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Abstract 

Haematopoietic	stem	cells	 (HSCs)	are	multipotent	stem	cells	with	the	capacity	 to	either	

self-renew	or	differentiate	into	oligolineage	progenitor	cells,	and	then	mature	blood	cells.	

HSCs	have	a	diverse	range	of	medical	applications,	and	HSC	transplantation	can	be	used	

to	 cure	 certain	 types	 of	 blood	 cancer	 including	 leukaemia	 and	 lymphoma.	 However,	

current	cell	culture	techniques	do	not	allow	for	the	long-term	culture	of	HSCs,	and	have	

restricted	the	extent	to	which	HSCs	numbers	can	be	expanded	in	the	laboratory.	Thus,	it	

is	 necessary	 to	 develop	 culturing	 techniques	 that	 allow	 for	 long-term	 culture	 and	

expansion	of	HSC	numbers	in	the	lab.	

	

HSCs	reside	in	the	bone	marrow	alongside	a	second	type	of	multipotent	stem	cell	termed	

mesenchymal	 stem	 cells	 (MSCs).	 Both	 cell	 types	 exist	 in	 a	 unique	 microenvironment	

called	 ‘the	 niche’,	 which	 is	 responsible	 for	 regulating	 differentiation,	 proliferation	 and	

maintenance	of	 these	stem	cells.	 It	 is	understood	 that	MSCs	associate	with	HSCs	 in	 the	

niche,	and	support	maintenance	of	 the	HSC	phenotype	by	expressing	HSC	maintenance	

factor	 transcripts.	Consequently,	developing	niche	models	 featuring	MSCs	has	been	 the	

focus	of	recent	research	aimed	at	achieving	the	long-term	culture	of	HSCs.	

	

Many	recent	studies	have	focused	on	incorporating	the	use	of	MSCs	and	soluble	growth	

factors	 in	the	media	of	MSC/HSC	co-cultures	to	promote	the	 long-term	culture	of	HSCs.	

However,	the	high	concentrations	of	media	growth	factors	required	to	elicit	responses	in	

HSC	long-term	repopulating	abilities	are	costly	and	have	been	shown	to	cause	off-target	

effects.	Use	of	substrate-bound	growth	factors	can	 induce	sustained	signalling,	meaning	

reduced	quantities	of	growth	factors	can	elicit	similar	responses	in	a	more-effective	way.	

	

This	study	has	focused	on	the	development	of	a	3D	 in	vitro	bone	marrow	niche	system,	

utilising	 a	 range	 of	 novel	 biomaterials	 including:	 a	 substrate	 composed	 of	 poly	 (ethyl	

acrylate)	 (PEA)	 substrate	 and	 fibronectin;	 a	 combination	 of	 substrate-bound	 growth	

factors;	 a	 monolayer	 of	 MSCs;	 a	 type	 I	 collagen	 gel	 capable	 of	 mimicking	 the	 elastic	

properties	 of	 the	 niche	 and	 a	 media	 capable	 of	 supporting	 an	 MSC/HSC	 co-culture.	

Results	show	the	potential	of	this	system	to	maintain	a	greater	number	of	HSCs	in	their	

stem	cell	state,	relative	to	controls.		
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Chapter 1 General Introduction 

1.1 Stem Cells 

At the end of the 19th century, the concept of stem cells began to develop based 

on the observation that some human tissues, such as skin, could self-renew 

throughout life. However, it was not until the 1908 meeting of the Congress of 

the Haematologic Society that the term stem cell was proposed for scientific use 

by Russian histologist, Alexander Maksimov (Bansal and Jain, 2015). Despite this 

early postulation of the existence of stem cells, their full potential did not begin 

to be understood until the 1960s, when Till and McCulloch published findings 

showing they had identified the first stem cells (Till and McCulloch, 1961). This 

conclusion was deduced from evidence showing that mice treated with 

supralethal radiation, could survive when bone marrow cells were intravenously 

injected. These cells were found to collect in the spleen in colonies, where the 

cells maintained their proliferative function.  Later, it was found that these cells 

could replace the cells killed by radiation and could self-renew in the same way, 

and that bone marrow transplants could cure diseases and ultimately save lives 

(Wu et al., 1967, Thomas et al., 1975). 

Although initial findings highlighted that stem cells possessed a key 

characteristic of being able to self-renew, these cells have a second important 

characteristic, which is their ability to differentiate (Thomson et al., 1998). Self-

renewal allows stem cells to produce daughter cells that remain in the 

undifferentiated state (see Figure 1-1)(Watt and Hogan, 2000). Conversely, 

differentiation results in stem cells producing daughter cells with different 

patterns of gene expression. These daughter cells, known as progenitor cells, are 

more specialised (Jaenisch and Young, 2008). Progenitor cells are able to 

differentiate into more than one specialised cell type, but have a less capacity 

for self-renewal when compared to stem cells (Krause et al., 2001). 
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Figure 1-1 Stem cell self-renewal and differentiation 
Stem cells have the capacity to undergo self-renewal, forming an identical copy of 
themselves, and also differentiation, whereby specialised and distinct cell types are formed. 

It is common practice to classify stem cells according to their developmental 

potential, which is termed “potency” (Jaenisch and Young, 2008). At the top of 

the potency hierarchy is the totipotent stem cell. Totipotent stem cells form in 

the zygote, directly following fertilisation, and have the capacity to produce 

embryonic and extra-embryonic cell types (Williams et al., 1988). Pluripotent 

stem cells are later found to exist in the inner cell mass of the blastocyst, and 

have the ability to differentiate into all cell types of the embryo proper (Wagers 

and Weissman, 2004). Other stem cell potency classifications include 

multipotent stem cells, which can differentiate into a subset of cell lineages, 

and oligopotent stem cells, which are further restricted in the cell lineages they 

can develop into.  

1.2 Haematopoietic Stem Cells 

Haematopoietic stem cells (HSCs) are multipotent stem cells that give rise to 

mature blood cells via the process of haematopoiesis (Sieburg et al., 2006). In 

early development, HSCs are found in the foetal liver, and later the spleen 

(Wang and Wagers, 2011). In adults, HSCs reside in a third set of locations within 

the femur, pelvis and sternum, in an area termed “the niche” (Schofield, 1978). 

HSCs are scarce cells, representing <0.005% of the total cell population in these 
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niches (Kiel et al., 2005). Such niches are microenvironments that provide a 

diverse range of signals that influence and regulate HSC behaviour. 

1.2.1 The Haematopoietic Cell Hierarchy 

HSCs represent a heterogeneous population of cells, in terms of their capacity to 

self-renew, differentiate and length of life. During a series of experiments 

carried out and published in 2008 by the lab of Irving Weissman, a hypothesis 

was proposed that suggested HSCs are heterogeneous and can exist at different 

points within a hierarchy model (Chao et al., 2008, Morrison and Weissman, 

1994). Cell surface marker expression assays and functional readout assays from 

this group and others were used to define a developmental hierarchy of HSCs. It 

was proposed that HSCs with lifelong self-renewal properties sat at the top of 

the hierarchy, and underwent mitosis to form multipoent progenitors (MPPs). 

Further downstream, it was proposed that the MPPs gave rise to oligopotent 

progenitors, known as common lymphoid progenitors and common myeloid 

progenitors (Figure 1-2) (Kondo et al., 1997, Akashi et al., 2000). 

 
Figure 1-2 The hierarchy of haematopoietic stem cells 
HSCs can exist as three different mulitpotent subtypes, referred to as long-term, short-term 
and multipotent progenitor HSCs. Differentiation of multipotent progenitor HSCs leads to 
the formation of common myeloid and lymphoid progenitors.  

Long-Term 
Repopulating HSC

Short-Term 
Repopulating HSC
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Progenitor HSC
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At present, it is most common to refer to HSCs in terms of their self-renewal 

capacity; HSCs can be sub-divided into two distinct populations known as short-

term repopulating HSCs (ST-HSCs) and long-term repopulating HSCs (LT-HSCs) 

(Figure 1-2) (Cheshier et al., 1999). LT-HSCs are greater in their capacity to 

repopulate, and can reconstitute an animal for its entire lifespan (Weissman, 

2000). Such HSCs are rich in clinical value and applicability and have been used 

in the treatment of a diverse range of pathologies including leukaemia and AIDS 

(Aversa et al., 2005, DiGiusto et al., 2010). Thus, these cells are of prime 

interest to the medical and scientific communities, striving to develop in-lab 

methods for the expansion of HSC populations for medical applications (Ivanova 

et al., 2002, Acar et al., 2015)  

1.2.2 The Identification of HSC Markers 

Despite the isolation of murine HSCs being a well-established process, the 

isolation of human HSCs has proven to be more challenging. It is understood that 

all mature haematopoietic cells express a mixture of mature lineage markers, 

and these cells are referred to as Lin positive (Lin+). Conversely, haematopoietic 

stem and progenitor cells do not express these lineage markers, and so are said 

to be Lin negative (Lin-) (Zhang et al., 2003).  The CD34 antigen was identified in 

1984 as a marker that could enrich for human haematpoietic stem and 

progenitor cells (HSPCs) (Civin et al., 1984, Visser et al., 1984). CD34 is the most 

commonly used antigen for the identification of HSCs in humans. However, due 

to the heterogeneous nature of these cells, exclusion of CD38 and CD45RA is 

normally also used in HSC isolation, as these markers are associated with more 

differentiated haematopoietic cell types (Terstappen et al., 1991, Lansdorp et 

al., 1990). Further to the expression of these cell surface antigens, CD90 

expression can also be used to determine how primitive a HSC is. In 1992, Baum 

and colleagues demonstrated that Lin-CD34+CD90+ could generate both lymphoid 

and myeloid progeny in vitro and in vivo, while cells that lacked CD90 (Lin-

CD34+CD90-) could not. It was proposed that these CD90+ cells are at the top of 

the haematopoietic hierarchy, while Lin-CD34+CD90- cells may be more indicative 

of multipotent progenitors. Human trials involving the transplantation of 

autologous peripheral blood have also demonstrated that only CD90+ cells give 

long-term engraftment (Michallet et al., 2000, Vose et al., 2001). 
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Although the different phenotypes of LT-HSCs and ST-HSCs of HSC have been 

characterised in mice and can be distinguished by their cell surface marker 

expression, such variation has not yet been characterised in humans. Currently, 

it is accepted that human short and long term repopulating HSCs, as well as 

MPPs, are phenotypically Lin- CD34+ CD38- CD90- CD45RA- (Table 1-1)(Majeti et 

al., 2007). However, it should be noted that ambiguity exists in the literature, 

and it has been proposed that CD34- cells also have multipotent potential 

(Osawa et al., 1996, Zanjani et al., 1998). 

Table 1-1 Cell surface marker expression associated with HSC hierarchy 
(Adapted from (Chao et al., 2008, Baldridge et al., 2010, Osawa et al., 1996)) 

Haematopoietic 
Cell Name 

Classification Human Phenotype Murine Phenotype 

Haematopoietic 
Stem Cell (HSC) 

multipotent Lin- CD34+ CD38- CD90+ 

CD45RA- 
Lin- Ckit+ Sca1+ 
Flk2- CD34- Slamf1+ 

Long-term 
repopulating HSC 

multipotent Lin- CD34+ CD38- CD90- 

CD45RA- 

 
 

Lin- Ckit+ Sca1+ 
Flk2- CD34+ Slamf1+ 

 

KSL, CD34−, Flk2− or 
KSL, CD150+ 

 

mCD34lo/−, c-Kit+, 
Sca-1+, 
 
 

Short-term 
repopulating HSC 

multipotent Lin- CD34+ CD38- CD90- 

CD45RA- 
Lin- Ckit+ Sca1+ 
Flk2- CD34- Slamf1- 

Multipotent 
progenitor (MPP) 
HSC 

multipotent Lin- CD34+ CD38- CD90- 

CD45RA- 
Lin- Ckit+ Sca1+ 
Flk2+ CD34- Slamf1- 

Common 
Lymphoid 
Progenitor (CLP) 

oligopotent Lin- CD34+ CD38+ CD10+ Lin- Flk2+ IL7Ra+ 
CD27+ 

Common Myeloid 
Progenitor (CMP) 

oligopotent Lin- CD34+ CD38+ 
IL3Ralow CD45RA- 

Lin- Ckit+ Sca1-/low 
CD34+ FcgRlow 
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1.2.3 Haematopoiesis 

Haematopoiesis is a continuous and dynamic process that results in the 

formation of blood cells. It is estimated that one trillion new blood cells are 

required daily to sustain adult life, and with the exception of certain 

lymphocytes, most blood cells have a very short life span and must be 

replenished regularly to maintain homeostasis (Ogawa, 1993). The continuous 

production of these blood cells is dependent on the differentiation of HSCs, 

found primarily in the adult bone marrow (Rodriguez-Fraticelli et al., 2018). 

Following differentiation to form common myeloid and common lymphoid 

progenitors, haematopoiesis then continues to produce a range of mature blood 

cells with specialised functions (Figure 1-3). 

 
Figure 1-3 The HSC differentiation tree 
Haematopoiesis is the process by which HSCs differentiate to form specialised 
haematopoietic cells. This process is dependent on HSCs first forming haematopoietic 
progenitors associated with differentiation lineages. These progenitors then give rise to 
specialised cell types with distinct functions . (Adapted from (Orkin and Zon, 2008)) 
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The mature blood cells produced from haematopoiesis have a diverse range of 

functions, from regulating blood clotting to carrying out immunological 

functions, as described in Table 1-2 (Orkin and Zon, 2008).  

 

Table 1-2 The biological functions of mature blood cells 

Mature Blood  
Cell Type 

Biological Function Reference 

erythrocyte 
 

the transportation of oxygen and 
carbon dioxide 
 

(Jensen, 2004) 

platelet 
 

blood clotting (Webb et al., 1998) 

basophil modulation of histamine release 
during inflammation 
 

(Hirai et al., 1988) 

eosinophil antiparisitic and bactericidal 
 

(Carreras et al., 2003) 

neutrophil defense against microbe infection 
 

(Jorgensen and Miao, 
2015) 

macrophage phagocytosis of pathogens 
 

(Savill et al., 1989) 

T cell death of infected cells 
 

(Hori et al., 2003) 

B cell antibody production 
 

(Köhler and Milstein, 
1975) 

natural killer cell cytotoxicity against infections 
and cancer 
 

(Trinchieri, 1989) 

 

Although many haematopoietic cells are required daily in normal circumstances, 

minor maladies resulting in acute blood loss or infection, demand that 

haematopoiesis takes place at an even greater rate to produce a sufficient 

number of platelets for blood clotting or a sufficient number of white blood cells 

to combat the infection (Ogawa, 1993). Thus, haematopoiesis is not only a 

continuous process, but it is also a dynamic process that is vital to sustaining 

life.  

1.2.4 The Clinical Demand for HSCs 

Haematopoietic stem cell transplants (HSCTs) are often performed for patients 

with cancers of the blood or bone marrow, and is recognised as a potentially 

curative treatment for over 70 haematologic cancers (Bensinger et al., 2001). 
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Since the first successful series of HSCTs were carried out in the 1950s, the 

incidences of early transplant mortality have been shown to decline, correlating 

with the increased numbers of HSCT survivors (Thomas et al., 1959, Bhatia et 

al., 2007, Clark et al., 2016). Further, the European Society of Blood and Marrow 

Transplantation reported in 2013 that the number of allogeneic HSCTs in Europe 

doubled over a ten year period between the 1990s and 2000s (Passweg et al., 

2015). Although autologous transplants were initially a popular means of HSCT, 

this report also indicated that growth in the numbers of allogeneic transplants 

have exceeded that of autologous transplants (Gratwohl et al., 2015, Passweg et 

al., 2015).  

Clinical trials involving HSCTs are becoming increasingly popular as the interest 

in these cells heightens. Although numerous clinical trials are currently 

underway involving these cells, pioneering results have been obtained in the 

MIST trail, based on findings published in 2013 showing the improved health of T 

cells from HSCT patients relative to controls (Burman et al., 2013). In the MIST 

study, 110 people with highly active, drug resistant multiple sclerosis (MS) had 

autologous HSCTs re-infused into their blood following chemotherapy (Burt et 

al., 2018). Patients were followed up after a year and it was noted that only one 

out of 55 HSCT patients suffered a relapse, while 39 out of 55 in the drug control 

group did (Burt et al., 2018).  

As the potential of HSCTs is becoming acknowledged and used in clinical trials, it 

is important to appreciate the considerable efforts also being made to maximise 

HSC engraftment following such treatment. Additional clinical trials are running 

with the aim of achieving maximal HSC engraftment, and have shown that 

transplanting HSCs with megakaryocyte cells can improve HSC engraftment 

(Trebeden-Negre et al., 2017). The success and progress noted in such clinical 

trials have contributed to pilot schemes such as the £4 million IMPACT clinical 

trial programme being established. Here, up to 12 clinical trails will be funded, 

with the aim of reducing the time taken for patients to gain access to 

treatments going through the clinical trials pipeline.   

Taking these points into consideration, it is apparent that HSCTs are becoming a 

more widely accepted therapy than ever before, and so there is an increased 

demand for a means of keeping HSCs alive for longer ex vivo, as this would 
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increase patient reach (Schuster et al., 2012). Further, it is recognised that 

determining methods for the ex vivo expansion of HSCs could reduce the demand 

for high numbers of donors, and could provide a promising means of making 

HSCT a more economical process (Dahlberg et al., 2011). 

1.3 Mesenchymal Stem Cells 

Mesenchymal Stem Cells (MSCs) are multipotent stromal cells that were first 

isolated in 1974, and were later given their name in 1991 when it was 

acknowledged that MSCs could differentiate into cells of mesoderm origin 

(Friedenstein et al., 1974, Caplan, 1991). Such mesoderm cell types include 

osteocytes (bone cells), chondrocytes (cartilage cells) and adipocytes (fat cells). 

The most primitive MSCs can be obtained from the umbilical cord blood and the 

Wharton’s Jelly of the umbilical cord tissue (Wang et al., 2004b). MSCs can also 

be sourced from the amniotic fluid during foetal development, the adipose 

tissue of adults, or most commonly from the adult bone marrow (Tsai et al., 

2004, Kern et al., 2006). The adult bone marrow is widely accepted as one of 

the main MSC niches and is a unique microenvironment that provides 

instructional cues that maintain and regulate the fate of MSCs (Shi and Gronthos, 

2003). Despite bone marrow extraction being the most common method for MSC 

extraction, MSCs only comprise 0.001 – 0.01 % of the total bone marrow cell 

number (Caplan, 1994). However, problems associated with the low extraction 

number are easily overcome due to the adherent nature of these cells to 

standard tissue culture plastic, which allows for their expansion ex vivo 

(Dominici et al., 2006). Although MSC expansion is easily achievable in the lab, it 

is important to note that ageing of MSCs is associated with decreased lifespan 

and differentiation potential (Stenderup et al., 2003, Ragni et al., 2013). 

1.3.1 MSC classification 

Three main criteria have been put into place by the International Society for 

Cellular Therapy (ISCT) for the characterisation of MSCs: MSCs must be able to 

adhere to plastic when cultured in standard conditions; MSCs must express CD73, 

CD90 and CD105; MSCs must be able to differentiate in vitro into osteoblasts, 

adipocytes and chrondrocytes (Dominici et al., 2006). Despite CD73, CD90 and 

CD105 expression being essential, the scientific community also accepts that 
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MSCs normally express additional surface markers such as STRO-1, as outlined in 

Table 1-3 (Psaltis et al., 2010). 

 

Table 1-3 Proteins associated with MSC immunophenotype 

Immunophenotype 
 

Protein Type Protein Role 
 

CD29+ integrin cell adhesion 
 

CD44+ cell surface 
glycoprotein 

cell adhesion, migration and 
cell-cell interactions 
 

CD73+ enzyme conversion of AMP to 
adenosine 
 

CD90+ glycosylated 
membrane protein 

cell-cell and cell-matrix 
interactions 
 

CD105+ 

(endoglin) 
 

type I membrane 
glycoprotein 

angiogenesis role 

CD106+ 

(VCAM-1) 
 

cell adhesion protein cell adhesion 

CD166+ 

(ALCAM) 
type I 
transmembrane 
glycoprotein 

cell adhesion 

CD271+ 

 
low affinity nerve 
growth factor (NGF) 
receptor 

stimulates survival and 
differentiation of neuronal 
cells 

STRO-1+ 

 
cell surface antigen unknown 

Nestin+ 

 
type VI intermediate 
filament protein 

used to assess cell 
proliferation and migration 

 

1.3.2 Osteogenic Differentiation of MSCs 

Differentiation to form bone cells occurs when MSCs commit to the osteogenic 

lineage and differentiate to form osteoprogenitor cells and preosteoblasts, and 

then further to form osteoblasts (OBs) and osteocytes. This differentiation is 

dependent on a number of cytokines, including bone morphogenic protein 2 

(BMP-2), transforming growth factor beta (TGF-β), parathyroid hormone (PTH) 

and insulin-like growth factor-1 (IGF-1) (Ryoo et al., 2006, Liu et al., 2013, 

Katagiri et al., 1990, Xian et al., 2012). In order for osteogenic differentiation to 
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occur, there must be expression of the key transcription factor Runt-related 

transcription factor 2 (Runx2). In 1997, Komori and colleagues published results 

showing that Runx2 knockout mice have an entire absence of bone as a result of 

arrested OB maturation. This group also proposed that Runx2 is the master 

transcription factor that directs MSCs to form OBs, because other transcription 

factors involved in osteogenesis, such as osterix (Osx) and Dlx5 are not expressed 

in the skeletal primordium of Runx2-/- mice, while Runx2 is expressed in the 

primordium of Osx-/- mice. Further, the Runx2 null phenotype cannot be 

rescued by the overexpression of other osteogenic factors (Hesse et al., 2010). 

As mentioned, BMP-2 is a key cytokine that acts to facilitate osteogenic 

differentiation. Seminal work in 1965 identified BMP-2’s family of bone-inducing 

agents in demineralised bone, and these were later termed bone morphogenic 

proteins (BMPs) (Urist, 1965, Urist and Strates, 1971). Once these recombinant 

BMPs were purified, it was observed that injection of BMP-2 into muscles was 

sufficient to induce ectopic bone formation (Wang et al., 1990). The mechanism 

of BMP-2 signalling has since been elucidated, and it is known that BMP-2 is 

dependent on SMADs, a group of signal transducers for receptors of the TGF-β 

protein superfamily (Figure 1-4)(Nohe et al., 2002). Firstly, the BMP-2 molecule 

binds to a receptor type I and II, and the signal then transduces to their SMADs 

(Figure 1-4). These activated SMADs go on to regulate expression of 

transcriptional factors and co-activators including Dlx5, Osx and Runx2. Runx2 

promotes the differentiation of MSCs into preosteoblasts, while Dlx5 is thought 

to facilitate osterix transcription, and in turn, osterix then promotes 

differentiation of preosteoblasts into osteoblasts (Lee et al., 2003).   

It is important to note the potential of MSCs, in that they are a valuable cell 

type on their own, and are also equally as valuable when they have undergone 

osteogenic differentiation to form OBs. As will be discussed in sections 1.7-1.9, 

it is possible to use biomaterials as a means of presenting BMP-2 to MSCs. This 

can be used to generate cell cultures that feature OBs, while in some cases also 

maintaining a population of MSCs. 
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Figure 1-4 BMP-2 signalling in osteogenic differentiation 
BMP-2 signalling is associated with the osteogenic differentiation of MSCs to form 
osteoblasts. This process occurs as the BMP-2 cytokine binds to receptors on the MSC 
surface, initiating a signalling cascade involving Smads. Transcription factors Runx2 and 
osterix become activated, leading to MSCs forming preosteoblasts and preosteoblasts 
forming mature osteoblasts, respectively.  

1.3.3 Cytokine Secretion of MSCs 

MSCs have a diverse range of roles including acting as cell sources for connective 

tissues, regulation of the immune response and also regulation of 

haematopoiesis (Aggarwal and Pittenger, 2005, Ball et al., 2007). This 

multifunctionality of MSCs has been attributed to the large number of cytokines 

and growth factors MSCs have been shown to secrete (Park et al., 2009). Despite 

MSCs commonly being sourced from donors of different ages, genders and 

ethnicities, it has been shown that the cytokine secretion profile of MSCs from 

distinct donors largely express common hybridisation patterns on cytokine 

antibody arrays (Park et al., 2009).Over 100 cytokines are known to be secreted 

from MSCs in normal conditions, and have been detected at a range of 

intensities (Park et al., 2009). 
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1.4 The Haematopoietic Stem Cell Niche 

The concept of the HSC niche was introduced in 1978 by Schofield, and it has 

since been the focus of many researchers to create in vitro models that mimic 

the natural components of the niche (Schofield, 1978). The first attempt at 

creating such an in vitro niche was reported by Dexter, where a two dimensional 

monolayer of stromal cells extracted from the bone marrow were observed to 

sustain haematopoiesis in vitro (Dexter, 1982). However, a crucial problem 

existed with this model, in that the differentiation arising was restricted to 

certain lineages and maintenance of the stem cell population was relatively low. 

Later, evidence from studies in the drosophila melanogaster ovary showed that 

heterologous cell types could be found in close proximity to stem cells (Xie and 

Spradling, 1998). These heterologous cell types are referred to as niche cells, 

and it is now understood that a diverse range of HSC niche cell types exist, as 

outlined in Table 1-4 (Méndez-Ferrer et al., 2010, Calvi et al., 2003). To combat 

issues associated with the Dexter culture where the stem cell numbers in culture 

were low, more recent work has leaned towards using different stromal cell lines 

as factories to produce cytokines that regulate the maintenance and/or 

differentiation of HSCs. 

Since the early work of Dexter, characterisation of the key components of the 

bone marrow niche has largely arisen from the use of conditional deletions of 

regulatory factors in candidate cell types in mouse models (Ding et al., 2012, 

Greenbaum et al., 2013). Further, imaging advances that have allowed for the 

visualisation of cellular localisations have also allowed for the identification of 

key cells with roles in HSC maintenance (Celso et al., 2009, Acar et al., 2015). A 

summary of the key cell types identified in such work is depicted in Table 1-4. 
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 Table 1-4 Cell types that regulate HSCs 

Cell Type Evidence for Role in HSC Regulation Reference 

Mesenchymal Stem 
Cells (MSCs) 

 

• Spatial localisation with HSCs in the BM. 
• High expression of HSC maintenance genes CXCL-12, KitL, Angpt1, Il7 & VCAM-1. 
• Conditional deletion reduces HSC number in the niche. 

(Méndez-Ferrer et al., 
2010) 

CXCL-12 Abundant 
Reticular (CAR) 

cells 
 

• Spatial localisation with nestin+ MSCs. 
 
 

• High expression of HSC maintenance genes SCF and CXCL-12. 
 

(Pinho et al., 2013) 
(Kunisaki et al., 

2013b) 
(Ding and Morrison, 

2013) 
Osteoblasts (OBs) • Increasing the number of OBs using parathyroid hormone stimulation and Bone 

Morphogenic Protein 2 (BMP-2) led to an increased number of haematopoietic 
cells in vivo and in vitro. 

• Expression of HSC maintenance factor proteins IL-6, SCF, and CXCL-12 were 
higher in osteoblasts compared to controls. 

• HSCs are visualised to be attached to osteoblast cells via N-cadherin and β-
catenin junctions 

• Increased levels of BMP-2 signalling associated with osteoblasts through the 
receptor BMPR1A controls HSC number in the BM. 

(Calvi et al., 2003) 
 
 
 

 
(Zhang et al., 2003) 

Sympathetic Nerve 
Cells 

• Mouse models with aberrant nerve conduction showed no egress of 
haematopoietic progenitors from the BM after GCSF stimulation 

• Ablation of neurotransmission indicated that norepinephrine induces OB 
suppression in response to GCSF, which allows for HSC release; sympathetic nerve 
cells regulate attraction of HSCs to the niche 

• Nestin+ MSCs that co-localise with HSCs express high levels of HSC maintenance 
factors 

(Katayama et al., 
2006) 

 
 
 

(Méndez-Ferrer et al., 
2010) 
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1.4.1 Cellular Localisation within the HSC Niche 

It is now understood that adult HSCs reside in specific BM locations, and it is 

more generally accepted that there are distinct niches within the BM, which was 

previously considered to exist as a single niche. These niches within the BM are 

now defined as endosteal niches, and vascular niches. Further to this, the 

vascular niches can be divided into arteriolar and sinusoidal niches (Zhang et al., 

2003, Calvi et al., 2003, Kiel et al., 2005). The arteriolar niches are associated 

with supporting HSC quiescence, while the sinusoidal niches are associated with 

promoting HSC proliferation (Kunisaki et al., 2013a). Despite being spatially 

distinct and comprising different active cell types, each of the endosteal, 

arteriolar and sinusoidal niche types are regulators of HSC self-renewal, as 

shown in Figure 1-5.  

 
Figure 1-5 The HSC niche 
The HSC niche is a dynamic microenvironment comprised of the vascular (sinusoid and 
arteriole) niches and the endosteal niche. Within each niche, a number of supportive cell 
types secrete cytokines that are responsible for regulating HSC behaviour and function. 
(Adapted from (Mendelson and Frenette, 2014)) 

The first evidence to support the existence of the endosteal niche was provided 

by Lord et al. in 1975, where primitive cells were shown to exist in close 

proximity to the endosteum of the mouse femur (Lord et al., 1975). Numerous in 

vivo studies followed this seminal work, and it was found that the osteoblasts 

associated with the endosteum secrete a range of cytokines associated with the 

expansion of haematopoietic progenitors (Taichman et al., 1996). Later work 
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also showed that co-transplantation of haematopoietic progenitors with 

osteoblasts supported engraftment and reconstitution of the haematopoietic 

system in lethally irradiated mice (Calvi et al., 2003). In order to understand the 

mechanisms by which osteoblastic cells regulate HSC self-renewal and 

differentiation, Calvi and colleagues have also shown that OBs express the notch 

ligand, Jagged-1, which is upregulated upon parathyroid hormone-induced OB 

activation. Activation of the parathyroid hormone 1 receptor induced notch 

signalling in HSCs, and this was shown to increase HSC number. Additional 

studies have also shown a role for Wnt signalling as a means of the OB-associated 

regulation of HSCs (Reya et al., 2003). When ectopic expression Wnt signalling 

proteins such as axin or the frizzled ligand-binding domain was induced, it was 

observed that reconstitution of the HSC compartment was reduced in vivo, and 

HSC growth was reduced in vitro. The group carrying out this work also observed 

that increased Wnt signalling correlated with increased expression of Notch in 

HSCs (Reya et al., 2003). 

The first indication that another type of HSC niche may exist, in addition to the 

endosteal niche, was taken from the observation that HSCs are capable of self-

renewal and differentiation during foetal development, before the existence of 

bone marrow cavities. In early human developmental biology, both endothelial 

cells and haematopoietic cells arise from a common embryonic precursor known 

as the hemangioblast, and these cell types have a close interaction throughout 

development (Kennedy et al., 1997). It has been shown that primary endothelial 

cells isolated from the yolk sac and para-aortic splanchnopleura support the 

maintenance and expansion of HSCs in vitro (Li et al., 2003). In addition, it is 

known that haematopoiesis occurs in the extramedullary tissues of adult 

humans, which lack an endosteum, for a large portion of their lives (Taniguchi et 

al., 1996). These observations allowed for the postulation of sinusoidal and 

arteriolar vascular niches, and further evidence supporting their existence has 

since been collected on the basis that cell types within these niches, such as 

endothelial cells and stromal cells, act as cytokine-producing factories for HSC 

regulation (Zhang et al., 2003, Kunisaki et al., 2013b). 
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1.4.2 The Role of Cytokines as HSC Maintenance Factors in the 

niche 

Cytokines are a family of cell signalling molecules that may exist as peptides, 

proteins or glycoproteins, and regulate immunity, inflammation and 

haematopoiesis (Luster, 1998, Fossiez et al., 1996). The affinity of cytokines for 

their receptors is high, and a cytokine may exhibit autocrine, paracrine or 

endocrine action (Rose-John and Heinrich, 1994, Petraglia et al., 1996).  

Haematopoietic cytokines are the principal regulator of haematopoiesis, and 

although the HSC signalling associated with these cytokines remains poorly 

understood, some evidence exists to suggest that these signalling molecules 

usually work by binding to their receptors and then activating Janus kinases 

(JAKs) (Leonard, 2001, Ihle et al., 1995). Depending on the receptor and 

cytokine combination, one of four possible Janus Kinases (JAKs) (JAK1, JAK2, 

JAK3 or Tyk2) becomes activated, in turn giving rise to phosphorylation other 

JAKs and the receptor subunit. This allows for the docking of SH2 proteins, a 

group of proteins that bind to phosphorylated tyrosine residues (Endo et al., 

1997). Following SH2 protein docking, pathways such as the Ras pathway become 

activated, leading to the phosphorylation and activation of STATs (Calvisi et al., 

2006). These STAT proteins are then translocated to the nucleus where they act 

as transcription factors, regulating the expression of genes associated with self-

renewal and differentiation (Ward et al., 2000). 

The cytokines associated with supporting HSCs have been largely identified by 

screening for stromal cells such as MSCs and OBs capable of supporting HSCs, and 

then using these stromal cell lines to isolate secreted proteins (Moore et al., 

1997, Weisel et al., 2006). Many of these cytokines were originally selected 

using studies of genetically modified mice, and were then identified as HSC 

regulators based on their ability to support in vitro formation of HSC colonies.  

 For some time now, MSCs have been accepted as the main factories for the 

production of HSC supporting cytokines, but it is now understood that other cell 

types, such as endothelial cells, are also capable of secreting cytokines 

associated with HSC maintenance and proliferation. Each cell type can produce a 
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range of cytokines, and these cytokines can have varying effects on HSC 

behaviour (Table 1-5). 
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Table 1-5 Cytokines associated with the HSC niche 

Cytokine Name Effect on HSCs Associated Cell Name Reference 

Stem Cell Factor  
(SCF) 

Increases self-renewal MSCs 
Osteoblasts 

Endothelial cells 

(Ding et al., 2012) 
(Calvi et al., 2003) 
(Ding et al., 2012) 

Vascular Cell Adhesion 
Molecule-1 
(VCAM-1) 

Regulates homing and adhesion MSCs 
Endothelial cells 

(De Ugarte et al., 2003) 
(Avraham et al., 1993) 

Thrombopoietin 
 (THPO) 

Increases self-renewal Osteoblasts (Yoshihara et al., 2007) 
(Qian et al., 2007) 

CXCL-12/SDF-1α Increases self-renewal and retention in the BM MSCs 
Osteoblasts 

Endothelial cells 

(Greenbaum et al., 2013) 
(Omatsu et al., 2010) 

Osteopontin 
(OPN) 

Maintains population size 
Prevents apoptosis 

Osteoblasts (Stier et al., 2005) 
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1.4.3 Cell Surface Proteins as HSC maintenance Factors 

Although many of the factors responsible for regulating the phenotype of HSCs in 

the niche are cytokines, cell surface proteins have also been shown to regulate 

HSC behaviour. For example, vascular cell adhesion molecule-1 (VCAM-1) is a 

cell adhesion protein, which is known to mediate interactions with a range of 

haematopoietic cell types (Peister et al., 2004, Frenette et al., 1998). VCAM-1 

has been shown to be expressed in several cell types associated with the HSC 

niche, including MSCs, OBs and endothelial cells, and similarly to certain 

aforementioned cytokines, is considered an HSC maintenance factor by the field 

(Sugiyama et al., 2006). 

