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Abstract  
This work reports a route to the realisation of GaN metal oxide semiconductor capacitors 

(MOSCAPs) where the GaN surface has not been exposed to atmosphere. This has been 

achieved by the deposition of a 5nm SiNx “capping” layer as the final part of the GaN on Si 

MOSCAP wafer growth to encapsulate the GaN surface, followed by its removal in a 

“cluster” plasma processing tool, which enables both etching of samples and subsequent 

dielectric and metal deposition without atmospheric exposure between process steps. 

Capacitance-voltage hysteresis, DHysteresis, of 90mV and frequency dispersion, DDispersion, of 

150mV were achieved from samples where the SiNx capping layer was etched and then 

transferred under vacuum prior to atomic layer deposition (ALD) of a 20 nm Al2O3 gate 

dielectric. These were lower than the previously reported values of 250mV and 350mV 

respectively for GaN-Al2O3 MOS capacitors where the GaN surface had been exposed to 

atmosphere. The effects of N2 and H2 plasma treatments after SiNx etch and prior to Al2O3 

deposition were examined. Exposure to a 150W N2 plasma for 5 minutes produced DHysteresis 

and DDispersion of 200mV and 250mV respectively, both of which reduced to 60mVafter 

forming gas annealing (FGA) in 10% H2/90% N2 for 30 minutes at 430oC. The insertion of an 

ALD grown AlN interlayer between an air exposed GaN surface and the Al2O3 gate dielectric 

resulted in 50mV  DHysteresis and DDispersion. However, when the process was transferred to 

samples that went through the SiNx etch and optimised N2 plasma pretreatment, both  

DHysteresis and DDispersion increased to 500mV. The effect of ALD deposition of a TiN gate metal 

after Al2O3 gate dielectric was also examined.  SiNx capped samples were first etched in the 

cluster tool before transfer to the ALD chamber in which a 20nm Al2O3 gate dielectric was 

deposited.  This was followed by atomic layer deposition of 20nm TiN gate metal. DHysteresis 

and DDispersion of 550mV and 400mV respectively were obtained. These samples had a 

capacitance-voltage slope which was 155% higher than otherwise comparable structures 

with Pt/Au gate metal.  In conclusion the reductions in DHysteresis and DDispersion achieved in 

this work during in-situ etching and ALD are encouraging for the realisation of high power 

GaN devices.
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1. Introduction 
 

1.1 Background  
Today’s society relishes the comforts of communication, transport, light and other tangible 

benefits thanks to the production of electrical energy. Currently electrical energy amounts 

to 40% of worldwide energy consumption [1]. However, because humankind relies greatly 

on its usage, we are currently faced with two significant obstacles [2]. Firstly, due to the 

increase in population the energy consumption is expected to rise by 48% within the next 

30 years [3]. Secondly, the rise in levels of carbon dioxide in the atmosphere as a 

consequence of the higher energy usage can result in climate change, the adverse effects 

of which include damage to vegetation, the melting of polar ice caps and loss of habitats 

for wildlife. Therefore, ways of mitigating the effects of these obstacles is of utmost 

importance [4]. 

 

The USA currently has the highest per capita emission of CO2 in the world, as Illustrated in 

Figure 1.1.1, which shows an energy flow diagram from 2016 displaying the sources of 

electricity on the left hand side and the end-use energy consumption on the right hand side 

[5]. It can be seen that from electricity generation to its utilisation, out of the 37.5 quadrillion 

British thermal units (quads) of energy consumed, 24.9 quads of it has been rejected. 

Therefore 66.4% of energy has been wasted, making electricity generation only 33.6% 

efficient.  It can also be observed from Figure 1.1.1 that the majority of energy produced 

to date is generated by burning fossil fuels, which are the biggest contributors to 

atmospheric CO2 increase. Lastly, the USA’s total energy consumption amounts to 97.2 

quads with a total energy rejection amounting to 66.4 quads, i.e., more than half the energy 

generated (68.2%) has been wasted. Thus, to reduce such high power wastage and to keep 

CO2 emissions to a minimum, considerable improvements should be made, from the 

sources of electricity generation to power delivery and conversion. 
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The usage of cleaner renewable energy sources such as wind and solar, replacement of 

incandescent lights with light emitting diodes (LEDs) and use of environmentally friendly 

electric vehicles can assist in reducing the emission of CO2 
[6]. However, before electricity 

reaches the end user it goes through various power electronic converters. These converters 

are enabled by devices that fall under the branch of engineering known as power 

electronics. Power electronics are responsible for controlling and conditioning electrical 

energy from the source to the load. Thus, advancements of these technologies play a 

critical role in increasing further the efficiency of energy conversion. Through the 

widespread adoption of efficient load architectures that are controlled by power 

electronics it is predicted that a 25% decrease in the worldwide annual energy consumption 

can be made [6]. 

 

The operation of a power electronic device is essentially that of a switch and operates 

between an ON and OFF state. During the application of a voltage the device turns ON and 

conducts current through it. The main energy losses associated with a power electronic 

device are switching losses and conduction losses. Switching loses occur during transitions, 

1 BTU = 1.055 X 1018 joules 

Figure 1.1.1: Energy Flow chart [5]  
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when the device is being turned OFF or ON, and conduction losses occur during the ON or 

OFF state. Advancements in reducing these losses is key to energy efficient power 

conversion.  

 

1.2 Comparison of semiconductor material 
To date Silicon transistors have been the most widely used devices in power electronics. 

However, research on wide band gap (WBG) materials such as Silicon Carbide (SiC) and 

Gallium Nitride (GaN) show they have the fundamental properties that suggest power 

transistors realised from these materials will be able to surpass the performance of Si-

based devices. Table 1.2.1 summarises a comparison between the properties of silicon and 

other semiconductor materials. 

 

 

These material parameters can be translated in to an estimation of device characteristics 

by calculating their theoretical performances, which are discussed in detail below. 

However, it is important that the basic operation of a field effect transistor (FET), a key 

power electronics component, and its architecture be defined. Figure 1.2.1 illustrates the 

cross-section of a GaN-based FET, further details of the layer structure will be discussed in 

section 3. The device contains three terminals; namely source, drain and gate and a 

conducting channel through which carriers flow from the source to the drain. A current 

flow in the channel is created when a voltage is applied between the source and the drain, 

Vds and the flow of carriers beneath the gate is controlled by the voltage applied at the gate 

terminal, Vgs.   

Semiconductor 
Material 

Band gap 
eV 

Electron 
Mobility 

 µ 
cm2/V-s 

Hole 
Mobility 

 µ 
cm2/V-s 

Relative 
Dielectric 
constant  

Ɛ 

Critical 
Electric 
Field Ecl 
(MV/cm)  

Baliga 
Figure of 

Merit 
BFOM 

Si 1.12 1360 480 11.7 0.3 1 

GaAs 1.43 8500 400 13.1 0.4 17 

SiC 3.26 700 120 9.7 2.2 134 

GaN 3.45 900 
1880-
2000a 

200 8.9 3.3 537 
1480a 

Table 1.2.1: Comparison of material properties between silicon [7]  
a Electron mobility when used in heterostructure  
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1.2.1 Breakdown voltage 

Breakdown voltage is the maximum allowable voltage that a device can sustain. It occurs 

when the electric field applied reaches the critical electric field and is brought about by the 

onset of impact ionisation [8]. It is the phenomenon where electron-hole pairs are 

generated as a result of energy gained from the electric field. These pairs participate in the 

creation of additional pairs and the process continues eventually leading to a large and 

uncontrolled current flow. This results in the device unable to sustain a further increase in 

the applied voltage and is said to undergo avalanche breakdown [8].  

 

As seen in table 1.2.1, gallium nitride has a critical electric field that is approximately 10 

times that of silicon and is therefore able to reach higher breakdown voltages.   

 

1.2.2 Efficiency 

1.2.2(a) Devices realised with gallium nitride are capable of achieving high conversion 

efficiency due to the low conduction losses arising from them. The power loss during 

conduction is shown in equation 1.1. The on-resistance of the transistor, (RDS(on)) is the 

resistance between the terminals when the transistor is conducting. To reduce the 

Figure 1.2.1: Cross-section of a transistor  

Buffer layer 

  Si substrate 

Nucleation layer 

Source Drain 
Gate 

GaN 

AlGaN 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Channel 

Vgs 
Vds 
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conduction losses, it is essential that R"#(%&) is minimised. Expressed in equation 1.2 is the 

formula for the theoretical R"#(%&)of the transistor, of which the denominator is known as 

the Baliga figure of merit (BFOM) and it is indicative of the conduction losses. A higher 

BFOM results in lower RDS(on). GaN has the highest BFOM when compared to the other 

materials presented in table 1 and therefore in theory would produce the lowest on 

resistance and hence the lowest conduction losses.  

P)*++ = 	 I)/R"#%& [9]                                                                                                                  1.1 

R"#(%&) = BV2/qµQsE
2
cl  [10]                                                                                                    1.2   

             

P)*++ = Power	dissipation, 	I) = Drain	current,		 
R"#%& = On − resistance, BV = Breakdown	voltage, q = 	charge, µ = 	mobility	, EQR =

	Critical	electric	field, Q# = sheet	carier	density	  
 

1.2.2(b) The carrier concentration and mobility of GaN based devices can be further 

increased compared to bulk GaN by incorporating a heterostructure with an undoped layer 

of AlGaN grown on GaN. This is a result of a high electron concentration at the AlGaN/GaN 

interface that occurs due to their material properties [11]. A spontaneous polarisation (PSP) 

exists in both the materials and is a consequence of the high electronegativity of nitrogen 

that causes sheet charge densities of opposing polarity to exist in the crystal as illustrated 

in Figure 1.2.2 1(i). The AlGaN layer when grown on GaN is strained due to the difference 

in the lattice constants between these materials, causing a piezoelectric polarisation (PPE) 

to occur and this contributes to another sheet charge density in AlGaN. This give rise to the 

net electric field, Enet shown in Figure 1.2.2.1(ii). The surface of a non-ideal AlGaN consists 

of donor-like states [12]. If the AlGaN layer thickness (tAlGaN) is greater than some critical 

value (tcrit), the surface states reach the Fermi level to compensate the net electric field 

present as shown in Figure 1.2.2.1(iii) and (iv). Electrons are then transferred from the 

occupied surface states to the conduction band at the interface. The confinement of 

electrons in a quantum well separates spatially the carriers from the ionised donors. This 

results in the increase in mobility of the carriers because they are not affected by ionised 

impurity scattering. The increase in carrier concentration and mobility is illustrated in the 

graph shown in Figure 1.2.2.2 The resulting channel of electrons is 2 dimensional because 

the thickness of this channel is much lower in comparison to its length and width, hence it 

is named a 2 dimensional electron gas (2DEG). Thus, the existence of the 2DEG with highly 
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mobile carriers gives rise to a high electron mobility transistor (HEMT). The increase in 

mobility of the charge carriers further reduces RON as can be seen on equation 2.2.2.  

 

 
 

 
 

  

                                               

                                           
 
        

 

Ec 
Ef 

Ev 
AlGaN GaN 

tAlGaN 

 

 

 

 

2DEG 

Ec 

Ev 

Ef 
AlGaN 
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AlGaN 

+++++++++++++++++++++++++ 
- - - - - - - - - - - - - - - - - - - - - - - - 

++++++++++++++++++++++++
+ 

 

 GaN 
- - - - - - - - - - - - - - - - - -  

Surface states 

AlGaN 
- - - - - - - - - - - - - - - - - - - - - - -  

++++++++++++++++++++++++ 

Psp 
GaN 

- - - - - - - - - - - - - - - - - - - - - - -  

++++++++++++++++++++++++ 
PPE Psp 

Figure 1.2.2.1 (i) Spontaneous and piezoelectric induced charges, (ii) Net polarization 

charge (iii) Band Diagram of AlGaN/GaN before and after critical thickness is reached (iv) 

AlGaN/ GaN with net polarization charge, surface states and 2DEG 

(i) (ii) 

(iii) 

Ec= Conduction band, Ev= Valence band, Ef= Fermi level, Enet= Net electric field, tAlGaN= 

Thickness of AlGaN, tcrit= Critical thickness 
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1.2.3 Size and Cost 

Given in equation 1.3 is the relationship between breakdown voltage and source-drain gap, 

which is the distance between the source and drain terminals. It can be seen that the 

breakdown voltage is proportion to the drift width. From the parameters given in table 

1.2.1, to achieve the same breakdown voltage as that of Si, the drift region of GaN can be 

made 10 times smaller due to the high critical electric field, thus a reduction in the size of 

GaN devices can be made.  

 

 BV = 		 U
/
Wdrift. Ecl [10]                                                                                                           1.3 

W)X*YZ = source	drain	gap 

 

Further, growth of GaN-on-GaN epitaxy is expensive and can only be grown on small 

diameter substrates [14]. Therefore, the growth of GaN is carried out on foreign substrates 

such as silicon carbide, sapphire and silicon. By producing GaN on Si substrates, which are 

already available at low cost and in large diameters, the raw material cost can be kept to a 

minimum and a higher number of devices can be produced from each wafer reducing the 

cost per device. 

 

hours of finishing the growth, to avoid aging effects. The Al
composition, which was 32% throughout the study, and the
growth rates, were deduced from x-ray diffraction measure-
ments of an AlGaN/GaN superlattice calibration sample. The
material quality was further assessed by transmission elec-
tron microscopy !TEM" and secondary ion mass spectrom-
etry !SIMS".

Simulations of the band diagram and the free carrier dis-
tribution of the heterostructures were performed with a self-
consistent one-dimensional Schrödinger–Poisson solver.12
The following material parameters were used: The band gap
of AlxGa1!xN at room temperature given by Eg(x)
"x6.2 eV#(1!x)3.4 eV!x(1!x)1.0 eV, conduction-
band offset #EC"0.7$Eg(x)!Eg(0)%,13,14 and dielectric
constant &r(x)"8.9!0.4x .15,16 The effect of exchange cor-
relation on Coulomb interaction was neglected, as this has
been shown not to affect sheet carrier densities in AlGaN/
GaN heterostructures.17 The background donor concentration
of the GaN and AlGaN layers was set to zero, based on
SIMS observations, and on resistivity measurements of
nominally undoped GaN grown in our reactor.11

III. RESULTS

In the first series of heterostructures, single Al0.32Ga0.68N
layers were deposited on semi-insulating GaN base layers,
and the AlGaN thickness was varied between 5 nm and 40
nm. Figure 1 shows the resulting sheet carrier density and
Hall mobility, as a function of the AlGaN thickness. Between
5 nm and 10 nm, the sheet carrier density increased rapidly
from 2.6$1012 cm!2 to 1.03$1013 cm!2. However, beyond
10 nm, the sheet carrier density increased slower, reaching
1.45$1013 cm!2 for a thickness of 40 nm. The Hall mobility
showed the opposite trend to the sheet carrier density, for
AlGaN thicknesses above 5 nm, with values decreasing from
1700 cm2/V s at 7.5 nm, down to 1250 cm2/V s at 40 nm.

The second series consisted of GaN/AlGaN/GaN hetero-
structures, with a GaN cap layer thickness varying between 3

nm and 228 nm, and a fixed AlGaN layer thickness of 20 nm.
The resulting sheet carrier densities and Hall mobilities are
plotted in Fig. 2, as a function of the GaN cap layer thick-
ness. The presence of the GaN cap layer resulted in a reduc-
tion of the sheet carrier density, from 1.29$1013 cm!2 with
no GaN cap, down to 5.9$1012 cm!2 with a 30 nm cap
layer. For a 228 nm thick GaN cap layer, the sheet carrier
density was 7$1012 cm!2. It was observed that the samples
with GaN cap layers of thickness between 13 nm and 30 nm
were sensitive to the measurement conditions. For a probe
current of 0.1 mA, the measured sheet carrier densities de-
creased during consecutive measurements, in some cases up
to 30%. The effect was reduced for lower probe currents. The
Hall mobilities roughly followed the same trend as was ob-
served for the first series, with increasing values for decreas-
ing sheet carrier densities.

In the third series, the GaN cap layer thickness was kept
constant at 228 nm, while the AlGaN layer thickness was
varied between 20 nm and 50 nm. Figure 3 shows the result-
ing sheet carrier density and Hall mobility, as a function of
the AlGaN thickness. The sheet carrier density increased
with increasing AlGaN thickness, from 7$1012 cm!2 for 20
nm AlGaN thickness to 1.24$1013 cm!2 for 50 nm AlGaN
thickness. Again, as was observed in the previous two series,
the Hall mobility decreased as the sheet carrier density in-
creased. TEM was performed on the sample with 50 nm
AlGaN thickness to confirm that the AlGaN layer and the
GaN cap layer were fully strained to the underlying GaN
base layer. The resulting cross-sectional TEM image, Fig. 4,
shows negligible relaxation and no additional extended de-
fects generated in the AlGaN layer or in the GaN cap layer.

SIMS investigations were performed, monitoring the
standard impurities, on a sample with 50 nm buried
Al0.32Ga0.68N and GaN layers, grown under conditions iden-
tical to the low growth-rate layers in the measured hetero-
structures. Impurity concentrations of 2.2$1017 cm!3 car-
bon, 1.7$1017 cm!3 oxygen, and 4$1016 cm!3 silicon,
were detected in the AlGaN layer, while the GaN layer
showed impurity concentrations of 5$1016 cm!3 carbon, 8

FIG. 1. The influence of AlGaN thickness on sheet carrier density and Hall
mobility, for AlGaN/GaN single heterostructure. The black lines are simu-
lation fits; the solid line assuming no point defects in the structure, the
dashed line using a shallow acceptor concentration in the AlGaN layer as a
fitting parameter. The gray line is a guide for the eyes.

FIG. 2. The effect of GaN cap layer thickness on sheet carrier density and
Hall mobility, for a GaN/AlGaN/GaN heterostructure with a fixed AlGaN
layer thickness of 20 nm. The black solid line is a fit to simulations, and the
gray line connecting the Hall mobility points is a guide for the eyes.

10115J. Appl. Phys., Vol. 93, No. 12, 15 June 2003 Heikman et al.

Downloaded 21 Sep 2003 to 128.111.74.212. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp

Figure 1.2.2.2: Effect of AlGaN thickness on carrier concentration and mobility [13] 
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In conclusion, due to higher efficiency along with the added benefits of the lower cost 

and size, devices realised using GaN could therefore outperform Si-based devices. 

Consequently, with the widespread (>90%) adoption of GaN-based electronics, significant 

energy savings in the following areas can be made [6]: 

• 12% in transportation (motors in electric vehicles, trains etc) 

• 20% in consumer electronics 

• 8% in lighting (in combination with GaN LEDs) 

• 20% in IT infrastructure (power distribution in server farms etc) 

  

1.3 Key Challenges  
Despite the superior material qualities of GaN, certain issues need to be addressed before 

these technologies replace Si-based devices. Due to the existence of the 2DEG when an 

AlGaN is grown on GaN, the devices are always in the ON state. Therefore, for fail-safe 

operation normally-off type devices in which no current flows at 0V gate bias is strongly 

required [11]. This can be achieved by recess etching the gate region of the AlGaN 

 to make sure the AlGaN barrier is not thick enough to induce the 2DEG. This could also be 

achieved by the growth of a thinner AlGaN barrier, however control of such small 

thicknesses during growth is difficult.  Another approach is fluorine implanting the AlGaN 

with the use of a fluorine-based plasma pretreatment. The fluorine ions provide the 

threshold voltage shift necessary for normally-off operations [1]. An alternative method 

includes a cascode type devices using a silicon transistor in series with a normally-off GaN 

transistor.  

 

In addition, the presence of leakage paths indicated in Figure 1.3.1 can reduce the 

efficiency and reduce the maximum breakdown voltage of the device. The leakage paths 

are discussed in detail below: 

 

• Due to the large lattice and thermal coefficient mismatch between Si and GaN, the buffer 

region needs to be carefully engineered.  Defects in the buffer region can give rise to high 

leakage currents that would result in device degradation and hinder the device from 

reaching its maximum breakdown voltage [15]. Doping the buffer region with either iron 

or carbon atoms has been used to mitigate this [16].  
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• Surface leakage between the gate and drain results as a consequence of defects, which 

compensate the surface donors that are necessary for the generation of the 2DEG. This 

can reduce the maximum drain current and also result in higher RON 
[17]. Passivation of 

these defects by using insulators such as silicon nitride (SiNx) can help reduce the surface 

leakage [17, 18]. 

 

• Gate leakage is a parasitic conduction path that occurs as a consequence of defects on 

the GaN surface. It can lead to reduced efficiency of the device and result in lower 

breakdown voltages [18]. Lower off-state currents are also necessary for normally-off 

operations and to make sure the static power consumption is minimised [14]. Gate leakage 

can be minimised by the incorporation of an insulator between the gate metal and the 

semiconductor. However, the introduction of an insulator-semiconductor interface can 

also increase leakage if the interface and the oxide aren’t defect free. Therefore, in 

addition to depositing an insulator, optimised insulators and pretreatments prior to the 

oxide deposition and post treatments help decrease gate leakage.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 1.3.1: Leakage paths of AlGaN/GaN HEMT 
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1.4 Scope and outline of this thesis 
 
This thesis focuses on optimising the gate region of GaN devices. It has been reported that 

the surface contamination of GaN surfaces consist of oxygen, carbon and adsorbates from 

the atmosphere. Therefore, this work explores processing of a GaN surface that avoids air 

exposure. This has been achieved by using GaN samples that have an in-situ grown SiNx cap 

on top of the GaN as part of the wafer growth. A clustered plasma etch and atomic later 

deposition tool has been utilised to etch the SiNx and transferred under vacuum (10-9 Torr) 

to the ALD chamber where various plasma pretreatments and dielectric and metal 

depositions have been performed. The details of the operation of this equipment are given 

in chapter 4.  

