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Abstract

Describing the numerous factors that constrain and promote particular as-

pects of linguistic behaviour in interaction is very difficult. The recent adop-

tion of more advanced quantitative methods has enhanced this modelling,

leading to a greater understanding of linguistic patterns. At the same time,

the increase in availability of digital recordings and storage capacity for such

recordings is leading to increasingly large corpora of complex linguistic data

for such investigations. The Sounds of the City corpus is one such example

and is the corpus we model throughout this thesis. The corpus is an elec-

tronic real-time corpus of Glaswegian vernacular, which consists of a search-

able, multi layered database of 58 hours of recordings from 136 speakers,

recorded between 1970 and 2010 with orthographic transcripts and automat-

ically phonemically segmented waveforms, amenable to automatic acoustic

analyses of durational and resonance characteristics of speech.

Vowel formant measurements provide a numeric representation of a spoken

vowel and are a commonly used metric to measure linguistic variation and

change, with each vowel having multiple formant measures, which correspond

to the resonances of the vocal tract. The first three vowel formants are impor-

tant perceptual cues for the successful recognition of vowel qualities. Current

quantitative modelling methods consider each formant separately, inferring

characteristics on each formant measurement assuming independence between

each formant. This assumption for most vowels seems misplaced, as formant

measures are often correlated with one another.

In this thesis, we extend upon current modelling techniques applied to soci-

olinguistic corpora by introducing a Bayesian hierarchical model which mod-

els the first three formant measures for each vowel simultaneously, taking



into consideration the correlation present between such measures. We also

implement reparameterisation methods to alleviate issues caused by highly

correlated samples, which is often observed in MCMC output for models ap-

plied to datasets with nested structures, a common feature in sociolinguistic

corpora. These models not only account for the complex nested structure of

the data and uncover the underlying dynamics of language just like classical

mixed effects models, but now additionally account for the correlation be-

tween formants, providing a more accurate representation of factors driving

linguistic variation and change.

The output from the Bayesian hierarchical model is visualised as a graphical

model. Graphical models provide a visual representation of the conditional

dependence between variables, making them an attractive inference tool. We

combine the hierarchical model and jointly infer the relationship between

vowel formant measurements using the precision estimates from the hierar-

chical model as input to a Bayesian Gaussian graphical model. The resulting

graph utilises a chain graph like structure which visually informs the user

which factors have a significant effect on vowel variation, corresponding to

each formant, and also the relationship present between the first three for-

mants. This novel inference tool helps to aid the understanding of complex

model output much like the ones fitted to the Sounds of the City corpus,

though can easily be applied to numerous modelling problems.



Acknowledgements

This project was funded by the University of Glasgow’s Lord Kelvin Adam

Smith scholarship programme. I would like to thank the following people who

helped make this thesis possible:

Firstly, I would like to thank each of my supervisors for their patience, guid-

ance and support throughout this project. I would like to thank Dr. Ludger

Evers for sharing his extensive knowledge of statistics with me, his novel sug-

gestions for how to approach this problem and always knowing a function in

R which avoided numerous ‘for’ loops! Dr Tereza Neocleous for making sure

everything remained on track and being a calming influence throughout. Prof.

Jane Stuart-Smith whose enthusiasm for phonetics made researching a new

subject area an enjoyable experience and far less taxing than it could have

been.

Next I would like to thank the friends I have made over the years at Glasgow

and beyond. Without them all, this work would never have been possible.

Thanks to Marnie who’s been my PhD partner in crime since day one; you’ve

made this journey a lot easier than it could have been. Thanks for reassuring

me the 1×10100 times I had a meltdown! Vinny, thanks for the numerous pints,

expanding our quiz machine knowledge and always being able to answer a stats

question. Umberto, thanks for the music, fine dining and the paint skills, they

brightened up many a dull day. Lida, thanks for the new song suggestions,

the roasts and letting me be excused for a moment. Alan, thanks for the

email correspondence and the expertise in the gambling round of the quiz.

Fraser, thanks for the travel vlogs and being the other half of “those boys from

Glasgow”. Irene, thanks for the mini tour of Spain and dragging me to circuits.

Paul, thanks for the endless Simpsons jokes, the TV show recommendations



and the annual distillery tour. Sean, thanks for always being free when I

needed a hand moving, and dragging me up the climbs on the bike. Lynne,

thanks for seshions ™and always being dependable, David, thanks for enduring

Rangers with me the past 7 years (I still don’t rate Dorrans but) and less

thanks for being the worst tipster going! Finally thanks to everyone in the

department I have met over the years, particularly my office mates old and

new, who made office life all the more entertaining.

Finally, I would like to say a massive thank you to my family throughout my

time at university and beyond. Without their input and help over the years, I

doubt I would ever have been able to undertake this work. I would especially

like to thank my mum, Amanda, for everything over the years. I’d never have

written this without your support and input throughout life. Thank you for

helping me get here.

This work is dedicated in memory of my grandmother Janet. My first, and

best teacher.



Contents

Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Sociolinguistic Background & Data 6

2.1 Modelling Vowel Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Sounds of the City Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Vowel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 A Bayesian Hierarchical Model for Modelling Linguistic Change in

Glaswegian Dialect 20

3.1 Building the Bayesian Hierarchical Model . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Mixed-Effects Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Multiple Response Regression . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Bayesian Hierarchical Model . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.4 Bayesian Inference using Markov chain Monte Carlo . . . . . . . . . 26

3.1.5 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.6 Posterior inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Analysis using the Bayesian hierarchical model . . . . . . . . . . . . . . . . . 36

vi



CONTENTS

3.2.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Sounds of the City Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Using Reparameterisation Methods to Improve Mixing Within the Hi-

erarchical Model 49

4.1 Improving nested coefficients mixing using hierarchical centering . . . . . . 50

4.1.1 Hierarchical centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Extending Centering to Multiple Nested Coefficients . . . . . . . . . 54

4.1.3 Sounds of the City Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Improving Random Effects Precision Mixing Using Parameter Expansion . 63

4.2.1 Parameter Expansion Based Mixing Improvements . . . . . . . . . . 64

4.2.2 Multiple Response Expansion - Simulated Example . . . . . . . . . . 68

4.2.3 Sounds of the City Corpus Application . . . . . . . . . . . . . . . . . 72

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Using Bayesian Gaussian Graphical Models to Model Response Level

Dependency 79

5.1 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Undirected Graphical Models . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Bayesian Gaussian Graphical Models . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Sampling from the G-Wishart distribution . . . . . . . . . . . . . . . 85

5.3 Bayesian Gaussian graphical model selection . . . . . . . . . . . . . . . . . . 86

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Visualising Hierarchical Models Using Graphical Models 93

6.1 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Directed Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.2 Factor graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.3 Chain Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Using a Chain Graph Style Model for the Hierarchical Model . . . . . . . . 98

6.2.1 Updating the Hierarchical Model . . . . . . . . . . . . . . . . . . . . . 100

vii



CONTENTS

6.3 Application of Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Simulated Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2 Sounds of the City Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Graphical Model Output - Sociolinguistic Discussion of Results 113

7.1 Sounds of the City Corpus - Results . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Raw Mean Formant Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Lobanov Normalised Formant Results . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Conclusions and Further Work 135

8.1 Methodological Advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1.1 Bayesian hierarchical model with mixing improvements . . . . . . . 136

8.1.2 Chain graph model visualisation . . . . . . . . . . . . . . . . . . . . . 137

8.2 Sociolinguistic Advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Posterior Distributions 141

A.1 Derivation of Posteriors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Standard Bayesian hierarchical model . . . . . . . . . . . . . . . . . . . . . . 142

A.3 Bayesian hierarchical model with efficient sampling of β̃ and b̃ . . . . . . . 143

A.4 Bayesian hierarchical model with hierarchical centering and parameter ex-

pansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.5 Bayesian chain graph hierarchical model . . . . . . . . . . . . . . . . . . . . . 147

References 151

viii



List of Tables

3.1 Significance of coefficients for fixed effects in the multiple re-

sponse model and independent model All coefficients selected for the

full multiple response model and the individual single response models for

raw mean formant measurements for F1, F2 and F3 for the LOT vowel. We

observe that Preceding place of articulation is included for the F2 model

in the univariate case as opposed to the multiple model. . . . . . . . . . . . 41

3.2 Effective sample size (ESS) values for active fixed effects parameters for the

LOT vowel on raw formant measures for F1, F2 and F3. The model was

run for 10,000 iterations. We observe a poor ESS for all of the variables

due to the high correlation between samples. . . . . . . . . . . . . . . . . . . 42

3.3 Effective sample size (ESS) values for the Speaker random effect for the

first six levels for the LOT vowel. Like Table 3.2, we observe a poor ESS

for the random effects levels due to the nested design of the data. . . . . . 45

3.4 Effective sample size (ESS) values for precision estimates from the Word

random effect for F1, F2 and F3 for the LOT vowel from the Bayesian

hierarchical model ran for 10,000 iterations.The ESS observed is extremely

poor for all formant measurements due to the sampler becoming frequently

stuck at values close to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Effective sample size (ESS) values for coefficients from the univariate exam-

ple for the standard Gibbs sampler and the sampler with added centering

step. The ESS improves dramatically when we centre upon the population

intercept β0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



LIST OF TABLES

4.2 ESS values for nested coefficients from the multiple response example for

the standard Gibbs sampler and the centered sampler for 2,500 iterations.

The ESS improves greatly when we centre on the population intercept and

the nested coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 ESS values obtained for the LOT vowel coefficients for the standard Gibbs

sampler and the centered sampler for 10,000 iterations on F1. We observe

large improvements in terms of ESS for all parameters, mainly for the

terms nested within Speaker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 ESS values obtained for a selection of γj coefficients and σ2
γ for the standard

Gibbs sampler and one with the added parameter expansion step. We see

a great improvement in ESS for the coefficients and good improvement for

the variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 ESS values obtained for a selection of γlj coefficients and σ2
γl values for the

standard Gibbs sampler and the parameter expanded added sampler. We

see a great improvement in ESS for the coefficients and good improvement

for the variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Effective sample size (ESS) values for precision estimates from the Word

random effect for F1, F2 and F3 for the LOT vowel from the Bayesian

hierarchical model ran for 10,000 iterations with added parameter expan-

sion step.The ESS observed has significantly improved in comparison to

the results shown in Table 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 ESS values obtained for a sample of Word random effects coefficents for

the standard Gibbs sampler and one with the added parameter expansion

step for 10,000 iterations for the LOT vowel. We see a small improvement

in ESS for the coefficients and good improvement for the variance. . . . . . 74

x



List of Figures

2.1 Vowel chart of the International Phonetic Alphabet IPA (1999). The di-

mensions refer to the position of the highest point of the tongue, so ‘front’

furthest forward as in FLEECE, back furthest back as in CAUGHT. . . . . 7

2.2 Spectrogram of the word sign as spoken by a female Glaswegian speaker.

The coloured bands correspond to the formants F1 , F2 and F3 . . . . . . . 9

2.3 Plot of the acoustic normalised F2/F1 vowel space for the FLEECE, CAT,

LOT, GOAT and BOOT vowels where 1= 1970s Old speakers, 2= 2000s

Old speakers, 3= 1970s Young speakers, 4= 2000s Young speakers. . . . . . 11

2.4 Plots of F1 and F2 measures with the relative position for each speaker

group for the BOOT, LOT (which in this study, is denoted as COT ) and

GOAT vowels, where 1= men born in 1890, 2= men born in the 1920s,

3= adolescents born in the 1960s, 4= adolescents born in the 1990s and X

= young men born in the 1890s and recorded in 1916/17. . . . . . . . . . . 13

2.5 Plot of the acoustic normalised F2/F1 vowel space comparing old speakers

in the 70s to young speakers in the 00s by vowel. The GOAT appears to

have shifted more in terms of F1 from generations. . . . . . . . . . . . . . . 16

2.6 Plot of the acoustic normalised F2/F1 vowel space comparing effect of

preceding and following context on the GOOSE vowel. Preceding context

appears to have a clear effect on F1 and F2 measures. . . . . . . . . . . . . . 17

2.7 Plot of the acoustic normalised F2/F1 vowel space comparing the effect of

generation between the GOAT and CAT vowels. A difference in F1 and

F2 measures can be observed for the GOAT vowel, but no clear difference

observed within the CAT vowel. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xi



LIST OF FIGURES

3.1 Representation of the hierarchical model as a PGM. Nodes which

are shaded in grey refer to the fixed hyperparameters and data respectively,

whilst nodes in white refer to parameters and hyperparameters that are

inferred in the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Illustration of modified sampler steps. Illustration of modified sam-

pler steps for β̃η̃ and b̃. We observe that we now sample for each βl,

splitting the sampler up by each response level l. We also now sample by

each group b̃g, but also sampling for each level of the random effect h, so

sampling each bg,h in turn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Density plots for coefficients from the simulated study Density

estimates for the fixed effects coefficients for y1. We see the coefficients are

estimated well from their known values, with the β2 coefficients correctly

not selected within the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Trace plots for the LOT vowel model. Trace plots for the fixed effects

coefficients obtained from the LOT vowel for the F1 raw mean values ran

for 10,000 iterations. Poor mixing can be observed for the active terms

within the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Trace plots for the LOT vowel model Speaker effect. Trace plots

for the Speaker random effect from the LOT vowel model for the first six

levels for raw mean formant measurements on F1 for 10,000 iterations. We

observe similar poor mixing as the fixed effects in Figure 3.4 due to the

nested design of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Trace plots for the LOT vowel model Word effect variance. Trace

plots for the Word random effect variance from the LOT vowel model for

F1, F2 and F3 run for 10,000 iterations. We observe very poor mixing and

periods where the sampler becomes stuck at values close to zero. . . . . . . 44

3.7 Trace plots for the LOT vowel model Word effect coefficients.

Trace plots for the Word random effect coefficient for a sample of six words

for the LOT vowel on raw mean formant measurements for F1 for 10,000

iterations. We observe minor narrowing and widening of the chain due to

the poor mixing in the precision estimates. . . . . . . . . . . . . . . . . . . . 46

xii



LIST OF FIGURES

4.1 Trace plots for the intercept β0 and random effect level γ1 with

no centering. Trace plots for β0 and γ1 for 10,000 iterations from the

standard Gibbs sampler. We observe extremely poor mixing in both coef-

ficients, with poor ESS values as shown in Table 4.1. . . . . . . . . . . . . . 53

4.2 Trace plots for the intercept β0 and random effect level γ1 with

centering. Trace plots for β0 and γ1 for 10,000 iterations from the Gibbs

sampler with added centering step. The mixing for both coefficients has

improved dramatically, with high ESS values as shown in Table 4.1. . . . . 53

4.3 Correlation between β0 and γ1 coefficients from the standard Gibbs sam-

pler. We observe very strong correlation which causes poor mixing in the

sampler and we are unable to explore the full sample space due to the high

autocorrelation. This can also be observed by the density plots, which

struggle to identify the parameter mode. . . . . . . . . . . . . . . . . . . . . . 55

4.4 Correlation between β0 and γ1 coefficients from the centered sampler. We

observe almost no correlation between the parameters and are able to fully

explore the parameter space freely, leading to improved samples as shown

by the density plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Representation of nested coefficients for different samplers Here,

we illustrate the notation for the nested coefficients for the standard Gibbs

sampler on the left and for the centered sampler on the right. Note the

main difference arises from the formation of δj. . . . . . . . . . . . . . . . . . 57

4.6 Traceplots for the population intercept and nested coefficient for the first

response level for the standard Gibbs sampler and the centered sampler

for 2,500 iterations. We see a clear improvement in mixing between both

samplers for the nested terms and the population intercept. . . . . . . . . . 60

4.7 Traceplots for the fixed effects for F1 fitted to the LOT vowel for 10,000

iterations with hierarchical centering implemented for nested coefficients.

We see a clear improvement in terms of mixing for all the variables com-

paring to Figure 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



LIST OF FIGURES

4.8 Traceplots for the univariate example for the standard Gibbs sampler and

one with a parameter expansion step added for 5,000 iterations. We see

great improvement in the mixing of γ1 and σ2
γ when the parameter expan-

sion step as shown on the second row of plots is included in the sampler. . 67

4.9 Traceplots for the precision estimates for the three response levels for the γ l

random effect from the hierarchical model run for 5,000 iterations. The left

hand side plots are for the standard model and the right hand plots are with

the added parameter expansion step. We observe a small improvement in

mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Traceplots for the coefficient estimates for γ1, γ2 and γ3 for the standard

sampler on the left and the sampler with parameter expansion step on the

right. We see a slight improvement in mixing in terms of better variation

around zero estimates due to the improvement in precision mixing. . . . . . 71

4.11 Traceplots for the variance estimates for the Word random effect for F1,

F2 and F3 for the LOT vowel run for 10,000 iterations with the parameter

expansion step added. We see a small improvement in mixing when com-

pared to Figure 3.6 for the standard sampler, mainly with the estimates

for F1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 Traceplots for a selection of the Word effect coefficients for the LOT vowel

for F1, for the parameter expanded model ran for 10,000 iterations. We

observe an improvement in mixing compared to Figure 3.7, with the trace

variance remaining constant due to the improved mixing in the Word effect

precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 Representation of the hierarchical model with added mixing steps

as a PGM. The PGM is constructed in a similar style as Figure 3.1,

though this time we have included nodes for the hierarchical centering

with the δ̃k parameter, and the additional parameter expansion step using

αm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Undirected graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Undirected graph for the precision structure in Equation 5.2 . . . . . . . . . 82

xiv



LIST OF FIGURES

5.3 Chordal graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Directed acyclic graph example for variables x, y and z . . . . . . . . . . . . 95

6.2 d-separation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Factor graph illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Illustration of a chain graph model. . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Illustration of the Chain graph style model output This graph is

stylised to the Sounds of the City corpus. The directed edges are modelled

by the Bayesian hierarchical model, the undirected graph for the response

variables modelled using the Bayesian graphical model. . . . . . . . . . . . 99

6.6 Representation of the full hierarchical model with graph selection

as a PGM. The PGM is constructed in a similar style as Figure 4.13,

though this time we have updated the priors on the precision parameters

to be adjusted for a G-Wishart distribution. . . . . . . . . . . . . . . . . . . 103

6.7 Graphical models obtained for the simulated example. The best

four graphs, determined by posterior probability for the simulated example,

run for 10,000 iterations. The top two graphs are selected for similar times,

differing only by the significance of the Gender coefficient on the Y3 response.105

6.8 Trace plots for Gender coefficient on Y2 and Y3. Traceplots for the

Gender coefficent on Y2 and Y3 for 10,000 iterations. We observe periods in

the sampler where the terms are not selected (at zero) and smaller periods

where the term is added to the model. . . . . . . . . . . . . . . . . . . . . . . 106

6.9 Graphical models obtained for GOAT vowel The best four graphical

models by posterior probability obtained for the GOAT vowel. We observe

a prominent Gender and Decade effect on F3 across all models. . . . . . . . 108

6.10 Traceplots for Gender, Decade and Gender:Decade interaction

Traceplots for the Gender, Decade and Gender:Decade coefficents on F3

for the GOAT vowel for 10,000 iterations. We observe that Gender is

selected always within the model, with Decade also selected frequently.

The interaction between both is selected for inconsistent periods in the

sampler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xv



LIST OF FIGURES

6.11 Graphs obtained for GOAT vowel for F1, F2 and F3 Graphs ob-

tained for the GOAT vowel for 10,000 iterations fitting to each formant

independently. We observe that Gender is now a significant term for F2,

when it is not selected by the top models in Figure 6.9. The much lower

posterior probability for the F3 model is due to the interaction between

Decade and Gender at times being selected. . . . . . . . . . . . . . . . . . . . 111

7.1 BATH vowel for raw mean formants. . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 FACE vowel for raw mean formants. . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 FLEECE vowel for raw mean formants. . . . . . . . . . . . . . . . . . . . . . 119

7.4 FOOT vowel for raw mean formants. . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 GOAT vowel for raw mean formants. . . . . . . . . . . . . . . . . . . . . . . . 121

7.6 GOOSE vowel for raw mean formants. . . . . . . . . . . . . . . . . . . . . . . 122

7.7 LOT vowel for raw mean formants. . . . . . . . . . . . . . . . . . . . . . . . . 123

7.8 TRAP vowel for raw mean formants. . . . . . . . . . . . . . . . . . . . . . . . 124

7.9 BATH vowel for Lobanov normalised formants. . . . . . . . . . . . . . . . . 126

7.10 FACE vowel for Lobanov normalised formants. . . . . . . . . . . . . . . . . . 127

7.11 FLEECE vowel for Lobanov normalised formants. . . . . . . . . . . . . . . . 128

7.12 FOOT vowel for Lobanov normalised formants. . . . . . . . . . . . . . . . . 129

7.13 GOAT vowel for Lobanov normalised formants. . . . . . . . . . . . . . . . . 130

7.14 GOOSE vowel for Lobanov normalised formants. . . . . . . . . . . . . . . . 131

7.15 LOT vowel for Lobanov normalised formants. . . . . . . . . . . . . . . . . . 132

7.16 TRAP vowel for Lobanov normalised formants. . . . . . . . . . . . . . . . . 133

xvi



Chapter 1

Introduction

Sociolinguistics is the study of the intricate relationship between language and society,

looking at how culture, society and geography interact with language. Variationist so-

ciolinguistics focusses on a specific branch of this broad subject, taking its focus on the

study of language change using quantitative methods. It is the study of linguistic vari-

ation and change through observation and interpretation (Tagliamonte, 2012). The core

tool of sociolinguistics is the notion of the linguistic variable, which provides a metric to

determine if social or linguistic factors are impacting on linguistic variation and change.

At its most basic definition, the linguistic variable is two or more ways of saying the

same thing. For example, the sound /t/ in ’butter’ can be produced as [t] or as a glottal

stop. Analysing the variation for the linguistic variable, T-glottalling, has shown that

glottal stops are used more by particular social groups (in British English, working-class,

male, younger speakers), and in particular linguistic contexts than others (more in word-

final position, e.g. ’but’ than word-internal position, e.g. ’butter’). It has also shown

how T-glottaling has increased in usage over time and space (Smith and Holmes-Elliott,

2017). Variationist sociolinguists have established that linguistic variation is constrained

by different social and linguistic factors (Labov, 2001).

Statistical modelling provides a formal assessment of the relationship between the

linguistic variable and relevant social and linguistic factors. Traditionally, the most com-

monly used tool for analysis was logistic regression, first implemented in the variable rule

program Varbrul (Cedergren and Sankoff, 1974) and then later extended to Goldvarb
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2.0 (Rand and Sankoff, 1990). The variable rule program has the structure of a gen-

eralised linear model, hence has the capability of performing logistic regression. Unfor-

tunately, GoldVarb 2.0 lacks the flexibility to perform robust statistical modelling on

sociolinguistic corpora, as it fails to capture the additional variability present between

Speakers and Word choice within a corpus. Johnson (2009) introduces Rbrul, which uses

mixed effects modelling at its core, accounting for these additional sources of variation

within the corpus.

This recent development of advanced quantitative methods has been a core aspect of

analysing and interpreting sociolinguistic patterns, along with the increase in availability

of digital recordings allowing the formation of large corpora of complex linguistic data

to exist for such investigations. Within such analyses, the linguistic variable of interest

may be discrete, e.g. [t] or a glottal stop, or continuous, e.g. formant measures in Hertz

for a vowel. As mentioned previously, the common approach to tackling such analyses

is to implement mixed effects models (Pinheiro and Bates, 2000), which include random

effects which control for experimental variation created by individual speaker or word

level variation (Tagliamonte and Baayen, 2012), alongside fixed factors to describe the

influence of linguistic and social variables.

When considering formant measures of a vowel as the linguistic variable of interest, for

each vowel, we obtain multiple formant measurements, with the first three formants being

most commonly modelled (Ladefoged and Johnson, 2014). Until now, it has not been

possible for quantitative analysis in sociolinguistics to consider the impact of modelling

these multiple formant measurements together, instead fitting models which only consider

each formant in turn, thus assuming independence between formants. A speaker’s vowel

formant measures show a degree of correlation, at least partly as a result of being produced

by the same vocal tract. The main question of interest is, to what extent do linguistic

and social factors influence the production of vowels, as measured in formants, above and

beyond these formant correlations?

We present a Bayesian hierarchical model in Chapter 3 for the analysis of multiple

response variables. The functionality is demonstrated through the analysis of the first

three formants of the FLEECE, FACE, TRAP/BATH, LOT, GOAT and GOOSE/FOOT

vowels for 31 speakers from the Sounds of the City corpus. The Sounds of the City cor-
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pus is an electronic real-time corpus of Glaswegian vernacular (Stuart-Smith et al., 2017),

(Stuart-Smith and Lawson, 2017), (Rathcke et al., 2017). This corpus is a searchable,

multi layered database of 58 hours of recordings, recorded between 1970 and 2010 with or-

thographic transcripts and automatically phonemically segmented waveforms, amenable

to automatic acoustic analyses of durational (e.g. segment durations) and resonance char-

acteristics of speech, so for vowels, formant measurements in Hertz (Hz). Social factors

of interest related to each individual Speaker, for example the Gender, Age and Decade

of recording of a Speaker, and linguistic factors such as the Preceding and Following

segmental context for the vowel are taken as fixed effects of interest within the model.

Their significance is determined within the hierarchical model, which also implements

variable selection within the sampler, proposing the addition and removal of coefficients

with every iteration of the MCMC sampler to determine the best fitting model.