Research in the late 1990s from Frenette and colleagues was pivotal in the 

identification of VCAM-1 as a HSC maintenance factor, as their experiments 

showed that mice treated with anti-VCAM-1 antibodies had far greater numbers 

of haematopoietic progenitor cells 14 hours after transplantation when 

compared to controls (Frenette et al., 1998). This preliminary study suggested 

an important role for VCAM-1 in haematopoietic cell homing to the BM, and then 

further evidence to support this role was also found by the same group, when it 

was noted that optimal recruitment of these cells to the BM following radiation 

was dependent on a combined action of VCAM-1 with endothelial selectins 

(Frenette et al., 1998). 

In addition to VCAM-1, cadherin molecules have also been proposed to be 

involved in regulating HSC maintenance in the niche (Zhang et al., 2003). This 

concept was originally introduced by Zhang and colleagues when they showed 

that OBs and HSCs both express N-cadherin. N-cadherin is a transmembrane 

protein that mediates cell-cell adhesion, and is a vital component of adherens 

junctions (Takeichi, 1991). Following on from the seminal work of Zhang and 

colleagues, many other research groups have gone on to suggest that N-cadherin 

is required for retaining the long-term self-renewal of HSCs. For example, Haug 

and colleagues investigated how N-cadherin expression in HSCs correlates with 

their function, and found that haematopoietic cells with high N-cadherin levels 

were more differentiated than cells with lower levels of N-cadherin expression 

(Haug et al., 2008). It was observed that N-cadherinlo cells were able to fully 

reconstitute the haematopoietic system, while N-cadherinhi ones could not. 
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Thus, it was concluded that low expression levels of N-cadherin supports long-

term self-renewal of HSCs. Since then, Hosokawa and colleagues have also 

identified a role for N-cadherin in HSC maintenance (Hosokawa et al., 2010). 

However, this group found that over-expression of N-cadherin in mouse models 

was sufficient to produce greater populations of slow cycling HSCs with long-

term repopulating abilities (Hosokawa et al., 2010). Although both studies 

identify a role for N-cadherin in HSC maintenance, it is important to note that 

they suggest opposing effects of high levels of N-cadherin and other groups have 

disputed potential roles of N-cadherin (Bromberg et al., 2012, Kiel et al., 2009). 

1.5 Biomaterials 

Biomaterials can be defined as substances that have been engineered to interact 

with cells for a therapeutic or diagnostic purpose (Langer and Tirrell, 2004). 

Such engineering may include the production of physical cues such as topography 

and/or chemical cues such as growth factors (Dalby et al., 2014, Discher et al., 

2009). Historically, biomaterials have been used for a diverse range of medical 

applications, for example as contact lenses, heart valves and hip prostheses 

(Ratner et al., 2004). However, the demand for medical devices and methods of 

cellular engineering are increasing, and so biomaterials are increasingly being 

used as methods of investigating or enhancing cell biology in the lab. 

Some of the most commonly produced biomaterials are those that are able to 

mimic the natural extra-cellular matrix (ECM). These biomaterials are designed 

to closely recapitulate the native ECM, and thus allow for the successful culture 

of cells in an environment that is close to what they experience in nature (Engel 

et al., 2008, Anselme, 2000). The successful use of biomaterials capable of 

mimicking the ECM in 2D cultures has led to such biomaterials now being 

incorporated into 3D cultures, where the biomaterial may take the form of a 3D 

structure, or may be used as a base upon which cells are seeded and then 

surrounded with a different material (Habibovic et al., 2005, Lutolf et al., 

2009).  
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1.5.1 Biomaterial Systems for HSC Niche Models 

The clinical and financial value of HSCs is large, and consequently money and 

effort have been invested in developing reliable models of the HSC niche that 

recapitulate the fundamental interactions of the niche components (Fisk et al., 

2005, Di Maggio et al., 2011). The most commonly designed model features a 

monolayer of stromal cells cultured in a plate, with HSCs in suspension in the 

media (Dexter, 1982, Ellis and Tanentzapf, 2010, Jing et al., 2010). However, 

more recently, researchers have been exploring the use of biomaterial-based 2D 

and 3D niche models in an attempt to gain tighter control and more closely 

mimic the BM niche in vitro. 

It is well understood that components of the ECM can influence stem cell state 

(Connelly et al., 2010, Nilsson et al., 2005). In particular, the role of the ECM in 

HSC regulation is well-documented, and it has been shown that when HSCs are 

seeded on microwells, they produce their own ECM that regulates their 

quiescent or active states depending on the size of the well in which they sit 

(Connelly et al., 2010). Further, it has been shown that single ECM-associated 

proteins such as osteopontin (OPN) can influence HSC function (Rangaswami et 

al., 2006, Nilsson et al., 2005). For example, lack of OPN gives rise to a stroma-

dependent increase in the numbers of LT-HSCs, as well as increased expression 

of JAG1 and ANGPT-1 (Nilsson et al., 2001). These results stress not only the 

importance of how ECM proteins can influence HSC behaviour alone, but also 

how they can indirectly influence HSCs by modulating the behaviour of MSCs in 

co-culture systems. 

One of the most common features to appear in 3D models of the niche is a 

collagen type I gel. This gel has found commonplace use in 3D niche models as it 

has it has been shown to enhance the osteogenic potential of MSCs and facilitate 

bone-like matrix remodelling associated with the endosteal niche (Schneider et 

al., 2010). When constituted appropriately, the elasticity of collagen type I gels 

can mimic the elastic properties of the BM (Gattazzo et al., 2014). Similarly, 

collagen gels have been shown to have a Young’s modulus of approximately 100 

Pa, which is close to that of the HSC-occupied region of the bone marrow 

(Sobotková et al., 1988, Metzger et al., 2014). Such collagen type I gels have 

been effectively used to generate 3D models incorporating STRO-1+ MSCs 
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selected from the BM (Leisten et al., 2012). In a model comprising a monolayer 

of MSCs with a collagen gel on top and media above the collagen gel, HSCs were 

added into the media and allowed to either remain in suspension or migrate 

down through the gel. Results revealed that this model was capable of giving rise 

to two distinct populations of HSCs; those in suspension in the media and those 

within the collagen gel, in close proximity to the MSCs. Despite being simple in 

nature, this model elegantly illustrated the beneficial effects of a collagen gel-

containing model, as it was observed that HSCs in the collagen gel had a more 

primitive phenotype. Further, this model demonstrated the importance of HSCs 

being in close contact with MSCs when maintenance of the stem cell phenotype 

of HSCs is desirable. Additional research has taken advantage of the ability of 

collagen type I to act as an ECM for in vitro HSC regulation models, and has 

shown that HSC culture within a collagen gel can give rise to increased numbers 

of colony-forming units and greater expression of negative cell cycle regulators 

(Oswald et al., 2006).  

Further to the use of collagen gels in HSC niche models, biomaterials with 

additional stiffness, chemical and topographical characteristics are also being 

used to generate in vitro HSC niche models. For example, fibronectin-coated 

PET nanofibre meshes have been shown enhance the expansion and maintenance 

of HSCs (Feng et al., 2006). In addition, aminated nanofibre scaffolds with 

spacers composed of ethylene and butylene have been shown to give rise to fold 

increases of approximately 200 in HSC numbers (Chua et al., 2007). Thus, can be 

deduced that it is important to consider all physical properties when designing 

an in vitro HSC niche model.  

1.5.2 Biomaterials for the modulation of MSC phenotype 

The importance of including MSCs in HSC niche models is widely appreciated by 

the field, as it has been shown that co-culture models are better for HSC 

expansion and survival (Leisten et al., 2012, Jing et al., 2010). It is important to 

acknowledge the potential of biomaterials to modulate MSC phenotypes, as 

changes in MSC phenotype and protein expression levels will affect HSC 

phenotype and the reliability of HSC niche models (Yoshihara et al., 2007, 

Omatsu et al., 2010). In addition, it has been shown that OBs are important cells 

to feature in HSC niche models, and so investigating the potential of MSCs to 
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produce OBs via biomaterial application routes should be carefully considered 

(Nilsson et al., 2005). 

Osteogenic differentiation of MSCs involves MSCs differentiating to form OBs, 

and is commonly induced in vitro by the presence of dexamethasone, ascorbic 

acid and β-glycerol phosphate (Birmingham et al., 2012). Another commonly 

used method of inducing osteogenesis of MSCs to form OBs involves the use of 

Bone Morphogenic Protein 2 (BMP-2) (Ryoo et al., 2006). However, recent 

advances have led to an understanding that synergistic signalling leading to 

osteogenesis can be achieved when BMP-2 is supplied to MSCs in close proximity 

to adhesion-promoting RGD motifs or integrin binding sites (He et al., 2008, 

Llopis-Hernández et al., 2016). Inducing osteogenesis via synergistic signalling 

results in an increased production of OBs compared to BMP-2 signalling alone, 

and thus it is becoming a popular goal for new biomaterials approaches. 

However, the potential of synergistic signalling for HSC niche models should have 

particular attention paid to it, as it may provide a cost-effective means of 

providing a population of osteoblasts with the potential to support HSCs by 

secreting SCF, THPO, CXCL-12 and OPN (Nakamura et al., 2010a). 

1.6 Biomaterial applications of poly (ethyl acrylate) 

Poly (ethyl acrylate) (PEA) is a polymer with a hydrophobic character sufficient 

to induce fibronectin (FN) fibrillogenesis, a process whereby FN molecules bind 

together to form a network structure (Rico et al., 2009, Salmeron-Sanchez et 

al., 2011). This leads to the exposure of both the integrin binding domain and 

the growth factor binding domain of FN, allowing PEA with an adsorbed layer of 

FN to act as a valuable foundation for systems with cells responding to tethered 

growth factors (Llopis-Hernández et al., 2016). 

FN is a glycoprotein that forms homodimers of two subunits of approximately 

220 kDa (Erickson and Carrell, 1983). A single, carboxyl terminus disulfide bond 

links these subunits. Each of the subunits are made up of three types of 

repeating module (named Type I, Type II and Type III), and these modules 

mediate interactions with other molecules of FN, ECM constituents and cell 

surface receptors, as shown in Figure 1-6.   
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Figure 1-6 The structural organisation of a fibronectin molecule 
Fibronectin is an ECM protein made up of type I, II and III repeats and functional regions. 
Key functional regions in fibronectin molecules include the cell binding and growth factor 
binding regions, located adjacent to one another. (Adapted from (Llopis-Hernández et al., 
2016)) 

Early work showed that FN adsorption onto PEA resulted in a fibrillar FN 

organisation via interactions in the amino terminal 70 kDa fragment (Salmeron-

Sanchez et al., 2011). Although not fully understood, it has been proposed that 

the interaction of PEA and FN induces conformational changes in the FN, which 

leads to unfolding and exposure of the FN arms. This unfolded conformation of 

FN has been shown to increase the surface area of FN on PEA, and has been 

suggested to favour protein-protein interactions between FNI1-5 and FNIII1-2 

domains located near the N terminus of FN (Pankov and Yamada, 2002, Dalby et 

al., 2018). These protein-protein interactions result in the formation of a FN 

network, which has the FNIII9-10 and FNIII12-14 domains accessible for cell 

interactions.  

It has been shown that the open conformation of FN molecules, and resulting 

arrangement of FN on PEA, is sufficient to modulate cell behaviour (Ballester-

Beltrán et al., 2012, Rico et al., 2016a). Published results show that myogenic 

differentiation of C2C12 muscle cells was enhanced on PEA + FN surfaces 

relative to controls (Ballester-Beltrán et al., 2012). In addition, later work has 

also shown that PEA + FN surfaces can also regulate MSC behaviour, and could 

maximise the self-renewal potential of MSCs (Rico et al., 2016b).  
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1.6.1 The Use of PEA Surfaces in Growth Factor Tethering 

Despite these initial findings suggesting the potential of PEA surfaces for 

bioengineering applications, more recent findings have confirmed their value, as 

it has been shown that PEA + FN surfaces can also have growth factors tethered 

to them (Llopis-Hernández et al., 2016, Moulisová et al., 2017). Results have 

shown that growth factors, such as BMP-2 and VEGF can be tethered to FN, when 

FN is in the network conformation. This promotes synergistic presentation of the 

adjacent growth factor and integrin binding sites, and has been shown to elicit a 

valuable range of effects in different cell types. For example, it has been shown 

that BMP-2 bound to PEA + FN is sufficient to promote osteogenic differentiation 

in MSCs in vitro, as well as full regeneration of a non-healing none defect in vivo 

(Llopis-Hernández et al., 2016).  

Such substrate bound growth factors are of great interest to the medical and 

scientific communities, as soluble growth factors are normally used in medical 

applications at supraphysiological concentrations, which is both dangerous and 

costly (Helfand, 2013). BMP-2 is one of the most frequently used growth factors 

in regenerative medicine, and despite it having FDA approval and being 

considered as “near-perfect” due to its lack of harmful effects reported in 

industry supported trials, it is now known to be life-threatening when supplied in 

high doses (Carragee et al., 2011). Thus, the use of solid substrate bound growth 

factors is highly appealing, as it has been shown that substrate bound growth 

factors result in sustained growth factor signalling, meaning that up to a 300 fold 

lower dose of substrate bound growth factor can elicit the same response as 

those in the soluble form (Fan et al., 2007, Zhu and Clark, 2014a, Llopis-

Hernández et al., 2016).  

1.6.2 Integrins and Cell Adhesion at the Material Interface 

Cell adhesion to the interface of biomaterials such as PEA is mediated by their 

adhesion to intermediate proteins, known as ECM proteins. Using transmembrane 

receptors called integrins, cells can adhere to these intermediate ECM proteins, 

a common example of which is FN (Salmeron-Sanchez et al., 2011). Integrins are 

able to bind to peptide motifs on ECM proteins, and an example of such a motif 

is the Arg-Gly-Asp (RGD) cell attachment site (Ruoslahti, 1996). The binding of 
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cells to these RGD motifs induces G protein activation and phosphorylation 

cascades within cells (Luttrell et al., 1999). The phosphorylation cascades 

involve the phosphorylation of Rho-associated protein kinase (ROCK) and myosin 

light chain kinase (MLCK), which leads to actin/myosin contraction and the 

cytoskeleton of the cell exerting forces on the integrins (Seo et al., 2011). These 

forces cause the cytoskeleton to draw groups of integrins together, in a process 

known as clustering, which results in the formation of cell adhesions (Cavalcanti-

Adam et al., 2008). Once these cell adhesions have formed, protein kinases 

collect at these sites, including focal adhesion kinase (FAK) (Sieg et al., 2000). 

These kinases cause further intracellular signalling cascades to take place, 

exerting control over cell fate. For example, it has been shown that MSCs 

require large adhesions in order to differentiate into OBs (Dalby et al., 2007). 

The large adhesions associated with OB differentiation induce an intracellular 

tension in the cytoskeleton that has been shown to activate ROCK, which in turn 

activates genes associated with OB differentiation (Dalby et al., 2007, McBeath 

et al., 2004). 

1.6.3 Integrin/Growth Factor Crosstalk 

Growth factors (GFs) are soluble, secreted polypeptides that can elicit a diverse 

range of responses in cells that may be associated with migration, proliferation, 

differentiation and survival. These molecules normally work in a local, paracrine 

fashion due to their short half-lives (Kontermann, 2011). Although the 

presentation of GFs is a valuable application for biomaterials, the efficiency of 

such GFs can be enhanced when there is the simultaneous activation of integrins 

and GF signalling networks (Phelps et al., 2010, Shekaran et al., 2014). This 

allows for lower concentrations of GFs to be used, avoiding the dangerous and 

harmful side effects of high doses (Helfand, 2013). A key example of how this 

co-presentation of integrins and GFs can positively influence bioengineering 

applications is how vascularisation associated with the presentation of VEGF in 

hydrogels with protease-degradable crosslinks can be enhanced when these gels 

are functionalised with RGD cues (Phelps et al., 2010). These RGD cues are 

detected by integrins and are used as attachment points, and so the results of 

Phelps and colleagues stresses the potential benefit to expressing cell 

attachment points in bioengineering applications alongside GFs (Chua et al., 

2008). In addition, Shekaran and colleagues recently published results showing 
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that protease-degradable poly (ethylene glycol) (PEG) synthetic hydrogels, 

functionalised with integrin specific peptides, could promote bone regeneration 

more efficiently than when the integrin specific protein was absent (Shekaran et 

al., 2014). Although the precise molecular mechanisms concerning this apparent 

crosstalk between integrins and growth factors remain to be understood, 

Schwartz and Ginsberg have recently described integrins as functioning as nodes 

within webs of adhesion and GF signalling networks (Schwartz and Ginsberg, 

2002). It is important that efforts are made to elucidate the functional 

mechanisms in these networks, as it is apparent that integrin/GF crosstalk holds 

the key to developing new biomaterial applications wherein low doses of GFs can 

be used to elicit valuable responses in cells. 

1.7 The Use of Growth Factors and ECM Matrices in 
Bioengineering Applications 

Many growth factors have ECM binding domains, and can bind to ECM 

components such as heparan sulphate and FN (Ashikari-Hada et al., 2004, 

Martino and Hubbell, 2010). As a result, growth factors have great potential in 

bioengineering applications, and are often used with biomaterials to mimic 

and/or recapitulate the natural ECM (Zhu and Clark, 2014b, Llopis-Hernández et 

al., 2016). 

In the ECM, the varying distribution of ECM components with GF binding often 

means that growth factors are presented in spatio-temporal gradients, providing 

different levels of cell signalling at different locations (Discher et al., 2009). 

Thus, achieving an understanding of quantitative spatiotemporal information 

regarding GFs is a focus of many bioengineering researchers. For example, 

therapeutic neovascularisation is a division of regenerative medicine that seeks 

to rebuild networks of blood vessels (Li et al., 2006). However, it is 

acknowledged that the concentration and spatiotemporal localisation of growth 

factors in neovascularisation is critical to the successful development of 2D and 

3D models of this process, and so many groups are focused on the development 

of mathematical models that can pinpoint where growth factors should be 

concentrated (Cao and Mooney, 2007). One of the main reasons that 

spatiotemporal presentation of GFs is important, is that presentation of such GFs 

in excess, or with a lack of precision, can often have catastrophic effects. As 
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mentioned in the previous section, high doses of BMP-2 can be life threatening 

(Tannoury and An, 2014). Similarly, excessive presentation of vascular 

endothelial growth factor (VEGF) can result in the VEGF moving away from the 

target site and inducing the formation of dormant tumours in non-target sites 

(Holmgren et al., 1995). It is therefore imperative that the concentration and 

spatiotemporal localisation of GFs are carefully considered whenever they are 

used in bioengineering applications.   

1.7.1 Evidence of the Success of Direct Growth Factor 
Presentation in Bioengineering Applications 

Although GFs can be incorporated into bioengineering applications in a number 

of ways, direct presentation of GFs is popular as it minimises model complexity. 

Typically, this direct presentation of GFs either involves physical adsorption of 

GFs on to biomaterials or the direct covalent immobilisation of GFs to 

biomaterials (Woo et al., 2001, Chen et al., 2013). These methods of direct GF 

presentation have become increasingly popular because they frequently involve 

tethering GFs to ECM proteins with integrin binding domains. This means that 

the bioengineered platform is not only a means of GF presentation, but also acts 

as a favourable platform for cell adhesion (Hutchings et al., 2003). Further, 

direct presentation of GFs has also been associated with extending their half-

life, making them an economically valuable means of GF presentation (Bramono 

et al., 2012). The successful presentation of GFs coupled with the promotion of 

cell adhesions has resulted in a number of successful studies illustrating the 

potential of direct GF presentation, as summarised in Table 1-6. 
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Table 1-6 Examples of the use of directly presented growth factors 

 
  

Growth 
Factor 

Details of Success when Directly Presented in Bioengineering Applications Reference 

VEGF VEGF was shown to enhance cell adhesion and survival of endothelial cells when bound to the ECM 
 
VEGF was shown to promote vascularisation and enhance tissue formation in vivo when bound to FN 
adsorbed on PEA surfaces 
 

(Hutchings et al., 
2003) 
(Moulisová et al., 
2017) 

BMP-2 BMP-2 was shown to enhance the osteogenic differentiation of MSCs, and to promote the healing of a 
wound defect in vivo when bound to FN absorbed on PEA surfaces 
 
BMP-2 was shown to have an elongated half life and to induce the osteogenesis of C2C12 myoblasts 
when bound to heparan sulphate 
 
ECM bound BMP-2 was shown to induce β3 integrin–dependent C2C12 cell spreading in C2C12 myoblasts, 
overriding the soft signal of the biomaterial 
 

(Llopis-Hernández et 
al., 2016) 
 
(Bramono et al., 
2012) 
 
(Fourel et al., 2016) 

NGF NGF bound to laminin and fibronectin was shown to approximately double the growth of human foetal 
sensory neurons over a ten day period 
 
NGF bound to fibronectin or laminin adsorbed on poly-L-lysine resulted in a 2-fold enhanced growth of 
neurites from PC12 cells, leading to accelerated axon generation 
 

(Evercooren et al., 
1982) 
 
(Orlowska et al., 
2017) 

PDGF PDGF bound to fibronectin was shown to enhance the survival of mouse fibroblasts  
 
PDGF bound to fibronectin was shown to stimulate growth and migration of smooth muscle cells, and 
PDGF co-adsorbed with BMP-2 on fibronectin was sufficient to induce healing in a critical size cavalarial 
defect in rats. PDGF also enhanced MSC recruitment to the defect 

(Lin et al., 2014) 
 
(Martino and 
Hubbell, 2010, 
Martino et al., 2011)  
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1.7.2 Justification for the Use of Directly Presented GFs in HSC 

Niche Models 

As outlined in Table 1-6, evidence exists that demonstrates how directly 

presented GFs can elicit profound cellular responses when used in 

bioengineering applications. As discussed in sections 1.3.2 and 1.5.2, directly 

presented BMP-2 is a strong candidate for use in HSC niche models containing an 

MSC/HSC co-culture, as BMP-2 stimulates osteogenic differentiation of MSCs and 

may thus help to mimic the endosteal niche (Llopis-Hernández et al., 2016, 

Lévesque et al., 2010). However, it is important to acknowledge the potential 

significance of PDGF and VEGF in this context, as these GFs are vascular, and 

thus are strongly postulated to have a role in regulating HSC function within the 

vascular niche (Pinho et al., 2013, Hooper et al., 2009). Finally, it should also be 

acknowledged that NGF is likely to be released by the sympathetic nerves of the 

vascular niche, and has been identified as being linked to the circadian control 

of the HSC niche (Hanoun et al., 2015, Lucas et al., 2013). In summary, novel 

research investigating the potential of BMP-2, PDGF, VEGF and NGF within HSC 

niche models is justified. 

1.7.3 The Use of ECM Matrices and their Potential in HSC Niche 
Models 

As described, numerous bioengineering applications have been successful using 

GFs and ECM matrices. However, little research has been carried out using both 

GFs and ECM matrices within HSC niche models, and so future work in the 

bioengineering field may strive to fill this void, testing if using GFs in 

conjunction with ECM matrices may produce more functional and biomimetic 

HSC niche models. 

Very few examples of the use of GFs and ECM matrices in the engineering of in 

vitro HSC niche models exist. The one published paper that does touch this 

subject was published in 2014 (Torisawa et al., 2014). In this model, a 

biomimetic bone marrow–on-a-chip model was created, using PDMS and a 

collagen type I gel that was infused with bone powder and bone morphogenic 

proteins, BMP-2 and BMP-4. The results show that a biomimetic niche model with 

similar architecture and physiology to that of the natural BM niche could be 
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created. In addition, it was shown that the model could produce similar 

proportions of HSCs to those found in vivo. 

Although work considering the addition of GFs into HSC niche model 

bioengineering has not been extensively carried out, it is important to 

acknowledge the results obtained from ECM matrix-based models, and to 

consider the profound effects that these matrix-based models alone can have 

(Table 1-7). 
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(Table 1-7 ECM Matrices in HSC Niche Models 
Niche Model Composition ECM Matrix Used Results Reference 

MSCs either below, or 
embedded in, collagen 
gels. HSCs added to the 
top of the gel and 
allowed to migrate in or 
through the gel 

Collagen type I or collagen type III 
gel 

Bone marrow MSCs can support the 
CD34+ phenotype of HSCs in culture, 
while umbilical cord MSCs cannot. 
 
FN and collagen can enhance HSC 
migration and may contribute to 
phenotype maintenance. 

(Leisten et al., 2012) 

3D deceullularised bone 
scaffolds, with collagen 
+ FN gels 

Collagen type I & FN Bone marrow MSCs and human umbilical 
cord vascular endothelial cells cultured 
in the presence of collagen type I + FN 
maintained the multipotent 
differentiation capacity of HSCs 

(Huang et al., 2016) 

Bone marrow MSCs 
cultured with HSCs in 3D 
bioceramic scaffolds 

Collagen type I & fibrin Both scaffolds supported expansion of 
CD34+ cells, which was enhanced when 
MSCs were added to the cell culture. 
HSCs cultured in these 3D scaffolds with 
MSCs showed optimal engraftment and 
multilineage differentiation properties. 

(Ferreira et al., 2012) 

Microcavity arrays used 
for high-density cell 
culture of MSCs and HSCs 
in a 3D model 

Collagen type I CD34 expression was maintained for 14 
days and HSC multilineage 
differentiation capacities remained 
functional after 14 days of culture. 

(Wuchter et al., 
2016) 



48 
 
1.8 Aims and Objectives 

The aim of this thesis is to create a biomimetic HSC niche model capable of 

inducing an HSC supportive phenotype in MSCs, using PEA surfaces, FN, GFs, a 

collagen gel and a specialised media formulation. The model design is primarily 

based on the use of PEA + FN + GF substrates, upon which a monolayer of STRO-

1+ MSCs will be cultured. STRO-1+ MSCs were chosen because they are: easily 

attainable from collaborators; cost-effective; known to have an HSC-supportive 

phenotype (Bensidhoum et al., 2004, Gonçalves et al., 2006) A type I collagen 

gel will then be loaded on top of the MSCs to create a 3D environment, mimetic 

of the stiffness of the BM niche. After a 2-week period of culture, HSCs will be 

added to the model, and left for approximately one week before being 

phenotyped to assess their proliferation and differentiation profiles. 

 
Figure 1-7 Schematic of in vitro HSC niche model during different stages of cell culture 
The in vitro HSC niche model developed in this thesis comprises two distinct stages; from 
days 1-14 of the culture, MSCs only are present, to allow ample time for response to the 
PEA + FN + GF substrate, as well as the collagen gel.  The HSCs are added to the model in 
stage 2, following removal of the collagen gel to reduce the analytical complexity of the 
model (as described in Chapter 4).  

PEA	

FN	

Growth	
Factor	

MSC	

HSC	

PEA	

FN	

Growth	
Factor	

MSC	

collagen		
type	I	gel	

STAGE 1 of cell culture 

•  Days 1-14 of culture 
•  MSCs only in the model 
•  14 days to respond to collagen 

type I gel and PEA + FN + GF 
substrate 

•  Followed by stage 2 (below) 
	

STAGE 2 of cell culture 

•  Days 15-21 of culture 
•  MSCs & HSCs in the system 
•  7 days to respond to MSCs,  

and media in the model 
•  Followed by HSC phenotyping	
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In order to meet the aim of this thesis, the following objectives are required to 

be met: 

1. Characterisation of PEA surfaces 

• Verification of the formation of FN networks on PEA using 

atomic force microscopy (AFM). 

• Quantification of the surface density of growth factors when 

adsorbed on PEA + FN surfaces, using enzyme linked 

immunosorbent assays (ELISAs). 

• Verification of the elastic properties of the collagen type I gel 

using rheology. 

2. Characterisation of the phenotype of MSCs cultured on PEA + FN + GF 

surfaces 

• Verification that MSCs maintain their stem cell phenotype, to 

some extent, when cultured on PEA + FN + GF surfaces. 

• Verification that MSCs undergo osteogenic differentiation, to 

some extent, when cultured on PEA + FN + GF surfaces. 

• Determine if MSCs express cell surface markers associated with 

HSC maintenance when cultured on PEA + FN + GF surfaces. 

• Determine if MSCs express secreted proteins associated with 

HSC maintenance when cultured on PEA + FN + GF surfaces. 

• Assess the effect of changing media type on MSC phenotype, in 

terms of maintaining stem cell phenotype, inducing 

osteogenesis and inducing expression of HSC maintenance 

markers. 
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• Determine the effect of culture on PEA + FN + GF on the 

abundance of metabolites present within MSCs, to investigate 

phenotypic differences in these cells relative to controls. 

3. Characterisation of the phenotype of HSCs cultured in models featuring 

PEA + FN + GF surfaces  

• Determine the capacity of models featuring PEA + FN + GF 

surfaces to support maintenance of the CD34+CD38- phenotype 

of HSCs. 

• Assess the capacity of PEA + FN + GF surfaces to induce the 

expression of the multipotent progenitor CD34+CD38+ phenotype 

when HSCs are cultured in models. 

• Assess the capacity of PEA + FN + GF surfaces to induce the 

expression of the progenitor CD34-CD38+ phenotype when HSCs 

are cultured in models. 

• Determine if PEA + FN + GF surfaces are sufficient to influence 

HSC differentiation down lymphoid, myeloid and erythroid 

lineages. 
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CHAPTER 2
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Chapter 2 Materials and Methods 

2.1 Materials and Reagents 

2.1.1 Cell Culture Reagents 

Reagent Supplier 
Dulbecco’s Modified Eagle’s Medium (DMEM) Sigma-Aldrich, UK 
Foetal Bovine Serum (FBS) Sigma-Aldrich, UK 
Human AB Serum (HS) Sigma-Aldrich, UK 
Minimum Essential Medium Non-Essential Amino 
Acids (MEM-NEAA) 

Sigma-Aldrich, UK 

L-Glutamine (200 mM) (100x stock) Invitrogen, UK 
Fungizone® Amphotericin B (250µg/ml)  Gibco by Life Technologies, 

UK 
Sodium Pyruvate (100 mM) Sigma-Aldrich, UK 
Penicillin-Streptomycin (10 mg/ml stock) Sigma-Aldrich, UK 
Trypsin (10x solution) Sigma-Aldrich, UK 
Versene* produced in house 
Trypsin/Versene solution* produced in house 
4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic 
acid (HEPES)  

Fisher Scientific, UK 

Phosphate-Buffered Saline (PBS) Sigma-Aldrich, UK 
HEPES saline* produced in house 
Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich, UK 
Sodium Chloride VWR Chemicals 
Potassium Chloride VWR Chemicals 
Rat Tail Collagen Type I, > 2 mg/mL� First Link Ltd., UK 
10x Modified Eagle’s Medium First Link Ltd., UK 
Sodium Hydroxide (0.1 M)  Sigma-Aldrich, UK 
Stem Cell Factor Peprotech, UK 
Flt3 Ligand Peprotech, UK 
Thrombopoietin Peprotech, UK 
Interleukin 3 Peprotech, UK 
Interleukin 6 Peprotech, UK 
Bovine Insulin Transferrin (BIT) Stem Cell Technologies, UK 
Iscove’s Modified Dulbecco’s Media (IMDM) Thermo Fisher Scientific, 

UK 
 

2.1.2 PEA/PMA Proteins 

Reagent Supplier 
Fibronectin Sigma-Aldrich, UK 
Bone Morphogenic Protein-2 (BMP-2) Sigma-Aldrich, UK 
Nerve Growth Factor (NGF) Sigma-Aldrich, UK 
Platelet Derived Growth Factor (PDGF) Sigma-Aldrich, UK 
Vascular Endothelial Growth Factor (VEGF) Sigma-Aldrich, UK 
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2.1.3 In Cell Western (ICW) Reagents 

Reagent Supplier 
Odyssey Blocking Buffer LI-COR, UK 
IRDye Conjugated goat anti-mouse secondary antibody LI-COR, UK 
IRDye Conjugated goat anti-rabbit secondary antibody LI-COR, UK 
CellTag 700 Stain LI-COR, UK 
Tween 20 Sigma-Aldrich, UK 
Phosphate Buffered Saline (PBS) Sigma-Aldrich, UK 
 

2.1.4 Immunostaining Reagents 

Reagent Supplier 
Formaldehyde (38%) Fisher Scientific, UK 
Sucrose Fisher Scientific, UK 
4-(2-hydroxyethyl)-1-piperazine- ethanesulphonic acid 
(HEPES) 

Fisher Scientific, UK 

Magnesium Chloride Hexahydrate Sigma-Aldrich, UK 
Sodium Chloride VWR Chemicals 
Phosphate Buffered Saline Sigma-Aldrich, UK 
Bovine Serum Albumin (BSA) Sigma-Aldrich, UK 
Tween 20 Sigma-Aldrich, UK 
Rhodamine Phalloidin Molecular Probes, Life 

Technologies 
Horse Biotinylated anti-rabbit IgG Vector Laboratories, UK 
Horse Biotinylated anti-mouse IgG Vector Laboratories, UK 
Fluorescein Streptavidin Vector Laboratories, UK 
Vectashield Mounting Medium (with DAPI) Vector Laboratories, UK 
 

2.1.5 Primary Antibodies for Immunostaining and ICW 

Reagent Supplier 
Anti-STRO-1 antibody Santa-Cruz, USA 
Anti-ALCAM antibody Abcam, UK 
Anti-nestin antibody Abcam, UK 
Anti-osteocalcin antibody Santa-Cruz, USA 
Anti-osteopontin antibody Santa-Cruz, USA 
Anti-stem cell factor antibody Abcam, UK 
Anti-VCAM-1 antibody Abcam, UK 
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2.1.6 Scanning Electron Microscopy (SEM) Reagents 

Reagent Supplier 
Glutaraldehyde Sigma-Aldrich, UK 
Sodium cacodylate Agar Scientific, UK 
Osmium tetroxide OxKem, UK 
Uranyl acetate Sigma-Aldrich, UK 
Hexamethyldisilazane Fluka Analytical, UK 
 

2.1.7 Primary Antibodies for FLOW Cytometry 

Reagent Supplier 
Anti-lineage (Lin) Cocktail (FITC fluorophore) Invitrongen, UK 
Anti-CD34 (PE fluorophore) eBioscience, UK 
Anti-CD38 (Cy7 fluorophore) Invitrongen, UK 
Anti-CD45 (A7 fluorophore) Invitrongen, UK 
Anti-CD7 (BV421 fluorophore) BD Biosciences, UK 
Anti-CD36 (APC fluorophore) BD Biosciences, UK 
Anti-CD41a (FITC fluorophore) BD Biosciences, UK 
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2.2 Preparation of Cell Culture Solutions 

Typsin/Versene Solution 
 
Typsin/Versene solution was used to detach STRO-1+ MSCs from substrates. The 

solution comprised a 1:20 Trypsin:Versene volume ratio. The versene solution 

was made in house using the following reagents: 

• 150 mM NaCl 
• 5 mM KCl 
• 5 mM glucose 
• 10 mM HEPES 
• 0.5 % (v/v) phenol red solution 

 
The pH was adjusted to 7.5 and the solution was autoclaved prior to use for 
sterility purposes.  
 
