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Abstract 
 

Biomimetic Autonomous Underwater Vehicles (BAUVs) are a class of Uncrewed 

Underwater Vehicle (UUV) that mimic the propulsive and steering mechanisms of real fish. 

However, as with all UUVs, the range and endurance of these vehicles remains limited by 

the finite energy source housed on board the vehicle. Unsurprisingly, a consequence of this 

finite energy source is that BAUVs/UUVs are incapable of completing the large-scale 

oceanographic sampling missions required to drastically improve our understanding of the 

Earth’s oceans and its processes. To overcome this limitation, this thesis aims to investigate 

the feasibility of deploying a self-coordinating group of BAUVs capable of completing the 

aforementioned oceanic surveying missions despite the constraints of the local operating 

environment.  

To achieve this, the work presented in this thesis can be separated into four distinct parts. 

The first of which is the development of a suitable mathematical model that accurately 

models the dynamics of the RoboSalmon BAUV designed and built at the University of 

Glasgow. As well as ensuring the models validity, its ability to efficiently simulate multiple 

vehicles simultaneously is also demonstrated.  

The design and implementation of the formation control algorithm used to coordinate the 

vehicles is then presented. This process describes the alterations made to a biologically-

inspired algorithm to ensure the required parallel line formation required for efficient 

oceanic sampling can be generated. Thereafter, the implementation of a realistic 

representation of the underwater communication channel and its debilitating effect on the 

algorithms ability to coordinate the vehicles as required is presented.  

The thesis then describes the incorporation of two methodologies designed specifically to 

overcome the limitations associated with the underwater communication channel. The first 

of which involves the implementation of tracking/predictive functionality while the second 

is a consensus based algorithm that aims to reduce the algorithms reliance on the 

communication channel. The robustness of these two methodologies to overcoming not 

only the problematic communication channel but also the inclusion of additional external 

disturbances is then presented. 

The results demonstrate that while the tracking/predictive functionality can overcome the 

problems associated with the communication channel, its efficiency significantly reduces 

when the external disturbances are taken into consideration. The consensus based 

methodology meanwhile generates the required formation regardless of the constraints 

imposed by both the communication channel and the additional external disturbances and 

therefore provides the more robust solution.  
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Chapter 1  
Introduction 

____________________________________ 

1.1 Background 

“How inappropriate to call this planet Earth when clearly it is Ocean.” 

Arthur C. Clarke 

Considering that approximately seventy percent of the Earth’s surface is comprised of 

ocean, it is easy to understand the rationale of British author, Arthur C. Clarke (Lovelock 

1990). Perhaps an alternative interpretation of the above quote is that without the oceans, 

life on this planet would cease to exist. Regardless of one’s interpretation, the words of 

Clarke poignantly highlight Earth’s reliance on these vast expanses of water. However, as 

well as creating life, the oceans are also capable of causing immense devastation through 

natural disasters such as the recent tsunamis in Indonesia (Matsumaru, Nagami and 

Takeya. 2012) and Japan (Raby et al. 2015).  

Yet, despite its irrefutable influence to life on Earth, the current map of the entire ocean 

floor is only to a resolution of 5km (Copley 2014). To put this figure into context, NASA’s 

Magellan spacecraft orbited and mapped (in the early 1990’s) the vast majority of the 

surface of Venus – a planet millions of miles from Earth - to a resolution of 100m (Copley 

2014; NASA 1994). While there are a number of reasons for this disparity in available 

resolution, the overriding one is the difficulties associated with radio wave propagation in 

the underwater environment (Chen et al. 2010). As a result, the ability to use satellite 

technology similar to that used by the Magellan spacecraft to explore subsurface oceanic 

features is, and will continue to be, extremely limited (Copley 2014).  

With the applicability of satellite technology limited, the vast majority of modern day 

oceanic exploration (oceanography) is undertaken through a combination of (crewed and 

uncrewed) Surface Vehicles as well as a group of underwater vehicles collectively referred 

to as Uncrewed Underwater Vehicles (UUVs) (see Figure 1.1). 
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Figure 1.1 - Combination of Surface Vehicles and Uncrewed Underwater Vehicles used in 

Oceanography. (a) - Uncrewed Surface Vehicle (USVs), (b) - Remotely Operated Vehicle 

(ROV), (c) Autonomous Underwater Vehicle (AUV),  (d) - Autonomous Underwater Glider 

(AUG) and (e) Hybrid AUV/AUG (NOC 2017). (Figure has been removed due to copyright 

restrictions). 

While crewed surface vessels are likely to remain an integral part of ocean exploration for 

the foreseeable future, their daily operational costs ($20k-$50k) (German et al. 2012) do not 

make them an economically viable method for the large scale data collection required to 

drastically improve our understanding of the oceans (Petillo et al. 2012) (Leonard et al., 

2007).   

UUV’s, on the other hand, provide a far more cost effective solution that can result in 

savings of up to 60% (Chance et al. 2000). These savings are due primarily to the ability of 

these vehicles to operate without requiring continuous human supervision  (Griffiths et al. 

2011; Tan et al. 2007). Furthermore, these vehicles are also capable of capturing data at far 

higher resolutions due to their ability to travel below the ocean’s surface (Wynn et al. 2014). 

However, with these vehicles operating untethered, all necessary operational equipment 

must be carried on board, including the finite power source. While battery technology has 

improved drastically since the inception of the first AUV (SPURV) in the 1950’s, modern, 

state of the art UUVs and most notably AUVs are still only capable of covering distances 

measured in the 100’s of kilometres over a period of a few days (Maritime 2017b; Maritime 

2017a; Maritime 2018). When this limited range and endurance is coupled with the typical 

modern AUV mission trajectory shown in Figure 1.2, it is apparent that AUV deployments, 

in their current guise, do not present an economically viable solution for the large-scale 
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oceanic mapping discussed above (Rumson 2018). Furthermore, regardless of the particular 

type of UUV used, the lawnmower trajectory shown in Figure 1.2 also inherently prevents 

the accurate monitoring of spatiotemporal phenomena such as oil plume tracking (Petillo 

et al. 2012).   

 

Figure 1.2 - Typical lawnmower trajectory pattern used throughout current AUV 

missions. 

The only option available to overcoming these limitations and drastically improving the 

efficiency of current UUV missions is to deploy multiple collaborating UUVs (Tena 2018) 

capable of self-coordinating and generating the parallel line formation shown below in 

Figure 1.3.  

 

Figure 1.3 - Envisioned mission overview with multiple vehicles generating parallel line 

formation to complete efficient oceanic mapping. 

However, before a deployment such as the one shown above can become a reality, it is 

necessary to design, test and optimise the necessary algorithms that will allow the various 

vehicles to self-coordinate and organise themselves into the parallel line formation shown 

within the Search Area Boundary of the above figures. In the field of cooperative robotics, 

this problem is known as the formation control problem and has been studied extensively over 

the past two decades for air, land, sea and space applications as reviewed in (Murray 2007; 

Oh et al. 2015) and the references therein.  
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However, as a result of the Earth’s watery veil preventing the successful propagation of 

radio waves, vehicles operating underwater do so in an environment with a communication 

channel characterised by low bandwidth, large delays and unreliability (Akyildiz et al. 

2004). These problems are further complicated by the presence of unknown and 

unpredictable external disturbances such as obstacles and oceanic currents.  

Nevertheless, since the start of the 21st century, not only has the feasibility of deploying 

multiple UUVs simultaneously being demonstrated but also the advantages of doing so 

(Ramp et al. 2009). Included in these projects is the seminal work completed throughout the 

first Autonomous Ocean Sampling Network (AOSN) collaboration (Fiorelli et al. 2006). In 

2003 this work culminated with the successful deployment of three AUVs moving in 

formation to monitor upwelling and relaxation in the Monterey Bay area (Fiorelli et al. 

2006). While multiple projects have since demonstrated the ability to successfully deploy 

multiple UUVs (Sotzing, C.C, Lane 2010)(Brignone et al. 2009), the majority of these projects 

have done so by the vehicles periodically surfacing. These surfacing periods permitted the 

individual vehicles to receive a GPS positional fix as well as new heading commands from 

onshore base stations. This requirement to periodically surface is particularly inefficient as 

it means the vehicles are expending a significant amount of energy and time manoeuvring 

to the surface when they could be continuing mapping operations. Furthermore, the 

maximum number of vehicles used during these projects has been limited to six vehicles 

(Leonard et al. 2010). The likely reason for such few vehicle being used in these studies is 

the costs associated with purchasing the individual vehicles costing approximately 

$135,000 each (Herkewitz 2013). 

Recently, to combat this problem, smaller and far more affordable UUVs have been 

produced. Included in these, is the Biomimetic AUV, Jeff (Mintchev et al. 2014) which, with 

a unit cost of only €1200 is significantly cheaper than the vehicles used in the projects 

discussed above. As discussed in (Tena 2016), this philosophy of designing and developing 

smaller, more affordable vehicles and deploying them as part of a large collaborative group 

is a current research and development trend within the UUV community both in industry 

and academia.  

Consequently, based on the above discussion, it is apparent that there is presently scope to 

investigate the feasibility of designing a formation control algorithm capable of 

coordinating groups of these smaller, more affordable UUVs into a formation similar to that 

shown in Figure 1.3. Furthermore, in order to maximise the group’s efficiency, the 

algorithm designed should create the desired formation without requiring the vehicles to 
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periodically resurface. This requirement will entail the algorithm having to be tolerant to 

the limited and problematic underwater communication channel (Akyildiz et al. 2004). 

To investigate the feasibility of designing such an algorithm, the work presented in this 

thesis uses a validated mathematical model of the RoboSalmon Biomimetic AUV shown 

below in Figure 1.4 which has previously been designed, manufactured and tested at the 

University of Glasgow (Mazlan 2015). 

 

Figure 1.4 - RoboSalmon BAUV designed at the University of Glasgow. (Figure has been 

removed due to copyright restrictions). 

Like the RoboSalmon vehicle, the formation control algorithm designed and presented in 

this thesis takes inspiration from nature and is based on the behavioural mechanisms of 

fish partaking in schooling behaviour. As discussed in (Aoki, 1981)  and shown below in 

Figure 1.5, these mechanisms result in each fish manoeuvring in either a repulsive, 

orientating or attractive manner depending on the distance between themselves and their 

nearest neighbour. 

 

Figure 1.5 - Diagrammatic representation of the behavioural mechanisms used by fish 

while schooling. 
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Analysing these behaviours and comparing them with the mission profile outlined in 

Figure 1.3, it is apparent that they are analogous to the Deployment, Mapping and Recovery 

phases of the proposed mission profile for multi-vehicle deployments. On initial inspection 

therefore, these behaviours appear to be a particularly suitable formation control method.  

Therefore, the work presented in this thesis details the design process of a formation control 

algorithm based on the behavioural mechanisms of fish in schooling structures. This study 

is achieved through simulation studies of the school while completing mission profiles 

similar to the scenario presented in Figure 1.3.   The development of the algorithm has been 

carried out under realistic environmental constraints by including a credible representation 

of the underwater environment. This representation includes the incorporation of external 

disturbances such as ocean currents, subsea obstacles and most importantly, the 

aforementioned restrictions associated with underwater communications.  

1.2 Aims & Objectives 

As discussed above, although a number of projects have demonstrated the ability to 

coordinate a group of UUVs, they have done so by compromising mission efficiency and 

autonomy by requiring the vehicles to periodically resurface to receive new heading 

commands and positional fixes. Therefore, it is the aim of this research to design a formation 

control algorithm capable of coordinating a group of UUVs to complete efficient oceanic 

mapping missions despite the nuances associated with the underwater environment.  

However, in order to achieve this, a number of objectives must be set. These objectives are 

described below: 

• Implement an appropriate mathematical model that accurately represents the 

dynamics of the Biomimetic AUV (BAUV) – RoboSalmon - while maintaining a 

practical execution time when multiple vehicles are simulated simultaneously; 

• Design a suitable formation control algorithm based on the behavioural 

mechanisms of fish in schooling structures that satisfies the requirements of the 

mission profile shown in Figure 1.3; 

• Implement a realistic representation of the underwater communication channel as 

well as external disturbances such as oceanic currents and obstacles;  

• Design and incorporate suitable functionality within the formation control 

algorithms that mitigates the nuances associated with the underwater 

communication channel; 
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• Complete simulations to illustrate both the effect of implementing the nuances 

associated with the underwater environment as well as the ability of the 

functionality implemented to overcome these nuances. 

These are the aims and objectives of the work presented in this thesis. 

1.3 Contribution of Research 

The research presented in this thesis contributes mainly to the fields of cooperative robotics 

and autonomous systems as applied to the maritime environment. The specific 

contributions of the work are listed below: 

• Implementation, comparison and testing of two system identification techniques to 

reduce the fidelity of a validated, high-fidelity mathematical model of the BAUV, 

RoboSalmon; 

• Development and implementation of a formation control algorithm based on the 

behavioural mechanisms of fish within school structures; 

• Improvement of the above formation control algorithm’s design to ensure the 

required parallel line formation shown in Figure 1.3 is generated; 

• Application and comparison of predictive and consensus based control 

methodologies to successfully mitigate the effect of the underwater communication 

channel; and 

• Creation of a formation control algorithm that operates as required despite the 

nuances of the underwater communication channel as well as the presence of 

external disturbances such as obstacles and oceanic currents. 

This work contributes to autonomous systems and cooperative robotics within the 

maritime environment as it demonstrates the validity of using predictive and consensus 

based control methodologies to overcome the constraints of the underwater 

communication channel. Furthermore, the work also demonstrates the creation of a 

formation control algorithm that is capable of operating with minimal human supervision 

and without the need to periodically resurface. 

At present, the following publications have resulted from the work completed within this 

thesis: 

• McColgan, J. and McGookin, E.W., (2015), “ Analysis of the group structure of a 

school of biomimetic AUVs coordinated using nearest neighbour principles”, 6th 



Introduction 

 

7 

 

International Conference on Automation, Robotics and Applications (ICARA), 

Queenstown, New Zealand, Feb 17-19, pp. 312-317. 

• McColgan, J. and McGookin, E.W., (2015), “A low fidelity mathematical model of a 

biomimetic AUV for multi-vehicle cooperation”, OCEANS 15, Genova, Italy, 18-21 

May, pp. 1-10. 

• McColgan, J. and McGookin, Euan W. (2016). "Coordination of Multiple Biomimetic 

Autonomous Underwater Vehicles Using Strategies Based on the Schooling 

Behaviour of Fish." Robotics 5, no. 1: 2. 

• McColgan, J. and McGookin, E.W. (2017). “Effect of Communication Delays on the 

Successful Coordination of a group of Biomimetic AUVs”, OCEANS 17, Aberdeen, 

Scotland, 19-22 June 2017. 

Other publications are in preparation and will be published in due course. 

1.4 Thesis Outline 

The main focus of this work is to design a formation control algorithm that is capable of 

coordinating a group of vehicles into the required formation to ensure efficient oceanic 

mapping missions can be undertaken. The algorithm design is also required to generate 

this formation regardless of the nuances associated with the underwater environment. The 

development and improvements incorporated in the algorithm are presented in stages 

throughout this thesis. With the exception of Chapter 2, each chapter presents the theory 

and associated functionality implemented within the mathematical model before 

presenting and analysing the results obtained from the simulations completed at each stage 

of the algorithm’s development.  

Chapter 2 provides an overview of the relevant literature associated with the work 

completed in this thesis. This includes a review of the current state of the art in both UUV 

design and autonomy and why it is important to the work completed in this thesis. 

Thereafter, this chapter presents a brief overview of the different projects associated with 

the deployment of multiple collaborating UUVs and how they relate to the work completed 

in this thesis. Lastly, this chapter presents the different types of formation control 

methodologies available and which ones have been incorporated recently within studies 

associated with AUVs.  

Chapter 3 begins by providing a brief overview of the RoboSalmon vehicle and the 

mechanisms used to allow it to imitate the swimming properties of the North Atlantic 

salmon. Thereafter, this chapter describes in detail the original, high-fidelity mathematical 

model of the BAUV, RoboSalmon. This chapter then analyses the suitability of this model 
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to be used to model multiple vehicles simultaneously. The subsequent changes made to the 

model are described in detail and suitable validation tests are completed to prove the 

performance of these reduced fidelity models.   

Chapter 4 begins by briefly describing the behavioural mechanisms associated with fish in 

schooling structures. In terms of coordinating the vehicles, these behaviours are replicated 

into a number of heading and velocity control laws that when combined, make up the initial 

formation control algorithm used in this work.  Once the formation control algorithm has 

been presented, its suitability to successfully coordinate the vehicles as required is 

presented.   

Chapter 5 describes the modifications made to the algorithm presented in Chapter 4 in 

order to ensure that it operates as efficiently as possible and is able to generate the required 

parallel line formation. The modified formation control algorithm is then tested in a similar 

manner to the original algorithm of Chapter 4. 

Chapter 6 begins by describing the nuances associated with the underwater communication 

channel and the methods used to include them within the work completed in this thesis. 

Simulations are then completed to test how varying parameters associated with the 

underwater communication channel effects the algorithms ability to operate as required. 

Chapter 7 presents and describes the predictive and consensus based methodologies 

incorporated within the formation control algorithm in order to overcome the nuances of 

the underwater communication channel. The results obtained from the various simulations 

completed are presented and a determination of whether or not the methodologies 

implemented operate as expected is made.   

Chapter 8 begins by describing the functionality included to ensure a realistic 

representation of both oceanic currents and external obstacles are included. Thereafter, the 

exact same simulations completed in Chapter 7 are repeated and based on the results 

obtained, the most suitable control method (predictive or consensus based) is chosen. This 

chapter then describes the results obtained from additional simulations completed to 

demonstrate the robustness of the chosen algorithm.    

Chapter 9 presents the results obtained from simulations completed to demonstrate that 

the formation control algorithm designed and developed from Chapters 4 through to 8 

operates as required and regardless of the local operating environment during realistic 

oceanic sampling missions. 
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Chapter 10 concludes this thesis by given a summary of each chapter and the conclusions 

drawn from the results obtained. Areas of possible future work are also given at the end of 

this chapter. 
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Chapter 2  
Literature Review 

____________________________________ 

2.1 Introduction 

Autonomous Underwater Vehicles (AUVs) like all Uncrewed Underwater Vehicles (UUVs) 

are extremely complicated robotic systems and are made up of many smaller interacting 

subsystems. These subsystems  involve the merging of several areas of technology 

including (but not limited to) guidance, control and navigation techniques, communication 

systems and their associated protocols, computer science, sensor technology, data fusion as 

well as the vehicle design itself (Finn & Scheding 2010). As a result, it is easy to comprehend 

that once the formation control aspect of multi-AUV collaboration is taken into 

consideration, the literature available to review is exhaustive. Therefore, only the 

subsystems pertinent to the work completed in this research will be reviewed in this 

chapter, i.e. the guidance, control and navigation systems, vehicle design, the 

communication subsystems as well as the different formation control methodologies 

available.  

Therefore, this chapter provides a review of the relevant literature in the following manner. 

Section 2.2 contains a brief summary of the evolution of AUV development from their 

inception to the modern day. Section 2.3 provides a detailed review of the current state of 

the art in AUV technology. Section 2.4 provides an overview of the various subsystems 

associated with an AUV that are pertinent to the work completed in this thesis. Finally, 

Section 2.5 provide a summary of the literature reviewed in this chapter. 

2.2 AUV Development 

The inception of AUV technology can be traced back to the early 1950’s when researchers 

within the Applied Physics Laboratory at the University of Washington began developing 

what would become in the 1960’s, the first operational AUV (Alt 2003). 
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The Special Purpose Underwater Research Vehicle (SPURV) as it was named was capable 

of operating at a maximum depth of 3000m for up to five and half hours (Widditsch 1973) 

while using the on board temperature and conductivity sensors to record data relating to 

diffusion studies (Drones 2010). 

In the following two decades, AUV development continued, albeit at a gradual pace, due 

primarily to the required technology being unavailable resulting in a lack of interest from 

those out with the relevant research communities (Blidberg 2001). However, with the 

production of higher density batteries and the availability of ever more compact computer 

processing units, interest in the development of AUV technology was rejuvenated towards 

the end of the 20th century. This rejuvenation resulted in the development and deployment 

of a number of new, more sophisticated AUVs by a number of institutions including 

Massachusetts Institute of Technology (MIT), Woods Hole Oceanographic Institution 

(WHOI) and Southampton’s Oceanography Centre (SOC) as highlighted below in Table 2.1.  

Table 2.1 - Comparison of Different AUVs (Alt, 2003). 

Name Institution Depth Rating (km) Max Endurance (hrs) Weight (kg) 

Odyssey  MIT  6 6 195 

ABE  WHOI 5 34 68 

AutoSub  SOC 1 50 1700 

The subsequent missions completed by these vehicles resulted in a number of world firsts 

including the successful laying of 175km of fibre optical cabling under the arctic ice 

(Ferguson et al. 1999) and surveying subsea lava flows (Yoerger et al. 1998).  

The reliability and capability demonstrated by the above vehicles combined with the need 

for the hydrocarbon industry to start exploring deeper waters resulted in the subsequent 

commercialisation of AUV technology. Furthermore, with governments across the world 

also beginning to realise the potential for AUVs to be used as efficient maritime 

reconnaissance platforms (U.S. Navy 2004), demand and investment in AUV technology 

grew rapidly in the decade following the turn of the century (Nicholson, J.W. Healey 2008). 

This new found demand resulted in the number of operational AUVs available increasing 

dramatically from only a handful in the mid 1990’s (Bellingham & Rajan 2007) to the point 

whereby in 2007, the number of AUVs used exclusively for military purposes was equal to 

82 (Moline, Dana L. Woodruff, et al. 2007). Since then, continued investment in the relevant 

technology has resulted in an increased confidence in the ability of AUVs to reliably and 

successfully meet the operational requirements demanded from them by the scientific, 

military and commercial sectors. As a result, it is predicted that by 2020, the global AUV 
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market will increase by 49% resulting in the demand for over 900 units (Douglas-Westwood 

2016). 

Although the demand for AUVs has increased significantly since their inception in 1960, 

one facet of their operation that has remained largely unaltered is their modus operandi. AUV 

missions, since the deployment of the SPURV vehicle have all operated by traversing 

through a number of pre-programmed waypoints (Tena 2013). Typically, these waypoints 

will result in the vehicle following a lawnmower pattern trajectory similar to that shown 

below in Figure 2.1.  

 

Figure 2.1 - Typical lawnmower trajectory used during AUV missions (Moline, Woodruff, 

& Evans, 2007b). (Figure has been removed due to copyright restrictions). 

The picture presented above represents the trajectory of the popular REMUS AUV during 

a mission to collect bathymetric data in Sequim Bay in 2007 (Moline, D.L. Woodruff, et al. 

2007). The trajectory presented demonstrates the typical profile of a modern AUV mission 

including the vehicle being deployed from a surface vessel (yellow circle), the vehicle 

manoeuvring between the different pre-programmed waypoints (blue line) and finally, the 

vehicle manoeuvring to a specified location (white circle) to be recovered. 

The mission profile outlined in Figure 2.1 highlights a number of limitations associated with 

current AUV operational capability. The first and perhaps most obvious is highlighted by 

the vehicles trajectory (blue line) and the fact that when compared with the surrounding 

ocean, the area mapped is relatively small. Secondly, the lawnmower trajectory presented 

in Figure 2.1 also highlights the limited autonomy present in modern AUV missions in that 

although the vehicle can operate unsupervised and manoeuvre between the different 

waypoints, it doesn’t have the autonomy to make changes to the mission plan. This means 

that potential areas of interest can only be identified after the mission has ended and the 

data analysed. 
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Based on the above discussion and that presented in the literature (Tangorra et al. 2011), it 

is apparent that there is currently two factors affecting the operational capability of AUVs; 

firstly, limited range and endurance due to the finite energy source and secondly, limited 

vehicle autonomy. If, as highlighted within (German et al. 2012), advances can be made in 

these areas, the operational capability of AUVs will improve significantly in the next 

decade.  

2.3 State of the Art in AUV Technology 

As discussed above, increased range and vehicle autonomy have been highlighted as two 

key areas of AUV development that if improved, could improve the efficiency of modern 

AUV missions. The following sections will now describe in detail the current state of the 

art associated with these two areas of AUV research and development. 

2.3.1 Vehicle Design  

As shown below in Figure 2.2, since their inception in the late 1960’s, the aesthetics of AUVs 

has remained largely unchanged with a cylindrical shaped hull that optimises the trade-off 

between hydrodynamic efficiency, structural integrity and the need to maximise the 

interior space available (Gao et al. 2016). The pictures presented also demonstrate that 

AUVs all use propellers for propulsion and a rudder for lateral manoeuvrability. Finally, 

vertical manoeuvrability is achieved by either external control surfaces positioned at the 

front or rear of the vehicle (Figure 2.2 (b) and (c)) or by altering the vehicles buoyancy using 

ballast tanks (Figures 2.2 (a) and (d)).  

Analysing the mass and range values associated with each AUV in Figure 2.2, it is apparent 

that in order to increase the range of an AUV, the size (mass) of the vehicle must be 

increased significantly. While technology has improved over the decades to provide 

batteries with greater energy densities (Wang et al., 2012), it remains a design restriction of 

traditional propeller based AUVs that significant improvements in range and endurance 

can only be achieved by increasing the number of batteries housed within the vehicle.  
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(a) SPURV AUV. Operational - 1959 – 1979. Mass – 484kg. Range – 29km 

 

(b) Thesus AUV. Operational – 1992-1996. Mass - 8600kg. Range -1360km 

 

(c) REMUS 100 AUV. Operational 2001 – Present. Mass – 82kg. Range – 72km 

 

(d) ecoSUBμ5. Operational 2015 – Present. Mass – 4kg. Range 50km 

Figure 2.2  - Evolution of AUV Design (EcoSUBRobotics, 2018; Ferguson et al., 1999; 

Gafurov & Klochkov, 2015; Kongsberg, 2018). (Figure has been removed due to copyright 

restrictions).  

This is highlighted below in Table 2.2 where the near identical HUGIN 1000 and 3000 AUVs 

are compared in terms of their mass and range. As the data demonstrates, The HUGIN 1000 
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weighs 850kg and can cover a distance of approximately 177km whereas the HUGIN 3000, 

weighing 550kg heavier provides a range of 442km.(Kongsberg Maritime, 2017). 

Table 2.2 - Mass and range data associated with the Hugin 1000 and 3000 AUVs. 

Vehicle Mass (kg) Range (km) 

Hugin 1000 850 177km 

Hugin 3000 1400 442 

As shown below in Figure 2.3, this relationship between an AUV’s mass and its associated 

range is common amongst the various commercially available AUVs (Kongsberg Maritime, 

2017)(ECA Group 2018; Generaly Dynamics 2018) presently on the market. Based on this 

data, it is apparent that the current state of the art in vehicle design and battery technology 

only allows for a maximum range value of just under 600km. However, as highlighted by 

(Griffiths et al. 2004) simply increasing the size of AUVs to increase their range isn’t feasible 

or practical as it would require a vehicle weighing approximately 30 tonnes to produce a 

long endurance AUV based on current battery technology. In order to overcome this limited 

range problem, a number of organisations have designed vehicles with an entirely different 

design philosophy. These vehicles will now be discussed in the following sections. 

 

Figure 2.3 - Comparison of range and endurance values for various families of AUVs. 

2.3.1.1 Autonomous Underwater Gliders (AUGs) 

Borne out of the desire to produce a vehicle capable of completing long endurance missions, 

a number of projects where initiated whose purpose was to replace or dramatically improve 

the range and endurance of traditional propeller based AUVs (Claus & Bachmayer 2012). 
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The result was the creation of an entirely new type of UUV that completely removed the 

need for a propeller based propulsion system and instead, this new vehicle, used a 

combination of buoyancy control and wings to allow the vehicle to ‘fly’ through the water. 

As well as using a more efficient propulsive system, Autonomous Underwater Gliders 

(AUGs) as they are commonly referred to as, also adopt far less power intensive sensors 

and on board control systems (Eriksen et al. 2001). The combination of these factors results 

in a vehicle that is capable of operating continuously for months at a time while monitoring 

oceanic characteristics over 1000’s of kilometres (Webb et al. 2001). An example of two 

commercially available AUGs, Seaglider and Slocum are shown below in Figure 2.4.    

 

(a) 

 

(b) 

Figure 2.4 - Two examples of commercially available AUGs (a) Seaglider (Kongsberg, 

2018) and (b) Slocum. (Figure has been removed due to copyright restrictions). 

While the range and endurance figures associated with AUGs satisfy the requirements for 

long endurance missions, there are also a number of operational limitations associated with 

these vehicles. The most notable of these is the fact that their maximum forward velocity is 

limited to between 0.25 m/s and 0.45 m/s (Davis et al. 2002). As a result, one of the 

disadvantages of operating UGSs is that their trajectories are susceptible to being dictated 

by the direction of ocean currents (Eriksen et al. 2001). 
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2.3.1.2 Hybrid Autonomous Underwater Vehicles (HAUVs) 

In a bid to combine the best design facets of both traditional propeller based AUVs and 

AUGs, a team from the National Oceanographic Centre in Southampton have designed the 

AutoSub Long Range (Furlong et al. 2007) vehicle shown below in Figure 2.5. 

The AutoSub LR vehicle can be considered a hybrid AUV as it contains technology 

normally used exclusively for either an AUV or an AUG. This includes the adoption of a 

propeller based propulsive system commonly seen on an AUV and a set of wings that as 

discussed above, are an integral design feature of AUGs.  

 

Figure 2.5 - AutoSub Long Range designed by the Marine Autonomous and Robotics 

Systems team at the National Oceanographic Centre (NOC 2017). (Figure has been 

removed due to copyright restrictions). 

While normally the inclusion of a propeller based propulsion system would consume 

significant amounts of energy, the AutoSub LR vehicle has been designed specifically to 

operate optimally at velocities in the region of 0.5 m/s and 1 m/s and thus, the power 

consumption of the vehicle has been significantly reduced (Furlong et al. 2012). 

Furthermore, the vehicle’s on board control and sensor systems have been chosen 

specifically because of their low power consumption characteristics  (Wynn et al. 2012). As 

a result of these two design features, the AutoSub LR is capable of operating continuously 

for up to six months while covering a distance of approximately 7,000 km (Marshall 2016).   

2.3.1.3 Biomimetic Autonomous Underwater Vehicles (BAUVs) 

So far, the discussions presented above have demonstrated that in order to improve their 

range and endurance, the design of underwater vehicles has had to evolve and as result, 

three categories of underwater vehicle now exist; AUVs, AUGs and Hybrid AUVs. While the 

design of these three vehicles have focussed primarily on improving their range and 

endurance, a fourth category now exists that focusses on improving their manoeuvrability 

characteristics.  
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In order to achieve this improved manoeuvrability, these vehicles take inspiration from 

nature and copy the propulsive and steering mechanisms of real fish (Bar-Cohen 2011). 

Unsurprisingly, this particular type of AUV is commonly referred to as a Biomimetic AUV 

(BAUV). As it is the type of vehicle used throughout the work presented in this thesis, the 

following section will describe in detail the current state of the art associated with this 

particular type of AUV. 

Although the concept of imitating nature is not new, its application to underwater vehicles 

has a relatively short history with the production of RoboTuna at MIT in the mid-to-late 

1990’s (Barrett 1996) signalling the start of biomimetic underwater vehicle research. As with 

the recent FILOSE project (Salumäe 2013), the original purpose of RoboTuna was to facilitate 

the collection of data associated with the hydrodynamic properties of fish like swimming. 

Nevertheless, the overriding success of the project resulted in the production of the world’s 

first biologically inspired underwater vehicle, the vorticity-controlled unmanned underwater 

vehicle (VCUUV) (Anderson & Chhabra, 2002) shown below in Figure 2.6. 

The VCUUV was the result of a collaboration between MIT and Draper laboratories aimed 

at producing the first mission ready, biologically inspired underwater vehicle. 

Aesthetically, the vehicle’s design is a scaled up replica of the aforementioned RoboTuna. 

However, to ensure the vehicle could operate untethered, its design was split into two 

sections (Cho 1998): a forward hull provided the necessary space to house the various 

systems required for the vehicles operation while a hydraulically actuated multi-segmented 

tail section allowed the swimming gait of the tuna fish to be replicated. The experimental 

results (Anderson & Chhabra 2002) for the vehicle demonstrated its exceptional turning 

performance, with turning rates of up to 75 degrees per second being achieved.  

 

(a) (b) 

Figure 2.6 - Vorticity-Controlled Unmanned Underwater Vehicle (VCUUV) when (a) 

assembled and (b) undertaken a turning manoeuvre with full body deflection. (Cho 1998) 

(Figure has been removed due to copyright restrictions). 
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As shown below in Table 2.3, the general trend of BAUVs is to possess extremely good 

manoeuvrability characteristics but poor straight line speed capability. This lack of forward 

speed is believed to be a result of the design trade-off that takes place between accurately 

replicating the swimming gait of the fish while trying to keep the complexity of the vehicle’s 

design to a minimum.  As stated by (Valdivia y Alvarado 2007), in order to accurately 

replicate the swimming gait of fish using the multi-segment approach, a large number of 

degrees of freedom (segments) are required. However, by increasing the number of degrees 

of freedom within a system, the sophistication of the necessary control techniques increases 

(Yu et al. 2004) as does the challenges associated with keeping the electrical equipment 

waterproof (Kumph 2000). It is for these reasons that the majority of the projects in Table 

2.3 decided to use between one and three joints in their design. As a result, the vehicles 

were incapable of producing an inaccurate replication of the fish’s swimming gait (Roper 

et al. 2011). Furthermore, the focus of these projects on only using the posterior section of 

vehicle to replicate the swimming gait resulted in an excessive lateral oscillation of thrust 

at the tail of the vehicle, producing an undesirable and detrimental excessive yawing 

motion (Clapham 2015; C. M. Watts 2009; Mazlan 2015).  

Table 2.3 - Summary of Prototype Biomimetic Underwater Vehicles. 

Name 

Straight Line 

Speed 

 (m/s) 

Turning 

Capability 

 

Reference 

RoboPike 0.25 17.5 deg/s (Kumph 2000) 

PF-300 0.20 36.0 deg/s (Hirata et al. 2000) 

PF-2001 0.97 - (Hirata & Kawai 2001) 

G9 0.80 130.0 deg/s (Liu et al. 2005) (Hu 2006) 

UWFUV 0.60 - 
(Morgansen et al. 2007) 

(Triplett 2008) 

RoboSalmon V2 0.20 50 deg/s (C. Watts 2009) 

SPC-III 1.36 1 Body Length (Bibuli et al. 2011) 

BIOSwimmer 2.50 < 1 Body Length (Conry et al. 2013) 

iSplash-I 0.70 0 (Clapham & Hu 2014a) 

iSplash-II 3.70 0 (Clapham & Hu 2014b) 

RoboSalmon V3 0.19 0.64 Body Length (Mazlan 2015) 

In an attempt to alleviate this problem, the G9 BAUV shown below in Figure 2.7 (a) altered 

the approximation of the swimming gait to take into account the motion of the anterior 

section of the vehicle  (Liu & Hu 2010). Although the results produced an improvement in 

the swimming speed, the vehicle was still unable to achieve a realistic swimming speed. 

Furthermore, (Watts & McGookin 2013) (Figure 2.7 (b)) and (Mazlan 2015) (Figure 2.7 (c)) 

both designed vehicles with significantly more joints as well as including an actuated 
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anterior section in order to investigate whether or not the recoiling motion of the vehicle 

could be reduced. The results produced where conflicting with Watts suggesting that an 

improvement in performance could be obtained while Mazlan’s results demonstrated a 

26% reduction in straight line swimming speed. Regardless, both projects demonstrated 

that even with increasing the number of segments within the posterior section, the straight 

line speed obtained was still below that achieved in nature. It is believed that the complexity 

of the above designs resulted in increased mechanical losses and as a result, unforeseen 

early saturation of the actuators. 

  

(a) University of Essex – G9 (b) University of Glasgow – RoboSalmon V2 

  

(c) – University of Glasgow – RoboSalmon V3 (d) – University of Essex - iSplash-II 

 

(a) – Boston Engineering - BIOSwimmer 

Figure 2.7 - Various BAUV designs.(Liu et al. 2005) (Watts 2009) (Mazlan 2015) (Clapham 

& Hu 2014a)(Boston Engineering 2014) (Figure has been removed due to copyright 

restrictions). 

However, importantly, the work completed by Watts was the first attempt at comparing 

the efficiencies of a biomimetic AUV with that of a similarly sized traditional propeller 

based AUV. Although the Biomimetic AUV was unable to match the traditional AUV in 
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terms of speed, the experimental results demonstrated that when both vehicles travel at the 

same speed, the RoboSalmon vehicle is more efficient by a factor of three (McGookin & 

Watts 2012)(Watts, 2009). Similar results have been presented more recently in (Bibuli et al. 

2011). These results also demonstrate that for the same forward speed, the biologically 

propelled vehicle not only consumed approximately 7% less power but its turning radius 

was also 40% smaller than that of the propeller based vehicle. 

Therefore, while BAUVs provide improvements in both manoeuvrability and overall 

system efficiency, their inability to achieve forward velocities greater than one metre per 

second have resulted in their applicability to realistic ocean sampling scenarios being 

questioned (Clapham & Hu 2014b; Valdivia y Alvarado 2007). This is due to the fact that at 

these velocities and similarly to AUGs, it is likely that ocean currents will dictate the 

vehicles trajectory. However, as shown in Table 2.3 there are two vehicles capable of 

achieving significantly greater forward velocities, the iSplash-II vehicle designed at the 

University of Essex and the BIOSwimmer produced from Boston Engineering.  

The work completed by (Clapham 2015) culminating in the iSplash (Figure 2.7 (d)) series of 

vehicles created a novel mechanical drive system combining a single electrical motor with 

a crankshaft to replicate the full-body undulatory motion of the carangiform carp fish. This 

new design methodology resulted not only in a dramatic increase in the vehicles ability to 

accurately replicate the swimming gait of the carp fish but also the frequencies of the tail’s 

undulatory motion. As a result, for the first time, a BAUV could travel faster than the 

species of the fish it was based on (Clapham & Hu 2014b). While the design excelled at 

propelling the vehicle in a straight line, it didn’t include a method to allow the vehicle to 

move in either the horizontal or vertical planes and as Clapham himself concluded, this 

ability must be incorporated before the real world applicability of the vehicle is realised.    

The BioSwimmer design philosophy meanwhile is more pragmatic in dealing with the 

straight line speed limitations of BAUVs. As shown in Figure 2.7 (e), similarly to the other 

BAUVs, it still uses a multi-segmented tail section to provide the superior manoeuvrability 

characteristics (in yaw) while simply attaching a traditional propeller to the end of the tail 

section to provide the additional thrust required to achieve sufficient straight line speed 

(Conry et al. 2013). Additionally, motion in the vertical plane is achieved through the 

actuation of a pair of pectoral fins on either side of the hull (Conry et al. 2013).  

The above work has described the current state of the art in AUV vehicle design. The 

literature reviewed has demonstrated that presently, there are a four different types of 

underwater vehicle that can be deployed for oceanic mapping missions.  While not 



Literature Review 

 

22 

 

explicitly stated, it is apparent that based on the mission requirements, a particular type of 

AUV will be more suited than the others. For example, traditional propeller based AUVs 

with their superior velocity are more suited to search and recovery missions where the 

rapid assessment of a particular area is required. Conversely, AUGs and hybrid AUVs are 

more likely to be used in scientific mapping missions were ocean processes that evolve over 

large spatiotemporal domains need to be monitored and therefore, the long endurance 

capabilities of AUGs and hybrid AUVs are more suited. Finally, BAUVs with their superior 

manoeuvrability characteristics are more suited to be used for missions completed in 

confined environments such as harbours, off shore structures or shipwrecks.  

However, regardless of the particular type of vehicle used and as discussed previously, 

underwater vehicles presently have very limited autonomy. Therefore, it is widely believed 

within the AUV community that improvements in vehicle autonomy will drastically 

improve the efficiency of oceanic mapping missions more so than any future 

iterations/improvements in vehicle design. The following section describes in detail the 

current state of the art in underwater vehicle autonomy.   

2.3.2 Vehicle Autonomy 

Autonomy within the robotics community is used to describe the level to which an 

uncrewed vehicle can make mission critical decisions without the permission of a human 

controller. Presently, the definition of these different levels is somewhat ambiguous with 

various bodies – mainly governmental - offering alternative definitions. Among these, is 

the definitions provided by the Office of Naval Research (Button,  Kamp, Curtin, & Drydon, 

2009), the DoD’s Unmanned Aerial Vehicle Roadmap (Clough 2002) and finally those from 

the Autonomy Levels for Unmanned Systems (ALEFUS) working group (Huang et al. 

2005). However, only the DoDs Aerial Vehicle Roadmap provide definitions that 

encompass both solo and group autonomy and as a result, it will be these definitions that 

will be used in the following work.  

As shown below in Table 2.4, the roadmap defines twelve different autonomous control 

levels (ACLs) that encompass systems containing zero autonomy (Remotely Operated 

Vehicles (ROVs)), partial autonomy (AUVs with obstacle avoidance capability) and finally, 

a fully autonomous system which, if existed would represent an AUV capable of 

completing any mission objective without requiring any human input (Suresh & Ghose 

2010).  
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Table 2.4 - Description of different Autonomous Control Levels (ACLs). 

Autonomous Control Level (ACL)  Name Description 

0 Remotely Piloted 
Human operator controls all aspects of vehicle’s 

operation. 

1 Remotely Guided 

Human acting in supervisory role, vehicle is 

utilising on board control systems to follow pre-

programmed trajectory. 

2 
Real-Time Health 

Diagnosis 

Vehicle is capable of processing relevant sensor 

data to monitor, diagnose and identify – in real 

time - faults within essential vehicle subsystems. 

Human operator decides necessary corrective 

action. 

3 

Adapt to 

Environmental and 

Fault Disturbances 

Based on the detection of faults utilising ACL 2 

functionality as well as monitoring external 

disturbances such as ocean currents, vehicle 

decides if and what necessary adjustments are 

required to successfully complete mission 

4 
Situational 

Awareness System 

Vehicle has full mission awareness including 

knowledge of mission objective (ACL 1), is 

capable of monitoring and adjusting for faults or 

disturbances within the system (ACL 2 & 3) and is 

also capable of monitoring and assessing the local 

operating environment to determine its effect on 

the vehicle being able to achieve its mission 

objectives. 

5 
On board Route Re-

plan 

Vehicle has the authority to utilise data obtained 

from ACL 4 to alter its pre-programmed route. An 

example scenario would be detecting and 

avoiding obstacles. 

6 
Group 

Coordination 

First level of group autonomy. Includes the ability 

to organise multiple vehicles into specific 

formation depending on mission objectives. 

7 
Group Tactical Re-

plan 

Similar to ACL 5 where vehicles react to an 

unforeseen external situation and make necessary 

adjustments to their planned trajectory but 

applied to a group scenario. 

8 
Group Tactical 

Goals 

At ACL 8, the group of vehicles are able to 

efficiently reorganise themselves based on 

significant events in their local operating 

environment such as one of the vehicles within the 

group failing. 

9 
Decentralised 

Mission Control 

This level of autonomy requires the vehicles to be 

able to have the autonomy of ACL 6-8 but in a 

decentralised manner. To achieve this level of 

autonomy intra-vehicle communication must be 

established. 

10 
Group Strategic 

Control 

Long-term, cross platform communication and 

strategy formulation to successfully create and 

carry out mission plan. 

11 
Fully Autonomous 

Systems 

Ability to successfully complete ACLs 0-10 but 

without the supervision of human operator. 
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As discussed in Section 2.2 and demonstrated in Figure 2.1,  the majority of AUV missions 

are completed by vehicles travelling unsupervised between a number of pre-programmed 

waypoints (Hagen et al. 2007). As such, based on the descriptions presented in Table 2.4, it 

can be stated that presently, the majority of AUVs can be considered to be operating at ACL 

1. However, due to their ability to undertake real time health monitoring as described in 

(Kongsberg Maritime, 2017a) , the state of the art REMUS AUVs can be considered as 

having ACL 2 autonomy.   

Nevertheless, although the autonomy for the vast majority of commercially available AUVs 

is still at ACL 1, a number of recent studies have been focussed on introducing adaptive 

sampling techniques to improve the overall efficiency of AUV missions. Adaptive sampling 

techniques, as the name suggests, uses the on board systems to process, analyse and 

interpret the data obtained from the vehicles sensors in real time and if necessary, make 

alterations to the vehicle’s trajectory to ensure the data obtained is done so in an optimal 

manner (Chen, Pandey, & Pompili, 2012). The most popular mission scenario to use 

adaptive sampling is feature tracking whereby methods such as gradient ascent are used to 

guide the vehicle based on local fluctuations in the concentration of a measured substance 

(Fiorelli et al. 2006). Practical examples include chemical plume tracking and detection 

using the REMUS 100 vehicle (Farrell, Member, Pang, & Li, 2005) as well as tracking the 

evolution of the thermocline regions (Cruz & Matos, 2010b). 

While the implementation of adaptive sampling improves the autonomy of AUVs 

considerably to ACL 5, the widespread practical implementation of real, or near real time 

adaptive sampling methodologies has been limited to a handful of projects (Cruz & Matos, 

2010b; Farrell, Pang, Li, & Arrieta, 2003; Petillo & Schmidt, 2014; Zhang et al., 2010). The 

reason for this is due to two factors. The first and primary reason is related to the fact that 

the development of the necessary algorithms is still in its infancy and at present, the 

algorithms are too processor intensive (Petillo 2015) and therefore negatively impact the 

range of the vehicle. 

The second reason, as discussed in (Cruz & Anibal Matos 2010) is related to the fact that 

during adaptive sampling operations, the trajectory of the vehicle is created “on the fly”. 

As a result, there is no way to ascertain if the vehicle is operating as expected and therefore, 

the safe operation and recovery of the vehicle cannot be guaranteed. Furthermore, as 

discussed in (Petillo et al. 2012), regardless of whether or not adaptive sampling 

methodologies can be implemented in a safe and efficient manner, there is still an inherent 

problem associated with modern AUV missions – the deployment of a single vehicle. 

Oceanographic processes such as the development of the chemical plumes discussed above 
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can occur over spatiotemporal scales measured in the tens of days and thousands of 

kilometres (Petillo 2015). As a result, the use of a single vehicle (with a range limit of 600km 

at best) to track the entire plume isn’t possible.  

To overcome this limitation, a number of studies have investigated the feasibility of 

deploying a self-coordinating group of AUVs. In doing so, these groups would be able to 

accurately map and monitor features over spatiotemporal scales that are simply not 

achievable when using a single vehicle (Das et al. 2016). The following section will now 

provide a summary of the main outcomes from this research. 

2.3.2.1 Formation Control of AUVs – Practical Experiments 

The main advantage of using a group of self-coordinating AUVs is the ability it provides to 

allow ocean sampling to occur over spatiotemporal scales that presently cannot be 

completed. It is no surprise then that the Autonomous Ocean Sampling Network (AOSN) 

was the first collaboration to successfully deploy multiple underwater vehicles. The 

experiments carried out in August 2003 and explained in (Fiorelli et al. 2006) resulted in the 

deployment of 3 AUGs to monitor upwelling and relaxation in the Monterey Bay area.  

The results demonstrated the ability of a formation control algorithm based on the Virtual 

Bodies and Artificial Potentials (VBAP) method to coordinate the three gliders to remain in 

a particular formation while maintaining a prescribed distance throughout a 16 hour 

deployment. The algorithms were evaluated by an external computer which used 

navigational data received from the gliders during periods of surfacing to produce a 

number of waypoints for each glider to navigate to during the subsequent submerged 

periods. This pattern of periodically surfacing to receive new waypoints occurred every 

two hours and as a result there was no communication between the individual gliders 

throughout the entire mission.  

A second experiment was completed in Monterey Bay in August 2006 (Leonard et al. 2010) 

which utilised the lessons learnt from the previous deployment to increase the number of 

gliders in the fleet from 3 to 6. Furthermore, the mission endurance was increased from less 

than a day in the previous deployment to almost a full month which allowed a distance of 

3270km to be covered. The coordination methodology was an adapted version of the one 

discussed above and is described in detail in (Zhang et al. 2007) (Paley et al. 2008). 

Thereafter, in 2008, a team from Herriot-Watt University managed to use predictive 

methods to successfully overcome the limited communication problem to coordinate two 

AUVs to complete a simulated mine countermeasure mission (Sotzing, Lane 2010). The 
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trials were carried out in Loch Earn and demonstrated the ability of the predictive 

algorithm to correctly estimate the position of each vehicle in the group and thus optimise 

each vehicles movement. The results from the trials demonstrated that as one AUV was 

completing a lawnmower search pattern, the other vehicle was in a holding pattern until a 

simulated mine had been detected. Once detected, the AUV changed from its holding 

pattern to navigate to the position of the mine while the other vehicle continued its search 

pattern.   

In 2009 the European Project GREX completed a number of sea trials relating to the 

coordinated movement of multiple heterogeneous AUVs using inter-vehicle 

communication. Although the initial sea trials described in (Kalwa 2010)  highlighted the 

unreliable nature of the underwater communication channel with success rates varying 

between 18-72%, the final trials (Brignone et al. 2009) successfully demonstrated the 

coordination of two AUVs to complete a number of simple tasks. Furthermore, in 2010, 

(Smith et al. 2010) used two AUGs to cooperatively complete the tracking of a 

phytoplankton bloom over a period of three days. 

While the projects discussed above have proved the feasibility of deploying a self-

coordinating group of AUVs, there was one main limiting feature of these projects – the 

relatively small number of vehicles used in each deployment. The majority of the projects 

used only two AUVs with the exception being the AOSN projects which used six vehicles. 

While there is likely many reasons for this, the most prominent was likely related to budget 

limitations and the fact that each AUV/AUG would have cost hundreds of thousandths of 

dollars (Herkewitz 2013).  

To combat this problem, a number of projects in the past five years have successfully 

designed, manufactured and produced a number of much smaller yet more manoeuvrable 

and affordable AUVs. Included in these vehicles is the biologically inspired vehicle, Jeff 

(Mintchev et al. 2014) which, with a unit cost of only €1200 is significantly cheaper than the 

vehicles used in the projects discussed above. Jeff was designed as part of the ambitious 

CoCoRo (Schmickl et al. 2011) project which, since its completion in 2014, holds the record 

for the largest deployment of cooperating AUVs with over forty vehicles cooperating using 

biologically inspired algorithms. However, it should be noted that the work completed in 

the CoCoRo project was done so under laboratory conditions. Nevertheless, the success of 

the CoCoRo project resulted in additional funding for the ongoing subCULTron project 

which aims to deploy a swarm of heterogeneous AUVs to complete large-scale, long-term 

monitoring of the canals of Venice (Thenius et al. 2016). However, despite the numerous 

milestones achieved by these projects, the methods used to achieve inter-vehicle 
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communication can be considered a limiting feature. This is due to the requirement of the 

vehicles to be within 1.4m of one another before successful communication can take place 

(Schmickl et al. 2011). Therefore, the ability to use these vehicles to monitor oceanic features 

occurring over large spatiotemporal scales is impractical.      

Based on the above review, it is apparent that projects have been investigating and testing 

the feasibility of deploying groups of collaborating AUVs since the start of the 21st century. 

However, more importantly, in order to make large-scale, multi-vehicle deployments of 

AUVs economically viable, the most recent projects have replaced the large, traditional 

propeller driven/ buoyancy controlled vehicles shown in Figures 2.2-2.5 with smaller, less 

expensive vehicles such as the aforementioned Jeff vehicle and the RoboSalmon BAUV 

used in this thesis.  

While being smaller and less expensive means these vehicles will have less individual 

range, their ability to operate successfully as part of a multi vehicle collaboration will allow 

them to cover far greater distances and map phenomena not possible with a single vehicle. 

As discussed in (Tena 2016), this philosophy of designing and developing smaller, less 

capable vehicles and deploying them as part of a collaborative group is a current research 

and development trend within the AUV market.  

2.4 AUV System Architecture 

As highlighted in (Finn & Scheding 2010), all modern AUV missions rely on the successful 

interaction of a number of smaller subsystems to ensure the overall mission objective can 

be accomplished.  

For example, for the typical single vehicle AUV mission outlined in Figure 2.1, the Guidance 

System will contain a list of waypoints that the vehicle is required to sequentially 

manoeuvre through during the course of the vehicles deployment. At the start of the 

mission, the first waypoint will be used to calculate the Demanded Heading angle of the 

vehicle. This angle is then passed to the vehicles Control System to calculate the required 

Control Surface Deflection angle that will ensure the vehicle manoeuvres towards the desired 

waypoint. Throughout this process, the Sensor and Navigation subsystems continue to 

update the Guidance System with the vehicles current position and orientation. Thereafter, 

the Guidance & Control subsystems will continue to monitor whether or not any further 

changes to the vehicles heading angle are required and hence, any changes to the vehicles 

control surface. This process will continue until the vehicle is within a certain range of the 

first waypoint. After which, the Guidance System will begin to use the second point on the 
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pre-programmed list and this entire process will be repeated until the end of the mission. 

However, where appropriate and only after a human operator has decided to do so, 

changes to the mission plan can be made via the Communication System.    

The above description details how the various subsystem operate together to ensure a 

modern AUV can safely complete its mission objective. However, for a group of vehicles to 

complete the mission outlined in Figure 1.3, it is apparent that instead of relying on a pre-

programmed list of waypoints, the Guidance System will have to contain a formation control 

algorithm. This algorithm will have to use the positional information received from the 

other members of the group to ensure the parallel line formation presented in Figure 1.3 is 

created. Subsequently, the Communication System will now be vital in generating this 

required formation. However, before the different types of formation control algorithm are 

discussed, the following sections will now describe the purpose and functionality 

associated with the various subsystems discussed above. 

2.4.1 Navigation & Sensor Subsystems 

As alluded to above, the purpose of any navigation system is to provide the pilot (human 

or otherwise) with an accurate representation of the vehicle’s position and velocity 

(Drapher et al. 1965) in space.   

Above the Earth’s watery veil, this is easily and accurately accomplished through the 

implementation of GPS technology (Chao et al. 2010). However, due the rapid attenuation 

of radio waves through seawater, GPS technology cannot be used as a reliable navigational 

tool in the underwater environment (Paull et al. 2014). As a result, AUVs are forced to use 

different navigational techniques which, as shown below, can be separated into three 

groups: (Stutters et al. 2008).  

1. Inertial Navigation – This technique involves using sensors mounted within the 

vehicle to measure its translational and rotational accelerations. These accelerations 

are then integrated within a dead reckoning algorithm to obtain an estimate for the 

vehicle’s velocity and positional data (Hegrenaes & Hallingstad 2011). 

2. Acoustic Navigation – Navigation using acoustic techniques involves measuring the 

Time of Flight (TOF) of acoustic signals between the AUV and transponders. 

Depending on the particular type of acoustic navigation being used, these 

transponders will be attached to either a surface vessel or rigidly attached to the 

seafloor (Jakuba et al., 2008).  

3. Geophysical Navigation – Involves using a priori information of geophysical 

parameters such as bathymetry or magnetic field strength to create an 
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environmental map. This map is then used to match data obtained from the vehicles 

sensors to ascertain the position of the vehicle (Leonard & Bahr, 2016).  

While each of the above methods have their own advantages and disadvantages, the 

navigation technique implemented within this work is the first method described above, 

i.e. Inertial Navigation. The main reason for this choice is due to the fact that the RoboSalmon 

vehicle already contains the necessary hardware (Mazlan 2015) required to implement this 

method. Furthermore, as discussed above, acoustic navigation relies on the continuous use 

of acoustic modems to operate. This would only further complicate the process of using 

acoustic communication to allow the individual vehicles to communicate with one another 

as is proposed in this work. Finally, geophysical navigation was also ruled out due to the fact 

that it relies on a priori information to operate.     

In order to incorporate a realistic representation of the inertial navigation technique 

described above in the work completed throughout this thesis, a mathematical model of the 

various sensors should be incorporated into the mathematical model of the RoboSalmon 

vehicle. As described in (Groves 2013), a sensor can be modelled by adding a number of 

error terms to the true value of the parameter being monitored. These errors include sensor 

biases, cross-coupling errors as well white noise. Consequently, a sensor can be modelled 

using the following equation.  

