHA 0VPM hydrogels with different amounts of 
fibronectin (depicted as XFN where X is the total amount of fibronectin in µg/mL) for 
three hours. Representative images of cells for every condition tested and graphs 
show the mean ± SD of cell area (µm2), aspect ratio and roundness, respectively (n > 
100 cells, conditions in triplicate). Statistical differences studied by Kruskal-Wallis 
test followed by Dunn’s post hoc test to correct for multiple comparisons. Scale bar: 
200 µm. 
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Human MSCs were seeded on top of fibronectin-HA hydrogels with different 

amounts of fibronectin (Figure 5.4). MSCs seeded on top of fibronectin-HA 

hydrogels were found to spread similarly on all fibronectin concentrations tested 

as quantified by the total cell area, the aspect ratio and roundness. These cells 

were able to develop well-defined actin filaments, with presence of stress fibres. 

Still, cells seeded on top of HA only hydrogels did not spread, showing a rounded 

conformation with diffuse actin staining. 

Yes associated protein localisation  

YAP staining of MSCs seeded on top of HA hydrogels was studied and quantified 

(Figure 5.5 and Figure 5.6). Similar morphologies (in terms of average cell area, 

aspect ratios and roundness) were found agreeing with previous adhesion 

experiments (Figure 5.4). When looking at YAP localisation, cells seeded on top of 

HA 0FN hydrogels present a diffuse staining mainly localised in the cytoplasm, 

cells seeded on top of HA 25FN hydrogels presented YAP staining in both cytoplasm 

and nucleus. Cells from both HA 50FN and HA 500FN hydrogels show a clear 

localisation of YAP in the nucleus. These events were further confirmed after 

quantification of the YAPnuc/cyt ratio (Figure 5.6d), where there is a trend in the 

localisation of YAP that correlates with increasing amounts of fibronectin in the 

gels, although the elastic modulus tested was similar in all formulations used. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5.5 YAP staining of hMSCs seeded onto fibronectin-HA hydrogels. 

hMSCs were seeded on top of FNHA 0VPM hydrogels with different amounts of 
fibronectin (depicted as XFN where X is the total amount of fibronectin in µg/mL) for 
three hours. Representative images of cells for every condition tested (scale bar: 200 
µm) and representative single cell images of each condition are shown in insets (scale 
bar inset: 50 µm), where red depicts actin, green YAP and blue nuclei, respectively. 
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Figure 5.6 Cell shape and YAP localisation quantification. 

hMSCs were seeded on top of FNHA 0VPM hydrogels with different amounts of 
fibronectin for three hours. Graphs show mean ± SD (n ≥ 15 cells, conditions in 
triplicate) of (a) cell area (µm2), aspect ratio, roundness and the YAPnuc/cyt ratio versus 
the amount of fibronectin used within the gels (0, 25, 50 or 500 µg/mL). Significant 
differences were tested by means of ANOVA test followed by Tukey’s multiple 
comparison test. 

 

Mesenchymal stem cells viability after encapsulation 

After the initial characterisation of this new hydrogel system, we tested whether 

or not MSCs were capable to survive encapsulation. Figure 5.7 shows the results 

for a Live/Dead® staining at three and seven days. The percentage of viability for 

the gels tested was equal or greater than 80%, which shows high cytocompatibility. 

This result confirms the suitability of ultraviolet light triggered thiol-ene reactions 

for 3D cell culture as well as when fibronectin is crosslinked. 

 



 

Figure 5.7 hMSCs encapsulated within fibronectin-HA hydrogels show high viability. 

hMSCs were encapsulated within fibronectin-HA hydrogels with and without VPM 
(0VPM and VPM conditions)  and with and without fibronectin (0FN and 50FN, 0 and 
50 µg/mL, respectively) for seven days and their viability was tested by Live/Dead® 
staining at three and seven days. (a) Maximum Z-axis projection of a stack of images 
from the Live/Dead® staining of different fibronectin-HA hydrogels where green 
represents live cells and red dead cells (scale bar: 200 µm) and, graph (mean ± SD, n 
= 3, samples in triplicate) for three days of culture. (b) Maximum Z-axis projection 
images and graph showing viability at seven days of culture (scale bar 200 µm, n = 3, 
triplicates). 