Sociolinguistic corpora are often nested in design due to the nature of the sampled

data. Linguistic variation is produced by speakers who in turn belong to social group-

ings, nested by e.g. Gender, Age, Decade of birth, and it occurs in words which show

differential patterns of use and frequency across speakers. Within an MCMC frame-

work, this often leads to high autocorrelation between parameter samples and thus poor

mixing for parameter estimates. This leads to MCMC chains being run for extended

periods of time, which from a practical sense in terms of computational time is infeasible.

Reparametrisation methods can be implemented to improve MCMC efficiency in nested

design problems (Browne et al., 2009). In Chapter 4, we introduce two reparameterisation

steps based upon hierarchical centering and parameter expansion, which aim to improve

MCMC efficiency greatly in terms of mixing observed between fixed effects coefficients

nested within the random effects. We also look at how to improve poor mixing in the

precision estimates for effects with a high number of levels.

As we are introducing a model which has now increased in complexity when compared

to classical mixed effects models, implemented on one formant at a time, it is imperative

that the output of the model is communicated in a clear and concise fashion in order

to make this methodology an attractive tool for sociolinguists to use and interpret. In

order to do this, we propose the use of graphical models as a visualisation tool of the

Bayesian hierarchical model output as discussed in Chapter 6. Graphical models pro-
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vide a simple diagrammatic representation of complex probability structures which help

to ease understanding of large scale problems. We look to implement a chain graph

style structure, where we jointly infer the fixed effects present in the hierarchical model

and also the underlying graphical model between the response variables using precision

estimates obtained from the hierarchical model. The interpretation is straightforward,

with a connection denoted by a direct arrow present between an explanatory variable

and a response variable, indicating the explanatory variable is a significant term within

the model. This novel inference tool provides a straightforward visual representation of

complex model output.

Throughout this thesis, the methods implemented and developed have been con-

structed to be as generalisable as possible. The motivation for this is to introduce a

new inference tool for tackling problems of this nature. The problems tackled within

this thesis are not limited to multiple variables characterising a vowel, they can be also

used for other multiple variables which characterise other sounds, e.g. stop sounds and

sibilant sounds. Nor are they limited to sociolinguistic corpora, there are many practi-

cal examples across multiple disciplines which have structured design problems similar

to linguistic corpora. Due to the abundance of problems of this nature, we have pro-

duced functionality within R for the Bayesian hierarchical model which also is capable

of producing the chain graph model like structures. The functionality has been created

such that for any mixed effects model problem, with univariate or multiple responses or

with nested design, it is possible to obtain a hierarchical model and graphical model.

An additional aim of this project is to turn this functionality into a package within R

and also develop a web-based application of the chain graph model using Shiny (Chang

et al., 2015). A repository for the code used throughout this thesis can be found at

https://github.com/calex1991/BayesCGModels.

The work of this thesis has developed and expanded upon the quantitative methods

used to tackle questions regarding linguistic variation in variationist sociolinguistics. We

have proposed an extension to the mixed effects modelling currently implemented in two

main ways: firstly by expanding the model to consider multiple vowel formants simulta-

neously, taking into account the correlation between these vowel formants, thus obtaining

a more accurate representation of the underlying factors influencing vowel change, and
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secondly by expressing the model problem in a Bayesian framework, which helps with

the creation of the graphical model visualisation. Common issues of poor mixing in

MCMC samplers using nested data are also addressed through reparameterisation tech-

niques. Finally, we have constructed a novel inference approach using graphical models

to visualise the output of such Bayesian hierarchical models with a view to help simplify

interpretation and understanding of the complex model output.

1.1 Thesis Overview

The structure of this thesis is in the following form: Chapter 2 provides some relevant

background information on phonetics and sociolinguistics, with further detail on the

structure of the Sounds of the City corpus which is the main dataset used throughout

this thesis. Chapter 3 details the current methods used to model linguistic variation in

the Sounds of the City corpus, then goes on to detail the construction of the Bayesian

hierarchical model for multiple vowel formants, with an application to the Sounds of

the City corpus. Chapter 4 discusses the reparameterisation methods used to alleviate

poor MCMC convergence for nested parameters within the Bayesian hierarchical model,

focussing on improvement on mixing of parameter chains. Chapter 6 describes how to

construct the chain graph style graphical model for hierarchical model output, describing

how we incorporate Bayesian Gaussian graphical model selection within the hierarchical

model, using a modification of the PAS algorithm. Chapter 7 discusses the sociolinguistic

findings of the resulting graphical models obtained within the chapter. Chapter 8 provides

a summary of this thesis, with a discussion on potential future developments from the

work undertaken in this thesis.

Derivations of the posterior distributions used to sample the model parameters are

detailed in Appendix A.
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Chapter 2

Sociolinguistic Background & Data

In this chapter, we provide information about the structure of the Sounds of the City

corpus, looking closely at how the work detailed in this thesis can extend upon current

findings already obtained from the corpus in terms of how language has changed within

Glasgow over the past century. In Section 2.1, we look at how we can model change in

language by looking at vowel sounds in detail, and how we can obtain metrics from a vowel

utterance that can provide some sense of measure from a particular vowel sound. Section

2.2 looks more closely at the structure of the Sounds of the City corpus, discussing in

detail the structure of the corpus, previous findings and results obtained from the corpus

in terms of which vowels seem to be providing clearer indicators of vowel change in the

Glaswegian vernacular and the structure of the vowel data which form the basis of the

analysis presented in this thesis.

2.1 Modelling Vowel Change

The aim of the Sounds of the City project is to study how language has varied over

the course of the twentieth century in the city of Glasgow, especially with respect to its

pronunciation. Preliminary work on the dataset suggested that a number of aspects of

the Glaswegian accent are changing, including some vowels (Stuart-Smith et al., 2017).

Vowel sounds phonetically, in words like. FLEECE and TRAP, are those sounds which

are produced without any obstruction to the airflow leaving the vocal tract. Vowels can
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2. Background & Data

Figure 2.1: Vowel chart of the International Phonetic Alphabet IPA (1999). The dimen-
sions refer to the position of the highest point of the tongue, so ‘front’ furthest forward
as in FLEECE, back furthest back as in CAUGHT.

be described by close listening (auditory analysis) and then transcription using symbols

from the International Phonetic Alphabet (IPA, 1999), as detailed in Figure 2.1. Using

this system, the vowel in FLEECE is /i/ and in TRAP is /a/. The IPA chart provides

a symbolic description of any vowel sound produced in a passage of speech. The IPA

chart shown in Figure 2.1 displays the different vowel qualities produced with reference

to the position of the highest point of the tongue and the shape of the lips when the

vowel sound is produced. The vowel quadrilateral shape is a schema of the vowel space,

which is created by the movement of the tongue from front to back, and from closer and

further away from the hard palate (roof of the mouth). It was initially based on auditory

and quasi articulatory ideas about vowel production (Ladefoged and Johnson, 2014).

When considering evidence for variation and change in vowel sounds, several metrics

can be used. In the Sounds of the City corpus, we use acoustic measurements taken from

vowels as our metric.

Auditory analyses of vowel sounds using IPA are very common, but they result in

discrete variants, and can be subjective. Sociolinguistic analyses usually use acoustic

analyses of vowels. In order to differentiate between different acoustic vowel qualities,

their differences are studied in terms of spectral frequency and intensity (Johnson, 2011).
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This can be done by considering the waveforms and spectrograms obtained from sound

recordings.

A spectrogram is a plot of frequency over time which includes a grey scale to highlight

the differential patterns of acoustic energy, in terms of amplitude at particular frequencies

during the production of a particular sound. White areas indicate areas of minimal noise

or silence, while the darkest areas indicate frequencies of high amplitude in comparison to

surrounding frequencies which tend to be greyer in appearance. These spectral features

result from smoothed fast Fourier transforms applied to the acoustic waveforms resulting

from movements of the articulators during speech production. For example, producing a

stop sound such as ’p’ in ’pin’, involves closing the lips, holding them closed, and then

releasing the trapped airflow to produce the vowel, for which the tongue body has shifted

forward and close to the hard palate, so during a stop acoustically there is much less

visible acoustic energy. Vowel sounds are voiced through vocal fold vibration and show

resonances at particular frequencies reflecting the shape of the vocal tract configuration

for each particular vowel sound. An example of a spectrogram is shown in Figure 2.2 for

an utterance of the word sign for a female Glaswegian speaker. Here we can see first the

acoustic noise corresponding to the turbulent jet of air produced for /s/, then the dark

bands of energy reflecting the vowel /ai/, with coloured lines pointing out the first three

formants, followed by less visible energy for the nasal /n/ (air escapes through the nose

whilst the tongue obstructs the mouth).

Ladefoged (2005) compares the differences in vowel sounds to that of an orchestra.

The same note can be played by multiple instruments, which will produce a sound with

the same fundamental frequency, which we hear as the pitch of the vowel, but different

overtones by instrument. The difference between vowel sounds can be distinguished by

such overtones. These resonances of the complex filter formed by the supralaryngeal vocal

tract are referred to by phoneticians as formants. A formant is a concentration of acoustic

energy around a range of frequencies (i.e. a particular bandwidth) in a speech wave after

the wave has been subjected to a spectral analysis (e.g. fast Fourier transform).

As sound waves pass through the oral cavity, they are modified by the differing config-

urations of the articulators and develop a characteristic pattern of energy along specific

frequency ranges that can be interpreted by the brain and the ear as a particular vowel
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Figure 2.2: Spectrogram of the word sign as spoken by a female Glaswegian speaker.
The coloured bands correspond to the formants F1 , F2 and F3

.

sound (Johnson, 2011). Formants provide a useful measure to model how the vocal tract

acts as a filter in the production of voiced sounds such as vowels, nasals (n.m) and liquids

(l, r). The patterns they produce help to define the phonetic quality of sounds and also

their place of articulation.

When observing a spectrogram of vowel sounds, a series of thick dark bands can be

observed like those in Figure 2.2 which distinguish the individual formants for each vowel

sound. Early perception experiments demonstrated the importance of formants for vowel

identification and discrimination, specifically the first two formants (Delattre, 1951).

2.2 The Sounds of the City Corpus

The Sounds of the City corpus is a real time corpus of Glaswegian vernacular. Sociolin-

guistic corpora are of two kinds. ‘apparent-time’ corpora are where recordings are from

the same time point, but from speakers of different ages; speaker age acts as a proxy

for time depth. ‘real-time’ corpora contain recordings made at different points in time

(Labov, 1994). The Sounds of the City corpus is both real-time (recordings made at

different time points) and apparent-time, from speakers of different ages, at each time

point. The corpus consists of recordings of 136 speakers, recorded over 58 hours, com-

prising some 700,000 words. Recordings were made over four decades from male and

female speakers in three age groups, old (67-90), middle-aged (40-55), and young (10-15)
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between 1970 and 2010.

In order to gather this real time corpus of data, recordings were collected together from

existing sources of different kinds, for example, previous sociolinguistic surveys, footage

for broadcast programmes, and oral history interviews. An issue with this approach is

that it has lead to an unbalanced design in several respects. Since this is an opportunistic

sample, where all possible recordings for Glaswegian dialect were collected from existing

sources, there are varying numbers of speakers across groups by generation. Also as

the speakers are recorded in different ways, and talk about different things, there are

differences in the amount of speech per speaker, and the content, and number of words,

used by different speakers.

2.2.1 Vowel Data

This section outlines which vowels were selected, and how the data were extracted and

also specifies what the measures and variables are.

Previous research on the SoTC corpus, in conjunction with other research across UK

dialects (Stuart-Smith et al., 2017) suggested that the following vowels might be of interest

to analyse: FLEECE, FACE, TRAP, BATH, COT, GOAT, GOOSE and FOOT. Given

that the Sounds of the City research is currently analysing these vowels using typical

linear mixed effects models (Jose and Stuart-Smith, 2014), these vowels were selected as

the basis for this statistical study.

In order to investigate vowel variation and change in this corpus, the speech record-

ings were first orthographically transcribed producing utterance-level alignment. They

were then uploaded to the open-source speech database system, LABB-CAT (Fromont

and Hay, 2012), and force-aligned, giving time-aligned segmentation (time stamps) for

utterance, word and segments, with corresponding labels. Automated searches were car-

ried out within LABB-CAT to locate and extract all relevant tokens for all vowels. The

first 3 formant measures were then taken for each vowel, using the LABB-CAT vowel

measurement tool. All of these steps had been carried out prior to this study, as part

of the SoTC data processing. Each instance of each vowel, e.g. FLEECE, as uttered in

words spoken by the speakers, e.g. beat, bead, sleepy, feet, is thus represented in the

form of three formant measures in Hz. These are used as the variables of interest in this
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Figure 2.3: Plot of the acoustic normalised F2/F1 vowel space for the FLEECE, CAT,
LOT, GOAT and BOOT vowels where 1= 1970s Old speakers, 2= 2000s Old speakers,
3= 1970s Young speakers, 4= 2000s Young speakers.

analysis.

Figure 2.3 shows the acoustic normalised F2/F1 measures on the vowel space for the

FLEECE, FACE, CAT, LOT, GOAT and BOOT vowels. We observe the vowel layout

here is arranged much in the same way as the IPA chart in Figure 2.1, so the FLEECE

vowel (front and high) is in the top left corner, and the CAT vowel (low) is in the bottom.

We observe that the different averages for the FLEECE and FACE vowels basically sit

on top of one another across the range of recordings. Conversely, we see that BOOT

has shifted down in the space (lowering) and COT and GOAT have shifted up in the

space over the real and apparent time represented by the speaker sample. In the CAT

vowel we see some possible shifting up in the space. Note that in previous work, TRAP

and BATH vowels are considered together as CAT, whereas FOOT and GOOSE are

considered together as BOOT.

From Figure 2.3, we observe the BOOT, LOT and GOAT vowels appear to be chang-

ing the most over time. Figure 2.4 shows each of these vowels in closer detail, as obtained

from Stuart-Smith et al. (2017). We observe a real-time lowering of BOOT and a raising

of LOT and GOAT from the 1970s recordings. The apparent-time findings of the elderly
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speakers compared with recordings of men born in the same decade (1890s) but recorded

during the First World War (marked as X on the plots) suggests that these changes may

have started much earlier in the century. This motion of one vowel moving and others fol-

lowing is known as a ’pull-chain’ (Labov, 1994). The findings lead researchers to believe

that the Glaswegian dialect has some kind of pull chain occurring, which probably started

around the mid-19th century, and then took off over the course of the 20th century.

The data analysed here contains quantitative phonetic measures of vowels, consisting

of formant measurements taken for the first, second and third formant, denoted F1, F2, F3

respectively. Throughout this analysis, we use the raw mean formant frequency calculated

over the duration of each vowel for the first 3 formants; we also analyse normalized F1

and F2. In the data analysed here, Age has two levels: Old and Young speakers

It is common for raw formant measurements to be normalised (Adank et al., 2004).

Vowel normalisation techniques have been developed as different speakers have different

vocal tract sizes, which in turn causes their formant resonances to differ. This means that,

for example the vowel FLEECE produced by a small child and an adult man will show

different frequencies relating to their vocal tract size - but listeners will carry out some

kind of normalization internally, and will parse both utterances as instances of the vowel

/i/. Vowel normalisation is used to compare the vowel realisations by different speak-

ers in meaningful sociolinguistic ways. By eliminating variation caused by physiological

differences among speakers, it is easier to determine whether changes and differences in

terms of vowel quality are influenced by sociolinguistic factors.

Several normalisation techniques exist to normalise vowel formants. A more detailed

description of all these techniques can be found at http://lingtools.uoregon.edu/

norm/. One such normalisation method used to model vowel change in the Sounds of the

City corpus is the Lobanov normalisation method, which is implemented using Kendall

and Thomas (2014), and is defined as

FN
s,i =

(FN
s,i − µ

N
s )

σs
(2.1)

where FN
s,i is the normalised value of formant Fs,i, taken on the ith measurement for

speaker s. µs is the mean formant value for speaker s and σs is the standard deviation
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Figure 2.4: Plots of F1 and F2 measures with the relative position for each speaker
group for the BOOT, LOT (which in this study, is denoted as COT ) and GOAT vowels,
where 1= men born in 1890, 2= men born in the 1920s, 3= adolescents born in the 1960s,
4= adolescents born in the 1990s and X = young men born in the 1890s and recorded in
1916/17.
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of speaker s corresponding formant values for a given vowel.

The dataset also contains several explanatory variables relating to individual qualities

of the speaker. Sociolinguistic theory observes that language variation and change is

fundamentally influenced by two kinds of variable, social factors and linguistic factors

(Tagliamonte, 2012). Given that the SoTC project is interested in tracking sound change,

a key variable is Decade of recording, which in these data has two levels, 1970s and 2000s.

Gender and Age of speakers is also of interest to model. There are two sources of variation

for these variables. The biological size of the vocal tract is one, as female and younger

speakers would be expected to produce slightly higher formant frequency values because

they have smaller vocal tracts. The other is social gender and age (Labov, 2001). We are

interested in what males and females in a particular community ‘do’ with their speech to

sound like male and female speakers. For example, we would expect men and women to

differ in terms of pitch, with males showing lower frequencies than females, but at the same

time, communities can acquire pitch norms which may override their biological norms

(Eckert and McConnell-Ginet, 2003). An example of this would be Cockney English

and French speaking males having higher pitched voices than southern English speaking

males. In terms of Age, speakers may also vary because their chronological age reflects

a continuation of speech patterns which they acquired much longer ago. For example,

a female speaker aged 70 will show speech variation which is typical of both an older

woman (physiologically), and will reflect the language system which she acquired as a

child, typically around 7-8 years old (Labov, 1994).

Several phonological variables are also recorded, most notably the preceding and fol-

lowing place of articulation of the consonants surrounding the vowel. These linguistic

variables are important to include in the analysis as movement of the articulators alters

the resonant properties of the vocal tract. For example, if a preceding consonant led to

rounding of the lips, this often results in a lowering of the second and third formants

because the oral cavity is lengthened, e.g. the sound of /i/ after /s/ (no rounding) and

/sh/ (which has lip rounding) in seep and sheep (Ladefoged and Johnson, 2014).

In Figure 2.5 the vowel measures for old speakers recorded in the 70s and young

speakers in the 00s are show. The plot consists of the median formant measures for each

speaker for a specific vowel, represented by the large circle. Each individual observation
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per speaker is also represented by the fan of points joined to the median circle. This gives

a clear indication of the high variability present within each speaker, and the difference

in formant measures between speaker. From the plot, we observe a shift in the vowel

formant measures from generation, most notably in the GOAT vowel. There has been

a raising in normalised F2 measures for this vowel. We also observe less variability with

young speakers in the 00s. This is mostly due to the improvement in recording techniques

between generations.

Figure 2.6 details the effect of preceding and following place of articulation for the

FOOT vowel. We observe that there is an effect present in terms of the preceding

context of consonant in the word, with a clear difference in formant measures for coronal

and labial. For following context, there appears to be no clear pattern present within the

data.

Looking closer at specific vowels and the effect of generation in Figure 2.7, we observe

a generation effect is present when considering the GOAT vowel. We observe a raising in

the F2 normalised measures for younger speakers in the 00s compared to older speakers in

the 70s. When considering the CAT vowel, there appears to be no real difference present

in formant measures by generation.

It is well known from previous studies that vowel quality, reflected in formant measures

here, also varies systematically according to individual speaker, and even according to

the words in which they occur. It is therefore common for sociolinguists also to include

factors which capture individual speaker and word variation in their models (Drager and

Hay, 2012). Accordingly, here in this study, random factors of Speaker and Word are also

included in the modelling.
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Figure 2.5: Plot of the acoustic normalised F2/F1 vowel space comparing old speakers
in the 70s to young speakers in the 00s by vowel. The GOAT appears to have shifted
more in terms of F1 from generations.
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Figure 2.6: Plot of the acoustic normalised F2/F1 vowel space comparing effect of
preceding and following context on the GOOSE vowel. Preceding context appears to
have a clear effect on F1 and F2 measures.
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can be observed for the GOAT vowel, but no clear difference observed within the CAT
vowel.
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As we have observed throughout this chapter, it is usual for three formants to be

taken from any particular vowel. The current modelling undertaken in Stuart-Smith

et al. (2017) looks at the individual first and second formants in turn for each vowel

and infers which factors are influencing change for that specific formant. This procedure

is standard for sociolinguistic, and indeed phonetic, modelling of vowel variation. The

natural progression in a modelling sense is to consider a statistical model which includes

all the available formants for a vowel utterance, which in the case of the Sounds of the

City corpus would be the first three formants (raw measures) and the first two formants

(normalized measures). This thesis will detail the construction of models which can tackle

this problem.

2.3 Discussion

In this chapter, we have introduced how we can model vowel variation and change in

terms of formant measurements taken from a vowel utterance, providing a continuous

metric in terms of frequency that can be used in any potential modelling. We have also

discussed the structure of the Sounds of the City corpus, discussing in further detail the

current modelling results obtained for vowel variation and change in the city, identifying

the BOOT, COT and GOAT vowels as showing the most change over time within the

dialect of the city. The remainder of this thesis will detail how we can extend beyond

the current modelling in the Sounds of the City corpus by constructing statistical models

which consider all three formants for a vowel in the same model.
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Chapter 3

A Bayesian Hierarchical Model for

Modelling Linguistic Change in

Glaswegian Dialect

In this chapter, we introduce the multiple response Bayesian hierarchical model for mod-

elling linguistic change for vowel formant data. This hierarchical model also carries out

model selection within the sampler to select the significant variables present within the

model and thus identify the phonetic and social factors which are contributing to linguistic

change in the Glaswegian dialect.

The multiple response Bayesian hierarchical model develops on classical mixed effects

models used to model linguistic corpora (Johnson (2009), Baayen (2008)) in a twofold

manner. Firstly, the model allows for the modelling of multiple response variables within

a single model framework, thus taking into consideration possible additional correlation

between vowel formants. Secondly, we model in a Bayesian framework which lends itself

to the graphical model representation which we discuss in more detail in Chapter 5.

This model aims to determine which social and linguistic factors impact vowel change,

with the Decade of Recording (1970s or 2000s) for a specific speaker being the key variable

of interest in determining whether there has been a change in vowel formant frequencies,

and so vowel quality, over time in the Glaswegian vernacular.

Section 3.1 details the construction of the Bayesian hierarchical model, starting from
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3.Bayesian Hierarchical Model

the construct of mixed effects models (Johnson, 2009) in Section 3.1.1. Section 3.1.2

extends beyond the classical linear model to the multiple response model, which allows for

the modelling of multiple response variables. The Bayesian hierarchical model structure

is then explained in Section 3.1.3, with a discussion into the structure of the model and

relevant notation detailed. Prior specification is also discussed here and a visualisation

of the full model structure is detailed in Figure 3.1. Bayesian posterior inference is

then explained further in terms of the structure of the MCMC samplers for parameter

inference and also further description on the variable selection undertaken within the

model framework.

Section 3.2 applies the hierarchical model to two examples; firstly a simulated example

which looks to explore and detail the effectiveness of the variable selection within the

model framework, which is discussed in Section 3.2.1 and secondly, an application to

the Sounds of the City corpus for raw mean vowel formant measurements and Lobanov

normalised formant measurements for all vowels in Section 3.2.2. Within the Sounds of

the City analysis, we identify and discuss mixing issues identified due to the nested design

of the corpus, which is discussed in further detail in Chapter 4.

3.1 Building the Bayesian Hierarchical Model

In this section, we introduce the classical mixed effects models currently implemented

within many sociolinguistic experiments to model linguistic change, and how we extend

upon these models to allow for multiple formants at once in a Bayesian framework.

3.1.1 Mixed-Effects Models

Mixed-effects models (West et al., 2007) are the most commonly implemented methods

used within the variationist sociolinguistic community to model additional experimental

variability present within linguistic corpora (Johnson, 2009). In a mixed-effects model,

the response is defined as y = (y1, . . . , yN)⊺ and the explanatory variables, commonly

referred to as fixed effects, are denoted by X, which is a matrix of P + 1 columns and

N rows, where the first column is the population intercept. Each of the fixed effects has

a corresponding regression coefficient, which is denoted by β. For example, Xj has the
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3.Bayesian Hierarchical Model

corresponding regression coefficient βj, which defines its level of influence on the response.

Where the mixed effects model differs from a classical linear regression is in the addi-

tion of random effects, which are included to control for additional variation present in

nested design problems, which in the Sounds of the City corpus is the Speaker and Word

choice variation. The random effects design matrix, which is defined by U, is a matrix

of indicators with N rows and G columns, where G is the total number of groups within

all random effects. The random-effect coefficients are defined as b = (b⊺

1, . . . ,b
⊺

G)
⊺ which

consist of a vector of coefficients corresponding to each specific random effect and its

respective groups. Each bg is assumed to follow a Gaussian distribution with zero mean,

and variance respective to group, bg ∼ N(bg ∣ 0, σ2
bg

I). If we consider all groups, the joint

distribution is defined as, b ∼ N(b ∣ 0,G), where G is defined as G = blockdiag(σ2
b) with

σ2
b = (σ2

b1
I, . . . , σ2

bG
I).

The mixed effects model is of the form:

y = Xβ +Ub + ε where ε ∼ N(ε ∣ 0, σ2
ε I) (3.1)

where the model is assumed to have independent and identically distributed Gaussian

errors.

By integrating over b, we can obtain the likelihood, which is defined as:

L(β, σ2
ε ,G ∣ y,X,U) = N(y ∣ Xβ,UGU⊺

+ σ2
ε I). (3.2)

3.1.2 Multiple Response Regression

The main drawback to the current modelling techniques implemented within the sociolin-

guistic community is that mixed effects models, which are implemented do not take into

consideration the correlation between dependent variables, namely the first three formants

for the same vowel, so they are currently modelled as if they are assumed to be inde-

pendent. By considering a multiple response linear regression model, we are able to now

examine a regression problem where the dependent variable is no longer a single response,

but an l length vector of correlated responses, which are defined as ỹ = (y1, ...,yL)⊺, where

each yl is an individual response. Like a standard linear regression, there are N observa-
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tions, where each observation i consists of P explanatory variables. This can be viewed

as a set of l related regression problems for each observation i.

