
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Sims, Oliver (2007) Efficient implementation of video processing
algorithms on FPGA.

EngD thesis

http://theses.gla.ac.uk/4119/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4119/

Efficient Implementation of Video
Processing Algorithms on FPGA

Volume 1 (of 2)

Oliver Sims

A themed portfolio submitted to
The Universities of

Edinburgh,

Glasgow,

Heriot-Watt,

and Strathclyde

for the degree of
Doctor of Engineering in System Level Integration

© Oliver Sims, 2007

Abstract

The work contained in this portfolio thesis was carried out as part of an Engineer-

ing Doctorate (EngD) programme from the Institute for System Level Integration.

The work was sponsored by Thales Optronics, and focuses on issues surrounding the

implementation of video processing algorithms on field programmable gate arrays

(FPGA).

A description is given of FPGA technology and the currently dominant methods

of designing and verifying firmware. The problems of translating a description of

behaviour into one of structure are discussed, and some of the latest methodologies

for tackling this problem are introduced.

A number of algorithms are then looked at, including methods of contrast en-

hancement, deconvolution, and image fusion. Algorithms are characterised accord-

ing to the nature of their execution flow, and this is used as justification for some

of the design choices that are made. An efficient method of performing large two-

dimensional convolutions is also described.

The portfolio also contains a discussion of an FPGA implementation of a PID con-

trol algorithm, an overview of FPGA dynamic reconfigurability, and the development

of a demonstration platform for rapid deployment of video processing algorithms in

FPGA hardware.

Declaration

I confirm that this is my own work and the use of all material from other sources has

been properly and fully acknowledged, and that neither the thesis nor the original

work contained therein has been submitted to this or any other institution for a

higher degree.

Signature: lams
Date: 15706 /2007

iii

Acknowledgements

I would like to acknowledge my academic supervisor Dr James Irvine, always sup-

portive and enthusiastic, who never failed to make the EngD sound a lot easier.

I'm also very grateful to my sponsoring company Thales Optronics and everyone

who made my time there so enjoyable. In particular I thank my supervisor Andrew

Parmley, and also Stephen McGeoch and Douglas Gibson - both instrumental in

establishing the EngD programme within the company. Special mention should also

go to the ECAD group, who put up with my questions and were generous with cakes

and sweets.

Finally, thanks to family and friends who offered encouragement and patience at

all the right moments.

iv

Contents

Abstract

Declaration

Acknowledgements

List of Figures

List of Tables

List of Abbreviations

Executive Summary

1 Introduction

11

111

iv

viii

ix

X

X111

1

1.1 Problem statement 2

1.2 Research goals 3

1.3 Contributions
....................4

1.4 Portfolio organisation 5

2 Taught Modules 7

2.1 Technical credits 7

2.2 Business credits 10

3 External Events and 'raining 12

3.1 Training
..................................

12

3.2 Conference publications
13

V

Contents vi

3.3 Industrial events
14

4 Commercial Relevance 16

4.1 Author's contribution
19

5 Technical Background 21

5.1 Field-programmable gate arrays
21

5.1.1 Floating-point performance 25

5.1.2 Dynamic reconfigurability
25

5.2 Video processing systems
26

5.2.1 Nature of video data
26

5.2.2 Nature of image processing algorithms
27

5.3 Algorithm implementation process
33

5.3.1 Manual tasks for high-level synthesis
34

5.3.2 Design methodologies
39

5.4 Related work
43

5.5 Summary
.................................

47

6 Results & Discussion 49

6.1 Implementation of LRM contrast enhance 49

6.1.1 Background 50

6.1.2 Hardware constraints 52

6.1.3 Transforming behaviour to structure in C............ 53

6.1.4 The control/datapath model 55

6.1.5 Translation to VHDL and synthesis 57

6.1.6 System Generator implementation of LRM algorithm 58

6.2 Implementation of RL deconvolution
.................. 59

6.2.1 Background
............................ 59

6.2.2 Efficient implementation of large convolutions
61

6.2.3 Hardware implementation 66

6.3 Implementation of pyramidal image fission
...............

68

6.3.1 Background
69

Contents vii

6.3.2 Pyramid generation 69

6.3.3 Gradient pyramid fusion
..................... 73

6.3.4 Hardware implementation
.................... 74

6.4 Other algorithms 76

6.4.1 PID servo control algorithm 77

6.4.2 Image registration by polynomial warping 78

7 Design Guidelines 81

7.1 Convolution
................................ 81

7.2 Control- versus datapath-dominant code 82

7.3 Optimisations
............................... 83

7.4 General computation 84

8 Conclusion 85

8.1 Future direction
.............................. 89

References 91

Appendices 98

List of Figures

1 Basic FPGA structure 22

2 Sliding window method of convolution 29

3 Example image filters
...........................

29

4 Multiscale decomposition of well-known image "Lena"
......... 31

5 Two-dimensional interpolation
32

6 Transformation from specification to hardware 35

7 System Generator design flow
41

8 Demonstration of contrast enhancement through a linear stretch ... 51

9 Partitioning of input image into blocks and nodes for LRM contrast

enhancement 52

10 Block diagram of a system with separate control and datapath..
... 55

11 Surface diagram of an 11 x 11 point spread function.
......... 60

12 Summation of k separable filters to produce a non-separable response. 63

13 Increase in accuracy with successive stages of a multistage filter
... 65

14 Example image before and after RL deconvolution
........... 67

15 Difference image between Matlab and hardware implementations of

Richardson-Lucy deconvolution 68

16 Pipelined image pyramid generation 72

17 Fusion of gradient pyramids 73

viii

List of Tables

1 Breakdown of technical credits 8

2 Breakdown of business credits 10

3 Training courses attended during the EngD programme 13

4 Conferences attended during the EngD programme 14

5 Industrial events attended during the EngD programme 15

6 Resource usage of LRM algorithm 58

7 Resource usage of RL deconvolution algorithm 66

8 Resource usage of pyramidal image fusion
................ 75

ix

List of Abbreviations

ANSI - American National Standards Institute

API - Application Programming Interface

ASIC - Application Specific Integrated Circuit

CAD - Computer Aided Design

CLB - Configurable Logic Block

CORDIC - COordinate Rotation Digital Computer

COTS - Commercial Off-The-Shelf
CPLD - Complex Programmable Logic Devices

DCM - Digital Clock Manager

DCT - Direct Cosine Transform

DFT - Discrete Fourier Transform

DSP - Digital Signal Processing

EDA - Electronic Design Automation

EDIF - Electronic Design Interchange Format

EEPROM - Electronically Erasable Programmable Read-Only Memory

EngD - Engineering Doctorate

ESL - Electronic System Level

FFT - Fast Fourier Transform

FIFO - First-in, First-out

FIR - Finite Impulse Response

FPGA - Field Programmable Gate Array

fps - frames per second

FSM - Finite State Machine

FSMD - Finite State Machine with Datapath

X

List of Abbreviations

GCD - Greatest Common Divisor

HDL - Hardware Design Language

HLSM - High-Level State Machine

ICAP - Internal Configuration Access Port

IOB - Input/Output Block

IP - Intellectual Property

JPEG - Joint Photographic Expert Group

JTAG - Joint Test Action Group

LRM - Local Range Modification

LSB - Least Significant Bit

LUT - Look-Up Table

MAC - Multiply ACcumulate

MBA - Master of Business Administration

MOSFET - Metal Oxide Silicon Field Effect Transistor

MPEG - Moving Pictures Expert Group

MSB - Most Significant Bit

MSE - Mean Squared Error

NRE - Non-Recurring Engineering

PAL - Phase Alternating Line (TV standard) or

Programmable Array Logic (electronic device)

PAR - Place And Route

PCI - Peripheral Component Interconnect

PID - Proportional, Integral, Derivative

PROM - Programmable Read-Only Memory

PSF - Point Spread Function

RAM - Random Access Memory

RE - Research Engineer

ROM - Read-Only Memory

RTL - Register Transfer Level

RTOS - Real-Time Operating System

SAD - Sum of Absolute Difference

X1

List of Abbreviations

SCOTCAT - SCOTtish Credit Accumulation and Transfer

SDRAM - Synchronous Dynamic Random Access Memory

SIMD - Single Instruction Multiple Data

SoC - System-on-Chip

SVD - Singular Value Decomposition

SXGA - Super eXtended Graphics Array

VGA - Video Graphics Array

VHDL - VHSIC Hardware Design Language

VHSIC - Very High Speed Integrated Circuit

VLSI - Very Large Scale Integration

X11

Executive Summary

The objective of this engineering doctorate (EngD) research project was to investi-

gate some of the issues surrounding implementation of algorithms for real-time pro-

cessing of video data on field programmable gate arrays (FPGA). This was initially

quite a broad assignment covering similar related topics such as dynamic reconfig-

urability, but after an initial phase of exploratory research the brief was narrowed

to look solely at the problems faced in translating a description of an algorithm

written in a high-level language into an efficient hardware design. The adopted re-

search methodology looks at the implementations of several algorithms of varying

types, and attempts to draw conclusions that could be applied to the class of video

processing algorithms in general.

The practical element of the project started with an investigation into the local

range modification (LRM) method of contrast enhancement, an algorithm that had

recently been implemented in hardware within Thales Optronics but had involved a

lengthy and difficult design process. One of the immediate tasks facing the RE was

to attempt to explain why this was the case. The same algorithm was implemented

by the research engineer (RE) as part of the research effort, but rather than following

a traditional design flow the C language was used as an intermediate step between

algorithm and hardware; the C was written in a specific style that incorporated

structural information and allowed the notion of concurrent processing to be demon-

strated. This provided a means of implementing algorithms that contain complex

execution flows, of which the LRM algorithm was an example, in reasonable time-

frames, and an implementation was produced that was of comparable peformance

with hand-coded methods but completed in a fraction of the development time.

The same algorithm was also implemented using the Xilinx System Generator

X111

Executive Summary xiv

tool, a methodology that at the time was gaining in popularity within the industry

and appealed to Thales Optronics as a means of not only smoothing the design flow,

but also allowing the algorithm engineers to experiment with hardware implementa-

tions. The aim of the work was to assess System Generator's suitability to the type

of algorithms Thales Optronics are likely to implement in hardware. The results

indicated that System Generator could potentially be a useful tool in this area, but

is not universally applicable to image processing algorithms due to its somewhat lim-

ited library of in-built functions and propensity for algorithms that readily conform

to a datapath style.

The next algorithm looked at was the Richardson-Lucy method of deconvolution,

a method used to remove certain types of blur from an image. This algorithm could,

with some minor manipulation, be classified as datapath dominant, and so was more

susceptible to standard implementation methods. However, in order to reduce the

high hardware resource requirements it was necessary to find an efficient means of

implementing the several large two-dimensional convolutions that are required. The

method that was employed, known as multistage separable filters, is shown to be

extremely efficient when implementing a large range of image processing filters due

to the common characteristic of a linear phase response.
The third major algorithm that was looked at is a method of performing image

fusion using a multiscale decomposition known as Gaussian pyramids. Previously

reported methods of producing image pyramids had been based on sequential pro-

cesses, but using the insight gained from the need to remove the complex control
flow from the design an alternative structure was developed. The design was based

on the use of multiple clock rates to enable the various levels of the image pyramid to
be generated and processed concurrently, and exhibited over a hundredfold speedup

when compared to a PC-based implementation.

Other algorithms that were investigated include a PID servo control algorithm

and a method of performing image warping that requires system-level functional-

ity (a memory controller) to operate. Additional work was carried out to design a
demonstration platform for video processing algorithms with an automated imple-

mentation flow, which provides a fast means of demonstrating System Generator

Executive Summary xv

implementations of video processing algorithms in hardware.

Chapter 1

Introduction

Field programmable gate arrays (FPGA) have developed from niche electronic de-

vices into a ubiquitous component of a wide variety of systems. As device geome-

tries have shrunk the capabilities of programmable logic have increased, to the point

where FPGAs have flexibility approaching that of general-purpose processors and

performance nearly comparable to application specific integrated circuits (ASIC).

Now FPGAs are not only filling the gap between these device categories, but are

encroaching on the markets where they have traditionally been dominant.

The sponsor of this engineering doctorate (EngD), Thales Optronics, are active in

the defence industry. The systems that are commonly developed within the industry

must provide high levels of performance whilst accommodating the recurring con-

straints of low-power consumption, small physical size, robustness and reliability. It is

not uncommon for systems to have a life span of 25 years, with upgrades taking place

at fairly infrequent intervals over that period. Compared to the commercial sector,

defence market volumes are extremely small, with the highest volume applications

numbering in the thousands and the smallest possibly less than a hundred systems.

This situation is forcing defence contractors to move away from bespoke manufactur-

ing towards systems integration roles using commercial off-the-shelf (COTS) parts.

The products developed by Thales Optronics, historically based on purely optical

systems, are gradually incorporating an ever increasing amount of electronics in or-

der to provide intelligent automatic processing of data. A large amount of research

effort within the company is now focused purely on development of cutting-edge

1

1.1. Problem statement 2

algorithms for making greater use of the data captured by imaging sensors. These

algorithms form commercially sensitive intellectual property (IP) that drives the fu-

ture product portfolio of the company. As all defence contractors reduce the amount

of bespoke manufacturing they are undertaking it is the algorithms that can provide

a competitive advantage between them.

With the continuing development of programmable technology platforms such

as FPGAs there is a growing potential to commercialise increasingly advanced al-

gorithms. Unfortunately most algorithms, whatever the purpose, are written as a

sequential list of operations that does not translate easily into a parallelised design

suitable for hardware implementation. The onus is on the company to reduce the

expense and difficulty involved in implementing complex algorithmic IP so that the

commercial opportunities it offers can be exploited. Adoption of new methodologies

that improve the system-level design process offers a range of advantages including

the ability to perform analysis of an algorithm's suitability for the application at

an early stage, before significant engineering resources are committed, and leaving

decisions on target platforms until as late a time in the development process as

possible.

1.1 Problem statement

This EngD research programme was commissioned as a opportunity to investigate

these issues surrounding translation of algorithmic IP to FPGA hardware. The pro-

cess of translating an algorithm, usually expressed as a set of mathematical formulae

and implemented in a computing environment such as Matlab or high-level program-

ming languages, is typically done by hand. There are a number of stages involved in

the transformation if the benefits of a hardware implementation are to be realised.

Each stage of the process may depend on unique data representations and language

constructs, and thus errors and inaccuracies may be introduced at any point. Hard-

ware implementations must make use of parallelism if they are to achieve maximum

performance, and this must be manually incorporated into the design. Verification

is also clearly of equal importance, and so any translation process should emphasise

1.2. Research goals 3

the opportunities for ensuring design correctness.

Alongside this main problem lies the opportunities presented by reprogrammable

platforms to utilise dynamic reconfiguration, potentially enabling greater levels of

functionality to be implemented in a smaller device. A benefit of this is increased

device efficiency, since the utilisation levels can be kept high by keeping the whole de-

vice active rather than having chip functionality going unused. If there are functions

that are not needed concurrently then they can be loaded onto the chip as and when

required and thus the temporal and spatial utilisation of the device is maximised.

Although a fully automated route between algorithm behaviour and hardware

structure would be the ideal outcome, it is perhaps an unrealistic aim. The so-

called behavioural synthesis problem has been a topic of research in both industry

and academia for many years, yet a single automated process is unlikely to become

commonplace in the foreseeable future. Some of the reasons for this will be outlined

in this document, but an overriding issue is that the size of the design space makes

design rules impossible to create with any degree of success. For this reason the

CAD software developers are increasingly taking a domain-specific approach to the

synthesis problem, or focusing on one particular aspect of the translation process.

This inevitably leads to a combination of tools being used, which can introduce

further difficulties.

1.2 Research goals

The main goal of this work is to investigate some of the issues previously highlighted

and to find a workable, efficient route between a high-level description of an algo-

rithm's behaviour and a description of structure that can be used by the vendor

implementation tools to produce an FPGA bitstream. In this context we define an

efficient design process as one that can be completed using a minimum of engineering

resources, whilst maintaining or exceeding existing standards of quality.

More specifically, the research programme aims to determine what makes some

algorithms difficult to implement, where problems in the implementation process

can occur, and what can be done to mitigate these problems in future work. The

1.3. Contributions

approach taken to achieving these goals involves investigation of a series of algorithms

that are expected to form integral capabilities of future Thales Optronics products,

covering a range of functions including contrast enhancement, deconvolution, and

image fusion. Investigation of these algorithms provides an opportunity to attempt

to identify what underlying operations cause difficulties in their implementation.

The individual mathematical operations that make up an algorithm may each be

implemented in hardware in a number of ways, and without an understanding of the

demands they place on the hardware it is difficult to assess an algorithm's suitability

for a particular platform, and for instance whether it is more suited to a hardware

or software implementation. There are also features that appear repeatedly in many

algorithms of this nature, for instance two-dimensional convolution, and if a company

is to operate efficiently it is important that where these features are encountered

there is a clear understanding of the options available. If the lessons learnt from

these implementations are documented and made available for designers of future

systems, the efficiency of the design process may be improved and the goals of this

research will have been achieved.

Additionally, more information is required into how the new design tools being

released may or may not improve certain aspects of this situation. Only by under-

standing the nature of video processing algorithms and the challenges they present,

can a design tool's suitability to the task be assessed.

1.3 Contributions

The work presented in this portfolio makes a number of contributions that aim to

increase the level of understanding of the issues outlined above and facilitate future

work carried out in this area.
A period of exploratory research has helped to identify some of the issues sur-

rounding dynamic reconfiguration of Xilinx FPGAs and some tools and techniques

that are available to address this area.

A theoretical approach to the algorithm implementation process has been used

to understand why some algorithms pose such difficulties compared to others. The

1.4. Portfolio organisation 5

model that is used in this context, which looks at algorithms according to the nature

of their execution flow, has been successfully used to simplify the implementation of

complex video processing algorithms.

Several major algorithms have been implemented. The Richardson-Lucy deconvo-

lution and pyramidal image fusion implementations were the first reported real-time

implementations of these algorithms on an FPGA device, and resulted in publications

at major conferences.

During the implementation of these algorithms some features that are common

to the application domain have been identified. Efficient solutions have been found

to implement two such recurring features: Gaussian pyramid transforms and two-

dimensional convolutions.

A PID servo-control algorithm has been implemented and the resulting design

used in a commercial product. Additional work was also carried out to provide a
fast means of demonstrating System Generator implementations of video processing

algorithms in hardware.

The experience gained during the practical aspects of the research has enabled

a set of design guidelines to be produced, to improve the efficiency of future design

efforts. The design guidelines will be presented in this portfolio.

1.4 Portfolio organisation

This portfolio thesis is split into two volumes. Volume 1 contains an overview of
the research project and highlights the novelty and commercial relevance of the

completed work. Volume 2 contains the reports that were written during the research

project, providing more detail on each unit of work than is present in volume 1.

The chapters in volume 1 are as follows. Chapter 2 details the taught component

of the EngD and highlights the value of both the technical and business elements to

the research. Chapter 3 lists the external training courses and conferences attended

by the research engineer (RE) during the EngD programme. Chapter 4 discusses

in more detail the commercial relevance of the research work completed during the

EngD, with a discussion of why Thales Optronics have identified this as being a topic

1.4. Portfolio organisation 6

of research that could be beneficial to the company and the contributions that this

thesis has made.
Chapter 5 introduces the technical aspect of the research by providing background

information on the areas surrounding implementation of video processing algorithms

on FPGA. FPGAs will be briefly described, and some of the challenges faced when

working with video data will be highlighted. This will be followed by an introduction

to the more general problem of implementing sequential algorithms in hardware, a

brief overview of some of the tools and methodologies that have been developed to

tackle this problem, and look at some of the research on the subject that has been

published by other authors.

Chapter 6 will then go on to discuss the results obtained during the research

period. The chapter will describe each algorithm that has been looked at and examine

the solutions that have been found and that can be applied in general to other

algorithms of this type. Even from looking at a relatively small number of video

processing algorithms it is possible to see some similarities between them that allow

some general solutions to be defined. The ability to characterise algorithms according

to the nature of their execution flow will be discussed and this will be used as a

justification for some of the design choices made.

Chapter 7 will attempt to document some of the design guidelines and recom-

mendations that have resulted from the completed research. It is hoped that these

will improve the efficiency of the design process when implementing image and video

processing algorithms in the, future.

Finally, chapter 8 will summarise the conclusions that can be drawn from the

work and suggest ways in which the research could be continued.

Chapter 2

Taught Modules

Taught modules worth 180 SCOTCAT credits constitute 25% of the total EngD re-

quirement. These are split into two parts, with two thirds coming from technical

subjects and one third from business and management subjects. The technical mod-

ules were taken from the MSc in System Level Integration offered by the Institute

for System Level Integration (ISLI); the business classes were taken from the MBA

programme of the University of Strathclyde Graduate School of Business (USGSB).

2.1 Technical credits

The 120 credits of technical modules were obtained through completion of the sub-

jects listed in table 1. The subjects were chosen to give a solid theoretical foundation

to the research work, with many being directly relevant to the research project. The

12 subjects covered a variety of issues, as follows:

" Analogue and Mixed Signal Design: Involved sections of work looking at ampli-

fier design using both MOSFETs and bipolar transistors, Op-Amp design and

analysis, and analysis of various methods of performing A/D and D/A conver-

sion (including a significant project on sigma-delta A/D converters). Much of

the work used SPICE simulations.

" Communications Algorithms: This subject was an overview of many of the

mathematical methods and techniques involved in communications applica-

7

2.1. Technical credits

Subject Credits

Analogue & Mixed Signal Design 12

Communications Algorithms 12

Embedded Software I- System on Chip 6

Embedded Software II - Operating Systems 12

Embedded Software III - Applications 6

Introduction to Hardware Design Automation 6

IP Block Authoring 12

IP Block Integration 12

Microcontrollers & Microprocessors 12

Multimedia & Video 6

System Partitioning 12

VLSI Design 12

Table 1: Breakdown of technical credits

8

tions, including Fourier analysis, design of FIR and IIR filters, Z-transforms

and Laplace transforms, convolution, etc.

" Embedded Software I- System on Chip: Looked at the software implementa-

tion process and tool-chain for embedded targets, including compilation and

linking using make files. Also involved a significant project looking at fixed-

point design for FIR filters, something that would later prove invaluable.

Embedded Software II - Operating Systems: Concentrated on development of

applications using real-time operating systems (RTOS), involving a theoretical

study of multi-tasking concepts such as pre-emption and priority inversion,

and a practical task to develop a multi-tasking application for the commercial

VxWorks RTOS.

" Embedded Software III - Applications: Focused on networking concepts in-

cluding the seven layer network model and TCP/IP stacks. Also looked at the

common internet protocols HTTP and SMTP, and markup languages HTML

2.1. Technical credits 9

and XML (including XML schema).

" Introduction to Hardware Design Automation: An look at hardware design

languages, concentrating on Verilog but also a brief look at VHDL, and imple-

mentation tool-chains for simulation and synthesis.

" IP Block Authoring: IP issues, including the differences between soft, firm,

and hard IP. Also design of IP for resale, according to guidelines from the

popular Reuse-Methodology Manual and the OpenMORE ratings. Some back-

end design issues such as chip layout (e. g. interconnect, clock distribution

issues), capacitance and delay calculation, power and speed issues.

" IP Block Integration: IP-based design methods, for instance using commercial

integration platforms. Modern verification methods such as formal equivalence

checking, static timing analysis, and dedicated verification languages. Also

some design-for-testability issues, including boundary-scan (JTAG) and built-

in-self-test (BIST).

" Microcontrollers & Microprocessors: microcontroller topics covered included

microcontroller architectures, register models, instruction sets, communication

methods (e. g. 12C, SPI, CANBUS). Microprocessor topics were instruction

sets and addressing modes, cache architectures, virtual memory, pipelining

and superscalar architectures.

do Multimedia & Video: Included several topics that would later form a major

part of the research work, notably JPEG and MPEG compression methods
for images and video, and constituent elements such as basic image filtering

techniques, the direct cosine transform, run-length encoding etc.

" System Partitioning: This subject included a look at some modern system-level

design issues, including hardware/software partitioning and area/timing/power

estimation. Also involved a study of modelling languages (in particular UML)

and a project based on the system-level design language SpecC. This theoretical

background to the system-level design problem and design tools and techniques

would prove useful in the later research work.

2.2. Business credits

Subject Credits

Finance & Financial Management 12

Financial & Management Accounting 9

International Business 6

Managing People in Organisations 12

Marketing Management 12

Effective Project Management 6

The Learning Manager 3

Table 2: Breakdown of business credits

10

" VLSI Design: The subject looked at digital design from first-principles, includ-

ing design of logic gates from individual transistors and CMOS circuit design.

Also looked at some higher-level concepts such as multiplier architectures (i. e.

Booth multipliers), speed/power/area trade-offs, logic synthesis.

2.2 Business credits

The 60 credits of business modules were obtained through completion of the subjects

listed in table 2. The business modules provided an opportunity to look at the EngD

from a commercial perspective, and to understand some of the business implications

of the research work. The subjects were chosen to cover a variety of aspects of

business.

" Finance & Financial Management: This subject looked at capital expendi-

ture, investment criteria, company financing, and share pricing amongst other

things. These topics were useful in providing an understanding of how projects

(for instance engineering projects) are financed and what factors make such an

investment opportunity worthwhile.

" Financial & Management Accounting: Covered costing, balance sheets, au-

diting and accounting practices, and other financial topics which affect all

engineering projects but are rarely tackled by engineers.

2.2. Business credits 11

" International Business: This subject. looked at the ways in which husinte+. s is

conducted across international boundaries, including modes of entering foreign

markets such as direct exporting, franchising. "greenfield" investments and
joint-ventures. These topics are increasingly relevant to the modern electronics
industry which is carried out on a global scale.

" Managing People in Organisations: This subject showed the human aspects

of a business, and highlighted the fact that in any company there may be a

%at'iety of forces at work that lead to it part icular organisational culture. So

topics. covered included models of leadership, change management. performance

management. motivation, and management structures.

" Marketing Management: Marketing Management highlighted the difference be-

tween a market-oriented and a production-oriented husiness: a distinction that

drtnonstratrs how it is important for a technology-based company to be led

h} the market rather than just producing technologically advanced products

because the technology is available. The popular '4-Ps' model (product. price,

place. promotion) was also covered, along with topics on market research, seg-

mentation and positioning.

"F lTrctive Project Management: The project, management subject was very rel-

evant to the Engq, looking at several aspects of project management including

critical path analysis, risk management, and established project management

methodologies such as the industry standard `PRINCE2'.

" The Learning Manager: This was an introductory course to the MBA pro-

gramme, which covered topics such as group-working, communication and pre-

sentational skills. Although the course was primarily intended to improve ef-
fectiveness of people undertaking the MBA programme, these are transferable

skills which were equally useful for the remainder of the EngD and other aspects

of professional life.

Chapter 3

External Events and Training

Over the course of the Eng® several events were attended and participated in, both

for training purposes and for presentation and dissemination of research results.

3.1 'Raining

Two training courses on FPGA design were attended at the Xilinx UK office. These

are listed in table 3, and were used as an opportunity early in the EngD programme

to become familiar with the product offerings and design techniques from the FPGA

manufacturer favoured by Thales.

The Fundamentals of FPGA Design course covered the basic architecture of Xil-

inx FPGAs. such as the structure of the configurable logic resources and I/O elements

that make up the programmable fabric of the device. It then went on to cover the

Xilinx design flow and an in-depth look at the software tools used in the implemen-

tation proem. After implementing an example design the reports generated by the

tools were examined, and the information they provide was used to create timing

constraints that could be used to improve the implementation results. This proem
is an important part of designing for FPGA systems.

Designing for Performance was a more advanced course over two days that went
into greater detail than the fundamentals course described above. The course looked

at some architectural features of Xilinx FPGAs in more detail, including clock man-

agement and pipelining techniques, and a look at the IP customisation tool Core

12

3.2. Conference publications 13

Course Title Location [Date 7

Fundamentals of FPGA Design Xilinx, Weybridge, Surrey, UK 14 Jul.

2003

Designing for Performance Xilinx, Weybridge, Surrey, UK 15-16

Jul.

2003

Table 3: Training courses attended by the RE during the En9D programme.

Generator. A section was also dedicated to HDL coding techniques, and specifically

the best way to write HDL code to infer efficient hardware designs. There was also

a further study of methods available for achieving timing closure of FPGA designs,

and a focus on the use of advanced timing constraints.

3.2 Conference publications
Two poster presentations were given at major academic FPGA conferences, as listed

in table 4. The poster at FPL also involved publication of an accompanying short

paper in the conference proceedings.