�̃� = 𝒃𝑎 + (𝐈3 +𝐌𝑔)𝛚 +𝒘𝑔 (2.1) 

Where 𝛚 is the vector representing the true values of the vehicle’s translational and 

rotational velocities, 𝒘𝑔 represents the white noise component of the error, 𝒃𝑎 is the biases 

component, 𝐈3 is the identity matrix, 𝐌𝑔 is the cross-coupling error and finally, �̃� is the 

vector of outputs from the sensor model that represents the measured velocities of the 

vehicle.  

However, by incorporating a sensor model such as the one shown in Equation (2.1) would 

only result in the need to incorporate a suitable state-estimation technique to remove the 

errors introduced. As described in (Bryne 2017), state-estimation techniques such as the 

Kalman filter have been studied since the 1970’s and are today considered a well-

established and high performing technology capable of providing an accurate 

representation of a vehicle’s motion based on sensor data. Therefore, by assuming that in 

reality, a Kalman filter could be implemented to produce an accurate representation of the 

vehicle’s position, velocity and attitude based on sensor data, the incorporation of a suitable 

sensor model was deemed unnecessary. As a result, for the work completed in this thesis, 
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the values obtained from the mathematical model described in Chapter 3 are passed 

directly to the Guidance Subsystem. 

2.4.2 Guidance & Control Subsystem 

As discussed above, the main purpose of the guidance system is to process the data 

obtained from the navigation and sensor subsystems and determine if/what changes need 

to be made to the vehicles direction in order to ensure it is travelling in the correct direction 

(Drapher et al. 1965). In order to accomplish this, the Guidance System contains an Autopilot 

which houses an automatic control strategy. For example, in modern AUV missions, the 

Autopilot will contain a list of waypoints through which the vehicle must travel. Therefore, 

the automatic control strategy will perform the necessary calculations to ascertain whether 

or not the vehicle has reached the desired waypoint and if so, what changes to the vehicle’s 

heading angle are required to manoeuvre it in the direction of the next waypoint. However, 

for the work completed in this thesis, the automatic control strategy will be more 

complicated and will involve the implementation of a formation control algorithm. The 

implementation of this formation control algorithm will be discussed in detail in Chapter 

4. 

Nevertheless, regardless of the particular automatic control strategy implemented, the 

Guidance System is required to produce a desired heading angle which the Control System 

will subsequently use to generate the required deflection angle of the vehicles control 

surface, i.e. RoboSalmon’s caudal fin. 

As presented in (Mazlan 2015), the particular controller used within the RoboSalmon 

vehicle to achieve this is a standard PI controller that can be represented using the following 

equation: 

𝛿𝑇𝐶 = 𝐾𝑝𝛥𝜓 +𝐾𝑖∫𝛥𝜓𝑑𝑡 (2.2) 

Here, 𝐾𝑝 and 𝐾𝑖 are the proportional and integral gains while 𝛥𝜓 represents the difference 

between the desired and current heading angle of the vehicle. 

At this point, it is important to note that throughout the work completed in this thesis only 

motion in the horizontal plane is taken into consideration. The reason for this is due to a 

number of factors. The first of which is that although the RoboSalmon vehicle has a pair of 

pectoral fins attached to it, the vehicle’s relatively slow velocity results in the forces 

produced from these fins being insufficient to generate any significant pitching moment. 

As discussed in (Mazlan 2015), testing of the RoboSalmon vehicle was restricted to the 



Literature Review 

 

31 

 

horizontal plane only and as a result, no validation data for motion in the vertical plane 

exists. Secondly, while it would be possible to model the vehicle’s motion in the vertical 

plane, the majority of AUV missions involve the vehicle firstly travelling to, and then 

maintaining a certain depth before performing the search patterns presented in Figure 1.2 

in the horizontal plane. Therefore, it was deemed an acceptable simplification to only take 

into consideration motion in the horizontal plane when designing the formation control 

algorithms contained within this thesis.  

2.4.3 Communication System 

Communication in the underwater domain is characterised by low bandwidth (Redfield 

2013), high latency (Diamant & Lampe 2011) and unreliability (Brignone et al. 2009). These 

traits are a result of having to use acoustic means of communication due to the 

aforementioned rapid attenuation of radio waves through water. As a result, the majority 

of modern AUVs communicate very little, if at all, while submerged and instead, make use 

of periodic surfacing periods where access to radio communication can be re-established 

(Petillo 2015; Paull et al. 2014). However, such techniques are not feasible in multi-vehicle 

deployments like the one proposed in this thesis where regular communication among the 

vehicles is essential.  

In order to facilitate efficient communication among the vehicles, a suitable channel access 

method has to be implemented. Currently, the three most popular methods are Frequency 

Division Multiple Access (FDMA), Time Division Multiple Access (TDMA) and Code 

Division Multiple Access (CDMA) (Sozer et al. 2000) (Stojanovic & Beaujean 2016). While 

each of these methods have their own advantages and disadvantages, the work completed 

in this thesis will incorporate a realistic representation of the TDMA protocol. The 

justification for making this decision will be discussed in detail in Chapter 6. However, it is 

important to note that in doing so, it is impossible for each vehicle to have a continuously 

accurate representation of the positional data associated with the other members of the 

group. In fact, it is likely that the frequency at which the vehicles will receive a 

communication update from the same vehicle will be measured in minutes.  

In summarising, Sections 2.4.1-3 have provided an overview of the various subsystems 

whose interaction is required to ensure AUVs operate as expected. Furthermore, the main 

assumptions and simplifications made with regard to these subsystems as applied to the 

work completed in this thesis have also been described. As discussed above in Section 2.4.2, 

in order to ensure that these subsystems can generate the required parallel line formation 

shown in Figure 1.3, a formation control algorithm has to be implemented within the 
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Autopilot of the vehicles Guidance System. The following section will now describe the 

various different types of formation control algorithm available and which of these have 

been tested within the AUV community.  

2.5 Formation Control Algorithm 

As alluded to in Section 2.4.2, the aim of the formation control algorithm designed in this 

thesis is to allow multiple vehicles to self-coordinate and generate the parallel line 

formation shown in Figure 1.3. As discussed in (Ren & Cao, 1010), modern formation 

control algorithms can be separated into two categories depending on the method used to 

generate the required formation 

• Formation producing algorithms: The objective of the group is to achieve a 

prescribed desired formation shape. 

• Formation tracking algorithms: Reference trajectories are created for the individual 

members of the group and the agents are controlled to track these reference 

trajectories.  

As highlighted in (Oh et al. 2015), the topic of formation control as applied to the above two 

categories is one of the most actively studied areas of multi-agent systems with the 

following review papers; (Anderson, Baris Fidan, & Hendrickx, 2008;Chen, Member, Wang, 

& Member, 2005; Olfati-Saber, Fax, & Murray, 2007) detailing the exhaustive literature 

available on the topic. The purpose of the following four sections is to briefly describe the 

different methods used in the creation of these different formation control algorithms as 

well as their associated limitations.  

2.5.1 Behavioural 

Behaviour based formation control algorithms take inspiration from nature and imitate the 

mechanisms used by either schooling fish or flocking birds (Balch & Arkin 1998). These 

mechanisms operate by assigning a number of behaviours to each vehicle, e.g. cohesion, 

collision avoidance, move to goal, obstacle avoidance and so on. The resulting behaviour 

used by the vehicle will depend upon a number of parameters such as distance to 

neighbouring vehicles, distance to obstacles or prioritising mission objectives. 

Consequently, the resulting behaviour of each vehicle varies depending on its local 

operating conditions. 

The work carried out in (Balch & Arkin 1998) demonstrates the effectiveness of the 

behavioural methodology to coordinate a group of four vehicles to move in certain 
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formations to a predetermined destination while avoiding static objects. The tests have been 

carried out on a number of wheeled robots within a laboratory environment where the local 

conditions would be more favourable than those experienced underwater. Nevertheless, 

communication latency was taken into consideration during the tests and was found to be 

as high as seven seconds in some instances. Further examples of the application of 

behavioural based formation control algorithms can be found in (Cruz et al., 2007) (Lawton 

et al., 2003). 

2.5.2 Virtual Structures 

Virtual structures is an example of a formation tracking algorithm and are used to 

coordinate multiple-vehicles to manoeuvre in particular formations by creating a rigid 

virtual structure within which, each vehicle is ascribed their own unique reference point. 

As the path of the virtual structure is predefined, the individual vehicles are programmed 

to follow the trajectory created by the motion of their reference point on the structure as it 

translates or rotates as shown below in Figure 2.8 (Lewis & Tan 1997).  

 

(a) (b) (c) 

Figure 2.8- Process of virtual structure methodology - (a) Virtual Structure and vehicles 

are coincident, (b) Virtual Structure moves through predefined trajectory, (c) Individual 

Vehicles manoeuvre to stay with the Virtual Structure 

While studies have shown the validity of the above method for coordinating multiple 

vehicles to maintain a specific formation (Li & Liu, 2008; Ramp et al., 2009), the 

successfulness of the methodology is dependent on prior knowledge of the interested area 

been known. This is a result of there being no ability to deviate from the predefined 

trajectory in the event of unexpected obstacles blocking the path of the individual vehicles. 

Therefore, as alluded to in Section 2.3.2, this inability of the vehicles to alter their trajectory 

severely limits the autonomy of the system.  

2.5.3 Leader-Follower 

As the name suggests, leader-follower coordination methodologies work on the premise 

that one vehicle within the group has a predefined trajectory and the remaining vehicles 
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maintain a specific distance and orientation to that leading vehicle (Cui et al. 2010). This 

method can be thought of as both a formation-producing algorithm and a formation 

tracking due to the fact that the leader follows a reference trajectory but remaining vehicles 

don’t. Scalability of this method can also be achieved by a number of the following vehicles 

becoming leaders for other vehicles within the group. The simplicity of the scheme is one 

of its main advantages and sea trials described in (Edwards et al. 2004) have demonstrated 

its validity as a method to coordinate multiple vehicles.  

However, this method relies on the successful operation of the leading vehicle, and while 

this is advantageous in certain aspects, such as the simplified communication protocols, it 

results in the overall system lacking redundancy (Edwards et al. 2004). On top of this, the 

aforementioned communication protocols are only simplified when a single leading vehicle 

is used due to the necessity of having to use communication scheduling when multiple 

leaders are introduced. 

Although simplistic in nature, the reliance of this methodology on the leading vehicle is a 

particularly undesirable characteristic for underwater applications and one which cannot 

be easily rectified by the introduction of multiple leaders. In addition, although discussed 

in the literature, the effect of the inherent underwater communication delays on the success 

of the leader-follow methodology has so far not been studied (Cui et al. 2009). Furthermore, 

as with the virtual structures method, the autonomy of this method is also inherently limited 

by the fact that the trajectory of the leader is also predefined.  

2.5.4 Artificial Potential Fields 

Initially presented in the mid 1980’s (Khatib. 1986), the Artificial Potential Field (AFP) 

method has since been used extensively in the robotics community for the purposes of path 

planning. The method operates by assigning an attractive virtual potential to destination 

points while associating a repulsive potential to obstacles. The merging of these two 

potential fields results in the vehicles being simultaneously capable of manoeuvring 

towards a destination point while at the same time, avoiding any obstacles within its path 

(Sfeir et al. 2011). While initially used exclusively for single vehicle path planning, the AFP 

method was extended to facilitate the coordination of multiple vehicles into various 

formations (Kim et al. 2006) (Ogren et al. 2004). 

Included in this was the work completed by (Bennet, 2010) which demonstrated the ability 

of Bifurcating Potential Fields to coordinate multiple agents (vehicles) into a number of 

different formations through varying a number of algorithmic parameters. Included in 

these formations were the line and double line formations, a triangular formation, a ring 
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and double ring formation as well as a cluster.  Furthermore, the ability of this method to 

not only generate a number of different formations but also simultaneously manoeuvre the 

vehicles to a predefined destination while avoiding obstacles was shown in (Bennet & 

McInnes, 2009). As well as the above, the ease at which this method could be scaled as well 

as its inherent reconfigurable nature were also demonstrated. 

While APF methods have many advantages, including their ability to be mathematically 

verified (Bennet & McInnes, 2009), their successfully implementation is reliant on global 

information being available. This means that the formation control algorithm using an AFP 

method must be fully aware of the locations of all obstacles within the environment in 

which it is going to operate. However, as discussed in Chapter 1, this is not possible in the 

underwater environment and would therefore be an unrealistic assumption to make. For 

this reason, it was decided that the APF methodology could not be used within the work 

presented in this thesis.      

2.5.5 Related Research – Simulation Based Studies 

In Section 2.3.2.1, the research associated with formation control algorithms in the context 

of real-life deployments of multiple AUVs has been presented. In this section, the related 

research undertaken using mathematical modelling and simulation techniques will now be 

presented. This research is presented below in Table 2.5 and summarises the key features 

of each study in terms of the size of group simulated, the formation control strategy 

incorporated, the communication strategy used and the type of mathematical model used 

to simulate the dynamics of the vehicle.   

What is immediately apparent from Table 2.5 is that the vast majority of the studies either 

did not take into consideration the delays associated with the underwater communication 

channel or the delays they incorporated were unrealistically small, i.e. 0.6s-5s. Furthermore, 

the data also illustrates that the number of vehicles simulated was also relatively small with 

the maximum group size only being equal to six. Nevertheless, the results presented within 

each study demonstrated that the chosen formation control algorithm operated as expected 

and the simulated vehicles were able to generate the required formation. However, the 

aforementioned unrealistic representation of the underwater communication channel, 

means that the real-life applicability of these studies cannot be verified.   

Therefore, based on the data presented in Table 2.5 and the associated discussion, it’s 

apparent that the simulation studies completed thus far do not reflect the current research 

and development trends in the AUV community in terms of the desire to deploy large 

groups of smaller and less expensive vehicles. Furthermore, the data presented in Table 2.5 
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also highlights that the simulation studies completed have not taken into consideration a 

realistic representation of the underwater communication channel.  Based on this review, it 

is apparent that there is the need to undertake further simulations studies that not only 

investigate larger deployments of AUVs but also that the simulations completed represent 

a realistic representation of the nuances associated with the underwater channel. 

Table 2.5 - Summary of simulation based research associated with formation control 

algorithms as applied to AUVs. 

Number of 

Vehicles 

Formation Control 

Strategy 

Communication 

Delay (s) 
Reference 

4 Leader-Follower 0.6 
(Millan et al. 

2014) 

3 Leader-Follower 2 
(Soares et al. 

2013) 

3 Leader-Follower 0 
(Soares et al. 

2012) 

6 Behavioural 0 
(Yang & Zhang 

2011) 

3 Leader-Follower 0 
(Kang et al. 

2009) 

4 Leader-Follower 0 
(Wang et al. 

2009) 

3 Leader-Follower 

Taken into 

consideration but 

not specified 

(Burlutskiy et 

al. 2012) 

3 Behavioural 5s 
(Ghabcheloo et 

al. 2006) 

2 Leader-Follower 0s (Li et al. 2016) 

3 Behaviour 0 (Jia & Li 2007) 

2.6 Summary 

This chapter has presented a review of the current state of the art associated with the 

development and deployment of AUVs. The brief summary of traditional propeller based 

AUVs presented in Section 2.2 illustrated their inherent range and endurance limitations. 
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As Section 2.3.1 illustrated, in an attempt to overcome these limitations, a number of 

projects created underwater vehicles with entirely different design philosophies. These 

projects resulted in the creation of two new categories of underwater vehicle, Autonomous 

Underwater Gliders (AUGs) and Hybrid Autonomous Underwater Vehicles (HAUVs). 

These vehicles, as a result of their different design philosophy, are able to cover thousands 

of kilometres over a period of several months during a single deployment and as a result, 

satisfy the requirements associated with long term, large scale oceanic mapping. 

Furthermore, as well as creating vehicles capable of improving the range and endurance 

associated with AUVs, Section 2.3.1.3 discussed the creation of a fourth category of 

underwater vehicle, the Biomimetic AUV. This particular type of vehicle was designed 

specifically to drastically improve the manoeuvrability associated with underwater 

vehicles. Section 2.3.1 concluded by illustrating that in terms of vehicle design, further 

improvements are likely only to be evolutionary and going forward, revolutionary 

advances in AUV operational capability are likely to come from increasing the autonomy 

associated with these vehicles. 

This belief was further demonstrated in Section 2.3.2 where the literature review 

demonstrated that the current focus within the AUV community is to design smaller, 

cheaper AUVs with increased autonomy that are also able to operate as part of multi vehicle 

collaboration. 

Thereafter, Sections 2.4 discussed the various subsystems and their associated functionality 

whose successful interaction will allow AUVs to be able to complete this collaborative 

autonomy. Furthermore, this section discussed the assumptions and simplifications made 

with regard to these subsystems as applied to the work completed in this thesis. 

Section 2.5 presented the different types of formation control methodologies that can be 

used to achieve this collaborative autonomy as well as discussed the advantages and 

disadvantages associated with each. Finally, Section 2.5.1 presented a review of the 

different modelling and simulation studies that are associated with implementing 

formation control algorithms in the underwater environment. Importantly, this review 

illustrated that the majority of these studies did not take into consideration a realistic 

representation of the problematic underwater communication channel and therefore, the 

real life applicability of the results are debatable.  
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Chapter 3  
RoboSalmon BAUV 

____________________________________ 

3.1 Introduction 

Due to the complications associated with operating in the underwater environment, an 

extensive campaign of algorithmic design and development is required to demonstrate 

whether or not it is possible to create a formation control algorithm capable of completing 

the mission profile outlined in Figure 1.3. In order to complete this process, the work 

completed in this thesis will use a pre-existing, validated mathematical model of the 

RoboSalmon BAUV that has been designed and built at the University of Glasgow (Mazlan 

& McGookin, 2012; McGookin & Watts, 2012; Watts & McGookin, 2013; Watts & McGookin, 

2008).  

The purpose of this chapter therefore is to present and describe this validated model and 

consider its applicability to be used to simulate several vehicles simultaneously. Before the 

mathematical model is presented though, this chapter will provide a brief overview of the 

RoboSalmon vehicle and the mechanisms used to allow it to imitate the swimming 

locomotion of the North Atlantic salmon. 

To present the work described above, this chapter is structured in the following manner. 

Section 3.2 describes the RoboSalmon vehicle and its associated systems. Section 3.3 

describes the accompanying validated mathematical model. Section 3.4 analyses it’s 

suitability to simulate multiple vehicles simultaneously. Section 3.5 describes the 

modifications made to the model to reduce its complexity while Section 3.6 describes the 

results obtained from the necessary validation process undertaken. Finally, Section 3.7 

provides a summary of the work complete
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3.2 RoboSalmon BAUV 

The RoboSalmon vehicle is based on the anatomy and physiology of the North Atlantic 

salmon (Mazlan 2015). This particular species of fish swims by means of Body and/or 

Caudal Fin (BCF) locomotion. As described in (Sfakiotakis et al. 1999), fish that use this 

particular type of locomotion do so by bending their bodies into a backward-travelling 

wave that extends to the caudal fin.  In order to successfully replicate this motion, the 

RoboSalmon vehicle must also be able to generate this backword travelling wave. As shown 

below in Figure 3.1, in order to achieve this, the vehicle is separated into two sections: the 

Body Section and the Tail Section.   

 

Figure 3.1 - Schematic diagram of RoboSalmon BAUV. (Figure has been removed due to 

copyright restrictions). 

The Body Section is rigid and houses the sensors, controllers, processing units and power 

systems necessary to successfully operate the vehicle. The Tail Section meanwhile contains 

eight individually actuated joints whose combined motion allows the vehicle to imitate the 

undulatory motion of the North Atlantic salmon and therefore generate the aforementioned 

backward travelling wave (Mazlan 2015).  

Furthermore, Figure 3.1 shows that the Tail Section of the vehicle accounts for 

approximately 50%-60% of the overall vehicle length. This has been designed specifically 

to ensure that the vehicle is an accurate representation of the anatomy of the North Atlantic 

salmon which as a result of belonging to the genus of fish called subcarangiform, uses 

approximately the same percentage of its body for propulsive purposes (McGookin & 

Watts 2012).   
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3.2.1  Actuated Tail Section 

As discussed above and shown below in Figure 3.2, the Tail Section of the RoboSalmon 

vehicle consists of eight revolute joints each of which are driven by separate DC motors and 

connected by seven equally sized links. 

 

Figure 3.2 - Actuated tail section of RoboSalmon vehicle. 

Figure 3.2 demonstrates that each revolute joint is free to rotate about its horizontal axis 

and as a result, it is possible to position the entire tail section into a number of different 

configurations. An example of such a configuration is shown below in Figure 3.3.  

 

Figure 3.3- Actuated tail section replicating travelling wave approximation. 

This ability to create different configurations is achieved by rotating each joint to a 

particular angle. This rotation results in the associated links moving laterally with the 

resulting combined motion of these eight joints resulting in a configuration similar to that 

shown above. 

In order to ensure that each joint rotates to the required angular position, a control 

methodology has to be implemented. This is achieved by implementing a PID controller 

within each joint which. This controller then uses the difference between the joints actual 

angular position and its desired angular position to produce an input voltage to the DC 

motor. This voltage will then drive each individual motor to rotate towards its required 

angular position and hence allow the desired tail configuration to be achieved. 

However, the process described above results in the Tail Section manoeuvring to only one 

of the eight configurations required to ensure the RoboSalmon vehicle can imitate one 

undulation of the North Atlantic salmon’s swimming gait. Consequently, with the period 

of undulation set to one second(Mazlan 2015), this means that the desired joint angles will 
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change every 0.125s. As a result, the PID controller implemented (within each joint) must 

manoeuvre each joint to the required angle every 0.125s. After the Tail Section has driven 

the individual joints to consecutively create these eight configurations (within one second), 

the desired joint angles are reset to their initial values and the entire process is repeated. A 

flow diagram representing this process is presented below in Figure 3.4. 

 

Figure 3.4- Flow diagram of tail section functionality for one joint. 

As Figure 3.4 illustrates, the input to the PID controller is the desired angle for the motor 

associated with joint i, 𝜃𝐷𝑖.  Also shown is the fact that the desired joint angle selected as 

input to the PID controller is based on the parameter, Time. As alluded to previously, this 

parameter is included to ensure that every 0.125s, the desired joint angles for each motor 

are altered to the values required to ensure the vehicle replicates the swimming motion of 

the North Atlantic salmon as accurately as possible.   

As highlighted in (Naddi,2015) and discussed previously in Chapter 2, although the 

RoboSalmon vehicle is able imitate the swimming gait of the North Atlantic salmon, the 

swimming speeds achieved by the vehicle are slower that those achieved by the North 

Atlantic salmon. The main reason for this discrepancy is due to the fact that the 

RoboSalmon vehicle contains only eight joints and as a result, it is impossible for it to 

exactly replicate the smooth swimming gait of the North Atlantic salmon. As well as being 

limited to only eight joints, (Naddi,2015) illustrated that actuator saturation also limits the 

motion of RoboSalmon’s tail section. Actuator saturation in this instance, is associated with 

the physical limitations of the DC motors used and occurs when the PID controller 

produces an input voltage that is greater than the limitations of the motor. When this 
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occurs, the motors are no longer able to provide the required torque to rotate the joints to 

their desired positions.  

In summarising, the above section has described the RoboSalmon vehicle and the 

functionality implemented within it to allow the swimming gait of the North Atlantic 

salmon to be imitated. The above section has also described the mechanical and electrical 

limitations of the vehicles design that result in it being unable to achieve the same 

swimming efficiency as the North Atlantic salmon.  

The following section will now focus on presenting the functionality contained within the 

mathematical model of the vehicle. As discussed previously, this mathematical model has 

already been validated using experimental data obtained throughout the work completed 

by (Mazlan 2015).  

3.3 Mathematical Model 

Mathematical modelling is the process of using mathematical concepts and techniques to 

accurately describe the dynamics of a particular system. Today, due to the abundance of 

computer processing power available, mathematical modelling is used extensively in the 

engineering community through all phases of the design process to gain insight into a 

systems likely performance (Sargent, 2010). Mathematical models also provide a safe, 

inexpensive and effective platform to design, test and evaluate various control algorithms 

and theories before they are implemented onto the real system as software (Murray-Smith 

2012b). For these reasons, the mathematical model of the RoboSalmon vehicle provides an 

ideal platform to test whether or not it is possible to design a formation control algorithm 

based on the behavioural mechanisms of fish that will allow the mission profile outlined in 

Figure 1.3 to be successfully undertaken.    

However, as discussed extensively in (Murray-Smith, 2012b; Sargent, 2013), care must be 

taken to ensure that the mathematical model used is not only an accurate representation of 

the physical system being modelled but also that the model is fit for the purpose for which 

it has been designed for.  

As the main aim of this thesis is to develop a formation control algorithm that is tolerant to 

the nuances of the underwater environment, it was initially envisioned that the vehicles 

could be represented using a simple point mass model. However, it was realised that in 

doing so, future investigations associated with operating vehicles as part of a formation 

would be limited. One such investigation envisioned was to analyse whether 

improvements in a vehicles range could be achieved by having the vehicles operate in close 
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proximity to one another. Such an investigation however, would require a mathematical 

representation of the vehicles drag which could not be obtained by using the 

aforementioned point mass model.  

Consequently, the following section will now describe the pre-existing validated 

mathematical model of the RoboSalmon vehicle before analysing its applicability to be used 

to model multiple vehicles simultaneously as required for the work completed in this thesis.  

3.3.1 RoboSalmon Mathematical Model Structure 

As shown below in Figure 3.5, the mathematical model of the RoboSalmon vehicle can be 

separated into four main sections: Tail Actuator Dynamics, Tail Kinematics, Vehicle Dynamics 

and finally, the Vehicle’s Guidance System. Although not strictly part of the mathematical 

model, the vehicle’s Guidance System has been included to demonstrate the closed-loop 

nature of the RoboSalmon system. 

As well as presenting the general structure of the mathematical model, Figure 3.5 also 

illustrates the rates at which these various sections are evaluated at. As shown, these range 

from 1000 Hz for the Tail Actuator Dynamics down to 4Hz for the Guidance System. By doing 

this, the mathematical model is able to evaluate the fast dynamics with a smaller time 

constant while the slower dynamics can be evaluated with a larger time constant. This 

methodology, known as multi-rate simulation, improves the computational efficiency of 

the model without sacrificing numerical accuracy (Gear & Wells 1984; Arnold 2007).  

 

Figure 3.5 - Mathematical model structure & guidance system. 
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Before the mathematical model can be evaluated and analysed, an appropriate 

methodology has to be implemented that will allow it to be easily evaluated using a 

commercially available software package. The particular method chosen is the same as that 

used by (Mazlan, 2015; Watts, 2009) and is referred to as state-space modelling(Rowell 

2002).  

3.3.2 State Space Models & Simulation 

State space modelling or the state space representation as it is often referred to as, is a 

particularly convenient way to represent a mathematical model in order to allow it to be 

easily evaluated using a commercially available software package such as MATLAB. The 

method operates by representing the dynamics of the system through a number of coupled 

first order differential equations which can be represented using the equation shown below 

(Rowell 2002):    

�̇� = 𝐀𝐱 + 𝐁𝐮 (3.1) 

Here, x and �̇� are the state and state derivative vectors with the state vector, x representing 

the outputs of the mathematical model. A and B are known as the process and input 

matrices while u is the input vector. Depending on the order of the system being modelled, 

the size of the aforementioned vectors and matrices will vary. For example, for an nth order 

system with r inputs, x and �̇� will both be column vectors of length, n, A will be a n-by-n 

square matrix, B will be an n-by-r matrix and u will be a column vector of length r.  

Due to state-space modelling being able to evaluate nth order systems, it can be used to 

evaluate complex, multiple input, multiple output systems (MIMO Systems) and as a result, 

is used frequently in the modelling and simulation of marine vehicles (Murray-Smith 2012a; 

McGookin 1997; Mazlan & McGookin 2012; Fossen 2011).  

In order to use Equation (3.1) and the state space representation to evaluate a particular 

mathematical model, a number of procedural steps must be adhered to. These steps are 

shown below in Figure 3.6.  
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Figure 3.6- Flowchart of state space modelling technique. 

Firstly, at the beginning of each simulation within the Initialisation section, the column 

vectors, x and u are populated with their initial conditions while the matrices A and B are 

populated with their constant values. Then, using Equation (3.1) in the Model section, the 

state derivative vector, �̇� is evaluated. This vector is then passed to the Numerical Integration 

section where it is numerically integrated to obtain new values for each of the states 

contained within the vector, x. These states are then stored in separate output vectors within 

the Data Storage section to provide a time history of the values calculated for each state. 

Thereafter, if the simulation time has not expired, Figure 3.6 illustrates that Equation (3.1) 

is evaluated once again except this time with the updated values for the state vector x 

calculated previously in the Numerical Integration section. These updated values are then 

used to obtain new values for each of the state derivatives which are then integrated to 

obtain a new state vector x. As Figure 3.6 demonstrates, this entire process is repeated until 

the end of the simulation. Once the simulation time has expired, the data contained within 

the Data Storage section will contain a complete time history of the values calculated for 

each state. These time histories can then be used to analyse the dynamics of the system 

being modelled 

3.3.3  Simulation Variables & Reference Frames 

In order to generate a suitable mathematical model of RoboSalmon, the kinematics of the 

vehicle must be defined.  The first step in this process is to define the frames of references 

for the vehicle’s velocity, position and orientation in three dimensional space (Fossen 1994). 

To achieve this, two reference frames are implemented: the body-fixed reference frame and 

the Earth-fixed reference frame. As the name suggests, the body-fixed reference frame is 
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attached to, and moves with the vehicle as it manoeuvres through space. The Earth-fixed 

reference frame is thought of as the inertial frame of reference and is therefore fixed to a 

point in space (Stevens & Lewis 2003). These reference frames and the associated notation 

are presented below in Figure 3.7. 

As the motion of the tail and the subsequent forces generated are confined to the vehicle, 

these are evaluated with respect to the body-fixed frame of reference. For the purposes of 

guidance, navigation and control, it is more appropriate to know the position and 

orientation of the vehicle in the Earth-fixed reference frame (Cai et al. 2011). This means that 

the velocities and accelerations calculated with respect to the body-fixed reference frame 

must be translated into their equivalent parameters in the Earth-fixed reference frame using 

Euler’s rotational theorem (Etkin & Reid 1996).  

 

Figure 3.7- Body & Earth fixed reference frames used. 

Furthermore, Figure 3.7 demonstrates that within the body-fixed reference frame, the 

RoboSalmon vehicle has six degrees of freedom - one rotational and one translational for 

each of the three dimensions shown. Associated with each of these degrees of freedom will 

be a force and translational velocity as well as a moment and rotational velocity. These 

forces, moments and velocities are used to describe the dynamics of the vehicle and the 

standard notation used to describe them, created by the Society of Naval Architects and 

Marine Engineers (SNAME) (Fossen 1994) is presented below in Table 3.1. 
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Table 3.1- SNAME notation used to define motion of marine vehicles 

Degree 

of 

Freedom 

Motion 

Description 
Name 

Forces & 

Moments 

Linear and 

Angular 

Velocities  

Position and Euler 

Angles 

1 
Motion in    

x-direction 
Surge X (N) u (m/s) x (m) 

2 
Motion in    

y-direction 
Sway Y (N) v (m/s) y (m) 

3 
Motion in    

z-direction 
Heave Z (N) w (m/s) z (m) 

4 
Rotation 

about x-axis 
Roll K (Nm) p (rad/s) Φ (rad) 

5 
Rotation 

about y-axis 
Pitch M (Nm) q (rad/s) Θ (rad) 

6 
Rotation 

about z-axis 
Yaw N (Nm) r (rad/s) Ψ (rad) 

In summarising, the above two sections have not only described the state space 

representation used to evaluate the mathematical model but also the reference frames 

implemented to accurately evaluate not only the forces, accelerations and velocities of the 

vehicle but also its position and orientation in space. Building on this, the following sections 

will now describe the functionality contained within the various subsections of the 

mathematical model shown previously in Figure 3.5. 

3.3.4 Tail Actuator Dynamics 

As discussed in Section 3.2.1, the tail section of the RoboSalmon vehicle is comprised of 

eight revolute joints with each containing a separate DC motor and PID controller. To 

accurately model the motion of these joints, the functionality contained within this section 

of the model not only has to contain a mathematical representation of the DC motors but 

also an identical version of the PID controller implemented within the vehicle. As shown 

below in Figure 3.8, in order to achieve this, the functionality implemented is separated in 

two subsystems within a closed-loop feedback control structure. 

 

Figure 3.8- Structure of functionality within Tail Actuator Dynamics subsystem. 
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Figure 3.8 demonstrates that the input to the Tail Actuator Dynamics section of the model is 

a commanded step angle for each motor, j. Once again, this angle has been specifically 

chosen to ensure that the Tail Section of the vehicle is able to imitate the swimming gait of 

the North Atlantic salmon as accurately as possible. This angle, as shown above, is then 

compared with the actual angular position of motor j to produce an error, 𝛥𝜃𝑗 which forms 

the input to the control system. As discussed above, this control system is a standard PID 

controller which can be represented using the following equation: 

𝑉𝑗 = 𝐾𝑝𝛥𝜃𝑗 + 𝐾𝑖∫𝛥𝜃𝑗 𝑑𝑡 + 𝐾𝑑
𝑑𝛥𝜃𝑗

𝑑𝑡
 (3.2) 

Here, 𝛥𝜃𝑗 represents the aforementioned error between the required and actual motor 

angle, 𝑉𝑗 is the required voltage for motor j to achieve its desired angular position and 𝐾𝑝, 𝐾𝑖 

and 𝐾𝑑 are the proportional, integral and derivative gains of the control system. 

Up to this point, the functionality (Equation (3.2)) and processes discussed are identical to 

those implemented within the control architecture of RoboSalmon’s Tail Section. In order to 

model the motion of each revolute joint, a mathematical representation of the dynamics of 

the DC motors has to be created. To achieve this, the electrical and mechanical properties 

of the DC motors are modelled using the equations shown below which combine Netwon’s 

and Kirkhoff’s laws and have been taken from (Franklin, G., Powell, J., Emama-Naeini 

1991): 

L
dij

dt
+ Rij = Vj − K𝑒θ̇j (3.3) 

Jθ̈j + bθ̇j = Ktij (3.4) 

Here, L is the motor inductance, ij is the current for motor j, R is the resistance, Vj is the 

voltage applied to motor j (evaluated using Equation (3.2)), θ̇j and θ̈j are the motor angular 

velocities and accelerations, respectively,  J is the moment of inertia, b is a damping 

constant, Keis a motor constant, and Kt is the torque coefficient. 

Based on the discussion presented in Section 3.3.2, in order to evaluate the angular positions 

of each motor using the equations presented above, they have to be rearranged into their 

equivalent state space representation. This is shown below in Equation (3.5). 
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�̇� =  

[
 
 
 
 −

R

L
  0 −

Ke
L

−0   0 −1

−
Kt
J

  0 −
b

J ]
 
 
 
 

𝐱 + [

1

L
0
0

] 𝐮 (3.5) 

Where the state vector x in Equation (3.5) is defined as: 

x = [

x1
x2
x3
] = [

ij
𝜃𝑗

�̇�𝑗

] (3.6) 

Equation (3.5) demonstrates that the system of equations representing the electrical and 

mechanical properties of the DC motor can be reduced into a state space representation 

consisting of a number of coupled first order differential equations. As a result, the state 

derivatives given in Equation (3.5) can now be numerically integrated to obtain values for 

the angular position of each motor, 𝜃𝑗 based on the input voltage Vj supplied to the motor 

via the PID controller. Finally, it is important to note that as discussed in Section 3.2.1, the 

Commanded Step Angle for each motor, j changes every 0.125s in order to ensure the 

vehicle replicates the swimming gait of the North Atlantic salmon. 

3.3.5 Tail Kinematics 

Although the functionality described in the previous section allows the angular position of 

the individual joints to be estimated, the diagram shown below in Figure 3.9 demonstrates 

these angular positions are evaluated with respect to individual references frames 

associated with each revolute joint. 

 

Figure 3.9 - Individual reference frames of tail section. 

Therefore, a methodology has to be implemented that will translate these angular positions 

into their corresponding displacements in the body-fixed axis. To achieve this, a simplified 

representation of the Denavit-Hartenberg (Niku 2001) convention is implemented. As the 

Tail Section of the RoboSalmon vehicle can be thought of as a robotic manipulator, a 

simplified representation of the Denavit-Hartenberg convention provides a valid method 

by which the lateral displacement of the individual joints, as well as the caudal fin, in the 
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body-fixed axis, can be evaluated (Niku 2001). The simplified representation can be used due 

to the assumption that there is no link offset or twist associated with each revolute joint. 

After applying these simplifications, the D-H convention operates by applying the 

transformation matrix shown below to each of the links shown above in Figure 3.9. 

















 −

=

−

−

1000

0100

00

0 1

1 jj

jjj

j

j

cs

asc

T




 
(3.7) 

Here, j represents the revolute joint (motor) for which the transformation matrix between 

itself and the previous joint is being evaluated for, c and s represent the cosine and sine of 

the angle, θj (Equation (3.6)) and a represents the link length. To evaluate the position of 

each joint in the body-fixed axis, the matrix presented above is populated with the 

appropriate values and used in conjunction with the following equation: 

𝐓j =∏ 𝐓𝑗
𝑗−1

𝑗

𝑗=1

 (3.8) 

This multiplication of matrices produces a 4x4 square matrix of the following form: 



















=

1000

333231

232221

131211

z

y

x

j
Prrr

Prrr

Prrr

T
 

(3.9) 

Where the elements r, represent the relative orientation of the two joints and the P elements 

represent the longitudinal, lateral, and vertical position of the jth joint with respect to the 

body-fixed axis. 

Therefore, in order to evaluate the position of the caudal fin in the body-fixed axis, Equation 

(3.8) is extended to include all eight matrices representing the transformation between 

neighbouring reference frames as demonstrated below in Equation (3.10). 

𝐓9 (Caudal Fin) = 𝐓1
0 𝐓2

1 𝐓3
2 𝐓4

3 𝐓5
4 𝐓6

5 𝐓7
6 𝐓8

7 𝐓9
8  (3.10) 

In summarising, the above two sections have described the functionality contained within 

the mathematical model that allows the motion of the Tail Section of the RoboSalmon vehicle 

to be modelled. This functionality included elements that have been implemented within 

the physical RoboSalmon vehicle such as the PID controller and the associated gains as well 

as modelling elements, such as the mathematical representation of the electrical and 
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mechanical dynamics of the DC motors. Furthermore, the functionality implemented 

within the model to transform the angular positions of each revolute joint into its lateral 

and longitudinal position in the body-fixed axis has also been described. As a result, the 

motion of the caudal fin can now be estimated which, as shown in Figure 3.5, forms the 

input to the next main subsystem of the mathematical model, the Vehicles Dynamics.  

3.3.6 Vehicle Dynamics  

Regardless of the particular type of vehicle being modelled, the mathematical models used 

to evaluate their dynamics will likely be derived from Newton’s 2nd Law. Using this 

approach, the dynamics of any marine vehicle can be represented using Equation (3.11) 

shown below. 

𝐌�̇� + 𝑪(𝒗)𝒗 + 𝑫(𝒗)𝒗 + 𝒈(𝜼) =  𝝉 (3.11) 

Where normally, M would represent the rigid body mass and inertia properties of the 

system being modelled. However, as explained in (Fossen,1994) for marine vehicles, an 

additional component has to be included in this term to account for the additional inertia 

added to the system as a result of it displacing a certain volume of the local fluid medium 

it operates in.  This additional term also has to be added to the Coriolis and Centripetal 

matrix, C. Therefore, for the purposes of describing the dynamics of the RoboSalmon 

vehicle, the matrices M and C can be thought of as consisting of two parts: rigid body inertia 

and added mass inertia.  

While the components, M and C are created as a product of the derivation of the standard 

6 DoF rigid body equations of motion, the remaining vectors 𝑫,𝒈 and 𝝉 represent the 

external forces and moments acting on the vehicle. These include the hydrodynamic 

damping forces, 𝑫  such as the vehicles drag, the restoring forces, 𝒈 due to the balance 

between the gravitational and buoyancy forces acting on the vehicle and finally, the 

vehicles inputs forces and moments, 𝝉 created from its propulsive and control surface 

subsystems. 

The vectors  �̇� and 𝒗 represent the accelerations and velocities of the vehicle as calculated 

in the body-fixed axis while 𝜼 represents the position and orientation of the vehicle in the 

Earth-fixed axis. 

As with the equations used to model the dynamics of the DC motors, Equation (3.11) has 

to be rearranged into its equivalent state-space representation before it can be numerically 

integrated. This state-space form is shown below in Equation (3.12). 
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�̇� = 𝐌−1 (−(𝐂(𝒗) + 𝐃(𝒗) + 𝐠(𝛈)𝒗−𝟏)) 𝒗 +𝐌−1𝝉  (3.12) 

The mathematical functionality and equations contained within the matrices M, C, D, g  

and 𝒗 are all detailed extensively in both (Mazlan, 2015; Watts, 2009) as well as Appendix 

A of this Thesis.  

In order to demonstrate where the outputs from the Tail Kinematics section of the model are 

used within the Vehicle Dynamics section, the following section will now describe the 

functionality contained within the vector, 𝝉 which, as mentioned above, represents the 

external forces and moments acting on the vehicle. 

3.3.6.1 Description of External Forces & Moments 

The RoboSalmon vehicle generates its propulsive thrust by using its Tail Section to imitate 

the swimming gait of the North Atlantic salmon and thus, produce the same propulsive 

backward travelling wave that exists in Body and/or Caudal Fin locomotion (Sfakiotakus 

et al; 1999). Consequently, a suitable mathematical methodology has to be implemented 

that will produce an estimate for the thrust created from this motion. 

Due to its intricate nature, there exists very few methods to accurately estimate the thrust 

generated (Sfakiotakus et al; 1999) by fish locomotion. One such method that has been used 

and is particularly suited to estimating the thrust generated from subcarangiform locomotion 

is known as Lighthill’s Large Amplitude Elongated Body Theory (Lighthill 1971). As described 

by (Ellerby 2010), this method estimates the thrust by modelling the transfer of momentum 

between the fish and the surrounding fluid using the equation shown below. 

𝑇 = 𝑚𝑤𝑘 𝑠𝑖𝑛 𝜃𝐶𝐹 +
1

2
𝑚𝑤2 𝑐𝑜𝑠 𝜃𝐶𝐹 (3.13) 

At this point, it should be highlighted that w and k represent the perpendicular and 

tangential velocities of the caudal fin tip and 𝜃𝐶𝐹 represents the angle between the caudal 

fin tip and the x-axis. This is because Lighthill’s theory assumes that the thrust generated is 

concentrated at the trailing edge of the tail (Tytell 2004), i.e. the caudal fin tip.  Therefore, it 

is within the above equation that the position and orientation of the caudal fin as calculated 

using Equation (3.11) is used within the Vehicle Dynamics section of the model.   

Once the thrust force  has been evaluated using Equation (3.13), it has to be separated into 

its x and y components. To achieve this, the following equations are utilised: 

𝑋𝑇 = 𝑇 𝑐𝑜𝑠 𝜃𝑇𝐶  
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𝑌𝑇 = 𝑇 𝑠𝑖𝑛 𝜃𝑇𝐶 
(3.14) 

𝑁𝑇 = 𝑌𝑇𝑑𝑐.𝑔. 

Here, 𝑋𝑇 and 𝑌𝑇 represent the thrust forces acting in the longitudinal and lateral directions 

respectively, 𝜃𝑇𝐶 represents the angle between the centreline of the tail section and the x-

axis, 𝑑𝑐.𝑔. is the longitudinal distance between the caudal fin and the position of the vehicle’s 

centre of gravity and finally, 𝑁𝑇  is the resulting yawing moment created due to the lateral 

component of the thrust force and the moment arm, 𝑑𝑐.𝑔.. 

3.3.7 Vehicle Kinematics 

In order to translate the body-fixed velocities calculated by numerically integrating Equation 

(3.12) into their Earth-fixed equivalents, a transformation is required. As discussed in Fossen 

(1994), this transformation is made up of a series of angular rotations that must be 

completed in a particular manner as outlined in Euler’s Theorem on Rotation.  

The transformations can be separated into their translational and rotational components 

and represented mathematically using the following equations. 

�̇�𝟏 = 𝐉𝟏(𝛈𝟐)𝐯𝟏 
(3.15) 

�̇�𝟐 = 𝐉𝟐(𝛈𝟐)𝐯𝟐 

 Here  

   𝛈𝟏 = [𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒]′;  𝛈𝟐 = [𝜙, 𝜃, 𝜓]′; 
(3.16) 

 𝐯𝟏 = [𝑢, 𝑣, 𝑤]′; 𝐯𝟐 = [𝑝, 𝑞, 𝑟]′; 

In Equation (3.15) J1 and J2 represent the Euler transformation matrices for the linear and 

rotational velocities respectively and are shown below in Equations (3.17) and (3.18). 

𝐉𝟏(𝛈𝟐) = [

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑐𝜙𝑠𝜃
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑐𝜓𝑠𝜙 + 𝑠𝜃𝑠𝜓𝑐𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

] (3.17) 

𝐉𝟐(𝛈𝟐) = [

1 𝑠𝜃𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙

0
𝑠𝜙

𝑐𝜃

𝑐𝜙

𝑐𝜃

] (3.18) 

By rearranging Equation (3.17), it is now possible to represent the above transformation in 

the desired state-space form: 
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[
�̇�𝟏
�̇�𝟐
] = [

𝐉𝟏(𝛈𝟐) 𝟎𝟑𝐱𝟑
𝟎𝟑𝐱𝟑 𝐉𝟐(𝛈𝟐)

] [
𝐯1
𝐯2
] (3.19) 

As with Equation (3.12), these velocities are numerically integrated to obtain not only the 

position of the vehicle in the Earth-fixed reference frame but also its orientation.  

Finally, by combining Equation (3.19) with that of Equation (3.12), it is now possible to 

express the entire RoboSalmon mathematical model in the required state-space 

representation as shown below in Equation (3.20). 

[
�̇�
�̇�
] = [

𝐌−1 (−(𝐂(𝐯) + 𝐃(𝐯) + 𝐠(𝛈)𝐯−𝟏)) 𝒗

𝐉(𝛈)
] [
𝐯
𝛈] + [

𝐌−1

0
]  𝝉 (3.20) 

In summarising, Section 3.3 has provided an overview of the structure and functionality 

contained within the validated, high-fidelity mathematical model of the RoboSalmon 

vehicle. The following section will now analyse the run time performance of this model 

with respect to its ability to simultaneously simulate multiple vehicles. 

3.4 Mathematical Model Performance 

The performance of a mathematical model is often measured with respect to its ability to 

accurately represent the dynamics of the system being modelled (Murray-Smith, 2012). It is 

generally accepted that in order to improve the model’s accuracy, the amount of 

mathematical detail and complexity implemented within it has to increase (Zeigler, Kim, 

Praehofer, 2000). Unsurprisingly, this has the undesirable effect of increasing the time taken 

to evaluate the model, i.e. its execution time. However, (Sargent, 1999) suggests that instead 

of simply creating an overly complex representation of the system, a model should be 

developed for a specific purpose and its validity measured with respect to that purpose. 

This is further emphasised by both (Murray-Smith, 2012) and (Brooks & Tobias 1996) who 

state a successful mathematical model often involves a trade-off between the level of detail 

included, the corresponding speed of solution (execution time) and the model’s accuracy. 

As shown in (Mazlan 2015), while the ability of the model described in Section 3.3 to 

accurately model the RoboSalmon vehicle has already been demonstrated, its applicability 

to be used to simulate multiple vehicles simultaneously in a time efficient manner has yet 

to be established.  

To achieve this, the mathematical model described in Section 3.3 has been altered to allow 

it to model multiple vehicles simultaneously. The subsequent relationship between the 
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number of vehicles modelled and the associated execution time of the model is presented 

below in Figure 3.10.  

 

Figure 3.10 - Relationship between the number of vehicles modelled & simulation 

execution time 

While it is unsurprising that the magnitude of the execution time increases as the number 

of vehicles modelled increases, Figure 3.10 demonstrates that on average, for each 

additional vehicle incorporated, the simulation time increases by approximately five 

minutes. This results in an execution time of over an hour for a scenario lasting only 10 

minutes and including 12 vehicles. Therefore, given that the work completed in this thesis 

aims to investigate scenarios involving this number of vehicles, the mathematical model, in 

its current guise, isn’t suitable for the subsequent work that will be undertaken in this 

research. 

As a result, modifications will have to be made to the model in order to produce an 

improvement in its execution time. Before these alterations are made though, it is important 

to analyse the model in greater detail to understand which of its subsections are particularly 

inefficient. To achieve this, shown below in Figure 3.11 is the execution time for these 

various subsections as a percentage of the total execution time of the model. 
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Figure 3.11 – Percentage of simulation time used to evaluate functionality contained 

within various subsystems. 

The results presented above clearly demonstrate that the vast majority of the models 

execution time is attributed to evaluating functionality within the Tail Actuator Dynamics & 

Kinematics sections of the model. The reasons for this being the case are due to a number of 

factors. The first of which is due to the fact that the functionality contained within this 

section of the model is evaluated at a rate of 1000 Hz. Secondly, the requirement to use the 

4th Order Runge-Kutta algorithm to numerically integrate Equation (3.5) results in these 

equations being evaluated four times every one thousandth of a second. Finally, the fact 

that the vehicles Tail Section is comprised of eight motor joints means that the functionality 

described above is evaluated 32 times every 0.001s. This means that overall, the 

functionality contained within this section of the model is evaluated 32,000 times per 

second.  

In order to substantially improve the execution time of the model, it is apparent that the 

functionality contained within this section of the model will have to be either modified or 

replaced. As the remaining sections of the model, i.e. the Vehicle Dynamics will remain 

unchanged, the techniques implemented to replace this functionality will have to produce 

the exact same outputs as the original model and as shown in Figure 3.5, these outputs are 

the position and orientation of the caudal fin. 

3.4.1  Model Categorisation 

As discussed in (Sjöberg et al. 1995) and presented below in Table 3.2, mathematical models 

can be categorised into three groups depending on the level of prior knowledge used in 

their construction. In this work, prior knowledge represents the implementation of 

established physical relationships such as Newton’s 2nd Law within the mathematical 

model. 
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Table 3.2- Categorisation of Mathematical Model Structures. 

Model Category Category Description 

White-Box 

The mathematical model is perfectly 

known; it has been possible to construct it 

entirely from prior knowledge and 

physical insight  

Grey-Box 

Some physical insight is available, but 

several parameters remain to be 

determined from observed data. 

Black-Box 

No physical insight is available or used, but 

the chosen model structure belongs to 

families that are known to have good 

flexibility and have been ‘successful in the 

past’ 

Regardless, based on the descriptions presented below, the RoboSalmon model presented 

thus far can be categorised as a white-box model due to the fact that it’s been derived 

entirely from first principles using Newton’s 2nd Law of Motion for the vehicle dynamics 

and Kirchoff’s law for the dynamics associated with the DC motors. As explained in the 

description section of Table 3.2, these types of models provide the user with the greatest 

physical insight into the system being modelled but in many cases, can be overly complex. 

Black box models meanwhile provides the user with zero physical insight and instead 

operate by using measured experimental data to create a mathematical structure that is able 

to map a systems response entirely from its inputs (Ljung 2001). This process of creating 

the relevant mathematical structure based on a system’s inputs and outputs is known as 

System Identification (Bai & Giri 2010; Ljung 1999). As opposed to the mathematical 

modelling procedures used in the creation of white-box models, black-box modelling can 

be thought of as more of a curve-fitting procedure.  Nevertheless, when implemented 

correctly, this procedure has been shown to be capable of accurately modelling the 

dynamics of many complex systems by incorporating simple mathematical basis functions 

(Nielsen & Madsen 2006; Jin et al. 2001).  

Grey-box modelling incorporates aspects of both white and black box modelling techniques 

to combine the individual strengths of the two methods with the aim of producing the most 

accurate and efficient representation of a systems dynamics (Bohlin 2006).  

Due to the fact that they are created using simple mathematical basis functions (Hauth 

2008), it is proposed that the functionality contained within the Tail Actuator Dynamics & 
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Kinematics subsections be replaced with a black-box model representation. In doing so, it is 

anticipated that the execution time of the model can be improved while maintaining the 

validity of the original validated model. 

3.5  Reducing Model Complexity 

The aim of this section is to ascertain whether or not the system identifications techniques 

discussed above can be implemented to create a black-box model to replace the processor 

intensive functionality contained within Tail Actuator Dynamics & Kinematics subsection of 

the RoboSalmon mathematical model. To begin, shown below in Figure 3.12 is the proposed 

changes to the structure of the mathematical model. 

 

             (a)                       (b) 

Figure 3.12- Comparison of (a) original mathematical model structure (b) proposed model 

structure. 

On inspection of Figure 3.12, the input to the proposed black box model will be the required 

tail centre deflection angle, 𝛿𝑇 of the vehicle (its rudder angle) while its outputs, as shown 

above, will be the position and orientation of the caudal fin. Before a decision can be made 

as to whether or not system identification techniques can be implemented to replace this 

functionality, the relationship between these inputs and outputs needs to be analysed. 

To achieve this, open loop simulations of the original, validated model where completed 

that varied the value for 𝛿𝑇  (Input) in 30º increments throughout its entire operation range. 

The associated position and orientation (Outputs) of the caudal fin were then recorded and 

the mapping between these inputs and outputs are presented below in Figure 3.13. 
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A number of observations can be made with regard to the motion of the caudal fin as 𝛿𝑇 is 

altered. The first and perhaps most obvious is the cyclical nature of the caudal fin’s 

response. However, given the undulatory nature of fish locomotion, this is not at all 

surprising. More importantly though, Figure 3.13 demonstrates that when averaged over a 

single tail beat (one second interval), the position of the caudal fin, i.e. how much it deviates 

from the vehicle’s centreline, is proportional to 𝛿𝑇. Again, this is unsurprising, as a non-

zero 𝛿𝑇 will move the position of the caudal fin laterally to either the right or left hand side 

of the centreline. Intuitively, the greater the deflection angle, the greater the lateral distance 

between the caudal fin and the vehicles centreline.  

 

Figure 3.13 - Evolution of caudal fin position for various δT  values throughout the 

vehicle's operation range. 

Upon further analyses of Figure 3.13, it is apparent that in order to create a black-box model 

that is capable of representing the evolution of the caudal fin’s position throughout its entire 

operational window, an additional input parameter on top of 𝛿𝑇 will have to be used. This 

is due to the fact that only through a combination of two parameters can each of the 

transient and steady-state motions presented above be uniquely identified. This is 

demonstrated below in Figure 3.14 where these two input parameters are compared with 

the corresponding output (caudal fin position) of the system.  
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Figure 3.14- Relationship between system inputs (top) and corresponding system 

response (bottom). 

As well as 𝛿𝑇 , Figure 3.14 demonstrates the second input parameter, 𝛥𝛿𝑡 which represents 

the change in 𝛿𝑇 from one tail beat period (one second) to the next. Figure 3.14 demonstrates 

that for each unique combination of these input parameters, there is a similarly unique 

output from the Tail Actuator Dynamics & Kinematics functionality in the form of the 

associated evolution of the caudal fin’s position throughout that particular tail beat period.   

Based on the results presented above, the structure of the black-box model used to replicate 

the functionality contained within the Tail Actuator Dynamics & Kinematics subsection will 

take the form of that shown below in Figure 3.15. 

 

Figure 3.15- Black-box model structure to replace functionality within Tail Actuator 

Dynamics & Kinematics subsystems for caudal fin position. 

Finally, as shown above in Figure 3.12 (b) and discussed previously, the position of the 

caudal fin as calculated using the proposed black-box model shown in Figure 3.15 is 

immediately used within the thrust calculation section of the model. Since this functionality 

is evaluated at 200 Hz, it is a requirement of the proposed black-box model to produce an 

updated value for the caudal fin’s position every 0.005s. As a result, the output from the 

black-box model presented above will contain 200 elements with each element representing 

the position of the caudal fin at that particular point in the tail-beat period. This means that 

the evaluation of the resulting black-box model occurs once every second and a simple 
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indexing operation can be used to ensure the correct position is passed to the thrust 

estimation section of the model in the interim period.  

As the bottom graph of Figure 3.13 illustrates, the input/output relationship for the 

orientation of the caudal fin is much simpler and is unaffected by changes in 𝛿𝑇. As a result, 

a simpler, second black-box model can be used to represent this relationship as shown 

below in Figure 3.16. 