 

5.4 Discussion 

The use of functionalised HA as a natural backbone for the fabrication of hydrogels 

is a relevant approach due to its nature (i.e. HA is a naturally found polysaccharide 

present in the ECM), plus the functionalisation offers great control over many 

physicochemical properties (e.g. mechanical properties, crosslinking) that are not 

usually well-defined when formulating biomaterials based on natural polymers.  
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Fibronectin-HA hydrogels were fabricated following Gramlich et al. procedure 

(Gramlich et al., 2013). Fibronectin was covalently linked to the NorHA backbone 

as demonstrated in Figure 5.2. Fibronectin has been previously crosslinked to a 

HA hydrogel for the 3D culture of endothelial cells (Seidlits et al., 2011). Seidlits 

et al. used also photopolymerisation via acrylate groups incorporated to 

fibronectin through a functionalised PEG that reacted with the amino groups 

present in the lysine residues. By doing this they were able to incorporate 

fibronectin up to 500 µg/mL, whereas we prepared hydrogels with increasing 

amounts of fibronectin and up to 2 mg/mL. Furthermore, they showed that the 

viability of endothelial cells when using their photoplolymerisation strategy was 

around 40-50% except for the conditions with more fibronectin incorporated that 

reached 90% viability. In our case, the viability of HA 0FN was as high as conditions 

with fibronectin, showing that the methodology of encapsulation is 

cytocompatible. This is in agreement with results in literature, where only HA 

hydrogels are highly cytocompatible (Kwon et al., 2018). 

When tuning the mechanical properties, NorHA based hydrogels fabricated showed 

a high range of stiffness (Figure 5.3), meaning that the range of stiffness observed 

went from a less than one kPa to 15 kPa, for that percentage of HA used. This 

range could be further tuned if using different percentages of HA in the system or 

HA with a higher percentage of norbornene modification. The results obtained in 

Figure 5.3a are in agreement with previous results shown in literature (Gramlich 

et al., 2013). The incorporation of fibronectin at the amounts tested did not show 

any significant differences in elastic modulus. This could indicate that the 

crosslinking added by the incorporation of fibronectin is not enough to increase or 

decrease the mechanical properties of the material. It could be tested whether 

or not the viscoelasticity of the system varies with the amount of fibronectin 

incorporated.  

Human MSCs were able to attach to the different formulations of fibronectin-HA 

hydrogels when seeded on top (Figure 5.4). Cells were adhered as could be 

observed by cell morphology, where cells seeded on top of fibronectin-HA 

hydrogels presented a well spread shape, with actin fibres well-developed. Cells 

seeded on top of only HA hydrogels presented a more rounded morphology with a 

diffuse actin staining. There were not significant differences in terms of 

morphology when comparing HA 50FN, HA 100FN and HA 500FN, meaning that 

probably the amount of adhesion domains available on the surface of the material 



was already saturated at 50 µg/mL of fibronectin and, as the mechanical 

properties are similar, cells did not reflect any differences in spreading. 

To further investigate this, MSCs were seeded on top of HA 0FN, HA 25FN, HA 50FN 

and HA 500FN (Figure 5.5 and Figure 5.6). The addition of HA 25FN aimed to test 

whether or not cells attach and spread similarly to the rest of the fibronectin-

based conditions. Results showed that there were not differences in terms of cell 

morphology among the fibronectin-HA hydrogels tested. However, YAP staining 

revealed some differences. Figure 5.6 shows that there is a linear increase of 

nuclear YAP that correlates with the increase in fibronectin, while the elastic 

modulus remains similar. YAP/TAZ are considered master regulators of 

mechanotransduction, being of critical importance translating external 

mechanical signals (e.g. ECM stiffness) to the nucleus, initiating downstream 

signalling through the Hippo pathway. Piccolo’s team showed that in 2D substrates 

there is a correlation between elevated substrate stiffness and nuclear 

translocation of YAP (Dupont et al., 2011). The same group showed that cell 

spreading also regulates YAP/TAZ translocation independently of the available 

adhesion area – by using micropillars (Dupont et al., 2011). In addition, it has been 

recently shown that the nuclear translocation of YAP depends on not only the 

stiffness of the material but on other parameters such as dimensionality and 

degradability (Caliari et al., 2016).  