The poster presented at the FPGA 2006 conference was based on the work con-

tained in Appendix E of this portfolio. The work looks at the hardware implemen-

tation of an algorithm for performing deconvolution of two-dimensional data. The

algorithm, known as Richardson-Lucy deconvolution, is an important technique in

the recovery of images that have been subjected to a blurring process. The imple-

mentation uses multistage separable filters as an efficient means of performing the

several large 2D convolutions that are required. The results showed that real-time
full scene deconvolution is viable with today's FPGA technology.

The poster and paper presented at the FPL 2006 conference were based on the

work contained in Appendix F of this portfolio, describing an implementation of an

algorithm for performing image fusion. The aim of image fusion is to combine mul-

tiple images (from one or more sensors) into a single composite image that retains

all useful data without introducing artefacts. Pattern-selective techniques attempt

3.3. Industrial events 14

Poster Title Conference Date

A Real-Time Implementation of ACM/SIGDA 14th Interna- 22-24

Richardson-Lucy Deconvolution tional Symposium on Field- Feb.

Programmable Gate Arrays 2006

(FPGA 2006). Monterey, Cal-

ifornia, USA.

An FPGA Implementation of 2006 International Conference 28-30

Pattern-Selective Pyramidal Im- on Field Programmable Logic Aug.

age Fusion and Applications (FPL 2006). 2006

Madrid, Spain.

Table 4: Conferences participated in by the RE during the EngD programme.

to identify and extract whole features in the source images to use in the composite,

and usually rely on multiresolution image representations such as Gaussian pyra-

mids since they enable identification of features at many scales simultaneously. The

description given of an FPGA implementation of the pyramidal decomposition and
fusion process for dual video streams was the first reported instance of a hardware

implementation of pattern-selective pyramidal image fusion.

3.3 Industrial events

The RE was also invited to give a 30 minute presentation at an internal Thales event
held at the division headquarters in Paris. The details are given in table 5.

The Techno-Day conference is an annual event which is well attended by repre-

sentatives from Thales offices in several countries. The format of the conference is

a mixture of new product demonstrations, poster sessions, and multiple concurrent

streams of technical talks on a variety of research and development subjects relevant

to the Thales business, with the aim of disseminating innovative achievements to

the wider business group. The presentation given by the RE described the imple-

mentation of Richardson-Lucy deconvolution as outlined above (and in more detail

in Appendix E), and was one of only two full-length talks given at the event by

3.3. Industrial events 15

Presentation Title Event Date

A Real-Time Implementation of

Richardson-Lucy Deconvolution

Techno Day, Thales Colombes,

Paris, France

25 Jan.

2006

Table 5: Industrial events participated in by the RE during the EngD programme.

representatives from the UK Optronics side of the business.

Chapter 4

Commercial Relevance

As the computational power of integrated electronic devices continues to progress at

exponential rates, advanced data processing techniques become available to a wider

target market and in a wider variety of situations. Whereas real-time processing

of video data was infeasible even in a lab situation only a short time ago, it is

now possible to find complex real-time processing of video embedded in everyday

consumer level items such as mobile phones and video cameras. As FPGAs become

smaller and more efficient, they are challenging these markets that have previously

been dominated by ASICs.

Video compression and decompression is a pertinent example of a capability that

is now expected in a wide variety of situations. Evolving compression standards

and techniques mean that dedicated hardware can quickly become obsolete, and
for this reason it is often the case that compression and decompression are still

performed in software. Inevitably this is a power drain for embedded devices with
finite power supplies. FPGAs are set to exploit this gap. Although currently seen as

too large and inefficient to be used in mobile phones and laptops, these platforms will

almost certainly see embedded programmable logic in the near future. Offloading to

programmable logic those algorithms that are complex but suitable for concurrent

processing, for instance MPEG decoding for DVD playback, will provide gains in

terms of both performance and power consumption.
These benefits apply equally to the defence market. One future objective of

the defence industry is network-enabled capability, which implies large numbers of

16

Chapter 4. Commercial Relevance 17

intelligent sensing devices spread throughout the operating environment. In order to

avoid information overload, devices must be capable of automatically processing data

to extract the relevant detail from the mass of background information and make it

more effective for its intended purpose, at the point at which it is collected. They

should also comply with the recurring constraints of the industry: small physical size,
low weight, and low power consumption. Embedded systems design and integration

is consequently a critical factor in this environment.
Within the defence industry the major contracts are increasingly becoming system-

level design projects covering a number of complex functions. In order to remain

profitable, contractors are moving away from custom-built devices towards commer-

cial off-the-shelf (COTS) parts in a bid to reduce design times and non-recurring

engineering (NRE) costs. This situation is inevitably leading to adoption of FPGAs,

which offer nearly equivalent processing capabilities of ASICs but with drastically

reduced NRE. Besides the benefits of performance gains and reprogrammability that

have already been discussed, FPGAs typically have an abundance of I/O resources

and provide an ideal opportunity to integrate several system functions into a single
device. The associated reduction in the number of devices makes design, manufac-

ture, and test of circuit boards easier, reduces the number of potential points of
failure, and makes future upgrades more straightforward since the functionality of

an FPGA-based system can be modified without costly modifications to hardware

designs.

With FPGA-based systems providing fairly generic hardware platforms, it is now

a company's algorithmic IP that determines what capabilities it is able to bring to

market. However, it will probably always be the case that the algorithms being de-

veloped by specialist algorithm engineers lead the current capabilities of embedded

processing. The reason for this discrepancy is not necessary due to lack of transis-

tors on the target device, but rather the huge complexity of the resulting electronic

systems resulting in a hardware design process that is too lengthy and/or expensive.
At present FPGAs do not provide the same degree of programmability as purely

software-driven solutions, and so there is evidently a significant additional NRE cost

associated with producing and verifying FPGA firmware. There are therefore clear

Chapter 4. Commercial Relevance 18

financial incentives to reduce design times. The most obvious way to do this is

through use of more efficient design methodologies. In addition to this, the gap be-

tween what can be done offline in the lab and what designable embedded systems are

currently capable of is an identifiable source of unexploited revenue. It is improved

design methodologies that can help to leverage the algorithmic IP that exists within

the company and close this design gap.

It has also traditionally been the case that those designing the algorithms work

separately to the engineers designing hardware implementations. Both groups will

have their own methodologies. Making FPGAs more accessible to those without
formal hardware design experience, by abstracting away as much low-level detail as

possible, can ensure that the algorithm design process is not completely isolated from

the capabilities of the target platform, and should have a positive effect on the way

in which the two disciplines interact.

There are also other reasons for looking to improve the design process. At present,

the decisions on the precise behaviour of a system and potential implementation

platforms are performed at an early stage in the system's development. Hard-

ware/software partitioning is often carried out using fairly arbitrary guidelines, and

significant amounts of engineering resources may be committed to a project before

realising that the system is not optimal. Modern design techniques are attempting

to abstract away the underlying implementation platforms in order to allow multiple

designs to be analysed for their suitability at an early stage. Known as model-based

design, these techniques rely on executable specifications to allow a high proportion

of the necessary analysis and verification to be performed at an early stage in the

development cycle. This also reduces reliance on written specifications and the inher-

ent scope for misinterpretation. These factors all lead to reduced costs, and increase

the chance of getting a design correct at the first attempt.

Alongside model-based design methodologies, IP-based design methods have be-

come standard within both the defence and wider electronic design communities.

IP cores covering a wide range of functions are available from FPGA manufacturers

as well as specialist IP vendors. For some system-level functions, such as Ethernet

or PCI interfaces, or high-level DSP functions such as FFTs, the instantiation of

4.1. Author's contribution 19

IP is vital to reduce design time. However, commercially available IP cores do not

cover the whole gamut of operations required for video processing, and developing

and maintaining an internal library of IP can be expensive and demanding. For

this reason it is often the case that a formal knowledge repository and clear design

guidelines are of greater use to a company wishing to make their design processes

more efficient. This requires a clear understanding of the types of algorithms the

company wishes to implement and the technical challenges they are likely to face.

Whilst a fully automated route from behaviour to structure is still some time

away, the work here has aimed to be general enough such that the design process is

smoothed for all complex video processing algorithms.

4.1 Author's contribution

This work has involved an in-depth study of current design methodologies, and their

suitability for the types of systems Thales Optronics produce. This has provided
background information on why existing design flows must evolve to keep up with

the capabilities of modern devices. An appraisal of some of the new methodologies

that are appearing on the market has generated insights into which new tools and

methodologies may prove relevant to the application domain.

The work carried out during this EngD project on individual algorithms has

resulted in suggested solutions to some of the challenges that are faced when imple-

menting algorithms of this type. These algorithms are all likely to appear in some
form in future Thales products.

The work describing the use of manual scheduling and allocation of an algorithm

written in a high level language provides a means of implementing model-based
design methodologies within existing design flows. This also provides a method of

making implementations of control-dominant algorithms more tractable.

The work on two-dimensional convolutions examines this recurring feature of
image and video processing algorithms and explains how they may be efficiently
implemented. The findings in this report show that in many cases it is beneficial

to implement them using a structure known as multistage separable filters. This

4.1. Author's contribution 20

technique enabled a design capable of performing real-time deconvohition of a VGA

video stream on a single FPGA, and was published at a major FPGA conference.
The work on generating image pyramids has produced a hardware design capable

of outperforming any previously reported methods. Since image pyramids are a

feature of a number of algorithms this is useful IP for the company. Use of this

pyramid generation technique enabled a design that could fuse dual VGA video

streams in real-time on a single FPGA, and was also published at a major conference

in the field.

Alongside the main algorithms featured here, the RE has also assisted in the

implementation of other less demanding algorithms that feature in Thales products

currently being marketed. A set of design guidelines have been produced, which aim

to improve the efficiency of future design efforts within the company, based on the

findings of this research.
An additional period of work involved development of an automated route from

an algorithm design environment to a custom Thales hardware platform, for the

purposes of testing algorithms in hardware. This can be used without any manual

HDL coding or knowledge of the design tools, and so could be used to enable algo-

rithm engineers to experiment with different hardware structures without requiring

detailed knowledge of the implementation process.

Chapter 5

Technical Background

An overview of some of the technical issues of implementing image and video process-

ing algorithms on FPGAs will now be presented. The following section will briefly

discuss FPGA technology, the nature of video data and video processing algorithms,

and some of the tasks involved in the implementation process. There will also be an

overview of some of the new methods of implementing algorithms on FPGA, followed

by a summary of these issues and the areas this research aims to address.

5.1 Field-programmable gate arrays

Field programmable gate arrays (FPGA) are integrated circuits containing pro-

grammable logic, which have evolved from the Complex Programmable Logic Devices

(CPLD) and Programmable Array Logic (PAL) of the 1980s. The basic format of

an FPGA is shown in figure 1. Modern FPGAs are vastly more technologically ad-

vanced than their predecessors, acting as true system-on-chip (SoC) devices with
integrated memory, microprocessors, digital signal processing (DSP) elements, high-

speed transceivers, clock management, and numerous other features. In addition to

these hardwired capabilities the FPGA vendors also provide libraries of optimised
"soft" IP cores, often at no cost to the user, which cover a large range of functions

and application domains.

The basic elements of FPGAs are configurable logic blocks (CLB) connected

together via a hierarchy of routing resources and programmable switch matrices.

21

5.1. Field-programmable gate arrays 22

ETL--

Id

CLB Routing Switch Matrix

Figure 1: Basic FPGA structure.

Each CLB contains a relatively small amount of memory and some logic resources

that may he programmed to implement the desired function, with the memory acting

as a look-up table (LUT), RAM, or a shift register. When configured as a LUT it

may be used to replicate combinatorial logic, and CLBs may he chained together

to implement logic functions of any size. Four-input LUTs have historically been

the predominant architecture, but the major FPGA manufacturers have recently

begun producing FPGAs with six-input LUTs. The size of the LUT elements is

important: when LUTs must be cascaded together it introduces delay that may limit

the performance of the design, which would suggest that larger LUTs are preferable;

conversely four-input LUTs had previously been shown to be the most efficient in

terms of area due to the reduced routing requirements [1].

The routing on an FPGA is an important feature that ultimately determines

device performance. It is essentially a network of interconnecting wires with switch-

ing matrices at crossover points comprised of pass-transistors and multiplexers [2].

Programmable routing resources take up a large proportion of available die area,

and constitute a considerable overhead compared to ASICs. In addition to the pro-

grammable routing there is a separate clock distribution network that must cover

the entire chip. Alongside the transistors that are needed for configuration and pro-

grammability this forms another significant overhead when compared to an ASIC.

5.1. Field-programmable gate arrays 23

Furthermore, the majority of FPGAs are volatile devices, meaning that they must
be programmed every time they are powered up. This introduces a board level over-
head in providing routing and power for storage devices used to hold the FPGA's

configuration data.

FPGAs are also relatively inefficient in terms of their power consumption. The

interconnect routing on the chip tends to act as a considerable source of power

wastage, since the route between any two points on the chip will usually be indirect

and may incorporate a number of switching points, each with a small but significant

resistance. Another considerable portion of an FPGA's power consumption is caused
by leakage current, both in used and unused parts of the chip. A study [3] has

calculated that on an FPGA with 75% utilisation, 45% of the power consumption

caused by leakage current will occur in unused areas of the chip. Modern design

tools and techniques go some way towards correcting this, but it is still important

that correctly sized FPGAs are chosen to minimise unused capacity.

It is therefore evident that in terms of performance and power consumption FP-

GAs are relatively inefficient compared to their ASIC counterparts. The real benefit

of FPGAs lies in their flexibility, the low non-recurring engineering (NRE) costs as-

sociated with designing FPGA systems, and the complete elimination of the need

to perform any "back-end" design. There are thus two main reasons to implement

a design in FPGA rather than ASIC. Firstly, whenever there is a possibility that

the system will be updated or changed at some point in its lifetime. Secondly, when

the application is sufficiently low volume as to make the NRE costs of ASICs pro-
hibitive. Both of these reasons can be applied to the defence sector, which highlights

the importance of FPGA technology to a company such as Thales Optronics.

Many of the benefits of FPGAs in terms of cost and flexibility are also available

in software implementations based on general-purpose microprocessors, but FPGAs

have clear performance advantages over such methods. A von Neumann architec-

ture may have to execute several instructions in order to achieve something that an

FPGA can do in a single clock cycle, where custom instructions are coded into the

logic structure. This instructional efficiency, along with parallel processing, gives

FPGAs a computational advantage over processing devices based on von Neumann

5.1. Field-programmable gate arrays 24

architectures, and although general-purpose microprocessors may run at clock speeds

that are 10-20 times greater than typical FPGA clock speeds, it is the inefficiency

inherent in fixed instruction sets that leads to inferior performance in benchmarks [4].

The von Neumann architecture is now a limitation on the processing power of

microprocessors, despite the advances enabled by Moore's law. In fact it is feasible

to say that the von Neumann style architecture has only endured because of Moore's

law: the sustained increase in the number of transistors on a chip has mostly been

used to counter the problems of von Neumann (for instance in development of sophis-

ticated branch prediction routines and cache structures). In contrast to this, FPGAs

are able to make better use of the developments modelled by Moore's law since their

dataflow nature means that they are not restrained by the need to fetch data from

memory (and face the so-called "memory wall") [5]. DeHon [6] has further shown

that the instruction efficiency of FPGAs enables them to have an order of magni-

tude more computational capacity per unit area of silicon die when compared to a

RISC processor. This is a remarkable finding, especially when the logic overhead for

configuration of the FPGA is taken into account.
One of the areas in which FPGAs have a clear efficiency advantage over mi-

croprocessors is in the ability to size instructions according to the demands of the

application. For instance a 16-bit microprocessor operating on 8-bit data words will

only be able to realise 50% of its peak processing power [6]. This is equally true

of general-purpose microprocessors or specialised DSP devices, where static com-

putational elements (for instance multiply blocks) promote inefficiency unless the

algorithm can be designed in such a way as to fully utilise their capacity. In the

programmable logic domain the firmware is designed to suit the algorithm, not vice

versa. Modern FPGAs sacrifice some of this flexibility through integration of hard-

wired IP cores (such as multipliers) in an effort to achieve higher speeds and densities,

with an implicit reliance on the software tools to minimise inefficiency.

Image processing algorithms are ideal candidates for implementation on FPGAs,

due to the requirement to perform often complex operations on very large data sets,

usually at speeds high enough to meet the constraints imposed by real-time video

sources. Since image processing algorithms often involve performing the same action

5.1. Field-programmable gate arrays 25

on each pixel or region of an image, there are usually clear opportunities to exploit

parallel processing within the FPGA.

5.1.1 Floating-point performance

One area in which microprocessors have traditionally been seen as superior to FPGAs

is in the area of floating-point performance. Floating-point maths is used intensively

in the software domain, particularly in the area of DSP. Calculations that are carried

out in floating-point are equally possible in fixed-point, but the main advantage

that floating-point representations offer is in dynamic range, that is the ability to

accurately represent very large and very small numbers with a reasonably small

word length. Furthermore, fixed-point design can often be a time consuming and

difficult process. Recently, there has been a renewed interest in floating-point maths

from the main FPGA manufacturers, with floating-point operations becoming more

feasible since the inclusion of hardwired multipliers in FPGAs. Studies have shown

that FPGA floating-point performance is improving at a greater rate than that of

microprocessors, some estimates are that FPGAs will have an order of magnitude

higher floating-point performance by 2009 [5].

5.1.2 Dynamic reconfigurability

Dynamic reconfigurability is a potential facet of FPGA technology that has gen-

erated huge amounts of research since it was first conceived, particularly from the

academic community. The main feature that dynamic reconfigurability offers is the

ability to include more functionality into a smaller device, by swapping in and out

parts of the design as they are required; in effect a virtual hardware system analo-

gous to the virtual memory present in modern computer operating systems [7]. At

present the major verification and synthesis toolsets do not provide explicit sup-

port for dynamically changing systems, and such systems must be designed using

ad-hoc methods; this typically takes the form of incremental synthesis techniques,

and manipulation of configuration bitstreams. The FPGA vendors are starting to

take dynamic reconfigurability more seriously, with the latest generation of Xilinx

5.2. Video processing systems 26

Virtex devices offering increased support. Thales Optronics are interested in the

potential of dynamic reconfigurability, in particular the ability to load algorithms

into hardware as required by the current situation. To this end the EngD research

involved a substantial study of the methods and techniques surrounding dynamic

reconfigurability (see the portfolio document in Appendix A). On conclusion of the

study it was however felt that dynamic reconfigurability was not commercially viable

at that time, mostly due to difficulties involved in verification and extended design

times.

5.2 Video processing systems

The implementation of image and video processing systems on FPGAs presents some\

unique challenges. These may be attributed to the format of the data being operated

on and the complexities of multidimensional algorithms. Some of these challenges

will now be discussed.

5.2.1 Nature of video data

The common format for digital representation of analogue colour video signals is

in the ITU656 format [8], which consists of one brightness signal and two colour

components (known as the YUV colour space) sampled using a 4: 2: 2 scheme with

8-bits per sample, but for the purposes of algorithm development (and the work

herein) it is usually assumed that the source data is 8-bit monochrome. Extension

of an algorithm for colour operation is usually straightforward, but can require three

times the hardware and possible colour space conversion, a topic that is not covered

here. The size of the image depends on the source: a common size for video derived

from analogue sources is 720 x 576 (based on the PAL standard), whereas digitally

sourced video is typically a minimum of 640 x 480 in most applications and can be

much larger. At 25fps a PAL video signal would present over 10 million pixels per

second, so it is clear that data rates can be considerable. Data arrives in raster

scan format, so the sequence of pixels goes from left to right, and top to bottom.

Due to limited memory bandwidth data must normally be processed in a similar

5.2. Video processing systems 27

sequence, and for real-time operation at the rate it arrives in the system, so without

pipelining this would imply a processing time per pixel of analogue video data of sub

90ns, which is non-trivial for complex algorithms. This usually forces pipelining to

be employed, whereby one pixel per clock cycle can be produced as output, at the

expense of end-to-end latency. To a certain extent some latency can be tolerated for

video signals as anything under a few milliseconds is not usually noticeable by human

observers; there are however some applications where minimal latency is critical.

The need to implement algorithms in this way can often necessitate a change in

how an algorithm is approached conceptually [9]. A common problem is how video

data can be processed temporally (for instance processing data from multiple frames

simultaneously) when data is arriving in raster scan format and there is insufficient

memory on the device to buffer more than a few lines.

Video data from analogue sources is often in an interlaced format, which can po-
tentially cause additional problems. Deinterlacing is an inexact process that unavoid-

ably introduces errors or artefacts. The simplest methods of deinterlacing: weaving
(combining consecutive fields by overlaying on alternate lines), and line doubling

(writing each line twice, to double the lines per field), reduce temporal and vertical

resolution respectively. More sophisticated methods may employ motion estimation

techniques to detect and compensate for movement between fields, but introduce

a significant computational burden. Any artefacts or errors introduced during the

deinterlacing process will have an impact on subsequent processing stages, so this is

necessarily an important part of any video processing system with analogue sources.
For an overview of deinterlacing techniques see [10].

5.2.2 Nature of image processing algorithms

Awcock & Thomas [11] identify five categories for image pre-processing algorithms,

which are applied to alter pixel values to make an image more suitable for subsequent

operations:

" Point operations

9 Global operations

5.2. Video processing systems 28

" Neighbourhood operations

" Geometric operations

" Temporal operations

These categories cover simple algorithm operations. Many higher-level algorithms

may be formed from combinations of operations from these five categories. Four of

the categories are based on processing of single static images; temporal operations are

specific to video. Hardware implementation of each of these categories may have some

commonalities that can be generalised. For instance, an example temporal algorithm

would be to detect motion by subtracting a frame from the previous one. This

would require frame buffering, and it is clear that whenever processing is required

that utilises the temporal dimension of video data the storage requirements increase

rapidly. Alternatively, global operations involve high speed processing, as multiple

passes through the image data will usually be required; this will increase the memory

requirement and pose implementation challenges in timely processing of the data.

There are some features of image processing algorithms that occur repeatedly. A

brief overview of these will be given below before their impact on hardware imple-

mentations is discussed in a later section.

Two-dimensional convolution

A large proportion of digital image processing algorithms involve spatial filtering of

two-dimensional data. This is usually implemented in the time domain as a simple

convolution between the two-dimensional filter response and the image data. The

discrete convolution integral for two-dimensional data is:

9(x, y)=f(x, y)*h(x, y)=Z Z f(z, j)h(x-i, y-. 7)
tj

(1)

where f is the input image, h is the filter kernel, g is the resulting filtered output,

and * denotes the convolution operation.

The convolution may be thought of conceptually as a sliding window that moves

over the image data and performs a weighted summation, as shown diagrammatically

in figure 2. This class of algorithm can be used to effect a wide range of outcomes,

5.2. Video processing systems

ýýe
s

137 59 61 154 170 52 24 79

17 123 242 105 138 232 205 56

22 119 51 '48 2 96 203 196

118 188 4 66 183 61 123 221

234 60 215 108 129 214 31 9

175 120 B9 107 116 95 50 96

ý-i5 no 63 234 113 159 135 38

43 152 221 100 73 8 9 1 05

29

Figure 2: Conceptual sliding window highlights a group of pixels used to form single

element of the output.

,l prcirill

-1 01

-1 01

-1 01
hKou,.,;

a, =

121
242
121

16
knrharp

-1 -4 -1
-4 26 -4
-1 -4 -1

1
6

Figure 3: Prewitt' vertical edge-detection filter, Gaussian smoothing filter, and 'un-

sharp mask' sharpening filter respectively.

including smoothing, sharpening, edge-detection, correlation (e. g. for simple object

recognition), and others. Typical kernel sizes for these operations are 3x3 or 5x5,

although much larger kernels are sometimes required. Some typical filter kernels are

shown in figure 3; note that some kernels include scaling factors to prevent altering

the overall image brightness level.

Since the calculations are all simple add and multiply operations they are straight-

forward to implement in hardware and spatial parallelism easily exploited. For in-

stance, to calculate a convolution with a3x3 window the nine multiply operations

could he performed simultaneously, and the subsequent additions pipelined such that

one output pixel is produced per clock cycle (albeit with some latency). The main

consideration lies in being able to buffer data temporally such that pixels in different

image rows can be collated and processed simultaneously. This usually requires suf-
ficient temporary storage to hold several lines of the image. For example, a simple
implementation of a5x5 filter kernel will require that four lines of image data be

buffered on chip. For a VGA image this would require 4 first-in, first-out, (FIFO)

buffers of 640 x8 hits, a total of 20Kb, so it is clear that on-chip memory is an im-

5.2. Video processing systems 30

portant resource that can quickly become scarce. This kind of temporal processing,

where data sets are comprised of elements that do not arrive in sequence but are

distributed in time, is common in many video applications but because of high data

rates can often involve a significant requirement for memory resources.

Another factor that must always be considered when performing convolutions is

how to handle the image edges. When the filter kernel is placed such that the central

element falls on the edge of the image, some of the filter weights will fall outside the

image boundaries. If the value of zero is chosen to represent these non-existent

pixels the resulting output image will have darkened edges. Common solutions to

this problem involve copying or mirroring the pixels that are closest to the image

edge to the imaginary points outside the bounds of the image, but the only way to

guarantee that the output data is correct is to disregard the data at the edges. This

would mean that the output image is smaller than the input by k2u pixels, where k

is the side length of the filter kernel.

Some two-dimensional filter kernels are separable, which means that they can

be formed from two orthogonal one-dimensional filters. This usually results in a

reduction in computational complexity in the cases where it can be applied. This

will be looked at further in a later section.

Transforms

Transforms are used throughout signal processing whenever a computational advan-

tage may be achieved by working with a different data representation. The most

well known of all such transforms is the Fourier transform, and its discrete form

(DFT) and optimised "fast" form (FFT), which find multiple uses throughout the

field of image processing. Application of the DFT to images mirrors the application

to one-dimensional data: the DFT is a separable algorithm and so can simply be

applied twice to the input data, once in each direction [12].

Working with images in the resulting spatial-frequency domain is less common

than in one-dimensional signal processing, as Fourier transforming an image removes

spatial locality between the pixels and makes an image unrecognisable. This makes it

impossible to identify all but the most rudimentary image features. One area where

5.2. Video processing systems 31

Figure 4: Multiscale decomposition of well-known image "Lena".

the Fourier transform is often used is in spatial filtering: as with the one-dimensional

case, time domain convolution with a filter's impulse response is equivalent to mul-

tiplication in the frequency domain, and so if the filtering operation is complex

enough the advantages of performing a standard multiplication rather than a two-

dimensional convolution may amortise the cost of performing the transform and its

inverse. Many of the other common spatial-frequency domain applications are con-

cerned with modification of frequency components for compression or enhancement

based on the frequency perception of the human eye [13].

Methods that retain locality in both spatial and spatial-frequency domains, such

as multiscale decompositions and the wavelet transform, are increasingly being used

because the resulting data can be processed with respect to its position and spatial-

frequency simultaneously. These transforms are usually implemented using two-

channel filter banks, where the lowpass branch is applied iteratively [14]. The study

of wavelets has now become a large and active field of research with applications in

many varied areas. The resulting data appears as multiple copies of the original, with

each copy band-limited to only contain image features at a particular scale. These

data sets are commonly called image pyramids; an example is shown in figure 4.

Another transform that has found widespread use is the direct cosine transform

(DCT), which is a fundamental component of JPEG and MPEG compression tech-

niques. One of the features of the DCT over the FFT is that it. does not produce

complex coefficients.

Implementation of the DFT and DCT for two-dimensional data has been cov-

5.2. Video processing systems 32

New sample
point Z.,

Figure 5: Interpolation from four neighbouring samples.

ered thoroughly in the literature and there are freely available IP cores to perform

these tasks. However, the implementation of an algorithm based on a multiscale

decomposition merits investigation, and will be covered in a later section.

Interpolation

Interpolation is a common operation in many image processing algorithms, needed

whenever a single output pixel value must be approximated from multiple input pix-

els. A diagram of a situation where interpolation is required is shown in figure 5.

The most basic method of performing interpolation is by a nearest-neighbour ap-

proach, which simply uses the value of the nearest pixel in the input image, so in

figure 5 the pixel z12 would be used. This method introduces errors and blockiness

in the output image, but may often be deemed acceptable due to the simplicity of

its implementation. A more common method is bilinear interpolation, which, as the

name suggests, is a linear interpolation carried out in two directions consecutively.