 

To reduce the gate leakage the impact of atomic layer deposited (ALD) dielectrics on GaN 

has been investigated. The dielectrics used in this work were aluminium nitride (AlN) and 

aluminium oxide (Al2O3). AlN has been used as an interlayer between GaN and Al2O3 

because it has been proven to reduce the stress between the GaN and Al2O3 
[19]. However, 

imperfections at the dielectric-GaN interface can lead to the creation of defects in the band 

gap that serves as interface states that can reduce the density of carriers by trapping 

electrons [20] [21]. Further fixed charges in the dielectric itself and interface states can result 

in reducing the mobility of carriers due to coulomb scattering [20] [22]. Therefore, to ensure 

creation of a low defect dielectric-GaN interface various plasma pre-treatments have also 

been explored. To ensure low charge density in the dielectric, the effect on the electrical 

properties of a forming gas anneal (FGA) after aluminium oxide deposition was also 

examined. Furthermore, the effect of an in-situ atomic layer deposited gate was also 

investigated. The impact of these were measured electrically using metal oxide 

semiconductor capacitors (MOS capacitors).  

 

This work was supported by Oxford Instruments Plasma Technology and is part of the UK 

EPSRC supported project, “Silicon compatible GaN power Electronics.”  

 

The organisation and contents of this Thesis are as follows:  

Chapter 2 provides the background needed for understanding atomic layer deposition 

(ALD), chapter 3 provides the theoretical background needed for understanding MOS 

capacitors, chapter 4 details the fabrication and equipment used for MOS capacitor 
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production, chapter 5 explains how the MOS capacitors in this work are characterised , 

chapter 6 outlines the effects of an “in-situ” processed GaN surface that is never exposed 

to the atmosphere, chapter 7 outlines the effect of an AlN interlayer between GaN and 

Al2O3, chapter 8 outlines the effects of incorporating a TiN gate metallisation and finally 

chapter 9 discusses conclusions and future work.  
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2. Atomic Layer Deposition (ALD) 
 

2.1 Introduction 
This chapter gives an overview of the fundamentals of atomic layer deposition (ALD). The 

chapter begins by describing the importance of ALD and how an ALD cycle operates. This is 

followed by a description of the ALD growth windows and different growth rates that can 

result during ALD. The chapter concludes with a description of ALD reactors in general use 

and in particular, the way they can be configured for plasma based ALD. 

 

2.2 Background  
Thin and conformal dielectric and metal films have become an essential part of 

contemporary solid-state electronic devices. These include transistors, solar cells, micro-

electromechanical systems (MEMS) and other emerging technologies [1]. To date physical 

vapour deposition (PVD) and chemical vapour deposition (CVD) have been the most widely 

used film deposition techniques [2]. PVD are deposition techniques where the film in its 

vapourised form condenses on to the required sample, the substrate. The vapourised form 

is usually obtained either thermally, induced by a laser or through sputtering by energetic 

ion bombardments. In CVD, films are grown by chemical reactions to reactants that are 

supplied simultaneously into a chamber [3]. The reactions are either thermally driven by 

heating the substrate or are activated by reactive species in a plasma. However due to the 

continuous trend in downsizing of devices and processing devices on large substrates (6” 

wafers) PVD and CVD are reaching the limits in delivering these demands. Due to the 

requirements in current technology the recent interest in film growth requires precise 

thickness control, high uniformity on wafers and conformity on high aspect ratio patterns, 

making alternative deposition techniques such as atomic layer deposition (ALD) most 

favourable [2]. 

 

ALD is a vapour phase deposition technique that is used to grow thin films [4]. In contrast to 

the formerly detailed deposition techniques, ALD is a self-limiting sequential growth 

process where the reactants are exposed to the substrate in separate stages. The reactants 

consist of a precursor and a reactive gas often referred to as a co-reactant. Precursors are 
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either organic compounds or halides consisting of a metal atom and a ligand [5]. The 

individual exposure of the reactants to the substrate ensures that no cross-reactions 

between reactants occur, resulting in films with very high purities.  

 

ALD was first researched in 1960s by Russian scientists and was later patented in 1970s by 

Finnish researcher Suntola [6]. Today ALD has been adopted in many different technologies; 

in metal-oxide-semiconductor field effect transistors (MOSFETs), solid oxide fuel cells 

(SOFC), solar cells and many more [7]. It is used to grow insulators such as hafnia, alumina 

and aluminium nitride as well as metals including titanium nitride, platinum, palladium and 

tantalum [7]. Due to its cyclical and self-saturating nature, ALD can achieve films with precise 

thicknesses. Further its parameters such as precursor and co-reactant exposure times can 

be adjusted to increase uniformity and conformity on high aspect ratio structures. In 

addition, the reactant gas ratios can also be altered to tune film compositions [2].  

 

An ALD cycle can be divided in to two half-reactions, also known as half cycles as illustrated 

in Figure 2.2.1: 

1(a). First, the substrate is exposed to a precursor that becomes chemically bonded to the 

surface (chemisorption). Chemisorption is brought about by either a ligand exchange 

mechanism, dissociation or association [5].  

Ligand exchange mechanism as indicated in Figure 2.2.2(a) occurs when part of a molecule 

is exchanged with a chemical group at the surface of the substrate. Dissociation on the 

other hand, takes place when part of a molecule can split into smaller fractions and part or 

all of the molecule is adsorbed on to the substrate as shown on Figure 2.2.2(b). In contrast 

as depicted on fig. 2.2.2(c) association occurs when the complete molecule chemisorbs on 

to the substrate.  Once the surface is covered with a monolayer of the precursor, no more 

reactive sites are offered to the same precursor and hence no further reactions occur.  

However, chemisorption can be limited by steric hindrance; where a precursor molecule 

after being adsorbed by some reactive sites, is large enough that it blocks access   to other 

reactive sites. Chemisorption can also be limited if the precursor is adsorbed only to specific 

reactive sites of a surface. The nature of the reactive sites and the surface density depends 

on the material, its crystal orientation and surface pretreatments [5]. 
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1(b) Following the exposure of the reactants, unreacted precursors and byproducts are 

then purged from the chamber using an inert gas, usually nitrogen or argon. This ensures 

that no cross-reactions between the co-reactant and the precursors occur.  

2(a) The substrate is then exposed to the co-reactant, a reactive gas that reacts with the 

chemisorbed precursor   

 

2(b) Finally excess reactive gas and byproducts are purged from the chamber using an inert 

gas such as nitrogen or argon. 

 
This cycle repeats until the required thickness is deposited.  
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Figure 2.2.1: An ALD cycle 
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An ALD reaction can take place either by the assistance of a plasma or thermally. In plasma 

assisted ALD, during the reactant step the samples are exposed to reactive species 

generated by a plasma. In Thermal ALD the surface reactions take place at elevated 

temperature without the presence of a plasma [3]. 

 
2.3 ALD window  
Each ALD process consists of an optimum region for film growth. The main factors affecting 

this are temperature, precursor and co-reactant dose time and their purge times.  

 

2.3.1 ALD temperature window 
For an ideal ALD growth, the temperature window is the temperature range at which the 

growth per cycle (GPC) remains unaffected to any changes in the temperature. As shown 

in Figure 2.3.1, it is the region at which GPC remains constant. Temperatures below the 

ALD window range result in non-ALD type films either due to slow kinetics or due to CVD 

type reactions caused by condensation of precursors on the substrate. Temperatures 

above can either cause desorption of precursor molecules from the substrate resulting in 

slower GPC or decomposition of precursors giving rise to CVD type reactions.  

 

Figure 2.2.2: Chemisorption mechanisms (a)Ligand exchange (b)Dissociation 
(c)Association  

(a) (b) (c) 
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2.3.2 Precursor exposure time and purge times 

It is necessary to make sure that the dose time is sufficiently long to give enough time for 

the whole substrate surface to be covered (coverage). Sufficient time should also be given 

to make sure that all the reactants are purged out, so CVD type reactions don’t occur as 

shown on the graphs in Figure 2.3.1. 
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2.4. Growth rate   
An ideal growth rate in an ALD process should be constant and independent of the number 

of cycles. However, the growth rate isn’t always constant, and it is dependent on the 

substrate used and the different pretreatments performed [2]. The different ALD nucleation 

behaviours which give rise to different growth rates are shown in Figure 2.4.1. A higher 

density of reactive sites on the substrate compared to the ALD film result in the initial 

growth rate being higher giving rise to a surface enhanced growth [5]. On the contrary, a 

nucleation delay can occur if reactive sites on the surface are lower than on the film giving 

rise to a type 1 surface inhibited growth [5]. It is also possible for ALD to start at a limited 

number of nucleation sites resulting in rough growth islands, thus resulting in an increased 

initial growth rate. However, as these islands start to coalesce the roughness in the films 

decreases, reducing also the GPC of the film, as shown in Figure 2.4.1. This type of growth 

rate is known as type 2 surface inhibited growth [5].  

 

2.5. ALD reactors and plasma configurations  

2.5.1 ALD reactors  

Due to the cyclical nature of ALD where precursors and co-reactants need to be pumped in 

and purged out regularly, the reactors need to be built in such a way that they are able to 
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constantly pulse reactants in and out. The architecture of different ALD reactors are 

portrayed in Figure. 2.5.1 These include:  

 

• Flow-type ALD [3]: The reactants enter the reactor on one side as shown in Figure 2.5.1(a) 

and leave on the opposite side. However, since the volume of the reactor is very low, 

reactants tend to undergo many collisions producing lower concentrations of reactants 

at the other end of the reactor. This can result in non-uniform films. 

• Showerhead ALD [3]: In this type of reactor the reactants are introduced though a 

showerhead in to the chamber. This ensures even distribution of the reactants.  

• Spatial ALD [3]: This uses different zones to expose and purge precursors and co-reactants, 

therefore the substrate itself needs to be moved from one zone to another.  

• Batch ALD [3]: Batch ALD reactors are used when high throughput is essential. These 

reactors can house several wafers onto which materials can be deposited at the same 

time. However due to the large reactor volumes, the time needed to expose precursors 

and co-reactants would need to be increased.  

Figure 2.5.1: ALD reactors (a) Flow-type ALD, (b) Showerhead ALD, (c) Spatial ALD, 

(d) Batch ALD [3] 
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2.5.2 Plasma configurations 

The three most popular plasma sources are direct, remote and radically-enhanced plasma 

illustrated in Figure 2.5.2. The operation of these will be discussed in detailed below.  

 

Direct plasma  

As shown in Figure 2.5.2(a) the plasma is generated between two electrodes and the wafer 

is positioned at an electrode directly beneath the plasma, which is grounded. Direct plasma 

configurations can produce films with very high uniformity. However, it can also cause high 

damage due to the interaction of energetic ions with the substrate  

 

Remote plasma  
As the name suggests, in this configuration (shown in Figure 2.5.2(b)) the plasma source is 

located remotely from the substrate stage. As opposed to the direct plasma configuration, 

the substrate is not involved in the generation of the plasma and can therefore produce a 

plasma that is less damaging. 

 

Radically-enhanced plasma  

In the third configuration (shown in Figure. 2.5.2(c)) the plasma source is situated away 

from the substrate and the generated plasma speciesare required to flow through a tube 

between the chamber and the plasma source before reaching the substrate. There the 

plasma undergoes many collisions losing its electrons and ions before reaching the 

substrate. Hence referred to as radically-enhanced plasma. 
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2.6 Summary  
This chapter explains the operation of an ALD cycle, the different ALD windows that are 

needed to be identified and the different ALD reactors and the plasma configurations that 

exist. Information is also given on the different growth rates that can occur during an ALD 

process.  
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Figure 2.5.2: Plasma sources: (a) Direct plasma, (b) Remote plasma and (c) 
Radically-enhanced plasma [4] 

(a) (b) 

(c) 

ALD” because the wafer is directly positioned at one of the
electrodes which contribute to plasma generation. The gases
are introduced into the reactor either through a shower head
in the powered electrode228 or from the side of the electro-
des.199 The first is typically referred to as “shower-head
type” and the second as “flow-type” (if the pressure is suffi-
ciently high). The ALD reactors provided by ASM (Emerald
and Stellar)16 and Beneq (TFS 200),18 for example, can be
classified as direct-plasma ALD reactors. Typical operating
pressures used during the plasma step in direct plasma ALD
are of the order of 1 Torr,200 although these also could be
<100 mTorr for an RF parallel plate reactor.25 During direct
plasma-assisted ALD, the fluxes of plasma radicals and ions
towards the deposition surface can be very high, as the
plasma species are created in very close proximity of the
substrate surface. In principle, this enables uniform deposi-
tion over the full wafer area with short plasma exposure
steps. Because of the relatively simple reactor layout and

their proven performance in other plasma processing meth-
ods, direct plasmas are extensively used in industrial tools.
Depending on the voltage applied to the powered electrode
and the operating pressure, the energy of the ions arriving on
the substrate can, however, be substantial. In addition, the
emission of high energy photons can be significant, possibly
leading to plasma damage. The extent of plasma induced
damage is, however, determined by the specific implementa-
tion of the plasma source and the processing conditions.

C. Remote plasma ALD

A third configuration for plasma-assisted ALD equipment
can be classified as “remote plasma ALD.” In this case, as
its name implies, the plasma source is located remotely from
the substrate stage such that the substrate is not involved in
the generation of the plasma species, see Fig. 7(c). This con-
figuration can be distinguished from radical-enhanced ALD
by the fact that the plasma is still present above the deposi-
tion surface, i.e. the electron and ion densities have not
decreased to zero.237,303 The “downstream” plasma can be
of the afterglow type (where the local electron temperature
is too low to be ionizing) or can still be active (ionizing).
The flux of the radicals towards the substrate can therefore
be much higher than for radical-enhanced ALD. Moreover,
under these circumstances, the plasma and substrate condi-
tions can be varied (relatively) independently of each other,
something which is not the case for direct plasma ALD. For
example, in direct plasma-assisted ALD a change in sub-
strate temperature affects the gas temperature and conse-
quently the density of gas-phase species and the generation
of plasma species.299 Therefore, the remote nature of the
remote plasma-assisted ALD configuration allows for more
control of the plasma’s composition and properties than is
possible with direct-plasma ALD. The plasma properties can
be optimized relatively easily by tuning the operating condi-
tions of the plasma source and the downstream conditions at
the position of the substrate. This holds specifically for the
presence of ion bombardment and the influence of plasma
radiation.303 Due to their high degree of flexibility remote
plasma ALD reactors are therefore well suited for process
design and other R&D applications.

A variety of plasma sources can be employed for remote
plasma-assisted ALD, including microwave plasmas,111

electron cyclotron resonance (ECR) plasmas,152 and RF-
driven inductively-coupled plasmas (ICP).206 The latter
type, either with a cylindrical or planar coil, is currently the

TABLE III. Densities of plasma species in an O2 plasma, as typically used in plasma ALD processes. Data are presented for two different pressures and the

electron temperature, Te, and energy, Eion, of ions accelerated to the (grounded) substrate are also given. The data have been compiled from the modeling
results described in Ref. 314 for an inductively-coupled plasma operated at a source power of 500 W. The excited species O* and O2

* correspond to the lowest
metastable states being O (1D) and O2 (a 1Dg), respectively. Note that the calculated ion energy is lower than the measured ion energy reported on in Fig. 4,

probably as a result of a different reactor geometry and capacitive-coupling of the plasma between the coil and the grounded reactor wall.
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FIG. 7. (Color online) Various reactor configurations for plasma-assisted
ALD (Ref. 136): (a) radical-enhanced ALD, (b) direct plasma-assisted
ALD, (c) remote plasma ALD, and (d) direct plasma reactor with mesh. The
reactor layouts and plasma sources shown serve only as examples. Reprinted
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(2007). Copyright 2007 American Vacuum Society.
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the substrate stage such that the substrate is not involved in
the generation of the plasma species, see Fig. 7(c). This con-
figuration can be distinguished from radical-enhanced ALD
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of plasma species.299 Therefore, the remote nature of the
remote plasma-assisted ALD configuration allows for more
control of the plasma’s composition and properties than is
possible with direct-plasma ALD. The plasma properties can
be optimized relatively easily by tuning the operating condi-
tions of the plasma source and the downstream conditions at
the position of the substrate. This holds specifically for the
presence of ion bombardment and the influence of plasma
radiation.303 Due to their high degree of flexibility remote
plasma ALD reactors are therefore well suited for process
design and other R&D applications.
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ALD” because the wafer is directly positioned at one of the
electrodes which contribute to plasma generation. The gases
are introduced into the reactor either through a shower head
in the powered electrode228 or from the side of the electro-
des.199 The first is typically referred to as “shower-head
type” and the second as “flow-type” (if the pressure is suffi-
ciently high). The ALD reactors provided by ASM (Emerald
and Stellar)16 and Beneq (TFS 200),18 for example, can be
classified as direct-plasma ALD reactors. Typical operating
pressures used during the plasma step in direct plasma ALD
are of the order of 1 Torr,200 although these also could be
<100 mTorr for an RF parallel plate reactor.25 During direct
plasma-assisted ALD, the fluxes of plasma radicals and ions
towards the deposition surface can be very high, as the
plasma species are created in very close proximity of the
substrate surface. In principle, this enables uniform deposi-
tion over the full wafer area with short plasma exposure
steps. Because of the relatively simple reactor layout and

their proven performance in other plasma processing meth-
ods, direct plasmas are extensively used in industrial tools.
Depending on the voltage applied to the powered electrode
and the operating pressure, the energy of the ions arriving on
the substrate can, however, be substantial. In addition, the
emission of high energy photons can be significant, possibly
leading to plasma damage. The extent of plasma induced
damage is, however, determined by the specific implementa-
tion of the plasma source and the processing conditions.

C. Remote plasma ALD

A third configuration for plasma-assisted ALD equipment
can be classified as “remote plasma ALD.” In this case, as
its name implies, the plasma source is located remotely from
the substrate stage such that the substrate is not involved in
the generation of the plasma species, see Fig. 7(c). This con-
figuration can be distinguished from radical-enhanced ALD
by the fact that the plasma is still present above the deposi-
tion surface, i.e. the electron and ion densities have not
decreased to zero.237,303 The “downstream” plasma can be
of the afterglow type (where the local electron temperature
is too low to be ionizing) or can still be active (ionizing).
The flux of the radicals towards the substrate can therefore
be much higher than for radical-enhanced ALD. Moreover,
under these circumstances, the plasma and substrate condi-
tions can be varied (relatively) independently of each other,
something which is not the case for direct plasma ALD. For
example, in direct plasma-assisted ALD a change in sub-
strate temperature affects the gas temperature and conse-
quently the density of gas-phase species and the generation
of plasma species.299 Therefore, the remote nature of the
remote plasma-assisted ALD configuration allows for more
control of the plasma’s composition and properties than is
possible with direct-plasma ALD. The plasma properties can
be optimized relatively easily by tuning the operating condi-
tions of the plasma source and the downstream conditions at
the position of the substrate. This holds specifically for the
presence of ion bombardment and the influence of plasma
radiation.303 Due to their high degree of flexibility remote
plasma ALD reactors are therefore well suited for process
design and other R&D applications.

A variety of plasma sources can be employed for remote
plasma-assisted ALD, including microwave plasmas,111
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3. Metal-oxide-semiconductor 
capacitor (MOS capacitor) 
 

3.1 Introduction 
This chapter gives an overview of the theory and operation of metal –oxide-semiconductor 

(MOS) capacitors. The chapter begins by describing characteristics of ideal MOS capacitors 

and their electrostatics at different biasing regimes. It then explains the capacitance-

voltage (C-V) response of ideal MOS capacitors and describes how C-V measurements are 

performed. Finally, non-idealities are described along with their effect on C-V response.   

 

3.2 Background 
An MOS capacitor is a two terminal device consisting of an oxide sandwiched between a 

metal and a semiconductor as illustrated in Figure 3.2.1. The two terminals consist of a 

contact at the top of the oxide; the gate, and a contact made to the semiconductor; the 

ohmic contact. The capacitance-voltage characteristics of an MOS capacitor can be used to 

ascertain useful information regarding the quality of, and any non-idealities in the oxide, 

the oxide-semiconductor interface and also the oxide-gate metal interface.  CV 

characteristics are in essence a window representing the nature of the internal structure 

of MOS capacitors [1].  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2.1: Cross section of a MOSCAP 
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The following section describes electrostatic properties of an ideal MOS capacitor, where 

the majority carriers are electrons, also known as an n type MOS capacitor or an n-MOS 

capacitor.  Energy band diagrams are used as an aid to understand C-V properties at 

equilibrium (zero bias) and at different biasing regimes; notably accumulation, depletion 

and inversion.  

 

Characteristics of an ideal MOS-capacitor 

An ideal MOS capacitor has the following properties: 

• The oxide is a perfect insulator and has zero current flowing through it under all biasing 

conditions. 

• There is no charge or defects present in the oxide, at its surface or at the semiconductor-

oxide interface. 

• For any biasing conditions, the only charge present is that in the semiconductor and that 

of equal but opposite polarity at the metal/dielectric interface. 

• The work function difference between the metal, Φ\  and the semiconductor, Φ]  is zero, 

(Φ\] = 	Φ\ − Φ] = 0).  