YAP/TAZ has also been correlated with angiogenesis. Wang et al. showed that the 

activity of YAP/TAZ is controlled/activated by VEGF throughout angiogenesis and 

that endothelial cells’ expression of YAP/TAZ is key for vasculogenesis (Xiaohong 

Wang et al., 2017).  

Our data suggest that, that the amount of fibronectin incorporated plays a role in 

YAP’s translocation to the nucleus. Engler et al. reported that smooth muscle cell 

spreading on soft and stiff gels was unresponsive to ligand density (A. Engler et 

al., 2004). Elostegui-Artola et al. reported that the overall cell forces measured 

decreased when cells were seeded on top of substrates with lower fibronectin 

density, which in their study was 100 µg/mL (Elosegui-Artola et al., 2014). 

Topography has also been shown to affect YAP translocation to the nucleus in 

HUVECs (Mascharak et al., 2017). 

More fundamental studies have been done using RGD peptide tethering in relation 

to ligand density and cell behaviour. Cell adhesion generally shows a sigmoidal 

increase as a function of RGD concentration (Kantlehner et al., 2000). This means 

that there is critical minimum ligand density for cell response. Massia and Hubbell 
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found that cells need a minimum of 1 fmol of RGD/cm2 to achieve spreading and 

10 fmol RGD/cm2 to form focal adhesions and stress fibres (Massia & Hubbell, 

1991). Similar results have been shown by Rowley and Mooney using alginate-RGD 

gels (Rowley & Mooney, 2002). Taken together, the fibronectin density readily 

available on the surface of the fibronectin-HA hydrogels needs to be measured to 

see whether or not the range of concentrations tested can trigger cell adhesion 

responses. In addition, other parameters such as changes in topography or 

conformation of fibronectin at the surface of the hydrogels could be investigated.  

It could also be relevant to further investigate this phenomenon by studying the 

viscoelastic properties of these materials and track changes (if any) in the 

degradability profile of these hydrogels. Moreover, it could be also studied the 

localisation of YAP/TAZ after treatment with an actin polymerisation inhibitor 

such as Cytochalasin D, as it has been shown that the actin cytoskeleton is required 

to maintain nuclear YAP in MSCs (Caliari et al., 2016; Dupont et al., 2011).  

Besides this, it could be also valuable to test how VEGF affects YAP on these 

materials and whether or not this trend observed is consistent when increasing 

the dimensionality of the culture (i.e. from 2D to 3D).  

Finally, MSCs viability (Figure 5.7) after encapsulation via thiol-ene UV-initiated 

polymerisation shows that this system allows the in situ encapsulation of cells, 

proving its suitability as a 3D microenvironment (McCall & Anseth, 2012).  

5.5 Conclusions 

Overall, this chapter shows a new strategy to incorporate full-length fibronectin 

into a natural HA network by synthesising a norbornene-functionalised hyaluronic 

acid and using it to covalently bind fibronectin via UV-triggered thiol-ene 

chemistry. These hydrogels were fabricated to incorporate different amounts of 

fibronectin. The mechanical properties were controlled independently of the 

amount of fibronectin tested. These hydrogels also supported 3D encapsulation of 

hMSCs. In addition, we observed a trend on YAP localisation in 2D culture that 

should be further investigated.   
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6 Chapter Six: General discussion 

The need for vascularisation strategies 

As stated throughout this thesis, there is a need for strategies that promote 

angiogenesis and/or vascularisation as capillaries are key structures for tissue 

oxygenation and nutrient distribution. The growth of capillaries is extremely 

important for tissue regeneration purposes. There is a huge size limitation when 

designing a tissue construct, which is due to diffusion restrictions in thick 

engineered scaffolds. For instance, cells will only survive in the vicinity of a 

capillary (within 100-200 µm of the nearest capillary) (Jain et al., 2005; K. Lee et 

al., 2009). 

