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Abstract 

Mitochondria are organelles that fulfil main roles in cellular metabolism. From 

the total mitochondrial proteome, 99% of proteins are encoded in the nucleus 

and have to be imported into mitochondria. Hence, mitochondria have 

developed at least five import pathways to drive those proteins into the four 

mitochondrial compartments (the outer and inner membranes, the matrix and 

the mitochondrial intermembrane space (IMS)). The main pathways are the 

presequence pathway, the carrier pathway, the β-barrel pathway, the insertion 

of α-helical proteins and the oxidative folding (MIA) pathway. MIA pathway 

imports most proteins residing in the IMS by inserting disulfide bridges onto 

characteristic cysteine motifs in the incoming reduced protein precursors. The 

import through the MIA pathway depends on the redox homeostasis of the 

compartments where it takes place, the cytosol and the IMS. This redox 

homeostasis is the balance between the oxidative and reductive pathways. In 

particular, the main reductive pathways are the glutaredoxin (Grx) and 

thioredoxin (Trx) systems, both of which share NADPH as their final electron 

donor. Despite extensive knowledge on the oxidative pathway, a reducing 

mechanism in the IMS is yet to be discovered. In this work, we studied the 

molecular and mechanistic aspects of redox perturbations on the MIA pathway. 

We found that reductive impairment in the yeast cell specifically decreased the 

import through the MIA pathway because the key effector, Mia40 is in an 

unbalanced redox state towards its oxidising form. Furthermore, based on the 

recent discovery of cytosolic Trx system residing also in the mitochondrial IMS, 

we investigate its role as this unknown reductive system in this compartment. 

We found that Trx interacts with Mia 40 and restores its redox state to a 

functional balanced oxidising and reducing state and that this partially recovers 

the import capacity of this yeast strain. We conclude by proposing a model in 

which redox state of Mia40 acts as a sensor of the import of MIA substrates in a 

Trx-dependent manner. 
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Chapter 1 Introduction 

1.1 Mitochondria 

The name mitochondrion comes from the Greek words ‘mitos’, which means 

thread, and ‘chondros’, which means granule, and was coined by the German 

microbiologist Carl Benda in 1898 due to the organelle’s characteristic to form 

long chains (Ernster and Schatz, 1981). Mitochondria are subcellular double-

membrane and semi-autonomous organelles that originated form an α-

proteobacterium engulfed by an eukaryotic ancestor (Lane and Martin, 2010). 

They are present in almost every eukaryotic cell. These organelles were 

discovered by Rudolf Albrect von Kolliker around the 1860s (Schatz, 2013) and 

were first identified as ubiquitous cytoplasmic structures that resembled 

bacteria and were called ‘bioblasts’ by the German pathologist Richard Altmann 

(Ernster and Schatz, 1981). 

Mitochondria are normally considered the energy producing factory of the cell. 

However, extensive studies have widened their importance in cell metabolism 

and fate. It was shown that mitochondria are a hub for important catabolic 

pathways like the Krebs cycle, as well as fatty acid oxidation and are involved in 

the urea cycle, heme, cardiolipin and steroid synthesis (see (Scheffler, 2002)). 

Furthermore, mitochondria have been linked to different diseases such as cancer 

(Weinberg et al., 2010) and neurodegenerative disorders (Park et al., 2018), as 

well as with aging (Sun et al., 2016) and cell death (Tait and Green, 2012). 

Structurally, mitochondria, like their bacterial ancestors, comprise of two 

aqueous compartments separated by two phospholipid bilayers (Figure 1.1). 

Mitochondria are separated from and communicate with the cellular 

environment by the mitochondrial outer membrane (OM). This membrane 

represents the entry and exit point of mitochondria as it contains proteins that 

serve as gates to incoming protein precursors, cofactors and small molecules 

important for the mitochondrial and cell fate and function (Chacinska et al., 

2009, Vander Heiden et al., 2000). The second mitochondrial membrane, the 

inner membrane (IM), separates the two aqueous mitochondrial compartments 

and bends inwards to form characteristic structures named cristae, which are 

important in the mitochondrial IM organisation and function (Aaltonen et al., 
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2016, Friedman et al., 2015). The IM is the most protein-rich membrane in cells 

(75% protein and 25% lipid in mass ratio) and contains the proteins responsible 

for the mitochondrial oxidative phosphorylation chain, protein translocation and 

assembly and is involved in metabolite interchange between the matrix and the 

mitochondrial intermembrane space (IMS) (Claypool et al., 2008, Kramer and 

Klingenberg, 1977, Wohlrab, 2009). The two membranes differ principally in 

their lipid content and in particular in the content of cardiolipin (about 20% in 

the IM) (Claypool et al., 2008, de Kroon et al., 1997), which is a unique type of 

phospholipid located mainly in the mitochondrial IM and has been involved in the 

organisation of the respiratory chain complexes among other metabolic 

processes (Paradies et al., 2014, Houtkooper and Vaz, 2008). On the other hand, 

the inner membrane envelops the mitochondrial matrix, which contains the 

majority of mitochondrial proteins (roughly 2/3 of the total mitochondrial 

protein content) and hosts important pathways such as the tricarboxylic acid 

cycle (Robinson and Srere, 1985), protein transamination (Kispal et al., 1996) 

and Fe/S cluster biogenesis (Cardenas-Rodriguez et al., 2018) among others. 

Finally, the mitochondrial IMS is the compartment between the outer and inner 

membranes. The IMS is involved in sorting mitochondrial proteins into the other 

three compartments and with important metabolic processes such as oxidative 

phosphorylation (Glick et al., 1993) and mitochondrial oxidative folding (Banci et 

al., 2009, Chacinska et al., 2004, Mesecke et al., 2005). Proteins residing in the 

IMS include Cytochrome b2, Mia40, Erv1 and the small Tims, Tim9, Tim10, Tim12 

(Herrmann and Hell, 2005) 

 

Figure 1.1 Mitochondrial structure. Schematic representation of the four mitochondrial 
compartments: the Outer (dark brown) and Inner (light brown) membranes, the mitochondrial 
intermembrane space (beige) and the mitochondrial matrix (brown). 
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Mitochondria have retained part of their genome, although this mitochondrial 

DNA only encodes less than 1% of the total mitochondrial proteome, encoding 

only 13 polypeptides (all of them involved in the respiratory chain). Thus, 

specialised import pathways have evolved to ensure the proper targeting and 

sub-mitochondrial sorting of essentially all the mitochondrial proteins (Becker et 

al., 2012, Chacinska et al., 2009, Chatzi et al., 2016, Wiedemann and Pfanner, 

2017). 

1.2 Mitochondrial import pathways 

Mitochondria are formed by approximately 1000 proteins for the yeast 

Saccharomyces cerevisiae (S. cerevisiae) (Vögtle et al., 2017), and over 1500 

proteins for mammalian mitochondria (Pagliarini et al., 2008, Taylor et al., 

2003). However, these genomes encode only 13 proteins and 7 proteins for 

humans and yeast, respectively (Wiedemann and Pfanner, 2017). Hence, the 

remaining 99% of mitochondrial proteins are encoded in the nucleus and 

translated in cytosolic ribosomes and need to be imported. Therefore, 

mitochondria possess elegant and complex mechanisms that control the 

mitochondrial protein biogenesis. Most of the mitochondrial protein precursors 

are synthesised with targeting signals that not only lead the proteins to 

mitochondria but also directs them to their correct mitochondrial compartment. 

There are five main import pathways described so far, i.e. the presequence 

pathway, the carrier pathway, the β-barrel pathway, the mitochondrial import 

and assembly pathway (MIA) and the import pathway followed by OM proteins 

with α-helical transmembrane segments (Figure 1.2). 
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Figure 1.2 Overview of the import pathways into mitochondria. Protein precursors translated in 
the cytosol cross the mitochondrial OM through the Tom40 channel. Once inside mitochondria, 
these precursors are sorted into (A) the mitochondrial IMS, (B) the mitochondrial matrix, (C) the 
mitochondrial IM or (D) the mitochondrial OM. (A) Reduced protein precursor is oxidised by the 
MIA pathway which folds and traps the protein. (B) Precursors containing a positively charged 
mitochondrial targeting-sequence (MTS) cross the IM on a membrane potential dependent fashion. 
Once in the matrix, mitochondrial protein peptidases cleave the MTS and the protein is folded. (C) 
Protein precursors are chaperoned to the mitochondrial OM vicinity by cytosolic chaperones. Once 
in the IMS, the small Tims complexes take them to the TIM22 complex before their insertion into 
the mitochondrial IM. (D) β-barrel protein precursors interact with the small Tims complexes in the 
IMS lumen and a β-signal in their last β-sheet is recognised by the inner face of the Sam50 
channel prior their lateral release into the mitochondrial OM. (E) α-helical precursors presumably 
are inserted into the mitochondrial OM membrane by interaction with the MIM complex with or 
without the help of other proteins like Tom70. 
 

D 

C B 

A 
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1.2.1 Translocase of the outer membrane (TOM) 

The main gate for protein translocation into mitochondria is the translocase of 

the outer membrane (TOM) complex, which is formed by the channel-forming β-

barrel protein Tom40, three protein receptors (Tom22, Tom20 and Tom70) and 

three non-essential small Tom proteins (Tom5, Tom6 and Tom7) (Mokranjac and 

Neupert, 2015, Hill et al., 1998, Yamano et al., 2008). Tom20 and Tom70 

recognise incoming protein precursors and transfer them onto the central 

receptor, Tom22, and from there to the Tom40 channel. Tom22 is important in 

the formation of a mature TOM complex (van Wilpe et al., 1999, Mokranjac and 

Neupert, 2015). Together with Tom22, the three small Tom proteins play a 

structural role in the assembly and stability of the complex (Wiedemann and 

Pfanner, 2017). 

1.2.2 Presequence pathway 

The majority of protein precursors are synthesised with N-terminal extensions of 

10-60 amino acids length that form positively charged amphiphilic α-helical 

structures which are specifically recognized by the Tom20 receptor (Abe et al., 

2000). The precursors are then transferred to Tom22 and then to the channel 

formed by Tom40. After crossing through the Tom40 channel, the protein 

precursors are transferred to Tom7 and the IMS domain of Tom22. Then, these 

presequence-precursors engage with the translocase of the inner membrane 

(TIM), the TIM23 complex, formed by Tim50, Tim23, Tim 17 and Tim21. Here, 

Tim50 binds to the precursors emerging from Tom40 (Tamura et al., 2009b). 

Tim50 interacts with the channel forming protein Tim23 so that the TIM23 

channel opens to allow further translocation into the matrix (Meinecke et al., 

2006). Finally, the presequence translocase-associated motor (PAM), whose 

central component is the adenosine triphosphate (ATP) dependent heat shock 

protein (Hsp) 70, completes the translocation across the IM in an inner 

membrane potential (ΔΨ) and ATP dependent manner (Nelson and Schatz, 1979). 

This latter is facilitated by Tim44, which tethers the Tim23 channel with the 

PAM complex. The matrix side of mitochondria is negatively charged and thus 

attracts the positively charged presequence (Martin et al., 1991). Additionally, 

some mitochondrial IM proteins (like the cytochrome b2 and cytochrome c1) 

follow the same import pathway but they contain a hydrophobic segment behind 
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the presequence which arrests the transfer across the IM and are laterally 

released from the Tim23 channel (this is a specific sorting pathway that follows 

the stop-transfer mechanism). Once in the mitochondrial matrix, the 

presequence is cleaved by the matrix processing peptidase (MPP, a zinc-binding 

heterodimeric protein) (Hawlitschek et al., 1988). Some proteins of the IM are 

cleaved a second time to remove the hydrophobic sorting sequence by the IM 

peptidase (IMP) (Mossmann et al., 2012). Alternatively, some precursors are 

imported into the matrix and then incorporated into the IM from the matrix side 

by the oxidase assembly (OXA) export machinery (Stiller et al., 2016). This OXA 

pathway is responsible also for facilitating the association to the IM of the 

hydrophobic proteins that are encoded by the mtDNA and are then assembled 

into the OPXHOS complexes in the IM. The schematic representation of the 

presequence pathway is shown in Figure 1.3. 
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Figure 1.3 Presequence import pathway. Schematic representation of the presequence import 
pathway. Mitochondrial protein precursors containing a positively charged MTS are recognised by 
the receptor Tom20 and translocate the OM through the Tom40 channel. As the precursors 
emerge to the IMS, the receptor of the TIM23 complex, Tim50, interacts with them and hands them 
over the Tim23 channel. The presequence precursors can then be released to the matrix or be 
trapped into the IM by a hydrophobic extra segment before the positively charged signal and then 
laterally released to the IM. Finally, peptidases on the matrix side or the IM cleave off the 
presequence. 
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1.2.3 Carrier pathway 

Hydrophobic inner membrane proteins that do not possess a presequence follow 

a different pathway. Many of these proteins belong to the family of metabolite 

carrier proteins that are embedded in the IM and are responsible for the 

transport of specific metabolites between the cytosol and the matrix. The 

specific pathway that transports these proteins into mitochondria and underpins 

their integration into the IM is called the carrier pathway. Members of this 

family contain usually six α-helical transmembrane segments. Members of the 

metabolite carriers are responsible for the translocation of critical metabolites 

like ATP, ADP (the ADP/ATP carrier) and phosphate (the phosphate carrier). To 

reach mitochondria, carrier precursors bind to cytosolic chaperones of the Hsp70 

and Hsp90 family (Figure 1.4). Once in proximity to the OM, the carrier 

precursor-Hsp70/Hsp90 complex binds to the Tom70, which has binding regions 

for both the carrier precursor and the chaperone (Young et al., 2003). The 

chaperones are then released upon ATP hydrolysis and the carrier precursors are 

transferred through the Tom40 channel (Wu and Sha, 2006, Young et al., 2003). 

Upon entering the IMS, the protein precursors interact with the Tim9-Tim10 or 

Tim8-Tim13 chaperone complexes (small Tims complexes) of the IMS. These are 

heterohexameric complexes (Beverly et al., 2008, Vial et al., 2002) that 

transport the precursor to the TIM22 complex in the IM (Lu et al., 2004b, Gebert 

et al., 2008). The TIM22 complex consists in the receptor Tim54, the channel-

forming protein Tim22 and the small Tims complex (Figure 1.4). The small Tims 

complex is recruited by Tim54 (Gebert et al., 2008) Then, using ΔΨ as energy 

source, the precursor is inserted in the Tim22-channel and finally is laterally 

released into the IM. 
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Figure 1.4 Carrier import pathway. Schematic representation of the carrier import pathway. 
Protein precursors are chaperoned in the cytosol by hsp70 and hsp90 to the Tom70 receptor. After 
the chaperones are released, the precursor crosses through the Tom40 channel and once in the 
IMS, the chaperone complex of small Tims takes the incoming precursor and delivers it to the 
Tim54 receptor and then to the Tim23 channel. Finally, the protein precursor is laterally released 
into the IM. 
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1.2.4 β-barrel pathway 

There are two different types of integral proteins in the outer membrane of 

mitochondria, the α-helical and the β-barrel proteins (Walther and Rapaport, 

2009). The presence of β-barrel proteins witnesses the endosymbiotic origin of 

mitochondria from Gram negative bacteria. Among the mitochondrial OM β-

barrel proteins are the channel-forming proteins Tom40 and Sam50 and the 

metabolite channel, porin. The cytosolic translated β-barrel precursors contain a 

β-hairpin element that is recognised by the TOM complex (Jores et al., 2016). In 

the IMS lumen, the small Tims complex pulls the incoming precursor out of the 

channel. Then, the insertion into the OM is driven by the SAM complex, which 

comprises the channel-forming protein Sam50 (also known as Tom55) and two 

peripheral proteins, Sam35 and Sam 37. The incoming precursor interacts with 

the inner mitochondrial face of Sam50 by a signal (the β-signal) that is present in 

the last β-strand of these β-barrel proteins (Kutik et al., 2008). This β-signal 

replaces the internal β-signal of Sam50 between the Sam50’s β-strands 1 and 16 

in a hairpin orientation (Höhr et al., 2018). After this gate-opening, the 

subsequent hairpins insert and the folded β-barrel protein is finally laterally 

released into the OM (Höhr et al., 2018). A schematic representation of this 

model is shown in section 7.1.2 of Chapter 7 and in panel A of Figure 1.5. 

1.2.5 Insertion of α-helical proteins into the mitochondrial OM  

The import mechanisms of the second group of OM integral proteins, the α-

helical proteins are not well defined yet. However, the mitochondrial import 

complex (MIM) has been shown to aid the insertion of these types of proteins. 

Additionally, it has been shown that other proteins like Tom70 and proteins from 

the SAM complex, together with the MIM complex are involved in the insertion of 

these α-helical tail or signal-anchored and polytopic proteins (panel B Figure 1.5) 

(Berthold et al., 1995, Popov-Celeketic et al., 2008, Papić et al., 2011).  
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Figure 1.5 Insertion of β-barrel and α-helical proteins into the mitochondrial OM.  (A) The β-
barrel protein precursor crosses the mitochondrial OM via the TOM complex and then in the IMS, 
the small Tims complex drives it to the SAM complex. There, the β signal of the precursor interacts 
with β strand 1 of Sam50, this event opens a gate in Sam50 between β1 and β16. The protein 
precursor is inserted in hairpins until its laterally released into the OM. (B) α-helical precursors 
presumably are inserted into the mitochondrial OM membrane by interaction with the MIM complex 
with or without the help of other proteins like Tom70. 
 

1.2.6 Mitochondria Import and Assembly pathway for IMS 
proteins 

The mitochondrial intermembrane space assembly machinery (MIA) is the 

mechanism that accounts for the import of most of the IMS proteins ((Sideris and 

Tokatlidis, 2010) and Figure 1.6) . Typical substrates of this pathway are 

proteins that contain characteristic cysteine motifs within their sequence, such 

as CX3C and CX9C motifs that can form intramolecular disulfide bonds (Lu et al., 

2004a, Lutz et al., 2003, Gabriel et al., 2007). Those protein precursors are 

targeted to the IMS of mitochondria by an internal mitochondrial IMS signal (ITS) 

which consists on a docking Cys residue and two critical residues, one 

hydrophobic residue and one aromatic residue located in positions +/- 4 and +/- 

7, respectively, from the docking Cys residue (Milenkovic et al., 2009, Sideris et 
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al., 2009). Then, the IMS precursors translocate into the mitochondrion through 

the TOM complex in an unfolded, thus reduced conformation (Stojanovski et al., 

2012, Durigon et al., 2012). 

The main effector of this pathway is the oxidoreductase Mia40 (Banci et al., 

2009, Chacinska et al., 2004, Kloppel et al., 2011), which is called CHCHD4 in 

humans (Erdogan et al., 2018). Mia40 possess two stable intramolecular disulfide 

bonds buried in the folded core of the protein and one disulfide between a pair 

of cysteines exposed to the surface of the protein, the active (oxidised) motif, 

the CPC motif (Banci et al., 2009). Once in the IMS, hydrophobic interactions 

between a hydrophobic-binding cleft in Mia40 and the precursors place the Cys 

residue of the substrate in a position that favours its electrophilic attack by one 

of the Cys on Mia40 (Milenkovic et al., 2009, Sideris et al., 2009, Sideris and 

Tokatlidis, 2010). The latter results in a mixed disulfide between Mia40 and the 

protein precursor. This mixed disulfide is then resolved by a nucleophilic attack 

from a second cysteine in the substrate, resulting in an intramolecular disulfide 

in the protein. This process causes the CPC motif of Mia40 to be reduced. In 

turn, Mia40 is re-oxidized by the other main component of the MIA pathway, the 

protein essential for respiration and viability 1 (Erv1). Erv1 is a flavin adenine 

dinucleotide (FAD) sulfhydryl oxidase with three conserved Cys pairs (Lionaki et 

al., 2010). Erv1 oxidises the CPC motif in Mia40 and shuttles the electrons to its 

FAD domain and from there onto molecular oxygen either directly or via 

cytochrome c (Banci et al., 2011, Bien et al., 2010). Furthermore, the re-

oxidation of Mia40 is aided by the helper of Tim of 13kDa (Hot13) keeping Mia40 

in a Zn-free state (Curran et al., 2004, Mesecke et al., 2008). Finally, if the 

oxidative folding of MIA substrates is impaired, the substrates can be 

translocated outside Tom40 where they are degraded by the proteasome 

(Bragoszewski et al., 2013, Bragoszewski et al., 2015). In addition, a recent 

study proposed that the thiol peroxidase Gpx3 has a role in the redox quality 

control of the MIA pathway (Kritsiligkou et al., 2017). 



27 
 

 

Figure 1.6 Mitochondrial Import and Assembly pathway. Most of the proteins residing in the 
IMS are imported through the mitochondrial Import and Assembly machinery (MIA pathway). The 
protein precursor enters mitochondria through the Tom40 channel in an unfolded (reduced) state. 
In the IMS, the oxidoreductase Mia40 oxidises intramolecular Cys of the precursors into disulfide 
bond. The resulting protein is folded and trapped in the IMS. On the other hand, reduced Mia40 is 
re-oxidised by the sulfhydryl Erv1, which transfers the electrons to molecular oxygen via a FAD 
domain. The re-oxidation of Mia40 is also facilitated by Gpx3 and Hot13. 
 

The aforementioned import pathways take place in different cellular 

compartments that represent a variety of conditions (e.g. pH levels and redox 

state) that influence their function. Among these conditions, the reducing and 

oxidising (redox) environment is of particular importance as it is involved in 

essential processes like cellular proliferation and death (Trachootham et al., 

2008, Schafer and Buettner, 2001). This redox environment is determined by the 

balance between the generation and removal of both reactive oxygen species 

(ROS) and reactive nitrogen species (RNS). ROS and RNS are products of normal 

cell metabolism which in low concentrations are involved in beneficial cell 
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signalling and regulation, whilst at elevated levels they lead to the formation of 

damaging species (Zhang et al., 2016, Phull et al., 2018). 

1.3 Redox homeostasis in the cell 

1.3.1 ROS and RNS 

Reactive nitrogen species are a group of strong oxidants that includes 

peroxynitrite, which is formed by the non-enzymatic reaction between nitric 

oxide (NO-) and O2
- (Martínez and Andriantsitohaina, 2009). Other RNS like 

nitrogen dioxide and nitrosoperoxycarbonate derive from peroxynitrite. RNS has 

been shown to exhibit cytotoxic effects damaging lipids, DNA and proteins 

(Pacher et al., 2007, Wink et al., 1991, Hibbs et al., 1987, Radi et al., 1994). 