 

3.3 Electrostatics of an MOS-capacitor  
Figure 3.3.1 illustrates the band diagram of an ideal n-MOS capacitor in equilibrium. The 

work functions, Φ\  and Φ] represent the energy required to remove an electron to the 

vacuum level from the metal and semiconductor respectively. To proceed further with the 

explanation of MOS band diagrams, it is important that a few parameters be defined. These 

include the surface potential	f#, and bulk potential, f_, and the band bending, y#. To 

describe these, firstly, the potential at any point in the semiconductor qfs(x) is determined 

in equation 3.1, where x is the distance from the dielectric-semiconductor interface to the 

bulk of the semiconductor. f# therefore, is the potential at which x=0 and f_ is the 

potential when x tends to infinity, as shown in Equations 3.1 to 3.4. y# is the difference 

between the surface and bulk potentials (equation 3.5). These parameters are presented 

in Figure 3.3.1(a) and (b) and will be used when describing band diagrams. Figure 3.3.1(b) 

is a result of an application of a positive bias, Vg, with bands bending in the downward 

direction, i.e. y# > 0. 

In a MOS system with zero work function difference between metal and semiconductor, 

the band diagram shown in Figure 3.3.1(a) is achieved.  This stage where fs = fB and band 
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bending is equal to zero, is also known as the flat band region and occurs when the applied 

bias is zero. During the application of a bias, the metal and semiconductor Fermi levels 

move such that the energy between them amount to equation 1.6. This is brought forward 

by the movement of charge to and from the oxide-semiconductor interface. Electric fields 

are then established in the oxide by surface charge layers that are formed in the metal and 

oxide. 

 

qf(x) = 	Eb# −	E*(x)[2]                                                                                                                3.1 

When, x = 0, 	f(0) = f# = surface	potential                                                                         3.2 

When x → ¥, 	f(x → ¥) = f_ = bulk	potential                                                                     3.3 

y(x) = 	f(x) −	f_ = band bending at a point [2]                                                                     3.4 

y# = 	f# −	f_  = total band bending                                                                                         3.5 

EY(deZfR) − 	EY(+ed*Q%&)gQZ%X) = −qVh[1]                                                                                         3.6 
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Figure 3.3.1: (a) Band diagram under flat band condition and (b) band diagram 

under applied bias. Where, Ec is the conduction band maximum, Efm is the Fermi 

level of the metal, Efs is the Fermi level of the semiconductor, Ei is the intrinsic 

level and E0 is the vacuum level 
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3.3.1 Accumulation 

The application of a positive gate voltage (Vg>0), places positive charge on the gate 

electrode. To maintain charge neutrality, negatively charged electrons are drawn towards 

the oxide-semiconductor interface. This causes a band bending in the downward direction 

at the oxide-semiconductor interface, hence y#  and f# are both greater than zero. In this 

particular instance, where the majority carrier concentration near the oxide-

semiconductor interface is higher than in the bulk, is known as accumulation. The charge 

carrier concentration at the oxide-semiconductor interface is given by equation 3.7. Figure 

3.3.2 (a) shows the band bending along with the block charge diagram in accumulation. 

Block charge diagrams show the charge distribution at different bias voltages. It doesn’t 

represent the exact charge distribution, instead it is qualitative in nature, giving an 

indication of the magnitude and the spatial extent of the charge.  

n+ = 	n*exp	(
p
qr
y+)                                                                                                                     3.7 

n* = intrinsic	carrier	concentraion 

n* = 	sNkNjexp u−
(vwxvy)
/zr

{                                                                                                    3.8 

Nk = Densitiy	of	states	in	the	conduction	band	 

Nj = Density	of	states	in	the	valence	band	 

 

3.3.2 Depletion  

The application of a small negative gate voltage (Vg<0), places a negative charge on the 

gate, repelling electrons from the oxide-semiconductor interface and exposing the 

positively charged donors. In other words, the electrons are depleted away from the 

surface. This is represented by the bands bending in the upward direction and y#  and f# 

are both less than zero. This situation where the electron concentration at the surface is 

less than that of the donor concentration is known as depletion. As the bias voltage is made 

more negative, the depletion layer widens ultimately reaching a maximum depletion width 

shown in equation 3.9.   

 

Depletion	width	 = |
/}~}�y�
p��

	                                                                                               3.9 
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3.3.3 Inversion  

Decreasing the gate voltage even further attracts minority carriers to the surface. The 

voltage at which the minority carriers start to appear at the surface is known as the 

threshold voltage, VT, which occurs when yS=2fB given in equation 3.10 
[1]. This is shown in 

Figure 3.3.2(c). As the bias voltage is decreased further the minority carrier concentration 

at the surface increases more than the bulk majority carriers and the nature of the surface 

inverts from an n-type to that of a p-type.  This is indicated in Figure 3.3.2(d). 

 

y+,r�Xe+�%R) = 2ϕ_ = 	
x/zr
p
ln ���

&�
�                                                                                    3.10 

 

Table 3.3.1 summarizes, the operating regions along with their corresponding surface 

potentials and carrier densities. 
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Operating region Surface Potential/eV Surface Carrier 
density/cm-3 

Flat band yS = 0 0 

Accumulation yS >0 ns>Nd 

Depletion yS<fB<0 Nd 

Threshold yS=2fB ps<Nd 

Inversion yS>2fB<0 ps >Nd 

  

 

 

The next section describes how MOS capacitors are measured and examines the C-V 

properties at the relevant biasing regions.  

 

Table 3.3.1: Summary of operating conditions of an n-MOS capacitor  

 

Figure 3.3.2: Band and block charge diagram of an n-MOS capacitor under 
(a)accumulation, (b) depletion, (c) threshold voltage and (d) Inversion  
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3.4. C-V curve of an ideal MOS-capacitor  
The equivalent circuit of an ideal MOS capacitor is shown in Figure 3.4.1, the total 

capacitance is the sum of the oxide, Cox and the semiconductor capacitance, Cs. The 

semiconductor is indicated as a variable capacitor since it is bias dependent and changes 

as a function of band bending at the interface.                                                             

In order to perform C-V measurements, two voltage sources are applied simultaneously to 

the device under test, CDUT. The two sources include a small AC signal (~20mV) and a DC 

voltage that is swept in time. The DC voltage provides the bias necessary to sweep the C-V 

curve from accumulation to inversion (and vice versa) and the AC voltage provides the 

voltage required for measuring the capacitance at a point in time. The capacitance of the 

device is calculated by the division of the measured current by the voltage as indicated in 

equation 3.11 [3].  

 

 C"�r =
����
/�Yj�w

 [3]                                                                                                           3.11 
 
C"�r = Capacitance	of	the	device	under	test, 

	I"�r = Magnitude	of	AC	current	through	the	device, f = test	frequency, 

	V�k = Magnitude	and	phase	angle	of	the	measured	AC	voltage 

 

 

 

 

 

 

 

 

 

 

 

Further, to obtain C-V data, the majority and minority carriers need to be able to respond 

to the applied AC signal. In other words, accumulation and depletion arise as a result of 

majority carriers moving to and from the depletion layer. The majority carriers will respond 

to the ac voltage so long as the period of the AC signal is greater than the majority carrier 

Cox 

CS(ys) 

Figure 3.4.1: Equivalent circuit of a MOSCAP 

Cox= oxide capacitance 

Cs = Semiconductor capacitance  
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response time (τdf�>1/w), also given by equation 3.12. This frequency usually occurs at 

1MHz or less [1]. Inversion on the other hand is achieved due to minority carriers and hence 

are dependent on the minority carrier response time (τd*&>1/w) defined in equation 3.14. 

Therefore, the measurement of C-V is dependent on the frequency of the signal applied. 

Majority	carrier	response	time = τdf� = 		
l�

����
 [2]                                                          3.12 

Where, l is the Debye length 

λ = 	|zr}�
p�&

                                                                                                                                3.13 

ε+ = Permitivity	of	semiconductor	 

µ = carrier	mobility	 

Minority	carrier	response	time = 	 τd*& = 	
U
√/

��
&�
τr|�1 −

y�
f�
� [2]                            3.14 

τr = sτ&τ�	 

τ& = Bulk	electron	life	time, τ� = Bulk	hole	life	time	 

 

Figure 3.4.1 illustrates the C-V curves that result from high and low frequency 

measurements at different bias voltages along with their corresponding capacitor 

combinations. High frequency here refers to the frequency where the period of the signal 

is less than the minority carrier response time. The following section describes the C-V 

characteristic of the different regions.  

 

3.4.1 Accumulation  

In an ideal MOS capacitor, under accumulation conditions, only majority carriers are 

involved in either adding or subtracting charge at the oxide-semiconductor surface. 

Therefore, the charge configuration simplifies to that of a parallel plate capacitor and is 

given by equation 3.15.  

CfQQ = C%i =
}~}~��
Z~�

                                                                                                             3.15 

CfQQ = Accumulation	capacitance, C%i = Oxide	capacitance	 

	ε% = permivity	of	free	space	ε%i = relative	permittiy	of	oxide, 

	t%i = thickness	of	oxide, A = Area	of	the	gate 
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3.4.2 Depletion 

During depletion, the capacitance is similar to that of two parallel plate capacitors; the 

oxide and semiconductor capacitance, in series as shown in Figure 3.4.1. The total 

capacitance amounts to that shown in equations 3.16. 

 

C)e� =
k~�k�( �)
k~�¡k�

                                                                                                                    3.16 

C# = 	
}~}��
¢�( �)

                                                                                                                          3.17 

W"(ψ+) =
/}�}¤
p��

ψ+                                                                                                               3.18 

C# = Semiconductor	capacitance, ε+ = permitiy	of	semiconductor, W" =

Depletion	width,  

 

4.3 Inversion  

During inversion, the C-V curve can follow two paths.  If the time period of the applied AC 

signal is greater than the minority carrier response time, capacitance is that of a parallel 

plate capacitor as shown in equation 3.19. This is shown by the solid line in figure 3.4.1. 

Alternatively, if the period of the AC signal is lower than the minority carrier response time, 

during inversion the C-V curve reaches a constant capacitance at the maximum depletion 

width, given by equation 3.21. The total capacitance is then the series combination of the 

oxide and semiconductor capacitance with the maximum depletion width. 

 

C*&¦ = 	C%i     if    U	
§

> tmin                                                                                                 3.19 

C*&¦ = 	
k~�k�
k~�¡k�

= k~�
U¡¨~©�ª«�

¨�¬~�

                                                                                            3.20                                                                  

Maximum	depletion	width = W"dfi = 	|
/}~}�
p��

(2ϕ_)                                          3.21               
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3.5. Non-idealities of an MOS-capacitor 
Although the ideal MOS capacitor provides a foundation for the basic principles of MOS 

theory, the semiconductor surface and the oxide aren’t perfect. Various charges exist at 

the interface and in the oxide and a difference in the Fermi levels exist between the metal 

and the semiconductor. The charge can be categorized into interface trapped charge and 

oxide charge. Oxide charge include: 

• Fixed charge 

• Oxide trapped charge: 

o Border traps  

o Bulk traps  

• Mobile charge 

Trapped charge can cause a shift in the threshold voltage of the transistor. Further, the 

trapped charge can also change with time which can cause a shift in the threshold voltage 

over time and result in instability of operating characteristics of transistors. Fixed and 

trapped charge can both scatter the carriers in the channel, which as discussed previously 

can lower the carrier mobility. All of the aforementioned non-idealities can result in device 

failure and breakdown of the oxide [4].  

Figure 3.4.1: C-V characteristics of an ideal MOS capacitor at high and low 
frequency 

High-frequency 

Low-frequency 

Ca
pa

ci
ta

nc
e/

F 

Voltage/V 

Cox Cox 

Cox 

C(ys) 

Accumulation  Inversion 
Depletion 



Metal-oxide-semiconductor capacitor (MOS capacitor) 

 41 

Figure 3.5.1 is an illustration of non-idealities that exist in a MOS capacitor. These 

imperfections and the effect of the difference in work functions on C-V responses will be 

described in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.1 Work function difference  

Previously, the work function difference between the metal and semiconductor of a MOS 

capacitor was defined to be zero, i.e. the Fermi energy (or Fermi level energy) of the 

semiconductor was equal to that of the metal. (Ebd = Fb+). However, this isn’t always true, 

and it depends on the choice of the materials used in the MOS system.  If,  f\] ≠ 0eV, then 

on contact electrons flow from the material with high Fermi level energy to the one with 

the lower until the Fermi levels are equal. Now, when the applied bias is zero the bands are 

already bent resulting in the band diagram shown in Figure 3.5.2. It can be observed that 

the flat band voltage now has been shifted by an amount equal to f\] , ergo, in the absence 

any defects present, the flat band voltage when fd+ ≠ 0eV is given by equation 3.22.  

 

VY¯ = 	fd − f+ = fd+                                                                                                    3.22 

Gate metal 

+ + + + + + 

 

Semiconductor 
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Figure 3.5.1: A cross-section of an MOS capacitor with defects present 
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3.5.2 Interface trapped charge   

Interface trapped charges, Qit, is located at the oxide-semiconductor interface and 

originate due to the abrupt termination of the periodic lattice at the surface of a 

semiconductor [1, 2]. The abrupt termination results in unpassivated bonds known as 

dangling bonds, which introduce electronic energies at various levels in the forbidden gap 

as shown on Figure 3.5.3. These states can either be donor or acceptor like in nature. 

They are donor like if they are positively charged when empty and neutral when full. 

Acceptor-like states on the other hand are neutral when empty and negatively charged 

when full.  

 

Interface traps are in electrical communication with the underlying semiconductor and 

hence vary as a function of band bending. Figure 3.5.4(a) to (c) depicts the effect of 

interface traps on C-V curves. These include a stretch in the C-V curve, a hysteresis 

between the forward and backward sweep and also a dispersion in the curves when 

measuring C-V at different applied frequencies.   

 

 

 

 

Figure 3.5.2: (a)Band diagram and (b) Effect of C-V under zero bias 
when f𝒎𝒔 ≠ 𝟎𝐞𝐕, 
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3.5.2(a) Stretch in C-V 

Charge neutrality requires that a change in the gate charge, dQG is balanced by an 

amount dQs in the semiconductor, which is achieved by a change in the band bending. 

However, in a system with interface traps, a change in the band bending also causes a 

change in Qit. Therefore, the required change dQs is less. Hence, a larger range of bias 

voltage is required, causing the C-V curve to stretch out along the bias axis as illustrated 

in Figure 3.5.4(a) [2].  

dQµ 	+ 	dQ# = 	0 C/cm2                                                                                                            3.24 
  
dQµ 	+ 	dQ# 	+ 	dQ*Z = 	0	C/cm/[2]                                                                                          3.25 
 
 

3.5.2(b) C-V hysteresis and frequency dispersion  

Equation 3.26 gives the characteristic time, t with which a free charge in a semiconductor 

gets trapped by a trapping state of energy E T. Interface traps can give rise to C-V 

hysteresis between the forward sweep, when the voltage is swept from negative to 

positive and backward sweep, when the voltage is swept back to the initial negative 

voltage, due to the trapping and de-trapping mechanisms of carriers when swept from 

one direction to the other [5].  

As can be noticed t is a function of the distance of the trap from the majority carrier band 

edge. As the frequency of the signal is decreased, the period of the signal is increased. 

This allows carriers to get trapped with energy levels located at distances further from the 

carrier band edge. And results in a frequency dependent dispersion in the C-V curves. 
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Figure 3.5.3: Band diagram containing traps with different electronic energies 
present in the forbidden gap 
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𝜏 = U
¸¹º»¼

exp	( ½¾
¿ÀÁ

)[6]                                                                                              3.26 

 
ΔE = E − Er 
E = Enery	of		the	majority	carrier	band	edge, Er = 	trapping	state	energy 
σ = capture	cross	section, vZ� = thermal	velocity, 

N = density	of	states	in	the	majority	carrier	band, k_ = Boltzmann	constatnt,	 

T = temperature	 

 

 

 
 

 

 

3.5.3 Fixed charge 
Fixed charge is located at the semiconductor-oxide interface and is invariant to the bias 

voltage. However, the presence of fixed charge can cause a shift in the CV curve as 

demonstrated in Figure 3.5.5. The direction of translation depends on the polarity of the 
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Figure 3.5.4: (a) C-V stretch out, (b) C-V hysteresis and (c) Frequency dispersion in 
MOS capacitors with interface traps 
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charge, where negative charge results in a positive shift and vice versa [7]. In the presence 

of only fixed charge, equation 3.27, shows the effect of the change in flat band voltage 

from that of an ideal MOS capacitor.  

	∆VY¯ = 	−
ÇÈ
kÉÊ

                                                                                                             3.27 

QY 	= Fixed	charge	density 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.4 Oxide trapped charge 

Oxide traps are divided in to two types; border and bulk traps [8][9]. Border traps lie very 

close to the semiconductor-oxide interface while bulk traps exist further into the oxide. [10].  

 

3.5.4(a) Border traps 

Border traps are near-interfacial oxide traps and can exchange charge with mobile 

carriers in the semiconductor bands through tunnelling [10]. Like interface traps, they too 

are in electrical communication with the underlying semiconductor, however their trap 

time constants increase as a function of distance from the oxide-semiconductor interface, 

resulting in the number of traps participating to decrease exponentially. This gives rise to 

the equation 3.28. An example of border traps in accumulation is shown in Figure 3.5.6. In 

the depletion region, because the tunnelling time would be extremely large due to low 

electron density, the border traps have minimal impact [11]. 

 

τ(x) = τËe/Ìi[12] 

τË = trap	time	constant = 	 U
Í¦¬Î��

                                                                           3.28 

Figure 3.5.5: Effect on C-V due to fixed charge 
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k = 	attenuation	coefficient	, x = 	trap	distance	from	the	interface,	 

𝑁] = Density	of	carriers	at	the	surface	 

 

 

  
 

 

 

3.5.4(b) Bulk oxide traps  

Bulk oxide traps reside far from the semiconductor surface and therefore do not 

communicate with the underlying semiconductor [8]. Their effect on C-V is similar to that 

of fixed charge, resulting in the shift of the C-V curve, represented by equation 3.29. 

	∆VY¯ = 	−
Ç~¬
kÉÊ

                                                                                                             3.29 

Q%Z = oxide	trapped	charge 

 

3.5.5 Mobile charge  

Mobile charge results due to ionic impurities [1][2]. It is referred to as mobile because these 

charges drift under bias and translate the curve by changing the flat band voltage by an 

amount shown in equation 3.30. 

∆VY¯ = − Çª
kÉÊ

                                                                                                             3.30 

Qd = mobile	charge 
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Therefore, the total change in flat band voltage in the presence of non-idealities is the sum 

of the work function difference and the total shifts due to fixed, bulk oxide and mobile 

charge, shown in equation 3.31.  

 

Total		∆VY¯ = 		fd+ − �
ÇÈ
kÉÊ

+ Çª
kÉÊ

+ Ç~¬
kÉÊ

�                                                       3.31 

 

3.6. Summary  
The chapter has explained the electrostatics of ideal MOS capacitors and its effect on C-V 

curves at different biasing regimes. However, as described previously the oxide and the 

oxide-semiconductor interface are never perfect, and this results in the presence of various 

charges. These charges have been categorized and their consequence on C-V have also 

been described.  

 

3.7. References  
1. Pierret, R. F., "Semiconductor Device Fundamentals", Addison-Wesley Publishing 

(1996).   

2. Nicollian, E. H. & Brews, J. R., "MOS (Metal Oxide Semiconductor) Physics and 

Technology", Wiley (2002). 

3. Stauffer, L. & Instruments, K., "Fundamentals of Semiconductor C-V Measurements", 

1–4 (2009). 

4. Robertson, J. P “High dielectric constant oxides”,  European Physical journal 291, 265–

291 (2004). 

5. Peralagu, U, "The Development Of Planar High-K / III-V P-Channel MOSFETs For post-

silicon CMOS", PhD thesis (2016). 

6. Brammertz, G. et al," Characteristic trapping lifetime and capacitance-voltage 

measurements of GaAs metal-oxide-semiconductor structures", Applied  Physics 

Letters  91, 13510-13512 (2007). 

7. Schroder, D. K., "Semiconductor material and device characterization", Wiley and sons 

Inc. 44 (2006). 

8. Fleetwood, D. M. & Member, S., "“ Border Traps ” in MOS Devices", IEEE transactions 

on Nuclear Science 39, 269–271 (1992). 

9. Fleetwood, D. M. et al, " Effects of oxide traps, interface traps, and ‘border traps’ on 



Metal-oxide-semiconductor capacitor (MOS capacitor) 

 48 

metal-oxide-semiconductor devices", Journal of Applied Phyics 73, 5058–5074 (1993). 

10. Yuan, Y. et al., "A Distributed Model for Border Traps in Al2O3-InGaAs MOS Devices", 

Electron Device Lett. IEEE 32, 485–487 (2011). 

11. Zhao, P. et al., " Evaluation of border traps and interface traps in HfO2/MoS2 gate 

stacks by capacitance-voltage analysis", IOP 2D Matererials 5 (2018). 

12.  Galatage, R. V et al., "Accumulation capacitance frequency dispersion of III-V metal-

insulator-semiconductor devices due to disorder induced gap states", Journal of 

Applied Physics 116, 014504, 0–9 (2014). 