The multiple response regression model is defined as:

ỹ = X̃β̃ + ε where ε ∼ N (ε ∣ 0, (Σε ⊗ I)) (3.3)

The regression coefficients are defined as β̃ = (β1, ...,βL)⊺ where each βl is the vector

of regression coefficients for the lth response. The corresponding design matrix, defined

as X̃ = blockdiag(X1, ...,XL
) is constructed in a similar fashion. Σε is the m dimensional

covariance matrix for the model error.

The likelihood is defined as:

L(β̃,Σε ∣ y, X̃) = N (y ∣ X̃β̃, (Σε ⊗ I)) . (3.4)

3.1.3 Bayesian Hierarchical Model

Here, we look to combine the classical mixed effects models with a multiple regression.

In addition to this, we also re-express the model in a Bayesian paradigm which helps

with the graphical model selection problem detailed in Chapter 6. Within the Bayesian

hierarchical model, we also incorporate inter-model selection in order to determine which

the most significant social and linguistic factors on impacting vowel formant change.

The likelihood is expressed in a similar fashion to the classical mixed effects model

described in Section 3.1.1. The vector of response variables is constructed the same way

as in Section 3.1.2, with ỹ = (y1, ...,yL)⊺, where l = 1, ..., L corresponds to the number of

response variables. We denote the current significant social and phonetic factors in the

model by X̃η̃ and their regression coefficients by β̃η̃, where X̃η̃ = blockdiag(X1
η1 , ...,X

L
ηL)

and β̃η̃ = (β1
η1 , ...,β

L
ηL)

⊺

. We also separate the intercepts, β̃0 for each response so they

are always included within the model, where β̃0 = (β1
0 , ..., β

L
0 ). The random effects Ũ and

their respective coefficients b̃ are denoted in a similar fashion to the fixed effects, namely
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Ũ = blockdiag (U1, . . . ,UL) and b̃ = (b1, . . . ,bL)
⊺

. The likelihood is defined as:

p (y ∣ β̃0, β̃η̃, b̃,Ωε, X̃η̃, Ũ) = N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I)) . (3.5)

The inclusion of the jth column of Xl is defined by the value of ηj ∈ {0,1}, where if

the jth variable is included, ηj = 1, where the corresponding coefficient estimate βlj takes

some real number value. If the jth variable is removed, ηj = 0, then the corresponding

coefficient estimate is set to βlj = 0. Xl
ηl is thus the matrix of relevant explanatory

variables, where the number of columns corresponds to the number of non-zero elements

in ηl. X̃η̃ is constructed by creating a block diagonal matrix which is formed by combining

each Xl
ηl , where η̃ = (η1, . . . ,ηL)

⊺

. The below example provides an illustration of how

the notation is used to construct a simple design problem:

X1
=

⎛
⎜
⎜
⎜
⎜
⎝

x1,1, x2,1, x3,1

x1,2, x2,2, x3,2

x1,3, x2,3, x3,3

⎞
⎟
⎟
⎟
⎟
⎠

; X2
=

⎛
⎜
⎜
⎜
⎜
⎝

x1,1, x2,1,

x1,2, x2,2

x1,3, x2,3

⎞
⎟
⎟
⎟
⎟
⎠

; X1
η1 =

⎛
⎜
⎜
⎜
⎜
⎝

x1,1, x3,1

x1,2, x3,2

x1,3, x3,3

⎞
⎟
⎟
⎟
⎟
⎠

; X2
η2 =

⎛
⎜
⎜
⎜
⎜
⎝

x1,1

x1,2

x1,3

⎞
⎟
⎟
⎟
⎟
⎠

;

β1 =

⎛
⎜
⎜
⎜
⎜
⎝

β1
1

β1
2

β1
3

⎞
⎟
⎟
⎟
⎟
⎠

; β2 =
⎛
⎜
⎝

β2
1

β2
2

⎞
⎟
⎠

; β̃ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1
1

β1
2

β1
3

β2
1

β2
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; β1
η1 =

⎛
⎜
⎝

β1
1

β1
3

⎞
⎟
⎠

; β2
η2 = (β2

1
) ; β̃η̃ =

⎛
⎜
⎜
⎜
⎜
⎝

β1
1

β1
3

β2
1

⎞
⎟
⎟
⎟
⎟
⎠

(3.6)

η1 =

⎛
⎜
⎜
⎜
⎜
⎝

1

0

1

⎞
⎟
⎟
⎟
⎟
⎠

η2 =
⎛
⎜
⎝

1

0

⎞
⎟
⎠
η̃ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

1

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In this illustration, we see that η1 shows that the second column of the design matrix

X1 is now deemed non-significant, indicating that β1
2 is now removed from β1. Similar is

observed for η2 where β2
2 is also removed, leading to the combined β̃η̃
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Prior specification

As with the classical mixed effects model in Section 3.1.1, we assume additive i.i.d.

Gaussian noise. For the hierarchical model, we assume the errors have precision Ωε.

We specify the following conjugate prior on Ωε:

Ωε ∼ W(νε,Sε) (3.7)

where νε and Sε are fixed hyper-parameters that are to be specified.

For the fixed effects coefficients β̃, we specify the prior

β̃ ∣ τ ∼ N(0,V−1
) (3.8)

where τ = (τ1, . . . , τL) and

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τ1I 0 . . . 0

0 τ2I 0 ⋮

⋮ ⋱

0 . . . 0 τLI

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The covariance matrix of the fixed effects coefficients is composed of the precision

parameters τl, which correspond to each response level l, allowing for greater flexibility

within the model by permitting specific prior adjustments for each response level. The

prior for the precision of the fixed effects coefficients by formant is defined as:

τl ∼ G(al, bl) (3.9)

with group specific hyperparameters al, bl.

For the random effect parameters b̃g, where b̃g = (b1
g, . . . ,b

L
g )

⊺

, each group follows a

Gaussian distributed prior with zero mean and group specific precision matrices Ωb̃g

b̃g ∣ Ωb̃g
∼ N (0,Ω−1

b̃g
) (3.10)
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The combined prior for the random effects b̃ is defined as:

b̃ ∣ Ωb̃ ∼ N (0,Σ−1
b̃
) (3.11)

where Σb̃ = blockdiag (Ωb1 , . . . ,ΩbG
).

The precision matrices for the random effects have conjugate Wishart prior for each

group g:

Ωbg ∼ W(νbg ,Sbg) (3.12)

with group specific hyperparameters νbg and Sbg .

A graphical representation of the hierarchical model can be found in Figure 3.1 which

details the various levels of input and prior specification of the model.

3.1.4 Bayesian Inference using Markov chain Monte Carlo

In Bayesian inference, the posterior distribution, which is the distribution that contains

all the information on the current parameters θ, which for the hierarchical model de-

tailed previously is, θ = (β̃, b̃,Ωε,Ωbg ,τ)
⊺

, is defined by Bayes theorem. For a given

model state and data, D, we define the likelihood to be the probability of D given the

model parameters θ and model distribution p(⋅). To obtain the posterior distribution,

we multiply the likelihood by the prior distribution on the model parameters, p(θ) and

normalise as such:

p(θ ∣ D) =
p(D ∣ θ)p(θ)

∫ p(D ∣ θ)p(θ)dθ
∝ p(D ∣ θ)p(θ) (3.13)

Markov chain Monte Carlo (MCMC) methods are a group of sampling techniques

used to obtain an estimate of a target distribution of interest. They are widely used

in Bayesian inference to sample from a posterior distribution of interest for models or

to approximate integrals that are extremely difficult or impossible to evaluate. This

is performed by sampling values of the parameter of interest, θ, from an approximate

distribution and then adjust these draws to better estimate the target posterior, p(θ ∣ D).

Each sample is drawn such that the current sample depends only on the previous drawn

sample and thus form a Markov chain which, after reaching equilibrium, will effectively
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sample from the desired target posterior.

Convergence to the stationary distribution does not occur instantly. As such, we

can remove the initial group of samples before convergence has been reached, which is

referred to as the burn-in period. Samples can be autocorrelated, leading to poor mixing

and approximations of the target distribution. In order to remove this autocorrelation,

it is common to take only every ith sample. This is known as thinning.

The two most commonly used MCMC algorithms are the Metropolis-Hastings algo-

rithm and the Gibbs sampler, which is a special case of the Metropolis-Hastings. Within

the hierarchical model, we use a combination of both Gibbs and Metropolis-Hastings

steps to estimate the model parameters. How the samplers are implemented and con-

structed with respect to the hierarchical model is discussed in more detail in the following

sections.

Gibbs Sampling

Suppose we have a joint distribution p(θ1, . . . , θk) that we wish to sample from. The

Gibbs sampler (Geman and Geman, 1984) can be used to sample from this joint distri-

bution, by using the full conditional distributions for each parameter. For a given θj,

its full conditional is defined as p(θj ∣ θ−j,D). Gibbs sampling requires the conditional

distribution to follow a standard distribution. As our parameters within the model follow

conjugate priors, all conditional distributions on θ follow standard distributions which

are straightforward to sample from.

For an arbitrary parameter set θ = (θ1, ..., θk)⊺ and data D, the Gibbs sampler works

in the following steps:

1. Set initial parameter estimates θ(0) = (θ
(0)
1 , ..., θ

(0)
k )

⊺

to some arbitrary values in the

correct parameter space.

2. Generate values of θ from the respective full conditional distributions for each θi

as follows:

θ
(1)
1 ∼ p(θ

(1)
1 ∣ θ

(0)
2 , . . . θ

(0)
k )

θ
(1)
2 ∼ p(θ

(1)
2 ∣ θ

(1)
1 , θ

(0)
3 , . . . θ

(0)
k )
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⋮

θ
(1)
k ∼ p(θ

(1)
k ∣ p(θ

(1)
1 , θ

(1)
2 , . . . θ

(1)
k−1)

3. Repeat step 2 for N iterations of the sampler.

Under reasonable conditions, after a suitable number of samples the algorithm will con-

verge to the target distribution.

Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Hastings, 1970), which is a generalisation of the

Metropolis algorithm (Metropolis et al., 1953) allows us to make draws from any proba-

bility distribution, given the target distribution can be computed at a given value. The

acceptance and rejection step is based on the ratio of the posterior and proposal distri-

butions. The parameters are then updated through the MCMC chain.

Given the current sample of θ, say θ(t), we propose a new value, θ∗. This is done

using the proposal distribution q(θ∗ ∣ ⋅). For continuous data, this distribution will often

be centred around the previous value of the chain, θ(t−1). The distribution of q(θ∗ ∣ ⋅)

can be of any form, though it must be carefully chosen to improve convergence speed.

The Metropolis-Hastings algorithm works as follows:

1. Begin with initial state θ(0)

2. For t in 1, . . . , T

(a) Given the current state θ(t), sample a new candidate state θ∗
(t)

from q(θ∗
(t)

∣

θ(t)).

(b) Calculate the acceptance ratio

r =
p (θ∗

(t)
) q (θ(t) ∣ θ∗

(t)
)

p (θ(t)) q (θ
∗

(t)
∣ θ(t))

(c) Generate random u ∼ U(0,1), accepting θ∗
(t)

if u < r. Otherwise, we remain at

the current state θ(t).
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3.1.5 Variable Selection

Within our sampler, we implement a model space based approach for variable selection.

This approach works by viewing the model space as a whole and placing priors on the

number of covariates selected within the model as opposed to placing priors on the indi-

vidual covariates.

A model space based approach can be implemented by using a Reversible Jump

Markov Chain Monte Carlo (RJMCMC). RJMCMC is a technique used for model se-

lection (Green, 1995), which allows the Markov chain to explore model spaces of different

dimension. In terms of variable selection, the selected variables are denoted by η̃ as

shown previously. The model is updated by randomly selecting a variable ηj and then

proposing either addition or removal of the selected variable, which translates to either

ηli = 1 if the variable is added to the model or ηli = 0 if the variable is removed from the

model.

The length of β̃η̃ is not fixed, but instead varies throughout the MCMC process,

dependent on the current state of η̃. The update is performed using a Metropolis-Hastings

step, with the acceptance ratio adjusted for the change in dimension.

For a given model state, say η̃∗, we can compute the marginal likelihood of the data

under this model by the following integral:

p(y ∣ X, η̃∗) = ∫ p (y ∣ β̃0, β̃η̃∗ , b̃,Ωε, X̃, Ũ)p(β̃0, β̃η̃∗ ∣ X̃,Ωε) dβ̃0 dβ̃η̃ dΩε (3.14)

Given our newly proposed model state defined by η̃1, the Metropolis-Hastings step

computes the ratio of the log marginal likelihoods between the proposed model state η̃1

and the current model state η̃0:

α =
p(y ∣ X, η̃1)

p(y ∣ X, η̃0)
(3.15)

The new model state η̃1, is accepted if u < α where u ∼ U(0,1) and the relevant coefficients

β̃η̃1 are updated.
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3.1.6 Posterior inference

In order to explore the posterior distributions of the hierarchical model, we use an MCMC

algorithm, implementing a combination of the methods discussed in Sections 3.1.4 & 3.1.5.

Throughout, we have chosen conjugate priors within the model so we can implement

Gibbs sampling for the majority of the sampler. The only part of the sampler where we

extend beyond using Gibbs is with the model selection, where we implement a Metropolis

step for the fixed effects variable selection.

Here, we detail the conditional distributions for all the parameters in the model which

are sampled using Gibbs sampling. The step for β̃η̃1 is split into two steps. Firstly, the

current model state is chosen using the RJMCMC step, then secondly we update β̃η̃1

using a standard Gibbs step, conditioned on the current model state η̃1.

In order to verify the conditional distributions we obtain, joint distribution tests are

implemented, as proposed in Geweke (2004). The motivation behind joint distribution

tests is to draw P sets of model parameters θ1, . . . ,θP from the model’s relevant prior

distributions. These parameter sets are then used to generate P datasets D1, . . . ,DP .

For each combination of parameters and datasets and under the same model and prior

specifications, we can run the MCMC sampler to sample from each of the posterior

distributions p(θp ∣ Dp) for the P generated datasets. From each of these MCMC chains

for each posterior distribution, we can then draw N independent samples of the model

parameters θp,1, . . . ,θp,N . In order to determine whether the MCMC samples are sampling

from the correct posterior distribution, the next step is to confirm whether the generated

samples θp,n for p = 1, . . . , P and n = 1, . . . ,N follow their corresponding prior distribution

made to generate the parameter as follows:

1

P

P

∑
p=1

p(θ ∣ Dp) ≈ ∫ p(θ ∣D)p(D)dD = ∫ p(D,θ)dD = p(θ) (3.16)

If this follows for a significantly large enough P and N then we can deduce that the

MCMC sampler is sampling from the posterior correctly. We have used joint posterior

tests to verify all the samplers constructed throughout this research.
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We detail the conditional distributions for each parameter within the model. The full

derivations of these distributions are detailed further in Appendix A. Using θ to define

those parameters to be conditioned on, where for example θ
∖b̃ means ‘condition on all

parameters excluding b̃’ we obtain:

β̃η̃ ∣ θ
∖β̃η̃

∝ N (β̃η̃ ∣ [X̃⊺

η̃ΣεX̃η̃ +V]
−1

X̃⊺

η̃Σεỹβ̃, [X̃
⊺

η̃ΣεX̃η̃ +V]−1)

(3.17)

b̃ ∣ θ
∖b̃ ∝ N (b̃ ∣ [Ũ

⊺

ΣεŨ +Σb̃]
−1

Ũ
⊺

Σεỹb̃, [Ũ
⊺

ΣεŨ +Σb̃]
−1
)

(3.18)

Ωb̃g
∣ θ∖Ωb̃g

∝W
⎛
⎜
⎝
Ωb̃g

∣ nb̃g
+ νb̃g

,

⎡
⎢
⎢
⎢
⎢
⎣

S−1
b̃g
+

nb̃g

∑
i=1

b̃gib̃
⊺

gi

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎞
⎟
⎠

(3.19)

Ωε ∣ θ∖Ωε ∝W
⎛

⎝
Ωε ∣ n + νε, [S

−1
ε +

n

∑
i=1

ε̂iε̂
⊺

i ]

−1
⎞

⎠

(3.20)

τl ∣ θ∖τ2
l
∝ G (τl ∣ al +

∣∣βlη̃l
∣∣

2
, bl +

∑
p
m=1 (β

l
m)

2

2
)

(3.21)

where we sample Ωb̃g
for each group g respectively, and τl for each response level l.

We define Σε = (Ωε ⊗ I) , Σb̃ = blockdiag (Ωb̃1
, . . . ,Ωb̃G

), ỹβ̃ = y − Ũb̃, ỹb̃ = y − X̃β̃

and ε̂ = y − X̃β̃ − Ũb̃ respectively. The distributions can be sampled in any order, where

each update uses the most recent version of the conditioned parameters.

The parameters are sampled using the following algorithm:

Algorithm 1: The Bayesian hierarchical model sampler Given initial param-

eter estimates θ(0) = (β̃(0), η̃(0), b̃
(0)
,Ω

(0)
ε ,Σ

(0)

b̃
,τ (0)). Then

For t = 1, . . . , T

1. Sample β̃(t) from 3.17.

2. Propose new model state η̃(t). Sample β̃η̃(t) from 3.17. Compute 3.15, where η̃0
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is the current model state. If u < α, where u ∼ U(0,1), set β̃(t) = β̃η̃(t) , else β̃(t)

remains the same.

3. Sample b̃
(t)

from 3.18.

4. For g = 1, . . . ,G,

Sample Ω
(t)

b̃g
from 3.19.

Form Σ
(t)

b̃
by Σ

(t)

b̃
= blockdiag (Ω

(t)

b̃1
, . . . ,Ω

(t)

b̃G
).

5. Sample Ω
(t)
ε from 3.20.

6. For l = 1, . . . , L,

Sample τ
(t)
l from 3.21.

Form τ (t) = (τ
(t)
1 , . . . , τ

(t)
L )

Looking closer at the posteriors derived for β̃η̃ and b̃, we observe for cases where we

have a significantly high number of response variables l, that this step can be somewhat

computationally expensive for β̃η̃, particularly in terms of the inverses being calculated

in the posteriors. When we have a large number of random effects groups g or levels h,

we observe similar cost in terms of computation.

In an attempt to bypass such intense calculations, we propose adjustments to the way

we sample from the posteriors for both β̃η̃ and b̃. Instead of sampling all the parameters

in one block, we instead sample for βlη̃ and b̃g,h, where h = 1, . . . ,H is the number of levels

of the corresponding random effect g. Figure 3.2 shows how this sampler modification

works visually in terms of the levels of the hierarchical model.

The updated posterior distributions are of the form:

βlηl ∣ θ∖βl
ηl
∝ N

⎛

⎝
β̃ηl ∣ [ωj,jX

⊺

ηlXηl +
1

τ 2
l

I]

−1

X⊺

ηlzβl , [ωj,jX
⊺

ηlXηl +
1

τ 2
l

I]

−1
⎞

⎠

(3.22)

b̃g,h ∣ θ
∖b̃g,h

∝ N (b̃g,h ∣ [Ωb̃g
+ nb̃g,h

Ωε]
−1
nb̃g,h

Ωεȳb̃g,h
, [Ωb̃g

+ nb̃g,h
Ωε]

−1
)

(3.23)
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Figure 3.2: Illustration of modified sampler steps. Illustration of modified sampler
steps for β̃η̃ and b̃. We observe that we now sample for each βl, splitting the sampler
up by each response level l. We also now sample by each group b̃g, but also sampling for
each level of the random effect h, so sampling each bg,h in turn.

Ωb̃g
∣ θ∖Ωb̃g

∝W
⎛
⎜
⎝
Ωb̃g

∣ nb̃g
+ νb̃g

,

⎡
⎢
⎢
⎢
⎢
⎣

S−1
b̃g
+

nb̃g

∑
i=1

b̃gib̃
⊺

gi

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎞
⎟
⎠

(3.24)

Ωε ∣ θ∖Ωε ∝W
⎛

⎝
Ωε ∣ n + νε, [S

−1
ε +

n

∑
i=1

ε̂iε̂
⊺

i ]

−1
⎞

⎠

(3.25)

τl ∣ θ∖τl ∝ G (τl ∣ al +
∣∣βlη̃l

∣∣

2
, bl +

∑
p
m=1 (β

l
m)

2

2
)

(3.26)

where zβl = ωj,jyl +∑
k≠l
k=1 ωj,k (y

k −Xηkβk) and ȳb̃g,h
= ȳb̃g,h

− X̃β̃ − Ũb̃−g b̃b̃−g , where b̃−g

denotes b̃ excluding group g and ȳb̃g,h
is the mean value calculated for yb̃g,h

for each

response level l. Model selection is now performed on each level of βl in turn. By

sampling in this fashion, we avoid the computation of large inverses of matrices and

improve the computational performance of the sampler.
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The parameters are sampled using the following algorithm:

Algorithm 2: The Bayesian hierarchical model sampler - Computationally

efficent version Given initial parameter estimates θ(0) = (β̃(0), η̃(0), b̃
(0)
,Ω

(0)
ε ,Σ

(0)

b̃
,τ (0)).

Then

For t = 1, . . . , T

1. For l = 1, . . . , L,

(a) Sample βl,(t) from 3.22.

(b) Propose new model state ηl,(t). Sample βlηl,(t) from 3.22. Compute 3.15, where

ηl,0 is the current model state. If u < α, where u ∼ U(0,1), set βl,(t) = βlηl,(t) ,

else βl,(t) remains the same.

Form β̃
(t)

η̃(t) = (βlη1,(t) , . . . ,βlηL,(t))

2. For g = 1, . . . ,G

For h = 1, . . . ,H

(a) Sample b̃
(t)

g,h from 3.23.

Form b̃
(t)

g = (b̃
(t)

g,1, . . . , b̃
(t)

g,H)
⊺

Form b̃ = (b̃
(t)

1 , . . . , b̃
(t)

G )
⊺

3. For g = 1, . . . ,G,

Sample Ω
(t)

b̃g
from 3.24.

Form Σ
(t)

b̃
by Σ

(t)

b̃
= blockdiag (Ω

(t)

b̃1
, . . . ,Ω

(t)

b̃G
).

4. Sample Ω
(t)
ε from 3.25.

5. For l = 1, . . . , L,

Sample τ
(t)
l from 3.26.

Form τ (t) = (τ
(t)
1 , . . . , τ

(t)
L )
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3.2 Analysis using the Bayesian hierarchical model

In this section, we consider two examples to demonstrate the hierarchical model. The first

example is a simulated example which aims to test how well variable selection performs

in the model framework, followed by an application to the Sounds of the City corpus. All

model code has been implemented in the statistical programming language R (R Core

Team, 2018).

3.2.1 Simulation Study

Here, we consider a simple toy example which looks to demonstrate the effectiveness of

the model selection RJMCMC step detailed in Section 3.1.5.

We construct a simple problem with simulated data consisting of 12 fixed effects and

two random effects with 1,000 observations. The model is of the form:

ylijk = x⊺ijkβ
l + bl1,j + b

l
2,k + ε

l
ijk (3.27)

We construct the regression coefficients such that 75% of the coefficients for each

response level l were drawn from β1 ∼ N(10,1) and the remaining 25% drawn from

β2 ∼ N(0,0.001). From this, each response yi was then generated from the model using

the aforementioned regressors, with additive Gaussian noise drawn from N (0,0.1 ⋅ I).

For this simulated data, we implement the Bayesian hierarchical model, where we

sample 10,000 draws, with a burn-in period of 100 iterations. The hyperparameters

are fixed to the following values to give vague prior distributions: al = bl = 0.001 and

νε = 4,Sε = 0.001 ⋅ I and νbg = 4,Sbg = 0.001 ⋅ I.

Figure 3.3 shows the density plots obtained for the β coefficients for the response level

y1. As we have simulated the data we know the true values of the parameter estimates,

which are illustrated in each density plot by the red vertical line.

As we can observe from the density plots, the model does well to estimate the param-

eters in general, and identifies those coefficients that are sampled from β2 extremely well,

as observed by the sharp spike in their respective densities. We observe multimodality

for some of the density plots. The reason for this is the occasional addition of coefficients
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that are sampled from β2, most notably the estimate for β1
6 , where we observe a mode

around 0.2. When this term is included within the model, the remaining coefficients

present adjust for the addition of this term, hence the occasional switch in mode due to

the correlation between the covariates.

3.2.2 Sounds of the City Corpus

Here, we look at the Sounds of the City corpus as discussed in Section 2.2. The aim of

this analysis is to determine what factors may be conditioning variation and change for

the FLEECE, FACE, TRAP,BATH, LOT, GOAT and FOOT/GOOSE vowels within

the corpus. Vowel formant measurements on F1, F2 and F3 are taken as the response

variables of interest, with models fitted to raw mean vowel formant values for F1, F2 and

F3 and Lobanov normalised values for F1 and F2. Random effects are taken for each

individual Speaker and choice of Word. Social variables related to the Speaker are taken

as fixed effects, with terms relating to Gender of speaker, Decade of recording and Age

of speaker taken as predictors within the model alongside word-specific variables relating

to the place of articulation of the preceding and following consonant between the vowel

utterance within a specific word.