Moreover, the integration with the host vasculature in vivo is also a critical factor. 

A correct integration will help to avoid tissue graft necrosis that usually occurs 

when oxygen and nutrients supply becomes limited by diffusion. Graft incorrect 

innervation could be deleterious in some cases and, there is also correlation 

between vascularisation and nerve growth (Auger, Gibot, & Lacroix, 2013).  

There are many applications for vascularisation strategies such as tissue repair 

(e.g. wound healing of chronic wounds) (Mikaël M. Martino et al., 2011; Roy, 

Mooney, Raeman, Dalecki, & Hocking, 2013), thrombosis (to address problems like 

inflammation and clotting) (Quint et al., 2011), drug screening of pro-angiogenic 

and anti-angiogenic molecules (to fight cancer and several 

ischaemic/inflammatory diseases) and also, to study different blood and 

lymphatic processes (Briquez et al., 2016).   

Engineering pro-angiogenic scaffolds  

Engineered scaffolds provide a 3D context to cells that allow them to attach, 

migrate, proliferate and/or differentiate, among other things. Generally, there 

are two main types of scaffolds: synthetically or naturally derived scaffolds 

(Guvendiren & Burdick, 2013; Kyburz & Anseth, 2015). 

Apart from the nature of the scaffold, there are several parameters that have to 

be taken into account when designing pro-angiogenic materials. The material must 

be biomimetic. This means that the material needs to be cell-friendly - i.e. 

biocompatible - and not to trigger any immunogenic response from the host body 

(Briquez et al., 2016). Furthermore, the material has to match several features of 

the targeted tissue such as stiffness, viscoelasticity or porosity (Chaudhuri et al., 



2016; Huebsch et al., 2010; Q. Zhang et al., 2014). These features will be different 

for bone compared to skin or cardiac tissues.    

In addition, materials should be able to promote angiogenesis and so, able to 

deliver angiogenic factors. Generally, it would be ideal to find the minimum 

number of angiogenic factors that can trigger functional angiogenesis. To this end, 

one of the major goals when engineering the ideal pro-angiogenic material is the 

sustainable release of growth factors. This is achieved via sequestration of the 

growth factor and subsequent delivery of it (Cipitria & Salmeron-Sanchez, 2017; 

Dalby et al., 2018). 

Other things to take into consideration when engineering pro-angiogenic 

biomaterials is the crosstalk among material, cells and growth factors (Salmerón-

Sánchez & Dalby, 2016). There is a complex and powerful net of interactions that 

could be finely controlled to greatly enhance angiogenesis if taken into account 

(Mikaël M. Martino et al., 2011; Moulisová et al., 2017). Moreover, thoughts on 

how to translate the biomaterial strategy into clinic have to be always present.  

Engineered matrices are increasingly becoming more and more efficient in 

mimicking and exploiting ECM’s natural capabilities. Peptides, protein fragments, 

recombinant proteins, full-length proteins and other several strategies have been 

used so far, with good results (M. M. Martino et al., 2013; Mikaël M. Martino et al., 

2011, 2015; Edward A. Phelps & García, 2010; Pike et al., 2006; Seidlits et al., 

2011). However, there is still a need for matrices that can better mimic ECM’s 

features to release low doses of growth factors to be used in clinical applications.     

Fibronectin naturally presents growth factors in synergy with integrins 

The main objective of this thesis was to engineer a hydrogel system that could 

sequester and deliver growth factors – VEGF in this case -  in close proximity to 

integrins, so the efficiency of VEGF could be enhanced. To do that, we covalently 

tethered full-length fibronectin to both synthetic and natural polymers (PEG and 

HA). This  new family of hydrogels can be further controlled and so we showed 

that mechanical properties and degradability could be tuned independently of the 

presence of fibronectin.  