 



Fabrication techniques  

 49 

4. Fabrication techniques  

4.1 Introduction  
Fabrication techniques are essential when creating devices and the procedures undertaken 

when producing devices differs depending on the material used and the type of device to 

be made. This chapter provides an overview of the techniques that were used as part of 

the MOS capacitor fabrication in this work. These techniques include optical lithography, 

semiconductor material growth, dielectric and metal deposition, semiconductor and 

dielectric etching and annealing. Information is also provided on the apparatus used to 

carry out these fabrication techniques, and comparisons to other processes are given as 

background. A summarised process flow of the processes used to fabricate MOS capacitors 

in this work is shown in Figure 4.1.1 and the detailed process flow is given in Appendix A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4.2 In-situ processing 

This work has focussed on assessing the electrical performance of MOS capacitors 

fabricated on a GaN surface that is never exposed to the atmosphere. Therefore, a cluster 

tool which has the ability to perform in-situ plasma etching and ALD has been utilized. To 

Figure 4.1.1 Process flow  
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facilitate in-situ processing, the MOCVD grown MOS capacitor wafers used in this study 

included a 5nm silicon nitride (SiNx) cap grown on GaN as the final material deposited in 

the wafer growth. The SiN was first etched in the plasma etch chamber of the cluster tool 

before being transferred under vacuum to the ALD chamber where various plasma pre-

treatments and dielectric and gate metal were deposited. An Oxford Instruments Plasma 

Technology Ltd FlexAl ALD system and a Cobra (RIE-ICP) etch system were used in the 

cluster tool which is illustrated in Figure 4.2.1. The cluster tool also contained a chemical 

vapour deposition chamber and a scanning auger system. However, in this work the focus 

was only on in-situ etching and ALD.  

 
 

 
 

 

4.3 Film Deposition  
For the creation of a MOS capacitor, the techniques of epitaxial growth, dielectric and 

metal deposition were employed. Although the wafer growth wasn’t carried out as part 

of this research, details of this are given as background in section 4.3(a). The epitaxial 

growth was carried out using metal organic chemical vapour deposition (MOCVD). 

Dielectric deposition on the other hand was carried out using atomic layer deposition 

Figure 4.2.1 Cluster tool 
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(ALD). Metal films were grown using both ALD and electron beam physical vapour 

deposition (EBPVD). The following sub-chapter describes in detail these different 

deposition techniques employed for the relevant film growths.  

 

a. Metal organic chemical vapour phase deposition (MOCVD) 

The deposition conditions and techniques can affect both the structural and electronic 

properties of material used [1]. The most commonly used techniques for epitaxial growth 

are molecular beam epitaxy (MBE), MOCVD and hydride vapour phase epitaxy (HVPE). 

MOCVD has proven to be the preferred technique for gallium nitride growth and has been 

used to produce the wafers used for this research [1].  MOCVD is a specific type of chemical 

vapour deposition (CVD) that uses metalorganic precursors in their gaseous form 

containing the elements of the desired film. Ammonia and trimethylgallium (TMGa) have 

been used as precursors when growing the GaN wafers used in this work. As described in 

chapter 2, during CVD growth, films are grown by chemical reactions between precursors 

that are supplied simultaneously in to a chamber. The basic MOCVD system consist of the 

following [2] [3] 

• Load lock: maintained at high vacuum with a turbo molecular pump, and is used to 

transfer wafers in/out of the reaction chamber 

• Gas handling unit: this system includes the precursors and all of the valves and 

instruments necessary to control the flow of gases to the reaction chamber 

• A reaction chamber:  the reactions required for creating the wafers take place in this 

chamber 

• Heating and temperature system: this controls the temperatures in the reaction 

chamber required for MOCVD reactions  

• Exhaust, pumping and pressure controlling system: this includes a vacuum pump for 

low pressure operation and an exhaust to remove waste products  

 

A schematic of an MOCVD reaction chamber is depicted in Figure 4.3.1.  
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b. Atomic layer deposition (ALD) 

In this work dielectric and some metal deposition have been carried out using ALD. ALD is 

a self-limiting sequential growth process where the reactants are exposed to the 

substrate in separate stages. Additional details of ALD growth, reactors and plasma 

configurations are discussed in chapter 2.  

In this work, an Oxford Instruments Plasma Technology FlexAL system has been used to 

perform ALD. The ALD chamber has also been used to perform plasma pre-treatments on 

the GaN surface prior to dielectric deposition. The dielectrics grown were aluminium 

nitride (AlN) and aluminium oxide (Al2O3). Titanium nitride (TiN) was also grown by ALD as 

a gate metal contact and compared with gate metals deposited using E-beam 

evaporation.  

 

c. Electron-beam physical vapour deposition (EBPVD) 

Electron-beam physical vapour deposition (EBPVD) also referred to as E-beam evaporation 

has been used to deposit the gate metal, ohmic metal and low resistance bond pad 

metallisation. 

Heating 
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Figure 4.3.1 Schematic of a metal organic chemical vapour deposition 

(MOCVD) reaction chamber   
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E-beam evaporation is a form of physical vapour deposition technique where the required 

material is transported to the substrate in its vapourised form in a vacuum chamber. 

A beam of electrons is accelerated from a cathode using high accelerating voltage between 

3-40kV towards a crucible containing the material to be deposited [4]. Upon striking the 

source material some of the kinetic energy of the electrons is converted to thermal energy 

that heat up the material causing it to evaporate or sublimate [4]. The vapourised material 

then coats the substrate. The crucible used in the evaporation tool in this work is water 

cooled to ensure that the electron beam doesn’t melt the crucible and give rise to 

contaminations. A schematic of an E-beam evaporation tool is shown in Figure 4.3.2. 

Initially the source shutter is opened and the crystal monitor measures the deposition rate. 

The substrate shutter is opened when the desired evaporation rate is reached allowing the 

material to be deposited on the substrate.  

The metals used for the gate contact are 20nm platinum and 200nm gold. Platinum was 

chosen because it has a high work function of 5.65 eV. To ensure normally off operation of 

transistors, threshold voltages above zero are desirable. The work function of the gate 

metal affects the threshold voltage of the completed transistors and a high work function 

ensures higher threshold voltages. Gold was used to make contact to the gate metal as it 

does not oxidise [4].  The ohmic contacts used in this work follow a process which was 

developed by Dr Xu Li. The ohmic constacts consist of a stack of 10 nm molybdenum/ 40nm 

Aluminium/ 20nm molybdenum/ 30nm gold. This stack was used because it could be 

annealed at a lower temperature compared to existing ohmic contacts such as Ti/Al/Ni/Au 

which are annealed at 770°C. Therefore, it protects the oxide from thermal degradation.  

The low resistance bond pad consists of 20nm titanium and 200nm gold. A Plassys MEB 450 

and Plassys MEB 550 have been used as evaporation tools in this work. 
 

 

 

 

 



Fabrication techniques  

 54 

 

 

 

 

 

 

 

 
 
 
 

4.4 Optical lithography 
Lithography is the process of defining patterns to enable subsequent selective removal or 

deposition of materials from or to a substrate. This work uses optical lithography to 

pattern the areas where the ohmic contacts and vias (which are used to make contact 

through subsequently deposited dielectric passivation layers), will be deposited.  

The following definitions describe the terminology used in fabrication processes:  

 

• Photoresist: An organic polymer which changes its chemical structure upon exposure 

to ultraviolet light (UV) [5] 

• Photomask: Consists of a fused silica (QZ) or, glass (SL) substrate coated with an opaque 

film into which the required patterns are etched producing areas that will let light 

though [6]. 

 

Optical lithography, also known as photolithography defines patterns on a substrate coated 

with photoresist by using ultraviolet (UV) light. The patterns are generated using a 

photomask placed on top of the substrate. Photoresist is available in two type; positive 

resist which when exposed weakens the chemical structure of the polymer bonds and 

becomes easily soluble with developer and negative resist which when exposed 

polymerises and is insoluble in developer [7]. Figure 4.4.1 illustrates the outcome of using 
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the two different types of resist However, in this work only positive photoresist has been 

used, namely S1818 and LOR. A bilayer of S1818 and LOR are used in a process known as 

lift-off used when depositing ohmic contacts. In this process LOR is developed separately 

from S1818, the LOR undercuts the S1818 which allows the solution used to remove resist 

to remove the LOR, S1818 and metal deposited on top more easily. This process ensures 

that the metallisation is removed where it is not desired.  

 

Listed in order below are the steps undertaken during the photolithography process [8]:  

1. Resist coating: resist is applied to the substrate by spin-coating, this involves pouring 

the resist solution on to the substrate and rapidly spinning it until it is evenly coated. 

The spinning is performed using an electronic vacuum chuck which spin at 3000-7000 

rpm. 

2. Baking: this is done after the resist is spun on to the sample in an oven or on a hot plate 

to improve adhesion and to evaporate solvents in the resist.   

3. Exposure: this involves irradiating the resist on the sample through a photomask with 

UV light 

4. Developing: the exposed substrate is placed in a solvent that selectively dissolves areas 

that have been exposed (positive photoresist)/ unexposed (negative photoresist) to UV 

light.  

 

Three kinds of photolithography exposure techniques exist; contact, proximity and 

projection lithography. During contact lithography the mask is in direct contact with the 

underlying sample while in proximity lithography the mask is approximately 20-30µm away 

from the substrate. In projection lithography the mask is far away from the substrate and 

a projection lens system between the wafer and the photomask generates the pattern on 

the substrate [9]. In this work, contact lithography, represented schematically in Figure 

4.4.2, using a Suss Micro tech MA6 tool, has been used to define MOS capacitors.   
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4.5 Film Removal 
Film removal, also referred to as etching, is the process of removing material from a 

sample. Etching can be split into two distinct areas: Wet etching, and dry etching. In wet 

etching, etchants used to remove material from the sample surface are liquid solvents. 

Dry etching as the name suggests, is the process of film removal in the absence of any 

liquid solvents.  These approaches will be described in detailed below. Although in this 

work only dry etching techniques have been used, the background on wet etching is also 

given as a comparison.  

Figure 4.4.2: Contact photolithography                                      

Figure 4.4.1: Photoresist exposure   
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The parameters investigated when validating an etch include: [9] 

• Etch rate: used to determine the time taken to perform an etch of a given depth 

• Selectivity: the ratio of the depth of the material etched relative to that of the 

photoresist mask 

• Damage: crystal defects on the surface of the substrate result from high ionic impacts 

from dry etching [10] 

• Etch profile: defines the angle between the horizontal base of the etch and the 

upright wall and therefore gives an indication of the directionality of the etch [10]. An 

isotropic etch etches in all directions, while an anisotropic etch, etches in one 

direction.  

 

a. Wet etching  

In wet etching the sample is immersed in a liquid in order to carry out etching. Wet 

etching process can be described by a three stage process: 

1. Diffusion of reactants on to the substrate 

2. Reaction between liquid etchant and the substrate  

3. Diffusion of by-products in to the liquid  

 

b. Dry etching 

In dry etching, reactive species created in a plasma are used to carry out the etch process. 

The plasma is a partially ionised gas with a mixture of electrons, ions, radicals and neutral 

species [9]. A dry etching process can be either a physical (i.e. sputtering) or chemical etch. 

The former consists of molecules being stripped off by the impact of ions on the wafer 

while the later uses chemical reactions between the etchant(s) and the sample to remove 

material [10][11]. 

During dry etching the following fundamental steps take place [13] 

• The etchant species is generated in the plasma. 

• The reactant is diffused through a gas to the etching surface. 

• The reactant is adsorbed to the surface if the process is a chemical etch. 

• Chemical reactions and/or physical processes occur on the surface to form volatile 

compounds. 
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• In chemical etch processes the volatile compounds are desorbed while in physical 

etch processes the material is sputtered off from the surface and pumped out of the 

system.  

Plasma etch reactors include reactive ion etching (RIE) and inductively couple plasma (ICP) 

sources or a combination of the two; ICP-RIE. An RIE chamber, depicted in Figure 4.5.1(a) 

uses a capacitively coupled plasma (CCP) source where the plasma is generated by applying 

RF power to a cathode while grounding the counter electrode where the substrate is placed 

[10] [11]. In an ICP chamber on the other hand plasma is generated inductively; i.e., the 

plasma is created by electric currents which are produced by time varying magnetic fields. 

As illustrated in Figure 4.5.1(b) this system uses two RF sources, where the power from one 

is inductively delivered to the plasma while the other is connected to the substrate and 

capacitively controls the ion energy plasma. 

In this work dry etching is used to produce recessed ohmic contacts, where 600nm of GaN 

is etched aniosotropically using silicon tetrachloride (SiCl4) at applied power of 100W, 

pressure 8mTorr and 100sccm gas flow. Dry etching is also used post resist development 

to remove any resist residue using an oxygen plasma with a low power of 10W, a pressure 

of 50mTorr and a flow of 10sccm.  
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4.6 Annealing 
Rapid thermal annealing (RTA) has been used in this work to anneal the ohmic contacts of 

the MOS capacitors. In an RTA system, a high intensity lamp is used as the heat source. The 

temperature is controlled by a pyrometer and measured by a thermocouple [15]. During a 

rapid thermal annealing process the sample is heated at a high temperature for a short 

period of time. In this work RTA has been used to anneal the ohmic contacts in the presence 

of nitrogen for two minutes at 5500C.  Figure 4.6.1 portrays a schematic of an RTA reactor.  
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Figure 4.6.1 Rapid Thermal Anneal (RTA) 

Figure 4.5.1: (a)Reactive ion etching (RIE) source and (b) Inductively coupled 

plasma (ICP) source  
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4.7 Summary  
This chapter has outlined the MOS capacitor fabrication process flow, along with the 

apparatus used. The fabrication process included optical lithography, film deposition, film 

removal and annealing. A cluster tool has been utilised to perform in-situ etching and ALD 

to ensure the GaN surface is never exposed to the atmosphere. The ohmic contacts, vias 

and gate metal have been deposited using E-beam evaporation and the ohmic contacts 

have been annealed using a rapid thermal anneal.  
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5. Characterisation and 
metrology 
 

5.1 Introduction  
This chapter describes the techniques used during this work to analyse the dielectric film 

quality and the dielectric-semiconductor interface. The thickness and refractive index of 

the aluminium nitride films deposited are obtained using a spectroscopic ellipsometry. The 

conduction and valance band offset data between the deposited dielectric film and the 

semiconductor are determined using x-ray photoelectron spectroscopy. Voltage and 

frequency dependent measurements of MOS capacitors are used to assess the quality of 

the dielectric and the dielectric-semiconductor interface. The quality of the metal films 

grown were tested electrically using both MOS capacitor structures and linear transfer 

length method (L-TLM) structures. Details of the metrology and measurement techniques 

are explained in the following sections.  

 

5.2 Thin film characterisation and metrology  
Spectroscopic Ellipsometry   

Spectroscopic ellipsometry is used in this work to provide information regarding the 

thickness and refractive index of the films deposited. Figure 5.2.1 illustrates a schematic of 

an ellipsometer. It consists of a light source which is passed through a polarizer that allows 

only linearly polarised light to be incident on the sample. The ellipsometer measures the 

change in the polarisation of the light which is reflected from the sample of interest [1]. A 

detector converts the reflected light to electric signals which are compared with the input 

light signal to produce the amplitude, y ratio and the phase shift, D.   

 

In order to obtain the thickness and refractive index, the measured data and algorithms 

are used to generate a mathematical model that describe the interaction of light with the 

sample [2]. This is then compared to a defined theoretical model. This model consists of the 

layer structure, thickness and variables that needs to be fitted. These variables are then 

adjusted until theoretical data fits that of the measured data and the required parameters 

are then obtained. A Cauchy model was used when measuring the ALD deposited AlN films 
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described in more detail in chapter 6. This model is used for transparent films and is given 

by the equation 5.1.  

 

n(λ) = A + _
Ð�
+ k

ÐÑ
                                                                                                         5.1 

where  λ = wavelength	 

A, B and C are the fitting parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

X-ray photoelectronic spectroscopy (XPS)  

X-ray Photoelectronic Spectroscopy is a technique that is employed to investigate the 

chemistry of surfaces [3]. XPS has been used in this work to identify specific elements in AlN 

films deposited, and also to extract valence band and conduction band offset between AlN 

and GaN. The XPS measurements in this work have been carried out by collaborators at the 

University of Liverpool.  A schematic of an XPS system is illustrated in Figure 5.2.2. It uses 

an X-ray source, which is directed towards a sample surface; the energy of the x-ray photon 

is completely absorbed by the core electron of atoms in the sample. If the photon energy, 

hn is large enough electrons will be able to escape from the atom. The emitted electrons 

are called photoelectrons and the binding energy of these electrons can be calculated using 

equation 5.2.  

 

hν = 	E¯ + Ez + ϕ[3]                                                                                                     5.2 

Therefore, E¯ = hν − (Ez + ϕ) [3]                                                                              5.3 

Figure 5.2.1: Schematic of a spectroscopic ellipsometry  
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Where hν = x − ray	photon	energy, E¯ = binding	energy,	 

Ez = kinetic	energy, ϕ = work	function	induced	by	the	analyzer  

 

Photoelectrons emitted from the sample of interest are then analysed to study the 

chemical composition and electronic state of the sample. Each atomic element has a 

characteristic binding energy that is related to its core atomic level. These energies are 

displayed as a set of peaks in a photoelectron spectrum. The peaks at particular energies 

confirm the presence of particular elements.  

 

To obtain the details of band offsets the Kraut method, shown in equation 5.4 was used 

initially to calculate the valence band offset (VBO) [4]. Literature values were taken for the 

band gap of the dielectric and the semiconductor. These values will reflect ideal materials 

and may not represent the actual material qualities in this work, this may lead to small 

inaccuracies in the calculations. The valence band maximum of these were calculated by 

linear extrapolation of the leading edge to the baseline of the valence band spectra as 

indicated in Figure 5.2.3 [5].  

 

∆Ej = ∆EkR + (EkR,µf� − Ej)µf� − (EkR,"*eReQZX*Q − Ej)"*eReQZX*Q                          5.4 

∆Ev = Valence	band	offset, 

∆ECL

= Difference	in	the	core	level	binding	energies	between	the	film	and	the	semiconductor	 

EV = Valence	band	maximum 

EkR,µf� = Core	level	binding	energy	of	GaN 

EkR,�R� = Core	level	binding	energy		of	AlN 

 

 

 

 

 

 

 

 

 Figure 5.2.2 Schematic of an XPS measurements set up 
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5.3 MOS capacitor characterisation  
Capacitance-voltage (C-V) measurements give useful information about the internal 

structure of MOS capacitors. They can be used to identify defects in the dielectric itself and 

at the dielectric-semiconductor interface. Described below are characterisation methods 

adopted in analysing the C-V data obtained from the MOS capacitors fabricated in this 

work.  

 

Flat band voltage  

The flat band voltage, as described previously in chapter 3 is the voltage at which the 

surface potential is zero (yS = 0V) and there is no band bending at the dielectric-

semiconductor interface. Flat band voltage is an important metric that is used when 

calculating C-V hysteresis and frequency dispersion which will be discussed in the following 

subsections. The comparison of an ideal Vfb to that of a measured Vfb can also give useful 

information regarding the fixed charge present in dielectric. Winters et al, describes a 

method where Vfb is realised by calculating the point of inflection of C-V curves [6]. In his 
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Figure 5.2.3: Linear extrapolation of valence band edge to determine 
valence band maximum 



Characterisation and metrology 

 66 

work, Winter et al’s method has been proven to be equal to the Vfb that is obtained when 

calculating the flat band capacitance, Cfb. The point of inflection was chosen because 

mathematically it is the transition point where the shape of the C-V curve changes from 

convex to concave.  

In order to attain the point of inflection the double derivative of the C-V curve is obtained. 

The point of intersection between C-V and the double derivative gives the point of 

inflection which is equal to the Vfb. This is illustrated in Figure 5.3.1.  

 

 

 
 

C-V hysteresis and Frequency dispersion  

 

C-V hysteresis 

To obtain the C-V hysteresis,Dhysteresis a 1 MHz AC signal, of 20mV amplitude applied on top 

of a slowly varying DC bias sweep from -5V to +5V and back. The hysteresis is measured by 

the difference in the flat band voltages in the forward and backward sweep. The flat band 

voltages are determined by the point of inflection method (as described previously) of the 

two curves. As explained in chapter 3, hysteresis arises due to the presence of interface 

traps between the dielectric and the GaN surface. Shown in Figure 5.3.2 is the Dhysteresis 

obtained between the forward and backward C-V sweep. 
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The frequency dispersion  

To obtain the frequency dispersion, Ddispersion the C-V curves at frequencies ranging from 

1MHz to 1kHz were measured. Illustrated in Figure 5.3.3 are the C-V curves measured at 

the various frequencies shown on the legend. The Ddispersion reported in the work is the 

maximum difference in the flat band voltage obtained between the different frequencies. 

The Vfb at different frequencies were again calculated using the method described 

previously.  
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Stress voltage measurements  

During the stress voltage measurements, the C-V curve is swept forwards and backwards 

while increasing the range of sweep by 1V with every measurement. i.e. the curve is swept 

from -5 V to 0V and back to -5V and then -5V to 1V and back to -5V and so on. The hysteresis 

at each range is calculated using the difference in the flat band voltage as outlined above. 