On the other hand, reactive oxygen species (ROS) are free radical products of 

respiratory metabolism. ROS species include the superoxide anion (O2
-), 

hydrogen peroxide (H2O2) and hydroxyl radicals (OH-). The main source of ROS is 

leakage of electrons during reduction of oxygen to H2O (Boveris, 1984). 

Additionally, the oxidative folding process of the mitochondrial IMS can also lead 

to the production of hydrogen peroxide. Accordingly, it has been shown that up 

to 85% of the cellular ROS is produced by mitochondria (Aon et al., 2012). In 

particular, O2
- is produced from the reduction of molecular oxygen, this species 

is moderately reactive but it also serves as precursor of most of the other 

species. Dismutation of O2
- generates H2O2 and is catalysed by the enzyme 

superoxide dismutase (Sod) (Sturtz et al., 2001). Furthermore, hydrogen 

peroxide can be reduced and form the high reactive species hydroxyl radical 

which reacts almost indiscriminately with the cellular components (Beckman et 

al., 1994). Hydroxyl radical damages proteins primarily by oxidation of amino 

acyl residues (e.g. cysteine residues), these oxidised proteins are reactive and 

lead to unfolded proteins and the generation of more free radicals and the 

production of phenoxy-radicals (Gebicki et al., 2002, Fu et al., 1995). Another 

major target of hydroxyl radical is the unsaturated fatty acyl groups which 

induce lipid peroxidation forming lipid hydroperoxides which can affect the 

composition and structure of the cellular membranes (Poljak et al., 2003, 

Ademowo et al., 2017). This oxidation not only affects the cellular structure and 
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dynamics but is also associated with DNA damage, cell death (Fleury et al., 

2002) and different diseases like cancer and neurodegenerative disorders. 

However, as mentioned before ROS and RNS are produced naturally as side 

products of metabolic reactions and in physiologic concentrations are involved in 

signalling of many important cellular pathways such as growth regulation and 

apoptosis (Shadel and Horvath, 2015). The fine equilibrium that maintains the 

redox homeostasis in the cell is achieved by the balance between ROS and RNS 

producing pathways and the reductive machinery of the cell. This reductive 

machinery includes both enzymatic and non-enzymatic reactions.  

1.3.2 Reductive machinery of the cell 

Among the several mechanisms that the cell possesses to scavenge the excess of 

oxidative species are the cofactors glutathione (GSH), reduced nicotinamide 

adenine dinucleotide (NADH) and reduced nicotinamide adenine dinucleotide 

phosphate (NADPH). In addition, the enzymatic reductive response includes 

catalases, superoxide dismutases and the two main thiol-reductive systems of 

the cell, the thioredoxin (Trx) and the glutaredoxin (Grx) systems.  

1.3.2.1 Glutathione 

Glutathione (GSH) was first discovered in the late 1800s and named philotion 

(from the Greek words for love and sulfur) (Meister, 1988). It is an L-γ-glutamyl-

L-cysteinyl-glycine tripeptide involved in many essential roles for the cell such 

as signalling regulation (mainly through glutathionylation of proteins) and acting 

as the main redox buffer in the cell (Schafer and Buettner, 2001). Furthermore, 

GSH has also been proposed as critical in iron metabolism and that its 

antioxidant properties are only used as backup of other mechanisms like the Trx 

system (Kumar et al., 2011). 

GSH is synthesised in the cell in two consecutive reactions that depend on 

adenosine triphosphate (ATP). In the first step, γ-glutamylcysteine synthetase 

(GSH1) catalyses the formation of γ-glutamylcysteine from glutamic acid and 

cysteine, and in the next step glutathione synthetase (GSH2) catalyses the 

addition of glycine to the dipeptide (Meister, 1988). GSH is present in high 

concentrations of up to 10mM in most living cells, its structure determines 
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important features as the γ-glutamyl bond confers it resistance to proteolytic 

challenges and the thiol moiety has strong nucleophilic properties (Meister and 

Anderson, 1983). Glutathione is essential for yeast viability and its defence 

against oxidative stress, mainly in the form of ROS derived reactions (Grant et 

al., 1996). However, it has been shown that the presence of GSH2 is dispensable 

for yeast growth as the accumulation of the γ-glutamylcysteine dipeptide helps 

to maintain the mitochondrial function, although the dipeptide did not fully 

cover the functions of GSH (Grant et al., 1997). 

In the cell, glutathione can be found in its reduced (GSH) and oxidised (GSSG) 

forms. In fact, due to the presence of glutathione in virtually all the cellular 

compartments, the measurement of the GSH/GSSG ratio is taken as an indication 

of the total cellular redox state (Schafer and Buettner, 2001). The overall ratio 

of glutathione is the result of the particular GSH/GSSG ratios in each cellular 

compartment. An interesting example is that of yeast mitochondria, which 

contains two different subcompartments, the mitochondria matrix and the IMS, 

each one with distinct GSH/GSSG ratios. The latter also exemplifies the 

difficulty to measure this ratio and the impact that other factors have on it since 

the matrix has been shown to be more reducing (GSH/GSSG ratio 900/1) than 

the IMS (Hu et al., 2008). However, the IMS ratio has been a matter of debate as 

two different studies report opposite results. On the one hand, one claims the 

GSH/GSSG ratio of the IMS to be independent of the cytosolic one and more 

oxidising than that of the matrix (GSH/GSSG ratio 250/1) (Hu et al., 2008). On 

the other hand, it was reported that the IMS GSH pool is connected and in 

equilibrium to that of the cytosol and that even the cytosolic but not the 

mitochondrial isoform of the GSH reductase influences this pool (Kojer et al., 

2012). The difference between both results can be attributed to the way they 

measure the GSH levels. In the first study they used a probe that was prone to 

oxidation only when the full Grx system was present, thus it did not merely 

depend on the presence of GSH in the subcompartment but also in the presence 

of the effector proteins (Hu et al., 2008). In the second study they used a probe 

fused to Grx and thus bypassed the problem as this probe only depended on GSH 

for its reduction (Kojer et al., 2012). 
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1.3.2.2 NADPH 

The phosphorylated form of nicotinamide adenine dinucleotide (NADP) is a 

pyridine nucleotide that is present in almost every organism identified so far. 

Together with the non-phosphorylated form (NAD), they serve as cofactors in 

electron transfer reactions in the cell but also have important signalling and 

regulatory roles as they have been associated with the expression of several 

genes (Rutter et al., 2001, Liou et al., 2005, Guse and Lee, 2008). Despite of 

their structural similarity (Figure 1.7) and the fact that their redox pairs 

NADH/NAD+ and NADPH/NADP+ have similar redox potentials, their roles in the 

cell are very different and in cases opposite.  

 

Figure 1.7 Structure of NAD and NADP. NADP can be generated through the phosphorylation of 
NAD by an NAD kinase where ATP serves as Pi donor. The phosphate group is added onto the 
adenosine ribose. The redox active site is localised on pyridine ring of the nicotinamide (top part of 
both structures). Modified from Agledal et al. 2010 
 

In particular, the reduced form of nicotinamide adenine dinucleotide phosphate 

(NADPH) is generated by the transfer of a phosphate group onto the adenosine 

ribose of NAD at its 2’-hydroxyl group in a reaction catalysed by NAD kinase 

(Outten and Culotta, 2003, Agledal et al., 2010). Thereby NADP is composed by a 

ribosylnicotinamide 5’-phosphate coupled with the 5’-phosphate of the 

adenosine 2’-5’-bisphosphate by a pyrophosphate linkage with the redox active 

site localised in the pyridine ring from the nicotinamide. NADP is found mainly in 

its reduced form within the cell. NADPH is formed from the reduction of its 

oxidized form (NADP+) by the pentose phosphate pathway (PPP) enzymes glucose 

6-phosphate dehydrogenase (g6pd) and 6-phosphogluconate dehydrogenase 

(6PGD) (Kruger and von Schaewen, 2003, Riganti et al., 2012), the 
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mitochondrial, cytosolic and peroxisomal isoforms of NADP-specific isocitrate 

dehydrogenase (Idp1, Idp2 and Idp3 respectively) (Minard et al., 1998), the 

cytosolic acetaldehyde dehydrogenase (Grabowska and Chelstowska, 2003), the 

malic enzyme and the transhydrogenase (Ying, 2008). NADPH serves as an 

electron donor for many biosynthetic and antioxidant defence reactions (Agledal 

et al., 2010, Minard and McAlister-Henn, 2001) and it is the electron donor of 

both main thiol-reductive pathways in the cell, the glutaredoxin and the 

thioredoxin systems. Besides that, NADPH also integrates a huge metabolic 

network that couples all the processes involving these enzymes (see Figure 4.1), 

which are directly related with the conditions of the environment where the 

different stages of protein biogenesis take place. 

1.3.2.3 Superoxide dismutase and Catalases 

In the yeast S. cerevisiae, two different superoxide dismutase (Sod) exists. Sod1, 

which localises mainly in the cytosol and requires binding of Cu2+ and Zn2+ ions 

for its optimal function (Slekar et al., 1996). On the other hand, Sod2 depends 

on Mn2+ cations for its function and localises to the mitochondrial matrix (Lyons 

et al., 2000). The dismutation is a reaction in which one compound converts into 

two products of different oxidation states. Thus, both Sod enzymes catalyse the 

dismutation of O2
- into molecular oxygen or hydrogen peroxide, which can be 

converted into water by catalases. 

Catalases are involved in the breakdown of hydrogen peroxide to water and 

oxygen but also in the oxidation of H+ donors such as ethanol and methanol. S. 

cerevisiae possess a cytosolic catalase, Ctt1, and a dually localised catalase, 

Cta1 which can be found in peroxisomes and mitochondrial matrix (Petrova et 

al., 2004, Hartig and Ruis, 1986). Catalase has been proposed as part of the 

adaptive stress response to hydrogen peroxide especially during stationary 

growth phase in yeast (Izawa et al., 1996). 

1.3.2.4 The glutaredoxin (Grx) system  

The glutaredoxin system comprises the effector protein glutaredoxin, the 

reductase glutathione reductase (Glr) and GSH (Figure 1.8). In yeast S. 

cerevisiae, two Grx (Grx1-2) and three Grx-related (Grx3-5) proteins can be 
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found. The Grx and Grx-related proteins differ in their putative active sites 

where Grx have a dithiol mechanism and Grx-related proteins a monothiol 

mechanism for the transfer of electrons onto their targets (Bushweller et al., 

1992).  

Grx are oxidoreductases involved in protein regulation and sulfur metabolism 

(Grant, 2001). The reductive role of Grx proteins in the cell is important in 

particular due to its involvement in the removal of S-glutathionylation of 

proteins (Ghezzi, 2013), as protein glutathionylation is involved in regulation of 

protein activity, in particular that involving redox reactions (Gilbert, 1984, 

Ghezzi, 2005). For their function, Grx depend on GSH for their reducing activity 

and it has been demonstrated that both isoforms have different specificity for 

oxidising species. Grx1 has been related to oxidative stress by O2
- whereas Grx2 

shows affinity to hydrogen peroxide as shown by specific sensitivity to this 

oxidising species in KO mutants for each Grx protein (Luikenhuis et al., 1998). 

Interesting is the case of Grx2, which is responsible for the majority of Grx 

activity in yeast (Grant et al., 2000), because it can be found both in the cytosol 

and the mitochondria. In fact, it was proposed as the reductive effector that 

bridges the high amounts of GSH in mitochondria to the redox balance of the 

organelle (Kojer et al., 2015). 
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Figure 1.8 Glutaredoxin and Thioredoxin systems.  The electron flux for both the Grx and Trx 
systems starts from NADPH, which is mainly produced by glucose-6-phosphate dehydrogenase in 
the cytosol. (A) The thioredoxin reductase is reduced by electrons derived from NADPH and the 
reductase in turn then reduces the thioredoxin protein. Finally, the thioredoxin protein transfers 
these electrons onto its substrates. (B) The glutaredoxin system follows a similar electron flux with 
an extra step involving transfer of electrons from glutathione reductase onto glutathione, and 
subsequently, from glutathione onto glutaredoxin and then to glutaredoxin substrates. Image taken 
from Cardenas-Rodriguez, M. and Tokatlidis, K. 2017. 
 

1.3.2.5 The thioredoxin (Trx) system 

The main thiol-reductive system in the cell is the thioredoxin system. It consists 

in the protein effector thioredoxin and its reductase, the thioredoxin reductase 

(TrR) (Figure 1.8). In S. cerevisiae three Trx (Trx1-3) isoforms and two TrR 

(TrR1-2) isoforms have been found (Pedrajas et al., 1999, Kojer et al., 2012). 

They differ in their cellular localisation; Trx1 has a dual mitochondrial and 

cytosolic localisation whereas Trx2 is exclusively cytosolic and Trx3 localises to 

the mitochondrial matrix. Likewise, TrR1 localises to both the cytosol and the 

mitochondria and TrR2 to the mitochondrial matrix.  
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Together with Grx, thioredoxin is involved in the antioxidant cellular response 

(Draculic et al., 2000) and their reductive capacity is also determined by their 

active CXXC motif. They are part of the thioredoxin superfamily whose members 

share a characteristic thioredoxin fold domain (See section 6.1.1). 

Unlike the Grx system, the Trx system is present in all known organisms and 

plays important antioxidant roles (Pedrajas et al., 1999, Draculic et al., 2000, 

Garrido and Grant, 2002). The last is supported by the fact that Yap-1, a 

transcriptional activator protein that regulates several oxidative stress 

responsive genes, is constitutively activated in a Trx1 and Trx2 KO yeast strain 

(Izawa et al., 1999). Furthermore, deletions of Trx1 and Trx2 have been shown 

to impact cell cycle and sulfate assimilation (Muller, 1991). Despite these redox 

and protective functions, it has been shown that overexpression of Trx can have 

deleterious effects on aging and lifespan in mice studies (Cunningham et al., 

2018). However, another study showed that these effects are particular of 

certain stage of life and that in early stages of mice life, overexpression of Trx 

might actually be beneficial (Cunningham et al., 2015). In this sense, the fine 

regulation and possibly the expression of the Trx system might changes as the 

organism develops throughout its life. 

Besides these functions, members of the Trx are implicated in the regulation of 

protein import inside the cell like is the case of the endoplasmic reticulum, the 

mitochondrial IMS and bacterial periplasm. 

1.4 Reductive and oxidative pathways in protein import 

The disulfide insertion into proteins is a prone to error process that can harm 

the cell through protein misfolding. Thus, reductive systems together with the 

oxidative folding pathways regulate the import and proper folding of a 

considerable amount of proteins in the endoplasmic reticulum and the 

mitochondrial IMS. This process is also present in the bacterial periplasm which 

shows that it is conserved through evolution. 
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1.4.1 The bacterial periplasm 

In the periplasm of Gram-negative bacteria, oxidative folding is driven by the 

periplasmic thiol-disulphide oxidoreductase disulphide bond (Dsb) A and B. DsbA 

is member of the thioredoxin family and is one of the most oxidising proteins 

known so far (Martin et al., 1993, Grauschopf et al., 1995). Just as its eukaryotic 

counterpart (see section 1.2.6 of this chapter), it oxidises Cys residues in the 

substrate protein (Collet and Bardwell, 2002) which results in the reduced form 

of DsbA (left panel A Figure 1.9). To recycle DsbA back to its functional oxidised 

form, DsbB accepts electrons from DsbA (Bardwell et al., 1993) to further 

transfer them onto quinone and then to molecular oxygen under aerobic 

conditions (Takahashi et al., 2004), or onto menaquinone and fumarate under 

anaerobic conditions (Takahashi et al., 2004). 

On the other hand, to correct the formation of non-functional disufides bacteria 

possess the oxidoreductases DsbC and DsbD. DsbC has both isomerase and 

chaperone activity as shown by the accumulation of misfolded proteins in DsbC 

bacterial mutants (Rietsch et al., 1996). In turn, DsbC is kept reduced by the 

action of dsbD, which is embedded in the inner membrane with two periplasmic-

exposed domains that transfer electrons from NADPH via Trx ((Missiakas et al., 

1995) (right panel A Figure 1.9)). Although both mechanisms occur on the same 

compartment, they are kept kinetically separated in order to prevent non-

functional disulfide reactions to happen (Rozhkova et al., 2004). 

1.4.2 The endoplasmic reticulum (ER) 

The ER is responsible for the formation of disulfides from a wide set of proteins 

that includes antibodies, among others. The oxidation of cysteines in this 

compartment is driven by members of the protein disulfide isomerase (PDI) 

family and the ER oxidase (Ero) 1. PDIs are also members of the thioredoxin 

family and thus, contain at least one thioredoxin fold that accepts electrons 

from the target protein (Gruber et al., 2006). Finally, the cysteines on PDI are 

re-oxidised by Ero1, which as Erv1 in the IMS, shuttles the electrons to molecular 

oxygen via a FAD domain ((Mezghrani et al., 2001) (left panel B Figure 1.9)). 
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In contrast, reshuffling of disulfide bonds in the ER is driven by members of the 

PDI family itself. This reaction is mediated by direct interaction of PDI with the 

wrongly formed disulfide or by interaction of the latter with GSH ((Sevier et al., 

2007) (right panel B Figure 1.9)). GSH is believed to be transported from the 

cytosol in which is kept in its reduced state by the NADPH-dependant reductase 

Glr1 (Jessop and Bulleid, 2004). Unlike the bacterial periplasm, these two ER 

redox machineries depend on PDIs proteins. PDIs exist in an oxidised/reduced 

balanced state, which dictates the flux towards oxidising or reducing purposes 

(Sevier et al., 2007). 

1.4.3 The mitochondrial intermembrane space (IMS) 

Unlike cellular compartments that share important characteristics such as the 

presence of oxidative folding machineries, no reductive pathway has been 

described so far for the mitochondrial IMS. Although the influence of GSH pools 

and enzymes like Glr1 and Grx2 with Mia40 has been reported (Kojer et al., 

2012, Kojer et al., 2015), direct interactions with this oxidoreductase or a full 

pathway are yet to be discovered. However, the report of mixed reductive and 

oxidising forms of proteins from the MIA pathway suggests that the presence of 

such a pathway is crucial. Furthermore, the recent description of an updated 

version of the IMS proteome found members of the Trx system to be present in 

this mitochondrial compartment, namely Trx1 and TrR1 (Vögtle et al., 2012). 

Taken all this information together, in this work I studied the influence of 

reductive perturbations in the import of proteins into mitochondria. 

Additionally, the discovery of a specific effect on the import of proteins that are 

substrates for the MIA pathway and the recently found Trx system in the IMS, 

lead us to identify that the Trx pathway is the main reductive regulator of the 

MIA pathway in the IMS. 



38 
 

 

Figure 1.9 Oxidative and reductive pathways in the bacterial periplasm, the ER and the 
mitochondrial IMS. (A) The bacterial periplasm: oxidation of proteins by DsbA, which is in turn 
oxidised by the membrane protein DsbB (left). Electron flux from the cytosolic Trx system onto 
DsbD, then to DsbC and finally to the protein (right). (B) The ER: Protein oxidation by PDI and 
reduced PDI recycling by e− transfer onto Ero1 (left). Protein reduction/isomerisation pathway by 
PDI reduced by either GSH or NADPH (right). (C) The mitochondrial IMS: Protein import mediated 
by the Mia40 oxidation of protein precursors. Mia40 is kept in an oxidised state by Erv1, or 
alternatively by Gpx3. This process may be facilitated by Hot13 which is proposed to keep Mia40 in 
its reduced state (left). The Trx and Grx systems were recently localised in the IMS. It is likely that 
these reductive systems play a role in Mia40 reduction to keep the oxidised/reduced overall state of 
Mia40 necessary for its import function and that they play a role in protein isomerisation (right). 
Image from Cardenas-Rodriguez, M. and Tokatlidis, K. 2017. 
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Chapter 2 Aims 

The general aim of this thesis was to determine the molecular and mechanistic 

links between redox perturbations and protein biogenesis in the mitochondrial 

intermembrane space. More specifically, to investigate the localisation and 

function of the thioredoxin system as the critically missing reductive pathway 

controlling the redox balance in the intermembrane space. The working 

hypothesis was that the reductive thioredoxin system controls the redox balance 

in the intermembrane space of yeast and that this redox balance impacts on the 

import of proteins into mitochondria. 

2.1 Specific aims 

2.1.1 Phenotype determination of Δg6pd, Δtrx1/2, Δtrr1 and 
Δgsh1 yeast strains  

• To determine the influence of mutations in the two main thiol-reductive 

pathways on the growth of yeast cells 

• To measure the levels of the cofactors NADP+ and NADPH in Δg6pd, 

Δtrx1/2, Δtrr1 and Δgsh1 yeast strains 

• To measure the mitochondrial inner membrane potential in Δg6pd, 

Δtrx1/2, Δtrr1 and Δgsh1 yeast strains 

2.1.2 Protein levels and protein import into isolated mitochondria 
from Δg6pd, Δtrx1/2, Δtrr1 and Δgsh1 yeast strains 

• To test the steady state levels of mitochondrial proteins in isolated 

mitochondria from Δg6pd, Δtrx1/2, Δtrr1 and Δgsh1 yeast 

• To determine the import capacity of mitochondria isolated from Δg6pd 

yeast 

• To determine the redox state of Mia40 in Δg6pd yeast 
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2.1.3 The thioredoxin system in the IMS of yeast mitochondria 

• To probe that the thioredoxin system can get imported into mitochondria 

from Δg6pd yeast 

• To test the in vitro and in organello interaction between Trx1 and Mia40 

• To determine if the Trx system can restore the import capacity and the 

Δψ defect in mitochondria isolated from Δg6pd yeast 

2.1.4 Import pathway of Trx1 into mitochondria 

• To discover and characterise putative import signal(s) in the Trx1 

sequence 

• To set the tools to test the influence of the targeting signal in the import 

of Trx1 into mitochondria 

• To set the tools to determine the protein import channel through which 

Trx1 translocates across the mitochondrial outer membrane 

• To determine if a protein with this import signal in its sequence can 

translocate across the mitochondrial outer membrane with a folded cargo 
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Chapter 3 Materials and Methods 

3.1 Materials 

3.1.1 Enzymes 

All the restrictions enzymes used in this work as well as the T4 DNA ligase and 

Taq DNA polymerase were purchased from New England Biolabs (NEB). Pfu DNA 

polymerase and DpnI were obtained from Promega. 

3.1.2 Membranes 

Semi-dry transfer for western blot was performed using AmershamTM Protran 

0.45µm nitrocellulose (Fisher).  

3.1.3 Antibodies 

The antibodies (Ab) used in this work are listed in Table 1 . Anti-His Ab was 

purchased from Bio-Rad. The rest of primary Abs were produced by Davids 

Biotechnologie (Germany). Briefly, rabbits were immunised with the desired 

recombinant protein. Sera from the rabbit’s blood containing polyclonal Abs 

against the protein was sent to us by the company. No further purification was 

done to the sera.  