 
HEPES saline solution 
 
HEPES saline solution was used to wash cells prior to detachment with the 

trypsin/versene solution. It was made in house, as follows: 

• 150 mM NaCl 
• 5 mM KCl 
• 5 mM glucose 
• 10 mM HEPES 
• 1 mM EDTA 
• 0.5 % (v/v) phenol red solution 

 

The pH was adjusted to 7.5 and the solution was autoclaved prior to use for 

sterility purposes. 

Modified DMEM (standard media) 
 
Modified DMEM was used as a standard cell culture media, and was made as 

follows: 

• 500 mL DMEM 
• 50 mL FBS or 10 mL FBS (depending on experiment) 
• 10 mL Penicillin-streptomycin  
• 5 mL Modified Eagle’s Medium non-essential amino acids 
• 5 mL sodium pyruvate 
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Human Serum (HS) Media 

HS media was used as an alternative to the standard cell culture media, and was 

made as follows: 

• 500 mL DMEM 
• 10 mL HS 
• 10 mL Penicillin-streptomycin  
• 5 mL Modified Eagle’s Medium non-essential amino acids 
• 5 mL sodium pyruvate 

 

 

Serum Free Media (SFM) Base 

The SFM media base was used for the cell culture in experiments where HSCs 

were present. Following preparation of this base, either 3 or 5 GFs were added 

to make the 3GF or 5GF media types, respectively. The SFM base was made as 

follows: 

• 98.75 mL of IMDM 
• 25 mL of BIT 
• 1.25 mL of L- glutamine 

 
 
 
 
 
 
5GF Media 

To make the 5GF Media, the appropriate volume of SFM base was taken, and the 

following 5 growth factors were added; 

• SCF [50 ng/mL] 
• Flt3 Ligand [50 ng/mL] 
• TPO [25 ng/mL] 
• IL-3 [50 ng/mL] 
• IL-6 [50 ng/mL] 
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3GF Media 

To make the 3GF Media, the appropriate volume of SFM base was taken, and the 

following 3 growth factors were added: 

• SCF [100 ng/mL] 
• Flt3 Ligand [100 ng/mL] 
• TPO [50 ng/mL] 

 
 

 
Cell Fixation Solution 

• 90 ml of PBS solution 
• 10 ml of Formaldehyde (38%) 
• 2 g of Sucrose 

 
 
 
 
 
Cell Permeabilisation Buffer 

• 100 ml of PBS solution 
• 10.3 g of Sucrose 
• 0.292 g of Sodium Chloride 
• 0.06 g of Magnesium Chloride Hexahydrate 
• 0.476 g of HEPES 

(adjust the solution made above to pH 7.2) 
• 0.5 mL of Triton X 

 
 

FACS Buffer 

• 5% FBS 
• 1% BSA 
• in PBS 
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2.3 General Cell Culture Methods 

2.3.1 STRO-1+ MSC Culture 

STRO-1+ MSCs were cultured in a T75 flask with standard lab media (modified 

DMEM) at 37 oC with 5% CO2. When the cells reached confluency, the media was 

removed and cells were rinsed once with 5 mL of HEPES saline solution at 37 oC. 

Cells were then detached from the surface using 5 mL of trypsin/versene 

solution at 37 oC for 5 minutes. 5 mL of fresh, sterile modified DMEM was added 

to the trypsin/versene to neutralise the active trypsin, and the cell suspension 

was transferred to a universal tube and centrifuged for 4 minutes at 1400 rpm. 

The supernatant was removed following centrifugation, and the cell pellet was 

re-suspended in fresh, sterile modified DMEM of an appropriate volume. Once 

cells had reached confluence, they were passaged and split into 3 flasks. 

2.3.2 Bone Marrow Extraction 

Bone marrow samples were split into two equal volumes, bone chips were 

discarded and the remaining samples were centrifuged for 10 minutes at 1400 

rpm. The supernatants were discarded and the pellets were re-suspended in 10 

mL of fresh, sterile modified DMEM. The cell suspensions were then centrifuged 

for 10 minutes at 1400 rpm. The supernatants were discarded, and the cell 

pellets were re-suspended in 10 mL of fresh, sterile modified DMEM. The cell 

suspensions were then slowly overlaid onto a 7.5 mL Ficoll-PaqueTM, and 

centrifuged for 45 minutes at 1513 rpm. The central layers were extracted and 

placed into a universal with 10 mL of fresh, sterile modified DMEM. These 

universals were centrifuged for 10 minutes at 1400 rpm, and then the 

supernatant was removed and discarded, and the pellets were re-suspended in 

10 mL of fresh, sterile DMEM before the centrifugation step was repeated. The 

supernatants were discarded and each pellet was re-suspended in 10 mL of 

fresh, sterile modified DMEM before being transferred into a vented flask, 

cultured at 37 oC at 5% CO2. 
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2.3.3 STRO-1 positive selection using Magnetic-Activated Cell 

Sorting (MACS) 

Selection of STRO-1+ MSCs was carried out at the University of Southampton, by 

Ms Julia Wells, in the laboratory of Professor Richard Oreffo. The cells were 

derived from bone marrow tissue that would normally be discarded following 

routine total hip replacement surgery. Aspirate extracted from the trabecular 

bone marrow was centrifuged at 250 g for 4 minutes at 4 oC. The supernatant 

was discarded, and cells were re-suspended in modified alpha-MEM, before being 

passed through a 70 µm pore mesh. Red blood cells were removed using 

lymphoprep gradient solution with centrifugation. Cells in the buffy coat 

fraction were re-suspended in 10 mL of HEPES saline solution, and then 

incubated with a STRO-1 antibody in hybridoma supernatant. Human anti-IgM 

magnetic microbeads (Miltenyi Biotech, UK) were incubated with the cells of the 

buffy coat fraction, and cells positively labelled for STRO-1 were retained by the 

magnetic column used with the MACS kit. These STRO-1+ MSCs were eluted from 

the column and transferred to T75 cell culture flasks for expansion, before being 

transported to the laboratory in Glasgow after reaching 80% confluency. Cells 

were maintained in the Glasgow laboratory as outlined in section 2.3.1. 

2.3.4 Monolayer STRO-1+ Culture on Surfaces 

STRO-1+ MSCs were seeded at 1x104 cells per 12 mm diameter coverslip, for a 

period of 21 or 19 days, depending on the experiment. After 3 days of culture on 

the surfaces, a collagen gel was added to each well with a coverslip and cells in 

it. The collagen gel was allowed to form, and 0.5 mL of media was added on the 

same day. Media was changed on days 3, 6, 9, 12, 15 and 18 of cell culture. For 

experiments requiring further study of the STRO-1+ cells, cell culture would be 

terminated on day 19 or day 21 depending on the experiment, by removing the 

media, rinsing once with sterile PBS and fixing the cells using cell fixation 

solution. 

2.3.5 Fixation of STRO-1+ MSCs 

STRO-1+ MSCs were fixed on the final day of their culture. The cell culture media 

was removed, cells were rinsed once with sterile PBS and cell fixation solution 

was added at 200 µL per well of a 24-well plate. The plate was incubated for 15 
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minutes at room temperature, before the fixation solution was removed and 200 

µL of sterile PBS was added to prevent samples from drying.  

2.3.6 CD34+ HSC Culture 

CD34+ cells were obtained commercially from CalTag MedSystems, UK. They 

were stored at -80 oC in liquid nitrogen until required. When the cells were 

required, the vial of cells was transported from the -80 oC freezer, and 

immediately transferred to a 37 oC water bath, where it was left for 3 minutes 

to ensure defrosting. Cells were transferred to a 15 mL falcon tube, and 10 mL 

of SFM base media was added to the tube. The cell suspension was centrifuged 

for 10 minutes at 400 g, and the cell pellet was re-suspended in 2mL of 3GF or 5 

GF media, depending on the media type being used for the rest of the 

experiment. Cells were counted using a haemocytometer and trypan blue, and 

then the remaining cell suspension was transferred to a central well of a 6 well 

plate and left overnight in an incubator at 37 oC and 5% CO2.  

Cells were seeded the day after being brought up from frozen. The cells were 

counted on this day, and the cell suspension was transferred from the central 

well of a 6-well plate to a 15 ml falcon tube. 20 µl of cells were taken from the 

well and transferred to an eppendorf tube for phenotyping via FLOW cytometry. 

The appropriate volume of 3GF or 5GF media was added to the remaining 

volume of cell suspension, to allow for the cells to be seeded at 5 x 10 4 cells per 

well of a 24-well plate. As these cells are non-adherent, it was not possible to 

change the media once the HSCs were added to the wells containing the 

polymer-coated coverslip, MSCs and HSCs. Thus, once the HSCs were added to 

the wells, they remained in the plate for 5 days.  
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2.4 General Material Preparation Methods 

2.4.1 PEA and PMA Sample Preparation 

PEA and PMA bulk polymers were synthesised using radical polymerisation of 

ethyl acrylate and methyl acrylate, respectively, initiated by benzoin as the 

photoinitiator at 1 wt %. Polymer solutions were prepared by dissolving PMA bulk 

polymers at 6 % w/v and PEA bulk polymers at 4 % w/v.  

Glass coverslips of 12 mm diameter were sonicated in ethanol for 30 minutes and 

were rinsed with fresh ethanol before being dried in an oven at 60 oC for 30 

minutes. Coverslips were left to cool to room temperature before 100 µl of PMA 

or PEA solutions were deposited onto the glass coverslips. Coverslips were 

spincoated with the PMA/PEA at a velocity of 3000 rpm for 30 seconds. Following 

spincoating, samples were dried in vacuo at 60 oC for 2 hours. Samples were 

sterilised for 30 minutes in UV light.  

2.4.2 FN Coating of PMA and PEA Samples 

Human plasma FN solution was prepared by diluting FN stock solutions to 20 

µg/mL in Dulbecco’s phosphate buffered saline (DPBS). PMA- or PEA-coated glass 

coverslips were coated with FN solution for 1 hour. Following FN adsorption, 

samples were washed once with DPBS before being transferred to wells of a 24-

well plate and covered with 0.5 mL of DPBS for up to 4 hours before cell 

seeding. 

2.4.3 BMP-2/NGF/PDGF/VEGF Coating of PEA Samples 

PEA + FN + GFs samples were prepared by coating PEA samples with FN as 

outlined above. After the wash step, solutions of BMP-2, NGF, PDGF or VEGF at 

concentration 25 ng/mL were produced, and 100 mL of the appropriate growth 

factor was added to PEA + FN surfaces and incubated at room temperature for 2 

hours. For combined GF surfaces, where more than one GF was adsorbed at 

once, 25 ng/mL solutions of the appropriate GFs were made and mixed in a 1:1 

volume ratio. 
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2.4.4 Collagen Gel Preparation 

All reagents used to make the gels were kept at 4 oC before preparing the gels. 

Gels were made in batches of 5-6ml, as producing a larger volume of gel would 

result in the gel setting before it was possible to distribute it in the relevant 

number of wells. To make one batch of gels, the following reagents were used; 

• 2.5 ml of Rat tail collagen solution 
• 1.0 ml of 0.1 M NaOH 
• 0.5 ml of 10x DMEM 
• 0.5 ml of FBS or HS (depending on the experiment) 
• 0.5 ml of media (either DMEM with 10% FBS, 2% FBS or 2% HS depending on 

the experiment) 
 
 
The FBS/HS, 10x DMEM and the media were all added to universal tube and 

stored on ice. In another universal tube, the NaOH and collagen were inverted 

together several times to mix. Following mixing, the NaOH/collagen solution was 

added to the serum/10xDMEM/media mixture, resulting in the formation of a 

yellow colour. To neutralise the collagen, more NaOH was added dropwise until 

a constant pink colour was observed, indicative of the neutralisation. The pH of 

the final solution was further checked using a pH probe, to ensure a pH range 

between 7.0 and 7.5. The final collagen solution was distributed between 5-6 

wells of a 24-well plate, with 1 ml of collagen solution added per well. Plates 

were then incubated at 37 oC and 5% CO2 for at least 30 minutes until the gels 

had formed. Following formation of the gel, 0.5 ml of the appropriate media for 

cell culture was added.  

2.5 Statistical Analyses 

Appropriate statistical tests were performed using Graphpad Prism 6 software. 

D’Agostino-Pearson tests were carried out to check for normality in data sets. If 

normal distribution of data points existed, one-way ANOVA, with multiple 

comparisons for data sets with three groups or more, was used followed by a 

Tukey post-hoc test. Failure to satisfy the requirements of a normality test 

resulted in the use of non-parametric, Kruskal-Wallis multiple comparisons tests. 

The statistical significance of results was determined by calculating the 

probability of the null hypothesis being true, using a pre-specified threshold (p- 
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value) of 0.05. If the confidence level was lower than 5%, the null hypothesis 

was rejected and the result was classified as being statistically significant.  
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CHAPTER 3
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Chapter 3 Material Characterisation 

3.1 Introduction 

3.1.1 The Importance of MSCs and OBs in HSC Niche Models 

The HSC niche in the bone marrow is home to both MSCs and HSCs, and it is 

understood that the MSCs dynamically regulate HSC behaviour in two main ways; 

by expression on cell surface markers, such as VCAM-1; by the expression of 

soluble cytokines known as HSC maintenance factors, such as SCF, CXCL-12 and 

THPO (Calvi et al., 2003, Ding and Morrison, 2013). The expression of these 

proteins regulates HSC quiescence, proliferation and differentiation, and is thus 

essential for homeostasis and life. 

The importance of MSCs in keeping HSCs alive and functional is well understood, 

and thus many HSC niche models are designed to incorporate MSCs (Leisten et 

al., 2012, Ferreira et al., 2012). Some models feature the use of MSCs as an 

unmodified stromal layer, whereas more complex models are now investigating 

the potential of MSCs in conjunction with biomaterials that can enhance their 

role (Leisten et al., 2012). For example, it is known that certain biomaterials 

have the capacity to enhance MSC survival for long periods of time, and so such 

biomaterials and MSCs may be a valuable feature of long-term HSC niche models 

(Rico et al., 2016b). In addition, biomaterials can also modulate the phenotype 

of MSCs and can be used as a means of stimulating their expression of certain 

proteins, such as HSC maintenance factors (Calvi et al., 2003). While MSCs 

express their own HSC maintenance factors, osteogenic differentiation of MSCs 

leads to the formation of OBs, which secrete a different profile of HSC 

maintenance factors (Zhang et al., 2003). Consequently, the development of an 

HSC niche model that features a stromal layer of both MSCs and OBs with the 

combined effect of their unique cytokine profiles, would be potentially superior 

to current models that typically use only one cell type. Biomaterials can provide 

a means of stimulating osteogenic differentiation of MSCs to an extent, while 

also retaining some MSCs in their stem cell state, and such biomaterials may 

pave the way to the generation of more diverse HSC niche models that are more 

mimetic of the in vivo niche. 
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3.1.2 PEA as a Potential HSC Niche Model Biomaterial 

PEA is a synthetic polymer upon which FN can be adsorbed, resulting in 

fibrillogenesis on the FN molecules and exposure of cell adhesion and growth 

factor binding regions (Llopis-Hernández et al., 2016). Consequently, PEA has 

the potential to function well in an HSC niche model, and can have its 

characteristics used in the following ways; 

• The layer of FN adsorbed on PEA can provide a means of MSC attachment 

• The FN can act to maximise the self-renewal potential of MSCs and thus may 

support a long-term HSC model 

• GF signalling molecules can be bound to the FN, allowing for further control 

over MSC fate and control over the expression of HSC maintenance factors in 

MSCs. 

• BMP-2 can be bound to the FN to stimulate osteogenic differentiation of some 

MSCs 

• Substrate-tethered GFs allow for a lower dose of GF to be used compared to 

soluble GFs; PEA models safer and more economical than soluble GF models. 

Presentation of these GFs next to the cell binding domain of FN will further 

reduce the quantity of GF required to elicit the desired response 

Previous studies using PEA and MSCs have suggested it is possible to both 

maintain MSC phenotype, while inducing some osteogenic differentiation of MSCs 

when BMP-2 is bound to FN adsorbed on PEA (See Section 1.6) (Rico et al., 

2016b, Llopis-Hernández et al., 2016). However, it has yet to be determined if 

more than one GF can be adsorbed at one time. Adsorption of a combination of 

growth factors could provide a means of enhancing HSC maintenance factor 

expression in MSCs, while also promoting a degree of osteogenic differentiation. 

As a result, it seems that PEA could be used as a means of effectively co-

culturing MSCs and OBs for a number of weeks in an HSC niche model. This would 

be very valuable, as it would allow for a mixed profile of MSC and OB HSC 

maintenance factors to be present in a novel model.   
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3.1.3 The Role of Collagen Gels in HSC Niche Models 

Collagen gel is a commonly used component of HSC niche models for two main 

reasons; it can enhance the osteogenic differentiation of MSCs giving rise to the 

expression of valuable HSC maintenance factors; it can mimic the elastic 

properties of the bone marrow niche (Schneider et al., 2010, Metzger et al., 

2014). Although promising data exists from the use of collagen gels in HSC niche 

models with MSCs cultured in a monolayer on glass substrates with a collagen gel 

loaded on top, there is a void that must be filled in terms of investigating the 

potential of collagen gels to enhance to effects of biomaterials on MSCs in such 

models (Leisten et al., 2012).  

3.2 Aims and Objectives 

This chapter aims to characterise PEA surfaces, as a means of assessing their 

suitability to function in an HSC niche model. In order to assess the suitability of 

PEA surfaces for incorporation into HSC niche models, it is necessary to ensure 

that the network conformation of FN, associated with exposure of GF and cell 

binding domains, is apparent when adsorbed on PEA. In addition, it is important 

to ensure that growth factors can be bound to FN, and to prove that when a 

combination of two GFs is adsorbed, one GF does not entirely out-compete the 

other.  

To confirm the presence of FN networks on PEA, AFM will be used, and the 

structure of FN on PEA will be compared to that of FN adsorbed on a control 

polymer, poly (methyl acrylate) (PMA). PMA is similar to PEA in terms of 

wettability and surface chemistry, but has one less carbon present in the side 

chain. In order to assess the ability of the adsorbed FN layer on PEA to bind more 

than one GF, Enzyme-linked immunosorbent assays (ELISAs) will be used. The 

surface density of commonly used GFs, BMP-2 and NGF, will be determined and a 

conclusion will be drawn regarding the ability of both GFs to bind to one PEA + 

FN surface.  

Further, this chapter aims to characterise the stiffness of the collagen gel that is 

used to make the HSC niche model with PEA + FN + GF surfaces 3D. To 

determine the stiffness of the collagen gel, rheology will be carried out.  
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3.3 Materials and Methods 

3.3.1 Atomic Force Microscopy (AFM) 

PEA and PMA samples were coated with FN at 20 µg/mL for 10 minutes and were 

then washed twice with DPBS, once with milliQ water and then dried with 

nitrogen gas flow. 4 areas of each sample were scanned to check for consistency 

in the FN conformation. A Nanowizard 3 from JPK atomic force microscope was 

used in tapping mode using cantilevers with a force constant of 3 N/m, a 

resonance frequency of 75 kHz and a pyramidal tip with an 8 nm radius. To 

quantitatively assess FN distribution, images were exported to Image J, where 

the skeletonize plugin was applied. 

3.3.2 Quantification of BMP-2 and NGF adsorption of PEA 
surfaces 

A BMP-2 DuoSet ELISA kit (DY355-05, R&D) and an NGF Duoset ELISA kit (DY256-

05, R&D) were used to indirectly quantify the surface density of BMP-2 and NGF 

on PEA + FN + BMP-2, PEA + FN + NGF and PEA + FN + BMP-2&NGF surfaces. 200 

µl of GF supernatant was retrieved from each PEA + FN sample, and this volume 

was split into 2, and an average of the two determined concentrations was used 

in the analysis. All methods were carried out as per the instructions in the user 

manual. 

For each ELISA type, a 96 well plate was incubated overnight with a capture 

antibody for BMP-2 or NGF. The following day, the capture antibody was 

removed and each well was washed three times with a wash buffer (0.05% 

Tween-20/PBS). A blocking buffer (1% BSA in PBS) was then used to block the 

plates for one hour. The supernatant from the GF adsorption was removed from 

PEA + FN + BMP-2 or PEA + FN + NGF samples, and was diluted 10x in PBS to 

ensure the concentration of the samples fell within the working range of the 

ELISA kits.100 µl of diluted GF supernatant solution or 100 µl of standard was 

added to each well following the blocking step, and left to incubate at room 

temperature for 2 hours. (Standards were prepared in PBS starting at 3,000 

pg/mL). Wells were washed three times using wash buffer, and 100 µl of 

detection antibody was added to each well and left to incubate at room 

temperature for 2 hours. The wash step was repeated, and 100 µl of 
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streptavidin-HRP was added to each well and incubated for 20 minutes at room 

temperature, with the plate wrapped in tinfoil to block out light. 100 µl of 

substrate solution was added to each well and the plate was incubated for 20 

minutes at room temperature, wrapped in tinfoil. Finally, 50 µl of stop solution 

was added to each well.  

For analysis, the 540 nm readings were subtracted from the 450 nm readings to 

correct for optical imperfections. Then, the BMP-2 or NGF concentration of each 

standard and the corresponding absorbance was logged and a standard curve was 

generated. The BMP-2 or NGF concentration was plotted against the absorbance 

values. Regression analysis was used to generate the best-fit curve and was used 

to determine the concentration of each unknown sample, representing the 

amount of BMP-2 or NGF in the supernatant. To determine the amount of BMP-2 

or NGF adsorbed on the surfaces, the amount of BMP-2 determined to be in the 

supernatant was subtracted from the amount of BMP-2 in the solution used for 

the coating. 

Results were analysed using a T-test on GraphPad Prism 6.  

3.3.3 Collagen Gel Stiffness Testing Using Rheology 

To determine the stiffness of the collagen gel, dynamic frequency sweep 

experiments were performed with the use of a strain-controlled Kinexus 

rheometer (Malvern, UK). A parallel plate geometry (20 mm) and 0.8 mm gap 

were used. The stage was maintained at 25 oC using an integrated temperature 

controller. To ensure that measurements were made in the linear viscoelastic 

regime, an amplitude sweep was carried out. The dynamic modulus of the 

hydrogel was measured as a frequency function, and frequency sweeps were 

carried out between 1 and 100 Hz, to measure the material’s shear moduli. 

Measurements were repeated 3 times for reproducibility. Elastic modulus (G’) 

values were extracted from the accompanying Kinexus software, and were 

plotted against the angular frequency values using GraphPad Prism 6. Young’s 

modulus values were determined by taking the elastic modulus values and 

multiplying them by 3, assuming a Poisson’s ratio of 0.5, in accordance with 

Hooke’s law (Fung, 2013, Greenleaf et al., 2003).  
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3.4 Results 

3.4.1 FN Conformation on PEA Surfaces 

AFM images were obtained in tapping mode to confirm previous findings that PEA 

induces FN to adopt a network conformation, as a result of fibrillogenesis. AFM 

was also carried out to ensure that the control polymer, PMA, induces FN to 

adopt a globular conformation and does not support fibrillogenesis. The results 

are shown in Figure 3-1. 

Both the height and phase demonstrated a well-connected network of FN fibrils 

on PEA surfaces, indicative of fibrillogenesis. However, the same could not be 

observed on PMA surfaces. This confirmed previously published findings and 

supported the hypothesis that PEA surfaces may have GFs tethered to them, and 

may act as a suitable foundation for a HSC niche model.  

 
Figure 3-1 FN fibrillogenesis occurs on PEA surfaces. 
Samples were coated with FN at 20 μg/mL for 10 minutes and height and phase images were 
obtained for both PEA and the control polymer PMA. Data indicates FN fibrillogenesis 
occurs on PEA but not on PMA surfaces. 
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3.4.2 BMP-2 Adsorption of PEA Surfaces 

Figure 3-2 show results from a sandwich ELISA, carried out to quantitatively 

determine the ability of BMP-2 to bind to PEA + FN surfaces when it was supplied 

alone, and in a 1:1 concentration ratio with NGF. BMP-2 was adsorbed on its own 

at 25 ng/mL and a BMP-2/NGF mix solution was prepared using an equal volume 

of each GF, when the GFs were each at a concentration of 25 ng/mL.  

As expected, the results showed that BMP-2 adsorbs onto PEA + FN surfaces 

when supplied on its own, or in a mix with NGF. Further, as expected, there was 

a greater surface density of BMP-2 on BMP-2 only surfaces, compared to surfaces 

where BMP-2 and NGF were co-adsorbed.  

 
Figure 3-2 The surface density of BMP-2 on PEA + FN surfaces.  
BMP-2 adsorption on 12 PEA + FN surfaces was quantified when 25 ng/mL of BMP-2 
solution was adsorbed alone or in a 1:1 volume ratio with NGF. The concentration of BMP-2 
in the supernatant was determined using a standard curve, and the value was deducted 
from the concentration of the original sample, to give the surface density of BMP-2 on each 
surface. n=6. Graph shows mean +/- SD. stats *=p<0.05 by Kruskal-Wallis. Data indicates 
BMP-2 is adsorbed onto PEA + FN substrates when supplied alone or in a mix with NGF. 
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3.4.3 NGF Adsorption of PEA Surfaces 

A sandwich ELISA was also carried out to quantitatively determine the ability of 

NGF to bind to PEA + FN surfaces when it was supplied alone, and in a 1:1 

concentration ratio with BMP-2 (Figure 3-3). NGF was adsorbed on its own at 25 

ng/mL and a NGF/BMP-2 mix solution was prepared using an equal volume of 

each GF, when the GFs were each at a concentration of 25 ng/mL.  

The results indicated that NGF adsorbs onto PEA + FN surfaces when supplied on 

its own, or in a mix with BMP-2. In addition, as would be expected, the results 

suggested that there is a greater surface density of NGF on NGF only surfaces, 

compared to surfaces when NGF and BMP-2 were co-adsorbed.  

 
Figure 3-3 The surface density of NGF on PEA + FN surfaces. 
NGF adsorption on 12 PEA + FN surfaces was quantified when 25 ng/mL of NGF solution 
was adsorbed alone or in a 1:1 volume ratio with BMP-2. The concentration of NGF in the 
supernatant was determined using a standard curve, and the value was deducted from the 
concentration of the original sample, to give the surface density of NGF on each surface. 
n=6. Graph shows mean +/- SD. stats *=p<0.05, ** =p<0.01 by Kruskal-Wallis. Data indicates 
NGF is adsorbed onto PEA + FN substrates when supplied alone or in a mix with BMP-2. 
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3.4.4 Elastic Modulus of Collagen Gels 

In order to determine the stiffness of the collagen gel intended for use in this 

model, rheology was used to determine the elastic modulus of 6 collagen gels, 

wherein three batches (A-C) were split into two technical replicates, A and B. 

Results are shown in Figure 3-4. 

The results suggested that the elastic modulus of the collagen gels intended for 

use in this model ranged from 25 to 45, and further indicated that gels from the 

same batch had a similar elastic modulus. It is possible that the slight changes in 

the storage/elastic modulus values reported here, in gels of the same batch, 

may have arisen from the addition of the gel to the wells occurring at slightly 

different times. The difference in storage/elastic modulus that existed between 

gels made in different batches is likely to have arisen from small differences in 

the volume of NaOH added to the gel mixture, resulting from differing 

perceptions of the colour change (Section 2.4.4). 

 
Figure 3-4 Storage modulus of collagen gels 
The storage modulus of 6 collagen gels, prepared from 3 batches (A-C) with 2 technical 
replicates was carried out. The graph shows the range of storage modulus (G’) values 
obtained, representing the elastic modulus when the angular frequency range is between 1 
and 10 Hz. Units = Pa. Data indicates an elastic modulus range of collagen gels from 25 to 
45 Pa. 
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3.4.5 Young’s Modulus of Collagen Gels 

The values obtained from rheology experiments used to determine the storage 

modulus of the collagen gels intended for use in this model were further used to 

determine the Young’s modulus of the collagen gels. The Young’s modulus for 

each gel tested at angular frequencies between 1 and 10 Hz were determined 

using Hooke’s Law (E = 3G’), where E represents the Young’s modulus, and G’ 

refers to the storage modulus values previously obtained, and shown in Figure 

3-4 (Greenleaf et al., 2003). 

The results shown in Figure 3-5 suggested that the collagen gels intended for use 

within this HSC niche model had a mean Young’s modulus of around 100 Pa 

(Metzger et al., 2014). This implied that the gel would have a beneficial effect 

within the model, as it would mimic the stiffness and 3D character of the natural 

bone marrow niche (Metzger et al., 2014, Sobotková et al., 1988). 

 
Figure 3-5 The Young’s modulus of collagen gels 
Elastic modulus values for two technical replicates within three batches of collagen gels (A-
C) were obtained using rheology to determine storage modulus values, and then using 
Hooke’s Law (E = 3G’) to calculate the Young’s modulus. (assuming a Poisson’s ratio of 
0.5). n=6. Graph shows mean +/- SD. Data indicates a Young’s modulus of collagen gels to 
be around 100 Pa.  
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3.5 Discussion 

This chapter describes the characterisation of the materials involved in an in 

vitro HSC niche model using PEA + FN + GF surfaces as the foundation, with a 

collagen gel to mimic the stiffness and enhance the characteristics of the niche. 

The stiffness of the collagen gel was tested using rheology, to ensure that it was 

comparable to the stiffness of the natural HSC niche in the bone marrow (Figure 

3-5). In addition, PEA surfaces with an absorbed layer of FN were characterised 

by AFM to confirm the presence of FN networks, indicative of fibrillogenesis. 

These PEA + FN surfaces were also supplied with a solution of BMP-2, NGF or 

BMP-2&NGF mixed together, and the absorption and surface density of these 

growth factors were determined using sandwich ELISAs. 

Rheology is a commonly used method to test the stiffness of gels. Due to gels 

being complex solids, their viscosity is not a fixed value (Krieger and Dougherty, 

1959). Rather, it is dependent on the degree of shear to which they are exposed 

(Brady and Bossis, 1985). The bone marrow is a soft material with a reported 

Young’s modulus of approximately 100 Pa, and previous work in the field of 

biomaterials has shown that culturing MSCs with gels of such stiffness can 

enhance osteogenic differentiation, as is desired in this model (Sobotková et al., 

1988, Metzger et al., 2014, Winer et al., 2008). Results show that the collagen 

gels intended for using in this HSC niche model had an elastic modulus of 

between 25 and 45 Pa. Obtaining these values allowed for Young’s modulus 

values to be calculated using Hooke’s law, which identified the Young’s modulus 

of the gels as ~100 Pa (Figure 3-5) (Fung, 2013, Greenleaf et al., 2003). This 

result suggested that the collagen type I gels had similar physical properties to 

the in vivo niche, indicating that the model may regulate the HSCs and MSCs 

similarly to the body. In order to improve the results, it would be advantageous 

to test a greater number of collagen gels, using more technical replicates to 

determine if the differences observed within the same batch do result from 

differences in pipetting time. 

The use of AFM allowed for the imaging of several different areas of multiple 

PEA and PMA + FN coated coverslips, as shown in Figure 3-1. A similar network 

conformation of FN was observed on each PEA + FN coverslip, in each of the 4 

areas scanned. However, a different conformation of FN was observed in each 
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area of the 4 PMA + FN coverslips scanned. On PMA + FN coverslips, the network 

conformation of FN was never observed, confirming published results showing 

that the fibrillogenesis occurring on PEA coverslips does not occur on PMA + FN 

coverslips. Although the approach was robust, it would have been beneficial to 

scan more regions of a greater number of coverslips to ensure that results were 

consistent over a larger sample size. 

Concurrent with the results obtained from the AFM experiments, the use of 

ELISAs to determine the surface density of GFs bound to PEA + FN surfaces, 

showed that GFs are able to bind to PEA + FN surfaces (Figure 3-2, Figure 3-3). 

This suggested that the GF binding domain of the FN is exposed on PEA + FN 

surfaces – a characteristic of FN fibrillogenesis. Both the BMP-2 and NGF ELISA 

experiments demonstrated that the GFs are able to bind to PEA + FN surfaces, as 

the concentration of the GFs in the supernatant following a 2-hour incubation of 

the GFs on the PEA + FN surfaces was less than that of the solution initially 

supplied to the surfaces. In the BMP-2 surface density/adsorption experiment, it 

was promising to observe that significantly less BMP-2 was adsorbed when 

supplied in a BMP-2&NGF mix, than when BMP-2 was supplied alone in solution. 

This observation implied that some of the GF binding sites on the FN molecules 

were being occupied by NGF, when the BMP-2 and NGF were supplied together. 

The results shown in Figure 3-3 from the NGF surface density/absorption 

experiment support this hypothesis, in that these results also showed that 

significantly less NGF was bound when NGF was supplied in an NGF&BMP-2 mix 

solution. This suggested that some of the GF binding sites on the FN were being 

occupied by BMP-2. Although these results were promising and supported the 

hypothesis that GFs can bind to PEA + FN surfaces, even when more than one GF 

was adsorbed at once, the range of surface density values in both ELISA 

experiments was quite large. To overcome this, it would have been beneficial to 

have used more than 12 PEA + FN surfaces per ELISA. It would also be 

advantageous to repeat this experiment using PEA surfaces obtained from 

different polymerisation batches, to determine if batch variability may influence 

the surface density of GFs on PEA + FN surfaces. Finally, it is important to 

acknowledge that the maximum GF surface density value obtained in the BMP-2 

experiment was 3.98 ng/cm2, whereas the maximum value obtained in the NGF 

experiment was 7.85 ng/cm2. Despite efforts being made to ensure a high level 
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of consistency in the preparation of materials for these ELISA experiments, these 

values were considerably different and could be down to differences in room 

temperature or batch variability between the surfaces and FN or GF solutions 

used. To investigate if this variability is down to error, repetition of the 

experiments using the same BMP-2&NGF combined solution supernatant for both 

ELISAs, at the same time on the same day, with samples from the same batch of 

PEA would provide some insight as to why this difference in GF surface density 

was apparent. 