By using fibronectin, we hypothesised that we could have a system that can act 

as a reservoir for growth factors in addition to release growth factors as it 

naturally happens in vivo. Moreover, aside from regulating growth factors 

availability, fibronectin is capable of the modulation of growth factor signalling 
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through the interaction with cell-adhesion domains/integrins and growth factor 

receptors as stated throughout this thesis.  

When VEGF (or other growth factors) binds to fibronectin, induces the formation 

of clusters between VEGF receptors and integrins (due to the close spatial 

proximity between the cell-adhesion domain and the heparin-binding domain II of 

fibronectin) (M. M. Martino & Hubbell, 2010; Moulisová et al., 2017; Wijelath et 

al., 2004). As growth factor receptors and integrins share certain molecules of 

their respective signalling pathways, the clusters formed boost their respective 

signalling. This synergistic signalling has been exploited in several strategies to 

substantially lower the dosage of growth factors used in clinical applications 

(Salmerón-Sánchez & Dalby, 2016). However, when fibronectin is in its soluble 

form, the growth factor binding site is not exposed due to fibronectin’s globular 

conformation. For this domain to become available, fibronectin needs to unfold. 

This unfolding occurs naturally when fibronectin molecules interact with each 

other to form networks, also known as fibronectin fibrillogenesis (Leiss et al., 

2008; Schwarzbauer, 1991; Singh et al., 2010; X. Zhou et al., 2008).  

What has this work achieved? 

We were able to incorporate high amounts of fibronectin within our matrices 

(between 1-2 mg/mL, i.e. between 0.02 to 0.1 (w/w of the hydrogel)). This was 

twice the amount of fibronectin incorporated  compared to other groups working 

with full-length fibronectin (Seidlits et al., 2011)). Seidlits et al. functionalised 

fibronectin with acrylate groups and incorporated it into a hyaluronic acid 

hydrogel via photopolymerisation. The maximum amount of fibronectin 

incorporated by this group was 500 µg/mL, although they did not show the 

presence of the molecule in the system, neither characterised important 

parameters such as stiffness or exploited the ability of fibronectin to bind other 

molecules. They did show that their system was cytocompatible using HUVECs. 

Compared to this previous work with fibronectin hydrogels, this thesis has 

characterised more extensively the system, showing directly the presence of 

fibronectin into the gels by immunofluorescence, characterising mechanical 

properties, cell adhesion capabilities and studying VEGF-fibronectin interactions 

with HUVECs. 

We hypothesised that this system could significantly increase the synergistic 

signalling between integrins (such as αvβ3) and VEGF. This should let us decrease 

the amount of growth factor loaded within the hydrogels while still having an 



effect in angiogenesis. This was motivated by previous work done by Hubbell and 

colleagues, were they exploited the synergistic signalling of fibronectin using 

fibronectin fragments covering both adhesion and heparin-II binding domains. By 

incorporating these fragments into fibrin hydrogels they showed increase in 

angiogenesis in vivo using a wound healing model in diabetic mice (Mikaël M. 

Martino et al., 2011).  

Other groups have had success working with full-length fibrinogen in synthetic 

hydrogels for cardiac repair (Almany & Seliktar, 2005; Dikovsky et al., 2006; 

Kerscher et al., 2016). Moreover, proteins such as laminins, which are extremely 

important in basement membranes and the neural ECM have been incorporated in 

PEG hydrogel systems for neural repair (Francisco et al., 2014; Roam et al., 2015). 

In this sense, Roam et al. tethered laminin and heparin in PEG microspheres to 

form growth factor gradients (Roam et al., 2015). 

These examples show the importance of the incorporation of full-length proteins 

in controllable systems.  

So far we have demonstrated that we can covalently incorporate fibronectin to 

both synthetic and natural hydrogels, PEG and HA. This did not affect the ability 

of the system to be further engineered to control mechanical properties and 

degradability rates. These systems also proved to be cytocompatible, which is a 

pre-requisite for biomaterials.  