 

Figure 3.16- Black-box model Structure to replace functionality within Tail Actuator 

Dynamics & Kinematics subsystems for caudal fin orientation. 

The black-box model proposed to replicate the evolution of the caudal fin’s orientation 

contains just a single input, Time. This is due to the fact that as shown in Figure 3.13, time 

is the only parameter that the orientation of the caudal fin varies with and as a result, it has 

to be used as input to the black-box model. With the tail-beat frequency of the vehicle being 

equal to one second and the subsequent functionality within the model being evaluated at 

200Hz, this input parameter will vary between zero and one in 0.005 increments. As a result, 

unlike the black-box model presented in Figure 3.15, this model is evaluated at 200Hz.  

3.5.1  System Identification Process 

As discussed previously, the process used to create black-box models is known as System 

Identification and occurs over three stages: Data Acquisition, Model Selection & Evaluation 

and Model Validation (Ljung 1999). The following sections will now discuss the steps taken 

within each of these stages in an attempt to create a black box model capable of replacing 

the functionality contained within the Tail Actuator Dynamics & Kinematics subsection of the 

model.  

3.5.1.1 Data Acquisition  

Black-box models are created exclusively from the input/output data obtained from the 

system being modelled. This data acquisition occurs during specially designed experiments 

where the user knowingly selects specific inputs that ensures the data obtained represents 

the system’s response throughout its entire operational window. For the work completed 

in this thesis, the relevant data is obtained from the original validated model presented in 

Section 3.3.  In order to obtain the relevant data, a number of open-loop simulations where 
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performed using the full nonlinear validated model. As discussed above, these simulations 

where designed specifically to ensure that the response of the system (i.e. the motion of the 

caudal fin) was obtained for 𝛿𝑇 (system input) values throughout the vehicle’s entire 

operation range, i.e. -90º ≤  δ𝑇 ≤ 90º in 5º intervals. As well as obtaining the steady-state 

responses of the system, the transient response of the system– both positive and negative - 

from each steady state value of δ𝑇 were also obtained.   

Once theses simulations where performed, the data obtained was arranged into a three 

dimensional matrix (row, column, page) of size 200 x 37 x 37. Within this matrix, the column 

and page dimensions are used to represent the unique combination of system inputs 

(δT & Δδt)  shown in Figure 3.15 at the aforementioned 5º intervals while the row entries 

represent the corresponding position of the caudal fin every 0.005s.   

3.5.1.2 Model Selection  

Once the relevant data has been acquired from the system, the next phase of the process is 

the evaluation of the mathematical model or the mathematical basis functions. However, 

before this can occur, a particular mathematical model structure has to be selected.  As 

described in (Ljung, 1987), this is the most important choice to be made in the System 

Identification procedure and although numerous different model structures exist, a 

generalised form can be described as the weighted sum of a given basis function;  

yM(k) =  ∑αjGj(𝐱(k))

M

j=1

 (3.21) 

Where yM is the model output, αj represents the individual weights and Gj(𝐱(k)) represents 

the evaluation of the chosen basis function for the input parameters represented by the 

vector, 𝐱(k).  

Analysing Equation (3.21), it is apparent that the main decision to be made is what 

particular basis function to use.  As described in (Horváth & Sergey 2003), there are many 

different functions to choose from including simple polynomials functions, Fourier Series 

approximations as well as Taylor’s Series expansions.  However, the work completed in 

this thesis uses a similar but slightly more complicated version of the generalised form 

presented above known as an artificial neural network (ANN). An ANN can be classified 

as an interconnected graph of simple mathematical functions whose operation can loosely 

be described as mimicking the function of the brain (Gurney, 1997). Like the brain, ANNs 

have the ability to ‘learn’ from the data they process and under certain user-defined 

conditions are capable of evaluating any given function (Cybenko 1989; Norgaard 1997; 
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Sjöberg et al. 1995). It is for this reason that ANNs have been implemented in this work to 

estimate the unknown mapping between the systems inputs (δT and ΔδT) and the 

corresponding position of the caudal fin.  

3.5.1.3 Artificial Neural Networks (ANNs) 

Shown below in Figure 3.17 is the standard structure of an ANN with an Input layer, a 

Hidden layer and an Output layer. 

Unsurprisingly, the Input layer of a neural network contains its inputs which as discussed 

previously, for the work completed in this thesis, are the two parameters, δT and ΔδT. The 

Hidden layer contains a number of user-defined artificial neurons. Finally, similarly to the 

Input layer, the size of the Output layer is dictated by the number of outputs required from 

the network. As discussed previously, due to the 200Hz update rate of the Vehicle Dynamics 

section of the model (Figure 3.12 (b)), this value needs to be equal to 200. While the size of 

the Input and Output layers are dictated by the networks inputs and outputs, the number 

of artificial neurons contained within the Hidden Layer is user-defined. Based on the work 

completed in (Blum 1992) (Berry & Linoff 1997) (Heaton 2009) (Masters 1993), it was 

decided that in order to ensure the network would be able to successfully produce an 

accurate representation of the caudal fin’s motion, 25 neurons would be included within 

this Hidden layer. 

 

Figure 3.17- Structure of standard neural network. 

Once the various layers discussed above have been defined, the output from the ANN used 

in this work can be expressed mathematically using Equation (3.22) shown below. 
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yl(w, k, x) =  Fl(∑kli

q

i=1

fi (∑wijxj

m

j=1

)) (3.22) 

Here, yl represents the lth output from the network, wij represents the strength of the 

interconnecting weights between the input xj and the ith neuron in the hidden layer, m 

represents the number of inputs to the network, fi is the activation function contained 

within the ith neuron of the hidden layer, kli represents the interconnecting weight between 

the ith neuron in the hidden layer and lth output neuron, q is the number of neurons in the 

hidden layer and finally, Fl is the activation function for the lth output neuron.  

While the size of the various layers of the ANN have been defined, it is apparent that the 

particular activation functions represented by Fl and fi in Equation (3.21) have yet to be 

chosen. As shown below in Equation (3.23), it was decided that an approximation of the 

hyperbolic tangent function would be incorporated within the neurons of the Hidden and 

Output layers.  

𝑦𝑀 =
2

(1 + 𝑒
−2(∑ αjx𝒋

j=3
j=1

)
)
− 1 

(3.23) 

Again, x𝒋 represents the system inputs, αj represents the numerical strength (i.e. the weight) 

of the individual connections between the various layers of the network and finally, 

𝑦𝑀represents the output of the neuron.  

The reason for chosen the hyperbolic tangent function is to ensure that when averaged, the 

outputs obtained from the neurons in each layer are equal to approximately zero. This, as 

highlighted in (Le Cun et al. 1998) ensures the results obtained from the neurons are not 

biased in a particular numerical direction and as a result, the training process of the neural 

network is quickened. 

This training process operates by implementing an algorithm that continuously alters the 

values for the various interconnecting weights (w and k in Equation (3.22)) until a suitable 

validation criteria has been satisfied and thus, the outputs from the ANN are deemed to 

produce an accurate representation of the system being mapped. While there are many 

different types of training algorithm available, the majority of projects use a variation of the 

popular optimisation technique known as gradient descent (Qian 1999). Included in these, 

is the backpropagation algorithm used in this work. A full derivation of the 

backpropagation method is presented in Appendix B.  
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Unsurprisingly, in order to allow this training process to be completed, not only does a 

suitable training algorithm need to be selected but also data must be supplied to the 

network that represents the inputs and associated outputs of the system for which the 

network is attempting to map. This data is referred to as the training data of the network 

and for the work undertaken in this research, is equal to the matrix of data obtained and 

described in Section 3.5.1.1.  

In order to ensure the training process produces an ANN that is an accurate representation 

of the system being mapped, a validation methodology has to be incorporated within the 

training algorithm. To ensure that the ANN is able to accurately model the entire 

operational range of the vehicle and not just the values contained within the 

aforementioned training data, a process known as cross validation is undertaken.  

This process involves using a validation data set to measure the ability of the network to 

predict the systems response to unseen data. As a result, it provides a superior metric by 

which to determine the ability of the network to model the systems entire operational range 

and guarantees that the network created doesn’t contain a lack of generalisation (Krogh 

1995).  

While the particular validation methodology used within this work has been defined, a 

suitable validation metric still has to be set. The particular technique implemented in this 

work is known as the Theil’s Inequality Coefficient (TIC) (Kat & Els 2012) and is evaluated 

using the equation shown below: 

ε =

( )
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Where, ε represents the validation error, y represents the desired response from the 

network, ym represents the networks actual response and n represents the number data 

points to be compare. In this case, the value of n is equal to the number of network outputs, 

200.    

Using the Theil’s Inequality Coefficient as the validation metric is particularly useful as it 

normalises the difference between the two sets of data. This means that the value of ε will 

always be between zero and one. A value close to zero signifies that the two sets of data are 

similar while a value close to one signifies that the two sets of data are significantly 

different.  
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Using this metric, the training algorithm discussed above was evaluated and the weight 

values, i.e. w and k in Equation (3.22) associated with the minimum value for ε throughout 

this training process calculated. Subsequently, for the training process undertaken in this 

work, shown below in Figure 3.18, is the evolution of the validation error, ε as the training 

algorithm progresses through a number of epochs. A single epoch is completed once the 

training algorithm has completed a single training routine using the training data. 

The results presented below demonstrate the expected behaviour with a relatively large 

initial error before the validation error begins to decrease as the training routine evolves. 

This reduction continues until approximately the 2500th epoch after which, the validation 

error begins to slowly increase and continuous to do so until the end of the training routine. 

Based on these results, the weights which will be used in the validated network are those 

calculated immediately before the validation error begins to increase, i.e. the 2455th epoch. 

 

Figure 3.18- Evolution of validation error. 

In summarising, the work presented above has described the methods used to create an 

ANN capable of modelling the motion of the RoboSalmon’s caudal fin throughout its entire 

operational window. Furthermore, the cross-validation process undertaken and presented 

above in Figure 3.18 suggests that the ANN created is capable of producing an accurate 

representation of the caudal fin’s motion. The next step in the validation process is to insert 

this black-box model in place of the original functionality contained within the Tail Actuator 

Dynamics & Kinematics subsection and validate the entire models response against the 

original validated mathematical model. 
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However, before this process occurs, another much simpler method of replacing the 

functionality within the Tail Actuator Dynamics & Kinematics subsection is presented. This 

method has been used widely and involves replacing the functionality described in Section 

3.3.4 with a number of look up tables.  

3.5.2  Look Up Tables 

While look-up tables have been in existence for centuries, their purpose – to replace the 

evaluation of complex mathematical functions with tables containing the corresponding 

function values - has remained largely unchanged.  

In order for a look-up table to be constructed, the combination of variables that produces a 

unique solution to the functionality being replaced must be identified. For the work 

completed in this thesis these parameters are δ𝑇, and Δδ𝑇. In order to identify the correct 

point in the tail beat cycle, the parameter, t also has to be incorporated. By incorporating 

these three parameters, the LUT can be considered a three dimensional structure where 

every possible combination of the above three variables produces a unique solution (and 

position in space) as shown below in Figure 3.19. 

 

Figure 3.19 - Diagrammatic representation of 3-Dimensional look up table. 

It’s apparent from Figure 3.19 that the arrow is pointing towards a particular point in space 

and as a result, the value obtained will represent the position of the caudal fin for that 

unique combination of δ𝑇, Δδ𝑇 and t. Therefore, during a single tail beat cycle, the values on 

the δ𝑇 and Δδ𝑇 axis will remain unchanged while the value for t will vary. Again, because of 

the requirement to provide data to the Vehicle Dynamics subsystem at a rate of 200Hz, the 

vertical axis in Figure 3.19 (and the equivalent field in the look up table) will include 200 

values. 
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In order to populate the look up table with the relevant values, the high-fidelity model 

described in Sections 3.3 was evaluated for all possible integer combinations of δ𝑇 and Δδ𝑇 

and the resulting motion of the caudal fin indexed within a look-up table. Once the table 

had been fully constructed, a simple indexing operation is used to retrieve the correct data 

based on the values of δ𝑇, Δδ𝑇 and, t.  

While the construction of the ANN described in Section 3.5.2.3 required a validation process, 

the incorporation of the look up table model doesn’t. This is due to the fact that the values 

contained within these tables have been taking directly from the original validated 

mathematical model. Therefore, as long as the indexing operation has been completed 

correctly, the look up tables, by default, will provide an accurate representation of the 

relevant functionality. 

3.6 Model Validation  

The aim of this section is to demonstrate whether or not the black-box models presented in 

the previous two sections once incorporated into the full mathematical model, allow the 

dynamics of the RoboSalmon vehicle to be accurately modelled. To achieve this, a number 

of different scenarios have been simulated using these reduced fidelity models and the 

results compared with those from the original, high-fidelity model. As discussed 

previously, the particular parameters compared will be those presented in Table 3.1, i.e. the 

surge, sway & yaw velocities of the vehicle as well as the position of the vehicle in Earth-

fixed axis and finally, the vehicle’s heading angle. As with the validation process completed 

in Section 3.5, the scenarios completed have to ensure the entire operational range of the 

vehicle is tested, i.e. -90º ≤  δ𝑇 ≤ 90º. To achieve this a combination of open and closed loop 

manoeuvres are used. 

3.6.1  Open Loop Manoeuvres  

For the open loop manoeuvres, the well-known zig-zag and turning circle manoeuvres are 

used. These manoeuvres help evaluate particular characteristics of marine vehicles based 

on known rudder inputs. The turning circle manoeuvre, for example, is used to determine 

the manoeuvrability characteristics of a vehicle (Faltinsen 2006) while the zig-zag 

manoeuvre evaluates the response time of the vehicle in yaw (Fossen,2011). These 

particular manoeuvres were used as they can test the validity of the models throughout 

their entire operational range, i.e. -90º ≤  δ𝑇 ≤ 90º. This is shown below in Table 3.3 where 

the values used for δ𝑇 across the two manoeuvres are presented.        
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Table 3.3- δT values used during various open loop simulations. 

 ZigZag Manoeuvre Turning Circle Manoeuvre 

δ𝑇 ±(10,20,30,40)° ±(50, 60, 70, 80, 90)° 

The zigzag manoeuvre operates by setting the deflection angle of the control input, δ𝑇 in 

this instance, to a specific value until the vehicle manoeuvres to a particular heading angle, 

ψ. At this point, the input is changed to -δ𝑇 and remains there until the vehicle’s heading 

angle manoeuvres to, –ψ. Then, the control input is changed back once again to +δ𝑇 and the 

above process is repeated. Using this manoeuvre, the tail centre deflection angle will switch 

between ±δ𝑇. As a result, for the four manoeuvres presented in Table 3.3, the values of δ𝑇 

tested will be -40º≤δ𝑇≤40º in 10º intervals. 

For the turning circle manoeuvre, the value of δ𝑇 is kept at a constant value until the vehicle’s 

heading angle rotates through a full 360º. As a result, to test each of the δ𝑇 values presented 

in Table 3.3, ten simulations have to be completed.  

In order to complete the validation process, an identical simulation has been undertaken for 

each of the manoeuvres presented in Tables 3.3 using the original high-fidelity model, the 

reduced fidelity model containing the look up table (RFMLUT) and the reduced fidelity 

model containing the ANN (RFMANN). As shown below in Table 3.4, the results obtained 

from the zig-zag manoeuvres from these reduced fidelity models have been compared with 

those obtained from the high-fidelity model using the Theil’s Inequality Coefficient (TIC) 

presented previously in Equation (3.24). 

Table 3.4- TIC values for zig zag manoeuvres with Look up Table Model. 

δ𝑇 Surge Sway Yaw X-Pos Y-Pos Heading Avg 

±10 1.27x10-6 1.49x10-6 6.4 x10-6 4.82x10-7 1.36x10-5 5.64x10-6 4.82x10-6 

±20 1.57x10-6 1.84x10-6 5.5 x10-6 7.71x10-7 1.04x10-5 5.62x10-6 4.28x10-6 

±30 1.70x10-6 1.90x10-6 4.97x10-6 8.80x10-7 7.90x10-6 5.02x10-6 3.73x10-6 

±40 1.81x10-6 1.90x10-6 4.83x10-6 1.04x10-6 8.18x10-6 5.14x10-6 3.82x10-6 

Table 3.5 - TIC values for zig zag manoeuvres with Neural Network Model. 

δ𝑇 Surge Sway Yaw X-Pos Y-Pos Heading Avg 

±10 3.1x10-3 8.9x10-3 7.5x10-3 5.29x10-4 4.5x10-3 2.50x10-3 4.4x10-3 

±20 4.5x10-3 1.2x10-2 9.2x10-3 8.70x10-4 4.6x10-3 2.70x10-3 5.6x10-3 

±30 4.9x10-3 1.1x10-2 1.0x10-2 8.45x10-4 1.5x10-3 2.50x10-3 5.2x10-3 

±40 5.4x10-3 1.1x10-2 1.2x10-2 8.72x10-4 5.9x10-3 5.00x10-3 6.6x10-3 
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Overall, with the average coefficient value being of the order 10-6 and 10-3 for the RFMLUT 

and RFMANN models respectively, the results suggest that both models are capable of 

accurately replicating the dynamics of the RoboSalmon vehicle when -40º≤δ𝑇≤40º. While 

both small, the results presented above demonstrate a significant difference in the 

coefficient values obtained from the RFMLUT and RFMANN models with RFMLUT model, 

on average, producing a TIC value that is three orders of magnitude less than the RFMANN 

model. While this may seem a significant difference, the fact that the TIC values for both 

models are as small as they are suggests that any difference in the results obtained form the 

two models is likely to be negligible. Regardless, its apparent from these results that when 

the tail centre deflection angle is in the range -40º≤δ𝑇≤40º, the reduced fidelity models are 

capable of providing an accurate representation of the vehicle’s dynamics.  

While the results presented above demonstrate the validity of the reduced fidelity models 

when δ𝑇 is between ±40º, it will only be once the results produced from the turning circle 

manoeuvres are obtained, that it will be possible to determine the overall validity of the 

model. Subsequently, shown below in Tables 3.6 & 3.7 are the TIC values obtained from 

these manoeuvres. Specifically, Table 3.6 represents the coefficients obtained when the 

outputs from original, high-fidelity model are compared with those from the RFMLUT 

model while Table 3.7 represents the same results but for the comparison involving the 

RFMANN model. 

Table 3.6  - TIC values for turning circle manoeuvre with Look up Table Model. 

δ𝑇 Surge Sway Yaw X-Pos Y-Pos Heading Avg 

50 1.36x10-6 8.01x10-7 2.48x10-6 1.62x10-6 9.26x10-7 4.02x10-7 1.26x10-6 

60 1.58x10-6 7.74x10-7 2.43x10-6 1.96x10-6 1.02x10-6 4.26x10-7 1.37x10-6 

70 2.18x10-6 8.72x10-7 2.76x10-6 1.74x10-6 1.04x10-6 5.84x10-7 1.53x10-6 

80 2.76x10-6 8.52x10-7 2.71x10-6 2.76x10-6 1.08x10-6 5.89x10-7 1.79x10-6 

90 4.11x10-6 8.29x10-7 2.65x10-6 4.92x10-6 1.18x10-6 5.80x10-7 2.38x10-6 

-50 1.6x10-6 2.06x10-6 1.39x10-6 1.32x10-6 2.16x10-7 9.22x10-8 1.11x10-6 

-60 1.82x10-6 1.99x10-6 1.40x10-6 1.53x10-6 2.65x10-7 1.02x10-7 1.19x10-6 

-70 2.13x10-6 1.95x10-6 1.42x10-6 1.75x10-6 3.2x10-7 1.08x10-7 1.28x10-6 

-80 2.59x10-6 1.91x10-6 1.43x10-6 1.88x10-6 3.67x10-7 1.07x10-7 1.38x10-6 

-90 3.44x10-6 1.86x10-6 1.42x10-6 1.78x10-6 4.0x10-7 9.84x10-8 1.5x10-6 

Analysing the results presented above and below, it is noticeable that they are very similar 

to those presented in Tables 3.5 & 3.6. This similarity is apparent when the orders of 

magnitude of the coefficients are taken into consideration where the results demonstrate 

that on average, they are of the order 10-6 and 10-3 for the RFMLUT and RFMANN models 
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respectively. These values are identical to those presented in the previous section and once 

again demonstrate the similarity in the results obtained from the reduced fidelity models 

and the original, validated model. These results, when combined with those presented in 

Tables 3.5 & 3.6, suggest that the reduced fidelity models are capable of producing an 

accurate representation of the RoboSalmon vehicle throughout its entire operation range, 

i.e. -90º ≤  δ𝑇 ≤ 90º.  

Table 3.7- TIC values for turning circle manoeuvre with ANN Model. 

δ𝑇 Surge Sway Yaw X-Pos Y-Pos Heading Avg 

50 2.3x10-3 2.4x10-3 3.7x10-3 3.1x10-3 1.6x10-3 6.7x10-4 2.3x10-3 

60 2.8x10-3 2.5x10-3 4.0x10-3 4.1x10-3 1.9x10-3 7.5x10-4 2.7x10-3 

70 4.0x10-3 2.8x10-3 4.5x10-3 4.1x10-3 2.3x10-3 1.2x10-3 3.2x10-3 

80 5.1x10-3 2.8x10-3 4.4x10-3 7.0x10-3 3.0x10-3 1.3x10-3 3.9x10-3 

90 7.6x10-3 2.8x10-3 5.2x10-3 1.3x10-2 4.9x10-3 1.0x10-3 5.7x10-3 

-50 1.6x10-3 2.3x10-3 2.5x10-3 2.4x10-3 3.3x10-4 1.1x10-4 1.5x10-3 

-60 1.8x10-3 2.2x10-3 2.4x10-3 2.7x10-3 2.43x10-4 4.3x10-5 1.6x10-3 

-70 2.1x10-3 2.1x10-3 2.5x10-3 3.1x10-3 3.29x10-4 6.0x10-5 1.7x10-3 

-80 2.5x10-3 2.1x10-3 2.4x10-3 3.1x10-3 5.3x10-4 1.5x10-4 1.8x10-3 

-90 3.4x10-3 2.1x10-3 2.8x10-3 2.8x10-3 5.0x10-4 3.6x10-5 1.9x10-3 

However, it is crucial to note that as illustrated in Table 3.3, the values used for δ𝑇 

throughout these validation tests increased in 10º intervals and as a result, the validity of the 

reduced fidelity models cannot be guaranteed by the results shown above in Table 3.4-7.  In 

order to demonstrate further the validity of the reduced fidelity models, a closed loop 

manoeuvre needs to be undertaken. Incorporating a closed loop manoeuvre will not only 

further assist in indicating the validity of the reduced fidelity models but also the ability of 

the RoboSalmon vehicle to autonomoulsy navigate to a number of predefined waypoints.   

3.6.2  Closed Loop Manoeuvre 

As opposed to an open loop manoeuvre where the values used for, δ𝑇 will be predefined, a 

closed loop manoeuvre involves the vehicle’s Guidance System calculating the values for δ𝑇 

based on the vehicles current position and its desired location. Incorporating such a closed 

loop manoeuvre within the validation process ensures the reduced fidelity models are 

validated with respect to a realistic scenario likely to be undertaken by the RoboSalmon 

vehicle. However, before this final validation process is undertaken, the following section 

will present the guidance control law used in the RoboSalmon vehicle to calculate the 

appropriate value for δ𝑇 that ensures the vehicle will manoeuvre in the desired direction.   
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3.6.2.1 RoboSalmon’s Guidance Heuristic 

Shown below in Figure 3.20 is a representation of the Guidance System incorporated within 

the RoboSalmon vehicle that allows it to autonomously navigate to any desired location.  

 

Figure 3.20- Representation of RoboSalmon’s guidance system structure. 

Here xd and yd represent the coordinates of the waypoint the vehicle is required to 

manoeuvre towards, ψD is the associated desired heading angle of the vehicle which 

ensures the vehicle continues to manoeuvre towards that required waypoint, δT is the 

required control surface deflection angle and xv, yv and ψ represent the current position and 

orientation of the vehicle in the Earth-fixed reference frame.  

As the diagram demonstrates, for the work completed in this thesis, these parameters (xv, 

yv and ψ) are obtained from the vehicles mathematical model. In reality though, they would 

be calculated using the vehicles navigation system. Regardless of how they are calculated, 

Figure 3.20 demonstrates that the Autopilot subsequently uses them in conjunction with  the 

vehicle’s desired location, (xd, yd) to calculate the desired heading angle, ψD that will ensure 

the vehicle manoeuvres in the correct direction. This process is shown diagrammatically 

below in Figure 3.21. 

 

Figure 3.21- Geometry of waypoint guidance methodology. 

As discussed in (Mazlan 2015), to calculate this desired heading angle, ψD Equation (3.25) 

is incorporated within Autopilot section of the vehicles Guidance Systems. 
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𝑡𝑎𝑛(𝜓𝐷) =  (
𝑥𝑑 − 𝑥𝑣
𝑦𝑑 − 𝑦𝑣

) (3.25) 

Equation (3.25) represents a standard Line-of-Sight calculation (Healey & Lienard 1993; 

Healey, Marco 1992). Normally, the value for 𝜓𝐷 would be calculated by simply evaluating 

the inverse tangent of Equation (3.25). In this work though, the built-in Matlab function, 

atan2 is used instead (Mathworks 2006a). The reason for adopting this particular function 

is to ensure that the particular quadrant occupied by the desired waypoint can be correctly 

identified. As a result, the evaluated desired heading angle lies in the region, –π to +π as 

shown below in Figure 3.22. 

 

Figure 3.22- Diagrammatic representation of the four-quadrant inverse tangent function. 

While using the atan2 function allows the correct quadrant to be identified, problems arise 

when two consecutives values for 𝜓𝐷 are evaluated at opposite sides of the discontinuity, 

i.e. 176.2º and then -179.6º.  

If left unaltered, this discontinuity will result in the Guidance System instructing the vehicle 

to turn 355.8º counter-clockwise, when intuitively, the vehicle should only have to turn 4.2º 

clockwise.  To overcome this problem, a mapping 𝜓𝐷: 〈−π, π〉 → 〈−∞,∞〉 has to be 

constructed (Adkins & Yan 2006; Rafferty 2014). This mapping is achieved using the 

following equations: 

𝜓𝐷 = 𝜓𝐷𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝑠𝑔𝑛(𝜓𝐷𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠)(2𝜋 − |𝛥𝜓𝐷|) (3.26) 

Where 

𝛥𝜓𝐷 = 𝜓𝐷𝐶𝑢𝑟𝑟𝑒𝑛𝑡 − 𝜓𝐷𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (3.27) 
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Applying the values of 176.2º and -179.6º to the above equations results in a desired heading 

angle of 180.4º. As desired, this value will result in the vehicle manoeuvring through the 

much smaller angle of 4.2º.  In order to ensure every vehicle always manoeuvres through 

the smallest possible angle, Equations (3.26) & (3.27) are evaluated each time the Autopilot 

evaluates a new desired heading angle. 

Importantly, as discussed in Chapter 2, the desired waypoints used in Equation (3.25) are 

predefined and will vary depending on the mission requirements.  Furthermore, a 

proximity calculation is used to determine when the vehicle alters the values used for these 

waypoints. This proximity calculation evaluates the distance between the vehicle and the 

chosen waypoint and when its value is below a certain threshold, the Autopilot will 

automatically select the next waypoint in the predefined list. When this occurs, Equations 

(3.26)-(3.28) will evaluate an appropriate desired heading angle, 𝜓𝐷 that will ensure the 

vehicle manoeuvres towards this newly selected waypoint. This process will then continue 

until the vehicle has manoeuvred within range of the final waypoint. 

3.6.2.2 Control System 

In the previous section, the functionality used in the vehicle’s Autopilot to evaluate its 

desired heading angle, 𝜓𝐷 was presented.  The purpose of this section is to now describe 

the functionality contained within the Control System. As shown in Figure 3.20, this 

subsystem takes into consideration the aforementioned desired heading angle of the 

vehicle, 𝜓𝐷 its current heading angle, ψ and produces the required tail deflection angle, δT 

that will ensure the vehicle manoeuvres in the correct direction.  

To achieve this, a standard PI controller identical to that shown below in Equation (3.28) is 

used.  

𝛿𝑇 = 𝐾𝑝𝛥𝜓 + 𝐾𝑖∫𝛥𝜓𝑑𝑡 (3.28) 

Here, 𝐾𝑝 and 𝐾𝑖 are the proportional and integral gains equal to 3.4x10-2 and 2x10-5 

respectively and 𝛥𝜓 is difference between the desired heading angle and the current 

heading angle, ψ of the vehicle. It is important to note that the PI controller and associated 

gains presented in Equation (3.28) are identical to the controller used within the 

RoboSalmon vehicle. 

3.6.2.3 Description of Closed Loop Manoeuvre 

In the previous two sections, the functionality contained within the Autopilot & Control 

subsystems of the RoboSalmon vehicle that allow it to autonomously navigate to a number 
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of predefined waypoints was presented. The purpose of this section is to now describe the 

particular closed loop manoeuvre used as the final validation test for the RFMLUT and 

RFMANN models. As Figure 3.23 illustrates, the closed loop manoeuvre undertaken will 

involve the vehicle manoeuvring to four different waypoints sequentially. 

 

Figure 3.23 - Diagrammatic representation of waypoints used in closed loop validation 

test. 

Figure 3.23 also illustrates the aforementioned proximity threshold which, as discussed 

previously, once the vehicle is within, will instruct the Autopilot to select the next waypoint 

in the predefined list. Furthermore, the particular sequence of waypoints shown in Figure 

3.23 was chosen as not only will it further test the validity of the models but it will also 

demonstrate whether or not the mapping presented in Equations (3.26) and (3.27) operates 

as envisioned.  

3.6.2.4 Results – Closed Loop Manoeuvre 

Presented in this section is the comparison between the results obtained from the reduced 

fidelity models and the original validated model for the closed loop manoeuvre presented 

in Figure 3.23. To begin, as with the results presented for the open loop manoeuvres, shown 

below in Table 3.8 is the TIC values obtained when the results from the RFMLUT and 

RFMLUT models were compared with those from the original validated model. 

Table 3.8 - TIC Values for reduced fidelity models for figure of eight manoeuvre. 

Model Surge Sway Yaw X-Pos Y-Pos Heading Avg 

LUT 0.0035 0.0047 0.0063 0.0025 0.0011 1.53x10-4 0.0030 

ANN 0.0078 0.0118 0.0160 0.0092 0.0095 0.0013 0.0093 
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The results presented in Table 3.8 demonstrate that while the difference between the 

reduced fidelity models and the original model are still small, the values obtained are 

significantly greater than those obtained from the two open loop manoeuvres. The reason 

for this discrepancy is due to a number of factors. The first of which is due to the fact that 

during the open loop manoeuvres, the values used for δT where increased in 10º intervals. 

Importantly, as shown in Tables 3.4, these intervals included data that had been used 

throughout the training process of the RFMANN model and as a result, the error produced 

should be small. Similarly, because the δT values tested throughout the open-loop 

manouvres where ineger values, the corressponding motion of the caudal fin as conatained 

within the look up tables would be identical to that produced from the original model.  

Conversely, during the closed loop manouvres, δT is no longer guaranteed to be an integer 

value or increasing in the same 10º  intervals. As a result, at this point, the RFMANN is 

predicting the motion of the caudal fin having never processed data for this particular 

scenario before and as a result, the accuracy of the model is dependant on the generality of 

the network created. Similarily, with the RFMLUT model only containing the motion of the 

caudal fin for integer values of δT, there is bound to be a loss in accuracy when the 

RFMALUT has to interpolate between the integer values contained in the table.  

Nevertheless, with an average coefficient value of 0.0093 and 0.0030 for the RFMANN and 

RFMLUT models respectively, the reduced fidelity models can still be classified as providing 

an accurate representation of the RoboSalmon’s dynamics. This is demonstrated below in 

Figure 3.24 where the evolution of the various states as obtained from the three models are 

presented. 

Visually, the results presented below appear almost identical with the differences between 

the three models difficult to ascertain. Figure 3.24(d)  also demonstrates that the mapping 

presented in Equations (3.26) and (3.27) has operated as required and ensures the vehicle 

manoeuvres through the smallest possible angle when moving between the different 

waypoints. 

Therefore, the results presented below in Figure 3.24 combined with those presented 

previously in Table 3.4-3.8 demonstrate the ability and validity of the two reduced fidelity 

models to accurately model the dynamics of the RoboSalmon vehicle.  



RoboSalmon BAUV 

 

77 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 3.24- Comparison of results obtained from RFMLUT model, RFMNN model for (a) 

Surge Vehicle, (b) Sway Velocity, (c) Yaw Rate, (d) Trajectory & (e) Heading Angle for 

figure-of-eight manoeuvre. 

However, as well as demonstrating the validity of these models, it is also necessary to 

demonstrate that as required, the two reduced fidelity models drastically reduce the 
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simulation execution time of the model. To demonstrate whether or not this is the case, 

shown below in Figure 3.25, is the relationship between the number of vehicles simulated 

and the corresponding simulation execution time of the models.  

 

Figure 3.25- Relationship between the number of vehicles simulated and execution time 

for the various models. 

Figure 3.25 clearly illustrates that as a result of incorporating the RFMANN and RFMLUT 

models, the simulation execution time of the original validated mathematical model has 

been reduced significantly. In the case of the RFMLUT model, the execution time has 

reduced by approximately 90% when twelve vehicles are modelled and for the RFMANN 

model, this value is slightly smaller at approximately 85%. 

Therefore, combining these results with those of Tables 3.5-9 and Figure 3.28, it is apparent 

that the RFMANN and RFMLUT models not only maintain the accuracy of the original 

model but do so while drastically reducing the simulation execution time of the model.  

In terms of selecting which one of these models is to be used for the remainder of the work 

completed in this thesis, the results presented above demonstrate that not only does 

RFMLUT model provide a more accurate representation of the vehicle’s dynamics but also 

it does so in a more time efficient manner. As a result, it is for these reasons that the 

RFMLUT model will be used to simulate the dynamics of the RoboSalmon vehicle for the 

remainder of the work completed in this thesis. 

However, it is important to note that the validation tests presented above have been 

obtained when the RoboSalmon’s Tail-Beat Amplitude was set to 0.05m. The Tail-Beat 
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Amplitude represents the maximum lateral displacement of the vehicles caudal fin during a 

single undulation and can be used to alter the vehicles velocity. As the subsequent work 

completed in this thesis will involve the vehicle having to alter its velocity, it is necessary 

to also validate the model for different Tail-Beat Amplitudes. To achieve this, shown below 

in Table 3.9 are the TIC values obtained when the results obtained from the RFMLUT model 

were compared with those from the original model for the closed loop-manoeuvre 

presented in Figure 3.24 for two different Tail-Beat Amplitudes, i.e. 0.1m and 0.15m.    

Table 3.9– TIC values for reduced fidelity models for figure of eight manoeuvre with 

different tail beat amplitudes. 

Tail Beat 

Amplitude 
Surge Sway Yaw X-Pos Y-Pos Heading Avg 

0.1m 0.0071 0.064 0.040 0.0060 0.0180 0.0076 0.0024 

0.15m 0.0020 0.035 0.046 0.0026 0.0112 0.0134 0.0184 

As with the results presented in Table 3.8, the results presented above in Table 3.9 

demonstrate that the RFMLUT model created is capable of accurately modelling the 

dynamics of the RoboSalmon vehicle when its Tail-Beat Amplitude is altered. Combining 

these results with those presented in Figure 3.25, it is apparent that the RFMLUT provides 

a valid model that can be used to design, develop and test the formation control algorithm 

in a time efficient manner. 

3.7 Summary 

To begin, this chapter, in Section 3.2 described the RoboSalmon vehicle and how the fully 

actuated Tail Section was designed to allow the vehicle to replicate the swimming gait of the 

North Atlantic salmon. Section 3.2 also described that due to the limited number of actuated 

joints as well as the physical limitations of the DC motors used, the Tail Section of the 

RoboSalmon vehicle is unable match the swimming performance of real North Atlantic 

salmon.  

Thereafter, Section 3.3 provided a detailed description of the functionality contained within 

the original validated mathematical model of the RoboSalmon vehicle. Section 3.4 

meanwhile illustrated that in its original guise, the mathematical model of RoboSalmon is 

ill-suited to be used to model multiple vehicles simultaneously due to its poor simulation 

execution time. The results presented in this section also demonstrated that this poor 

simulation execution time was caused primarily by the functionality contained within the 

Tail Actuator Dynamics & Kinematics section of model.  
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Section 3.5 described in detail the System Identification techniques implemented to replace 

this computationally expensive functionality with a combination of simpler mathematical 

basis functions and indexing operations. 

In Section 3.6, a number of open and closed loop manoeuvres were completed to 

demonstrate that the two reduced fidelity models (RFMANN and RFMLUT) detailed in 

Section 3.5 were capable of accurately modelling the dynamics of the RoboSalmon vehicle. 

This was achieved by comparing the results obtained from the newly created reduced 

fidelity models with those obtained from the original validated model. The results 

demonstrate that although the two reduced fidelity models were capable of modelling the 

dynamics of the RoboSalmon vehicle accurately, the RFMLUT was more accurate.  

Furthermore, Sections 3.6.2.1-2 described in detail the functionality contained within the 

Autopilot and Control subsystems that when combined, form the Guidance System of the 

RoboSalmon vehicle and as such, allow the vehicle to autonomously navigate to a number 

of predefined waypoints. Thereafter, Section 3.6.2.4 illustrated the ability of the reduced 

fidelity models to accurately model the dynamics of the RoboSalmon vehicle during a 

realistic closed loop manoeuvre. Section 3.6.2.4 also demonstrated the significant 

improvements in the simulation execution time obtained from the RFMANN and RFMLUT 

models when compared with the original validated model. As with the results comparing 

the accuracy of the two models, these results once again demonstrate that the RFMLUT 

model was slightly more time efficient than the RFMANN model. Based on these results, it 

was decided that for remainder of the work completed in this thesis, the RFMLUT would be 

used to model the RoboSalmon vehicle.
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Chapter 4  
Biomimetic Formation Control 

Algorithm 

____________________________________ 

4.1 Introduction 

As stated previously, the main aim of this thesis is to develop a formation control algorithm 

capable of successfully coordinating a group of BAUVs to complete the oceanic surveying 

missions outlined in Chapter 1 regardless of the nuances of the underwater environment. 

In the previous chapter, the mathematical model used in this work was presented and its 

validity proven.  The focus of this chapter will now be the presentation of the formation 

control algorithm based on the behavioural mechanisms of fish partaking in schooling 

behavioural. Its implementation and the subsequent determination of its suitability to allow 

a group of BAUVs to complete the required oceanic surveying missions will be the main 

focus of this chapter.  

To achieve this, the chapter is structured as follows. Section 4.2 provides a brief summary 

of the behavioural mechanisms used by fish when schooling and what requirements these 

place on the proposed algorithm. Section 4.3 describes the transformation of these 

behavioural mechanisms into a suitable formation control algorithm that can be 

implemented within the Guidance System of the RoboSalmon vehicle. Section 4.4 describes 

the simulation set up as well as the performance metrics and convergence criteria used to 

analyse the algorithms suitability to coordinate the vehicles as required. Section 4.5 analyses 

the results obtained from the various simulations completed and Section 4.6 presents a 

summary of the work completed in this chapter. 
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4.2 Behavioural Mechanisms of Schooling Behaviour 

As discussed in detail in (Aoki, 1982; Huth & Wissel, 1991), in order for aquatic animals to 

take part in schooling behaviour they must exhibit three behaviours: repulsion, orientation & 

attraction. Furthermore, Aoki (Aoki, 1981) demonstrated that in order for these behaviours 

to produce a stable schooling mechanism, their implementation must be triggered by the 

proximity of each fish to its nearest neighbour(s). Therefore, as shown below in Figure 4.1, 

these behavioural mechanisms can be described by assigning a circular area of influence to 

each member of the group, within which, three concentric circles (behavioural zones) are 

contained. Depending on which of these three zones is occupied, each member of the school 

will manoeuvre in either a repulsive, orientating or attractive manner. 

 

Figure 4.1 - Behavioural zones used to explain schooling behaviour. 

As the diagram demonstrates, if a member of the school is exhibiting the repulsive 

behaviour, it will manoeuvre away from it nearest neighbour(s). Conversely, if an 

individual is using the attractive behaviour, it will move towards its nearest neighbour(s). 

Finally, individuals using the orientating behaviour will not only align their heading angle 

with that of their nearest neighbour(s) but also their velocity vector. 

Inspecting Figure 4.1, it becomes apparent that in order for each member of the school to 

select the correct behaviour they must firstly be capable of determining the distance 

between themselves and their nearest neighbour(s). Thereafter, when using the orientating 

behaviour, the individuals must also be capable of determining the orientation and velocity 

of their nearest neighbour(s). In nature, these functions are completed through sensing 

organs such as vision and the lateral line (Partridge et al. 1980).  
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However, as discussed in Chapter 2, the only feasible way for each vehicle to have access 

to this data is through the transfer of data across the underwater communication channel. 

As well as ensuring every vehicle has access to the relevant data, Figure 4.1 also 

demonstrates that a number of additional tasks will need to be completed by the formation 

control algorithm before it is able to mimic the behavioural mechanisms of fish partaking 

in schooling behaviour. As shown below in Table 4.1, these tasks, when combined, form 

the algorithm’s definition of requirements.  

Table 4.1 – Definition of requirements for biomimetic formation control algorithm. 

Requirement Topic Description 

1 - Communication 

A suitable method to allow each vehicle to have 

access to up-to-date information on the position, 

orientation and velocity of neighbouring 

vehicles.  

2 - Evaluation of Nearest Neighbour 

Distance 

Implementation of a suitable equation that 

calculates the absolute distance between 

neighbouring vehicles. 

3 – Select Correct Behaviour 

Incorporation of a suitable decision making 

process that allows each vehicle to select the 

correct behaviour based on its proximity to its 

nearest neighbour. 

4 - Implementation of Repulsive 

Behaviour 

Implementation of a behavioural control law that 

ensures each vehicle manoeuvres in a repulsive 

manner and hence looks to increase the distance 

between itself and its nearest neighbour. 

 5 - Implementation of Orientating 

Behaviour 

Implementation of a suitable control law that 

ensures each vehicle seeks to align its heading 

angle with that of its nearest neighbour(s).  

6 - Implementation of Attractive 

Behaviour 

Implementation of a suitable control law that 

ensures each vehicle seeks to manoeuvre 

towards its nearest neighbours.  

7 - Implementation of Velocity 

Control 

Implementation of a suitable velocity control law 

that depending on the behavioural control law 

being used, results in the vehicle either reducing, 

increasing or maintaining its velocity.  

If the algorithm satisfies each of the requirements presented above, then the formation 

control algorithm will allow the BAUVs to mimic the behavioural mechanisms of fish when 

schooling. The following section will now describe in detail the functionality implemented 

within the Autopilot subsystem of the RoboSalmon vehicle in order to ensure that these 

requirements can be satisfied. 
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4.3 Biomimetic Formation Control Algorithm: Guidance 

Heuristic 

Shown below in Figure 4.2 is the structure of the Guidance System used within the 

RoboSalmon vehicle.  

 

Figure 4.2 - Guidance system architecture. 

The only difference between the diagram presented above in Figure 4.2 and that shown 

previously in Chapter 3 is that now, the inputs to the Autopilot subsystem are no longer the 

coordinates of the vehicles desired waypoints, i.e. xd and yd but instead, the position and 

orientation of the vehicles nearest neighbours, xNN, yNN and ψNN.  

At this point, it is important to note that for work completed in this chapter, it is assumed 

that every vehicle has a continuously accurate representation of the positioning and 

orientation of every vehicle in the group, i.e. it is assumed that communication among the 

vehicles is instantaneous. The reason for implementing this assumption is to ensure that 

the formation control algorithm described and presented in this chapter initially operates 

as envisioned. Once this has been established, a realistic representation of the underwater 

communication channel will be incorporated in the subsequent chapters and its effect on 

the algorithm analysed. 

Based on the structure of the Guidance System shown above, it is apparent that in order to 

successfully implement the behavioural mechanisms of fish as a suitable formation control 

algorithm, the Autopilot subsystem has to use the data available to it, i.e. xv, yv, xNN, yNN and 

ψNN to produce a desired heading angle, ψD that will manoeuvre the vehicle in either a 

repulsive, orientating or attractive manner. The functionality implemented to achieve this will 

be referred to as the attractive, repulsive and orientating control laws and are described in the 

following three sections. 

4.3.1 Attractive Behaviour Control Law  

Fish implementing the attractive behaviour manoeuvre towards their nearest neighbour(s) 

in order to reduce the absolute distance between themselves and their nearest neighbour(s). 
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As shown below in Equations (4.1) and (4.2), the control law implemented to achieve this 

attractive behaviour evaluates a waypoint which is equal to the average position of the 

vehicles nearest neighbour(s).  

𝑥𝑑 =
1

𝐼𝑁𝑁
∑ 𝑥𝑁𝑁

𝐼𝑁𝑁

𝑁𝑁=1

 (4.1) 

𝑦𝑑 =
1

𝐼𝑁𝑁
∑ 𝑦𝑁𝑁

𝐼𝑁𝑁

𝑁𝑁=1

 (4.2) 

Where, as discussed above, xNN and yNN represent the position of the vehicles nearest 

neighbour(s) and 𝐼𝑁𝑁 is the number of neighbours taken into consideration within the 

control law. As shown below in Equation (4.3), the desired heading angle of the vehicle is 

then calculated using the same standard Line-of-Sight calculation presented previously in 

Section 3.6.2.1 of Chapter 3. 

tan(ψD) =  (
yd − yv
xd − xv

) (4.3) 

Equations (4.1) - (4.3) illustrate that the attractive behavioural control law operates by 

implementing a standard Line-of-Sight calculation whereby the vehicles desired location is 

calculated to be the average position of its nearest neighbour(s). By calculating the vehicles 

desired location in this way, it ensures that regardless of the number if nearest neighbours 

taking into consideration, the vehicle is guaranteed to manoeuvre towards its nearest 

neighbours.  

4.3.2 Repulsive Behaviour Control Law 

The purpose of the repulsive behavioural control law is to ensure that neighbouring vehicles 

manoeuvre away from one another and as a result, the associated absolute distance between 

them increases. To achieve this, the following conditional control law is proposed.  

𝜓𝐷 =

{
 
 

 
    (

𝑁𝑁𝐿
𝑁𝑁𝐿 +𝑁𝑁𝑅

)
𝜋

2
, 𝑖𝑓 𝑁𝑁𝐿  >  𝑁𝑁𝑅

−(
𝑁𝑁𝑅

𝑁𝑁𝐿 +𝑁𝑁𝑅
)
𝜋

2
, 𝑖𝑓 𝑁𝑁𝐿 < 𝑁𝑁𝑅

                0                     , 𝑖𝑓 𝑁𝑁𝐿 = 𝑁𝑁𝑅

 (4.4) 

Here, NNL and NNR represent the number of nearest neighbours positioned to the left and 

right-hand side of the vehicle.  
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When using the repulsive behavioural control law, Equation (4.4) demonstrates that the 

vehicles are guided in the direction containing the least number of neighbouring vehicles. 

The inclusion of the ratios shown in Equation (4.4) will result in each vehicle manoeuvring 

with a heading angle based on its position relative to its nearest neighbours. This ensures 

that neighbouring vehicles will always manoeuvre away from one another when 

implementing the repulsive behavioural control law.  

With the inclusion of the parameters, NNL and NNR in Equation (4.4), it is evident that each 

vehicle needs to be able to establish how many of its nearest neighbours are positioned to 

its right or left hand side. As shown below in Figure 4.3, this can be achieved by using the 

Line-of-Sight technique introduced earlier in Equation (4.3).        

 

Figure 4.3 - Diagram demonstrating the effect that the vehicles heading angle has on 

determining the relative positioning of nearest neighbours. 

Analysing Figure 4.3, it becomes apparent though that if only Equation (4.3) is used, the 

angle produced (ψLOS in Figure 4.3) will result in the neighbouring vehicle being categorised 

as being positioned to the vehicle’s right hand side, i.e. 0º ≤ 𝜓𝐿𝑂𝑆≤ 180º. However, as Figure 

4.3 illustrates, due to the heading angle of the vehicle, i.e., ψV, the vehicles nearest neighbour 

is actually positioned to its left. Therefore, in order to correctly identify the relative position 

of each vehicle’s nearest neighbour, the following equation has to be implemented. 

𝜓𝑅𝑁𝑁 = 𝜓𝐿𝑂𝑆 − 𝜓𝑉 (4.5) 

As shown below in Figure 4.4, once Equation (4.5) has been evaluated, the angle ψRNN, can 

be used to accurately determine how many of the vehicles nearest neighbour(s) are 

positioned to its right or left-hand side. This is achieved by using the conditional statements 

shown below. 
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𝑁𝑁𝐿 = 𝑁𝑁𝐿 + 1   , 𝑖𝑓   − 180
º ≤ 𝜓𝑅𝑁𝑁 ≤ 0º (4.6) 

𝑁𝑁𝑅 = 𝑁𝑁𝑅 + 1   , 𝑖𝑓       0
º < 𝜓𝑅𝑁𝑁 < 180

º (4.7) 

 

Figure 4.4 - Axis rotation required to determine relative positioning of nearest 

neighbour(s) (Exaggerated for clarity purposes). 

4.3.3 Orientating Behaviour Control Law 

The purpose of the orientating behavioural control law is to ensure that once within the 

orientation zone, each vehicle should seek to manoeuvre with the same heading angle as 

that of its nearest neighbour(s). To achieve this, the following control law is proposed.  

𝜓𝐷 =
1

𝐼𝑁𝑁
∑ 𝜓𝑁𝑁

𝐼𝑁𝑁

𝑁𝑁=1

 (4.8) 

Equation (4.8) demonstrates that when implementing the orientating behavioural control 

law, the desired heading angle of each vehicle is calculated to be the average heading angle 

of its nearest neighbour(s).  

4.3.4 Velocity Control Law 

As well as implementing the various heading control laws presented above, it is also 

necessary to incorporate an appropriate velocity control law. The purpose of the velocity 

control law will be to ensure that each vehicle converges to using the orientating behavioural 

control law as quickly as possible. To achieve this, the velocity control law implemented 

not only has to take into consideration the absolute distance between neighbouring vehicles 

but also their relative positioning as shown below in Figure 4.5. 
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Figure 4.5 - Diagram representing the discretisation of the area surrounding each vehicle 

into three sections: Front (Green), Behind (Blue) & Beside (Red). 

Figure 4.5 demonstrates that by defining angular limits for the parameter, ψRNN, the relative 

position of each vehicles nearest neighbour can be discretised into three sections: front, 

behind and beside. As shown below in Table 4.2, by combining the above categorisation with 

the absolute distances between neighbouring vehicles, i.e. dabs, a suitable velocity control law 

can be created.  

Table 4.2- Velocity Control Law implemented within formation control algorithm. 

Nearest Neighbour 

Position 
dabs > zoou dabs < zool zor   dabs  zoa 

In Front 0.15 0.05 0.1 

Behind 0.05 0.15 0.1 

Beside 0.1 0.1 0.1 

The table presented above demonstrates that depending on the relative positioning of 

neighbouring vehicles, ψRNN and the associated absolute distance between the two vehicles, 

dabs, the velocity control law will instruct the vehicle to either slow-down, speed-up or 

remain at the nominal velocity. For example, if the autopilot calculates the angle ψRNN to be 

such that it defines a vehicles nearest neighbour to be ahead of it and the absolute distance 

between the vehicles, dabs to be greater than the upper limits of the orientation zone (zoou 

in Table 4.2), the autopilot will change the tail beat amplitude of the vehicle to 0.15m (15cm). 

This will result in the vehicle accelerating in the direction of its nearest neighbour and thus, 

reducing the absolute distance between the two vehicles as required. Similarly, if the same 
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vehicle’s nearest neighbour is positioned to the rear, the velocity control law will instruct 

the vehicle to slow-down.  

4.3.5 Algorithm Structure 

While the previous four sections presented the heading and velocity control laws 

implemented within the formation control algorithm, the purpose of this section is to 

illustrate the order in which the algorithm completes the various tasked summarised in 

Table 4.1. To achieve this, shown below in Figure 4.6 is the structure of the formation control 

algorithm detailing the stages at which certain parameters are evaluated at and the relevant 

decision making processes undertaken.  

 

Figure 4.6 - Algorithm Structure. 

The diagram demonstrates that the first two tasks completed by the algorithm is the 

evaluation of the absolute distance between each vehicle and its nearest neighbour(s), dabs, 

as well as the associated relative positioning, 𝜓𝑅𝑁𝑁 . Thereafter, the algorithm uses these 

values to not only determine which of the three behavioural control laws to implement but 

also which Tail-Beat Amplitude, AD to select in order to alter the vehicles velocity. Lastly, the 

algorithm implements the appropriate control law and calculates the desired heading angle 

of the vehicle, 𝜓𝐷.  

The evaluation of the absolute nearest neighbour distance shown in Figure 4.6 is completed 

using the standard equation for the distance between two points in two dimensional space 

as shown below: 

𝑑𝑁𝑁 = √(𝑥𝑣 − 𝑥𝑁𝑁)
2 + (𝑦𝑣 − 𝑦𝑁𝑁)

2 (4.9) 

The selection of which control law to implement is achieved using conditional statements 

similar to those shown above in Equations (4.6) and (4.7). This time though, these 

statements determine whether the value calculated for dabs is above, below or within the 

orientation zone.  It is also important to note that if multiple behavioural zones are 
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simultaneously occupied by various neighbouring vehicles, priority is given to the zone 

closest to the vehicle. 

Finally, the calculations and processes presented above in Section 4.3.1-5 are all evaluated 

within the Autopilot subsystem of the BAUV and as such, they are evaluated at the same 

rate as the vehicle’s Guidance System, i.e. at 4 Hz.  

4.4 Simulation Setup and Performance Metrics 

The heading and velocity control laws presented above have been designed specifically to 

allow a group of BAUVs to mimic the behavioural mechanisms of fish within school 

structures. In doing so, it is anticipated that the formation control algorithm will be able to 

coordinate the vehicles into a stable group structure that will also allow the vehicles to 

complete the oceanic surveying missions outlined in Figure 1.3. To demonstrate whether or 

not this is indeed the case, the algorithm has to be thoroughly tested and the effect of 

varying key algorithmic parameters analysed. The following section will now describe the 

simulation setup and algorithmic parameters varied to achieve this.  

4.4.1 Simulation Setup 

As discussed above, the purpose of the simulations completed in this study is to establish 

whether or not the heading and velocity control laws presented in Section 4.3 operate as 

envisioned. Furthermore, the effect of varying certain algorithmic parameters on the 

algorithms ability to coordinate the group as required also has to be established.  To achieve 

this, two groups of simulations were undertaken. The first group was designed specifically 

to test the repulsive control law while the second group was designed to test attractive control 

law. Due to the design of the algorithm, the orientating and velocity control laws will 

inherently be tested throughout both groups of simulations. To create these two groups of 

simulations, the vehicle’s initial positions were chosen specifically to ensure that at the start 

of the simulation, the majority of vehicles would have to incorporate either the repulsive or 

attractive l behavioural control laws.  

As well as ensuring that the various control laws were thoroughly tested, it was also 

important to understand what effect varying the algorithmic parameter, 𝐼𝑁𝑁 has on the 

algorithms ability to form a stable group structure. As a result, for the two groups discussed 

above, this parameter has been varied from one through to N-1, where N represents the 

number of vehicles within the group. By doing this, all possible values with regard to this 

algorithmic parameter can be investigated. Subsequently, shown below in Table 4.3 is a 
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summary of the algorithmic parameters used throughout the course of the simulations 

completed within this study.  

Table 4.3- Simulation Parameters. 

Parameter 
Group 1 

(Repulsive) 

Group 2 

(Attractive) 

Behavioural Zones Size 

(m) 
[20,25,200] [6,11,200] 

Nearest Neighbours 

Utilised (INN) 
1,2,4,6,8,11 1,2,4,6,8,11 

In order to thoroughly test the control laws created, for each combination of parameters 

presented in Table 4.3, 100 simulations were completed that varied the initial starting 

position of each vehicle. While each vehicle had different starting positions throughout the 

100 simulations, the values chosen ensured that the vehicles would still initially implement 

either the repulsive or attractive control laws. Therefore, overall, 1200 simulations where 

completed throughout the course of this particular study. 