Table 1 List of antibodies. Antibodies and their concentration used in this study. The company 
and the species in which the Ab was generated are also listed  
 

Antibody Company Origin Concentration Source 

α-Hsp70 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:15000 Prof. Nikolaus 

Pfanner lab 

α-Tom70 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:1000 Prof. Nikolaus 

Pfanner lab 

α-Mia40 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:1000 Sideris et al. 

2009 

α-Tom40 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:1000 Prof. Nikolaus 

Pfanner lab 

α-Porin Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:10000 Prof. Nikolaus 

Pfanner lab 
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α-Tim23 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:1000 Prof. Nikolaus 

Pfanner lab 

α-Tim22 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:750 Prof. Kostas 

Tokatlidis lab 

α-Erv1 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:1000 Lionaki et al. 

2010 

α-Cytochrome 

c 

Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:750 Prof. Nikolaus 

Pfanner lab 

α-Tim10 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:1000 Prof. Kostas 

Tokatlidis lab 

α-Tim9 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:1000 Prof. Kostas 

Tokatlidis lab 

α-Trx1 Davids 

Biotechnologie 

Rabbit 

polyclonal 

1:1000 Manganas, P. 

2017 

α-His BioRad Mouse 

monoclonal 

1:10000 BioRad 

 

3.1.4 Plasmids 

Table 2 List of plasmids. The gene of interest was cloned into pSP plasmid, for TNT 35S-
Methionine radiolabelling, and pET plasmid for expression and purification.  
 

Insert Plasmid 

Mia40 pET22-ΔN290Mia40His 

Erv1 pSP64-Erv1His 

Su9-DHFR pSP65-SuDHFR 

Tom5 pSP65-Tom5 

Tim12 pSP64-Tim12 

Tim10 pSP64-Tim10 

Tim9 pSP64-Tim9 

Tim11 pSP64-Tim11 

hCox17 pSP64-hCox17 

 

 

Trx1 

pET24-Trx1His 

pET24-Trx1C30/33S His 

pET24- -29aaTrx1 His 
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pET24-Trx1K79A His 

pET24 Trx1G81A His 

pET24 Trx1V84A His 

pET24 Trx1K86A His 

pSP64 His-DHFR Trx1 

Trx2 pET24-Trx2His 

TrR1 pET24-TrR1His 

Gpx3 pSP64 His-DHFR Gpx3 

bITS from Trx1 pSP64 His-DHFR bITS 

 

3.1.5 Primers 

The primers designed were obtained from Sigma-Aldrich. These primers used for 

protein purification and mutagenesis are listed in Table 3 and Table 4 , 

respectively. 

Table 3 List of primers used for protein purification. This table lists the sequences of the 
primers used to clone the genes of interests into the corresponding plasmid. All sequences are 
showed in a 5’→3’ orientation. The N-terminal deletions primers were paired with the Reverse 
primer of the full length Trx1. The C-terminal deletions primers were paired with the Forward 
primer of the full length Trx1. 
 

 

Plasmid 

                              Primer 

Name Sequence (5’→3’) 

 

pET24-Trx1His 

Fwd Trx1 XBaI GCTCTAGAATGGTTACTCAA

TTCAAAACTGCC 

Rev Trx1 XhoI CCGCTCGAGAGCATTAGCAG

CAATGGC 

pET24 -10aaTrx1 His Fwd Trx1 XBaI (-10aa) GCTCTAGAATGTTCGACTCT

GCAATTGC 

pET24 -20aaTrx1 His Fwd Trx1 XBaI (-20aa) GCTCTAGAATGGTTGTCGTA

GATTTCTACG 

pET24 -29aaTrx1 His Fwd Trx1 XBaI (-29aa) GCTCTAGAATGTGCGGTCCA

TGTAAAATG 

pET24 -34aaTrx1 His Fwd Trx1 XBaI (-34aa) GCTCTAGAATGATTGCTCCA

ATGATTG 
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pET24-HisXhoI -13aa Rev Trx1 XhoI (-13aa) CCGCTCGAGGTTGGCACCAA

CAAC 

pET24-HisXhoI -23aa Rev Trx1 XhoI (-23aa) CCGCTCGAGACCGTTCTTGA

ATAGAAGC 

pET24-HisXhoI -29aa Rev Trx1 XhoI (-29aa) GATATACCGCTCGAGAAGCA

AAGTTGGCATAGCG 

 

Table 4 List of primers used for single substitution mutagenesis. This table lists the 
sequences of the primers used to mutagenize single amino acids in Trx1 to alanine. All sequences 
are showed in a 5’→3’ orientation. 
 

 

Plasmid 

                                  Primer 

Mutagenesis Sequence 

 

 

 

 

pET24-Trx1His 

Fwd Trx1 K79A GCTTCTATTCGCTAACGGT 

Rev Trx1 K79A AAAGTTGGCATAGCGAAAC 

Fwd Trx1 G81A ATTCAAGAACGCTAAGGAA 

Rev Trx1 G81A AGAAGCAAAGTTGGCATAG 

Fwd Trx1 V84A CGGTAAGGAAGCTGCAAAG 

Rev Trx1 V84A TTCTTGAATAGAAGCAAAGTTGGC 

Fwd Trx1 K86A GGAAGTTGCAGCCGTTGTTGGTGC 

Rev Trx1 K86A TTACCGTTCTTGAATAGAAG 

 

3.1.6 Bacterial strains 

The Escherichia coli (E. coli) strains used to clone our genes of interest as well 

as for plasmid propagation were DH5α cells. Two different strains were used for 

the expression of recombinants proteins: 

• BL21 (DE3): fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS 

λ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 

• Origami 2 (DE3) pLysS: Δ(ara-leu)7697 ΔlacX74 ΔphoA PvuII phoR araD139 

ahpC galE galK rpsL F′[lac+ lacIq pro] (DE3) gor522::Tn10 trxB pLysS (CamR, 

StrR, TetR) 
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3.1.7 Yeast strains 

The Saccharomyces cerevisiae strains that were used in this work are described 

in Table 5. 

Table 5 Yeast strains The different yeast strains and their phenotypes used are listed. A short 
description with information relevant to each strain is given. 
 

Yeast Genotype Description Source 

D2763-10B MATα mal Strain used for 

mitochondrial studies, 

constructed in the 

Sherman lab 

(Sherman, 

1964) 

BY4741 MATa, his3Δ1, 

leu2Δ0, 

met15Δ0, ura3Δ0 

Wild type (WT) strain (Brachmann et 

al., 1998) 

ΔZwf11 (Δg6pd) MATa his3Δ1 

leu2Δ0 met15Δ0 

ura3Δ0 

Strain KO for the 

endogenous Zwf1 gene, 

encoding glucose-6-

phosphate 

dehydrogenase (g6pd) 

Dharmacon GE 

healthcare 

Δtrx1/2 MATa ura3‐52 

leu2‐3112 trp1‐1 

ade2‐1 his3‐11 

can1‐100.  

CY302 background. 

Strain KO for the 

cytosolic forms of Trx: 

Trx1 and Trx2 

(Draculic et 

al., 2000) 

Δtrr1 MATa his3Δ1 

leu2Δ0 met15Δ0 

ura3Δ0 

Strain KO for the 

endogenous trr1 gene, 

encoding thioredoxin 

reductase 1 

Dharmacon GE 

healthcare 

Δgsh1 MATa, his3Δ1, 

leu2Δ0, 

met15Δ0, ura3Δ0 

Strain KO for the 

endogenous gsh1 gene, 

encoding Gamma 

glutamylcysteine 

synthetase1. Requires 

external GSH to grow. 

Dharmacon GE 

healthcare 
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TsTom40 Mat ade2-101 

his3-200 leu2-

1 ura3-52 trp1-

63 lys2-801 

tom40::ADE2 

pFL39-Tom40 

(CEN, TRP) 

Temperature sensitive 

strain to knock down 

the levels of Tom40. 

This is a control strain 

in which the yeast was 

transformed with an 

empty vector. 

(Becker et al., 

2011) 

TsTm40-25 Mat ade2-101 

his3-200 leu2-

1 ura3-52 trp1-

63 lys2-801 

tom40::ADE2 

pFL39-Tom40 

(CEN, TRP) 

Temperature sensitive 

strain to knock down 

the levels of Tom40. 

(Wenz et al., 

2014) 

TsTom40-34 Mat ade2-101 

his3-200 leu2-

1 ura3-52 trp1-

63 lys2-801 

tom40::ADE2 

pFL39-Tom40 

(CEN, TRP) 

Temperature sensitive 

strain to knock down 

the levels of Tom40. 

(Becker et al., 

2011) 

yTHCTom40  URA3::CMV-tTA 

MATa his3-1 

leu2-0 met15-0 

R1158 background. 

Strain for the knock 

down of Tom40 using 

doxycycline. 

Dharmacon GE 

healthcare 

yTHCSam50 URA3::CMV-tTA 

MATa his3-1 

leu2-0 met15-0 

R1158 background. 

Strain for the knock 

down of Sam50 using 

doxycycline. 

Dharmacon GE 

healthcare 
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3.1.8 Media 

3.1.8.1 Bacterial growth media 

Cells were grown at 37°C in Luria-Bertani (LB) media containing 1% (w/v) 

bactotryptone, 0.5% (w/v) yeast extract and 1% (w/v) NaCl. Solid media was 

prepared by also adding 2% agar. The media was sterilised for 15min at 121°C 

before use. 

For the preparation of selective media, 100 µg/ml ampicillin or 30µg/ml 

kanamycin were added to the media for selection of pSP and pET plasmids, 

respectively. 

3.1.8.2 Yeast growth media 

Yeast cells were grown in rich (YPD or YPlac) media at 30°C. The media 

contained 2% (w/v) carbon source (glucose for YPD and lactic acid for YPLac), 1% 

(w/v) yeast extract and 2% (w/v) peptone. In the case of YPlac, the pH was 

adjusted to pH 5.5 to ensure conversion of the acid species to lactate. 

Additionally, the media was supplemented with 76 mg/L methionine for the 

growth curve, growth spot tests and isolation of mitochondria from Δg6pd and 

Δtrx1/2 yeast. The media was sterilised for 15min at 121°C before use. 

3.2 Methods 

3.2.1 Molecular biology assays 

3.2.1.1 Competent cell preparation 

All the cloning procedures were performed using competent E. coli DH5α cells. 

An o/n preculture was diluted 1:50 on LB and left to grow at 30°C until OD600 

reached 0.2-0.4. The cells were recovered, resuspended in TFBI buffer (KOAc 

30mM, MnCl2 50mM, KCl 100mM, CaCl2 10mM and glycerol 15%) and incubated 

with gentle shaking at 4°C for 2h. Afterwards, the cells were recovered again 

and resuspended in TFBII buffer (MOPS-KOH pH7 10mM, KCl 10mM, CaCl2 75mM 

and glycerol 15%). Finally, 100µl aliquots of the cells were stored at -80°C until 

its use. 
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3.2.1.2 Cloning 

All clones were prepared through PCR amplification of the inserts using yeast 

genomic DNA as a template. Afterwards, the PCR products and plasmids were 

digested at 37°C for 1h with the desired restriction enzymes and the resulting 

products were purified by PCR clean-up (Qiagen) or gel extraction. For the gel 

extraction, digested products were separated by electrophoresis at 60V for 

90min on 1% agarose gel and the desired fragment was purified with the 

QIAquick Gel Extraction Kit (Qiagen) following the supplier’s protocol. This was 

followed by ligation with T4 DNA ligase (NEB) at room temperature for 1h of the 

two digested components at different ratios (plasmid:insert-1:0, 1:3, 1:6, 1:9) 

depending on the size of the insert relative to the size of the plasmid. The 

quantities used in every case were calculated using the following equation: 

(𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟)(𝑏𝑝 𝑖𝑛𝑠𝑒𝑟𝑡)

𝑏𝑝 𝑣𝑒𝑐𝑡𝑜𝑟
= 𝑛𝑔 𝑖𝑛𝑠𝑒𝑟𝑡 

The ligation product was then transformed into E. coli DH5α competent cells. 

For the transformation, the ligated product was added to 100µl of competent 

cells (3.2.1.1) and incubated on ice for 30min. Then, the cells were placed on a 

water bath at 42°C for 45 seconds followed by the addition of 900µl of LB media 

(3.1.8.1). The bacterial cells were incubated at 37°C for 1h with gently shaking 

to allow them to express the plasmid and thus, the resistance gene. Afterwards 

the cells were separated by centrifugation at 13000g on a Sigma 1-14 bench 

centrifuge. Finally, the cells were plated onto LB agar plates with the 

corresponding antibiotic selection and left to grow at 37°C overnight (o/n). 

3.2.1.3 Mutagenesis 

The plasmid containing the sequence to be mutated was used as template for 

PCR. The high fidelity Pfu polymerase (Promega) was used. The primers pair 

specific for each point mutation was added at a final concentration of 0.5µM. 

After the plasmid amplification with PCR, the reaction was treated with 1µl of 

DpnI (10U/µl) at 37°C for 1h. This enzyme digests the non-mutated, supercoiled, 

double stranded parental plasmid DNA, but not the PCR product which contains 

the mutation. These digested PCR mixes were transformed into DH5α competent 

bacterial cells following the same transformation procedure described in section 
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3.2.1.2. The mutated colonies that grew on the selective plates were confirmed 

as described in section 3.2.1.4. 

3.2.1.4 Sequencing 

The positive colonies, i.e. the ones that grew under selective conditions, were 

analysed by PCR. Then, the plasmids were isolated from these cells and sent for 

sequencing analysis (GATC Biotech). The sequencing results were compared to 

the desired WT sequence using the CLC Genomics workbench program (Qiagen 

Bioinformatics). 

3.2.2 In organello assays 

3.2.2.1 Isolation and purification of yeast mitochondria 

Mitochondria were isolated and purified from the yeast strains D273-10B, Δg6pd, 

Δtrx1/2, Δtrr1 and Δgsh1. The cells (10L-15L) were grown o/n at a starting OD600 

of 0.1 (to allow harvesting at log phase) at 30°C using lactate as non-

fermentable carbon source to promote respiration, stop energy production via 

glycolysis (Turcotte et al., 2010) and increase the mitochondrial yield. The 

isolation of mitochondria was done accordingly to a protocol previously 

described (Glick, 1991). In this protocol, yeast cells were collected and washed 

with 300ml water by 5min centrifugation at 5000rpm and 3500rpm, respectively. 

Then, walls were broken by adding 50ml Tris-DTT buffer (0.1M Tris-SO4 pH 9.4, 

10mM DTT) and incubated for 30min at 30°C with gentle shaking. Partially 

broken cells were collected by centrifugation at 3500rpm for 5min and washed 

twice with 40ml 1.2 M sorbitol buffer (1.2M sorbitol, 20mM KPi pH 7.4). Then, to 

completely break the cell wall, yeasts were resuspended in 1.2M sorbitol buffer 

(5ml/cell g) + zymolase (3.5mg/cell g) and incubated at 30°C for 1h with gentle 

shaking. The resulting spheroblasts were recovered by 5min centrifugation at 

5000rpm at 4°C. From now on, all steps were done on ice and centrifugations at 

4°C unless otherwise stated. The spheroblasts were then washed twice with 

40ml 1.2M sorbitol buffer and spinned down for 5min at 5000rpm. The cells were 

resuspended in 100ml breaking buffer pH 6.0 (0.6M sorbitol, 20mM MES-KOH pH 

6.0) + 2mM PMSF and this solution was dounced 15 times to mechanically break 

the cells. Non-broken material was recovered by centrifugation at 3500rpm for 

5min. The supernatant containing mitochondria was poured in a beaker and 
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another douncing step of the pellet resuspended in breaking buffer pH 6.0 with 

2mM PMSF was carried out. The mitochondrial fraction was finally combined with 

the previous supernatant and then was spinned down at 10000 rpm for 10min 

and recovered as pellet. This resulting pellet was resuspended in 100ml breaking 

buffer pH 6.0 w/o PMSF and centrifuged 5min at 3500rpm. Supernatant fraction 

was recovered and spinned down at 10000rpm for 20min. The pellet containing 

mitochondria was then resuspended in 0.5ml breaking buffer pH 6 and the 

concentration was calculated using a conversion factor as follows: 10mg/ml 

mitochondrial protein = 0.21 ODλ=280nm. Further purification of mitochondria was 

achieved by overlaying 5ml 14.5% Nycodenz on top of 5ml 20% Nycodenz and 

adding 1ml mitochondrial solution on top of the Nycodenz gradient. Then, the 

gradients were centrifuged for 30min at 40000rpm at 2°C using a SW40 rotor. 

Then, mitochondria were recovered from an interphase between both Nycodenz 

solutions and were diluted with 5 volumes of breaking buffer pH 7.4 (0.6M 

sorbitol, 20mM HEPES-KOH pH 7.4) and recovered by 10min centrifugation at 

10000rpm. Finally, the concentration was calculated using the conversion factor: 

10mg/ml mitochondrial protein = 0.12 ODλ=280nm. Aliquots were prepared at a 

final concentration of 25mg/ml mitochondrial protein + 10mg/ml BSA fatty acid 

free in breaking buffer pH 7.4 and stored at -80°C until further use. 

Following the isolation and purification processes, the mitochondria can be 

stored at -80°C after the addition of fatty-acid free bovine serum albumin (BSA) 

(Sigma-Aldrich) at a final concentration of 10mg/ml as a preservative for the 

mitochondria.  

3.2.2.2 Protein precipitation  

Pure proteins or protein content from yeast cells or mitochondria were 

precipitated with either ammonium sulfate ((NH4)2SO4 or trichloroacetic acid 

(TCA). 

• (NH4)2SO4 precipitation: The desired amount of protein was calculated and 

precipitated by adding 3 volumes of ice-cold saturated (NH4)2SO4. After 

30min incubation on ice and 30min spin at 25000g at 4°C, the pellet was 

resuspended in the buffer required for each particular analysis. 
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• TCA precipitation: The desired amount of protein was calculated and 

precipitated by adding ice-cold TCA to a final concentration of 10%. The 

sample was incubated 30°C on ice and centrifuged at 25000g at 4°C. The 

resulting pellet was washed two times with 100µl of 100% ice-cold 

acetone followed by 20min incubation at room temperature to ensure the 

complete evaporation of the acetone. Finally, the pellet was resuspended 

in the required buffer. 

3.2.2.3 Radioactive labelling of proteins using TNT SP6-coupled 
transcription/translation system 

35S-Methionine radiolabelled protein precursors were produced using the 

transcription/translation (TNT®) SP6 Coupled Reticulocyte Lysate System 

(Promega) according to the supplier instructions. The system translates the 

proteins and incorporates 35S- radiolabelled methionine into each protein 

precursor. The TNT mix is incubated at 30°C for 90min and then, the precursors 

are separated from the ribosomes by centrifuging the samples in a Optima TLX 

centrifuge (Beckman) using a TLA100 rotor at 55000rpm at 4°C for 16min. 

3.2.2.4 Import of proteins into isolated yeast mitochondria 

Mitochondria were resuspended in import buffer (600mM sorbitol, 2mM KH2PO4, 

50mM KCl, 50mM HEPES-KOH pH 7.4, 10mM MgCl2, 2.5mM Na2EDTA pH7, 5mM L-

methionine, 1mg/ml fatty-acid free BSA) at a final concentration of 0.5 mg/ml, 

in the presence of 2mM ATP and 2.5mM NADH and were equilibrated at 30°C. 

Then, either the desired amount of pure recombinant protein (precipitated with 

ammonium sulfate and resuspended in 50mM HEPES-KOH pH 7) or 5µl of the 

radioactive protein precursor were added to the reaction mix and the incubation 

at 30°C continued for the required amount of time, following each experimental 

set up. At the end of the incubation period, the samples were placed on ice to 

terminate the reaction at the desired moment. Afterwards, the mitochondria 

were isolated by centrifuging at 16000g at 4°C for 5min. Non-imported material 

was removed by resuspending the mitochondrial pellet in an isotonic buffer 

solution (Breaking buffer (0.6M sorbitol, 20mM HEPES-KOH pH7.4)) in the 

presence of 0.1mg/ml Protease K at 4°C for 30min. Then, 1mM final 

concentration of the protease inhibitor phenylmethylsulfonyl fluoride (PMSF) was 

added and the incubation at 4°C continued for further 10min. The mitochondria 
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were re-isolated under the same centrifugation conditions mentioned above. The 

supernatant was removed and the mitochondrial pellet was resuspended in 20µl 

of 2X Laemmli sample buffer (+/- β-mercaptoethanol). Finally, the samples were 

boiled at 95°C for 10min and analysed by 12% Tris-Tricine SDS-PAGE. 

For the import into mitochondria with disrupted inner membrane potential, Δψ-, 

NADH was omitted from the import mix. Instead, the ionophore Carbonyl cyanide 

m-chlorophenyl hydrazone (CCCP) was added at a final concentration of 25µM. 

Afterwards, the same import procedure described above was followed. 

For the import into mitochondria depleted of ATP, ATP was omitted and 10µM 

oligomycin and 10mU/µl apyrase were added to the import mix. The 

mitochondria were incubated for 10min before following the same import 

procedure described above. 

3.2.2.5 Sequential import of proteins into mitochondria 

Where mentioned, the Trx system (NADPH, TrR1 and Trx1) was pre-imported 

into mitochondria prior to further analysis: i.e. alkylation, Δψ measurement or 

import of radiolabelled precursors. Depending on the experiment to follow, 50µg 

or 100µg of pure isolated mitochondria were dissolved in import buffer (3.2.2.4) 

at a final concentration of 0.5mg/ml in the presence of 2mM ATP and 2.5mM 

NADPH and were equilibrated at 30°C for 5min. Then, 10µg or 20µg of 

recombinant pure His-tagged Trx1 were added to the import reaction for 5min 

more. Afterwards, 10µg or 20µg of TrR1 were added to the same import mix and 

incubated for a further 5min. Finally, the import mix containing mitochondria 

and both Trx1 and TrR1 were incubated at the same temperature (30°C) for an 

extra 5min to assure maximum import of both proteins into mitochondria (Figure 

3.1). Non-imported material was removed by centrifugation of the import mix at 

15000g and 4°C for 5min on a refrigerated Sigma bench centrifuge. The resulting 

pellet was resuspended and treated according to the required analysis. 
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Figure 3.1 Sequential import of proteins into mitochondria. Schematic representation of (A) 
pre-import of the Trx system into mitochondria prior to (B) protein alkylation, (C) import of 35-S 
radiolabelled protein precursor or (D) inner membrane Δψ measurement. 
 