The bilinear equation for the interpolation in figure 5 is

Zxy - \yz - yi / L(x2 - xi

)
Zia +

(X2_xI)
Zii J

+
\y2 - yi /L

(x2

- xl

)
Z22 +

(X2_X1Iz211
(2)

If the interpolation is between adjacent pixels, the distance between data elements
is equal to one, and this reduces to the equivalent form:

Zxv _ (1 - y) [2; Z12 + (1 - X) Zll] +y [xZ22 + (1 - x) Z21] (3)

5.3. Algorithm implementation process 33

Obviously the reduced form is much simpler to implement in hardware because of

the absence of divide operations. However the more complex form will be needed

whenever interpolation is required over blocks or regions of the image that contain

multiple pixels.

More complex methods of interpolation exist, notably bicubic (which averages

over a 16 pixel area using derivatives) and Lancsoz (which utilises sinc functions

to produce a best-fit curve). These methods are significantly more computationally

expensive than either nearest neighbour or bilinear methods, but offer improved

accuracy. A study of the relative performance of interpolation algorithms is given

in [15]. The tradeoff between computational latency and area versus quality of

results must be constantly balanced when implementing algorithms and is part of

the difficulty of mapping such algorithms to hardware.

5.3 Algorithm implementation process

Development of signal and image processing algorithms is usually performed in soft-

ware at a high level of abstraction, using languages such as C/C++, or in par-

ticular Matlab. There are also graphical development environments such as the

Matlab-based Simulink and the specialist video processing environment WiT [16].

By working at a high abstraction level the designer need only be concerned with an

algorithm's behaviour (implemented as a series of computational steps), and does

not need to understand the underlying operations that are being performed by hard-

ware. These high-level tools will often be able to operate with the image as a single

entity, or in the case of Matlab the image is treated as a matrix. The design of the

algorithm will often employ floating-point arithmetic, and include complex high-level

commands that map to a long sequence of processor instructions, such as the single

command in Matlab to perform a two-dimensional convolution. Abstract concepts

such as pointers and recursion are occasionally employed, particularly by algorithm
designers with a software background or used to programming DSP chips, but these

have no direct analogy in
.
hardware. Memory structures in high-level languages are

also much more abstract, for instance multidimensional arrays are often used in C,

5.3. Algorithm implementation process 34

as are structs and unions. The object-oriented paradigm present in C++ and other
languages introduces a further level of abstraction. There are also differences in the

way data is obtained and displayed, for instance when designing an algorithm in

software it is usually assumed that the whole image is stored in memory, rather than

streaming into the system in real-time.
The design of hardware is usually carried out in a hardware design language

(HDL), in register transfer level (RTL) code that describes structure rather than

behaviour, and contains timing information and synchronisation at a clock cycle
level [17]. The code infers, or explicitly instantiates, low-level hardware elements

such as registers and multiplexers. Although the major HDLs have the ability to

describe some higher-level behavioural constructs these are not commonly used. One

of the reasons for this is the small subset of HDL that is synthesisable by modern

logic synthesis tools.

It is the transformation from the high abstraction level of the software domain

to the low abstraction level of the hardware domain that introduces difficulties and
inefficiencies into the implementation process. The hardware design process through

the various levels of abstraction is shown in figure 6. The eventual aim will be a
description of hardware written purely in the synthesisable subset of HDL.

5.3.1 Manual tasks for high-level synthesis

The transformation from behaviour to structure, also known as high-level synthesis,
is usually a manual process that involves several specialised and complex activities.
Some of these activities will now be examined.

Iterative processes

Iterative program loops are an integral part of many image-processing algorithms.
Matlab code may often hide its iterative constructs from the user through use of

matrix and vector data types and so-called vectorised instructions, but at a low level

the flow of execution will involve loops (in some instances SIMD processor directives

may be used in the place of explicit loop instructions). The ability of Matlab to

natively support data in matrix and vector format is a key feature, which lends itself

5.3. Algorithm implementation process 35

Partitioning

Behavbural/algorithmic level

Behavioural
sýmthesis

1

Specification

1

1

RTL

Logic synthesis
IL
1

Gate level

Technology
mapping, place &

route

i FPGA bitstream

Figure 6: Transformation from specification to hardware. Rectangles denote levels of

abstraction; ellipses are transformations. Only the lower two ellipses are processes
that are commonly performed automatically.

5.3. Algorithm implementation process 36

ideally to DSP algorithm development, but can often be one of the main difficulties

faced when implementing the same algorithm in the hardware domain, typically

requiring manual translation to an iterative scheme as an initial step. Care must

obviously be taken to ensure this does not alter the algorithm's behaviour. The

loops in C code algorithms will be more explicit, but could be numerous and often

nested to create complex program control flows.

Implementation of loops in hardware presents several design choices to be made.

Modern synthesis tools have some limited support for looping HDL constructs, such

as for and while loops, but using loops in a software style is inefficient in the hardware

domain. An algorithm implemented using iterative loops is fundamentally a serial

process, and direct implementation of this will only result in hardware acceleration

of a design intended for a completely different (von Neumann) architecture, and

fail to take advantage of features such as concurrency. Removal of loops via code

transformations is well documented, but requires a considered approach to identify

opportunities to exploit concurrency whilst balancing area/speed trade-offs.

Scheduling and insertion of timing information

Scheduling is the process of introducing timing information into the design and de-

ciding which elements of a system may run in parallel and which must execute

sequentially; the scheduling task is essentially to balance the cost/speed trade-offs of

the design [18]. Synchronous design techniques, the de-facto design style for various

reasons, mean that groups of instructions are activated by a transition on the clock

signal; the designer must identify where data dependencies exist that prevent in-

structions executing concurrently, and then schedule or synchronise hardware events

to the clock as appropriate. In order to do this the designer must be aware of the

latencies of individual processing elements, and be able to map program operations

to the available hardware while managing these latencies. To increase design speed,

the designer may instantiate more parallel hardware elements; to decrease area, the

designer may schedule computational steps serially. Scheduling also includes the im-

portant process of inserting pipeline stages, which, if done incorrectly, will result in

poor performance and possibly unmet timing constraints.

5.3. Algorithm implementation process 37

Fixed-point design

The majority of algorithms designed in a high-level language will make use of floating-

point data types for increased accuracy and convenience of design. As previously

discussed, although the floating-point performance of FPGAs is improving rapidly

most current algorithm implementations involve a significant process of fixed-point

design. One of the key benefits of FPGAs over fixed hardware is the freedom to

select appropriate word lengths rather than being constrained by the sizes of fixed

registers. This freedom allows the range and resolution to be individually tailored

to the algorithm being implemented, but despite (or maybe because of) this, trans-

lation of floating-point to fixed-point arithmetic (which involves calculation of word

lengths, scaling factors, and handling bit-growth where appropriate) can be a time

consuming process, often necessitating systematic analysis in order to determine ap-

propriate representations [19]. Optimal representations must be found not only for

instantaneous data values but also for any constants (such as filter coefficients) used

in the system: using word lengths that are too long will result in hardware ineffi-

ciency that ripples through the system; too short and accuracy will be sacrificed.

Matlab algorithms present additional difficulties when translating to hardware given

that variables in Matlab do not need to be declared before being used and are sized

dynamically. This adds an extra stage of analysis that must be performed in order

to ascertain appropriate hardware representations.

Mathematical operations

There are numerous mathematical operations that are often taken for granted in the

software domain but can cause difficulty in translating to hardware. Divide opera-
tions are now fairly tractable through use of free IP cores from the FPGA vendors,

as are trigonometric, hyperbolic, and square root functions by way of the CORDIC

algorithm [20], but these all consume a substantial amount of logic resources. Cores

such as this are parameterised from the vendor tools and then integrated into the de-

sign as pre-synthesised netlists, often removing flexibility for synthesis optimisations

and requiring design of an appropriate interface. Integration of IP cores at a HDL

level is not a straightforward task for people without digital design experience, and

5.3. Algorithm implementation process 38

so the inaccessibility of some fairly common mathematical operators may be viewed

as a limitation on the programmability of FPGAs compared to software methods.

Verification

Offen [21] discusses the need for hierarchical verification that demonstrates the be-

havioural equivalence between design and specification at each level of abstraction.
Although more formal methods exist, the simplest approach is through use of the

same verification stimulus at each stage, from executable specification right through

to register transfer level HDL, and subsequently any post-synthesis (gate-level) sim-

ulations.
Verification of logic designs is at present carried out predominantly through RTL

simulation, using event-driven HDL simulators. It is the responsibility of the designer

to produce testbenches that correctly drive the simulation software and cover a suffi-

cient range of test cases to ensure the original specification is being met. Due to the

fact that testbenches are not synthesised the full extent of VHDL or Verilog instruc-

tions may be used, which provides a considerable number of additional capabilities

over HDL that is to be synthesised, but designing the testbench and performing

the simulation is still a lengthy and complicated process. Within traditional HDL

design flows reuse of testbench modules is not common, and test strategies tend to

be applied on an ad-hoc basis. Some recent developments in this area have focused

on enabling testbench reuse across design languages and environments, although

adoption of such methods is not yet widespread.

HDL for FPGAs is usually simulated in a modular style, with the simulation tool

essentially acting like a software debugger for HDL modules. Despite this, simulation

still takes substantially more time to complete than execution of a software model.
This is an inherent drawback of event-based simulation, which models a design as

a collection of independent events happening at various times. The move to cycle-
based simulation may improve this situation: cycle based simulation is much simpler

and quicker to execute and may complete in a fraction of the time, but currently only

supports a limited subset of designs, specifically fully synchronous designs that are

already compiled to gate-level (i. e. post-synthesis), or in some cases RTL code [22].

5.3. Algorithm implementation process 39

There is also no ability to model timing information and separate timing analysis

must therefore be performed; FPGA vendor software tool chains usually incorporate

static timing analysis capabilities which can be used for this task.

5.3.2 Design methodologies

The problem of generating hardware designs from behavioural descriptions, known

as behavioural synthesis, has been the subject of dozens of research papers and
initiatives over many years. One of the reasons for this is its potential to tackle

the so-called design-gap in the electronics industry, caused by the fact that designer

productivity is increasing at a lesser rate than the advances in hardware prescribed by

Moore's law [23]. To achieve increased productivity the designer should be abstracted
from designing structure as much as possible and able to concentrate on designing

behaviour. This mirrors the shift to high-level languages in the software domain,

where the implementation details (such as processor instructions and registers) are
hidden from the designer unless direct control over them is needed. In this respect the

aim is for HDL code to become analogous to assembly language, useful on occasions

where tight control or very high performance is needed, but otherwise too close to

the physical hardware to be considered a viable platform for efficient development

of complex systems.
Due to the complex tasks involved in this process, some of which were outlined

above, automatic behavioural synthesis remains unviable in the general case, though

there have been some successes in domain-specific applications. Recently there has

been a renewed emphasis on tackling automatic behavioural synthesis, with the prob-
lem now commonly given names such as high-level synthesis, algorithmic synthesis,

and electronic system-level (ESL) design.

The FPGA manufacturer Xilinx recently launched an ESL initiative [24], which

attempts to promote ESL and drive its adoption. The benefits to the FPGA manu-
facturers of easier device programmability are enormous: they will begin to challenge

the markets currently dominated by DSP devices and will become attractive to scien-
tists, software engineers, and others who could benefit from the high computational

power of FPGAs but are unable or unwilling to spend the time learning and devel-

5.3. Algorithm implementation process 40

oping HDL code. Xilinx describe ESL as being design tools or methodologies that

start above RTL level, so this is an inclusive umbrella term that covers many diverse

approaches to the problem. Some of these methodologies are specifically targeted to

a particular application domain, while others aim to be general-purpose solutions.
Some of these tools and methodologies will now be described.

Xilinx System Generator/Altera DSP Builder

The two largest FPGA manufacturers have launched competing products in their

efforts to ease the process of implementing algorithms from Matlab/Simulink: Sys-

tem Generator [25] from Xilinx, and DSP Builder [26] from Altera. Both tools have

similar capabilities, and are essentially comprised of Simulink libraries of parame-

terisable blocks that map directly to FPGA IP cores. System Generator was used

extensively during the EngD research, for a detailed description of its capabilities see

the portfolio document (Appendix C). An overview of the System Generator design

flow is shown in figure 7. Given that Matlab and Simulink are a common design

environment for algorithm engineers, System Generator (and similar tools) offers a

valuable method of describing hardware in a format that essentially hides the un-
derlying HDL code. An attractive feature of the tool is the ability to surround the

hardware design with blocks from other Simulink libraries, including stimuli such

as waveform generators as well as the matrix types native to Matlab, and which

would otherwise be difficult and time-consuming to implement using existing HDL

testbench methods. When the algorithm simulates in Simulink as desired, Verilog

or VHDL RTL code can be generated along with a HDL testbench that essentially

performs equivalence checking with the original model. This type of design flow

is commonly called model-based design, which means that the original specification

of the design is written in an executable or self-verifying format, and subsequent
developments are compared with the original design. This allows verification and
debugging to occur earlier in the design process, when it is much easier to diagnose

errors than later on using HDL simulators [27]. A further benefit of model-based
design is the facilitation of testbench reuse at each level of abstraction, something

which can reduce the necessary verification effort considerably.

5.3. Algorithm implementation process 41

MatlaW8imulink

System Generator design

HDL generation

ý

HOL simulation Synthesis

ýJý

Map +
Place & Route

ý

FPGA biletream

ý

Testbench
generation

Figure 7: System Generator design flow.

One of the problems of System Generator and similar environments is that the

design process can be at a very low level of abstraction, for instance manually con-

necting together elements such as individual registers and logic blocks. This is par-

ticularly the case if the higher-level blocks in the System Generator library are not

suitable for the design being implemented. This type of low-level design can be

time-consuming, and can feel like a step backwards from the automatic synthesis of

hardware possible with HDL design methods. The strengths of methodologies such

as that offered by System Generator is in the ability to visualise data flowing through

the system, its close integration with Simulink and Matlab, and inherent support for

fixed-point design and pipelining.

A recent release of System Generator allows generation of behavioural HDL for

some blocks instead of just mapping to IP cores on the device, which gives more power

to the synthesis tool to make optimisations and lessens some of the inflexibility of

5.3. Algorithm implementation process 42

IP based design. Mathworks, the makers of Matlab and Simulink, have recently
introduced their own product into this area, known as HDL Coder [28]. Whilst

offering similar capabilities to the tools from Xilinx and Altera, the Mathworks

product has the advantage of not being vendor specific.

Synthesis of high-level languages

Several companies are looking to synthesise hardware directly from high-level lan-

guages; this includes synthesis from Matlab M-code, a capability offered by Accelchip

(recently acquired by Xilinx) and their product based on a commercialisation of the

MATCH compiler [29]. The other main language that is attractive to algorithm de-

signers is C/C++. Impulse Accelerated Technologies [30] offer a product that takes

ANSI C, alongside their proprietary libraries, and produces HDL. The tool offers the

ability to design a system in software and then map computationally complex sec-

tions to custom hardware. The portions of the design that remain in software can be

implemented on soft or hard processor cores in the FPGA. The C code that is used

as a starting point must conform to a certain programming model, known as stream

processing, which describes how the hardware and software processes communicate.
Mentor Graphics' Catapult C [31] also synthesises hardware from C-based al-

gorithms. The tool presents multiple implementation choices to the designer, who

may then investigate the area/speed trade-offs and make decisions accordingly. This

means that the designer is still making the implementation decisions, but design can
be performed at an algorithmic level and exploration of the design space is guided by

the tools and consequently made easier. Celoxica are another company offering high-

level synthesis, their products are largely based on a variant of ANSI C known as
Handel-C, a language that has in-built support for representation of parallelism [32].

System-level languages

Other electronic design automation (EDA) tool manufacturers are looking to re-

place Verilog and VHDL with more sophisticated languages. The most prominent

candidates in this regard are SystemC and SystemVerilog.

SystemC is a collection of C++ classes that is specially formed to describe system-

5.4. Related work 43

level concepts, such as interfaces and transactions, and hardware concepts such as

concurrency, and allows for a unified hardware/software co-design. Because it is

based on C++ it inherits the object-oriented programming paradigm and other char-

acteristics of that language. SystemC can handle modelling concepts at a range of

abstraction levels, from system level down to RTL. The benefit of this approach is

that it provides the ability to design an entire system, starting from an executable

specification and then passing off to possibly separate hardware and software teams,

without the need for a change of language that may potentially introduce errors.
Scheduling is handled explicitly through use of wait statements, which demarcate

groups of instructions that are considered to execute concurrently. Several vendors

now offer synthesis of behavioural-level SystemC; the synthesisable subset is consid-

ered comparable to that of traditional HDLs [33].

SystemVerilog is an attempt to approach system-level design by augmentation

of the existing Verilog HDL. The additional features available in SystemVerilog are

extensive support for verification constructs, support for complex interfaces, new
data types, ability to work with arrays as a single entity (potentially useful for image

handling) and some high-level language constructs such as structs and unions. All

of these new features are synthesisable, albeit with some constraints [34].

5.4 Related work

This chapter has included a look at new tools and languages that are gaining traction

within the electronics community, but the primary aim of this work is to achieve

improved efficiency within existing design flows, based on intimate knowledge of the

application domain and its requirements. This approach naturally draws on areas of
both academic and industrial research. This section will briefly review some of the

most relevant published research.
A group from Massey University, New Zealand have published a number of papers

concerning implementation of image processing algorithms on FPGAs. Reference

[9] gives an overview of the topic, in terms of the difficulty of mapping sequential

algorithms to parallelised hardware, and discusses the constraints that are faced

5.4. Related work 44

when implementing image processing algorithms. These constraints are classified

as timing constraints (for real-time processing), bandwidth constraints (applicable

when off-chip memory is required), and resource constraints on the device itself.

The impact these constraints have on implementation of different classes of image

processing algorithms (for instance window operations) is briefly discussed.

Reference [35] from the same group provides more practical advice in the form of
"design patterns". These are defined as generalised, reusable solutions, that act to

assist in the implementation of image processing algorithms on FPGA by conveying

previous design experience. The paper goes on to discuss how such design patterns

should be documented and categorised. Although conceptually similar to the work

that will be presented here, the design patterns that are suggested refer to issues such

as how data is stored in memory and when pipelining should be applied, and are

generally concerned with quite low-level technical details rather than the high-level

operations that are the focus of this portfolio. Some relevant high-level operations
have separately been investigated by the same group, with publications on FPGA

implementations of division [36] and bilinear interpolation [37] operations, both of

which are prevalent in image and video processing algorithms.
A group from Queens University, Belfast is also doing work in this area. Ref-

erence [38] describes the concept of using "hardware skeletons" :a parameterisable

architecture designed for a specific task, in this case image and video processing.
Hardware skeletons may be thought of as being similar in nature to SoC platforms,

where specific functionality is implemented by inserting functional units (usually

pre-designed IP cores) into a domain-specific framework. In order to design a hard-

ware skeleton the authors model image processing algorithms using directed acyclic

graphs, which are similar in nature to dataflow graphs, and describe how high-level

image operations (represented by nodes on the graph) are connected together. In

a similar way to that described in section 5.2.2, operations are classified accord-
ing to the locality of their data access requirements, for instance point operations,

neighbourhood operations, global operations etc. This methodology becomes useful

when a range of possible implementations, characterised by their cost in terms of

speed and area, are available for each node. This allows the designer to perform

5.4. Related work 45

cost-based analysis of the different implementation options for each operation. For

instance there are a number of ways of performing a convolution, and if cost-based

information is available about each method the designer may choose the appropri-

ate technique according to the constraints that are faced. The designer can then

populate the hardware skeleton using the necessary operations.

The stated advantage of the approach is that system builders do not themselves

require detailed hardware description skills, which is one of the aims of this portfolio.
Unfortunately, although hardware skeletons would speed the implementation process

when a full set of cores are available, it requires a library of optimised cores to be

available for each hardware platform (or type of FPGA) that may be used, which

could be difficult and costly to maintain. The method is also obviously less flexible

than the more general idea of using design guidelines, and is heavily oriented to those

algorithms that can be easily represented using data-flow graphs.

Researchers at the same institution have also looked at some specific high-level

algorithm operations, including a method of automatically generating designs for di-

rect implementations of 2D convolutions [39] and an efficient FPGA implementation

of a wavelet transform [40].

An MSc thesis from Vanderbilt University, USA and completed in 2000, [41]

focuses on the implementation on FPGA hardware of image processing algorithms

described originally in Matlab. The algorithms are all windowing operations, includ-

ing basic convolution and some more complicated methods such as rank-order filters

and erosion/dilation, and are all based on small kernel sizes, typically 3x3 elements.

The designs are all hand-coded in VHDL and are not heavily optimised. The findings

are that although the advantages of FPGAs are clear, the benefits can be outweighed

by the difficulty of implementing complex mathematics on FPGA devices. A sug-

gested solution to this problem is use of FPGAs and DSP devices in tandem, to take

advantage of the positive benefits of each platform. This viewpoint is less popular

today, given the large gains in the mathematical capabilities of FPGAs that have

been made in the intervening years since the work was completed.

The same topic of implementing Matlab algorithms is covered by work from

Northwestern University, USA which resulted in the MATCH compiler [42]. (The

5.4. Related work 46

MATCH compiler was later commercialised as Acce1DSP, a product that is briefly

discussed in section 5.3.2). Although now a proprietary technology, early papers

on the subject describe a process of high-level synthesis that can also be performed

manually. It works by unrolling loops and the vectorised Matlab instructions used
to operate on matrices, and then scheduling and binding the resulting simplified

code to hardware, in a similar way to that presented for C code in Appendix A of
this portfolio. The description of the MATCH compiler given in [43] gives a good

overview of the steps that are involved in translating behavioural-level code into an

efficient hardware design.

Athanas and Abbott [44] describe an attempt to classify image processing al-

gorithms in order to expedite their implementation on programmable logic (in this

case the multi-FPGA platform Splash-2). Their classifications are image combina-
tion, transformation, measurement, conversion, and generation. Of particular in-

terest are transformation operations (which include convolutions) and combination

operations (where Gaussian and Laplacian pyramids are discussed). Comparison of
the different classes is performed in terms of the demands they place on the under-
lying hardware, for instance the resource requirements of an 8x8 2D convolution

are compared with a 2D floating-point FFT. Some discussion is also given of the

difficulties caused by raster scan data formats. Although the nature of the Splash-2

platform differs from the single FPGA approach taken in this work, the attempt

to form general conclusions regarding image processing algorithms in terms of their

hardware implementations is obviously related.

In addition to those mentioned above, there are many publications that investi-

gate efficient implementations of individual mathematical operations that are perti-

nent to the field of image processing. One of note is reference [45], which looks at
implementation on FPGAs of fast Fourier transforms for signal and image process-
ing. Their approach looks at the different methods of performing an FFT (radix-2,

radix-4, finite Hartley transform etc.) and considers the demands they place on
the hardware. The findings are that the radix-2 approach performs well in terms of

speed and area, but the finite Hartley transform has the lowest memory requirement.
Comparisons are also made with some commercially available FFT cores. This type

5.5. Summary 47

of approach, where an operation common to many algorithms in a particular appli-

cation domain is assessed for its hardware impact, is one approach that is advocated
by this EngD.

5.5 Summary

The future of high-level synthesis will necessarily have to include new methodologies
if the complexity faced by hardware designers is to be manageable within reason-

able timeframes. Rather than a single solution emerging, it is increasingly evident

that domain-specificity is going to be integral to developing methodologies that can

produce designs of comparable performance to handcrafted methods. Each of the

available tools and methodologies impose their own constraints, some are more suit-

able to certain design styles than others, and there is a general lack of knowledge

about how image and video processing algorithms fit into this environment.

Whilst most current algorithm implementations are still carried out by hand,

and despite the fact that the majority of image and video processing algorithms
face similar constraints and difficulties in their implementation, there are no clear

guidelines as to how their implementation should be tackled. It is clear that the

process of decomposing algorithms into their basic constituent operations should be

performed with an understanding of those operations' suitability to the target hard-

ware. Some operations may be more difficult to implement than others, may require

more hardware resources, or have reduced performance on a particular hardware

platform. High-level transformations may result in drastic improvements in resource

use, power consumption, and performance, but at present this can only be performed

on a trial and error basis with no guidelines available. There are many classes of

mathematical operations that may result in a variety of hardware implementations,

some more efficient than others.

Investigation of these issues will produce data that allows assessments to be made

of algorithms at an early stage in their development, relating to how effectively

they may be implemented with the software tools at hand, and which hardware

architectures are most suitable. By looking closely at a range of algorithms, and their

5.5. Summary 48

constituent parts, the aim of this work is to demonstrate some of the problems and

potential solutions involved in the implementation of video processing algorithms.

Chapter 6

Results & Discussion

The main research effort focused on the implementation of several algorithms. These

algorithms cover a range of applications and are likely to form integral capabilities of
future Thales Optronics products. The main objective in looking at these algorithms
is to identify those parts that cause problems in defining appropriate hardware struc-
tures and attempt to explain why this is the case. Looking at a range of algorithms
in this way also helps to identify common features that could provide benefit if they

were implemented as reusable IP.

This chapter will discuss these algorithms and their implementation. The starting

point for each algorithm was a Matlab implementation along with associated test

vectors, with the aim of producing verifiable hardware implementations for Xilinx

FPGAs. Each algorithm will be briefly described, followed by some discussion of the

implementation process and the general conclusions that can be drawn.

6.1 Implementation of LRM contrast enhance
The first algorithm implemented as part of the research was the local range modifica-

tion (LRM) contrast enhancement algorithm by Fahnestock & Schowengert [46]. A

full description of the implementation process can be found in the portfolio document

(Appendix B).

49

6.1. Implementation of LRM contrast enhance 50

6.1.1 Background

The contrast of an image is a way of referring to its dynamic range, i. e. the range
between the brightest and darkest pixel. An image with poor contrast will stiffer
from a reduced amount of visible detail, with it usually being difficult to distinguish

foreground objects from the background. Poor contrast is a result of under- or over-

exposure of the imaging sensor, or use of a badly chosen digital representation that

does not provide sufficient range for the signal being captured. A simple method of
improving the contrast of an image works by applying a linear stretch to the dynamic

range to increase it to the maximum range available, which is usually determined in

the digital domain by the binary word length of the data values representing pixels.
For example, the contrast of an n-bit greyscale image could be enhanced by applying
the following calculation to each pixel:

an -man out= X (2"-1)
max - min

(4)

where min and max are the minimum and maximum pixel values in the entire image.

Application of this process will ensure that the brightest pixels in the input image

will become peak white, and the darkest will become black. Another name for this

process is histogram stretching, named for the effect the operation has on the image's

histogram. Example images and their histograms can be seen in figure 8.

The linear stretching operation acts globally on the image, using parameters
derived from the image as a whole. This form of contrast enhancement is widely

used as it provides a simple and effective means of improving contrast when the

source image has a poor dynamic range. There are, however, some situations in

which the method will give less satisfactory results: notably when the contrast varies

over different regions of the image (where regions of good contrast will limit the

effectiveness of the algorithm in regions of poor contrast), or when the image is

affected by noise (a single pixel affected by additive noise will significantly reduce the

amount of contrast stretching that will be applied). In these cases a global contrast

stretch will provide less than optimal results. The purpose of the LRM algorithm is

to provide a spatially-variant means of improving contrast, that is, one that alters

a pixel's value dependent on the contrast of its surrounding region rather than the

6.1. Implementation of LRM contrast enhance 51

Figure 8: Demonstration of contrast enhancement through a linear stretch. The effect

on the image histogram is also shown.

image as a whole. In this way the algorithm is adaptive to regional variations in

contrast levels, and although the LRM method is not completely noise tolerant the

effects of rogue pixel values will be limited to small confined areas.

The LRM algorithm works by dividing the input image into blocks; these are
typically 8x8 or greater since blocks that are too small will unnecessarily highlight

insignificant details. The original algorithm allows for non-square blocks, and also

allows the block size to vary within the image (a necessity at the edges when the

image does not contain an integer number of whole blocks). As shown in figure 9,

at the corners of each block is a node, and each node may have one, two, or four

neighbouring blocks depending on whether it is at the corner, edge, or centre of

the image respectively. The algorithm operates by finding minimum and maximum

pixel values within each block, then sorting these to find the minima and maxima at

each node. The minimum and maximum values for each pixel are then found using

two separate bilinear interpolations that operate with the four closest corresponding

node values. Finally a standard stretch operation (using equation 4) is applied using

the interpolated values for min and max.

6.1. Implementation of LRM contrast enhance

Mh,,
Max,

Min,,
Maxs

MM,
MaN

MM,
3,

Max13

Mini,
Max2

Mina,
Maxi

52

Min,
Max4

LA, HA L8, HB L1, Hc

Min., Mini, Mine,
Max. Maxi Max.