As inferred by the values used for INN, the size of the group simulated in this study is equal 

to twelve. The reason for using this particular group size is due to two factors. Firstly, 

twelve vehicles is approximately double the size of any other realistic investigation into 

implementing a successful formation control algorithm in the underwater environment 

(Das et al. 2016). Secondly, while Chapter 3 demonstrates that the reduced fidelity model is 

significantly faster than the original high-fidelity model, its execution time still increases 

with the number of vehicles simulated. A group of twelve vehicles was therefore deemed 

to be a suitable compromise between these two factors.    

4.4.2 Performance Metrics & Analysis Tools 

In order to determine whether or not the algorithm has been successful, four performance 

metrics have been used; the standard deviation of the vehicles heading angle as well as the 

maximum, mean and minimum absolute nearest neighbour distances.  

The reason for calculating the standard deviation is to demonstrate whether or not the 

individual vehicles have all been able to converge towards manoeuvring with the same 

heading angle. The maximum, mean and minimum absolute nearest neighbour distances 

meanwhile are evaluated to demonstrate whether or not the distance between each vehicle 

and its nearest neighbour has converged to a value within the confines of the orientation 

zone.  
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While the evaluation of the four parameters discussed above is relatively simple, the 

following sections describe how they have been calculated to represent the data obtained 

from the 100 simulations completed for each unique combination of the parameters 

presented in Table 4.3.  

4.4.2.1 Evaluation of the Standard Deviation of Vehicle Heading Angle 

Shown below is the equation used to evaluate the evolution of the standard deviation of 

the vehicles heading angle for the simulations completed in this study (Mathworks 2006b). 

𝜎𝑡,𝑗 =
√∑ (𝜓𝑖,𝑡,𝑗 − 𝜓𝑡,𝑗)

2
𝑁
𝑖=1

𝑁 − 1
 

(4.10) 

Here N represents the number of vehicles within each simulation (i.e. twelve), 𝜓𝑖,𝑡,𝑗 is the 

heading angle for vehicle i at time t in simulation j and  𝜓𝑡,𝑗 is the average heading angle of 

the group at time t in simulation j.  

Once evaluated 𝜎𝑡,𝑗 represents the standard deviation of the vehicles heading angle at time, 

t in simulation, j. In order to provide a metric which represents the evolution of this 

parameter across the 100 simulations completed, the following equation is implemented. 

𝜎𝑡 =
1

𝑘
∑𝜎𝑡,𝑗

100

𝑗=1

 (4.11) 

Here, k represents the number of simulations completed (i.e. 100) and 𝜎𝑡,𝑗 is the standard 

deviation of the vehicles heading angle at point t in simulation j calculated using Equation 

(4.10). As a result, 𝜎𝑡 represents the average standard deviation of the vehicle’s heading 

angle at time t, as calculated across the 100 simulations completed for each value of INN.  

In order for the formation control algorithm to be deemed to have generated a stable group 

structure, the converged value for this parameter should not exceed 1º. This criteria was 

selected as it represents the typical accuracy of a standard compass used in underwater 

vehicles (Paull et al. 2014). 

4.4.2.2 Evaluation of Maximum, Mean & Minimum Nearest Neighbour Distance   

As shown below in Equation (4.12), to calculate the distance between each vehicle and its 

nearest neighbour, the standard equation for measuring the distance between two points 

in 2-dimensional space is used. 
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𝑑𝑖,𝑡,𝑗 = √(𝑥𝑖,𝑡,𝑗 − 𝑥𝑁𝑁𝑡,𝑗)
2
+ (𝑦𝑖,𝑡,𝑗 − 𝑦𝑁𝑁𝑡,𝑗)

2
 (4.12) 

Here 𝑥𝑖,𝑡,𝑗 and 𝑦𝑖,𝑡,𝑗 represent the x and y position of each vehicle, i at time t in simulation j. 

Meanwhile, 𝑥𝑁𝑁𝑡,𝑗 and 𝑦𝑁𝑁𝑡,𝑗 represent the position of vehicle i’s nearest neighbour at time 

t in simulation j. As a result, 𝑑𝑖,𝑡,𝑗 represents the distance between each vehicle i and its 

nearest neighbour at time t in simulation j. 

Therefore, 𝑑𝑖,𝑡,𝑗 can now be thought of as a multi-dimensional array that represents the 

distance between each vehicle and its nearest neighbour every 0.1s throughout the 100 

simulations completed for each value of INN. In order to evaluate the average absolute nearest 

neighbour distance across the 100 simulations completed, the following equation is used.  

𝑑𝑎𝑏𝑠𝑡 =
1

𝑘
∑

1

𝑁
∑𝑑𝑖,𝑡,𝑗

𝑁

𝑖=1

𝑘

𝑗=1

 (4.13) 

Once again, N represents the number of vehicles within each simulation and k is the 

number of simulations completed (i.e. 100). 

It’s apparent from Equation (4.13) that the average nearest neighbour distance from within 

each simulation is evaluated first. This produces a two dimensional array where each 

column represents the evolution of the average nearest neighbour distance as obtained 

from simulation j. Afterwards, this value is then averaged across the 100 simulations 

completed to produce the mean nearest neighbour distance every t seconds throughout all 

the simulations completed.    

The maximum and minimum distances are evaluated in an identical way to Equation (4.13) 

except instead of evaluating the mean value each time, the maximum and minimum values 

are calculated instead. As expected, the convergence criteria associated with the evaluation 

of the minimum, mean and maximum absolute nearest neighbour distances is that they all 

converge to a value that is within the confines of the orientation zone.    

Combined with the evaluation of the average standard deviation described above in 

Equation (4.10), the data obtained using the methods described in Equation (4.10) – (4.13) 

will provide a definitive and concise method by which to analyse whether or not the 

formation control algorithm operates as designed.  
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4.5 Results 

There are three main objectives related to the work completed in this chapter. The first is to 

determine whether or not the formation control algorithm presented in Section 4.3 operates 

as envisioned and is capable of coordinating the vehicles into a stable group structure. In 

this work, a stable group structure is defined as one in which the standard deviation of each 

groups heading angle is less than or equal to 1º and the value obtained for dabs for each 

vehicle converges to within the confines of the orientation zone.  The second objective is to 

ascertain what effect varying the algorithmic parameter, INN has the algorithms ability to 

generate this stable group structure. The final objective is to assess the ability of the 

algorithm to generate the parallel line formation required for the oceanic surveying 

missions as outlined in Chapter 1. 

To demonstrate whether or not these objectives have been achieved, the results presented 

below are separated into three sections. The first section analyses the results obtained from 

the simulations where every vehicle is initially using the repulsive control law. The second 

section then presents and analyses the results obtained from the simulations where every 

vehicle is initially using the attractive control law.  Finally, the last section demonstrates 

whether or not the algorithm has coordinated the vehicles into the required parallel line 

formation. 

4.5.1 Analysis of Repulsive & Orientating Control Laws 

As discussed above, the first objective of this work is to demonstrate whether or not the 

formation control algorithm has been successful in generating a stable group structure. To 

achieve this, shown below in Figure 4.7 is the evolution of the minimum, mean and 

maximum values obtained for the parameter, dabs as INN is increased. As discussed above, 

because the minimum, mean and maximum values have been calculated, the results 

presented below represent the entire envelope of results obtained from the 100 simulations 

completed for each value of INN. 

On initial inspection, the results presented below demonstrate that regardless of the value 

used for INN, the evolution of the mean value for dabs is as expected, with the value initially 

increasing before converging to a value that is within the confines of the orientation zone. 

Furthermore, the results also illustrate that the converged value for this parameter is always 

positioned close to the lower boundary of the orientation zone.  
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(a) INN = 1 (b) INN = 2 

  

(c) INN = 4 (d) INN = 6 

  

(e) INN = 8 (f) INN = 11 

Figure 4.7- Evolution of the minimum, mean and maximum dabs values as INN is increased. 
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Once again, this result is to be expected and is due to the fact that because the majority of 

the vehicles were initially implementing the repulsive control law, their dabs value when 

switching to the orientating control law will be by default, at the lower boundary of the 

orientation zone.  

Nevertheless, as with the results presented with the mean value for dabs, these results also 

illustrate that the minimum dabs value increases and then converges to value that is within 

the confines of the orientation zone.  It is important to note that the evolutions of the 

minimum and mean values discussed above all initially start from a value that is within the 

confines of the repulsion zone and then gradually increase to converge to a value within 

the orientating zone. Therefore, these results (minimum and mean dabs values) all suggest 

that the repulsive and orientating control laws operate as required regardless of the value 

used for INN. 

Importantly though, the results presented in Figures 4.7 (e) and (f) demonstrate that the 

evolution of the overall maximum dabs value has been unable to ensure every vehicle 

converges to a value that is within the confines of the orientation zone. Instead, the results 

clearly illustrate that a certain number of vehicles have diverged to a dabs value that is within 

the confines of the attraction zone. Moreover, the result also demonstrate that these vehicles 

are subsequently unable to converge back within the confines of the orientation zone.  

These results suggest that the attractive control law presented in Section 4.3.1 is unable to 

manoeuvre every vehicle as required when INN is equal to either eight or eleven. Due to the 

fact that this non-convergence is associated with the implementation of the attractive control 

law, these results will be discussed in more detail in Section 4.5.2 along with the results 

obtained from the second group of simulations discussed in Table 4.3. For the remainder of 

this section, the results will focus solely on the results obtained from simulations where 

only the repulsive and orientating control laws were implemented.  

Consequently, while the results presented in Figure 4.7 suggest that the repulsive and 

orientating control laws are able to operate as required regardless of the value used for INN, 

these results don’t take into consideration the evolution of the standard deviation of the 

vehicles heading.  

Subsequently, shown below in Figure 4.8 is the evolution of the standard deviation of the 

vehicles heading angle as the value used for INN is increased. While the results presented 

below are initially as expected with the value increasing as the vehicles implement the 

repulsive control law, the results clearly demonstrate that the standard deviation value 
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doesn’t always – as required - converge to a value equal to approximately zero, particularly 

when INN is equal to one or two.  

 

Figure 4.8 - - Evolution of σ as INN is increased. 

These results contradict those presented in Figure 4.7 (a) and (b) where the results clearly 

illustrate that when INN is equal to one or two, the minimum, mean and maximum dabs 

values all converge to a value within the orientation zone. The only explanation that 

satisfies these contradictory results is that while the repulsive control law operates as 

expected and regardless of the value used for INN, the ability of the orientating control law 

improves as the value for INN is increased.  

This is shown to be the case below in Figure 4.9 where the different trajectories obtained as 

INN is increased are presented. Before analysing the results presented below, it is important 

to emphasise once again that the only initial condition varied from Figure 4.9 (a) to (d) is 

the value used for INN. 

On inspection, the results presented below in Figures 4.9 (a) and (b) clearly demonstrate 

that instead of the entire group of BAUVs moving in the same direction when the orientating 

control law is implemented, a number of subgroups have formed, with each group moving 

in a different direction. This formation of multiple sub-groups explains why in Figure 4.8, 

the standard deviation of the vehicles heading angle isn’t capable of converging below 2º 

when INN is equal to either one or two.  
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(a) - INN = 1 (b) - INN = 2 

  

(c) - INN = 4 (d) - INN = 11 

Figure 4.9- Variation in vehicle trajectories as INN is increased 

Thereafter, the trajectories presented in Figures 4.9 (c) and (d) suggest that once the value 

for INN is equal to or greater than four, the orientating control law is able to ensure every 

vehicle converges to approximately the same heading angle and hence, a single stable 

group structure can be generated. These results suggest that in order for the orientating 

control law to operate as required, the value for the algorithmic parameter, INN needs to be 

set to at least four. To definitively demonstrate whether or not this is the case, the following 

section will use Graph Theory to determine the minimum criteria associated with this 

parameter that will ensure the formation of a single group structure.  

4.5.1.1 Achieving Consensus using the Orientating Control Law 

In order to implement Graph Theory to determine the smallest value of INN that ensures 

every vehicle will converge to the same heading angle, the orientating control law shown 

above in Equation (4.8) has to be modified to include a mathematical representation of the 

vehicles interaction topology. This modification is shown below in Equation (4,14). 
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𝜓𝐷𝑖 =
1

𝐼𝑁𝑁
∑𝐴𝑖𝑗[𝜓𝑗]

𝐼𝑁𝑁

𝑗=1

     ∀𝑗 = 1… , 𝐼𝑁𝑁 (4.14) 

As with Equation (4.8), 𝜓𝐷𝑖 represents the desired heading angle of vehicle i,  𝜓𝑗 is the 

heading angle of vehicle i’s jth nearest neighbour and 𝐴𝑖𝑗 is the adjacency matrix.  

The adjacency matrix is a component of the Laplacian and is used to represent whether or 

not a link or connection exists between two nodes in the same graph. In this particular 

instance, the adjacency matrix represents whether or not neighbouring vehicles use one 

another’s heading data when calculating their desired heading angle. One of the most 

useful features of the adjacency matrix is that it assists in providing a method by which to 

determine the particular type of graph being produced. This can be achieved by equating 

the number of times zero appears as an eigenvalue of the Laplacian Matrix as being equal 

to the number of connected components (subgroups) within that particular graph.    

For the results presented in Figure 4.9, the above feature was implemented and the 

evolution of the number of connected components (subgroups) within each simulation 

evaluated. The results obtained are shown below in Figure 4.10 alongside the associated 

evolution of the average standard deviation of the vehicles heading angle. Also shown in 

Figure 4.10 is the percentage of simulations containing a particular number of connected 

components (subgroups), i.e. Figure 4.10(a) demonstrates that 56% of the simulations 

converged to an interaction topology containing four connected component, i.e. four 

subgroups. 

The results presented below demonstrate a clear correlation between the value used for INN, 

the number of connected components in the underlying interaction graph and the 

converged standard deviation of the vehicles heading angle. For example, Figure 4.10 (a) 

demonstrates that when each vehicle only takes into consideration its single nearest 

neighbour, 56% of the simulations produced a graph topology containing four connected 

components with the resulting converged standard deviation being equal to approximately 

69º. Conversely, Figure 4.10(d) demonstrates that when each vehicle takes into 

consideration its six nearest neighbours, the underlying graph for each group always 

contains a single connected component and the resulting converged average standard 

deviation reduces drastically to 0.2º. The reason for this variation is due to the fact that 

when Equation (4.8) is implemented, ψD converges to the average heading angle of the 

neighbouring vehicles it is interacting with. As a result, when there are multiple connected 

components (subgroups) as in Figure 4.10(a), each vehicle converges to a heading angle that 



Biomimetic Formation Control Algorithm  

 

100 

 

is equal to the average heading angle of that particular subgroup of connected vehicles. 

This is why in Figures 4.10 (a) and (b), multiple subgroups have been formed that all 

manoeuvre in different directions.  

  

INN = 1 INN = 2 

  

INN = 4 INN =6 

  

INN = 8 INN = 11 

Figure 4.10- Evolution of the number of connected components and σ as INN is increased. 

Based on the results presented above, it is apparent that in order to guarantee that the 

orientating behavioural control law operates as intended, the underlying graph representing 
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the interaction topology of the vehicles must always contain a single connected component. 

As the results shown in Figure 4.10 (d), (e) & (f) demonstrate, this means that INN has to be 

equal to at least six when the group consists of twelve vehicles.  

This result is not surprising and has been published several times in the literature 

associated with determining the minimum requirements for achieving consensus within 

multi-vehicle systems (Ren, Wei, Beard,R.W, Atkins 2007; Ren & Beard 2008; Jadbabaie et 

al. 2003; Ren & Beard 2005; Ren & Beard 2004).  

However, while INN being equal to half the group size   is the minimum requirement for 

achieving consensus, the results presented in Figure 4.10 demonstrate that improved 

performance can be achieved if INN is increased beyond this minimum value. This improved 

performance is illustrated by the fact that the average converged standard deviation value 

decreases from 0.2º to 0.08º when INN is increased from six to eleven. Furthermore, the 

results presented below in Table 4.4 illustrate that the associated time taken for the vehicles 

to agree on a desired heading angle once every vehicle is using the orientating control law 

decreases as INN is increased. 

Table 4.4- Variation in consensus time as INN is increased when the Orientating control law 

is being used 

INN Mean Consensus Time (s) 

6 20 

8 19 

11 16 

As the graphs presented below in Figure 4.11 demonstrate, this improved performance is 

due to the fact that as the value for INN is increased, the connectedness of the underlying 

interaction topology gradually increases. Therefore, with each vehicle having access to 

more neighbouring vehicle’s data, the time taken for Equation (4.8) to converge to the same 

heading angle will reduce and hence, a stable group structure can be generated faster. 

Therefore, these results demonstrate that the orientating control law operates most 

efficiently when INN is equal to 11.  
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(a) Inn = 6 (b) Inn = 8 

 

(c) Inn = 11 

Figure 4.11- Variation in the underlying graph topology when INN is equal to (a) 6 (b) 8 

and (c) 11. 

This result however, is in direct contrast to the repulsive control law where the results 

presented below in Table 4.5 demonstrate that the time taken for the vehicles to converge 

to implementing the orientating control law increases as the value for INN is increased. The 

results illustrate that on average, the time taken for every vehicle to begin implementing 

the orientating control law increases by 36s when the value used for INN is increased from 6 

to 11. The reason for this is due to the fact that as INN is increased, the denominator of 

Equation (4.4) increases. This results in the relative angle between neighbouring vehicle’s 

trajectories reducing and as a result, the rate at which neighbouring vehicles manoeuvre 

away from one another also reducing.  

Table 4.5  - Variation in time spent using Repulsive control law as INN is increased. 

INN Time  

6 115 

8 123 

11 151 
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In summarising, the results presented above demonstrate that in order to ensure that the 

formation control algorithm is capable of generating a stable group structure, the number 

of nearest neighbours used by each vehicle, i.e. INN has to be equal to at least six. In doing 

so, this ensure that the underlying interaction topology of the vehicles is always connected. 

Importantly though, the results presented in Table 4.4 and Figure 4.10 demonstrate that in 

order for the orientating control law to operate as efficiently as possible, the value for INN 

should be set to 11. However, as Table 4.5 illustrates, setting INN to this value for both the 

repulsive and orientating control laws results in the performance of the repulsive control law 

becoming suboptimal. Therefore, based on these results, it is apparent that if the repulsive 

and orientating control laws are to operate as efficiently as possible, the values used for the 

algorithmic parameter, INN cannot be the same and needs to be equal to six for the repulsive 

control law and eleven for the orientating control law.   

4.5.2 Analysis of Attractive & Orientating Behavioural Control Laws 

In the previous section, the results obtained from the simulations implementing the 

repulsive and orientating control laws were presented and analysed. The focus of this section 

is to now analyse the results obtained when the attractive and orientating control laws were 

used. Subsequently, shown below in Figure 4.12 is a general overview of the results 

obtained from these simulations.  

Based on the results presented in the previous section it is unsurprising that the results 

presented below demonstrate that as INN is increased, the percentage of simulations 

satisfying the convergence criteria associated with the standard deviation of the vehicles 

heading angle increases and reaches a maximum when INN is equal to eleven. Surprisingly 

though, the results also illustrate that even when INN is equal to 11, not all the simulations 

undertaken were able to ensure the parameter, 𝜎𝑡 converged to a value approximating zero.  

Nevertheless, when the results associated with both convergence criteria are compared, it 

is apparent that the convergence performance of the algorithm is at its best when INN is set 

to eleven. Subsequently, the majority of the work presented in this section will focus on 

these results. 

Combining the convergence percentages of both performance metrics when INN is equal to 

eleven, it becomes apparent that there are a number of instances where the standard 

deviation convergence criterion has been satisfied yet the absolute nearest neighbour 

distance criterion hasn’t. While not immediately apparent, it has also been discovered that 

there exists four instances (simulations) where the formation control algorithm has been 
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unable to satisfy both criteria. Subsequently, the following sections will analyse the results 

obtained from these simulations in order to ascertain the reasons for this non-convergence.  

 

Figure 4.12 - Variation in the percentage of simulations satisfying the convergence criteria 

associated with σ and dabs as INN is increased. 

4.5.2.1 Analysis of Simulations Unable to Satisfy both Convergence Criteria 

As discussed above, there exists four instances from the simulations undertaken where the 

attractive and orientating behavioural control laws were unable to satisfy the necessary 

convergence criteria. To understand why this is the case, these four simulations where 

identified and the results obtained analysed in greater detail. These results, as shown below 

in Figure 4.13 (a) represent the evolution of the minimum, maximum and mean absolute 

nearest neighbour distances as obtained from these four simulations. Similarly, Figure 4.13 

(b) represents the evolution of the average standard deviation of the vehicles heading angle 

as obtained from these four simulations.  

Due to the fact that both the minimum and mean absolute nearest neighbour distances have 

been able to converge to a value within the confines of the orientation zone, the results 

presented above suggest that it is only a small percentage of vehicles that have been unable 

to satisfy the necessary convergence criterions. Upon closer analysis, this was deemed to be 

the case and in actual fact, of the four simulations analysed, only a solitary vehicle from 

within each simulation was unable to converge as required. 

However, the most intriguing facet of Figure 4.13 (a) is the convergence of the maximum 

absolute nearest neighbour distance to a value significantly greater than the upper threshold 

of the orientation zone. This convergence suggests that the desired heading angle produced 

from the attractive behavioural control law is no longer manoeuvring each of the four 

vehicles towards their respective nearest neighbours but conversely, in approximately the 
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same direction. This is shown to be the case when the standard deviation of the vehicle’s 

heading angle is taken into consideration in Figure 4.13 (b). The results clearly demonstrate 

that while σ reduces significantly, it no longer converges to a steady state value close to 

zero but instead, it oscillates around an average value of approximately 3º. Since it is 

already known that eleven out of the twelve vehicles are using the orientating behavioural 

control law, the individual vehicle still using the attractive behavioural control law must be 

causing this oscillation. 

  

(a) (b) 

Figure 4.13- Evolution of (a) minimum, mean & maximum values for dabs and (b) σ. 

To understand why these oscillations occur, shown below in Figure 4.14 (a) is a comparison 

of the reference trajectory calculated using the attractive behavioural control law (Equations 

(4.1) - (4.3)) and the actual trajectory of one of the four vehicles still using this attractive 

control law.  

  

(a) (b) 

Figure 4.14 - Comparison of (a) vehicle trajectory with reference trajectory and (b) vehicle 

heading angle with group heading angle. 
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The trajectories presented above clearly demonstrate that the position of the vehicle quickly 

converges to approximately the same point in space as the average position of its nearest 

neighbours as calculated using Equations (4.1) & (4.2). Due to this close proximity, it is 

physically impossible for the vehicle to manoeuvre to the required position without 

overshooting. Nevertheless, the attractive control law continues to attempt to achieve this 

and as shown in Figure 4.14 (b), this results in the vehicle’s heading angle continuously 

oscillating around the average heading angle of the group. Unsurprisingly, it is because of 

this large oscillation that the evolution of σ as shown in Figure 4.13 (b) is unable to converge 

close to zero.  

The results presented in this section demonstrate that when the attractive control law is 

used, there is the possibility for the situation to arise whereby the desired and actual position 

of a vehicle are near coincident. When this occurs, Figure 4.14 (a), demonstrates the vehicle 

will continuously oscillate around the average heading angle of the group. While this 

behaviour appears in only 4% of the simulations tested, it is apparent that alterations will 

have to be made to the attractive behavioural control law in order to remove this behaviour 

and improve the performance of the algorithm. 

4.5.2.2 Analysis of Simulations Unable to Satisfy Nearest Neighbour Distance 

Criterion 

The results presented in this section will focus solely on the remaining nineteen simulations 

that were able to satisfy the convergence criterion for σ but not the vehicles nearest 

neighbour distance, dabs. To achieve this, shown below in Figure 4.15 is the evolution of the 

minimum, mean and maximum nearest neighbour distances and the associated σ values as 

calculated (and averaged) from these nineteen simulations.  

As expected, while Figure 4.15 (b) demonstrates that the vehicles have been able to 

converge toward a common heading angle, Figure 4.15 (a) demonstrates that a number of 

vehicles have been unable to successfully transition from using the attractive behavioural 

control law to the orientating one.  
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(a) (b) 

Figure 4.15- Evolution of the (a) minimum, mean & maximum values for dabs and (b) σ. 

As in the previous section, in order to understand why this is the case, it is necessary to 

analyse the evolution of each vehicles trajectory with the associated reference trajectory 

calculated using the attractive behavioural control law. While the results presented above 

represent the average values across the nineteen simulations considered, the results shown 

below in Figure 4.16 are taken from individual simulations. Nevertheless, the results 

presented are representative of the trends discovered across the various simulations 

completed. 

 

Figure 4.16 – Comparison of reference trajectory, vehicle trajectory & nearest neighbour 

trajectory when INN is equal to Eleven. 

It is important to note that similarly to the previous section, the reference trajectory 

presented in Figure 4.16 is obtained from Equations (4.1) - (4.3) and is equal to the average 

position of the vehicles nearest neighbours in the x-y plane. However, unlike Figure 4.14 

(a), the results demonstrate that the vehicles trajectory is no longer coincident with the 
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reference trajectory but instead, trails it by a significant distance. Furthermore, because 

every other vehicle within the group is using the orientating behavioural control law, this 

reference trajectory will be parallel with that of the remaining vehicles in the group. 

Therefore, because the vehicle is using the attractive control law, it too will converge to the 

same heading angle as the other vehicles in the group. It is for this reason that the evolution 

of σ as shown in Figure 4.15 (b) converges towards zero despite a vehicle continuing to use 

the attractive control law. 

As the vehicle is now manoeuvring with a heading angle that is very similar to that of its 

nearest neighbour, the only way in which it can reduce dabs further is by using the velocity 

control laws presented in Table 4.2. However, as shown in Figure 4.16, because of the 

relative positioning of the two vehicles, this will only be effective until the two vehicles are 

positioned alongside one another. Once this occurs, the vehicle will no longer be able of 

reduce its nearest neighbour distance any further. It is for this reason that for 19% of the 

simulations completed, the vehicles were able to satisfy the convergence criteria for σ but 

not dabs. It is also for these reasons that the results presented in Figures 4.7 (e) and (f) were 

unable to converge back to a dabs value that is within the confines of the orientation zone.   

In summarising, the previous two sections have presented the reasons why in 23% of the 

simulations completed, the attractive behavioural control law has been unable to 

simultaneously satisfy the necessary convergence criteria. As Figures 4.14 and 4.16 

demonstrate, this non-convergence is due to a vehicle being positioned either directly on 

top of, or behind the position it evaluates to be the average position of its nearest neighbours 

from Equations (4.1) and (4.2). This demonstrates that the non-convergence is a result of 

selecting INN to be equal to eleven. However, crucially the results presented in Figure 4.12 

demonstrate that improvements in the attractive control laws ability to satisfy the necessary 

criteria cannot be achieved by simply altering the value used for INN. 

Therefore, these results suggest that the attractive control law, in its current guise, is unable 

to guarantee that a group of BAUVs will form a stable group structure. As a result, it is 

apparent that alterations will have to be made to this control law in order to ensure it can 

guarantee the formation of a stable group structure. However, before these alterations are 

discussed, the following section will discuss the efficiency of the formation control 

algorithm at generating the required parallel line formation outline in Chapter 1.  
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4.5.3 Mapping Efficiency of Formation Control Algorithm     

While the previous two sections focussed on analysing the ability of the formation control 

algorithm to promote the formation of a stable group structure, this section considers the 

efficiency of the resulting group formation to complete the surveying missions outlined in 

Chapter 1. As shown below in Figure 4.17 in order to determine whether or not the required 

parallel line formation has been generated, it is necessary to evaluate the lateral distances 

between each vehicle and its two nearest neighbours.  

 

Figure 4.17- Overview of a Multi-Vehicle Oceanic Surveying Mission. 

Analysing Figure 4.17, it is apparent that in order to generate the required formation, every 

vehicle should have a lateral distance to their closest nearest neighbour, d1 that is within the 

confines of the orientation zone, i.e. zool ≤ d1≤ zoou. Thereafter, for the vehicles not 

positioned at the extreme left and right hand side of the group, i.e. N-2 vehicles, the lateral 

distance to their second nearest neighbour, d2 should also be within the confines of the 

orientation zone, i.e. zool  ≤  d2 ≤ zoou. For the two vehicles positioned at either side of the 

group, their d2 values should be double the normal orientation zone limits, i.e. 2(zool) ≤  d2 

≤ 2(zoou). These convergence criteria are summarised below in Table 4.6. 

Table 4.6 - Algorithm convergence criteria. 

Parameter Convergence Criteria 

Lateral Distance to 

Nearest Neighbour – 

d1 

For N Vehicles: 

 zool ≤ d1≤ zoou 

Lateral Distance to 

Second Nearest 

Neighbour – d2 

For N-2 vehicles:  

zool  ≤  d2 ≤ zoou 

For 2 vehicles: 

2(zool) ≤  d2 ≤ 2(zoou) 
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In order to determine whether or not the criteria presented in Table 4.6 has been satisfied, 

shown below in Figure 4.18 is the evolution of the percentage of vehicles satisfying the 

criteria associated with the parameter d1. The results presented below have been evaluated 

across all the simulations completed in this study when INN was set to 11. This means the 

percentage value shown below is the percentage of 2400 vehicles. 

 

Figure 4.18- Evolution of the percentage of vehicles satisfying the criteria associated with 

d1. 

The results clearly demonstrate that of the 2400 vehicles simulated, only 1.5% where able 

to satisfy the convergence criteria associated with the algorithmic parameter, d1. Based on 

these figures, it is apparent that very few if any of the simulations undertaken were able to 

satisfy the necessary criteria to ensure the required parallel line formation was generated. 

Therefore, as with the results presented in Section 4.5.2, it is apparent that alterations will 

have to be made to the formation control algorithm in order for it to not only operate more 

efficiently but also ensure that it will be able to successfully generate the required parallel 

line formation.  

4.6 Summary  

The results presented above in Section 4.5 have provided a detailed analysis of the results 

obtained from the simulations undertaken throughout this study. The aim of the following 

section is to now provide a summary of the pertinent results obtained from this analysis 

and also detail the necessary changes that need to be made to the algorithm in order to 

improve its performance.   
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In Section 4.5.1, the results demonstrated that regardless of the value used for INN, the 

repulsive behavioural control law is capable of manoeuvring each vehicle to a nearest 

neighbour distance that is within the confines of the orientation zone. In Section 4.5.1.1, the 

results demonstrate that in order for the orientating control law to operate as efficiently as 

possible, the underlying interaction graph should not only be connected but also fully 

connected. In general terms, this means that INN needs to be equal to N-1 and for the work 

completed in this thesis, this means that INN has to be equal to 11. While setting INN to eleven 

guarantees the orientating control law operates as efficiently as possible, the results 

presented in Section 4.5.1 also demonstrate that INN needs to be set to six to ensure the 

repulsive control law operates as efficiently as possible.  Furthermore, Section 4.5.2 

illustrates that the attractive control law is incapable of guaranteeing that the required 

convergence criteria will be satisfied for any value of INN Therefore, alterations need to be 

made to this control law to ensure it operates as expected regardless of the value used for 

INN. Finally, Section 4.5.3 demonstrated that the formation control algorithm, in its current 

guise, is unable to coordinate the vehicles into the required parallel line formation 

presented in Chapter 1 and as a result, it is unable to efficiently complete the required 

oceanic surveying operations. It is therefore apparent from the results presented in this 

chapter that creating a formation control algorithm that simply imitates the behavioural 

mechanisms of fish partaking in schooling behaviour cannot ensure the formation of a 

stable group structure. Furthermore, this algorithm has also been shown to be incapable of 

coordinating the vehicles into the required parallel line formation. To amend this, it is 

proposed that the following changes be made to the formation control algorithm: 

• Instead of each vehicle using the absolute distance to its nearest neighbour when 

determining which of the three control laws to use, the algorithm is altered to use 

the lateral distance instead. 

• The attractive behavioural control should be altered to ensure the scenarios 

presented in Sections 4.5.2.1-2 are unable to materialise in the future.  

The following chapter will now describe the implementation of these alterations. 

Furthermore, the same performance metrics used within this chapter will also be used in 

order to analyse to what extent these alterations have improved the ability of the algorithm 

to complete the mission profile outlined in Chapter 2. 



 

112 

 

Chapter 5  
Modified Formation Control Algorithm 

____________________________________ 

5.1 Introduction 

As the results presented in Chapter 4 demonstrate, the biomimetic formation control 

algorithm is unable, as required, to coordinate the vehicles into the required parallel line 

formation. Furthermore, the results also demonstrate that the algorithm cannot guarantee 

the convergence of every vehicle to within the confines of the orientation zone. The reason 

for this non-convergence is due to the conflicting requirements placed on the algorithmic 

parameter, INN by the orientating and attractive behavioural control laws. 

In order to achieve consensus in the shortest period of time and therefore ensure every 

vehicle converges to approximately the same heading angle as quickly as possible, the 

orientating behavioural control law requires that the value for INN be set to the size of the 

group minus one, i.e. N-1. However, if this value is used within the attractive control law, 

the results presented in Section 4.5.2 demonstrate that there is a 23% chance that the 

algorithm will be unable to satisfy the necessary convergence criteria. Furthermore, as 

mentioned above, the results presented in Section 4.6.3 established unequivocally that the 

algorithm, in its current guise, is also unable to coordinate the vehicles into the required 

parallel line formation. 

The aim of this chapter therefore is to present the modifications made to the algorithm in 

the anticipation that once incorporated, they will allow the algorithm to coordinate the 

vehicles into the required formation. In the process, these modifications will also aim to 

ensure that the attractive and orientating control laws operate in the desired manner 

regardless of the value used for INN. To demonstrate whether or not these modifications 

have been successful they will be thoroughly tested using the same two groups of 

simulations used in Chapter 4.
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The chapter presents the work described above in the following manner. Section 5.2 

describes the modifications made to the algorithm and the reasons for making them. Section 

5.3 presents a summary of the simulation setup used in Chapter 4 and now within the work 

completed in this chapter. Section 5.4 presents and analyse the results obtained from these 

simulations. Finally, Section 5.5 presents a summary of the work completed in this chapter. 

5.2 Formation Control Algorithm – Implementing 

Modifications 

The main recommendation of Chapter 4 was to alter the formation control algorithm so that 

the lateral distance between neighbouring vehicles is used instead of the absolute distance 

when deciding which particular behavioural control law to implement. As discussed in the 

summary of Chapter 4, the purpose of this modification is to ensure that the required 

parallel line formation can be generated and hence, the vehicles will be capable of 

completing the oceanic surveying missions discussed in Chapter 1.  Before these 

modifications are presented though, shown below in Table 5.1 is a summary of the 

algorithmic parameters used within the modified algorithm presented in this chapter.  

Table 5.1  - Description of parameters used in modified algorithm. 

Parameter Description Value 

dabs 

Absolute distance to nearest 

neighbour 
Any real value 

d1 

Lateral distance to nearest 

neighbour 
Any real value 

ψRNN  

Relative angular position of 

vehicles nearest neighbour 
-180º ≤ ψRNN≤ 180º 

NNL 
Number of nearest 

neighbours to the vehicles left 
0 ≤ NNL≤ N-1 

NNR 

Number of nearest 

neighbours to the vehicles 

right 

0 ≤ NNR≤ N-1 

While the lateral distance, d1 will be predominantly used to decide which behavioural 

control law to implement, Table 5.1 demonstrates that the absolute distance, dabs is still used 
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within the modified algorithm. Unsurprisingly, the reason for maintaining this parameter 

is to ensure that neighbouring vehicles do not collide with one another.  

As with the biomimetic formation control, 𝜓𝑅𝑁𝑁  is used to determine the relative position 

of each vehicles nearest neighbour and the parameters NNL and NNR are implemented to 

determine the number of neighbouring vehicles positioned to each vehicles right and left 

hand side.  

While the methods used to evaluate the parameters, dabs, ψ𝑅NN , NNL and NNR have already 

been presented in Chapter 4, Section 5.2.1 below will now describe the functionality 

implemented in order to evaluate the lateral distance, dlat between each vehicle and its 

nearest neighbours.  

5.2.1 Evaluation of Lateral Nearest Neighbour Distances  

As shown below in Figure 5.1, in order to evaluate the lateral distances between 

neighbouring vehicles, it is necessary to assume that the vehicles are manoeuvring with 

parallel trajectories. 

 

Figure 5.1- Diagram & Notation used to evaluate the lateral distance between 

neighbouring vehicles. 

With the trajectories assumed to be straight lines, they can be represented using Equations 

(5.1) and (5.2) shown below. 

𝑦𝑣 = 𝑚𝑣𝑥𝑣 + 𝑐𝑣 (5.1) 

𝑦𝑁𝑁 = 𝑚𝑁𝑁𝑥𝑁𝑁 + 𝑐𝑁𝑁 (5.2) 
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Where 𝑥𝑁𝑁  and 𝑦𝑁𝑁 are the coordinates of each vehicle’s nearest neighbour(s), xvand yv are 

the coordinates of the vehicle itself and finally, 𝑚𝑣  and 𝑚𝑁𝑁 represent the gradient of the 

lines calculated using Equation (5.3) below.  

mv = mNN = tan(ψref) (5.3) 

While not defined yet, 𝜓𝑟𝑒𝑓 is the angle used within the modified algorithm to enable the 

entire group to manoeuvre in a purposeful direction. Regardless, the equation of the line 

perpendicular to these two lines (dotted line labelled d1 in Figure 5.1) can be defined using 

Equation (5.4) shown below. 

𝑦𝑝𝑒𝑟𝑝 = 𝑚𝑝𝑒𝑟𝑝𝑥𝑝𝑒𝑟𝑝 + 𝑐𝑝𝑒𝑟𝑝 (5.4) 

Where mperp is equal to: 

𝑚𝑝𝑒𝑟𝑝 = 
−1

𝑡𝑎𝑛(𝜓𝑟𝑒𝑓)
 (5.5) 

And cperp is equal to: 

𝑐𝑝𝑒𝑟𝑝 = 𝑦𝑣 −𝑚𝑝𝑒𝑟𝑝𝑥𝑣 (5.6) 

The coordinates of the intersection, 𝑥𝑖𝑛𝑡 and 𝑦𝑖𝑛𝑡 can now be evaluated using Equation (5.7) 

and (5.8) shown below. 

𝑥𝑖𝑛𝑡 = −(
𝑐𝑝𝑒𝑟𝑝 − 𝑐𝑁𝑁
𝑚𝑝𝑒𝑟𝑝 −𝑚𝑁𝑁

) (5.7) 

𝑦𝑖𝑛𝑡 = 𝑚𝑝𝑒𝑟𝑝𝑥𝑖𝑛𝑡 + 𝑐𝑝𝑒𝑟𝑝  (5.8) 

Where cNN is calculated using the following equation: 

𝑐𝑁𝑁 = 𝑦𝑁𝑁 −𝑚𝑁𝑁𝑥𝑁𝑁  (5.9) 

The lateral distance between the two vehicles can now be evaluated using Equation (5.10) 

shown below: 

𝑑lat = √(𝑥𝑣 − 𝑥𝑖𝑛𝑡)
2 + (𝑦𝑣 − 𝑦𝑖𝑛𝑡)

2 (5.10) 
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As with the evaluation of the absolute nearest neighbour distance, the above process is 

repeated until the lateral distance to every vehicle within the group is known.  

5.2.2 Identifying Absolute Nearest Neighbour 

As discussed above, the modified algorithm presented in this chapter uses the lateral 

distance between neighbouring vehicles when deciding which particular control law to 

implement. However, in order to ensure neighbouring vehicles do not collide with one 

another, the modified algorithm also monitors the absolute distance between neighbouring 

vehicles.  

As with the original formation control algorithm presented in Chapter 4, it achieves this by 

using Equation (4.9). Once the distance to each vehicle is known (and stored within the 

vector, Dabs), the algorithm sets the vehicles absolute nearest neighbour to be equal to the 

neighbouring vehicle associated with the minimum value of the vector, Dabs. 

5.2.3 Identifying Lateral Nearest Neighbour 

While each vehicles absolute nearest neighbour is identified by evaluating the minimum 

value of Dabs, the methodology implemented to evaluate each vehicles lateral nearest 

neighbour is slightly different and is dependent on not only the lateral distance between 

neighbouring vehicles but also their relative position within the group. For example, if a 

vehicle has more neighbouring vehicles positioned to its left-hand side, the algorithm 

identifies the vehicle’s lateral nearest neighbour as the vehicle positioned immediately to its 

left-hand side. Similarly, for vehicles with more neighbouring vehicles positioned to their 

right-hand side, the opposite applies. As shown below in Figure 5.2, implementing this 

particular identification strategy results in the interaction graph associated with each 

vehicles lateral nearest neighbour being globally connected. 

The direction of the arrows presented in Figure 5.2 indicate each vehicle’s lateral nearest 

neighbour, i.e. Vehicle 1’s nearest neighbour is Vehicle 2 and so on.   

Figure 5.2 shows that because Vehicles 1-6 have more vehicles positioned to their left-hand 

side, their lateral nearest neighbour is the vehicle positioned immediately to their left. 

Conversely, vehicles 7-12 evaluate their lateral nearest neighbour to be vehicle positioned 

immediately to their right. 
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Figure 5.2– Group interaction topology associated with each vehicle’s lateral nearest 

neighbour. 

Importantly, Figure 5.2 also demonstrates that the number of vehicles positioned to either 

side of each vehicle varies depending on the heading angle of the group. For example, if 

every vehicle in Figure 5.2 were to manoeuvre with a heading angle of 0º, Vehicle 12 would 

be classified as being positioned to the extreme left of the group and conversely, Vehicle 1 

would be considered to be positioned to the extreme right. However, if the group were to 

manoeuvre with a heading angle of 90º, the opposite would apply. Therefore, it is apparent 

that the intended heading angle of the group has to be taken into consideration when 

deciding how many vehicles are positioned to the right or left-hand side of the group.  

5.2.3.1 Evaluating Relative Positioning Of Nearest Neighbours 

As discussed in Section 4.3.2, in order to evaluate the relative positioning of each vehicle’s 

nearest neighbour(s), the following equation has to be used: 

𝜓𝑅𝑁𝑁 = 𝜓𝐿𝑂𝑆 − 𝜓𝑉 (5.11) 

Where, as shown below in Figure 5.3, 𝜓𝐿𝑂𝑆 represents the line-of-sight angle calculated 

using Equation (5.12) and 𝜓𝑉 is the current heading angle of the vehicle itself.  

𝑡𝑎𝑛(𝜓𝐿𝑂𝑆) =  (
𝑦𝑁𝑁 − 𝑦𝑣
𝑥𝑁𝑁 − 𝑥𝑣

) (5.12) 

 



Modified Formation Control Algorithm  

 

118 

 

 

Figure 5.3 - Diagram demonstrating the effect that the vehicles heading angle has on 

determining the relative positioning of nearest neighbours. 

Where, 𝑥𝑁𝑁 and 𝑦𝑁𝑁 represent the x and y coordinates of the vehicle’s nearest neighbour 

and 𝑥𝑣 and 𝑦𝑣 represent the position of the vehicle itself.  

However, for the modified algorithm, instead of using  𝜓𝑉 , Equation (5.11) has been altered 

to take into consideration the aforementioned reference heading angle of the group, 𝜓𝑟𝑒𝑓. 

This reference heading angle is calculated using Equation (5.13) below.  

𝜓𝑣 = 𝜓𝑟𝑒𝑓 = 𝑡𝑎𝑛
−1 (

𝑦𝑑𝑒𝑠 − �̅�𝑁𝑁
𝑥𝑑𝑒𝑠 − �̅�𝑁𝑁

) (5.13) 

Where the parameters 𝑥𝑑𝑒𝑠 and 𝑦𝑑𝑒𝑠 represent the coordinates of the group’s desired 

location (user defined goal destination) and �̅�𝑁𝑁 and �̅�𝑁𝑁 represent the coordinates of the 

groups average position calculated using the following equations:      

�̅�𝑁𝑁 =
1

𝐼𝑁𝑁
∑𝑥𝑁𝑁

𝐼𝑁𝑁

𝑁=1

 (5.14) 

�̅�𝑁𝑁 =
1

𝐼𝑁𝑁
∑ 𝑦𝑁𝑁

𝐼𝑁𝑁

𝑁𝑁=1

 (5.15) 

As discussed extensively in Chapter 4, in order for the vehicles to achieve consensus as 

quickly as possible, each vehicle is required to take into consideration every other vehicle 

within the group, i.e. INN = N-1.  

Regardless, once 𝜓𝑉 has been replaced with 𝜓𝑟𝑒𝑓 it will now be possible for each vehicle to 

accurately evaluate the number of vehicles positioned to its left or right-hand side relative 
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to the reference heading angle of the group. This is achieved by using the following 

conditional statement: 

𝑁𝑁𝐿 = 𝑁𝑁𝐿 + 1     , 𝑖𝑓   − 180
º < 𝜓𝑅𝑁𝑁 < 0

º (5.16) 

𝑁𝑁𝑅 = 𝑁𝑁𝑅 + 1   , 𝑖𝑓       0
º < 𝜓𝑅𝑁𝑁 < 180º (5.17) 

𝑁𝑁𝐿 = 𝑁𝑁𝐿 + 1   , 𝑖𝑓 𝜓𝑅𝑁𝑁 = 0º (5.18) 

𝑁𝑁𝑅 = 𝑁𝑁𝑅 + 1   , 𝑖𝑓 𝑎𝑏𝑠(𝜓𝑅𝑁𝑁) = 180º (5.19) 

Crucially, the conditional statements presented above in Equation (5.16)-(5.19) guarantee 

that regardless of the relative positioning of neighbouring vehicles, the modified algorithm 

selects each vehicle’s lateral nearest neighbour such that the interaction topology shown in 

Figure 5.2 is generated.  

Once each vehicle’s lateral and absolute nearest neighbour distances have been identified, 

the next phase of the algorithm is to use these values to determine which behavioural 

control law to implement.  This decision making process and how it alters from the one 

shown in Chapter 4 are presented in the following section.  

5.2.4 Decision Making Process 

Shown below in Figure 5.4 is the decision making process incorporated within the modified 

formation control algorithm to ascertain which particular behavioural control law should 

be implemented.  

 

Figure 5.4 - Decision making structure used within the modified formation control 

algorithm. 
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As the flow diagram demonstrates, the modified formation control algorithm contains four 

conditional statements – one more than the algorithm presented in Chapter 4. The reason 

for including this additional conditional statement is to ensure that as well as coordinating 

the vehicles into the required parallel line formation, the modified algorithm is also able to 

ensure that neighbouring vehicles do not collide with one another. 

Figure 5.4 demonstrates that the first conditional statement determines whether or not the 

value for dabs is below a certain limit, zos. If it is, the vehicles are deemed to be too close 

together and the original repulsive behavioural control law is implemented. As the results 

presented in Chapter 4 demonstrate, this ensures neighbouring vehicles manoeuvre away 

from one another and the value for dabs increases above the limit, zos. Thereafter, the flow 

diagram demonstrates that the modified formation control algorithm implements either the 

modified repulsive, attractive or orientating control law depending on whether the value for 

d1 is below, above or within the confines of the orientation zone. The following three 

sections will now describe the modifications made to these three behavioural control laws. 

5.2.5 Modified Repulsive Behavioural Control Law 

As discussed above, the aim of the modified repulsive control law is to ensure that every 

vehicle converges to a d1 value that is within the confines of the orientation zone. 

Subsequently, to achieve this, the following conditional statements have been incorporated:  

𝜓𝐷 = {
𝜓𝑟𝑒𝑓 +  𝜓𝑟𝑒𝑝          𝑖𝑓 𝑁𝑁𝐿 ≥ 𝑁𝑁𝑅
𝜓𝑟𝑒𝑓 −  𝜓𝑟𝑒𝑝          𝑖𝑓 𝑁𝑁𝐿 < 𝑁𝑁𝑅

 (5.20) 

In the above equation,  𝜓𝑟𝑒𝑝 represents a user defined algorithmic parameter which can be 

used to alter how quickly neighbouring vehicles manoeuvre away from one another. As the 

aim of Equation (5.20) is to increase the lateral distance between neighbouring vehicles as 

quickly as possible this parameter has been set to 90º. As discussed below, when combined 

with the interaction topology shown in Figure 5.2, setting  𝜓𝑟𝑒𝑝 to 90º should result in the 

vehicles generating the required parallel line formation in the shortest possible time.     

In order to understand why this is the case, it is necessary to consider the interaction graph 

shown in Figure 5.2. In doing so, it becomes apparent that when the conditional statements 

presented above are implemented, Vehicles 6 & 7 will manoeuvre in the opposite direction 

to one another. As a result, the lateral distance between these two vehicles will increase at 

the fastest possible rate until it is within the confines of the orientation zone. At which point, 

these two vehicles will manoeuvre with a heading angle equal to the aforementioned 

reference heading angle, ψref.  
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Thereafter, Figure 5.2 demonstrates that because Vehicles 6 and 7 are now moving with a 

heading angle equal to 𝜓𝑟𝑒𝑓 , the lateral distance between Vehicles 5 & 6 and 8 & 7 will 

increase at the fastest possible rate until they too are within the confines of the orientation 

zone. This process of sequential convergence will continue until the lateral distances 

between Vehicles 12 & 11 and 1 & 2 are also within the confines of the orientation zone. 

5.2.6 Modified Orientating Behavioural Control Law 

As mentioned previously, the reference heading angle, ψref has been included to ensure the 

group of vehicles are capable of manoeuvring to any desired location. Intuitively therefore, 

it is proposed that vehicles using the orientating behavioural control law should manoeuvre 

with a heading angle that is equal to this value. As discussed in Section 5.2.3.1, the reference 

heading angle is calculated using Equations (5.13)-(5.15).    

5.2.7 Modified Attractive Behavioural Control Law 

As Figure 5.4 demonstrates, if the value for d1 is greater than the upper boundary of the 

orientation zone, the formation control algorithm will implement the modified attractive 

behavioural control law. As shown below in Equation (5.21), this modified control law also 

contains two conditional statements: 

𝜓𝐷 = {
𝜓𝑟𝑒𝑓 − 𝜓𝑎𝑡𝑡    , 𝑖𝑓 𝑁𝑁𝐿 ≥ 𝑁𝑁𝑅
𝜓𝑟𝑒𝑓 + 𝜓𝑎𝑡𝑡    , 𝑖𝑓 𝑁𝑁𝐿 < 𝑁𝑁𝑅

 (5.21) 

As with Equation (5.20), the parameter, 𝜓𝑎𝑡𝑡 is a user defined parameter which similarly to 

the modified repulsive control law determines how quickly neighbouring vehicles 

manoeuvre towards one another. However, unlike Equation (5.20), its value has been set to 

45º. The reason for selecting this particular value is that it ensures neighbouring vehicles 

manoeuvre towards one another as quickly as possible while at the same time, ensuring the 

entire group continues to manoeuvre towards the group’s desired location. 

Nevertheless, Equation (5.21) demonstrates that when the modified attractive control law is 

implemented, vehicles positioned at opposite sides of the group will manoeuvre with 

converging trajectories until the value for d1 (for neighbouring vehicles) is within the 

confines of the orientation zone. Again, because of the particular interaction topology 

implemented, the vehicles positioned at the centre of the group (Vehicles 6 & 7 in Figure 

5.2) will converge first. Thereafter, the sequential convergence of neighbouring vehicles as 

discussed in Section 5.2.5 will occur until every vehicle is positioned as required. 
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5.2.8 Velocity Control Law 

While it was necessary to alter the heading control laws of the formation control algorithm, 

it was decided that the velocity control laws presented in Section 4.4.4 would remain 

unchanged.  This means that in the modified formation control algorithm, the heading 

control laws ensure each vehicle converges to the required lateral nearest neighbour 

distance while the velocity control law ensures each vehicle converges to the required 

absolute nearest neighbour distance. 

5.2.9 Modified Algorithm Structure 

As shown below in Figure 5.5, the only change made to the original algorithmic structure 

shown in Figure 4.6 is the evaluation of the lateral distance, dlat between each vehicle and 

its various nearest neighbours as described in Section 5.2.1. 

 

Figure 5.5 - Modified algorithm structure. 

As Figure 5.5 illustrates, the input to the formation control algorithm has remained 

unchanged and is still the positional and heading data communicated by each vehicles 

nearest neighbours, i.e. xNN, yNN and ψNN. This data is then used to populate the vectors, dlat 

and Dabs. As discussed previously, these vectors contain the lateral and absolute distances 

between the vehicle and its nearest neighbours as calculated using Equations (4.9) and 

(5.10). After these distances are evaluated, the relative positioning of each vehicle is 

calculated and stored within the vector, 𝛙𝐑𝐍𝐍. Thereafter, the vector, dlat is used in 

conjunction with the decision making process of Figure 5.4 to determine which behavioural 

control law should be implemented. Similarly, the vectors Dabs and 𝛙𝐑𝐍𝐍 are also used to 

determine whether the vehicle needs to increase, decrease or maintain its current velocity 

based on the velocity control law presented in Section 4.3.4. Once these processes have been 

completed, the formation control algorithm produces the desired heading angle of the 

vehicle, ψD and the necessary Tail Beat Amplitude, AD that will manoeuvre the vehicle in the 

required direction.  
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5.3 Simulation Setup & Performance Metrics 

The main aim of this chapter is to demonstrate that the modifications made to the algorithm 

operate as envisioned and as a result, it is now capable of successfully coordinating the 

vehicles into the required parallel line formation. In order to definitively demonstrate 

whether or not this is the case, it is important that the simulations and performance metrics 

used are similar to those in Chapter 4. Therefore, the following two sections provide a brief 

review of these and highlight any differences or improvements identified within the 

subsequent analysis.  

5.3.1 Simulation Setup 

Table 5.2 demonstrates that similarly to Chapter 4 the simulations undertaken in this 

chapter are separated into two groups. Once again, these groups are categorised depending 

on the initial control law used by the vehicles. At this point, it is important to note that 

although the lateral distances are now predominantly used to determine which behavioural 

control law to implement, the vast majority of the vehicles will still use either the repulsive 

or attractive laws at the start of each simulation. 

Table 5.2 - Simulation Parameters. 

Parameter Group 1  Group 2  

Initial Behaviour 

Utilised 
(Repulsive) (Attractive) 

Behavioural Zones Size 

(m) 
[20,25,200] [6,11,200] 

Nearest Neighbours 

Used (INN) 
11 11 

Reference Heading 

Angle (ψref) 

𝜓

4
 

𝜓

4
 

However, unlike Chapter 4, Table 5.2 demonstrates that the simulations completed in this 

chapter do not vary the parameter, INN and instead, its value is kept constant at 11. This is 

due to the fact that as shown in Figure 5.2, each vehicle needs to know its relative position 

within the group and as a result, needs to know the position of every other vehicle in the 

group.  

Furthermore, the other variation between the simulations completed in this chapter and the 

previous one, is the inclusion of the parameter, 𝜓𝑟𝑒𝑓. As Table 5.2 illustrates, a constant 
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value of 45º has been selected. The decision not to vary this parameter is to ensure that 

variations in its value cannot be attributed to the algorithm not operating as expected.  

Finally, as with Chapter 4, for each of the two groups presented in Table 5.2, 100 separate 

simulations have been completed. Due to the fact that INN is no longer altered, the results 

presented below are compiled from 200 simulations. 

5.3.2 Performance Metrics 

In order to allow a direct comparison with the results obtained in the previous chapter, the 

performance metrics used in this chapter are the same as those presented in Chapter 4. As 

a result, Table 5.3 below provides a summary of these metrics and the criteria that must be 

satisfied in order to demonstrate that the algorithm has coordinated the vehicles into the 

required parallel line formation. 

Table 5.3 - Description of performance metrics & convergence criteria. 

Parameter Description Convergence Criteria 

Standard Deviation of 

Vehicle Heading Angle 

- σ 

Allows the variation in vehicle 

heading angle across each 

simulation (group) to be analysed. 

Value for σ should 

converge to a value less 

than or equal to 1º 

Lateral Distance to 

Nearest Neighbour – d1 

Determines whether or not the 

heading control laws have 

successfully coordinated each 

vehicle to the required lateral 

separation distance. 

zool ≤ d1≤ zoou for all 

vehicles. 

Lateral Distance to 

Second Nearest 

Neighbour – d2 

Determines whether or not the 

heading control laws have 

successfully coordinated each 

vehicle to the required lateral 

separation distance for its second 

nearest neighbour. 