The model equation is of the form

ylijk = x⊺ijkβ
l + γlj + δ

l
k + ε

l
ijk (3.28)

where we define the formant measures, raw mean or Lobanov normalised, as the

response ylijk, where ylijk is the kth measurement from the jth word of the ith speaker on

the lth formant. x⊺ijk is taken as the vector of explanatory variables containing properties

of vowel quality which are attributable to individual speaker and word variation for

speaker i and word j and also a level for the population intercept. βl is the corresponding

vector of regression coefficients. We define the random effect for speaker by γli and the

word random effect by δlj. Shorthand notations for each of the model parameters are

β = {βl}
L
l=1; γ = {γli}

I L

i=1 l=1 and δ = {δli}
J L

j=1 l=1. The precision matrix for the residuals is

defined as Ωε and corresponding precision matrices for the random effects are Ωγ and

Ωδ respectively.
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Figure 3.3: Density plots for coefficients from the simulated study Density
estimates for the fixed effects coefficients for y1. We see the coefficients are estimated
well from their known values, with the β2 coefficients correctly not selected within the
model.
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Figure 3.4: Trace plots for the LOT vowel model. Trace plots for the fixed effects
coefficients obtained from the LOT vowel for the F1 raw mean values ran for 10,000
iterations. Poor mixing can be observed for the active terms within the model.
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Re-expressing Equation 3.28 in the form of the Bayesian hierarchical model, we denote

b̃g = (γ̃, δ̃)
⊺

and Ωb̃ = blockdiag (Ωγ ,Ωδ).

For each vowel, we sample 10,000 iterations of the MCMC to obtain parameter esti-

mates, on both the raw mean vowel formants and the Lobanov normalised formants. The

hyperparameters are fixed in order to give vague prior distributions. Their corresponding

values are: al = bl = 1 × 10−4 and νε = 3,Sε = 0.001 ⋅ I and νbg = 3,Sbg = 0.001 ⋅ I.

Focusing on the LOT vowel model obtained for raw mean formant measures on F1,

F2 and F3, we look closer at the output obtained for this model. Time series plots for

the fixed effects parameter estimates for F1 are shown in Figure 3.4. Starting from the

saturated model, we observe that the variable selection has within the initial number of

iterations removed preceding place of articulation and following place of articulation from

the model.

The social factors of Gender, Age and Decade of recording are all conditioning vari-

ation and change on F1. F1 has smaller values for 2000s speakers meaning that vowel

quality has raised over time (i.e. now sounding less like LOT, and a bit more like GOAT).

But there are also two other findings, males in general have smaller values, so they show

more raised LOT vowels. Young speakers have higher F1 values, i.e. more open vowels.

To properly understand how Decade and Age work, a further analysis with an interaction

would be needed here. We also observe on occasion, the removal of each term, when the

time series plot ‘flattens’ on 0, indicating the term has been removed from the active

model.

Looking closer at the difference observed between the hierarchical model fit for all

formants compared to modelling them all individually, we fit models to the LOT vowel

for each formant individually, effectively assuming independence between the formants.

Table 3.1 details the terms that were selected by the multiple response hierarchical model

and also the terms selected when each formant was fitted individually, assuming inde-

pendence between the formants.

From the results in Table 3.1, we observe that the multiple response model selects the

same terms for F1 and F3 as the models for both formants fitted individually. The main

difference we observe is in F2, where the preceding place of articulation is included in the

single response model, unlike the multiple response case. This is a common occurrence
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for results throughout the Sounds of the City corpus for different vowels, where the hier-

archical model for multiple responses often produces a model that is more parsimonious

than the models where only one formant is modelled at a time.

Table 3.1: Significance of coefficients for fixed effects in the multiple response
model and independent model All coefficients selected for the full multiple response
model and the individual single response models for raw mean formant measurements for
F1, F2 and F3 for the LOT vowel. We observe that Preceding place of articulation is
included for the F2 model in the univariate case as opposed to the multiple model.

Multiple Independent
F1 F2 F3 F1 F2 F3

GenderM 3 3 3 3 3 3

Decade70 3 7 3 3 7 3

AgeY 3 7 7 3 7 7

FollowingPOA 7 3 7 7 3 7

PrecedingPOA 7 7 7 7 3 7

If we look closely at the trace plots for the active terms in Figure 3.4, we observe that

the variables are mixing quite poorly. This poor mixing indicates that high autocorrela-

tion is present within the samples, meaning that the number of MCMC samples is not

actually a good indicator of the amount of observed ‘data’ we have from the posterior

distributions.

In order to obtain a better idea of how many efficient samples we actually draw from

the MCMC, we can use the effective sample size (ESS) (Priestley, 1981). The ESS can

be interpreted as the number of independent Monte Carlo samples necessary to give the

same precision as the MCMC estimator. For example, we could have 1,000 samples from

a Markov chain that are the equivalent of 80 independent samples due to the MCMC

samples being highly correlated. Conversely we could have 1,000 samples from a different

Markov chain are the equivalent of 600 independent samples because although the MCMC

samples are dependent, in this sampler they are weakly correlated.

The ESS is defined as:

ESS =
N

1 + 2∑
∞

k=1 ρ(k)
(3.29)

where N is the number of MCMC samples and ρ(k) is the correlation at lag k.

41



3.Bayesian Hierarchical Model

If the samples are all independent, the ESS will be the the same as the actual sample

size N .

For the LOT vowel, we compute the ESS for each of the parameters that are active

in the model. These results can be found in Table 3.2.

Table 3.2: Effective sample size (ESS) values for active fixed effects parameters for the
LOT vowel on raw formant measures for F1, F2 and F3. The model was run for 10,000
iterations. We observe a poor ESS for all of the variables due to the high correlation
between samples.

F1 F2 F3
GenderM 156.09 459.79 93.70
Decade70 134.65 - 79.23

AgeY 214.45 - -

As we can see from Table 3.2, the ESS for the sampled parameters is very low when

compared to the number of iterations, 10,000, with effectively only 5% of the 10,000 iter-

ations being considered effective samples. This suggests the samples are highly correlated

and that the MCMC chain should be run for a longer number of iterations to obtain a

larger independent sample. From a practical point of view this is computationally expen-

sive. One of the main aims of this work is to encourage the sociolinguistic community to

implement the models outlined in this thesis. In order to encourage such use, we want

the model to be as computationally efficient as possible. Currently, a run of 100,000

iterations would take over 2 hours to run, which is a significantly longer run time when

compared to the run time of lme4 (Bates et al., 2015).

If we look closer at the design of the Sounds of the City corpus, we observe that

the fixed effects are nested within the random effects. For example, the Gender, Age

and Decade coefficients are all Speaker-dependent variables and are nested within the

random effect. This leads to the highly correlated chains we observe and the resulting

poor mixing. The problem is not only limited to the mixing of the fixed effects parameters;

we also observe poor mixing in the random effects as seen in Figure 3.5. We also obtain

similarly poor ESS estimates which are shown in Table 3.3. Note the improvement for

F2 in terms of ESS compared to F1 and F3. This is due in part to only the Gender

42



3.Bayesian Hierarchical Model

−100050

70−O−m06

−50050

70−Y−f01

50100150

70−Y−f02

−100−40040

70−Y−f03

04080120

70−Y−f04

−100−40040

70−Y−m01

F
ig

u
re

3
.5

:
T

ra
ce

p
lo

ts
fo

r
th

e
L
O
T

v
o
w

e
l

m
o
d
e
l

S
p

e
a
k
e
r

e
ff

e
ct

.
T

ra
ce

p
lo

ts
fo

r
th

e
S
p

ea
ke

r
ra

n
d
om

eff
ec

t
fr

om
th

e
L

O
T

vo
w

el
m

o
d
el

fo
r

th
e

fi
rs

t
si

x
le

ve
ls

fo
r

ra
w

m
ea

n
fo

rm
an

t
m

ea
su

re
m

en
ts

on
F

1
fo

r
10

,0
00

it
er

at
io

n
s.

W
e

ob
se

rv
e

si
m

il
ar

p
o
or

m
ix

in
g

as
th

e
fi
x
ed

eff
ec

ts
in

F
ig

u
re

3.
4

d
u
e

to
th

e
n
es

te
d

d
es

ig
n

of
th

e
d
at

a.

43



3.Bayesian Hierarchical Model

0400800

σ1
2

4000800012000

σ2
2

20006000

σ3
2

F
ig

u
re

3
.6

:
T

ra
ce

p
lo

ts
fo

r
th

e
L
O
T

v
o
w

e
l

m
o
d
e
l

W
o
rd

e
ff

e
ct

v
a
ri

a
n
ce

.
T

ra
ce

p
lo

ts
fo

r
th

e
W

or
d

ra
n
d
om

eff
ec

t
va

ri
an

ce
fr

om
th

e
L

O
T

vo
w

el
m

o
d
el

fo
r

F
1,

F
2

an
d

F
3

ru
n

fo
r

10
,0

00
it

er
at

io
n
s.

W
e

ob
se

rv
e

ve
ry

p
o
or

m
ix

in
g

an
d

p
er

io
d
s

w
h
er

e
th

e
sa

m
p
le

r
b

ec
om

es
st

u
ck

at
va

lu
es

cl
os

e
to

ze
ro

.

44



3.Bayesian Hierarchical Model

coefficient being selected for F2, and not also the Decade and Age coefficients, so mixing

here is improved due to the reduced number of parameters, thus reducing the correlation

between parameters.

Table 3.3: Effective sample size (ESS) values for the Speaker random effect for the first
six levels for the LOT vowel. Like Table 3.2, we observe a poor ESS for the random
effects levels due to the nested design of the data.

F1 F2 F3
70-O-m06 254.2 2505.3 158.2
70-Y-f01 172.2 1121.9 128.2
70-Y-f02 154.6 797.0 114.1
70-Y-f03 229.2 1692.6 146.3
70-Y-f04 220.3 1168.5 137.2
70-Y-m01 210.7 1197.9 133.2

Another mixing issue can be observed in the precision estimates for the Word random

effect. If we look closely at the precision estimates, poor mixing can be observed. Figure

3.6 shows the precision trace plots for F1, F2 and F3. We observe poor mixing for each

of the formants and periods where the sampler appears to get stuck at values which are

relatively low. This in turn causes poor mixing to the Word random effect coefficients.

The trace plots for a sample of Word coefficients is shown in Figure 3.7, where we observe

relatively poor mixing, with narrowing and widening of the trace around zero values due

to the poor mixing of the variance parameters. Table 3.4 details the ESS for each precision

estimate by each formant. We see that the values are extremely low, as would be expected

from the trace plots.

Table 3.4: Effective sample size (ESS) values for precision estimates from the Word ran-
dom effect for F1, F2 and F3 for the LOT vowel from the Bayesian hierarchical model ran
for 10,000 iterations.The ESS observed is extremely poor for all formant measurements
due to the sampler becoming frequently stuck at values close to zero.

F1 F2 F3
ωbword

482.2 618.4 395.2
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Looking closer at the Word random effect for the LOT vowel, we observe that there

are 490 levels over 2,431 observations. Several of the levels are only observed once, which

is due to the corpus using spontaneous speech recordings, so it is quite common for one

Word to only be uttered once. Due to this, we have a lack of available information on

certain levels. This causes the precision to get stuck at values which are very low and

causes very high autocorrelation.

In Chapter 4, we will discuss and implement methods which will aim to reduce this

autocorrelation found within the MCMC chains, which will lead to improved ESS values

resulting in fewer iterations of the MCMC and an improved computational performance

time.

3.3 Discussion

In this chapter, we have proposed a Bayesian hierarchical model with the capability to

model multiple response variables simultaneously, providing a new modelling approach

for the sociolinguistic community to extend upon the current single response mixed effects

models that are implemented (Johnson, 2009). The hierarchical model performs well in

terms of model selection, as shown by the simulated example in Section 3.2.1, correctly

selecting terms of significance. The models obtained can be more parsimonious than

modelling the vowel formant measurements individually and provide a more accurate

representation due to the extra information sharing between the formants, and their

natural correlation.

Several drawbacks have been identified within the hierarchical model when applied to

the Sounds of the City corpus in terms of poor mixing of certain parameters. This is due

to imbalanced the nested design of the Sounds of the City corpus, which in turn leads to

high autocorrelation within the MCMC sampler. An obvious solution is to run the MCMC

sampler for a longer number of iterations, so we can obtain a larger sample of independent

samples. The drawback to this approach is the significant increase in computational time,

which is not practical when compared to lme4, which is the standard functionality used.

In order to deal with the high autocorrelation and maintain a reasonable computa-

tional time, we look at adapting reparametrisation methods in Chapter 4 which aim to
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reduce this autocorrelation and obtain a larger proportion of independent samples from

the MCMC chains obtained from the Bayesian hierarchical model.

48



Chapter 4

Using Reparameterisation Methods

to Improve Mixing Within the

Hierarchical Model

In this chapter, we aim to resolve the mixing issues highlighted in Chapter 3 which lead

to high autocorrelation within MCMC chains. The reason we observe such poor mixing

when applying the hierarchical model to the Sounds of the City corpus is due to the

nested design of the dataset. The fixed effects of Decade of recording, Gender and Age

of speaker are nested within the Speaker random effect. We also have nesting between

the Following and Preceding place of articulation and the Word random effect. Also

highlighted was the poor mixing of the precision estimates for the Word random effect,

with the sampler often becoming stuck at values close to zero.

Reparameterisation schemes can be implemented within MCMC samplers to improve

issues with mixing. In this chapter, we introduce two such methods to help alleviate the

mixing issues we observe in the Sounds of the City corpus. The poor mixing we observe

in Section 3.2.2 for the nested coefficients within the Speaker and Word effect are tackled

with using an adaptation of hierarchical centering (Gelfand et al., 1995) and the poor

precision mixing for the Word effect using a modification of parameter expansion (Liu

et al., 1998).

Implementation of both these schema aims to reduce the time taken to run the MCMC
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sampler significantly, which is of key importance to make the model as accessible and

efficient as possible for the sociolinguistic community. Within this chapter we aim to

show how both methods improve mixing within the model, reducing the number of MC

samples required to sample from the target parameter distributions

Section 4.1 looks at how we improve the poor mixing of nested coefficients within the

corpus by using an adaptation of hierarchical centering (Gelfand et al., 1995) within the

Gibbs sampler. The notion of hierarchical centering is introduced through two motivating

examples, a simple univariate response example with a population intercept and one

random effect in Section 4.1.1, then a multiple response example in Section 4.1.2 which

is similar in design to the Sounds of the City corpus. We then apply the method to the

corpus, and comment on the improvements we observe.

Section 4.2 looks at another reparameterisation method we can implement to improve

the poor mixing of the precision estimates observed in the Word random effect for the

corpus, and it’s respective coefficients. The idea of parameter expansion is explained in

more detail in Section 4.2.1. We then introduce our modification of parameter expansion

where we motivate the problem with a simple univariate example. The problem is then

expanded to the multiple response case in Section 4.2.2 with a multiple response example

then a direct application to the Sounds of the City corpus.

4.1 Improving nested coefficients mixing using

hierarchical centering

When examining the model output for the Sounds of the City corpus in Section 3.2.2,

we observed poor mixing within the fixed effects coefficients that are nested within the

random effects for Speaker and Word. This nested design induces high correlations within

the joint posterior distributions of groups of the parameters. There are several ways to

attempt to deal with this correlation. One way is to consider block updating algorithms

such as Structured MCMC (SMCMC) (Sargent et al., 2000), which looks to update

the parameters in one block. Another approach that can be considered is hierarchical

centering, which reparameterises the model in order to remove the correlations we observe.
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In this section, we will introduce the notion of hierarchical centering with a simple

univariate example which consists of an intercept and a random effect with several levels.

We then extend beyond the intercept only case, and introduce using hierarchical centering

methods for nested coefficients within multiple random effects for multiple response data,

replicating the structure of the Sounds of the City corpus. Finally, we will apply these

techniques to the Sounds of the City corpus and observe how they improve upon the poor

mixing we observed in Section 3.2.2.

4.1.1 Hierarchical centering

Hierarchical centering (Gelfand et al., 1995) is a method used to improve mixing in MCMC

samplers that focuses on the correlation between the fixed effects and the residuals. It

can be used to improve mixing in cross classified models but is mainly used for models

with nested random effects, like we observe in the Sounds of the City corpus.

To illustrate how hierarchical centering works, we will consider a simple univariate

problem

Univariate example

In this example, we consider a model with a single random effect γ with four levels. For

the first two levels, we assume a population mean β0 The model is specified as follows:

yi,1 = β0 + γ1 + εi,1

yi,2 = β0 + γ2 + εi,2

yi,3 = β0 + γ3 + εi,3

yi,4 = β0 + γ4 + εi,4

For the coefficients, we assume conjugate normally distributed priors:

β0 ∼ N(0, σ2
β), γj ∼ N(0, σ2

γ)
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The model error has conjugate inverse gamma prior:

σ2
ε ∼ IG(aε, bε)

as does the random effect variance:

σ2
γ ∼ IG(aγ , bγ)

The hyperparameters for this model are specified as σ2
β = 10, aγ = bγ = 100 and

aε = bε = 100.

If we look at the model specification, we observe that β0 is involved in the mean

likelihood for each observation, which is as shown the sum of β0 and all the γi’s. Hence

we observe a strong correlation between our observed β0 and the random effects. One

way we could look to alleviate this correlation is to consider a reparameterisation of the

model. We can replace the above model, and re-express in terms of a new variable δ,

which for this problem can be constructed as:

δ1 = β0 + γ1

δ2 = β0 + γ2

δ3 = β0 + γ3

δ4 = β0 + γ4

We can now view our model of interest as yi,j = δj + εi,j, where δj ∼ N(β0, σ2
γ). To fit

this model, we now add an additional step to the Gibbs sampler where we sample β0 by

conditioning on δ. We then obtain the original γ values by simply calculating γj = δj−β0.

Figures 4.1 and 4.2 show the traceplots obtained for β0 and γ1 for the Gibbs sampler

where hierarchical centering has not been implemented and then the sampler with the

added centering step respectively. We observe clear differences between both sets of trace

plots, with the mixing in Figure 4.2 showing vast improvement over the samples obtained

in Figure 4.1. We observe that by centering on β0, vast improvements are made in terms

of mixing and thus obtaining more accurate samples from the MCMC. This is verified by

Table 4.1, where we observe that the ESS values improve dramatically.
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Figure 4.1: Trace plots for the intercept β0 and random effect level γ1 with
no centering. Trace plots for β0 and γ1 for 10,000 iterations from the standard Gibbs
sampler. We observe extremely poor mixing in both coefficients, with poor ESS values
as shown in Table 4.1.
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Figure 4.2: Trace plots for the intercept β0 and random effect level γ1 with
centering. Trace plots for β0 and γ1 for 10,000 iterations from the Gibbs sampler with
added centering step. The mixing for both coefficients has improved dramatically, with
high ESS values as shown in Table 4.1.
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Table 4.1: Effective sample size (ESS) values for coefficients from the univariate example
for the standard Gibbs sampler and the sampler with added centering step. The ESS
improves dramatically when we centre upon the population intercept β0.

Standard Centered
β0 44.8 9655.2
γ1 46.5 9522.3
γ2 49.1 9411.1
γ3 47.2 9675.1
γ4 46.1 8995.8

We can also observe the improvements in the sampler in terms of correlation between

the parameters in Figures 4.3 and 4.4, where the correlation present between β0 and

γ1 is shown for both samplers. In Figure 4.3 we observe the high correlation present

between the coefficients, which means it will take a significantly large number of samples

to obtain even a small effective sample. The density plots also highlight how poor the

samples we obtain are, with both containing some multimodality. In Figure 4.4 we

observe the improvements that centering can bring to improving mixing. Both terms are

now no longer correlated and the sampler is able to efficiently explore the sample space

and obtain samples that efficiently approximate the target distributions. Again, this can

be seen in the density plots, where the densities now only contain one mode.

4.1.2 Extending Centering to Multiple Nested Coefficients

So far, we have looked at a simple univariate design problem to demonstrate how hier-

archical centering works. We now want to extend using centering beyond the population

intercept, but also including coefficients which are nested within random effects, much

like the Sounds of the City corpus design. We will introduce the nesting notation through

a simulated example with a multiple response and one random effect with a nested design

within the fixed effects.

To illustrate how we define the nested coefficients, we detail two ways of expressing

the following hierarchical model for multiple responses.

ylij = β
lxij + γ

l
j + ε

l
ij (4.1)
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β0

β0

γ 0

γ1

Figure 4.3: Correlation between β0 and γ1 coefficients from the standard Gibbs sampler.
We observe very strong correlation which causes poor mixing in the sampler and we are
unable to explore the full sample space due to the high autocorrelation. This can also be
observed by the density plots, which struggle to identify the parameter mode.

β0

β0

γ 1

γ1

Figure 4.4: Correlation between β0 and γ1 coefficients from the centered sampler. We
observe almost no correlation between the parameters and are able to fully explore the
parameter space freely, leading to improved samples as shown by the density plots.
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We can re-express the βl coefficients and split them into two groups, those that are

nested within the random effect γ l, denoted βlγ and the remaining coefficients that are not

nested, denoted βl
−γ . By partitioning the fixed effects into these blocks, we can express

the model in Equation 4.1 as follows:

ylij = β
l
γxij +β

l
−γxij + γ

l
j + εij (4.2)

We can sample the model parameters in the same way as the hierarchical model in

Section 3.1.3, where the priors on the βl coefficients are defined as follows:

βlγ ∼ N(0, τ 2
l I) βl

−γ ∼ N(0, τ 2
l I). (4.3)

We can use the model described in Equation 4.2 to explain how we implement the

centering step. The model with a centering step is defined as follows:

ylij = δ
l
j +β

l
−γj

xij + εij, where δlj = β
l
γj

xij + γ
l
j (4.4)

We sample the model parameters in the same way as before, but now add in an

additional step to sample δlj conditional on βlγj as follows:

δlj ∣β
l
γj
∼ N(xijβ

l
γj
, σ2

γj l
) (4.5)

Figure 4.5 shows how both Equations 4.2 and 4.4’s respective input are constructed.

To illustrate how hierarchical centering can also improve the mixing of nested coeffi-

cients, we consider a toy example with three response variables, one random effect and

three fixed effects coefficients, one of which is nested within the random effect. The model

is constructed in the same fashion as the Bayesian hierarchical model in Section 3.1.3 but

now including an additional step in the sampler for centering.
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βl
−γjβl

γj γlj

ylij

βl
−γj

βl
γj γlj

δlj

ylij

Figure 4.5: Representation of nested coefficients for different samplers Here,
we illustrate the notation for the nested coefficients for the standard Gibbs sampler on
the left and for the centered sampler on the right. Note the main difference arises from
the formation of δj.

Posterior inference is now updated from Section 3.1.6 by adding the additional step

for hierarchical centering. The full derivation can be found in Appendix A. The posterior

distributions are defined as:

βlηl ∣ θ∖βl
ηl
∝ N

⎛

⎝
β̃ηl ∣ [ωj,jX

⊺

ηlXηl +
1

τ 2
l

I]

−1

X⊺

ηlzβl , [ωj,jX
⊺

ηlXηl +
1

τ 2
l

I]

−1
⎞

⎠

(4.6)

b̃g,h ∣ θ
∖b̃g,h

∝ N (b̃g,h ∣ [Ωb̃g
+ nb̃g,h

Ωε]
−1
nb̃g,h

Ωεȳb̃g,h
, [Ωb̃g

+ nb̃g,h
Ωε]

−1
)

(4.7)

β̃δ̃k
∣ θ

∖β̃δ̃k
∝ N (β̃δ̃k

∣ [X̃
⊺

δ̃k
Ωb̃k

X̃δ̃k
]
−1

X̃
⊺

δ̃k
Ωb̃k

δ̃k, [X̃
⊺

δ̃k
Σb̃k

X̃δ̃k
]
−1
)

(4.8)
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We sample here for each nested block of coefficients β̃δ̃k
for each k, where

X̃δ̃k
= blockdiag (X1

δ̃k
, . . . ,Xl

δ̃k
), and δ̃k = X̃δ̃k

β̃δ̃k
+ Ũkb̃k.

Ωb̃g
∣ θ∖Ωb̃g

∝W
⎛
⎜
⎝
Ωb̃g

∣ nb̃g
+ νb̃g

,

⎡
⎢
⎢
⎢
⎢
⎣

S−1
b̃g
+

nb̃g

∑
i=1

b̃gib̃
⊺

gi

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎞
⎟
⎠

(4.9)

Ωε ∣ θ∖Ωε ∝W
⎛

⎝
Ωε ∣ n + νε, [S

−1
ε +

n

∑
i=1

ε̂iε̂
⊺

i ]

−1
⎞

⎠

(4.10)

τl ∣ θ∖τl ∝ G (τl ∣ al +
∣∣βlη̃l

∣∣

2
, bl +

∑
p
m=1 (β

l
m)

2

2
)

(4.11)

Hyperparameters are fixed to the following values: al = bl = 0.001 and νε = 3,Sε =

0.001 ⋅ I and νb = 34,Sb = 0.001 ⋅ I.

The parameters are sampled using the following algorithm:

Algorithm 3: The Bayesian hierarchical model sampler with centering step

Given initial parameter estimates θ(0) = (β̃(0), η̃(0), b̃
(0)
,Ω

(0)
ε ,Σ

(0)

b̃
,τ (0)). Then

For t = 1, . . . , T

1. For l = 1, . . . , L,

(a) Sample βl,(t) from 4.6.

(b) Propose new model state ηl,(t). Sample βlηl,(t) from 4.6. Compute 3.15, where

ηl,(t−1) is the current model state. If u < α, where u ∼ U(0,1), set βl,(t) = βlηl,(t) ,

else βl,(t) remains the same.

Form β̃
(t)

η̃(t) = (βlη1,(t) , . . . ,βlηL,(t))

2. For g = 1, . . . ,G

For h = 1, . . . ,H
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(a) Sample b̃
(t)

g,h from 4.7.