3.2.3 Biochemical assays 

3.2.3.1 NADP/NADPH measurement 

The measurement of the individual levels of NADP+ and NADPH was made using 

the NADP/NADPH-GloTM Assay kit (Promega). Yeast cells from WT, Δg6pd, 

Δtrx1/2, Δtrr1 and Δgsh1 strains were growth on YPD o/n. Triplicates with 1X105 

cells were plated in a white 96-well luminometer plate. The number of cells was 

estimated considering the relation factor: OD600 0.1=1X106 cells/ml. The cells 

were separated from the media by centrifugation at 15000g at 4°C and the 

pellet was resuspended in 12.5µl of PBS. Then, 12.5µl of lysis buffer (1% (v/v) 

Dodecyltrimethylammonium bromide (DTAB (Sigma)) in 0.2N NaOH) was added to 

the cell suspension. The sample was divided in two and 6.25µl of 0.4N HCl (for 

NADP+ measurement) or nothing (for NADPH measurement) were added. The 

reduced NADPH or oxidised NADP+ species are destroyed under acidic conditions 

or basic conditions, respectively, allowing the individual measurement of the 

remaining dinucleotide form. The plate was incubated at 60°C for 15min and the 

reaction was stopped by neutralisation with either 6.25µl of 0.5M Trizma base 

(Sigma) for NADP+ or 12.5µl HCl/Trizma (equal volumes of 0.4N HCl and 0.5M 

Trizma) for NADPH for 10min at room temperature. Then, 25µl of NADP/NADPH-

https://www.sigmaaldrich.com/catalog/substance/dodecyltrimethylammoniumbromide30834111994411
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GloTM detection reagent were added to each well and the light signal produced, 

which is proportional to the amount of NADP+ or NADPH, was recorded using a 

plate reader. 

3.2.3.2 Tris-Tricine SDS-PAGE 

Samples were resuspended in 2X Laemmli sample buffer (diluted from 6X 

Laemmli sample buffer: 375mM Tris-HCl pH 6.8, 9% SDS, 40% glycerol and 0.03% 

bromophenol blue) in the presence or absence of β-mercaptoethanol and were 

boiled at 95°C for 10min prior to loading on gels. The gels used in this work were 

12% or 14% Tris-Tricine SDS gels and were prepared as mentioned on Table 6. 

The samples were separated by electrophoresis at 120V for 20min to allow them 

to travel past the stacking gel and then at 170V for ~70min more. The resulting 

gels were either stained with Coomassie blue or treated for western blot.  

Table 6 Tris-Tricine gels recipe.  Formula to prepare Tris-Tricine stacking and 12% and 14% 
separating gels. 
 

 Stacking gel Separating gel 

5% 12% 14% 

Acryl/Bis-acrylamide 

(40%) 

0.375ml 3ml 3.5ml 

Tricine Gel buffer 0.75ml 3.3ml 3.3ml 

87% Glycerol - 1.3ml 1.3ml 

dH2O 1.82ml 2.29ml 1.79ml 

10% APS 3µl 100µl 100µl 

TEMED 3µl 10µl 10µl 

Total volume 3ml 10ml 10ml 

 

3.2.3.3 Coomassie blue staining 

For Coomassie staining of the proteins, the gels were soaked in Coomassie 

solution (30% methanol, 10% acetic acid, 0.2% Coomassie blue R-250) and left 

agitating to stain for 5 minutes on a Stuart SSL4 see-saw rocker. Then, the 

stained gel was soaked in destaining buffer (15% methanol, 10% acetic acid) and 

left agitating o/n until the dye was washed away. 
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3.2.3.4 Western blot 

For western blot, the proteins were transferred onto nitrocellulose membrane 

(Fisher) with transfer buffer using the BioRad Semi-Dry transfer System at 25V 

for 25min. The membrane was block with 5% skimmed-milk powder in TBST 

buffer at room temperature for 1h and then incubated with the desired Ab 

diluted to working conditions (Table 1) in 5% skimmed-milk powder in TBST 

buffer at 4°C o/n or room temperature for 1:30h. The membrane was then 

washed with TBST (5X5min washes) to remove non-bound primary Ab. 

Afterwards, the membrane was incubated at room temperature for 1h with the 

correspondent secondary Ab. Secondary Abs were either horseradish peroxidase 

(HRP)-labelled or fluorescence-labelled. Both Ab were diluted to working 

concentration of 1:10000 in 5% skimmed-milk powder in TBST, for HRP-

conjugated Abs, or TBSTalone, for fluorescence Abs. Then, the membranes were 

washed with TBST (5X5min washes) when the HRP-conjugated secondary Ab was 

used and with (4X5min washes) plus an extra 10min wash with dH2O for the 

fluorescence-conjugated secondary Ab. For the HRP-Ab, blots were visualised 

using X-ray films (Carestream), while for the fluorescent-conjugated Ab, the LI-

COR Odyssey CLx quantitative fluorescence system was used. 

3.2.3.5 Large scale expression of recombinant proteins 

The recombinant proteins were cloned into pET24-6XHis or pET22-6XHiss tagging 

vectors and were expressed in either E. coli BL21 (DE3) or E. coli Origami 2 (DE3) 

pLysS cells. The plasmid-insert constructs were transformed as described in 

3.2.1.2 and single colonies were used to inoculate 20ml LB cultures 

supplemented with the appropriate antibiotic (3.1.8.1) for selection. The cells 

were grown at 37°C o/n and were then diluted 1:50 into fresh LB cultures. These 

cultures were incubated until they reached log growth phase (OD600 0.4-0.7). At 

this point, 0.4mM IPTG was added and the cells were incubated either at 16°C 

o/n or room temperature for 4h. After the induction, the cell pellets were 

collected by centrifugation at 4°C and 5000g for 15min and were used for 

purification of the proteins. 
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3.2.3.6 Purification of 6XHis-tagged recombinant proteins 

The cell pellets obtained in 3.2.3.5 were resuspended in buffer A (300mM NaCl, 

50mM HEPES-KOH pH 7, 10% glycerol) supplemented with 5mM imidazole, 

1mg/ml lysozyme and 10µg/ml DNAse in a relation of 5ml/gram of cell pellet 

and the solution was incubated at 4°C for 15min. The cells were ruptured by 

passing them through a French press for two cycles at 1000psi. The broken cells 

were centrifuged at 21000g at 4°C for 30min. Then, the supernatant was 

separated from the pellet and loaded onto a column containing Ni-NTA beads 

(Qiagen). The beads were previously equilibrated with buffer A. The solution was 

left to pass through the column by gravity. The bound material was washed once 

with buffer A supplemented with 5mM imidazole and then 2 times with washing 

buffer (50mM NaCl, 50mM HEPES-KOH pH 7, 10% glycerol) and increasing 

amounts of imidazole (wash2: 20mM imidazole and wash3: 40mM imidazole). All 

the fractions were collected in 50ml conical tubes. Finally, the bound proteins 

were eluted from the beads by adding 30ml of elution buffer (50mM NaCl, 50mM 

HEPES-KOH pH 7, 25% glycerol and 200mM imidazole). All the purification steps 

were performed at 4°C. 

3.2.3.7 Measurement of the inner mitochondrial membrane potential (Δψ) of 
isolated yeast mitochondria 

The measurement of the inner mitochondrial membrane potential in pure 

isolated yeast mitochondria was measured using the fluorescent dye DiSC3(5) 

(Gartner et al., 1995). Mitochondria were resuspended in breaking buffer to a 

concentration of 10µg/µl. The measurements were performed using a Horiba 

JobinYvonFL-1039/40 Fluorimeter at 25°C at 622nm excitation wavelength and 

670nm emission wavelength. Each measurement was carried out by adding 1ml 

of Δψ buffer (0.6M sorbitol, 0.1% fatty-acid free BSA, 10mM MgCl2, 0.5mM EDTA, 

20mM KPi pH 7.4) to set a measurement base line for 50 seconds. Then 2mM 

final concentration of DiSC3(5) dye was added and the fluorescent signal was left 

to stabilise for 25 seconds prior to the addition of 100µg of mitochondria and the 

fluorescence was recorded for another 125 seconds. The dye gets internalised 

into mitochondria depending on the mitochondrial Δψ and its fluorescence is 

different when in the buffer or when entrapped in mitochondria. This difference 

allows the indirect measurement of mitochondrial Δψ. The reaction is 
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terminated by adding the ionophore valinomycin (Sigma) at a final concentration 

of 1mM. 

3.2.3.8 Cross-linking between proteins 

The cross-linking experiments were performed using the unspecific cross-linker 

glutaraldehyde (GA) which creates covalent bonds mainly between Lys residues 

between proteins. For the cross-linking reactions 1µg of Trx1 or Trx2 or 

Trx1C30/33S was mixed with 1µg of Mia40 in the presence of 0.1% final 

concentration of GA. Additionally, the individual proteins were treated or not 

with 0.01% final concentration of GA The reactions occurred at room 

temperature for 20seconds, 5min or 10min and were stopped by quenching of 

the GA with 285mM final concentration of Tris-HCl pH 8. Finally, 10µl of 6X 

Laemmli sample buffer +β-mercaptoethanol were added. 

3.2.3.9 Alkylation shift assay 

The alkylation shift assay was performed using mal-PEG 5000 (Sigma). First, 

100µg of mitochondria were precipitated with 10% final concentration ice cold 

TCA (section 3.2.2.2). The protein pellet was resuspended with 8µl 15mM final 

concentration of mal-PEG in HES buffer (50mM HEPES-KOH pH 7.4, 10mM EDTA 

and 3% SDS) or only with HES buffer and cover from light with aluminium foil. 

Samples were incubated at 30°C for 30min and then at 37°C for 30min more. 

Finally, 17µl of 4X Laemmli sample buffer were added to the reaction.  

3.2.4 In vivo assays 

3.2.4.1 Drop-test assay 

Solid growth YPD and YPlac media was prepared as mentioned in section 3.1.8.2. 

Yeast cells were grown in YPD broth o/n at 30°C with gentle shaking. The cells 

were then diluted to an OD600 of 0.02 in 1ml final volume in sterile dH2O. Serial 

1:10 dilutions were prepared on sterile dH2O and 3µl of each dilution were 

plated onto YPD or YPlac agar plates and incubated at either 30°C or 37°C for 

48h. 
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3.2.4.2 Growth kinetics 

Yeast cells were grown on YPD at 30°C o/n with gentle shaking. The cells were 

then diluted to an OD600 of 0.05 in 10ml of either YPD or YPlac. Afterwards, 

yeasts were grown at 30°C or 37°C with gentle shaking and samples to measure 

the OD600 to follow the growth kinetics were taken at 4h, 8h, 12h, 24h, 28h and 

48h. 
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Chapter 4 Phenotypic determination of yeast 
strains with affected reducing capacity 

4.1 Introduction 

The yeast Saccharomyces cerevisiae (S. cerevisiae) is a single cell model 

eukaryotic organism widely used in research. Its genome was the first eukaryotic 

genome to be sequenced and it shares 23% homology with the human genome. 

Both human and yeast diverged from a common ancestor about 1 billion years 

ago and the conserved function between some of their genes have been shown 

by the regain of yeast viability after the insertion of human homologues into 

knock out (KO) yeast for essential genes (Douzery et al., 2004, Kachroo et al., 

2015, Liu et al., 2017). Besides this trait, another important characteristic of 

yeast is that they can grow under fermentable and non-fermentable carbon 

sources, rendering this organism ideal to study aerobic oxidative phosphorylation 

and mitochondrial function uncoupling it from cytosolic glycolysis. 

The two principal aims of this chapter were, first to characterise the effects 

that mutations of the main cytosolic reductive pathways in yeast have under 

respiratory and non-respiratory growth conditions. The second aim was to 

determine mitochondrial integrity and the NADP+/NADPH ratios to further 

analyse if any of these characteristics affects the import of proteins into 

mitochondria. 

4.1.1 Fermentable and non-fermentable carbon sources for yeast 
growth 

The preferred carbon source for growth of S. cerevisiae is glucose. This 

preference is due to the fact that S. cerevisiae possess a glucose repression 

system that down regulates the expression of transporters and catabolic 

enzymes involved in the metabolism of other carbon sources when glucose is 

present (Kayikci and Nielsen, 2015, Rolland et al., 2002). The central component 

of the glucose repression system is the Sucrose non-fermenting kinase 1 (Snf1), 

which is negatively regulated in the presence of glucose (Carlson et al., 1981). 

This kinase phosphorylates the transcription factor Mig1, thus inhibiting its 

activity (Treitel et al., 1998). Mig1 together with the corepressors Ssn6-Tup1 
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repress genes involved in catabolism of carbon sources different to glucose 

(Treitel and Carlson, 1995, Treitel et al., 1998). Snf1 is member of the 

SNF1/AMPK family and is present in the form of a heterotrimeric kinase complex 

formed by a catalytic subunit, one of three different regulatory β-subunits 

(Gal83, Sip1 and Sip2) and a regulatory γ-subunit. Under absence of glucose Snf1 

is activated by phosphorylation in threonine 210 (McCartney and Schmidt, 2001) 

by the kinases Pak1, Tos3 or Elm1 (Hong et al., 2003). Accordingly, yeasts show 

a Snf1- phenotype when the three kinases are knocked out (Sutherland et al., 

2003). The catalytic activity of Snf1 is regulated by three different mechanisms. 

The γ-subunit of the complex, encoded by the SNF4 gene, binds to the 

regulatory domain of Snf1 under low glucose, preventing it from binding the 

catalytic domain thus leaving Snf1 active (Jiang and Carlson, 1996). The cellular 

localisation also regulates the activity of Snf1 and this depends on the β-subunit 

present in the complex, upon glucose depletion Gal83 localises to the nucleus, 

Sip1 to the vacuolar membrane and Sip2 remains in the cytoplasm (Schmidt and 

McCartney, 2000, Vincent et al., 2001, Yang et al., 1994). The third mechanism 

depends on the Reg1-Glc7 complex, which in the presence of glucose promotes a 

conformational change on Snf1 that inhibits its catalytic domain (Sanz et al., 

2000). When glucose is limited or absent, the genes involved in the utilisation of 

non-fermentable carbon sources are derepressed. The non-fermentable carbon 

sources mainly used by S. cerevisiae are acetate, ethanol, glycerol and lactate, 

all of which can be converted into acetyl coenzyme A (CoA) to be used by the 

mitochondrial respiratory electron chain or for biomolecule synthesis. Acetate 

passively diffuses into the cell, although the membrane protein Adyp2 was 

shown to be involved in its uptake (Paiva et al., 2004). Like acetate, ethanol 

enters cells by passive diffusion (Kotyk and Alonso, 1985), once inside it is 

metabolised to acetaldehyde and acetate by the enzymes alcohol dehydrogenase 

and acetaldehyde dehydrogenase, respectively. Acetate is then converted into 

acetyl CoA by two isoforms of the acetyl CoA synthase (van den Berg et al., 

1996). Unlike acetate and ethanol, glycerol is transported into yeast by the 

symporter sugar transporter-like protein (Stl1) (Ferreira et al., 2005) or by 

facilitated diffusion mediated by the Fps1 channel (Oliveira et al., 2003). Inside 

the cell it is transformed into glycerol-3-phosphate and then to 

dihydroxyacetone phosphate by glycerol kinase and a FAD-dependent glycerol-3-

phosphate dehydrogenase, respectively. Then, dihydroxyacetone phosphate can 
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follow the gluconeogenic or glycolytic pathways. Finally, the uptake of lactate is 

through a lactate/pyruvate permease encoded by the gen JEN1 (Casal et al., 

1999); inside the cell, lactate is oxidised to pyruvate by two oxidoreductases 

encoded by the DLD1 and CYB2 genes (Lodi and Ferrero, 1993). Depending on the 

carbon source available, whether fermentable or non-fermentable, yeast can 

favour the usage of glycolysis or oxidative phosphorylation for the production of 

energy and the synthesis of metabolic intermediates, biomolecules and 

reductive power. In this regard, the reduction of NADP+ into NADPH as part of 

some enzymatic reactions is key for the maintenance of the redox balance in the 

cell (Figure 4.1). 

4.1.2 NADPH sources in the cell 

As mentioned before, an important characteristic of S. cerevisiae is its ability to 

grow under different carbon sources due to their metabolic adaptation capacity. 

The latter is exemplified by the different enzymes that serve as NADPH source. 

The main source is the constitutively expressed enzyme g6pd (which is called 

Zwf1 in yeast but will be referred as g6pd in this work), however, it is not the 

only one (Minard et al., 1998) as KO yeast strains for g6pd are still viable. The 

cytosolic NADP-specific isocitrate dehydrogenase (Idp2), which catalyses the 

conversion of citrate to α-ketoglutarate, is another important source. This was 

shown with the loss of growth of a Δg6pdΔidp2 double KO strain under both 

endogenous and exogenous oxidative stress conditions (Minard and McAlister-

Henn, 2001). Idp2 is not expressed on glucose-growth conditions but is found 

when cells are grown under non-fermentable media (Loftus et al., 1994). 

Furthermore, the oxidation of acetaldehyde to acetate also involves the 

reduction of NADP+. This reaction is catalysed by acetaldehyde dehydrogenase 

(Ald6) and it was proven to be an important NADPH source since its 

overexpression restored the phenotypic defects of the Δg6pd strain (Grabowska 

and Chelstowska, 2003). Nevertheless, it was not as crucial as g6pd and Idp2 for 

handling endogenous oxidants when yeasts were grown on non-fermentable 

media (Minard and McAlister-Henn, 2005).  
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4.1.3 Glucose-6-phosphate dehydrogenase 

The first step of the pentose phosphate pathway, the oxidation of glucose-6-

phosphate into 6-phosphogluconolactone, is catalysed by glucose-6-phosphate 

dehydrogenase (g6pd). The importance of g6pd can be seen in its involvement in 

various processes such as protein, nucleotide and lipid synthesis (Figure 4.1). In 

fact, in humans g6pd deficiency is the most common enzyme deficiency with 

just under 200 different mutations found so far (Minucci et al., 2012). In S. 

cerevisiae, g6pd is encoded by the gene Zwf1 and it is considered the main 

source of reductive power in the form of NADPH in the cell (Nogae and Johnston, 

1990). Accordingly, g6pd is involved in the adaptive response to oxidative stress 

in yeast (Izawa et al., 1998). As mentioned above, its role as NADPH supplier is 

key for the function of the two main thiol reductive pathways in the cell. 
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Figure 4.1 Network of NADPH producing pathways. NADPH is formed from the reduction of its 
oxidized form (NADP+) by the pentose phosphate pathway enzymes glucose 6-phosphate 
dehydrogenase (g6pd) and 6-phosphogluconate dehydrogenase (6pgd), the mitochondrial, 
cytosolic and peroxisomal isoforms of NADP-specific isocitrate dehydrogenase (Idp1, Idp2 and 
Idp3 respectively), the cytosolic acetaldehyde dehydrogenase, the malic enzyme and the 
transhydrogenase. The NADPH producing enzymes are shown in red ovals, intermediates of the 
different metabolic pathways are shown in blue and final products in green. 
 

In order to study the effects of altered NADPH levels in the cell in mitochondria 

biogenesis and to attempt to elucidate the presence and properties of a 

reductive pathway in the mitochondrial IMS, we first determined phenotypic 

characteristics of Δg6pd, Δtrx1/2, Δtrr1 and Δgsh1 yeast strains. First, the 

growth of these strains in fermentable and non-fermentable media at both 

permissive and non-permissive temperature was monitored. Then, the levels of 

NADP+ and NAPDH were measured to relate this with the growth phenotypes. 
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Finally, in order have an idea of the mitochondrial integrity, Δψ was measured in 

isolated mitochondria of the aforementioned yeast strains.  

4.2 Yeast phenotype of Δg6pd, Δtrx1/2, Δtrr1 and Δgsh1 
strains 

4.2.1 Growth curve and spot test assay of Δg6pd, Δtrx1/2, Δtrr1 
and Δgsh1 yeast 

Before more specific in organello and in vitro analysis of the KO strains, its 

general effects in the organism were determined. Yeast from WT, Δg6pd, 

Δtrx1/2, Δtrr1 and Δgsh1 strains were grown on complete, broth or solid, YP 

media containing D-glucose (YPD) or lactate (YPlac) as carbon source at 30°C or 

37°C. Both YPD and YPlac media were supplemented with 76 mg/L methionine 

as yeast becomes auxotroph for this amino acid in Δg6pd (Thomas et al., 1991) 

and Δtrx1/2(Muller, 1991). Growth kinetics was measured in broth cultures at 

different time points until 48h while colony growth was analysed in solid culture 

48h after plating. When grown on YPD, no difference was observed for any of the 

five yeast strains at either 30°C or 37°C (Top panel A Figure 4.2).On the other 

hand, under YPlac growth at 30°C the Δtrr1 strain entered exponential growth 

phase after 8h while the rest did so after 12h, but all strains started stationary 

phase after 28h growth (left bottom panel A Figure 4.2). Unlike growth on YPlac 

at 30°C, at 37°C all yeast strains grew slower as seen by the final OD reached in 

both temperature conditions. Furthermore, Δg6pd and Δtrx1/2 delayed 28h to 

enter exponential growth phase while WT and Δgsh1 did so after 12h (right 

bottom panel A Figure 4.2). Beside the growth curves, colony growth formation 

was tested by growing serial dilutions of each yeast strain in solid media. When 

grown on YPD at both 30°C and 37°C no significant differences were observed 

between yeast strains (top panel B Figure 4.2). In the presence of lactate 

Δtrx1/2 and Δgsh1 showed a growth defect which was more dramatic in Δg6pd 

(bottom panel B Figure 4.2). 
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Figure 4.2 Growth curve and growth spot test of WT, Δg6pd, Δtrx1/2, Δtrr1 and Δgsh1 yeast. 
A Kinetics of the growth of WT (black), Δg6pd (red), Δtrx1/2 (blue), Δtrr1 (green) and Δgsh1 
(orange) yeast under fermentable (YPD) and non-fermentable (YPlac) broth media at 30 °C and 
37 °C was measured at 0h, 4h, 8h, 12h, 24h, 28h and 48h. OD600 values of yeast were normalised 
as 0.5 for time 0h. The results are shown as the mean OD600 of three independent measurements 
+/- SEM. B Spot test growth of WT, Δg6pd, Δtrx1/2, Δtrr1 and Δgsh1 yeast. Serial dilutions (1:10) 
of the different yeast were grown for 48h on solid fermentable (YPD) and non-fermentable (YPlac) 
media at either 30 °C and 37 °C. Results are representative of three independent experiments. 