For N-2 vehicles:  

zool ≤ d2≤ zoou 

For 2 Vehicles: 

2(zool) ≤ d2≤ 2(zoou) 

Absolute Nearest 

Neighbour Distance - 

dabs 

Provides a metric by which to 

determine if the velocity controller 

is operating as expected. 

zool ≤ dabs ≤ zoou for all 

vehicles. 
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As with the results presented in Chapter 4, the purpose of analysing the standard deviation 

of the vehicles heading angle, σ is to determine whether or not the algorithm has been 

successful in ensuring every vehicle (from within each simulation) converges to the same 

heading angle. Thereafter, as discussed in Section 4.5.3, the purpose of evaluating and 

analysing the lateral distance between each vehicle and its two nearest neighbours, i.e. d1 

and d2 is to determine whether or not the vehicles have been able to coordinate themselves 

into the required parallel line formation. Finally, analysing the absolute distance between 

each vehicle and its nearest neighbour allows a determination of whether or not the velocity 

control law still operates as expected and as such, allows each vehicle to manoeuvre directly 

alongside their nearest neighbour.  

If the first three criteria presented in Table 5.3 are satisfied, the modifications made to the 

algorithm can be deemed successful. This is due to the fact that if these three criteria are 

satisfied, not only does it guarantee that every vehicle has converged to the same heading 

angle but more importantly, it also demonstrate that the vehicles are moving in the required 

parallel line formation. Thereafter, if the final convergence criteria associated with the 

parameter, dabs is satisfied, it demonstrates that the velocity control law still operates as 

envisioned and the neighbouring vehicles are positioned directly alongside one another. 

5.4 Results 

The aim of this section is to analyse the results obtained from the simulations using the 

modified algorithm presented in Section 5.2. The analysis of these results is to ascertain 

whether or not the modifications made have improved the algorithms ability to coordinate 

the vehicles into the required parallel line formation. To achieve this, Sections 5.4.1 and 5.4.2 

will present the results obtained from the two groups of simulations presented and 

summarised above in Table 5.2.  

5.4.1 Analysing the Modified Repulsive & Orientating Behavioural 

Control Laws. 

As with the results presented in Chapter 4, the main method to determine whether or not 

the algorithm has promoted the formation of a stable group structure is to analyse not only 

the evolution of the standard deviation of the vehicle’s heading angle, σ but also the absolute 

nearest neighbour distance, dabs. Subsequently, shown below in Figure 5.6(a) and (b) is the 

evolution of these two parameters in terms of the minimum, mean and maximum values 

obtained throughout the simulations completed. The reason for including the minimum 

and maximum values is to present the entire envelope of results obtained throughout the 
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simulations completed in order to quickly ascertain whether or not the changes made to the 

algorithm have been successful.  

The results presented below in Figures 5.4 (a) are as expected with the standard deviation 

value initially increasing as the vehicles implement the modified repulsive behavioural 

control law (Equation (5.20)). After initially increasing, Figure 5.6(a) demonstrates that the 

minimum and maximum values for σ decrease in incremental steps from approximately 

70s onwards. Once again, this behaviour is expected and is due to the fixed interaction 

topology shown in Figure 5.2 resulting in neighbouring vehicles sequentially converging to 

a d1 value within the confines of the orientation zone.  

  

(a) (b) 

Figure 5.6- Evolution of (a) σ and (b) maximum, minimum & mean values for dabs 

Based solely on the results presented in Figure 5.6 (a), it is apparent that the modifications 

made to algorithm have not affected its ability to ensure that every vehicle (from within 

each group) converges to manoeuvring with the same heading angle. These results 

therefore demonstrate that the modified algorithm has produced a group structure that 

satisfies the first convergence criteria of Table 5.3. 

As with Figure 5.6 (a), the results presented in Figure 5.6 (b) are as anticipated with the 

minimum, mean and maximum values for dabs all converging to within the confines of the 

orientation zone. More importantly, Figure 5.6 (b) demonstrates that the minimum value 

for this parameter never decreases throughout the simulations. This demonstrates that the 

inclusion of the original repulsive behavioural control law to ensure neighbouring vehicles 

do not collide with one another has been successful.  Similarly to the results presented in 

Figure 5.6(a), Figure 5.6(b) suggests that the modified algorithm has been able to coordinate 

the vehicles into a formation that satisfies the fourth convergence criteria of Table 5.3. This 
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is shown below in Figure 5.7 where the evolution of the percentage of simulations satisfying 

the first and last convergence criteria of Table 5.3 are presented.  

While the results presented below demonstrate that both convergence criteria have been 

satisfied, they also illustrate that it takes significantly longer to achieve 100% convergence 

for the parameter, dabs. Once again, this is an indication that the algorithm is operating 

correctly as it suggests that only after every vehicle has converged to an appropriate d1 

value, will the velocity control law begin to ensure every vehicle converges to a suitable dabs 

 value.  

  

(a) (b) 

Figure 5.7 - Evolution of the percentage of simulations satisfying criteria associated with 

(a) σ and (b) dabs. 

In order to prove that the required parallel line formation has indeed been generated, it is 

necessary to analyse the evolution of the parameters, d1 and d2, i.e. the lateral distances 

between each vehicle and its two nearest neighbours.  

This is shown below in Figure 5.8 where similarly to the results presented above, the 

evolution of the minimum, mean and maximum values for these distances are presented. 

Furthermore, also shown in Figure 5.8 is the percentage of vehicles satisfying the relevant 

criteria associated with these distances as described in Table 5.3 above.  

As anticipated, Figures 5.8 (a) and (c) clearly demonstrate that the modified algorithm has 

enabled every vehicle from within each simulation to converge to a d1 value that is within 

the confines of the orientation zone.  
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(a) (b) 

  

(c) (d) 

Figure 5.8- Evolution of (a) the minimum, mean and maximum values for d1 (b) the 

minimum, mean and maximum values for d2 (c) percentage of vehicles satisfying 

convergence criteria associated with d1 (d) percentage of vehicles satisying criteria 

associated with d2. 

Conversely, the results shown in Figure 5.8(b) suggest that because the maximum and mean 

values for d2 are above the confines of the orientation zone, the algorithm has been unable 

to coordinate the vehicles into the required parallel line formation. However, upon further 

analysis, this result was found to be misleading and caused by the vehicles positioned at 

either side of each group (whose d2 value by default, will be at least 40m) skewing the 

results for the entire group. This is proven to be the case when the percentage of vehicles 

satisfying the criteria associated with the parameter, d2 are analysed. The percentages 

presented in Figure 5.8 (d) clearly demonstrate that throughout the 100 simulations 

completed, 17% of vehicles (i.e. two vehicles per simulation) converged to a d2 value within 

the required boundaries and similarly, 83% of vehicles converged to a d2 value within the 

confines of the orientation zone, also as required. 
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These percentages combined with the fact that every vehicle has converged to a d1 value 

within the orientation zone (Figure 5.8(a) and (c)) demonstrates that the modified formation 

control algorithm is capable of satisfying the necessary convergent criteria presented in 

Table 5.3. Furthermore, these results when combined with the fact that it has already been 

shown that every vehicle converges to the same heading angle (Figure 5.6 (a)) further 

illustrates that the modifications made to the algorithm have been successful. While not 

feasible to present the trajectories obtained from every simulation completed, shown below 

in Figure 5.9 are a selection of the trajectories obtained from a number of the simulations 

completed.  

  

(a) (b) 

  

(c) (d) 

Figure 5.9- Example of vehicle trajectories obtained from modified formation control 

algorithm when every vehicle is initially using the repulsive behavioural control law. 

Analysing the trajectories presented above in Figure 5.9, it is apparent that the modified 

repulsive behavioural control law is operating as designed with vehicles positioned at 
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opposite ends of the group moving in opposing directions in order to increase the lateral 

distance between themselves and their neighbouring vehicle as quickly as possible. The 

trajectories also demonstrate that Vehicles 6 and 7 are always, as expected, the first to 

implement the orientating behavioural control law. Thereafter, the trajectories demonstrate 

that the remaining vehicles all sequentially converge towards implementing the orientating 

control law. Once again, this behaviour is as envisioned and is due to the aforementioned 

interaction graph shown in Figure 5.2. Finally, the trajectories presented above in Figure 5.9 

(a) – (d) demonstrate that once every vehicle is implementing the orientating control law, 

the required parallel line formation has been generated. Therefore, these results when 

combined with those presented in Figures 5.6-8 demonstrate that the modifications made 

to the repulsive and orientating control laws have been successful.  

In order to demonstrate that the modified algorithm operates successfully regardless of the 

initial control law implemented, the following section will now present the results obtained 

from the second group of simulations  

5.4.2 Analysing the Modified Attractive Behavioural Control Laws. 

As discussed above, the aim of this section is to analyse the results obtained from the 

simulation where the majority of vehicles initially implemented the attractive behavioural 

control law. To achieve this, as in the previous section, shown below in Figure 5.10 is the 

evolution of the minimum, mean and maximum values for the parameters, σ, and dabs and 

the associated evolution of the percentage of vehicles satisfying the necessary criteria 

associated with these parameters.  

Once again, the results presented in Figure 5.10(a) are as expected, with the standard 

deviation increasing as the majority of the vehicles implement the attractive control law 

before decreasing as the number of vehicles using the orientating control law begins to 

increase. However, what it is notable from the results presented in Figure 5.10(a) is the 

substantially longer period of time required for the maximum value of σ to converge 

towards zero. This is not entirely unexpected and is due primarily to the fact that the 

algorithmic parameter, 𝜓𝑎𝑡𝑡  is half the size of the parameter, 𝜓𝑟𝑒𝑝 used in the modified 

repulsive control law. As a result, the speed at which the lateral distance between 

neighbouring vehicles can be reduced at, is inherently smaller.   
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(a) (b) 

  

(c) (d) 

Figure 5.10- Evolution of (a) σ, (b) dabs, (c) percentage of vehicles satisfying the criteria 

associated with σ and (d) percentage of vehicles satisfying the criteria associated with dabs. 

Nevertheless, Figures 5.10 (a) and (c) demonstrate that the modified formation control 

algorithm has, as required, ensured every vehicle converges to approximately the same 

heading angle and hence the first criteria of Table 5.3 has been satisfied by every vehicle. 

As with the results presented in the previous section, this suggests that both the attractive 

and orientating control laws are operating as expected. 

While Figure 5.10 (b) demonstrates that both the minimum and mean values for the 

parameter, dabs have converged to a value within the confines of the orientation zone, the 

results clearly demonstrate that the maximum value is still significantly greater than the 

upper boundary of the orientation zone. However, because the value is steadily decreasing, 

the results imply that the velocity control is operating as expected and if the simulation run 

time were to be extended, this parameter would also converge as required. This is further 

illustrated by the results presented in Figure 5.10 (d) where it is quite clear that the 

percentage of vehicles satisfying the associated convergence criteria is steadily increasing 

at the end of the simulations.   
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When combined, the results presented in Figure 5.10 suggest that because the minimum, 

mean and maximum standard deviation values have all converged to below the required 

limit, the modified algorithm has been able to coordinate the vehicles into the required 

parallel line formation. However, because of the longer convergence time, the velocity 

control law, while still operating as designed, has been unable to reduce the maximum 

value of dabs to within the confines of the orientation zone within the given timeframe.    

To definitively demonstrate that this is the case, shown below in Figure 5.11 is the evolution 

of the minimum, mean and maximum values obtained for the lateral distances, d1 and d2 as 

well as the evolution of the percentage of vehicles satisfying the associated convergence 

criteria.  

  

(a) (b) 

  

(c) (d) 

Figure 5.11- Evolution of (a) the minimum, mean and maximum values for d1 (b) the 

minimum, mean and maximum values for d2 (c) percentage of vehicles satisfying 

convergence criteria associated with d1 (d) percentage of vehicles satisying criteria 

associated with d2 when initially using the attractive control law. 
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Once again, the results presented in Figure 5.11 (a) illustrate that the minimum, mean and 

maximum values for d1 have all converged to within the confines of the orientation zone 

and hence, as shown in Figure 5.11 (c), every vehicle has satisfied the second criteria 

presented in Table 5.3. Similarly, the results presented in Figure 5.11 (d) demonstrate that 

the necessary percentage of vehicles have satisfied the various criteria associated with the 

algorithmic parameter, d2. Combining these results with those presented above in Figure 

5.10 (a) and (c), it is apparent that the first three convergence criteria of Table 5.3 have now 

been satisfied and as a result, every simulation resulted in the required parallel line 

formation been generated. In summarising, the results presented above in Figures 5.10-11 

demonstrate that the modifications made to the attractive behavioural control operate as 

envisioned. Furthermore, the results also demonstrate that the modifications made to the 

attractive behavioural control law (Section 5.2.7) ensure the non-convergence behaviour 

shown in Chapter 4 (Section 4.6.2) no longer occurs. Finally, as with the results presented 

in the previous section, shown below in Figure 5.12 are a selection of the group trajectories 

obtained from the simulations undertaken.  

   

(a) (b) 

    

(c) (d) 

Figure 5.12- Example trajectories. 
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As designed, the trajectories presented above demonstrate that when the modified attractive 

control law is implemented, the vehicles positioned at either side of the group move with 

converging trajectories until the value for d1 converges to within the confines of the 

orientation zone. Similarly to the results presented in Section 5.4.1, the trajectories 

presented above demonstrate that it is the middle two vehicles that converge first and 

thereafter, the remaining vehicles all sequentially converge to using the orientating control 

law. Finally, while the results presented in Figure 5.12 (a) – (d) demonstrate that the 

required parallel line formation has been generated, Figure 5.12 (c) illustrates the difference 

in trajectory obtained when the final convergence criteria of Table 5.3 cannot be satisfied. 

While the difference is noticeable, the trajectory illustrates that because the parallel line 

formation has still been generated, being unable to satisfy this final convergence criteria has 

no impact on the group’s ability to complete the oceanic surveying missions outline in 

Chapter 1.      

5.5 Summary  

The results presented in Section 5.4 demonstrate unequivocally that the modifications made 

to the algorithm operate as envisioned and as a result, the algorithm, as required, is now 

capable of coordinating the vehicles (regardless of initial position) into the parallel line 

formation.   

The aim of the following section is to summarise the modifications made to the algorithm 

and the reasons why they have resulted in the improved performance shown above. 

• Section 5.2.3 demonstrates that in order to identify each vehicles lateral nearest 

neighbour, the vehicles are separated into two categories: those with more 

neighbouring vehicles positioned to their left and those with more neighbouring 

vehicles positioned to their right. Depending on which category each vehicle is 

within, it will identify its lateral nearest neighbour as the vehicle positioned 

immediately to its right or left-hand side.  

• Importantly, this identification process always results in the interaction topology 

shown in Figure 5.2 always being generated among the vehicles. 

• Sections 5.2.5 and 5.2.7 demonstrate that the modifications made to the repulsive 

and attractive control laws result in vehicles positioned at either side of the entire 

group moving with either converging or diverging trajectories. 

• Crucially, these aforementioned convergent/divergent trajectories combined with 

the interaction topology of Figure 5.2 guarantees that the two vehicles positioned 



Modified Formation Control Algorithm  

 

135 

 

at the centre of the group will always be the first to either converge or diverge to 

within the confines of the orientation zone.  

• As Equations (5.20)-(5.21) demonstrate, this initial convergence results in 

subsequent neighbouring vehicles manoeuvring with trajectories that have a 

relative angle between them that is equal to the algorithmic parameters, 𝜓𝑟𝑒𝑝, 𝜓𝑎𝑡𝑡. 

• By default, this difference in trajectories results in the lateral distances between 

these vehicles either increasing or decreasing depending on the control law 

implemented.   

• Therefore, overtime and as demonstrated within Figures 5.6 (a) and 5.10 (a) this 

results in the sequential convergence of every vehicle to within the confines of the 

orientation zone. 

While the results presented in this chapter demonstrate the ability of the modified 

formation algorithm to efficiently coordinate the vehicles into the required parallel line 

formation, it has done so under the unrealistic assumption that communication amongst 

the vehicles is instantaneous. This assumption has meant that whenever the algorithm has 

calculated the subsequent motion of each vehicle, it has done so with a completely accurate 

representation of the position and orientation of every other vehicle within the group. In 

reality, and especially in the underwater environment, this is not the case. 

Therefore, the following chapter will now focus on the introduction of a realistic 

representation of the troublesome underwater communication channel within the 

formation control algorithm presented in this chapter. Thereafter, the work completed will 

analyse what effect its introduction has on the ability of the algorithm to coordinate the 

vehicles in the required parallel line formation. 
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Chapter 6  
Effect of Underwater Communication 

Channel on Algorithm Efficiency 

____________________________________ 

6.1 Introduction 

As discussed in Chapter 5, the work presented thus far has assumed that communication 

among the vehicles is instantaneous. This has meant that when the formation control 

algorithm has evaluated each vehicles subsequent heading angle and velocity, it has done 

so with a continuously accurate representation of both the position and orientation of every 

other vehicle in the group. In reality though, this is not possible and as a result, the 

formation control algorithm is unlikely to perform as well as previously indicated in 

Chapter 5.  

The purpose of this chapter therefore is to implement a realistic representation of the 

underwater communication and test the effect its introduction has on the formation control 

algorithms ability to generate the required parallel line formation. 

To achieve this, the Chapter is structured as follows. Section 6.2 provides a review of the 

literature associated with the underwater communication channel. Section 6.3 describes the 

steps taken to ensure a realistic representation of this channel is incorporated within the 

algorithm. Section 6.4 summarises the simulation setup, assumptions made and parameters 

varied throughout the simulations completed. Section 6.5 presents and analyses the results 

obtained from these simulations and Section 6.6 provides a summary of the main outcomes 

obtained from the work completed in this chapter.
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6.2 Underwater Communication Channel 

Due to their rapid attenuation in water, radio waves cannot be used as a reliable 

communication method in the underwater environment (Heidemann et al. 2012). As a 

result, the vast majority of underwater vehicles are designed to use acoustic communication 

(Akyildiz et al. 2004). While adopting this method allows data to be transferred over greater 

distances more reliably (Cella et al. 2009) (Vasilescu et al. 2005; Farr et al. 2010), acoustic 

communication is nevertheless characterised by low bandwidth (Redfield 2013), large 

propagation delays (Diamant & Lampe 2011) and unreliability (Brignone et al. 2009). With 

this work proposing the implementation of acoustic communication, these inherent 

limitations will be discussed in more detail below. 

6.2.1 Bandwidth Limitations 

In the underwater environment, bandwidth limitations refer to the relatively slow rate at 

which acoustic modems can transmit data at. As shown below in Table 6.1, these 

transmission rates and their associated transmission times vary significantly when 

compared to the bandwidth available to networks using traditional radio communication.  

Table 6.1 - Comparison of transmission rates (MB/s) and associated transmission time for 

acoustic and radio wave transmission (Kilfoyle & Baggeroer 2000; Parkvall & Astely 

2009). 

Acoustic Radio 

Rate (MB/s) Time (s) Rate (MB/s) Time (s) 

0.0039 256s 300 0.003s 

The values presented above demonstrate that presently in the underwater environment, it 

takes approximately 256s for an acoustic modem to transmit 1 Mbyte of data. 

Unsurprisingly, this transmission time is problematically long and as a result, in order to 

reduce the associated delay as much as possible, the amount of data (packet size) 

transferred by each vehicle  needs to be kept to an absolute minimum.   

This is currently achieved by the implementation of a compact control language (Stokey 

2005) which restricts the size of each data packet to a value no greater than 32 bytes. As 

shown below in Table 6.2, this packet size is more than sufficient to transfer the required 

data associated with the formation control algorithm presented thus far. Subsequently, 

assuming the use of an acoustic modem with a transmission rate of 31.2 kbits/s (Evo Logics 
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2014), the transmission time associated with each packet of data used in this work is 

approximately 0.005s. 

Table 6.2- Communication packet used with parameter description and associated size. 

Parameter Size (bytes) 

Vehicle ID 4 

X-Coordinate 4 

Y-Coordinate 4 

Z-Coordinate 4 

Heading Angle 4 

6.2.2 Propagation Delays 

In the previous section, the time taken for a commercially available acoustic modem to 

transmit a data packet of 20 bytes was calculated to be approximately 0.005s. This value 

though doesn’t take into consideration the time it then takes for that same data packet to 

travel from the transmitting node to the receiving node, i.e from one vehicle to another.  

This period of travel is referred to as the propagation delay of the packet and due the speed 

of sound in water (approx. 1500m/s) being five orders of magnitude smaller than radio 

communication (Akyildiz et al. 2004) , this parameter has a significant impact on the 

efficiency of the acoustic communication channel (Stojanovic & Beaujean 2016).  As shown 

below in Equation (6.1), the magnitude of this delay varies depending on the distance 

between the two communicating nodes, i.e. 𝑑𝑛 in Equation (6.1) (Burrowes et al. 2007). 

𝑇𝑃𝑟𝑜𝑝 =
𝑑𝑛
1500

 (6.1) 

Combining Equation (6.1) with the transmission time presented in Section 6.2.1, the total 

time between a vehicle beginning to transmit its message and its neighbouring vehicle 

receiving that message can be written using Equation (6.2). 

𝑇𝑇𝑜𝑡 = 𝑇𝑇𝑟𝑎𝑛𝑠 + 𝑇𝑃𝑟𝑜𝑝 (6.2) 

Analysing Equation (6.2), it becomes apparent why it is impossible for vehicles operating 

in the underwater environment to have, as assumed, a continuously accurate (real time) 

representation of its neighbouring vehicle’s positional data. Instead, the above equation 

demonstrates that the data received by each vehicle at time t, will actually represent the 

data relevant at time, t-𝑇𝑇𝑜𝑡 .  
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6.2.3 Unreliability  

As well as the low bandwidth and large propagation delays discussed above, acoustic 

communication is also known to be extremely unreliable. This unreliability means that even 

if a packet of data is transmitted successfully, there is no guarantee that the recipient will 

successfully receive the data. For example, experimental results presented in (Vasilescu et 

al. 2005) and (Brignone et al. 2009) demonstrate that success rates can vary between 18% 

and 100%. The reasons for this unreliability are mainly due to changes in the chemical-

physical composition of the underwater environment causing wave phenomena such 

reflection, refraction, attenuation (Ayaz 2012) as well as multi-path propagation (Partan et 

al. 2007).  

6.2.4 Channel Access Methods 

So far, the discussions presented above have only taken into consideration the problems 

associated with unidirectional communication and not the additional complications 

associated with bidirectional communication. In order to facilitate bidirectional 

communication and hence allow the various vehicles to communicate with one another 

effectively, a suitable channel access method has to be implemented.  

As discussed in (Stojanovic & Beaujean 2016), channel access methods can be separated into 

two categories depending on how frequently communication among the various vehicles 

is deemed necessary. In scenarios where communication is required on a frequent basis, 

deterministic access methods are used. Conversely, where sporadic communication is 

believed to be sufficient, random access methods are commonly used. Since the work 

presented in this thesis has been based on the assumption that every vehicle has a 

continuously accurate representation of every other vehicle’s positional data, only 

deterministic access methods have been considered in this work. 

Currently, the most common of these channel access methods in the underwater domain 

are Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA) 

and Code Division Multiple Access (CDMA) (Sozer et al. 2000) (Stojanovic & Beaujean 

2016).  

As the names suggests, FDMA operates by dividing the available acoustic frequencies 

among the different users (vehicles) to provide a unique communicating frequency for each 

user of the channel (Sozer et al. 2000). However, this method has never been used in reality 

due to the fact that it reduces the already limited bandwidth available to each vehicle and 



Effect of Underwater Communication Channel on Algorithm Efficiency 

 

140 

 

as a result, produces longer transmission times (Akyildiz et al. 2006; Stojanovic & Beaujean 

2016). 

The CDMA protocol meanwhile allows each user to simultaneously communicate across 

the same frequency band with users identified by their unique codes once the data has been 

received (Heidemann et al. 2012). While promising due to its ability to allow every user 

simultaneous access to the channel, CDMA suffers from a number of drawbacks including 

larger bandwidth requirements, greater power consumption and expensive set up costs 

(Andrews et al. 2007). Furthermore, the implementation of the CDMA is likely to produce 

a scenario where the problematic near-far problem arises (Muqattash et al. 2003). The near-

far problem arises when the transmission of one vehicle blocks the transmission of a second 

vehicle being received by an additional third vehicle. 

Lastly, the TDMA protocol operates by providing each user a unique time slot during which 

it can broadcast to the remaining users of the channel (Heidemann et al. 2012). These 

timeslots are predefined and usually include conservative guard times to take into 

consideration the time delays associated with the aforementioned transmission and 

propagation delays of each message (Burrowes et al. 2007). Presently, due to its simplicity, 

the TDMA protocol is the only channel access method to have been implemented 

experimentally to facilitate inter-vehicle communication (Brignone et al. 2009). 

Furthermore, as highlighted in (Tena 2018), the majority of current research projects 

associated with multi-vehicle collaboration in the underwater environment are using the 

TDMA protocol. Therefore, as the TDMA protocol is currently the most popular protocol 

for the underwater environment, an accurate representation of this protocol will be 

incorporated within the work completed in this chapter.  

Importantly, while the TDMA protocol is known for its simplicity, it is also the least efficient 

protocol in terms of channel throughput and utilisation (Chen et al. 2014). This means that 

it is the protocol that provides each vehicle with the least number of opportunities to 

communicate with the other members of the group. As a result, incorporating the TDMA 

protocol presents the overall worst case scenario in terms of inter-vehicle communication 

when compared with the FDMA and CDMA protocols. 

6.3 TDMA Communication Protocol   

As discussed above and shown below in Figure 6.1, the TDMA protocol operates by 

assigning each vehicle a unique timeslot during which it has guaranteed and uninterrupted 
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access to the communication channel. It is during these timeslots that each vehicle 

broadcasts to the other members of the group. 

As illustrated in Figure 6.1, once every vehicle has broadcast its first message, the entire 

process is restarted and is continuously repeated until the end of the mission. The period 

between successive communication updates from the same vehicle is referred to as the 

Communication Cycle Length and as Figure 6.1 demonstrates, the magnitude of this 

parameter is dependent on the chosen timeslot size and the number of vehicles within the 

group.  

 

Figure 6.1- Evolution of vehicle broadcasting pattern using TDMA protocol. 

6.3.1 Calculating Timeslot Size 

As discussed in (Chen et al. 2014; Burrowes et al. 2007), the timeslot size used in the TDMA 

protocol should be set to minimise the likelihood of a phenomena known as packet collisions 

from occurring. As shown below in Figure 6.2, this phenomena occurs when data sent from 

two separate sources arrive simultaneously at the same receiving node (Burrowes et al. 

2007).    

 

Figure 6.2- Spatial-Temporal diversity between communicating vehicles in the 

underwater environment (Burrowes et al. 2007). (Figure has been removed due to 

copyright restrictions). 
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To reduce the likelihood of these collisions occurring, (Syed et al. 2007; Yackoski & Shen 

2008) have demonstrated that both the Transmission Time (Section 6.2.1) and Propagation 

Delay (Section 6.2.2) should be taken into consideration when calculating the timeslot size, 

TTimeslot. In addition, it is also widely accepted that a third term known as the Guard Time 

should be included as an extra precaution to further reduce the likelihood of packet collisions 

occurring (Heidemann et al. 2012; Diamant & Lampe 2011; Kilfoyle & Baggeroer 2000; 

Stojanovic 2003). Combining this Guard Time, with the aforementioned Transmission Time 

and Propagation Delay, the timeslot size can be calculated using the following equation: 

𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 = 𝑇𝑇 + 𝑇𝑃 + 𝑇𝐺 (6.3) 

Where 𝑇𝑇 represents the Transmission Time presented in Section 6.2.1, 𝑇𝑃 is the Propagation 

Delay calculated using Equation (6.1) and 𝑇𝐺 is the Guard Time and is commonly made equal 

in magnitude to the propagation delay (Yackoski & Shen 2008). 

By evaluating and combining the three parameters shown in Equation (6.3), an appropriate 

timeslot size can now be evaluated. Before this can be achieved though, it is important to 

select an appropriate value for the parameter, 𝑇𝑃. The reason that this is important is due to 

the fact that the value chosen for this parameter is based on the distance between the 

transmitting and receiving nodes, 𝑑𝑛 (Equation (6.1)). As this parameter will  be 

continuously evolving throughout each mission as the vehicles coordinate themselves, a 

conservative estimate, equal to the maximum range of the acoustic modem is used.   

Presently, the range of acoustic modems can be anywhere in the region of 350m to 8 km. As 

a result, the associated theoretical timeslot sizes will range from 0.5s through to 11.7s. 

However, figures quoted in the literature suggest that in reality, these values can vary 

between 6s and 45s (Caiti et al. 2012; Brignone et al. 2009; Sotzing, C.C, Lane 2010; Tsiogkas 

et al. 2015)(Tena 2018).  

Using these figures, it is apparent that in the theoretical best case scenario, each vehicle will 

receive a communication update every 0.5s and in the worst case, ever 45s. Crucially 

however, as a result of the protocols cyclical nature, each vehicle will only receive a 

communication update from its single nearest neighbour once every communication cycle. 

Thus, using the best and worst case scenarios quoted above means that instead of having a 

continuously accurate representation of its nearest neighbour’s position, each vehicle will 

now only have, at best, an accurate representation once every 6s and at worst, once every 6 

minutes.  
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6.3.2 Incorporating TDMA Communication Protocol 

As in Chapter 4, shown below in Figure 6.3 is a simplified representation of the system 

architecture used to represent the RoboSalmon vehicle.  

 

Figure 6.3- Simplified RoboSalmon system architecture. 

As discussed throughout Chapters 4 & 5, the Autopilot subsystem provides a desired 

heading angle, ψd to the Control System that is based on the position and orientation of the 

vehicles nearest neighbours (xNN, yNN and ψNN) as well as the vehicle’s own position (xV, yV).  

Thereafter, the Control System evaluates the necessary tail centreline deflection angle, δt that 

will manoeuvre the vehicle in the required direction. As shown below in Equation (6.4) the 

positional and heading data used by the formation control algorithm can be compiled into 

three column vectors  

𝐱𝐔 =

[
 
 
 
 
 
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
𝑥11
𝑥12]
 
 
 
 
 
 
 
 
 
 

        𝐲𝐔 =

[
 
 
 
 
 
 
 
 
 
 
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7
𝑦8
𝑦9
𝑦10
𝑦11
𝑦12]
 
 
 
 
 
 
 
 
 
 

        𝛙𝐔 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜓1
𝜓2
𝜓3
𝜓4
𝜓5
𝜓6
𝜓7
𝜓8
𝜓9
𝜓10
𝜓11
𝜓12]

 
 
 
 
 
 
 
 
 
 
 
 

 (6.4) 

So far throughout this work, the values contained in these vectors have represented the 

most up to date positional information associated with each vehicle in the group. As shown 

below in Figure 6.4 this means that the positional information used by the formation control 

algorithm has thus far represented the data applicable to each vehicle during the current 

time-step, k within the mathematical model.  
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Figure 6.4- Data flow within Guidance System with communication for vehicle i at time 

step, k. 

However, in order to implement a realistic representation of the TDMA protocol, it is 

essential that the data contained within these vectors is now only updated once at the 

beginning of each timeslot. Moreover, it is also imperative that only the data associated 

with the vehicle currently broadcasting be updated at the start of each timeslot. Therefore, 

once the TDMA protocol has been implemented, the frequency at which the communication 

system will update the vectors shown in Equation (6.4) will have to be equal to the 

reciprocal of the timeslot size. Furthermore, due to the nature of the TDMA protocol, the 

data contained within each row of these vectors has to represent the data associated with 

that vehicle from when it last broadcasted its data.  

In order to ensure that this is the case, the data storage functionality shown above in Figure 

6.4 has been included.  This system operates by storing the values calculated for the 

parameters, x, y and ψ for each vehicle, at each time step, k in the matrices, x, y and ψ. As a 

result, these matrices contain the complete time histories of the positional data associated 

with each vehicle in the group. This means that at any time step, k the data associated with 

each vehicle when it last broadcast, m number of time steps previously can be acquired. As 

a result, this guarantees that the data past to the formation control algorithm will represent 

the data associated with each vehicle the instance they last broadcasted their data packet. 

Once a realistic representation of the TDMA protocol has been incorporated, the vectors 

presented in Equation (6.4) become equal to those shown in Equation (6.5). 
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𝐱𝐔𝒋 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑥1(𝑘 − 𝑡𝑖)

𝑥2(𝑘 − 𝑡𝑖)

𝑥3(𝑘 − 𝑡𝑖)

𝑥4(𝑘 − 𝑡𝑖)

𝑥5(𝑘 − 𝑡𝑖)

𝑥6(𝑘 − 𝑡𝑖)

𝑥7(𝑘 − 𝑡𝑖)

𝑥8(𝑘 − 𝑡𝑖)

𝑥9(𝑘 − 𝑡𝑖)

𝑥10(𝑘 − 𝑡𝑖)

𝑥11(𝑘 − 𝑡𝑖)

𝑥12(𝑘 − 𝑡𝑖)]
 
 
 
 
 
 
 
 
 
 
 
 

     𝐲𝐔𝒋 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑦1(𝑘 − 𝑡𝑖)

𝑦2(𝑘 − 𝑡𝑖)

𝑦3(𝑘 − 𝑡𝑖)

𝑦4(𝑘 − 𝑡𝑖)

𝑦5(𝑘 − 𝑡𝑖)

𝑦6(𝑘 − 𝑡𝑖)

𝑦7(𝑘 − 𝑡𝑖)

𝑦8(𝑘 − 𝑡𝑖)

𝑦9(𝑘 − 𝑡𝑖)

𝑦10(𝑘 − 𝑡𝑖)

𝑦11(𝑘 − 𝑡𝑖)

𝑦12(𝑘 − 𝑡𝑖)]
 
 
 
 
 
 
 
 
 
 
 
 

      𝛙𝐔𝒋 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜓1(𝑘 − 𝑡𝑖)

𝜓2(𝑘 − 𝑡𝑖)

𝜓3(𝑘 − 𝑡𝑖)

𝜓4(𝑘 − 𝑡𝑖)

𝜓5(𝑘 − 𝑡𝑖)

𝜓6(𝑘 − 𝑡𝑖)

𝜓7(𝑘 − 𝑡𝑖)

𝜓8(𝑘 − 𝑡𝑖)

𝜓9(𝑘 − 𝑡𝑖)

𝜓10(𝑘 − 𝑡𝑖)

𝜓11(𝑘 − 𝑡𝑖)

𝜓12(𝑘 − 𝑡𝑖)]
 
 
 
 
 
 
 
 
 
 
 
 

 (6.5) 

The vectors presented above clearly demonstrate that as a result of incorporating the TDMA 

protocol, the formation control algorithm will no longer have access to the most up-to-date 

positional information, i.e. 𝐱𝐔(k), 𝐱𝐔(𝒌),𝛙𝐔(𝒌) but instead, the data accurate from 𝑡𝑖 

seconds previously.  As shown below in Equation (6.6) due to the cyclical nature of the 

TDMA protocol, the parameter 𝑡𝑖 varies depending upon which vehicle is currently 

broadcasting.  

𝑡𝑖 = {
(|𝑛 − 𝑖|𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡) , 𝑖𝑓   𝑖 ≤  n

((12 − |𝑛 − 𝑖|)𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡), 𝑖𝑓   𝑖 >  n
  (6.6) 

Where the parameter, n represents the vehicle currently broadcasting and i identifies the 

particular row within the vectors. Applying these general equations to the vector, 𝐱𝐔 while 

assuming n is equal to eight produces the vector shown below in Equation (6.7). 

𝐱𝐔 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑥1(𝑘 − (7𝑇𝑇𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥2(𝑘 − (6𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥3(𝑘 − (5𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥4(𝑘 − (4𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥5(𝑘 − (3𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥6(𝑘 − (2𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥7(𝑘 − (1𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥8(𝑘 − (0𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥9(𝑘 − (11𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡   − 𝑇𝑇𝑜𝑡))

𝑥10(𝑘 − (10𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥11(𝑘 − (9𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡    − 𝑇𝑇𝑜𝑡))

𝑥12(𝑘 − (8𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡    − 𝑇𝑇𝑜𝑡))]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.7) 
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Equation (6.7) illustrates that as the vehicle broadcasting progresses from one vehicle to the 

next, the data associated with the vehicles that previously broadcasted becomes 

increasingly older. Intuitively, the row associated with the vehicle next in line to broadcast 

will contain the most out-of-date data, i.e. row nine in Equation (6.7).  

Importantly, the eighth row of Equation (6.7) demonstrates that the data received from 

Vehicle 8 by the remaining members of the group does not contain the most up to date 

representation of the vehicle’s position and orientation but instead, the data accurate from 

𝑇𝑇𝑜𝑡 seconds previously. As discussed in Sections 6.2.1-2, this additional term has been 

included to take into consideration the transmission and propagation delays associated 

with the underwater environment. 

Finally, it is important to note that the vector presented in Equation (6.7) doesn’t take into 

consideration the assumption that each vehicle maintains an accurate representation of its 

own position and orientation. As a result, the data contained within the vectors, xU, yU and 

ψU will differ for each vehicle in the group. This is shown below in Equation (6.8) where a 

comparison between the data available to a transmitting vehicle (i.e. Vehicle 8) is compared 

with the data contained within a vehicle receiving the same data (Vehicle 2). 

𝐱𝐔𝟖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑥1(𝑘 − (7𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥2(𝑘 − (6𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥3(𝑘 − (5𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥4(𝑘 − (4𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥5(𝑘 − (3𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥6(𝑘 − (2𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥7(𝑘 − (1𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥8(𝑘)

𝑥9(𝑘 − (11𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡   − 𝑇𝑇𝑜𝑡))

𝑥10(𝑘 − (10𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥11(𝑘 − (9𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡    − 𝑇𝑇𝑜𝑡))

𝑥12(𝑘 − (8𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡    − 𝑇𝑇𝑜𝑡))]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      𝐱𝐔𝟐 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑥1(𝑘 − (7𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥2(𝑘)

𝑥3(𝑘 − (5𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥4(𝑘 − (4𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥5(𝑘 − (3𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥6(𝑘 − (2𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥7(𝑘 − (1𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥8(𝑘 − 𝑇𝑇𝑜𝑡)

𝑥9(𝑘 − (11𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡   − 𝑇𝑇𝑜𝑡))

𝑥10(𝑘 − (10𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 − 𝑇𝑇𝑜𝑡))

𝑥11(𝑘 − (9𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡    − 𝑇𝑇𝑜𝑡))

𝑥12(𝑘 − (8𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡    − 𝑇𝑇𝑜𝑡))]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.8) 

These vectors clearly demonstrate that as a result of introducing a realistic representation 

of the TDMA protocol, the only continuously accurate data available to each vehicle is its 

own position and heading angle. Unsurprisingly, for the remaining data, its accuracy varies 

depending upon the current point in the communication cycle and the magnitude of the 

algorithmic parameters 𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 and 𝑇𝑇𝑜𝑡 .  

The above section has described the changes made to the algorithm to ensure a realistic 

representation of the TDMA protocol has been incorporated within the formation control 
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algorithm. Moreover, the work presented above has also demonstrated that the two 

parameters that influence the accuracy of the data available to each vehicle are the chosen 

timeslot size and the combined transmission and propagation time, 𝑇𝑇𝑜𝑡. The following 

section will now describe the exact values used for these parameters throughout the 

simulations completed as well as the metrics used to ascertain to what extent introducing 

the TDMA protocol affects the algorithms ability to coordinate the vehicles into the 

required parallel line formation. 

6.4 Simulation Setup 

In order to ensure the results presented in this chapter can be compared with those 

presented previously in Chapter 5, the initial conditions, i.e. vehicle position & orientation 

have remained unchanged. As a result, once more the simulations can be separated into 

two groups depending on the initial control law implemented by the vehicles. 

Table 6.3 - Variation in simulation parameters. 

Parameter Group 1  Group 2  

Initial Behaviour 

Utilised 
(Repulsive) (Attractive) 

Behavioural Zones Size 

(m) 
[20,25,200]m [6,11,200]m 

Timeslot Size (𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡) [0.5, 1, 2, 4, 8, 16, 24]s 

Transmission & 

Propagation Delay 

(𝑇𝑇𝑜𝑡)  

0.205s 

Nearest Neighbours 

Utilised (INN) 
11 11 

Reference Heading 

Angle (ψref) 

𝜓

4
 

𝜓

4
 

Importantly, Table 6.3 also illustrates that the values used for the algorithmic parameter, 

𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 were varied considerably. As discussed in (McColgan & McGookin 2017), the 

reason for this variation is to ensure that both theoretically possible values as well as more 

realistic values are investigated within the study undertaken. Conversely, the value for the 

parameter, 𝑇𝑇𝑜𝑡 is set to and kept constant at 0.205s. This specific value is obtained by 

implementing Equation (6.1) and setting the parameter, dN equal to the maximum range of 

the acoustic modem, which for the work completed in this thesis, is equal to 300m (Evo 
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Logics 2014). This value is then added to the transmission time of 0.005s calculated in 

Section 6.2.1.  

All other algorithmic parameters remain unchanged from those used in Chapter 5. Once 

again, as with the simulations completed throughout this Thesis, the two groups of 

simulations presented in Table 6.3 are each composed of 100 different simulations.  

6.5 Simulation Results 

Throughout this thesis, the main aim of the formation control algorithm has been to ensure 

that each group of vehicles is able to satisfy the requirements presented in Table 5.3. So far, 

as the results presented in Chapter 5 demonstrate, the modified algorithm has been able to 

achieve this due to the fact that each vehicle had a continuously accurate representation of 

its nearest neighbours position and orientation. However, due to the implementation of the 

TDMA protocol, it is now apparent that each vehicle will now only have an accurate 

representation of its nearest neighbour’s data once every communication cycle. Therefore, 

in the intermittent period between successive communication updates, an error will exist 

between where the vehicle calculates its nearest neighbour to be and where it actually is. 

Intuitively, this error will translate into an error in the evaluation of each vehicle’s absolute 

and lateral nearest neighbour distances. Consequently, the results presented below will 

begin by analysing how these errors evolve throughout the course of the various 

simulations completed. Thereafter, to demonstrate whether or not these errors effect the 

algorithms performance, the evolution of the percentage of vehicles satisfying the various 

requirements presented in Table 5.3 will be presented and analysed. As with the results 

presented in the previous chapters, this analysis will be completed by firstly analysing the 

results obtained when every vehicle is using the repulsive control law. Thereafter, Section 

6.5.2 will analyse the results obtained when the majority of vehicles initially implemented 

the attractive control law. 

6.5.1 Effect of TDMA Protocol on Repulsive Control Law  

To begin analysing the results obtained from the simulations discussed above, the results 

presented below will analyse the evolution of the error associated with the evaluation of 

each vehicles lateral and absolute nearest neighbour distances. To achieve this, Section 6.5.1.1 

will analyse the results associated with the lateral distances while Section 6.5.1.2 will focus 

on the results obtained for each vehicle’s absolute nearest neighbour distance.  
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6.5.1.1 Analysing Lateral Distance Error 

Shown below in Figure 6.5 is the evolution of the mean error associated with the evaluation 

of each vehicles lateral nearest neighbour distances as the timeslot size is increased. Before 

the results presented below are analysed it is important to emphasise that the results 

presented in Figure 6.5 represent the evolution of the mean error evaluated across the 100 

simulations completed for each timeslot size. This means that the results presented below 

represents the data from 700 simulations. 

 

Figure 6.5 - Evolution of the mean error associated with the evaluation of each vehicles 

lateral nearest neighbour. 

The results presented in Figure 6.5 (a) demonstrate that although the error associated with 

the lateral nearest neighbour distance always initially increases, it also subsequently always 

converges to a value that is approximately equal to  zero. In order to understand why this 

is the case, it is necessary to explain the relationship between the estimated d1 value, its true 

value and how the difference between these two values, i.e. the error, evolves throughout 

a communication cycle. To achieve this, shown below in Figure 6.6 is the evolution of these 

parameters and the associated vehicle trajectories when the timeslot size is equal to 1s, i.e. 

a communication cycle length of 12s. 

At the start of the communication cycle, i.e. Time = 62s, Figure 6.6 (a) clearly demonstrates 

that as a result of having just received a communication update from Vehicle 1, the 

evaluation of d1 from within Vehicle 2 (red line) is very similar to the true lateral distance 

between the vehicles (blue line). This is to be expected and the reason that they are not 
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identical is due to the delay in the time taken for the data packet to firstly transmit from the 

modem of the Vehicle 1 and then travel (propagate) to Vehicle 2, i.e. 𝑇𝑇𝑜𝑡 in Equation (6.7). 

  

(a) (b) 

Figure 6.6 - Comparison of (a) the evolution of the true d1 value, the estimated d1 value 

and the resulting error during one communication cycle and (b) neighbouring vehicles 

trajectories. 

In the subsequent seconds after the communication update, Figure 6.6 (a) demonstrates that 

the difference between the estimated and true value begins to increase linearly. This 

behaviour is due to the fact that in the period between successive communication updates 

from Vehicle 1, Vehicle 2 continues to use the last transmitted position of its nearest 

neighbour. As Figure 6.6(b) illustrates, because Vehicle 2 is moving away from the last 

transmitted position of Vehicle 1, the estimated value for d1 will continue to increase 

throughout the communication cycle. In reality however, because Vehicle 1 is also using 

the repulsive control law, it too will move in the same direction as Vehicle 2 (Figure 6.6 (b)) 

and with the same velocity. Intuitively, as shown in Figure 6.6 (a), this means that the true 

value for d1 remains unchanged throughout the communication cycle. As a result, the 

difference between the true and estimated value will continue to increase until the next 

communication update at 74s. Thereafter, this increase and momentary resetting of the 

error continues to occur as long as both vehicles continue to use the repulsive control law. 

However, as soon as one of the vehicles begins to use the orientating control law, the 

aforementioned error no longer increases but instead, as shown below in Figure 6.7 (a), 

begins to converge towards zero. The reason the error now converges towards zero 

becomes apparent when the geometry associated with calculating the lateral distance 

between the two vehicles is analysed. If Figure 6.7 (b) is analysed under the assumption 
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that Vehicle 1 continues to use the orientating control law and maintains its perpendicular 

trajectory to Vehicle 2 (Figure 6.7 (a)), the only way in which the lateral distance, d1, as shown 

in Figure 6.7(b) can vary is through changes in Vehicle 2’s trajectory.  As a result, because 

each vehicle continues to have an accurate representation of its own position and 

orientation, as soon as Vehicle 2 receives a subsequent communication update from Vehicle 

1, it will thereafter be able to accurately calculate the lateral distance between the two 

vehicles. This is demonstrated in Figure 6.7(a) where at approximately 170s – 10 seconds 

after Vehicle 1 has started using the orientating control law - Vehicle 2 receives a 

communication update from Vehicle 1 and there afterwards, the error, as expected, reduces 

close to zero and remains unchanged throughout the rest of the simulation. 

  

(a) (b) 

Figure 6.7- Comparison of (a) the evolution of the true d1 value, the estimated d1 value 

and the resulting error during multiple communication cycles and (b) neighbouring 

vehicles trajectories. 

The results presented above explain the reasons why the error associated with the 

parameter, d1 always converges close to zero. Furthermore, the reason the magnitude of the 

error increases as the timeslot size increases as shown in Figure 6.5 is due simply to the 

increase in the communication cycle length associated with a larger timeslot size.   

Using the results presented above and the accompanying analysis, it is apparent that the 

only explanation available for the error in Figure 6.5 always converging towards zero is 

that each vehicle has successfully transitioned (as required) to implementing the orientating 

behavioural control law.  These results imply that despite the implementation the TDMA 

protocol, the formation control algorithm is still capable of coordinating the vehicles into 

the required parallel line formation. To demonstrate that this is indeed the case, shown 
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below in Figure 6.8 is the variation in the evolution of the percentage of simulations 

satisfying the criteria associated with ensuring the parallel line formation has been 

generated. 

 

Figure 6.8 - Variation in the percentage of simulations satisfying necessary criteria as 

timeslot size is increased. 

The results presented above clearly demonstrate that despite the introduction of the TDMA 

protocol, the formation control algorithm is still capable of coordinating the vehicles into 

the required parallel line formation. However, it is also evident that the convergence time 

of the algorithm increases considerably from 250s (approx. 4mins) when the timeslot size is 

equal to 0.5s through to 2200s (approx. 37mins) when the timeslot size is 24s.  

In order to understand why the algorithm is still capable of generating the required 

formation, the following section will now analyse the interaction topology associated with 

the algorithm and explain why it assists in ensuring the required parallel line formation can 

be generated.  

6.5.1.2 Analysing Group Convergence 

The results presented in the previous section demonstrate that despite the introduction of 

the TDMA protocol, the formation control algorithm is still capable of coordinating the 

vehicles into the required parallel line formation. However, the results presented above do 

not explain why, despite the introduction of these significant delays, convergence is still 

possible. The aim of this is section is to explain in detail the mechanisms associated with 
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the formation control algorithm that still facilitates the vehicles still being able to generate 

the required formation. 

In order to achieve this though, it is necessary to analyse the relationship between the 

vehicles trajectories, the decision making process used to select each vehicles nearest 

neighbour, the evolution of the positional data available to each vehicle and finally, the 

required vehicle interaction topology. To achieve this, presented below in Figure 6.9 is the 

required interaction topology of the group as well as an indication of the vehicles heading 

direction when the repulsive control law is implemented.  

 

Figure 6.9- Diagram demonstrating interaction topology and vehicle heading angle when 

every vehicle is using the repulsive control law. 

Upon analyses of Figure 6.9, it becomes immediately apparent that once the cyclical nature 

of the TDMA protocol is incorporated, vehicles implementing the repulsive control law are 

likely to begin selecting the wrong nearest neighbour as the timeslot size is increased. To 

demonstrate this, the following discussion will focus primarily on the motion of Vehicle 7 

and its nearest neighbours, Vehicles 6 and 8 in Figure 6.9.   

As shown in Figure 6.9, as a result of implementing the repulsive control law, Vehicle 7 will 

manoeuvre directly towards the last transmitted location of Vehicle 8. As the scenario 

evolves and if no subsequent communication updates are received from Vehicle 8, Vehicle 

7 will eventually manoeuvre past the last transmitted position of Vehicle 8 and as a result, 

will incorrectly estimate that Vehicle 8 is now positioned immediately to its left hand side. 

When this occurs Vehicle 7 will alter its nearest neighbour from Vehicle 6 to Vehicle 8 and 

thus, the required interaction topology is no longer maintained.  
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Moreover, Figure 6.9 illustrates that if all the vehicles in the group are initially using the 

repulsive control law (as is the case in this work), this incorrect switching of the vehicles 

nearest neighbour is likely to occur throughout the entire group. The exception to this is the 

two vehicles positioned at the extreme left and right hand side of the group. 

Nevertheless, Figure 6.9 demonstrates that when this is the case and vehicles do begin 

selecting the wrong nearest neighbour, they will by default, continue to implement the 

repulsive control law. Importantly, this means that the lateral distance between Vehicles 6 

and 7 will continue to increase. This will continue until Vehicle 7 receives a communication 

update from Vehicle 8. At which point, it will revert back to using Vehicle 6 as its nearest 

neighbour. Depending on the initial lateral distance between Vehicles 6 and 7 and the length 

of the communication cycle, it is possible that when the new estimated lateral distance 

between these two vehicles is calculated, it will still be below the boundary of the orientation 

zone. If this is the case, the process described above of Vehicle 7 selecting the wrong nearest 

neighbour but continuing to implement the repulsive control law will be repeated.  

At some point, when Vehicle 7 begins to reuse Vehicle 6 as its nearest neighbour, the new 

estimated lateral distance between these vehicles will eventually diverge to a value that is 

within the confines of either the orientation or attraction zones. Crucially, as shown below in 

Figure 6.10, when this occurs and due to the implementation of a different control law, 

Vehicle 7 will now no longer manoeuvre in the same direction as the last transmitted 

positions of its neighbouring vehicles (8-12) but instead, in a direction that is either towards, 

parallel or perpendicular to Vehicle 6, i.e. it’s correct nearest neighbour.  

 

Figure 6.10- Diagram demonstrating interaction topology and Vehicle Seven’s potential 

heading angle when using the attractive or orientating control laws. 
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Therefore, as a result of Vehicle 7 implementing either the attractive or orientating control 

laws, it will now be impossible for it to incorrectly select a vehicle positioned to its right-

hand side. This means that once vehicle 7 has transitioned to implementing either the 

orientating or attractive control laws, it is guaranteed to thereafter always use the required 

nearest neighbour.  

While the discussion presented above has focussed primarily on Vehicle 7, an identical 

process will occur with Vehicle 6 where if the timeslot size is sufficiently large, it too, will 

rely on implementing either the attractive or orientating control laws in order to guarantee 

convergence to using the correct nearest neighbour. However, once these two centrally 

positioned vehicles have converged to using each other as nearest neighbours (as required), 

the geometry associated with evaluating the lateral nearest neighbour distance – as shown 

in Figure 6.7 - will ensure that the two vehicles are subsequently capable of correctly 

converging to a d1 value that is within the confines of the orientation zone.  

Thereafter, a similar process to that discussed above will occur for the remaining vehicles 

until every vehicle has converged to not only the required interaction topology but also the 

correct lateral nearest neighbour distance, d1. This delayed sequential convergence to the 

required parallel line formation is shown below in Figure 6.11. 

Importantly, the trajectories presented in Figure 6.11 have been taking from a simulation 

where the timeslot size was set to 24s and as a result, they represent the worst case scenario 

in terms of the timeslot size and communication cycle length used in this study.  

Nevertheless, the results clearly demonstrate that as discussed above, once the middle two 

vehicles have successfully converged to using the orientating control law (Figure 6.11 (a)), 

one by one, the remaining vehicles also converge (Figures 6.11 (b) – (d)) and the required 

parallel line formation is eventually generated (Figure 6.11 (e)). As discussed above, the 

trajectories presented below clearly demonstrate that due to the timeslot size implemented, 

the vehicles are only able to successfully converge to the required formation after they have 

implemented the attractive control law. 

The analysis presented above has demonstrated that if the timeslot size is sufficiently large, 

the required interaction topology shown in Figure 6.9 can no longer be maintained and if 

this is the case, the formation control algorithm becomes reliant on the implementation 

(correct or otherwise) of either the attractive or orientating control laws to ensure 

convergence. Furthermore, convergence to the required formation will only occur after the 
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middle two vehicles (Vehicles 6 & 7 in Figure 6.10) have both converged to the using the 

orientating control law. 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 6.11 - Vehicle trajectories obtained at (a) 690s (b) 900s (c) 1200s (d) 1800s and (e) 

2400s when Timeslot Size is equal to 24s. 
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In terms of the increased convergence time shown in Figure 6.8, it is apparent from Section 

6.3 that as the timeslot size is increased, the vehicles will receive less communication 

updates from each member of the group. As a result, based on the above analysis, it is 

apparent that when the timeslot size is increased, the vehicles using the wrong nearest 

neighbour will do so for increased periods of time simply due to the increased 

communication cycle length. Intuitively therefore, when these vehicles do receive an 

update, the trajectory corrections they will be required to make will be greater and as a 

result will require more time correct. To demonstrate that this is indeed the case, shown 

below in Figure 6.12 is the variation in a group’s trajectory as the timeslot size is increased 

form 1s to 24s. Before analysing the trajectories presented below, it is important to note that 

the only simulation parameter varied for each trajectory is the timeslot size implemented. 

As expected, the trajectories presented below in Figure 6.12 demonstrate that when the 

timeslot size is relatively small, i.e. less than or equal to two seconds, the difference in the 

trajectories obtained appears to be minimal with each vehicle, as required, successfully 

transitioning from the repulsive control law to the orientating one without significant delay. 

However, as the timeslot size is increased further to 4s as is the case in Figure 6.12 (d), it 

becomes apparent that due to the increased communication cycle length, a number of 

vehicles (at certain points throughout the simulation) have diverged to a lateral nearest 

neighbour distance that is within the confines of the attraction zone.  Nevertheless, as 

discussed above, due to the design of the attractive control law, the vehicles are 

subsequently capable of manoeuvring back to within the confines of the orientation zone. 