Form b̃
(t)

g = (b̃
(t)

g,1, . . . , b̃
(t)

g,H)
⊺

Form b̃ = (b̃
(t)

1 , . . . , b̃
(t)

G )
⊺

3. For k = 1, . . . ,K

(a) Sample β̃δ̃k
from 4.8

Form β̃δ̃ = (β̃δ̃1
, . . . , β̃δ̃K

)

4. For g = 1, . . . ,G,

Sample Ω
(t)

b̃g
from 4.9.

Form Σ
(t)

b̃
by Σ

(t)

b̃
= blockdiag (Ω

(t)

b̃1
, . . . ,Ω

(t)

b̃G
).

5. Sample Ω
(t)
ε from 4.10.

6. For l = 1, . . . , L,

Sample τ
(t)
l from 4.11.

Form τ (t) = (τ
(t)
1 , . . . , τ

(t)
L )

We run the sampler for 10,000 iterations for both the standard Gibbs case and the

case with the added centering for comparison. Figure 4.6 shows the improvement we

observe in terms of mixing for the population intercept and the nested coefficient for the

first response level. This is further verified in Table 4.2 where we see the ESS values

improve greatly between the samplers, just as in the univariate case.
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Figure 4.6: Traceplots for the population intercept and nested coefficient for the first
response level for the standard Gibbs sampler and the centered sampler for 2,500 itera-
tions. We see a clear improvement in mixing between both samplers for the nested terms
and the population intercept.

Table 4.2: ESS values for nested coefficients from the multiple response example for the
standard Gibbs sampler and the centered sampler for 2,500 iterations. The ESS improves
greatly when we centre on the population intercept and the nested coefficient.

Standard Centered
β1

0 37.3 2472.2
β1
nest 44.1 2481.6
β2

0 28.9 2500
β2
nest 36.8 2500
β3

0 36.4 2427.8
β3
nest 50.7 2383.2
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4.1.3 Sounds of the City Corpus

Here, we look to verify if the centering improvements we have discussed in this section

can help lead to improvement in mixing for the nested coefficients within the Sounds of

the City corpus, namely the social factors Gender, Age and Decade of recording nested

within the Speaker and linguistic factors of Following and Preceding place of articulation

of consonant within the Word choice.

We run the Bayesian hierarchical model to the same specification as in Section 3.2.2,

though making two changes. Now, we have included a step for centering of nested terms

within the sampler and have disabled the model selection, fitting the model with all fixed

effects. The motivation behind this is so we obtain more accurate measurements of ESS,

due to the model selection effectively zeroing out coefficients when they are not included

within the model. For comparison, we have run the standard Gibbs sampler for the

dataset with model selection disabled.

Again, we look at the LOT vowel for the same prior specification in Section 3.2.2.

Time series plots for the coefficients fitted to the raw mean formant measurements on F1

are shown in Figure 4.7. We observe a great improvement on the mixing for the nested

coefficients within speaker when compared to Figure 3.4. This is further shown in Table

4.3, where we see the ESS for all the coefficients for F1 has improved greatly, with a

large improvement for the coefficients nested within Speaker. We do not observe as many

problems with nesting for the Word effect, though slight improvement is still shown in

terms of ESS when we include the nesting step.
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Figure 4.7: Traceplots for the fixed effects for F1 fitted to the LOT vowel for 10,000
iterations with hierarchical centering implemented for nested coefficients. We see a clear
improvement in terms of mixing for all the variables comparing to Figure 3.4.

62



4. Mixing Improvements Within the Model

Table 4.3: ESS values obtained for the LOT vowel coefficients for the standard Gibbs
sampler and the centered sampler for 10,000 iterations on F1. We observe large improve-
ments in terms of ESS for all parameters, mainly for the terms nested within Speaker.

Standard Centered
β1

0 3224 10000
β1
genderM 113 6237

β1
Decade70 147 7532
β1
AgeY 135 6532

β1
PrCoronal 5142 6947
β1
PrDorsal 2270 5848
β1
PrLabial 5037 8009
β1
PrV owel 8121 9127
β1
FoCoronal 7232 8217
β1
FoDorsal 8562 9118
β1
FoLabial 9946 10000
β1
FoV owel 10000 10000

4.2 Improving Random Effects Precision Mixing

Using Parameter Expansion

One other area we observed poor mixing in the models fitted to the Sounds of the City

corpus was within the Word random effect precision estimates. This also leads to an

effect on the word effect traceplots for each level, with the word effect appearing to be

closely linked to the precision estimate, with the coefficient trace covering more of the

posterior space when the precision is not close to zero, and concentrated near zero when

the precision trace is stuck around values near zero. As seen in Figure 3.6, the algorithm

can get stuck in zero regions for many iterations, leading to poor mixing for the precision

estimates and the random effects coefficients.

In this Section, we will introduce the notion of parameter expansion, and propose a

simplified case of parameter expansion, applied to some simulated examples. We will then

apply this expansion step to a multiple response simulated example, similar in construct

to the corpus, then an application to the Sounds of the City corpus to observe how they

can improve mixing within the precision step and the word random effect coefficients.
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4.2.1 Parameter Expansion Based Mixing Improvements

Parameter expansion was originally proposed by Liu et al. (1998) to speed up the EM

algorithm. This was then extended to the Gibbs sampler by Liu and Wu (1999) and then

considered for hierarchical models by Gelman et al. (2008). The method is referred to as

parameter expansion as our model of interest is expanded by augmenting it with addition

parameters to make an expanded model. These additional parameters included within

the model framework aren’t identifiable within the model, there exists an ‘embedded’

model that is identifiable and is the original model of interest. This means we can obtain

the original parameters of interest from the augmented parameter set.

We propose an idea based on parameter expansion, but simpler in execution. Instead

of performing the full expansion step, we effectively update the precision estimate and

relevant coefficient parameters by multiplying them by a scalar constant, denoted as

some arbitrary value α, and determine whether this modified parameter set yields an

improvement on the model by a Metropolis step. We explain this idea in further detail

with the use of simulated examples throughout this section.

To illustrate how our adaptation of parameter expansion works, we consider a simple

example with a population intercept β0 and a single random effect γ with 80 levels for 100

observations. We propose this structure to emphasise the lack of available information

we observe on each level. The model is specified as:

yij = β0 + γj + εij (4.12)

For the coefficients, we assume conjugate normally distributed priors:

β0 ∼ N(0, σ2
β), γj ∼ N(0, σ2

γ)

The model error and random effect variance have conjugate inverse gamma priors:

σ2
ε ∼ IG(aε, bε) σ2

γ ∼ IG(aγ , bγ)

Hyperparameters are set as σ2
β = 100, aγ = 0.001, bγ = 0.001 and aε = bε = 0.001.
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4. Mixing Improvements Within the Model

As highlighted above, we have set the design in such a way that the the effects of

each level of the random effect has almost minimal significant effect and the σ2
γ used to

generate the data is set lower than the model error. This should lead to poor mixing

within the variance parameter.

In order to deal with this poor mixing, we propose the use of a reparameterisation

step, by introducing the additional parameter α, which now changes the model to be

defined as:

yij = β0 + αγj + εij (4.13)

For α, there are several proposed values we can consider. We could define α by an

arbitrary scalar value or to be drawn from a known distribution. We propose sampling

α from a Gamma prior as such:

α ∼ IG(aα, bα) (4.14)

The update works using a MH step. Taking the parameters that inhibit poor mixing,

which in this example is γ and σ2
γ . Once we have sampled these parameters, we then

draw α from the chosen target distribution q(α), which for this example is the Gamma

distribution for set hyperparameters aα and bα. We then form γ∗ = αγ and σ2
γ∗ = α

2σ2
γ .

From this, we perform the Metropolis step where the parameters γ and σ2
γ will be updated

to γ∗ and σ2
γ∗ respectively if we accept this step. If the step is accepted, we update the

parameters such that γ∗ = αγ and σ2
γ = α

2σ2
γ∗ .

To define the step generally, suppose we have a parameter set X, which has three

parameters X1,X2 and X3 and our constant value α and wish to move to the modified

parameter set X∗. The variable transformation would be of the form:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X1

X2

X3

α

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Ð→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

αX1

αX2

αX3

α

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.15)

When transforming variables, we must compute the Jacobian of the transformed set of
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4. Mixing Improvements Within the Model

variables. As we observe in this illustrative example, this would simply be the coefficient

α to the power of how many parameters we modify, so in this example the Jacobian is

α3. For any univariate example, the Jacobian will correspond to α to the power of the

number of levels of the random effect γ + 2, with the additional 2 levels coming from the

α2 attached to the variance parameter.

We include this Jacobian result in the acceptance probability, which is a ratio of the

densities of the model likelihood, random effect and variance prior distributions for both

the standard parameters and the modified parameter sets. We accept the transformed

parameters according to the following probability:

φ =
q(α)N (y ∣ Xβ +Ubg, σ2

εI)N (bg ∣ 0, σ2
bg

I)IG (σ2
bg

∣abg , bbg)

q(1/α)N (y ∣ Xβ +Ub∗

g , σ
2
εI)N (b∗

g ∣ 0, σ2
b∗g

I)IG (σ2
b∗g

∣ab∗g , bb∗g)
∣J∣ (4.16)

where ∣J∣ = α∣∣γ∣∣+2 and ∣∣γ∣∣ is the length of γ.

The motivation as to why this additional step improves mixing as although the sampler

can escape values close to 0 for the precision, it quite easily gets stuck again. Multiplying

the parameters by α helps to get around this problem, as even a small increase of the

variance by α will move both the precision and the parameter estimates together.

Setting aα = 20 and bα = 10, we run the model for the simulated example above.

Figure 4.8 shows the traceplots for γ1 and σ2
γ for 5,000 iterations of the standard Gibbs

sampler and the sampler with the added Metropolis step. We can clearly see the vast

improvement on the mixing of σ2
γ , which in the standard Gibbs sampler, is often trapped

at 0 for long periods. With the parameter expansion step, we see a greater improvement

in mixing, with the sampler exploring the parameter space more freely. Note the mixing

for the variance is not perfect, but in comparison to the standard sampler estimate, it has

improved dramatically. This in turn also improves the mixing of the coefficient γ1, which

for the standard sampler was often trapped around 0 and unable to explore the full space.

With the parameter modification step, the parameter is now mixing extremely well. This

is also verified by Table 4.4 where we observe improvement in ESS for the coefficients.

The variance parameter also improves, albeit at not quite the same large rate.
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4. Mixing Improvements Within the Model

Table 4.4: ESS values obtained for a selection of γj coefficients and σ2
γ for the stan-

dard Gibbs sampler and one with the added parameter expansion step. We see a great
improvement in ESS for the coefficients and good improvement for the variance.

Standard Expanded
γ1 185 2174
γ11 283 1741
γ21 105 1899
γ31 703 2708
σ2
γ 38 507

4.2.2 Multiple Response Expansion - Simulated Example

We now extend beyond the univariate case for the expansion step to the multiple response

case. We construct a toy problem in a similar fashion to the multiple response example in

Section 4.1.2, though no longer including coefficients that are nested within the random

effect. Instead, we construct the random effect in a similar fashion to the univariate

example previously, with a population intercept for each response level and a single

random effect γ l which has 80 levels for 100 observations, creating a similar structure to

the univariate case.

The model is specified as:

ylij = β
l
0 + γ

l
j + ε

l
ij (4.17)

We model this problem using the Bayesian hierarchical model, though this time in-

cluding a Metropolis step for the parameters that inhibit poor mixing. Now, we extend

beyond the univariate example to the multiple response case for the parameter modifica-

tion step. We do not implement the work discussed in Gelman et al. (2008) which involves

the addition of several more sampling steps. Instead, we simply perform a Metropolis step

in a similar fashion to the one implemented in Section 4.2.1. We define our parameters

that are modified using α as b̃
∗

g = αb̃g and Ω∗

b̃g
= αΩb̃g

.

The Metropolis step for a given random effect b̃g and its corresponding precision

matrix Ωb̃g
for parameter modification by α by the definition of the Bayesian hierarchical
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model defined in Section 3.1.3 is:

φ =
q(α)N (y∣X̃β̃ + Ũb̃g,Ω−1

ε )N (b̃g ∣0,Ω
−1
b̃g

)W (Ω−1
b̃g

∣νb̃g
,Sb̃g

)

q(1/α)N (y∣X̃β̃ + Ũb̃
∗

g ,Ω
−1
ε )N (b̃

∗

g ∣0,Ω
−1

b̃g
∗)W (Ω−1

b̃
∗
g
∣ν

b̃
∗
g
,S

b̃
∗
g
)

∣J∣ (4.18)

where ∣J∣ = α∣∣b̃g∣∣+L and ∣∣b̃g∣∣ is the length of b̃g. The additional expression L(L + 1)

comes from the number of terms present in the covariance matrix which is of dimension

L ×L.

The parameter update is accepted if u < φ, where u ∼ U(0,1). This step is performed

at the end of the sampler, after b̃g and Ωb̃g
have been sampled and is performed on each

relevant group g which has poor mixing.

Hyperparameters are fixed to the following values: al = bl = 0.001 and νε = 3,Sε =

0.001 ⋅ I and νb = 3,Sb = 0.001 ⋅ I. We also set aα = bα = 10. We run the model for the

simulated example detailed above for 5,000 iterations for the standard Gibbs sampler and

also for the sampler with the added parameter expansion step.

Figure 4.9 shows the precision estimates for the random effect for both the standard

Gibbs sampler and the one with added reparameterisation step. We observe for the

standard sampler that the mixing is relatively poor, getting occasionally trapped near zero

values for short periods of time within the sampler. When using the reparameterisation

step, we observe a slight improvement in mixing, with the sampler escaping the areas

near zero more often than the sampler not implementing the reparameterisation step.

Like in the univariate case, this also leads to improvement in mixing of the correspond-

ing random effects coefficients, as we can observe in Figure 4.10. We observe improved

mixing for the first three levels of γ1 when implementing the reparameterisation step, in

terms of the sampler variability not narrowing near zero values as often and exploring

the parameter space more freely. This improvement in mixing is verified in Table 4.5

where we see a very marginal improvement in terms of mixing from both samplers. As

the standard sampler was only stuck in values close to zero for marginal periods of time,

it is very seldom the sampler accepts a new proposed set of parameters, as demonstrated

by the low acceptance rate obtained of 0.12.
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Figure 4.9: Traceplots for the precision estimates for the three response levels for the
γ l random effect from the hierarchical model run for 5,000 iterations. The left hand side
plots are for the standard model and the right hand plots are with the added parameter
expansion step. We observe a small improvement in mixing.
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Table 4.5: ESS values obtained for a selection of γlj coefficients and σ2
γl values for the

standard Gibbs sampler and the parameter expanded added sampler. We see a great
improvement in ESS for the coefficients and good improvement for the variance.

Standard Expanded
γ1

1 1530 2480
γ1

11 478 1006
γ1

21 1245 3255
σ2
γ1 180 488

σ2
γ2 220 695

σ2
γ3 60 401

4.2.3 Sounds of the City Corpus Application

We now look to apply the parameter expansion step to the Sounds of the City corpus,

where in Figure 3.6, we observed poor mixing in the precision estimates for the Word

random effect, which in turn led to poor mixing in the Word random effects coefficients.

We run the Bayesian hierarchical model to the same specification as in Section 3.2.2,

but this time including the hierarchical centering step in Section 4.1.3 and also a repa-

rameterisation step at the end of the sampler for the Word precision estimate and random

effects coefficients. We set aα = 20 = bα = 10. Again, we disable model selection within

this test of the model to obtain more accurate measurements for ESS when comparing

to the standard sampler results obtained in Section 3.2.2. We also only perform param-

eter expansion on the first formant, as the other two formants did not exhibit any poor

mixing.

The parameters are sampled using the following algorithm:

Algorithm 4: The Bayesian hierarchical model sampler with mixing im-

provements Given initial parameter estimates θ(0) = (β̃(0), η̃(0), b̃
(0)
,Ω

(0)
ε ,Σ

(0)

b̃
,τ (0)).

Then

For t = 1, . . . , T

1. For l = 1, . . . , L,

(a) Sample βl,(t) from 4.6.
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(b) Propose new model state ηl,(t). Sample βlηl,(t) from 4.6. Compute 3.15, where

ηl,0 is the current model state. If u < α, where u ∼ U(0,1), set βl,(t) = βlηl,(t) ,

else βl,(t) remains the same.

Form β̃
(t)

η̃(t) = (βlη1,(t) , . . . ,βlηL,(t))

2. For g = 1, . . . ,G

For h = 1, . . . ,H

(a) Sample b̃
(t)

g,h from 4.7.

Form b̃
(t)

g = (b̃
(t)

g,1, . . . , b̃
(t)

g,H)
⊺

Form b̃ = (b̃
(t)

1 , . . . , b̃
(t)

G )
⊺

3. For k = 1, . . . ,K

(a) Sample β̃δ̃k
from 4.8

Form β̃δ̃ = (β̃δ̃1
, . . . , β̃δ̃K

)

4. For g = 1, . . . ,G,

Sample Ω
(t)

b̃g
from 4.9.

Form Σ
(t)

b̃
by Σ

(t)

b̃
= blockdiag (Ω

(t)

b̃1
, . . . ,Ω

(t)

b̃G
).

5. Sample Ω
(t)
ε from 4.10.

6. For g = 1, . . . ,G

(a) Form b̃
∗(t)

g = αb̃
(t)

g and Ω
∗(t)

b̃g
= αΩ

(t)

b̃g
. Compute 4.18. If u < φ, where u ∼

U(0,1), set b̃
(t)

g = αb̃
(t)

g and Ω
(t)

b̃g
= αΩ

(t)

b̃g
, else b̃

(t)

g and Ω
(t)

b̃g
remain the same.

7. For l = 1, . . . , L,

Sample τ
(t)
l from 4.11.

Form τ (t) = (τ
(t)
1 , . . . , τ

(t)
L )
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Table 4.6: Effective sample size (ESS) values for precision estimates from the Word
random effect for F1, F2 and F3 for the LOT vowel from the Bayesian hierarchical model
ran for 10,000 iterations with added parameter expansion step.The ESS observed has
significantly improved in comparison to the results shown in Table 3.4.

F1 F2 F3
ωbword

592.5 752.8 449.2

Once again, we consider the LOT vowel for the same prior specification in Section

3.2.2. Time series plots for the precision estimates for the Word random effect are shown

in Figure 4.11. When compared to the plots in Figure 3.6, we see a very slight improve-

ment in terms of mixing, with several values that were trapped near the lower end of the

parameter scale mixing more freely. Again, the traceplots are not mixing perfectly, but

this slight improvement is still significant and worth implementing due to the minuscule

computational cost. This is seen also in Table 4.6, where the effective sample size for

each formant has improved over the standard Gibbs sampler.

We also consider the Word effect coefficients, where we observed inconsistent mixing

in terms of the trace variablilty as shown in Figure 3.6. Figure 4.12 shows the coefficients

after the parameter expansion step. We observe a constant variability throughout the

chain for a selection of the coefficients. Table 4.7 shows this improvement in terms of

ESS, with all parameters improving with a high number of independent samples recorded.

Table 4.7: ESS values obtained for a sample of Word random effects coefficents for the
standard Gibbs sampler and one with the added parameter expansion step for 10,000
iterations for the LOT vowel. We see a small improvement in ESS for the coefficients
and good improvement for the variance.

Expanded Standard
Cops 7980 5240
Bob 6899 4903
what 9649 8171
cloth. 6104 3544
because 8121 7143
Because 8607 5366
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4. Mixing Improvements Within the Model

4.3 Discussion

In this chapter, we have introduced two reparameterisation methods to the Bayesian

hierarchical model discussed in Chapter 3 to improve mixing issues that were found

when applying the model to the Sounds of the City corpus in Section 3.2.2. We have

implemented a hierarchical centering (Gelfand et al., 1995) step into the model, which has

improved the mixing of the nested fixed effects and respective random effects coefficients

greatly. We have also applied an adaptation of parameter expansion (Liu et al., 1998)

which has lead to a small improvement in mixing in the precision estimates for the Word

random effect and its corresponding coefficients.

Figure 4.13 provides a graphical representation of the hierarchical model, building on

Figure 3.1 but now including the updating steps for centering and parameter expansion

on the relevant parameters.

With these improvement in mixing, we are able to obtain a greater proportion of

independent samples and approximate the target distributions for our parameters of

interest within the model. This directly leads to a greater reduction in run time for the

model, again improving the usability of the model for the sociolinguistic community.

A drawback to the hierarchical model does still remain. Due to its complex nature,

interpretation of the output can be somewhat overwhelming and confusing to users not

familiar with its structure. In the next two chapters, we propose and introduce a novel

inference tool which uses the output from the hierarchical model and structures the output

using graphical models to help aid interpretation and how to fit undirected graphs for

multiple precision estimates.
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Chapter 5

Using Bayesian Gaussian Graphical

Models to Model Response Level

Dependency

In this chapter, we look to model the relationship present between the multiple response

variables within the Bayesian hierarchical model we have constructed in Chapters 3 and

4 by using graphical models to provide a visualisation of this relationship.

We can infer the relationship between the response variables by using a Bayesian

Gaussian graphical model, which uses the model precision to infer the conditional depen-

dencies between responses. Using the precision estimates from the Bayesian hierarchical

model as input, we can obtain the best graphical model structure using a modified model

selection algorithm.

We introduce the concept of an undirected graph in Section 5.1, extending into the

structure of a Gaussian graphical model which we use to infer the conditional dependency

present between the response variables. We then extend this to the Bayesian case in

Section 5.2, discussing the G-Wishart prior in more detail. Section 5.3 discusses how

we can infer the best graphical model for a given precision matrix, extending beyond

standard samplers by allowing the input of multiple precision matrices, much like we

observe in the Bayesian hierarchical model.

79



5. Gaussian Graphical Models

5.1 Graphical Models

In this section we introduce how graphical models are structured, mainly the undirected

graphical model. Graphical models provide a visualisation of complex probabilistic mod-

els by using graph theory as a framework to represent such structures. They provide

a simple to interpret way to visualise the structure of a probabilistic model and show

properties such as conditional independence clearly.

A graph G is composed of two elements: vertices V and edges E . Vertices represent a

random variable, while edges correspond to a conditional dependence between vertices.

The graph captures the way in which the joint distribution over all the random variables

can be decomposed into a product of factors depending only on a subset of the variables.

There are two main categories of graphical model, namely directed graphical models,

where the edges of the graph have a particular direction indicated by an arrow, and

undirected graphical models, where the edges do not have arrows and thus have no

directional influence.

5.1.1 Undirected Graphical Models

X

Z

Y

Figure 5.1: Undirected graph example

An undirected graphical model, often referred to as a Markov random field, has a set of

vertices and edges just like a directed graph but the difference between these models arises

from the construct of the edges; for an undirected graph the edges carry no direction.

Suppose for an undirected graph, we have three vertices, X,Y and Z, for which we

80



5. Gaussian Graphical Models

have the following conditional independence statement

X á Y ∣ Z

We say Z separates X from Y in the graph G. This relationship can be seen in Figure

5.1.

Gaussian Graphical Models

Let X = (X1, ...,Xp) ∼ Np(0,Σ). From the properties of the multivariate normal dis-

tribution, we know the marginal distributions will all follow a normal distribution also.

As correlation models have dependence in normal data, the conditional independence

structure for a Gaussian graphical model is defined in Σ. We use the precision matrix to

model this structure.

Precision of (X1, ...,Xp) ∶ Ω =

⎛
⎜
⎜
⎜
⎜
⎝

ω11 ... ω1p

⋮ ⋱ ⋮

ω1p ... ωpp

⎞
⎟
⎟
⎟
⎟
⎠

(5.1)

Using the precision matrix, we can say thatXk is conditionally independent ofXl given

all other Xj if and only if ωkl = 0. To find conditional independence in our variables, we

need to observe zeroes in our precision matrix.

For the following precision matrix:

Ω =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω11 ω12 0 ω14

ω21 ω22 ω23 0

0 ω32 ω33 ω34

ω41 0 ω43 ω44

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.2)

the resulting graphical model is shown in Figure 5.2.
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5. Gaussian Graphical Models

1

2

3

4

Figure 5.2: Undirected graph for the precision structure in Equation 5.2

5.2 Bayesian Gaussian Graphical Models

Here, we discuss how the Bayesian Gaussian graphical model is constructed which we

shall use to model the conditional dependence between the response variables in the

hierarchical model.

Let G = (V,E) be an undirected graph, with V denoting the set of vertices and E the

set of existing edges (Lauritzen, 2006). Let

W = {(i, j) ∣ i, j ∈ V, i < j} (5.3)

and Ē = W/E, where Ē denotes the set of non-existing edges. A Gaussian graphical

model with respect to G is defined as:

MG = {Np(0,Σ) ∣ Ω = Σ−1} (5.4)

Here, our Ω value is obtained from the Bayesian hierarchical model. Later, we will

explain how we jointly use the precision estimates for the model error and the random

effects present within the model. Let Z = (Z(1), . . . , Z(n))⊺ be an i.i.d. sample of size n

from MG. The likelihood function is defined as

P (Z ∣ Ω,G) ∝ ∣Ω∣n/2exp{−
1

2
tr(ΩV )} (5.5)

where V = Z⊺Z.
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5. Gaussian Graphical Models

The prior distribution for the precision matrix now no longer is the Wishart distri-

bution which we used as the conjugate prior in the standard hierarchical model, but is

now updated instead to be the G-Wishart distribution, which is the conjugate prior for

a Bayesian Gaussian graphical model. The G-Wishart has the following density:

P (Ω ∣ G) =
1

IG(ν,S)
∣Ω∣(ν−2)/2 exp{−

1

2
tr(ΩS)} (5.6)

where ν > 2 is the degree of freedom and S is a symmetric positive definite matrix

corresponding to the relevant precision matrix.