66 
 

4.2.2 NADP+/NADPH ratio levels in Δg6pd, Δtrx1/2, Δtrr1 and 
Δgsh1 yeast 

The Δg6pd, Δtrx1/2, Δtrr1 and Δgsh1 yeast are KO strains for elements involved 

in maintaining the reductive power of the cell. In this sense, NADPH represents 

an important pool of reducing power in the cell. Hence, measurements of the 

levels of both NADPH and NADP+ were performed. Briefly, 1X105 cells of each 

strain were lysed and treated with either 0.2N NaOH or 0.4N HCl to measure 

NADPH or NADP+ respectively, using the NADP/NADPH-Glo Assay kit (Promega). 

Over the course of 40 minutes data were recorded and the results, displayed as 

the mean of two measurements, showed that NADPH was higher in every mutant 

strain than those of the WT: Δtrr1>Δtrx1/2>Δgsh1>Δg6pd (Left panel A Figure 

4.3). Likewise, the levels of NADP+ were higher for the mutants: 

Δtrx1/2>Δtrr1>Δgsh1>Δg6pd (Right panel A Figure 4.3). However, when 

comparing the NADP+/NADPH ratio of each mutant strain against WT, all the 

mutants but Δg6pd had a different ratio than the WT. The Δtrx1/2 and Δgsh1 

ratios were higher, with the Δgsh1 strain having the lowest NADPH levels 

compared to NADP+. The NADP+/NADPH ratio in the Δtrr1 was lower and that of 

Δg6pd showed no difference to WT.  
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Figure 4.3 NADPH, NADP+ and NADP+/NADPH ratio measurements. Individual levels of 
NADPH or NADP+ (A) and the NADP+/NADPH ratio (B). A Measurement of NADP+ and NADPH 
levels from 1X105 cells of each yeast strain (WT (black), Δg6pd (red), Δtrx1/2 (blue), Δtrr1 (green) 
and Δgsh1 (orange)) using the NADP/NADPH-Glo assay kit (Promega) for 40 minutes. The results 
are shown as the mean of two wells. B Results obtained in (A) were used to determine the 
NADP+/NADPH ratio of each yeast strain. The results are presented as the mean +/- SEM of two 
different wells. 
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4.2.3 Mitochondrial inner membrane potential (Δψ) measurement 
of Δg6pd, Δtrx1/2, Δtrr1 and Δgsh1 yeast mitochondria  

In order to have a general view of the mitochondrial integrity, mitochondrial IM 

potential Δψ of each mutant strain was measured and compared to WT. Briefly, 

the fluorescent dye DiSC3(5) gets internalised and retained into isolated 

mitochondria in the presence of Δψ but released out of mitochondria in the 

buffer in the absence of a Δψ. The fluoroscence of the dye is different in a 

buffer or when it is entrapped in mitochondria, allowing us to use this as a 

measure of mitochondrial internalisation and therefore (indirectly) the level of 

the IM potential. A drop in the fluorescence indicates a change in the 

environment of the dye because of internalisation into mitochondria. The 

fluorescence baseline emission by DiSC3(5) was the maximum value recorded 

before the addition of mitochondria and this value was taken as 100% to 

normalise the measurements for each one of the samples. The experiment was 

stopped with the addition of the uncoupler valinomycin (which abolishes the IM 

potential) after ~130s. As shown on Figure 4.4 the Δg6pd mutant has similar IM 

Δψ to that of WT mitochondria with only 8% difference of their maximum point 

of dye internalisation. By sharp contrast to Δg6pd, Δtrx1/2 and Δtrr1 showed a 

defect in IM Δψ of 20% and 40%, respectively, compared to the WT values (Figure 

4.4). These results show an effect of the Δψ in all the mutants used which 

suggests there may be problems in the import capacity in these mitochondria 

and these could be correlated with the growth phenotypes observed for Δg6pd, 

Δtrx1/2 and Δgsh1 in Figure 4.2. 
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Figure 4.4 Mitochondrial membrane potential (Δψ) of WT and yeast mutant strains. 
Mitochondrial membrane potential measured from WT (black), (A) Δg6pd (red), (B) Δtrx1/2 (blue), 
(C) Δtrr1 (green) isolated mitochondria. The top histogram of each panel shows the fluorescence of 
the DiSC3(5) molecule over ~130 seconds. The maximum fluorescence for each experiment was 
considered as 100% of relative fluorescence. The arrows indicate the time of addition of either 100 
µg of mitochondria (mitos) or 1mM valinomycin (Val) were added. The results are representative of 
at least three different experiments. The histograms on the bottom of each panel represent the 
quantitative analysis of the percentage of maximum DiSC3(5) internalisation. The results are 
presented as the mean +/- SEM of at least three different experiments. 
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4.3 Discussion 

In this chapter, phenotypical analysis of yeast with mutations affecting the main 

thiol reductive pathways (Δtrx1/2, Δtrr1 and Δgsh1) or their main cytosolic 

NADPH source (Δg6pd) were performed. First, the growth on both fermentable 

and non-fermentable carbon sources of these mutant strains was compared with 

that of the WT. In agreement with previous reports no growth defect was 

observed in any of the strains when cells were grown on YPD at either 30°C or 

37°C (Lee et al., 2001, Muller, 1991, Muller, 1994, Minard and McAlister-Henn, 

2005). Furthermore, colony growth defect in Δg6pd Δtrx1/2 and Δgsh1 strains 

was observed when respiratory conditions (i.e. growth on YPLac) were present 

(bottom panel B Figure 4.2). Therefore, the latter confirms the involvement of 

these enzymes or its products in the cell response to oxidative stress (Izawa et 

al., 1998, Lee et al., 2001, Muller, 1991, Okada et al., 2014). The growth defect 

shown in Δgsh1 on solid YPLac growth but not on broth YPLac culture is due to 

the minimal amounts of GSH needed for yeast to grow normally, which are 

consistently provided by the YPD media. However, the serial dilutions to spot 

the yeast on solid media were made in water, which mimic washing conditions of 

GSH in previous studies (Trotter and Grant, 2003). The sharpest growth defect 

was observed in the Δg6pd mutant probably due to its NADPH-producing role, 

which feeds with electrons to both the Trx and Grx systems (Fernandes and 

Holmgren, 2004, Lu and Holmgren, 2014). Additional controls to these growth 

experiments in which an exogenous reducing source (e.g. DTT, GSH or ascorbate) 

is added to the media to test if the growth defects are restored, or an external 

source of oxidative stress is added would reinforce the implication of the 

enzymes or their products in the response against oxidative stress. 

The NADP+/NADPH ratio and the NAD+/NADH ratio are indicators of the redox 

state of the cell. The NADP+/NADPH ratio of Δtrx1/2 and Δgsh1 yeast strains is 

higher than the WT. This higher ratio indicates higher NADP+ in comparison to 

NADPH, which could be used to compensate the absence of any of the two thiol-

reducing systems (i.e. Trx and Grx). It has been shown that both thiol-reducing 

systems are important in the antioxidant response and that they have 

overlapping roles in handling oxidants (Trotter and Grant, 2005, Grant, 2001). 

Consistent with this polarisation towards the oxidised form of the dinucleotide 

the GSH/GSSG ratio has been shown to be more oxidised in Δtrx1/2 yeast, which 
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in this case also shows that the Grx system takes over the reducing role (Garrido 

and Grant, 2002, Trotter and Grant, 2002, Trotter and Grant, 2003). Conversely, 

the Δtrr1 NADP+/NADPH ratio was lower, meaning increased relative amounts of 

the reduced form NADPH are present. The Δtrr1 yeast has been shown to have 

similar reductive environment to that of WT as the GSH/GSSG ratio is similar in 

these two strains (Garrido and Grant, 2002, Trotter and Grant, 2002). However, 

the NADP+/NADPH ratio was not measured directly but calculated from the 

individual NADP+ and NADPH values obtained with the NADP/NADPH-Glo Assay 

kit. These individual measurements were made following the destruction of one 

of the two NADP species, a process that might impact the total value of either of 

the two NADP species, thus affecting the value of the NADP+/NADPH ratio. 

Another consideration to note is that the assay is a cycling reaction where NADP 

is the limiting reagent. Hence, the results form a sigmoidal curve and the 

correct measurement should be that of the curve slope. In the results shown on 

4.1.2, the saturation plateau was never reached, and the graphs were compared 

directly between the WT and the mutants.  

The state of the mitochondrial IM Δψ is indicative of mitochondrial integrity. 

Unlike the growth results, Δψ in Δg6pd showed similar dye internalisation than 

that of the WT, but Δψ values of Δtrx1/2, and Δtrr1 were considerably lower 

with regard to WT. Despite g6pd being an important source of NADPH, it has 

been shown that other sources are crucial for NADPH production (Grabowska and 

Chelstowska, 2003, Minard et al., 1998, Minard and McAlister-Henn, 2001, Minard 

and McAlister-Henn, 2005). Indeed, as shown in the results section of chapter 5 

the import of proteins that depend on Δψ like the Subunit 9 (Su9) of the F0 

ATPase is not affected in Δg6pd mitochondria. Disruptions in the Δψ are normally 

associated with the accumulation of ROS. The Δtrx1/2 and Δtrr1 strains are 

more sensitive to ROS as they lack key effectors in any of these two reductive 

pathways which can explain their disrupted Δψ (Grant, 2001) Unlike these 

mutants, the Δg6pd strain does have the effectors of these reductive pathways 

and, as mentioned before, other sources of NADPH which might help to keep 

functional scavenging of endogenous ROS at levels that are not detrimental for 

Δψ. However, as seen in the bottom panel B of Figure 4.2, this mutant strain had 

the most dramatic growth defect when a respiratory substrate was present. In 

this regard, the pleiotropic nature of NADPH effects needs to be considered as it 
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might, directly or indirectly, affect different pathways important for cell 

growth. Accordingly, the different pathways that contribute to the NADPH pool 

are shown in Figure 4.1 which highlights the very wide network this cofactor is 

involved in. The fact that either form of NADP can be found bound to proteins 

and thus, not able to be detected needs to also be taken into account. Taken 

together, the yeast strains missing effectors of one of the main thiol-reductive 

pathways, as well as a strain lacking one of the main NADPH sources have lower 

Δψ and are not able to grow under respiratory conditions. 
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Chapter 5 Protein levels and import capacity of 
yeast strains with affected reducing capacity 

5.1 Introduction 

In the previous chapter it was shown that the Δg6pd and Δtrx1/2 yeast mutants 

have growth defects when exposed to a non-fermentable carbon source and that 

these mutants together with the Δgsh1 strains have lower Δψ than that of WT. 

Also, Δg6pd has a similar NADP+/NADPH ratio than the WT but this is different in 

the rest of the mutants. It has been shown that Δψ is an indication of 

mitochondrial dysfunction and is vital for the import of proteins into the matrix 

or insertion at the inner membrane via the TIM23 and the TIM22 complexes 

respectively (Demishtein-Zohary and Azem, 2017, Endres et al., 1999). The yeast 

S. cerevisiae has extensively been used for import experiments as it shares high 

homology with the mammalian mitochondria biogenesis. In the last three 

decades the import of proteins into mitochondria has been elucidated and with 

that, its complexity and importance in mitochondrial integrity as well as in 

health have become evident. 

In this chapter, we analysed the impact that redox disturbances in the cell have 

on the import of protein into mitochondria, in particular to the mitochondrial 

IMS. This is important as a growing number of diseases have been related to 

defects on the protein import into mitochondria. 

5.1.1 Importance of protein import into mitochondria 

The main import pathways have been described in detail in the main 

introduction (section 1.2). Disruption of protein import into mitochondria has 

been shown to affect yeast adaptability to stress conditions, growth impairment 

and even loss of viability. In humans, a growing set of diseases associated with 

problems in the mitochondrial import machinery has been identified.  

One of the earliest reports of mitochondrial import impairment associated with 

disease described a single base mutation in the MTS of the E1α subunit of the 

pyruvate dehydrogenase (PDH) complex, resulting in lower levels of the protein 

in the patient’s sample (Takakubo et al., 1995). PDH deficiency is a common 
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cause of lactic acidosis in children and is involved in central nervous system 

abnormalities (Robinson et al., 1987, Robinson et al., 1980). The lower protein 

levels in the patient were attributed to decreased import capacity of the protein 

due to an R10P substitution in the MTS. The latter was seen after preforming 

import experiments of the matrix protein ornithine transcarbamylase fused with 

either the WT or the R10P MTS into mitochondria (Takakubo et al., 1995). 

Another disease associated with defects in the import machinery is the deafness 

dystonia syndrome (DDS), also known as Mohr-Tranebjaerg syndrome, which is 

characterised by deafness and dystonia in various severity levels and can cause 

mental deterioration, paranoia and cortical blindness. This disease is caused by 

the incapability of the deafness dystonia peptide (DPP) 1, the human homologue 

of yeast Tim8, to form the heteromultimeric complex with Tim13 in the IMS. The 

complex formation impairment is due to a mutation of a cysteine in the CX3C 

twin motif of DDP1, which has been shown to affect the DDP1-Tim13 interaction, 

but not the targeting or localisation into the IMS of the protein (Koehler et al., 

1999, Roesch et al., 2002, Sabine Hofmann, 2002). The DDP1-Tim13 complex 

assists the targeting of proteins into their correspondent mitochondrial 

compartments and thus, its wide involvement in mitochondrial biogenesis is 

believed to be the cause of DDS.  

In this chapter, we verified the levels of mitochondrial proteins and the import 

capacity of the Δg6pd yeast strain in order to know if the mitochondrial import 

pathways were affected. 

5.2 Mitochondrial protein levels in WT and Δg6pd yeast  

5.2.1 Steady state levels of mitochondrial proteins in WT and 
Δg6pd mitochondria 

Following the general phenotypic effects found in the Δg6pd, Δtrx1/2, Δtrr1 and 

Δgsh1 as described in the previous chapter, we now wanted to look in more 

detail and find out if the mitochondrial import pathways were affected in Δg6pd 

as its effects should be upstream to the specific Trx or Grx mutant strains. Thus, 

as a first approach we analysed the protein levels in isolated mitochondria from 

this strain and compared them to WT. In order to detect the proteins, rabbit 

polyclonal antibodies (Ab) raised against recombinant purified proteins were 
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used to perform western blots. Different amounts of mitochondria (20 µg, 40 µg 

and 80 µg) were analysed by Tris-Tricine SDS-PAGE where the membrane was 

incubated with the corresponding primary Ab and detected by 

chemiluminescence. As shown in Figure 5.1, no difference in protein levels was 

seen for either the matrix targeted protein Hsp70 (Voos and Rottgers, 2002), the 

OM proteins Tom70 (Wu and Sha, 2006), Tom40 (Hill et al., 1998) and porin 

(Blachly-Dyson et al., 1997) or the IM protein Tim23 (Guiard, 1985). The levels of 

the IM anchored Mia40 (Chatzi et al., 2013) and the IMS sulfhydryl oxidase Erv1 

(Mesecke et al., 2005) were also not affected. However, the levels of the IMS 

protein Cytochrome c (Guiard, 1985) (second last rectangle Figure 5.1) were 

slightly less in the Δg6pd and considerably decreased for the IM protein Tim22. 

Furthermore, a more dramatic difference was seen for the Mia40 substrates 

Tim10 and Tim9 (Vial et al., 2002) (Bottom rectangle Figure 5.1). These results 

suggest specific alterations on IMS proteins that depend on the Mia40 pathway 

and IM proteins that depend on the TIM22 complex for their import.  

 

Figure 5.1 Mitochondrial protein levels in WT and Δg6pd pure mitochondria. Western blot 
analysis of 20 µg, 40 µg and 80 µg of WT and Δg6pd pure mitochondria for the detection of the 
mitochondrial proteins Hsp70 (matrix), Tom70 (OM), Mia40 (IM anchored) porin (OM), Tim23 (IM), 
Tim22 (IM), Erv1 (IMS), cytochrome c (cytc) (IMS) and the Mia40 substrates Tim10 and Tim9 
(IMS).  
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5.2.2 Protein import capacity of WT and Δg6pd mitochondria 

The lower steady Tim10 levels in Δg6pd mitochondria shown in Figure 5.1 could 

be due to either decreased protein translation, or increased degradation after 

translation and import or decreased protein import capacity. To distinguish 

between these different possibilities, the import capacity of Δg6pd mitochondria 

was assessed by presenting different protein precursors into mitochondria 

isolated from the Δg6pd strain ((Glick, 1991) and section 3.2.2.1) and comparing 

their import levels to those in WT mitochondria. In vitro translated 35S-

Methionine radiolabelled protein precursors were synthesised using a rabbit 

reticulocyte lysate transcription and translation (TNT) system (Promega) (section 

3.2.2.3). The precursors were then presented to 50 µg of mitochondria and 

incubated at 30°C for 15 minutes. The resulting mitochondrial pellet was 

resuspended and treated with Proteinase K (PK) to remove non-imported 

material. In parallel, in order to make sure that the PK actually cleaved the 

material that was not protected by mitochondria an import sample was treated 

concomitantly with both the detergent Triton X-100, to solubilize mitochondria 

and expose all their protein content, and the proteinase (denoted as ‘TX’ lanes 

in all panels Figure 5.2). Additionally, 10% of the total protein input used for the 

import reaction was loaded (first lane in all panels Figure 5.2). The resulting 

samples were analysed by Tris-Tricine SDS-PAGE and visualised by 

autoradiography. The results show that the import of the OM auxiliary protein 

Tom5 (Dietmeier et al., 1997), the matrix targeted Su9-DHFR (Ooi et al., 1985) 

and the IMS localised protein Erv1 (Mesecke et al., 2005) was not affected 

(panels A, B and D Figure 5.2). On the other hand, the import of Mia40 itself in 

Δg6pd was lower than in WT (panel C Figure 5.2). Furthermore, the import of 

the small Tim proteins Tim12, Tim10 and Tim9 which are classical Mia40 

substrates (Sideris and Tokatlidis, 2007) was severely impaired in the mutant 

strain (Panels E-G Figure 5.2). Strikingly, the import of the IM protein Tim11 was 

also affected (Panel H Figure 5.2). The results in Figure 5.2 indicate that the 

effect of the Δg6pd mutation, although it could be thought as global (Figure 

4.2), in terms of mitochondria biogenesis is in fact specific to the MIA import 

pathway. 
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Figure 5.2 Import capacity of WT and Δg6pd mitochondria. Autoradiography of the import of 
mitochondrial proteins into WT and Δg6pd pure mitochondria. Import of radiolabelled protein 
precursors for (A) Tom5 (OM), (B) Su9-DHFR (matrix), (C) Mia40 (IMS), (D) Erv1 (IMS), (E) Tim12 
(IMS), (F) Tim10 (IMS), (G) Tim9 (IMS) and (H) Tim11 (IMS) in the presence of membrane 
potential (Δψ+). First lane in each panel represents 10% of total precursor presented to 
mitochondria. The results are representative for at least three different biological replicates. TX: 
Triton X-100. 
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5.2.3 Oxidative state of Mia40 in WT and Δg6pd mitochondria 

The effect of the Δg6pd mutation was more dramatic for substrates of the MIA 

pathway and despite no apparent difference in the NADP+/NADPH ratio (Figure 

4.3), g6pd is important to the redox balance (Izawa et al., 1998). We reasoned 

that these g6pd-dependent redox effects at the level of mitochondrial protein 

import could be exerted via a direct influence of the redox state of Mia40 in 

mitochondria. Under physiological conditions, Mia40 must exist in a balanced 

state between its reduced and oxidized forms to function properly (Erdogan et 

al., 2018). Thus, I examined directly the redox state of Mia40 in WT and Δg6pd 

via an alkylation shift assay. Briefly, the molecule mal-PEG binds to free reduced 

(SH-) but not oxidised (S-S) thiols adding 5 kDa per free thiol group. As a result, 

the alkylated (reduced) protein can be detected as higher bands than the 

oxidised ones after Tris-Tricine SDS-PAGE and western blot analysis. As a 

control, one sample was treated with the reducing agent DTT to reveal that the 

maleimide had bound (first and fourth lane in Figure 5.3). For this experiment, 

rabbit polyclonal anti Mia40 antisera was used and detected by fluorescence. 

The core of Mia40 possesses 6 cysteines residues, 4 structural ones engaged in 

two very stable intramolecular disulphide bonds buried internally in the folded 

core of Mia40 and 2 present in its surface-exposed, active site CPC motif (Banci 

et al., 2009), which can readily shift from the reduced to the oxidized 

(disulphide-bonded) state and are prone to be easily alkylated by the mal-PEG 

molecule. The results in Figure 5.3 showed that the redox state of Mia40 in 

Δg6pd mitochondria is more oxidised (70kDa band lane 6 Figure 5.3) compared to 

a more balanced state between the reduced and oxidised forms in WT 

mitochondria (lane 3 Figure 5.3). Therefore, the altered redox balance of Mia40 

towards an oxidised state compromises the import of classical MIA pathway 

substrates.  
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Figure 5.3 Redox state of Mia40 in WT and Δg6pd. Proteins from pure isolated mitochondria 
from WT and Δg6pd yeast were precipitated with 10% TCA and treated (lanes 3 and 6) or not 
(lanes 2 and 5) with mal-PEG or mal-PEG+DTT (lanes 1 and 4). Immunodecoration with anti-Mia40 
Ab and fluorescence detection. The size of each band was determined by linear regression of a 
pattern curve created with the distance travelled of each molecular weight marker. The results are 
representative of at least three different biological replicates. 
 

5.3 Discussion 

The aim of this chapter was to determine if the absence of g6pd was affecting 

the levels of mitochondrial proteins and if such an effect was due to reduced 

import capacity of mitochondria isolated from this yeast strain. Despite the fact 

that a decreased oxidative stress response and methionine auxotrophy are 

known effects of Δg6pd yeast (Izawa et al., 1998, Thomas et al., 1991), no 

information was available at the start of this thesis on how the deficiency of this 

enzyme may influence mitochondrial protein levels or mitochondria biogenesis. 

The Δg6pd yeast strain has normally been used to determine NADPH sources in 

the cell under different conditions (Izawa et al., 1998, Minard and McAlister-

Henn, 2005). Even studies of its deficiency in humans have neglected to look on 

how it might influence mitochondria, mainly because this deficiency is 

associated to haemolytic anaemia which affects red blood cells, a cell type that 

loses mitochondria and other organelles as these cells mature (Bubp et al., 2015, 

Ho et al., 2007). However, as mentioned in the introduction of this chapter the 

import impairment into mitochondria is associated to certain diseases. Given the 
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fact that this mutation is the most common enzyme deficiency in humans (Ho et 

al., 2007), the study of its effects on mitochondria biogenesis is of major 

importance. From the results in Figure 5.1 and Figure 5.2 we can conclude that 

the presequence pathway, the sorting of β-barrel proteins and the pathway 

dependent on the TIM22 complex are not affected in Δg6pd yeast. On the other 

hand, a specific effect in the mutant strain on the main import pathway of the 

IMS, the MIA pathway, is observed. 