We have also shown that our matrices are able to bind VEGF as hypothesised and 

keep a sustainable release of it. We have also tested the capabilities of these 

hydrogels to promote angiogenesis and vasculogenesis in vitro using HUVECs. We 

also tested the performance of the system in a in vivo scenario using the chick 

chorioallantoic membrane assay, where we showed that the fibronectin-based 

hydrogels are able to promote angiogenesis in a more complex environment. This 

results are extremely positive and have encouraged us to continue developing 

these hydrogels towards a more translational system.  

What’s next? 

At present, we are working on lowering the dosage of VEGF loaded within these 

hydrogels and also studying the central role of integrins-VEGF-fibronectin 

interactions in the system.   

This system has the potential to be used in many different applications, due to 

the promiscuous nature of the growth factor binding site on fibronectin and the 

major roles that fibronectin plays in the ECM. As a starting point, we will work on 
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the incorporation of BMP-2 and this will be tested using in vivo models for bone 

repair. For translational approaches, fibronectin-based hydrogels will be 

optimised for their fabrication using microfluidics and 3D printing. These two 

techniques will allow us to prepare fibronectin-based hydrogels as an injectable 

material (using microfluidics, for example) or fabricate hydrogels in well-defined 

geometries for different purposes (using 3D printing).  
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7 Chapter Seven: Conclusions  

The need for biomaterial systems that promote angiogenesis/vascularisation is 

still an important clinical hurdle. However, major efforts have been done in the 

field as discussed throughout this thesis.  

The principal objective of this work was to formulate a new biosynthetic hydrogel 

system based on the protein fibronectin, to be able to present growth factors in 

synergy with integrins, as has been discussed. 

• This work has been able to incorporate fibronectin in two different hydrogel 

systems, a PEG synthetic polymer and a natural HA polymer.       

• Fibronectin was covalently bound to both PEG and HA polymer networks, 

providing a stable linkage of the molecule.  

• The amount of fibronectin incorporated is the highest reported in literature 

for a hydrogel system containing full-length protein that does not form gels 

by itself. 

• Fibronectin hydrogels were further engineered and, we achieved control 

over the mechanical properties and degradability rates independently of 

the presence of fibronectin. 

• We used two thiol-based chemistries for the formulation of these hydrogels: 

a Michael-type addition reaction using maleimide functional groups; 

because they spontaneously react with thiol groups at physiological pH and, 

UV-initiated click chemistry using norbornene functional groups. Both 

chemistries demonstrated their suitability to encapsulate cells in situ, 

which is essential for 3D cell culture systems. 

• Fibronectin-PEG hydrogels showed that they can uptake and retain VEGF 

due to the presence of fibronectin. These hydrogels showed a sustainable 

release of VEGF, which is a key feature in the angiogenic process. 

• Fibronectin-PEG hydrogels were able to promote in vitro sprouting of 

endothelial cells when VEGF was present.  

• Fibronectin-PEG hydrogels promoted the rapidly 3D reorganisation of 

endothelial cells into multicellular structures when VEGF was presented. 



• Moreover, fibronectin-PEG hydrogels showed their ability to promote 

angiogenesis in vivo using the chick choriallantoic membrane assay and 

demonstrating higher performance when VEGF was presented by 

fibronectin compared to VEGF within PEG only controls. 

Even though this thesis has achieved very encouraging results, there is still work 

to do in order to improve the system for translational purposes.  

More efforts are necessary to elucidate the mechanisms behind the presentation 

of VEGF in this particular system (and maybe the presentation of two or more 

growth factors). Work has to be done on lowering the dosage of VEGF while 

retaining the enhanced efficiency of the fibronectin-VEGF presentation. This is 

one of the major challenges when thinking of the translation of this system to the 

clinic. In addition, other fabrication methods should be implemented such as 

microfluidics or 3D printing to be able to scale-up the production of this material 

for the clinic.     
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