The increase in hysteresis with the increasing voltage range is indicative of an increase in 

interface trap generation. Figure 5.3.4 illustrates the curves obtained during a 

measurement of this type. 
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C-V stretch out 

The stretch out of the C-V curve is determined by obtaining the first derivative of the 1 MHz 

C-V curve. It is measured at 1MHz to ensure that the C-V response is not affected by high 

number of traps at lower frequencies. The maximum slope indicates the stretch out of the 

curve; i.e., the higher the slope the lower the stretch out and the lower the number of 

trapping states that are being accessed. Figure 5.3.5 illustrate the dC/dV curve obtained 

when the C-V curve is differentiated. 
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Breakdown and leakage 

Breakdown and leakage 

Breakdown voltage and leakage currents are measured by varying the applied voltage and 

measuring the current flow. Breakdown is defined as the voltage that occurs when there is 

a large increase in current flowing in the oxide [7]. When a dielectric is stressed by a voltage 

it loses its insulating properties due to the generation of traps. Percolation theory suggest 

that the breakdown occurs from a conduction path that is created from these as a 

consequence of the increased number of traps [8][9].  This gives rise to catastrophic 

breakdown of films. Figure 5.3.6 illustrates an I-V curve that is measured to obtain 

breakdown and leakage properties. The leakage value obtained is the current that flows 

through the dielectric at 1V.  
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5.4 Characterisation of sheet resistance and resistivity  
Sheet Resistance and resistivity 

The sheet resistance of the titanium nitride grown in this work was evaluated using the 

Transfer Line Method (TLM). These measurements were used to extract the sheet 

resistance (Rsheet) and resistivity, ρ of the TiN deposited. Linear TLM structures illustrated 

in Figure 5.3.7(a) were used and they consist of identical contacts with different spacing, Li 

in between. The total resistance, RT measured between the contacts consists of the top 

metal contact Rm, the resistance of the underlying material Rx and also the contact 

resistance, Rc between the metal and the underlying material [3]. RT is therefore the sum of 

Rm, Rx and Rc and is given in equation 5.5. Rx, the resistance of the underlying material is a 

function of Rsheet , the distance between the contacts, L and the width of the contacts as 

shown in equation 5.6. 

 

𝑅Á = 2𝑅\ + 2𝑅Õ + 𝑅Ö                                                                                                     (5.5) 

 

𝑅Ö = 	
×Ø»ÙÙºÚ
Û

                                                                                                                        (5.6) 

 

The Resistance of the metal usually is very low (Rc >> Rm), therefore Rm can be ignored. The 

equation then simplifies to that shown in equation 5.7.  
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𝑅Á =
×Ø»ÙÙºÚ
Û

+ 2𝑅Õ                                                                                                             (5.7) 

Rsheet and Rc can be evaluated by plotting the graph of RT versus L as shown in Figure 

5.3.7(b). Rsheet  can be calculated by obtaining the gradient of the graph and Rc by obtaining 

the intercept of the graphs. The ρ is obtained by dividing the sheet resistance by the film 

thickness, t as shown in equation 5.8. 

 

ρ = 	 ×Ø»ÙÙº
Ý

                                                                                                                     (5.8) 

 

 
 Figure 5.3.7 (a): Linear TLM structures  
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5.4 Summary  
The chapter has described the characterisation and metrology techniques used in the 

research. Spectroscopic ellipsometry is used to give information regarding the thickness 

and refractive index of the film and x-ray photoelectron spectroscopy is used to identify 

the elements present in films and to obtain the band offsets between the dielectric and the 

semiconductor. The C-V based analysis of the films provide insight into the dielectric quality 

and the quality of the dielectric-semiconductor interface. 
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6.“In-situ processing” of GaN 
MOSCAPs  
 

6.1 Introduction 
The impact of avoiding atmospheric exposure of the GaN surface on the electrical 

characteristics of GaN MOS capacitors is discussed in this chapter. This has been achieved 

by completing the MOCVD growth of GaN MOSCAP wafers with an in-situ deposited SiNx 

layer. A cluster tool with both etching and atomic layer deposition capability was used to 

process the samples “in-situ”.  The in-situ deposited SiNx layer was first etched prior to 

samples being transferred under vacuum to the ALD reactor. The chapter also discusses 

the effect of various plasma pretreatments prior to the dielectric deposition in the ALD 

reactor and also the effect of a post gate metal annealing process using forming gas. The 

effect of the above in-situ processing, plasma pretreatments and post forming gas anneal 

(FGA) have been characterised by using capacitance-voltage and current voltage 

measurements.  

 

6.2 Experimental procedure  
 
The experiments used to evaluate the “in situ processing” of GaN MOSCAPs where the GaN 

surface is not subjected to atmospheric exposure were carried out on 15x15mm GaN 

samples diced from a 150 mm GaN on Si MOCVD grown wafer shown schematically in 

Figure 6.2.1(a). The layer structure was designed by collaborators at the Univeristy of 

Cambridge. The structure included a buffer layer to compensate for lattice mismatch 

between Si and GaN and a highly doped GaN layer was included for fabricating low 

resistance ohmic contacts. The key layers in the material structure were a 600 nm thick 

1x1017 cm-3 n-doped GaN layer which was capped with 5 nm SiNx as the final step in the 

wafer growth. Following dicing, the samples were prepared using a standard ultrasonic 

clean in acetone for 5 minutes before being rinsed in isopropropanol (IPA) and then in RO 

water. They were then processed in the cluster tool, using the chambers shown in Figure 

6.2.2. The samples were first transferred to the etching chamber via the wafer handler 

where the SiNx was removed using a proven, low damage [1] reactive ion etching (RIE) 

process in an SF6 plasma for 45 seconds at with an RF power of 50W, chamber pressure of 
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50mTorr and 50sccm SF6 gas flow rate before being transferred under vacuum (7.5x10-9 

Torr) to the ALD chamber, where various plasma pretreatments were performed prior to 

the dielectric deposition. Al2O3 was chosen as the dielectric due to its favourable band 

offsets and high electric breakdown field[2][3].  20nm thick Al2O3 films were deposited 

thermally using trimethyl aluminium (TMA) and H2O at 2000C.  

 

The details of the various pretreatments used are listed in table 6.2.1. As reported in 

literature N2 plasma has the capability to fill nitrogen vacancies and H2 assists in removing 

carbon impurities [5]. Therefore, this work examines the effect of N2 and H2 plasma at 

different plasma powers and exposure times. A pretreatment with a combination of N2 and 

H2 was also examined using the plasma powers and times that gave the most favourable 

electrical data for each individual gas.  In this process split, the sample was first exposed to 

the H2 plasma followed by the N2 plasma afterwards. No wet treatments have been carried 

out in this work to ensure the sample was always kept under vacuum and not affected by 

atmospheric exposure. MOS capacitor structures were fabricated on the samples after 

dielectric deposition. The capacitors contained 20nm Pt/ 200nm Au gate metal stack 

deposited on the Al2O3 dielectric using a shadow mask. These samples were then masked 

using photoresist to produce the ohmic contact to the highly doped GaN layer. Afterwards, 

600nm of GaN was etched using SiCl4 RIE at 8mTorr, 200W, 25 sccm. A 10nm Mo/40nm 

Al/20nm Mo/30nm Au ohmic contact was then deposited using E-beam evaporation and 

lifted off and was followed by another layer of lithography where contact to the ohmic 

metal was made by 20nm Ti/ 200nm Au that was also deposited ex-situ using E-beam 

evaporation. The exact details of the fabrication flow are shown in Appendix A. The MOS 

capacitors were then characterised electrically by measuring the C-V and I-V properties 

which are examined in detail in the following sections. 

 

The samples with the most favourable electrical data were then subjected to a forming gas 

anneal (H2 10%: N2 90%) at 4300C for 30 minutes. The effect of the anneal on electrical 

properties on these samples are discussed in section 6.4.  
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Figure 6.2.1: (a) MOS capacitor layer structure (b) Fabricated MOS capacitor 
(c) Cross sectional view of fabricated MOS capacitor 

Figure 6.2.2: Schematic of cluster tool 
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Plasma gas Power/ (W) Time/(minutes) 
N2 150 5 

N2 300 5 
N2 225 7 
N2 75 7 
N2 225 3 
H2 200 5 
H2 100 5 
H2 150 3 
H2 300 5 

 

 
 
6.3 Electrical Analysis: Pre FGA 
This section examines the capacitance-voltage and current-voltage measurements at room 

temperature of the samples before various FGA processes . A summary of all the electrical 

data measured is represented in Table 6.3.1 and the graphical representations of all the 

data are attached in Appendix B. The following subsections discuss in detail the parameters 

in Table 6.3.1.  

 

Row Plasma 
gas 

Power 
(W) 

Time 
(mins) 

DHysteresis 
(mV) 

DDispersion 
(mV) 

Cacc 

@1MHz 

(µF/cm2) 

Ileak @1V 
(A/cm2) 

Vfb 
(mV) 

Vbr 
(V) 

1 SiN 
etch 
only 

0 0 250 350 0.295 0.016 -650 13.4 

2 N2 75 7 350 350 0.313 0.018 -550 10.5 

3 N2 150 5 200 250 0.323 0.015 -650 14.4 

4 N2 225 7 300 400 0.312 0.0254 -550 10.7 

5 H2 100 5 400 350 0.264 0.0651 -100 12.6 

6 H2 150 3 150 200 0.288 0.0142 -250 13.6 

7 H2 200 5 400 250 0.294 0.0187 -500 13.4 

8 H2 +N2 150 
+150 

3 + 5 300 
 

350 0.323 0.058 -350 12.6 

 

 

 

 

Table 6.2.1: Summary of the pretreatments used 

Table 6.3.1: Summary of electrical data obtained for various pretreatments, 

DHysteresis= C-V hysteresis, DDispersion= frequency dispersion, Cacc= accumulated 

capacitance, Ileak= leakage current, Vbr= breakdown voltage  
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C-V hysteresis 

The room temperature C-V hysteresis evaluation, measured at a frequency of 1 MHz, 

comprised of a forward voltage sweep from -5v to +5V and back to -5V. This enabled the 

determination of the flat band voltage hysteresis, DVHysteresis, between the forward and 

backward sweeps. A maximum voltage of 5V was applied because it is the applied voltage 

to the gate of the envisioned final transistors, while a minimum of -5V was chosen to ensure 

sufficient voltage is applied for the C-V to show depletion characteristics.  

It can be observed that the sample with no pretreatment post the SiNx etch (Row 1 in Table 

6.3.1) produced a hysteresis of 250mV. The exposure to an N2 plasma at 75W for 7 minutes 

post etch (Row 2) increased the hysteresis to 350mV. Increasing the power to 225W (Row 

4) resulted in a hysteresis of 300mV, which is still higher than the sample with no 

pretreatment. However, with a N2 plasma power of 150W and decreasing the exposure 

time to 5 minutes resulted in a 200mV hysteresis (Row 3). The N2 150W 5 minute plasma 

therefore assisted in reducing interface traps and produced the lowest hysteresis 

compared to the other N2 plasma treated samples  

Three different hydrogen plasma pretreatments were also examined; 100W for 5 minutes, 

200W for 5 minutes and 150W for 3 minutes. In comparison to the samples that had no 

pre-treatments (Row 1 of Table 6.3.1), the hysteresis increased to 400mV when a 100W, 5 

minute H2 plasma was used (Row 5) and the hysteresis remained at 400mV when the power 

was doubled to 200W (Row 7). However, a power of 150W and an exposure time of 3 

minutes reduced the hysteresis to 150mV. In comparison to all the pretreatments of this 

study, H2 plasma pretreatment at 150W for 3 minutes produced the lowest hysteresis. 

Figure 6.3.1 shows the DVHysteresis data of the sample that had no pretreatments after the 

SiNx etch, and the sample that produced the lowest DVHysteresis from the N2 plasma 

treatment and the H2 plasma treatment.  

 The H2 pretreatment at 150W for 3 minutes and N2 pretreatment at 150W for 5 minutes 

plasma were then both used to check the effect of a combined treatment. The sample was 

first exposed to the H2 plasma and then to the N2 plasma. However, this resulted in a 

hysteresis of 300mV (Row 8 of Table 6.3.1), which was again much higher than the 

untreated samples. 
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       SiN etch only                                                  

 
         
                          SiN etch + N2 150W 5min                                          

 
 
                         SiN etch + H2 150W 3min                           
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Figure 6.3.1: C-V hysteresis characteristics measured at 1MHz 
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Frequency Dispersion  

In order to calculate the frequency dispersion, DDispersion the capacitance response was 

measured at frequencies ranging from 1MHz to 1kHz. Frequency dispersion was calculated 

by measuring the maximum difference in the flat band voltage across this range of 

frequencies as discussed previously.  

 

Similar trends to the C-V hysteresis were also observed for the frequency dispersion, where 

the 5 minute, 150W N2 150W (Row 3 of Table 6.3.1) 3 minute, 150 W H2 (Row 6) plasma 

treatments produced the lowest DDispersion of 250 mV and 200 mV respectively. These results 

are shown in Figure 6.3.2 along with the sample that had no pretreatments, which had 

frequency dispersion of 350mV. 

 

The combination of both N2 and H2 plasma resulted again in degraded performance with a 

higher frequency dispersion of 350mV (Row 8 of Table 6.3.1).                                 
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           SiNx etch + N2 150 5min                                                                         

 
 
                  
                            SiNx etch + H2 150 3min                                                                          

 
         
 

Leakage and breakdown  

The leakage current through the dielectric, Ileak and breakdown voltage, Vbr data of the 

various pretreated samples are depicted in Figure 6.3.3 The exact values for leakage 

current at 1V and breakdown voltage are shown in Table 6.3.1. The lowest leakage current 

values are also obtained for the sample that had an H2 plasma pre-treatment at 150W for 

3 minutes, this is followed by the sample with an N2 plasma pre-treatment at 150W for 5 

minutes and the sample that had no pre-treatments.  

 

The highest breakdown voltage of 14.4 V was achieved for the film that had an N2 150W 5 

minutes plasma pretreatment prior to the dielectric deposition, this was then followed by 
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Figure 6.3.2: Frequency dispersion characteristics for the pretreatments used   
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the H2 150W 3minutes plasma with a Vbr of 13.6 V and the samples that had only the SiNx 

etch with no pretreatment with a Vbr of 13.4V. 
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Similar trends are seen for both the H2 and N2 plasma treatments, where decreasing the 

power below 150W and increasing the power above 150W resulted in higher DHysteresis, 

DDispersion and leakage current.  This could be because the high plasma power induces 

damage to the GaN surface, while at low power there isn’t sufficient energy for the atomic 

species in the plasma to interact with the surface. Compared to the sample that had no 

pre-treatments after the SiNx etch, N2 and H2 plasma treatments have resulted in a 

reduction in both DHysteresis and DDispersion and improvements to the leakage current and 

breakdown voltage.  

It should also be noted that that the accumulation capacitance attained is lower than the 

theoretical capacitance of 0.403µF/cm2 for 20nm Al2O3, calculated using a relative 

permittivity, er of 9.1[3]. Based on the measured accumulation capacitance, and assuming 

the Al2O3 layers are 20 nm thick, the relative permittivity of the films deposited are 

between 6.6 and 7.3. The highest er obtained was from the film deposited on the GaN 

surface that had been exposed to the optimal N2 plasma pretreatment. Further, the 

breakdown field achieved for the samples that had the best electrical data in terms of 

capacitance related metrics were between 6.7-7MV/cm, which is also lower than that 

achieved in literature of 9MV/cm [6]. The lower breakdown voltage could be a result of 

possible carbon impurities present in the films [7]. 

It is evident from the results that the N2 and H2 plasma pretreatments assisted in enhancing 

the GaN-Al2O3 interface. The results summarised in Table 6.3.1 indicate that the samples 

that that gave the best electrical characteristics were: the sample which had no 

pretreatments after the SiNx etch, the sample which had N2 pretreatment at 150W for 5 

minutes and the sample which had H2 pretreatment at 150W for 3 minutes. The following 

section investigates the effect of a forming gas anneal (FGA) on these samples.  

 

6.4 Electrical analysis: Post FGA 
The selected samples from the previous section with the best performance in regards to 

CV hysteresis, frequency dispersion, leakage current, and breakdown voltage were 

subjected to a 4300C forming gas anneal for 30 minutes after the fabrication of the full MOS 

capacitor. This section examines the effect of an FGA on the electrical characteristics of the 
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MOS capacitors and a summary of all the electrical data measured are represented in Table 

6.4.1 

 

Plasma 
gas 

Power 
(W) 

Time 
(minutes) 

DHysteresis 
(mV) 

DDispersion 
(mV) 

Cacc 

@1MHz 

(µF/cm2) 

Ileak 

@1V 
(A/cm2) 

Vbr 
(V) 

SiN etch 
only 

0 0 90 150 0.285 0.0152 15 

N2 150 5 60 50 0.320 0.0148 14.2 

H2 150 3 70 60 0.296 0.0132 14.2 

 

 

C-V hysteresis 

 Figure 6.4.1 depicts the C-V hysteresis of pre and post FGA for the selected samples. All 

the samples demonstrated greater than a 50% reduction in hysteresis post FGA. A 64% 

reduction for the samples that had no pretreatment after the SiNx etch was measured, as 

well as a 70% reduction for N2 treated samples and a 60% reduction for H2 treated samples. 

Post FGA, the sample that was exposed to an N2 plasma pre-treatment after the SiNx etch 

produced the lowest hysteresis of 60mV.  

It can also be observed from Figure 6.4.1 that the C-V curves have also shifted towards the 

positive direction after FGA. This shift could be a consequence of the reduction in fixed 

positive charge of the oxide due to the FGA and this will be discussed further in the 

discussions section.  
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Table 6.4.1: Summary electrical data obtained post FGA 
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                        SiNx etch+ N2 150W 5 minutes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                            SiNx etch + H2 150W 3minutes

 
                        
 
 
 
 
 
Frequency dispersion  
 
Figure 6.4.2 depicts the C-V curves of the optimally N2 and H2 plasma pretreated samples 

and the sample that only went through the SiNx etch measured at different frequencies. It 

can be observed that the FGA has also assisted in reducing the frequency dispersion. The 

dispersion in the sample with no plasma pretreatment has reduced from 350 to 150mV 

(57.1% reduction). There has been a reduction from 200 to 60mV for samples with H2 
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Figure 6.4.1: Effect of FGA on C-V hysteresis  
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plasma exposure (70% reduction), and a reduction from 250 to 50mV for the samples with 

with N2 plasma (80% reduction). The N2 plasma pretreatment has therefore resulted in the 

lowest frequency dispersion after FGA.  

 

Shown in Figure 6.4.3 is the accumulation capacitance determined at different frequencies 

for N2 pretreatment, H2 pretreatment, and no pretreatment. A variation of 1.25% and 

0.33% was observed in the accumulation capacitance for the H2 and the N2 treated 

samples. However, the sample with no pretreatment shows a variation of 13.7% in the 

accumulated capacitance. This variation is most likely a result of the presence of border 

traps in the oxide. Therefore, it appears that the pretreatments have assisted in reducing 

the border trap density.  

 
                          SiNx etch + no pre-treatment  
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       SiNx etch + N2 150W 5min 
 

    
 
                
                                  
 
                                        SiNx etch + H2 150W 3min 
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Figure 6.4.2: Effect of FGA on frequency dispersion  
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Stress voltage measurements  

Figure 6.4.4 illustrates the stress voltage measurements of the optimally N2 and H2 plasma 

pretreated samples, as well as the sample with no pretreatment. These were measured at 

10kHz, while varying the range of voltage from -5 to 0V and back to -5V then -5 to 1V and 

back to -5V and so on. The x-axis values denote the final voltage value to which the voltage 

was swept. It can be seen that the change in the hysteresis measured from N2 plasma 

pretreatment was the lowest pre FGA. However, after the samples were annealed the 

hysteresis measured at the different voltage ranges remained the same for all the samples.  

No hysteresis was measured until the voltage range reached 5 V. Over this bias range, the 

hysteresis measured was 50mV, which is still less than the values obtained pre FGA.  
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C-V slope 

The differentiation of the C-V curves of the samples pre and post FGA are depicted in Figure 

6.4.5. The derivative can be used to give an indication of the interface trap density between 

the semiconductor and oxide. The higher the slope the lower interface trap density. The 

FGA has resulted in an increase in the C-V slope. The anneal has therefore assisted in 

reducing the number of interface traps 

 

Pre FGA, the C-V slopes of all samples were in the range 0.10-0.16 µF/cm2V. This increased 

to values between 0.20 and 0.23 µF/cm2V after FGA, with the sample exposed to the 

optimal H2 plasma pretreatment again having the highest slope, and therefore the lowest 

number of interface traps.  
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Leakage and breakdown  

The leakage current and breakdown voltage of samples after FGA are shown in Figure 6.4.6. 

The lowest leakage current is obtained for the films that had an H2 plasma pretreatment 

for 3 minutes. However, the breakdown voltage is the highest (15V) for the samples that 

had no pre-treatments. The films with the optimal N2 and H2 plasma pretreatments both 

have breakdown voltage of 14.2V after FGA.  
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Discussion 
 

Table 6.4.2 summarises the electrical data obtained for the optimally N2 and H2 plasma 

pretreated samples and the samples with no pretreatment pre and post FGA. It can be 

observed that the FGA has made significant improvements to the electrical properties of 

the samples. C-V hysteresis has reduced by 64% for the sample with no pretreatments, 

while it has reduced by 53% for the H2 treated sample and by 70% for the N2 treated 

sample. The frequency dispersion has reduced by 57% for the sample with no 

pretreatment, by 70% for the H2 treated sample and by 76% for the N2 treated sample. A 

DHysteresis of 250mV and a DDispersion 310mV was reported for GaN -Al2O3 MOS capacitors that 

had no pretreatment but underwent a post FGA at 4300C for 30 minutes [8]. Therefore, it 

can be concluded that the in-situ SiNx capped layer, has effectuated a reduction of 64% in 

the DHysteresis and a reduction of 51.6% in DDispersion. 