In the remaining graphs, i.e. Figures 6.12 (e), (f) and (g), the effect of the increased 

communication cycle length becomes ever more apparent with the vehicles having to travel 

greater distances when using the attractive control law to correct the extended and incorrect 

implementation of the repulsive control law  

In summarising, the results presented in this section have illustrated and explained why, 

despite the introduction of a realistic representation of the TDMA protocol, the formation 

control algorithm is still capable – albeit less efficiently – of manoeuvring the vehicles into 

the required parallel line formation.  

The following section will now analyse the errors associated with evaluation of each 

vehicles absolute nearest neighbour distance and how they influence the algorithms ability 

to manoeuvre the vehicles as required.  
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(a) Timeslot – 1s (b) Timeslot – 2s 

  

(c) Timeslot – 4s (d) Timeslot – 8s 

  

(e) Timeslot – 16s (f) Timeslot – 24s 

Figure 6.12- Variation in vehicle trajectories obtained as timeslot size is increased. 



Effect of Underwater Communication Channel on Algorithm Efficiency 

 

159 

 

6.5.1.3 Analysing Absolute Distance Error 

So far, the results presented have only taken into consideration the requirements associated 

with each vehicle’s lateral nearest neighbour distance, d1 and not those associated with each 

vehicle’s absolute nearest neighbour distance. Consequently, this section will use the results 

presented below in Figure 6.13 as a basis to explain what effect incorporating the TDMA 

protocol has on the algorithm’s ability to ensure each vehicle converges to an appropriate, 

dabs value.  

Contrary to the results associated with the lateral nearest neighbour distance, the results 

presented below demonstrate that the error associated with dabs never converges to zero but 

instead, to a non-zero value that increases with the timeslot size.  

 

Figure 6.13 - Evolution of the mean error associated with the evaluation of dabs. 

As with the results presented above in the previous section, in order to explain why this is 

the case, it is necessary to analyse the evolution of the estimated absolute nearest neighbour 

distance, the true absolute nearest neighbour distance, the associated error between these 

two values and the relative trajectories of the two vehicles being analysed. Once again, 

while the results presented below are obtained from a single simulation, they are 

nevertheless representative of the results obtained throughout the various simulations 

completed. 

The results presented below in Figure 6.14 are similar to those shown previously in Figures 

6.6-7 with a cyclical error existing due to the fact that throughout each communication cycle, 

Vehicle 1 incorrectly believes that Vehicle 2 is stationary.  
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(a) (b) 

Figure 6.14 - Comparison of (a) neighbouring vehicles trajectories (Exaggerated for clarity) 

and (b) evolution of true and estimated values for dabs. 

However, due to the different geometry associated with evaluating the absolute nearest 

neighbour distance, it is apparent from Figure 6.14 (b) the associated error will never 

converges to zero but instead, increase steadily throughout each communication cycle 

before momentarily resetting when a communication update form its nearest neighbour is 

received. 

In terms of the algorithm being able to satisfy the relevant criteria associated with the 

parameter, dabs, the results presented above demonstrate that while an error exists between 

the estimated and true distances, both are continuously within the confines of the 

orientation zone, i.e. between 20 and 25 metres. Therefore, in this particular instance, the 

error has had no effect on the algorithms ability to ensure the parameter, dabs converges to 

within the confines of the orientation zone. However, if the timeslot size were to be 

increased, the associated error at the end of each communication cycle length would also 

increase. As a result, when this happens, it is increasingly likely that at some point 

throughout each communication cycle, the estimated absolute distance will diverge to a 

value that is no longer within the confines of the orientation zone. This is shown to be the 

case below in Figure 6.15 where the data presented is from the same simulation as Figure 

6.14 except the timeslot size has been increased to 16s, i.e. a communication cycle length of 

192s. 

The results shown below illustrate that because the estimated value for dabs switches 

between the attraction and orientation zones, the vehicles velocity also continuously. This is 

due to velocity control law trying to get the value for dabs to converge. This behaviour is 
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extremely inefficient as it means the vehicle is continuously and unnecessarily consuming 

additional power altering the Tail Beat Amplitude of the vehicle.     

  

(a) – Evolution of Estimated & True 

Values obtained for dabs 

(b) - Associated Variation in 

Vehicle Velocity 

Figure 6.15– Relationship between evaluation of dabs and associated variation in vehicle 

velocity. 

The results presented above demonstrate that due to the different geometry associated with 

the evaluation of the absolute nearest neighbour distance, the error associated with this 

parameter will never converge to zero. The results also demonstrate that as the timeslot size 

increases, it becomes increasingly likely that this error will result in the estimated value for 

dabs continuously fluctuating between the different behavioural zones. Therefore, as shown 

below in Figure 6.16, the percentage of vehicles able to satisfy the algorithmic requirement 

associated with this parameter decreases as the timeslot size is increased.  

Finally, it is important to note that the results presented above are thus far only 

representative of the scenario where every vehicle is initially using the repulsive control law. 

While the results presented above have demonstrated that the implementation of the 

attractive control law is a prerequisite to ensuring convergence to the required formation 

(when the timeslot size is increased), the following section will nevertheless focus on 

analysing the results obtained from this second group of simulations.    
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Figure 6.16- Variation in the evolution of the percentage of vehicles satisfying the 

necessary criteria associated with the dabs. 

6.5.2 Effect of TDMA Protocol on Attractive Control Law  

To analyse the effect of introducing the TDMA protocol on the vehicles initially using the 

attractive control law, shown below in Figure 6.17, is the evolution of the errors associated 

with the evaluation of the lateral and absolute nearest neighbour distances as the timeslot 

size is increased from 0.5s through to 24s. 

  

(a) (b) 

Figure 6.17- Evolution of the mean error associated with the evaluation of the parameters 

(a) d1 and (b) dabs as the timeslot size is increased. 
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The results presented in Figure 6.17 (a) are similar to those presented previously in Figure 

6.5 with the error value always converging to a value approximating zero. Similarly, the 

results presented in Figure 6.17 (b) demonstrate that the error associated with the parameter 

dabs is unable to converge towards zero but instead increases with the timeslot size. Once 

again, this is analogous to the results presented above in Figure 6.13 when the repulsive 

control law was initially implemented. As discussed in Sections 6.5.1.1 and 6.5.1.3, this 

variation in convergence is due to the different geometry associated with the evaluation of 

the lateral and absolute nearest neighbour distances. While the results presented in Figure 

6.17 suggest that the effect of the TDMA protocol on the attractive control law is no different 

to that of the repulsive control law, the following two sections will analyse these results in 

more detail in order to ensure they are consistent with those obtained in the previous 

section. 

6.5.2.1  Analysing Lateral Distance Error    

While the general trends presented in Figure 6.17 (a) are similar to those shown in Figure 

6.5, it is apparent that the magnitude of the errors associated with the lateral distance in 

Figure 6.17 (a) are significantly smaller. For example, the maximum error presented in 

Figure 6.17 (a) is just over 4.5m while in Figure 6.5, the maximum error is approximately 

16m. This difference is due primarily to the fact that as presented in Chapter 5, vehicles 

using the attractive behavioural control law, manoeuvre towards their nearest neighbour at 

an angle of 45º. This is half of the 90º angle used within the repulsive control law. As a result, 

because neighbouring vehicles are moving towards one another at a reduced rate, the 

associated error increases at a slower rate and as a result, the magnitude of the error at the 

end of each communication cycle length will inherently be smaller.  

Nevertheless, the results presented in Figure 6.17 (a) clearly illustrate that the error value 

associated with the algorithmic parameter, d1 always converges towards zero. As the 

results presented in Section 6.5.1.1 demonstrate, this is indicative of the formation control 

algorithm generating the required parallel line formation. To demonstrate that this is 

indeed the case, shown below in Figure 6.18 is the evolution of the percentage of 

simulations that were able to satisfy the necessary criteria that ensures the parallel line 

formation was generated by the vehicles.   
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Figure 6.18- Variation in the percentage of simulations satisfying necessary criteria 

associated with each d1 as timeslot size is increased and vehicles are initially using 

attractive control law. 

As expected, the results presented above illustrate that regardless of the timeslot size 

implemented, the formation control algorithm has been to satisfy the necessary criteria. 

However, once again, similarly to the results obtained in Section 6.5.1.1, the results 

presented in Figure 6.18 demonstrate that as the timeslot size is increased, the time taken 

for the formation control algorithm to generate the required formation increases 

significantly. Unsurprisingly, this increase in the time taken is due to the exact same reasons 

discussed in the previous section, i.e. vehicles receiving communication updates less 

frequently as a result of the timeslot size being increased.  

Therefore, combining the results presented in Figure 6.17 (a) with those shown in Figure 

6.18, it is apparent that in terms of the algorithmic parameter, d1, the TDMA protocol has 

the exact same effect on the algorithms performance as it did in the previous section. 

6.5.2.2 Analysing Absolute Distance Error  

Comparing the results presented in Figure 6.17 (b) with those in Figure 6.13, it is apparent 

that the general trends presented in both graphs are very similar with the error increasing 

with timeslot size. This is not unexpected and is due to the fact that the velocity control law 

operates exactly the same regardless of whether the attractive, orientating or repulsive control 

law is used. As a result, the explanation provided in Section 6.5.1.3 as to why the error 

associated with the absolute distance increases with the timeslot size is applicable to the 

results presented in this section. To demonstrate that this is indeed the case, as with the 

results presented in Figure 6.16, shown below in Figure 6.19 is the evolution of the 
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percentage of vehicles satisfying the necessary criteria associated with each vehicle’s 

absolute nearest neighbour distance. 

As expected, Figure 6.19 demonstrates that as the timeslot size is increased, the velocity 

control algorithm finds it increasingly difficult to ensure every vehicle converges to an 

absolute nearest neighbour distance that is within the confines of the orientation zone. 

Furthermore, the cyclical nature of the responses presented in Figure 6.19 is indicative of 

the behaviour presented in Figure 6.16 where the value calculated for dabs is continuously 

switching between the orientating and attractive behavioural zones.  

 

Figure 6.19- Variation in the evolution of the percentage of vehicles satisfying the 

necessary criteria associated with dabs as timeslot size is increased and vehicles are initially 

using attractive control law. 

6.6 Summary 

The results presented above in Section 6.5 have provided a detailed analysis of the results 

obtained from the simulations undertaken to investigate what extent incorporating a 

realistic representation of the TDMA protocol effects the algorithm’s ability to generate the 

required parallel line formation.  The aim of this section is to now provide a summary of 

the pertinent results obtained from this analysis and to subsequently provide any 

recommendations that if incorporated, may alleviate the degradation in the algorithms 

performance presented in this chapter. 

• The results presented in Sections 6.5.1.1-3 demonstrate that due to a combination of 

the geometry associated with evaluating the lateral nearest neighbour distance, the 

cyclical nature of the TDMA protocol and the design of the attractive control law, it 
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is still possible for the formation control algorithm to generate the parallel line 

formation regardless of the timeslot sizes implemented. 

• This convergence demonstrates that the delays associated with the transmission and 

propagation delays of each vehicles message have no effect on the algorithms ability 

to generate the required formation.   

• Figures 6.8, 6.12 and 6.18 illustrate that while convergence to the parallel line 

formation still occurs, the time taken and distances travelled by the vehicles before 

the algorithm generates the required formation increases significantly with the 

timeslot size implemented.  

• Section 6.5.1.3 and Figures 6.14, 6.15 & 6.16 demonstrate that due to the geometry 

associated with evaluating each vehicle’s absolute nearest neighbour distance and 

the cyclical nature of the TDMA protocol, convergence of this parameter to a value 

that is continuously within the confines of the orientation zone cannot be 

guaranteed particularly for the larger, more realistic timeslot sizes, i.e. 8s, 16s & 24s.  

• Furthermore, Figure 6.16 (b) demonstrates that this inability to converge results in 

the formation control algorithm continuously altering the velocity of the associated 

vehicle. 

• The only difference between the two sets of results presented in Sections 6.5.2.1 and 

6.5.2.2 is that magnitude of the error associated with the parameter, d1 was 

significantly smaller when the attractive control law was implemented. As discussed 

though, the reason for this smaller error was due to the different values used for the 

algorithmic parameters, 𝜓𝑟𝑒𝑝 and 𝜓𝑎𝑡𝑡. 

Therefore, the results presented in this chapter demonstrate that while the formation 

control algorithm is still capable of generating the required parallel line formation, its 

performance is severally degraded, particularly when realistic values are used for the 

timeslot size, i.e. 8s, 16s and 24s. This degradation is due to the severely restricted 

communication that exists between each vehicle and its nearest neighbour, i.e. once every 

communication cycle. 

Based on these results, it is apparent that in order to ensure the formation control algorithm 

operates as efficiently as possible regardless of the timeslot size implemented, additional 

functionality has to be implemented within the algorithm. To work, this functionality needs 

to be capable of providing each vehicle with an accurate representation of the positioning 

and orientation of neighbouring vehicles during each communication cycle. Conversely, an 

alternative control method which would allow the vehicles to satisfy the various 

convergence criteria without requiring access to up to date information would also alleviate 
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the problems discussed in this chapter. Subsequently, the following chapter introduces the 

implementation of two such methods and the associated analysis to determine whether or 

not their incorporation improves the performance of the algorithm when the TDMA 

protocol is incorporated.  
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Chapter 7  
Comparison of Delay Tolerant 

Formation Control Algorithms 

____________________________________ 

7.1 Introduction 

The results presented in Chapter 6 illustrate that as a result of implementing a realistic 

representation of the underwater communication channel, the ability and efficiency of the 

formation control algorithm deteriorates as the timeslot size is increased.  As discussed in 

Chapter 6, this deterioration is caused by each vehicle receiving less communication 

updates when the timeslot size is increased resulting in an increase in the number of 

vehicles making incorrect decisions for increasingly longer periods of time. Furthermore, 

while the results demonstrate that the formation control algorithm is still capable of 

generating the required parallel line formation, the time taken to do so increases 

significantly. The results also demonstrate that due to a combination of the cyclical nature 

of the TDMA protocol and the geometry associated with evaluating the absolute nearest 

neighbour distance, convergence of this parameter to a value that is within the confines of 

the orientation zone isn’t guaranteed.   

The purpose of this chapter is to introduce and compare two different methodologies that 

once incorporated, it is envisioned will allow the formation control algorithm to operate as 

efficiently as possible regardless of the timeslot size implemented. The first of these 

methodologies will introduce functionality that will attempt to predict the position and 

orientation of each vehicles nearest neighbours in the period between successive 

communication updates. In doing so, it is anticipated that the algorithm will operate 

similarly to when instantaneous communication was assumed in Chapter 5. 
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The second methodology meanwhile, will seek to assign a waypoint to each vehicle that 

once assigned, will guarantee that the required parallel line formation is generated. By 

assigning each vehicle a unique waypoint, it is anticipated that the formation control 

algorithm will no longer need an accurate representation of each vehicles nearest 

neighbour’s position and orientation.  

Unsurprisingly, the main purpose of including these methodologies is to ensure that 

convergence to the required formation is achieved as efficiently as possible and regardless 

of the communication timeslot size implemented, i.e. with minimum delay and control 

system effort. 

Chapter 7 presents this comparative study as follows. Section 7.2 describes the 

implementation of these two methodologies within the modified formation control 

algorithm presented in chapter 5. Section 7.3 presents a summary of the simulation setup 

and the algorithmic parameters varied throughout the simulations completed. Section 7.4 

analyses and compares the results obtained from the implementation of these two different 

methodologies.  Section 7.5 provides a summary of the outcomes from this comparative 

study. 

7.2 Implementation of Delay-Tolerant Functionality 

The purpose of this section is to describe the implementation of the two methodologies 

discussed above that have been designed specifically to ensure the successful convergence 

of the group to the required parallel line formation. In addition, these algorithms should 

also coordinate each vehicle to the required absolute nearest neighbour distance as 

efficiently as possible and regardless of the nuances associated with the underwater 

communication channel.    

As alluded to in Chapter 6 and discussed above, the first of these methodologies involves 

introducing predictive functionality within the formation control algorithm.  The aim of 

this predictive functionality is to provide each vehicle with a more accurate estimate of the 

positioning and orientation of neighbouring vehicles in the intermittent period between 

successive communication updates. The intention of introducing such functionality is to 

allow the required parallel line formation to be generated as quickly as possible despite the 

nuances of the underwater communication channel.  

Conversely, the second methodology seeks to remove the need for each vehicle to have a 

continuously accurate representation of the position and orientation of neighbouring 

vehicles altogether. Instead, this methodology implements a consensus based formation 
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control algorithm that provides each vehicle with a single waypoint to manoeuvre towards.  

This is achieved by each vehicle selecting a waypoint based on its relative position within 

the group. Thereafter, the vehicles can only begin manoeuvring to their waypoints once it 

has been established that each vehicle has their own unique waypoint and hence, position 

in space to manoeuvre towards.  

7.2.1 Implementation of Trajectory Prediction Functionality 

As discussed in Chapter 6, each vehicle only has the most accurate representation of its 

single nearest neighbour’s position once every communication cycle. This reduces the 

efficiency of the coordination algorithm as the timeslot size is increased. In order to combat 

this problem it is proposed that a predictive methodology is employed to predict the 

position and orientation of each vehicle’s nearest neighbours in the interim period between 

successive communication updates. The structure of this prediction functionality and how 

it is incorporated within the formation control algorithm is presented below in Figure 7.1.    

 

Figure 7.1- System structure with predictive functionality included. 

Figure 7.1 demonstrates that as well as having access to the data broadcast by each vehicle, 

the formation control algorithm will now also have access to the data provided by the newly 

incorporated predictive functionality. Subsequently, it is expected that in the period 

between communication updates, the data evaluated from this new functionality will now 

be used within the formation control algorithm to determine which particular control law 
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the vehicle should implement. This predicted data will then be replaced by the actual value 

when the appropriate vehicle’s data is received throughout each communication cycle. 

Thereafter, the predictive functionality will be used once more and this entire process will 

be repeated throughout each mission.  

In order to ensure that the predicted values provided by this new functionality are as 

accurate as possible, the functionality incorporated will not only have to contain an accurate 

representation of the dynamics of the individual vehicles but also an accurate 

representation of the formation control algorithm presented in Chapter 5. This is to ensure 

that as the simulation evolves, the predictive functionality continues to produce an accurate 

estimate of the positional and heading data associated with the vehicles nearest neighbours.   

To satisfy these requirements, the dynamics of each vehicle is evaluated using the exact 

same reduced fidelity mathematical model of the RoboSalmon vehicle presented in Chapter 

3. Furthermore, the predictive functionality also contains an identical copy of the formation 

control algorithm presented in Chapter 5. Therefore, theoretically, this predictive 

functionality should be able to accurately model and predict the motion of each vehicle’s 

nearest neighbours. As a result, the prediction functionality once incorporated, should be 

able to provide the formation control algorithm with an accurate representation of each 

vehicle’s position and orientation in the intermittent period between communication 

updates.  

However, in order for this predictive functionality to provide an accurate estimate of the 

position and orientation of the vehicles nearest neighbour, it also needs to be able to 

accurately evaluate the position and orientation of every other vehicle in the group. As 

shown below in Figure 7.2, this is due to the interaction topology of the vehicles.  

Analysing the interaction topology presented above, it becomes apparent that in order to 

ensure that Vehicle 7 no longer incorrectly alters its nearest neighbour as discussed in the 

previous chapter (Section 6.5.1.2), the predictive functionality implemented will have to 

predict the motion of each vehicle positioned to its right hand side, i.e. Vehicles 8-12. 

Furthermore, in order to ensure that Vehicle 7 can successfully transition from using the 

repulsive control law to the orientating one, it also needs to have a continuously accurate 

estimate of the position of Vehicle 6. Intuitively, based on the discussion presented above, 

in order to achieve this, the position of Vehicles 1-5 will therefore also have to be estimated. 

This means that, in order to ensure  every vehicle has a continuously accurate estimate of 

its single nearest neighbour, the motion of every other vehicle within the group has to be 

predicted. 
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Figure 7.2- Diagram demonstrating interaction topology and vehicle heading direction 

when every vehicle is using the repulsive control law. 

Subsequently, within the predictive functionality shown in Figure 7.1, the mathematical 

model of the RoboSalmon vehicle and the formation control algorithm has to be evaluated 

N-1 times, i.e. once for every neighbouring vehicle within the group. This is presented 

diagrammatically in Figure 7.3. 

 

Figure 7.3- Flow diagram representing functionality contained within predictive 

methodology. 
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In the above diagram, the vectors 𝐱𝐍𝐍𝐩 , 𝐲𝐍𝐍𝐩  and 𝛙𝐍𝐍𝐩  represent the coordinates and 

heading angles of all vehicles as calculated from within the predictive functionality. 

Importantly, Figure 7.3 demonstrates that at the start of each simulation, i.e. k = 0, the initial 

values used within the predictive functionality are equal to the true values associated with 

each vehicle. It is important to note that at the start of each simulation every vehicle is 

assumed to have an accurate representation of the initial position and orientation of every 

other vehicle within the group.  

Thereafter, based on the initial values contained within 𝐱𝐍𝐍𝐩, 𝐲𝐍𝐍𝐩  and 𝛙𝐍𝐍𝐩  the predictive 

functionality evaluates each vehicles desired heading angle, ψDi, the associated control 

surface deflection, δTCi and then finally, the current position and orientation of each 

vehicle, xi, yi and ψi. Thereafter, the vectors, 𝐱𝐍𝐍𝐩 , 𝐲𝐍𝐍𝐩  and 𝛙𝐍𝐍𝐩are updated and packaged 

as the predicted data. As Figure 7.1 demonstrates, this predicted data is then used in the 

intermittent period between successive communication updates to provide the vehicle with 

an estimate of the position and orientation of its nearest neighbour.  

7.2.2 Consensus Based Waypoint Selection Formation Control 

Algorithm  

In order to negate the effects of incorporating the TDMA protocol, the work presented in 

this section proposes the introduction of a waypoint consensus methodology. Instead of 

vehicles selecting the appropriate control laws based on the distance to their nearest 

neighbour, this methodology will alter the control law based on the lateral distance to the 

vehicles chosen waypoint.  To achieve this though, functionality has to be implemented 

that will firstly produce the necessary waypoints and then secondly, allow each vehicle to 

select the most appropriate waypoint for it to track and manoeuvre towards. As well as 

completing these tasks, the functionality incorporated will also have to ensure that every 

vehicle is assigned a unique waypoint. This is to ensure that a number of vehicle do not 

select and then manoeuvre to the same waypoint.  The creation and implementation of the 

functionality that will achieve this is presented in the following sections.  

7.2.2.1 Creation of Waypoints 

Before the method used to create the aforementioned waypoints is presented, it is necessary 

to emphasise two important facets of information with regards to the mission profile 

outlined in Figure 1.3. The first is that the initial position and orientation of each vehicle 

within the deployment area are known by each member of the group. The second important 

assumption is that the recovery area shown in Figure 1.3 is represented by a single user 

defined coordinate, (𝑥𝑑𝑒𝑠, 𝑦𝑑𝑒𝑠) which is known to each vehicle.  As shown below in 
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Equations (7.1) and (7.2), this coordinate is particularly important as it is used to calculate 

the first of the waypoints used in this methodology. 

𝑌𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡1 = 𝑦𝑑𝑒𝑠 −
𝑁

2
(
𝑧𝑜𝑜𝑢 + 𝑧𝑜𝑜𝑙

2
) cos(𝜓𝑟𝑒𝑓) (7.1) 

𝑋𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡1 = 𝑥𝑑𝑒𝑠 +
𝑁

2
(
𝑧𝑜𝑜𝑢 + 𝑧𝑜𝑜𝑙

2
) sin(𝜓𝑟𝑒𝑓) (7.2) 

Here N represents the number of vehicles within the group, 𝑥𝑑𝑒𝑠 and 𝑦𝑑𝑒𝑠 represents the 

desired location of the group, i.e. the recovery area,  𝑧𝑜𝑜𝑢 and 𝑧𝑜𝑜𝑙  represent the upper and 

lower boundaries of the orientation zone and 𝜓𝑟𝑒𝑓 is the desired heading angle of the group 

and is calculated using Equations (5.13)-(5.15).  

Once the above waypoint has been calculated, the remaining, N-1 coordinates are evaluated 

using the following equations: 

𝑌𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑖 = 𝑌𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡1 + (𝑤 − 1) (
𝑧𝑜𝑜𝑢 + 𝑧𝑜𝑜𝑙

2
) cos(𝜓𝑟𝑒𝑓) (7.3) 

𝑋𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑖 = 𝑋𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡1 − (𝑤 − 1) (
𝑧𝑜𝑜𝑢 + 𝑧𝑜𝑜𝑙

2
) sin(𝜓𝑟𝑒𝑓) (7.4) 

Here w represents the particular waypoint being calculated and ranges from 2 through to 

N.  

Applying the above equations to a simulation similar to those used throughout Chapters 5 

and 6 and plotting the waypoints generated produces the graph shown in Figure 7.4. 

 

Figure 7.4- Illustration of waypoints generated using Waypoint Consensus Technique. 
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The graph presented above illustrates the initial positions of the group (blue circles) as well 

as the twelve equally spaced waypoints calculated using Equations (7.1)-(7.4) (red circles). 

Furthermore, the graph shows that the desired heading angle of the group has been set to 

45º.  

Furthermore, it is important to note that the waypoints presented in Figure 7.4 have been 

calculated without requiring any data from neighbouring vehicles. Instead, these 

waypoints have been calculated using the groups desired location, the number of vehicles 

in the group and the size of the orientation zone. As discussed above, all these parameters 

are mission specific and will be defined at the start of each mission.   

Once each vehicle has calculated the various waypoints using Equations (7.1)-(7.4), they 

must subsequently decide which particular waypoint they are going to use and manoeuvre 

towards. This selection process and the functionality implemented within the algorithm to 

achieve it is discussed in the following section.     

7.2.2.2 Creation of Waypoint Selection Process 

The main aim of the formation control algorithm is to coordinate the group of vehicles into 

the parallel line formation presented in Figure 1.3. The particular selection process 

implemented within this waypoint consensus methodology has been designed specifically 

to ensure that this formation can be generated as quickly as possible.  The only way to 

achieve this definitively is for each vehicle to select the waypoint that is analogous to its 

position within the group. Subsequently, applying this selection process to the vehicles 

presented in Figure 7.4 means that the vehicle positioned at the extreme left hand side of 

the group will select Waypoint 1. Thereafter, each subsequent vehicle positioned laterally 

to the right will select the next waypoint until the vehicle at the extreme right hand side of 

the group has selected Waypoint 12.  Implementing this particular decision making process 

ensures that each vehicle travels the minimum distance possible before the required parallel 

line formation can be generated.  

In order for each vehicle to select the most appropriate waypoint, it needs to be able to 

accurately evaluate the number of neighbouring vehicles positioned to its right and left 

hand side. As presented in Chapter 5 (Section 5.2.3.1), to achieve this the following two 

conditional statements are implemented.  

𝑁𝑁𝐿 = 𝑁𝑁𝐿 + 1     , 𝑖𝑓   − 𝜋 ≤ 𝜓𝑅𝑁𝑁 < 0 (7.5) 

𝑁𝑁𝑅 = 𝑁𝑁𝑅 + 1   , 𝑖𝑓       0 ≤ 𝜓𝑅𝑁𝑁 ≤ 𝜋 (7.6) 
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Importantly, and as shown below in Figure 7.5, the only way to ensure that accurate values 

can be obtained for the above parameters - regardless of the timeslot size implemented - is 

to ensure that every vehicle is moving with parallel trajectories.  In the diagram presented 

below, the estimated position of the vehicles nearest neighbours can lie anywhere on the 

dashed lines and reflects the fact that due to the TDMA protocol, the estimated value will 

not be an accurate representation of the neighbouring vehicles actual position (green circle). 

Nevertheless, the diagram also demonstrates that due to the vehicles moving with parallel 

trajectories, this error will never affect the algorithm’s ability to accurately determine how 

many of its nearest neighbours are positioned to its left or right hand side.  

 

Figure 7.5- Diagrammatic representation of the evaluation of the relative positioning of 

neighbouring vehicles when vehicles are moving with parallel trajectories. 

For this reason it has been decided that until each vehicle has selected its waypoint and 

consensus among the entire group has been achieved, every vehicle manoeuvres with a 

heading angle that is equal to group’s desired heading angle, ψref. . Once each vehicle has 

determined the number of neighbouring vehicles on either side, the selection of the 

vehicle’s chosen waypoint can be calculated using Equation (7.7) below. 

Waypointi = 𝑁𝑁𝐿 + 1 (7.7) 

The above equation simply states that each vehicle should select the waypoint that has a 

value one greater than the number of neighbouring vehicles positioned to its left hand side. 

Analysing this equation with the waypoints presented in Figure 7.4, it is apparent that this 

selection process assigns the waypoint analogous to each vehicles’ position within the 
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group. Once each vehicle has selected its waypoint, it broadcasts this information to the rest 

of the group in order to prevent another vehicle from also selecting it. 

7.2.2.3 Ensuring Group Consensus on Waypoint Selection 

In order to prevent two vehicles from selecting the same waypoint, each vehicle, when 

selecting its chosen waypoint needs to determine whether or not it has been already 

selected by another member of the group. 

To achieve this, the autopilot within each vehicle contains a column vector of size N by 1 

which, at the start of each mission is populated by zeros. As the mission evolves, and the 

vehicles begin to receive communication updates from neighbouring vehicles, the rows 

relating to the vehicles that have already transmitted will become populated with their 

assigned waypoint. Thereafter, the vehicles still to broadcast are able to determine whether 

or not its chosen waypoint has already been selected. If it hasn’t, the formation control 

algorithm prepares to broadcast its original chosen waypoint. If its chosen waypoint has 

already been selected, the methodology sequentially goes through the remaining 

unselected waypoints until the one closest to it’s originally chosen one is selected. This 

process therefore guarantees that the same waypoint cannot be selected by more than one 

vehicle.   

After each vehicle has successfully transmitted its preferred waypoint, the formation 

control algorithm (within each vehicle) becomes aware of this as the vector containing each 

vehicles waypoints will no longer contain any zeros. Once this has been established, the 

formation control algorithm will then begin manoeuvring each vehicle towards its desired 

waypoint.  

7.2.2.4 Calculating Vehicle Heading Angle 

As described in Chapter 4 (Section 4.3.2), the autonomous guidance of the RoboSalmon 

vehicle is achieved using a line-of-sight, waypoint following algorithm (Healey & Lienard 

1993; Healey, A.J Marco 1992). This technique uses the difference in position between the 

vehicle and its desired waypoint to calculate the corresponding reference heading angle of 

the vehicle. However, as illustrated below in Figure 7.6., because the waypoints used in this 

work are positioned in the vehicle recovery area, the implementation of a line-of-sight 

algorithm would only result in the vehicles manoeuvring to a d1 within the confines of the 

orientation zone at the end of the mission.  
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Figure 7.6- Diagrammatic representation of vehicle trajectory if standard line of sight 

algorithm where to be used. 

In order to ensure the vehicles generate the required parallel line formation as quickly as 

possible, the control law shown below in Equation (7.8) has to be implemented instead.  

𝜓𝐷 = {
𝜓𝑟𝑒𝑓 +  𝜓𝑟𝑒𝑝          𝑖𝑓  𝜓𝑅𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡

> 0

𝜓𝑟𝑒𝑓 −  𝜓𝑟𝑒𝑝          𝑖𝑓    𝜓𝑅𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡
< 0

 (7.8) 

In the above equation, the angle, 𝜓𝑅𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡
 represents the angle between each vehicle’s 

current location and its desired waypoint. As throughout this work, 𝜓𝑟𝑒𝑓 represents the 

desired heading angle of the group and  𝜓𝑟𝑒𝑝 represents the same user defined parameter 

presented in Chapter 5 (Section 5.2.5) which in this instance, dictates the rate at which each 

vehicle manoeuvres laterally towards its chosen waypoint. Finally, 𝜓𝐷 is the vehicles 

desired heading angle and is used to calculate the necessary tail centre deflection angle of 

the vehicle.  As the aim is to generate the required formation in the shortest period of time, 

this parameter,  𝜓𝑟𝑒𝑝 as in Chapter 5, is set to 90º when the repulsive control law is 

implemented and 45º when the attractive control law is being used. 

The above equation demonstrates that if a vehicle’s chosen waypoint is positioned to its 

right hand side, i.e. 𝜓𝑅𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡
> 0, the vehicle will manoeuvre to the right at an angle of 

either 45º or 90º from the reference heading angle, 𝜓𝑟𝑒𝑓. Conversely, if a vehicles chosen 

waypoint is positioned to its left hand side, i.e. 𝜓𝑅𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡
< 0, the vehicle will manoeuvre 

to the left at an angle of 45º or 90º from 𝜓𝑟𝑒𝑓. 

Analysing Equation (7.8), it’s apparent that its design is analogous to the attractive and 

repulsive control laws presented in Chapter 5 with the only difference being that Equation 
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(7.8) uses the relative position of the vehicles waypoint as opposed to its nearest 

neighbour’s position when deciding which particular angle to move with.  

Nevertheless, as with all waypoint tracking manoeuvres, the control law presented above 

will ensure the vehicles continue to manoeuvre in the required direction. For the work 

completed in this section, this will remain the case until the lateral distance between the 

vehicle and its chosen waypoint decreases to a value that is below a certain threshold - 

commonly referred to as the acceptance radius.  

When this occurs, the autopilot usually provides either another waypoint for the vehicle to 

manoeuvre towards or a particular desired heading angle for it to move with. For the 

waypoint consensus algorithm, it was decided that once a vehicles lateral distance to its 

chosen waypoint is below the acceptance radius, the vehicle will thereafter move with a 

heading angle equal to the reference heading angle, 𝜓𝑟𝑒𝑓 , i.e. the desired heading angle of 

the group.  

7.2.2.5 Algorithm Structure 

Sections 7.2.2.1-4 above have described the waypoint consensus formation control 

algorithm. As discussed previously, this algorithm has been designed specifically to ensure 

that a group of vehicles, regardless of the nuances of the TDMA protocol, is capable of 

generating the required parallel line formation. As with the modified formation control 

algorithm presented in Chapter 5, this algorithm must go through a number of decision 

making processes before it is able to select the vehicles desired heading angle.  This decision 

making processes and associated calculations executed during the implementation of this 

algorithm are illustrated in Figure 7.7. 

The flow diagram presented below illustrates that no vehicle selects a heading angle other 

than 𝜓𝑟𝑒𝑓 until the entire group of vehicles has selected a unique waypoint. Also apparent 

from the flow diagram presented above is the fact that so far, no functionality has been 

included to ensure each vehicle, as required, will converge to an absolute nearest neighbour 

distance that is within the confines of the orientation zone. As the convergence of this 

parameter is one of the original algorithmic requirements presented in Chapter 4, the 

following section will now describe the functionality implemented within this consensus 

based algorithm to ensure that this criteria can be satisfied.    
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Figure 7.7 - Decision making processes evaluated within the waypoint consensus 

algorithm. 

7.2.2.6 Velocity Control Law 

As discussed in Chapter 5, the only way to guarantee convergence to the required absolute 

nearest neighbour distance is through the introduction of a suitable velocity control law. 

While the results presented in Chapter 5 illustrate that the velocity control law is capable of 

ensuring convergence when instantaneous communication is assumed, the results 

presented in Chapter 6 demonstrate that this is no longer the case once a realistic 

communication protocol is taken into consideration. Furthermore, as discussed in Section 

6.5.1.5, the main reason for this non-convergence is due to the inherent cyclical nature of 

the TDMA protocol causing the algorithm to wrongly estimate that each vehicles nearest 

neighbour is out with the confines of the zone of orientation.  

Although the consensus based formation control algorithm presented above is intended to 

use as little data from neighbouring vehicles as possible, it is impossible not to when trying 

to satisfy this final convergence criteria. Nevertheless, a number of precautions are taken to 

ensure that any alterations made to each vehicle’s velocity is done so with the most accurate 

data available. The decision making process and functionality contained within the velocity 

control law to achieve this is shown below in Figure 7.8.      
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Figure 7.8- Decision making process and functionality contained within the velocity 

control law of the waypoint consensus algorithm. 

The most notable change to this flow diagram is that the each vehicle’s velocity is only 

altered once a communication update has been received from its neighbouring vehicle. As 

mentioned above, the reason for implementing this particular restriction is to ensure that 

the formation control algorithm is making velocity alterations based on the most accurate 

representation of its neighbouring vehicle’s position.  

It is also apparent that only after an additional three criteria have been satisfied will the 

algorithm decide to alter the vehicles velocity. The first of these criteria establishes whether 

or not the lateral distance, dlat, to the vehicle currently broadcasting is within the confines of 

the orientation zone. If it is not, then as the diagram illustrates, the vehicle maintains its 

current velocity. If, on the other hand, the distance is within the confines of the orientation 

zone, the algorithm then decides whether or not the associated absolute distance is greater 

than the upper boundary of the orientation zone. Once again, if this criteria is not satisfied, 

the algorithm does not make any changes to the vehicles velocity. Conversely, if this criteria 
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is met, then the final decision to be made is to establish whether the associated 

neighbouring vehicle is positioned to the front or behind. Intuitively, if the neighbouring 

vehicle is positioned to the front, the algorithm increases the vehicle’s velocity and 

conversely, the velocity control law will reduce the vehicle’s velocity if the neighbouring 

vehicles is positioned to the rear.  

In order to prevent the vehicle from continuously altering its velocity as shown in Chapter 

6, Figure 7.8 shows that once each vehicle has decided it needs to alter its velocity, the 

algorithm calculates the period of time the vehicle should alter its velocity for. As shown 

below in Equation (7.9), this period of time is calculated using the relative velocity of the 

two vehicles. 

t𝑎𝑏𝑠 =
d𝑎𝑏𝑠 − 𝑧𝑜𝑜𝑢

v⃗ 𝑖|𝑁𝑁
 (7.9) 

Here, dabs represents the absolute distance between the two vehicles, 𝑧𝑜𝑜𝑢 is the upper 

boundary of the orientation zone, v⃗ 𝑖|𝑁𝑁 is the relative velocity of the two vehicles. 

Due to Equation (7.9) being evaluated when the formation control algorithm has the most 

accurate representation of the distance, d𝑎𝑏𝑠, the value calculated using Equation (7.9) will 

represent the time taken for the vehicle – based on its selected velocity - to reduce the 

distance, dabs to within the confines of the orientation zone. However, it is important to note 

that one final assumption has been made with regard to the value used for the relative 

velocity, v⃗ 𝑖|𝑁𝑁. This assumption is that regardless of the actual relative velocity between the 

two vehicles, the value used within Equation (7.9) will always represent the maximum 

possible relative velocity. This is to prevent the scenario arising whereby two vehicles – 

unbeknown to one another –are moving towards each other at a greater rate than expected. 

Consequently, this behaviour could result in the two vehicles having already altered their 

velocity according to Figure 7.8 still having a dabs that is out with the boundary of the 

orientation zone.  Therefore, by always using the maximum possible value for v⃗ 𝑖|𝑁𝑁 it is 

unlikely that this situation will arise.  

However, a consequence of designing the velocity control law in this manner is that if the 

neighbouring vehicles are not manoeuvring towards one another at the maximum relative 

velocity, the value calculated for t𝑎𝑏𝑠 will be insufficient to ensure the vehicle converges to 

within the confines of the orientation zone. As a result, the algorithm will have to wait an 

entire communication cycle before it can alter its velocity again.  
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The functionality described above has presented two different methodologies designed 

specifically to overcome the nuances associated with the incorporation of the TDMA 

protocol as presented in Chapter 6. The following section will now present and analyse the 

simulation results obtained from the incorporation of these methodologies. 

7.3 Simulation Setup & Results  

As discussed above, the main aim of this chapter is to demonstrate whether or not the 

different methodologies presented in Section 7.2 operate as expected and as a result, 

establish whether the algorithm is now capable of satisfying the various requirements 

presented previously in Table 5.3 regardless of the timeslot size implemented. In order to 

definitively demonstrate that this is the case, it is important that the simulations used are 

identical to those in Chapter 6. The following section will provide a brief review of these 

simulations and highlight any differences incorporated within this analysis. This chapter 

will also compare the results from the two methodologies in an effort to ascertain whether 

or not one is more efficient than the other.  

7.3.1 Simulation Setup  

As presented in Sections 5.3 and 6.4, the simulations undertaken thus far have been 

separated into two groups depending on the particular control law initially implemented 

by the majority of the vehicles, i.e. either the repulsive or attractive control law. As this 

chapter is focussing on testing and analysing whether or not the techniques described above 

operate as envisioned, the results presented in this chapter can no longer be categorised in 

this manner. Instead, they are defined with relation to the particular technique 

implemented to overcome the effects of incorporating the TDMA protocol. Nevertheless, 

the results presented in this section have been obtained from the exact same simulations 

used throughout Chapter 6. As shown below in Table 7.1, the only difference in this case is 

that the results contained within each group now contain data from simulations that use 

two different sets of behavioural zones.     

The values used for the algorithmic parameters, 𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 , 𝑇𝑇𝑜𝑡 and ψref remain unchanged 

from those used in Chapter 6. Furthermore, due to the fact that the two groups of 

simulations undertaken in Chapter 6 have now been combined, the newly created groups 

shown in Table 7.1 are now composed of 200 unique simulations, i.e. 100 simulations 

initially using the repulsive control law and 100 simulations initially using the attractive 

control law. Due to these simulations been repeated for each timeslot size presented, the 

results presented below are composed of data obtained from 2400 simulations. 
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Table 7.1 - Variation in simulation parameters. 

Parameter Group 1  Group 2  

Technique 

Implemented 
Trajectory Prediction 

Waypoint 

Consensus 

Behavioural Zones Size 

(m) 
[20,25,200]m & [6,11,200]m 

Timeslot Size (𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡) [1, 2, 4, 8, 16, 24]s 

Transmission & 

Propagation Delay 

(𝑇𝑇𝑜𝑡)  

0.205s 

Reference Heading 

Angle (ψref) 

𝜓

4
 

7.3.2 Simulation Performance Metrics 

In order to demonstrate whether or not the techniques presented above have been 

successful, the initial results presented will simply illustrate the evolution of the percentage 

of vehicles satisfying the four convergence criteria presented below in Table 7.2 as the 

timeslot size is increased.      

Table 7.2  - Algorithm convergence criteria. 

Parameter Convergence Criteria 

Standard Deviation of 

Vehicle Heading Angle - σ 
σ ≤ 1º 

Lateral Distance to 

Nearest Neighbour – d1 

zool ≤ d1≤ zoou  

Perpendicular Distance to 

Second Nearest 

Neighbour – d2 

For N-2 vehicles:  

zool  ≤  d2 ≤ zoou 

For 17% of vehicles: 

2(zool) ≤  d2 ≤ 2(zoou) 

Absolute Nearest 

Neighbour Distance - dabs 

zool ≤ dabs ≤ zoou  

As discussed throughout this thesis, if the four criteria presented abvove are all 

simultaneously satisfied, the formation control algorithm has not only guaranteed to have 
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coordinated the vehicles into the required parallel line formation but it has also ensured 

each vehicle has converged to the required absolute nearest neighbour distance. Therefore, 

presenting the evolution of these percentages provides the simplest and most efficient way 

of demonstrating whether or not the two methodologies described in Section 7.2 operate as 

envisioned.  

Once the results analysing the ability of the above techniques to satisfy the necessary criteria 

have been presented, the results will then focus on determining whether or not one of the 

techniques is more efficient than the other. In order to achieve this and as shown below in 

Table 7.3, a number of performance metrics have been evaluated from simulations and the 

results obtained will be compared.  

Table 7.3 - Algorithmic performance metrics. 

Performance Metric Description 

Formation Convergence 

Time 

This parameter is calculated to ascertain the difference in the 

time taken for the two methodologies to ensure every 

convergence criteria in Table 7.2 is satisfied.  

Processing Resources 

Required to Implement 

Specific Methodology 

Calculating this particular metric provides a method by 

which to directly compare the increase in computational 

resource incurred by each vehicle in order to implement the 

methodologies described above. The only way to measure 

this metric is by calculating the processing time required. 

As well as presenting the metrics described above and the evolution of the percentage of 

vehicles satisfying the necessary criteria, the results will also present the trajectories 

obtained from the same simulations as presented throughout Chapter 6. This is to present 

a direct comparison of the variation in trajectories obtained from the implementation of the 

two techniques described in this chapter.   

7.4 Results 

The aim of this section is to analyse the results obtained from the simulations described 

above and demonstrate whether or not the two methodologies implemented have been 

successful in ensuring the necessary convergence criteria are satisfied. The results 

presented will also analyse a number of performance metrics associated with each of these 

methodologies in an effort to ascertain whether or not one particular methodology is more 

efficient than the other.  
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7.4.1 Analysing the Convergence Ability of Methodologies 

As discussed above, to demonstrate whether or not the methodologies implemented have 

been successful, the evolution of the percentage of vehicles satisfying the necessary criteria 

are to be presented. Subsequently, shown below in Figure 7.9 is the evolution of these 

percentages for the simulations completed when the trajectory prediction methodology of 

Section 7.2.1 was implemented.  

The results demonstrate that when the timeslot size is equal to 24s, every vehicle is able to 

satisfy each of the necessary convergence criteria described in Table 7.2. It is important to 

note that while each of the graphs in Figure 7.9 appear to only include the results obtained 

from one timeslot size (i.e. 24s), the graphs do in fact include the data from the remaining 

timeslot sizes. The reason that this data is indistinguishable is due to the fact that as 

described above, the trajectory prediction methodology has been designed to always 

provide each vehicle with an accurate representation of its nearest neighbour’s position 

regardless of the timeslot size implemented. The fact that the results presented below 

demonstrate that the results are identical suggest that the prediction methodology is 

operating as expected. It is also apparent that similarly to the results presented in Chapter 

5, every vehicle is able satisfy the necessary criteria in less than 600s. Therefore, when 

combined, these factors imply that as envisioned, the formation control algorithm is 

operating as if communication among the vehicles is instantaneous.     

Once again, it is important to note that the results presented in Figure 7.9 have been 

obtained from the first group of simulations discussed in Table 7.1 and as a result, they 

represent the data obtained from the exact same simulations analysed throughout Chapter 

6.  

Based on the results presented below, it can be concluded that for the algorithmic 

parameters presented in Table 7.1, the trajectory prediction methodology is capable of 

ensuring that each vehicle is able to satisfy the necessary criteria that result in the vehicles 

generating the required parallel line formation. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7.9 - Evolution of the percentage of vehicles satisfying the various convergence 

criteria when the predictive functionality is incorporated. 

The results presented above also clearly demonstrate that the ability of this predictive 

functionality is not adversely affected by an increase in the timeslot size used. Moreover, 



Comparison of Delay Tolerant Formation Control Algorithms 

 

188 

 

due to the results presented above being identical for each timeslot size, it is expected that 

the associated trajectories obtained for the same initial conditions will also be identical. This 

is indeed shown to be the case below in Figure 7.10.  

  

(a) (b) 

Figure 7.10- Variation in group trajectory as timeslot size is increased when vehicles are 

initially using (a) repulsive control law and (b) attractive control law when trajectory 

prediction method is used. 

In Figure 7.10 (a) the trajectories presented have been obtained from a simulation where 

initially, the majority of vehicles are using the repulsive control law. Conversely, Figure 7.10 

(b) illustrates the trajectories obtained when the majority of vehicles are initially using the 

attractive control law. Regardless, both figures clearly illustrate that the formation control 

algorithm - with the incorporation of the predictive functionality - has been able to 

coordinate the vehicles into the required parallel line formation. It is important to note that 

although the trajectories presented above have only been obtained from two of the 1200 

simulations completed throughout this study, the previous results presented in Figure 7.9 

demonstrate the trajectories presented above are nevertheless representative of the results 

obtained from the remaining 1188 simulations. 

While the results presented above demonstrate that the predictive functionality operates as 

envisioned, the results obtained for the waypoint consensus methodology are still to be 

analysed. Subsequently, similarly to the results presented in Figure 7.9, shown below in 

Figure 7.11 are the evolutions of the percentage of vehicles satisfying the necessary criteria 

when the waypoint consensus methodology is incorporated within the algorithm.   
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7.11- Evolution of the percentage of vehicles satisfying the various convergence 

criteria when the waypoint consensus methodology is incorporated. 

Immediately, it is apparent that unlike the results associated with the predictive 

functionality, the convergence performance of the waypoint consensus technique varies as 



Comparison of Delay Tolerant Formation Control Algorithms 

 

190 

 

the timeslot size is increased. For the majority of the convergence criteria, this variation 

results in a steady increase in the time taken for the required criteria to be satisfied.  

However, these results are not surprising and are in fact evidence that the waypoint 

consensus algorithm is operating as expected. This is due to the fact that as shown in Figure 

7.7 and discussed throughout Section 7.2.2, this method can only begin manoeuvring the 

vehicles into the required formation once it has been agreed that every vehicle has chosen 

a unique waypoint. Due to the nature of the TDMA protocol, this consensus is only 

achieved (at best) after one complete communication cycle. Therefore, with the 

communication cycle length increasing with the timeslot size implemented, the time taken 

for the individual vehicles to begin manoeuvring in the required direction will also 

inherently increase. This behaviour is reflected throughout the results presented in Figure 

7.11 where it is apparent that as the timeslot size is increased, the time taken for the 

percentage values to begin to converge, gradually increases with the timeslot size.  

Nevertheless, the results demonstrate that once every vehicle has chosen a unique 

waypoint, the algorithm is capable of coordinating the vehicles into a formation that 

ensures that four out of the five necessary convergence criteria are satisfied. As Figure 7.11 

(b) demonstrates, the exception to this is the criteria associated with each vehicle’s absolute 

nearest neighbour distance. The results demonstrate that the number of vehicles able to 

satisfy this criteria reduces considerably as the timeslot size is increased. 

This inability to converge within the given timeframe is due to each vehicle only being 

permitted to alter its velocity when it has an accurate representation of the current 

positioning of its nearest neighbour, i.e. once every communication cycle.  As discussed in 

Section 7.2.2.6 and shown in Equation (7.9), thereafter, the amount of time each vehicle is 

able to alter its velocity for has also been deliberately underestimated. This underestimation 

was incorporated to ensure every vehicle would eventually be capable of converging to the 

required absolute nearest neighbour distance. These two factors when combined explain 

why the waypoint consensus methodology is unable (within the simulation timeframe) to 

ensure every vehicle is able to satisfy the criteria associated with this parameter.  

Nevertheless, it is important to note that while the evolution of the percentage values 

associated with dabs have not converged, they continue to steadily increase towards the end 

of the simulations. This implies that while the design of the velocity control law could be 

improved, in its current guise, it is still capable of ensuring that a group of vehicles are able 

to satisfy this convergence criteria. This is shown below in Figure 7.12.   
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(a) (b) 

Figure 7.12 - Variation in the evolution of the percentage of simulations satisfying the 

convergence criteria associated with dabs when vehicles are initially using (a) repulsive 

control law and (b) attractive control law. 

The results presented in Figure 7.12 (a) represent the evolution of the percentage of 

simulations satisfying the criteria associated with dabs when the vehicles are initially using 

the repulsive control law. Similarly, Figure 7.12 (b) presents the same results but for the 

simulations whereby the vehicles are initially using the attractive control law. Regardless, 

the results, particularly those in Figure 7.12 (a), demonstrate that even when the timeslot 

size is equal to 24s, the consensus waypoint methodology has created a group formation 

that satisfies this criteria. 

The reason for the discrepancy in the results presented above is due to the inherent 

difference in the relative positioning of neighbouring vehicles when the attractive and 

repulsive control laws are used. As shown below in Table 7.4, on average, vehicles that have 

initially used the attractive control law are required to travel a much greater distance to 

ensure their dabs value converges to within the confines of the orientation zone.  

Combining this greater distance with the fact that the parameter, t𝑎𝑏𝑠 is deliberately 

underestimated, it is easy to comprehend that each vehicle will require multiple 

communication updates from its nearest neighbour before it can converge to an absolute 

nearest neighbour distance value that is within the confines of the orientation zone. As 

discussed above, due to the inherent increase in the communication cycle that results from 

increasing the timeslot size, this process will take significantly longer as the timeslot size is 

increased. 
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Table 7.4 - Variation in the average distance each vehicle is required to travel to ensure 

convergence of the parameter, dabs. 

Initial Behaviour 

Repulsive Attractive 

2.6m 38m 

Overall, when the results presented in Figures 7.11 and 7.12 are combined, it can be 

summarised that the waypoint consensus algorithm is capable of coordinating the vehicles 

into the required parallel line formation. However, the results also demonstrate that the 

time taken to ensure each vehicle converges to the required absolute nearest neighbour 

distance is dependent on not only the timeslot size implemented but also the initial absolute 

distance between neighbouring vehicles. This behaviour is reflected in the trajectories 

presented below in Figures 7.13 and 7.14. 

 

Figure 7.13- Variation in group trajectory as timeslot size is increased and vehicles are 

initially using the repulsive control law and the waypoint consensus algorithm. 

As expected, the trajectories presented above illustrate that regardless of the timeslot size 

implemented, the algorithm has been able to not only generate the required parallel line 

formation but also ensure that neighbouring vehicles are positioned directly alongside one 

another. 

Conversely, as shown below in Figure 7.14, when the vehicles are initially using the 

attractive control law and the initial absolute distance between neighbouring vehicles is 
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significantly greater, the resulting trajectories obtained vary depending on the timeslot size 

implemented.  

  

(a) (b) 

Figure 7.14 - Example of group trajectory obtained when vehicles are initially using 

attractive control law and timeslot size is equal to (a) 1s and (b) 24s. 

Comparing the trajectories presented above in Figure 7.14 it is apparent that while both 

scenarios have resulted in the generation of the required parallel line formation, the ability 

of the algorithm to ensure each vehicle converges to the required absolute nearest neighbour 

distance (within the same time frame) deteriorates as the timeslot size is increased. This, as 

discussed above is due to the fact that when the timeslot size is increased, each vehicle has 

less opportunities to alter its velocity. 

In summarising, the results presented above demonstrate that both the trajectory prediction 

and waypoint consensus methodologies operate as envisioned and as a result, are capable 

of ensuring that the required parallel line formation can be generated regardless of the 

timeslot size implemented. In this respect, both methodologies significantly improve the 

ability of the algorithm to cope with the nuances associated with the underwater 

communication channel. It is important to note though that with respect to the ability of the 

two methodologies to ensure the parameter, dabs converges, the results clearly illustrate that 

the predictive methodology provides the more efficient solution.  

As well as ensuring that every vehicle is able to satisfy the criteria associated with the 

parameter, dabs, the results presented in Figures 7.9 and 7.11 also illustrate that the trajectory 

prediction methodology is able to satisfy the four convergence criteria presented in Table 

7.2 faster. This is demonstrated below in Table 7.5 where the mean, maximum and 

minimum convergence times associated with the trajectory prediction and waypoint 
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consensus methodologies are presented. Before analysing the results though, it is important 

to note that the values presented in Table 7.5 represent the overall average, minimum and 

maximum convergence times obtained from the 200 simulations completed for each 

timeslot size. This means that the values presented represent the entire envelope of 

convergence times for each timeslot. Importantly, as shown in Figure 7.12, not all the 

simulations completed using the waypoint consensus technique were are able to satisfy the 

necessary criteria and as a result, the convergence times presented for this particular 

methodology have only been taken from those simulations that did satisfy the necessary 

criteria.  In order to obtain the values presented below, the convergence time of each 

simulation was taken to be the time each simulation satisfied the criteria presented in Table 

7.2   

Table 7.5 - Comparison of the minimum, mean and maximum convergence times 

obtained from the waypoint consensus and trajectory prediction methodologies. 

Timeslot 

Size (s) 
Minimum Time (s) Mean Time (s) Maximum Time (s) 

 Waypoint Prediction Waypoint Prediction Waypoint Prediction 

1 347 207 788 363 1569 590 

2 328 207 778 363 1579 590 

4 336 207 785 363 1591 590 

8 453 207 853 363 1581 590 

16 709 207 1064 363 1490 590 

24 777 207 1298 363 1596 590 

The results presented above clearly demonstrate that when the trajectory prediction 

functionality is implemented, the time taken for the formation control algorithm to satisfy 

the necessary criteria is significantly less when compared with the waypoint consensus 

methodology. Furthermore, the results also demonstrate that the disparity in the 

convergence time between the two methodologies increases significantly with the timeslot 

size.  As discussed previously, this is due to the design of the velocity control law within 

the waypoint consensus algorithm and the fact that each vehicle can only alter its velocity 

once every communication cycle.  