The normalising constant, IG(ν,S), is defined as

IG(ν,S) = ∫
PG

∣Ω∣(ν−2)/2 exp{−
1

2
tr(ΩS)}dK (5.7)

The Wishart density and G-Wishart appear similar at first glance, though there are

two main differences, one being the aforementioned normalising constant shown in Equa-

tion 5.7. The second is a constraint on the space of matrices obtained through the density,

denoted by PG, which denotes the space of p × p positive definite matrices with entries

(i, j) equal to zero whenever (i, j) ∈ Ē.

For non-decomposable graphs, IG(ν,S) has no closed form solution, but it is possible

to numerically approximate the integral using a MC method proposed in Atay-Kayis and

Massam (2005), which is detailed more in the following section.

Monte Carlo method for computing IG(ν,S)

Given an arbitrary graph G and given ν and S, to compute the normalising constant, we

first compute the Cholesky decomposition S−1
= T ⊺T . For G, denote by p the number of

vertices.

1. Create a p × p triangular matrix A = (aij) such that aij = 0, if (i, j) ∈ Ē or if i = j,

and aij = 1 otherwise.

2. Using A, find hi, the number of 1’s in the ith row of A, and ki, the number of 1’s

in the ith column of A. Define T⟨ij] = tij/tjj. Choose a sample size N and, for

n = 1, ...,N , go through the following steps:

83



5. Gaussian Graphical Models

3. Sample the free variables ψnij, for (i, j) ∈ E as follows: for i = 1, ..., p, ψnii =
√
Ui,

where Ui ∼ χ2
ν+hi

; then for i = 1, ..., (p − 1), j = (i + 1), ..., p and aij = 1, ψnij = Vij,

where Vij ∼ N(0,1).

4. Evaluate ψnij for (i, j) ∈ Ē as follows, for i = 1, ..., (p − 1) and for j = (i + 1), ..., p; if

i = 1 and aij = 0, then ψnij = −∑
j−1
k=i ψikt⟨kj]; otherwise, if i > 1 and aij = 0 then

ψnij = −
j−1

∑
k=i

ψikt⟨kj] −
i−1

∑
r=1

(
ψri +∑

i−1
l=r ψrlt⟨li]

ψii
)(ψrj +

j−1

∑
l=r

ψrlt⟨lj])

The values ψnijm for (i, j) ∈ Ē are computed line by line and therefore, for a given

(i, j), all values ψnrs, for (r, s) < (i, j), are available for computing ψnij.

5. Compute exp{−1
2 ∑(i,j)∈Ē(ψ

n
ij)

2}

6. Compute

ĴMC
ν,T =

1

N

N

∑
k=1

⎡
⎢
⎢
⎢
⎢
⎣

exp

⎧⎪⎪
⎨
⎪⎪⎩

−
1

2
∑

(i,j)∈Ē

(ψnij)
2

⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

(5.8)

and multiply it by

Cν,T =

p

∏
i=1

(2π)hi/2 2(ν+hi)/2 Γ(
ν + hi

2
) tν+bi−1

ii (5.9)

to obtain ÎG(ν,S). Note bi = hi + ki + 1

We have implemented this MC algorithm in R with the iterative section coded in

C++ (C++, 2017) to improve computational speed with a view to implementation when

performing model selection. While testing the algorithm, we discovered a discrepancy

in values obtained for Cν,T shown in Equation 5.9. Using the simple case when G is

complete, the G-Wishart distribution reduces to the Wishart distribution, which has a

closed form for its normalising constant. The computed normalising constant from the

MC algorithm did not yield the same result as the closed form solution.

Using the BDgraph package (Mohammadi and Wit, 2016) in R, which has an imple-

mentation of the MC algorithm, we tested this to compare the output. The results from

the BDgraph function match that of the closed form solution for the Wishart normalising
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5. Gaussian Graphical Models

constant. Noting this, we have implemented the interpretation of Cν,T used here, which

is defined as

Cδ,T = (
i

∑
i=1

j

∑
j=1

Aij/2) ln(π) + (p +
ν

2
+

i

∑
i=1

Aii) ln(2)

+
i

∑
i=1

[ln Γ(
ν + hi

2
)] +

i

∑
i=1

(ν + hi + ki) ln∣Tii∣

(5.10)

5.2.1 Sampling from the G-Wishart distribution

There are several sampling methods that can be used to generate from a G-Wishart

distribution. See Dobra (2011) for a review of existing methods. Lenkoski (2013) proposes

a direct sampling method for the G-Wishart distribution which is detailed below:

Algorithm 5: Direct sampler from precision matrix Given a graph G = (V,E)

with precision matrix Ω, where Σ = Ω−1:

1. Set ∆ = Σ

2. Repeat for i = 1, . . . , p until convergence:

(a) Let Ni ⊂ V be the set of neighbours of node i in graph G. Form ∆Ni
and ΣNi,i

and solve

β̂∗i = ∆−1
Ni

ΣNi,i,

(b) Form β̂i ∈ Rp−1 by copying the elements of β̂∗i to the appropriate locations and

zeroes in those locations not connected to i in graph G,

(c) Replace ∆i,−i and ∆−i,i with ∆−i,−iβ̂i

3. Return Ω = ∆−1

We have provided an implementation of the G-Wishart sampler in our model code,

written in C++ which is implemented within R using RCpp package (Eddelbuettel and

Francois, 2011). The benefits of generating a direct G-Wishart sampler comes in terms

of the model selection. Lenkoski (2013) goes on to discuss a model selection algorithm

which uses the exchange algorithm (Murray et al., 2006), a popular tool for MCMC
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5. Gaussian Graphical Models

schema when working with models where the likelihood has an intractable normalising

constant, much like the G-Wishart distribution. The exchange algorithm is used in the

graphical model selection which we discuss in more detail in the next section.

5.3 Bayesian Gaussian graphical model selection

The final part to forming the Bayesian Gaussian graphical model is determining which

graph G provides the best description of the relationships between our observations. For

a graph with p nodes, there are a total of 2p(p−1)/2 possible graphs. Even for a moderately

sized number of vertices, the problem can explode quickly. Due to this, we need to

implement an efficient search algorithm which can explore the space of graphs G to find

the true underlying graph efficiently.

Several model selection algorithms have been proposed, mainly implementing a trans-

dimensional MCMC algorithm which explores the model space whilst simultaneously

estimating parameters. The most common example of this is the reversible-jump MCMC

(Green, 1995). Algorithms of this nature have been implemented in several Gaussian

graphical model selection works, such as Dobra (2011). The main drawback to these

methods revolves around the calculation of the normalising constant IG(ν,S) which re-

quires the use of MC approximation as discussed previously (Atay-Kayis and Massam,

2005).

Lenkoski (2013) and Wang and Li (2012) both propose alternative approaches bor-

rowing ideas from the exchange algorithm and the double Metropolis-Hastings algorithm

(Laing, 2010). The work of Wang and Li (2012) does not use a direct G-Wishart sampler,

unlike the work of Lenkoski (2013).

One drawback to methods implementing reversible jump steps is that some moves

between models may be rejected according to the acceptance probability. This can be

inefficient in high-dimensional problems. Wit and Mohammadi (2015) propose an adapta-

tion of the birth-death MCMC (BDMCMC) (Cappe, 2001) where moves between models

are always accepted, though the trade-off for this is an increase in computational com-

plexity.

If we look back to the hierarchical model, we note that we have multiple precision
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5. Gaussian Graphical Models

matrices, one for our residual error Ωε and precision matrices for each random effect group

Ωb̃g
. Considering all the algorithms we have just outlined, all of them only consider one

precision estimate as input for their model selection. Due to this, we shall have to modify

any algorithm we consider.

Through the list of algorithms and methods discussed, we have chosen to modify the

PAS algorithm discussed in Wang and Li (2012). One of the main changes we implement

alongside expanding the algorithm is using a direct G-Wishart sampler, such as the one

discussed in Section 5.2.1, which removes the need to use the block Gibbs update and

deal with the intractable normalising constants.

Our Bayesian Gaussian graphical model selection problem can be broken down into

two parts. The case when our number of responses V ≤ 3 and when they are V > 3. In

the case when the number of responses is ≤ 3, we can solve the model selection problem

in closed form by exploiting chordality.

A graph G is said to be chordal if every graph cycle of length four or greater has a

cycle chord. Put simply, for a given graph, there is no point in the graph where we could

cover four or more vertices without encountering a connection between two vertices that

includes one we have already covered. Figure 5.3 provides an example of this. As we can

see, it is not possible to go to vertices V = {1,2,3,4} without hitting either 1 or 4, which

contains a connection and is a cycle chord. All graphical models where there are three

or less vertices are chordal.

1

2

3

4

Figure 5.3: Chordal graph example

It is possible to obtain the normalising constant, IG(ν,S) for the G-Wishart distri-
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bution for chordal graphs via a closed form solution. The normalising constant can be

factorised into a product of density functions as shown in Equation 5.11:

IG(ν,S) =
∏
d
i=1 ITi(ν,STi,Ti)

∏
d−1
j=1 ISi

(ν,SSi,Si
)
. (5.11)

where Ti are the cliques and Si are the separators of G.

By exploiting chordality, we can calculate the density straightforwardly. As there are

no more than 23 = 8 possible graphs for these cases, this takes insignificant computational

time and all possible graphs can be considered at each iteration of the sampler.

For the case when V > 3, we use a modification of the PAS algorithm (Wang and

Li, 2012), which allows for input from multiple precision matrices like we have in the

Bayesian hierarchical model. We detail the modified PAS algorithm below, which due to

the independence between the precision estimates, consists of a direct expansion.

Suppose we have two graphs, G = (V,E) and G′ = (V,E′) which differ by one edge

(i, j) and suppose edge (i, j) ∈ E and E′ = E/(i, j) say. The acceptance probability for a

move G to G′ according to a proposal q(G′∣G) is then:

α(G→ G′) = min

⎡
⎢
⎢
⎢
⎢
⎣

1,
p(G′ ∣ Ωε/(ωij, ωjj), ŷ)∏

K
k=1 [p(G

′ ∣ Ωb̃k
/(ωij, ωjj), b̃k)] q(G ∣ G′)

p(G ∣ Ωε/(ωij, ωjj), ŷ)∏
K
k=1 [p(G∣ ∣ Ωb̃k

/(ωij, ωjj), b̃k)] q(G′ ∣ G)

⎤
⎥
⎥
⎥
⎥
⎦

(5.12)

where the conditional posterior odds against the edge (i, j) for a general Ω is given

by:
p(G′ ∣ Ω/(ωij, ωjj),y)

p(G ∣ Ω/(ωij, ωjj),y)
=
p(y,Ω/(ωij, ωjj) ∣ G′)p(G′)

p(y,Ω/(ωij, ωjj) ∣ G)p(G)
(5.13)

As shown in Equation (5.6) in Wang and Li (2012), p(y,Ω/(ωij, ωjj) ∣ G′) has a closed
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analytical form. For multiple precision matrices, this can be expressed as:

p(y,Ωε/(ωij, ωjj) ∣ G′)
K

∏
k=1

[p(y,Ωb̃k
/(ωij, ωjj) ∣ G′)]

= (2π)−
np
2

I (bε + n,Sε
jj +D

ε
jj)

IG′(bε,Dε)
∣Ω0

εV /j,V /j
∣

n+bε−2
2

exp [−
1

2
tr{(Sε +Dε)Ω0

ε}]

×
K

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(2π)−
np

b̃k
2

I (bb̃k
+ n,Sb̃k

jj +D
b̃k
jj )

IG′(bb̃k
,Db̃k)

∣Ω0
b̃kV /j,V /j

∣

n
b̃k

+bε−2
2

exp [−
1

2
tr{(Sb̃k +Db̃k)Ω0

b̃k
}]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.14)

where general Ω0
= Ω except for an entry 0 in the positions (i, j) and (j, i) and an entry

c in the position (j, j), where c = Ωj,V /j (ΩV /j,V /j)
−1

ΩV /j,j. I(b,D) is the normalising

constant of a scalar G-Wishart distribution WG(b,D).

In a similar fashion, a closed form expression is obtained for p(y,Ω/(ωij, ωjj) ∣ G).

For multiple precision matrices, this can be expressed as:

p(y,Ωε/(ωij, ωjj) ∣ G)
K

∏
k=1

[p(y,Ωb̃k
/(ωij, ωjj) ∣ G)]

= (2π)−
np
2
J (bε + n,Dε

ee + S
ε
ee, a11)

IG(bε,Dε)
∣Ω1

εV /e,V /e
∣

n+bε−2
2

exp [−
1

2
tr{(Sε +Dε)Ω1

ε}]

×
K

∏
k=1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(2π)−
n
b̃k

p

2

J (bb̃k
+ n,Db̃k

ee + S
b̃k
ee , a11)

IG(bb̃k
,Db̃k

)
∣Ω1

b̃kV /e,V /e
∣

n+b
b̃k

−2
2

exp [−
1

2
tr{(Sb̃k

+Db̃k
)Ω1

b̃k
}]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.15)

where

J(h,B, a11) = (2πB−1
22 )

1
2 a

h−1
2

11 I(h,B22)exp{−
1

2
(B11 −B

−1
22B

2
12)a11} (5.16)

Let general Ω1
= Ω except for entries of Ωe,V /e (ΩV /e,V /e)

−1
ΩV /e,e in the positions corre-

sponding to e. We letA = Ωee∣V /e in Equation 5.16, where Ωee∣V /e = Ωee−Ωe,V /e (ΩV /e,V /e)
−1

ΩV /e,e

and a11 corresponds to the first element of Ωee∣V /e.

We then plug in 5.14 and 5.15 into 5.12 to provide the acceptance rated for a move
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from G to G′ and obtain:

α(G→ G′) = min

⎧⎪⎪
⎨
⎪⎪⎩

1,
p(G′)q(G ∣ G′)IG(bε,Dε)∏

K
k=1 IG(bb̃k

,Db̃k
)

p(G)q(G′ ∣ G)IG′(bε,Dε)∏
K
k=1 IG′(bb̃k

,Db̃k
)
H(e,Ωε)

K

∏
k=1

H(e,Ωb̃k
)

⎫⎪⎪
⎬
⎪⎪⎭

(5.17)

where, for a general Ω,

H(e,Ω) =
I(b + n,Djj + Sjj)

J(b + n,Dee + See, a11)

⎛
⎜
⎜
⎝

∣Ω0
V /j,V /j

∣

∣Ω1
V /e,V /e

∣

⎞
⎟
⎟
⎠

n+b−2
2

exp [−
1

2
tr{(S +D) (Ω0

−Ω1)}]

(5.18)

can be analytically evaluated.

Note that the intractable normalising constants still remain within the computation

of the acceptance probability. Wang and Li (2012) go on in their work to remove these

normalising constants using the exchange algorithm. This involves substituting the nor-

malising constants with an unbiased estimate based on a single sample from the prior,

where a new precision matrix Ω′ is sampled based on the updated graph G′. This gives

us an updated acceptance probability of:

α(G→ G′) =min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1,
p(G′)q(G ∣ G′)f (Ω′

ε/(ω
′

ij, ω
′

jj) ∣ G)∏
K
k=1 f (Ω′

b̃k
/(ω′ij, ω

′

jj) ∣ G)

p(G)q(G′ ∣ G)f (Ω′

ε/(ω
′

ij, ω
′

jj) ∣ G′)∏
K
k=1 f (Ω′

b̃k
/(ω′ij, ω

′

jj) ∣ G′)

H(e,Ωε)
K

∏
k=1

H(e,Ωb̃k
)}

(5.19)

where

f(Ω′
/(ω′ij, ω

′

jj) ∣ G′) = I(b,Djj) ∣Ω′

0,V /j,V /j
∣

b−2
2

exp{−
1

2
tr(DΩ′

0)} (5.20)

and

f(Ω′
/(ω′ij, ω

′

jj) ∣ G) = J(b,Dee, a11) ∣Ω′

1,V /e,V /e
∣

b−2
2

exp{−
1

2
tr(DΩ′

1)} (5.21)

for general Ω.
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5. Gaussian Graphical Models

We define a modified version of Algorithm 2 in Wang and Li (2012), as we have our

own direct sampler for the G-Wishart density detailed below:

Algorithm 6: Modified PAS algorithm for multiple precision matrices Given

the current state {G,Ωε,Ωb̃,G
′,Ω′

ε/(ω
′

ij, ω
′

jj)Ω
′

b̃
/(ω′ij, ω

′

jj)}

1. Update {G′,Ω′

ε/(ω
′

ij, ω
′

jj)Ω
′

b̃
/(ω′ij, ω

′

jj)}

• Propose a new graph G′ differing by only one edge from G from the proposal

distribution q(G′ ∣ G).

• Generate Ω′

ε,Ω
′

b̃
using the G-Wishart sampler in Section 5.2.1

2. Update G

• Exchange G and G′

• Accept G′ with probability α, defined in Equation 5.19.

3. Update Ωε,Ωb̃ conditional on the most recent G using the G-Wishart sampler.

We can implement the modified PAS algorithm when V > 3 to perform model selection

for the conditional dependence between response variables within our graphical model. In

the next chapter, we will detail how we combine the Bayesian Gaussian graphical model

within our Bayesian hierarchical model to obtain our full chain graph like graphical

structure.
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5. Gaussian Graphical Models

5.4 Discussion

In this chapter, we have discussed how to infer an undirected graphical model to visu-

alise the relationship present between response variables. We have extended beyond the

standard model search algorithms for Bayesian Gaussian graphical models, which use one

precision matrix as input to infer the graphical model structure, to a multiple precision

case, which is the standard output from a Bayesian hierarchical model. By combining all

of the precision estimates together, we are able to obtain a more robust measure of the

dependency present between the response variables.

In the next chapter, we look to use this model search algorithm to propose a novel

inference tool to visualise the output from a Bayesian hierarchical model in the form of

a graphical model.
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Chapter 6

Visualising Hierarchical Models

Using Graphical Models

In this chapter, we look to expand upon the Bayesian hierarchical model we have con-

structed in Chapters 3 and 4 and implement a novel inference tool which can provide a

straightforward representation of which factors are influencing vowel variation and change

in the Glaswegian dialect. We use graphical models to aid this visualisation.

The method works by jointly inferring the Bayesian hierarchical model with a Bayesian

Gaussian graphical model as discussed in Chapter 5 to model the conditional dependence

between responses, using the precision estimates from the hierarchical model as input.

From this, we use a chain graph style structure to visualise the combined model output

between the fixed effects and the vowel formants.

The motivation behind presenting the hierarchical model in a graphical framework is

to ease understanding of the complex model output of the hierarchical model to users

less familiar with the construction of multiple response hierarchical models. Through the

graphical model visualisation, it is straightforward to infer which factors impact on vowel

variation on each formant, and the dependency present between each of the formants.

Section 6.1 introduces some further graphical model concepts which are used within

the graph structure. Section 6.2 introduces the chain graph like structure we use to visu-

alise Bayesian hierarchical model output beginning with an explanation of the structure

and how it is implemented. We then detail how the sampler for the parameter estimates
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6. Graphical Model Visualisation

is updated to reflect this change. Section 6.3 provides two applications of the chain graph

model structure, firstly with a simulated example and then secondly with an application

to the Sounds of the City corpus.

6.1 Graphical Models

In this section, we extend to other graphical model structures that are used within the

visualisation we implement, discussing the relevant theory behind these different types of

models. We will work up to the concept of a chain graph, which is the framework which

we build our graphical model upon.

6.1.1 Directed Graphical Models

A directed graphical model, often referred to as a directed acyclic graph (DAG) D is a

graph where all the edges between vertices are directed. An example is shown in Figure

6.1. If we apply the product rule here, we can factorise the joint distribution of this DAG

as shown in Equation 6.1. We see from the DAG, that y and z have a dependence on x,

and x is independent of the other variables.

p(x, y, z) = p(z ∣ x)p(y ∣ x)p(x) (6.1)

The graphical model is constructed by taking each conditional distribution from above

and adding a directed link from the vertices corresponding to the variables on which the

distribution is conditioned. If we have a link going from vertice x to vertice y then vertice

x is called the parent of vertice y and vertice y is the child of vertice x.

We can characterise a DAG by a simple rule for expanding the joint probability in

terms of simpler conditional probabilities. Let X1, . . . ,Xn be a set of random variables

represented by corresponding vertices in the graph. Let pa[i] denote the parents of vertice

i and denote Xpa[i] be the set of variables associated with pa[i]. Then

p(X1, . . . ,Xn) =
n

∏
i=1

p(Xi ∣ Xpa[i]) (6.2)
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y

x

z

Figure 6.1: Directed acyclic graph example for variables x, y and z

d-separation

Consider a directed graph where X,Y,Z are arbitrary nonintersecting sets of vertices.

We wish to ascertain whether a particular conditional independence statement X á Y ∣ Z

is implied. To do this, we consider all the possible paths from any vertice in X to any

vertice in Y . Any path is blocked if it includes a vertice that either

(a) the arrows on the path meet either head to tail or tail to tail at the vertice, and

the vertice is in Z, or

(b) the arrows meet head to head at the vertice, and neither the vertice or any of its

descendants is in C.

If all the paths are blocked, then X is said to be d-separated from Y by Z and the

joint distribution over all the variables in the graph will satisfy X á Y ∣ Z.

a

b

c

e

f a

b

c

e

f

Figure 6.2: d-separation example

In the example in Figure 6.2, starting by considering the left graph, the path from

a to b is not blocked by vertice f as it is a tail to tail vertice for this path and is not
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X1 X2 X3

fa fb fc fd

Figure 6.3: Factor graph illustration

observed. It is not blocked by vertice e either, although this is a head to head vertice, it

has a descendant c because it is in the conditioning set. So the conditional independence

statement a á b ∣ c does not follow from this graph.

With the right hand graph, the path from a to b is blocked by f because this is a tail

to tail vertice that is observed, so the conditional independence statement a á b ∣ c will

hold for any distribution that factorises according to this graph.

6.1.2 Factor graphs

Both directed and undirected graphs allow a global function of several variables to be

expressed as the product of factors over subsets of those variables. Factor graphs make

this decomposition explicit by introducing additional vertices for the factors themselves

in addition to the vertices representing the variables. They allow us to be more explicit

about the details of the factorisation.

The joint distribution over a set of variables can be written as a product of factors

like so:

p(x) =∏
s

fs(xs)

where xs denotes a subset of the variables. Denote the individual variables by xi.

In a factor graph, there is a vertice for every variable in the distribution. There are

also additional factor vertices, which are often depicted by a square, for each factor in

the joint distribution. There are also undirected links connecting each factor vertice to

all of the variable vertices on which that factor depends.

In the example in Figure 6.3, we can express the factorisation as the following:

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x4)
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Note here we have two factors fa and fb defined over the same set of variables x1 and x2.

In an undirected graph, the product of two such factors would be joined together in the

same clique. The factor graph keeps such factors explicit and thus conveys more detailed

information about the underlying factorisation.

Factor graphs are described as bipartite because they consist of two distinct kinds of

vertices, and all links go between vertices of opposite type.

6.1.3 Chain Graphs

Chain graphs look to combine both directed acyclic graphs and undirected graphs into

one graphical form. Vertices are partitioned into blocks, with one common partitioning

of blocks being a block of variables of interest and a block of explanatory variables. The

edges within blocks are undirected and the edges connecting vertices between blocks are

directed.

An important Markov property for chain graphs is the global Markov property (Got-

tard and Rampichini, 2006), which is based on the definition of the moral graph. Starting

from a given chain graph, a moral graph can be obtained by connecting parents of common

children and then converting all the arrows into undirected edges. The global Markov

property combines the concept of conditional independence to that of separation between

vertices in the moral graph. For example, for a given graph, if a set of vertices S sepa-

rates the vertices in A from the vertices in B so each path from A to B passes by some

vertice in S, then A á B ∣ S. These Markov properties induce a factorization of the joint

distribution of the variables in a model.

If we look at Figure 6.4, we see the basic structure of a chain graph model for two

given blocks of vertices. The dependency structure between the vertices in the left block

is modelled using undirected edges, while the dependency structure between blocks is

denoted by directed edges.

From Figure 6.4, we can see how it would be possible to model the output of a

hierarchical model in such a fashion. If we imagine the black vertices are our explanatory

variables within the model, and the white vertices are our response variables, we could

visualise the relationships present within the hierarchical model using a structure similar

in layout to a chain graph model, albeit not strictly adhering to the global Markov
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Figure 6.4: Illustration of a chain graph model.

property within the traditional chain graph.

6.2 Using a Chain Graph Style Model for the

Hierarchical Model

Here, we look to utilise some of the ideas discussed in Section 6.1 and implement those to

allow us to construct a graphical representation of the Bayesian hierarchical model. The

visual design of the chain graph model discussed in Section 6.1.3 provides a visualisation

that lends itself naturally to a regression design.

Using a chain graph like structure, we can split vertices into partitioned blocks, which

could be viewed as a separation between a block of explanatory variables and a block

of response variables. The directed edges between vertices in each block corresponds

to a predictor variable being a significant predictor of a response variable. The lack of

an edge present indicates that the predictor has no significant effect on the response

variable, i.e. βj = 0. Interaction terms are represented using a factor graph notation,

whereby the interaction terms first connect through a relevant factor variable, then an

arrow is extended from the factor variable to the response of interest.
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F1

F3

F2

Gender

FollowingAge

Preceding

Figure 6.5: Illustration of the Chain graph style model output This graph is
stylised to the Sounds of the City corpus. The directed edges are modelled by the Bayesian
hierarchical model, the undirected graph for the response variables modelled using the
Bayesian graphical model.