 

Considerable improvements have also been made to the slope of the C-V curve post FGA, 

indicating further the improvement to the GaN-Al2O3 interface. Table 6.4.2 also shows the 

fixed charge in the films, which has been calculated using equation 6.1. The equation 

assumes is no trapped charge present in the oxide. The difference between Fms and the 

measured flat band voltage, Vfb measured multiplied by the accumulated capacitance per area 

produces the charge density. Fms is calculated using theoretical values reported in 

literature. It can be observed from Table 6.4.2 that initially, a positive fixed charge existed 

in the Al2O3 films and the FGA has reduced this. This indicates that the FGA may have the 
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effect of passivating unsatisfied positive bonds in the oxide [9]. Similar results are also 

obtained in literature where an FGA assists in reducing the fixed positive charge in Al2O3 

films [9].  

 

Figure 6.4.7 illustrates the ideal band diagram of the GaN MOS capacitor system, with Pt 

as the metal electrode and Al2O3 as the dielectric.  The ideal Vfb voltage in the absence of 

any fixed charge has been calculated to be -630mV using equation 6.2. Details of the 

calculation are depicted on the right-hand side of Figure 6.4.7. The Vfb values measured 

from the samples post FGA are indeed different from the calculated values. This could be 

as a result of the dissimilarity between the idea and actual work function of platinum 

deposited and the presence of fixed charge in the oxide.  

 

 The leakage current too has reduced but not significantly (<10%) as a result of the FGA 

process. A slight improvement in the breakdown voltage is observed for the sample that 

had no plasma pretreatments post SiNx etch and the hydrogen treated samples, however 

for the samples that had the N2 plasma pretreatment no significant change was observed.  

 

QY = (Φd+ −	VY¯def+gXe))C%i [10]                                                                            6.1 

 

VY¯ = Φd+ −	
ÇÞ~ß
k~�

= −0.630V                                                                                  6.2 

Qpol= Polarisation charge=  -0.29 x 10-6 C [11].  

 

 

                                                                                        Φd =	ΦâZ = 5.65eV[12] 

                                                                            c+ = 4.1eV[11] 
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  SiNx etch only 
SiNx etch + H2 

150W 3 
minutes 

SiNx etch + N2 
150W 5 
minutes 

  Pre FGA 

Vflatband/(mV) -650 -250 -650 

Dhysteresis/mV 250 150 200 

DDispersion/mV 350 200 250 

Cacc/(µF/cm2) 0.295 0.288 0.323 

er 6.67 6.5 7.3 

(dC/dV)/(µF/cm2.V) 0.134 0.160 0.137 

Ileak/(µA/cm2) at 1V 0.016 0.0151 0.0142 

Vbr/(V) 13.4 13.6 14.4 

 Qf/cm2 1x1012 2.88x1011 2.88x1012 
 
 

 Post FGA 

Vflatband/(mV) 100 250 150 

Dhysteresis/mV 90 70 60 

DDispersion/mV 150 60 60 

Cacc/(µF/cm2) 0.285 0.296 0.320 

er 6.64 6.69 7.23 

(dC/dV)/(µF/cm2.V) 0.201 0.215 0.209 

Ileak/(µA/cm2) at 1V 0.0152 0.0132 0.0148 

Vbr/(V) 15 14.2 14.2 

 Qf/cm2 -3.4x1011 -6.29x1011 -4.8x1011 

 

 

6.5 Summary 
This chapter has discussed a route to the realisation of GaN MOS-capacitors (MOSCAPs) 

which avoids air exposure of the GaN surface by utilising in-situ deposition of SiNx as the 

final part of substrate growth. A clustered plasma etch and atomic layer deposition (ALD) 

tool has then been used to etch the SiNx cap and transfer under vacuum to the ALD 

chamber where surface pretreatments and dielectric growth is performed.  

The effect of N2 and H2 plasma pretreatments after the SiNx etch were also investigated. N2 

150w for 5 minutes and H2 150W for 3 minutes produced the best electrical data and 

indicated reduction in interface traps. These optimally plasma pretreated samples along 

Table 6.4.2: Summary of pre and post FGA 
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with the sample that had no plasma pretreatments were then subjected to an FGA at 4300C 

for 30 minutes. The DHysteresis  of 90mV and DDispersion of 150mV achieved from the samples 

were much lower than the reported values of 250mV and 350mV of untreated GaN-Al2O3 

MOS capacitors that have undergone similar thermal treatment [7]. This confirms the 

importance of a GaN surface that is unexposed the atmosphere. 

 

Significant reduction in the interface traps and positive fixed charge were observed for all 

of the samples after the FGA. These reductions are encouraging for the realisation of high 

power GaN devices. The breakdown voltage of the films was however still lower than 

reported values. This may be due to the contaminants such as carbon present in the ALD 

films, and emphasises that the quality of the film still needs to be improved.  
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7. Atomic layer deposition and 
characterisation of aluminium 
nitride  
 

7.1 Introduction  
It has been reported that as a consequence of depositing Al2O3 on GaN, a GaOx suboxide is 

formed at the GaN-Al2O3 interface. Ga-O bonds have proven to increase interface states, 

which are undesirable in devices due to increased trapping [1]. Further, the GaOx suboxides 

are not lattice matched to that of GaN unlike AlN. The AlN also prevents the formation of 

an oxide layer and hence provides a better interface with GaN. There are various 

chemistries of growing AlN reported in literature. These include TMA with N2, TMA with 

NH3 and TMA with N2 and H2 
[2][3]. The reaction with NH3 of which are shown below: 

 
Al(CH3)2 + NH3 →  AlN + 3CH4 
 

The main impurity observed in these chemistries has been carbon. ALD reactions using only 

N2 have shown a higher content of carbon when compared to those using NH3 and N2 and 

H2 plasma [2]. In this work a mixture of N2 and H2 plasma gas was used because the gas flow 

ratios can be controlled separately. The two main factors that affects the purity of the film 

have been the plasma exposure time and hydrogen flow rate. Low plasma exposure times 

resulted in chemically non-inert films while low flow rates resulted in insufficient removal 

of the alkyl group.  

 

This chapter illustrates the effect of inserting an aluminium nitride (AlN) interlayer between 

GaN and an ALD deposited Al2O3 dielectric film. The AlN film has been deposited using 

plasma ALD with trimethylaluminium (TMA) and a mixed N2 and H2 plasma. To this end, the 

effect of varying the process parameters on growth rate and refractive index were 

examined and the respective ALD windows were identified. These films were initially grown 

on silicon and the process conditions that gave the most favourable results were used as 

deposition conditions on GaN MOS capacitors shown in Figure 7.2.1(a)(i). The films were 

analysed chemically on GaN using XPS and electrically by performing C-V and I-V 
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measurements. Electrical data of 4nm and 2nm AlN interlayers were initially examined and 

the most favourable of the two processes was then transferred on to samples shown in 

Figure 7.2.1a(ii) that went through an in-situ SiN etch and ALD process. The experimental 

details of the processes are provided in the following section.  

 

7.2 Experimental procedure 
ALD AlN 

The aluminium nitride films in this study were deposited using trimethyl aluminium (TMA) 

and a mixture of N2 and H2 plasma. The films were initially grown on 15X15mm silicon 

substrates to identify the ALD window. The Si substrates were prepared using a standard 

ultrasonic clean in acetone for 5 minutes, rinsed in isopropyl (IPA) and then in RO water 

prior to ALD.  To identify the ALD windows, 200 cycles of AlN were grown on silicon and the 

thicknesses and refractive indices of the films were measured using a spectroscopic 

ellipsometer (Woollam M-2000) at wavelenghth, l = 633 nm. The measured data were 

fitted with the Cauchy model with a refractive index of 1.9 for AlN. 

 

Once the ALD windows were identified, the optimised film was analysed both physically 

and electrically on GaN substrates. 

 

Physical analysis  

The AlN film was deposited on the layer structure illustrated in Figure 7.2.1a(i) and was 

characterised physically using X-ray photoelectron spectroscopy (XPS). This was used to 

confirm the presence of AlN and to calculate the band offsets between AlN and GaN. The 

GaN samples used in the XPS measurements were also cleaned using the standard, 

acetone, IPA and RO water clean prior to AlN deposition. 

 

Electrical analysis  

Electrical analysis was carried out on GaN MOS capacitors with two different layer 

structures illustrated in Figure 7.2.1a(i) and a(ii) and for simplicity throughout this chapter 

they will be referred to as layer structure 1 and 2 as labelled in the figure. Layer structure 

1 consist of bare GaN on Si substrates while layer structure 2 contains a 5nm SiNx layer that 

was grown in-situ as part of the MOCVD wafer growth. In order to carry out the in-situ SiNx 
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etch and ALD deposition described in chapter 6 with AlN films as an interlayer the following 

steps were taken:  

1. AlN ALD windows were identified using Si samples 

2. AlN films with two different thicknesses, 2nm and 4nm were deposited on layer 

structure 1 after an N2 150w 5 minute plasma pretreatment. A 20nm Al2O3 film was 

then deposited on the AlN film. The final structure is shown in figure 7.2.1 b(ii).  

3. Films were characterised electrically and compared to samples that also had the N2 

pretreatment but only had a 20nm Al2O3 grown on layer structure 1.  

4. The thickness that produced the most favourable electrical characteristics was then 

used for the in-situ etching and ALD process. Here, the SiNx was etched using SF6 

plasma and transferred under vacuum to the ALD chamber, where the N2 plasma 

pretreatment was performed, an AlN film was deposited which was followed by a 

20nm thermal Al2O3 film.  

 

All the GaN-based samples used for electrical characterisation were cleaned using the 

standard acetone, IPA and RO water clean prior to plasma processing.   
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The following section describes in detail the parameters that were varied in order to 

identify the ALD windows and to obtain the optimised AlN films. 

 

7.3 ALD windows  
In order to optimise the AlN growth conditions, several process parameters have been 

investigated. These include N2:H2 gas flow ratio, substrate temperature, TMA and plasma 

exposure and purge time, RF power and chamber pressure. Table 7.3.1 outlines the base 

values used and the range of each parameter examined. Therefore, unless otherwise stated 

the base value for each parameter remains fixed.  

 

 

 

 

 

 

 

 

 

 

 

Parameters Base value Range 

Plasma gas ratio - 1:6 – 6:1 N2:H2 

Temperature 2500C 150 - 4000C 

TMA exposure time 20ms 10 - 80ms 

TMA purge time  3s 0.5 - 5s 

Plasma exposure time 15s 5 - 40s 

Plasma purge time 3s 0.2- 12s 

Applied power 200W 5 – 400W 

Applied pressure  15mTorr 5 – 80mTorr 

Table 7.3.1: Base values and range of parameters used  

Figure 7.2.1: Layer structure of GaN MOS capacitor used a(i)without SiNx 

a(ii) an b(i) with 20nm Al2O3 and b(ii) AlN/Al2O3 gate stack 
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• Gas flow ratio 

The effect of the gas flow ratio on growth rate and refractive index was investigated by 

varying the individual flow rates of the gases, but the total flow rate was kept constant at 

20sccm. The plasma gas ratios ranging from one that is hydrogen rich (1:6 N2:H2) to one 

that is nitrogen rich (6:1 N2:H2) were used. The results are displayed in Figure 7.3.1.  It can 

be seen that constant growth rates and refractive indices were achieved for plasmas that 

were either hydrogen or nitrogen rich. Hydrogen rich plasmas show improvement in film 

properties where refractive indices of 1.9 and above were achieved while nitrogen rich 

plasmas only produced films with indices that were 1.8 and below. Growth rate also 

increased from 0.0612 ± 0.0014nm/cycle for samples that had a higher hydrogen flow rate 

to 0.072 ± 0.0066nm/cycle for samples that had a higher nitrogen flow rate. The increased 

growth rate of the plasmas with lower hydrogen concentration could be a result of the low 

supply of hydrogen radicals and ions that lead to an inadequate reduction of the alkyl 

groups which has also caused a reduction in the refractive index [4].  

 

The following depositions that were carried out therefore used a gas flow ratio of 1:2 N2:H2 

(6.7:13.3 sccm).  
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• Temperature window  

The effect of temperature on growth rate and refractive index of AlN films was examined 

for temperatures ranging from 1500C to 4000C with a gas flow ratio of 1:2 N2:H2. As shown 

in Figure 7.3.2, at temperatures above 2000C, a constant growth rate of 0.064 ± 

0.0007nm/cycle and a refractive inactive index of 1.85 ± 0.0075 were achieved. A 59% 

decreased in growth rate was observed from 0.159 to 0.0656 nm/cycle when the 

temperature was changed from 150 to 250oC. Further, at temperatures below 2500C, poor 

film qualities with refractive indices of 1.59 and below achieved. The higher growth rate 

and low refractive indices are a result of the condensation of TMA at low temperatures 

leading to CVD type reactions.  

From this ALD window it was decided that the film deposition in the following section were 

therefore carried out at 3000C.  

 

   

 

 

 

• TMA exposure time  

The effect of TMA exposure times on the growth rate and refractive index of deposited 

films were explored by varying the exposure time from 10ms to 80ms with a gas flow ratio 

of 1:2 N2:H2 at 3000C. As can be seen in Figure 7.3.3, a constant growth rate of 0.067 ± 

0.0027nm/cycle and a refractive index of 1.87 ± 0.0051 were achieved for precursor 
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exposure times of 20ms and above. An increase in the refractive index from 1.7 to 1.9 can 

be seen when the precursor exposure time was increased from 10 to 20ms.  

The lower growth rate is most likely a result of insufficient coverage of TMA molecules on 

the sample surface leading to poor film quality. The TMA exposure times for the following 

processes was hence chosen to be 20ms.  

 

 

 

 

 

• TMA purge time 

To examine the effect of TMA purge times on the quality of deposited films, the time was 

varied from 0.5s to 5s with a TMA exposure time of 20ms, a gas flow ratio of 1:2 N2:H2 at 

3000C. As can be seen in Figure 7.3.4 a slight decrease in growth rate was obtained from 

0.069 to 0.067 nm/cycle when the purge time increased from 0.5s to 3s. However, no 

significant change in the refractive index was observed. Only a slight increase in the 

refractive index from 1.86 to 1.87 was observed when the purge time was increased.  TMA 

purge times below 0.5 s couldn’t be examined because 0.5s was the machine’s limit for the 

precursor purge time. The slight increase in growth rates at purge times lower than 3s 

might be a result of insufficient removal of byproducts from the chamber. 

 

The TMA purge time was chosen to be 3 seconds. 
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• Plasma exposure time 

The effect of plasma exposure time has been evaluated for times ranging from 5 to 40 

seconds with a TMA exposure time of 20ms, TMA and plasma purge time of 3s, plasma gas 

ratio of 1:2 N2:H2 at 3000C. The results shown in Figure 7.3.5 indicate a constant growth of 

0.064 ± 0.0002 and a refractive index of 1.88 ± 0.0037 for times above 15s. An 

enhancement in the film properties is observed in the increase in refractive index from 1.72 

to 1.88 ± 0.0044 when the exposure time increased from 5 to 15s. It can also be noticed 

that the growth rate at 5s is slightly higher (6%) compared to exposure times equal to and 

above 15ms. The higher growth rate and low refractive index for the films below 5s might 

be due to higher impurity content of the under exposed films. The higher thickness may 

also be due to oxide formation due to the instability of under exposed films [1]. 

 

The plasma exposure time was therefore set again at 20s for subsequent depositions.  
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• Plasma gas purge times 

The effect of plasma purge times on film properties and growth rate has been examined by 

varying the purge time from 200ms to 12 second. It can be seen from Figure 7.3.6 that a 

constant growth rate of 0.065 ±  0.004 nm/cycle and a refractive index of 1.89  ±  0.003 

have been achieved for purge times above 2 seconds. The slight decrease (4.5%) in growth 

rate and the increase in the refractive index 1.79 to 1.88 when plasma gas purge time was 

increased from 200ms to 2s may be a result of byproducts not being completely removed 

from the chamber for purge times below 2s.  

 

The plasma purge time for the next ALD processes was fixed at 3s.  
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• Applied Power  

The effect on growth rate and refractive index as a function or varying power from 5W to 

400W are displayed in Figure 7.3.7. A constant growth rate of 0.063 ± 0.005 nm/cycle and 

refractive index of 1.85 ± 0.02 have been achieved for powers above 150W. The low growth 

rate at lower applied power is however contradictory to that reported in literature [1]. The 

reduction in growth rates at lower powers may be due to the low activation energy 

provided from plasma to the reactions. An increase in growth rate at low powers, as 

reported in [1], may not have been observed in this case because deposition was carried 

out at sufficient purge time hence all the byproducts are removed. The increase in 

refractive index from 1.65 to 1.88 is an indication of better film properties at higher powers.  

 

The plasma power was therefore chosen to be 200W for the subsequent processes.  
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• Applied Pressure  

Figure 7.3.8 represents the effect of pressure on both the growth rate and refractive index. 

The chamber pressure has been varied from 5 to 80mTorr.  As the pressure increases the 

growth rate falls from 0.073nm/cycle at 5mTorr to 0.055nm/cycle at 80mTorr. The 

refractive index on the other hand decreased from 1.91 to 1.82. It can be observed that 

both the growth rate and refractive index have decreased as the pressure has increased 

and no constant growth regime has been identified. It has been shown in previous studies 

that an increase in the pressure has resulted in a decrease in the electron density [5]. 

Electrons, though collisions in the plasma, help in the creation of plasma radicals, ions and 

photons [6]. These species then bring about reactions when they arrive at the surface of the 

substrate. To understand the effect of plasma further, the following section looks in detail 

at the plasma residence time.  
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• Plasma residence time 

The effect of the plasma on the AlN film properties has been further explored by 

investigating the influence of plasma residence time, t. During the plasma step, the plasma 

consists of the co-reactants and the reaction byproducts. These by-products can be 

incorporated back into the films increasing the impurity levels. t is the duration for which 

these by-products remain in the chamber before being pumped out [7].  It is a function of 

the volume of the reactor, V and the total gas flow rates, q as given by t=V/q (equation 

7.1). The larger the flow rates, the faster the by-products are pumped out. The flow rate 

can be expressed using the ideal gas laws, in terms of standard pressure, p0 (760mTorr) and 

the measured chamber pressure, P [7].  The total gas flow ratio was kept constant at 1:2 

N2:H2 and the actual pressure was measured while varying the total flow rate from 10 to 

100sccm. The volume of the reactor was 13.8L[7]. Table 7.3.2 summarises the effect on 

refractive index for various calculated plasma residence times. Figure 7.39 is a graphical 

representation of the effects of plasma residence time, pressure and flow rates.  An 

increase in the total gas flow rate from 10 to 20sccm enhances the refractive index from 

1.72 to 1.9, this can also be corelated to the decrease in plasma resident time from 1.63 to 

0.81s. However further increase in gas flows do not changed the refractive index markedly; 
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this could be due to the increase in pressure that arises due to the increase in gas flows. As 

discussed earlier higher pressures can lead to a reduction in the electron density in the 

plasma.  

 

Therefore, low pressure and high gas flows are favourable with regards to film properties 

and help produce films with refractive indices closer to the theoretical value of ideal AlN. 

 

τ = V
q
                                                                                                                                    7.1 

where q=
q0p0

P
 

τ	= PV
q0p0

                                                                                                                      7.2                                       

 

V	=	Effective volume of the reaction chamber, q	=	volumetric flow rate,	 

P=standard	pressure	(760mTorr),	pË=	chamber	pressure,	

qË=	flow	rate	of	the	plasma	gasses	 

 

Pressure/ 

mTorr 

Gas flow/ 

(N2:H2 sccm) 

 

Total flow rate/ 

sccm 

Plasma 

residence time, 

𝜏 

/ sec 

Refractive 

index/ 

n 

15 3.3:6.7 10 1.63 1.724 

15 6.7:13.3 20 0.81 1.9 

29.9 26.7:53.3 80 0.41 1.89 

36.8 33.3:66.7 100 0.4 1.894 

 

 

 

Table 7.3.2: Effect of plasma resident time on refractive index 
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Figure 7.39: (a) Effect of pressure and gas flow ratio on 𝜏 and (b) effect of 𝜏 on  
refractive index of AlN 

(a) 

(b) 
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After examining all the factors discussed previously, the following values were then chosen 

for each parameter to provide a well optimised AlN layer: 

TMA dose: 20ms 

Plasma exposure: 20s 

TMA and plasma purge: 3s 

Temperature: 3000C 

Plasma gas ratio: 6.7sccm: 13.3sccm 

Plasma power: 200W  

Pressure: 15mTorr  

 

The subsequent sections provide the physical characterisation of an AlN film that was 

deposited using the optimised parameters. It also provides the electrical characterisation 

of the film when used as an interlayer between GaN and Al2O3. 

 

7.4 Characterisation of AlN 
The AlN films grown on GaN MOSCAP structures described in Figure 1.2.1a(i) have been 

analysed physically by using X-ray photoelectron spectroscopy (XPS) and electrically by 

measuring their C-V and I-V properties. Details of the analyses are described below. All XPS 

measurements were performed by collaborators at the University of Liverpool.  

 

7.4.1 Physical analysis  

Two different thicknesses, 5nm and 20nm of AlN were grown on GaN MOS capacitor wafer 

structures and analysed using XPS to confirm the presence of atomic layer deposited AlN. 

The sample with 20nm AlN was used to produce information regarding the bulk properties 

of AlN and is illustrated in Figure 7.4.1. The 5nm sample on the other hand, was used to 

provide data on the band offsets between AlN and GaN, which is depicted in Figure 7.4.2.  