Further to expanding sample sizes and improving on aforementioned methods, 

knowledge and understanding of how the GFs bind to PEA + FN surfaces could be 

enhanced by carrying out gold labelled antibody staining of PEA + FN + GF 

surfaces. It is possible to use an anti-BMP-2 antibody in conjunction with a 

secondary antibody that is labelled with a gold nanoparticle (Llopis-Hernández 

et al., 2016). These nanoparticles could be observed using phase AFM images to 

show the exact binding location of BMP-2 molecules to FN fibrils in the PEA 

networks. Additional experiments that would have been useful to carry out in 

order to confirm previous findings and assumptions about GFs and FN adsorbed 

on PEA surfaces, include using a blocking antibody to block the FN III12-14 repeat 

region, which is responsible for the GF binding. Using a blocking antibody on this 

region and comparing the surface density of GFs on unblocked FN molecules to 

normal FN molecules on PEA would clarify the likelihood of non-specific binding. 

In conclusion, the results discussed in this chapter provided a foundation for the 

construction of an HSC niche model based on PEA + FN that also incorporated the 

use of a collagen type I gel. The results obtained demonstrated that a collagen 

type I gel with an elastic modulus comparable to that of the natural bone 

marrow could be made in the lab. Further, the results showed that when a layer 

of FN is adsorbed onto PEA coated glass coverslips, a network conformation of 

FN could be clearly observed. This network conformation was indicative of a 

well-published phenomenon known as FN fibrillogenesis, which is associated with 

the exposure of the cell adhesion and GF binding domains of FN. Further results 

suggested that the GF binding domain is exposed, as it has been shown that BMP-

2 and NGF can be adsorbed on to PEA + FN surfaces either independently or 

together. 
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CHAPTER 4
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Chapter 4 Stromal Layer Characterisation 

4.1 Introduction 

4.1.1 The role of a stromal layer in a PEA + FN HSC niche model 

It is known that incorporation of a stromal layer into HSC niche models is one of 

the easiest and most successful means of inducing HSC survival, maintenance 

and proliferation (Dexter, 1982, Leisten et al., 2012). Such stromal layers may 

consist of MSCs, OBs or both. In order to understand the basic nature of HSC 

niche models, it is important to characterise the stromal layer and to determine 

its nature in terms of MSC and OB phenotype. While each cell type has been 

shown to be beneficial on its own in the design of HSC niche models, design of a 

model incorporating both MSCs and OBs would be advantageous, as both cell 

types secrete a unique profile of HSC maintenance factors, critical for the 

development of a successful HSC niche model (Méndez-Ferrer et al., 2010, Calvi 

et al., 2003). 

4.1.2 MSCs in HSC niche models 

The role of MSCs in HSC niche models is well characterised, and it is known that 

MSCs support HSCs in the niche primarily via the expression of HSC maintenance 

factors (Méndez-Ferrer et al., 2010). As a result, it is important to consider this 

significant role of MSCs in the design of HSC niche models. In order to ensure 

that MSCs are able to retain their phenotype when incorporated into HSC niche 

models, it is necessary to ensure that MSC marker expression is retained 

throughout the culture period of the model.  

MSCs that are positive for nestin expression are considered to be one of the most 

important MSC populations for maintenance of the HSC niche, because nestin+ 

MSCs express high levels of HSC maintenance genes (Méndez-Ferrer et al., 2010, 

Pinho et al., 2013). In addition, HSC niche models that incorporate MSCs should 

have expression of other MSC markers checked, to consider other populations of 

MSCs. For example, STRO-1 is an established MSC marker, and although STRO-1 

expression decreases gradually with MSC expansion, STRO-1 positive MSCs have 

been shown to have HSC supportive roles (Ning et al., 2011). Thus, it is 

important to also consider STRO-1 expression in MSCs incorporated into HSC 
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niche models (Kolf et al., 2007). Similarly, it is also important to consider other 

MSC markers that are associated with the International Society of Cellular 

Therapy human MSC identification criteria. Despite nestin and STRO-1 expression 

being important in the characterisation of MSC phenotype in HSC niche models, 

analysis of other markers such as ALCAM may help to provide further insight into 

the phenotype of MSCs in HSC niche models (Nakamura et al., 2010b). 

The stromal layer incorporated into the PEA + FN + GF niche models associated 

with this thesis will be developed by seeding STRO-1+ MSCs on to PEA + FN + GF 

substrates, and culturing the cells for 21 days. Although some evidence exists to 

suggest that PEA + FN surfaces may act to maximise retention of the MSC 

phenotype, it is hypothesised that long-term culture of the MSCs combined with 

the incorporation of GFs such as BMP-2 may result in some osteogenic 

differentiation of the MSCs. In order to ascertain if the MSC phenotype can be 

retained, the expression of MSC markers will be assessed after 21 days of 

culture. The expression of nestin, STRO-1 and ALCAM in MSCs cultured on control 

and PEA + FN surfaces, in four different media types will be assessed using in 

cell western (ICW). 

4.1.3 OBs in HSC niche models 

Similarly to MSCs, OBs are a well-characterised HSC niche supportive cell type 

(Arai et al., 2004, Calvi et al., 2003). Known to function principally in the 

endosteal niche in the bone marrow, OBs have been shown to secrete high levels 

of a unique profile of HSC maintenance factors (Lévesque et al., 2010, Nakamura 

et al., 2010a). Thus, it is important to consider their role in HSC niche models, 

as their unique HSC maintenance factor expression profile is likely valuable, 

particularly if it can be produced in conjunction with the HSC maintenance 

factor expression profile of MSCs.  

As mentioned, this chapter will assess the ability of PEA + FN + GF substrates to 

support production of HSC maintenance factors, and it is hypothesised that the 

greatest and most valuable production of these HSC maintenance factors will 

come from a model incorporating both MSCs and OBs (Méndez-Ferrer et al., 

2010, Calvi et al., 2003, Zhang et al., 2003). To this end, this chapter aims to 

investigate the potential of an HSC niche model based on PEA + FN + GFs to 
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induce osteogenesis while maintaining MSC character of the stromal layer. It is 

hypothesised that using PEA + FN + BMP-2 will help to induce osteogenic 

differentiation of some of the model’s STRO-1+ MSCs. To test this hypothesis, and 

to compare the potential effects of other growth factors and control surfaces on 

inducing a degree of osteogenesis while maintaining MSC phenotype, the 

expression of OCN and OPN in MSCs will be determined after 21 days using ICW, 

in four possible media types. 

4.1.4 Expression of HSC maintenance factors in HSC niche 
models 

Numerous proteins and molecules are postulated to act as HSC maintenance 

factors in the literature (Calvi et al., 2003, Ding et al., 2012, De Ugarte et al., 

2003). However, certain proteins are particularly well characterised and have 

been extensively studied. For example, SCF is known to exist in secreted and 

transmembrane forms. Throughout life, HSCs have been shown to express the 

same levels of expression of the SCF receptor, c-KIT, and SCF has been shown to 

increase the survival, self-renewal and maintenance of HSCs cultured in vitro 

(Ema et al., 2000, Walasek et al., 2012). Although c-KIT receptor expression 

levels remain the same on HSCs throughout life, it is important to note that HSCs 

have been shown to become less sensitive to SCF; adult HSCs require six times 

the concentration of SCF to induce maximum survival when compared to foetal 

HSCs (Zhang and Lodish, 2008). Thus, it is important to assess the ability of the 

stromal layers of HSC niche models to secrete SCF. As the model associated with 

this thesis is aimed towards culturing adult HSCs, it is important to select a PEA 

+ FN substrate that allows for maximal expression of SCF from the stromal layer. 

ICW will be carried out to determine the expression of transmembrane SCF in 

the stromal layer, after 21 days, in four different media types. 

In addition to SCF, VCAM-1 is another important HSC maintenance factor. This 

protein is a cell adhesion molecule and is particularly important for facilitating 

the attraction to, and binding of, HSCs to MSCs and OBs (Kopp et al., 2005, Jung 

et al., 2005). In theory, the incorporation of high levels of VCAM-1 into a HSC 

niche model would allow the HSCs to localise closely with the stromal layer, thus 

enhancing the accessibility of HSCs to beneficial regulatory signals from the 

stromal layer. Thus, this chapter also aims to use ICW to assess the effect of 
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different substrate and media types on the expression of VCAM-1 from cells of 

the stromal layer.  

Although ICW can be effectively used to analyse the effects of different surface 

and media types on transmembrane SCF and VCAM-1 expression, ELISAs can also 

be used as a means of investigating the effects of changing media and surface 

types on the secretion of soluble HSC maintenance factors. CXCL-12 and THPO 

are also well-characterised HSC maintenance factors, known to attract and 

maintain HSCs in the in vivo bone marrow niche, respectively (Greenbaum et al., 

2013, Yoshihara et al., 2007). Development of an HSC niche model that 

encourages the stromal layer to express high levels of these proteins would be 

particularly advantageous, as their presence would encourage homing of HSCs 

towards the stromal layer, while also encouraging HSC maintenance and 

proliferation (Table 1-5). In particular, high levels of THPO are desirable, as 

THPO has been shown to have a synergistic role with other growth factors, and 

may enhance the effects of the other GFs in the model (Qian et al., 2007).  

4.2 Aims and Objectives 

The aim of this chapter of the thesis is to determine the potential of PEA + FN + 

GF substrates and four different media types to induce the following, within a 

21-day HSC niche model:  

• maintenance of the expression of MSC markers STRO-1, ALCAM and nestin 

• maximal expression of OB markers OCN and OPN 

• maximal expression of HSC maintenance factors SCF, VCAM-1, CXCL-12 

and THPO 

The reasoning for testing four different media types is that standard lab DMEM 

supplemented with 10% FBS was used in initial tests to determine if the surface 

types were sufficient to induce changes in the expression of OB markers and HSC 

maintenance markers, while maintaining MSC marker expression. Upon obtaining 

promising results, the media type was more carefully considered, as it is known 

that HSCs do not respond well to culture in serum-containing medium. Unlike 
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HSCs, MSCs are dependent on serum in the media, and so it was decided that a 

serum-containing medium would be used for days 1-14 of the culture, and that 

on day 15 when the HSCs would be added to the culture, the media would be 

changed to a media more suitable for HSCs. It was initially recommended that 

the day 15 to 21 cultures were carried out using a serum free medium 

supplemented with 5 GFs (5 GF media). However, the cost of this medium 

combined with promising results obtained by collaborators suggested a similar, if 

not better, effect on HSC survival could be observed using only 3 GFs in the 

media, but at different concentrations (3 GF media). Further to this, results 

from collaborative laboratories working on HSC niche models suggested that 

using 2% serum, preferably from humans rather than bovine, would also help to 

humanise the model and make the effects of the PEA + FN + GF surfaces more 

apparent. In summary, the four different media types shown in Figure 4-1 were 

tested sequentially. 

 

 
Figure 4-1 Cell culture media timeline 
MSCs were cultured for 21 days in 4 different media types prior to being tested in stromal 
layer characterisation experiments. Media types 1 and 2 used the same media throughout 
the culture period, whereas media types 3 and 4 used a human serum-containing medium 
until day 15, when this media type was exchanged for a serum free media type, 
supplemented with either 3 or 5 GFs. FBS = foetal bovine serum. HS = human serum. 
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Serum free 
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4.3 Materials and Methods 

4.3.1 Collagen gel function 

Determining how the collagen gels described in Chapter 3 may fit into this model 

was challenging, as work from collaborators suggested that the collagen gel may 

act to induce the differentiation of HSCs. The presence of the collagen gel would 

also make harvesting the HSCs a more challenging task. In order to reduce the 

complexity of this multifaceted model, it was decided that the collagen gel 

would be present in the models from day 3 to day 14, allowing time for the 

stromal layer to respond to it. On day 15, the gel was lifted out of the well, 

which did not affect the confluent layer of cells; from days 15 onwards of the 

cell culture, the collagen gel was not present. 

4.3.2 In Cell WesternTM (ICW) Assay 

Following cell culture, cells were fixed and permeabilised using the cell fixation 

and permeabilisation solutions outlined in section 2.2. Each sample was then 

incubated with LiCOR Odyssey Blocking Buffer for 1.5 hours. Primary antibodies 

were prepared in blocking buffer (1:100) and 150 µl of antibody solution was 

added to each well containing a coverslip and cells, in a 24-well plate. The 

primary antibody solution was left to incubate overnight at 4 oC, and the 

following day, each well was washed three times with (0.1% Tween-20/PBS), 

with each wash being left on the samples for 5 minutes. Secondary 

antibody/CellTag solutions were prepared to comprise: secondary antibodies 

diluted in blocking buffer (1:800); CellTag diluted in blocking buffer (1:500); 

0.2% Tween-20. Wash buffer was removed from each well and 150 µl of 

secondary antibody/CellTag solution was added to each well and left to incubate 

for 1 hour at room temperature on a platform rocker. The secondary 

antibody/CellTag solution was removed and the wash step was repeated for a 

total of 3 x 5 minute washes. Following the last wash, the wash solution was 

removed completely and each coverslip was transferred to a new 24-well plate 

to ensure samples were as dry as possible for accuracy during the imaging step.  

Samples were scanned with detection in the 800 nm channel for detection of the 

protein of interest and in the 700 nm channel for detection of the CellTag 
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fluorescence (indicative of cell number). Analysis was carried out by normalising 

the fluorescence units associated with the abundance of the protein of interest 

to the fluorescence units associated with the CellTag fluorescence units. Once 

the 800nm/700nm values were calculated, all values for samples were 

normalised to glass. 

4.3.3 Immunostaining 

Cells were fixed, as outlined in section 2.2. Cells were then permeabilised for 4 

minutes at 4 oC using 150 µl of permeabilisation buffer, per well of a 24 well 

plate. The permeabilisation solution was removed, and primary antibodies were 

diluted 1:50 in PBS/BSA, and left to incubate for overnight at 4 oC, with 150 µl 

per well of a 24-well plate. The primary antibody mixes were removed, and cells 

were washed three times, using 300 mL of wash buffer (0.5% Tween-20/PBS). 

Following the wash step, samples were incubated with a secondary antibody 

solution (biotin-conjugated anti-rabbit/mouse secondary antibody diluted 1:50 in 

PBS/BSA) at 150 µl per well, at 4 oC overnight. The following day, the wash step 

was repeated and 150 µl of fluorescein streptavidin solution (diluted 1:50 in 

PBS/BSA) was added to each well. The plate was incubated for 30 minutes at 4 
oC, in the dark. The wash step was repeated and samples were mounted onto 

glass coverslips using mounting medium containing 4’, 6-diamidino-2-

phenylindole (DAPI), before being used in fluorescence microscopy. 

4.3.4 Fluorescence Microscopy 

Immunostained samples were imaged using an inverted microscope (Axiovert 

200M; Zeiss, Germany) linked to a CCD camera (QImaging, Canada) or a 

QCapture camera (QImaging, Canada). Greyscale images were acquired 

corresponding to the different filters, and these were converted to RGB colour 

format using FIJI software. Composite images were produced by overlaying the 

coloured greyscale images. 

4.3.5 Scanning Electron Microscopy (SEM) 

SEM was used to obtain high magnification images of STRO-1+ MSCs. Cells were 

cultured for 21 days, and then fixed in the wells of the 24-well culture plate, 

with 1.5 % glutaraldehyde, buffered in 0.1 M sodium cacodylate for 1 hour at 4 
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oC. The cells were post-fixed in 1 % osmium tetroxide in 0.1 M sodium cacodylate 

buffer, and then stained using uranyl acetate. An ethanol drying series using 

30%, 50%, 70%, 90% ethanol, followed by dried absolute ethanol was used, and a 

final dehydration using hexamethyldisilizane was carried out. Once the 

hexamethyldisilizane was removed, samples were placed in a dessicator and left 

overnight to allow for further drying. The next day, samples were attached to 

aluminium stubs with double-sided conductive carbon tape and sputter coated 

with gold-palladium to a thickness of 15-20 nm (Polaron SC515 SEM coater). 

Images were acquired using a JEOL JSM 6400 Scanning Electron Microscope, in 

conjunction with Olympus Scandium Software, with kind assistance from 

Margaret Mullin (University of Glasgow). 

4.3.6 MTT Assay 

STRO-1+ cells were cultured for 7 days in a 24-well plate at 37 oC and 5 % CO2. 

On day 7, 200 µl of MTT dye solution (Sigma-Aldrich, UK) was added to each 

well. The plate was incubated for 4 hours at 37 oC and 5 % CO2, and then the 

media was removed and 200 µl of DMSO was added to each well to solubilise the 

fomazan crystals inside the cells. The plate was transferred to a shaker and was 

incubated for a further 5 minutes at room temperature. The liquid was removed 

from the wells and transferred to a 96 well plate with DMSO used as a blank. 

Absorbance at 550 nm was detected using a microplate reader. 

4.3.7 Flow Cytometry Staining 

Following 21 days of culture in the systems, MSCs were removed from surfaces in 

the wells of 24-well plates following a 20-minute incubation with accutase at 37 
oC. The cell suspension within each well was transferred to a FACS tube, and 1ml 

of FACS buffer at 4 oC was added. The tubes were centrifuged for 5 minutes at 

400 g, and the cell pellets were re-suspended in 500 µl of FACS buffer. The cell 

suspensions were split into two tubes, and centrifuged for 5 minutes at 400 g. 

Cell pellets were then re-suspended in an antibody mix containing CD29, CD13, 

CD90, CD73, CD105, CD166, CD31 diluted 1:50 in FACS buffer and CD44 diluted 

1:250. Cells were incubated for 30 minutes on ice and in the dark, before being 

centrifuged for 5 minutes at 400 g. Cells were finally re-suspended in 200 µl of 
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FACS buffer. Flow cytometry was carried out using an ATTUNE XDP (Thermo 

Fisher) flow cytometer and resulting data was analysed using FlowJo software.  

4.3.8 T Cell Suppression Assay 

MSCs were cultured for 21 days, and at the end of this culture period, T cells 

were added and co-cultured for a further 5 days to determine the capacity of 

the MSCs to suppress T cell proliferation.  

Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood, 

donated by healthy volunteers with full ethical consent. The PBMCs were 

isolated using Ficoll-Hypaque density gradient centrifugation, and the number of 

PBMCs added to each well of a 24-well plate was calculated to ensure a 1:2 ratio 

of MSCs to PBMCs. To ensure this was carried out accurately, an average of the 

cell number of 3 wells featuring MSCs cultured on a particular substrate type was 

taken, and used to give the mean number of MSCs per substrate type.  

Prior to adding the PBMCs to the wells, the PBMCs cells were stained using 

carboxyfluorescein succinimidyl ester (CFSE) (ThermoFisher, UK). After 

calculating the number of cells to be added to each well, the cells were 

centrifuged for 5 minutes at 400 g. Cells were re-suspended in 1x PBS, and CFSE 

was added at a concentration of 1:1000 (CFSE:PBS). Cells were incubated in the 

CFSE/PBS mix for 20 minutes at 37 oC, before 250 µl of culture medium was 

added and cells were incubated for a further 5 minutes. The cells were 

centrifuged for 5 minutes at 400 g and the supernatant was discarded before 

they were re-suspended in the appropriate volume of fresh culture medium. A 

positive control was set up, where the T cells were maximally stimulated using 

phorbol 12-myristate 12-acetate (PMA) (Sigma-Aldrich, UK) at a concentration of 

50 ng/ml, and IL-2 at a concentration of 50 ng/ml.  

PBMCs were added to model wells containing MSCs (n=4) and were cultured for 5 

days. On the 5th day, the non-adherent cells were harvested from the wells and 

allowed to flow through 70 µm nylon mesh cell separation filters (ThermoFisher, 

UK). 1ml of 1x PBS was added to wash remaining cells through the filter. Cell 

suspensions were centrifuged for 5 minutes at 400g, and were re-suspended in 

500 µl of FACS buffer. Flow cytometry was used to identify peaks of CFSE 
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staining, indicative of the number of T cell divisions. This was carried out using 

an ATTUNE XDP (Thermo Fisher) flow cytometer and resulting data was analysed 

using FlowJo software.  

The gating strategy used in FlowJo was based around the number of cells present 
within each peak, representing each cell division of the T cells, and is shown in 
Figure 4-2. 

Following identification of the number of cells that underwent each division, the 
proliferation index was calculated as the sum of the cells in all generations 
divided by the calculated number of original parent cells (Holmgren et al., 1995, 
Smits et al., 2005). 

 

 
Figure 4-2 Suppression assay CFSE gating strategy 
To determine the number of cells in each model that had undergone proliferation, and how 
many divisions had occurred, CFSE staining was carried out in T cells that were left to 
culture for 5 days in models containing MSCs. At the end of the culture, T cells were 
analysed using flow cytometry and the above gating strategy was employed to identify how 
many divisions T cells had undergone. 

Co
un

t	

CFSE	Staining	-	prolifera3on	
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4.4 Results 

4.4.1 STRO-1+ MSC morphology is unaffected by substrates 

In order to assess the basic effects of cell culture on PEA + FN substrates, STRO-

1+ MSCs were cultured on PEA + FN and PEA + FN + GF surfaces, and their 

morphology was compared to that of cells cultured on control surfaces of glass 

and glass + FN (Figure 4-3). 

The results obtained from the SEM images suggested that the cell morphology of 

STRO-1+ MSCs was similar when cultured on PEA + FN surfaces or PEA + FN + GF 

substrates, to that of cells cultured on control Glass + FN surfaces. Unusual 

artefacts resembling filopodia were observed in all 5000x magnification images. 

Imaging of additional samples that were dried in the same way, compared to 

others that were not, suggested that these artefacts resulted from the drying 

process. 

                    
Figure 4-3 SEM Images of STRO-1+ Cells on Substrates 
SEM images were obtained at 300x and 5000x magnification on PEA + FN surfaces, with a 
Glass + FN control. Cell morphology appears similar irrespective of different culture 
substrates. Data indicates a similar MSC morphology irrespective of culture substrate. 

300x 5000x

Glass + FN

PEA + FN

PEA + FN 
+ BMP-2

PEA + FN 
+ NGF

PEA + FN + 
BMP-2&NGF

50 μm 5 μm
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4.4.2 STRO-1 protein expression results in 10% FBS media 

4.4.2.1 MSC marker expression  

To determine if PEA + FN + GF substrates alter the expression levels of MSC 

markers relative to controls, STRO-1+ cells were cultured on PEA + FN + GF and 

control substrates, and fixed after 21 days before being stained with ICW 

antibodies for ALCAM, STRO-1 and Nestin. The abundance of the protein of 

interest was normalised to cell number, giving a relative fluorescence (RF) 

value. Fold changes relative to glass were then calculated (Figure 4-4). 

The results shown in Figure 4-4 showed that levels of nestin and STRO-1 

expression in STRO-1+ cells were not statistically different when the cells are 

cultured on PEA + FN or PEA + FN + GF surfaces, compared to controls. ALCAM 

expression appeared to be reduced in cells cultured on PEA + FN + NGF surfaces, 

yet these ALCAM expression levels were not statistically different to those found 

in cells cultured on the other tested substrates.  
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Figure 4-4 ICW results for MSC marker expression after 21 days 
ICW was carried out to determine the effect of culturing STRO-1+ cells on PEA + FN, and 
control surfaces, on the expression of MSC markers, ALCAM, nestin and STRO-1+.  
Fluorescence values relative to the protein of interest were normalised to cell number. Fold 
change values over glass (FCOG) are reported.  n ≥ 3. PMA+FN & PEA + FN + VEGF = 1 
biological replicate; all other surfaces = 3 biological replicates. Graph shows mean +/- SD. 
*=p<0.05, **=p<0.01 by Kruskal-Wallis. Data generally indicates that substrate type has no 
statistically significant effect on the expression of MSC markers. 

4.4.2.2 Osteogenesis marker expression 

To assess the ability of PEA + FN + BMP-2 substrates to stimulate osteogenic 

differentiation in STRO-1+ MSCs, cells were culture for 21 days and were stained 

with ICW antibodies for OCN and OPN. The abundance of the protein of interest 

was normalised to cell number, giving a relative fluorescence (RF) value. Fold 

changes relative to glass were then calculated (Figure 4-5). 
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The results obtained suggested that the PEA + FN + BMP-2 surfaces were not 

sufficient to induce a statistically significant increase in the BMP-2 expression in 

STRO-1+ cells after 21 days of culture in the 10% FBS media. 

 
Figure 4-5 ICW results indicative of osteogenesis after 21 days 
ICW was carried out to determine the potential of PEA + FN + BMP-2 surfaces to stimulate 
osteogenic differentiation of STRO-1+ cells are 21 days of culture in DMEM supplemented 
with 10% FBS. Antibodies against OCN and OPN were used and fluorescence values relative 
to the protein of interest were normalised to cell number. Fold changes over glass (FCOG) 
are reported. n ≥ 3. 2 biological replicates were used. Graph shows mean +/- SD. Data 
suggest that substrate type has no statistically significant effect on the expression of 
osteogenesis markers. 

4.4.2.3 HSC maintenance factor expression 

To determine if PEA + FN surfaces could induce an increase in the expression 

levels of HSC maintenance factors relative to controls, STRO-1+ cells were 

cultured on PEA + FN and control surfaces, and fixed after 21 days before being 

stained with ICW antibodies for SCF and VCAM-1. The abundance of the protein 

of interest was normalised to cell number, giving a relative fluorescence (RF) 

value. Fold changes relative to glass were then calculated (Figure 4-6). 

The results of the ICW analyses shown above suggested that PEA + FN + GF 

surfaces were capable of enhancing SCF expression in STRO-1+ cells. Notably, the 

PEA + FN + BMP-2&NGF surface appeared to be the strongest candidate for 

incorporation into an HSC niche model, as this surface induced a significantly 

higher expression of SCF in cells than the PEA + FN + BMP-2 surface alone. The 

VCAM-1 results suggested that the PEA + FN surfaces had less of a statistically 
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significant impact on VCAM-1 expression. However, it was interesting to note 

that the PEA + FN + All4 surface where BMP-2, NGF, PDGF and VEGF were 

adsorbed together onto the surface induced a statistically higher expression of 

VCAM-1 compared to controls.  

 

 
Figure 4-6 ICW results for SCF and VCAM-1 expression after 21 days 
Graphs show results of ICW experiments carried out to assess changes in SCF and VCAM-1 
expression in STRO-1+ cells cultured for 21 days on substrates in DMEM supplemented with 
10% FBS. Antibodies against SCF and VCAM-1 were used and fluorescence values relative 
to the protein of interest were normalised to cell number. Fold change values over glass 
(FCOG) are reported.  PEA + FN + All4 represents PEA + FN surfaces with a combination of 
BMP2, NGF, PDGF and VEGF adsorbed. n ≥ 3. (SCF results – PEA + FN, PEA + FN + BMP2 = 
5 biological replicates; Glass + FN, PEA + FN + NGF = 4 biological replicates; PEA + FN + 
VEGF = 3 biological replicates; PEA + FN + PDGF = 2 biological replicates; PMA + FN, PEA + 
FN + All4  = 1 biological replicate) (VCAM-1 results – PEA + FN, PEA + FN + BMP2 = 4 
biological replicates; Glass + FN, PEA + FN + NGF, PEA + FN + VEGF = 3 biological 
replicates; PEA + FN + PDGF = 2 biological replicates; PMA + FN, PEA + FN + All4  = 1 
biological replicate). Graph shows mean +/- SD. *=p<0.05, **=p<0.01, ***=p<0.001, 
****=p<0.0001, by ANOVA. Data indicates that the addition of GFs to PEA + FN substrates 
enhances expression of HSC maintenance factors SCF & VCAM-1. 

4.4.3 Niche protein expression results in 2% FBS media 

As is shown in chapter section 4.4.2, the PEA + FN + GF surfaces are capable of 

enhancing expression of the critical HSC maintenance factor, SCF, while 

maintaining MSC marker expression and osteogenesis marker expression. It was 

hypothesised that the subtle differences observed in osteogenesis marker 

expression may be made clearer by reducing the concentration of serum in the 
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media, as this contains high concentrations of varying growth factors that may 

swamp or drown-out the effect of the GF surfaces. Thus, it was deemed 

worthwhile to investigate if reducing the concentration of serum leads to more 

clear-cut differences in ability of the PEA + FN + GF surfaces to induce an HSC 

niche supporting phenotype in STRO-1+ MSCs.  

In addition, to increase n numbers to consistently be 4 and reduce the cost, size 

and scale of experiments, it was decided that future work would focus 

exclusively on BMP-2 and NGF GFs, as these GFs appeared to considerably 

increase SCF expression in STRO-1+ cells cultured on these substrates, making 

them the most suitable HSC niche model substrate candidates.  

4.4.3.1 MSC marker expression (2% FBS media) 

To determine if reducing the serum concentration in the media affects the 

expression of MSC markers, ALCAM, nestin and STRO-1, ICW was carried out after 

21 days of culture in DMEM supplemented with 2% FBS. The fold change over 

glass values for the niche model candidate surfaces are shown in Figure 4-7. 

The results obtained supported previous results shown in Figure 4-4, where 

expression levels of nestin and STRO-1 were not significantly up-regulated or 

down-regulated in response to cell culture on any of the tested substrates.  

Although the previous results showed a statistically significant decrease in 

ALCAM expression in cells cultured on PEA + FN + NGF substrates, the results 

shown here suggested that the surface alone is not sufficient to induce such 

statistically significant differences. 
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Figure 4-7 ICW results for MSC marker expression in 2% FBS media 
ICW was carried out to determine whether reducing the concentration of FBS in the media 
to 2% would result in changes in the expression levels of MSC markers, ALCAM, nestin and 
STRO-1 being observed in cells cultured on different potential niche model substrates. Fold 
change values over glass (FCOG) are reported.  n = 4. 1 biological replicate. Graph shows 
mean +/- SD. Data indicates that substrate type has no statistically significant effect on the 
expression of MSC markers. 
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4.4.3.2 Osteogenesis marker expression (2% FBS media) 

In order to assess the capacity of PEA + FN + BMP-2 surfaces to induce a greater 

level of osteogenesis in STRO-1+ cells cultured for 21 days when the serum 

concentration was reduced to 2%, ICW was carried out to determine protein 

level changes in OCN and OPN. The fold change over glass values for the niche 

model candidate surfaces are presented in Figure 4-8.  

The results shown in Figure 4-8 suggested that expression of OCN and OPN was 

highest on PEA + FN + BMP-2 substrates. The mean fold change over glass values 

indicative of OCN and OPN expression for cells on PEA + FN + BMP-2&NGF 

substrates also appeared to be slightly higher than on controls, yet to a lesser 

extent. This was likely to be down to NGF occupying some of the GF binding 

sites, and therefore there being fewer binding sites occupied by BMP-2 on these 

combined GF substrates.  

 

 
Figure 4-8 ICW results indicative of osteogenesis in 2% FBS media 
STRO-1+ cells were cultured for 21 days on different niche model candidate substrates, and 
ICW was carried out to determine if different PEA + FN substrates have the capacity to 
support increased expression levels of osteogenesis markers, OCN and OPN, when 
cultured in media supplemented with 2% FBS. Fold change values over glass (FCOG) are 
reported.  n = 4. 1 biological replicate. Graph shows mean +/- SD. Data indicates that culture 
on PEA + FN + BMP-2 substrates enhances expression of osteogenic differentiation 
markers. 
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4.4.3.3 HSC maintenance factor expression (2% FBS media) 

ICW was used to determine if reducing the concentration of FBS in the media to 

2% was sufficient to allow the action of the PEA + FN bound GFs to accentuate 

the differences in SCF and VCAM-1 expression in STRO-1+ cells cultured on 

different substrates, as observed in Figure 4-6. The fold change over glass values 

for the niche model candidate surfaces are presented in Figure 4-9. 

The SCF data shown in Figure 4-9 suggested that SCF expression levels were 

greatest on PEA + FN + GF substrates. While this result is not statistically 

significant, it is important to note that the result observed supported the SCF 

data shown in Figure 4-6, and provided additional evidence to suggest that PEA + 

FN + GF substrates could be valuable in HSC niche models. 

The data above also provided evidence to suggest that PEA + FN + NGF surfaces 

may act to support enhanced expression levels of VCAM-1 in STRO-1+ cells 

cultured in media supplemented with 2% FBS. A increase in VCAM-1 expression 

relative to controls was observed in Figure 4-6, and so further results existed to 

support the use of PEA + FN + GF surfaces in HSC niche models. 

 
Figure 4-9 ICW results for SCF and VCAM-1 expression in 2% FBS media 
STRO-1+ cells were cultured for 21 days on different niche model candidate substrates, and 
ICW was carried out to determine if different PEA + FN substrates have the capacity to 
support increased expression levels of expression of HSC maintenance factors, SCF and 
VCAM-1, when cultured in media supplemented with 2% FBS. Fold change values over glass 
are reported.  n = 4. 1 biological replicate. Graph shows mean +/- SD. *=p<0.05 by Kruskal-
Wallis. Data indicates that culture on GF-containing substrates increases expression of HSC 
maintenance factors. 
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4.4.4 Niche protein expression results in 2% human serum media 

for 14 days and 5GF media for 7 days 

The promising results obtained and shown in sections 4.4.2 and 4.4.3 encouraged 

further investigation into the potential of PEA + FN + GF surfaces within HSC 

niche models. As further research into models containing these surfaces 

progressed, it was important to take the likelihood of such models to support 

HSC survival into consideration. As the models are intended for use with human 

cells, it was advised by collaborators that the FBS in the media was exchanged 

for human serum, and cells were cultured in media containing 2% HS for 14 days, 

before being switched to an HSC-supportive media (referred to as 5GF media) 

for days 14-21 of culture. To ensure that the change in media composition did 

not affect the viability of STRO-1+ cells, an MTT assay was carried out. Results 

shown in Figure 4-10 suggested that there was no statistically significant impact 

on cell viability, and so ICW was carried out to assess how this culture method 

affects the behaviour of STRO-1+ MSCs cultured on the substrate types, with 

regards to the expression of MSC and HSC maintenance factors, ICW was carried 

out as per sections 4.4.2 and 4.4.3.  
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4.4.4.1 STRO-1+ cell viability in varying serum concentrations and types 

An MTT assay was carried out after 3,7 and 14 days of cell culture to determine 

the effect of changing the concentration and type of serum in the media on 

STRO-1+ cell viability (Figure 4-10) 

The results suggested that culturing cells in 10% FBS, 2% FBS or 2% HS induced no 

statistically significant differences in the viability of STRO-1+ cells cultured for 3, 

7 or 14 days. This result proposed that using a reduced concentration of human 

serum as opposed to FBS would have no impact on the basic health of the MSCs 

used within an HSC niche model. 