The relationship between variables in each block can be modelled using an undirected

graph structure. The relationship between the response variables is of more interest

than the relationship between the explanatory variables, so our model will focus on the

relationship between the response variables only. This model could be extended to include

the graphical relationship between the explanatory variables, where the relationship could

be modelled either by a Bayesian Gaussian graphical model or a log-linear model if our

explanatory variables are discrete, though we do not discuss this in detail here. The

undirected graph for the response variables can be modelled using a Bayesian Gaussian

graphical model, where the precision estimates from the hierarchical model are used as

input.

Figure 6.5 illustrates how we can construct the graphical model visualisation, with

the corresponding modelling techniques used to construct each part of the graph high-

lighted.The DAG is constructed using the Bayesian hierarchical model output. The rela-

tionship between the response variables is modelled using the Bayesian Gaussian graphical

model. The example in Figure 6.5 has been stylised to the Sounds of the City corpus.
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6.2.1 Updating the Hierarchical Model

Now that we have samplers for the Bayesian Gaussian graphical model, we need to update

the Bayesian hierarchical model to incorporate graphical model selection. This is done by

updating our priors on the precision estimates. We now change from the Wishart prior

to the G-Wishart prior. This leads to the following new priors for the model precisions:

Ωε ∼ WG(νε,Sε) Ωb̃g
∼ WG(νb̃g

,Sb̃g
) (6.3)

Using our new priors and including the step for hierarchical centering and parameter

expansion, our updated Gibbs sampler is of the following form:

βlηl ∣ θ∖βl
ηl
∝ N

⎛

⎝
β̃ηl ∣ [ωj,jX

⊺

ηlXηl +
1

τ 2
l

I]

−1

X⊺

ηlzβl , [ωj,jX
⊺

ηlXηl +
1

τ 2
l

I]

−1
⎞

⎠

(6.4)

b̃g,h ∣ θ
∖b̃g,h

∝ N (b̃g,h ∣ [Ωb̃g
+ nb̃g,h

Ωε]
−1
nb̃g,h

Ωεȳb̃g,h
, [Ωb̃g

+ nb̃g,h
Ωε]

−1
)

(6.5)

β̃δ̃k
∣ θ

∖β̃δ̃k
∝ N (β̃δ̃k

∣∣ [X̃
⊺

δ̃k
Ωb̃k

X̃δ̃k
]
−1

X̃
⊺

δ̃k
Ωb̃k

δ̃k, [X̃
⊺

δ̃k
Σb̃k

X̃δ̃k
]
−1
)

(6.6)

Ωb̃g
∣ θ∖Ωb̃g

∝WG

⎛
⎜
⎝
Ωb̃g

∣ nb̃g
+ νb̃g

,

⎡
⎢
⎢
⎢
⎢
⎣

S−1
b̃g
+

nb̃g

∑
i=1

b̃gib̃
⊺

gi

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎞
⎟
⎠

(6.7)

Ωε ∣ θ∖Ωε ∝WG

⎛

⎝
Ωε ∣ n + νε, [S

−1
ε +

n

∑
i=1

ε̂iε̂
⊺

i ]

−1
⎞

⎠

(6.8)

τl ∣ θ∖τl ∝ G (τl ∣ al +
∣∣βlη̃l

∣∣

2
, bl +

∑
p
m=1 (β

l
m)

2

2
)

(6.9)

where we sample Ωb̃g
for each group g respectively, every β̃δ̃k

is sampled for every

group of random effects which has nested coefficients k and τ 2
l for each response level l.

We define zβl = ωj,jyl+∑
k≠l
k=1 ωj,k (y

k −Xηkβk) and ȳb̃g,h
= ȳb̃g,h

−X̃β̃−Ũb̃−g b̃b̃−g , where
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b̃−g denotes b̃ excluding group g and ȳb̃g,h
is the mean value calculated for yb̃g,h

for each

response level l. for each response level l. and ε̂ = y − X̃β̃ − Ũb̃ respectively.

The nesting step in Equation 6.6 has parameters defined as X̃δ̃k
= blockdiag (X1

δ̃k
, . . . ,Xl

δ̃k
),

where δ̃k = X̃δ̃k
β̃δ̃k

+ Ũkb̃k for each block of nested coefficients k.

The Bayesian Gaussian graphical model selection step occurs prior to the draws for

the precision matrices. Once the process has determined our current G, we draw Ωε and

Ωb̃g
for g = 1, . . .G from Equations 6.8 and 6.7 respectively.

Finally, we perform parameter expansion at the end of the sampler for the relevant

random effects coefficients and precisions by performing a Metropolis-Hastings step as

detailed in 4.2.2 , accepting with probability φ, shown in Equation 4.18.

Figure 6.6 provides a graphical representation of the full hierarchical model with

graphical model selection. The main difference with this model from the representation

in Figure 4.13 is the change in prior for the precision estimates from the Wishart to the

G-Wishart distribution.

The model is constructed by implementing the following algorithm:

Algorithm 6: The Bayesian hierarchical model sampler with mixing im-

provements Given initial parameter estimates θ(0) = (β̃(0), η̃(0), b̃
(0)
,Ω

(0)
ε ,Σ

(0)

b̃
,τ (0)).

Then

For t = 1, . . . , T

1. For l = 1, . . . , L,

(a) Sample βl,(t) from 6.4.

(b) Propose new model state ηl,(t). Sample βlηl,(t) from 6.4. Compute 3.15, where

ηl,0 is the current model state. If u < α, where u ∼ U(0,1), set βl,(t) = βlηl,(t) ,

else βl,(t) remains the same.

Form β̃
(t)

η̃(t) = (βlη1,(t) , . . . ,βlηL,(t))

2. For g = 1, . . . ,G

For h = 1, . . . ,H

(a) Sample b̃
(t)

g,h from 6.5.
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Form b̃
(t)

g = (b̃
(t)

g,1, . . . , b̃
(t)

g,H)
⊺

Form b̃ = (b̃
(t)

1 , . . . , b̃
(t)

G )
⊺

3. For k = 1, . . . ,K

(a) Sample β̃δ̃k
from 6.6

Form β̃δ̃ = (β̃δ̃1
, . . . , β̃δ̃K

)

4. Using precision estimates Σ
(t−1)

b̃
and Ω

(t−1)
ε , obtain the current graph G using 5.11

if V ≤ 3, else, use Algorithm 5.

5. For g = 1, . . . ,G,

Sample Ω
(t)

b̃g
from 6.7.

Form Σ
(t)

b̃
by Σ

(t)

b̃
= blockdiag (Ω

(t)

b̃1
, . . . ,Ω

(t)

b̃G
).

6. Sample Ω
(t)
ε from 6.8.

7. For g = 1, . . . ,G

(a) Form b̃
∗(t)

g = αb̃
(t)

g and Ω
∗(t)

b̃g
= αΩ

(t)

b̃g
. Compute 4.18. If u < φ, where u ∼

U(0,1), set b̃
(t)

g = αb̃
(t)

g and Ω
(t)

b̃g
= αΩ

(t)

b̃g
, else b̃

(t)

g and Ω
(t)

b̃g
remain the same.

8. For l = 1, . . . , L,

Sample τ
(t)
l from 6.9.

Form τ (t) = (τ
(t)
1 , . . . , τ

(t)
L )

Performing all these steps, we can obtain a chain graph model like structure as shown

in Figure 6.5.
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Ũ
b̃
,( Ω

−
1

ǫ
⊗

I))

Ω
ǫ
∼

W
G
(Ω

ǫ
|ν ǫ

,S
ǫ
)

b̃
∼

N
( b̃

|0
,Σ

b̃

)

τ
2 l
∼

G(
τ
2 l
|a

l,
b l
).

β̃
∼

N
(0
,V

−
1
)

F
o
r:

g
=

1,
..
.,
G

Ω
b̃
g
∼

W
G

( Ω
b̃
g
|ν b̃

g
,S

b̃
g

)
δ̃
k
∼

N
( X̃

δ̃
k
β̃
δ̃
k
,Ω

−
1

b̃
k

)

δ̃
k
=

X̃
δ̃
k
β̃
δ̃
k
+

Ũ
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6.3 Application of Graphical Models

In this section, we will provide an implementation of the graphical models we have dis-

cussed in this chapter in the way of a simulated example constructed in a similar fashion

to the multiple response nesting problem in Section 4.1.2 and also with an application to

the Sounds of the City corpus.

6.3.1 Simulated Example

To illustrate the chain graph model structure, we consider a simulated example which is

constructed in a similar way to the problem in Section 4.1.2, though now we consider four

response variables instead of three, which are independent of one another. We consider a

simple design problem with four fixed effects, where one is nested within the one random

effect denoted by the Gender variable, also within the model, with some coefficients being

randomly assigned zero coefficient values.

We run the sampler for 10,000 iterations with the nesting step added for the nested

coefficient. Hyperparameters are set at al = bl = 1 × 10−3 and νε = 3,Sε = 0.001 ⋅ I3 and

νbg = 3,Sbg = 0.001, ⋅I3.

We look to produce the four ”best” graphs, determined by their posterior probability,

which corresponds to the number of times a particular graph is selected. Figure 6.7

highlights the four top graphs selected by their model posterior probability. We observe

the top two graphs differ only by the significance of one term, the Gender coefficient on

Y3, which for model 1 is not present, and for model 2 is present. We also notice a similar

trend between models 1 and 2 and models 3 and 4, where the gender coefficient is not

present in Y2 for our top 2 models, but is selected in models 3 and 4.
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Y1
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Y4
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X3
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Posterior probability of model: 23.8%

Y1
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Y4

X1

X2

X3

Gender

Posterior probability of model: 19.1%

Y1

Y2

Y3

Y4

X1
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X3

Gender

Posterior probability of model: 13.4%

Y1

Y2

Y3

Y4

X1

X2

X3

Gender

Posterior probability of model: 8.8%

Figure 6.7: Graphical models obtained for the simulated example. The best
four graphs, determined by posterior probability for the simulated example, run for 10,000
iterations. The top two graphs are selected for similar times, differing only by the signif-
icance of the Gender coefficient on the Y3 response.
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Figure 6.8: Trace plots for Gender coefficient on Y2 and Y3. Traceplots for the
Gender coefficent on Y2 and Y3 for 10,000 iterations. We observe periods in the sampler
where the terms are not selected (at zero) and smaller periods where the term is added
to the model.

We can see closer at how often both terms are selected by their traceplots in Figure

6.8. We see from these traceplots that there are periods for both coefficients where both

terms are not included in the model. The effect of gender on Y3 does appear to be

larger than on Y2, but a model including both could be considered.An adjustment on the

hyperparameters for β̃ could lead to a more parsimonious model, leading to a reduction

in the number of times these terms are selected. It is worth noting that for Y2, the

coefficient is not significant, but for Y3, it is significant, albeit with a small coefficient

value.
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6. Graphical Model Visualisation

6.3.2 Sounds of the City Corpus

We will now apply the chain graph model structure to the Sounds of the City corpus data.

We now implement the combined sampler in Section 6.2.1, implementing the centering

step for the nested coefficients within Speaker and Word and also the parameter expansion

step for the Word effect.

We focus on the GOAT vowel for raw mean formant measurements on F1, F2 and

F3, with all 2-way interactions across the fixed effects. We run the sampler for 10,000

iterations with fixed hyperparameters al = bl = 1 × 10−3 and νε = 3,Sε = 1 × 10−3 ⋅ I3,

νbg = 3,Sbg = 1 × 10−3 ⋅ I3 and aα = 500, bα = 510. For graphical model selection, we

are able to exploit chordality as we have only three nodes, so every possible graph is

considered at each stage and the best fitting graph to the precision estimates selected.

Model selection is also enabled within the sampler for model fitting.

We obtain the best four graphs by posterior probability as shown in Figure 6.9. For the

best graph by posterior probability, we observe that the raw mean formant measurements

share a conditional dependence, as shown by their fully connected graph. F1 is influenced

by Age, with the vowel lowering in younger speakers and Gender influences F3, with

females showing higher frequency values than males. The model also finds effects for

following place of articulation in F2, with frequency values falling in general, though

with greater levels of magnitude for the dorsal and labial factors, this would indicate

vowel quality retraction in these contexts. Most importantly, we observe a change in F3

for Decade, indicating that for recordings measured in the 2000s, frequency values are

increasing compared to recordings taken in the 1970s, indicating a shortening of the front

cavity; this could relate to less lip rounding for this vowel over time (this is a new finding,

since previous work has not analysed F3).

107



6. Graphical Model Visualisation

F1.mean

F2.mean

F3.mean

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 29.7%

F1.mean

F2.mean

F3.mean

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 17.7%

F1.mean

F2.mean

F3.mean

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 8.9%

F1.mean

F2.mean

F3.mean

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 6.4%

Figure 6.9: Graphical models obtained for GOAT vowel The best four graphical
models by posterior probability obtained for the GOAT vowel. We observe a prominent
Gender and Decade effect on F3 across all models.
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If we consider the second most often selected model, the main difference comes with

the addition of an interaction between Gender and Decade acting upon F3, instead of

the factors being independent of one another. This is quite similar to the main model,

with the difference being in the additional interpretation of the interaction, where we see

that over time, the vowel frequency is smaller in F3 for females. In general there is a

shift in F3 by Decade, such that the F3 values are increasing (less lip rounding), but less

so for females, who either show smaller F3 values, or not so much increased F3 values.

Either way, that would suggest the change towards less lip rounding for GOAT is not

progressing as much in females.

As both the most selected models differ by only one term, the interaction between

Gender and Decade, we take a closer look at the traceplots for Gender, Decade and their

interaction in Figure 6.10. We observe from the traceplots that Gender is always included

in the model, and Decade is in the model almost always, with only small periods of the

sampler do we observe the coefficient is zero. The interaction between Gender and Decade

on F3 on the other hand is not often present in the active model. If we were to consider

a more parsimonious model by updating the hyperparameters on τ , it is likely we would

see this interaction removed from the active model.

To highlight how considering the hierarchical model with all formants is important, we

fit the GOAT vowel using each formant individually, assuming independence between the

formants. Figure 6.11 shows the three graphs obtained for F1, F2 and F3 independently.

We observe that F1 matches well with the best graphs in Figure 6.9, selecting only Age.

For F2, we observe Gender has now been included, and is selected 90% of the time.

This does not match with the full graphical models, with Gender only appearing in the

fourth best model, of posterior probability 6.4%. For F3, we observe that Gender and

Decade are selected, matching well with the best full graphs. We note that the posterior

probability for this graph is 60%, which is low compared to the graphs for F1 and F2.

This is due to the interaction between Gender and Decade being selected at other points

in time within the sampler.
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Figure 6.10: Traceplots for Gender, Decade and Gender:Decade interaction
Traceplots for the Gender, Decade and Gender:Decade coefficents on F3 for the GOAT
vowel for 10,000 iterations. We observe that Gender is selected always within the model,
with Decade also selected frequently. The interaction between both is selected for incon-
sistent periods in the sampler.
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Figure 6.11: Graphs obtained for GOAT vowel for F1, F2 and F3 Graphs
obtained for the GOAT vowel for 10,000 iterations fitting to each formant independently.
We observe that Gender is now a significant term for F2, when it is not selected by the
top models in Figure 6.9. The much lower posterior probability for the F3 model is due
to the interaction between Decade and Gender at times being selected.
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6.4 Discussion

In this chapter, we have introduced a novel inference tool which looks to combine the

output of a Bayesian hierarchical model and present it as a graphical model, through a

chain graph model structure. By implementing the hierarchical model in Chapter 3 and

using the mixing modifications discussed in Chapter 4, we have been able to produce

graphs for the Sounds of the City corpus for the raw formant measurements on F1, F2

and F3 and the Lobanov normalised measurements on F1 and F2, as shown in Appendix

??. Through the graphical model, it is straightforward to see instantly which variables

have a direct influence on vowel variation and change for this corpus.

Although we have applied this model specifically to the Sounds of the City corpus, it is

imperative to highlight that this approach can be easily applied to any linguistic corpora,

indeed whether it be on vowel change or any other linguistic phenomenon with multiple

response variables. Good examples are fricatives like /s/, which are often characterised

through 3 or 4 dependent variables, or stop sounds like /p/, which again are viewed using

more than one acoustic variable. This modelling approach can easily be applied to data

problems of a similar construct to the Sounds of the City corpus and provides a simple

to understand representation of what can be in some cases vast and complex levels of

output.
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Chapter 7

Graphical Model Output -

Sociolinguistic Discussion of Results

In this chapter, we discuss some of the results obtained from the models obtained from

the corpus and fitted using the Bayesian hierarchical model. We look at how each of the

vowel sounds have changed within the Sounds of the City corpus, and how these compare

to the results obtained in Stuart-Smith et al. (2017), and comparing results between the

raw formant data and the Lobanov normalised data. We also identify new questions of

interest that have been identified through this modelling for sociolinguists to research

further.

7.1 Sounds of the City Corpus - Results

Looking at the results shown within this chapter, where for each vowel we fit the Bayesian

hierarchical model to the raw mean formant values for F1, F2 and F3 and the Lobanov

normalised formant values for F1 and F2. Each model was run for 10,000 iterations and

included the possible selection of all three-way interactions for each of the five predictor

variables. Each model was fit with the same prior specification as used in Section 2.2.

The four most selected models by posterior probability are shown for each vowel.

In Stuart-Smith et al. (2017), the vowels that were identified as changing within

Glasgow over time were the BOOT, COT and GOAT vowels. The equivalent vowels we
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7. Corpus Discussion

observe in our results are the FOOT, GOOSE, LOT and GOAT vowels, where FOOT and

GOOSE correspond to BOOT for Glaswegian speakers. In the new analyses presented

here, raw F1, F2, F3 were modelled together as response variables. The results obtained

were based on models run for F1 and F2 individually, assuming independence between

the formants. From these results, we note several interesting new findings. For the FOOT

vowel, Decade is a significant variable for most of the models, but it is always significant

in F3. This differs from the results in Stuart-Smith et al. (2017), mainly as no modelling

has been considered on F3, with only F1 and F2 formant measures considered, but also

because the new modelling considers all three formants together. An overall new finding

is a shift from the role of F1 (relating to lowering and raising of the vowels) to F3 (relating

to changes in lip position). This is different for the GOOSE vowel, where Decade is again

significant, but in F2 this time.

The findings for the FOOT vowel highlight the possible increase in complexity when

discussing interpretation of the results in a sociolinguistic sense. Changes in F3 are linked

to rounding of the lips, with more rounding present resulting in a lowering of formant

measurements. For the FOOT vowel, we observe an increase in frequency for speakers

obtained from 2000s recordings. This would indicate that less lip rounding is taking place

now as opposed to previous decades, showing linguistic variation over time. This finding

is entirely new: all previous work to date on the SoTC corpus has failed to capture aspects

of vowel variation and change related to lip rounding. For GOOSE, the change in Decade

is taking place within F2, which that the front/back position of the tongue during the

vowel, with an increase in F2 indicating more fronting of the tongue. We observe an

increase in F2 for 2000s recorded speakers, indicating that this vowel is fronting for these

speakers. Again, this is a new finding with respect to existing SoTC analysis.

For the GOAT vowel, we again observe a prominent inclusion of Decade for F3, as

opposed to F1 or F2. We see an increase in frequency for F3 for speakers from 2000s

recordings, indicating less lip rounding than was found in previous decades. For the LOT

vowel, we again observe a similar pattern, with the Decade term being significant in F3,

with speakers from the 2000s showing increases in formant frequency. This means that

for all three vowels shown by previous modelling to be changing with respect to vowel

height (F1), we now find once correlations between the three formants are controlled for,
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7. Corpus Discussion

that changes with respect to lip position (F3) may be even more important. Changing

to multiple response modelling fundamentally shifts the possible perspective on variation

and change in these vowels.

General features that can be noted for all of the vowel formants, raw and normalized

measures, is the significance of the Gender coefficient, which is a significant term for every

vowel, indicating that Gender is one of the important impactors on vowel variation and

change in this corpus. Note that the presence of Gender as a significant factor for both

raw and normalised formant measures shows that Gender here has to be acting as a factor

above and beyond physiological differences influencing vowel formants. Considering the

formants also, most raw formant measure models show a fully connected graph present

between the formants, indicating that there is indeed a correlation present between them

all for each vowel, again highlighting the need to consider a model which can consider

multiple response variables.

Another interesting observation is now the inclusion of Decade for several other vowels

which is of interest because these vowels (FLEECE, FACE and TRAP/BATH (CAT))

were not thought to be changing. This could possibly be due to the more complex

modelling we implement, finding relationships that could not be observed before. It is also

possible that due to the models being fitted having to consider all three-way interactions,

we have not fully explored the model space efficiently in the number of iterations, and a

longer chain may have to be run in order to explore the full model space more thoroughly.

This is reflected in the small posterior probabilities often observed for the most selected

models, with one model seldom selected more often than the other options.

Looking closer at the Lobanov normalised vowel results in comparison to the raw

formant measures, we observe several differences. Firstly, the models here only consider

F1 and F2, so the results are not directly comparable with the raw formant results. For

the GOOSE vowel, we observe a prominent significance for Decade across all models,

which ties in with the result shown for the BOOT vowel shown in Chapter 2. For

FOOT, we do not observe any notable Decade effect in the first three models obtained,

with Following and Preceding Place of Articulation being more prominent indicators of

vowel quality change, as with Age. LOT and GOAT also do not show any prominent

Decade effect, though the LOT vowel models all have relatively low posterior probability.
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GOAT appears to be more influenced by the social factors Gender and Age and also both

linguistic factors. For the remaining vowels, Decade does appear as a significant term

occasionally, though once again the models have low posterior probability. There is also

another very clear difference: the BATH and GOAT models do not show correlation

between F1 and F2. The reasons for this, with respect to the raw F1, F2, and F3 models,

are not immediately clear. Comparison with models of just raw F1 and F2 formants may

be informative.

Due to the design of the Sounds of the City corpus, and recordings being made on

spontaneous speech, it is difficult to obtain an equally balanced sample size of vowels.

For example, the BATH vowel contains only 327 observations, which is significantly

smaller than the remaining vowels and could explain the peculiar difference in models

observed for this vowel. Another point to note is that due to the design of the study,

we obtain many observations on an individual speaker, which gives us a good indicator

of the individual’s speech characteristics, but have a relatively small sample of different

speakers across different groups. This lack of available information within the data could

also explain some of the varying results we observe.

7.2 Raw Mean Formant Results

Here, we provide the graphical models obtained for vowels based on their raw mean

formant values for F1, F2 and F3. The models obtained were ran for 5,000 iterations of

the sampler and included all three-way interactions for each of the five predictor variables.

The prior specifications for all hyperparameters are set to the same specification as the

models fitted in Section 3.2.2. The best four models by posterior probability are shown

for each vowel.
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Figure 7.1: BATH vowel for raw mean formants.
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Figure 7.2: FACE vowel for raw mean formants.
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Figure 7.3: FLEECE vowel for raw mean formants.
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Figure 7.4: FOOT vowel for raw mean formants.
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Figure 7.5: GOAT vowel for raw mean formants.
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Figure 7.6: GOOSE vowel for raw mean formants.
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Figure 7.7: LOT vowel for raw mean formants.
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Figure 7.8: TRAP vowel for raw mean formants.
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7.3 Lobanov Normalised Formant Results

Here, we provide the graphical models obtained for vowels based on their Lobanov nor-

malised formant values for F1 and F2. The models obtained were ran for 5,000 iterations

of the sampler and included all three-way interactions for each of the five predictor vari-

ables. The prior specifications for all hyperparameters are set similarly to the specification

in Section 3.2.2, though we specify different values for al and bl, namely al = bl = 1× 10−2.

The best four models by posterior probability are shown for each vowel.
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Figure 7.9: BATH vowel for Lobanov normalised formants.
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Figure 7.10: FACE vowel for Lobanov normalised formants.
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Figure 7.11: FLEECE vowel for Lobanov normalised formants.
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Figure 7.12: FOOT vowel for Lobanov normalised formants.
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Figure 7.13: GOAT vowel for Lobanov normalised formants.
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Age

Preceding.POA

Following.POA

Posterior probability of model: 13.4%

●

F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 12.3%

●

F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 7.9%

Figure 7.14: GOOSE vowel for Lobanov normalised formants.
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F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 8.8%

F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 5.2%

F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 4.7%

● F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 4.3%

Figure 7.15: LOT vowel for Lobanov normalised formants.

132



7. Corpus Discussion

F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 8.1%

F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 5.4%

F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 5.1%

F1.mean.lobanov

F2.mean.lobanov

gender

Decade

Age

Preceding.POA

Following.POA

Posterior probability of model: 5%

Figure 7.16: TRAP vowel for Lobanov normalised formants.
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7. Corpus Discussion

7.4 Discussion

In this chapter, we have provided a brief discussion of the results obtained fitting the

Bayesian hierarchical model to the Sounds of the City corpus, and how these results

differ from the findings in Stuart-Smith et al. (2017). We have identified several key

points of interest, most notably the presence of significant effects in F3 for raw mean

formant data, which have not been considered in this corpus study and could lead to

potential future studies of interest.
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Chapter 8

Conclusions and Further Work

The aim of this thesis has been to extend upon quantitative methods used within vari-

ationist sociolinguistic experiments to allow for more complete modelling by permitting

the use of several linguistic variables on one observation. Based on this objective, we have

created a Bayesian hierarchical model in Section 3.1.3 which allows for multiple response

variables, which are here applied to multiple formant measurements from a particular

vowel. Problems caused by nested designs, a common feature in linguistic corpora, in

terms of poor MCMC mixing are alleviated with a modified sampler, shown in Figure

4.13, which includes additional steps for hierarchical centering and parameter expansion.