 

The spectra shown in Figure 7.4.1 indicates the presence of AlN and that the film is thick 

enough that no Ga peaks (from the GaN surface below AlN) were obtained. However, a 

strong oxygen peak is present leading to the conclusion that there is some oxide in the AlN 

films. The spectra also suggest that there is also some carbon present in the films. There is 

also a peak at ~685 eV which is indicative of fluorine presence,  this could be from the boxes 

in which the samples were kept. 
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The band gap data used when calculating the band offset shown in Figure 7.4.2 (as 

described in chapter 5) were taken from literature [8]. It shows that the conduction band 

offset (CBO) between AlN and GaN is 2.04eV, which is 2.9% lower than the reported value 

of 2.1eV [9]. The valence band offset (VBO) on the other was 0.61eV, which also is lower by 

12.9% than the reported value of 0.7eV [9].   

 

It is evident from the XPS data that the band offsets are not as high as those reported in 

the literature. This may be a consequence of the presence of oxygen and carbon in the AlN 

films and also due to the impurities present on the GaN surface. Although it confirms the 

presence of AlN on GaN, the XPS data also confirm that there is yet room for improvement 

of the AlN films.  
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Figure 7.4.1: Survey spectra for 20nm AlN  
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7.4.2 Electrical analysis  

The effect of AlN as an interlayer between GaN and Al2O3 was investigated electrically by 

performing capacitance-voltage and current-voltage measurements at room temperature.  

The GaN MOS capacitor samples were first exposed to an N2 150W 5min plasma pre-

treatment followed by in-situ ALD of AlN. A 20nm Al2O3 was then deposited in-situ using 

thermal ALD at 2000C using TMA and H2O as precursors. Firstly, the thickness of the AlN 

was verified by testing samples with two different thicknesses; 2 and 4nm respectively. 

These results were then compared with MOSCAPs that had only an N2 150W 5min plasma 

pre-treatment followed by a 20nm thermal ALD Al2O3 layer. The film thickness that 

generated the best electrical data was then deposited on MOS capacitor that had an in-situ 

SiN layer. The SiN layer was etched using an SF6 plasma, transferred under vacuum to the 

ALD chamber where a N2 150W 5min plasma pre-treatment was performed and AlN and 

Al2O3 were deposited. The samples have not been treated with a forming gas anneal.  A 

summary of the layer structures used and sample names are depicted in table 1.4.2. The 

layer structure of the capacitors with the films have been iterated again in figure 7.4.3. 

 

 

 

Figure 7.4.2: Band alignment between interface of AlN and GaN (CBM= 

conduction band minimum and VBM= valence band minimum) 
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Sample name Layer structure Gate stack 

A 1 20nm Al2O3 only 

B 1 4nm AlN/10nm Al2O3 

C 1 2nm AlN/10nm Al2O3 

D 2 2nm AlN/10nm Al2O3 

 

        

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C-V hysteresis  

The C-V hysteresis, DHysteresis was measured at 1MHz and the data obtained for samples A, 

B and C are shown in Figure 7.4.4. Sample A produced a hysteresis of 200mV while a 50mV 

hysteresis was achieved for the samples that incorporated an AlN layer. Therefore, the 

insertion of an AlN layer has reduced the C-V hysteresis by 75%.   

 

 

Figure 7.4.3: Layer structure of GaN MOS capacitor with (i) 20nm Al2O3 and (ii) 

AlN/20nm Al2O3 gate stack 

 

Si substrate  

0.6µm 1017 cm3 n-GaN 
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20nm Al2O3 
 

Si substrate  

0.6µm 1017 cm3 n-GaN 

2µm Buffer  

1.1µm 1018 cm3 n-GaN 

20nm Al2O3 
 

(ii) (i) 

Table 7.4.2: Summary of samples names, layer structure and gate stack used 
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                                             Sample C 

                
 

 

 

 

Frequency dispersion 

Frequency dispersion, DDispersion, data was obtained by performing C-V measurements from 

1MHz to 1kHz and is shown in Figure 7.4.5. The data indicates that the insertion of a 4nm 

AlN (sample B) has reduced the dispersion from 200mV to 100mV. This has further been 

reduced to 50mV in sample C, the sample with 2nm of AlN. This suggests a reduction in the 

interface traps with the 2nm AlN layer.  It can also be noticed that a change in the 

accumulation capacitance is also observed in each sample when the frequency was 

changed from 1MHz to 1kHz. Sample A produced a difference of 0.006 µF/cm2 in the 

accumulation capacitance while in sample B increased this to 0.010µF/cm2 and this 

increased further to 0.012µF/cm2 in sample C. The change in the accumulation capacitance 

as a function of frequency suggests the presence of border traps in the dielectric.  
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Figure 7.4.4: C-V hysteresis of GaN MOSCAP with (a) 20nm Al2O3 gate dielectric, 

(b) 4nm AlN/20nm Al2O3 gate stack and (c) 2nm AlN/20nm Al2O3 gate stack 
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                                             Sample A 
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                                             Sample C 

 
 

 

 

 

Accumulation capacitance  

Figure 1.4.6 depicts the C-V curve at 1MHz of the samples with the two different AlN 

thicknesses. It can be seen that as the AlN thickness increases the accumulation 

capacitance decreases. This is due to the total series capacitance arising from the two films. 
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Figure 7.4.5: Frequency dispersion of GaN MOSCAP with (a)20nm Al2O3 gate dielectric, 

(b) 4nm AlN/20nm Al2O3 gate stack and (c) 2nm AlN/20nm Al2O3 gate stack 

 

Figure 7.4.6: Effect on accumulated capacitance of 2nm and 4nm AlN 
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Stress voltage measurements  

Figure 7.4.7 depicts the C-V hysteresis obtained during stress voltage measurements. These 

were measured at 10kHz, while varying the range of voltage from -5 to 0V and back to -5V 

then -5 to 1V and back to -5V and so on. The x-axis values denote the final voltage value to 

which the voltage was swept. The increase in C-V hysteresis with the voltage range is more 

prominent in the samples that only had a 20nm Al2O3 layer. It increased the least for the 

samples that had the 2nm AlN interlayer. This proves further that the AlN interlayer has 

caused a reduction in the interface traps. 

 

 

 
 

 

 

C-V slope  

Figure 7.4.8 display the differentiation of the C-V cures obtained at 1MHz. The samples C, 

with the 2nm AlN layer, generated the highest slope with 0.16µF/cm2V, while the sample 

A, with no AlN interlayer showed a slope of 0.12µF/cm2V. The increase in the slope with 

the 2nm AlN interlayer is a consequence of the reduction in the interface traps between 

the Al2O3 – GaN interface. 
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I-V sweep 

The leakage current and breakdown voltage of the films are shown in Figure 7.4.9. A 

leakage current of 0.016µA/cm2 was obtained for the sample with only Al2O3 while those 

with the interlayer produced a leakage current of 0.0088µA/cm2 for 4nm AlN and 0.0096 

µA/cm2 for 2nm AlN. However, the breakdown voltage shows that the samples with the 

AlN/Al2O3 gate stack had lower breakdown voltage than the single layer Al2O3 samples.   
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The results show that in comparison to the sample with no AlN (sample A) the presence of 

a 2nm AlN interlayer (sample C) reduced the DDispersion by 75% from 200mV to 50mV, 

reduced the DDispersion by 75% from200mV to 50mV and increased the C-V slope by 33%. 

The leakage current of the sample B (4nm AlN interlayer) was 45% lower than sample A. 

The leakage current in sample C was 10% higher than sample B, but still lower than with 

the Al2O3 only samples. However, the breakdown voltage of sample A was 14.6V while B 

and C were 11.6. The better electrical properties of the sample with the 2nm AlN interlayer 

may be a consequence of the change in the crystalline nature of AlN.  

 

Taking in to consideration the lower hysteresis, frequency dispersion, leakage current, 

higher C-V slope and higher accumulated capacitance, a 2nm AlN layer was chosen to be 

deposited on layer structure 2 post SiN etch in the etching chamber. The results of which 

will be discussed in the next section.  

 

Electrical data of AlN on “in-situ” processed samples 

The in-situ SiN deposited in the final stage of the wafer growth of the sample shown in 

Figure 7.2.2(a)ii (layer structure 2) was first etched in the Cobra chamber of the cluster tool 

using the SF6 process described in chapter 6 and transferred under vacuum to the ALD 
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chamber of the cluster tool where an N2 150W 5 minute plasma pre-treatment was 

performed prior to the 2nm AlN deposition using the optimised process described above. 

This was followed by thermal ALD deposition of a 20nm Al2O3 film (sample D).  Figure 7.4.10 

illustrates the C-V hysteresis and frequency dispersion measured for this sample. The 

hysteresis and frequency dispersion have increased to 500mV when the samples were 

processes in-situ.  

 

Figure 7.4.11 portrays the graphs obtained when the C-V curves were differentiated. The 

C-V slope of sample D is higher than that of the sample A, but the highest slope achieved 

was still sample C. Figure 7.4.12 display the C-V hysteresis data obtained from stress 

voltage measurements for all the samples described above. In sample D, it can be seen that 

the hysteresis continues to increase after 2V when the bias range was increased, while in 

sample B and C a hysteresis only starts to appear after 4V. In comparison to sample B the 

hysteresis of sample C is 50% lower.   

 

Figure 7.4.13 exhibit the leakage current and breakdown data for all the samples described 

above. The leakage current for the in-situ SiN samples was 0.023µA/cm2, which is the 

highest of all the samples studied. The breakdown voltage too was lower than the other 

samples, at around 11.3V.  

 

It can be concluded from the data presented in Figures 7.4.4 to 7.4.13 that the 2nm AlN 

interlayer enhanced the interface properties, however these properties haven’t been 

translated to sample D that used layer structure 2, where the GaN surface was not exposed 

to the atmosphere. It may be that The SF6 plasma that is used to remove the SiNx layer, 

fluorine terminates the GaN surface and the nucleation of the aluminium nitride on a 

fluorine terminated surface isn’t identical to of a  bare GaN surfaces of layer structure 1, 

resulting in different performance of deposited AlN films.  
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Figure 7.4.10: Frequency dispersion of GaN MOSCAP with (a) C-V hysteresis 
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Nucleation of AlN on a fluorine terminates surface may be different?  
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Figure 7.4.12: Hysteresis obtained from stress voltage measurements for all 

the samples 
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7.5 Summary  
A route to the realization of GaN MOS-capacitors (MOSCAPs) with an atomic layer 

deposited aluminium nitride (AlN) interlayer between GaN and aluminium oxide (Al2O3) 

using a FlexAl ALD system has been reported. The effect on growth rate and refractive index 

of AlN of various parameters were optimised and finally the films were chosen to be 

deposited at 3000C using trimethylaluminium (TMA) and N2 and H2 plasma with a ratio of 

1:2, plasma exposure time of 20s, TMA exposure time of 20ms, TMA and plasma purge 

time of 3s, plasma power of 200W and pressure of 15mTorr.  

 

The physical characterisation by XPS of these films indicates the presence an AlN. CBO of 

2.04 eV and VBO of 0.6 eV were obtained between the AlN and GaN. The lower offset 

values compared to those reported in the literature could be a result of the impurities 

present in the AlN film such as carbon and oxygen that were detected, and also impurities 

at the GaN surface.  

 

A summary of the electrical data is shown in table 7.5.1. All the samples used for the 

electrical characterisation were first subjected to an N2 150W 5min plasma pre-

treatment. The samples that had an AlN interlayer were followed by in-situ ALD of a 

20nm Al2O3 thermally grown at 2000C using TMA and H2O. The C-V hysteresis and 

frequency decreased by 75% for samples with 2nm AlN compared to sample that only 

had Al2O3, the leakage current decreased by 40% and an increase in 33.3% in the slope of 

the C-V was achieved. The enhancement at the interface between Al2O3 and GaN is 

encouraging for the realisation of high performance GaN power transistors. 

		
Comparisons between samples containing the sample C (2nm AlN/Al2O3 gate stack) and 

sample A (containing only Al2O3)  show better interface properties for sample C. However, 

these results have not been translated on to the samples using layer structure 2 where the 

GaN surface was never exposed to the atmosphere, sample D.  Higher hysteresis, 

dispersion and leakage were obtained for these latter films. The SF6 plasma that is used to 

etch the SiNx layer may have terminated the GaN surface with fluorine, which would cause 

poor nucleation of the AlN film. There may also be residues of Si still present on the GaN 

surface. The samples with the in-situ etch therefore may need an additional plasma 

cleaning process prior to the AlN deposition to remove surface impurities.  
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Further analysis needs to be carried out in-situ to confirm if the deposition of the oxide film 

post AlN also produce oxygen and carbon in the AlN layer.  
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0.119 0.137 0.164 0.133 

Leakage at 
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Table 7.5.1: summary of electrical data  
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8. Complete in-situ processing  
 

8.1 Introduction  
The metal-dielectric interface is of equal importance to that of a semiconductor-dielectric 

interface since it determines the threshold voltage of completed transistors [1]. Defect 

states at the metal-dielectric interface can contribute to changes in the threshold voltage. 

The roughness of a metal-oxide interface can also contribute to high leakage and 

decrease in the dielectric constant of the insulator [2]. Gate electrode roughness at the 

oxide/gate interface can also cause enhanced localized electric field intensity at the gate-

oxide interface [2].  

During fabrication, at high enough temperatures metal can diffuse into the dielectric 

resulting in mobile ions. The metal electrode can also intermix at the metal-dielectric 

interface and reduce the overall dielectric constant of the oxide [2]. ALD deposited metal 

gates are conformal and achieve pristine dielectric/metal interfaces, so can avoid these 

issues.  

 

The chapter examines the effect of a “complete in-situ” gate process on the electrical 

performance of GaN MOS-capacitors. The starting semiconductor materials are the “in-

situ” SiNx capped GaN epi-structures described in Chapter 6.  In the work reported in this 

chapter, the in-situ SiNx cap is removed in the plasma etch chamber of the cluster tool 

described in Chapter 6, and then transferred under vacuum into the atomic layer 

deposition (ALD) chamber of the cluster tool, where an N2 plasma pretreatment is 

performed and Al2O3 is deposited, as described in detail in Chapter 6.  As both dielectrics 

and metals can be deposited by ALD, there is the potential to directly follow the deposition 

of the gate dielectric with titanium nitride deposition by a plasma enhanced atomic layer 

deposition (PE-ALD) technique.  This is the “complete in-situ” approach.  

Two different precursors which have been used to deposit TiN are titanium chloride 

(TiCl4) and tetrakis-dimethylamino titanium (TDMAT) [3]. TiCl4 releases HCl (3TiCl4 + 4NH3 

® 3TiN + 2HCl + 1/2N2) as a by-product which is corrosive to other films. The HCl can also 

combine with NH3 to produce amino salts which are non-volatile and can become 

embedded in the TiN films, which can increase the resistance of the films [3]. Due to these 

drawbacks, TDMAT has been used as the precursor in this work. 
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 TiN can be deposited using TDMAT with either NH3 or N2 and H2 plasma. The overall 

reaction using NH3 is show in reaction 8.1 to 8.3[4].  

Ti(N(CH3)2)4 + 4/3NH3 ® TiN + 4HN(CH3)2 + 1/6N2                                                              8.1 

Where the ALD half reactions include: 

2NH* + Ti(N(CH3)2)4 ® N2Ti(N(CH3))2* + 2HN(CH3)2                                                          8.2 

N2Ti(N(CH3)2)2* + 4/3NH3 ® N2TiNH2* + 2HN(CH3)2 +1/6N2                                    8.3 

Where the Asterix include the surface species.  

 
The major concern with using TDMAT however is that it can cause carbon impurities to be 

present in the TiN films, which can lead to increased resistance of the films. It has been 

reported that a mixture of N2 and H2 plasma with optimised gas flow rates can produce 

films with lower carbon content and therefore lower resistivity [5]. Thus, the TiN film 

deposited in this work used TDMAT and a combination of N2 and H2 plasma. 

 

The MOS capacitors are used to characterise the impact of different thicknesses of TiN (10 

and 20nm) initially. These films were deposited with a vacuum break between the oxide 

and TiN deposition so that the electrical data obtained from these sample can also be 

compared to samples where the TiN was grown without a vacuum break. The thickness 

with the most favourable electrical characteristic is then used to examine the effects of a 

complete-in-situ process.  

 

8.2 Experimental Details 
 

The experiments used to evaluate the effect of an in-situ deposited TiN gate were carried 

out on 15x15mm GaN samples grown by MOCVD with the layer structure shown in Figure 

6.2.1 in chapter 6. The samples were cleaned using a standard ultrasonic clean in acetone 

for 5 minutes, before being rinsed in isopropropanol (IPA) and then in RO water. As 

described previously in chapter 6, the samples were first transferred to the etching 

chamber where the SiNx was etched using reactive ion etching (RIE) in an SF6 plasma for 45 

seconds at 50W, 50mTorr and 50 sccm. Following this the samples were transferred under 

vacuum to the ALD chamber, where an N2 plasma pre-treatment at 150W for 5 minutes 

was performed followed by deposition of 20nm of thermal Al2O3 at 2000C using trimethyl 

aluminium (TMA) and water. TiN was then deposited using tetrakis(dimethylamido) 
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titanium (TDMAT) and N2 and H2 plasma at 3500C, 200W, 15 second plasma exposure time 

and 15:5 sccm N2:H2 gas flow ratio. Between the oxide and TiN deposition, the ALD chamber 

was preconditioned with 30 cycles of TiN.  

 

To investigate the effects of the thickness of deposited TiN, film thicknesses of 10nm and 

20nm were deposited on GaN MOSCAP samples that had 20 nm thermal Al2O3. All the 

samples used for this investigation underwent the in-situ SiNx etch, pretreatments and ALD 

Al2O3 before being taken out of the chamber. The chamber was then preconditioned with 

30 cycles of TiN and each sample was loaded separately to deposit different thicknesses. 

Therefore, there was a vacuum break between the Al2O3 and TiN depositions on these 

samples. The effect on electrical properties of TiN film thicknesses was validated by 

examining the C-V and I-V properties. The thickness providing the most favourable 

electrical characteristics was chosen and this was compared with a complete in-situ process 

where there was no vacuum break between the Al2O3 and TiN depositions. This was 

executed by transferring the sample back to the etching chamber during the ALD chamber 

precondition. The sample was then transferred back to the ALD chamber afterwards to 

deposit TiN.  

 

The layer structure of the MOS capacitor with the oxide and the TiN film is depicted in 

Figure 8.2.1. The MOS capacitor fabrication process flow is shown in Appendix A. The 

following section describes the electrical data obtained for the TiN films that were 

deposited as described above. 

 

 

 

 

 

 

       

         

 

 

 

Si substrate  

0.6µm 1017 cm-3 n-GaN  

2µm Buffer  

20nm Al2O3 

 

TiN 
 

Figure 8.2.1: Layer structure of the MOS capacitor with Al2O3 and TiN film 

0.6µm 1017 cm-3 n-GaN  
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8.3 Electrical Analysis 
The following subsections explain the impact on electrical data of different thickness of TiN 

and the impact of an in-situ deposited TiN gate. Here the term ex-situ is used to refer to 

the samples where there was a vacuum break between the Al2O3 and TiN deposition and 

in-situ is used to refer to the samples that had no vacuum break. 

 

Sheet resistance and resistivity  

The sheet resistance of the TiN was evaluated using the Transfer Line Method (TLM). 

These measurements were used to extract the sheet resistance (Rsh) and resistivity of the 

TiN deposited. The TiN layer was deposited on top of a 20nm Al2O3 layer to ensure that 

there is no conduction between the GaN and TiN. 20nmTi/ 200nm Au contacts were 

deposited to make contact to the TiN layer.  

 

Table 8.3.1 summarises the results that were calculated from the measurements. The 

sheet resistance obtained are comparable to those in literature [5][6]. However, they are 

much higher than the resistivity values used for other materials as gate metal electrodes 

(<400µΩ/sq).  

 

 

 

 

 

 

 

 

 

Thickness validation    

TiN thicknesses of 10 and 20nm were deposited ex-situ on Al2O3 films and their C-V and I-

V properties were measured at room temperature. Table 8.3.2 summarises the data 

measured for the different TiN thicknesses – the full set of graphs for this work can be 

found in Appendix B.  

 

20nm 40nm 

RSheet (Ω/sq) ρ(µΩ/cm) RSheet (Ω/sq) ρ(µΩ/cm) 

494.6 0.989 x 103 94.5 0.378 x 103 

Table 8.3.1: Summary of Contact and Sheet Resistances 
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Shown in Table 8.3.2 is the variation of flat band voltage with TiN thickness. It can be 

observed that the flat band voltage varied with the thickness deposited and a 45.5% 

increase in the Vfb was achieved when the film thickness increased from 10nm to 20nm. 

The change in Vfb with film thickness is similar to that reported previously [7]. It has also 

been reported that the initial growth of TiN films is in the form of islands and the film isn’t 

uniform [8]. Therefore, the difference in Vfb may be due to that fact that in the 10nm films 

the work function doesn’t represent the actual bulk value of TiN.  

 

A 23.8% reduction in leakage current and a 7.35% increase in breakdown voltage is 

observed when the TiN film thickness is increased from 10 nm to 20 nm. However, no 

significant change in hysteresis, dispersion, accumulated capacitance, permittivity and C-V 

slope are observed when comparing 10nm and 20nm films. Based on the leakage current 

and breakdown voltage data, a 20 nm TiN gate metal thickness was chosen to explore the 

impact of a complete in-situ process.  