L. H0 LE, HE LF. HF

Min,., Min,,, Min12,
Max,. Max� Max12

Lo, H0 L,,, HH L,, Hi

Ming, Min15, Min,.,
Max14 Max15 Max,.

Figure 9: Partitioning of input image into blocks and nodes for LRM contrast en-
hancement.

A typical software implementation will require multiple passes through the input

data to achieve this: once to find block minima and maxima; once to find node

minima and maxima; twice to perform the two bilinear interpolations; and once to

apply the stretch to each pixel. There is also a large amount of intermediate data

generated by the algorithm that would typically be stored in multidimensional data

structures. Evidently this does not lend itself to a direct hardware implementation

when real-time operation is required.

6.1.2 Hardware constraints

In order to translate the algorithm into hardware it is necessary to make some design

choices regarding the implementation of the computational stages. The main com-

putational effort of the algorithm is in calculating bilinear interpolation equations

similar to that shown in equation 2. These interpolations take place over an area

the size of a block in the input image. In the software version of the algorithm the

block size is freely definable, but since the block size forms the denominator of the

interpolation equations one of the early design decisions was to limit the block size

to be a power of two, and force all blocks to be square and of uniform size. This

immediately simplifies the mathematics considerably: the six divide operations that

6.1. Implementation of LRM contrast enhance 53

make up the interpolation calculation are now replaced by a single binary shift, a
trivial operation in hardware.

A side effect of forcing all blocks in the image to be an equal size is that the image

must therefore contain an integer number of blocks. This then forces the choice of
block size to be a common factor of the image height and width, with the maximum
block size their greatest common divisor (GCD). The dimensions of most digital

images (e. g. VGA 640 x 480) have at least one common factor that is a power of
two, so this constraint is reasonable. However, for video data from analogue sources

the constraints on the block size and/or shape may have to be relaxed, which would

consequently increase the complexity of the calculations involved.

Having simplified the algorithm in this way work could begin on developing a
hardware implementation. It was decided that the transformation from software to
hardware would be performed manually, using a clearly defined process of applying

well-known transformations from the field of high-level synthesis, and carrying out

verification after each stage. The language chosen for this transformation was ANSI

C, since it is flexible enough to describe both high- and low-level behaviour. It does

not natively handle concurrency, but by using a special coding style the impression

of concurrency can be achieved.

6.1.3 Transforming behaviour to structure in C

The conversion of a Matlab algorithm into an equivalent C implementation may usu-

ally be undertaken without significant difficulty, as many of the formal semantics of
the languages are similar. High-level Matlab instructions with no direct equivalent in
C, for instance instructions that perform a two-dimensional convolution or FFT, will
obviously require a much more involved and time-consuming approach. Fortunately

the LRM algorithm uses fairly simple operators throughout, and the complexity of
the algorithm lies in its control flow rather than its computational aspects. An-

other difficulty at this stage lies in determining the shape and size of arrays and

vectors used in the Matlab code, a process that Haider et al. term scalarization [43].

This process also includes the act of translating Matlab's vectorised instructions into

C-compatible loops.

6.1. Implementation of LRM contrast enhance 54

The equivalence of the C code algorithm to the Matlab original may be verified

by testing both versions of the algorithm with the same stimulus, chosen to cover

a range of test cases. Once the algorithm is correctly described in C, a sequence

of transformations can be applied that gradually incorporates more structure and

simplifies higher-level behavioural constructs. Some of these transformations may

involve replacing floating-point arithmetic operations with fixed-point ones, unrolling

program loops, or simplifying statements to reduce the number of operators in a

single line of code (known as levelization [43]).

C is useful for this purpose because it is flexible enough to contain high-level and
low-level code. Although a language such as VHDL also contains behavioural-level

constructs, C remains executable, which means it can be verified quickly and with-

out the use of HDL simulators. This is a further example of model-based design, as
described for the System Generator design flow in chapter 5, here with the C code
forming an executable specification of the algorithm. After each of the transforma-

tions described above have been applied the current version of the algorithm can be

verified against the original Matlab model using the same test-cases as were used in

the original algorithm specification. This evidently aids verification greatly. Having

an executable model of the system is equivalent to performing a cycle-based simu-

lation, and avoids the difficulties of event-driven simulation as described in chapter
5.

The next stage in incorporating structure into the design is to introduce schedul-

ing, such that the design incorporates the notion of clock cycles and timing. The pro-

cess involves manual identification of instructions that can be executed on separate

time steps, and those that must be executed sequentially due to data dependencies.

The execution flow may be modelled in C using a large switch statement, with each
branch containing a single instruction and representing a time-step. Each branch

of the switch statement must be able to complete in one clock cycle. The designer

is essentially assigning computational steps to states of a controller, such that the

design becomes a large finite state machine (FSM), with as many states as there are
instructions in the algorithm. The states of the controller are stepped through in

sequence according to the program flow of the original algorithm, for instance where

6.1. Implementation of LRM contrast enhance

Ccmtrol

Data In

Datapath

Data out

Figure 10: Block diagram of a system with separate control and datapath.

55

previously there existed program loops the FSM can be designed to jump back to a

previous state. Subsequently, states that contain instructions that are data indepen-

dent may be combined, so that multiple instructions are executed on a single branch

of the switch statement; these may then be thought to execute concurrently. See

Appendix B, section 3.1 for a more detailed explanation of this process.

6.1.4 The control/datapath model

A theoretical model that uses the technique of scheduling computational steps using

a state machine is the finite state machine with datapath (FSMD) first proposed

by Gajski and Ramachandran [47]. Construction of an FSMD requires separation

of the control operations from the rest of the algorithm. Instructions that perform

control are looping constructs such as for and while statements, and branches such

as if and case. The control elements and data processing elements are implemented

as separate FSMs, and the data-processing FSM may then be considered to be a

pipelined datapath. An overview of a system of this format is shown in figure 10.

Note that the datapath is monitored by the controller using status flags, which may

be used to affect the control flow of the system. The current state, which is used to

control the datapath, may be thought to represent the instruction to be executed.

This kind of system is known elsewhere as a high-level state machine (HLSM) [48].

If the number of states has been minimised as far as possible the datapath may

Control
Inputs

Current state

Status indicators

6.1. Implementation of LRM contrast enhance 56

be considered optimal in terms of performance, as the maximum amount of spatial

parallelism has been utilised. If resource constraints are present, for instance due to

a limited number of hardware multipliers, then the number of states can be increased

to reduce concurrency and hence use less hardware at a given point in time.

Implementing the control and datapath aspects in separate modules allows com-

parisons to be made between the relative sizes of the two. A design that has a large

and complex controller but relatively small datapath is said to be control-dominant;

conversely, a design with a simple controller but large datapath is datapath-dominant.

Characterisation of algorithms in this way provides important insights into their suit-

ability for a particular target hardware.

Complex control-dominant flows are much more suited to a software implemen-

tation on a programmable architecture such as a microprocessor, microcontroller,

or DSP chip. The fundamental elements of software development (nested loops,

branches) are characteristics of complex control and irregular execution flows. Con-

trollers are characterised by their ability to make decisions according to the values of

their inputs. Control flows are essentially sequential processes that may have irreg-

ular structure but usually only need to do a single thing at a given time. Although

it is possible to implement complex control in hardware using FSMs, it is tedious to

design and inflexible.

Datapaths are evidently more suited to a pure hardware implementation, where

spatial and temporal parallelism can be exploited, i. e. when the system must perform

the same operation(s) repeatedly, and does not need to radically change its function

at any time.

It is clear that algorithms intended for implementation on FPGAs should conform

to the dataflow paradigm if the potential performance benefits of the platform are to

be realised. The LRM algorithm is control-dominated: the bulk of its execution is

concerned with looping through image blocks and selecting (i. e. making decisions on)
local minima and maxima. This implies that the LRM algorithm is not an algorithm

that is simple to implement in hardware, and the resulting implementation is not

certain to provide huge performance benefits over a software one.
The manual process of scheduling and allocation that has been described here

6.1. Implementation of LRM contrast enhance 57

(and in the portfolio document) provides a mechanism for implementing control-
dominant algorithms that do not readily conform to the dataflow paradigm. Having

a clearly defined framework for implementing such algorithms can reduce the design

time significantly. Using aC code version of the algorithm that can be quickly

verified after each modification allows the designer to gradually insert structure into

the behavioural-level specification without introducing large-scale errors, and thus

implement model-based design within the existing design flows.

6.1.5 Translation to VHDL and synthesis

The aim of the manual scheduling and allocation methodology presented here is to

have the algorithm written in a subset of C where each instruction has a direct

equivalent in the synthesisable subset of VHDL. This is perfectly feasible: the C

switch statement can be translated to the VHDL case statement with minor modi-
fications, conditionals such as if have direct equivalents, and any looping operators

should have been removed or decomposed as part of the sequencing of the FSM.

Although the LRM algorithm is computationally quite simple, had there been any

complex mathematical operators left at this stage that could not be decomposed any
further within the FSM model integration of standalone modules or IP cores would
be necessary.

Once translated to VHDL synthesis can be undertaken as normal. Any subse-

quent verification effort must be applied using HDL simulators and custom test-

benches; verification may be required to ensure the equivalence of the VHDL code

with the final C model. More details on the implementation and verification strate-

gies are available in Appendix B, sections 4-5.

The design was implemented on a commercial development board featuring a
Xilinx Virtex-2 XC2VP20 FPGA and ADC/DAC devices. Table 6 shows the re-

source usage for the LRM algorithm after implementation on the Virtex-2 FPGA.

The development time for implementing the design, from the Matlab specification

to a gate-level (post-synthesis) netlist was approximately six weeks. A simultaneous
design effort within Thales for the same algorithm, but using a traditional implemen-

tation flow that had not utilised the FSMD model, had resulted in a considerably

6.1. Implementation of LRM contrast enhance

Resource I Used Available % of XC2VP7

Occupied slices 470 4,928 9

4-input LUTs 765 9,856 7

Block RAM 13 44 29

Multipliers 14 44 31

Table 6: Resource usage of LRM algorithm.

58

longer development time. The two implementations had comparable resource usage

and performance. The resource figures shown here highlight the relatively simple

computational aspect (i. e. small datapath) of the algorithm. The control parts of

the algorithm do not use significant logic resources. The performance of the final

system was sufficient to process VGA data in real-time.

6.1.6 System Generator implementation of LRM algorithm

The LRM algorithm was also implemented in the Xilinx System Generator environ-

ment. LRM was chosen as an ideal opportunity to become familiar with System

Generator using a familiar algorithm that was well understood. The implementation

(described in Appendix C) faced many of the same difficulties as a hand-crafted HDL

implementation. The System Generator environment is designed with DSP applica-

tions as the primary target domain, and so it is heavily oriented towards dataflow

style algorithms. For this reason the LRM algorithm is not an ideal candidate for

implementation using the System Generator block set. Because of the System Gen-

erator library's emphasis on high-level mathematical operators many of the LRM

algorithm's constructs had to be formed from low-level blocks, such as individual

registers and logic functions.

Some of the more complex control methods posed difficulties in their System

Generator implementation that were easier to solve with hand-coded methods. For

instance, the overall control of the design was still implemented using an FSM,

albeit this time in Matlab M-code imported into System Generator with the `M-

Code Block'. The nested looping constructs that appear in the algorithm were

6.2. Implementation of RL deconvolution 59

implemented using a complicated system of selectively enabled counters. More details

on some of the challenges faced in the implementation are available in Appendix C,

section 3.

Comparison of the results from the hand-crafted and System Generator imple-

mentations of the LRM algorithm gave very similar resource usage and performance,
however the design time was longer for the System Generator work (see Appendix

C, section 4). The overall findings of this preliminary work with System Generator

was that although strong in certain areas, notably fixed-point design and some veri-
fication tasks, it was ill-suited to complex control algorithms such as LRM. System

Generator would be used later in the research to more positive effect when imple-

menting a datapath-dominant design.

6.2 Implementation of RL deconvolution

The Richardson-Lucy deconvolution algorithm was the second major algorithm stud-
ied as part of the research. The full report describing the work and implementation

may be found in the portfolio documents (Appendix E).

6.2.1 Background

Richardson-Lucy deconvolution is an established method for the recovery of images

that have become blurred. The blurring process may be caused by various factors,

including the inherent characteristics and possible defects of the optical equipment.
The blur may be modelled mathematically as a two-dimensional convolution opera-
tion, as described in chapter 5, with the filtering kernel replaced by a point spread
function (PSF). The PSF represents the spreading or smearing of a single point

source, and may be thought of as a probability distribution describing the potential
destinations of a photon originating from a given point in the input. A PSF is spe-

cific to a particular imaging apparatus, and may be derived mathematically using

models of the optical path, or more commonly deduced empirically through mea-

surement of the spreading of a point source against a black background. An example
PSF, obtained empirically by engineers at Thales for a specific imaging apparatus,

6.2. Implementation of RL deconvolution

12

Figure 11: Surface diagram of an 11 x 11 point spread function.

60

is shown in figure 11 as a discrete function, 11 x 11 elements in size. The objective of

deconvolution is to remove the detrimental effects of the PSF and obtain the same

data as would be observed by a hypothetical, perfectly resolving instrument. Such

an instrument would have a PSF equivalent to a two-dimensional Dirac function [49],

with no spreading occurring.

Several algorithms have been reported that can be used to deconvolve the image

and the PSF. A direct inverse to the blurring process is not usually possible due to

the available data being mathematically incomplete (i. e. the data in the observation

is not sufficient to describe a unique solution), and the problem therefore being ill-

posed. For this reason statistical estimation techniques are usually required. These

techniques attempt to estimate the data of maximum likelihood given the observation

and the PSF.

The Richardson-Lucy algorithm [50] [51] uses Bayesian probability theory to

achieve this. The algorithm hinges on the insight that the input image, the output
image, and the PSF may all be considered probability distributions. The mathemat-
ical derivation is available in the portfolio document (Appendix E, section 2) and

will not be reproduced here, but the algorithm may be described by the following

6.2. Implementation of RL deconvolution 61

iterative operation:
1Q

Ir+1 = Ir x PSF *
observation (

PSF * Ir)

where P is the current estimate of the true image and I''+1 is the next estimate,

the * symbol denotes the two-dimensional convolution operation, and the divide and

multiply operations and exponent ß act in a pixelwise fashion. a is an additional

component that is not present in the original papers by Richardson and Lucy, which

acts to accelerate the rate at which the algorithm converges. The Richardson-Lucy

algorithm is semi-converging [52], meaning it will approach a solution but after a

certain number of iterations diverge again rather than converging, which makes it

important to stop iterating at the right time. Considering the hardware implications

it is clear that the fewer iterations that are required the better. The exponent ß

is typically chosen as a value between one and three (any higher and the algorithm

becomes unstable), and is reported to reduce the number of iterations required by

a factor of a [53]. Analysis was necessary to determine the minimum number of

iterations that could realistically be implemented in hardware while still producing a

sufficient level of deconvolution. It was found that two iterations could be used with

a varying acceleration factor (p is equal to two for the first iteration, then reduced to

one for the second) to good effect, with a fairly low hardware cost (for more details

see Appendix E, section 3).

Due to the low number of iterations required it was decided to unroll the iterative

process and implement the algorithm as one continuous datapath. The alternative

to unrolling the algorithm is to implement one instance of the loop but then run it

at a clock speed that is a multiple of the data rate. This may not always be possible

with high bandwidth video signals, and introduces a control aspect to the design.

Unrolling the loop removes any control aspects to the algorithm and thus facilitates

a high performance hardware design, overcoming some of the difficulties encountered

with the LRM algorithm described in the previous section.

6.2.2 Efficient implementation of large convolutions

Each iteration of the deconvolution algorithm contains two two-dimensional convolu-

tions with the PSF. The PSF in figure 11 is a fairly typical real-world example, and

6.2. Implementation of RL deconvolution 62

measures 11 x 11 elements. Performing an 11 x 11 two-dimensional convolution is a

relatively expensive task in hardware: a direct implementation requires 121 multiply

operations and 120 additions, and a significant memory requirement to buffer and

align data elements that are arriving in a raster scan format. To implement four of

these operations (two per iteration) would incur an unmanageable resource overhead.
Some two-dimensional filter kernels may be decomposed into two orthogonal one-

dimensional filters acting separately in the horizontal and vertical directions. A

filter that can be decomposed in this way is said to be separable, meaning that

the coefficient matrix that represents the filter can be expressed as the product of

a column vector multiplied with a row vector. Separable filters are advantageous

because they allow a two-dimensional convolution to be implemented using simple

and well-understood structures such as one-dimensional finite impulse response (FIR)

filters. A separable 11 x 11 kernel could then be implemented using 22 multiplies

and 21 additions. Unfortunately, while some well-known functions are separable (for

instance the Gaussian function), the majority of real-world two-dimensional functions

are not separable (they cannot be expressed as the product of a single column vector

multiplied with a single row vector).
One method to overcome this is based on the fact that a parallel connection of

separable filters results in a non-separable response [54]. This allows several pairs

of orthogonal one-dimensional filters to be combined as necessary to reproduce the

desired filter response. A diagram of this kind of system is shown in figure 12. Each

separable filter is formed from a horizontal and vertical 1D filter that acts on the

image rows and columns respectively. A varying number of separable filters may be

required depending on the filter response being approximated. The decomposition

will be more efficient than a direct implementation whenever

k(m+n) <mn (s)
where m and n are the dimensions of the filter kernel being decomposed, and k is

the number of separable filter pairs. required for an exact reproduction.

The implementation of non-separable responses using simple one-dimensional fil-

ters was first proposed by Treitel and Shanks [55], who used the term multistage

separable filters. They show that a matrix can always be decomposed into a finite

6.2. Implementation of RL deconvolution 63

Figure 12: Summation of k separable filters to produce a non-separable response.

number of separable filters, using a mathematical technique known elsewhere as the

singular value decomposition (SVD). The SVD of a matrix X is given as (noting

that superscript T denotes the matrix transpose operation):

Xmxn = UmxnEmxnVmxn (7)

where U and V are orthogonal matrices whose columns contain the eigenvectors of

the matrices Q= XXT and S= XTX, and E is a diagonal matrix containing values
(known as singular values) equal to the square roots of the associated eigenvahues
(the eigenvalues of Q and S are identical). The columns of U and V are used as

the coefficients of the one-dimensional filters used in the parallel configuration of
figure 12. The rank of E, which for a diagonal matrix is equivalent to the number of

non-zero values, determines k, the number of stages that are required for an exact

reproduction.
Efficient use of this method to achieve a perfect reproduction of the original filter

kernel is dependent on the kernel's linear dependence. Linear dependence may be

thought of as redundancy in the kernel. If the filter kernel, X, being decomposed is

linearly independent (i. e. if none of the vectors contained in X can be expressed as a
linear combination of the other vectors in X [56]), the SVD will not provide efficiency

savings over a direct implementation (equation 6 will not be satisfied). However, it

is a feature of the majority of image processing kernels that they should have a lin-

ear phase response, since it has previously been shown that the intelligibility of an
image relies on its phase characteristic [57], and distortion of an image's phase would

6.2. Implementation of RL deconvolution 64

therefore make it unrecognisable. The phase linearity of an image processing filter is

manifest in the symmetry of its impulse response, which also implies linear depen-

dence. It is therefore evident that image filtering applications will usually provide

opportunities to make significant reductions in hardware costs through application

of the multistage separable filter technique. A square, linear phase filter kernel, with

m2 elements, will require a maximum of m2 1 separable stages. Substituting this

value for k into equation 6 does not satisfy the inequality (the number of multiplies

required would be m2 + m). However, whenever the multistage expansion of the

kernel results in less than 1 separable stages, equation 6 will be satisfied and the

savings will be made.
The resulting one-dimensional kernels will also be symmetrical, which provides an

opportunity to employ a well-known optimisation in 1D filter design that can reduce
the number of multiplies required by up to a half. The method works by pre-adding
data elements that would otherwise be separately multiplied by a common coefficient.
It can however cause some problems as it introduces extra latency before the multiply

stages, which for the vertical filters especially interferes with the buffering required.
It can also result in long, non-pipelined adder chains on the output side, which may

cause timing difficulties when the design is placed and routed on the device.

Additional savings are possible if an associated loss of accuracy is acceptable.
The singular values are normally listed in the matrix E in descending order, with
the values of the greatest magnitude contributing more to the final response than

the others. Using a reduced number of singular values (and consequently a reduced

number of filter stages) will result in an approximation to the original matrix X, with

an error that is the equal to the ratio of the sum of the discarded singular values to

the sum of all singular values, or
Ql+Q2+... +Qk

(8) fk _1_ Ql + Q2 +
...

+ Qn

which gives the error sk from using k singular values from a maximum of n, where
k<n, and a denotes the individual singular values in the matrix E. Studies showed
(Appendix E, table 1) that the PSF of figure 11 could be represented to 99.4%

accuracy using two stages (44 multiplies, 43 additions). The rate at which the

accuracy improves with successive stages is illustrated in figure 13. Similar results

6.2. Implementation of RL deconvolution 65

, 000%

YDb%

990%

99M

ý
ýý ý

<
W. 6X

97D%

986%

ED%
s 34

Number of stegss

6

Figure 13: Increase in accuracy with successive stages for the multistage decomposi-

tion of the PSF in figure 11.

are reflected in other image processing filters; Andrews [581 notes that a large subclass

of 2D filters can be represented with a multistage separable filter with two stages.
The multistage separable filter method provides a simple and efficient means of

implementing large two-dimensional convolutions using one-dimensional FIR struc-
tures, such as the transpose-form FIR filter, which is ideal for FPGA implementation

as it is a systolic, inherently pipelined architecture. The filter coefficients used are

usually constant, which means that the multiplications can be implemented using
either LUTs or hardware multipliers, providing freedom to utilise the available re-

sources in the best possible manner.

Implementation of multiple stages means that there will be several vertical one-
dimensional filters that act on the image columns. As described in chapter 5, vertical
alignment of data arriving in a raster scan format is performed using FIFO buffers

equal in length to the width of the image. Although this could become resource

expensive with a multiple stage filter, the delay lines can be shared between stages
to reduce the memory requirement.

6.2. Implementation of RL deconvolution

Resource Used Available % of XC2VP20

Occupied slices 9,278 9,280 100

4-input LUTs 9,722 18,560 52

Block RAM 83 88 94

Multipliers 88 88 100

Table 7: Resource usage of RL deconvolution algorithm.

6.2.3 Hardware implementation

66

System Generator was used to map the system into hardware since the main loop

body of the algorithm could easily be unrolled and implemented as a datapath. Apart

from the convolutions the other operations performed by the algorithm are divides

(implemented using a vendor IP core) and multiplies/raising to an exponent, which

are all straightforward to implement with existing library blocks. The final design

resembled a fully pipelined datapath, and as such could produce one output pixel

per clock cycle. The synthesis tools reported a maximum clock speed of 63MHz,

which could comfortably process 30fps SXGA video at real-time rates (in a device

with sufficient memory).

The resource usage for a VGA implementation is shown in table 7. The smallest
device that could accommodate the algorithm in its initial form was a XC2VP50,

however subsequent optimisation reduced the size of the design sufficiently to fit on a
XC2VP20, so that it could be implemented on a custom Thales FPGA circuit board

available for video processing demonstrations (more details on the hardware platform

are available in Appendix G). The key areas where optimisations were possible were
in reduction of fixed-point word-lengths, and manually mapping multipliers to logic

(i. e. LUTs) and delay lines to the block RAM on the device that was previously going

unused. The resulting design, including the overhead for the video I/O interfaces,

utilised 100% of the slices on the device for either logic functions or routing. Some

example images were produced and are shown in figure 14. The deconvolved image

shows a general increase in spatial resolution and dynamic range, and some of the

finer detail is clearer.

6.2. Implementation of RL deconvolution 67

Figure 14: Original image, and same image after two iterations of accelerated RL

dcconvolution.

Figure 15 shows a difference image between the FPGA implementation and the

original Matlab algorithm after two iterations. For presentation purposes five lines

have been removed from each edge (to remove the edge-effects of the convolutions),

and the image has been inverted and scaled to use the whole greyscale range. Over

the region shown in the difference image the maximum error between corresponding

pixels in the two implementations is equal to nine greyscale values, and the mean

squared error (MSE) between the two implementations is approximately 1.56. Com-

parison with the original image in figure 14 shows that errors occur along the edge

detail within the image, as would be expected for a sharpening algorithm. The main

sources of error are the multistage separable filter approximation of the true PSF,

and the fixed-point hardware divide operation which has limited precision compared

to the Matlab equivalent.

The improvement in image quality that is possible with hardware deconvolution

comes at a considerable price: using a whole FPGA for deconvolution may be deemed

an unnecessary overhead when there are more basic methods of image sharpening

available. One such method is unsharp masking, which is a simple filter that empha-

sises high-frequency detail and can he implemented with minimal resources, but may

also introduce noise into the output image. Introduction of noise may not always be

6.3. Implementation of pyramidal image fusion 68

Figure 15: Inverted and scaled difference image between Matlab and hardware im-

plementations of Richardson-Lucy deconvolution. Five lines have been cropped from

each edge to remove the edge-effects of the convolutions.

detrimental, particularly if the image is to be used by humans who can extract and

recognise detail in the presence of often quite severe noise and distortion.

Deconvohition remains the most accurate method of removing blur caused by

processes that can be modelled by a convolution with a PSF. This covers a wide

range of image degradations, including focus blur, motion blur, optical aberrations,

and others. That it does so at a high computational cost presents choices to the

system designer who must make judgements on the desired accuracy of the output.

6.3 Implementation of pyramidal image fusion

The third major algorithm that was investigated was a method of performing image

fusion using Gaussian image pyramids. The implementation that is presented here

is based on Matlab source code that is flawed in its interpretation of the published

fusion algorithm; however many of the design details remain valid. The algorithm

and its implementation will now be summarised along with a description of the

problems with it; the portfolio document contains the full details (Appendix F).

6.3. Implementation of pyramidal image fusion

6.3.1 Background

69

Imaging sensors are responsive to a particular region of the electromagnetic spectrum,

and it is often beneficial for a scene to be captured with multiple sensors in order to

collect more information about a scene than would be captured with a single device.

A resulting problem is then how to display this information effectively. Displaying

multiple observations of a scene on multiple monitors is wasteful and makes the

images difficult to compare. This has led to a requirement for methods of fusing

images such that the useful information from each source image is displayed in a

single composite. This process may also be used to display observations of a scene
that have been taken with a single sensor with multiple points of focus; in this way
the depth-of-field of the image can be increased.

Simple methods of combining images take no account of their content, and per-
form a linear operation such as averaging. A more sophisticated approach uses

edge-detection and other operators to identify whole features in the source images

that are then extracted and used in the composite. In order to extract features at
different scales a multiresohition approach may be used, as described in chapter 5,

whereby the input image is decomposed into a set of frequency band-limited images

that are localised in both space and spatial-frequency. The multiresolution decom-

position used here is the Gaussian pyramid (59], which is a special case of the more

generalised area of wavelets.
It should be noted that the images to be fused are assumed to be perfectly aligned.

Frequently when multiple sensors are used there is a boresight discrepancy that would
introduce errors into the fusion process. Alignment of images that are captured from

differing viewpoints is a process known as image registration; a registration algorithm

was also investigated during the research and will be discussed in section 6.4.2.

6.3.2 Pyramid generation

The construction of a Gaussian pyramid involves repeated low-pass filtering and sub-

sampling of the input image. The subsampling is by a factor of two both horizontally

and vertically, which results in an image with one quarter the number of pixels. The

6.3. Implementation of pyramidal image fusion 70

filter kernel used is a Gaussian, usually of fairly low order, and is chosen such that the

resulting frequency content of the image is reduced by one octave at each level of the

pyramid, which is necessary in order to prevent the subsampling from causing alias-
ing. (The Gaussian kernel does not have an ideal brick-wall response, which means

that some aliasing can still occur; these slight effects are however usually disregarded

for these purposes.) One of the benefits of using a Gaussian kernel is its separability

which, as described in section 6.2.2, significantly reduces the computational burden

involved in convolving it with the image. An image pyramid is typically generated

with three levels above the base image, any more than this and the images become

too small to be useful and the edge-effects of the convolutions too detrimental.