The output from the Bayesian hierarchical model is then presented using a chain graph

model like structure, constructed using a novel inference method combining hierarchical

model output and Bayesian Gaussian graphical models. By implementing this method,

we improve the readability of the hierarchical model output, which in turn increases the

attractiveness of this new method to be implemented by sociolinguists. The following

sections summarise the work that has taken place in this thesis and additional proposals

for further work in this area.

8.1 Methodological Advances

The methodological advances from this work can be broadly split into two parts; the

Bayesian hierarchical model and its mixing improvements as discussed in Chapters 3 and

4. The chain graph model structure visualisation and Bayesian Gaussian graphical model

selection for multiple precision matrices are discussed in Chapters 5 & 6.
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8.1.1 Bayesian hierarchical model with mixing improvements

In Section 3.1.3, we introduce the general structure of the Bayesian hierarchical model,

which allows for multiple response variables, with a visual representation of the hier-

archical model in the form of a probabilistic graphical model which can be found in

in Figure 3.1. The Bayesian hierarchical model is similar in structure to the classical

mixed effects models used in sociolinguistic studies (Johnson, 2009), but has two exten-

sions: firstly, the expansion to allow for multiple response variables and secondly, we

have now expressed the model in a Bayesian paradigm. Both extensions are extremely

beneficial, with the multiple response modelling now allowing for several formants to be

modelled simultaneously, taking into consideration the correlation present between the

formant measurements and thus obtaining a more accurate representation of which un-

derlying factors are contributing to vowel change. The move into a Bayesian framework

is beneficial mainly for the chain graph model extension, allowing us to implement the

G-Wishart prior for the precision estimates to obtain the Bayesian Gaussian graphical

model, modelling the relationship between response variables.

In the remainder of Chapter 3, we applied the hierarchical model to the Sounds of

the City corpus where we observed several issues with the mixing of parameters in the

MCMC output. Two mixing issues were observed: firstly, due to the nested design of the

corpus, fixed effects were nested within random effects, namely the social factors gender,

age and decade of recording which are nested within the speaker and also the linguistic

factors of following and preceding place of articulation of consonants within the word

choice. This leads to extremely poor mixing between the fixed effect and random effect

coefficients. Another issue was identified in the mixing of the precision estimates for word

choice, where the sampler was often found to be getting stuck around smaller values. This

also impacted the relevant random effects coefficients, where the trace variance for the

coefficients would ’shrink’ when the precision sampler was trapped at small values.

Chapter 4 focussed on addressing these mixing issues through the implementation of

reparameterisation methods within the MCMC. Hierarchical centering (Gelfand et al.,

1995) was used to address the poor mixing observed through the nested coefficients. This

step involves forming δ̃k = X̃δ̃k
β̃δ̃k

+ Ũkb̃k, where β̃δ̃k
is the set of coefficients which are
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8. Conclusion

nested within the random effect b̃k. From this, we can sample β̃δ̃k
conditional on X̃δ̃k

.

Performing this step reduces the correlation present within the sampler, and allows us

to explore the parameter space more freely and converge to the target distribution in

fewer samples. The improvements on the corpus data by implementation of this step are

shown in Section 4.1.3. Secondly, we implement a step influenced by parameter expansion

to address the poor mixing observed in the precision estimate for the word choice effect,

where the sampler was often stuck at zero. We implemented an adaptation of the method

proposed in Gelman et al. (2008) which works well in a practical MCMC setting. We

sample αm ∼ G (aαm, bαm) for each random effect m with poor precision mixing. We then

define b̃
∗

g = αb̃g and Ω∗

b̃g
= αΩb̃g

. A Metropolis-Hastings step is then performed whether

to accept or reject the modified parameters over the current model parameters. Section

4.2.2 shows this applied to the Sounds of the City corpus, where we again observe a slight

improvement in the mixing of the precision and random effects coefficient mixing.

By implementing the mixing improvements, the Bayesian hierarchical model is now

able to perform MCMC more efficiently, which leads to a significant reduction in compu-

tational time, which is a key point in order to promote this approach as a usable tool for

sociolinguistic analysis.

8.1.2 Chain graph model visualisation

The second development we have implemented was introduced in Chapters 5 & 6, where

we introduce a new inference tool that combines a Bayesian hierarchical model and vi-

sualises the output as a chain graph model like structure, jointly inferring a Bayesian

Gaussian graphical model to model the relationship between the response variables. The

main point of development within this chapter was Bayesian Gaussian graphical model

selection for the response variable graph in Chapter 5. Many algorithms exist for Gaus-

sian graphical model selection, and are discussed in depth in Section 5.3. In order to

jointly infer the relationship using output from the hierarchical model, we must use the

precision estimates from the model, which provide the information to best model the

undirected graph. The initial drawback we had for this was that all selection algorithms

consider only one precision input at a time. Due to this, we formed the modified PAS
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algorithm (5.3), based on the PAS algorithm of Wang and Li (2012). Using this algorithm

and also implementing factorisation properties for chordal graphs, we have constructed

a Gaussian graphical model selection algorithm that can be implemented for multiple

precision inputs.

The final step involved updating the Bayesian hierarchical model to allow for Gaus-

sian graphical model selection. The main change here comes from the update in prior

distributions for the precisions, changing from the Wishart distribution to the G-Wishart

distribution. The updated posteriors are shown in Section 6.2.1 and also visualised in

Figure 6.6. From this update, we have obtained graphs for the Sounds of the City corpus

which are shown in Chapter 7, where the best four graphs by posterior probability are

shown for each vowel for both the raw mean formant measurements and the Lobanov

normalised measurements.

8.2 Sociolinguistic Advances

In terms of direct advances for variationist sociolinguistic studies, we have introduced a

new statistical tool that can be easily applied to a variety of corpora. Previous studies

on the Sounds of the City corpus (Stuart-Smith et al., 2017) considered models only

capturing one formant measurement per time on vowel sounds. As we have observed

in Section 6.3.2, without modelling all formant measures together, it is possible we can

observe relationships between fixed effects and formants that could be weaker than if we

considered all formants in the same model. The inclusion of inter-model selection within

the hierarchical model also removes the need to fit multiple models to the corpus, which

increases time in terms of model fitting and additional interpretation.

The chain graph visualisation provides a clear picture of the underlying model, which

helps provide an instantaneous image of what factors are influencing vowel variation and

change. The chain graph output also acts as an incentive for sociolinguists to implement

the models we have discussed, as the visualisation helps to give a clear initial impression

of the model output. Without the addition of the graph, the increased complexity in

modelling could possibly have discouraged users from implementing the model.
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8.3 Further Work

The Bayesian hierarchical model developed provides a clear improvement on the sin-

gle response mixed effects models used in many sociolinguistic corpus studies, with the

chain graph model visualisation providing a useful tool for an initial impression of the

model output. However, we can improve on the hierarchical model specification and the

graphical model visualisation even further.

One of the key points to highlight from the development of the hierarchical model and

resulting chain graph style visualisation is how this model can be applied to any mixed

effects problem, not just to sociolinguistic data. In order to develop further on this

point, a natural step would be to produce a R package from the constructed model, using

the model code generated (which can be found here https://github.com/calex1991/

BayesCGModels). Another extension could be to provide an interactive web based ap-

plication using Shiny, which could take the hierarchical model output and produce an

interactive graph with extensions beyond the current graphs, namely inclusion of sum-

mary statistics of model parameters and a clearer visualisation of the inclusion of a term

within the model.

Another extension which could be considered is further development on variable selec-

tion within the hierarchical model. This could be expanded twofold, firstly, with variable

selection considered for random effects. This is perhaps not an issue for linguistic corpora,

where speaker and word choice almost always have a significant effect within models, but

for different data problems, this could be an issue. Different variable selection methods

could also be considered in general, compared to the current implementation in Section

3.1.5.

The Bayesian Gaussian graphical model selection can also be studied in further detail.

With a wealth of algorithms being developed in the past few years, improvements are

being made in the field constantly. The work of Wit and Mohammadi (2015) uses Birth-

Death MCMC (BDMCMC) to select the best fitting graph to observed data. Results

produced using this method suggest that it outperforms many other model search algo-

rithms, including the PAS algorithm which we have adapted from for the modified PAS

algorithm implemented currently. Further research into these methods and feasibility
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of expansion to the multiple precision case could lead to improvement in computational

times and model fitting.
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Appendix A

Posterior Distributions

In this appendix, we shall derive the conditional distributions shown in Sections 3.1.6

4.1.2 and 6.2.1 which are used to sample from the Bayesian hierarchical model, the hier-

archical model with added hierarchical centering and parameter expansion based mixing

improvements and the hierarchical model embedded in the chain graph structure respec-

tively.

A.1 Derivation of Posteriors

Here, we show how the conditional distributions for each of the samplers are obtained by

using standard results for Gaussian distributions as discussed in Bishop (2006).

If we have a marginal Gaussian distribution for x and a conditional Gaussian distri-

bution for y given x which is in the form

p(x) = N(x∣µ,Λ−1) (A.1)

and

p(y∣x) = N(y∣Ax + b,L−1
) (A.2)

then the marginal distribution of y, and the conditional distribution of x given y, are
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given by

p(y) = N(y∣Aµ + b,L−1
+AΛ−1A⊺

) (A.3)

and

p(x∣y) = N(x∣Σ{A⊺L(y − b) +Λµ},Σ) (A.4)

where

Σ = (Λ +A⊺LA) (A.5)

A.2 Standard Bayesian hierarchical model

The conditional distributions derived here are laid out in a similar fashion to Section

3.1.6 which details the sampler for the standard Bayesian hierarchical model which is

presented in a general form for multiple random effects and multiple response variables.

Using the standard results for conditional Gaussian distributions discussed in Section A.1

and from Figure 3.1, we compute the conditional distributions for β̃η̃ and b̃,, where θ is

defined as a vector of all the model parameters and hyperparameters:

β̃η̃ ∣ θ
∖β̃η̃

∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))N (β̃η̃ ∣ 0,V−1)

β̃η̃ ∣ θ
∖β̃η̃

∝ N (β̃η̃ ∣ [X̃⊺ΣεX̃ +V]
−1

X̃⊺Σεỹβ̃, [X̃
⊺ΣεX̃ +V]−1)

(A.6)

where we define Σε = (Ω−1
ε ⊗ I), X̃η̃ = blockdiag(X1

η1 , ...,X
L
ηL), and ỹβ̃ = y − Ũb̃.

b̃ ∣ θ
∖b̃ ∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1

ε ⊗ I))N (b̃ ∣ 0,Σb̃)

b̃ ∣ θ
∖b̃ ∝ N (b̃ ∣ [Ũ

⊺

ΣεŨ +Σb̃]
−1

Ũ
⊺

Σεỹb̃, [Ũ
⊺

ΣεŨ +Σb̃]
−1
)

(A.7)

where we define Ũ = blockdiag (U1, . . . ,UL), Σb̃ = blockdiag (Ωb̃1
, . . . ,Ωb̃G

), and ỹb̃ =

y − X̃β̃.
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We can then obtain the conditional distributions for the precision parameters:

Ωb̃g
∣ θ∖Ωb̃g

∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))W (Ωb̃g

∣ νbg ,Sbg)

Ωb̃g
∣ θ∖Ωb̃g

∝W
⎛
⎜
⎝
Ωb̃g

∣ nb̃g
+ νb̃g

,

⎡
⎢
⎢
⎢
⎢
⎣

S−1
b̃g
+

nb̃g

∑
i=1

b̃gib̃
⊺

gi

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎞
⎟
⎠

(A.8)

where we sample each Ωb̃g
for each group g.

Ωε ∣ θ∖Ωε ∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))W (Ωε ∣ νε,Sε)

Ωε ∣ θ∖Ωε ∝W
⎛

⎝
Ωε ∣ n + νε, [S

−1
ε +

n

∑
i=1

ε̂iε̂
⊺

i ]

−1
⎞

⎠

(A.9)

where ε̂ = y − X̃β̃ − Ũb̃.

We then sample the prior variance parameter τ for the fixed effects coefficients β̃η̃

τl ∣ θ∖τl ∝ N (β̃η̃l
∣ 0, τlI)G(τl ∣ al, bl)

τl ∣ θ∖τl ∝ G (τl ∣ al +
∣∣βlη̃l

∣∣

2
, bl +

∑
p
m=1 (β

l
m)

2

2
)

(A.10)

where we sample for each l separately and form τ = (τ1, . . . , τl).

A.3 Bayesian hierarchical model with efficient

sampling of β̃ and b̃

The conditional distributions derived here are similar to those in 3.1.6 which details

the sampler for the standard Bayesian hierarchical model, but here we propose different

samplers for β̃η̃ and b̃. Instead of sampling all the parameters in one block, we instead

sample for βlη̃ and b̃g,h, where h = 1, . . . ,H is the level of the corresponding random effect

g. Using the standard results for conditional Gaussian distributions discussed in Section
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A.1 we compute the conditional distributions for β̃η̃ and b̃, where θ is defined as a vector

of all the model parameters and hyperparameters:

βlηl ∣ θ∖βl
ηl
∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1

ε ⊗ I))N (β̃η̃ ∣ 0,V−1)

βlηl ∣ θ∖βl
ηl
∝ N

⎛

⎝
β̃ηl ∣ [ωj,jX

⊺

ηlXηl +
1

τ 2
l

I]

−1

X⊺

ηlzβl , [ωj,jX
⊺

ηlXηl +
1

τ 2
l

I]

−1
⎞

⎠

(A.11)

where we define zβl = ωj,jyl + ∑
k≠l
k=1 ωj,k (y

k −Xηkβk). Model selection is now performed

on each level of βl in turn.

b̃g,h ∣ θ
∖b̃g,h

∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))N (b̃ ∣ 0,Σb̃)

b̃g,h ∣ θ
∖b̃g,h

∝ N (b̃g,h ∣ [Ωb̃g
+ nb̃g,h

Ωε]
−1
nb̃g,h

Ωεȳb̃g,h
, [Ωb̃g

+ nb̃g,h
Ωε]

−1
)

(A.12)

where we define ȳb̃g,h
= ȳb̃g,h

− X̃β̃ − Ũb̃−g b̃b̃−g , where b̃−g denotes b̃ excluding group g

and ȳb̃g,h
is the mean value calculated for yb̃g,h

for each response level l.

We can then obtain the conditional distributions for the precision parameters:

Ωb̃g
∣ θ∖Ωb̃g

∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))W (Ωb̃g

∣ νbg ,Sbg)

Ωb̃g
∣ θ∖Ωb̃g

∝W
⎛
⎜
⎝
Ωb̃g

∣ nb̃g
+ νb̃g

,

⎡
⎢
⎢
⎢
⎢
⎣

S−1
b̃g
+

nb̃g

∑
i=1

b̃gib̃
⊺

gi

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎞
⎟
⎠

(A.13)

where we sample each Ωb̃g
for each group g.

Ωε ∣ θ∖Ωε ∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))W (Ωε ∣ νε,Sε)

Ωε ∣ θ∖Ωε ∝W
⎛

⎝
Ωε ∣ n + νε, [S

−1
ε +

n

∑
i=1

ε̂iε̂
⊺

i ]

−1
⎞

⎠

(A.14)

where ε̂ = y − X̃β̃ − Ũb̃.

144



We then sample the prior variance parameter τ for the fixed effects coefficients β̃η̃

τl ∣ θ∖τl ∝ N (β̃η̃l
∣ 0, τlI)G(τl ∣ al, bl)

τl ∣ θ∖τl ∝ G (τl ∣ al +
∣∣βlη̃l

∣∣

2
, bl +

∑
p
m=1 (β

l
m)

2

2
)

(A.15)

where we sample for each l separately and form τ = (τ1, . . . , τl).

A.4 Bayesian hierarchical model with hierarchical

centering and parameter expansion

The conditional distributions derived here are laid out in a similar fashion to Section 4.1.2

which details the sampler for the standard Bayesian hierarchical model with modifications

for the hierarchical centering step and the simplification of the parameter expansion step..

Using the standard results for conditional Gaussian distributions discussed in Section A.1

and from Figure 4.5, we compute the conditional distributions for β̃η̃ and b̃, where θ is

defined as a vector of all the model parameters and hyperparameters:

βlηl ∣ θ∖βl
ηl
∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1

ε ⊗ I))N (β̃η̃ ∣ 0,V−1)

βlηl ∣ θ∖βl
ηl
∝ N

⎛

⎝
β̃ηl ∣ [ωj,jX

⊺

ηlXηl +
1

τ 2
l

I]

−1

X⊺

ηlzβl , [ωj,jX
⊺

ηlXηl +
1

τ 2
l

I]

−1
⎞

⎠

(A.16)

where we define zβl = ωj,jyl + ∑
k≠l
k=1 ωj,k (y

k −Xηkβk). Model selection is now performed

on each level of βl in turn.

b̃g,h ∣ θ
∖b̃g,h

∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))N (b̃ ∣ 0,Σb̃)

b̃g,h ∣ θ
∖b̃g,h

∝ N (b̃g,h ∣ [Ωb̃g
+ nb̃g,h

Ωε]
−1
nb̃g,h

Ωεȳb̃g,h
, [Ωb̃g

+ nb̃g,h
Ωε]

−1
)

(A.17)
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where we define ȳb̃g,h
= ȳb̃g,h

− X̃β̃ − Ũb̃−g b̃b̃−g , where b̃−g denotes b̃ excluding group g

and ȳb̃g,h
is the mean value calculated for yb̃g,h

for each response level l.

We now define the conditional distribution for fixed effects coefficients which are

nested within specific random effects:

β̃δ̃k
∣ θ

∖β̃δ̃k
∝ N (δ̃k ∣ X̃δ̃k

β̃δ̃k
,Ω−1

b̃k
)N (β̃δ̃k

∣ 0,V−1)

β̃δ̃k
∣ θ

∖β̃δ̃k
∝ N (β̃δ̃k

∣ ∣ [X̃
⊺

δ̃k
Ωb̃k

X̃δ̃k
]
−1

X̃
⊺

δ̃k
Ωb̃k

δ̃k [X̃
⊺

δ̃k
Σb̃k

X̃δ̃k
]
−1
)

(A.18)

We sample here for each nested block of coefficients β̃δ̃k
for each k, where

X̃δ̃k
= blockdiag (X1

δ̃k
, . . . ,Xl

δ̃k
), and δ̃k = X̃δ̃k

β̃δ̃k
+ Ũkb̃k.

We can then obtain the conditional distributions for the precision parameters:

Ωb̃g
∣ θ∖Ωb̃g

∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))W (Ωb̃g

∣ νbg ,Sbg)

Ωb̃g
∣ θ∖Ωb̃g

∝W
⎛
⎜
⎝
Ωb̃g

∣ nb̃g
+ νb̃g

,

⎡
⎢
⎢
⎢
⎢
⎣

S−1
b̃g
+

nb̃g

∑
i=1

b̃gib̃
⊺

gi

⎤
⎥
⎥
⎥
⎥
⎦

−1
⎞
⎟
⎠

(A.19)

where we sample each Ωb̃g
for each group g.

Ωε ∣ θ∖Ωε ∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))W (Ωε ∣ νε,Sε)

Ωε ∣ θ∖Ωε ∝W
⎛

⎝
Ωε ∣ n + νε, [S

−1
ε +

n

∑
i=1

ε̂iε̂
⊺

i ]

−1
⎞

⎠

(A.20)

where ε̂ = y − X̃β̃ − Ũb̃.

We then sample the prior variance parameter τ for the fixed effects coefficients β̃η̃

τl ∣ θ∖τl ∝ N (β̃η̃l
∣ 0, τlI)G(τl ∣ al, bl)

τl ∣ θ∖τl ∝ G (τl ∣ al +
∣∣βlη̃l

∣∣

2
, bl +

∑
p
m=1 (β

l
m)

2

2
)

(A.21)

where we sample for each l separately and form τ = (τ1, . . . , τl).
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For the parameter expansion step, we perform a Metropolis-Hastings step on the

random effect precision Ωb̃m
and coefficients b̃m by sampling αm from the following

distribution:

αm ∝ G (aα, bα) (A.22)

We define b̃
∗

g = αb̃g and Ω∗

b̃g
= αΩb̃g

and accept the move with probability

φ =
q(α)N (y∣X̃β̃ + Ũb̃g,Ω−1

ε )N (b̃g ∣0,Ω
−1
b̃g

)W (Ω−1
b̃g

∣νb̃g
,Sb̃g

)

q(1/α)N (y∣X̃β̃ + Ũb̃
∗

g ,Ω
−1
ε )N (b̃

∗

g ∣0,Ω
−1

b̃g
∗)W (Ω−1

b̃
∗
g
∣ν

b̃
∗
g
,S

b̃
∗
g
)

∣J∣ (A.23)

where ∣J∣ = α∣∣b̃g∣∣+(L(L+1)) and ∣∣b̃g∣∣ is the length of b̃g. The additional expression

L(L + 1) comes from the number of terms present in the covariance matrix which is of

dimension L ×L.

The parameter update is accepted if u < φ, where u ∼ U(0,1).

A.5 Bayesian chain graph hierarchical model

The conditional distributions derived here are laid out in a similar fashion to Section 6.2.1

which adapts upon the mixing sampler by allowing for Bayesian Gaussian graphical model

selection, with updates on the precision estimates, with adjustments for the G-Wishart

distribution. Using the standard results for conditional Gaussian distributions discussed

in Section A.1 and from Figure 6.6, we compute the conditional distributions for β̃η̃ and

b̃, where θ is defined as a vector of all the model parameters and hyperparameters:

βlηl ∣ θ∖βl
ηl
∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1

ε ⊗ I))N (β̃η̃ ∣ 0,V−1)

βlηl ∣ θ∖βl
ηl
∝ N

⎛

⎝
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1

τ 2
l
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−1

X⊺
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⊺

ηlXηl +
1

τ 2
l

I]
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⎞

⎠

(A.24)
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where we define zβl = ωj,jyl + ∑
k≠l
k=1 ωj,k (y

k −Xηkβk). Model selection is now performed

on each level of βl in turn.

b̃g,h ∣ θ
∖b̃g,h

∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))N (b̃ ∣ 0,Σb̃)

b̃g,h ∣ θ
∖b̃g,h

∝ N (b̃g,h ∣ [Ωb̃g
+ nb̃g,h

Ωε]
−1
nb̃g,h

Ωεȳb̃g,h
, [Ωb̃g

+ nb̃g,h
Ωε]

−1
)

(A.25)

where we define ȳb̃g,h
= ȳb̃g,h

− X̃β̃ − Ũb̃−g b̃b̃−g , where b̃−g denotes b̃ excluding group g

and ȳb̃g,h
is the mean value calculated for yb̃g,h

for each response level l.

We now define the conditional distribution for fixed effects coefficients which are

nested within specific random effects:

β̃δ̃k
∣ θ

∖β̃δ̃k
∝ N (δ̃k ∣ X̃δ̃k

β̃δ̃k
,Ω−1
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∣ 0,V−1)

β̃δ̃k
∣ θ

∖β̃δ̃k
∝ N (β̃δ̃k

∣ ∣ [X̃
⊺

δ̃k
Ωb̃k

X̃δ̃k
]
−1

X̃
⊺

δ̃k
Ωb̃k
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X̃δ̃k
]
−1
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(A.26)

We sample here for each nested block of coefficients β̃δ̃k
for each k, where

X̃δ̃k
= blockdiag (X1

δ̃k
, . . . ,Xl

δ̃k
), and δ̃k = X̃δ̃k

β̃δ̃k
+ Ũkb̃k.

We can then obtain the conditional distributions for the precision parameters:

Ωb̃g
∣ θ∖Ωb̃g

∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
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(A.27)

where we sample each Ωb̃g
for each group g.

Ωε ∣ θ∖Ωε ∝ N (y ∣ (1⊗ I) β̃0 + X̃η̃β̃η̃ + Ũb̃, (Ω−1
ε ⊗ I))WG (Ωε ∣ νε,Sε)

Ωε ∣ θ∖Ωε ∝WG

⎛

⎝
Ωε ∣ n + νε, [S

−1
ε +

n

∑
i=1

ε̂iε̂
⊺

i ]

−1
⎞

⎠

(A.28)

where ε̂ = y − X̃β̃ − Ũb̃.
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We then sample the prior variance parameter τ for the fixed effects coefficients β̃η̃

τl ∣ θ∖τl ∝ N (β̃η̃l
∣ 0, τlI)G(τl ∣ al, bl)

τl ∣ θ∖τl ∝ G (τl ∣ al +
∣∣βlη̃l

∣∣

2
, bl +

∑
p
m=1 (β

l
m)

2

2
)

(A.29)

where we sample for each l separately and form τ = (τ1, . . . , τl).

For the parameter expansion step, we perform a Metropolis-Hastings step on the

random effect precision Ωb̃m
and coefficients b̃m by sampling αm from the following

distribution:

αm ∝ G (aα, bα) (A.30)

We define b̃
∗

g = αb̃g and Ω∗

b̃g
= αΩb̃g

and accept the move with probability

φ =
q(α)N (y∣X̃β̃ + Ũb̃g,Ω−1

ε )N (b̃g ∣0,Ω
−1
b̃g

)W (Ω−1
b̃g

∣νb̃g
,Sb̃g

)

q(1/α)N (y∣X̃β̃ + Ũb̃
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g ,Ω
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g ∣0,Ω
−1

b̃g
∗)W (Ω−1
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g
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)

∣J∣ (A.31)

where ∣J∣ = α∣∣b̃g∣∣+(L(L+1)) and ∣∣b̃g∣∣ is the length of b̃g. The additional expression

L(L + 1) comes from the number of terms present in the covariance matrix which is of

dimension L ×L.

The parameter update is accepted if u < φ, where u ∼ U(0,1).
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