 

 

 10nm 20nm 

Vflatband/(mV) -550 -300 

Dhysteresis/mV 350 350 

DDispersion/mV 150 150 

Cacc/(µF/cm2) 0.34 0.34 

er 7.68 7.68 

(dC/dV)/(µF/cm2.V) 0.215 0.225 

Ileak/(µA/cm2) at 1V 0.008 0.0061 

Vbr/(V) 13.6 14.6 
 

 

 

 

Comparison of in-situ vs ex-situ deposited TiN 

Here the in-situ SiN capping layer grown in the final step of the wafer growth process has 

been removed in the etching chamber using the SF6 process.  The sample is subsequently 

transferred under vacuum to the ALD reactor where an N2 150W, 5 minute plasma 

Table 8.3.2: Summary of the effect on electrical data of different 

thicknesses of TiN  
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pretreatment was performed and 20nm of thermal Al2O3 was deposited.  This was followed 

by deposition of a PE-ALD 20nm TiN film after preconditioning of the ALD chamber. The 

electrical data summarised in Table 8.3.3 compares the data between samples where the 

TiN was deposited with and without a vacuum break between the oxide and TiN deposition. 

The electrical data measured of these samples are illustrated in Figures 8.3.1(a) to (e). A 

substantial difference is seen in the slope of the C-V curve from the MOS capacitors realised 

by the two processes. The slope of the in-situ deposited TiN sample is 55.6% higher than 

that of the ex-situ deposited TiN sample, indicative of a reduction in interface state density. 

Further, the leakage current of the in-situ deposited TiN samples was 29.5% lower and the 

breakdown voltage was 16.4% higher than the ex-situ deposited TiN samples. In contrast, 

the in-situ deposited TiN process resulted in increases in both the C-V hysteresis and 

frequency dispersion as shown in Figure 8.3.1(a) and (b). The Dhysteresis is 57.1% higher and 

the DDispersion is 167% higher in the in-situ deposited TiN samples in comparison with the ex-

situ samples. It can also be observed in Figure 8.3.1(d) that there is a peak in leakage curves 

of the samples containing 20nm ex-situ deposited TiN. It is unclear what has caused this 

ans it requires further investigation.  

 

 

 20nm TiN with 
vacuum break 

20nm TiN with 
no vacuum 

break 
Vflatband/(mV) -300 -1050 

Dhysteresis/mV 350 550 

DDispersion/mV 150 400 

Cacc/(µF/cm2) 0.34 0.34 

er 7.68 7.68 

(dc/dv)/(µF/cm2.V) 0.225 0.35 

Ileak/(µA/cm2) at 1V 0.0061 0.0043 

Vbr/(V) 14.6 17 
 

 

 

 

 

Table 8.3.3: Summary of the effect on MOS capacitors on electrical data of 

in-situ and ex-situ deposited TiN gates  
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The next section compares the effect of in-situ TiN with that of MOS capacitors deposited 

using Pt/Au gates.  

 

Comparison of MOS capacitors with Pt/Au and TiN gates 

A comparison of the electrical data obtained from Pt/Au gates before and after post metal 

forming gas anneal (FGA) and the in-situ deposited TiN gates is summarised in Table 8.3.4. 

Figure 8.3.2 illustrates the slope of the C-V curves obtained for the three samples. It can be 

seen that for the samples with the TiN gate, the dC/dV is 155% higher than samples with 

Pt/Au gates before FGA and 67.5% higher than the samples that went through an FGA. The 

leakage of the samples with TiN gates were 69.7% lower than of the Pt/Au gated samples 

before FGA and the breakdown voltage has increased by 18%. 
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Figure 8.3.1: Comparison of (a) C-V hysteresis data, (b) frequency dispersion data, 

(c) C-V slope (d) Leakage and (e) breakdown of MOS capacitor with in-situ and ex-

situ deposited TiN gates 
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Pt/Au 

Pre FGA 
Pt/Au gates 

Post FGA 
20nm TiN in-

situ gates 

Vflatband/(mV) -650 150 -1050 

Dhysteresis/mV 200 60 550 

DDispersion/V 250 60 400 

Cacc/(µF/cm2) 0.323 0.320 0.34 

er 7.3 7.23 7.68 

(dc/dv)/(µF/cm2.V) 0.137 0.209 0.35 

Ileak/(µA/cm2) at 1V 0.0142 0.0148 0.0043 

Vbr/(V) 14.4 14.2 17 
 

 

 

 

 
 

 

 

Discussion 

In-situ ALD deposited TiN gates have resulted in MOS capacitors with lower leakage 

current, higher breakdown voltage and significantly higher dC/dV when compared with ex-

situ deposited TiN samples and Pt/Au gated samples. Although high dC/dV indicates 

enhancements at the interface between the Al2O3 gate oxide and semiconductor, the 

higher DHysteresis and DDispersion data obtained from these samples indicate otherwise.  

 

0
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v 
(µ

F/
cm

2 .V
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Voltage/V

N2 150W 5 minutes +
20nm Al2O3 + 20nm in-
situ TiN

Post FGA SiNx etch + N2
150W 5min slope

SiN etch + N2 150W 5
minutes

Table 8.3.4: Summary of comparison between ex-situ deposited Pt/Au and 

TiN gates 

Figure 8.3.2: C-V slope comparison between MOS capacitor sample with 

Pt/Au gates and in-situ TiN gate  

N2 150W 5 mins + 20nm 
Al2O3 + in-situ 20nm TiN 
 
N2 150W 5 mins + 20nm 
Al2O3 + FGA 4300C for 30 
mins 
 
N2 150W 5 mins + 20nm 
Al2O3 + No FGA 
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The enhancement in breakdown voltage and leakage current could be due to the Al2O3 

films becoming denser as a consequence of the thermal treatment during the TiN 

deposition at 3500C for 3 hours. However, the comparison of data between the TiN films 

deposited with a vacuum break indicate that the improvement in leakage current, 

breakdown voltage and dC/dV may also be due to the Al2O3 film being protected from 

impurities in the atmosphere. However, the difference in flat band voltage between the in-

situ and ex-situ TiN samples at this point isn’t clear.  

 

It could also be possible that an interfacial titanium oxide (TiO2) or titanium oxynitrite 

(TiOxNy) layer has been created at the TiN/Al2O3 interface, giving rise to poor Dhysteresis and 

DDispersion. The interfacial oxides should be picked up by the accumulation capacitance 

obtained. It has been reported that permittivity of TiO2 is equal to 50 [9], using this as the 

permittivity the series combination of the capacitance between 20nm Al2O3 and »1nm TiO2 

would result in a capacitance of 0.32 µF/cm2. The permittivity of TiOxNy has been reported 

to be between 15 and 35 [10]. This would result in a total capacitance between 0.315 and 

0.3196µF/cm2 with »1nm of TiOxNy. Neither of these observations have been made in the 

accumulation capacitance. The high Dhysteresis and DDispersion could also be result of impurities 

from the etching chamber when then sample was transferred during preconditioning.  

 

Further experiments are needed to clarify the impact of the thermal treatment during TiN 

deposition and scanning Auger data is needed to clarify the presence of elements on the 

Al2O3 surface when the samples have been transferred to the etching chamber. TEM data 

are required to show elements present within the oxide or interface.   

  

8.4 Summary  
Electrical evaluation of GaN MOSCAPs with different thicknesses of TiN gate metal show 

that 20 nm films of TiN give reduced leakage current and increased breakdown voltage 

when compared to devices with 10 nm TiN films. 55.6% higher dC/dV, 16.4% higher 

breakdown voltage and 29.5% lower leakage current are obtained from GaN MOSCAP 

samples with TiN gate metal that were deposited in-situ when compared to ex-situ 

deposited TiN films. However, a 155% higher dC/dV, 18% higher breakdown voltage and a 

69.7% lower leakage current were achieved for in-situ deposited TiN samples when 

compared to Pt/Au samples pre FGA. The results indicate the positive benefits of including 
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in-situ TiN deposition, however the root cause of higher Dhysteresis and DDispersion in the in-situ 

deposited TiN films has yet to be determined and requires further investigation.  
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9.Conclusions and future work  
 

9.1 Conclusions  
Silicon transistors have been the most widely used devices in power electronics to date. 

However, wide band gap materials specifically gallium nitride have fundamental properties 

that suggest transistors realised from these materials will be able to surpass the 

performance of Si-based devices. In order for GaN devices to replace the technology of Si 

devices certain issues need to be addressed. One of the key issues adversely affecting GaN 

devices is the high gate leakage which can lead to lower efficiency of the device. Thus, the 

primary focus of the thesis has been on optimising the gate region.  To reduce gate leakage, 

it is important that a dielectric is incorporated and it also important that the dielectric-

semiconductor interface has minimum defects.  

 

It has been reported that the surface contamination of GaN surfaces is primarily composed 

of oxygen, carbon and adsorbates [1]. Therefore, this work investigated a route to producing 

GaN devices where the GaN surface of capacitor substrates used in this work to fabricate 

capacitors avoided the exposure to atmosphere. This has been achieved by using GaN 

samples capped with a 5nm SiNx that was grown in-situ as part of the MOCVD wafer 

growth. A clustered plasma etch and atomic layer deposition (ALD) tool has then been used 

to etch the SiNx cap and transfer the substrate under vacuum to the ALD chamber where 

various plasma pretreatments and depositions were performed. The films deposited using 

ALD include Al2O3, AlN and TiN. The effect of plasma pretreatment prior to Al2O3 deposition 

were investigated. In addition, the effect of a post annealing treatment, forming gas anneal 

(FGA) has also been examined.  Further, the impact of an AlN interlayer between GaN and 

Al2O3 and the effect of using TiN as the gate metal has been investigated. The effect of in-

situ processing, pretreatments, dielectrics and metal gate have been investigated 

electrically by measuring their C-V and I-V properties.  

 

• ALD Al2O3 and Pretreatments 

The effect of N2 and H2 plasma pretreatments post the SiNx etch were investigated. It has 

been reported that a  DHysteresis of 250mV and a DDispersion 310mV was reported for GaN -

Al2O3 MOS capacitors that had no pretreatment but underwent a post FGA at 4300C for 30 
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minutes [2]. It can be observed from chapter 6 that the in-situ processed samples, where 

after the SiNx etch and no pretreatment were performed, a DHysteresis of 90mV and a DDispersion 

150mV was recorded. Therefore, it can be concluded that the in-situ SiNx capped layer, has 

led to a reduction of 64% in the DHysteresis and a reduction of 51.6% in DDispersion. This confirms 

the importance of a GaN surface that is unexposed the atmosphere. In comparison to all 

the other plasma pretreatments post FGA, the N2 plasma at 150W, 5 minute produced the 

lowest DHysteresis and DDispersion of 60mV. It has also been demonstrated that the FGA has 

assisted in reducing the fixed positive charge present in Al2O3 films by shifting the threshold 

voltage towards the positive direction. However, the breakdown electric field of these films 

are between 7-7.5MV/cm, which is also lower than that achieved in literature of 9MV/cm 
[3]. This may be due to the contaminants such as carbon present from impurities in the ALD 

films. This indicates that although the interface between the oxide-GaN has improved there 

is yet improvements to be made in the oxide itself. 

 

• AlN 

An AlN ALD process was developed using trimethylaluminium (TMA) and N2 and H2 by 

checking the effect of various parameters on the refractive index and growth rate on Si.  An 

optimised AlN film and growth process was obtained at 3000C gas flow ratios of 1:2, plasma 

exposure time of 20s, TMA exposure time of 20ms, TMA and plasma purge time of 3s, 

power of 200W and pressure of 15mTorr.  

  

The physical characterisation by XPS of these films indicates the presence an AlN and a CBO 

of 2.04eV and a VBO of 0.6eV. The lower conduction and valence band offset values 

compared to those reported in the literature could be a result of the impurities present in 

the film such as carbon and oxygen that were also detected by XPS, and also impurities at 

the GaN surface.  

 

The effect of an AlN interlayer between GaN and Al2O3 were examined electrically on bare 

GaN MOS capacitor samples (without an in-situ SiN cap). 4nm and 2nm AlN thicknesses 

were investigate, and it was concluded that the 2nm interlayer produced the best electrical 

data. In comparison to the sample that only had an Al2O3 layer on GaN, the sample with 

the 2nm interlayer reduced DHysteresis and DDispersion by 75% from 200mV to 50mV, reduced 

dielectric leakage current by 40% from 0.016µA/cm2 to 0.0096µA/cm2 and increased the 
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C-V slope by 33%. However, when the process was transferred to samples that had an SiNx 

cap at the last step of wafer growth and went through in-situ etching and ALD, the DHysteresis 

and DDispersion increased to 500mV. This could be due to the GaN surface being fluorine 

terminated by the SF6 plasma used to etch the SiNx layer. The samples with the in-situ etch 

may need an additional plasma cleaning process prior to the AlN deposition. 

 

• a “complete in-situ” process using ALD TiN 

The effect of a “complete in-situ” process was examined by realising a process flow where 

both the GaN and Al2O3 surface was not exposed to the atmosphere. This process flow 

included the samples with the in-situ SiNx cap which were etched in the etching chamber, 

before being transferred under vacuum to the ALD chamber where an N2 150W, 5 minutes 

plasma pretreatment was performed and a 20nm Al2O3 layer deposited, and this was 

followed by a 20nm TiN ALD.  

Initially two thicknesses (10 and 20nm) of TiN were grown with a vacuum break between 

the Al2O3 and TiN growth to examine the effect of the thickness of the TiN on electrical 

properties and also serve as a comparison between samples that were deposited without 

a vacuum break. Electrical evaluation of GaN MOS capacitors with different thicknesses of 

TiN gate metal showed that 20 nm films of TiN reduced leakage current and increased 

breakdown voltage when compared to devices with 10 nm TiN films. No difference was 

seen in their Dhysteresis and DDispersion which were 350mV/cm2 and 150mV/cm2 respectively. A 

20nm TiN was then deposited another sample without a vacuum break, a 55.6% higher 

dC/dV, 16.4% higher breakdown voltage and 29.5% lower leakage current are obtained 

from GaN MOSCAP samples with TiN gate metal that were deposited in-situ when 

compared to ex-situ deposited TiN films. A 155% higher dC/dV, 18% higher breakdown 

voltage and a 69.7% lower leakage current were achieved for in-situ deposited TiN samples 

when compared to Pt/Au samples pre FGA. The results indicate the positive benefits of in-

situ TiN deposition, however the root cause of higher DHysteresis and DDispersion in the in-situ 

deposited TiN films has yet to be determined and requires further investigation.  

 
It can be concluded from the data of Al2O3-GaN MOS capacitors in chapter 6 that a SiNx 

layer where the GaN surface was not exposed to the atmosphere has been beneficial. The 

AlN interlayer between the GaN surface and Al2O3 on bare GaN MOS capacitor samples 

show considerable improvements when compared with samples with no interlayer. 
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Although this process didn’t transfer directly on the samples that went through the in-situ 

etch process, further examination can be made with a different pretreatment on these 

samples. The high dC/dV values obtained from MOS capacitors with TiN gate metal indicate 

positive benefits of the in-situ TiN deposition, however further investigation is required to 

understand the high DHysteresis and DDispersion produced in these samples.  

 

9.2 Future Work 
• The MOS capacitors need to be measured repeatedly to ensure that the electrical data 

measured such as DHysteresis and DDispersion and leakage remain consistent with each 

subsequent measurement, ensuring reliable performance over time.   

• A dielectric may breakdown with time, when a constant electric field is applied, which 

is less than the electric field strength of the material [4]. Therefore, it is essential to carry 

out Time-Dependent Dielectric Breakdown measurements (TDDB). This includes 

applying a constant voltage below the breakdown voltage to the gate, while recording 

the leakage current. This is repeated a number of times to obtain a distribution of the 

time to failure of the dielectrics. The distribution is then used to create reliability plots 

and to predict the TDDB behaviour of oxides at other voltages. This measurement 

would give information regarding the reliability of the AlN and Al2O3 films deposited.  

 

• Scanning Auger analysis should to be carried out on samples with different 

pretreatments to understand the effect such as removal of impurities from these 

pretreatments on the GaN surface.  

 

• FGA showed positive benefits for MOS capacitors with Al2O3 therefore the effect of an 

FGA needs to also be examined on the samples with the AlN interlayer and also the 

capacitors with the TiN gate metal. Surface analysis could also be carried out on 

samples that had the AlN interlayer after it went through the SiNx etch to understand 

the high DHysteresis and DDispersion produced in comparison to the bare GaN samples.  

 

• It is important that surface analysis such as scanning Auger is carried out on the samples 

with TiN gate metal to understand the high DHysteresis and DDispersion that was produced 

from these samples. The effect of the thermal treatment from the TiN ALD deposition 

at 3500C for three hours needs to be investigated. This could be carried out by leaving 
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a sample after the Al2O3 deposition in the ALD chamber for three hours at 3500C and 

creating a MOS capacitor with Pt/Au gates in order to examine if the same leakage and 

breakdown properties as that of the TiN are achieved.  

• Chemical analysis secondary ionisation mass spectrometry (SIMS) could be carried out 

to identify impurities such as carbon present in the Al2O3 and AlN films.   

 
•  XRD measurements are needed to understand the crystal structure of the deposited 

AlN films.  

 

• Finally, the pretreatment and the gate stack (AlN/Al2O3/TiN) needs to be translated on 

to a device to examine its effect on important transistor parameters such as threshold 

voltage, gate leakage and breakdown voltage. 
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Appendix A  
1. Sample clean - 5 minute ultrasonic clean in acetone, rinse with IPA and RO 

water, N2 blow dry 

 

2. In-situ etching + ALD  

Etch 5 nm SiNx - SF6 plasma 50mTorr, 50W, 50sccm  

ALD Al2O3 or 

AlN/Al2O3 

 

- 20nm Al2O3 with TMA and H2O at 2000C or  

- 2nm AlN at 3000C with TMA and N2 and H2 plasma  

 

3. Gate metal 

Metallise  - 20nm Pt/ 200nm Au 

 

4. Ohmic metal 

Spin resist  - LOR 6000rpm 30secs   

Bake - 2mins at 150°C 

Spin resist  - S1818 4000rpm 30secs   

Bake - 3 minute at 115°C 

MA6 exposure - 6 secs 

Develop - Develop MF319 2min 30secs and rinse in RO water 

Ash - 2 minutes 50mTorr, 10w, 10sccm  

SiCl4 etch - 8mTorr, 200W, 25 sccm 

Si flash - ICPCVD: 100w/0w, SiH4=10sccm, 5mT, 3secs,  

Metallise  - 10nm Mo/ 40nm Al/ 20nm Mo/ 30nm Au 

Lift off - 1165 at 500C overnight and rinse in RO water 

 

5. Contact pad 

Spin resist  - S1818 4000rpm 30secs   

Bake - 3mins at 115°C 

MA6 exposure - 6 secs 

Develop - 1:1 microdev soak 75secs +  Quick Rinse RO water 

Ash - 2 minutes 50mTorr, 10w, 10sccm  
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Metallise  - 20nm Ti/ 200nm Au 

Lift off - 1165 at 500C overnight and rinse in RO water 
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Appendix B  
• C-V hysteresis and frequency dispersion data of in-situ SiNx etching and 

pretreatments  

                        SiN etch only                                                   SiN etch + N2 75W 7 minutes  

 
           
 
 
                   SiN etch + N2 150W 5min                                         SiN etch + N2 225W 7min                                                                  

 
        
 
                  SiN etch + H2 100W 5min                                    SiN etch + H2 150W 3min                           
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             SiN etch + H2 200W 5min                     SiN etch + H2 150W 3min + N2 150W 5min                  

 
 
 
                        SiN etch only                                                     SiN etch + N2 75W 7min 
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                 SiN etch + N2 150 5min                                        SiN etch + N2 225W 7min                                   

 
 
 
             SiN etch + H2 100 5min                                                  SiN etch + H2 150 3min                                                                           

 
         
                   
                   SiN etch + H2 200W 5min                                SiN etch + N2 + H2 plasma  

                                          
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 -4 -3 -2 -1 0 1 2 3 4 5

Ca
pa

ci
ta

nc
e 

Pe
r

ar
ea

/(
µF

/c
m

2 )

Voltage/V

DVDispersion= 200mV
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 -4 -3 -2 -1 0 1 2 3 4 5

Ca
pa

ci
ta

nc
e 

Pe
r 

ar
ea

/(
µF

/c
m

2 )

Voltage/V

DVDispersion= 400mV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 -4 -3 -2 -1 0 1 2 3 4 5

Ca
pa

ci
ta

nc
e 

pe
r

ar
ea

/(
µF

/c
m

2 )

Voltage/V

DVDispersion= 350mV
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 -4 -3 -2 -1 0 1 2 3 4 5

Ca
pa

ci
ta

nc
e 

pe
r

ar
ea

/(
µF

/c
m

2 )

Voltage/V

DVDispersion= 200mV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 -4 -3 -2 -1 0 1 2 3 4 5

Ca
pa

ci
ta

nc
e 

pe
r

ar
ea

/(
µF

/c
m

2 )

Voltage/V

DVDispersion= 250mV
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 -4 -3 -2 -1 0 1 2 3 4 5

Ca
pa

ci
ta

nc
e 

pe
r 

Ar
ea

/(
µF

/c
m

2 )

Voltage/V

DVDispersion= 350mV



Appendix B  

 152 

• Electrical data measured from MOS capacitors with 10 and 20nm TiN  
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