The presequence pathway, responsible for the import of most mitochondrial 

proteins that are targeted to the matrix (Tamura et al., 2009a) appears not to 

be defective. This is supported by the similar mitochondrial Δψ between Δg6pd 

and WT yeast (Panel A Figure 4.4) as it is known that this pathway depends on 

Δψ as the main import driving force (Geissler et al., 2000, Pfanner et al., 1987). 

In addition, the levels of the channel forming protein Tim23 (Truscott et al., 

2001) and the mitochondrial chaperone Hsp70 (Chacinska et al., 2009), both 

essential for the functioning of this pathway were not affected (Figure 5.1). 

Neither was the import of the Su9-DHFR precursor (Panel B Figure 5.2), a matrix 

targeted precursor. Furthermore, the import of Mia40, which also depends on 

Tim23 (Chatzi et al., 2013), was only slightly affected. Likewise, the SAM sorting 

pathway (Wiedemann et al., 2003), which is responsible for the insertion of β-

barrel proteins in the OM also remains unaffected. Although the levels of the 

small Tims are affected in the mutant strain and these proteins are also involved 

in the sorting of β-barrel proteins (section 1.2.4), the remaining proteins might 

be enough to fulfil their function. These non-affected pathways can be seen in 

Figure 5.1 and panels A-D of Figure 5.2 as a variety of proteins steady state and 

import levels are not affected in the mutant. Since the OM β-barrel protein 

Tom40 is the entry gate of such proteins (Hill et al., 1998) and its levels are 

normal in the yeast mutant (Figure 5.1), we can infer that it is properly inserted 

and active. Moreover, the levels of another abundant β-barrel protein, porin 

(Lee et al., 1998) are also normal in Δg6pd. On the other hand, the so-called 

carrier pathway (for polytopic integral membrane proteins of the inner 

membrane) appears to be affected, even though the levels of Δψ (the main 

energy source for this pathway) are not substantially affected ((Panel A Figure 

4.4) (Pfanner and Neupert, 1985, Pfanner and Neupert, 1987)) and the levels of 

the main import receptor Tom70 for this pathway (Sollner et al., 1990, Young et 
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al., 2003) are also similar to the WT. The fact that the essential component of 

the TIM22 complex, the protein Tim22 (Kerscher et al., 1997, Kovermann et al., 

2002) is considerably affected suggests that import via this pathway is impaired.  

The most intriguing and exciting result in this chapter is that  the import of 

proteins into the IMS which is mediated primarily by the MIA pathway (Backes 

and Herrmann, 2017, Chatzi et al., 2016, Fischer et al., 2013) is clearly and 

specifically affected. Despite the fact that the steady-state levels of Mia40 and 

Erv1, the two key players of the this pathway (Banci et al., 2013, Banci et al., 

2009, Chatzi et al., 2016, Chatzi et al., 2013, Mesecke et al., 2005) are similar in 

the mutant and the WT, the import of these proteins does not or not fully 

depend on the MIA system.  

The classical substrates of this pathway include the small Tim proteins, i.e. 

Tim8, Tim9, Tim10, Tim12 and Tim13 (Koehler, 2004, Sideris and Tokatlidis, 

2007). Therefore, the decreased protein levels and import of Tim9, Tim10 and 

Tim12 seen in Figure 5.1 and panels E-G of Figure 5.2 indicate a specific and 

considerable effect of the Δg6pd mutation on the MIA pathway. Intriguingly, the 

import levels of the IM associated protein Tim11 (Arnold et al., 1997, Tokatlidis 

et al., 1996), which engages in a yet unknown import mechanism, were also 

decreased in the Δg6pd yeast mutant. One explanation for this is that Tim11 has 

a very active cysteine, which might be affected because of the reductive 

alterations in this yeast mutant (Tokatlidis et al., 1996). 

The MIA pathway relies on the oxidative folding capacity of the oxidoreductase 

Mia40 which oxidises cysteine residues in its substrates via an active CPC motif 

(Banci et al., 2009). Since growth on respiratory conditions of yeast is affected 

and the MIA pathway impaired because of the absence of g6pd, we hypothesised 

that the redox state of Mia40 was altered. In fact, Mia40 from Δg6pd is more 

oxidised than its WT counterpart, where it has the capacity to remain in a 

balanced redox state (Figure 5.3). This balance between reduced and oxidised 

state of WT Mia40 is in agreement with previous studies (Erdogan et al., 2018, 

Kojer et al., 2012). In summary, the results of this chapter showed a clear and 

specific defect on the import capacity of IMS proteins that depend on the MIA 

pathway and that this decreased import is due to the unbalanced redox state of 

Mia40 towards the oxidative form. 
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Chapter 6 The thioredoxin system in the IMS of 
yeast mitochondria 

6.1 Introduction 

The data shown in the previous chapters provide evidence that the Δg6pd yeast 

strain cannot grow under respiratory (Figure 4.2) conditions, i.e. increased ROS-

producing conditions. Furthermore, this mutant has decreased import capacity 

specifically for IMS proteins that depend on the MIA pathway (Figure 5.2) 

because, at least in part, of a more oxidised state of Mia40 (Figure 5.3). The 

latter suggests that a reducing pathway must be present in the IMS to keep the 

redox state of Mia40 in a balanced manner because this is needed for its proper 

function. This idea is supported by the presence of not only oxidative but also 

reductive pathways in every other cellular compartment similar to the 

mitochondrial IMS that houses a full oxidoreductase machinery, i.e. the ER and 

the bacterial periplasm (Cardenas-Rodriguez and Tokatlidis, 2017, Herrmann and 

Riemer, 2014). In this context, the two main thiol-reductive systems (Trx and 

Grx) are good candidates to fulfil this role. In fact, a recent publication on an 

updated version of the yeast mitochondrial IMS proteome identified both protein 

components of the cytosolic Trx system to be present in this sub-mitochondrial 

compartment (Vögtle et al., 2012). Thus, we hypothesised that the Trx system is 

the reductive pathway in the IMS responsible for keeping Mia40 in a functional 

reduced/oxidised state. 

6.1.1 The Thioredoxin super family: The Thioredoxin fold 

As mentioned in the introduction, the yeast cytosolic Trx isoforms (Trx1 and 

Trx2) are members of the thioredoxin protein family. This superfamily includes a 

wide range of proteins playing different roles in the cell such as thiol disulphide 

oxidoreductases (Holmgren, 1995), glutathione S-transferases (Nishida et al., 

1998) and disulphide isomerases (Kemmink et al., 1997). Additionally, proteins 

containing this motif are widely conserved as they have been found in a vast 

range of species from bacteria (Holmgren et al., 1975) and yeast (Trotter and 

Grant, 2002) to humans (Watson et al., 2003). 
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The members of this family share a motif called the thioredoxin fold, consisting 

in four central β-sheets flanked by three α-helices (Ren et al., 2009). The 

strictly conserved redox active CXXC site is present within a loop connecting a β-

sheet with an α-helix (Figure 6.1, (Holmgren et al., 1975)). Noteworthy, the 

residues between the two active cysteines influence the redox potential of these 

proteins giving them their oxidant or reductant nature. In particular, both the 

Trx1 and Trx2 yeast proteins have a Cys-Gly-Pro-Cys motif (Figure 6.1). This 

sequence is shared with both the human and the Escherichia coli cytosolic Trx 

(Figure 6.1). In particular, the E. coli Trx1 has been found to be its strongest 

reductant (Krause et al., 1991). This is important to consider given the highly 

similar structure and the identical redox active site between S. cerevisiae and E. 

coli. Hence, Trx1 is indeed a good candidate to be a reductant in the oxidising 

environment of the mitochondrial IMS. 
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Figure 6.1 Thiol-reductant thioredoxin is widely conserved among species. Crystal structures 
of thioredoxin 1 from both cytosolic isoforms of Saccharomyces cerevisiae: (A) Trx1 (PDB id: 2n5a) 
and (B) (Trx2) (PDB id: 2fa4), (C) Escherichia coli (PDB id: 5hr1) and (D) human (PDB id: 5dqy). 
The characteristic exposed redox active site shared by the four proteins is highlighted as green: 
Cys and red: Gly-Pro. 
 

In this chapter we first confirmed that the components of the cytosolic Trx 

system, Trx1, Trx2 and TrR1, can be imported into WT and Δg6pd mitochondria. 

Furthermore, the in vitro and in organello interaction between Mia40 and Trx 

was shown. Finally, the inner membrane potential Δψ (as a measure of a 

functional defect in mitochondria) and the import capacity of Δg6pd 

mitochondria (as a direct measure of an effect on the biogenesis capacity for 

mitochondria) were assessed after the exogenous addition of NADPH, Trx1 and 

TrR1.  
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6.2 Influence of the thioredoxin system localisation in the 
IMS on the import of other proteins imported into the 
IMS of mitochondria 

6.2.1 Import of Trx1 and TrR1 into WT and Δg6pd isolated 
mitochondria 

The first step before testing if the Trx system can act as the missing reductive 

pathway in the IMS was to make sure that Trx1, Trx2 and TrR1 can be imported 

into WT and Δg6pd mitochondria. To achieve this, import of 10 µg of 

recombinant His-tagged Trx1 (Manganas, 2017), Trx2 (Subramanian, 2018) or 

TrR1 (Manganas, 2017) were presented to 50 µg of isolated WT or Δg6pd 

mitochondria. The import reaction was carried out for 15 min at 30°C, non-

imported material was removed by exogenous protease treatment, mitochondria 

were re-isolated by centrifugation and analysed for their imported material by 

Tris-Tricine SDS-PAGE and immunoblotting followed by chemiluminescence as 

previously described (section 3.2.3.2 and Figure 5.2). Where mentioned, β-

mercaptoethanol (lanes 2 and 6 Figure 6.2) was omitted and ATP (lanes 4 and 8 

Figure 6.2) or inner membrane potential Δψ (lanes 5 and 9 Figure 6.2) were 

depleted in order to test if the import depends on any of those factors. A sample 

representing 2% of the total protein used for the import reaction was added 

(first lane Figure 6.2). The results about the import into WT confirmed previous 

data from our lab indicating that the import of Trx1 and TrR1 does not depend 

on the presence of either ATP or inner Δψ (Figure 6.2). Additionally, the import 

of the other cytosolic isoform of yeast thioredoxin, Trx2, was also not affected 

by any of these conditions (bottom Figure 6.2). Likewise, the proteins Trx1, Trx2 

and TrR1 can get imported into mitochondria from Δg6pd yeast and for the case 

of TrR1 it is increased when ATP and the inner Δψ are depleted (top Figure 6.2). 

Additionally, bands of lower molecular weight can be seen in the TrR1 blot, 

these bands might be degraded products resulting from the import of the protein 

Therefore, with the information showed in Figure 6.2 we can conclude that 

Trx1, Trx2 and TrR1 get imported into Δg6pd mitochondria independent on Δψ 

and ATP. 



86 
 

 

 

Figure 6.2 TrR1 and Trx1 import into WT and Δg6pd mitochondria. Western blot analysis for 
the import of recombinant His-tagged TrR1, Trx1 and Trx2 into WT and Δg6pd pure mitochondria. 
Mouse anti-His Ab was used to detect imported proteins. First lane represents 2% of the total 
protein presented to mitochondria. -β-ME: absence of β-mercaptoethanol in the sample buffer, -
ATP: depletion of ATP with oligomycin (10μM) and apyrase (10mU/μl) and Δψ-: depletion of inner 
Δψ with valinomycin (1mM). Results are representative of at least three different experiments. 
 

6.2.2 In vitro interaction between Mia40 and Thioredoxin 

The cytosolic protein components of the yeast Trx system can not only be 

imported into mitochondria, but it also has been shown to localise to the IMS of 

mitochondria (Manganas, 2017). Furthermore, it was demonstrated that the Trx 

system reduces Mia40 in vitro and that Trx1 pulls down Mia40 after its import 

into mitochondria (Manganas, 2017). Here we wanted to expand on the 

interaction between Trx and Mia40. In order to do that, cross-linking 

experiments between Mia40 and Trx1, Trx2 or the mutant Trx1 C30/33S using 

the non-specific cross-linker glutaraldehyde (GA) were performed. Briefly, 1µg 

of recombinant His-tagged Mia40 was added to 1µg of recombinant His-tagged 

Trx1 (panel A Figure 6.3) or Trx2 (panel B Figure 6.3) or Trx1 C30/33S (panel C 

Figure 6.3) in the presence (lanes 6-8 Figure 6.3) or not (lane 5 Figure 6.3) of 

0.1% GA for up to 10 minutes at room temperature. The gels were then analysed 

by Tris-Tricine SDS-PAGE, immunoblotting and chemiluminescence. In parallel, 

as controls each individual C-terminal 6XHis-tagged protein was treated with or 

without GA (lanes 1-4 in each panel Figure 6.3). The results in Figure 6.3 show 

the monomers of Trx1, Trx2 and Trx1 C30/33S at 12 kDa and oligomers of about 
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27 kDa, 35 kDa and 52 kDa in the three proteins. Higher species are seen for 

both Trx2 and the Trx1 cysteine mutant but not Trx1 (lane 2 in all panels Figure 

6.3). The other control, Mia40, runs at 20 kDa and forms an oligomer of 33 kDa 

(lanes 3 and 4 in all panels Figure 6.3). When only the two proteins were added, 

both monomers but no other bands can be seen (lane 5 Figure 6.3). Finally, after 

the addition of GA in the presence of both proteins all the bands in the controls 

are observed, but also an extra band at 30 kDa (arrow in all panels Figure 6.3), 

which is likely Mia40-Trx1 intermolecular adduct. These results indicate that in 

vitro Mia 40 can interact with both Trx1 and Trx2 as well as the mutant Trx1 

C30/33S, which suggests that the Mia40-Trx1 interaction is independent of the 

Cys residues on Trx1. The interaction monitored by X-linking as used in this assay 

is based on the vicinity of interacting surfaces between Mia40 and Trx1. The fact 

that we still see the interaction to persist even with the Cys mutants of Trx1 

means that these are not affected structurally to an extent that would affect 

the interacting surface of Trx1 with Mia40. GA is a crosslinker creating covalent 

bonds between Lys residues between proteins, and therefore not very specific. A 

more detailed analysis of the interacting surfaces between Mia40 and Trx1 would 

require either trypsinolysis and mass spectrometry analysis after the 

crosslinking, or a high resolution structural analysis of the complex (via NMR or 

X-ray crystallography). 
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Figure 6.3 Cross-link between different Trx and Mia40. Recombinant His-tagged proteins Mia40 
and (A) Trx1 or (B) Trx2 or (C) Trx1 C30/33S were treated or not with 0.1% glutaraldehyde (GA) 
for 20‘’, 5’ or 10’. Samples were analysed by Tris-tricine SDS-PAGE and western blot using mouse 
anti-His Ab. Controls using the individual proteins treated or not with GA (lanes 1-4 in all panels). 
The results are representative of at least three different experiments. 
 

6.2.3 Import of the Trx system to restore the inner membrane 
potential Δψ and the import capacity of Δg6pd mitochondria 

In the previous chapters we have concluded that the import capacity of the MIA substrates 
in the Δg6pd mitochondria was specifically affected because Mia40 redox balance was 
perturbed and Mia40 stayed in a more oxidised form than it would under physiological 
conditions. Hence, Mia40 must interact with a reductive pathway, the lack of which in the 
g6pd mutant forced the protein to stay aberrantly oxidised. In this matter,  

Figure 6.2 and Figure 6.3 show that Trx1, Trx2 and TrR1 can get imported into 

Δg6pd mitochondria and that both Trx1 and Trx2 interact with Mia40 in vitro. 

Therefore, we checked whether the import of the Trx system can restore the 

unbalanced redox state of Mia40 and subsequently recover the import capacity 

of mitochondria isolated from Δg6pd yeast.  

As a first step we tested if the Trx system imported into the IMS can interact 

functionally with Mia40 in the same compartment. Thus, 100 µg of Δg6pd 
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mitochondria were equilibrated with 2.5mM NADPH (to make sure that they have 

enough NADPH as a reducing power) and incubated first with 20µg of Trx1 for 5’ 

at 30°C and then with 20µg of TrR1 for a further 10’ at the same temperature. 

In parallel, the same amount of WT or Δg6pd mitochondria were equilibrated 

with NADPH and incubated for 20’ at 30°C. The mitochondria were then treated 

or not with Mal-PEG as previously described in Figure 5.3 followed by analysis on 

Tris-Tricine SDS-PAGE, western blotting using rabbit polyclonal anti-Mia40 

antisera and fluorescence (Figure 6.5). A schematic representation of this is 

shown in panel A and panel B Figure 6.4. 

 

Figure 6.4 Pre-import of Trx system into mitochondria. (A) 50µg of mitochondria were 
equilibrated at 30°C with 2.5mM NADPH for 5 min. Then, Trx1 was imported for 5 min. Afterwards, 
TrR1 was added to the import mix and was left to import for a further 5 min. Finally, the import 
reaction was left for 5min more before separation of mitochondria with a 5min spin for further 
analysis. (B) The mitochondrial sample was precipitated with 10% TCA and treated for alkylation. 
(C) Import of 35S-radiolabelled methionine into pre-imported Trx mitochondria. (D) Measurement of 
mitochondrial inner membrane potential. 
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The addition of mal-PEG reveals in this assay the reduced species of Mia40. In 

WT cells (lanes 1-3 Figure 6.5), Mia40 is in a mixed population of oxidised 

species that do not react with mal-PEG and reduced species that do react with 

mal-PEG (lane 3 Figure 6.5). As a control, the completely oxidised Mia40 is 

indicated as a single species without the addition of mal-PEG (lane 2 Figure 6.5). 

When DTT is added to the WT mitochondria to completely reduce Mia40 and 

mal-PEG is added, essentially all of Mia40 is shifted to the mal-PEG bound 

reduced species (lane 1 Figure 6.5). In Δg6pd mitochondria, in the absence of 

pre-imported Trx1/TrR1 (lanes 4-6 Figure 6.5), Mia40 cannot be shifted to a 

reduced state by mal-PEG addition and persists in an oxidised state (compare 

lanes 5 and 6 for the Δg6pd mitochondria to lanes 2 and 3 for the WT 

mitochondria Figure 6.5). Interestingly, the addition of Trx1 and TrR1 into Δg6pd 

mitochondria (lanes 7 and 8 Figure 6.5) restores the redox balance of Mia40 to 

the levels of the WT mitochondria: we can now see the reduced Mia40 species 

revealed by an interaction with mal-PEG (lane 8 Figure 6.5) which is identical to 

the WT (lane 3 Figure 6.5). 

These results show that Trx1 and TrR1 restores the redox balance of Mia40 after 

their import into mitochondria and endow the IMS with a fully functional 

reductive machinery. Moreover, after their import Trx1 and TrR1 interact with 

Mia40 as can be seen by the restored redox balanced state of Mia40 (last lane 

Figure 6.5) unlike the mainly oxidised state in Δg6pd mitochondria where no Trx 

system was added (lane 6 Figure 6.5). Therefore, we conclude that the Trx 

system reduces Mia40 to a functional redox-balanced state. 
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Figure 6.5 Redox state of Mia40 in WT and Δg6pd after the import of the Trx system. 
Mitochondria isolated from WT and Δg6pd yeast were equilibrated at 30°C with NADPH (5min) and 
then incubated for a total of 15 min with or without Trx1 and TrR1. Afterwards, mitochondria were 
precipitated with 10%TCA and treated (lanes 3, 6 and 8) or not (lanes 2, 5 and 7) with mal-PEG or 
mal-PEG+DTT (lanes 1 and 4). Immunodecoration with anti-Mia40 polyclonal Ab and fluorescence 
detection. The size of each band was determined by linear regression of a pattern curve created 
with the distance travelled of each molecular weight marker. The results are representative of three 
different experiments. 
 

Since the Trx system reduces Mia40 after its import into mitochondria, we tested 

whether restoring Mia40 to its physiological redox balance would restore the 

import of Tim9, Tim10 and the human protein Cox17 (hCox17), which are widely 

known import substrates of the MIA pathway. Briefly, the Trx system (Trx1 and 

TrR1) was imported into 50 µg of Δg6pd mitochondria as described in Figure 6.5. 

Additionally, the import of 10 µg recombinant Δ290Mia40SPS (soluble fraction of 

Mia40 with mutated active CPC motif) instead of the Trx system was used as 

control. Afterwards, samples were centrifuged to remove non-imported material 

and pellets were resuspended in import buffer in the presence of 2mM ATP and 

2.5 mM NADH. The import of 35S-Methionine radiolabelled-protein precursors 

(Tim9, Tim10 and hCox17) was performed as described in Figure 5.2 for 10 

minutes. Samples were analysed by Tris-Tricine SDS-PAGE and visualised by 

autoradiography. The Trx system, but not exogenous Mia40, improved the import 

of Tim9 and Tim10 (panel A and B Figure 6.6) in 16% and 10%, respectively. In 

contrast, the import of hCox17 was ~1% less in the mutant mitochondria and no 

improvement was seen after pre-imported Trx system or Mia40 (panel C Figure 

6.6). Interestingly, the import of Tim9, Tim10 and hCox is reduced when Mia40 

was pre-imported (Mia40 lane and light grey columns Figure 6.6). Taken 

together, these results show that the reduction of Mia40 by the Trx system 

partially restores the import capacity of Δg6pd mitochondria. 
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Figure 6.6 Import of Tim9, Tim10 and hCox17 into Trx-treated Δg6pd mitochondria. 
Mitochondria isolated from WT and Δg6pd yeast were equilibrated at 30°C with NADPH (5min) and 
then incubated for a total of 15 min with or without Trx1 (10µg) and TrR1 (10µg) or Mia40 (10µg). 
Afterwards, import of radiolabelled protein precursors for (A) Tim9, (B) Tim10 and (C) hCox17 for 
10 minutes. First lane in each panel represents 5% of total precursor presented to mitochondria. 
The histograms on the bottom represent the relative quantification of each band. 
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Finally, as shown in Figure 4.4 the inner membrane potential Δψ was decreased 

in Δg6pd, Δtrx1/2 and Δtrr1 isolated mitochondria. Given the fact that the 

import of the Trx system into Δg6pd mitochondria re-establishes the balance in 

the redox state of Mia40 (Figure 6.5) and that this partially restores the protein 

import capacity of Mia40 substrates (Figure 6.6), we wanted to assess whether 

the decreased inner membrane potential Δψ in Δg6pd could also be restored. 