Lastly, the results also demonstrate that when the trajectory prediction functionality is 

incorporated the values obtained for the minimum, mean and maximum convergence times 
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are identical regardless of the timeslot size used.  While initially this seems unlikely, the 

trajectory prediction methodology has been designed to provide each vehicle with an 

accurate representation of the positioning and orientation of neighbouring vehicles as if the 

transfer of data among the vehicles was instantaneous. As a result, this means that the 

formation control algorithm with the trajectory prediction methodology should produce 

the exact same results regardless of the timeslot size implemented.  

In terms of comparing the efficiency of the two methodologies, the results clearly 

demonstrate that the formation control algorithm incorporating the trajectory prediction 

functionality achieves convergence approximately 2-3.5 times faster than the waypoint 

consensus technique. If the convergence time were to be the only metric to be taken into 

consideration, it is abundantly clear from these results that the trajectory prediction 

methodology is the most efficient methodology. However, before it is possible to make a 

definitive conclusion as to which methodology is the most efficient, the additional 

computer resource required to implement these two methodologies has to be analysed.  

To quantify this additional computational effort, the amount of processing time required 

(in milliseconds) to implement these two methodologies has been evaluated and the 

minimum, mean and maximum values obtained presented below in Table 7.6.  

The results clearly demonstrate that the processing time required for the trajectory 

prediction methodology is over an order of magnitude greater than that of the waypoint 

consensus algorithm. While significant, this difference is not unexpected and is due to the 

fact that the trajectory prediction functionality not only contains an identical copy of the 

RoboSalmon mathematical model but it is evaluated for each neighbouring vehicle (i.e. N-

1) at a rate of 200Hz. This method is considerably more complex than that contained within 

the waypoint consensus technique where only the lateral distance to each vehicles chosen 

waypoint and the absolute distance to its nearest neighbour are required to be evaluated.  

Therefore, the results presented below clearly demonstrate that in terms of the 

computational effort required, the waypoint consensus technique is more efficient.  

However, Table 7.6 nevertheless illustrates that in order to provide each vehicle with a 

continuously accurate representation of the positioning of every other vehicle within the 

group, the required processing time, on average, is only 6.1ms. While in isolation, this value 

may seem significant, the results presented in Table 7.5 and Figure 7.9 demonstrate that not 

only does implementing this technique ensure the vehicles will generate the required 

parallel line formation but it will do so 2-3.5 times faster than the waypoint consensus 

algorithm. The results also demonstrate that unlike the waypoint consensus methodology, 
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the trajectory prediction algorithm is unaffected by increases in the timeslot size being used. 

Therefore, the results presented suggest that in order to overcome the nuances associated 

with the implementation of the TDMA protocol as efficiently as possible, the trajectory 

prediction functionality presented in Section 7.2.1 should be incorporated.     

Table 7.6 - Comparison of the processing time required to evaluate the functionality 

contained within the trajectory prediction and waypoint consensus methodologies. 

Timeslot 

Size (s) 
Minimum Time (ms) Mean Time (ms) Maximum Time (ms) 

 Waypoint Prediction Waypoint Prediction Waypoint Prediction 

1 0.4 5.4 0.5 6.3 0.7 6.6 

2 0.4 5.4 0.5 6.3 0.7 6.6 

4 0.4 5 0.5 5.8 0.6 6.6 

8 0.4 5.8 0.5 6.3 0.6 6.6 

16 0.4 5.8 0.5 6.3 0.6 6.6 

24 0.4 5.4 0.5 5.8 0.6 6.6 

7.5 Summary 

The purpose of this chapter has been to describe the implementation of two methodologies 

designed specifically to overcome the nuances associated with the TDMA protocol and in 

doing so, ensure the required parallel line formation can be generated as quickly and 

efficiently as possible. After the functionality contained within these two methodologies 

was described in Sections 7.2.1 and 7.2.2, the analysis completed within Section 7.4.1 began 

by establishing whether or not the additional functionality implemented did indeed ensure 

the required parallel line formation could be generated. Thereafter, the analysis focussed 

on establishing whether or not one of the methodologies is particularly more efficient (and 

hence more suitable) than the other. Consequently, presented below is a brief summary of 

the pertinent results obtained from this analysis. 

• The results presented within Figure 7.9 demonstrate that regardless of the timeslot 

size used, the formation control algorithm with the trajectory prediction 

methodology incorporated satisfied the varies convergence criteria presented in 

Table 7.2. Furthermore, the results also demonstrate that the algorithm achieves 

convergence as if the communication amongst the vehicle is instantaneous.  
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• Conversely, the results presented in Figure 7.11 demonstrate that while the 

waypoint consensus technique is able to generate the required parallel line 

formation due to the design of the modified velocity control law (Section 7.2.2.6), 

the ability of the vehicles to converge to the required absolute nearest neighbour 

distance deteriorates as the timeslot size is increased.     

• Furthermore, unlike the results presented in Figure 7.9, Figure 7.11 demonstrates 

that due to its design, the convergence time of the waypoint consensus algorithm 

increases proportionally with the timeslot size used. 

• In terms of comparing the convergence performance of the two methodologies, 

the results presented in Table 7.5 illustrate that on average, the trajectory 

prediction method satisfies the varies convergence criteria 2-3.5 times faster than 

the waypoint consensus method. 

• Finally, while unsurprising, the results presented in Table 7.6 demonstrate that 

due to its increased complexity, the trajectory prediction methodology requires 

significantly more processing time in order to operate when compared with the 

waypoint consensus technique.  

In concluding, this chapter has presented and analysed the implementation and associated 

performance of two methodologies designed specifically to overcome the nuances 

associated with the TDMA protocol. While the results have illustrated that both 

methodologies operate as envisioned, they also suggest that in terms of overall 

performance, the trajectory prediction methodology would seem to provide an overall 

better solution.  

However, it is important to note that the results presented in this chapter, have not taken 

into consideration the effect of external disturbances such as obstacles and oceanic currents. 

Subsequently, the aim of the following chapter will now be to incorporate a realistic 

representation of these external disturbances and investigate what effect they have on the 

performance and efficiency of the two methodologies presented in this chapter.
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Chapter 8  
External Disturbances 

____________________________________ 

8.1 Introduction 

In the previous chapter, the results demonstrated that both the trajectory prediction and 

waypoint consensus techniques were able to successfully coordinate the vehicles as 

required despite the nuances associated with the underwater communication channel. 

However, while both techniques ensured convergence, they also illustrated that the 

trajectory prediction technique achieved convergence much faster. Importantly though, 

and as discussed within the summary of Chapter 7, the results presented were obtained 

from simulations that did not take into consideration the effect of additional external 

disturbances such as obstacles and ocean currents. This is particularly important as these 

disturbances are difficult/impossible to predict. Consequently, the efficiency of the 

trajectory prediction methodology may deteriorate as a result. Conversely, because the 

waypoint consensus technique does not rely on up to date positional information of 

neighbouring vehicles, the effect of these disturbances may be less severe. The aim of this 

chapter therefore is to describe the functionality implemented to accurately represent these 

external disturbances and thereafter, demonstrate whether or not their introduction 

impacts the efficiency of the two techniques described in Chapter 7. 

To achieve this, the chapter is structured as follows. Section 8.2 presents the functionality 

implemented to provide an accurate representation of the external disturbances discussed 

above. This section also describes the subsequent changes made to the algorithm in order 

to ensure each vehicle is still capable of satisfying the necessary convergence criteria. 

Section 8.3 describes simulations setup and values used for the algorithmic parameters 

associated with these external disturbances. Section 8.4 then presents and analyses the 

results obtained from the simulations undertaken. Section 8.5 then describes the additional 

simulations completed to further test the robustness of the chosen methodology. Finally, 

Section 8.5 provides a summary of the work completed in this chapter.   
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8.2 Implementing External Disturbances 

The purpose of this section is to not only describe the functionality implemented to 

incorporate a realistic representation of the external disturbances discussed above but also 

to describe the changes made to the algorithm to ensure the required parallel line formation 

can still be generated. To achieve this, the functionality associated with implementing a 

realistic representation of ocean currents will be presented in Section 8.2.1. Section 8.2.2 will 

then describe the associated changes made to the vehicles Guidance System to accommodate 

the inclusions of these currents. Thereafter, in Section 8.2.3, the functionality implemented 

to model the presence of external obstacles is presented before the chosen obstacle 

avoidance technique is described in Section 8.2.4. 

8.2.1 Oceanic Currents Representation 

As described in (Fossen 2011), ocean currents are predominantly horizontal circulation 

systems caused by forces acting upon the mean flow. These forces include gravity, wind 

friction, variations in the fluid’s density, temperature and salinity as well as the Coriolis 

force. In order to accurately model these currents, the mathematical model of the 

RoboSalmon vehicle shown previously in Equation (3.12) has to be altered.  The alteration 

is simple and involves changing the velocity vector within the Coriolis and hydrodynamic 

terms from 𝒗 to 𝒗𝑟 as shown below in Equation (8.1).  

𝐌�̇� + 𝑪(𝒗𝒓)𝒗𝒓 +𝑫(𝒗𝒓)𝒗𝒓 + 𝒈(𝜼) =  𝝉 (8.1) 

Here the vector 𝒗𝑟  represents the relative velocity between the vehicle, 𝒗 and the ocean 

current, 𝒗𝑐  in the body-fixed axis as Equation (8.3) illustrates. 

𝒗𝑟 =  𝒗 − 𝒗𝑐  (8.2) 

Importantly, because only motion in the horizontal plane is taken into consideration within 

this work, the vector, 𝒗 is equal to: 

𝒗 = [
𝑢
𝑣
𝑟
] (8.3) 

Moreover, as discussed in (Fossen 2011), if the current being modelled is assumed to be 

irrotational, Equations (8.2) and (8.3), when combined, produce the following simplified 

relative velocity vector: 
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𝐯𝐫 = [
𝑢 − 𝑢𝑐
𝑣 − 𝑣𝑐
0

] (8.4) 

Where the parameters, 𝑢𝑐 and 𝑣𝑐 represent the longitudinal and lateral velocities of the 

ocean current in the body-fixed axis and are calculated using the following two equations.  

𝑢𝑐 = 𝑉𝑐 𝑐𝑜𝑠(𝛽𝑐 −𝜓) (8.5) 

𝑣𝑐 = 𝑉𝑐 𝑠𝑖𝑛(𝛽𝑐 − 𝜓) (8.6) 

Where the parameters, 𝛽𝑐 and 𝜓 represent the angle of the ocean current and the vehicle in 

the earth-fixed frame of reference and 𝑉𝑐 is calculated using the standard equation shown 

below.  

𝑉𝑐 = √𝑢𝑐
2 + 𝑣𝑐

2 (8.7) 

Equations (8.1)-(8.7) have described the changes made to the mathematical model of the 

RoboSalmon vehicle in order to ensure a realistic representation of ocean currents are 

incorporated within it. Equations (8.5)-(8.6) demonstrate that the magnitude and direction 

of the current can be varied by altering the values selected for the parameters, 𝑉𝑐 and 𝛽𝑐. It 

is important to note though that the values selected for 𝑉𝑐  should always be smaller than 

the velocity of the vehicle. This is to ensure that the vehicle is still capable of manoeuvring 

in the required direction and the vehicles do not begin to drift with the current. As will be 

shown in Section 8.3, the values chosen for these parameters have been selected specifically 

to ensure that this is indeed the case. 

8.2.2 Guidance System Compensation for Ocean Current 

Disturbances 

Inspecting Equations (8.5) and (8.6), it is apparent that apart from the scenario where 𝛽𝑐 is 

equal to 𝜓, incorporating an ocean current results in the value for the lateral velocity being 

non-zero when the vehicle is manoeuvring in a straight line. This is particularly important 

as it means there will now be a sideslip angle associated with the vehicle. As shown below 

in Figure 8.1, the sideslip angle is defined as the angle from the body-fixed, x-axis to the 

vehicles velocity vector, U. As the diagram demonstrates, the introduction of this sideslip 

angle will prevent the vehicle from being able to move in the direction of its required 

heading angle, ψ. Instead, the vehicle now manoeuvres in the direction denoted by the 

symbol, χ, i.e. its course angle.    
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Figure 8.1 - Geometric relationship between course angle, χ, heading angle, ψ and sideslip 

angle, β. 

Analysing Figure 8.1, it is apparent that when these three angles are combined, the course 

angle is equal to the sum of the heading angle and the sideslip angle. 

𝜒 = 𝜓 + 𝛽 (8.8) 

Where the sideslip angle is calculated using the following equation.  

𝛽 = 𝑠𝑖𝑛−1 (
𝑣 − 𝑣𝑐

√(𝑢− 𝑢𝑐)2 + (𝑣 − 𝑣𝑐)2
) (8.9) 

As Figure 8.1 demonstrates, if left uncompensated, the introduction of a sideslip angle will 

prevent each vehicle from being able to manoeuvre in the direction evaluated from the 

control laws presented throughout this thesis. To ensure that this is not the case, the 

guidance algorithm must be altered. This is achieved by rearranging Equation (8.8) to 

produce: 

𝜓𝑑 = 𝜒 − 𝛽 (8.10) 

Where the course heading angle, 𝜒 represents the angle calculated using the control laws 

presented throughout this thesis. By implementing this modification, Equation (8.10) 

demonstrates that the guidance systems now instruct each vehicle to manoeuvre with a 

heading that takes into consideration the sideslip angle of the vehicle and as a result, align 

the vehicles velocity vector with its desired direction, 𝜒. This is shown below in Figure 8.2. 



External Disturbances 

 

202 

 

 

Figure 8.2- Altered vehicle heading angle taking into consideration sideslip angle. 

Upon inspection, it is apparent from Figure 8.2 that after taking into consideration the 

sideslip angle, the heading angle of the vehicle, ψ is much smaller when compared with 

that shown in Figure 8.1. However, as required, the velocity vector of the vehicle, U is now 

aligned with the vehicle’s required course direction, χ,. 

While Figure 8.2 demonstrates that the modification presented in Equation (8.10) ensures 

each vehicle is still capable of manoeuvring in the correct direction, these alterations have 

had to be included due to original Line-of-Sight calculation adopted and presented in 

Equation (3.25). Furthermore, as Equation (8.9) illustrates, these modifications require the 

vehicles to not only have an accurate representation of their own longitudinal and lateral 

velocities but also those of the oceanic currents. While this assumption has been made in 

this thesis and can be easily implemented within the mathematical model, in reality though, 

having accurate assessments of these parameters – particularly the oceanic current 

velocities – is difficult. Consequently, if applied in reality, it would be advantageous to 

replace the Line-of-Sight calculation presented in Equation (3.25) with a modern, state of 

the art Line-of-Sight algorithm such as the Integral Line-of-Sight technique. As discussed 

in (Caharija,2016) (Kelasidi,2017) , this technique automatically compensates for the 

sideslip angle introduced by oceanic currents without requiring the lateral and longitudinal 

components of the currents velocity.  

8.2.3 Obstacle Detection Representation 

Due to operating in a largely unknown environment, it is imperative that all vehicles have 

suitable obstacle avoidance capabilities to prevent collisions with underwater structures 

such as shipwrecks, cliffs, reefs and suspended mines (Braginsky & Guterman 2016). 

However, before the vehicle can make the necessary trajectory alterations they must firstly 

be able to sense, in real time, that an obstacle is positioned along its current trajectory. For 
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the majority of commercially available AUVs, this obstacle detection is achieved by using 

underwater imaging sonar technology (Zhao et al. 2008). Obstacle detection using this 

technique operates by emitting either a conical or fan shaped pulse in the direction of travel 

and analysing the intensity of the subsequent reflections to determine if an obstacle(s) is 

positioned somewhere within the confines of the emitted pulse. This obstacle detection 

process is presented diagrammatically below in Figure 8.3.     

 

Figure 8.3 - Imaging sonar field-of-view model with obstacle. 

In terms of implementing an accurate representation of this obstacle detection technique, it 

is apparent that obstacles can only be detected if they are within the field of view of the 

sonar sensor. To replicate this restriction within the mathematical model, each vehicle will 

only become aware of an obstacle when two specific conditions are satisfied. As shown 

below in Figure 8.4, these conditions are related to the absolute distance between the vehicle 

and the obstacle, dobs and the associated relative angle, 𝜓𝑅𝑜𝑏𝑠. 

 

Figure 8.4 - Geometry associated with calculating the parameters, dobs and 𝜓𝑅𝑜𝑏𝑠. 
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Here, the angle, 𝜓𝑅𝑂𝑏𝑠  is calculated using Equations (8.11) and (8.12) below. 

𝜓𝑅𝑂𝑏𝑠 = 𝜓𝐿𝑂𝑆𝑂𝑏𝑠 − 𝜓𝑉 (8.11) 

Here, 𝜓𝑉  represents the heading angle of the vehicle in the earth-fixed reference frame and 

𝜓𝑅𝑂𝑏𝑠  is the line-of-sight angle of the obstacle which is calculated using the following 

equation: 

𝜓𝐿𝑂𝑆𝑂𝑏𝑠 = 𝑡𝑎𝑛
−1 (

𝑥𝑜𝑏𝑠 − 𝑥𝑣
𝑦𝑜𝑏𝑠 − 𝑦𝑣

) (8.12) 

As shown below in Equation (8.13), the distance between the vehicle and the obstacle is 

calculated using the standard equation for the distance between two points in 2-

dimensional space. 

dObs = √(𝑥𝑣 − 𝑥𝑂𝑏𝑠)
2 + (𝑦𝑣 − 𝑦𝑂𝑏𝑠)

2 (8.13) 

To implement an accurate representation of the obstacle detection technique presented in 

Figure 8.3, the parameters, 𝜓𝑅𝑂𝑏𝑠  and 𝑑𝑂𝑏𝑠 should satisfy the following two conditional 

statements before the vehicle becomes aware of the obstacles. 

|𝜓𝑅𝑂𝑏𝑠| ≤  
𝜋

4
 (8.14) 

dobs ≤ 12m (8.15) 

It is important to note that the parameter dabs is calculated to be the absolute distance from 

the vehicles centre of gravity to the centre of the obstacle. Given that the obstacles have a 

radius of 6m and the short length of the RoboSalmon vehicle (0.9m), this means that each 

vehicle has a distance of approximately 5m in which to manoeuvre round the obstacle after 

it first becomes aware of its presence. This distance was deemed to be suitable due to the 

relatively slow speed of the vehicles and their fast turning capability.   

Regardless, to incorporate this simplified representation of the obstacle detection 

technique, additional subsystems have had to be incorporated within the original AUV 

architecture presented previously in Chapter 4 (Figure 4.2). These alterations are shown 

below in Figure 8.5. 
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Figure 8.5- Altered AUV system architecture to incorporate obstacle detection 

functionality. 

The diagram above demonstrates that the simplified representation of the obstacle 

detection technique is incorporated across two subsystems. The first subsystem contains a 

list of coordinates that represent the positions of each obstacle within the simulation. The 

second subsystem contains the actual Obstacle Detection functionality. This subsystem uses 

the coordinates held by the first subsystem to calculate the parameters presented in 

Equations (8.12) and (8.13). Thereafter the subsystems determine whether or not the 

conditional statements in Equations (8.14) and (8.15) have been satisfied. If so, the 

functionality proceeds to pass the coordinates of that particular obstacle to the vehicle’s 

Guidance System. Conversely, if the conditional statements in Equations (8.14) and (8.15) are 

not satisfied, no data is passed to the Guidance System.   

8.2.4 Obstacle Avoidance – Guidance System Alteration 

To prevent the vehicles from colliding with any detected obstacle, a suitable obstacle 

avoidance technique must be implemented. For this study, a collision cone strategy has 

been implemented (Chakravarthy & Ghose 1998). This technique operates by providing 

each vehicle with a range of angles (collision cone) that if the vehicle is to manoeuvre with, 

a collision will become inevitable (Rafferty 2014). Therefore, to prevent collisions, each 

vehicle, if necessary, is instructed to alter its course angle to ensure that it remains out with 

the calculated collision cone. The associated geometry of this collision cone strategy is 

shown below in Figure 8.6. 
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Figure 8.6- Geometry associated with collision cone (Red Triangle). 

Using this geometry, it is apparent that the collision cone (red triangle) can be defined in 

the Earth-fixed reference frame using the two angles presented below in Equations (8.16) 

and (8.17). 

𝛼𝑙 = 𝜓𝐿𝑂𝑆𝑂𝑏𝑠 − 𝜙 (8.16) 

𝛼𝑢 = 𝜓𝐿𝑂𝑆𝑂𝑏𝑠 +𝜙 (8.17) 

Here the angle, 𝜙 can be calculated using Equation (8.18) below. 

𝜙 = 𝑠𝑖𝑛−1 (
𝑟𝑜𝑏𝑠
𝑑𝑜𝑏𝑠

) (8.18) 

Since every obstacle implemented in this work has been incorporated as a circle, the 

parameter 𝑟𝑜𝑏𝑠 in Equation (8.18) is set to the radius of the obstacle. Moreover, it is also 

important to note that every obstacle is assumed to have the same radius length, i.e. 6m. 

The angles, 𝛼𝑙  and 𝛼𝑢 define the range of course heading angles that the vehicle should 

avoid in order to prevent a collision with the obstacle. Furthermore, while the example 

presented above in Figure 8.6 considers only a single obstacle, the collision cone technique 

can be extended to take into consideration multiple obstacles as shown below in Figure 8.7.  
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Figure 8.7- Implementation of collision cone technique for multiple obstacles (Diagram 

Not to Scale). 

As the values presented in Table 8.1 illustrate, the collision cones associated with each 

obstacle presented in Figure 8.7 can be defined using the following sets of angles, i.e.  

𝛼1= [30º,40º], 𝛼2= [50º,60º] and 𝛼3= [58º,68º]. Importantly, because the circles representing 

the second and third obstacles intersect, the combined cone angle for these two obstacles 

can be rewritten as 𝛼2/3= [50º, 68º]. Overall, when combined, the total cone angle for these 

three obstacles can be written as the union of the different sets, i.e. 𝛼 =

[30º, 40º]⋃[50º, 68º].  

Table 8.1 - Collision cone angles. 

Obstacle 𝜶𝒍 𝜶𝒖 

1 30º 40º  

2 50º 60º 

3 58º 68º 

If the desired course angle calculated by the formation control algorithm is out with the 

confines of the union of angles represented by the parameter α, then there is no need for the 

vehicle to alter its course angle. Conversely, if the vehicles course angle is on a collision 

course with one of the obstacles, the vehicle’s desired heading angle is altered to the angle 

closest to the original desired angle but importantly out with the confines of the collision 

cone. Lastly, as shown below in Figure 8.8, in order to ensure that this obstacle avoidance 



External Disturbances 

 

208 

 

manoeuvre is undertaken, the system architecture presented previously in Figure 8.5 has 

once again been modified.  

 

Figure 8.8- Altered AUV system architecture with obstacle avoidance incorporated. 

This altered architecture shows that the Guidance System has been separated into its two 

main components, the formation control algorithm and the obstacle avoidance strategy. 

This has been undertaken deliberately to illustrate that the obstacle avoidance functionality 

is only evaluated once the formation control algorithm has calculated the vehicle’s desired 

heading angle. Thereafter, Figure 8.8 demonstrates that this angle is passed to the Obstacle 

Avoidance subsystem where the decision making process shown below in Figure 8.9 is 

completed. 

 

Figure 8.9 - Decision making process completed within obstacle avoidance subsystem. 

By completing this decision making process and implementing, where required, the 

obstacle avoidance manoeuvre discussed above, it should be possible for each vehicle to 

avoid colliding with any external obstacles. The only situation that would result in the 

vehicles not being able to manoeuvre round the detected obstacles is when the restrictions 

imposed on the algorithm in Equations (8.14) and (8.15) result in the vehicles becoming 

trapped. An example of such a situation is shown below in Figure 8.10. 
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Figure 8.10 - Example scenario when obstacle avoidance technique results in a vehicle 

becoming trapped. 

The diagram shown in Figure 8.10 demonstrates a possible scenario resulting from the 

implementation of the obstacle avoidance technique presented in this chapter. The diagram 

demonstrates that because the vehicle doesn’t know the location of all the obstacles, it 

makes trajectory manoeuvres that result in it moving towards more obstacles instead of 

away from them. In the scenario in Figure 8.10, the vehicle is eventually able to manoeuvre 

past the obstacles but depending on the geometry of the vehicles position and that of the 

obstacles, it is possible that the vehicle would remain trapped and unable to manoeuvre 

past the obstacles. The only way to overcome this problem would be to provide the vehicle 

with the capability to be able to “see” more vehicles at any one time or conversely, for the 

vehicle to store the positions of known obstacles and use these within the avoidance 

technique presented in this section. However, for this thesis, each vehicle will only be aware 

of obstacles that satisfy the conditions of Equations (8.14) and (8.15).     

8.3 Simulation Setup & Performance Metrics 

To allow a direct comparison with the results presented in the previous chapter, it is 

necessary to ensure that the simulation setup is identical to those used in Chapter 7. To 

demonstrate that this is indeed the case, shown below in Table 8.2 is a summary of the 

values used for the various algorithmic parameters. 

Compared to the simulation setup presented in Chapter 7, the only difference for the 

simulations undertaken in this chapter is the fact that the timeslot size is no longer varied 

but instead, kept constant at 24s. The reason for only testing this particular timeslot size is 

simply due to the fact that it represents the worst-case scenario in terms of communication 

throughput tested in this thesis. Subsequently, if incorporating these external disturbances 
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is to affect the ability of the trajectory prediction and waypoint consensus algorithms, it will 

be most profound when this timeslot size is implemented.  

Table 8.2 - Variation in simulation parameters. 

Parameter Group 1  Group 2  

Technique 

Implemented 
Trajectory Prediction 

Waypoint 

Consensus 

Behavioural Zones Size 

(m) 
[20,25,200]m & [6,11,200]m 

Timeslot Size (𝑇𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡) 24s 

Transmission & 

Propagation Delay 

(𝑇𝑇𝑜𝑡)  

0.205s 

Reference Heading 

Angle (ψref) 

𝜓

4
 

However, what Table 8.2 does not present is the values used for the parameters associated 

with the external disturbances, i.e. the magnitude of the current’s velocity as well as its flow 

angle and also the size and number of stationary obstacles. The following two sections 

detail and justify the values used for these parameters in more detail.  

8.3.1 Simulation Parameters – Ocean Currents 

As presented in Section 8.2.1, an ocean current can be represented by the magnitude of its 

velocity vector, 𝑉𝑐,  as well as its flow angle, 𝛽𝑐. While the value selected for the current’s 

flow angle has no limitations, the magnitude of its velocity has to be within the limits shown 

below in Equation (8.19) (Fossen 2011). 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑐 ≤ 𝑉𝑚𝑎𝑥 (8.19) 

Here the parameters, 𝑉min and 𝑉max represent the minimum and maximum attainable 

velocities of the vehicle. Consequently, for the simulations completed throughout this 

study, it was decided that the value selected for the parameter, 𝑉𝑐 would be equal to 0.1m/s, 

i.e. half the nominal velocity of the RoboSalmon AUV. This particular value has been 

selected to ensure that regardless of the direction of the ocean current, the vehicle is still be 

able to manoeuvre in the direction instructed by the formation control algorithm. 

For the current’s direction, it has been decided that a constant angular value of 135º would 

be used. This angle has been chosen specifically as it means that as the vehicles are 
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manoeuvring to generate the required formation, vehicles at one side of the group are 

subjected to a tail current while the vehicles at the other side are subjected to a head current. 

As shown below in Figure 8.11, this results in the greatest possible velocity differential 

among the vehicles when generating the required parallel line formation.  

 

Figure 8.11- Diagrammatic representation of the selected ocean current direction 

compared with the initial vehicle heading direction. 

8.3.2 Simulation Parameters – Obstacles 

As discussed previously in Section 8.2.3, each obstacle implemented within is defined by 

the x and y coordinate of its centre position as well as the magnitude of its radius (6m). As 

Figure 8.5 demonstrates, these coordinates along with the criteria presented in Equations 

(8.14) and (8.15) are used within the Guidance System of each vehicle to determine whether 

or not an obstacle has been detected. As the main aim of this investigation is to determine 

what effect introducing these obstacles has on the performance of the algorithms, it was 

imperative that the coordinates selected positioned the obstacles in the path of a number of 

vehicles from within each simulation. To ensure that this is indeed the case, the trajectories 

obtained from the simulations completed in Chapter 7 were analysed to obtain a reference 

area within which a number of obstacles were positioned.  

8.3.3 Summary of Simulation Test Cases 

As shown below in Table 8.3, to test and compare the introduction of both ocean currents 

and external obstacles on the trajectory prediction and waypoint consensus algorithms, 

four sets of simulations were completed.  

As throughout the work completed in this Thesis, the 200 simulations completed within 

each test case contain 100 simulations where the vehicles are initially using the repulsive 

control law and 100 simulations where the vehicle are initially using the attractive control 
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law. It is also apparent from Table 8.3 that for the two algorithms, i.e. trajectory prediction 

and waypoint consensus, the two external disturbances are tested separately. This is to 

ensure that the subsequent analysis could easily ascertain the specific effect each 

disturbance has on the respective algorithms. 

Table 8.3 - Summary of simulation test cases undertaken. 

Simulation Test Case Number 1 2 3 4 

Algorithm Implemented 
Trajectory 

Prediction 

Trajectory 

Prediction 

Waypoint 

Consensus 

Waypoint 

Consensus 

External Disturbance Implemented 
Ocean 

Current 

External 

Obstacle 

Ocean 

Currents 

External 

Obstacle 

Number of Simulations Completed 200 200 200 200 

Timeslot Size 24s 24s 24s 24s 

Transmission Time & Propagation 

Delay 
0.205s 0.205s 0.205s 0.205s 

Reference Heading Angle 45º 45º 45º 45º 

8.4 Results 

The purpose of this section is to demonstrate what effect the incorporation of external 

disturbances has on the ability of the trajectory prediction and waypoint consensus 

algorithms to generate the required parallel line formation. To achieve this, Section 8.4.1 

discusses the results obtained from the simulations implementing the trajectory prediction 

algorithm while Section 8.4.2 discusses the results obtained using the waypoint consensus 

algorithms. 

8.4.1 Convergence Performance - Trajectory Prediction Algorithm  

Shown below in Figures 8.12 (a) – (e) is the evolution of the percentage of vehicles satisfying 

the various convergence associated with generating the required parallel line formation 

with and without the inclusion of the external disturbances discussed this chapter.  

Analysing the results associated with the inclusion of the stationary obstacles, it is apparent 

that the trajectory prediction algorithm is still capable of generating the required parallel 

line formation. This is due to the fact that in each individual figure, i.e. (a) – (d), the 

necessary convergence percentage has been satisfied. However, when comparing the 



External Disturbances 

 

213 

 

results presented below with those of Figure 7.9 where no external disturbances were 

incorporated, it is apparent that the time taken to achieve convergence has increased 

significantly.  

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8.12- Evolution of the percentage of vehicles satisfying necessary convergence 

criteria when trajectory prediction technique is implemented and disturbances are 

incorporated. 
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While this increase in convergence time is significant, it is not unexpected and as shown 

below in Figure 8.13, can be explained by the fact that a number of vehicles are having to 

undertake the obstacle avoidance manoeuvres discussed in Section 8.2.4 before generating 

the required formation.  

While a portion of this time can be attributed to the time required by the vehicles to 

manoeuvre past the obstacles, Figure 8.13 demonstrates that a significant portion of this 

time can be attributed to a number of vehicles having to complete corrective manoeuvres. 

  

(a) (b) 

Figure 8.13- Example of obstacle avoidance manoeuvres completed throughout 

simulations implementing the trajectory prediction algorithm and when the vehicles were 

initially using (a) attractive control law and (b) repulsive control law. 

These corrective manoeuvres occur throughout the trajectories presented in Figures 8.13 (a) 

and (b) and are caused when a vehicles timeslot occurs while it is completing an obstacle 

avoidance manoeuvre and as such, the vehicle communicates a position vector that does 

not agree with the values obtained from the trajectory prediction algorithm of a 

neighbouring vehicle. Similarly to the results presented in Chapter 6, this error results in 

the algorithm of a neighbouring implementing the wrong control law which then has to be 

subsequently corrected when the next communication update is received. 

For example, in Figure 8.13 (b) above, it is apparent that Vehicle 4 (fourth from the left) 

communicates its position while manoeuvring past the right hand side of the two obstacles 

in its path. Thereafter, because Vehicle 4 has moved laterally away from Vehicle 3, Vehicle 

3, initiates the attractive control law and begins to reduce the lateral distance between the 

two vehicles back to within the confines of the orientation zone. However, once Vehicle 4 

manoeuvres past the obstacles, it begins using the repulsive control law once more and 
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begins to manoeuvre back towards Vehicle 3. Vehicle 3, on the other hand, is unaware of 

this manoeuvre and continues to implement the attractive control law until it receives a 

positional update from Vehicle 4. At this point, Vehicle 3 makes the corrective manoeuvre 

and implements the repulsive control law one final time until the lateral distance between to 

the two vehicles is within the confines of the orientation zone. Furthermore, Figure 8.13 (b) 

demonstrates that the aforementioned incorrect implementation of the attractive control law 

by Vehicle 3 has a knock-on effect that results in both Vehicles 1 and 2 having to make 

additional heading angle changes. 

Therefore, the introduction of the external obstacles results in an error occurring within the 

trajectory prediction algorithm which, similarly to the introduction of the TDMA protocol, 

results in a number of vehicles having to complete a number of additional corrective 

manoeuvres before the required parallel line formation can be generated.  

While an increase in the number of heading manoeuvres completed is inevitable, the results 

discussed and presented above in Figure 8.13 illustrate that due to the design of the 

trajectory prediction algorithm, a significant percentage of these additional manoeuvres are 

unnecessary.  

In terms of the effect of introducing ocean currents, the results presented in Figure 8.13 

demonstrate that a significant number of vehicles are unable to continuously manoeuvre 

with the exact same heading direction. This can be attributed to the fact that as shown in 

Figures 8.12 (a), (b) and (c), there is a small, yet continuous fluctuation in the percentage of 

vehicles satisfying the criteria associated with the vehicles lateral and absolute nearest 

neighbour distances. Subsequently, as was the case when the TDMA protocol was 

incorporated in Chapter 6, this fluctuation means that a number of vehicles are periodically 

switching between implementing the different control laws. However, more importantly, 

due the incorporation of the ocean currents, every time a vehicle alters its velocity, it will 

also need to change its heading angle as per Equation (8.10) in order to ensure the vehicle 

manoeuvres in the required direction. Consequently, due to the convergence performance 

shown in Figure 8.12 (b), vehicles are continuously altering their velocity. As a result, their 

heading angle is continuously changing. Therefore, these two factors explain why the 

convergence performance associated with the standard deviation of the vehicle heading 

angle is significantly reduced.  

As with the results associated with the introduction of the obstacles, the continuous 

fluctuation presented in Figure 8.12 (a), (b) and (c) can be attributed to the fact that the 

trajectory prediction algorithm no longer has a continuously accurate representation of the 

positioning of its nearest neighbours. Furthermore, as shown below in Figure 8.14, because 
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the ocean currents are implemented throughout the entirety of the simulations, the 

associated errors never converge to zero. 

 

Figure 8.14 - Evolution of the minimum, mean and maximum errors associated 

with the trajectory prediction functionality when ocean currents are included. 

As with the results presented in Figures 8.12-13 and similarly to those presented in Chapter 

6, the errors produced from the trajectory prediction algorithm as a result of implementing 

ocean currents is likely to result in the trajectory prediction algorithm either incorrectly 

altering the vehicles velocity or implementing the wrong control law. Both of which, as 

discussed above, will result in the vehicle unnecessarily altering its heading angle. Finally, 

when combining the results presented in Figure 8.12 and 8.14 and taking into consideration 

the cyclical nature of the TDMA protocol, it is apparent that this selection of the wrong 

control law or vehicle velocity will continues as long as there is an external disturbance 

within the simulated environment. Finally, in terms of the algorithms performance, the 

number of manoeuvres completed by each vehicle, increased on average, by more than 

fivefold as a result implementing ocean currents. While a number of these additional 

manoeuvres are required, the results presented above demonstrate that due to the errors 

associated with the trajectory prediction algorithm, a significant percentage of these 

manoeuvre are unnecessary and are due to the limitations of the trajectory prediction 

algorithm. 

8.4.2 Convergence Performance – Waypoint Consensus Algorithm  

As with the results presented in Figure 8.12, shown below in Figure 8.15, is the convergence 

performance of the waypoint consensus algorithm with and without the external 

disturbances introduced in this chapter.    
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8.15 - Evolution of the percentage of vehicles satisfying necessary convergence 

criteria when the waypoint consensus algorithm is used and external disturbances are 

incorporated. 

Analysing the results presented in Figures 8.15 (a) - (d), it is apparent that the convergence 

performance of the waypoint consensus algorithm with ocean currents incorporated varies 

very little from the results obtained without any external disturbances. However, when 

analysing Figure 8.15 (e), it is apparent that the results obtained with and without ocean 
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currents for the standard deviation of the vehicles heading angle vary drastically with the 

convergence time increasing by approximately 3000s. In order to understand why this is 

the case, it is important to emphasise that due to the incorporation of ocean currents, every 

time a vehicle alters its velocity, the sideslip angle of the vehicle also changes and as a result, 

the vehicles desired heading angle needs to be altered as per Equation (8.10). Therefore, it 

should be expected that the convergence criteria associated with the standard deviation of 

the vehicles heading angle continues to fluctuate as long as vehicles continue to alter their 

velocity. Subsequently, because the vehicles can only converge to an appropriate absolute 

nearest neighbour distance by altering their velocity, the convergence of the parameter, σ 

should occur at approximately the same rate as the convergence of the parameter, dabs. This 

is indeed shown to be the case when the results presented in Figures 8.15 (b) and (e) are 

compared.  

Moreover, because the vehicles now have to alter their heading angle every time a change 

in velocity is requested, the number of heading manoeuvres completed by each vehicle 

increased by a factor of four when compared with the results obtained with no currents 

included.  

The results presented above demonstrate that the introduction of ocean currents has had 

little effect on the convergence performance of the waypoint consensus algorithm apart 

from the unavoidable increase in the time taken for the parameter, σ to converge. Likewise, 

the fourfold increase in the number of manoeuvres completed by each vehicle is also 

unavoidable and is caused by each vehicle having to take into consideration the sideslip 

angle of the vehicle each time it alters its velocity. The only way to reduce the number of 

heading manoeuvres completed by the vehicles would be to redesign the velocity control 

law presented in Chapter 4.   

When the results associated with the incorporation of stationary obstacles are analysed, it 

is apparent that the algorithms convergence performance is once again affected very little 

apart from a relatively small increase in the convergence time. This, as discussed in the 

previous section is due to the additional time required by the vehicles to complete the 

obstacle avoidance manoeuvres presented in Section 8.2.4. Moreover, due to the fact that 

the waypoint consensus algorithm uses a single, stationary waypoint to determine when 

each vehicle implements the different control laws, it is not susceptible to incorrectly 

implementing the wrong control law as presented in the previous section. Subsequently, as 

shown below in Figure 8.16, the vehicles are not forced to complete additional and 

unnecessary corrective manoeuvres.  
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(a) (b) 

Figure 8.16 - Example of obstacle avoidance manoeuvres completed when using  the 

waypoint consensus algorithm and the vehicles are initially using (a)  the attractive 

control law and (b) the repulsive control law. 

8.4.3 Algorithm Comparison & Decision 

Based on the results presented in the previous two sections, it is apparent that of the two 

algorithms, the waypoint consensus algorithm is significantly less affected by the inclusion 

of the external disturbances. This is primarily due to the fact that unlike the trajectory 

prediction algorithm, the waypoint consensus algorithm isn’t reliant on a continuously 

accurate representation of the positioning of neighbouring vehicles. Subsequently, by 

design, it is incapable of selecting the wrong control laws as has shown to be the case for 

the trajectory prediction algorithm. Furthermore, the deviations in performance seen in the 

waypoint consensus algorithm are as expected with an increased convergence time due to 

the vehicles manoeuvring around the obstacles and more heading manoeuvres resulting 

from the vehicles having to take sideslip into consideration.  

Conversely, while the results demonstrate that the trajectory prediction algorithm is still 

capable of generating the required formation, the results also illustrate its tendency to select 

the incorrect control law when access to up-to-date positional information is unavailable. 

Therefore, because of this undesirable characteristic, confidence in the trajectory prediction 

algorithm to operate as required in the unpredictable underwater environment cannot be 

guaranteed.  

As a result, the waypoint consensus algorithm’s design is more resilient and therefore, 

better suited to overcoming the nuances of the underwater environment. For these reasons, 
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the remaining work completed in this thesis will only use the waypoint consensus 

algorithm. 

8.5 Testing Algorithm Robustness 

As mentioned throughout this thesis, the simulations completed so far have only used a 

limited set of values for the various algorithmic parameters that can be varied within the 

formation control algorithm. As shown below in Table 8.4, these parameters include the 

reference heading angle, the size of the orientation zone, the current flow angle, the 

magnitude of the current’s velocity as well as the size of the obstacles included. These 

parameters have purposefully been kept constant to ensure that any changes to the 

algorithm’s performance can be attributed to and explained by the specific characteristic of 

the underwater environment incorporated, i.e. the incorporation of the TDMA protocol, the 

ocean currents as well as the stationary obstacles. However, to test the robustness of the 

waypoint consensus algorithm, it is important to demonstrate that the algorithm is still able 

to operate successfully regardless of the values used for these parameters.  

Table 8.4 - Summary of algorithmic parameters. 

Parameter   Symbol 

Position of Recovery Area (xdes,ydes) 

Reference Heading Angle ψref 

Deployment Orientation Zone Size (zoolD, zoouD) 

Threshold for Initiating Recovery Phase drec 

Recovery Orientation Zone Size (zoolR, zoouR) 

Magnitude of Ocean Current 𝑉𝑐 

Direction of Ocean Current 𝛽𝑐 

Radius of Obstacle 𝑟𝑜𝑏𝑠 

While it would be impractical to attempt to test every possibly combination of the 

parameters presented above, the following sections will now describe the simulation setup 

used to ensure that not only was the robustness of the algorithm tested sufficiently but it 

was done so within a scenario that is representative of an oceanic sampling mission. 

8.5.1 Simulation Setup – Mission Overview 

The first objective of the waypoint consensus algorithm is to allow a group of vehicles – 

initially deployed from a surface vehicle - to generate the parallel line formation necessary 
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for efficient oceanic sampling missions. Once the vehicles have completed their sampling 

objectives, the algorithm is then tasked with ensuring the vehicles subsequently converge 

to a predefined recovery area to be collected.  So far, this process has been simplified by 

selecting coordinates for the recovery area to be such that the reference heading angle, ψref, 

is always equal to 45º. However, as shown below in Figure 8.17, for the work completed in 

this study, the coordinates of the recovery area are varied so that every integer value of ψref 

to the starboard side of the surface vessel is tested.   

 

Figure 8.17 - Variation in the mission recovery positions used for the simulations 

completed within this study (Surface Vessel -Not to Scale). 

The reason that only angular values to the starboard side of the surface vehicle are used is 

due to the assumption that because the vehicles have been deployed from the starboard 

side of the vehicle, it is unlikely that the mission objective will then instruct the vehicles to 

manoeuvre in a direction that is to the portside of the surface vessel.  

Regardless, Figure 8.17 clearly illustrates that the coordinates selected for the recovery areas 

ensure that the algorithm is tested for every possible integer value for ψref in the interval,-

90º ≤ ψref ≤ 90º. Consequently, in order to test each integer value of ψref, 181 individual 

simulations have to be completed. 

As well as defining the coordinates for the recovery area, Figure 8.17 illustrates that the 

initial positioning for each vehicle must also be defined. This process and the restrictions 

placed on the initial position of the vehicles are described below in Section 8.5.1.1. 
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8.5.1.1 Initial Vehicle Positioning 

To ensure that each vehicle is at a safe distance from their nearest neighbour at the start of 

each simulation, the initial positioning of each vehicle was chosen to ensure that their 

absolute nearest neighbour distance would be at least 3m.   As shown below in Figure 8.18, 

this results in the majority of vehicles having an initial absolute nearest neighbour distance 

that is between three and seven metres. 

 

Figure 8.18 - Variation in the percentage of vehicles with different initial absolute nearest 

neighbour distances. 

Intuitively, the associated initial lateral nearest neighbour distance for each vehicle will be 

by default, smaller. This is shown below in Figure 8.19 where the results demonstrate that 

approximately 80% of the vehicles have an initial lateral nearest neighbour distance (relative 

to the reference heading angle of that simulation) that is less than 3m. 

 

Figure 8.19- Variation in the percentage of vehicles with different initial lateral nearest 

neighbour distances. 
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8.5.1.2 Size of Orientation Zone during Deployment & Mapping Phase 

The size of the orientation zone during the Deployment and Mapping phases dictates the 

lateral separation distance between neighbouring vehicles. Up to this point, only two sets 

of values have been used for this parameter, i.e. 6-11m and 20-25m. In this simulation study 

however, every possible integer value between 10 and 45 meters has been tested for this 

parameter. With the distance between the lower and upper boundaries remaining 

unchanged at 5m, the associated values for the upper boundary of the orientation zone 

range from 15m to 50m.  

 

Figure 8.20 - Different orientation zone sizes used throughout simulation study. 

The above figure demonstrates that for the simulations completed, there are thirty-six 

unique orientation zone sizes. This figure is smaller than the 181 simulations necessary to 

test every integer value for the vehicle’s reference heading angle. As a result, each unique 

orientation zone size was used multiple times. The distribution of the orientation zone sizes 

used is shown below in Figure 8.21.  

The results demonstrate that the percentage value is approximately the same for the various 

subgroups This is particularly important as it demonstrates that in terms of the size of the 

orientations zone, the algorithm has been tested evenly across the simulations completed. 

Finally, the reason that the lower boundary of the orientation zone is limited to 45m is due 

simply to time restrictions and the fact that the simulation run time increases every time 

the orientation zone size is increased.  
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Figure 8.21 - Variation in orientation zone size used throughout simulation study. 

8.5.1.3 Size of Orientation Zone during Recovery Phase 

As discussed above, the purpose of incorporating a Recovery phase within this study is to 

demonstrate that the algorithm can successfully transition between the different control 

laws required throughout an oceanic sampling mission, i.e. Deployment, Data Gathering & 

Recovery,. In a real-life oceanic surveying mission, it is likely that the required inter-vehicle 

distance during this phase of the mission would be the same and would be evaluated based 

on the size of the vehicles used and what is deemed a suitable separation distance. 

Subsequently, for this study, the upper and lower boundaries of the orientation zone have 

been set to 6m and 11m respectively.  

8.5.1.4 Initiation of Recovery Phase 

The final parameter to be defined is the specific point during the mission when the recovery 

phase is initiated. In reality, this transition would occur when the distance between the 

location of the group’s centre (x̅NN, y̅NN) and the vehicle’s recovery position, (xdes, ydes) is 

below a certain threshold. However, for the work completed in this study, it has been 

decided that this transition would occur at the exact same time in each simulation.  This 

decision was made to ensure the results could be processed and presented together in a 

similar manner to those shown in Chapter 5. Subsequently, for the simulations completed, 

each vehicle will transition into the Recovery phase at 3000s.  This value has been chosen 

based on the results of Figure 7.11 where it has been shown that it takes less than 1500s for 

the vehicles to generate the required parallel line formation when the boundaries of the 

orientation zone are equal to 20m and 25m. Since the largest orientation zone used in this 
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study is exactly double these value, 3000s was deemed to be a logical value. Finally, once 

this transition occurs, the simulations continues for a further 3000s before terminating. 

8.5.1.5 External Disturbances – Ocean Currents 

As well as varying the algorithmic parameters discussed above, the simulations undertaken 

have also varied the parameters associated with the external disturbances. Table 8.5 

demonstrates that the velocities selected for the ocean current are equal to 25%, 50% and 

75% of the RoboSalmon vehicles nominal velocity. By using these three values, the results 

will be able to demonstrate whether or not an increase or decrease in the magnitude of the 

currents velocity affects the algorithms ability to operate as required. 

Table 8.5- Variation in the values selected for the currents velocity. 

Category 
Magnitude of Current 

Velocity, Vc (m/s) 

1 0.05 

2 0.1 

3 0.15 

Furthermore, the values used for the direction of the ocean current are presented below in 

Table 8.6 

Table 8.6 -- Variation in the values selected for the currents flow angle. 

Category Current Flow Angle, βC 

1 𝛽𝑐 = 𝜓𝑟𝑒𝑓 

2 𝛽𝑐 = 𝜓𝑟𝑒𝑓  - 180º 

3 0 < |𝜓𝑟𝑒𝑓 − 𝛽𝑐|< 90º 

The value selected for the current flow angle in the first category has been made equal to 

the vehicle’s reference heading angle. This has been deliberately chosen to test whether or 

not a tail current influences the algorithms ability to generate the required formation. 

Conversely, the value selected in the second category tests the performance of the algorithm 

when the vehicles are experiencing a head current. Finally, the third category selects a flow 

angle that results in each vehicle experiencing a current that moves laterally relative to the 

vehicles course angle.   
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8.5.1.6 External Disturbances – Obstacles 

In this study, four different obstacles sizes are tested: 4m, 6m, 8m and 10m. As with the 

parameters associated with the ocean currents, these obstacle sizes were chosen to 

demonstrate whether or not an increase or decrease in the obstacles size affected the 

algorithms ability to operate as required.  As shown below in Table 8.7, these obstacles sizes 

are divided evenly across 181 simulations.  

Table 8.7 - Variation in obstacle size across simulations. 

Simulation Number  Obstacle Size (m) 

1-46 4 

47-92 6 

93-138 8 

139-181 10 

As shown below in Figure 8.22, in order to ensure the obstacles were positioned in the path 

of the vehicles, a large number of obstacles were placed within the simulated environment. 

This was done specifically to guarantee that regardless of the vehicle’s reference heading 

angle, there was a significant likelihood that a number of vehicles would have to 

manoeuvre past an obstacle.  

 

(a) 

Figure 8.22 - Simulation environment including obstacles. 
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8.5.2 Results 

Section 8.5.1 above has described in detail the assumptions made, restrictions implemented 

and values used for the algorithmic parameters presented in Table 8.4. The aim of this 

section is to present the results obtained from these simulations and demonstrate whether 

or not the waypoint consensus algorithm is still able to operate as required despite having 

varied these parameters.  

8.5.2.1 Vehicle Trajectories 

To begin analysing the results, shown below in Figure 8.23 are the trajectories obtained 

from five of the simulations completed.  

Overall, the trajectories demonstrate that the waypoint consensus algorithm has been able 

to generate the required parallel line formation during the Deployment phase of the mission. 

The trajectories also demonstrate that once the parallel line formation has been generated, 

the vehicles are subsequently capable of reducing their lateral nearest neighbour distance 

as required for the vehicle Recovery phase of the mission. These results suggest that overall, 

the waypoint consensus algorithm can operate successfully regardless of the algorithmic 

parameters selected. 

However, upon closer inspection, it is apparent that apart from Figure 8.23 (a), none of the 

remaining trajectories have resulted in every vehicle being positioned directly alongside 

their nearest neighbour as per the criteria associated with the parameter, dabs. For example, 

in Figure 8.23 (b), the three vehicles positioned at the right-hand side of the group are 

positioned significantly aft of the remaining members of the group. Likewise, in Figure 8.23 

(c), the vehicles positioned at either side of the group are positioned significantly behind 

their nearest neighbours. This inability for every vehicle to converge to the required absolute 

nearest neighbour distance continues in Figure 8.23 (d) with the vehicles positioned to the 

extreme left of the group as well as throughout Figure 8.23 (e).  

This variation in the convergence performance of the absolute and lateral nearest neighbour 

distances is consistent with the results presented previously and is primarily due to the 

design of the velocity control law implemented. As discussed in Chapter 7 (Section 7.2.2.6), 

each vehicle is only able to alter its velocity once per communication cycle and only for a 

predefined length of time, As shown above, this periodic change in the vehicles velocity 

results in the absolute distance between neighbouring vehicles converging very gradually. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 8.23 - Vehicle Trajectories obtained when reference heading angle is equal to (a) -

90º (b) -21º (c) 0º (d) 39º and (e) 88º. 

Figures 8.23 (a) –(e) also demonstrate that the obstacle avoidance technique implemented 

is operating as required with the vehicles - when necessary - manoeuvring out of the 

parallel line formation and subsequently around the stationary obstacle. Once the vehicle 
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has moved past the obstacle, Figures 8.23 (a) – (e) demonstrate that they are subsequently 

capable of re-joining the group in the required parallel line formation.  

Therefore, the trajectories presented above suggest that the waypoint consensus algorithm 

is operating as expected despite varying the various algorithmic parameters presented in 

Table 8.4. However, as mentioned above, these trajectories only represent a small 

percentage of the 181 simulations completed. Consequently, the following sections will 

now analyse the results obtained across all simulations completed. In particular, these 

results will focus primarily on the effect of varying the parameters associated with the 

implementation of both stationary obstacles and oceanic currents as well as varying the size 

of the orientation zone.  

8.5.2.2 Increasing Obstacle Size 

The purpose of this section is to demonstrate whether or not the convergence performance 

of the waypoint consensus algorithm is influenced by the size of the obstacles incorporated 

within the simulation environment. To achieve this, shown below in Figure 8.24 is the 

evolution of the convergence performance of the parameters, d1, d2 and dabs as the size of 

the obstacles are increased. Before analysing these results, it is important to note that the 

percentage values shown represent the percentage of vehicles from the simulations that 

contained obstacles of the same size. As shown above in Table 8.7, across the 181 

simulations, each obstacles size was used in at least 45 of the simulations completed. 

As expected, the results clearly demonstrate a sensitivity to the size of the obstacles 

incorporated with the overall percentage of vehicles satisfying the various convergence 

criteria decreasing as the size of the obstacles are increased. This is not surprising and is 

due to the fact that as discussed in Section 8.5.1.6, as the size of the obstacles were increased, 

the size of the simulation environment was kept constant. This means that the obstacles are 

covering an ever-increasing percentage of the simulation environment and as a result, the 

likelihood that more vehicles will have to complete more obstacle avoidance manoeuvres 

for longer periods of time are increased.  

Nevertheless, the results demonstrate that regardless of obstacle size, the percentage of 

vehicles satisfying the relevant criteria continues to increase towards the required value 

throughout the simulations. This is particularly true for the parameters d1, and d2 where the 

convergence percentage (regardless of obstacle size) is generally within 10% of its required 

value. However, Figure 8.24 (d) illustrates a significant reduction in the percentage of 

vehicles satisfying the criteria associated with the parameter, dabs with up to 50% of the 
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vehicles being unable to converge to a value within the specified limits. As discussed above, 

this is believed to be primarily due to the design of the velocity control law.  

  

(a) (b) 

  

(c) (d) 

Figure 8.24 - Variation in the convergence performance of the parameters (a) d1 (b) d2 (c) 

d2 and (d) dabs as the size of the obstacles are increased. 

However, as Figure 7.8 illustrates, another reason for this poor convergence is due to the 

fact that the waypoint consensus algorithm will not alter the vehicles velocity until the 

convergence criteria associated with d1 and d2 have been satisfied. Consequently, as Figures 

8.24 (a) – (c) demonstrate, this will have been the case in several the simulations completed. 

Therefore, the inability of the vehicles to converge to the parallel line formation will 

inherently prevent the vehicles from positioning themselves directly beside their nearest 

neighbour. 

However, it is important to note though that the behaviour described above is entirely as 

expected and demonstrates that the algorithm is capable of successfully undertaken 

obstacle avoidance manoeuvres This is proven by the fact that the evolution of the 

percentage values is continuously fluctuating across the simulations completed. This 
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behaviour is indicative of the vehicles overall satisfying the various convergence criteria 

but periodically not being able to due to undertaken obstacle avoidance manoeuvres. 

8.5.2.3 Increasing Orientation Zone Size 

In the previous section, the results illustrated that as the size of the obstacles incorporated 

increased, more vehicles were unable to continuously satisfy the various convergence 

criteria. As discussed, this is due to the vehicles having to periodically complete obstacle 

avoidance manoeuvres with the frequency of these manoeuvres increasing with obstacle 

size. However, as shown above in Table 8.4, a number of other algorithmic parameters were 

varied throughout the simulations completed. The purpose of this section therefore is to 

demonstrate what effect altering the size of the orientation zone had on the convergence 

performance of the algorithm. 