   
Figure 4-10 STRO-1 cell viability in media with different serum type and concentration 
STRO-1+ cells were cultured for 3, 7 and 14 days in DMEM supplemented with 10% FBS, 2% 
FBS or 2% human serum (HS), and their viability was determined using an MTT assay. 
Graph shows mean +/- SD. Data indicates that MSC viability is not affected, over time, by the  
media formulation used. 
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4.4.4.2 MSC marker expression (HS and 5GF media) 

ICW was carried out to determine if culturing STRO-1+ MSCs in DMEM 

supplemented with 2% HS for days 1-14 and then 5GF media for days 15-21 

produced similar results to those observed in Figure 4-4 and Figure 4-7, whereby 

the expression of MSC markers STRO-1 and nestin is not statistically different in 

cells cultured on the different substrate types. The fold change over glass values 

for the niche model candidate surfaces are presented in Figure 4-11. 

The results suggested that use of DMEM supplemented with 2% HS for the first 14 

days of cell culture and then the use of 5GF media for days 15-21 of the culture 

did not induce any statistically significant differences in the expression levels of 

ALCAM, nestin or STRO-1 in cells cultured on the different niche substrate types 

(as observed in Figure 4-7).  

 
Figure 4-11 ICW results for MSC marker expression in 2% HS and 5GF media 
ICW was carried out to determine if culture of STRO-1+ MSCs on different niche model 
candidate substrates altered the expression levels of MSC markers, ALCAM, nestin and 
STRO-1 after 14 days of culture in DMEM supplemented with human serum and then 7 days 
of culture in 5GF media. Fold change values over glass (FCOG) are reported.  n = 4. 2 
biological replicates. Graph shows mean +/- SD. Data indicates that expression of MSC 
markers is not affected by cell culture on the different substrates tested. 
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4.4.4.3 HSC maintenance factor expression (HS and 5GF media) 

ICW was carried out to determine if culturing STRO-1+ cells in DMEM 

supplemented with 2% HS for 14 days, and then 5GF media for days 15-21 of 

culture produced similar results to those observed in Figure 4-6 and Figure 4-9, 

whereby PEA + FN + GF surfaces appear to enhance expression of SCF and VCAM-

1, relative to controls (Figure 4-12). 

SCF was maximally expressed in cells cultured on PEA + FN + BMP-2&NGF 

substrates in this media type. Although the results were not statistically 

significant, SCF expression observed here was similar to that observed in Figure 

4-6 and Figure 4-9, wherein PEA substrates, notably the PEA + FN + BMP-2&NGF 

substrate, induced the highest expression levels of SCF in STRO-1+ cells. 

Interestingly, using DMEM supplemented with 2% HS for 14 days of cell culture 

and then 5GF media, potentiated the subtle differences in the expression of 

VCAM-1 in cells cultured on different substrates that are shown in Figure 4-6 and 

Figure 4-9. As with the SCF result shown, the VCAM-1 result suggested that the 

PEA + FN + BMP-2&NGF substrate is the best for maximising VCAM-1 expression in 

STRO-1+ cells cultured in this media type.  

 
Figure 4-12 ICW results for SCF and VCAM-1 expression in 2% HS and 5GF media 
ICW was carried out to determine if culture of STRO-1+ MSCs on different niche model 
candidate substrates altered the expression levels of HSC maintenance factors, SCF and 
VCAM-1 after 14 days of culture in DMEM supplemented with human serum and then 7 days 
of culture in 5GF media. Fold change values over glass (FCOG) are reported.  n = 4. 2 
biological replicates. Graph shows mean +/- SD. *=p<0.05, **=p<0.01 by Kruskal-Wallis. Data 
indicates that PEA + FN + BMP-2&NGF substrates may optimally enhance the expression of 
HSC maintenance factors, SCF & VCAM-1. 
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4.4.5 Niche protein expression results in 2% human serum media 

for 14 days and 3GF media for 7 days 

The results from section 4.4.4 show that MSC marker expression can be 

maintained and SCF and VCAM-1 expression can be maximised on PEA + FN + 

BMP-2&NGF surfaces. In addition, these results also imply that using a medium 

containing 2% HS for 14 days of culture and then a serum-free media suited to 

HSCs for days 15 to 21 of culture supports this phenotype in STRO-1+
 cells. Taking 

these observations into consideration, it was decided that this media 

formulation would be well suited for use in an HSC niche model. However, 

additional work from collaborators found that using 3GF media for the culture of 

HSCs was just as effective as using 5GF media. Thus, in order to reduce the cost 

associated with model development, it was decided that use of the 3GF media 

would be worth investigating. To this end, ICW was carried out to determine if 

using 3GF media from days 15 to 21 affected the previously observed expression 

differences, whereby MSC marker expression was maintained and OCN, OPN, SCF 

and VCAM-1 expression levels were maximised on PEA + FN + GF substrates.  

4.4.5.1  MSC marker expression (HS and 3GF media) 

ICW was carried out to determine if culturing STRO-1+ MSCs in DMEM 

supplemented with 2% HS for days 1-14 and then 3GF media for days 15-21 

produced similar results to those observed in Figure 4-4, Figure 4-7 and Figure 

4-11, whereby STRO-1 and nestin expression is not statistically different in cells 

cultured on different substrates. In addition, ALCAM expression was considered, 

as an ideal model would also maintain ALCAM expression in cells cultured on all 

substrate types (Figure 4-13).  

The graphs suggested that there were no statistically significant differences in 

the expression levels of ALCAM, nestin or STRO-1 between cells cultured on the 

different substrates in 2% HS media for 14 days and then 3GF media for 7 days. 

The results obtained here correlated with those previously obtained for different 

media types, and suggested that the different substrate types had no profound 

effect on the expression levels of these MSC markers in STRO-1+ cells.  
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Figure 4-13 ICW results for MSC marker expression in 2% HS and 3GF media 
ICW was carried out to determine if culture of STRO-1+ MSCs on different niche model 
candidate substrates altered the expression levels of MSC markers, ALCAM, nestin and 
STRO-1 after 14 days of culture in DMEM supplemented with human serum and then 7 days 
of culture in 3GF media. Fold change values over glass (FCOG) are reported.  n ≥ 3. Glass + 
FN, PMA + FN, PEA + FN, PEA + FN + BMP-2&NGF = 3 biological replicates. PEA + FN + 
BMP-2 & PEA + FN + NGF ≥ 1 biological replicate. Graph shows mean +/- SD. Data indicates 
that MSC marker expression is not affected by the substrate used in the HSC niche models. 
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4.4.5.2 Osteogenesis marker expression (HS and 3GF media) 

To investigate the hypothesis that PEA + FN + BMP-2 or PEA + FN + BMP-2&NGF 

substrates would induce the greatest expression of osteogenesis markers in 

STRO-1+ cells cultured on these substrates, ICW was carried out to determine if 

this hypothesis was true for cells cultured in media containing 2% HS for 14 days 

and 3GF media for days 15 to 21 of culture (Figure 4-14). 

The graphs suggested that levels of OCN expression in STRO-1+ cells was not 

statistically different when the cells were cultured on the different substrates in 

this media formulation. However, fitting with the hypothesis, the results 

suggested that OPN expression was highest in cells cultured on PEA + FN + BMP-2 

substrates and PEA + FN + BMP-2&NGF substrates. OPN is associated with a more 

primitive phenotype, while OCN is associated with a more mature phenotype 

(Aubin et al., 1995). Consequently, these results suggested that the PEA + FN + 

GF surfaces and this culture method collectively induced the formation of a 

primitive OB phenotype in some cells, which could be of great value to this HSC 

niche model (Nilsson et al., 2005).  

 
Figure 4-14 ICW results indicative of osteogenesis in 2% HS and 3GF media 
STRO-1+ cells were cultured on different niche model candidate substrates, and ICW was 
carried out to determine if different PEA + FN substrates have the capacity to support 
increased expression levels of osteogenesis markers, OCN and OPN, when cultured in 
media supplemented with 2% HS for days 1-14 and then 3GF media for days 15-21. Fold 
change values over glass (FCOG) are reported.  n ≥ 3. Glass + FN, PMA + FN, PEA + FN and 
PEA + FN + -&NGF = 3 biological replicates. PEA + FN + BMP2 and PEA + FN + NGF = 1 
biological replicate. Graph shows mean +/- SD. *=p<0.05, **=p<0.01 by Kruskal-Wallis. Data 
suggests that OPN expression is highest on substrates with BMP-2 bound.  
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4.4.5.3 HSC maintenance factor expression (HS and 3GF media) 

ICW was carried out to determine if similar differences in SCF and VCAM-1 

expression to those observed in Figure 4-12 remained when STRO-1+ cells were 

cultured in DMEM supplemented with 2% HS for 14 days and then 3GF media for 

days 15-21, rather than in 5GF media for days 15-21 (Figure 4-15).  

The results obtained for the relative expression levels of SCF were similar to 

those shown in Figure 4-12, in that PEA + FN + GF substrates appeared to induce 

greater expression of SCF relative to control substrates. Interestingly, in this 

media type, it appeared that the PEA + FN + NGF and PEA + FN + BMP-2&NGF 

substrates induced a statistically significant increase in SCF expression, relative 

to the gold standard glass + FN substrate, suggesting that these substrates and 

this media formulation had strong potential within an HSC niche model. 

The data obtained for VCAM-1 expression in cells cultured on the different 

substrates was also somewhat similar to that shown in Figure 4-12, in that the 

PEA + FN + GF surfaces seemed to induce a marginal increase in VCAM-1 

expression in cells cultured on these surfaces, relative to controls. However, it 

should be noted that this change was not statistically significant. 

 
Figure 4-15 ICW results for SCF and VCAM-1 expression in 2% HS and 3GF media 
ICW was carried out to determine if culture of STRO-1+ MSCs on different niche model 
candidate substrates altered the expression levels of HSC maintenance factors, SCF and 
VCAM-1 after 14 days of culture in DMEM supplemented with human serum and then 7 days 
of culture in 3GF media. Fold change values over glass (FCOG) are reported.  n ≥ 3. Glass + 
FN, PMA + FN, PEA + FN and PEA + FN + BMP2&NGF = 3 biological replicates. PEA + FN + 
BMP2 and PEA + FN + NGF = 1 biological replicate. Graph shows mean +/- SD. *=p<0.05, 
**=p<0.01 by Kruskal-Wallis. Data indicates that SCF expression is enhanced on substrates 
with NGF bound. 
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4.4.6 Flow cytometry analysis of additional MSC marker 

expression in 2% HS and 3GF media 

The results shown in Figure 4-4, Figure 4-7, Figure 4-11 and Figure 4-13 suggest 

that there are no reproducible, statistically significant differences in the 

expression levels of nestin or STRO-1 between cells cultured on the candidate 

niche model substrates tested. In addition, the results observed were consistent 

despite 4 different media compositions tested. To minimise experiment size, 

cost and complexity, work here on focused on using only PEA + FN + BMP-2&NGF 

substrates representing the PEA + FN + GF group, as this substrate appeared to 

produce cell populations with a phenotype most favourable within an HSC niche 

model.   

In order to assess the effect of culture on the expression of additional MSC 

markers, flow cytometry was carried out using antibodies against CD166 (ALCAM) 

CD105, CD90, CD29 and CD13, to determine what percentage of total cell 

number expressed each marker type (Figure 4-16). 

The results suggested that there were no major reductions in the expression of 

the MSC markers tested in cells cultured on the PEA + FN + BMP-2&NGF 

substrates, relative to controls. It was particularly interesting to see an apparent 

rise in the expression of CD166 (ALCAM) in cells cultured on the PEA + FN + BMP-

2&NGF substrates, as the result shown in Figure 4-13 indicated that ALCAM 

expression may be reduced in cells cultured on PEA + FN + BMP-2&NGF 

substrates. However, it was important to note that the flow cytometry protocol 

followed in this experiment required approximately 30 000 cells per test, and so 

3 wells of 1x104 cells were pooled per sample, meaning the overall n number 

was one. Thus, it would be important to repeat this experiment several times 

more before a valid conclusion could be made.  
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Figure 4-16 Flow cytometry results for MSC marker expression in 2% HS and 3GF media 
Flow cytometry was carried out to assess the effect of STRO-1+ cell culture on different 
niche model candidate substrates, in 2% HS and 3GF media for 21 days. 3 samples of 
approximately 1 x 104 cells were pooled per substrate type, per protein test, and cells were 
stained with antibodies against CD166, CD105, CD90, CD29 and CD13. The percentage of 
the total cell number expressing each marker was determined using FlowJo software and 
fold change over glass values are reported. n=1. Data indicates that MSC marker expression 
is not reduced in models featuring GF-containing substrates. 

4.4.7 Assessing MSC function using T cell suppression assay 

As shown in Figure 4-4, Figure 4-7, Figure 4-11, Figure 4-13 and Figure 4-16, the 

expression of MSC markers was not affected when STRO-1+ MSCs were cultured 

on any of the niche model candidate substrates tested. However, other results 

presented in this chapter suggested that a degree of osteogenesis was occurring 

when cells were cultured in models containing PEA + FN + BMP-2 and PEA + FN + 

BMP-2&NGF substrates. This suggested that the MSC character of STRO-1+ cells 

cultured in models containing these substrates may be less, and would be 

replaced by some osteogenic character. In order to further test the results 

suggesting MSC phenotype is not affected by culture in models containing 

osteogenesis-promoting substrates, a T cell suppression assay was carried out. 
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The T cell suppressive character of MSCs derived from the bone marrow is 

considered to be a key characteristic of MSCs (Bloom et al., 2015). Thus, T cells 

were stained with CFSE dye and added to MSCs cultured for 21 days in HSC niche 

models, and were cultured for 5 days to determine the capacity of the MSCs to 

suppress T cell proliferation. The proliferation index, indicative of how well T 

cells proliferate, was calculated and the results are shown in Figure 4-17 

(Gorgoulis et al., 2005, Gattinoni et al., 2011). 

The results indicated that MSCs cultured in models featuring PMA + FN substrates 

and PEA + FN + BMP-2&NGF substrates had the best capacity to suppress T cell 

proliferation. It was particularly interesting to observe that the only niche model 

substrate that induced a statistically lower level of T cell proliferation to the 

stimulated control, was the PEA + FN + BMP-2&NGF substrate, as this observation 

suggested that while some osteogenesis may occur in models comprising this 

substrate, the substrate does not lessen the stem cell character of the MSCs 

cultured on it.  

 
Figure 4-17 Proliferation index of T cells cultured with MSCs from HSC niche models 
CFSE staining of T cells was carried out after culture for 5 days in HSC niche models 
featuring MSCs cultured on different niche model candidate substrates in 2% HS media for 
14 days and 3GF media for the 7 days following. n=4. Flow cytometry and analysis using 
FlowJo software were used to determine the number of cells in each division generation 
and the number of original parent cells. The proliferation index was calculated by dividing 
the sum of T cells in all generations by the number of parent cells. Positive controls 
comprise T cells stimulated with PMA and IL-6, cultured in the absence of MSCs. Graph 
shows mean +/- SD. *=p<0.05, **=p<0.01 by Kruskal-Wallis. Data indicates that MSCs 
maintain their ability to suppress T cells when cultured on PEA + FN + BMP-2&NGF 
substrates. 
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4.4.8 CXCL-12 secretion from STRO-1+ cells cultured on niche 

model candidate substrates in varying media compositions 

In addition to using ICW to assess the effect of cell culture in different media 

types, and on different substrates, on the expression of cell surface markers, an 

ELISA for CXCL-12 was carried out to determine the effect of these changes on 

CXCL-12 secretion from the STRO-1+ cells comprising the stromal layer of the 

developing HSC niche model. 

4.4.8.1 Analysis of CXCL-12 ELISA data from STRO-1+ cells cultured in 
DMEM supplemented with 10% FBS 

An ELISA was used to determine the effect of cell culture on different candidate 

niche model substrates in DMEM supplemented with 10% FBS. 3 technical 

replicates for each substrate were analysed and their concentrations were 

determined following interpolation of a standard curve. The mean concentration 

of CXCL-12 in the media of cells cultured on each substrate type was 

determined, and fold change values over glass were calculated (Figure 4-18). 

The results suggested that there were no statistically significant differences in 

the secretion of CXCL-12 from cells cultured on different substrates or at 

different time points. The results of the ICW analyses suggested that reducing 

the concentration of serum in the media potentiated the effect of the GFs on 

the PEA + FN + GF surfaces (sections 4.4.2, 4.4.3, 4.4.4 & 4.4.5). Consequently, 

it is possible that the high concentration of FBS in the media here was 

diminishing the differences in protein level expression resulting from culture on 

the substrates, in terms of the secretion of CXCL-12 from STRO-1+ cells. In 

accordance with model development and these observations, it was decided that 

this work would be repeated with a lower concentration of serum in the media.  
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Figure 4-18 CXCL-12 ELISA data from culture in DMEM supplemented with 10% FBS 
An ELISA was carried out to determine the concentration of CXCL-12 in the media 
supernatant of STRO-1+ cells cultured in DMEM supplemented with 10% FBS. Media was 
collected from days 0-3, 9-12 and 18-21 and the concentration was determined following 
interpolation of a standard curve. The mean concentration of CXCL-12 in the media of cells 
cultured on each substrate type was calculated, and is reported as a fold change over glass.  
n=3. Graph shows mean +/- SD. Data indicates that the different substrates have no 
statistically significant effect on the expression of CXCL-12 in MSCs cultured in 10% FBS 
media. 

 

4.4.8.2 Analysis of CXCL-12 ELISA data from STRO-1+ cells cultured in 
DMEM supplemented with 2% HS then 3GF media 

To determine the effect of reducing the concentration of serum from 10% to 2%, 

and switching from FBS to HS followed by 3GF media, at day 14 (to mimic the 

point of HSC addition) a second CXCL-12 ELISA was carried out to determine the 

concentration of CXCL-12 in the media supernatants of HSC niche models within 

a 24-well plate. At the time when this experiment was carried out, it had 

previously been decided that the PEA + FN + GF samples that would be 

considered would be only PEA + FN + BMP-2, PEA + FN + NGF and PEA + FN + 

BMP-2&NGF, as these samples induced the greatest expression levels of HSC 

maintenance factors and OPN in cells cultured in media supplemented with 2% 

HS then 3GF media for days 15-21 (Figure 4-19).  

The data shown in Figure 4-19 suggested that cells cultured between days 0-3 

and days 9-12 on the PEA + FN + BMP-2 substrates secreted the highest mean 

levels of CXCL-12. However, for cells cultured from days 18-21, it is apparent 
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that those on PEA + FN + NGF and PEA + FN + BMP-2&NGF substrates appeared to 

secrete the highest levels of CXCL-12 – these substrates appeared to induce an 

average of a five-fold increase in CXCL-12 secretion. This result suggested that 

culture of the STRO-1+ cells for 21 days is a good length of culture, as the HSCs 

would not be added until the end of the culture at day 15. Further, this result 

indicated that this timing would expose the HSCs to maximal levels of CXCL-12 

secreted from the stromal layer. In addition, this result also suggested that the 

PEA + FN + GF substrates maximally induced secretion of CXCL-12 from the 

stromal layer, fitting well with previous findings shown in Figure 4-12 and Figure 

4-15, whereby the PEA + FN + GF substrates induce maximal expression of SCF 

and VCAM-1. 

 

  
Figure 4-19 CXCL-12 ELISA data from culture in DMEM supplemented with 2% HS 
An ELISA was carried out to determine the concentration of CXCL-12 in the media 
supernatant of STRO-1+ cells cultured in DMEM supplemented with 2% HS until day 14, then 
3GF media from day 15-21. Media was collected from days 0-3, 9-12 and 18-21 and the 
concentration was determined following interpolation of a standard curve. The mean 
concentration of CXCL-12 in the media of cells cultured on each substrate type was 
calculated, and is reported as a fold change over glass.  n=3. Graph shows mean +/- SD. The 
results indicate that cells cultured on substrates containing BMP-2 alone or with NGF have 
the greatest expression levels of CXCL-12. 
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4.4.9 THPO secretion from STRO-1+ cells cultured on niche model 

candidate substrates in varying media compositions 

In addition to using ICW to assess the effect of cell culture in different media 

types, and on different substrates, on the expression of cell surface markers, an 

ELISA for THPO was carried out to determine the effect of these changes on 

THPO secretion. 

4.4.9.1 Analysis of THPO ELISA data from STRO-1+ cells cultured in DMEM 
supplemented with 10% FBS 

An ELISA was used to determine the effect of cell culture on different candidate 

niche model substrates in DMEM supplemented with 10% FBS. 3 technical 

replicates for each substrate were analysed and their concentrations were 

determined following interpolation of a standard curve. The mean concentration 

of THPO in the media of cells cultured on each substrate type was determined, 

and fold change values over glass were calculated (Figure 4-20). 

The results obtained from the THPO ELISA suggested that cells cultured on PEA + 

FN + BMP-2 surfaces secreted the highest levels of THPO at all time points. It 

was particularly interesting to observe that there was an approximately 7.5-fold 

increase relative to glass in THPO secretion from cells cultured on PEA + FN + 

BMP-2 substrates after 21 days. These results were expected, as it is known that 

THPO is secreted from cells of the osteoblastic lineage, and the BMP-2 that is 

present on the PEA + FN + BMP-2 substrates is likely to induce osteogenic 

differentiation of the STRO-1+ cells, particularly after 21 days of culture.  
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Figure 4-20 THPO ELISA data from culture in DMEM supplemented with 10% FBS 
An ELISA was carried out to determine the concentration of THPO in the media supernatant 
of STRO-1+ cells cultured in DMEM supplemented with 10% FBS. Media was collected from 
days 0-3, 9-12 and 18-21 and the concentration was determined following interpolation of a 
standard curve. The mean concentration of THPO in the media of cells cultured on each 
substrate type was calculated, and is reported as a fold change over glass.  n=3. Graph 
shows mean +/- SD. Data indicates that GF substrates maximally enhance THPO expression 
in MSCs. 

4.4.9.2 Analysis of THPO ELISA data from STRO-1+ cells cultured in DMEM 
supplemented with 2% HS then 3GF media 

Based on the results shown in Figure 4-20, it was decided that the secretion of 

THPO in response to culture on different niche candidate substrates should also 

be determined for cells cultured in DMEM supplemented with 2% HS then 3GF 

media, as opposed to 10% FBS. Thus, an ELISA was carried out using 3 technical 

replicates per substrate type, and the concentration of THPO in the media was 

determined following interpolation of a standard curve. The mean concentration 

of THPO in the media of cells cultured on each substrate type was determined 

and fold change values over glass were calculated (Figure 4-21). 

The results shown in Figure 4-21 had less dramatic increases in the fold change 

over glass concentration of THPO in the media. However, it was apparent that a 

similar result to that shown in Figure 4-20 was observed; the PEA + FN + GF 

surfaces generally induced the stromal layer to secrete a larger quantity of 
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THPO into the media, when compared to controls. It was particularly promising 

to see a similar result at day 21, whereby PEA + FN + BMP-2 and PEA + FN + BMP-

2&NGF substrates induced higher secretion of THPO compared to all controls. 

This suggested that the BMP-2 present on the substrates was acting to stimulate 

osteogenic differentiation, in turn stimulating THPO secretion. Thus, further 

results highlighting the potential of PEA + FN + GF surfaces within HSC niche 

models existed, and the benefit of using a 21 day culture was also shown again. 

  
Figure 4-21 THPO ELISA data from culture in DMEM supplemented with 2% HS 
An ELISA was carried out to determine the concentration of THPO in the media supernatant 
of STRO-1+ cells cultured in DMEM supplemented with 2% HS until day 14, then 3GF media 
from days 15-21. Media was collected from days 0-3, 9-12 and 18-21 and the concentration 
was determined following interpolation of a standard curve. The mean concentration of 
THPO in the media of cells cultured on each substrate type was calculated, and is reported 
as a fold change over glass.  n=3. Graph shows mean +/- SD. Data indicates that substrates 
featuring GFs may enhance THPO expression in MSCs. 
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4.4.10 Cell number analyses 

The results shown in sections 4.4.8 and 4.4.9 indicate that higher levels of CXCL-

12 and THPO were found in the media of STRO-1+ cells cultured on niche model 

candidate substrates comprising PEA + FN + GFs, after 21 days. However, in 

order to determine if this greater concentration of CXCL-12 or TPO is resulting 

from the cells responding to the substrate by proliferating, it is necessary to 

calculate the number of cells present on each substrate type (thus determining 

if the increased concentrations are arising from an increased number of cells on 

these substrates).  

In order to assess the influence of the niche model candidate substrates used in 

sections 4.4.8 and 4.4.9, the results of all ICWs carried out were reviewed, and 

the values obtained from the 700 nm channel, which indicates cell number, were 

taken. The fold change values over the mean glass values for each ICW analysis 

carried out were determined, and then fold change over glass fluorescence units 

were analysed (Figure 4-22). 

The results indicated that the PEA + FN substrate resulted in the greatest 

expansion in STRO-1+ cell number over a 21 day culture period. This result was 

encouraging, as it suggested that the increased concentration of CXCL-12 and 

THPO in the media supernatant of cells cultured on PEA + FN + GF surfaces (as 

shown in sections 4.4.8 and 4.4.9) was not arising as a result of these surface 

types inducing higher levels of cell expansion relative to PEA + FN controls. 

Rather, the result shown here suggested that the greater levels of CXCL-12 and 

THPO present in the media supernatant of STRO-1+ cells cultured on PEA + FN + 

GF substrates was arising a result of cellular responses to the substrates. 
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Figure 4-22 Cell number analysis after 21 days of culture on niche model candidate 
substrates 
In order to assess the effect of cell culture on the niche model candidate substrates on total 
cell number, STRO-1+ cells were cultured for 21 days and stained with CellTag 700 
fluorescent dye. The fluorescence units obtained were normalised to the mean value 
obtained for glass substrates. Following the collection of fold change over glass values for 
cells from different donors, values were plotted on a graph and analysed using a non-
parametric Kruskal-Wallis test. n ≥ 3. 11 biological replicates. Graph shows mean +/- SD. 
*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, by ANOVA. Data indicates that MSCs 
proliferate most on the PEA + FN substrate type. 

4.5 Discussion 

The bone marrow HSC niche is a complex environment, and HSC survival and 

proliferation is dependent on a range of regulatory signals from multiple cell 

types (Calvi et al., 2003, Méndez-Ferrer et al., 2010). In order to design an HSC 

niche model that can mimic the natural bone marrow niche as closely as 

possible, it is important to strive to develop a model that incorporates multiple 

regulatory signals. In the previous chapter, it was shown that BMP-2 and NGF can 

be bound, both independently and together, to PEA + FN substrates. It was 

hypothesised that BMP-2 bound to PEA + FN may act to stimulate a degree of 

osteogenic differentiation of MSCs, leading to the expression of valuable HSC 

maintenance factors produced by osteoblast cells (Figure 1-5). In addition, it 

was also hypothesised that the STRO-1+ MSCs in the model may respond 

positively to stimulation by NGF, enhancing the secretion of HSC maintenance 
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factors from MSCs, as is postulated to occur in the bone marrow. This chapter 

described how GFs, notably BMP-2 and/or NGF, adsorbed on PEA + FN substrates 

could modulate the behaviour or STRO-1+ cells, resulting in expression of an HSC 

niche-like phenotype.  

4.5.1 Discussion of MSC phenotype 

SEM image results demonstrated that STRO-1+ cells cultured on PEA + FN + GF 

substrates have a similar morphology to STRO-1+ cells cultured on Glass + FN 

controls. This suggested that the different substrate types are equally as good at 

supporting MSC spreading and viability. However, to further investigate the 

potential of different niche model candidate substrates to support MSCs, these 

cells were cultured for 21 days in media supplemented with 10% FBS, before ICW 

was carried out to test for maintenance in the expression of MSC markers. The 

results showed no statistically significant differences in the expression of ALCAM, 

nestin or STRO-1 in cells cultured on PEA + FN + GF substrates, when compared 

to controls (Figure 4-4). This suggested that the PEA + FN + GF substrates 

maintain a similar population of MSCs as controls; PEA + FN + GF substrates were 

good candidate niche model substrates for generating HSC maintenance factors 

from these MSC populations. However, further development of the model 

involved reducing the concentration of serum in the media to 2% FBS for 21 days, 

and later reducing the length of serum-present culture from 21 days to 14 days. 

The results obtained throughout testing these different media compositions 

showed that no statistically significant differences in the expression of these 

MSC markers was found amongst cells cultured in different media types, 

indicating that the media type used in the model was not a concern in terms of 

MSC marker expression (Figure 4-7, Figure 4-11 and Figure 4-13). The flow 

cytometry results shown in Figure 4-16 validated the ICW results, and supported 

the observation that cell culture on the different niche candidate model 

substrates did not affect expression of MSC cell surface markers. 

Although the ICW and flow cytometry results indicated that the expression of 

MSC markers in STRO-1+ cells cultured in the HSC niche models was not affected 

by substrate type, a T cell suppression assay was also carried out to determine if 

this classic aspect of MSC character was affected by culture on any of the 

substrates. Interestingly, the PEA + FN + BMP-2&NGF substrate optimally 
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suppressed T cells, showing that MSCs cultured on this substrate had the best 

MSC character. This finding is not what was expected; it was expected that the 

osteogenesis occurring on this substrate type would slightly reduce the MSC 

character (McMurray et al., 2011). Nevertheless it was interesting and future 

work should focus on repeating this experiment using MSCs from different donors 

and at different passages to determine the effect of these variables on the 

results. 

In order to strengthen the data obtained, it would have been advantageous to 

carry out PCR to validate the results obtained and presented from ICW and flow 

cytometry. In addition, given more time, it would have been valuable to test 

cells from a larger pool of donors, ensuring that a minimum of 3 biological 

replicates were used with all substrate and also all media formulations, to give a 

more robust analysis. 

4.5.2 Discussion of osteogenic phenotype 

While the development of an HSC niche model that has a stromal layer with a 

maintained expression of MSC markers is desirable, it is also favourable for the 

model to include expression of some osteogenesis markers, which indicate the 

presence of an osteoblast population, known for secreting a valuable profile of 

HSC maintenance factors (Calvi et al., 2003). To this end, ICW was also carried 

out to test for changes in the expression levels of two osteogenesis markers, 

OCN and OPN. The first ICW experiment aimed to determine the osteogenic 

potential of the PEA + FN + GF surfaces was carried out in DMEM supplemented 

with 10% FBS, and although the results obtained did not show any statistically 

significant increases in the expression of OCN or OPN, results suggested that OCN 

levels may be higher in cells cultured on PEA + FN + BMP-2&VEGF substrates 

(Figure 4-5). Further development of the model resulted in the testing of cells 

cultured on substrates with a reduced concentration of FBS in the media (2% 

FBS). It was anticipated that this reduction in serum concentration would 

increase the BMP-2 responsiveness of the stromal cells (Osyczka et al., 2009). 

Accordingly, this reduction in the concentration of serum appeared to result in 

an increase in the expression of OCN and OPN in PEA + FN + BMP-2 substrates 

relative to controls, compared to the result obtained for cell cultures in 10% FBS 

media (Figure 4-8). This increased in osteogenesis marker expression, relative to 
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controls, in cells on PEA + FN + BMP-2 substrates would be expected, and it was 

hypothesised that the difference may have arisen from fewer GFs being present 

in the serum, allowing the cells to become more responsive to the BMP-2 on the 

substrate (Osyczka et al., 2009). Towards the end of the model development, it 

was noted that when the HSCs would be added to the model, they would require 

culture in a serum-free medium. It had been decided that the MSCs would be 

cultured for 14 days, and that the HSCs would be added on day 15. Thus, DMEM 

supplemented with 2% human serum (preferable to FBS as this model is a human 

HSC niche model) would be used until day 14 of the culture, and then a serum-

free media supplemented with 3GFs would be used for culture from days 15 to 

21. ICW was also carried out to test the effect of this culture method on OCN 

and OPN expression, and the results suggested that this media formulation 

resulted in cells cultured on all PEA + FN + GF substrates to have statistically 

significant increases in OPN expression (Figure 4-14). Notably, the PEA + FN + 

BMP-2&NGF substrates induced the highest expression of OPN, and also slightly 

higher levels of OCN relative to controls. As OPN is a more primitive marker of 

osteogenesis, this results suggests that cell culture on the PEA + FN + BMP-

2&NGF substrate, in 2% HS then 3GF media, results in the formation of a 

population of immature OBs. 

It would be beneficial to carry out PCR to validate the results and statistically 

significant increases in osteogenesis marker expression observed with the PEA + 

FN + BMP-2 and PEA + FN + BMP-2&NGF substrates. It is known that BMP-2 

signalling occurs through activation of the SMAD pathway, and so comparison of 

levels of phosphorylated SMAD 1 and 5 to total SMAD 1 and 5 could also be 

carried out, using ICW, to show that BMP-2 signalling is higher on PEA + FN + 

BMP-2 substrates (Lee et al., 2003). 

As the results indicate that OPN expression is more greatly increased than OCN 

expression on these substrates, relative to controls, indicating a primitive OB 

population, alkaline phosphatase expression could also be determined. It would 

be interesting to do this over time to determine if there is a particular time at 

which the alkaline phosphatase expression is particularly apparent, as this would 

provide information regarding the time point at which most of the osteogenesis 

is occurring. 
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4.5.3 Discussion of HSC maintenance factor expression results 

As the principal aim of this chapter was to determine the capacity of PEA + FN + 

GF substrates to enhance the expression of HSC maintenance factors in STRO-1+
 

MSCs, ICW was also used to quantitatively analyse changes in the expression of 

membrane-bound SCF and VCAM-1. Initial experiments using media 

supplemented with 10% FBS showed statistically significant increases in SCF 

expression when cells were cultured on PEA + FN + BMP-2&NGF substrates, 

relative to glass and PEA + FN controls (Figure 4-6). This appeared to be 

maintained when cells were cultured in a media containing a lower 

concentration of serum (Figure 4-9). However, the statistically significant 

increases relative to controls were no longer present in the results. Repetition of 

this experiment using 2% HS media followed by 5GF media also failed to produce 

statistically significant results (Figure 4-12). Yet, the results suggested that cell 

culture on the PEA + FN + BMP-2&NGF substrate generates the greatest fold 

increase (approximately 3 to 4 fold) in SCF expression relative to controls. 