Thus, we imported or not the Trx system into Δg6pd and WT isolated 

mitochondria as mentioned for Figure 6.5. Then, the inner membrane potential 

Δψ was estimated by measuring the fluorescence of the inner membrane 

potential Δψ-dependent dye DiSC3(5) in the same way as in Figure 4.4. 

Intriguingly, the results in Figure 6.7 show that pre-import of the Trx system into 

Δg6pd mitochondria did not recover the inner membrane potential Δψ defect. 

These results are indicative that the effects of Δg6pd on the membrane 

potential of the IM cannot be restored by the Trx system in the IMS which seems 

to have a very specific effect on the Mia40 itself and as a consequence on the 

import pathway mediated by Mia40 but not a generic effect affecting the IM. 

 

Figure 6.7 Mitochondrial membrane potential (Δψ) in Δg6pd mitochondria after the import of 
the Trx system.  Mitochondrial membrane potential measured from WT (black line), Δg6pd (red 
line) and Δg6pd pre-treated with Trx system (dark red dotted lines). The fluorescence of the 
DiSC3(5) molecule was measured for molecule over ~130 seconds. The maximum fluorescence for 
each experiment was considered as 100% of relative fluorescence. The arrows indicate the time of 
addition of either 100 µg of mitochondria (mitos) or 1mM valinomycin (val) were added. The results 
are representative of at least three different experiments. 
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6.3 Discussion 

In the previous chapters I showed that mitochondria from Δg6pd null cells have 

decreased import capacity of the MIA pathway substrates (Figure 5.2). This 

import defect is because the balance of the redox state of Mia40 is perturbed 

and the Mia40 protein cannot cycle from its oxidised to the reduced state (Figure 

5.3). Hence, a not yet known reductive system must be present in the 

mitochondrial IMS to keep the optimal redox state balance of Mia40 and to 

regulate other important functions such as disulfide proofreading and reduction 

of proteins to regulate their degradation or activity. Since Δg6pd is the main 

NADPH supplier in the cell (Minard et al., 1998) and this cofactor is the final 

electron donor for the thioredoxin and glutaredoxin pathways (Grant, 2001), one 

of these two or even both pathways could serve as the reductive force in the 

IMS. Accordingly, recent studies proposed the cytosolic Grx system to be such a 

reductive pathway (Kojer et al., 2012, Kojer et al., 2015). In these studies, the 

authors used a redox sensitive Grx1-roGFP2 probe, to demonstrate that the 

cytosolic and IMS, but not the IMS and matrix GSH pools are linked (Kojer et al., 

2012). They also suggested that alterations in the cytosolic Grx system like the 

deletion of the glutathione reductase (Glr1), impact the redox state of Mia40. 

However, they saw that the redox state of Mia40 in ΔGlr1 was not significantly 

different to that of the WT, but only showed that when the levels of the 

sulfhydryl oxidase Erv1 were decreased, Mia40 becomes more reduced. The 

latter suggested the existence of a reductant acting on Mia40 since the balance 

between oxidising and reducing forms was altered by the decreased levels of 

Erv1 (oxidase) resulting in a reduced form of Mia40. They then proposed the Grx 

system given its availability in the IMS and a delayed recovery of the reduced 

form of Mia40 in a ΔGlr1 and Erv1 decreased strain following oxidative treatment 

as compared with the Erv1 decreased yeast (Kojer et al., 2012). In particular, 

they suggested the cytosolic isoform of Grx2 (cytoGrx2) as the active reductive 

component in the IMS (Kojer and Riemer, 2014). However, unlike our results 

showing that Trx1, Trx2 and TrR1 can be imported into mitochondria (Figure 

6.2), they did not see influence of exogenous cytogrx2 when presented to 

mitochondria expressing an IMS-localised roGFP2 probe. Nevertheless, they 

argue to have found cytogrx2 in the IMS in a Δgrx1Δgrx2Δgrx8 yeast strain 

harbouring a plasmid that expresses cytogrx2. Yet in this experiment they only 
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gradually exposed mitochondrial proteins to proteinase K by solubilising 

mitochondrial membranes with increasing amounts of the detergent digitonin. 

Since the degradation of cytoGrx2 was similar to that observed for Mia40, they 

concluded that both proteins reside in the same compartment (the IMS). A 

limitation of this technique is that the proteins can behave differently to the 

proteinase treatment (Fountoulakis, 1995), making their comparison not 

reliable. In contrast, mitochondrial Na2CO3 extraction and mitoplasting have 

proved to be powerful tools to determine localisation of proteins in the different 

mitochondrial compartments (Kritsiligkou et al., 2017). In this regard, data from 

our lab using both mitoplasting and Na2CO3 extraction showed that both Trx1 

and TrR1 localise to the IMS of mitochondria after import (Manganas, 2017). 

Additionally, another study using a roGFP2 probe without fused Grx1 found that 

the IMS was a more oxidising environment (Hu et al., 2008). However, Kojer et al 

reasoned that the probe used in that study could not be reduced due to the need 

of the entire Grx system as compared to the probe used by them where only the 

presence of GSH is needed for the reducing of the probe (Kojer et al., 2012). 

The latter pre-supposes that the glutaredoxin system is either not present in the 

IMS or present in small amounts or only transiently. Moreover, as mentioned 

before, all the components of the thioredoxin were recently identified in the IMS 

of S. cerevisiae (Vögtle et al., 2012), but this was not the case for the 

glutaredoxin system. Here we showed that both the Trx1 and TrR1 can be 

imported into mitochondria independent of the main known import pathways 

since their import does not depend on the main well-known protein import 

energy sources, ATP and Δψ which are crucial for targeting proteins into 

mitochondria by both the TIM23 and TIM22 complexes ((Geissler et al., 2000, 

Pfanner et al., 1987, Pfanner and Neupert, 1985, Pfanner and Neupert, 1987) 

and (Figure 6.2). Furthermore, the import of Trx1 and TrR1 does not depend on 

the MIA pathway given the fact that both proteins can be imported in 

mitochondria from Δg6pd yeast, which specifically has reduced import capacity 

for this pathway (Figure 5.2). The latter is further supported by previous results 

in our lab that showed that both proteins can be imported in mitochondria from 

cells depleted for Mia40 or Erv1 (Manganas, 2017). These results make the Trx 

system a better candidate to be the main, but likely not the only, reductive 

pathway in the IMS. Moreover, this idea is supported by the fact that Trx1 from 

yeast and E. coli share the same redox active site Cys-Gly-Pro-Cys (Figure 6.1). 
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Noteworthy, E. coli Trx1 has been found to be the strongest reductant in 

bacteria (Krause et al., 1991). This characteristic is important as suggests that 

the Trx1 is a potent reductant.  

After proving that the Trx system can be imported into mitochondria, we then 

asked if the system interacts with Mia40. Hence, we tested the in vitro 

interaction between the recombinant proteins Mia40 and Trx1, Trx2 or the 

mutant Trx1 C30/33S using the non-specific cross-linker GA. As can be observed 

in Figure 6.3, a cross-linked product of 30 kDa between Mia40 and Trx1 (panel A 

Figure 6.3), Trx2 (panel B Figure 6.3) or Trx1 C30/33S (panel C Figure 6.3) is 

detected. The molecular weight of the product is consistent with the individual 

molecular weights of the proteins (Mia40: 20kDa and Trx1:12kDa). In addition, it 

has been shown that the Trx system reduces Mia40 in in vitro reconstitution 

experiments (Manganas, 2017). It was then crucial to test if such an interaction 

between Mia40 and the Trx system could take place inside the mitochondria. We 

reasoned that if the Trx system interacts and reduces Mia40, then the exogenous 

addition of the Trx system to mitochondria from Δg6pd yeast cells would reverse 

the redox imbalance of Mia40 in the Δg6pd strain (Figure 5.3) Indeed, the 

addition of the Trx system (which can work independent of Mia40 for its import) 

restores the redox balance  of Mia40 to the level of WT mitochondria (compare 

lanes 3 and 8 Figure 6.5).  

Unlike other studies that measured the redox state of Mia40 in isolated 

mitochondria and found a more oxidised form of the protein (Bihlmaier et al., 

2007), the results presented here (Figure 5.3 and Figure 6.5) agree with the 

redox state of Mia40 seen in total cell extracts (Kojer et al., 2012). This 

information shows that functional WT Mia40 exists in a balanced state between 

its oxidised and reduced forms. Interestingly, Kojer et al did not find differences 

in the redox state of Mia40 in a ΔGlr1 strain which is thought to be altered in its 

reductive capacity. Conversely, our data shows that the MIA import pathway is 

specifically affected in Δg6pd mitochondria (Figure 5.2). Taking these two 

results together with the in vitro (Figure 6.3) and in organello (Figure 6.5) 

interaction between Mia40 and the Trx system, we hypothesised that the 

exogenous addition of the system would recover the defects observed in 

mitochondria from Δg6pd yeast, in particular the inner Δψ and the import 
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capacity. As can be seen in Figure 6.7, pre-treatment of Δg6pd mitochondria 

with the Trx system does not influence the mitochondrial inner membrane 

potential Δψ. Thus, restoration of the balance in the redox state of Mia40 has no 

effect on Δψ. On the other hand, the import of Tim9 (panel A Figure 6.6) and 

Tim10 (panel B Figure 6.6) but not of human Cox17 (hCox17; panel C Figure 6.6) 

is slightly recovered after the addition of the Trx system, and not by addition of 

Mia40 (lane 5 in all panels Figure 6.6). In fact, the addition of Mia40 results in 

even less protein import. This more dramatic defect could possibly be because 

the import of the exogenous Mia40 saturates the already affected MIA pathway. 

Another possibility for this is that, since the Mia40 used was the soluble peptide, 

it accumulated outside mitochondria and blocked the import of the other 

proteins. These results show that the Trx system reduces Mia40 and that this 

interaction restores to some extent the decreased import capacity of 

mitochondria from Δg6pd. The latter suggest that the Trx system represents the 

main but not the only reductive pathway in the IMS and cross-talk with other 

mechanisms must constitute the full reductive capacity in this compartment. 
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Chapter 7 Import pathway of Trx1 into 
mitochondria 

7.1 Introduction 

As shown before, members of the thioredoxin system, i.e. Trx1 and TrR1, were 

found in to be present in the mitochondrial IMS of yeast in a proteomic study 

(Vögtle et al., 2012). Accordingly, the results shown in the previous chapters 

confirm that the two proteins can be imported into mitochondria (Figure 6.2) 

and play an important role in the maintenance of the redox equilibrium in this 

important mitochondrial compartment (Figure 6.4). Furthermore, maintaining 

the balance between the reductive and oxidative forms of the oxidoreductase 

Mia40 is crucial for its function on the import of proteins targeted to the IMS 

(Figure 5.1 and Figure 5.2). In this respect, the exogenous addition of the Trx 

system into the IMS helps to restore the decreased import capacity of 

mitochondria from Δg6pd yeast (Figure 6.5). Thus, the presence of the Trx 

system in the IMS of mitochondria is essential for the proper function of the MIA 

pathway and possibly other reductive-regulated mechanisms important for 

protein targeting and degradation (Lee et al., 2013). However, besides the 

functional role of the thioredoxin system it is important to know how these 

proteins are being targeted into mitochondria. The latter is important given the 

fact that these proteins reside mainly in the cytosol and they are lacking a 

conventional mitochondrial targeting signal. Hence, in this chapter we tried to 

elucidate the import pathway followed by Trx1 to mitochondria. 

7.1.1 Dual localised proteins: cytosol and mitochondria 

In the IMS proteome reported by Vogtle et al in 2012 a considerable number of 

proteins share cytosolic and mitochondrial localisation. Furthermore, many of 

these proteins, like Trx1 and TrR1 are involved in redox homeostasis and 

oxidative stress response. The majority of these dual targeted proteins do not 

possess classical mitochondrial targeting sequences (Karniely and Pines, 2005). 

Instead, different mechanisms such as folding competition between the two 

compartments, e.g. the copper chaperone for superoxide dismutase (Ccs1) 

(Kloppel et al., 2011), and unconventional internal or N-terminal signals are 

responsible to drive these proteins into mitochondria. Such is the case for the 
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thiol peroxidase Gpx3, the major H2O2 sensor in yeast, which recently was shown 

to contain an 18 amino acid N-terminal extension that is involved in its 

localisation to mitochondria and in particular to the IMS (Kritsiligkou et al., 

2017). It is likely that the dual localisation of proteins is linked to stress 

conditions in mitochondria as shown by the mitochondrial localisation of proteins 

involved in cellular response to stress like p53 (Zhuang et al., 2013) and the 

Cu/Zn superoxide dismutase (Sod1) (Sturtz et al., 2001). Hence, the elucidation 

of the import pathway followed by these proteins is of major importance to 

better understand their involvement in the protection of the cell. 

The import pathway of Trx1 has not yet been elucidated but recent analysis in 

our lab identified an internal signal located towards the C-terminus that 

resembles the signal that is involved in the import of β-barrel proteins into the 

mitochondria and its sorting into the mitochondrial outer membrane. 

7.1.2 β-signal for the import and sorting of β-barrel proteins into 
the mitochondrial outer membrane 

The import of β-barrel proteins into mitochondria and the mechanism of 

insertion into the outer membrane has just recently started to be uncovered. In 

particular, a conserved C-terminal sequence among all eukaryotes was found to 

be responsible for the insertion of these type of proteins into the OM (Kutik et 

al., 2008). This β-signal is present in the last predicted transmembrane β-strand 

and is formed by a large polar residue, an invariant glycine and two hydrophobic 

residues (Po-X-G-X-X-Hy-X-Hy) (Kutik et al., 2008). Furthermore, the mechanism 

by which these β-barrel proteins are inserted was later described. Once the β-

precursors are in the IMS of mitochondria the β-signal interacts with the β1 

strand from the sorting and assembly machinery (SAM) core subunit, Sam50, and 

replaces the last β segment of SAM50 (β16) (Höhr et al., 2018). This induces 

lateral opening of SAM50 between β1 and β16 and the rest of the incoming β-

barrel protein strands are inserted in this opened gate as β-hairpin-like 

structures (Höhr et al., 2018). However, it was shown that this signal is not 

enough for the targeting of β-barrel proteins into mitochondria but only for their 

sorting and insertion after initial translocation across the outer membrane 

through the Tom40 channel (Jores et al., 2016). Instead, a β-hairpin motif was 

found to be the minimal structure needed for the targeting of this type of 
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proteins to mitochondria and the presence of the β-signal is dispensable for 

these to happen (Jores et al., 2016). 

 

Figure 7.1 Putative model for sorting of β-barrel proteins. The insertion of β-barrel proteins in 
the mitochondrial OM is mediated by the recognition of the β-signal of the incoming protein by 
Sam50. This signal replaces the β-signal of Sam50 β16 strand creating an open gate between β1 
and β16 were the rest of the incoming protein is inserted in a β-hairpin-like structure. Finally, the 
new folded β-barrel protein is laterally release to the OM. The sequence of the β-signal is shown on 
the top of the figure. Image modified from (Höhr et al., 2018). 
 

In this chapter, we describe the identification of a conserved ‘β-signal-like 

signal’ present in both Trx1 and TrR1 proteins and other proteins that are in the 

IMS but are not substrates for the Mia40 pathway. The proteins that we found 

sharing such a signal amount to 22% of the total IMS proteome reported in 2012 

(out of a total of 51 proteins). Finally, the influence of a synthetic peptide with 

the sequence of this putative signal on the import of Trx1 was tested. 

Additionally, the construction of single point mutants of the key residues as well 

as a C-terminal deletion lacking the signal were attempted. 

7.2 A possible novel targeting signal into the IMS: β-like 
IMS targeting signal (bITS) 

7.2.1 Bioinformatics analysis of the β-like IMS targeting signal 
(bITS) 

Analysis of the sequence of Trx1, Trx2 and TrR1 showed no classical targeting 

signal (no ITS (section 1.2.6 for the Mia40 pathway), no N18-like signal like the 

Gpx3 signal, and nothing like the Cytb2 bipartite presequence). So, none of the 

known targeting signals for the IMS were present in the sequence of Trx1, Trx2 

and TrR1. After the publication of different studies that found a conserved signal 

(β-signal) responsible for the insertion of β-barrel proteins into the 
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mitochondrial OM (Höhr et al., 2018, Kutik et al., 2008), we found a similar 

sequence that is present in the thiol peroxidase Gpx3, the thiol-reducing protein 

Trx1 and the Trx reductase, TrR1. The typical β-signal present in β-barrel 

proteins consists of a large polar residue (Po), a conserved glycine and two 

hydrophobic residues (Hy) distributed in a consensus motif: Po-X-X-G-X-Hy-X-Hy. 

Whereas the β-signal-like signal, which we called β-IMS Targeting Signal (bITS), 

is identical to the β-signal with the exception that is it contains a polar instead 

of a hydrophobic residue in the last position (panel A Figure 7.2) We then 

performed a detailed analysis of the sequence of all the proteins found in the 

IMS of S. cerevisiae for the presence of such a putative signal. As a result, we 

found that 22% of the proteins in the IMS proteome have exclusively a conserved 

bITS signal (panel B Figure 7.2). Noteworthy, the previously described IMS 

targeting signal (ITS) that is present in substrates of the MIA pathway is 

exclusively present in 21% and the 57% remaining share both signals (panel B 

Figure 7.2). It is important to note that some of the proteins with both signals do 

not possess the canonical signals but variations of them. Furthermore, the 

alignment of all the 11 proteins containing only the bITS, but not the ITS signal, 

show it is highly conserved (panel A Figure 7.2). It is important to mention that 

out of the 11 bITS proteins in the IMS, the adenylate kinase (Adk1) contain two 

putative bITS signals within their sequence (Figure 7.2). This bioinformatics 

analysis shows a highly conserved and wide spread sequence among the IMS 

proteins. Moreover, the import mechanism of most of these proteins is not yet 

known and the fact that they are involved in response to various types of stress 

makes the presence of the bITS signal more interesting and exciting. 
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Figure 7.2 Alignment and distribution of the bITS signal among the IMS proteins. (A) 
Alignment of the main OM β-signal containing proteins (top) and the IMS bITS proteins (bottom). 
The polar (Po), glycine (G) and hydrophobic (Hy) residues are shaded in black and the Hy residue 
in the β-signal that differentiates both signals is shaded in golden. (B) Venn diagram of the 
distribution of both the ITS targeting signal and the putative bITS targeting signal in the proteins 
from the IMS of S. cerevisiae. The percentage of bITS and ITS containing proteins are shown in 
blue and red, respectively.  

Likewise, it is interesting that the bITS-containing proteins differ considerably in 

length and do not appear to have any other sequence homology or any structural 

similarities between them. The latter is clearly seen when comparing the crystal 

structure of Trx1 (panel A Figure 7.3) and Trx2 (panel B Figure 7.3) (which are 

highly homologous), to the non-related peroxidase Gpx3 (panel C Figure 7.3) and 

TrR1 (panel D Figure 7.3). Interestingly, the alignment between these four bITS 

proteins confirms the presence of the signal in these proteins despite their 

structural differences. (panel E Figure 7.3) 
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Figure 7.3 Crystal structures and alignment of the bITS proteins Trx1, Trx2, Gpx3 and TrR1. 
Comparison of the crystal structures from (A) Trx1 (PDB id: 2n5a), (B) Trx2 (PDB id: 2fa4), (C) 
Gpx3 (PDB:3cmi) and (D) TrR1 (PDB: 3itj). The bITS signal is highlighted in pink. (E) Protein 
sequence alignment of Trx1, Trx2, Gpx3 and TrR1, highlighted in red the conserved polar, glycine 
and hydrophobic residues of the bITS and in blue the polar residue in the last position which 
differentiates the β-signal and bITS. 
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The strikingly conserved presence of the bITS signal and its existence in the 

yeast Trx1, Trx2 and TrR1 proteins, prompted us to look for the bITS signal in 

these proteins across different species. Indeed, we found that the bITS sequence 

of both thioredoxin and thioredoxin reductase is highly conserved among 

humans, mice, S. cerevisiae, Arabidopsis thaliana (A. thaliana) and 

Caenorhabditis elegans (C. elegans) (panel A Figure 7.4). Looking in the 3D Xray 

structure of these proteins it was interesting to see that the localisation of the 

bITS signal in Trx was almost identical between the S. cerevisiae proteins Trx1, 

and Trx2 and the human homologue TXN (panel B Figure 7.4), i.e. comprising 

part of a solvent exposed β-turn and a loop. The fact that the sequence and 

localisation of the bITS within different proteins is conserved in evolution 

suggests that it might play an important role. 
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Figure 7.4 Thioredoxin and thioredoxin reductase are highly conserved among species.  (A) 
Sequence alignment of the bITS signal of the isoforms of thioredoxin (top) and thioredoxin 
reductase (bottom) present in S. cerevisiae, human, mice, A. thaliana and C. elegans. (B) Crystal 
structures of Trx1 (PDB id: 2n5a) and Trx2 (PDB id: 2fa4) from S. cerevisiae and the human TXN 
(PDB id: 5dqy). The conserved bITS signal is shown in pink. 
 

7.2.2  First steps for dissecting the involvement of bITS in the 
import of Trx1 into mitochondria  

7.2.2.1 Import of Trx1 in the presence of Gpx3 bITS peptide 

After the identification of bITS in many IMS proteins and its highly conserved 

sequence and localisation among species we started to work on elucidating its 

involvement, if any, on the import of Trx1. As a first approach, we commercially 

synthesised (GeneScript) bITS peptides from Trx1, Gpx3, the β-signal and a 

scrambled version of the Trx1 bITS containing the same amino acids of the 

original sequence but in random positions. We reasoned that if the signal is 
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acting as targeting sequence, the peptide alone might compete with the protein 

for a potential receptor or entry gate. Thus, we performed import experiments 

of recombinant His-tagged Trx1 (Materials and Methods and Figure 6.2) in the 

presence of increasing amounts of the bITS peptide from Gpx3 (panel A Figure 

7.5). We used the import of the in vitro translated 35S-Methionine radiolabelled 

precursor of the matrix-targeted Su9 fused to DHFR (su9-DHFR) as control, given 

that it is imported through the TOM complex and the TIM23 complex, any effect 

that the bITS peptide might exert would indicate alterations in one of the two or 

both pathways (panel B Figure 7.5). Additionally, it was shown that the β-signal 

peptide does not affect the import of β-barrel proteins, but it inhibits the 

formation of an intermediate between the β-protein and Sam50 (Kutik et al., 

2008). Thus, we used the import of porin and the β-signal peptide as a control of 

the correct peptide synthesis (Figure 7.5) expecting no effect on the import of 

porin. Finally, the resulting samples were analysed by Tris-Tricine SDS-PAGE and 

either western blot, for the detection of His-tagged Trx1 using α-His Ab, or 

autoradiography, for the import of Su9-DHFR and porin. The results confirmed 

that the import of the β-barrel protein, porin, is not affected (panel C Figure 

7.5). Furthermore, the import of Su9-DHFR was not affected by any of the 

amounts added of the Gpx3-bITS (panel B Figure 7.5). Strikingly, the import 

levels of Trx1 into WT mitochondria showed a dose-dependent relation with the 

Gpx3 bITS peptide (panel A Figure 7.5). The latter is counterintuitive to what we 

hypothesised. In parallel, the membrane used to detect Trx1 was blotted again 

to determine that loading of the samples was not influencing the result. 