In the original paper on the generation of Gaussian pyramids, Burt [60] uses the

following notation:
22

Gk(i, j) =EE w(m, n)Gk_1 (2i+m, 2j+n)
m=-2 n=-2

(s)

which describes the generation of pyramid level Gk from level Gk-1 using filter kernel

w (m, n), in this case a5x5 Gaussian function. The reverse operation, which
is needed in the inverse transform as well as to construct another related image

pyramid type known as the Laplacian, involves two-dimensional upsampling and

then a further application of the generating filter kernel to smooth the image. This

may be defined as
22

2--m j--n
Gk (i, j) =4w (m, n) Gk+l

(2'2)

m=-2n=-2
(lo)

where only terms for which 'z and are integers contribute to the output. The

multiplication by four is due to the fact that the upsampling and filtering process

involves spreading the energy of one pixel over the area of four pixels. More details

on this process are provided in Appendix F, section 2.

The Matlab implementation that forms the starting point for the hardware design

presented here is based on an incorrect interpretation of this equation where the

subsampling is performed before the filtering. This situation bypasses the anti-

aliasing function of the filtering stages and therefore the resulting images may exhibit

severe aliasing artefacts. The pyramids produced using this method have been used

6.3. Implementation of pyramidal image fusion 71

here for image fusion with passable results, but the method should not be used

in general due to the aliasing problem. The implementation that follows does not

therefore constitute an exact implementation of image fusion as published by Burt

in his original paper.

A further consequence of this method is that by performing the subsampling first

the amount of data to be processed is reduced, hence reducing the computational

expense of the pyramid generation portion of the algorithm. A brief discussion of the

effects of performing the pyramid generation process in this way will be discussed

shortly; a more detailed analysis is available in Appendix F, section 6.

The most obvious method of generating Gaussian pyramids in this way is a

sequential process, repeated for each level of the pyramid, whereby the image is

subsampled in the way it is read out of memory, filtered, then stored back into a

separate set of memory locations. This process is inefficient for a number of reasons.
Firstly, the Gaussian pyramid with three levels above the base constitutes nearly
times the amount of data as the original image, so a significant amount of memory is

required. Since storing this amount of data on-chip is infeasible, this would have to
be stored ofd chip in RAM. However, limitations on memory bandwidth would make

getting 3 times the video data rate into and out of memory in real-time extremely

problematic. Another detriment to generating the pyramid levels sequentially is that

it would be a control-dominant process, and therefore time-consuming and unwieldy

to implement in hardware for the reasons previously described.

As has been discussed, to utilise the performance benefits of the FPGA it is

important to implement the pyramid generation process as a pipelined datapath.

However, due to the subsampling process the later stages of the pipeline operate at
lower data rates than the earlier stages, and therefore the only way the process can
be implemented as a single pipeline is by reducing the clock rate of the pipeline after

each subsampling stage, otherwise the later stages will stall while they wait for data.

This mechanism allows generation of a pyramid level to commence before the level

beneath it is complete. A block diagram of the pyramid generating pipeline is shown
in figure 16. The clock rate of each section of the pipeline is reduced by a quarter,
to match the fact that it is receiving one quarter the amount of data. Asynchronous

6.3. Implementation of pyramidal image fusion 72

Pyramid Pyramid Pyramid Pyramid
Level Le

A
G, .1 02 Level

a
G,

-------------------------- ----------- ------------ , ii i

i-
I-I I--l .ýý f-- I ---l ,

i------�
I1 !

i FIFO (ýn ýý
rMYnea fý FIFO t'V1 F7F0 ýý ßa""n I

-J
Y III I__ ý i`- I

;ý;,
Sample raren i Sample rate N4 I Sample rate n/16 i Sample rate rV64 i

1 __... ý _ . _. _ ...
_____- -

1-
-- ____- ________-_- -- __ - -- -

1___________-
__________- __-_ý_______________

Figure 16: Pipelined image pyramid generation.

FIFO buffers act as the borders between clock domains. Because the clock speeds

are integer divisions of each other they remain held in lockstep and metastability is

not an issue. Two-dimensional subsampling is achieved through selectively enabling

data writes to the FIFO; horizontal subsampling involves discarding every alternate

image pixel; vertical subsampling requires discarding every other image row. Note

that the lack of a filtering stage before the first subsampling block means that there

is nothing to prevent aliasing from occurring, and therefore the design as presented in

figure 16 is not a method that should be used in general to produce image pyramids.
A correct version of this pipeline is shown in Appendix F, figure 8.

Generation of pyramids in this manner ensured a design that could produce full

VGA image pyramids at rates of over 100 frames per second. Other implementa-

tions of this process have been reported and a comparison is made in Appendix F,

table 1. (It should be noted that the published methods generate image pyramids

in the correct manner by filtering and then subsampling. However, as will be dis-

cussed below, in performance terms this affects the latency only and has no effect

on throughput.) Transformation of an essentially control-based process into a data-

path through manipulation of clock rates had made the algorithm more suitable for

FPGA implementation, and enabled later stages of the fusion process to be similarly

parallelised. In addition, by generating pyramid levels concurrently an overall lower

clock speed can be used, with the accompanying reduction in power consumption.

6.3. Implementation of pyramidal image fusion 73

Source Image A Pyramid

Q

1
ý

I

I

f

QQC
CompoeMe Image Pynmld

t
i

Source Muepe B Pyramid

Figure 17: Fusion of gradient pyramids.

6.3.3 Gradient pyramid fusion

Compo&Ns
Image

Successful fusion of image pyramids relies on selecting the important detail at each

scale that should be carried forward into the composite image. The method suggested
by Burt [61] uses gradient operators in four orientations: horizontally, vertically, and
in the two diagonal directions. All four operators are applied at each scale of the two

source pyramids, which results in each level of each pyramid being decomposed into

four gradient maps. An overview of this process is shown in figure 17. The resulting
data are known as gradient pyramids, and there are now eight of them (four gradient

pyramids per source image) to be handled and processed concurrently. This evidently

constitutes a substantial amount of data, and reinforces the need to implement the

algorithm as a datapath structure. In contrast to the original software version of
the algorithm, in hardware the gradient filters are applied to the source pyramids in

parallel, splitting the data at each scale into four parallel streams, an example of loop-

unrolling. These separate data streams are then combined again using comparators
to select from the four orientations the pixel with the greatest absolute value, which
is assumed to offer the most salient detail.

6.3. Implementation of pyramidal image fusion 74

The inverse pyramid transform involves further application of two-dimensional

filters followed by a summation of the four orientations, and then, starting from the

top of the pyramid, each level is expanded using equation 10, and then added to the

level beneath it. At the end of this process the resulting image will represent the

composite of the two source images. The detail extraction and fusion process, and
inverse pyramid transform, are exact implementations of Burt's original method. For

more information on these aspects see Appendix F, section 3.

6.3.4 Hardware implementation

System Generator was again used to map the behaviour onto Xilinx library cores. All

the elements of the software version of the algorithm had direct hardware equivalents.
As with other System Generator models, it was possible to verify the design using

the same test stimulus as was used for testing the original version of the algorithm.
The fully pipelined nature of the design ensured that the system could produce

output pixels at a rate of one per clock cycle. The design could comfortably run at

clock rates that would allow fusion of dual VGA video streams at 30fps, with a latency

of <50ms. Experiments showed a hundredfold speedup over a PC-based version of

the same algorithm (example images and more details are given in Appendix F,

section 5).

The resulting resource usage after synthesis and mapping to the Virtex-2 family

of devices is shown in table 8. Given the amount of intermediate data generated
by the algorithm it is unsurprising that the most utilised resource is that of on-chip
RAM. The RAM is mostly being used to implement the long buffers that are required
for the vertical filters. One interesting feature of the algorithm is that it contains no

multiply operations, due to the coefficients of the filters all being inverse powers of two

and thus easily implemented using shifting and slicing operations. When hardwired

resources, such as the dedicated multipliers, are unused they effectively become a

source of inefficiency both in terms of area and power, which is one argument against
incorporating hardwired elements in FPGAs.

By bearing in mind the need to implement algorithms as datapaths it becomes

possible to implement the complex fusion algorithm quickly and efficiently using

6.3. Implementation of pyramidal image fusion

Resource I Used 1 Available % of XC2VP100

Occupied slices 13,287 44,096 30

4-input LUTs 24,533 88,192 27

Block RAM 430 444 96

Multipliers 0 444 0

Table 8: Resource usage of pyramidal image fusion.

75

model-based methods. Sequential generation of pyramid stages would not only be

time-consuming to implement but would also prevent use of tools such as System

Generator due to its lack of support for bidirectional buses and consequent inability

to interface to external memory. Conceptualising an algorithm's operation with

respect to the raster scan format in which image data usually enters a system is

critical to ensure performance in the face of limited memory bandwidths and the

difficulties of implementing control-dominant applications.

Alternative method of pyramid generation

As described in section 6.3.2, the method of generating image pyramids that has

been presented here is not a true implementation of the image fusion algorithm as

published by Burt, because the subsampling is performed before filtering at each

stage of the pyramid generation process. There is thus no mechanism to prevent the

subsampling from causing aliasing and therefore, depending on the input data, the

image pyramid that is produced is liable to distortions. A further consequence is that

there is less data to be filtered at each stage, meaning that the effects of the filtering

are more pronounced and the resulting image pyramid exhibits an increased level of

blur. A comparison of the results from the two methods is available in Appendix F,

section 6.

The design presented here could be modified to generate true Gaussian pyramids

with minor modification. At each level of the pyramid the blocks for performing the

subsampling and filtering could simply be swapped; the multiple clock rate design

would still provide an efficient method of implementing the algorithm. When the

6.4. Other algorithms 76

image is filtered as part of the pyramid generation process it is twice the size in

each dimension than it would be if filtering was done before subsampling. Therefore

to generate true Gaussian pyramids the line-buffers for the vertical filters would all

need to be twice as large, doubling the memory requirement of this aspect of the

algorithm. For a 640 x 480 image this requires another 2240 memory locations,

which is 35kb for 16-bit data (for precision the implementation uses an internal

filter representation of 16-bits). This is applied to both images, so the total memory
increase is 70kb. Table 8 shows that there are 14 Block RAMs available on the target

device; each Block RAM has 18kb capacity so the modified implementation would

require an extra four Block RAMs and could therefore be accommodated on the

same device. The filters are the same size regardless of the way the image pyramids

are generated and so the computational demands are the same; the latency of the

process would however be increased by a factor of two. Because the latency of the

pyramid generation process constitutes approximately a third of the total latency of

the design (along with one third for detail extraction and one third for the inverse

pyramid transform), it is estimated that the total latency of the alternative design

would be in the region of 60-70ms. The design would remain fully pipelined so,

providing the same clock rate was used, throughput would not be affected. The four

levels of the pyramid are the same size whether the filtering is done before filtering

or after, and so the implementation details for the rest of the algorithm remain the

same.

6.4 Other algorithms

Several other smaller algorithms were investigated during the period of research.
Two of note were an implementation of a polynomial image registration algorithm,

and a PID control algorithm, as well as a number of more simple image processing

algorithms. The implementations of the image registration and PID algorithm will

now be briefly reviewed, as they provide an opportunity to look at algorithms differ-

ent in operation to those previously discussed. The full reports written at the time

the work was carried out may be found in the portfolio documents (Appendices D

6.4. Other algorithms 77

&H).

6.4.1 PID servo control algorithm

Implementing a PID control algorithm offered an opportunity to look at other types

of algorithms that could benefit from implementation on FPGA hardware. The PID

algorithm is computationally quite simple, and from a systems integration perspec-

tive it makes sense to implement the control loop in digital hardware if possible,

particularly as it usually takes up relatively few resources and may utilise spare

capacity on devices that exist in the system for other tasks.

The PID algorithm is used in a multitude of situations and is widely understood.
It acts to produce an input to a system based on an error signal derived from the

difference between the system's current and desired output. To do so it uses a

computational process with three terms: proportional, integral, and derivative. A

closer look at the mathematics and the mapping of this process to System Generator

blocks is presented in the portfolio document. However it is worth discussing some

aspects of the design here, due to the interesting problems that were faced that are

not usually present in implementation of image and video processing algorithms.
The actual calculation aspects of the algorithm are fairly trivial to implement,

being made up of multiplies and additions. However, it is usually desirable to have

minimal end to end latency in the controller, which can sometimes be problematic.
Latency in the controller can introduce instability into a closed-loop system, because

the accompanying phase shift can lead to positive feedback. In order to counter
forward latency it is usual to increase the sample rate. However, large sample rates

are not desirable in digital controllers: the integral and derivative coefficients are

scaled by the sample time and in high sample rate systems this results in coefficients

that are fractional and very small. Consequently their fixed-point representation can

require large word lengths that impact the size of the design when it is mapped to

the resources in the FPGA. In addition, any inaccuracies in the fixed-point represen-

tations are compounded by the fact that a high sample rate means the controller is

performing more calculations, and so rounding errors can build up. For these reasons

it is usual to work at a sample rate that is the bare minimum to correctly handle

6.4. Other algorithms 78

the bandwidth of the system under control. There is a thus a tradeoff, between the

need for low sample rates but also low latency, that the control system designer must
balance.

As with signal processing, Matlab and Simulink are the environments of choice

for control algorithm designers, and designing control systems in System Generator is

a natural progression. Enabling the control engineers to utilise model-based design

techniques to implement algorithms in hardware has obvious benefits. The more

generic advantages of FPGAs are also fully exploitable in control system design:

the ability to exploit spatial parallelism allows all three terms of the controller to

be calculated concurrently, thus reducing forward latency and controller efficiency,

and the added flexibility of the FPGA design allows the controller to be modified or

tuned after integration into the rest of the system. Since this work was carried out,

other reports have been published that come to similar conclusions [62].

The resulting design used in the region of 650 slices, which is less than 10% of

a small Virtex-2 device. The work was successful in that the controller designed

during this phase of research became an integral part of the focusing mechanism on

a commercial Thales product, and implementation of controllers in hardware looks

set to continue in this manner for the foreseeable future.

6.4.2 Image registration by polynomial warping

Image registration is a technique to apply affine transformations to an image, such

that it is given the appearance of being captured from a different viewpoint. This

is necessary in many fields where images taken at different times or with different

sensors must be compared. It is also a critical step that must be performed before

images may be fused. The kind of transformations that are necessary are usually

global (i. e. they do not change over the image), and are composed of rotations,

scaling, and translations. In addition, the image to be registered may be a different

resolution to the image to which it is being compared.
The method of polynomial image warping depends on manual identification of

control points in each image, i. e. points in each image that correspond to one another.

These control points are used to form a system of simultaneous equations which, when

6.4. Other algorithms 79

solved, provide coefficients for polynomial functions that translate input coordinates

to output coordinates (for more details on this process see Appendix H, section 2).

This is equivalent to a spatial mapping between the two images. Interpolation is

usually required to determine pixel values where the desired location falls between

pixel boundaries.

The control points are determined once and, providing the two image capturing
locations do not move relative to one another, the transformation remains fixed.

For this reason the calculations to determine the spatial mapping can be performed

off-line and do not require real-time processing. The resulting polynomials are fairly

simple to implement in hardware, consisting of nothing more complex than multiplies

and additions, and are ideal candidates for System Generator design. The main
difficulty presented by an algorithm like this is caused by the need to access elements

of the input image in a non-linear order when it is not possible to store a whole frame

of data on-chip. For this reason it is necessary to buffer image data in external
SDRAM before being read into the device. The image registration then occurs by

modifying the SDRAM controller such that the addresses it accesses were determined

by the polynomial generators.
Limited memory bandwidth is an issue when data must be buffered off-chip and

multiple input pixels are needed to generate a single output pixel. This would be

the case with some of the more complex interpolation methods that could be used
in the registration algorithm. Here we can alleviate this concern through use of

nearest-neighbour style interpolation, which is trivial to implement, just requiring a

rounding of the desired pixel location to the nearest integer value.
The system was implemented as an augmentation to the video processing demon-

stration platform that had previously been developed (as described in Appendix G),

and used a small amount of additional resources (see Appendix H, table 1). The

algorithm is notable for being an example where model-based techniques are appli-

cable for the mathematical operations, but hand-crafted VHDL and manual design

techniques are required for system-level aspects such as the memory controller and
interfaces. A system such as this cannot be wholly implemented in System Genera-

tor, since the tool does not include support for bidirectional buses, an integral part

6.4. Other algorithms 80

of a memory controller. The memory controller also includes some fairly complex

control mechanisms, since it must detect whenever a memory row change is required

and issue the necessary activate and precharge commands to the memory.

The complexity of the memory controller and the necessity for bidirectional buses

meant that a VHDL implementation of an FSM was necessary to perform this task.

However the remaining parts of the design, the polynomial functions, are ideally

suited to a System Generator implementation. This demonstrates how it can be

beneficial to implement different parts of a design using the most appropriate tools;

here the datapath elements are quickly and easily implemented in System Generator,

but the control-dominant parts require different design methods. The memory con-

troller state machine could alternatively have been constructed in one of the many

commercial products that allow graphical design entry and automatic code genera-

tion for state machines. This mixture of automated tools and hand-coded HDL will

continue to be common when designing at a system level.

Chapter 7

Design Guidelines

This chapter will attempt to crystallise some of the general design guidelines that

came out of the research. Although these are not concrete design rules, they are
intended to convey some of the experiences and findings of the research that may

assist in future efforts to implement image and video processing algorithms on FPGA.

7.1 Convolution

Two-dimensional convolutions formed a substantial part of the outcomes of the

research. The work on deconvolution required efficient implementations of large

(11 x 11) convolutions to be found, and discussed how the separability of a kernel

can be found using the singular value decomposition.

When the kernel is fairly small (say 3x3 or 5x 5) and non-separable a direct

implementation is most efficient, using n2 multiply and n2 -1 add operations, where

n is the order of the filter.

Small, separable kernels, such as Gaussian filters, can be separated into a single

pair of orthogonal 1D filters. This reduces the number of multiply operations from

n2 to 2n, and the number of add operations from n2 -1 to 2 (n - 1).

Larger kernels that are also linear phase can use multistage separable filters to

achieve a resource efficient implementation. Phase linearity, characterised by sym-

metrical filter kernels, represents redundancy that can be avoided in hardware. The

number of multiply operations required for a multistage separable filter is 2kn, and

81

7.2. Control- versus datapath-dominant code 82

the number of additions is 2k (n - 1), where k is the number of filter stages used. To

keep the memory requirements down it is important that when several filter stages

are used a single set of FIFO line-buffers is shared between all the vertical filters, as

shown in Appendix H, figure 6. Further savings are also possible when accuracy can

be sacrificed, as demonstrated in Appendix H, section 4.1.

Linear phase 1D kernels can pre-add data that is to be multiplied by common

coefficients (and thus reduce the number of multiply operations that are required),
but care must be taken when inserting register delays to avoid long adder chains

while still maintaining correct operation.

Large filter kernels that are not linearly dependent are more suitable for imple-

mentation using FFT methods. Although the memory requirements are significantly

greater, the ease of performing a multiplication in the transform domain rather than

a 2D convolution can result in overall savings in terms of resources and delay.

7.2 Control- versus datapath-dominant code

As has been described in section 6.1.4, whether a segment of code is primarily con-

cerned with control or dataflow operations directly determines how effective and

efficient a hardware implementation can be. Datapath-dominant algorithms map to

hardware in an intuitive way, with spatial and temporal parallelism easy to identify

and exploit. Control-dominant code does not map easily to the pipelined datapath

structure favoured by high-speed FPGA designs.

But how can control-dominant code be identified? Simple loops and branches

are control-oriented elements that are common to the majority of high-level program

code, but with careful manipulation based on techniques such as loop-unrolling these

simple loops, even when nested quite deeply, can be removed.

More problematic however are loops with non-static limits, which execute in

a non-deterministic way, and cannot be easily represented by a regular hardware

structure. Code that includes loops with non-static limits will cause problems with

standard HDL design methods, and are especially unsuitable for tools such as System

Generator. Use of finite-state machines, or possibly redesign of the algorithm, may be

7.3. Optimisations 83

necessary. The manual scheduling and allocation process described in this portfolio

is one such method of proceeding with the implementation of an algorithm with

complex control flow. Unfortunately FSM structures can become quite unwieldy

and inflexible, and do not greatly benefit from the computational advantages offered
by FPGAs.

It is therefore suggested that during the algorithm design phase, loops with non-

static limits are avoided if possible when a hardware implementation is to be at-

tempted. Techniques such as recursion should also be avoided for similar reasons.

7.3 Optimisations

Several well-known optimisations used in software compilers are valuable tools for a

hardware designer and should be applied where possible. Sometimes these optimi-

sations may be applied by experienced hardware designers intuitively, but it may be

useful to formally discuss them here.

Loop unrolling has been mentioned above. Loops can either be unrolled tempo-

rally or spatially, depending on the data-dependencies between the iterations: if an

iteration relies on the previous one for data they can be implemented sequentially

and pipelined (parallelised in time); if they are completely independent they can be

implemented to run concurrently (parallelised in space). If a loop cannot be unrolled

then it becomes necessary to run the hardware at a multiple of the data rate (for

real-time operation). Trade-offs are often possible, for instance unroll half the loop

iterations and run the design at twice the data rate if constraints prevent completely

unrolling the loop.

Common sub-expression elimination is another useful optimisation used in high-

level compilers, where multiple expressions that produce an identical result are re-

placed by a single variable. This can be combined with constant propagation, and

usually results in simplification of computational steps in the algorithm. Situations

where these techniques can be useful often occur when loops are unrolled.

7.4. General computation 84

7.4 General computation

Complex mathematical operators must be handled effectively. Divide or square-root

operations for instance use many resources and cause delay. In some circumstances it

may be more effective to use look-up tables, as was the case with the implementation

of the LRM algorithm described in detail in Appendix B. When using LUTs in this

way there is a trade-off between the level of accuracy and the amount of memory
that is consumed, but it is a useful technique when execution speed is paramount.

Multiply operations are fairly well catered for on modern day FPGAs, but multi-

plications by a constant can often be implemented with LUTs or alternatively using
just shifts and adds, as used in Appendix B, section 4.3. This method was also used
to avoid use of multiplies in the implementation of image fusion (Appendix F). As an

example y=7.5x can be replaced by y= 8x - 0.5x, i. e. a single multiplication with

a constant (7.5) is replaced by two binary shifts (with zero cost in hardware) and a

subtraction. If dedicated multipliers are not available on the device this is likely to

be a more efficient implementation. Formally, this is a use of canonical signed digit

(CSD) representation.
More obvious examples are issues such as using powers of two wherever possi-

ble in an algorithm's design (for instance in the block sizes of the LRM algorithm,
Appendix B), which tends to simplify hardware implementations. If efficient hard-

ware implementations of algorithms are to be facilitated it is important that these

considerations are made at an early stage in the design process.

Chapter 8

Conclusion

Efficient implementation of behavioural algorithms in FPGA hardware is a topic of

research and debate in both the academic and industrial communities. The EngD

programme offers an excellent opportunity to approach the problem from both van-

tage points simultaneously. The algorithms central to the business of Thales Op-

tronics, primarily (but not limited to) image and video processing, present multiple

challenges to the engineer wishing to utilise FPGAs to their fullest potential.

This portfolio thesis began by introducing the state of modern FPGA technology

and how recent developments are making FPGAs the platform of choice for many
DSP applications, and in particular those of the defence market. The nature of

video processing algorithms was then discussed, highlighting some of the operations

common to the application domain such as two-dimensional convolutions, multiscale

transforms, and interpolation. The need for video processing algorithms to process
data temporally when there is limited storage capacity presents difficulties, and it is

often the case that algorithms must be approached conceptually with this limitation

in mind.
The currently predominant method of designing firmware for FPGAs, hand-coded

HDL at a structural level, was then looked at. Some of the problems of this approach,

such as its requirement for the designer to have an intimate knowledge of the un-
derlying hardware structures, prevent widespread adoption by many of the people

who could benefit most from the capabilities FPGAs offer. The problems facing

firmware designers in mapping behaviour onto FPGA resources was discussed, and

85

Chapter 8. Conclusion 86

brief descriptions were given of some of the latest developments in EDA tools that

have appeared to tackle this challenge.
One of the problems facing Thales and other defence contractors in adopting

new methodologies is that they must be able to support their products for a nominal
lifespan of 25 years, a very substantial length of time given the rate of progress in

the electronics industry. It is envisaged that languages such as VHDL and Verilog

will continue to be supported (in some form) for this amount of time, but since
this is less probable with many of the more esoteric languages that have been pro-

posed in recent years the reaction to them in the defence industry has been muted.
An approach that may lead to integration between disciplines is that demonstrated

through languages such as SystemC. The ability to use this language for the whole
design flow, from system-level specification through to hardware/software partition-
ing, and subsequent implementation of both hardware and software, should not be

overlooked. The foundation of SystemC, C++, is a proven language that already
has a multitude of tools and development environments available.

The practical phase of the research began with the implementation of the LRM

contrast enhancement algorithm. This work demonstrated how algorithms may be

characterised according to the nature of their execution flow, and the associated

control/datapath model is a useful theoretical framework with which to approach an

algorithm and understand the influences that will shape any hardware implementa-

tion. While datapath-dominant algorithms are well suited to current hardware design

tools and techniques, control-dominant algorithms such as the LRM algorithm of-
ten cause problems. The research showed that in these circumstances use of the

control/datapath model can reduce the open-endedness of the problem whilst still

providing an efficient implementation. Use of an intermediary language, in this case
ANSI C, allowed a formal progression to take place from the behavioural-level Mat-

lab code to a structural style representable in the synthesisable subset of VHDL. This

progression includes tasks that are well known from the field of synthesis, including

loop unrolling, scheduling, and allocation. The resulting design is implemented as

manually scheduled FSMs which, although time-consuming to design, are structures
that should be familiar to most hardware engineers. The benefit of using C over

Chapter 8. Conclusion 87

a HDL is that the model remains executable throughout, and therefore verification

is much simpler than methods based on HDL simulators. The methodology is an

example of model-based design within existing implementation flows.

One of the key findings of this section of work was how there is a requirement for

the designer to be aware of how code transformations may improve the suitability

of an algorithm for hardware, including maximising opportunities for both spatially

parallel and temporally parallel (pipelined) processing. This is particularly the case

for any looping or vectorised instructions in the original description. FPGAs rely

on exploitation of both types of parallelism to achieve performance gains, and so

when undertaking manual behavioural synthesis in this way it is important that the

appropriate transformations are employed where appropriate.

This concept was illustrated by the implementation of Richardson-Lucy deconvo-

lution, an algorithm that could naturally exploit both types of parallelism: spatially

in the multistage FIR filters; and temporally in implementing successive iterations of

the algorithm as a single pipeline. In doing so the algorithm also became a design that

conformed to a datapath-dominant style, and as such was an example of a complex

system that could be readily implemented using System Generator. In these circum-

stances, the ability of System Generator to abstract away some low-level details and

leave the behavioural design as a simple connection of blocks greatly speeds the work

that would otherwise be done in hand-coded HDL. Tasks such as register retiming

and fixed-point design are much simpler to perform in a graphical environment.

Another feature of the Richardson-Lucy algorithm was the demonstration of mul-

tistage separable filters as a very efficient means of implementing the large linear-

phase two-dimensional convolutions that are common in the application domain.

This is an example of the use of mathematical techniques to alter the format of

the algorithm into something more suitable for hardware. Techniques such as this

can provide huge benefits, but are something that often falls in-between the usual

remits of both algorithm and hardware engineers. Usually, the algorithm engineers

do not know enough about the underlying hardware to know whether a particular

method is preferable, and the hardware engineers are wary of modifying algorithms

that are presented to them for implementation. The division of responsibility be-

Chapter 8. Conclusion 88

tween those who design the behaviour (typically systems or algorithm engineers) and

those designing the corresponding structure (the hardware/firmware engineers) is a

continuing problem. Given that each discipline will be using their own software tools

and techniques, data representations, and verification strategies, it is clear that pro-
ductivity will be less that optimal while this division between them exists. Software

tools alone cannot solve this problem, and companies that wish to ease this process

should look at closer integration between the two camps, or dedicated engineers that

have knowledge of both fields.