Interestingly, the statistically significant increases in SCF expression on PEA + FN 

+ NGF and PEA + FN + BMP-2&NGF substrates were apparent in the 2% HS and 

3GF media culture, suggesting that this media type is optimal for generating 

consistent increases in SCF expression for cells cultures on these surface types, 

relative to controls. VCAM-1 expression tended to be highest on PEA + FN + NGF 

and PEA + FN + BMP-2 and NGF substrates. However, the results often lack the 

same degree of statistical significance as the SCF results, suggesting that the 

niche model candidate substrates tested here may induce some increases in 

VCAM-1 expression, but work more efficiently to enhance SCF expression.  

As before, the results obtained via ICW regarding SCF and VCAM-1 expression 

could be validated using PCR. As SCF is also partly secreted, it would be 

interesting to carry out an ELISA monitoring the secretion of SCF from the 

stromal layer over time. The results could provide insight into how much SCF is 

secreted and how much is retained in the membrane-bound form, and it may be 

the case that certain substrates induce a greater expression of soluble SCF than 

others. 

The results from the ELISAs carried out revealed a number of important aspects 

of this model. Firstly, it is important to note that reducing the concentration of 
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serum in the media from 10% to 2% made subtle differences apparent, which 

indicated that cells cultured on PEA + FN + BMP-2 surfaces consistently secreted 

more CXCL-12 relative to controls (Figure 4-19, Figure 4-21). In addition, the 

results for the CXCL-12 ELISA from cells cultured in 2% serum indicated that 

approximately five-fold more CXCL-12 was detected in the media of cells 

cultured between days 18 and 21 on PEA + FN + NGF and PEA + FN + BMP-2&NGF 

substrates. It should be noted that these increases were not arising from a 

statistically greater number of cells being present on these substrates (Figure 

4-22). These observations highlighted the benefit of using a 21 day model, and 

also the PEA + FN + GF substrates. Interestingly, the THPO ELISA results 

suggested that reducing the concentration of serum reduces the fold increases 

generated by PEA + FN + GF substrates for media collected between days 18 and 

21 (Figure 4-20, Figure 4-21). However, it is promising to observe that PEA + FN 

+ GF substrates generally induced the secretion of a greater concentration of 

THPO from cells, relative to controls. In brief, the ELISA results indicated two 

important points: the PEA + FN + NGF or PEA + FN + BMP-2&NGF substrate was 

best for CXCL-12 expression and the PEA + FN + BMP-2 substrate was best for 

THPO expression; the lower concentration of serum required by a model aimed 

towards HSC culture was favourable in terms of inducing high levels of CXCL-12 

expression. 

There were considerable differences in the results obtained for the CXCL-12 and 

THPO ELISAs in media containing 10% serum in the media and 2% serum in the 

media. Consequently, repetition of the CXCL-12 and THPO ELISAs would be 

advantageous to determine the consistency of results. Collecting media 

supernatants from more than 3 samples would also provide a better average of 

the results, allowing for more valid conclusions to be drawn. 

4.5.4 Chapter conclusions 

Taking the results of this chapter into consideration, is has been important to 

deduce which one of the PEA + FN + GF substrates tested would be preferable 

for use in later experiments using HSCs. This was important for three main 

reasons: 
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1. It would be too demanding of the PEA supplier to provide large quantities 

of PEA for the testing of substrates loaded with BMP-2, NGF, PDGF, VEGF 

and all possible combinations with an n number of at least 3.  

2. Use of all aforementioned GFs and combinations was very costly, 

particularly with n numbers great enough for effective analysis. 

3. It would was too difficult to obtain large enough numbers of HSCs to 

incorporate into n ≥ 3 of each substrate type, and to costly to culture 

such high numbers. 

The results of this chapter generally highlighted the value of using NGF and BMP-

2, especially when combined. Thus, it was decided that PEA + FN + BMP-2&NGF 

would be the substrate of choice for use in further development and testing of 

this model. Further, it was decided that the media of choice for future work 

would be DMEM supplemented with 2% HS for 14 days and then 3GF media for 

days 14 to 21 of the cell culture. The reasoning for this choice was as follows: 

1. HSCs require serum-free media for survival, and so it was deemed 

important to have as little serum in the media prior to their addition to 

the model. 

2. 3GF media was recommended to us as optimal for HSC culture by 

collaborators. 

3. 3GF media is more cost-effective than 5GF media. 

4. 2% HS media followed by 3GF media induces statistically significant 

increases in the expression of OPN and SCF for cells cultured on the PEA + 

FN + BMP-2&NGF substrate of choice.  

5. The PEA + FN + BMP-2&NGF substrate was able to allow all 

aforementioned points while also maintaining similar levels of expression 

of MSC markers in MSCs, and also enhancing MSC characteristics (such a T 

cell suppression) relative to controls.  
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CHAPTER 5



124 
 

Chapter 5 Metabolomic Analysis of MSCs 

5.1 Introduction 

5.1.1 Metabolomics 

Metabolomics can be referred to as the scientific study of chemical processes 

involving metabolites, where the term metabolites relates to the small molecule 

intermediates and products of metabolism (Daviss, 2005, Tyagi et al., 2010). 

Metabolomics has also been explained as being a non-biased identification and 

quantification of all metabolites present within a biological system (Fiehn, 

2002). In terms of common metabolite extraction methods, metabolomics simply 

allows for the identification of small molecules present within cells at a given 

time, thus providing insight into the cellular processes that have taken place at 

that precise point in time (McNamara et al., 2012). It is important to note that 

the metabolomic profile reflects the culture of the cells, and so the 

metabolomic profile of cells cultured under different conditions, but with 

metabolites extracted at the same point in time, may be compared to give an 

indication of how the culture differences affect the metabolomic profile and the 

general response of cells (Tsimbouri et al., 2012). 

While targeted methods of metabolomics looking specifically at changes in the 

abundance of particular metabolites exist, untargereted metabolomic 

approaches also exist (Tautenhahn et al., 2012a, Römisch-Margl et al., 2012). 

The benefit of using untargeted metabolomics is that it allows for analysis of the 

entire complement of metabolites, known as the metabolome, and is thus 

capable of identifying key metabolites that vary under certain conditions (Dunn 

et al., 2013).  

5.1.2 Metabolomic Pathways of Relevance 

Metabolomics generates a wealth of data, and has been criticised as often 

producing too much (Daviss, 2005). Thus, in order to draw valid conclusions from 

large-scale metabolomic data sets, it is important to consider key metabolic 

pathways that may be of significance and relevance to research.  
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5.1.2.1 Amino acid metabolism 

Understanding the effects of different culture methods on amino acid 

metabolism is important, as a high abundance of amino acids in cells is 

associated with increased levels of protein synthesis and enhanced levels of 

differentiation (Sampath et al., 2008). While this basic correlation is important, 

it should also be noted that amino acids can also act as powerful signalling 

molecules that can regulate a diverse range of cell functions including stem cell 

self-renewal, proliferation and differentiation (Zhao et al., 2012, Tjabringa et 

al., 2008). For example, arginine and proline are involved in producing nitric 

oxide, which is in turn a requirement of polyamine biosynthesis (Wang et al., 

2015). The mammalian polyamines produced may be putrescine, spermidine or 

spermine, and are positively charged (Childs et al., 2003). The charge of these 

molecules allows them to bind to acidic sites on RNA and DNA, making 

polyamines known transcription regulators of regulatory genes such as c-Myc and 

c-Jun (Liu et al., 2006, Xiao et al., 2007). Polyamines can also affect proteins, 

and are known to influence kinases and phosphatases (Yoshida et al., 2004). 

Since the initial discovery of these roles of polyamines, further research has 

shown a general role of polyamine production in enhancing osteogenic 

differentiation of adipose-derived stem cells (Tjabringa et al., 2008). Thus, 

considering amino acid metabolism in research associated with cellular 

differentiation is important. 

5.1.2.2 Carbohydrate metabolism 

One of the other most commonly analysed pathways in stem cell metabolomics is 

that associated with carbohydrate metabolism and respiration (Meissen et al., 

2012, Turner et al., 2008). Generally, it is accepted that enhanced carbohydrate 

metabolism, associated with increased oxidative phosphorylation, occurs when 

active stem cells to undergo differentiation (Varum et al., 2011, Houghton, 

2006). Conversely, it is accepted that quiescent stem cells are less metabolically 

active than their cycling counterparts (Chung et al., 2007). This hypothesis was 

proven true in 2007, when Chung and colleagues showed that disrupting the 

respiratory chain in embryonic stem cells impedes differentiation into 

cardiomyoctyes, while engagement of the system enhances differentiation. Since 

then, the relevance of understanding carbohydrate metabolism in a diverse 
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range of stem cells, including HSCs and MSCs, has been acknowledged, as the 

metabolomic profile provides a direct indication of cellular differentiation 

(Simsek et al., 2010).  

5.1.2.3 Lipid metabolism 

Alongside amino acid and carbohydrate metabolic pathways, lipid metabolic 

pathways are also of considerable significance when considering their impact on 

cell fate. For example, several studies reported in the 1990s showed that 

addition of a particular metabolite to cell cultures could enhance cell 

differentiation (Kliewer et al., 1995, Okazaki et al., 1990). The mechanisms 

underlying this stimulation of differentiation vary depending on the lipid and cell 

type being considered. However, it has been shown that prostaglandins are 

physiologically active lipid compounds that act similarly to hormones. These 

prostaglandins stimulate peroxisome proliferator-activated receptor γ (PPAR-γ), 

and stimulate adipogenic differentiation of murine fibroblasts (Kliewer et al., 

1995). 

In research published in 2016, Alakpa et al showed that MSC differentiation down 

the osteogenic lineage could be controlled using hydrogels of different stiffness 

(Alakpa et al., 2016). In addition to this, the authors showed that specific lipids, 

lysophosphatidic acid and cholesterol sulfate, were depleted following 

differentiation of cells down the chondrogenic and osteogenic differentiation 

lineages, respectively. The group suggest that this arose as a result of these 

particular metabolites being used up in the differentiation process. Thus, it is 

important to consider that use of metabolomics to identify the depletion of 

particular lipids may be valuable in supporting other results that indicate 

differentiation.   

5.1.3 Metabolomics and MSCs in bioengineering 

Previous studies have shown that cell phenotype is linked to their metabolic 

profile; stem cells have been shown to be metabolically inactive, while 

differentiating cells have been identified as having heightened metabolic 

activity (Yanes et al., 2010, Chung et al., 2007). Further, it has been shown that 
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the changes present within the metabolism occur rapidly as stem cells begin to 

differentiate (Reyes et al., 2006).  

Metabolomics has been particularly useful in understanding the effect of MSCs in 

bioengineering applications. For example, it has been shown that MSCs cultured 

on functionalised 15 nm nanopillar structures on titania have an ‘active’ 

phenotype, with upregulation of metabolites associated with differentiation 

down the osteogenic lineage (McNamara et al., 2011). The potential of 

bioengineering applications was further highlighted when it was shown that 

surfaces with nanoscale features could retain the stem cell phenotype of MSCs 

after a long 8-week culture (McMurray et al., 2011). In this study, it was 

reported that cells expressing a stem cell phenotype possess more unsaturated 

metabolites, compared to differentiating controls. These results correlate well 

with the findings of Yanes et al., and both groups of authors propose that such 

unsaturated metabolites are important for maintaining the chemical plasticity of 

cells, and act to regulate differentiation by controlling redox status (Yanes et 

al., 2010, McMurray et al., 2011). 

It is understood that human MSCs express higher levels of glycolysis enzymes and 

lower levels of oxidative phosphorylation proteins, when compared to OBs (Chen 

et al., 2008). This suggests that MSCs are more dependent on low energy yielding 

glycolysis and less dependent on high energy yielding oxidative phosphorylation. 

Taking this and the aforementioned points into consideration, is important to 

note that metabolomics can be used in two main ways that relate to this thesis: 

to indicate if a cell population is metabolically similar to that of stem cells; to 

indicate if a cell population is metabolically similar to that of differentiated 

cells.  

5.2 Aims and Objectives 

The aim of this chapter of the thesis is to use untargeted metabolomics to 

further investigate how the changes in MSC phenotype arising from culture in 

different HSC niche models (as outlined in Chapter 4) affect the cells at the 

metabolomic level. 
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To this end, metabolites were extracted from STRO-1+ cells cultured on Glass + 

FN, PMA + FN, PEA + FN and PEA + FN + BMP-2&NGF substrates, for 21 days. Days 

1-14 of the cell culture was in DMEM containing 2% human serum, and days 15-21 

were in ‘3GF’ serum free media.  

Amino acid, carbohydrate and lipid pathways are commonly studied in 

metabolomics (Butte, 2000, Brown et al., 2016). Consequently, this chapter uses 

untargeted metabolomics and data processing software to extract metabolite 

information associated with each of these pathways and to draw conclusions 

relating to the effect of the niche model candidate substrates on the regulation 

of STRO-1+ MSCs.  

5.3 Materials and Methods 

5.3.1 Sample Preparation 

The media supernatant in wells of a 24-well plate representing HSC niche models 

was removed and the cells on the substrates were washed once using 500 µl of 

1x PBS at 4 oC. 500 µl of a cold methanol-chloroform solution (1:3:1 ratio of 

chloroform: methanol: water) was added to each well of the plate, and the 

plate was sealed using parafilm. The plate was incubated at 4oC on a rotary 

shaker for 1 hour. Blanks were prepared by adding the same volume of 

methanol-chloroform solution to wells of a 24-well plate with substrates that 

had been treated in the same way as all other substrates during the culture 

period, but in the absence of cells.  

Following the 1-hour incubation, the resulting solutions were transferred to 

reaction tubes and centrifuged at 1300 rpm for 3 minutes, in order to isolate cell 

debris. The supernatants were transferred to fresh reaction tubes, and 50 µl of 

solution from each tube was transferred to a fresh tube, creating a pooled 

sample for quality control purposes. All samples were stored at -80 oC, until they 

were subjected to liquid chromatography by the Glasgow Polyomics facility at 

the University of Glasgow.  

n=3 for each substrate was used. 
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5.3.2 Liquid Chromatography Mass Spectrometry (LCMS) 

The LCMS stage of this work was carried out by staff at the metabolomics facility 

within Glasgow Polyomics, headed by Dr. Karl Burgess.  

LCMS allows for the isolation of individual metabolites from the mixture 

produced in each sample, and separates the metabolites prior to their isolation 

relative to their mass:charge (m/z) ratio. An UltiMate 3000 RSLC featuring a 20 

mm x 2.1 mm ZIC-pHILIC analytical column running at 300 µl/min, coupled to an 

Orbitrap Q-Exactive (Thermo Fisher) was used. Standards comprising known 

metabolites were also processed in this way, and their respective retention 

times in the chromatography column were used to identify sample metabolites. 

5.3.3 Data Analysis 

The raw data obtained from the LCMS stage was processed using XCMS to allow 

for peak picking (Tautenhahn et al., 2012a, Tautenhahn et al., 2012b). An 

IDEOM/MzMatch excel interface was generated by the staff at the Glasgow 

Polyomics facility, with kind assistance from Gavin Blackburn, University of 

Glasgow. This IDEOM interface allowed for the putative identification of 

metabolites, in conjunction with the Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) database (Kanehisa et al., 2011). Files relating to amino acid, 

carbohydrate and lipid metabolism were exported from the IDEOM interface and 

were further processed using Metaboanalyst for further analysis including the 

generation of heatmaps and principal component analysis (PCA) plots  (Xia et al., 

2012).  
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5.4 Results 

Half of the results reported in this section are presented in the form of 

heatmaps, to allow for the easy visualisation of fold changes in the abundance of 

metabolites involved in amino acid, carbohydrate and lipid metabolic pathways. 

In each heatmap, the metabolites are ranked from hot (associated with darker 

red colours and increased abundance) to cold (associated with darker blue 

colours and decreased abundance).  

The other results presented in this chapter are in the form of principal 

component analysis (PCA) plots, which show scatter plots indicative of variance 

within data sets (van den Berg et al., 2006, Bro and Smilde, 2014). Metabolic 

differences are shown by separation of clusters within the scatter plots.  

5.4.1 The effect of niche models on amino acid metabolism 

In order to determine the effect of the different substrates tested within HSC 

niche models featuring DMEM supplemented with 2% HS until day 14, and 3GF 

media from days 15-21, on amino acid metabolism, metabolites were extracted 

on day 21 and processed as outlined in section 5.3. The results are shown in 

Figure 5-1 and Figure 5-2. 

The results shown in Figure 5-1 indicated that the abundance of amino 

metabolites was lowest on PEA + FN + BMP-2&NGF substrates, relative to 

controls. This indicated that cells cultured on control substrates had a more 

quiescent phenotype, while cells cultured on the PEA + FN + BMP-2&NGF 

substrates appeared to demonstrate a divergent phenotype, indicative of 

osteogenic differentiation. This hypothesis fitted well with the conclusions 

drawn earlier in this thesis, whereby the PEA + FN + BMP-2&NGF substrate 

optimally enhanced osteogenic differentiation.   

Figure 5-2 showed that the greatest variation existed within the Glass + FN data 

set, and indicated that the least variation existed within cells from the PEA + FN 

+ BMP-2&NGF data set. This result was encouraging as it suggested that having 

the GFs bound to the PEA + FN substrate gave a better homogeneity of the 

metabolomic amino acid profile of the stromal layer. 
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Figure 5-1 Amino acid metabolite profile of MSCs on HSC niche model substrates 
Metabolites associated with amino acid metabolism in STRO-1 + MSCs were analysed after 
21 days of culture in HSC niche models featuring different substrates. BN = average of PEA 
+ FN + BMP-2&NGF substrates; PEA = average of PEA + FN substrates; PMA =  average of 
PMA + FN substrates; G+FN = average of glass + FN substrates. n=3. Blue colours are 
indicative of fold decreases in metabolite abundance. Red colours are indicative of fold 
increases in metabolite abundance. Data indicates that amino acid metabolites are lowest in 
MSCs cultured on PEA + FN + BMP-2&NGF substrates 

BN	 PEA	 PMA	 G+FN	
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Figure 5-2 PCA plot of amino acid metabolites detected in MSCs cultured in HSC niche 
models containing glass + FN, PMA + FN, PEA + FN and PEA + FN + BMP-2&NGF substrates 
Data sets were obtained from putative amino acid metabolites identified from STRO-1+ 
MSCs cultured in HSC niche models containing different substrate types for 21 days. G = 
Glass + FN; M = PMA + FN; E = PEA + FN; BN = PEA + FN + BMP-2&NGF. Points represent 
individual samples of each substrate type. n=3. Ellipses represent the spatial borders 
associated with each substrate type, to a 95% confidence interval. Data indicates that the 
greatest variation in amino acid metabolite abundance exists within MSCs cultured on glass 
substrates. 

The effect of niche models on carbohydrate metabolism 

In a bid to assess if the metabolite profile of PEA + FN + BMP-2&NGF substrates 

was distinct to that of controls, differences in the abundance of metabolites 

associated with carbohydrate metabolism in STRO-1+ cells cultured in HSC niche 

models with different substrates were determined after 21 days of culture. 

Results are shown in Figure 5-3 and Figure 5-4. 

The results shown in Figure 5-3 indicated that PEA + FN + BMP-2&NGF substrates 

had the lowest abundance of carbohydrates present, relative to controls. As 

before, this result indicated that cells cultured on control substrates had a more 
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quiescent phenotype. Conversely, this observation also suggested that the 

divergent phenotype observed in cells cultured on PEA + FN + BMP-2&NGF 

substrates was resulting from osteogenic differentiation. This result correlated 

well with those described in Chapter 4, wherein it was hypothesised that the 

PEA + FN + BMP-2&NGF substrate induced osteogenic differentiation. 

The PCA plot shown in Figure 5-4 illustrated that the greatest variation in 

carbohydrate metabolite profile existed within MSCs cultured on PEA + FN + 

BMP-2&NGF substrates. It was apparent that the least variation within a group 

existed within cells cultured on PMA + FN substrates. This result was interesting 

and suggested that while the PEA + FN + BMP-2&NGF substrates may have 

induced homogeneity in terms of amino acid metabolite variation, this substrate 

did not have the same effect on carbohydrate metabolite variation. 

 
Figure 5-3 Carbohydrate metabolite profile of MSCs on HSC niche model substrates 
Metabolites associated with carbohydrate metabolism in STRO-1 + MSCs were analysed 
after 21 days of culture in HSC niche models featuring different substrates. BN = average of 
PEA + FN + BMP-2&NGF substrates; PEA = average of PEA + FN substrates; PMA =  
average of PMA + FN substrates; G+FN = average of glass + FN substrates. n=3. Blue 
colours are indicative of fold decreases in metabolite abundance. Red colours are indicative 
of fold increases in metabolite abundance. Data indicates that carbohydrate metabolites are 
lowest in MSCs cultured on PEA + FN + BMP-2&NGF substrates 

BN	 PEA	 PMA	 G+FN	
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Figure 5-4 PCA plot of carbohydrate metabolites detected in MSCs cultured in HSC niche 
models containing glass + FN, PMA + FN, PEA + FN and PEA + FN + BMP-2&NGF substrates 
Data sets were obtained from putative carbohydrate metabolites identified from STRO-1+ 
MSCs cultured in HSC niche models containing different substrate types for 21 days. G = 
Glass + FN; M = PMA + FN; E = PEA + FN; BN = PEA + FN + BMP-2&NGF. Points represent 
individual samples of each substrate type. n=3. Ellipses represent the spatial borders 
associated with each substrate type, to a 95% confidence interval. Data indicates that the 
greatest variation in amino acid metabolite abundance exists within MSCs cultured on PEA 
+ FN + BMP-2&NGF substrates. 

5.4.2 The effect of niche models on lipid metabolism 

The abundance of lipid metabolites present within STRO-1+ cells cultured on 

different HSC niche model substrates was determined in order to determine if 

the osteogenesis indicated to exist of PEA + FN + BMP-2&NGF substrates (Chapter 

4) altered the putative lipid metabolite profile. Results are presented in Figure 

5-5 and Figure 5-6. 
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The results shown in Figure 5-5 suggested that the abundance of lipid 

metabolites was generally lowest in cells cultured in HSC niche models that 

incorporated PEA + FN + BMP-2&NGF substrates. This generally low abundance of 

lipid metabolites indicated that cells cultured on control substrates had a 

quiescent phenotype, while the divergent data set associated with cells cultured 

on PEA + FN + BMP-2&NGF substrates was likely to be indicative of a less 

quiescent, more metabolically active osteogenic differentiation phenotype. This 

observation was in accordance with the findings of Alakpa et al; it was likely 

that this had arisen as the lipid metabolites were used up in the differentiation 

process (Alakpa et al., 2016). In particular, it was apparent that there was a 

much lower abundance of diethanolamine present in cells cultured on the PEA + 

FN + BMP-2&NGF substrate type, compared to controls. This was indicative of 

diethanolamine being consumed in the differentiation process associated with 

the PEA + FN + BMP-2&NGF substrate. However, future work should seek to 

investigate the significance of this further. 

The results of the PCA analysis shown in Figure 5-6 indicated that the PMA + FN 

and PEA + FN + BMP-2&NGF substrates functioned particularly well to induce 

homogeneity of lipid metabolites present within MSCs. Conversely, the PCA plot 

illustrated that the glass + FN substrate allowed for a greater variation in the 

abundance of metabolites present. 
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Figure 5-5 Lipid metabolite profile of MSCs on HSC niche model substrates 
Metabolites associated with lipid metabolism in STRO-1 + MSCs were analysed after 21 days 
of culture in HSC niche models featuring different substrates. BN = average of PEA + FN + 
BMP-2&NGF substrates; PEA = average of PEA + FN substrates; PMA =  average of PMA + 
FN substrates; G+FN = average of glass + FN substrates. n=3. Blue colours are indicative of 
fold decreases in metabolite abundance. Red colours are indicative of fold increases in 
metabolite abundance. Data indicates that lipid metabolites are generally lowest in MSCs 
cultured on PEA + FN + BMP-2&NGF substrates 

BN	 PEA	 PMA	 G+FN	
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Figure 5-6 PCA plot of lipid metabolites detected in MSCs cultured in HSC niche models 
containing glass + FN, PMA + FN, PEA + FN and PEA + FN + BMP-2&NGF substrates 
Data sets were obtained from putative lipid metabolites identified from STRO-1+ MSCs 
cultured in HSC niche models containing different substrate types for 21 days. G = Glass + 
FN; M = PMA + FN; E = PEA + FN; BN = PEA + FN + BMP-2&NGF. Points represent individual 
samples of each substrate type. n=3. Ellipses represent the spatial borders associated with 
each substrate type, to a 95% confidence interval. Data indicates that the greatest variation 
in amino acid metabolite abundance exists within MSCs cultured on glass substrates. 

 

5.5 Discussion 

The aim of this chapter was to assess the effect of culture on HSC niche model 

substrates on the abundance of metabolites present within STRO-1+ MSCs. In 

particular, this chapter aimed to investigate the potential of models featuring 

the PEA + FN + BMP-2&NGF substrate to induce expression of metabolite profiles 

that are associated with the osteogenic differentiation phenotype suggested by 

the results presented in Chapter 4.  
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The heat map results associated with the amino acid metabolite profile 

indicated that cells cultured on PEA + FN + BMP-2&NGF substrates had lower 

levels of amino acids present within them, when compared to cells grown on 

control substrate types. This suggested that protein synthesis, associated with 

cellular differentiation was occurring, and consequently the results shown in 

Figure 5-1 provided further evidence to support the role of PEA + FN + BMP-

2&NGF substrates in HSC niche models. Similarly, the carbohydrate metabolite 

profile shown in Figure 5-3 suggested that MSCs cultured in models featuring PEA 

+ FN + BMP-2&NGF substrates were the most metabolically active, and were 

likely to be undergoing differentiation (Chung et al., 2007). Finally, the lipid 

metabolite profile results were less clear, but also suggested that most lipid 

metabolites were lowest in abundance in cells cultured on PEA + FN + BMP-

2&NGF substrates, relative to controls. As heightened lipid metabolism is also 

associated with differentiation, this result also highlighted the likely osteogenic 

differentiation happening in models with this substrate type (Alakpa et al., 

2016).  

The PCA plots presented in this chapter illustrated that the different substrates 

had varying capacities to regulate variation in the abundance of metabolites 

associated with amino acid, carbohydrate and lipid metabolism. It appeared that 

the PEA + FN + BMP-2&NGF substrate of interest was particularly good at 

promoting homogeneity and reducing variation associated with amino acid and 

lipid metabolite abundance. This was important as it implied that certain results 

were more reliable than others; the relatively small variation within the PEA + 

FN and PEA + FN + BMP-2&NGF groups shown in Figure 5-2 meant that the results 

presented in the heatmap of amino acid metabolism were more reliable. In 

other words, the distinct heat map differences in amino acid metabolism were 

likely to be indicative of true differences. It should also be noted that in all 

three PCA plots presented, the ellipses representing PEA + FN and PEA + FN + 

BMP-2&NGF substrates had very few regions of overlap, again suggesting that the 

metabolic profile of cells cultured on GF substrates were distinct to those only 

on PEA + FN substrates. In the context of this HSC niche model design, this was 

important as it suggested that the GFs have an important role to play and that 

GF substrates were markedly different to PEA + FN controls.  
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The results shown in this chapter indicate that the growth factors present on the 

PEA + FN substrates alter the metabolomic profile of the cells present in the 

stromal layer. In my opinion, the metabolomic profiles of cells cultured on GF 

substrates have a clear distinction to those cultured on FN only substrates, 

concurrent with findings already published by numerous groups relating to 

different cell types having different metabolomic profiles (Okazaki et al., 1990, 

Kliewer et al., 1995, Alakpa et al., 2016). The results from this chapter 

indicated that the increased expression of OCN and OPN on PEA + FN + BMP-2 

substrates relative to controls and presented in chapter 4 truly represent an 

increased osteogenic phenotype arising from the BMP-2. However, to further 

investigate the effect of GFs on the metabolomic profiles of cells, it would be 

interesting to consider the effects of different GFs and to carry out similar 

analyses considering other HSC niche model candidate GFs such as VEGF and 

PDGF. 

Although the results presented in this chapter were promising in validating the 

results presented in Chapter 4 of this thesis, whereby it seemed apparent that 

there were distinct differences in the state of MSCs cultured on the different 

niche model candidate substrates, it is important to stress the need for further 

metabolomics analyses to validate the conclusions drawn. Firstly, it would be 

important to increase the n numbers tested, to get a clearer and more accurate 

picture of what was occurring at the metabolite level. In addition, it would be 

advantageous to carry out metabolomics analyses with MSCs obtained from 

different donors to test for donor variability. Finally, it should also be noted that 

carrying out metabolomics analyses at different time points throughout the cell 

culture would provide a clearer insight into when the majority of osteogenesis 

occurs within these HSC niche models.  
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CHAPTER 6
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Chapter 6 HSC Characterisation 

6.1 Introduction 

6.1.1 Characterisation of the classic HSC phenotype 

CD34 is the most commonly used antigen in the identification and isolation of 

HSC populations in humans (Terstappen et al., 1991). In addition, exclusion of 

CD38 is commonly used for HSC identification, as expression of CD38 is 

associated with more differentiated haematopoietic cell types (Notta et al., 

2010). Thus, the main aim of this chapter is to determine how effectively 

candidate niche models with different substrates and media formulations act, in 

terms of favouring maintenance of the classic CD34+CD38- HSC phenotype. To 

this end, flow cytometry was used in 5 different experiments, using HSCs from 5 

different donors, with the aim of drawing a general conclusion as to which 

surface type and media formulation allowed for the greatest numbers of 

CD34+CD38- cells to be present in each model after 5 days of culture, when 

CD34+CD38- cells were added to MSC cultures (as outlined in Figure 4-1). 

6.1.2 The relevance of CD34+CD38+ and CD34-CD38+ progenitors 

Although the CD34+CD38- phenotype is regarded as the classic HSC phenotype, 

variations in the levels of expression of these two cell surface antigens also exist 

in the form of CD34+CD38+ and CD34-CD38+ (Engelhardt et al., 2002, Wang et al., 

2004a). These phenotypes are associated with less primitive multipotent 

haematopoietic progenitors; CD34+CD38+ and CD34+CD38- cells represent cell 

types that are further down the haematopoietic hierarchy (Figure 1-2, Table 1-1) 

(Chao et al., 2008, Morrison and Weissman, 1994). Although CD34+CD38+ and 

CD34-CD38+ cells are considered to be more differentiated than the classic 

CD34+CD38- HSC, these cell types are generally regarded as multipotent 

progenitors, and thus have the capacity to also differentiate into cells of 

lymphoid, myeloid and erythroid lineages, meaning these cell types would also 

be valuable within HSC niche models (Dahlberg et al., 2011, Schuster et al., 

2012, Osawa et al., 1996). Consequently, an additional aim of this chapter is to 

determine the potential of the niche models to induce expression of CD34+CD38+ 

and CD34-CD38+ phenotypes after 5 days of culture. 
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6.1.3 Commitment of progenitors to differentiation lineages 

All three of the aforementioned CD34+CD38-, CD34+CD38+ and CD34-CD38+ cell 

types have the capacity to undergo differentiation, producing cells of the 

lymphoid, myeloid and erythroid lineages (Miyamoto et al., 2002). Although 

evidence is shown in previous chapters suggesting that the PEA + FN + BMP-

2&NGF substrate may act favourably in conjunction with the stromal layer and 

2% HS and 3GF media formulation to support maintenance and expansion of 

haematopoietic multipotent progenitors, it is also important to consider that the 

HSC niche is dynamic, and that the models may cause the CD34+CD38- cells 

added at day 15 to further progress towards differentiating beyond the 

CD34+CD38+ and CD34+CD38- phenotypes. Therefore, while the main aims of this 

chapter are to determine the capacity of the developed niche models to induce 

maintenance and expansion of the progenitor cells, this chapter also aims to 

determine whether the models affect commitment of these progenitor cells to 

the lymphoid, myeloid and erythroid differentiation lineages. To determine if 

this were the case, flow cytometry was also carried out to compare the 

expression levels of CD7, CD36 and CD41a, which are indicative of lymphoid, 

erythroid and myeloid commitment, respectively, in cells of each progenitor 

type. 

6.2 Aims and Objectives 

The results shown in Chapter 4 outline that use of DMEM supplemented with 2% 

HS for 14 days, followed by use of 3GF media for days 15-21 of cell culture, 

represents the media formulation that best suited the development of this 

model in terms of inducing the most favourable phenotype in MSCs and cost. 

However, it is important to note that as this work progressed, additional advice 

from collaborators paired with the results shown in this chapter led to the use of 

3 media formulations in the HSC addition phase of the model, as outlined in 

Figure 6-1. In addition, it was concluded that culturing HSCs for 7 days may 

prove to be too long, as collaborators observed that the cells tend to 

differentiate by that point in standard culture, and the effect of the models may 

not be strong enough to overcome this. Therefore, a shorter culture period of 5 

days was decided to be appropriate for these preliminary experiments where 

HSCs were added into the models.  
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Figure 6-1 Substrates and media formulations used in HSC culture experiments 
The results shown in this chapter were obtained using models testing the effect of one of 5 
different substrates (glass, glass + FN, PMA + FN, PEA + FN and PEA + FN + BMP-2&NGF), 
where green circles indicate globular fibronectin and green fibrils represent network 
fibronectin. Media formulations tested; ‘2% HS + 3GF’ where 3 GFs were used in the HSC 
culture period; preconditioned media where no GFs were used; 50% GF media where 3GFs 
at 50% of the concentration in the 3GF media were used for the duration of the HSC culture 
period.  

 

This chapter will address the results associated with each of the haematopoietic 

multipotent progenitors, CD34+CD38-, CD34+CD38+ and CD34-CD38+, in terms of: 

• the portion of the total cell number expressing each phenotype after 5 

days of culture 

• the portion of the total progenitor number expressing: CD7 (indicative of 

cells preparing to commit to the lymphoid lineage); CD36 (indicative of 

cells preparing to commit to the erythroid lineage); CD41a (indicative of 

cells preparing to commit to the myeloid lineage) 
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6.3 Materials and Methods 

6.3.1 HSC culture 

HSCs were obtained commercially from CalTag MedSystems, UK. They were 

stored at -80 oC in liquid nitrogen until required. When the cells were required, 

the vial of cells was transported from the -80 oC freezer, and immediately 

transferred to a 37 oC water bath, where it was left for 3 minutes to ensure 

defrosting. Cells were transferred to a 15 mL falcon tube, and 10 mL of SFM base 

media was added to the tube. The cell suspension was centrifuged for 10 

minutes at 400 g, and the cell pellet was re-suspended in 2mL of 3GF or 5 GF 

media depending on the media type being used for the rest of the experiment. 