Detection of the abundant matrix protein Hsp70 using rabbit polyclonal anti-

Hsp70 Ab was then carried out and we found that the loading was not 

responsible of the increased import of Trx1 in the presence of gpx3 bITS (lower 

panel A Figure 7.5). These results suggest that the Gpx3 bITS peptide clearly 

influences the import of Trx1, but in a yet unknown manner. A possibility would 

be that the peptide is interacting with a receptor or gate and this triggers 

opening of such a gate. Further analysis needs to be conducted on the 

mechanism of this phenomenon. 
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Figure 7.5 Import of Trx1 in the presence of Gpx3 bITS. (A) Import of 10µg of recombinant His-
tagged Trx1 into WT pure mitochondria pre-incubated 5min with increasing amounts (0 µg, 20 µg, 
40 µg, 80 µg and 160 µg) of the Gpx3 bITS peptide. Western blot was performed using α-His Ab. 
The lower panel shows a western blot for the detection of Hsp70 as loading control. (B) and (C) 
Autoradiography of the import of radiolabelled precursors for (B) Su9-DHFR and (C) porin into WT 
mitochondria in the presence of with increasing amounts (0 µg, 20 µg, 40 µg, 80 µg and 160 µg) of 
(B) the Gpx3 bITS peptide or (C) the β-signal. 
 

Since the Gpx3 bITS peptide has an effect on the import of Trx1, we then tried 

to dissect the importance of the sequence in the protein import as well as that 

of the putative amino acids within the sequence. To achieve this, we created 

primers in order to chop different N- (panel A Figure 7.6) and C-(panel B Figure 

7.6) terminal segments of Trx1 as well as primers for the mutation of the 

residues conserved in the bITS signal, i.e. K79, G81, V84 and K86 (panel C Figure 

7.6). 
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Figure 7.6 Experimental design to elucidate the importance of bITS in the import of Trx1. 
Schematic representation of the different truncated or mutated versions of Trx1. (A) N-terminal 
deletion (grey boxes) of -10 aa, -20 aa, -29 aa and -34 aa. (B) C-terminal deletion (grey boxes) of 
13 aa, -23 aa and -29 aa, this last one chops out the bITS from the protein. (C) Mutagenesis of 
individual amino acids of the bITS sequence: K79A, G81A, V84A and K86A. 
 

With this strategy we first amplified and cloned the -29 aa C-terminal version of 

Trx1, which removes the complete bITS signal, into the pET24b(+) (Novagen) 

plasmid (Materials and Methods). This plasmid allows overexpression of the C-

terminal 6X His-tagged version of any protein cloned in it. The vector with the 

insert was then sequenced to confirm that the coding sequences did not have 

any mutations. Afterwards, the plasmid was used to transform BL21 (DE3) 

bacterial expression cells. The expression of the protein was induced by adding 

0.4mM Isopropyl β-D-1-thiogalactopyranoside (ITPG) for 4h (Material and 

Methods). Unfortunately, the expression was not induced as can be seen in four 

different colonies (Panel A Figure 7.7). We then use the plasmid containing the 

protein to transform another bacterial expression strain, the origami 2 (DE3) 

pLysS (Novagen). Unfortunately, the protein was not expressed either in this 

bacterial strain (Figure 7.7). 
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Figure 7.7 Induction of expression of N-terminal-29 aa Trx1. IPTG (0.4mM) induction of the 
expression of -29 aa C-terminal version of Trx1 on (A) BL21 (DE3) bacterial expression cells and 
(B) origami 2 (DE3) pLysS. 
 

In parallel, mutagenesis to alanine of the individual conserved residues of the 

bITS signal was performed in collaboration with Marie Safner in our lab. The 

primers listed in (Material and Methods) were used to amplify the mutant 

versions of the WT Trx1 protein cloned into the pET24b(+) plasmid (panel C 

Figure 7.6). The sequencing results showed that three out of the four intended 

mutants were correct (Figure 7.8). However, we faced the same expression 

problem as for the C-terminal -29aa Trx1. 
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Figure 7.8 Alignment of the mutations of the conserved residues in bITS. Positive sequencing 
results of the mutagenesis of the individual bITS residues: (A) K79A, (B) G81A and (C) K86A. The 
C-terminal end of Trx1 is shown and the black boxes on each panel highlights the mutation and 
shows the original and mutated codons. 
 

7.2.2.2 Import channel involved in the translocation of Trx1 into yeast 
mitochondria 

In parallel with creating the tools to elucidate the sequence that drives Trx1 and 

potentially other proteins into mitochondria, we started to work on elucidating 

the channel that is involved in the translocation of this protein, and probably a 

considerable set of other proteins that are also targeted to the IMS. Since the 

bITS sequence resembles the β-signal which interacts with the Sam50 protein, 

we hypothesised that this channel might also be involved in the import of Trx1. 

The involvement of Sam50 as a direct entry gate for any protein has not yet 

been demonstrated and is a challenging concept. All proteins destined for 

mitochondria are translocated first through the Tom40, so we wanted to explore 

this possibility first. We used yeast temperature sensitive (Ts) mutant strains for 

Tom40, gifted by Dr. Thomas Becker from Freiburg University. This S. cerevisiase 

strain (Becker et al., 2011, Wenz et al., 2014) have been transformed with a 

plasmid that conditions the expression of the protein of interest depending on 
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the temperature at which the yeast is grown. A switch to non-permissive 

temperature (37°C) represses the expression of the protein and decreases its 

levels. This is an important strategy in particular for essential proteins such as 

Tom40, for which a complete gene deletion in the yeast is inviable. We obtained 

three different yeast strains, one strain transformed with an empty plasmid to 

rule out any influence by the transformation or the vector in the expression of 

the protein. The other two strains (named 25 and 34) were different TsTom40 

yeast strains generated by Dr. Becker’s group. Briefly, we grew the yeast until 

log phase at the permissive temperature 24°C and then switched it to the non-

permissive 37°C for 8h further hours as recommended by Dr. Becker. 

Afterwards, we isolated pure mitochondria (Materials and Methods) and 

performed import experiments (Materials and Methods) of 35S-Methionine 

radiolabelled precursors of proteins that are known to depend on the Tom40 

channel for their translocation. These control proteins included the matrix-

targeted protein Su9-DHFR (panel A Figure 7.9) and the IMS protein Mia40 (panel 

B Figure 7.9). We got some variable results for these two proteins. The import of 

Su9-DHFR was impaired in both TsTom40 strains as expected (compare lane 2 

with lanes 3 and 4 panel A Figure 7.9), but the import of Mia40 was not affected 

(panel B Figure 7.9). At the same time, we performed import experiments using 

the 6X His-tagged recombinant versions of both Trx1 (panel C Figure 7.9) and 

Trx2 (panel D Figure 7.9) into mitochondria from the three Tstom40 strains and 

found no differences on the import levels of Trx2. However, and quite 

unexpectedly, an increase on the import of Trx1 was observed (panel C Figure 

7.9). Despite the results on the import of Trx1 and Trx2, the fact that the 

control of Mia40 did not work as expected made those results non-conclusive. In 

parallel, we performed western blot analysis to detect the steady state levels of 

Tom40 in the three TsTom40 mutants (WT, 25 and 34) and the non-transformed 

yeast parental strain D273-10B (referred as WT). Surprisingly, we saw no 

differences in the levels of Tom40 in these strains suggesting the expression of 

Tom40 was not repressed by the temperature switch.  
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Figure 7.9 Test of a TsTom40 yeast strain. (A-B) Autoradiography of import experiments into 
isolated mitochondria from WT TsTom40 yeast and the two mutants 25 TsTom40 and 34 
TsTom40. (A) Su9-DHFR and (B) Mia40. (C-D) Western blot and immunodecoration with anti-His 
Ab of the import into isolated mitochondria from WT TsTom40 yeast. (C) Trx1 and (D) Trx2. (E) 
Western blot analysis of mitochondria isolated from D273-10B (WT) yeast, WT TsTom40 yeast and 
the two mutants 25 TsTom40 and 34 TsTom40. Immunodetection with polyclonal anti-Tom40 Ab. 
 

After the previous results where we did not get decreased expression of Tom40, 

we used a different, yet similar approach. We now include the Sam50 to 

compare the effect that the decreased expression of these two essential channel 

proteins have on the import of Trx1. We commercially obtained Tom40 and 
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Sam50 yTHC yeast strain (GE Dharmacon) in which the promoter was substituted 

by a Tet-promoter. This allows the gene to be switched off by adding 

doxycycline in the yeast growth media. As a first step, I titrated the 

concentration of doxycycline needed to repress the expression of Tom40 and 

Sam50. The yeast strains were grown in YPD (Materials and Methods) o/n to get 

a saturated culture. Then, both cultures were diluted to 0.05 OD and left to 

grow for 14h at which time different concentrations of doxycycline were added 

(5µg/ml, 10µg/ml and 20µg/ml). The cells were left to grow for further 8h to 

ensure protein repression. The results show that repression of the expression of 

is achieved when adding 5µg/ml (Tom40) and 20µg/ml (Sam50) of doxycycline to 

the media. The detection of Sam50 was indirect as we lacked an anti-Sam50 Ab, 

instead we use the levels of the β-barrel protein porin, which depends on Sam50 

for its insertion (Kutik et al., 2008). The expression of Tom40 was inhibited with 

as low as 5µg/ml doxycycline (panel A Figure 7.10), whereas the inhibition of 

Sam50 was observed at 20µg/ml doxycycline (panel B Figure 7.10).  

 

Figure 7.10 yTHCTom40 and yTHCSam50 repression strains.  Doxycycline-induced repression 
with 0µg/ml, 5 µg/ml, 10 µg/ml and 20 µg/ml doxycycline of (A) Tom40 and (B) Sam50. 
Immunodecoration with Anti-Tom40 and Anti-porin (for the indirect detection of Sam50).  
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7.3 Discussion 

In this chapter, based on the β-signal, which drives the insertion of β-barrel 

proteins into the mitochondrial OM (Kutik et al., 2008), we found a putative β-

signal- like sequence which is present in a considerable proportion (22%) of 

proteins residing in the mitochondrial IMS (Vögtle et al., 2017). This signal, 

which we call the bITS signal is identical to the β-signal with the exception that 

it contains a polar instead of a hydrophobic residue in the last position. 

Furthermore, bioinformatics analysis showed that bITS is conserved through 

evolution as we found it to be present in different species from bacteria to yeast 

and to humans. In addition, the bITS is found in a loop in different proteins that 

do not share structure or function similarities. Thus, although not conclusive, 

the characteristics of bITS found in this analysis lead us to reasoned that it might 

be involved in the import and/or sorting of proteins like Trx1. We then started 

to test the involvement of bITS in the import of Trx1 but failed in our attempts 

so far to express single point mutant versions of the consensus motif in Trx1 as 

well as a C-terminal deletion in which the bITS signal was removed in the same 

protein. This result was surprising as the expression of Trx1 is used as expression 

enhancer for low expressed proteins. We reasoned that these mutations or 

deletions within the protein affect the its stability and thus, the lack of 

expression. Different approaches which will include the use of new primers pair 

and a different plasmid like pSP6 for in vitro translation would be performed.  

In addition, we commercially synthesised bITS peptides and used them in 

competition import experiments. Strikingly, the addition of Gpx3 bITS signal 

appears to enhance the import of Trx1. As it can be seen in Figure 7.5, the 

control using triton-x 100 did not seem to work. However, if comparing this lane 

with that of the loading control, we found that the protein there, Hsp70 which 

resides in the matrix, cannot be detected because it was digested by the 

Protease K, which suggests that the protease was functional and that the band 

seen after the import might be due to the protein being in a tightly folded 

conformation. 

Finally, we are looking for the influence that two major channels in the cell, 

Tom40 and Sam50, might exert in the import of Trx1. It is interesting to note 

that both channels have their own particular characteristics like the pore size, 
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which is wider in Sam50, but represents the entry point into mitochondria. To do 

so we established the optimum conditions for the inducible repression of these 

two essential proteins to further test if the import of Trx1 depends on one or the 

other channel.  

The first steps on elucidating the import into mitochondria of the thioredoxin, 

which plays a crucial role in the regulation of import via the MIA pathway, have 

been made and further analysis making use of these tools will be required to 

achieve this task. 
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Chapter 8 Conclusions and future work 

8.1 Summary and conclusions 

This work studied the molecular and mechanistic links between redox 

perturbations and protein biogenesis in mitochondria. Furthermore, it 

investigated the localisation and function of the thioredoxin system as the main 

reductive pathway that controls the redox balance in the mitochondrial 

intermembrane space. To achieve the latter, we used mutants of the model 

organism yeast S. cerevisiae. These mutants were defective in mechanisms or 

intermediates involved in the reductive machinery of the cell. Hence, we used 

mutants of the main source of cytosolic NADPH, the glucose-6-phosphate 

dehydrogenase (Δzwf1, here called Δg6pd), the two cytosolic thioredoxins 

(Δtrx1/2), the cytosolic Trx reductase (Δtrr1) and the first enzyme involved in 

the synthesis of GSH (Δgsh1). 

In the first chapter we characterised the yeast mutant strains. It was shown that 

Δg6pd, Δtrx1/2 and Δgsh1 had growth defects when incubated on the non-

fermentable media YPLac (Figure 4.2). This result confirmed that the yeasts 

were defective in handling respiratory conditions, in which ROS are generated 

(Lee et al., 2001, Minard and McAlister-Henn, 2005). Noteworthy is that the 

sharpest growth defect observed was in Δg6pd, probably due to the fact that 

NADPH feeds the two main thiol-reductive pathways, the Grx and Trx systems, 

which make this yeast strain more sensitive to respiratory conditions (Fernandes 

and Holmgren, 2004, Lu and Holmgren, 2014). In this sense, the levels of NADP+ 

and NADPH were also measured and it was found that the individual levels of 

both dinucleotides are increased as compared to those of WT. However, when 

the NADP+/NADPH ratio were compared between the different yeast strains we 

found did not find differences between the WT and the Δg6pd yeast. Unlike 

Δg6pd yeast, Δtrx1/2 and Δgsh1 had higher ratio than that of WT which means 

higher presence of the oxidised form of NADP in relation to the reduced form 

and is consistent with the overlapping role of the proteins deleted in both strains 

(Grant, 2001, Trotter and Grant, 2005). Conversely, the NADP+/NADPH ratio in 

Δtrr1 yeast was lower which indicates that is polarised towards the reduced 

form of NADP. An explanation for this is that under these conditions Trx might 

be more oxidised and the cell is sensing this and attempts to equilibrate this 
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oxidative state of Trx by increasing the relative amounts of NADPH. However, 

the determination of the redox state of Trx1, Trx2 and Trx3 is needed to probe 

if this is assumption is true. 

Finally, as an indication of the mitochondrial function, the inner membrane Δψ 

was measured in the yeast mutant strains. The results showed that Δg6pd, 

Δtrx1/2 and Δtrr1 yeast have lower Δψ than the WT which is consistent with the 

fact that disruptions on Δψ have been reported to be associated with 

accumulation of ROS and these strains are not effective in handling such species 

(Grant, 2001, Minard et al., 1998, Minard and McAlister-Henn, 2005). Taken 

together the results on this characterisation chapter showed that the Δg6pd, 

Δtrx1/2 and Δgsh1 mutant yeast strains are sensitive to respiratory conditions, 

which is an indirect indication of reduced capacity to handle ROS challenge. 

Afterwards, we chose the yeast strain with the sharpest growth defect, the 

Δg6pd strain, as representative of a wider reductive imbalance to test the levels 

of proteins and the import capacity of mitochondria isolated from this strain. We 

found that specifically steady state levels and import levels of substrates of the 

MIA import pathway into the mitochondrial IMS were decreased. In addition, we 

found that the redox state of the main effector of this import pathway, the 

oxidoreductase Mia40, was unbalanced towards the oxidised form These results 

lead us to conclude that mitochondria derived from Δg6pd have reduced import 

capacity for classical substrates of MIA pathway because the redox state of 

Mia40 is polarised towards the oxidative form. The latter is supported by the 

fact that both yeast Mia40 and its human homolog (CHCHD4) is in a balanced 

state between the reductive and oxidative forms (Erdogan et al., 2018, Kojer et 

al., 2012). Furthermore, these results meant that a reductive mechanism in the 

IMS must interact and regulate the redox state of Mia40. 

Hence, based on the recent identification of members of the Trx system in the 

mitochondrial IMS (Vögtle et al., 2012) we hypothesised that this system was 

such a reductive pathway. Indeed, the results in Chapter 6 show that both Trx1 

and TrR1 are imported into mitochondria and interact both in vitro and in 

organello with Mia40 as seen by cross-linking experiments and the reduction of 

Mia40 in Δg6pd mitochondria back to WT Mia40 redox balanced state when the 

Trx system was pre-imported into mitochondria. We also found that the pre-
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import of the Trx system in the mitochondria with decreased import capacity 

helps, in some extent, to restore this altered import capacity. Thus, we suggest 

that the Trx system is the main import system in the mitochondrial IMS. 

Finally, we tried to discover and characterise the import mechanism of Trx1 into 

mitochondria. We found a putative signal present in Trx1 and share with 22% of 

the total (51) IMS proteome. This signal resembles the signal that drives the 

insertion of β-barrel proteins into the mitochondrial OM with the difference that 

the last amino acid of that β-signal and the signal that we found (which we call 

bITS) is hydrophobic (β-signal) instead of polar (bITS). Bioinformatics analysis 

revealed that this signal is conserved among species and is shared by proteins 

with no structural similarity. Furthermore, preliminary results showed that the 

bITS signal might have an effect on the import of Trx1 into mitochondria. 

Interestingly, another bITS-protein, the peroxidase Gpx3 appears to drive the 

import into mitochondria of a folded cargo. However, more work on this needs 

to be done. 

In addition, we propose a model of redox regulation of the import of proteins 

targeted to the mitochondrial IMS in which the redox state of Mia40 serves as a 

sensor for the import or not of these proteins. The schematic representation of 

such a model is shown in Figure 8.1. We propose that under normal conditions 

(panel A Figure 8.1), the cytosolic Trx system aids the translocation of protein 

precursors (Durigon et al., 2012). Once in the IMS, the precursors are oxidised 

and folded by Mia40 as previously described (Banci et al., 2009, Chacinska et al., 

2004, Mesecke et al., 2005, Sideris et al., 2009). The latter is possible in a 

scenario where Mia40 resides in a balanced state between its reducing and 

oxidising forms due to the interaction with Erv1, Gpx3 and Hot13 (oxidising 

form) and the Trx system probably with cooperation from GSH (reducing form). 

However, under conditions where the redox state of Mia40 is mainly oxidised 

(panel B Figure 8.1), the import of these proteins is blocked. Even though, the 

protein precursors might also be affected in the cytosol, it has been shown that 

other NADPH-sources take over the generation of NADPH in the absence of g6pd 

(Grabowska and Chelstowska, 2003, Minard et al., 1998, Minard and McAlister-

Henn, 2001, Minard and McAlister-Henn, 2005). Furthermore, our results showed 

no differences between the NADP+/NADPH ratio of Δg6pd yeast and that of WT 
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yeast. In addition, we showed that the import capacity of Mia40 is affected 

when more oxidised in a system that bypasses the need of the cytosolic 

machinery (in organello).  

 

Figure 8.1 Proposed model for the regulation of protein import by the redox state Mia40. (A) 
Under normal conditions, protein precursors are helped by cytosolic thioredoxins to translocate into 
the mitochondrial IMS where they are oxidised and folded by the interaction with Mia40 which is 
kept in a functional balanced state between its oxidising (by Erv1, Gpx3 and Hot13) and reducing 
forms (by the Trx system). (B) When glucose-6-phosphate dehydrogenase is depleted, the import 
capacity of mitochondria is decreased because Mia40 is in a polarised redox state towards the 
oxidising form. Thus, the redox state of Mia40 acts as a sensor for the regulation of the import of 
proteins into the IMS. 
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8.2 Future work 

In order to support the model proposed, a more detailed analysis of the 

interacting surfaces between Mia40 and Trx1 would require either trypsinolysis 

and mass spectrometry analysis after the crosslinking, or a high-resolution 

structural analysis of the complex. Furthermore, optimisation of the 

determination of import capacity after pre-imported Trx system is crucial to test 

how this system affects not only the redox state of Mia40, but also that of other 

proteins such as members of the Trx system itself. Additionally, the construction 

of probes like the ones used by Kojer et al but with the thioredoxin reductase 

might be a powerful tool to determine the levels of NADPH in the different 

cellular compartments and if this cofactor can be transported through the 

mitochondrial OM. 

Another important tool would be the expression of an exclusively IMS-targeted 

version of Trx1 to show if such a model is true in vivo. The latter would be 

complemented with the expression of the human version of Trx1 to test if the 

effect is conserved. 

The elucidation of the import mechanism by which Trx1 is targeted into the 

mitochondria represents a major challenge. However, the successful expression 

and purification of recombinant proteins to test the involvement of the proposed 

bITS sequence is critical. Alongside with that, blue native gels after the import 

of Trx1 to determine if it is associated to an import complex. In addition, 

pulldown experiments with Cys trap mutants of Trx1 to possibly confirm an 

interaction with Mia40 would be of major importance. 

In addition, import experiments of Trx1 in the conditional Tom40 and Sam50 

mutants to determine the influences of both channels in the translocation of 

Trx1 across the OM. Another important experiment would be to test the 

influence of the small Tims complex as they are involved in sorting of proteins 

into the IMS and the outer and inner membrane. 
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Appendix 

List of Publications 

• CARDENAS-RODRIGUEZ, M., CHATZI, A. & TOKATLIDIS, K. 2018. Iron–sulfur 

clusters: from metals through mitochondria biogenesis to disease. JBIC 

Journal of Biological Inorganic Chemistry, 23, 509-520. 

• CARDENAS-RODRIGUEZ, M. & TOKATLIDIS, K. 2017. Cytosolic redox 

components regulate protein homeostasis via additional localisation in the 

mitochondrial intermembrane space. FEBS Lett, 591, 2661-2670. 
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