The implementation presented here of pyramidal image fusion provides an ex-

ample of how an algorithm can be reconceptualised given an understanding of the

underlying hardware. The implementation challenges the established method of per-
forming multiscale image decompositions by utilising the insight gained from the

control/datapath model. By making a conscious effort to remove complex control
from the algorithm through manipulation of clock rates the resulting system is more

effective for processing raster scan data and is consequently a more efficient design,

which allows subsequent processing to be parallelised and therefore take advantage

of the benefits FPGAs offer.
The PID algorithm discussed here shows that FPGAs can be put to good use on

other types of algorithms besides high-speed data processing. The work highlighted

the need for careful understanding of issues such as fixed-point design and coefficient

representation, but also demonstrates the flexibility of FPGA technology. When

designing embedded systems integration of multiple functions onto a single device is

desirable for a number of reasons, not least power savings and cost reduction.
It is clear that the problem of implementing these algorithms in FPGAs is not

going to be solved in the near future with a single solution. The tools available at the

present time may assist in the process, but a fully-automated route from behaviour

to structure is currently unfeasible. It is necessary to have sufficient understanding of
the algorithms to be able to understand how combinations of the currently available

tools may be employed to the greatest effect. The approach that is advocated here

is the formulation of an informal knowledge base of techniques and solutions that

can assist in future design efforts. The fact that many image processing algorithms

8.1. Future direction 89

contain similar features, such as convolutions and interpolations, allows us to do

this. In addition, the control/datapath model provides a theoretical justification

as to why some algorithms can cause so much difficulty when forming a hardware

realisation, and that, coupled with a full understanding of the available techniques,

can successfully smooth the implementation process.

8.1 Future direction

The work covered in this EngD forms part of an ever changing environment, as new

methodologies and design tools are released to tackle aspects of the implementation

problem. As such there are always new tools that can be trialled for their suitability

to some of the issues that have been highlighted. Work using System Generator has

formed a significant part of this research, but there are competing products that have

not been trialled in detail. The Accelchip environment is one such tool that shows

much promise for the problems described here, as do the developments in design

languages such as SystemC and SystemVerilog, and future work could take a closer
look at the capabilities offered by these methodologies. It may also be beneficial to

develop an IP library for environments such as System Generator that supplements

its existing functionality and makes it more suitable for image and video processing.

The practical work that has been carried out has enabled a number of design

guidelines to be suggested that may improve the efficiency of future efforts to imple-

ment image and video processing algorithms. Expansion of this work could either

broaden the current guidelines to cover more aspects of the application domain, or

use quantitative data to formalise the guidelines into more strict design rules. Both

tactics would be likely to prove beneficial.

One way in which the guidelines could be broadened would be to investigate an

recurring feature of video processing algorithms that was only briefly covered here:

interpolation. A good research topic would be to find efficient implementations of

several interpolation algorithms and produce results comparing their effectiveness

versus hardware costs. It would also be particularly beneficial to have a range of
interpolation algorithms implemented as IP cores that could be inserted into a design

8.1. Future direction 90

where needed.
The manual process of scheduling and allocation presented here could be auto-

mated in several ways. In particular the conversion of Matlab code to C is possible

with in-built Matlab functions, and would take one of the manual stages out of the

process.

As a means of extending the work on Richardson-Lucy deconvolution it could
be useful, given the computational expense of the algorithm, to trial other methods

of removing blur from images. Benefit could be gained from producing definitive

results quantifying the improvement offered by deconvolution methods compared
to other methods of image sharpening. There are also algorithms for performing
blind deconvolution, i. e. when the PSF is unknown, that would make good topics of

research concerning their hardware implementation.

The work on multiscale decompositions that formed part of the implementation

of the pyramidal image fusion algorithm could also be extended in several ways.
In particular, an expansion of the work on Gaussian pyramids to include the more

general field of wavelet transforms could provide a source of commercially valuable

research.

References

[1] J. Rose, R. J. Francis, D. Lewis, and P. Chow, "Architecture of field-

programmable gate arrays: the effect of logic block functionality on area ef-
ficiency, " IEEE Journal of Solid-State Circuits, vol. 25, no. 5, pp. 1217-1225,

Oct. 1990.

[2] V. Betz and J. Rose, "Circuit design, transistor sizing and wire layout of FPGA

interconnect, " in Custom Integrated Circuits, 1999. Proceedings of the IEEE

1999, San Diego, CA, USA, 1999, pp. 171-174.

[3] T. Than and B. Lai, "Leakage power analysis of a 90nm FPGA, " in Custom

Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003, Sep. 21-

24,2003, pp. 57-60.

[4] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, "A quantitative analysis of the

speedup factors of FPGAs over processors, " in FPGA '04: Proceedings of the

2004 ACM/SIGDA 12th international symposium on field programmable gate

arrays. New York, NY, USA: ACM Press, 2004, pp. 162-170.

[5] K. Underwood, "FPGAs vs. CPUs: trends in peak floating-point performance, "

in FPGA '04: Proceedings of the 2004 ACM/SIGDA 12th international sympo-

sium on Field programmable gate arrays. New York, NY, USA: ACM Press,

2004, pp. 171-180.

[6] A. DeHon, "The density advantage of configurable computing, " IEEE Com-

puter, vol. 33, no. 4, pp. 41-49, Apr. 2000.

[7] S. Hauck, "The roles of FPGAs in reprogrammable systems, " Proceedings of the

IEEE, vol. 86, no. 4, pp. 615-638, Apr. 1998.
91

REFERENCES 92

[8] ITU-R BT. 656-4, International Telecommunication Union Std., Feb. 1998.

[9] C. T. Johnston, K. T. Gribbon, and D. G. Bailey, "Implementing image process-
ing algorithms on FPGAs, " in ENZCON '04: Proceedings of the 11th Electronics

New Zealand conference, 2004, pp. 118-123.

[10) G. D. Haan and E. B. Bellers, "Deinterlacing - an overview, " Proceedings of the

IEEE, vol. 86, no. 9, pp. 1839-1857, Sep. 1998.

[11] G. J. Awcock and R. Thomas, Applied image processing. Macmillan Press,

1995.

[12] A. Rosenfeld and A. C. Kak, Digital Picture Processing, Ind ed. Academic

Press, 1982, vol. 1.

[13] J. Watkinson, MPEG-2. Butterworth-Heinemann, 1999.

[14] T. Chen, "The past, present, and future of image and multidimensional signal

processing, " IEEE Signal Processing Magazine, vol. 15, no. 2, pp. 21-58, Mar.

1998.

[151 Z. Ye, J. Suri, Y. Sun, and R. Janer, "Four image interpolation techniques

for ultrasound breast phantom data acquired using Fischer's full field digital

mammography and ultrasound system (FFDMUS): a comparative approach, " in

Image Processing, 2005. ICIP 2005. IEEE International Conference on, vol. 2,

Sep. 11-14,2005, pp. 1238-41.

[16] WiT. DALSA Digital Imaging. Accessed: 03/01/07. [Online]. Available:

http: //www. logicalvision. com/default. htm

[17] I. Moussa, Z. Sugar, R. Suescun, M. Diaz-Nava, M. Pavesi, S. Crudo, L. Gazi,

and A. Jerraya, "Comparing RTL and behavioral design methodologies in the

case of a 2M-transistor ATM shaper, " in Design Automation Conference, 1999.

Proceedings. 36th, New Orleans, LA, USA, Jun. 21-25,1999, pp. 598-603.

REFERENCES 93

[18] C. -T. Hwang, J. -H. Lee, and Y. -C. Hsu, "A formal approach to the scheduling

problem in high level synthesis, " IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 10, no. 4, pp. 464-475, Apr. 1991.

[19] J. Carletta, R. Veillette, F. Krach, and Z. Fang, "Determining appropriate pre-

cisions for signals in fixed-point IIR filters, " in Design Automation Conference,

2003. Proceedings, Jun. 2-6,2003, pp. 656-661.

[20] R. Andraka, "A survey of CORDIC algorithms for FPGA based computers, " in

FPGA '98: Proceedings of the 1998 ACM/SIGDA sixth international symposium

on field programmable gate arrays. New York, NY, USA: ACM Press, 1998,

pp. 191-200.

[21] R. J. Offen, VLSI image processing. Collins, 1985.

[22] L. Ghasemzadeh and Z. Navabi, "A fast cycle-based approach for synthesizable
RT level VHDL simulation, " in Microelectronics, 2000. ICM 2000. Proceedings

of the 12th International Conference on, Tehran, Oct. 31-Nov. 2,2000, pp.
281-284.

[23) Towards quicker high level chip design. Information Society Technologies.

Accessed: 03/01/07. [Online). Available: http: //istresults. cordis. lu/index. cfm?

section=news&tpl=article&BrowsingType=Features&ID=63144

[24] Xilinx launches ESL initiative to accelerate adoption of system level

design for FPGAs. Accessed: 18/10/06. [Online]. Available: http:

//www. fpgajoiirnal. com/news-2006/03/20060313-Ol. htm

[25] System Generator user guide. Xilinx Inc. Accessed: 03/01/2007. [Online].

Available: http: //www. xilinx. com/support/sw.. manuals/sysgen_ug. pdf

[26] DSP Builder user guide. Altera Inc. Accessed: 03/01/2007. [Online]. Available:

http: //www. altera. com/literatiire/ug/iig-dsp-biiilder. pdf

[27] J. Wilber. (2006, Sep.) BAE Systems proves the advantages of model-
based design. MATLAB Digest. Accessed: 8/11/06. [Online]. Available:

http: //www. mathworks. com/company/newsletters/digest/2006/ sept/bae. html

REFERENCES 94

[28] Simulink HDL Coder data-sheet. The Mathworks Inc. Accessed: 05/01/2007.

[Online]. Available: http: //www. mathworks. com/mason/tag/proxy. html?

dataid=7214&fileid=35737

[29] P. Banerjee, "An overview of a compiler for mapping MATLAB programs onto
FPGAs, " in Design Automation Conference, 2003. Proceedings of the ASP-DAC

2003. Asia and South Pacific, Jan. 21-24,2003, pp. 477-482.

[30] Impulse Accelerated Technologies. Accessed: 03/01/07. [Online]. Available:

http: //www. imptilsec-com/

[31] Catapult Synthesis datasheet. Accessed: 03/01/07. [Online]. Avail-

able: http: //www. mentor. com/products/c-based_design/catapult_c -3ynthesis/

upload/Catapult_DS_0308. pdf

[32] DK Design Suite product brief. Accessed: 03/01/07. [Online]. Available:

http: //www. celoxica. com/techlib/file, -, /CEL-W060215IE9V-45. pdf

[33] A. Donlin, A. Braun, and A. Rose, "SystemC for the design and modeling of pro-

grammable systems, " in Field Programmable Logic and Application 2004: 14th

International Conference, FPL 2004, Antwerp, Belgium, August 30-September

1,2004, Proceedings (Lecture Notes in Computer Science). Springer, 2004, pp.
811-821.

[34] S. Sutherland, "A proposal for a standard synthesizable subset for System-

Verilog-2005: What the IEEE failed to define, " in Proceedings of Design and
Verification Conference, DVCon, Feb. 2006.

[35] K. T. Gribbon, D. G. Bailey, and C. T. Johnston, "Design patterns for image

processing algorithm development on FPGAs, " in TENCON 2005 2005 IEEE

Region 10, Melbourne, Australia, Nov. 2005, pp. 1-6.

[36] D. Bailey, "Space efficient division on FPGAs, " in Electronics New Zealand

Conference (EnzCon'06), Christchurch, New Zealand, 2006.

REFERENCES 95

[37] K. T. Gribbon and D. G. Bailey, "A novel approach to real-time bilinear in-

terpolation, " in Electronic Design, Test and Applications, 2004. DELTA 2004.

Second IEEE International Workshop on, Jan. 28-30,2004, pp. 126-131.

[38] K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, "High level programming for

FPGA based image and video processing using hardware skeletons, " in Field-

Programmable Custom Computing Machines, 2001. FCCM '01. The 9th Annual

IEEE Symposium on, 2001, pp. 219-226.

[39] K. Benkrid and S. Belkacemi, "Design and implementation of a 2D convolution

core for video applications on FPGAs, " in Digital and Computational Video,

2002. DCV 2002. Proceedings. Third International Workshop on, Nov. 14-15,

2002, pp. 85-92.

[40] A. Benkrid, K. Benkrid, and D. Crookes, "Design and implementation of a

generic 2D orthogonal discrete wavelet transform on FPGA, " 2003. FCCM 2003.

11th Annual IEEE Symposium on Field-Programmable Custom Computing Ma-

chines, pp. 162-172, Apr. 9-11,2003.

[41] A. E. Nelson, "Implementation of image processing algorithms on FPGA hard-

ware, " Master's thesis, Vanderbilt University, Nashville, TN, USA, May 2000.

[42] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, "A system for synthe-

sizing optimized FPGA hardware from Mattab, " in Computer Aided Design,

2001. ICCAD 2001. IEEE/ACM International Conference on, San Jose, CA,

USA, 2001, pp. 314-319.

[43] M. Haldar, A. Nayak, N. Shenoy, A. Choudhary, and P. Banerjee, "FPGA hard-

ware synthesis from MATLAB, " in VLSI Design, 2001. Fourteenth International

Conference on, Bangalore, Jan. 3-7,2001, pp. 299-304.

[44} P. M. Athanas and A. L. Abbott, "Real-time image processing on a custom

computing platform, " Computer, vol. 28, no. 2, pp. 16-25, Feb. 1995.

REFERENCES 96

[45] I. S. Uzun, A. Amira, and A. Bouridane, "FPGA implementations of fast Fourier

transforms for real-time signal and image processing, " Vision, Image and Signal

Processing, IEE Proceedings-, vol. 152, pp. 283-296, Jun. 3,2005.

[46] J. D. Fahnestock and R. A. Schowengerdt, "Spatially variant contrast enhance-

ment using local range modification, " Optical Engineering, vol. 22, no. 3, pp.

378-381,1983.

[47] D. D. Gajski and L. Ramachandran, "Introduction to high-level synthesis, "

IEEE Design and Test of Computers, vol. 11, no. 4, pp. 44-54,1994.

[48) R. A. Bergamaschi and A. Kuehlmann, "A system for production use of high-

level synthesis, " IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 1, no. 3, pp. 233-243, Sep. 1993.

[49] P. A. Jansson, Deconvodution of Images and Spectra. Academic Press, 1996.

[50] W. H. Richardson, "Bayesian-based iterative method of image restoration, "

Journal of the Optical Society of America, vol. 62, no. 1, pp. 55-59, Jan. 1972.

[51] L. B. Lucy, "An iterative technique for the rectification of observed distribu-

tions, " Astronomical Journal, vol. 79, no. 6, pp. 745-754, Jun. 1974.

[52] M. Bertero and P. Boccacci, "Image deconvolution, " in From cells to proteins:
imaging nature across dimensions. Proceedings of the NATO Advanced Study

Institute, V. Evangelista, L. Barsanti, V. Passarell, and P. Gualtieri, Eds., Pisa,

Italy, Sep. 2004.

[53] H. Lanteri, M. Roche, 0. Cuevas, and C. Aime, "A general method to de-

vise maximum-likelihood signal restoration multiplicative algorithms with non-

negativity constraints, " Signal Processing, vol. 81, no. 5, pp. 945-974,2001.

[54] D. Dudgeon and R. M. Mersereau, Multidimensional digital signal processing.
Prentice-Hall, 1984.

REFERENCES 97

[55] S. Treitel and J. L. Shanks, "The design of multistage separable planar filters, "

IEEE Transactions on Geoscience Electronics, vol. 9, no. 1, pp. 10-27, Jan.

1971.

[56) H. Anton, Elementary Linear Algebra: with applications, 9th ed. John Wiley

& Sons, 2005.

[57] A. V. Oppenheim and J. S. Lim, "The importance of phase in signals, " Pro-

ceedings of the IEEE, vol. 69, no. 5, pp. 529-541, May 1981.

[58] M. Andrews, "Architectures for generalized 2D FIR filtering using separable
filter structures, " in Acoustics, Speech, and Signal Processing, 1999. ICASSP

'99. Proceedings., 1999 IEEE International Conference on, vol. 4, Phoenix, AZ,

USA, Mar. 15-19,1999, pp. 2215-2218.

[59] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,

"Pyramid methods in image processing, " RCA Engineer, vol. 29, no. 6, pp.
33-41, Nov. 1984.

[60] P. Burt and E. Adelson, "The Laplacian pyramid as a compact image code, "

IEEE Transactions on Communications, vol. 31, no. 4, pp. 532-540, Apr. 1983.

[61] P. J. Burt and R. J. Kolczynski, "Enhanced image capture through fusion, "

in Computer Vision, 1993. Proceedings., Fourth International Conference on,
Berlin, May 11-14,1993, pp. 173-182.

[62] S. Gifford, "Some experiences with FPGA controllers, " in International Con-

ference Control (ICC2006), Glasgow, UK, Aug. /Sep. 2006.

Efficient Implementation of Video
Processing Algorithms on FPGA

Volume 2 (of 2)

Oliver Sims

A themed portfolio submitted to
The Universities of

Edinburgh,

Glasgow,

Heriot-Watt,

and Strathclyde

for the degree of
Doctor of Engineering in System Level Integration

© Oliver Sims, 2007

Contents

Appendix A: Dynamic Reconfigurability for Thales Optronics 99

Appendix B: Implementation of LRM Algorithm using Scheduling &

Allocation 133

Appendix C: Implementation of LRM Algorithm using System Gen-

erator 166

Appendix D: Implementation of PID Servo Control Algorithm 184

Appendix E: Implementation of Richardson-Lucy Deconvolution 193

Appendix F: Implementation of Pyramidal Image Fusion 213

Appendix G: Video Processing Demonstration Platform 233

Appendix H: Implementation of Image Registration by Polynomial

Warping 245

98

Appendix A: Dynamic

Reconfigurability for Thales

Optronics

99

Dynamic Reconfigurability for Thales Optronics

A Review of FPGA Applications and Techniques

September 2003

Summary: An initial report was produced that acted as an opportunity to review

the literature and identify some of the issues surrounding FPGAs and in particular

dynamic reconfigurability.

Oliver Sims

EngD 1st Year

Industrial Sponsor: Thales Optronics

1. Introduction 101

1 Introduction

The drivers behind reconfigurable computing in the context of Thales Optronics' sys-

tems are lower spares inventories through hardware reuse, increased functionality for

a given amount of hardware meaning improvements in power and space consumption,

and improved performance through the use of hardware tailored to the application.
From a functional viewpoint, three levels of reconfiguration can be defined as follows:

Theatre dependent

The value of whole groups of algorithms may be largely dependent on the theatre

of operation. For instance, contrast enhancement techniques may give significant

benefits in a featureless landscape, but be less effective in an urban environment.

Reprogramming time here is not an issue (within limits), and data storage is un-

limited. Implementing reconfigurability in this context may simply be a case of

exchanging a Flash memory module with the system powered down.

Mission dependent

Different missions within the same theatre will require different functionality, and

consequently a range of algorithms will be selected for their suitability to a particular

mission. Reprogramming will be performed before commencement of mission and

will have low time and data constraints.

Mode dependent

Reconfiguration performed during operation, to select the required functionality as

required. The speed of the reconfiguration should be as high as possible, in order to

minimise downtime. Because of the time constraints and the need for the system to

remain as operational as possible whilst reconfiguring, it is envisaged that dynamic

partial reconfiguration will be the most suitable technique.

FPGAs can be configured in a variety of ways, and since each of these timeframes

for reconfiguration has different requirements in terms of speed and data, different

styles of reconfiguration may be applicable depending on the context.

2. Background research 102

There exists a requirement for research to be carried out into the feasibility of

developing a reconfigurable system that satisfies the requirements listed above. As a

precursor to commencement of the research, a survey was carried out of the available

literature for related applications and relevant technologies.

This report details the findings of the survey, and is split into the following

sections: Section 2 looks at similar applications of dynamically reconfigurable logic

in the available literature. Section 3 gives an overview of programming methods of
Xilinx FPGAs, and the configuration management solution, SystemACE. Section 4

focuses on partial reconfiguration, including a section on the specific case of self-

reconfiguration. Section 5 describes two of the CAD tools that support dynamic

reconfiguration, and section 6 concludes the report.

2 Background research

A comprehensive survey of the available literature was carried out to cover previ-

ous research in the areas of reprogrammable logic, reconfigurable image processors,

and dynamic partial reconfiguration. Because of the inter-disciplinary nature of the

subject, relevant articles have been found in a number of different sources ranging
from computer science to electronic engineering and specialist reprogrammable logic

publications.

2.1 Fundamentals

Excellent introductions to the architectures of FPGAs can be found, and although

the technology has evolved rapidly in recent times, the descriptions of such matters

as routing architectures and SRAM switches given in [1], [2], [3] are still relevant

today. These papers also cover CPLDs and (E)EPROM type technologies.

2.2 Applications

The applicability of FPGAs to certain tasks is examined in several articles, and

it is often concluded that FPGAs are most effective when applied to data-parallel

applications, where a similar function must be carried out on large volumes of data,

2. Background research 103

leaving irregular calculations and complex control flow to regular microprocessors [1],

[2], [4]. In this way the overhead for reprogramming the FPGA can be minimised

and thus more easily amortised by the speedup due to hardware execution. This use

of FPGAs as coprocessors to speed up simple, repetitive tasks is an area of active

research, and explains the move by FPGA vendors to offer System on a Chip (SoC)

devices comprising microprocessors embedded within reconfigurable logic arrays.
Within the more specific field of video/image processing, early work presented in

[5] demonstrates the advantages of a reconfigurable architecture over traditional DSP

methods, with savings in hardware, power and board space. The system consists of

those tasks that are required throughout being implemented in dedicated hardware,

with a single reconfigurable device performing the processing of the image data. The

use of a reconfigurable device allows for the creation of a more generalised platform
for video processing, with application overlays implementing different algorithms as

required. Although this was a board-level solution, many of the ideas presented

remain relevant, particularly the discussion of the potential pitfalls arising from

dynamic reconfiguration, with similar conclusions to those drawn in [6]. Here, the

pitfalls are deemed problems of consistency, with lack of hardware consistency arising
from dynamic reconfiguration defined within three categories. Port Contention is a

single port being driven by two drivers due to an incorrect reconfiguration, Token

Loss/Duplication is the breakdown in communication between static and dynamic

portions of a device, and Device State Maintenance is the name given to the faults

that occur when external hardware fails to recognise the change in the reconfigured
device. The authors' solution to avoiding these problems is the creation of a design

approach and execution environment that guards against such faults. An overview

of the requirements for such a run-time environment is also given in [7], where the

comparison is made to a real-time operating system (RTOS), with hardware objects

analogous to software threads. This concept shows promise for the future effective

management of reconfiguring systems, but is still a research area and not a feasible

proposition without more specialised design tools. It should be noted that Xilinx

recommend techniques for use with their partially reconfiguring devices that go some

way towards preventing the problems described here [8].

2. Background research 104

The application domain for the previous paper is automatic target recognition.

This is a topic that has generated a degree of interest, and is pertinent to the applica-

tion intended here. Early work in [9] implements an algorithm that compares regions

of interest to target templates, and reports advantages of a single FPGA over several

ASICs. This is largely due to the parallel execution of multiple templates on a sin-

gle FPGA, and consequently the possibility of combining those with commonalities.

This characteristic, when coupled with the ability to reconfigure the templates as

required, make for a powerful system, although the authors also warn of the need to

keep the reconfiguration overhead down to maximise performance. This is achieved

either through maximising the use of each configuration (and thus minimising the

occurrence of reconfiguration), or minimising the time the device is idle during re-

configuration. (At the time the paper was written, dynamic partial reconfiguration

was not a viable proposition.) A related application is the subject of [10], this time

for reconfigurable radar DSP. The system consists of a reconfigurable FIR filter made

up of Multiply and Add Cells (MAC) with two banks of coefficients but only one

being active at any one time. The other can be updated with new coefficients while

the device remains active, and thus the switchover incurs no downtime. (The single

bank alternative would leave the filter non-operational whilst the coefficients were

being updated.) Valid points are raised on the design choices required to imple-

ment a distributed arithmetic structure such as a FIR filter on an FPGA; a more

mathematical account of distributed arithmetic is given in [11]. Another paper that

has a particularly relevant application area describes a system comprising a FPGA

coupled with a DSP that can go from a power efficient monitoring mode to an image

capture and tracking mode upon detection of a moving object, through reconfigura-

tion of the hardware [12]. Although this paper discusses the partitioning aspects of

a FPGA and DSP operating together, there is little discussion of the details of the

reconfiguration process. In order to find such details, one needs to turn to papers

concentrating on these aspects.

A review of available (mostly coarse-grained) devices that support dynamic re-

configurability and the methods of programming them is available in [13]. This covers

devices from Xilinx, Lattice Semiconductors, Atmel, and Altera; although brief it

3. Configuration 105

Device Total no. of
configuration
bits

Approx.
SelectMAP
down-
load time
(50MHz) ms

Approx. se-
rial download
time (50
MHz) ms

Approx.
JTAG down-
load time (33
MHz) ms

XC2VP2 1,305,440 3.3 26.1 39.6
XC2VP4 3,006,560 7.5 60.1 91.1
XC2VP7 4,485,472 11.2 89.7 135.9
XC2VP20 8,214,624 20.5 164.3 248.9
XC2VP30 11,589,984 29.0 231.8 351.2
XC2VP40 15,868,256 39.7 317.4 480.9
XC2VP50 19,021,408 47.6 380.4 576.4
XC2VP70 26,099,040 65.3 522.0 790.9
XC2VP100 34,292,832 85.7 685.9 1039.2
XC2VP125 43,602,784 109.0 872.1 1321.3

Table 1: Virtex-II Pro full bitstream lengths and programming times

offers a good overview of the options available. Altera in particular offer the Stratix

device with embedded DSP cores, which directly supports algorithm implementation

from Matlab through Altera's tools. Other device architectures, such as Quicksil-

ver's ACM [14] and XPP from PACT [15], that are currently in development are

specifically designed to support DSP algorithms and dynamic reconfiguration, are

programmable with high-level languages such as C, and offer extremely fast recon-
figuration times. Research into these architectures was deemed beyond the scope of
this investigation, but it is envisaged that they will play an important role in similar

applications in the future.

The following investigation of the technical aspects of FPGA configuration tech-

niques focuses solely on the Xilinx Virtex range of devices, being the market leader

with widespread availability and support for dynamic reconfiguration.

3 Configuration

3.1 Comparison of FPGA programming techniques

There are broadly three ways to program a Xilinx FPGA [16]. Average times for all
three methods are given in table 1.

3. Configuration 106

Serial mode

Serial mode operates by loading the configuration bitstream at one bit per cycle of

the configuration clock (CCLK), and can be performed in both master and slave

arrangements. Master mode implies that the FPGA generates CCLK and thus con-

trols the configuration, usually interfacing with an external PROM. In Slave Serial

mode an external device controls CCLK; this device could be a microprocessor or

another FPGA where devices are arranged in a daisy-chained configuration. The

main limitation is storage capacity; in Master Serial mode the device receives the

bitstream from an array of PROMS, which is not feasible with limited board space.
If the device is being configured in Slave Serial mode then the possibility exists of
the driving device having access to external storage (on say a PCI bus), this however

is slower and less efficient than the equivalent SelectMAP mode.

SelectMAP mode

SelectMAP is an 8-bit parallel bus interface to configure the FPGA, which can also
be performed in both master and slave arrangements. As with serial configuration,
Master SelectMAP is for use with a PROM device, where the FPGA being configured

controls the configuration clock CCLK. Slave SelectMAP mode allows several devices

to be configured by the driving logic from a single bus, using a chip select signal
(CSB) to select the appropriate device. It is also possible to configure parallel de-

vices simultaneously with the same bitstream. Slave SelectMAP is the most efficient

way of a FPGA being configured by a microprocessor or another FPGA, although
it would require the most complicated board-level routing. Slave SelectMAP mode

also supports dynamic partial reconfiguration. The maximum configuration clock

speed without handshaking is 50MHz, however through monitoring of the DONE

signal higher speeds are attainable. The parallel nature of the SelectMAP arrange-

ment allows a frill byte of data to be loaded every clock cycle, hence the advantage

of SelectMAP mode lies in its speed, being the fastest of the three programming

methods.

3. Configuration 107

JTAG boundary scan mode

Since it is presumed that the Boundary Scan chain will be in place for test purposes,

this method is probably the least difficult to physically implement at the board level.

The Boundary Scan standard allows custom instructions to be specified by the de-

vice manufacturer in addition to the standard JTAG instructions; in this instance

the capability is used to implement Configure and Verify instructions through the

JTAG chain. By utilising these instructions, the FPGA can be configured by itself

or as part of a multiple-device chain. The JTAG mode also allows for partial recon-
figuration. The main drawback with this method is its inherent slowness, operating

at a maximum speed of 33MHz and requiring several cycles through the TAP state

machine for each instruction or data set entered [17]. This system is not reliant on

PROMs, and potentially unlimited data storage can be utilised by the device driving

the scan chain.

3.2 Configuration management - System ACE

System ACE is a pre-engineered solution for managing the configuration process and

storage of configuration data for Xilinx FPGA devices. It comes in two main forms:

MPM and CF.