Cells were counted using a haemocytometer and trypan blue, and then the 

remaining cell suspension was transferred to a central well of a 6 well plate and 

left overnight in an incubator at 37 oC and 5% CO2.  

Cells were seeded the day after being brought up from frozen. Seeding of the 

HSCs involved their addition to the model outlined in Chapter 4, where a layer of 

stromal cells had been cultured for 15 days. The HSCs were counted on this day, 

and the cell suspension was transferred from the central well of a 6 well plate to 

a 15 ml falcon tube. 20 µl of cells were taken from the well and transferred to a 

reaction tube for phenotyping via FLOW cytometry. The appropriate volume of 

serum-free media was added to the remaining volume of cell suspension, to 

allow for the cells to be seeded at 5 x 10 4 cells per well of a 24 well plate. As 

these cells are non-adherent, it was not possible to change the media once the 

HSCs were added to the model wells containing the polymer-coated coverslip, 

MSCs and HSCs. Thus, once the HSCs were added to the wells, they remained in 

the plate for 5 days. 

6.3.2 Flow cytometry 

6.3.2.1 Flow cytometry staining 

After the 5-day culture of HSCs, 5 µl of cell suspension was drawn from each 

well and transferred to a reaction tube, for use as a ‘cell only’ FLOW cytometry 

control. The cell suspension within each well was transferred to a FACS tube, 

and 1ml of FACS buffer at 4 oC was added. The tubes were centrifuged for 5 
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minutes at 400 g, and the cell pellets were re-suspended in 500 µl of FACS 

buffer. The cell suspensions were split into two tubes, and centrifuged for 5 

minutes at 400g. Cell pellets were then re-suspended in either antibody mix A or 

antibody mix B, where cells would be stained for differentiation or progenitor 

markers, respectively.  

Table 6-1 Flow cytometry antibody mixes 
Fluorophore Tube A CD numbers Tube B CD numbers 

FITC 41a Lin 
PE 34 34 
Cy5   
Cy7 38 38 
APC 36  
APC-Cy7 45  
BV421 7  
 

Cells were incubated with the above antibodies for 30 minutes, in the dark and 

on ice. The samples were centrifuged for 5 minutes at 400 g, and were then re-

suspended in 200 µl of FACS buffer. Each sample was stored on ice and kept in a 

box for a maximum of 1 hour before being processed through a BD FACSCanto II 

FLOW cytometer.  

6.3.2.2 Flow cytometer usage 

Cells were run in a BD FACSCanto II analyser. Unstained controls were used to 

set the voltage for each of the 6 channels used, and isotype controls for each 

channel were used with cells as negative controls, allowing for the non-specific 

background signal to be differentiated from the specific antibody signal.  
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Table 6-2 FLOW cytometry antibody list 

Cell Surface Marker Fluorophore Supplier 
lineage (LIN) cocktail FITC BD Biosciences, UK 
CD34 PE BD Biosciences, UK 
CD38 Cy7 BD Biosciences, UK 
CD45 A7 BD Biosciences, UK 
CD7 BV-241 BD Biosciences, UK 
CD36 APC BD Biosciences, UK 
CD41a FITC BD Biosciences, UK 
mouse isotype control FITC BD Biosciences, UK 
mouse isotype control PE BD Biosciences, UK 
mouse isotype control Cy7 BD Biosciences, UK 
mouse isotype control A7 BD Biosciences, UK 
mouse isotype control BV-241 BD Biosciences, UK 
mouse isotype control APC BD Biosciences, UK 
 

6.3.2.3 Flow cytometry compensation 

In order to correct for any spectral overlap, UltraComp eBeadsTM were used to 

perform fluorescence compensation. 1 drop of the beads was added to 100 µL of 

FACS buffer in a reaction tube, and 1 µL of each antibody was added. The 

reaction tubes were stored on ice and in the dark for 30 minutes, before the 

mixtures were each centrifuged at 600 g for 5 minutes. The pellets were re-

suspended in 200 µL of FACS buffer and the samples were run separately in the 

cytometer in the compensation set up. The spectral overlap settings were set 

automatically, by the accompanying software.  

6.3.2.4 Flow cytometry gating strategy and data analysis  

Gating strategy work was carried out using FlowJoTM software with kind 

assistance from Ewan Ross, the University of Glasgow. The first step in the 

gating strategy was to use a forward scatter area (FSC-A) versus side scatter area 

(SSC-A) plot to identify the population of viable cells (Figure 6-2a). From this 

plot, an additional plot of FSC-A versus forward scatter width (FSC-W) was 

produced, in order to identify the single cells and exclude any doublets (Figure 

6-2b).  

The single cell population was then used to identify the lineage negative 

population of cells, from which the CD34+CD38-, CD34+CD38+ and CD34-CD38+ cell 

populations could be identified (Figure 6-2c, Figure 6-2d). 
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Figure 6-2 Flow cytometry gating strategy for progenitor identification 
Sample data is from models featuring PEA + FN + BMP-2&NGF substrates and containing 
3GF media. a = forward scatter versus side scatter plot, for identification of a viable cell 
population; b = single cell population with doublet exclusion; c = application of gating on 
the lineage negative cell population ; d = identification of progenitors. 
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The gating strategy for determining the percentage of cells expressing CD7, 

CD36 and CD41a, within each of the CD34+CD38-, CD34+CD38+ and CD34-CD38+ 

populations, is outlined in Figure 6-3. This gating strategy allowed for the 

determination of the exact number of cells expressing CD7, CD36 and CD41a 

within each population type, which was then converted to a percentage of the 

total cell number within each population subset.  

 
Figure 6-3 Flow cytometry gating strategy for progenitor populations associated with 
differentiation analyses 
Sample data is from models featuring PEA + FN + BMP-2&NGF substrates and containing 
3GF media. a = forward scatter versus side scatter plot, for identification of a viable cell 
population; b = application of gating on CD45+ population; c = identification of progenitors 

Following the identification of the CD34+CD38-, CD34+CD38+ and CD34-CD38+ 

populations, expression of CD7, CD36 and CD41a was determined. Cells were 

considered positive for each marker type if the expression levels were to the 

right of the lines marked in Figure 6-4, Figure 6-5 and Figure 6-6. 
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Figure 6-4 Gating strategy for CD7+ populations 
Sample data is from models featuring PEA + FN + BMP-2&NGF substrates and containing 
3GF media. Cells positive for CD7 were tested for in each CD34+CD38-, CD34+CD38+ and 
CD34-CD38+ populations, using unstained cells as negative controls. y axes are indicative of 
cell count. Cells to the right of the vertical black line indicate positive expression. 

 

 
Figure 6-5 Gating strategy for CD36+ populations 
Sample data is from models featuring PEA + FN + BMP-2&NGF substrates and containing 
3GF media. Cells positive for CD36 were tested for in each CD34+CD38-, CD34+CD38+ and 
CD34-CD38+ populations, using unstained cells as negative controls. y axes are indicative of 
cell count. Cells to the right of the vertical black line indicate positive expression. 
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CD7+	

CD36 

CD36+	
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Figure 6-6 Gating strategy for CD41a+ populations 
Sample data is from models featuring PEA + FN + BMP-2&NGF substrates and containing 
3GF media. Cells positive for CD41a were tested for in each CD34+CD38-, CD34+CD38+ and 
CD34-CD38+ populations, using unstained cells as negative controls. y axes are indicative of 
cell count. Cells to the right of the vertical black line indicate positive expression. 

 

6.3.2.5 Statistical Analyses 

Statistical analyses were carried out as outlined in section 2.5. However, 

statistically significant differences are only marked on the graphs in this chapter 

if the differences exist between models that had the same cell cultures in them; 

statistically significant differences are marked for models where MSCs and HSCs 

were co-cultured in both analysed models, but not between models where HSCs 

were cultured in one but MSCs and HSCs were co-cultured in the other analysed 

model.  

CD41a 

CD41a+	
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6.4 Results 

6.4.1 CD34+CD38- cells in candidate models 

6.4.1.1 Retention of the CD34+CD38- phenotype in candidate models 

In order to determine the capacity of the niche model candidate substrates to 

support retention of a CD34+CD38- cells, these cells were cultured for 5 days in 

models using each substrate type and a stromal layer cultured in one of the 

three media types outlined in Figure 6-1. However, it should be noted that 

additional controls were used, where HSCs were cultured alone, in the absence 

of the stromal layer (indicated by (H) next to the substrate name on the x axes 

of Figure 6-7). Models with the MSC stromal layer and HSCs are marked (M+H). 

The results in Figure 6-7a showed that the presence of MSCs in HSC niche models 

resulted in increased numbers of cells with the CD34+CD38- phenotype existing 

after 5 days of culture. Interestingly, there were no statistically significant 

differences in the number of cells with the CD34+CD38- phenotype between 

models using the PEA + FN + GF substrates and those using the controls. It was 

hypothesised that this may have been due to the concentration of GFs in the 3GF 

media dampening the effects of the GFs on the surfaces, thus it was decided to 

repeat the experiment using preconditioned media (with no GFs present) (Figure 

6-7b).  

Unexpectedly, the results in Figure 6-7b indicated that the CD34+CD38- 

phenotype is optimally expressed when HSCs are cultured alone in the models. 

This may have arisen from the HSCs binding to the FN and responding to it by 

differentiating (Yoder and Williams, 1995). However, this result is the opposite 

of what the literature suggests, whereby MSCs are strongly favoured within HSC 

niche models (Leisten et al., 2012, Fajardo-Orduña et al., 2015). Consequently, 

it was decided that the experiment should be repeated again, and that the 

concentration of GFs used in the 3GF media should be halved, as a means of 

understanding if this type of media may act to still support HSC life, while 

providing a greater opportunity for the effect of the GFs on the substrates to 

take effect. 
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The experiments associated with the results shown in Figure 6-7a & b were 

repeated using 50%GF media three times, with three different HSC and three 

different MSC donors (Figure 6-7 c, d & e). The results shown in Figure 6-7c 

suggested that the PEA + FN surface optimally supports maintenance of the 

CD34+CD38- phenotype in this media type, and allows for a statistically 

significant increase, relative to glass controls. However, this experiment was 

repeated, using the same media formulation, it can be observed that this small 

difference was reproducible for the results shown in Figure 6-7d, but not for 

Figure 6-7e.  

In a bid to consider all data shown in Figure 6-7, and draw a general conclusion 

about the effect of the surfaces regardless of the media type, the values 

obtained for each experiment were collated and Figure 6-7f was produced. This 

graph proposed that the substrate type used within these models had no 

significant effect on the expression of the CD34+CD38- phenotype in HSCs.  
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Figure 6-7 CD34+CD38- populations in niche models using different substrates & media 
types. 
Graphs show the percentage of lineage negative cells expressing the CD34+CD38- HSC 
phenotype after cell culture for 5 days in models with different substrates. (H) = HSC only 
negative control. (M+H) = MSCs + HSCs in a co-culture. a = culture in 3GF media; b = culture 
in preconditioned medium; c,d & e = culture in 50%GF medium, from 3 separate donors; f = 
results from all media types collated. Graphs show mean +/- SD. *=p<0.05, **=p<0.01, 
***=p<0.001, ****=p<0.0001, by Kruskal-Wallis. CD34+CD38- phenotype is enhanced by the 
presence of MSCs within models 
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6.4.1.2 CD34+CD38- commitment to the lymphoid lineage  

Although the results shown in section 6.4.1.1 suggest that the substrates and 

media types tested to feature within the designed HSC niche models do not 

generate significant and consistent effects on the CD34+CD38- phenotype, further 

analyses were carried out to determine if these variables affected the 

expression of CD7 (indicative of lymphoid commitment) within cells of the 

CD34+CD38- population. The results are presented in Figure 6-8. 

The graph shown in Figure 6-8a showed that only a very low proportion of 

CD34+CD38- cultured in all models with any substrate type expressed CD7, 

suggesting that progression towards lymphoid commitment was generally low at 

the 5-day culture time point. The spread of the data points implied that n 

numbers should be greater in order make any differences more apparent.  

Figure 6-8b showed results associated with models using preconditioned media 

types. Although the differences in CD7 expression in cells in different models 

lacked statistical significance, it was interesting to observe that when MSCs were 

present, the expression of CD7 was generally lower. This observation correlated 

well with the results presented in Figure 6-7, as those results showed that 

models with stromal layers generally enhanced maintenance of the more 

primitive CD34+CD38- progenitor phenotype. This result may have arisen from 

expression of markers associated with differentiation down different 

haematopoietic lineages. In addition, it is important to note that CD7 expression 

was lowest in the ‘Plastic (H) 3 GF media’ where HSCs were cultured in 3 GF 

media. This suggested that having GFs in the media acted to prevent 

commitment to the lymphoid lineage.  

Graphs in Figure 6-8c, d & e represent three repetitions of the same experiment 

using 50% GF media, but with HSCs and MSCs from 3 different donors. A similar 

difference was observed in graphs c & d, whereby CD7 expression appeared to 

be lower in models containing MSCs and FN-containing substrates. This result 

correlated well with that observed in Figure 6-7c & d, as that figure showed that 

models containing MSCs and FN-containing substrates acted to maintain the 

primitive CD34+CD38- progenitor population. This difference was not observed in 

Figure 6-8e, suggesting donor variability affected the potency of the models. 
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Figure 6-8 CD34+CD38-CD7+ populations in niche models using different substrate and 
media types 
Graphs show the percentage of CD34+CD38-CD45+ cells expressing CD7 (associated with 
lymphoid lineage commitment) after cell culture for 5 days in models with different 
substrates and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-
culture. a = culture in 3GF media; b = culture in preconditioned medium; c,d & e = culture in 
50%GF medium from 3 separate donors; f = results from all media types collated. Graphs 
show mean +/- SD. *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, by Kruskal-Wallis. Data 
indicates that HSC niche models have no statistically significant effect on the expression of 
CD7 within the CD34+CD38- population. 
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6.4.1.3 CD34+CD38- commitment to the erythroid lineage 

Analysis of CD36 expression was carried out to determine the capacity of the 

different candidate niche model substrates, and different media formulations, to 

support the progression of CD34+CD38- cells towards the erythroid differentiation 

lineage. The results are shown in Figure 6-9. 

Figure 6-9a suggested that there were no significant differences in the 

expression of CD36 in CD34+CD38- cells cultured on different niche model 

candidate substrates in the 3GF media type. It was interesting to observe that 

the percentage of CD34+CD38- cells expressing CD36 increased to around 8% 

when the GF-free preconditioned media was used with preconditioned media 

and many substrates (Figure 6-9b). This indicated that the concentration of GFs 

in the 3GF media may have suppressed lineage commitment and helped to 

maintain primitive progenitor populations of HSCs within these models. 

Although Figure 6-9c, d & e represented three repetitions of the same 

experiment using 50% GF media, but with cells from different donors, the results 

were markedly variable. This stressed that donor variability affected the 

potency of the models. However, observation of Figure 6-9f (where all results 

irrespective of media type have been collated) indicated that there are no 

prominent differences or statistically significant results indicating that CD36 

expression within the CD34+CD38- population was affected by the substrates in 

the model. 
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Figure 6-9 CD34+CD38-CD36+ populations in niche model candidate systems using different 
substrate and media types. 
Graphs show the percentage of CD34+CD38- CD45+ cells expressing CD36 (associated with 
erythroid lineage commitment) after cell culture for 5 days in models with different 
substrates and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-
culture. a = culture in 3GF media; b = culture in preconditioned medium; c,d & e = culture in 
50%GF medium, from 3 separate donors; f = results from all media types collated. Graphs 
show mean +/- SD. *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, by Kruskal-Wallis. Data 
indicates that HSC niche models have no statistically significant effect on the expression of 
CD36 within the CD34+CD38- population. 
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6.4.1.4 CD34+CD38- commitment to the myeloid lineage 

Further analysis of the CD34+CD38- population was carried out to determine the 

effects of different niche model candidate substrates and media formulations on 

the expression of CD41a, indicative of progression of CD34+CD38- cells towards 

differentiation down the myeloid lineage. The results are presented in Figure 

6-10. 

The data shown in Figure 6-10a suggested that the presence of MSCs and 

substrates containing FN within niche models can acted favourably to reduce the 

number of cells expressing a CD41a+ phenotype within the CD34+CD38- 

population, when HSCs were cultured in the 3GF media. The same difference 

was not observed in Figure 6-10b, when the experiment was repeated but with 

media changed to preconditioned media. However, it was interesting to note 

that the PEA + FN + GF surface produced some of the lowest numbers of cells 

with CD41a expression, in both media types. This suggested that the BMP-2 and 

NGF may function to maintain low levels of CD41a expression.  

Graphs in Figure 6-8c, d & e represented three repetitions of the same 

experiment using 50% GF media, but with HSCs and MSCs from 3 different 

donors. Interestingly, a similar result was observed in graphs c & e, whereby 

CD41a expression was at its lowest in CD34+CD38- cells cultured in models 

containing a stromal layer/HSC co-culture. However, the same subtle difference 

was not observed in graph d, where there were considerable differences in the 

expression of CD41a between cells cultured in models with the PMA + FN and 

PEA + FN substrates, compared to controls. It was important to note that in 

Figure 6-10b, c & e, the number of CD34+CD38- cells expressing CD41a is similar 

in the ‘Plastic (H)’ models where HSCs are cultured alone in the 50% GF media 

and also in the ‘Plastic (H) 3 GF media’ models, where the cells are cultured in 

the 3 GF media. This showed that the media type was not what was affecting 

the CD41a expression profile of these cells, rather it may have been donor cell 

variability, or the effect of the substrates on the stromal layer.  
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Figure 6-10 CD34+CD38- populations in niche models using different substrates and media 
types 
Graphs show the percentage of CD34+CD38- CD45+ cells expressing CD41a (associated with 
myeloid lineage commitment) after cell culture for 5 days in models with different substrates 
and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-culture. a = 
culture in 3GF media; b = culture in preconditioned medium; c,d & e = culture in 50%GF 
medium, from 3 separate donors; f = results from all media types collated. Graphs show 
mean +/- SD. *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, by Kruskal-Wallis. Data 
indicates that HSC niche models have no statistically significant effect on the expression of 
CD41a within the CD34+CD38- population. 
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6.4.2 CD34+CD38+ cells in candidate models 

6.4.2.1 Expression of the CD34+CD38+ phenotype in candidate models 

Although the CD34+CD38- phenotype was the most important phenotype to regard 

in the development of this HSC niche model, similar analyses as those shown in 

section 6.4.1 were carried out regarding the CD34+CD38+ population of cells 

existing within the models after 5 days of culture. To first determine the effect 

of the models on the number of cells with the CD34+CD38+ phenotype, flow 

cytometry was carried out, using cells from 5 different donors in 5 different 

experiments. Results are presented in Figure 6-11. 

Figure 6-11a & b indicated that there were no statistically significant differences 

in the percentage of lineage negative cells expressing the CD34+CD38+ phenotype 

in models using the different substrate types, with either the 3GF or 

preconditioned media types. Interestingly, while the results were repeats of the 

same experiment, Figure 6-11c & e both also show no statistically significant 

differences, while Figure 6-11d does. Observation of the data presented in 

Figure 6-11d indicated that the PEA + FN surface optimally supported the 

CD34+CD38+ phenotype. However, it should be noted that the percentage of 

lineage negative cells with the CD34+CD38+ phenotype was markedly higher than 

it was in all other experiments. The collated data shown in Figure 6-11f 

confirmed that there were no statistically significant differences between 

models with the different substrates within them.  
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Figure 6-11 CD34+CD38+ populations in niche models using different substrates and media 
types 
Graphs show the percentage of lineage negative cells expressing the CD34+CD38+ 
progenitor phenotype after cell culture for 5 days in models with different substrates. (H) = 
HSC only negative control. (M+H) = MSCs + HSCs in a co-culture. a = culture in 3GF media; 
b = culture in preconditioned medium; c,d & e = culture in 50%GF medium, from 3 separate 
donors; f = results from all media types collated. Graphs show mean +/- SD. *=p<0.05, 
**=p<0.01, ***=p<0.001, ****=p<0.0001, by Kruskal-Wallis. Data indicates that HSC niche 
models have no statistically significant effect on the expression of the CD34+CD38+ 
phenotype. 
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6.4.2.2 CD34+CD38+ commitment to the lymphoid lineage 

 

Although the results shown in section 6.4.2.1 suggest that the substrates and 

media types tested to feature within the designed HSC niche models do not 

generate significant and consistent effects on the CD34+CD38- phenotype, further 

analyses were carried out to determine if these variables affected the 

expression of CD7 (indicative of lymphoid commitment) within cells of the 

CD34+CD38+ population. Results are presented in Figure 6-12. 

The graphs shown in Figure 6-12 showed that, regardless of the media type used 

within the models, the different substrates did not induce any statistically 

significant differences in the percentage of CD34+CD38+ cells expressing CD7. It 

was particularly interesting to observe that the percentages of CD34+CD38+ cells 

with the CD7 phenotype in different models varied between the experiments 

shown in Figure 6-12c, d & e, despite each experiment using the same media 

formulation and the same batch of substrates. This stressed that cells from 

different donors behave differently, as the cells are the only variable within 

these experiments. 
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Figure 6-12 CD34+CD38+CD7+ populations in niche models using different substrate and 
media types 
Graphs show the percentage of CD34+CD38+ CD45+ cells expressing CD7 (associated with 
lymphoid lineage commitment) after cell culture for 5 days in models with different 
substrates and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-
culture. a = culture in 3GF media; b = culture in preconditioned medium; c,d & e = culture in 
50%GF medium from 3 separate donors; f = results from all media types collated. Graphs 
show mean +/- SD. Data indicates that HSC niche models have no statistically significant 
effect on the expression of CD7 within the CD34+CD38+ population 
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6.4.2.3 CD34+CD38+ commitment to the erythroid lineage 

In order to determine if the different substrates and media types tested have 

the capacity to affect the likelihood of CD34+CD38+ cells expressing CD36 

(indicative of commitment towards the erythroid differentiation lineage), flow 

cytometry was carried out five times, as before, using cells from 5 different 

donors. Results are given in Figure 6-13. 

The results shown in Figure 6-13 suggest that there were no reproducible, 

statistically significant differences in the percentage of CD34+CD38+ expressing 

CD36 as a result of responses to the tested substrates in the different media 

types tested. However, it was important to observe that in Figure 6-13b and c, 

when the preconditioned and 50% GF media formulations were used, 

respectively, the models with co-cultures featuring a stromal layer and HSCs 

generally had a reduction in the percentage of CD34+CD38+ cells expressing 

CD36, relative to HSC only controls. This stressed the benefit of including the 

stromal layer within the model, as it appeared to suppress progress to erythroid 

lineage commitment. In turn, this result supported the general opinion in the 

literature, where evidence exists to suggest that co-cultures of HSCs and stromal 

layers work effectively to maintain a more primitive phenotype in HSCs (Dexter, 

1982, Leisten et al., 2012). In addition, it is important to note that experiments 

using the 50% GF media generally resulted in a higher expression of CD36 within 

the CD34+CD38+ population, particularly when compared to the experiment using 

3GF media. This highlighted the importance of carefully considering the media 

type when designing an HSC niche model.  
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Figure 6-13 CD34+CD38+CD36+ populations in niche models using different substrates and 
media types 
Graphs show the percentage of CD34+CD38+CD45+ cells expressing CD36 (associated with 
erythroid lineage commitment) after cell culture for 5 days in models with different 
substrates and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-
culture. a = culture in 3GF media; b = culture in preconditioned medium; c,d & e = culture in 
50%GF medium from 3 separate donors; f = results from all media types collated. Graphs 
show mean +/- SD. Data indicates that HSC niche models have no statistically significant 
effect on the expression of CD36 within the CD34+CD38+ population. 
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6.4.2.4 CD34+CD38+ commitment to the myeloid lineage 

To assess the capacity of the different substrates and media types tested to 

affect the likelihood of CD34+CD38+ cells expressing CD41a (indicative of myeloid 

lineage commitment), flow cytometry was carried out testing cells from 5 

different donors in 5 separate experiments. Results are presented in Figure 6-14. 

The results shown in Figure 6-14 indicated that there were no reproducible, 

statistically significant differences in the percentage of CD34+CD38+ cells 

expressing CD41a as a result of responses to the tested substrates in the 

different media types tested. However, it was intriguing to observe that in 

Figure 6-14b, c & e, CD41a expression was generally lower in models containing 

a stromal layer/HSC co-culture on PEA + FN and/or GF substrates, irrespective of 

media type. Although this chapter shows results indicating that the HSC/stromal 

layer co-culture helped to reduce expression of lineage commitment markers, 

this result also suggested that the PEA + FN and/or GF substrates may also 

suppress differentiation and lineage commitment.  
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Figure 6-14 CD34+CD38+CD41a+ populations in niche models using different substrates 
and media types 
Graphs show the percentage of CD34+CD38+CD45+ cells expressing CD41a (associated with 
myeloid lineage commitment) after cell culture for 5 days in models with different substrates 
and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-culture. a = 
culture in 3GF media; b = culture in preconditioned medium; c, d & e = culture in 50%GF 
medium, from 3 separate donors; f = results from all media types collated. Graphs show 
mean +/- SD. Data indicates that HSC niche models have no statistically significant effect on 
the expression of CD41a within the CD34+CD38+ population. 
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6.4.3 CD34-CD38+ cells in candidate models 

6.4.3.1 Expression of the CD34-CD38+ phenotype in candidate models 

Flow cytometry analyses were carried out regarding the CD34-CD38+ population 

of cells existing within the models after 5 days of culture. To first determine the 

effect of the models on the number of cells with the CD34-CD38+ phenotype, 

flow cytometry was carried out, using cells from 5 different donors in 5 different 

experiments. The results are shown in Figure 6-15. 

From the results presented in Figure 6-15, it was deduced that there were no 

reproducible, statistically significant differences in the percentages of CD34-

CD38+ cells present in models with different substrates cultured in the different 

possible media types. This was somewhat encouraging as it suggested that 

models containing PEA substrates did not influence cells that lie between the 

important CD34+CD38- population of cells and the differentiated cells associated 

with the haematopoietic hierarchy (section 1.2.1). This finding implied that the 

models were either suited to influencing very primitive or highly differentiated 

cell types, which is of greater economical and clinical value (Krause et al., 1996, 

Gajkowska et al., 2006, Maruyama et al., 2016). 
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Figure 6-15 CD34-CD38+ populations in niche models using different substrates and media 
types 
Graphs show the percentage of lineage negative cells expressing the CD34-CD38+ 
phenotype after cell culture for 5 days in models with different substrates. (H) = HSC only 
negative control. (M+H) = MSCs + HSCs in a co-culture. a = culture in 3GF media; b = culture 
in preconditioned medium; c, d & e = culture in 50%GF medium, from 3 separate donors; f = 
results from all media types collated. Graphs show mean +/- SD. *=p<0.05 by Kruskal-Wallis. 
Data indicates that HSC niche models have no statistically significant effect on the 
expression of the CD34-CD38+ phenotype 
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6.4.3.2 CD34-CD38+ commitment to the lymphoid lineage  

Despite results shown in Figure 6-15 suggesting that the substrates and media 

formulations used within the niche models had little effect on the numbers of 

CD34-CD38+ cells present after 5 days of culture, flow cytometry was also used 

to determine if expression of CD7 within this population was affected by these 

variables. The results are presented in Figure 6-16. 

From the results shown in Figure 6-16, some subtle differences existed within 

the data presented in graphs a, b, c & e. These subtle differences indicated that 

models with a stromal layer/HSC co-culture, and either PMA or PEA substrates, 

acted to reduce differentiation and the progression of cells towards the 

lymphoid lineage. This difference was not apparent in Figure 6-16d, but it was 

possible that this unusual result has arisen from variation in the cells from the 

donor. 
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Figure 6-16 CD34-CD38+CD7+ populations in niche models using different substrates and 
media types 
Graphs show the percentage of CD34-CD38+CD45+ cells expressing CD7 (associated with 
lymphoid lineage commitment) after cell culture for 5 days in models with different 
substrates and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-
culture. a = culture in 3GF media; b = culture in preconditioned medium; c,d & e = culture in 
50%GF medium from 3 separate donors; f = results from all media types collated. Graphs 
show mean +/- SD. *=p<0.05 by Kruskal-Wallis. Data indicates that HSC niche models have 
no statistically significant effect on the expression of CD7 within the CD34-CD38+ 
population. 
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6.4.3.3 CD34-CD38+ commitment to the erythroid lineage 

To further investigate if progression towards lineage commitment within the 

CD34-CD38+ population is affected by cell culture in the different niche models 

designed in this work, flow cytometry was carried out to assess expression of 

CD36 within this population, as CD36 expression is associated with commitment 

to the erythroid lineage. The results are shown in Figure 6-17. 

It was apparent from Figure 6-17 that there were no reproducible, statistically 

significant differences in the expression of CD36 within the CD34-CD38+ 

population, when HSCs were cultured in models containing different candidate 

niche model substrates and media of different formulations.  
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Figure 6-17 CD34-CD38+CD36+ populations in niche models using different substrates and 
media types 
Graphs show the percentage of CD34-CD38+ CD45+ cells expressing CD36 (associated with 
erythroid lineage commitment) after cell culture for 5 days in models with different 
substrates and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-
culture. a = culture in 3GF media; b = culture in preconditioned medium; c,d & e = culture in 
50%GF medium from 3 separate donors; f = results from all media types collated. Graphs 
show mean +/- SD. Data indicates that HSC niche models have no statistically significant 
effect on the expression of CD36 within the CD34-CD38+ population. 
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6.4.3.4 CD34-CD38+ commitment to the myeloid lineage 

To determine if HSC culture within models containing different candidate niche 

model substrates and media of different formulations affects commitment of 

cells in the CD34-CD38+ population towards the myeloid lineage, flow cytometry 

was carried out to assess expression of CD41a. The results are presented in 

Figure 6-18. 

The results presented in Figure 6-18 demonstrated that subtle differences 

apparent, irrespective of the media formulation used. These small differences 

can be found in Figure 6-18a, b, c & e, and suggested that when PMA or PEA 

substrates were used with a stromal layer/HSC co-culture, commitment towards 

the myeloid lineage was reduced, relative to controls.  
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Figure 6-18 CD34-CD38+CD41a+ populations in niche models using different substrates and 
media types 
Graphs show the percentage of CD34-CD38+CD45+ cells expressing CD41a (associated with 
myeloid lineage commitment) after cell culture for 5 days in models with different substrates 
and media types. (H) = HSC only negative control. (M+H) = MSCs + HSCs in a co-culture. a = 
culture in 3GF media; b = culture in preconditioned medium; c, d & e = culture in 50%GF 
medium, from 3 separate donors; f = results from all media types collated. Graphs show 
mean +/- SD. Data indicates that HSC niche models have no statistically significant effect on 
the expression of CD41a within the CD34-CD38+ population. 
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6.5 Discussion 

6.5.1 CD34+CD38- phenotype retention & lineage commitment 

The most commonly accepted phenotype for HSCs is the CD34+CD38- phenotype 

(Terstappen et al., 1991, Notta et al., 2010). Thus, the main aim of this chapter 

was to assess the capacity of HSC niche models containing PEA + FN + BMP-

2&NGF substrates, and a co-culture of stromal layer cells with HSCs, to maintain 

the CD34+CD38- phenotype of HSCs after 5 days of culture in such models. The 

results relating to this principal aim are shown in Figure 6-7. These results 

confirmed that models using a stromal layer/HSC co-culture were advantageous 

in maintaining expression of the CD34+CD38- phenotype after 5 days of culture. 

Generally, there were no reproducible, statistically significant differences in the 

expression of the CD34+CD38- phenotype after the culture when cells were in 

models using the different substrates. However, Figure 6-7c showed that the PEA 

+ FN substrate may have had the capacity to induce an increase in the 

maintenance of this phenotype, when used in conjunction with the 50% GF 

media. It should be noted that this experiment was carried out three times using 

HSCs and stromal layer cells from different donors, and that the results were 

different each time despite all other variables being kept constant. This 

highlighted the issues associated with using cells from different donors, and also 

stressed the need for this work to be repeated several more times before a valid 

conclusion can be drawn regarding the capacity of the substrates and media 

formulations tested to influence the CD34+CD38- phenotype. 

Although the primary aim of this chapter was to investigate the capacity of the 

models to support the maintenance of the CD34+CD38- phenotype after 5 days of 

culture, cells with this phenotype also have the capacity to express cell surface 

markers that are indicative of how they will commit to certain differentiation 

lineages (Reinhold et al., 1993). Consequently, this chapter also aimed to 

determine if the different models tested were able to affect expression of CD7 

(associated with lymphoid commitment), CD36 (associated with erythroid 

commitment) and CD41a (associated with myeloid commitment) (Reinhold et al., 

1993, Lapillonne et al., 2010, De Luca et al., 2009). Figure 6-8 showed flow 

cytometry results relating to CD7 expression within the CD34+CD38- phenotype, 

and suggested that generally, the PEA + FN + BMP-2&NGF substrate worked best 
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to reduce differentiation and progression towards the lymphoid lineage. The 

results relating to erythroid commitment are shown in Figure 6-9, where CD36 

expression within the CD34+CD38- population was monitored using flow 

cytometry. The results showed no reproducible, statistically significant 

differences in expression of CD36 in the CD34+CD38- population after culture in 

the models. However, out of the stromal layer/HSC co-culture models, cells 

cultured in models with PEA + FN + BMP-2&NGF substrates generally tended to 

have the lowest expression levels of CD36. This indicated that perhaps HSCs in 

models featuring this substrate type were more primitive and less committed to 

differentiation. Finally, Figure 6-10 showed results relating to expression of 

CD41a and commitment to the myeloid lineage. These results stressed the 

importance of using a stromal layer/HSC co-culture, by showing that 

commitment to this differentiation lineage was reduced in co-culture models. In 

turn, this implied that there is a more primitive phenotype in cells in the co-

culture models. It should be noted that Figure 6-10b & d indicated that the PEA 

+ FN + BMP-2&NGF substrates optimally reduced commitment to the myeloid 

lineage, which also suggested that this substrate type may actively suppress 

differentiation. However, this result was not reproducible and this observation 

stressed the need for repetition of this before clear conclusions can be 

effectively reached.  