As with the results presented in the previous section, this is achieved by analysing the 

variation in the convergence performance of the parameters, d1, d2, dabs as well as the 

standard deviation of the vehicles heading angle, σ as the size of the orientation zone is 

increased. These results are shown below in Figure 8.25. 

Overall, the only variation in the convergence performance across the different parameters 

is the time taken for the vehicles to begin satisfying the relevant criteria. The results clearly 

demonstrate that as the size of the orientation zones increases, the time taken for the 

vehicles to begin satisfying the relevant criteria increases too. Unsurprisingly, this is due to 

the vehicles having to travel a further distance before beginning to satisfy the relevant 

criteria. Furthermore, the results also demonstrate that regardless of the size of the 

orientation zone, each parameter converges to approximately the same percentage value. 

This can be attributed to the fact that throughout the simulation set up, the obstacle sizes 

were divided evenly across the different simulations (Table 8.7) and therefore their 

influence (as discussed in Section 8.5.2.2) should be approximately the same for each 

grouping shown in Figure 8.25. 

Importantly, Figure 8.25 (b) demonstrates that as the size of the orientation zone is 

increased, the number of vehicles able to satisfy the relevant criteria decreases. Once again, 

this result is not surprising and is due two related factors. The first of which is the 

aforementioned inherently slow convergence rate of the velocity control law. The second 

and most important factor is that as the orientation zone size is increased, each vehicle has 

to travel an increasingly further distance before the relevant criteria associated with the 

parameters, d1 and d2 can be satisfied. Consequently, when these two factors are combined, 
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it should be expected that fewer vehicles will be able to satisfy the criteria associated with 

the parameter, dabs throughout the same time frame.  

  

(a) (b) 

  

(c) (d) 

  

(e) 

Figure 8.25 - Variation in the convergence performance of the parameters (a) d1 (b) dabs (c) 

d2 (d) d2 and (e) σ as the orientation zone size is increased. 

Nevertheless, overall, the results presented in Figure 8.25 (b) illustrate a continuous 

increase in the percentage of vehicles satisfying the criteria associated with the parameter, 

dabs throughout each mission stage. This result once again suggests that the waypoint 

consensus algorithm operated as expected throughout the simulations completed.  
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8.5.2.4 Varying Current Magnitude & Direction 

The final parameters varied throughout the simulations completed were the velocity, Vc 

and direction, βc of the ocean current. Subsequently, shown below in Figure 8.26 is the 

variation in the convergence performance of the parameters, d1, d2, dabs and σ as the 

magnitude of the currents velocity, Vc is increased. 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 8.26 - Variation in the convergence performance of the parameters (a) d1 (b) dabs (c) 

d2 (d) d2s and (e) σ as the velocity of the ocean current is increased. 
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Similarly, shown below in Figure 8.27, is the variation in the convergence performance of 

these parameters, as the value used for the currents angle, βc is varied. 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 8.27- Variation in the convergence performance of the parameters (a) d1 (b) dabs (c) 

d2 (d) d2 and (e) σ as the angle of the ocean current is varied. 

Unlike the results presented in the previous section, the results presented above 

demonstrate little variation in the convergence performance as the ocean currents angle 

varies. This is mainly due to the fact that as discussed in Chapter 8, each vehicle alters its 
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heading angle to compensate for the sideslip angle caused by the incorporation of ocean 

currents. 

Therefore, while the changes made to each vehicle’s heading angle will have to be greater 

and more often to compensate for the ocean current, overall, it should and does have little 

influence on the convergence performance of the algorithm. Based on the above finding, it 

is subsequently unsurprising to find that varying the direction of the ocean current also had 

little effect on the convergence performance of the algorithm as shown in Figure 8.27 

8.6 Summary 

The primary purpose of this chapter was to investigate what effect introducing external 

disturbances had on the ability of the trajectory prediction and waypoint consensus 

algorithms to coordinate the vehicles into the required parallel line formation. The 

subsequent investigation demonstrated that of the two algorithms, the waypoint consensus 

algorithm was more resilient, and as a result, better suited to coordinating vehicles in the 

unpredictable underwater environment. This is mainly due to the fact that unlike the 

trajectory prediction algorithm, the waypoint consensus algorithm doesn’t rely on a 

continuously accurate representation of each vehicles positioning in order to operate 

successfully. Therefore, it was decided that for the remainder of this thesis, only the 

waypoint consensus algorithm would be used.  

After the waypoint consensus algorithm had been selected as the preferred algorithm, the 

remainder of this chapter focussed on demonstrating what effect, if any, varying certain 

algorithmic parameters had on the algorithms ability to operate as required. These tests 

were undertaken to thoroughly test the robustness of the algorithm and demonstrate that 

it was capable of undertaken realistic oceanic surveying missions. While the results did 

demonstrate deviations in the algorithms convergence performance, these deviations were 

entirely as anticipated and due to vehicles having to periodically (and successfully) 

undertake obstacle avoidance manoeuvres as well as compensate for the oceanic current 

implemented.  

With the robustness and comparative efficiency of the waypoint consensus algorithm 

having now been tested, the following chapter will now present the results obtained from 

simulations that replicated different realistic oceanic surveying scenarios. 
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Chapter 9  
Simulation of Realistic Oceanographic 

Surveying Missions 

____________________________________ 

9.1 Introduction 

The previous chapter demonstrated that of the two algorithms presented in this thesis, the 

waypoint consensus algorithm’s design is more resilient to the external disturbances likely 

to be found in the underwater environment. As well as the above, Chapter 8 also tested the 

robustness of the algorithm by varying certain algorithmic parameters as well as those 

associated with the external disturbances included in the simulations. The subsequent 

results demonstrated that regardless of the parameters used, the convergence performance 

of the algorithm was as anticipated and as a result, confidence in the ability of the algorithm 

to operate as required increased. 

While these additional tests illustrated the algorithms ability to operate as required, the 

scenario length of the simulations was relatively short at less than two hours. Furthermore, 

as Figure 8.22 illustrates, the reference heading angle of the group, ψref was kept constant 

throughout the entirety of the various simulations completed. However, in reality, oceanic 

surveying missions would not only be significantly longer, but the vehicles would also be 

required to manoeuvre to a number of different locations throughout a single mission.  

The purpose of this chapter therefore is to demonstrate whether or not the algorithm is 

firstly capable of coordinating the vehicles for realistic scenario lengths and there 

afterwards, demonstrate whether it is also able to manoeuvre the vehicles to different 

locations while maintaining the required parallel line formation. To demonstrate this, the 

“figure-of-eight” trajectory presented previously in Chapter 3 will once again be employed 

as will the ‘lawnmower’ trajectory pattern shown in Figure 1.2.
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To present this work, the chapter is structured as follows. Section 9.2 provides a brief 

overview of the algorithmic parameters used within in the simulations to ensure both the 

figure of eight and lawnmower trajectory patterns can be attempted. This section will also 

discuss the external disturbances incorporated within the simulations completed. This 

section will then conclude by providing an overview of the simulations completed. 

Thereafter, Section 9.3 analyses the results obtained from these simulations before Section 

9.7 summarises the work completed in this chapter.  

9.2 Realistic Oceanic Sampling Missions 

As presented in Table 8.4, the following six parameters must be defined before the 

waypoint consensus algorithm can be tested within a realistic simulation environment:  

• Position of Vehicle Recovery Area 

• Deployment Orientation Zone Size 

• Recovery Orientation Zone Size 

• Magnitude of Ocean Current 

• Direction of Ocean Current  

• Radius & Number of Obstacles 

The following two sections will now describe the values used for these that will allow the 

algorithm to coordinate  the vehicles firstly through a figure of eight trajectory and there 

afterwards, a lawnmower search pattern. 

9.2.1 Scenario Setup – Algorithmic Parameters  

As shown below in Figure 9.1, the figure of eight trajectory can be generated by instructing 

the vehicles to manoeuvre through four desired locations (waypoints) that are equal to the 

four corners of a square. 

 

Figure 9.1 - Different recovery areas used throughout figure of eight scenario. 
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In order for the waypoint consensus algorithm to undertake the figure of eight trajectory, 

the following parameters must be defined for each phase of the mission: 

• Coordinates of the groups desired location. 

• Orientation Zone Size. 

Once these parameters have been defined, the waypoint consensus algorithm will use 

Equation (5.13) to define the groups reference heading angle, ψref for each mission phase. 

There afterwards, Equations (7.1)-(7.4) will define the individual waypoints for each 

vehicle. When this process is completed, the individual waypoints used during each phase 

of the mission will be similar to those shown below in Figure 9.2.  

 

Figure 9.2 - Individual waypoints calculated using Waypoint Consensus Algorithm for 

"figure of eight" scenario. 

Using a similar process to that described above, the waypoint consensus algorithm will 

generate the following individual waypoints for the lawnmower trajectory scenario. 

 

Figure 9.3 - Individual Waypoints calculated using Waypoint Consensus Algorithm for 

"lawnmower trajectory" scenario. 
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In this instance though, the reference heading angle of the group for each phase of the 

mission will need to be user defined and equal to the values shown below in Table 9.1.  

Table 9.1- Representative reference heading angle values used during each phase of the 

"lawnmower" trajectory scenario. 

Mission Phase Reference Heading Angle  

1 0° 

2 180° 

3 0° 

4 180° 

This is to  ensure that when transitioning between the different phases, the vehicles will 

manoeuvre with a heading angle  that is perpendicular to their next desired location and as 

a result, the vehicles should generate the required lawnmower pattern.   

As well as defining the various desired locations, the required vehicle separation distance 

must also be defined. As discussed throughout this thesis, this distance is controlled 

through the selection of the orientation zone size. With the results presented at the end of 

Chapter 8 illustrating the algorithms ability to achieve various inter-vehicle separation 

distances, Table 9.2 below demonstrates that only two zone sizes were used for the work 

completed in this chapter.  

Table 9.2 - Orientation zone sizes used throughout scenarios. 

Mission Phase Orientation Zone Size  

Deployment [27-32]m 

Recovery [6-11]m 

As with the simulations completed throughout this thesis, the zone sizes presented in Table 

9.2 will ensure that each of the three behavioural control laws – repulsion, orientation & 

attraction will be used throughout the simulations completed in this study. 

9.2.2 Scenario Setup – External Disturbances 

In the previous section, the values adopted for the various algorithmic parameters for both 

the “figure of eight” and “lawnmower” trajectories were presented. This section will now 
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define the values used for the various parameters associated with the implementation of 

the two external disturbances, i.e. oceanic currents and external disturbances. 

As with their inclusion in Chapter 8, the external disturbances included in these simulations 

are positioned within a specific area. As shown below in Figure 9.4, this area has been 

chosen to ensure that at any point, it is likely that at least one vehicle from the group will 

be required to complete an obstacle avoidance manoeuvre. Furthermore, unlike the 

simulations completed in Chapter 8, Figure 9.4 illustrates that the size of the obstacles 

contained within this area vary.  

  

(a) (b) 

Figure 9.4 - Simulation Environment with obstacles included for (a) figure of eight 

scenario and (b) lawnmower pattern. 

This differs from those completed in Chapter 8 were the obstacle sizes were the same for 

each individual simulation but overall, they varied across the 181 simulations completed. 

Once again, this alteration has been included to further test the robustness of the waypoint 

consensus algorithm. Unsurprisingly, due to the larger simulation environment, the 

number of obstacles included within each scenario also increased. 

For the inclusion of the oceanic currents, the values used for its velocity and direction are 

presented below in Table 9.3.  

Table 9.3 - Direction and magnitude of oceanic current. 

Scenario Current Velocity (m/s) Current Direction 

Figure of Eight 0.15 135° 

Lawnmower 0.15 135° 
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As with the simulations completed in Chapter 8, the magnitude and direction of the oceanic 

current has been kept constant throughout the scenarios completed. However, due to the 

fact that the groups reference heading angle will vary throughout the missions completed 

in this study, the relative angle between each vehicle’s direction of travel and the oceanic 

current will vary far more than the simulations completed in Chapter 8. As with varying 

the size of the obstacles included, this will once again further test the robustness of the 

waypoint consensus algorithm. 

9.2.3 Simulation Overview 

The previous two sections have described the values chosen for both the algorithmic 

parameters as well the external disturbances for the simulations completed in this chapter. 

As shown below in Table 9.4, these parameters are used throughout six separate 

simulations completed as part of the investigation studying the feasibility of undertaking 

realistic oceanic scenarios with the waypoint consensus algorithm presented previously in 

Chapter 7. 

Table 9.4 - Summary of simulations completed. 

Simulation Number Scenario  External Disturbance 

1 Figure of Eight None 

2 Figure of Eight Obstacles 

3 Figure of Eight Obstacles & Currents 

4 Lawnmower None 

5 Lawnmower Obstacles 

6 Lawnmower Obstacles & Currents 

Table 9.4 illustrates that the “figure of eight” and “lawnmower” scenarios are each repeated 

three times. This has been undertaken to illustrate once again that the waypoint consensus 

is able to operate as required despite the introduction of the disturbances associated with 

the underwater environment.  

9.3 Results 

The purpose of the simulations completed in this chapter is to demonstrate whether or not 

the waypoint consensus algorithm is able to undertake realistic oceanic sampling missions. 

As the previous section has detailed, this has been undertaken by completing two sets of 
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simulations that firstly test the algorithms ability to manoeuvre the vehicles through a 

figure of eight trajectory and there afterwards, through a lawnmower trajectory pattern.   

With the main aim of this chapter being to investigate the algorithms ability to manoeuvre 

the vehicles through the aforementioned trajectory patterns, the analysis presented below 

will be restricted to a comparison of the resulting trajectories obtained from the two sets of 

simulations completed. This restriction is due to the fact that apart from demonstrating the 

algorithms ability to change the groups desired location, no further insight will be obtained 

by undertaken the detailed analysis presented previously in Chapters 7 and 8.  

9.3.1 Figure of Eight Analysis    

Shown below in Figure 9.5 are the trajectories obtained from the three simulations 

completed as part of the figure of eight scenario. These simulations were completed to 

demonstrate the algorithms ability to generate the required pattern with and without the 

inclusion of the external disturbances discussed throughout this work.  

 

Figure 9.5 - Trajectories obtained from figure of eight simulations 

The trajectories presented above clearly demonstrate that the waypoint consensus 

algorithm has successfully coordinated the vehicles to generate the figure of eight pattern 

while simultaneously maintaining the required parallel line formation. The results 

demonstrate that while there are differences in the trajectories obtained with and without 

the inclusion of external disturbances, the required trajectory is nevertheless generated. 

These results clearly illustrate the ability of the algorithm to successfully coordinate the 
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vehicles to different locations throughout a single mission regardless of the local operating 

conditions.  

However, although the trajectories presented above demonstrate that the algorithm has 

been able to generate and maintain the required parallel line formation, not all of the 

vehicles have been unable to manoeuvre directly alongside their nearest neighbour. As has 

been the case with the waypoint consensus algorithm, this is due to the design of the 

velocity control law used within the algorithm and the fact that each vehicle can only alter 

its velocity once every communication cycle, i.e. approximately once every five minutes.    

9.3.2 Lawnmower Trajectory Analysis 

As with the results presented in the previous section, shown below in Figure 9.6 are the 

trajectories obtained from the lawnmower scenarios with and without the inclusion of the 

different external disturbances. 

 

Figure 9.6- Trajectories obtained from lawnmower pattern simulations. 

Similarly to the results presented in Section 9.3.1, the trajectories presented above once 

again illustrate the ability of the algorithm to successfully manoeuvre the vehicles to 

different locations while ensuring (where possible) the vehicles maintain the required 

parallel line formation.  Also apparent from Figure 9.6 is the variation in the trajectories 

obtained as a result of the external obstacles been included in the simulations. Again, 

although noticeable, these variations are as expected and once again demonstrate the 

robustness of the algorithm to these disturbances.  
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However, it is also important to note that like Figure 9.5, Figure 9.6 also illustrates the 

inability of the waypoint consensus algorithm to ensure that each vehicle can manoeuvre 

directly alongside their nearest neighbour. As discussed above, this is due to the design of 

the velocity control law within the waypoint consensus algorithm.  

Nevertheless, as required, the results presented above in Figures 9.5 and 9.6 demonstrate 

that the waypoint consensus algorithm is able to successfully coordinate the vehicles to a 

number of different locations throughout a single scenario. Furthermore, the results also 

demonstrate that the algorithm will ensure the vehicles maintain the required parallel line 

when possible.   

9.4 Summary 

The aim of this chapter was to demonstrate whether or not the waypoint consensus 

algorithm was capable of successfully coordinating the vehicles to a number of different 

locations during the course of a single mission. To achieve this, two sets of simulations were 

undertaken. The first set required the algorithm to manoeuvre the vehicles through a figure 

of eight pattern while the second group of simulations tested the algorithms ability to 

undertake the lawnmower trajectory pattern. Both sets of simulations tested the algorithms 

ability in this regard with and without the inclusion of the external disturbances presented 

in Chapter 8.  

Overall, the results illustrated that the algorithm is indeed capable of successfully 

completing both the figure of eight and lawnmower trajectories .Moreover, the results also 

show that the algorithm ensures the vehicles either maintain or regenerate the required 

parallel line formation while manoeuvring between the different locations. Importantly, 

these conclusions are also applicable to the simulations where the various external 

disturbances were taken into consideration. Therefore, apart from the known inability of 

the algorithm to ensure each vehicle manoeuvres directly alongside their nearest 

neighbours, the results presented in this chapter illustrate, as required, the algorithms 

ability to successfully manoeuvre the vehicles to a number of different locations during a 

single missions. In doing so, these results further illustrate not only the algorithms ability 

to successfully coordinate multiple vehicles in the restrictive underwater communication 

channel but also its robustness to the disturbances experienced in this unpredictable 

environment. 

 

 



Chapter 10  
Conclusions & Future Work 

____________________________________ 

10.1  Conclusions 

The overall aim of the research presented in this thesis has been to develop a formation 

control algorithm capable of successfully coordinating a group of BAUVs to undertake 

oceanic surveying missions despite the constraints of the underwater milieu. The 

motivation for undertaking this study and establishing whether or not such an algorithm 

could be created was due to the significant improvements in mission efficiency (i.e. larger 

area coverage) that would be achieved in doing so.  

Importantly, the formation control algorithm created would not only need to generate the 

required parallel line formation regardless of the vehicles initial positioning but also 

guarantee that the same vehicles could then safely navigate to a surface vessel for recovery. 

In the initial stages of this research, these three mission phases, i.e. Deployment, Mapping & 

Recovery were found to be analogous to the behavioural mechanisms of fish partaking in 

schooling behaviour. As a result, and continuing the biologically inspired theme introduced 

by the RoboSalmon BAUV, the initial formation control algorithm presented in this thesis 

replicated these behavioural mechanisms. Throughout this thesis, this initial biomimetic 

algorithm was continuously developed in an attempt to improve its suitability to operate 

as required despite the nuances of the underwater environment. However, before the 

algorithm could be developed and tested, a suitable mathematical model of the 

RoboSalmon vehicle had to be created. 

In Chapter 3, the pre-existing high-fidelity mathematical model of the RoboSalmon vehicle 

has been presented and its unsuitability to efficiently model multiple vehicles 

simultaneously demonstrated. The results demonstrated that the execution time for a 

simulation involving multiple vehicles was excessively long and would be impractical for 

analysing the proposed formation control algorithm. To reduce the execution time, two 

techniques were considered - Look Up Tables (LUTs) and Artificial Neural Networks 

(ANNs). These replaced the complex and processor intensive functionality associated with 
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modelling the motion of RoboSalmon’s actuated tail section. By replacing this complex 

functionality with simpler mathematical basis functions (ANNs) and indexing operations 

(LUTs), the results presented in Chapter 3 firstly demonstrated the ability of these simpler 

models to maintain the accuracy of the original. Thereafter, the results illustrated  the ability 

of these simpler models to reduce the simulation execution time of the model by 90% when 

using the LUTs and 85% when an ANN was implemented. Unsurprisingly, this significant 

reduction in simulation execution time meant that multiple vehicles could be simulated 

simultaneously in a drastically more time efficient manner. While both techniques operated 

as envisioned, the results demonstrated that the LUT method was not only faster but also 

more accurate. As a result, it was this particular mathematical model that was used 

throughout the remainder of this study to model the dynamics of the RoboSalmon vehicle 

and hence, develop the formation control algorithm.  

The development of the formation control algorithm began in Chapter 4 by briefly 

describing the behavioural mechanisms used by fish within schooling structures. There 

afterwards, a detailed description of how these behaviours were transformed into a suitable 

formation control algorithm was presented. This initial algorithm contained three heading 

control laws that would manoeuvre each vehicle in either a repulsive, orientating or attractive 

manner dependent on the absolute distance between each vehicle and their nearest 

neighbours.  In addition to these heading control laws, a simple velocity control law was 

also incorporated. While the results presented in Chapter 4 demonstrated the ability of the 

algorithm to generate a stable group formation, they also demonstrated that the 

performance of the various heading control laws varied dependent on the number of 

nearest neighbours taken into consideration. The results also illustrated that the algorithm 

was incapable of coordinating the vehicles into the parallel line formation required for 

efficient oceanic surveying. This chapter concluded by providing a number of 

recommended alterations that if incorporated, should improve the performance of the 

algorithm. 

Chapter 5 began by detailing the alterations made to the algorithm based on the 

recommendations made at the end of Chapter 4. These alterations included using the lateral 

distance (instead of the absolute distance) when deciding which of the three heading control 

laws to implement. Furthermore, a reference heading angle was introduced in Chapter 5 

that not only provided the algorithm with the ability to manoeuvre the vehicles to any 

desired location but also provide a single heading angle that every vehicle could 

manoeuvre with when using the orientating control law. Minor changes were also made to 

the repulsive and attractive control laws to ensure that as well as generating the required 



Conclusions & Future Work 

 

247 

 

parallel line formation as efficiently as possible, the vehicles could also converge to a 

recovery area at the end of the mission. In order to demonstrate whether or not the changes 

made were successful, the modified formation control algorithm was tested using the exact 

same simulations as undertaken in Chapter 4. The subsequent results clearly demonstrated 

that the modifications made operated as envisioned with the repulsive control law ensuring 

the generation of the parallel line formation, the orientating control law maintaining this 

formation and the attractive control law allowing the vehicles to subsequently converge to 

a smaller recovery area.  

With Chapter 5 illustrating the ability of the modified formation control algorithm to 

operate as required, the main aim of Chapter 6 was to detail the implementation of a 

realistic representation of the underwater communication channel and analyse what effect 

its introduction had on the efficiency of the algorithm.  To achieve this, the beginning of 

Chapter 6 detailed the functionality implemented to ensure an accurate representation of 

the well-known communication protocol, TDMA was incorporated within the simulations. 

By incorporating this particular protocol, each vehicle would now only have access to up-

to-date positional information (of neighbouring vehicles) on a periodic basis. The period 

between these updates was called the Communication Cycle Length and the remainder of 

Chapter 6 detailed the results obtained from an extensive simulation study analysing what 

effect increasing this parameter’s value had on the algorithms ability to coordinate the 

vehicles as required. The results demonstrated that as the communication updates became 

less frequent, the algorithm was surprisingly still capable of coordinating the vehicles as 

required. As detailed extensively in Chapter 6, this continued ability was due to a 

combination of the geometry associated with evaluating the lateral nearest neighbour 

distance, the periodic nature of the TDMA protocol and the design of the attractive control 

law. However, unsurprisingly, the results also demonstrated that as the Communication 

Cycle Length was increased, the efficiency of the algorithm steadily deteriorated. This 

deterioration resulted in an approximate 900% increase in the convergence time of the 

algorithm when realistic values for the Communication Cycle Length were incorporated.  

Furthermore, due to the differing geometry associated with evaluating the absolute nearest 

neighbour distance, the results also demonstrated that convergence of this parameter could 

no longer be guaranteed.  

With Chapter 6 illustrating a significant decline in the algorithms efficiency, the aim of 

Chapter 7 was to detail the implementation of two methodologies designed specifically to 

allow the algorithm to operate successfully and as efficiently as possible regardless of the 

underwater communication channel. The first methodology used a prediction algorithm to 
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provide each vehicle with an estimate of its nearest neighbour’s position in the interim 

period between subsequent communication updates. This prediction functionality 

contained not only an identical copy of the RoboSalmon mathematical model presented in 

Chapter 3 but also an identical version of the modified formation control algorithm 

described in Chapter 5. In contrast, the second methodology contained zero predictive 

functionality but instead used a waypoint consensus algorithm to provide each vehicle with 

a unique waypoint to navigate towards. By implementing this consensus algorithm, it was 

envisioned that the required parallel line formation could be generated without the 

individual vehicles requiring up-to-date positional information of its neighbouring 

vehicles. The subsequent simulations undertaken to test these two methodologies were 

deliberately chosen to be identical to those completed in Chapter 6. This was to ensure a 

fair comparison of the results obtained with and without these two methodologies 

implemented. Overall, the results suggested that the predictive methodology provided the 

better solution with the formation control algorithm satisfying all necessary convergence 

criteria as if the communication among the vehicles was instantaneous, i.e. the results were 

nearly identical to those presented in Chapter 5. Conversely, the results obtained from the 

waypoint consensus algorithm demonstrated that while the various convergence criteria 

could be satisfied, the convergence time increased proportionality with the Communication 

Cycle Length. This resulted in the predictive methodology achieving the required 

formation 2-3.5 times faster than the waypoint consensus algorithm.       

While the results presented in Chapter 7 suggested that the predictive methodology 

provided the best solution, the aim of Chapter 8 was to illustrate whether or not this was 

still the case when additional environmental disturbances such as stationary obstacles and 

ocean currents were incorporated.  As a result, Chapter 8 began by detailing the additional 

functionality implemented in order to ensure a realistic representation of these external 

disturbances were incorporated within the simulations. Thereafter, the same simulations as 

completed in Chapter 7 were undertaken but this time with the aforementioned external 

disturbances incorporated. The results shown in Chapter 8 demonstrate quite clearly that 

the performance of the waypoint consensus algorithm is less affected by the inclusion of 

these external disturbances. The reason that this is the case is due to the fact that the 

waypoint consensus algorithm does not rely on an accurate representation of its nearest 

neighbours positioning and instead, only needs to accurately track its chosen (stationary) 

waypoint. In contrast, the predictive functionality, because of the introduction of these 

additional external disturbances (which it cannot predict) is no longer capable of always 

providing each vehicle with an accurate representation of the positioning of neighbouring 

vehicles. As with the results presented in Chapter 6, this resulted in the algorithm altering 
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the heading angle and velocity of each vehicle based on incorrect information. 

Unsurprisingly, this resulted in these vehicles then having to undertake subsequent 

corrective manoeuvres when a communication update from its nearest neighbour(s) was 

received. Therefore, based on the results presented throughout Chapter 8, it was decided 

that overall, the waypoint consensus algorithm provides the most robust solution in terms 

of overcoming the constraints and unpredictable nature of the underwater environment. 

In order to allow a fair comparison of the results obtained throughout the formation control 

algorithms development, i.e. Chapters 4-8, a number of user defined algorithmic 

parameters had so far remained unchanged. These parameters included the required 

heading angle of the group, the size of the three behavioural zones, the initial vehicle 

positions, the number and size of the obstacles included within the simulation environment 

as well as the magnitude and direction  of the ocean currents. Furthermore, while the three 

behavioural controls laws had been thoroughly tested, a full oceanic surveying mission that 

transitioned through the Deployment, Mapping and Recovery phases had yet to be 

undertaken. Subsequently, the purpose of the final simulations presented in Chapter 8 was 

to demonstrate the ability of the algorithm to operate as required regardless of the values 

used for these various algorithmic parameters. To achieve this, the various values used for 

these parameters and within what thresholds they were tested was subsequently presented 

and tested. The subsequent results obtained from these simulations demonstrated that the 

formation control algorithm using the waypoint consensus methodology was indeed able 

to operate as required regardless of both the external disturbance included as well as the 

values selected for the various user-defined algorithmic parameters. 

The purpose of Chapter 9 was to build on the results obtained in Chapter 8 and demonstrate 

that the formation control algorithm was not only capable of forming the required parallel 

line formation but also capable of manoeuvring the group to a number of different locations 

throughout a single mission. To achieve this, two scenarios that involved the vehicles 

manoeuvring through a figure of eight pattern and then a lawnmower pattern were created. 

These scenarios were also simulated with and without the presence of the external 

disturbances used in Chapter 8. As anticipated, the results demonstrated the ability of the 

algorithm to manoeuvre the vehicles through the different patterns while maintaining the 

required parallel line formation were possible. Furthermore, similarly to the results 

presented in Chapter 8, the inclusion of the external disturbances had only the expected 

effect on the algorithms performance to operate as required.  

Overall, the work presented throughout this thesis has demonstrated that the original aims 

and objectives of this thesis as described in Chapter 1 have been satisfied. This is shown 
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below where the pertinent conclusions, contributions and recommendations from this work 

are summarised:  

• The ability of system identification techniques such as ANNs and LUTs to 

drastically improve the simulation execution time of a mathematical model without 

noticeably altering its accuracy. 

• While imitating the behavioural mechanisms of fish allows the formation of a stable 

group structure, the simplicity of these behaviours prevents the generation of the 

required parallel line formation.  

• The ability of this imitating formation control algorithm also resulted in varying 

algorithmic behaviour depending on the values used for certain algorithmic 

parameters. 

• By making a number of changes to the algorithm based on the behavioural 

mechanisms of fish, this work has demonstrated the ability to create a formation 

control algorithm capable of generating a group formation capable of undertaken 

realistic oceanic mapping missions. 

• This work has also demonstrated that the algorithm, albeit with increasing difficulty 

is still capable of generating the required formation despite the introduction of a 

realistic representation of the underwater communication channel by the inclusions 

of the TDMA communication protocol. 

• This work has demonstrated that introducing predictive functionality to overcome 

the limitations associated with the communication channel only operates effectively 

in an undisturbed environment that contains no external obstacles. 

• Most importantly, the results demonstrate that a formation control algorithm 

capable of achieving group consensus and requiring as little communication as 

possible provides the most robust solution to overcoming the various limitations 

associated with the underwater environment. 

In concluding, the work presented in this thesis has presented the design and development 

of a formation control algorithm capable of successfully coordinating a group of BAUVs in 

the unpredictable and restrictive nature of the underwater environment. In particular, this 

thesis has demonstrated that due to these particular characteristics, the implementation of 

predictive methodologies to track the positioning of neighbouring vehicles and hence, 

overcome the nuances associated with the underwater environment, does not present a 

robust solution. Instead, the results indicate that in order to create a formation control 

algorithm that is resilient to the complexities of operating in the underwater environment, 

the algorithm should be designed specifically not to rely on or require up-to-date positional 
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information of neighbouring vehicles. This has been achieved by the implementation of a 

waypoint consensus algorithm. As the results demonstrate, this algorithm only requires 

each vehicle to receive a single communication update from each neighbouring vehicle 

before the algorithm has the necessary information to ensure the generation of the required 

parallel line formation. 

10.2  Future Work  

The work presented in this thesis has detailed the development of an algorithm capable of 

generating a particular formation regardless of the limitations of the local operating 

environment. Going forward, there are numerous areas of future work for the research 

completed in this thesis. In the immediate future, alterations could and should be made to 

the velocity control law in order to improve its efficiency and allow vehicles to manoeuvre 

alongside one another in a timelier manner. Further testing could also be completed to 

demonstrate what effect – if any - increasing the group size has on the algorithms ability to 

operate as required. Furthermore, investigations into analysing what effect different 

deployment strategies would have on the algorithm’s ability/efficiency to operate as 

required should also be completed. For example, at present, every vehicle is already 

positioned in the water when the algorithm is activated. However, a different deployment 

strategy could be to deploy the vehicles from the surface ship one by one and have the 

algorithm activated as soon as the first vehicle enters the water. As well as testing different 

deployment strategies, the applicability of the algorithm to different types of underwater 

vehicle could also be investigated. Therefore, a potential area of future work would be to 

implement the formation control algorithm within a simulation environment containing a 

different type of underwater vehicle, i.e. an AUV, AUG or Hybrid AUV. 

As well as the above, it would also be advantageous to investigate the feasibility of 

introducing some form fault detection and reconfiguration functionality into the algorithm. 

This functionality should aim to allow the vehicles to firstly identify that one (or more) of 

the vehicles within the group has a fault and thereafter achieve consensus on a suitable 

reconfiguration strategy. This reconfiguration should aim to manoeuvre the vehicles into a 

formation that minimises the loss in the area mapped resulting from the loss of a vehicle or 

vehicles.  

One final area of potential future work would be investigating the feasibility of 

implementing an adaptive sampling functionality into the algorithm. In doing so, this 

would provide the vehicles with the autonomy to alter their trajectory in order to obtain 

the most useful data possible throughout a mission. For example, in a search and recovery 
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mission, if a number of areas of interest are discovered at one side of the group, the vehicles 

positioned at the other side of the group should alter their trajectories and reconfigure the 

group’s formation in order to maximise vehicle coverage at known sites of interest. An 

alternative application of this adaptive functionality would be to allow the vehicles to use 

their on board sensors to measure the concentration of a particular substance and alter the 

groups formation based on the associated data obtained from the sensors from across the 

group. This would allow groups of AUVs to be used to monitor and provide accurate 

assessments of the evolution of events such as oil spills. 

The areas of development presented above have been suggested in such an order that if 

they were to be applied sequentially, the efficiency of the baseline formation control 

algorithm would be improved first. Thereafter, the successful implementation of fault 

detection and reconfiguration functionality as well as the introduction of adaptive sampling 

techniques would drastically improve the autonomy of the overall system and as a result, 

further improve the efficiency and usability of the algorithm.



A: RoboSalmon 

Mathematical Model 
 

This appendix presents the derivation of the mathematical model used to represent the 

dynamics of the RoboSalmon vehicle. The mathematical model of RoboSalmon can be 

represented using the following Equation: 

𝐌�̇� + 𝑪(𝒗)𝒗 + 𝑫(𝒗)𝒗 + 𝒈(𝜼) =  𝝉 (A1.1) 

Here M is the mass/inertia matrix, C is the Coriolis matrix, D is the damping matrix, ν is 

the state vector containing the Body-Fixed velocities,  is the input force/moment vector, g 

is the gravitational force/moment vector which is zero due to the assumption of neutral 

buoyancy,  represents the Earth-Fixed dynamic variables and J is the Euler kinematic 

transformation matrix. Therefore, the purposes of this appendix is to describe the 

functionality contained within the individual matrices of the above equation. 

A1 – Inertial Matrix 

The inertia matrix, M in Equation (A1.1) consists of two components: the rigid body inertia 

and the added mass inertia due to the vehicle operating underwater. Consequently, the 

matrix, M can be defined as the sum of these two components as shown below in Equation 

(A1.2). 

𝐌 = 𝐌𝐑𝐁 + 𝐌𝐀 (A1.2) 

Where 𝐌𝐑𝐁 represents the rigid-body inertia properties of the vehicle and 𝐌𝐀 represents 

the properties of the added mass inertia. Therefore, as Equation (A1.1) demonstrates that 

the overall inertia matrix, M is multiplied by the accelerations of the vehicle �̇�, the 

components of the rigid body inertia matrix 𝐌𝐑𝐁 can be defined as shown below in 

Equation (A1.3). 
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(A1.3) 

As discussed above, the second term in Equation (A1.2) is used to model the added mass 

effect caused by the RoboSalmon vehicle operating in the underwater environment. As 

discussed in (Fossen,1994), the matrix, MA is taken from the equation used to evaluate 

kinetic energy of a fluid and its contents are defined below in Equation (A1.4) 

𝐌𝐀 = −

[
 
 
 
 
 
 
Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ
Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ
Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ ]
 
 
 
 
 
 

 (A1.4) 

Where the SNAME notation is used to explain the definition of each of the coefficients 

(added mass derivatives). For example, Xu̇ represents the rate of change of the force in the 

x direction with respect to the acceleration in the same axis.  

However, a number of assumptions can be made that simplifies not only the definition of 

the individual components of Equation (A1.4) but also the overall matrix. The first 

assumption is that due to the low speed of the RoboSalmon vehicle, the individual 

components of Equation (A1.4) can be considered to be constant. Secondly, if the vehicle 

has multiple planes of symmetry, the off-diagonal components of Equation (A1.4) can be 

removed. As discussed in (Naddi, 2009), the RoboSalmon vehicle is assumed to take the 

shape of a prolate ellipsoid which has multiple planes of symmetry and as a result, the off-

diagonal terms in Equation (A1.4) can be removed. Therefore, the matrix in Equation (A1.4) 

can be significantly simplified to the form shown below in Equation (A1.5) with the 

individual values used for each of the components also presented below in Table A1.1. 

𝐌𝐀 =

[
 
 
 
 
 
−Xu̇ 0 0 0 0 0
0 −Yv̇ 0 0 0 0
0 0 −Zẇ 0 0 0
0 0 0 −Kṗ 0 0

0 0 0 0 −Mq̇ 0

0 0 0 0 0 −Nṙ]
 
 
 
 
 

 (A1.5) 
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Table A1.1 - Added Mass Derivative Values 

Added Mass Derivative Value 

Xu̇ -0.3495 

Yv̇ -3.5554 

Zẇ -3.7321 

Kṗ 0 

Mq̇ -0.1123 

Nṙ -0.1123 

Therefore, the complete inertia matrix, M consisting of both the rigid body and added mass 

inertia can be defined by combining Equations (A1.3) and (A1.4) as shown below in 

Equation (A1.6). 

𝐌 =

[
 
 
 
 
 
m − Xu̇ 0 0 0 0 0
0 m − Yv̇ 0 0 0 0
0 0 𝑚 − Zẇ 0 0 0
0 0 0 𝐼𝑥 − Kṗ 0 0

0 0 0 0 𝐼𝑦 −Mq̇ 0

0 0 0 0 0 𝐼𝑧 − Nṙ]
 
 
 
 
 

 (A1.6) 

A2 - Coriolis and Centripetal Matrix 

As with the inertia matrix, the Coriolis and Centripetal matrix, C can also be divided into 

two components consisting of a rigid body component 𝐂RB and an added mass component 

𝐂A. Again, the matrix representing the rigid body component can be obtained by 

ascertaining the coefficients of the velocity components of the equations presented in 

Equation (A1.1). Doing this, produces the matrix shown below in Equation (A1.7). 

𝐂𝐑𝐁(𝒗) =

[
 
 
 
 
 
0 0 0 0 𝑚𝑤 −𝑚𝑣
0 0 0 −𝑚𝑤 0 𝑚𝑢
0 0 0 𝑚𝑣 −𝑚𝑢 0
0 0 0 0 𝐼𝑧𝑟 −𝐼𝑦𝑞

0 0 0 −𝐼𝑧𝑟 0 𝐼𝑥𝑝
0 0 0 𝐼𝑦𝑞 −𝐼𝑥𝑝 0 ]

 
 
 
 
 

 (A1.7) 

Similarly, as presented in (Fossen,1994), the added mass terms for the Coriolis and 

centripetal terms can be defined as shown below in Equation (A1.8). 
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𝐂𝐀(𝒗) =

[
 
 
 
 
 
 
0 0 0 0 −Zẇ𝑤 Yv̇𝑣
0 0 0 Zẇ𝑤 0 −Xu̇𝑢
0 0 0 −Yv̇𝑣 Xu̇𝑢 0
0 −Zẇ𝑤 Yv̇𝑣 0 −Nṙ𝑟 𝑀q̇𝑞

Zẇ𝑤 0 −Xu̇𝑢 Nṙ𝑟 0 −𝐾ṗ𝑝

−Yv̇𝑣 Xu̇𝑢 0 −𝑀q̇𝑞 𝐾ṗ𝑝 0 ]
 
 
 
 
 
 

 (A1.8) 

As a result, the complete Coriolis and centripetal matrix, C is presented below in Equation 

(A1.9). 

𝐂(𝒗) =

[
 
 
 
 
 
 
0 0 0 0 𝑚𝑤 − Zẇ𝑤 Yv̇𝑣 − 𝑚𝑣
0 0 0 Zẇ𝑤 −𝑚𝑤 0 𝑚𝑢−Xu̇𝑢
0 0 0 𝑚𝑣 − Yv̇𝑣 Xu̇𝑢 −𝑚𝑢 0
0 −Zẇ𝑤 Yv̇𝑣 0 −Nṙ𝑟 𝑀q̇𝑞

Zẇ𝑤 0 −Xu̇𝑢 Nṙ𝑟 0 −𝐾ṗ𝑝

−Yv̇𝑣 Xu̇𝑢 0 𝐼𝑦𝑞 −𝑀q̇𝑞 𝐾ṗ𝑝−𝐼𝑥𝑝 0 ]
 
 
 
 
 
 

 (A1.9) 

A3 – Hydrodynamic Damping Matrix 

In Equation (A1.1), the vector, D is used to represent the hydrodynamic damping properties 

of the RoboSalmon vehicle. Hydrodynamic damping is the term used in marine vehicle 

engineering to encapsulate the different forms of drag associated with a vehicle. This 

hydrodynamic damping is caused by a number of different factors and as a result, the 

overall hydrodynamic damping matrix, D can be written as the sum of multiple 

components as shown below in Equation (A1.10): 

𝐃(𝒗𝒓) = 𝐃𝐏(𝒗𝒓) + 𝐃𝐒(𝒗𝒓) + 𝐃𝐖(𝒗𝒓) + 𝐃𝐌(𝒗𝒓) (A1.10) 

Where 𝐃𝐏 represents the radiation-induced potential damping, 𝐃𝐒 is the linear skin friction, 

𝐃𝐖 is the wave drift damping and 𝐃𝐌 is the damping due to vortex shredding. However, 

of these four components, only two – the linear skin friction and the damping due to vortex 

shredding - are considered necessary to accurately model the drag forces acting on an 

underwater vehicle.   

To approximate the drag caused by the aforementioned vortex shredding, the standard 

equation for drag as shown below is used:  

D =  −
1

2
𝜌C𝐷𝐴|𝑉𝑟(𝛽)|𝑉𝑟(𝛽) (A1.11) 
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Where 𝑉𝑟 represents the relative velocity between the vehicle, 𝒗 and the ocean current, 𝒗𝑐 

and permits the sideslip angle of the vehicle to be taken into consideration, A is the 

projected cross sectional area of the vehicle, CD is the drag coefficient and 𝜌 is the density 

of water. The drag coefficient is dependent on the shape of the vehicle being modelled. The 

shape of the RoboSalmon vehicle mirrors that of a prolate ellipsoid and as a result, the drag 

coefficient is estimated using the following equation (Naddi,2015): 

CD = 0.44 (
b

a
) + 4𝐶𝑓 (

a

b
) + 4𝐶𝑓 (

a

b
)

1
2
 (A1.12) 

Where Cf is the friction drag coefficient, a is the radius of the ellipsoid along the x-axis and 

b is the radius of the ellipsoid along the y-z plane.  Consequently, the ratio of these two 

values will vary depending on which axis the drag coefficient is being evaluated for. 

Therefore, using the above two equations and the various combinations of the a and b 

parameters, an estimate for the drag forces acting on the vehicle along the x, y and z axis 

can be obtained.  

However, the methods discussed above don’t take into consideration the contributions of 

either the caudal fin or indeed, the pectoral fins. To take these contributions into 

consideration, Equation (A1.11) is used again but this time with separate drag coefficients 

that represent the shape of both the caudal fin and pectoral fins.    

Finally, the above explanation of the functionality used to estimate the vehicle’s drag has 

so far assumed that the vehicle is a rigid-body when in actual fact, the tail section of the 

vehicle is constantly moving in an undulatory manner. As a result of this undulatory 

motion, the projected cross sectional area of the tail section will vary and as shown in 

Equation (A1.11), this will result in the drag of the vehicle – particularly that of the tail 

section also varying. In an attempt to model this undulation of the vehicle’s drag, the 

equation presented in Equation (A1.11) has been altered to that shown below in Equation 

(A1.13). 

Dx = −
1

2
𝜌C𝐷𝐴|𝑉𝑟(𝛽)|𝑉𝑟(𝛽) cos(90 − 𝜃) (A1.13) 

Where 𝜃 represents the angle between the body-fixed horizontal axis and the lateral 

displacement of the caudal fin as shown below in Figure A1. 
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Figure A.1 - Geometry of caudal fin angle. 

Therefore, it is apparent from Figure A.1 that when the position of the caudal fin reaches 

its peak value during a single undulation, the angle, θ is at its maximum value and 

consequently, the estimate for the drag in the x-direction as estimated using Equation 

(A1.13) will also reach its peak value as expected. Similarly, to estimate the drag in the y-

direction, the same equation presented in Equation (A1.13) is used with the exception that 

the cosine of the angle is replaced with the sine of the angle,𝜃 as shown below in Equation 

(A1.14). 

Dy = −
1

2
𝜌C𝐷(𝛽)𝐴|𝑉𝑟(𝛽)|𝑉𝑟(𝛽) sin(90 − 𝜃) (A1.14) 

A3 – Restoring Forces & Moments 

In marine vehicle engineering, the restoring forces and moments describe the interaction 

between the gravitational and buoyancy forces acting on the vehicle. As with all physical 

systems, the gravitational forces acting on the vehicle do so through the vehicle’s centre of 

gravity and similarly, the buoyancy forces act through the vehicle’s centre of buoyancy.  

The vector of equations used to represent these forces and moments are shown below in 

Equation (A1.15) and have been taken directly Fossen (2011).  

𝒈(𝜂) =

[
 
 
 
 
 
 

(𝑊 − 𝐵) sin 𝜃
−(𝑊 − 𝐵) cos 𝜃 sin𝜙
−(𝑊 − 𝐵) cos 𝜃 cos𝜙

−(𝑦𝐺𝑊− 𝑦𝐵𝐵) cos 𝜃 cos𝜙 + (𝑧𝐺𝑊 − 𝑧𝐵𝐵) cos 𝜃 sin𝜙

        (𝑧𝐺𝑊 − 𝑧𝐵𝐵) sin 𝜃 + (𝑥𝐺𝑊 − 𝑥𝐵𝐵) cos 𝜃 cos𝜙

−(𝑥𝐺𝑊 − 𝑥𝐵𝐵) cos 𝜃 cos𝜙 − (𝑦𝐺𝑊 − 𝑦𝐵𝐵) sin 𝜃 ]
 
 
 
 
 
 

 (A1.15) 

Here, W and B are the gravitational and buoyancy forces acting on the vehicle,  𝜃 is the pitch 

angle of vehicle in the Earth-fixed axis, 𝜙 is the roll angle of the vehicle also in the earth-

fixed axis,𝑥𝐺, 𝑦𝐺  and 𝑧𝐺 represent the position of the vehicle’s centre of gravity along the x, 

y and z axis and finally, 𝑥𝐵, 𝑦𝐵  and 𝑧𝐵 represent the position of the centre of buoyancy along 

the same x, y and z axis.   
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The equations presented in (A1.15) are the complete set of equations required to model the 

restoring forces and moments acting on any vehicle operating in the oceanic environment. 

However, as discussed in (Watts, 2008; Fossen, 2011 & Naddi, 2015), a number of 

simplifications can be made to the above equations. The first of which is to assume that the 

RoboSalmon vehicle is neutrally buoyant which means that the gravitational force, W is 

equal to the buoyancy force, B. The second assumption is to position the centre of buoyancy 

directly above the centre of gravity and as a result, 𝑥𝐵 = 𝑥𝐺  and 𝑦𝐵 = 𝑦𝐺 . Applying these 

assumptions means the equations presented in Equation (A1.15) can be significantly 

simplified to that which is shown below in Equation (A1.16). 

𝒈(𝜂) =

[
 
 
 
 
 

0
0
0

(𝑧𝐺𝑊 − 𝑧𝐵𝐵) cos 𝜃 sin 𝜙

        (𝑧𝐺𝑊 − 𝑧𝐵𝐵) sin 𝜃
0 ]

 
 
 
 
 

 (A1.16) 

Achieving neutral buoyancy through the design of the vehicle is almost impossible. 

Nevertheless, the assumption of neutral buoyancy is deemed to be acceptable due to the 

fact that the investigations completed using the RoboSalmon vehicle occurred in the 

horizontal plane only and as a result, the motion of the vehicle in the vertical plane is not 

considered paramount to accurately replicating the motion of the physical system. 



B: Backpropagation 

Algorithm 
 

This algorithm operates by using a criterion function to assign an error value to each neuron 

in the output layer of the network. As the name of the algorithm suggests, these errors are 

then back-propagated throughout the entire network until every neuron has an error 

associated with it, which roughly represents its contribution to the overall network error. 

At this point, the algorithm evaluates the derivative of these errors with respect to the 

weights of the network and the optimisation technique then uses these derivatives to 

update each weight within the network in an attempt to minimise the networks overall 

error.  

The particular criterion function used in this work is known as the squared error function 

and is shown below in Equation (B.1): 

E(w, k) =
1

2
∑(y(i) − ym(i))

2

l

i=1

 (B.1) 

Where w and k represent the values of the interconnecting weights within the neural 

network, y represents the desired value from the lth output of the network and ym represents 

the actual output from the network. 

As discussed above, the derivative of the above function with respect to the appropriate 

weights is then used to update the values of the interconnecting weights in an attempt to 

reduce the overall error of the network. The equations used to represent this process are 

presented below: 

𝑘𝑙𝑖
+ = 𝑘𝑙𝑖 −

𝜕𝐸𝑙
𝜕𝑘𝑙𝑖

 (B.2) 

𝑤𝑙𝑖
+ = 𝑤𝑙𝑖 −

𝜕𝐸𝑖
𝜕𝑤𝑖𝑗

 (B.3) 

Here, 𝑘𝑙𝑖
+ and 𝑤𝑙𝑖

+ represent the new values for the interconnecting weights, 𝑘𝑙𝑖 and 𝑤𝑙𝑖 that 

should iteratively reduce the overall network error.  
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Equations (B.1), (B.2) & (B.3) and the associated discussion have presented a brief overview 

of the back propagation algorithm used in this work to train the ANN. A full derivation of 

this method is presented below. Gradient descent is a first-order iterative optimisation 

algorithm which operates by trying to estimate the local minima of a function. As discussed 

above for the work completed in this thesis, this function is equal to the criterion function 

and evaluates the squared error between the desired and actual response of the network 

and is represented mathematically in Equation (B.1) 

To implement the gradient descent technique as part of the backpropagation algorithm, the 

derivative of Equation (B.1) has to be evaluated with respect to the weights connecting the 

hidden layer with the output layer, k. To achieve this, the chain rule is adopted to produce 

the following set of equations:    

𝜕𝐸

𝜕𝑘𝑙𝑖
=
𝜕𝐸

𝜕𝑦𝑚

𝜕𝑦𝑚
𝜕𝑢𝑜

𝜕𝑢𝑜
𝜕𝑘𝑙𝑖

 (B.4) 

Where the first term on the right hand side represents the derivative of Equation (B.1) which 

produces the following equation: 

𝜕𝐸𝑙
𝜕𝑦𝑚;

= − (𝑦𝑙 − 𝑦𝑚𝑙
) (B.5) 

The above equation represents the derivative of the error associated with the lth output from 

the network, 𝐸𝑙 with respect to the output obtained from network for the same output, 𝑦𝑚;
. 

Furthermore, the second derivative on the right hand-side of Equation (B.4) represents the 

derivative of the activation function used within the neurons of the output layer and is of 

the following form: 

𝜕𝑦𝑚𝑙

𝜕𝑢𝑜𝑙
=  1 − 𝑡𝑎𝑛ℎ2(𝑢𝑜𝑙) (B.6) 

Finally, the last derivative of Equation (B.4) evaluates the rate of change of the input to each 

neuron in the output layer with respect to the interconnecting weights represented by the 

indices l and i.  Since the input to each neuron in the output layer can be represented using 

Equation (B.5) shown above, its derivative with respect to each of the interconnecting 

weights, kli can be represented simply as the output of the ith neuron in the hidden layer, 𝑦ℎ𝑖 

as presented below in Equations (B.7) and (B.8). 
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𝑢𝑜𝑙 = (∑kli

q

i=1

fi (∑wijxj

m

j=1

)) (B.7) 

 

 𝑦ℎ𝑖 = 
∂𝑢𝑜𝑖
∂𝑘𝑙𝑖

= (fi (∑wijxj

m

j=1

)) (B.8) 

Therefore, combining the three derivative equations presented above, the rate of change of 

the error parameter, E with respect to the interconnecting weight kli can be evaluated. 

Subsequently, this parameter can be used to evaluate a new value for the interconnecting 

weights between the hidden output layers using the equation shown below: 

𝑘𝑙𝑖
+ = 𝑘𝑙𝑖 −

𝜕𝐸𝑙
𝜕𝑘𝑙𝑖

 (B.9) 

Where 𝑘𝑙𝑖
+ represents the new value for the interconnecting weight, 𝑘𝑙𝑖 which reduces the 

value for the overall error parameter, E. However, the development of Equations (B.4-B.9) 

only accounts for the evaluation of the interconnecting weights between the hidden layer 

and the output layer.  

Consequently, as the name of the algorithms suggests, the errors evaluated above are 

propagated back through the remaining layers of the network to allow the new, improved 

values for the weights, wij representing the connections between the input and hidden 

layers to be evaluated.  To evaluate these parameters, first the derivative of the error 

associated with each output neuron with respect to the output value from each neuron 

within the hidden layer is evaluated. This can be represented mathematically as shown 

below in Equation (B.10): 

𝜕𝐸𝑇𝑜𝑡
𝜕𝑦ℎ𝑖

= ∑
𝜕𝐸𝑝

𝜕𝑦ℎ𝑖

𝑙

𝑝=1

 (B.10) 

Where 𝑦ℎ𝑖  represents the output from the ith neuron of the hidden layer, Ep represents the 

error evaluated for each neuron in the output layer and i represents the particular neuron 

within the hidden layer for which the above derivative is being evaluated for. Again, using 

the chain rule, Equation (B.10) can be rewritten into the following form: 
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𝜕𝐸𝑖
𝜕𝑦ℎ𝑖

= ∑
𝜕𝐸𝑙
𝜕𝑦𝑚𝑙

𝜕𝑦𝑚𝑙

𝜕𝑢𝑜𝑙

𝑙=200

𝑙=1

𝜕𝑢𝑜𝑙
𝜕𝑦ℎ𝑖

 (B.11) 

Where the first two terms on the right-hand side of the above equation are identical to the 

first two terms in Equation (B.4). The last term however, represents the derivative of the 

input to the neurons in the output layer with respect to the outputs of the neurons within 

the hidden layer. Again, since the input to the output layer of neurons, 𝑢𝑜𝑙 is equal to the 

equation shown above (B.7), its derivative with respect to the outputs from the ith neuron 

in the hidden layer is equal to the interconnecting weight represented by kli. 

Since Equation (B.8) represents the derivative of the total error with respect to the outputs 

obtained for the hidden neuron, 𝑦ℎ𝑖 it is now possible to evaluate the derivative of the total 

error with respect to the interconnecting weights between the input and hidden layers 

using the following equation.  

𝜕𝐸𝑖
𝜕𝑤𝑖𝑗

=
𝜕𝐸𝑖
𝜕𝑦ℎ𝑖

𝜕𝑦ℎ𝑖
𝜕𝑢ℎ𝑖

𝜕𝑢ℎ𝑖
𝜕𝑤𝑖𝑗

 (B.12) 

Where again, because the activation function used within the neurons of the hidden layer 

are identical to those used in the output layer, the second term of Equation (B.12) is identical 

to Equation (B.6) with the exception of  𝑢𝑜 being replaced with 𝑢ℎ. Finally, since the input 

to each of the neurons in the hidden layer, represented by 𝑢ℎ𝑖 in the above equation, is equal 

to the formula shown below in Equation (B.13), its derivative with respect to the associated 

connecting weights, wij is simply equal to the input parameter identified by xj.  

𝑢ℎ𝑖 = ((∑wijxj

m

j=1

)) (B.13) 

Finally, the derivative obtained from Equation (B1.10) is used to evaluate new values for 

the weights connecting the input layer with the hidden layer using the equation shown 

below in Equation (B.14).  

𝑤𝑙𝑖
+ = 𝑤𝑙𝑖 −

𝜕𝐸𝑖
𝜕𝑤𝑖𝑗

 (B.14) 

The above derivation represents the steps taken to evaluate new values for the 

interconnecting weights of the neural network that will reduce the error calculated by the 

criterion function.  
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