System ACE MPM

System ACE MPM (Multi-Package Module) is described in [18]. It consists of three

integrated components: the System ACE controller (itself a small FPGA), a PROM

containing code to configure the controller at boot, and Flash memory to store

the configuration bitstream for the target devices. This solution offers storage of

up to eight designs within 64Mb of storage, and can configure four FPGAs either

sequentially or in parallel. Unfortunately, since a mid-size Virtex-II uses around

16Mb for a full configuration this capacity is a limitation when multiple bitstreams

are required. System ACE MPM can program devices connected to it by either Slave

Serial or Slave SelectMAP modes of configuration. The advantage of System ACE

MPM lies in its size (just a single module) and potential speed benefits over the

3. Configuration 108

alternative System ACE solution, System ACE CF.

System ACE CF

System ACE CF is a Compact Flash solution for FPGA configuration [19]. The in-

terface of System ACE CF allows access to any standard Compact Flash module or

IBM Microdrive, and allows up to 8Gb of storage to be used to potentially store an

unlimited number of designs. It is designed for systems containing multiple reconfig-

tiring FPGAs and offers a pre-engineered solution to such systems to fully conduct

all (re)configurations. Configuration of target devices is carried out via the JTAG

method of programming, as shown in figure 1.

The main drawback is that the designs must be stored in groups of up to eight
known as collections. Only one collection may be active at run-time and so the actual

number of designs available for reconfiguration is limited to this amount. A file in

the root of the filesystem (xilinx. sys) has a parameter used to determine the active

collection, the correct design subdirectory is then selected either through dedicated

pins or register bits. The xilinx. sys file is created during the programming of the
Compact Flash card.

The MPU interface is a microprocessor interface for controlling and monitoring
the System ACE CF controller. This allows direct communication with the Compact

Flash module and the FPGA device configuration chain, and consequently data

can be used to configure the FPGA(s) that does not exist in the Compact Flash

device. Through interaction with the System ACE controller, the MPU can initiate

reconfigurations of the FPGA device. All communication by the MPU is via registers

within the System ACE controller. Note that the MPU could be an embedded
PowerPC processor within the FPGA fabric. A possible scenario would be to have

System ACE configure an FPGA via the standard JTAG route at power up, and

subsequently an embedded processor interfaces with the System ACE via the MPU

interface to carry out further reconfigurations.
Besides the Compact Flash and MPU interfaces, a further reconfiguration path

exists via the Test JTAG interface, offering a source of data from devices further up
the JTAG chain. The data can be routed directly through the System ACE controller

4. Partial reconfiguration 109

Vcc Voc

CampactFlaan
Dtwica

0(15: 0)
K1a0º

cff1
cEx
ý
öY

Mwt

i
«d

cm

CFD(15'D)
CFA(10c0)

apes-,
apm
am UOR
F'"A

CFNEA
CFCDi

. PFS'. DZ

FASET

GPROý,
ýR

le

TMS
1CK

TDo

in,
1011nx FPGA
Tatet Chain

PRG$AM
NIT

Figure 1: System ACE CF to CFGJTAG /19]

or around the boundary scan path if required.
The Compact Flash solution fits in with the three timescales of reconfigurability

raised previously, having a plug-in COTS Compact Flash module as the centralised
data store for the FPGA configuration bitstreams which can be changed before the
deployment of the system in the field.

4 Partial reconfiguration

The Xilinx Virtex family of devices support partial dynamic reconfiguration, making
it possible to reprogram sections of them whilst they remain operational. This re-

quires partitioning the functionality of the system into discrete blocks that are either

static (required during all configurations and thus resident throughout) or dynamic

(configured in or out of the array as required). This partitioning is an important

step in the design process, maximisation of static circuitry will minimise configura-
tion overheads by reducing the amount of the chip that is reconfigured. This will

result in improved performance and a more favourable comparison to fixed hardware.

As stated by Hadley and Hutchings [20] in their analysis of static/dynamic partition-
ing, "The designer resorts to dynamic circuitry only when functional commonality

cannot be found between configurations".
The second important point to note about static circuitry on a dynamic array is

the need for it to be grouped. By implementing all static circuitry in a similar area,
this maximises free space for dynamic blocks. This will require manual intervention

ý
ý

ý

ý

MET

CfOTMd

cºoTac
CWTDI

CfßTpp

ACE
Connolw

4. Partial reconfiguration 110

during the design flow to ensure locations are constrained correctly.
Further complications exist in Virtex devices, due to the way in which they are

programmed. The smallest unit of configuration in a Virtex device is the frame, 48 of

which make up a column of Configurable Logic Blocks (CLBs) [21). Although frames

can be written to individually, a whole column must be reprogrammed in order to

change the function of a CLB, which in effect makes the column the atomic unit of

configuration. There are various types of column; the most common contains CLBs

with IOBs at the top and bottom. Reconfiguration of the column will temporarily

disable the IOBs within its boundaries.

The columnar nature of reconfiguration may become a hindrance when the FPGA

is acting as a System on Chip (SoC) with several different tasks executing concur-

rently within the array. If tasks are positioned on the array such that they share

columns, they cannot be individually reconfigured without causing disruption to the

others. The most obvious method of overcoming this, by not placing multiple tasks

within a single column, is inefficient of resources since a task must either use all
logic within a column or else it is wasted. This problem is addressed by Carline and
Coulton [22], who suggest that each task (or module) be comprised of three parts:

a static section, a reconfigurable section, and a buffer. (The buffer section exists to

hold input data during the time the reconfigurable section is being programmed.)

By having such a predefined structure for modules, it allows the static regions of
different tasks to overlap in the vertical plane and their reconfigurable regions to be

combined, reducing the inefficiency imposed by the columnar nature of the device.

Figure 2 shows this diagrammatically. Both Module A and Module B have separate
buffer (ABr and BBr) and static (AS and BS) regions. The section Rc contains the

reconfigurable logic for both A and B, and any change to the functionality of A or
B involves the reprogramming of this section only.

This is a useful technique; sharing reconfigurable areas between tasks is necessary

as failing to utilise a high proportion of the logic elements in a single column will

not only waste resources but also ultimately limit design complexity. However, some
drawbacks can be shown. Firstly, the technique depends on the modules within

the device having clearly defined discrete static and dynamic functionalities. These

4. Partial reconfiguration

Module A

Module B

Figure 2: Column sharing modules with common reconfigurable area [22]

111

must be extracted from the requirements early in the design process, and the design

must then be implemented accordingly. This will involve a great deal of manual

intervention by the designer. Second, the technique is most suited to concurrently

operating tasks that have no interdependence, i. e. operating on different sets of data.

Tasks containing reconfigurahle elements that operate serially on a set of data will

require a more complicated design.

4.1 Partial reconfiguration sequence

The configuration sequence involves reading and writing of various options and coin-

mands, creating an overhead associated with each configuration. The bitstream

sequence for executing a partial reconfiguration of a Xilinx Virtex-II is shown in

table 2, with descriptions of the various commands available in [16].

This is the minimum number of operations required for reconfiguration of a sec-

tion of the device. As shown, in addition to the configuration data itself there is an

overhead of 20 words (640 bits) phis one frame's length of no-op (required to flush

the internal configuration pipelines). Using this information, some approximate par-

tial reconfiguration tines can he calculated, see table 3 and figure 3. It is worth

noting that these times are idealistic and do not account for the overhead involved

when writing to non-sequential addresses, which becomes an issue when the unusual

4. Partial reconfiguration

Packet Type Packet Contents
Dummy Wore!
S nchronisation Word

Header Write to CMD
Data RCRC
Header Write to COR

it W H d
Data Config Ops

e r ea er
(13 Words) Header Write to IDCODE

Data IDCODE
Header Write to CMD
Data WCFG
Header Write to FAR
Data Frame Address
Header Write to FDRI

Config Data Frames

F t 1 _
CRC Value

oo er
(3 Words) Header write to CMD

Data DGHIGH
1 Frame of No-Op

Header Write to CRC
Footer 2 Data CRC Value
(4 Words) Header Write to CMD

Data DESYNCH

Table 2: Partial reconfiguration sequence

112

Number of C Ion Büs 33MHz JTAG Download Time (a) MHz SalaotMAP Download Time (a
No or Frames Frame Sias 10% 50% 100% 10% 50% 100% 10% 50% 100%

XC2VP2 88 1472 131648 852736 1303 0.0040 0.0188 0.0394 0.0003 0.001 0.0033
XC2VP30 1758 6592 1160832 5195008 11582784 0.0352 0.1756 0.3510 0.0029 0.0145 0.0280
XC2VP125 3936 11072 4363008 21801408 43591104 0.1322 0.8806 1.3209 0.0109 0.0543 0.1090

Table 3: Programming times of Virtex-II Pro for varying configuration loads

addressing scheme of Virtex devices is considered. The start address of logic on a
Virtex is in the centre of the device, addresses then alternate between the left and

right sides, causing one side to have even addresses and the other odd. This creates

an overhead in writes to the device as a single logic block on the FPGA may contain

several columns, each of which must be individually addressed (an example of how

the Virtex devices were not designed specifically for partial reconfiguration).

4.2 Modular design flow for partial reconfiguration

Dynamic partial reconfiguration is the process of reprogramming sections of the

FPGA during execution, while other fixed sections are unaffected and remain opera-

4. Partial reconfiguration

Figure 3: SelectMAP programming times

113

tional. For a Virtex device this can be carried out in two ways: module based partial

reconfiguration and small bit manipulation [8].

The small bit manipulation partial reconfiguration process involves making small

changes to the configuration of a device, usually carried out by hand using a tool such

as FPGA Editor. The reconfiguration bit-stream is simply the difference between

the two configurations, and since this is typically small the reconfiguration process

completes very quickly. This method requires hand crafting of the mapping and

placement of the design and so is deemed too specialised for the intended application.

Module based partial reconfiguration is the reprogramming of sections of the

device, and is based around Xilinx's "Modular Design" flow [23]. These sections

(known as modules) are of regular size and shape; their width always corresponds to

a column edge, and they occupy the full height of the device. Any elements (such

as Block RAM, IOBs and routing) contained within the boundaries of a module

also need to be considered as hardware for reconfiguration. The routing acting as

communication paths between a reconfigurable module and those around it must

remain fixed. In order to facilitate communication between reconfigurable blocks, a

technique known as a Bus Macro is used; this is a fixed routing bridge across the

module boundaries. All modules making use of the bus macro must instantiate and

4. Partial reconfiguration 114

implement the bus macro routing channels accordingly. A separate bus macro must
be instantiated for every four bits of inter-module communication.

Data storage within the module will retain its contents between configurations.
This may be of some advantage, but if not some means of re-initialising the memory
is needed. The use of a global reset to do this is not possible, and each reconfigurable

module must therefore have an individual user-defined reset capability in the HDL.

The implementation of a partially reconfigurable design is as follows: The HDL

code is written and synthesised to comply with the architectural constraints for

reconfiguration. The HDL should be strictly written to hierarchical methodologies,

with each module being a self-contained block with its own set of port declarations.

All clock structures need to be implemented using global resources in order that

they remain functional between configurations. Each module is then synthesised
individually beginning with the top-level. Floorplanning is carried out to ensure that

the modules fit into the boundaries defined earlier. At this point the design consists

of an area-based floorplan, location constraints for bus macros and top-level logic,

and global timing constraints. Following definition of any module-level constraints,

a bitstream can be generated for each module. When these bitstreams are then

combined into a complete FPGA design each module will retain its placement and

routing structure. At least one assembly must be carried out with a configuration

present for each module of the FPGA; this will then become the initial bitstream

loaded into the device at boot up as a complete design. Designs after reconfiguration

need not be assembled, however Xilinx recommend that every possible combination

of static and reconfigurable blocks is assembled for visual inspection in order to detect

any breach of design rules, and also for post-PAR simulation if required.

4.3 Design considerations

Protection against misconfiguration

Damage can occur to an FPGA device if it is configured incorrectly through creation

of excessively high currents. This can happen through configuration of inputs as

outputs, possibly causing a conflict in logic levels between the device and whatever

4. Partial reconfiguration 115

it is connected to, or alternatively contentions can be created within the device

by causing multiple logic blocks to drive the same routing resource simultaneously
[241. In either case, a path for high currents is created and physical damage to

the device can ensue. Normal configuration procedures for Xilinx devices prevent

misconfiguration, firstly by checks performed by the programming software, and

secondly through the use of the internal FPGA signal GHIGH. GHIGH holds the

configuration logic in a shutdown state during programming, and does not release

it until the configuration bitstream has been validated using a CRC at the end

of transmission. However, if the device remains active throughout reconfiguration
(active partial dynamic reconfiguration), an end of transmission CRC will not suffice

and intermediary checks will be required, potentially after transmission of each frame

(the smallest unit of reconfiguration) [25]. In [25], the solution to this problem is the

creation of a block within the FPGA that performs the validation of the bitstream

as it is presented to the configuration interface; if a CRC fails, the reconfiguration is

aborted and the FPGA rebooted.

Dual-function pins

The three methods of configuring a FPGA each use varying numbers of pins, some

dedicated to the configuration process whilst others double as I/O during the normal

operation of the device. If these dual-fimction pins are required for I/O purposes,

procedures must be in place to ensure that they are set to the required standard

after configuration has taken place. Furthermore, in order to implement partial

reconfiguration (using slave SelectMAP) the pins must be used as the configuration

interface again, and hence two banks of I/O pins are unavailable during this time.

This will have to be considered at design time. If the two banks are not required

for I/O purposes during the normal execution of the system, then they can be set to

retain their configuration function throughout. During configuration, all I/O banks

are set for the LVTTL standard. JTAG inputs use dedicated pins and so the interface

is always present, however TDO is sourced from V., which should be set according

to the TDI of the subsequent device in the chain.

4. Partial reconfiguration 116

4.4 Self-reconfiguration

A Virtex-II device may use an embedded PowerPC core (alternatively a "soft" Mi-

croblaze Processor) for the configuration controller so the device is actively repro-

gramming parts of itself, eliminating the need for external hardware. A particu-
larly good overview of self-controlling dynamic configuration can be found in [25];

similar systems can also be found in more recent articles where it is termed self-

reconfiguration [26], [27].

If the controller has access to a PCI bus through a core implemented on the

FPGA fabric itself, a potentially unlimited amount of storage may be utilised for

configuration data. A typical configuration sequence may involve the device being

"booted" to initialise the PowerPC processor and PCI core using a full configura-

tion stored on a PROM. Subsequent partial reconfigurations of the remaining FPGA

fabric can then be performed as necessary with no external programming hardware.

The method of loading the bootstrap code depends on how subsequent reconfigura-

tions should be carried out. Two methodologies can be identified, configuration via

JTAG or via the Virtex Internal Configuration Access Port (ICAP).

Configuration via JTAG

Figure 4 shows a method of using System ACE CF to boot the FPGA via the JTAG

interface. A configuration controller, (here a PowerPC core within the FPGA) then

controls the subsequent reconfigurations by drawing data from the PCI bus and

writing it to the MPU interface of System ACE. System ACE will in turn process

the data into the correct format for the programming logic of the FPGA and place

it onto the JTAG chain for partial reconfiguration of the device. The FPGA is

initiating the reconfigurations but requires external hardware, and is thus a self-

controlling reconfigurable system.

Configuration via SelectMAP/ICAP

The second method requires System ACE MPM to boot the FPGA via the Se-

lectMAP parallel interface, shown in figure 5. Subsequent partial reconfigurations

are carried out completely within the FPGA through the ICAP interface, with con-

4. Partial reconfiguration 117

`. -A aCi Bnetl 3lerape

Comp. Fluh

MPU IntMece

System ACE

PCI Ow

CFG JTAG

PCI Core

PPC

Figure 4: Partial reconfiguration via MPU interface to System ACE CF

figuration data being retrieved from a storage device on the PCI bus. The ICAP

is essentially a multiplexed connection to the SelectMAP interface, allowing an em-
bedded PowerPC core to directly drive the configuration registers with no external
hardware required, in essence self-reconfiguration as proposed in [25], [26], [27]. The

ICAP interface consists of the standard SelectMAP signals of separate 8-bit data

paths for reads and writes, write and chip enables, a busy signal, and clock input [25].

Because both the initial (full) configuration and further partial reconfigurations are

carried out using SelectMAP parallel buses this method has significant performance

gains over JTAG, but is also the most sophisticated to implement.

Extensibility to dual FPGA system

The benefit of both of these methods of self-reconfiguration is their extensibility to

a dual FPGA system. Using the JTAG method, the extra FPGA simply requires

access to the JTAG chain, all configurations and reconfigurations are then handled

by the FPGA with access to the MPU interface. Using the ICAP interface the

connections from System ACE are used to boot both FPGAs in parallel, they then

both have embedded PowerPC and PCI cores with which they control their own

reconfigurations independently.

5. CAD tools for dynamically reconfigurable logic 118

PCI Based Storage

System ACE MPM

PCI Bus

3etedMAP

PM Care

PPC ICAP

Figure 5: Partial reconfiguration via ICAP interface

5 CAD tools for dynamically reconfigurable logic

The following section describes two alternatives to the Xilinx Modular Design flow

for partial reconfiguration, Dynamic Circuit Switching and JBits. Each method has

its own advantages and disadvantages, and should be selected according to its merits

for a particular application. A third option, known as PARBIT, is not described

here as it is deemed too specialised; further information can be found in [28].

5.1 Dynamic Circuit Switching

Work carried out at the University of Strathclyde, Glasgow, on the subject of recon-

figurable logic has largely concentrated on defining a CAD framework for dynamically

reconfigurable systems. Lysaght & Stockwood [29] first proposed Dynamic Circuit

Switching (DCS) in 1996 as a method of overcoming the additional complexity dy-

namic reconfigurability introduces into the design cycle. Subsequent publications

report extensions to handle new device architectures [30], [31]; the addition of new

modules [32], [33]; and improved functionality [34], [35].

To model the reconfiguration process, four distinct steps are identified in order

to prevent erroneous interactions between a reconfiguring block and those around it.

5. CAD tools for dynamically reconfigurable logic 119

These are:

1. Isolation of the array to be configured

2. Loading of a default (safe) configuration

3. Loading of the new configuration

4. Reactivation of the block and the connections to its neighbours

DCS works by allowing for identification of the dynamically reconfigurable com-

ponents within a design and provides a means of specifying their behaviour that was

previously unavailable. It does so in a way that allows integration with existing CAD

systems without being dependent on proprietary features.

In early versions of DCS each dynamic task is allocated a reconfiguration sched-

ule consisting of five attributes that specify the task's dynamic behaviour, including

the conditions that cause a reconfiguration to take place and the times taken for

loading and removing the task. These attributes are either textual (as in VHDL

attributes) or represented schematically. A netlist post-processor is then used to

insert virtual components, known as isolation switches, at the inputs and outputs of
dynamic tasks. These are controlled by Schedule Control Modules (SCMs), which

detect the stimuli that trigger a reconfiguration and switch the affected block in/out

of the system as appropriate. The SCMs also provide status signals to allow moni-

toring of the condition of a reconfigurable block; i. e. whether it is active, inactive, or

currently undergoing reconfiguration. The instability of a block undergoing reconfig-

uration is represented for simulation purposes by the isolation switches propagating

the unknown signal ̀ X' from the block's outputs. (The model of the isolation switch

was later redefined by Robinson & Lysaght [36]. When the task to which it relates
is active, the output of the switch is equal to its input. When the task is inactive,

the output is `Z', the weakest signal in VHDL std-logic and thus overwritten by any

other value. In this way the inactive task is `invisible' to those it drives. As before,

the task drives `X' whilst in transition between the active and inactive states.)

Changes made by Robinson et al. in 1998 [32] include using a single file for the

reconfiguration attributes, centralising the location of this information. This enables

5. CAD tools for dynamically reconfigurable logic 120

HDL design to be used as the primary means of design entry, which encourages a
hierarchical design approach to be taken. Other changes made are the introduction of

a technique known as task grouping, and improved modelling of the reconfiguration

port. Task grouping is applied where tasks are identified that share common logic

but exist at different times due to reconfiguration. These groups, known as muter
(mutually exclusive) groups, can be checked as possible causes of contention for

resources. Improvements to the modelling of the reconfiguration port, so that only

one task can access the port at any one time, were added for the case where several

reconfigurations are taking place concurrently, thus requiring a form of arbitration

mechanism. The system is scalable to simulate multiple reconfiguration ports if

required.
Also at this time two new modules were added: DCSEst and DCSTech, and the

simulation aspect renamed to DCSim; the term DCS now covering the complete set

of CAD tools for dynamically reconfigurable logic. DCSEst is a tool used to provide

timing estimates that are back annotated into the original design; it can operate

with design files at various stages of the design flow. DCSTech uses the information

in the reconfiguration file to split the dynamically reconfigurable design into several

static designs, making processing by technology dependent mapping tools possible.

The output of DCSTech is a design file for each dynamically reconfigurable task

within the system, plus an extra design file for all the static tasks. DCSTech handles

dynamic tasks through the reservation of space for each mutex group, sufficient to

cover all tasks within the group.

In order to cope with different forms of configuration controller, another virtual

component was added in the same year [341. Known as Task Status Registers (TSR),

these are designed to give a generic interface to a controller regardless of its imple-

mentation, and allow for standardisation of the connection to the isolation switches

and the reconfiguration status of the task to be presented in a predefined format.

DCSim can take advantage of this to perform analysis and aid in the verification of

the dynamically reconfigurable aspects of the design.

The DCS framework, in particular DCSTech, was extended in 2002 to cover the

Xilinx Virtex devices. The complete design flow, from VHDL source to verification

5. CAD tools for dynamically reconfigurable logic 121

and bitstream generation, can be achieved for a dynamically reconfigurable design,

see figure 6. DCSTech takes as input a structural design, with dynamic tasks rep-

resented as components, and a reconfiguration file describing the dynamic aspects.
The resulting bitstreams represent each dynamic task plus the static tasks in the

design. These must then be manually altered into valid partial bitstreams using a

tool such as JBits (see below).

The most recent developments to DCS came as a response to an alternative

method of simulating dynamically reconfigurable logic published by Vasilko & Ca-

banis [37]. Known as Clock Morphing, the technique has the ability to represent the

internal state of synchronous elements during reconfiguration, although with defi-

ciencies in other areas most notably its usage being restricted exclusively to VHDL.

The solution proposed by Robertson et al. [35] is the usage of DCSim in conjunction

with Clock Morphing to provide exhaustive simulation when it is required at the

expense of portability. Improvements to DCSim were also made at this time in re-

modelling the isolation switches as Dynamic Task Modellers (DTMs), and Dynamic

Task Selectors (DTSs), effectively splitting the combined functions of the original

switches. This change was made to ensure correct results in the special case of a

static task being driven only by a dynamic task, thus having an invalid input of `Z'

when that task was not present on the array. The DTS overcomes this by driving

`X' when it receives only `Z' on its inputs.

5.2 JBits

The lack of high-level design tools for partially reconfiguring systems has prevented

widespread use in commercial applications. The JBits API (Application Program-

ming Interface) is an example of a lower-level tool that attempts to address this

lack of appropriate techniques. JBits is a set of Java classes that can be used to

create and manipulate the bitstream of a reconfigurable Xilinx FPGA [38]. Because

of its nature as a library of precompiled classes it can be used within a user-defined

environment, or integrated into a custom design tool, to perform operations at the

bitstream level. The use of JBits is through function calls which operate on the

bitstream through an interface as part of the API.

5. CAD tools for dynamically reconfigurable logic

physical
design

information

estimates of
times required to
load b tstreams

lDCSEat DCSTech

multiple static
VHDL designs

9
oonventionel

CAD tools

synthesisable
VHDL

configuration
controller

VHDLIjII

ý7RIF

configuration
controller

1
DCSConfip

simulation

-1
configuration controller

overhead estimates

122

model of
configuration DCSim

controller I

vwnl -th , nm Lei
i niuaiuia I ____ .I r- SDF hies DGSTech SDF file components

I
multiple device bitstreams

LDCSTech
I

DCSim simulation interface
DCSTech technology tool interface
DCSEst reconfiguration latency estimator
DCSConflg configuration controller design

Figure 6: The DCS CAD Framework 136]

simulator H
simulation

results

Although it can he used as a means of generating a, complete configuration bit-

stream for a Virtex device, its capacity to alter bitstreams created by standard tools

offers the potential of working with more sophisticated designs. An intimate knowl-

edge of the FPGA architecture is required in order to create bitstreams with JBits,

since primitives must be manually instantiated and connected. Because the API

operates at the downstream end of the toolchain, high quality designs are difficult

to create, and the standard simulation/synthesis methods for HDL designs cannot
be used. However, it is through modification of bitstreams that JBits can be used

most effectively, as re-design at a low-level negates the need for high-level tools and

the associated lengthy design flow when implementing a minor change.

An extension to JBits to encompass features enabling partial dynamic reconfig-

uration in Virtex devices is described in [39]. Known as JRTR, this adds additional

function calls to the API that facilitate the creation of partial bitstreams. It does

so through the use of a caching model that tracks changes to a bitstream stored in

memory and outputs a partial bitstream consisting of just the sections required to

reproduce those modifications on the device. The JBits function calls are still used to

device
bitstreams

i

5. CAD tools for dynamically reconfigurable logic 123

make the modifications, but on a bitstream that has been preloaded into the JRTR

cache.
Of the many publications reporting usage of JBits one of note, published by Dyer

et al. (2002) [40], suggests a design flow that allows the designer to work at a higher

level of abstraction. It does so by utilising standalone cores created using traditional

industry-standard CAD tools; these cores comply with architectural constraints that

allow them to be connected together with predefined connection structures. (This is

similar in principle to the interconnection of IP blocks using `collars' in ASIC SoC

design). The application consists of a CPU core and dynamically reconfigurable co-

processor operating within the FPGA. These implement an audio decoder: the CPU

unpacks data arriving over an ethernet connection, then passes it to the coprocessor

which decodes the audio stream and sends to a D/A converter. Dynamic reconfigu-

ration is used to allow different formats of audio encoding to be sent to the device,

with the coprocessor reconfiguring to implement the various decoders as necessary.
The CPU and coprocessor blocks are designed and synthesised using standard

high-level CAD tools, then manually placed on to the FPGA and connected to-

gether through a specially designed interface called a Virtual Socket, which acts as

the boundary between static and dynamic portions of a design. A complete bitstream

is produced using the normal Xilinx tools, which will implement the full configura-

tion of the device. A secondary design can then be created for the coprocessor; its

placement is constrained to connect to the Virtual Socket defined earlier. This is also

implemented with the Xilinx tools into a full bitstream, but this is then operated on

using a custom tool based on JBits named JBitsCopy, which can extract portions of

a design from a configuration bitstream: here it is used to extract the bit sequence

detailing the coprocessor. A standard JBits function is then used to merge this co-

processor with the original full bitstream, creating a full bitstream with the second

coprocessor and all the other components. Now two full bitstreams exist, having

different coprocessors but identical in all other respects. These can be compared

and the difference extracted to create a partial configuration that will implement the

change in coprocessor while the remainder of the design remains active.

Several difficulties exist that have prevented the widespread use of JBits. It

6. Conclusions and further work 124

is still a tool in early stages of development, and an area of active research both

in industry and academia. Because of this it is not supported by any high-level

CAD tools, meaning that designs must be created through explicit statement of all
details. Furthermore, a precise knowledge of the device architecture is needed in

order to make manual changes. JBits does not support explicit definition of routing

structures, so techniques must be adopted to constrain routing to certain areas (the

above application uses feed-through components, simple elements that lock routing

to a given point on the array). However JBits does show promise in the ability
to automate certain aspects of reconfigurable design that have traditionally been

done by hand, and offers the ability to develop architectures from within a software

environment, which reduces the reliance on large CAD suites when making small

changes to a design.

6 Conclusions and further work

The related applications that have been reported show that signal and image pro-

cessing with dynamically reconfigurable FPGAs is an area of active research both in

the industrial and academic worlds. However, the constraints imposed by the nature

of the embedded systems Thales plans to implement, such as low size and low power
for portability, alongside high performance, mean that no direct precedents exist.