6.5.2 CD34+CD38+ phenotype development & lineage commitment 

While the CD34+CD38- phenotype is the most desirable to maintain within an HSC 

niche model, the development of models that maintain the CD34+CD38+ 

phenotype could also be of good worth, as these cells can still differentiate in 

accordance with the haematopoietic hierarchy (Table 1-1, Figure 1-3) (Chao et 

al., 2008). Although the main aim of this thesis was to develop a model that 

could maximise maintenance of the CD34+CD38- phenotype, the differentiation 

potential of cells with the CD34+CD38+ phenotype could also be valuable in the 

development of a different sort of HSC niche-associated model, wherein the 

focus may be to add HSCs and encourage their differentiation. Thus, flow 

cytometry was also used to investigate the effect of the models on expression of 

the CD34+CD38+ phenotype. Figure 6-11 showed how cell culture within models 

with different substrates and media types influences expression of the 

CD34+CD38+ phenotype. Generally, this figure indicated that there were no 
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statistically significant and reproducible differences in CD34+CD38+ expression 

levels in the different models. In certain cultures (Figure 6-11a, c & e), it was 

apparent that the PEA + FN + BMP-2&NGF substrate with a co-culture of HSCs 

and the stromal layer, acted to reduce the expression of the CD34+CD38+ 

phenotype relative to controls. While this result was promising in that it 

indicated that the cells are either more primitive, and higher up in the 

haematopoietic hierarchy, or that the cells are more differentiated (and so the 

surface may be useful for a differentiation model), the difference was not 

always reproducible. 

As with the CD34+CD38- haematopoietic progenitor phenotype, cells expressing 

the CD34+CD38+ phenotype can also commit to several differentiation lineages. 

Thus, flow cytometry was used to investigate the numbers of CD34+CD38+ cells 

expressing CD7, CD36 and CD41a, indicative of their commitment to the 

lymphoid, erythroid and myeloid lineages, respectively. Figure 6-12 showed flow 

cytometry results relating to CD7 expression within the CD34+CD38+ phenotype, 

and indicated that generally, PMA + FN and PEA + FN substrates were the most 

effective at minimising CD7 expression in CD34+CD38+ populations. However, it 

should be noted this was a slight difference, rather than a statistically 

significant result. Figure 6-13 showed the results associated with CD36 

expression, and indicated that in certain experiments (Figure 6-13b & c), culture 

of HSCs in models featuring the stromal layer/HSC co-culture helped to minimise 

CD36 expression, relative to controls. It was apparent that this arose 

irrespective of the substrate included in the model. Finally, Figure 6-14 

displayed results associated with CD41a expression in the CD34+CD38+ 

population. These results lack statistical significance. However, small 

differences were apparent in Figure 6-14a, b, c & e, where models featuring the 

PEA + FN and PEA + FN + BMP-2&NGF substrates were among those with the 

lowest expression levels of CD41a in the CD34+CD38+ population. Collectively, 

the results of this lineage commitment marker analysis suggested that lineage 

commitment in the CD34+CD38+ population was minimised in models containing 

the PEA + FN or PEA + FN + BMP-2&NGF substrates. 
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6.5.3 CD34-CD38+ phenotype development & lineage commitment 

This chapter also assessed the effect of HSC culture in models containing 

different substrates and media compositions, on inducing expression of the CD34-

CD38+ phenotype. Figure 6-15 showed that no statistically significant differences 

in the expression of the CD34-CD38+ phenotype were apparent after a 5-day 

culture of HSCs in the different models. This result indicated that any potential 

effects of the models on HSC phenotype lay in altering the expression of more 

primitive cells (such as the CD34+CD38- or CD34+CD38+ progenitors) or more 

differentiated cells, which have already made commitment to differentiation 

lineages. To determine if such differentiated cells were likely to have arisen 

from the CD34-CD38+ population, flow cytometry experiments assessed 

expression of CD7, CD36 and CD41a. No reproducible, statistically significant 

differences were observed relating to the expression of any of these three 

markers, when cells were cultured in different models, relative to controls. 

However, results observed in Figure 6-18 indicated that the PMA + FN, PEA + FN 

and PEA + FN + BMP-2&NGF substrates have some capacity to suppress 

commitment to the myeloid lineage. 

6.5.4 Chapter conclusions 

The aim of this chapter was to use flow cytometry to demonstrate the effect 

that different niche model substrates and media types have on the expression of 

haematopoietic phenotypes, when CD34+CD38- cells were cultured within models 

for 5 days. To this end, expression cell surface markers associated with three 

different progenitor populations, CD34+CD38-, CD34+CD38+ and CD34-CD38+, was 

determined. In addition, expression of CD7, CD36 and CD41a within each of 

these populations was determined, as these markers are indicative of 

progression towards lineage commitment. 

Results shown in Chapter 4 suggest that the use of PEA + FN + BMP-2&NGF 

substrates in HSC niche models may act to: maintain expression of MSC markers; 

induce expression of early osteogenesis marker, OPN; enhance expression of HSC 

maintenance factors. Taken together, it was hypothesised that this substrate 

may act to maintain expression of haematopoietic progenitor phenotypes of 

HSCs cultured in such models. However, each figure shown in this chapter failed 
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to show and statistically significant and reproducible results, indicating that 

while the PEA + FN + BMP-2&NGF substrate may act to induce an HSC niche like 

phenotype in MSCs, the strength of this model was not sufficient to impact the 

HSC phenotype, or any other HSC progenitor phenotype, after 5 days of culture. 

The results also showed that the substrates did not induce statistically 

significant differences in the expression of lineage commitment markers. 

However, it should be noted that while differences in results tend to lack 

statistical significance, there were subtle differences that were apparent within 

this chapter, and these subtle differences should be considered if future work is 

carried out using the substrates and media formulations tested in this work. Key 

highlights from this chapter to note include: 

1. In terms of maintaining the CD34+CD38- phenotype, the PEA + FN substrate 

appeared to be most beneficial when used in conjunction with 50% GF 

media for the duration of the HSC culture 

2. Expression of CD36, associated with commitment to the erythroid lineage, 

was often lower in CD34+CD38- cells cultured in models featuring PEA + FN 

+ BMP-2&NGF substrates and a stromal layer of cells 

3. Expression of CD41a, associated with commitment to the myeloid lineage, 

was shown to be considerably lower within each of the three tested 

progenitor population groups when cells were cultured in models 

featuring fibronectin and a co-culture of HSC and stromal layer of cells.  

4. PEA + FN + BMP-2&NGF substrates used in models with a co-culture of 

HSCs and a stromal layer, acted to reduce the expression of the 

CD34+CD38+ phenotype relative to controls. 

Although the points above are important to consider, to improve the quality of 
results shown in this chapter and test more thoroughly for statistically significant 
results, the experiments could be improved in a number of ways as outlined in 
Table 6-3 Methods for improving future HSC work 
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Table 6-3 Methods for improving future HSC work 

Method of Improvement Reasoning 
 
Increasing n number of 
models using HSCs from 
the same donor 
 

 
The experiments in this chapter only allowed for 
n=2 in many cases, impacting statistical 
significance. 
 

 
Increasing n number of 
experiments using each 
media type 
 

 
Time restrictions only allowed for 5 cell cultures to 
be carried out in this work. For fairness, n=3 of each 
media type would be carried out. 
 

 
Using stromal cells and 
HSCs from the same two 
donors to test the effects 
different media types 
 

 
Acquiring more cells from the same donor would 
allow for donor cell variability to be ruled out, as 
multiple experiments could be carried out using 
cells from the same donors. 
 

 
Using stromal cell/HSC 
combinations from 
different donors to test 
the effect of the surfaces 
with the same media type 

 
Using the stromal cells from one donor while 
keeping the media formulation constant and 
changing only the HSC donor would allow for the 
true effect of HSC donor variability to be assessed. 
This would also allow for the consistency of the 
effect of the substrates to be assessed. 
 

 
Testing additional media 
types 

 
While this chapter aimed to determine the best 
media type for HSC culture, a clear conclusion could 
not be made. Increasing n numbers may help to 
produce conclusions. However, testing other media 
types may be of value. This may be carried out by 
increasing or decreasing the concentration of GFs 
included in the 3GF media. Additional GFs may also 
be tested (such as IL-3 an IL-6). 
 

 
Testing different HSC 
culture time points 

 
The results presented within this chapter relate only 
to HSC culture for 5 days. It is possible that the 
models may elicit their effects before or after this 
culture period, and thus lesser and longer periods of 
culture should be assessed.  
 

 
Testing additional 
differentiation markers 

 
While, CD7, CD36 and CD41a were interesting to 
study. Analysis of additional markers such as CD3 
representing T cells may be of interest (Smith et al., 
1989). 
 

 



182 
 
It is important to note that HSCs were difficult to revive, or to obtain from 

donors at the precise 15-day time point involved with this model.  In addition, 

the cost of commercial HSCs was very high. This resulted in only experiments 

using low n numbers being feasible, which directly impacted on the statistics. In 

order to make this work more economically viable and statistically reliable, 

further work should seek to investigate the effect of using MSCs seeded onto 

candidate substrates more closely to the time of HSC addition. Having a less 

precise or closer time point for the addition of the HSCs would make retrieving 

cells from bone marrow donors more achievable, eliminating the need for 

expensive commercial HSCs, in turn making models more economically viable.  
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CHAPTER 7
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Chapter 7 Discussion 

7.1 General Discussion 

HSCs are highly valued stem cells, in terms of their rarity and ability to be used 

for a diverse range of clinical applications (Bensinger et al., 2001). However, 

their fast rate of differentiation means that maintaining and expanding 

populations of HSCs in the lab is challenging (Dexter, 1982). To overcome this, a 

considerable portion of the scientific community is committed to designing 

biomimetic HSC niche models that will allow for the in vitro culture and 

expansion of HSCs in the lab (Huang et al., 2016, Wuchter et al., 2016). It is 

recognised that HSCs are maintained as stem cells as a result of regulatory 

signals sent from various other cell types in the in vivo bone marrow niche (Ding 

et al., 2012, Calvi et al., 2003). To this end, a reasonable approach to designing 

effective, novel HSC niche models is one where the presence and function of 

more than one support cell type Is present. 

Taking into account the already well-documented role of MSCs in HSC niche 

models, this thesis aimed to design and develop an in vitro HSC niche model 

comprising MSCs and also OBs, with an appropriate media formulation that could 

support the maintenance of HSCs. With this aim, PEA + FN substrates were used 

as a foundation for the model, as it has been shown that these substrates can 

induce a degree of osteogenesis when BMP-2 is tethered to the FN, while also 

supporting maintenance of an MSC population (Llopis-Hernández et al., 2016, 

Rico et al., 2016a).  

ELISA results showed that it is possible to bind BMP-2 and NGF to PEA + FN 

substrates at the same time. This co-adsorption of GFs produced a novel 

biomaterial, which comprised the foundation of the HSC niche model developed 

in this work. To make the physical properties of this in vivo model more 

biomimetic of the human BM niche, a collagen type I gel was used, and was 

shown to have a Young’s modulus comparable to that existing in nature 

(Sobotková et al., 1988, Metzger et al., 2014). Finally various media 

compositions were tested to suit the specific needs of the MSC/stromal layer of 

cells that were cultured on the PEA + FN  + GF substrates, as well as the HSCs.   
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7.1.1 Utilising PEA substrates and collagen gels in HSC niche 

models 

The ability of FN to undergo a phenomenon known as fibrillogenesis in response 

to PEA surfaces, forming a network of FN fibrils, has been well studied (Rico et 

al., 2009, Rico et al., 2016b). However, to verify this, AFM was carried out to 

allow for the visualisation of FN networks on PEA surfaces. The result obtained 

showed that FN fibrils appear on PEA surfaces, but not on control surfaces. 

Additional work had shown that BMP-2 can be bound to PEA + FN (Llopis-

Hernández et al., 2016). However, there was a lack of studies relating to the 

binding of other GFs. In order to determine if more than one GF could be 

tethered to PEA + FN substrates, ELISAs were carried out, and showed that both 

BMP-2 and NGF could be bound to PEA + FN substrates, when adsorbed together 

or independently. Rheology experiments provided evidence to suggest that 

collagen type I gels produced in house had a similar Young’s modulus to the 

liquid phase of the bone marrow. Taken together, these results indicated that 

PEA + FN + GF substrates and collagen gels were promising foundations for the 

development of a controlled, in vitro HSC niche model, wherein GFs may 

regulate and control the phenotype of cells while the collagen gel could act to 

mimic the physical properties of the natural niche.   

7.1.2 Characterising MSC phenotype in models comprising PEA 
substrates and growth factors 

In order to characterise the effect of culturing STRO-1+ MSCs on PEA + FN + GF 

substrates for 21 days, ICW was carried out to determine the effect of the 

substrates on the phenotype of MSCs. ICW assessed the effect of the substrates 

on expression of: MSC markers (ALCAM, nestin and STRO-1); osteogenesis 

markers (OCN and OPN); HSC maintenance factors (SCF and VCAM-1). However, 

the composition of the cell culture media was changed in addition to the 

substrates the cells were cultured on. Initial tests used standard lab DMEM 

supplemented with 10% FBS to determine if the substrates induced any 

phenotypic effects. While no statistically significant differences in the 

expression of MSC or osteogenesis markers between cells cultured on PEA + FN + 

GF substrates compared to controls were observed, it was observed that SCF 

expression was significantly higher in cells cultured on PEA + FN + NGF and PEA + 
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FN + BMP-2 substrates, relative to controls. In particular, it was intriguing to 

note that SCF expression was significantly higher on PEA + FN + BMP-2&NGF 

substrates, compared to substrates where BMP-2 was adsorbed alone. This 

promising result suggested that PEA + FN + GF substrates had the capacity to 

enhance expression of HSC maintenance factors in MSCs. However, the results 

did not correlate well with results published that suggested that PEA + FN + BMP-

2 substrates enhance osteogenesis marker expression in MSCs. Thus, further 

experiments were carried out with a reduced concentration of serum in the 

media, to determine if the effects of the substrates may be potentiated. After 

testing the effects of media supplemented with 2% FBS, advice from 

collaborators suggested that supplementing with 2% HS would be more effective 

and reliable, and also suggested that switching to a serum-free media for the 

duration of the prospective HSC culture period would be appropriate. Thus, 

additional media formulations were tested, and results suggested that PEA + FN 

+ NGF and PEA + FN + BMP-2&NGF substrates and the use of DMEM supplemented 

with 2% HS for days 1-14 of the cell culture, and then serum-free media 

supplemented with 3GFs (3GF media) for days 15-21, resulted in statistically 

significant increases in OPN and SCF expression in MSCs, relative to controls. In 

addition, use of these substrates maintained expression of MSC markers, relative 

to controls, which suggested that use of these substrates in models featuring the 

aforementioned media formulation, actively supports an HSC niche phenotype in 

MSCs.  

The ability of the PEA + FN + BMP-2&NGF substrates to enhance osteogenesis but 

not alter the expression of MSC markers in STRO-1+ cells was intriguing, as it 

would be expected that the enhanced osteogenesis would reduce the proportion 

of MSCs present in models featuring this substrate type. In order to validate ICW 

results, a T cell suppression assay was carried out. It was observed that MSCs 

cultured in models with PEA + FN + BMP-2&NGF substrates were the most 

effective at suppressing T cell proliferation, and thus these cells appeared to 

have the strongest evidence of classically-acting MSCs on them; the PEA + FN + 

BMP-2&NGF substrate did not affect the maintenance of MSC populations within 

HSC niche models.  
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Although ICW results indicated that SCF expression could be maximised in cells 

cultured on PEA + FN + GF substrates, these results only reflected upon cell 

surface proteins. In order to test the effect of MSC culture on these substrates 

on the expression of soluble HSC maintenance factors, ELISAs were carried out 

to test the concentration of CXCL-12 and THPO found in the media supernatant 

at three time points throughout the 21-day cell culture. In the 2% HS media 

followed by 3GF media, mean CXCL-12 secretion was highest in cells cultured on 

PEA + FN + BMP-2 substrates at the start and middle of the culture. Yet, PEA + 

FN + NGF and PEA + FN + BMP-2&NGF substrates induced highest CXCL-12 

secretion at day 21. THPO ELISA results suggested that PEA + FN + GF substrates 

also induced optimal secretion of THPO. Collectively, the ELISA results also 

showed evidence to support the use of PEA + FN + GF substrates in HSC niche 

models. 

The results presented in this thesis indicated that the PEA + FN + BMP-2&NGF 

substrate optimally induced expression of proteins associated with the HSC niche 

phenotype in MSCs. This result can be thus generalised as: 

• Expression of MSC markers ALCAM, nestin and STRO-1 were maintained at 

similar levels on PEA + FN + BMP-2&NGF substrates and on controls. 

• Expression of early osteogenesis marker, OPN, was highest on PEA + FN + 

BMP-2 and PEA + FN + BMP-2&NGF substrates. 

• Expression of HSC maintenance factors were higher on PEA + FN + BMP-

2&NGF substrates. 

7.1.3 Metabolomic changes in MSCs cultured in HSC niche 
models 

Collectively, the results presented in Chapter 4 support findings presented by 

Llopis-Hernandez et al., whereby the BMP-2 bound to PEA + FN substrates was 

capable of inducing a degree of osteogenic differentiation in MSCs (Llopis-

Hernández et al., 2016). However, the differences observed using ICW did not 

always show reproducible statistically significant differences in the expression of 

osteogenesis markers, OCN and OPN, between cells cultured in models featuring 
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the PEA + FN + BMP-2&NGF substrate, and those in models with just PEA + FN 

substrates. To further investigate the effect of culturing MSCs within models 

comprising these substrates, metabolomics was carried out. It was hypothesised 

that the metabolomic profiles of MSCs cultured on PEA + FN + BMP-2&NGF 

substrates may be distinct to those of MSCs cultured on PEA + FN substrates, as 

the osteogenesis occurring would be likely to affect key metabolites associated 

with amino acid, carbohydrate and lipid metabolism (Tjabringa et al., 2008, 

Chung et al., 2007, Alakpa et al., 2016). Analysis of the aforementioned 

metabolomic profiles suggested that the hypothesis was true, and heatmap 

analyses illustrated that cells cultured in models featuring the PEA + FN + BMP-

2&NGF substrate type generally had fewer metabolites than controls. The results 

of these metabolomic analyses indicated that: 

• Amino acid metabolism was heightened in MSCs cultured on PEA + FN + 

BMP-2&NGF substrates, and this is likely to have arisen due to the 

enhanced levels of protein synthesis that accompany differentiation 

(Tjabringa et al., 2008). 

• Carbohydrate metabolism was heightened in MSCs cultured on PEA + FN + 

BMP-2&NGF substrates, and is likely to be indicative of heightened 

respiration, associated with enhanced metabolic activity and 

differentiation (Chung et al., 2007). 

• Lipid metabolism was also enhanced when MSCs are cultured on PEA + FN 

+ BMP-2&NGF substrates, which may also be indicative of osteogenesis 

(Alakpa et al., 2016). 

In addition to the heat map analyses, PCA plots were used to show metabolite 

variation within cells cultured on each substrate type, and it was apparent that 

the ellipses representing metabolite variation in cells cultured on PEA + FN 

substrates had minimal regions of overlap with cells cultured on PEA + FN + BMP-

2&NGF substrates, suggesting that the metabolomic profiles of cells cultured on 

these substrates were distinct.  
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7.1.4 Responses of HSCs to HSC niche models 

Although the true phenotype of HSCs is disputed in the literature, the general 

opinion in the field is that cells with the CD34+CD38- phenotype are regarded as 

HSCs (Hao et al., 1995, da Silva et al., 2010). However, it is acknowledged that 

other haematopoietic progenitors exist, such as those expressing CD34+CD38+
 and 

the CD34-CD38+ phenotypes. CD34+CD38+ cells may represent multipotent or 

oligopotent progenitors, such as common myeloid progenitors or common 

lymphoid progenitors, still capable of forming all cells of the haematopoietic 

system (Chao et al., 2008). However, evidence does exist showing that potential 

oligopotent progenitors can be distinguished from their multipotent parental 

cells; oligopotent progenitors do not generate colony-forming unit-cells (CFU-C) 

for as long as CD34+CD38- cells in vitro (Hao et al., 1995). In addition, 

CD34+CD38+ cells have been reported to be capable of in vivo repopulation of 

murine haematopoietic cells for 12 weeks, while multipotent CD34+CD38- 

populations can repopulate for at least 20 weeks (Hogan et al., 2002). While 

CD34-CD38+ cells are the most differentiated of the three aforementioned 

progenitor types, evidence also exists in the literature, which shows that these 

cells have extensive lymphoid and myeloid repopulating abilities (Wang et al., 

2003). Taking the aforementioned points into consideration, it is evident that 

there is not yet a clear-cut phenotypic definition of an HSC, and so it may be of 

value to consider each of these putative progenitor phenotypes when developing 

an HSC niche model.  

To this end, the principal aim of Chapter 6 of this thesis was to test the models 

designed earlier in the thesis, in a bid to determine if models comprising the PEA 

+ FN + BMP-2&NGF substrates could maintain/expand each of the progenitor 

types more effectively than models containing control substrates. Further, an 

additional aim of this work was to determine if models featuring PEA + FN + 

BMP-2&NGF substrate encouraged or restricted expression of markers associated 

with differentiation down the lymphoid, erythroid and myeloid lineages, within 

each progenitor population. These experiments were carried out on five 

separate occasions, using HSCs and MSCs from different donors each time. In 

three of these cases, the same media type was used (50% GF media), on one 

occasion 3GF media was used, and on one occasion, preconditioned media was 

used. The reasoning for this was that the 50% GF media gave far better retention 
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of the CD34+CD38- phenotype in PEA + FN + BMP-2&NGF models relative to 

controls in the first trial, and so the work was repeated twice more to test the 

reproducibility of the results associated with using 50% GF media in the model.  

The results showed that no reproducible, statistically significant differences in 

the expression of CD34+CD38-, CD34+CD38+ or CD34-CD38+ phenotypes were 

observed between cells cultured in models containing the PEA + FN + BMP-

2&NGF substrates compared to controls. However, it was interesting to observe 

that on two of the three occasions where the 50% GF media was used, models 

featuring PEA + FN substrates contained the highest expression of CD34+CD38- 

cells. Although the results presented in Chapter 4 suggested that the PEA + FN + 

BMP-2&NGF substrate may be most effective in supporting the CD34+CD38- 

phenotype, it was encouraging to note this subtle difference whereby PEA + FN 

substrates were most effective. Although time restrictions limited further 

investigation into why this may be the case, it is known that adherent cells, such 

as those of the stromal layer, secrete FN during their culture (Den Braber et al., 

1998, Midwood et al., 2004). It is therefore possible that the stromal layer of 

cells on the PEA + FN substrates secreted FN, which responded to the PEA and 

FN fibrils already present on the substrates, producing new fibrils. It is likely 

that the new FN also adopted a network conformation, allowing room for binding 

of additional GFs in the media or secreted by the cells (Llopis-Hernández et al., 

2016). In order to test the likelihood of this, it would be interesting quantify the 

amount of FN present on the surfaces before and after the 19-day cell culture 

using ELISAs (Ohh et al., 1998). Assuming more FN was present, it would then 

also be beneficial to attempt test the conformation of the new FN. This could be 

attempted using AFM or FRET (Baneyx et al., 2001). Although the results lack 

reproducibility, the ability of the PEA + FN surface to generate an increase in 

the number of cells with the CD34+CD38- phenotype is interesting and does 

suggest that there may be potential for the use of this substrate in an HSC niche 

model geared towards expanding populations of HSCs. 

Considering the results associated with the expression of lineage commitment 

markers within each of the three progenitor populations, it was apparent that 

expression of: CD7 (associated with lymphoid commitment), CD36 (associated 

with erythroid commitment) and CD41a (associated with myeloid commitment) 
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were not statistically higher or lower in models containing PEA + FN and/or GFs, 

relative to controls.  However, it should be acknowledged that some subtle 

differences existed, and that these provided some insight into how the model 

currently works, and how it may be improved. For example, key points to 

consider include: 

• Within the CD34+CD38- population, PEA + FN/PEA + FN + BMP-2&NGF 

substrate models did not contain a greater or lesser proportion of cells 

expressing CD7, CD36 or CD41a compared to controls where MSCs and 

HSCs are co-cultured. This suggested the MSCs were eliciting a controlling 

response and that the PEA substrates are not influencing HSC 

differentiation. This stressed the benefits of including a stromal layer of 

MSCs in models and the lack of effect on differentiation is encouraging in 

terms of developing a primitive HSC model. 

• In all 3 progenitor types, expression of CD41a in haematopoietic cells 

cultured in PEA + FN + BMP-2&NGF models was often lower than it is in 

controls, irrespective of media type, even when MSCs also featured in the 

models. This implied that the PEA + FN + BMP-2&NGF substrate induced 

the stromal layer to respond in a way that limited HSC commitment to the 

myeloid lineage, without enhancing/driving commitment down the 

erythroid or lymphoid lineages.  

• The use of MSCs and HSCs from different donors in different experiments 

affected results, and in order to obtain a more reliable set of results, 

future work should envisage to use cells from the same donors when 

testing additional variables such as the effect or substrates or media 

compositions. 

7.2 Thesis Conclusion 

The research presented in this thesis described the stages taken in the design, 

characterisation and testing of an in vitro HSC niche model using PEA surfaces. It 

has been shown that PEA surfaces can have a layer of FN adsorbed on them, 

which induced the formation of FN networks on PEA + FN substrates. It has also 



192 
 
been shown that these substrates can have GFs such as BMP-2 and NGF bound to 

them, following adsorption of the GFs either independently or together.  

The development of this in vitro HSC niche model also considered the 

importance of a 3D system, and so the use of a collagen type I gel was tested. 

Results identified the collagen type I gels as having a similar Young’s modulus as 

the HSC-occupied region of the human bone marrow. Consequently, this gel was 

also used within the model, albeit only for the time before the HSCs were 

added, in a bid to minimise complexity of this preliminary work.  

Following the design and development of the models material components, this 

thesis then sought to characterise the response of a stromal layer of cells, 

comprising STRO-1+ cells seeded at day 1, to the different PEA + FN based 

substrates after 21 days. The results of this characterisation work led to the PEA 

+ FN + BMP-2&NGF substrate being deemed the most likely to induce an HSC 

niche phenotype in MSCs; results showed it was able to maintain expression of 

MSC markers, enhance expression of early osteogenesis markers and also 

enhance expression of HSC maintenance factors. Work carried out in the later 

parts of this thesis assessed the effects of only these GFs bound to PEA, and not 

the other GFs such as VEGF and PDGF, which were also tested in the stromal 

layer characterisation work. 

The apparent advantages of using PEA + FN + BMP-2&NGF substrates in HSC niche 

model development led to the use of metabolomics, in a bid to understand what 

was occurring metabolically in STRO-1+ cells as they responded to this substrate 

type. The results of the metabolomics analyses correlated well with the results 

from the ICW work, and also suggested that the MSCs cultured in models 

featuring PEA + FN + BMP-2&NGF substrates are most metabolically active 

(indicative of differentiation), in terms of amino acid, carbohydrate and lipid 

metabolism.  

The final section of this thesis focused on testing the ability of models featuring 

the PEA + FN + BMP-2&NGF substrate to maintain phenotypes associated with 

HSCs and haematopoietic progenitors. Although the results did not show any 

reproducible, statistically significant differences in the maintenance of such 

phenotypes, slight differences were evident that stressed the benefit of using 
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the stromal layer within the model, and also that suggested PEA surfaces may be 

useful for enhancing HSC expansion, depending on the donor cells used. Finally, 

the results also showed differences, which indicated that PEA + FN + BMP-2&NGF 

substrates reduced expression of CD41a, indicative of commitment to the 

myeloid lineage.  

In summary, this thesis demonstrated that it is possible to use PEA + FN 

substrates as a platform for constructing HSC niche models featuring substrate-

bound GFs. In addition, it showed that the resulting PEA + FN + GF substrates 

can be used to maximise the expression of an HSC niche-supportive phenotype in 

MSCs. However, it also showed that donor cell variability is an issue of 

paramount importance, and that while the models induce an HSC-supportive MSC 

phenotype, the expression of the proteins associated with that phenotype is not 

always sufficient to overcome donor cell variability issues; in certain cases the 

models were able to expand HSC populations, but not always.  

7.3 Overview relating this thesis to related studies 

The results presented in this thesis correlated, to an extent, with other findings 

and results published in the field. For example, various models have been 

created wherein a combination of topographical features, ECM proteins and GFs 

exist with the capability of modulating MSC phenotype (Dalby et al., 2007, 

Salmeron-Sanchez et al., 2011, Fourel et al., 2016, Llopis-Hernández et al., 

2016). Concurrent with these publications, the PEA + FN + BMP-2 +/- NGF also 

acted to stimulate a degree of osteogenic differentiation in STRO-1+ MSCs 

(Chapters 3 & 4). The same PEA + FN + BMP-2&NGF substrates were also able to 

induce cells to express a distinct metabolomic profile, relative to PEA + FN 

controls, providing further evidence to suggest the induction of an osteogenic 

phenotype as a result of the substrate (Chapter 5) (Alakpa et al., 2016). Finally, 

a wealth of data also exists to show that the presence of a stromal layer of MSCs 

and/or OBs acts to maximise HSC maintenance and minimise HSC differentiation 

(chapter 6) (Dexter, 1982, Moore et al., 1997, Weisel et al., 2006). 

However, it should be noted that the results presented in chapter 6 indicate that 

the substrates are not able to promote the same degree of HSC phenotype 



194 
 
maintenance as similar models (Leisten et al., 2012, Wuchter et al., 2016). 

Thus, considering means of improving the model is important. 

7.4 Recommendations for Future Model Development 

The research carried out during the development of this novel in vitro HSC niche 

model has identified the potential of PEA + FN substrates in a new area of 

bioengineering. However, further development of this model, or use of these 

substrates in a similar way, will require further study.  Suggestions of what this 

further study may involve are outlined below: 

• Investigation into the possibility of adsorbing more GFs to PEA + FN 

substrates at one time. Time limitations only allowed for the testing of a 

limited number of combinations, and it should be stressed that the results 

relating to the phenotypic effect of culturing MSCs on PEA + FN substrates 

with 4 growth factors adsorbed were different to those obtained when 2 

growth factors were used at once. Further research into the different 

combinations of GFs would be of value to making the models more 

biomimetic. 

• Investigation of the possibility of adsorbing the GFs that are currently 

supplied to HSCs in the 3GF media formulation on to PEA + FN substrates. 

This may elicit sustained signalling and reduce the costs of model testing 

(Fan et al., 2007). 

• Use of MSCs from the same donor and at the same passage, to test the 

effect of different substrates and media types. Donor cell variability will 

have inevitably skewed some of the data presented in this thesis, and the 

only way of truly determining the optimal media for maximising a niche-

like phenotype in MSCs would be to use cells from the same donor, at the 

same passage. 

• Full characterisation of the response of MSCs cultured in DMEM 

supplemented with 2% HS for 14 days and then 50% GF for 5 days. (ICW, 

ELISA, MTT). 



195 
 

• Use of HSCs from the same donor in multiple experiments carried out at 

the same time, testing the effects of different media compositions. The 

work presented in this thesis allowed for only a few different media 

formulations to be used, but titrating the growth factors featured in the 

3GF media to determine an optimal concentration for HSC culture would 

be highly advantageous to the progression of this work. 

• Testing of the ability to add, and effectively retrieve, HSCs from the 

models when the collagen gel remained for the duration of the cell 

culture. The effect of the collagen gel should also be compared to 

controls where the collagen gel is absent. 

• Testing different lengths of HSC culture period 

• Testing the HSCs retrieved from culture within the models in colony-

forming cell assays (Sarma et al., 2010). 

• The addition of different cell types to the model. A wealth of evidence 

exists to support a role of CAR cells and sympathetic nerve cells in the 

HSC niche (Kunisaki et al., 2013a, Katayama et al., 2006). Thus, assessing 

the potential of PEA + FN substrates to enhance the HSC supportive 

phenotype of these cells would be of great interest. It should be noted 

that these cells may be integrated into the model independently or more 

than one could be cultured in a stromal layer on the PEA + FN substrates.  

• Greater investigation into the differentiation potential of HSC cultures 

developed in the improved models; it could be the case that models 

developed in the aforementioned ways may alter the differentiation 

capacities of the haematopoietic cells included in them. While the main 

aim of this thesis was to expand HSCs in culture, it could be advantageous 

to develop models in which differentiation of HSCs to form particular 

specialised haematopoietic cells is maximised.  
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7.5 Future Potential of HSC Niche Models & Clinical 

Relevance 

While it is apparent that there are limitations to the model described in this 

thesis, evidence is presented that highlights the potential of the use of PEA + FN 

+ GF substrates for stimulating the expression of an HSC niche like phenotype in 

MSCs. Thus, it is plausible that the work of this thesis may facilitate future HSC 

niche model development that can be used to benefit the scientific and medical 

communities in the ways outlined below. 

Using HSC niche models to expand populations of HSCs would be of tremendous 

clinical value; HSCs are required in vast quantities for HSC transplants, and 

allogeneic transplants are often depended upon for the treatment of diseases 

including leukaemia and thalassaemia. However, less than 30% of patients are 

able to find a suitable donor (Copelan, 2006). Developing means of isolating and 

harvesting healthy HSCs from patients and then expanding their HSCs in the lab 

would overcome this problem, and would allow a greater percentage of patients 

to receive treatment. In addition, this would reduce the time spent finding an 

appropriate donor and the financial strain on the healthcare services, as only 

one patient would require medical attention and there would be fewer 

associated travel costs. In addition to the aforementioned diseases, HSC 

expansion using an in vitro HSC niche model and autologous transplantation 

could also be used to improve chemotherapy treatments by replenishing the 

healthy immune cells in an effective way, following the immune system damage 

that is a side-effect of most chemotherapy programmes (Schmitz et al., 2002, 

Slavin et al., 1998). 

Aside from using in vitro HSC niche model expansion of HSCs to facilitate 

medical treatments, the use of models in this way could also be used to model 

disease in vitro, allowing for a greater understanding of how diseased cells 

function, and also how effective a range of drugs are. Such drugs may be tested 

for how damaging they are to healthy HSCs, or equally models could be used to 

expand populations of leukaemic HSCs, meaning leukaemia drugs could be tested 

effectively. This would be a particularly useful as many current drug testing 

platforms associated with HSCs run using murine HSCs. While this has been a 
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useful means of drug testing to date, interspecies variation is undeniable, and 

results from human HSC studies would be more reliable (Goyama et al., 2015).  

Another critical way in which an in vitro HSC niche model could be of value, 

would be in elucidating the mechanisms of haematopoiesis. Although knowledge 

of haematopoiesis is increasing, there are many unanswered questions relating 

to what signals cause key aspects of HSC function, such as self-renewal, 

proliferation and apoptosis. Unfortunately the current limitation to 

understanding these mechanisms is harvesting sufficient numbers of HSCs and 

also retaining them in their stem cell state as research proceeds (Rodriguez-

Fraticelli et al., 2018). Developing an in vitro HSC niche model could overcome 

these problems, and could help in the understanding of HSC biology. 
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