FPGA implementations of signal processing algorithms and dynamic reconfigu-

ration are both fully developed fields in their own right. Add to this the low size

constraint which makes self-controlling partial reconfiguration look necessary, and

the need for design methodologies to be used which are at present underdeveloped,

and it becomes clear that the proposed system will require a convergence of several

research areas.
F\irther research can be classified into three areas:

Algorithm implementation

How is an algorithm implemented in a predefined FPGA system with the minimum

of manual intervention and hand crafting? Partial reconfiguration works best when

6. Conclusions and further work 125

static functionality can be found between configurations, for which it will be neces-

sary to find commonalities between algorithms. However, it should be possible to

implement algorithms without the requirement for them to conform to a possibly

restrictive preordained static framework. Therefore there is a trade-off between ease

of algorithm implementation and system performance. This is further complicated
by the introduction of "mostly static" blocks, a term introduced by Hadley and
Hutchings [20], to describe functional blocks that share functionality but vary in

some small way such as precision, or are architecturally equivalent but functionally

different, for example a bit-serial adder and bit-serial subtractor.

Qualitative assessments need to be made as to how this trade-off should be bal-

anced. In the extreme case, perhaps all the functionality of an algorithm will be

reconfigurable. If the reconfiguration mechanism provides the necessary performance

to keep reconfiguration times reasonable, this will place fewer demands on the algo-

rithm design.

Self-controlling dynamic reconfiguration

Two main problems exist that prevent the use of a more general system architecture.
Firstly, the hardware and space restraints imposed by the nature of the application

mean that having a dedicated configuration controller is unfeasible. Second, current

methods of managing configurations rely on banks of PROMS, which is not feasible

when a large amount of configuration data is required. Xilinx's System ACE CF is

promising but has shortcomings both in the number of accessible designs and the fact

that it uses the slow JTAG method of programming the FPGA. Until an effective

configuration management solution exists that can accommodate more than eight

designs over the SelectMAP interface, then storage of configuration data is also a

system element that will require an innovative solution.

A means of overcoming these problems through development of a self-controlling

partially reconfiguring system has been suggested, implementing a PowerPC pro-

cessor with PCI functionality and utilising the Virtex ICAP interface for efficient

partial reconfiguration. Similar proposals made elsewhere [25], [26], [27], [40], do

not incorporate the PCI interface, but theoretically it is possible. If this system was

6. Conclusions and further work 126

developed, it would offer a solution that is extensible to multiple FPGA systems, has

potentially unlimited storage capacity, and has high performance reconfigurations.
Furthermore, all dynamic reconfiguration functionality would be software based, i. e.

the program running on the PowerPC, and easily upgradeable. In this case, the boot

code contains the system core functionality, and all image processing algorithms

reside on the PCI device.

There are potential drawbacks however. A self-controlling design will by defini-

tion contain a mixture of static and dynamic tasks, requiring constrained placement

within the design. Also, problems can arise due to the fact that having separate con-

trollers for initial programming and subsequent reprogramming mean that two con-

trollers exist in the system. One example is the possibility of the initial programming

device prematurely losing control of the configuration process due to contention [27].

These problems may be solved with careful design; however the deciding factor for

self-reconfiguring designs may be the device utilisation after the processor, ICAP, and
PCI core and any other reconfiguration control modules have been instantiated. If a
large portion of the device is taken up by the reconfiguration mechanism alone, and

this is required for each FPGA in the system, it would make more sense to centralise it

to a dedicated device (board space permitting), and have all configurations performed

over the more traditional SelectMAP method.

Design flow

Well established design tools and methodologies for specification and verification

of dynamically reconfigurable systems do not exist at present. It is envisaged that

thorough and comprehensive testing and verification will be required of a commercial

system. However the tools available all have associated advantages and disadvan-

tages, and further research and experimentation may be required before a design

methodology can be chosen. The modular design flow, advocated by Xilinx, allows
for simulation of individual modules within the larger design, but cannot model the

reconfiguration process itself. DCS allows for such simulation within a comprehen-

sive design flow, with support for other high-level analysis tools, but does not as yet

support the latest devices. JBits bypasses the need for high-level tools by operating

6. Conclusions and further work 127

directly on the bitstream, but requires high skill levels and custom software to be

utilised.

Hardware/Software partitioning

Hardware/Software co-design is envisaged to be a key problem in the design of the

system, particularly one that controls its own reconfigurations. For instance, a self-

reconfiguring device will require decisions to be made as to how much of the config-

uration controller will be implemented in the hardware of the FPGA fabric, or as

software executing on the embedded processor. Reconfiguration performance may
dictate a hardware approach, but high device utilisation levels could mean a soft-

ware approach is necessary to ensure sufficient free resources for data processing

requirements. Many similar situations may become evident during development of

the system.

Future work

The research carried out so far has highlighted the number of considerations involved

in the development of the intended system. The results of this work show that a

self-reconfiguring system looks to be the most likely direction for success, due to

it implementing the required functionality with minimum external hardware. Fu-

ture research intends to develop a prototype of a self-reconfiguring device, for which

possible solutions to the issues described above can be assessed.
An FPGA incorporating PowerPC, PCI, and ICAP should be developed, initially

using the Xilinx Modular Design technique (JBits and DCS can be experimented with
later). Configuration control can initially be implemented in software, with subse-

quent mapping to hardware of critical functions for improved performance. Decisions

can then be made regarding the viability of such an approach in the context of a

commercial system. A secondary avenue of work should focus on FPGA implementa-

tions of DSP algorithms, aiming at reducing the amount of manual intervention and

creating a design technique that considers dynamic reconfiguration as a property of
the algorithm. The convergence of these two research areas will be the final stage in

the development of the intended system.

References

[1] K. Compton and S. Hauck, "Reconfigurable computing: a survey of systems

and software, " ACM Computing Surveys, vol. 34, no. 2, pp. 171-210,2002.

[2] S. Hauck, "The roles of FPGAs in reprogrammable systems, " Proceedings of the

IEEE, vol. 86, no. 4, pp. 615-638, Apr. 1998.

[3] S. Brown and J. Rose, "FPGA and CPLD architectures: a tutorial, " IEEE

Design &4 Test of Computers, vol. 13, no. 2, pp. 42-57,1996.

[4] J. R. Hauser, "Augmenting a microprocessor with reconfigurable hardware, "

Ph. D. dissertation, University of California, Berkeley, 2000.

[5] R. Andraka, "Dynamic hardware video processing platform, " in Proc. SPIE

Vol. 2914, p. 90-99, High-Speed Computing, Digital Signal Processing, and Fil-

tering Using Reconfigurable Logic, J. Schewel, P. M. Athanas, V. M. Bove, and
J. Watson, Eds., Oct. 1996, pp. 90-99.

[6] T. Bapty, J. Scott, S. Neema, and J. Sztipanovits, "Uniform execution environ-

ment for dynamic reconfiguration, " in Engineering of Computer-Based Systems,

1999. Proceedings. ECBS '99. IEEE Conference and Workshop on, Nashville,

TN, Max. 7-12,1999, pp. 181-187.

[7] M. Barr, "A reconfigurable computing primer, " Multimedia Systems Design, pp.

44-47, Sept. 1998.

[8] Two flows for partial reconfiguration: module based or small bit manipulations,

v1.0 ed., Xilinx Inc., 2002, XAPP290.

128

References 129

[9] J. Villasenor, B. Schoner, K. -N. Chia, C. Zapata, H. J. Kim, C. Jones, S. Lans-

ing, and B. Mangione-Smith, "Configurable computing solutions for automatic

target recognition, " in FPGAs for Custom Computing Machines, 1996. Proceed-

ings. IEEE Symposium on, Napa Valley, CA, Apr. 17-19,1996, pp. 70-79.

[10] T. Moeller and D. Martinez, "Field programmable gate array based radar front-

end digital signal processing, " in Field-Programmable Custom Computing Ma-

chines, 1999. FCCM '99. Proceedings. Seventh Annual IEEE Symposium on,
Napa Valley, CA, Apr. 21-23,1999, pp. 178-187.

(11] Xilinx Inc., "The role of distributed arithmetic in FPGA based signal process-

ing, " 1996.

[12] J. Scalera, C. I. Jones, M. Soni, M. Bucciero, P. Athanas, A. Abbott, and

A. Mishra, "Reconfigurable object detection in FLIR image sequences, " in FP-

GAs for Custom Computing Machines, 2002. Proceedings. IEEE Symposium on,

Apr. 22-24,2002, pp. 284-285.

[13] S. Donthi and R. Haggard, "A survey of dynamically reconfigurable FPGA

devices, " in 2003. Proceedings of the 35th Southeastern Symposium on System

Theory, Mar. 16-18,2003, pp. 422-426.

[14] C. Maxfield. (2002, Oct.) Silver bullet for ACMs. Accessed: 20/11/2006. [On-

line]. Available: http: //www. eetimes. com/news/design/columns/max-bytes/

showArticle. jhtml? articleID =17408002

[15] PACT GmbH, "The XPP white paper, " 2002, release 2.1.

[16] Virtex-II Pro platform FPGA handbook, v2.4 ed., Xilinx Inc., 2003.

[17] Configuration and readback of Virtex FPGAs using (JTAG) boundary scan,

v1.4 ed., XAPP139, Xilinx Inc., 2002, xAPP139.

[18] Xilinx System ACE MPM solution, v2.2 ed., Xilinx Inc., 2003, DS087.

[19] Xilinx System ACE solution data sheet, v1.5 ed., Xilinx Inc., 2002, DS080.

References 130

[20] J. D. Hadley and B. L. Hutchings, "Designing a partially reconfigured system, "

in Field Programmable Gate Arrays (FPGAs) for Fast Board Development and
Reconfigurable Computing, Proc. SPIE 2607, J. Schewel, Ed. Bellingham, WA:

SPIE - The International Society for Optical Engineering, 1995, pp. 210-220.

[21] Virtex series configuration architecture user guide, vl. 6 ed., Xilinx Inc., 2003,

xAPP151.

[22] D. Carlin and P. Coulton, "Partial reconfiguration in Xilinx Virtex FPGAs:

pitfalls and solutions for SoC implementations, " in IEE DSP enabled radio col-
loquium, Livingston, Scotland, UK, Sept. 2003.

[23] Development system reference guide, Xilinx ISE 5, Xilinx Inc., 2002.

[24] I. Hadzic, S. Udani, and J. M. Smith, "FPGA viruses, " in FPL '99: Proceedings

of the 9th International Workshop on Field-Programmable Logic and Applica-

tions. London, UK: Springer-Verlag, 1999, pp. 291-300.

[25] R. Fong, S. Harper, and P. Athanas, "A versatile framework for FPGA field

updates: an application of partial self-reconfiguration, " in 2003. Proceedings.

lath IEEE International Workshop on Rapid Systems Prototyping, June 9-11,

2003, pp. 117-123.

[26] B. Blodget, S. McMillan, and P. Lysaght, "A lightweight approach for embed-
ded reconfiguration of FPGAs, " in Design, Automation and Test in Europe

Conference and Exhibition, 2003,2003, pp. 399-400.

[27] G. McGregor and P. Lysaght, "Self controlling dynamic reconfiguration: A case

study, " in FPL '99: Proceedings of the 9th International Workshop on Field-

Programmable Logic and Applications. London, UK: Springer-Verlag, 1999, pp.
144-154.

[28] E. Horta, J. Lockwood, D. Taylor, and D. Parlour, "Dynamic hardware plug-
ins in an FPGA with partial run-time reconfiguration, " in Design Automation

Conference, 2002. Proceedings. 39th, June 10-14,2002, pp. 343-348.

References 131

[29] P. Lysaght and J. Stockwood, "A simulation tool for dynamically reconfigurable

field programmable gate arrays, " IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, vol. 4, no. 3, pp. 381-390, Sept. 1996.

[30] G. McGregor and P. Lysaght, "Extending dynamic circuit switching to meet the

challenges of new fpga architectures, " in FPL '97: Proceedings of the 7th Inter-

national Workshop on Field-Programmable Logic and Applications. London,

UK: Springer-Verlag, 1997, pp. 31-40.

[31] I. Robertson, J. Irvine, P. Lysaght, and D. Robinson, "Timing verification of
dynamically reconfigurable logic for the Xilinx Virtex fpga series, " in FPGA

'02: Proceedings of the 2002 ACM/SIGDA tenth international symposium on
Field-programmable gate arrays. New York, NY, USA: ACM Press, 2002, pp.
127-135.

[32] D. Robinson, G. McGregor, and P. Lysaght, "New CAD framework extends

simulation of dynamically reconfigurable logic, " in FPL '98: Proceedings of

the 8th International Workshop on Field-Programmable Logic and Applications,

From FPGAs to Computing Paradigm. London, UK: Springer-Verlag, 1998,

pp. 1-8.

[33] D. Robinson and P. Lysaght, "Modelling and synthesis of configuration con-

trollers for dynamically reconfigurable logic systems using the dcs cad frame-

work, " in FPL '99: Proceedings of the 9th International Workshop on Field-

Programmable Logic and Applications. London, UK: Springer-Verlag, 1999,

pp. 41-50.

[34] , "Verification of dynamically reconfigurable logic, " in FPL '00: Proceedings

of the The Roadmap to Reconfigurable Computing, 10th International Workshop

on Field-Programmable Logic and Applications. London, UK: Springer-Verlag,

2000, pp. 141-150.

[35] I. Robertson, J. Irvine, P. Lysaght, and D. Robinson, "Improved functional

simulation of dynamically reconfigurable logic, " in FPL '02: Proceedings of the

Reconfigurable Computing Is Going Mainstream, 12th International Conference

References 132

on Field-Programmable Logic and Applications. London, UK: Springer-Verlag,

2002, pp. 152-161.

[36] D. Robinson and P. Lysaght, "Methods of exploiting simulation technology for

simulating the timing of dynamically reconfigurable logic, " IEE Proceedings-

Computers and Digital Techniques, vol. 147, no. 3, pp. 175-180, May 2000.

[37] M. Vasilko and D. Cabanis, "A technique for modelling dynamic reconfiguration

with improved simulation accuracy, " IEICE Transactions on fundamentals of

electronics, communications, and computer sciences, vol. E82-A, no. 11, pp.

2465-2474, Nov. 1999.

[38] S. Guccione, D. Levi, and P. Sundararajan, "JBits: A Java-based interface for

reconfigurable computing, " in Second Annual Military and Aerospace Applica-

tions of Programmable Devices and Technologies Conference (MAPLD), 1999.

[39] S. McMillan and S. Guccione, "Partial run-time reconfiguration using jrtr, "

in FPL '00: Proceedings of the The Roadmap to Reconfigurable Computing,

10th International Workshop on Field-Programmable Logic and Applications.

London, UK: Springer-Verlag, 2000, pp. 352-360.

[40] M. Dyer, C. Plessl, and M. Platzner, "Partially reconfigurable cores for Xilinx

Virtex, " in FPL '02: Proceedings of the Reconfigurable Computing Is Going

Mainstream, 12th International Conference on Field-Programmable Logic and

Applications. London, UK: Springer-Verlag, 2002, pp. 292-301.

Appendix B: Implementation of
LRM Algorithm using Scheduling

& Allocation

133

Implementation of LRM Algorithm using Scheduling &

Allocation
April 2004

Summary: The LRM method of contrast enhancement was the first algorithm looked

at during the research period. The method of implementing it in hardware is based on
manually performing behavioural synthesis tasks, using ANSI C as an intermediate
language between Matlab and VHDL.

Oliver Sims

EngD 2nd year

Industrial Sponsor: Thales Optronics

1. Introduction 135

1 Introduction

The benefits of executing algorithms on FPGAs rather than general-purpose proces-

sors are well known. However the implementation process requires specialist experi-

ence and skills, and is largely a manual procedure despite the prevalence of highly

sophisticated CAD tools. In many situations bespoke solutions must be created for

each algorithm, and the number of implementation decisions involved means that a

large design space must be explored. Key decisions must be taken involving fixed-

point representations, area/speed trade-offs, memory requirements etc., and it is not

always clear when the optimal solution has been found. Because a sub-optimal de-

sign may negate the performance benefits resulting from the use of FPGA technology

the realisation process may take in the order of months to complete.

In general terms the process of transforming a behavioural view of a system into

a structural one is known as behavioural synthesis. Although a language such as

VHDL contains the necessary constructs to describe both behaviour and structure,

the limited subset of VHDL that is synthesisable makes it unwieldy for algorithm

design. Algorithms are usually developed in a high-level language such as C or Mat-

lab. Matlab is the language of choice for algorithm designers as it offers sophisticated

analysis techniques and a wide range of powerful operators that can handle a variety

of data formats. Some instructions are at a very high level, for instance `, fi`t', which

cause several problems when designing hardware. Often these relate to the use of

matrices, which are ideal for image operations and allow powerful techniques to be

utilised in just a few commands, but in hardware terms these may require several

levels of branching and looping constructs. The advantages of designing algorithms

at a raised level of abstraction are thus negated by the difficulties involved in realising

them in hardware.

The following work demonstrates a methodology for transforming a typical image-

processing algorithm from a high-level language into a synthesisable register transfer-

level (RTL) model in a hardware design language (HDL) such as VHDL or Verilog,

which may then be used directly in the production of hardware. The methodology

is repeatable, and produces a single purpose custom processor that conforms to a

well-known paradigm. The method uses C as an intermediate language in which

2. Target algorithm 136

the transformation from behavioural-level Matlab code to structural-level HDL can

take place in clearly defined stages. It is envisaged that by utilising a repeatable

methodology the design process will become more tractable, and as the difficulties

faced during the process become common to many algorithms the time to complete

a design will shorten. There are also some issues that were encountered, such as the

best methods of performing complex calculations and error modelling, that may be

common to the implementation process of many algorithms. Some example solutions

to problems of this nature are also demonstrated here.

2 Target algorithm

The algorithm being implemented is the Local Range Modification method of con-

trast enhancement, developed by Fahnestock & Schowengerdt [1]. This algorithm

implements a standard linear stretch of the contrast at each pixel, however it does

so using parameters that are derived from within the pixel's locality and not over

the image as a whole. In this way the algorithm is adaptive to regional variations in

contrast levels.

The algorithm operates by first subdividing the image into adjoining blocks. The

performance of the algorithm is highly dependent on the size of block used: too

small a block means that insignificant detail may be highlighted, whereas too large

a block reduces the overall level of enhancement. The calculation required for each

pixel varies with its location within a block, and the resulting value is dependent

on not only the contrast range of the containing block but also of those blocks that

surround it. The initial phase of the algorithm defines the block boundaries, and
finds local minimum and maximum pixel values within each block. At the corner of

each block exists a node, and a node may have associated with it one, two or four

neighbouring blocks (figure 1). An image with MXN blocks will therefore have

(M + 1) x (N + 1) nodes. The second phase of the algorithm uses the block maxima

and minima to find node maxima and minima. The minimum and maximum at each

node is found from the neighbouring blocks, this equates to using overlapping blocks

of twice the width and height of the original partitions.

2. Target algorithm 137

Min.,
Maxs

Min,,
Max,

Min73,
MaX13

Min,,
Max,

Min,,
Max,

Min,
May,

Min,
MaN

LA, HA L5, H, Lc:, Hc

Min,, Min,, Mine,
Max, Max, Max,

LD, HD LE, HE LF, HF

Min,,, Min,,, Min, z,
Max,

o
Max� Max,

2

L0, H0 L�, H� L,, H,

Min,,, Min,,, Min,,,
Max� Max� Maxi,

Figure 1: Partitioning of input image into blocks and nodes for LRM contrast en-
hancement.

Once this data is obtained, a maximum and minimum value for each pixel can be

found by a bilinear interpolation of the node values. For example, the following two

calculations give the range of output for a pixel in the upper left block of figure 1.

Outmin

outmax

+

LMmn5 +(
XXý1

Mini)
(Y_)

x [Min6+(\

X
xx x/ Minzý Y

=
[Max5

+(X X
x) MaxiJ

\Yý,
y/

+
[Max6

+
(X_ x) Max2] y

(la)

(lb)

Where x and y give the pixel locations within each block, and X and Y give the

block size in each direction. The desired pixel value is then found by a linear stretch:

in - outmi,
out = outmý - out

x 255
mi.

(2)

The algorithm is ideally suited to a hardware rather than software implementation,

as although mathematically fairly simplistic (the most computationally difficult stage

being the several divide operations of the bilinear interpolation) it has a significant

2. Target algorithm 138

throughput requirement. Two passes through the image data are required, once to

find the minimum and maximum values for each block and then a second time to

perform the stretch. Hence the algorithm must operate at a high speed to achieve

satisfactory frame rates, and increasing its efficiency was a key consideration during

implementation. The algorithm also requires substantial amounts of intermediate

storage for block and node data, and optimisations were sought here also.
In an attempt to decrease the potential latency of the algorithm, efforts were

made to reduce the complexity of the calculations involved. It can be shown that by

placing certain constraints on the algorithm's operation it may be made more suitable

for hardware implementation. Firstly, by forcing the blocks to be square, the number

of divide operations may be reduced. In the original algorithm description both the

horizontal and vertical block dimension are parameterisable, however non-square

blocks would conceivably only be useful in very limited circumstances, and removing

them greatly simplifies the calculations.

The effects of this constraint may be shown mathematically. A sample of the

bilinear interpolation calculation is:

[xMin5 + (X - x) Min,] (X - y) + [xMin6 + (X - x) Mine] y
outs;,, = Xz

(3)

This has the effect of reducing the number of divides from six to one. Since a
divide operation in hardware is expensive in terms of gates and delay, this results in

substantial savings in hardware terms. If the block size is then further constrained

to be a power of two the single division may now be accomplished by a right binary

shift of 2x loge (block size) places.
Another feature of the original algorithm was its ability to handle images that

contained a non integer number of blocks. The final row and column was thus likely

to contain blocks that were a different size to the majority within the frame, causing

the calculations to vary depending on the current block's relative position. However,

by introducing a further constraint that requires the image to contain an integer

multiple of blocks all blocks are guaranteed to be same size. Although this is a more

restrictive constraint the savings in hardware complexity are significant due to the

3. Implementation process 139

computations being identical regardless of block position.

3 Implementation process

As an intermediate step between the Matlab original and synthesisable VHDL the

algorithm was ported to ANSI C. This was done with the aim of creating an adapt-

able model in a language that shares features with both Matlab and VHDL. C was
chosen due to its flexibility and the availability of the GNU C compiler (GCC) and
debugger (GDB), both of which are freely available and fully featured. Using C al-
lows a progression to take place between the original model and the desired hardware

description. The C code at any given stage represents an executable specification

of the design. Because the model is executable, testing can be performed after each
revision, using the original test cases applied to the Matlab algorithm. In this way
errors introduced during the conversion process are not only quantifiable but may
also be pinpointed to specific changes made.

The initial C implementation was functionally an exact copy of the Matlab M_

code, but several syntactical changes had to be made to support Matlab instructions

that do not have a direct C equivalent. For instance, in Matlab the maximum value

of an array of any dimension may be found simply using `max(array name)'. In C

this requires nested for loops (a level per array dimension), and temporary storage
for the current maximum. A further problem exists due to Matlab not requiring

variables to be declared before use, their size and type instead being inferred at run

time. In C all variables must be declared before use, and therefore some analysis was

required to determine the necessary details. Although in this instance this task was

performed by hand, options exist to insert commands into the Matlab M-file to report

the size and type of variables after use (using the size command for instance). This

is an issue covered by the MATCH compiler (now commercially known as Accelchip),

where annotations are inserted into the Matlab code and are used to instruct the

compiler on the storage required [2].

Once the C version of the M-code algorithm is functionally identical to the orig-
inal, testing may be performed on both versions to ensure their equivalence. By

3. Implementation process 140

writing the output of the C algorithm to file the output data may be loaded back

into Matlab to take advantage of the rich analysis environment. This C code is

denoted Version 1 and any changes that are subsequently made en-route to VHDL

are given a new version number. By comparing the operation of a given version

with that of its predecessor a traceable route from Matlab to VHDL is available,

and the degree of conformance may be quantified. If unacceptable levels of error

are introduced between two versions, then it is clear where and how the errors are

occurring.

The purpose of the transformation process is to develop a route from Matlab

equivalent C, to C that can be mapped to VHDL with the minimum of difficulty.

Although less abstract than Matlab, C is still classed as a high-level language, and

so in order to represent VHDL a coding style and subset of commands are adopted.
It is the inherent flexibility of C that allows it to bridge the gap between high and
low-level designs, or, more generally, the transformation from behaviour to structure.
Whilst the C language contains both high and low-level constructs, the obvious and

most fundamental difference between C and VHDL is that C is sequential, whereas
VHDL models concurrent processes. The method of overcoming this problem used in

several commercial behavioural synthesis tools is the use of non-ANSI C extensions,
for example the Handel-C language used by Celoxica [3]. The method presented here

allows for representation of concurrency in standard C.

3.1 Scheduling and allocation

By adopting a specific coding style, it is possible to introduce a suggestion of struc-

ture and concurrency into the standard C language. Scheduling and Allocation

is a technique used in high-level synthesis to transform HDL from a behavioural

representation to a structural one. The resulting hardware represents a custom sin-

gle purpose processor, which conforms to the Finite State Machine with Datapath

(FSMD) model [4]. Here the technique is adapted to apply to an algorithm described

using a high-level language. Scheduling and allocation models hardware by splitting

the original code into discrete time steps (scheduling), and then determining the

best hardware usage in order to meet design constraints (allocation). These con-

3. Implementation process 141

straints may be in the form of minimum performance requirements or limitations in

the amount of discrete hardware elements that are available. To perform the same

process in a high-level language, statements present in the original description are

grouped according to their data dependencies, and control signals are then gener-

ated to trigger the activation of these groups as appropriate. The mechanism used
to generate these control signals takes the form of a finite state machine.

As an example, consider the C code fragment in program 1. This implements

three simple assignment statements. It is clear that the order of execution of the

statements is crucial in obtaining a correct output. This may be scheduled as shown

in program 2. Here, the code has been implemented using two case statements. The

upper one is the control mechanism, designated the control path, which produces

the control signals necessary to correctly sequence the instructions contained in the

lower case statement, the data path. A new variable called state has been introduced

which represents the control signals between the two parts of the program. There

are two points worthy of note. Firstly, the allocation of assignment statements to

case numbers is arbitrary, as it is the control path code that defines the order of

execution and not their position in the code. Second, the control path has two states

where no datapath activity is scheduled, state 0 and state 4, which represent a reset

state and halt state respectively. The halt state is implemented by simply causing

execution to loop back on itself with no corresponding datapath instruction.

Program 1 Basic sequential function.
void sequential()
{

x= a+b;
y=a-b;
z=x*y;

}

An impression of concurrency may now be introduced into the code. From in-

spection of the original sequential code fragment, the assignments to x and y may
be executed in any order without affecting the outcome of the program. These

statements may therefore be scheduled to occur during the same time step. The

assignment to z is dependent on the values of x and y and so must occur after their

3. Implementation process

Program 2 Sequential function with separate control and datapath structures.
void scheduled()
{

state = 0;
do{

//Control Path
switch(state){

case 0:
state = 1;
break;

case 1:
state = 2;
break;

case 2:
state = 3;
break;

case 3:
state = 4;
break;

case 4:
state = 4;
break;

}

//Data Path
switch(state){

case 1:
x=a+b;
break;

case 2:
y=a -b;
break;

case 3:
z=x *y;
break;

142

}
}while(1==1);

}

3. Implementation process 143

assignment has taken place, on the next time step. This is shown in program 3. The

assignments to x and y can now be considered to occur in parallel, and the number

of control states is thus reduced accordingly.

Program 3 Independent datapath states are combined to suggest concurrency.
void scheduled()
{

state = 0;
do{

//Control Path
switch(state){

case 0:
state = 1;
break;

case 1:
state = 2;
break;

case 2:
state = 3;
break;

case 3:
state = 3;
break;

}

//Data Path
switch(state){

case 1:
x=a+b;
y=a -b;
break;

case 2:
z=x*y;
break;

}
}while(1==1);

}

The examples shown so far have been purely sequential, and have contained no

complex control constructs. However, most programs contain loops and conditionals,

and these require more sophisticated techniques in the interaction between the con-

trol and datapath sections. As an example consider the code fragment in program 4.

This simply assigns to z the greater of a or b. A choice must be made as to which

3. Implementation process 144

Program 4 Basic function with branching execution flow.

void sequential()
{

if (a>b)

z=a;
else

z=b;
}

path through the code should be taken in order to affect the correct assignment.
This requires translation to retain the correct operation of the if construct but still

conform to the syntax of the switch constructs that make up the control and data

segments. Hence an extra flag variable is required to communicate the outcome of
the relational operator between the control and data paths. The control path then

uses this flag to decide on the correct datapath instruction to execute. The scheduled

version of this code may be seen in program 5. Here, the Boolean variable aflag
is set during state 1 according to the outcome of the test a>b. The control path
then sets the next state to either 2 or 3 as necessary. Control from state 2 will pass

next to state 4, missing the unwanted assignment in state 3. Loops may also be

implemented in a similar fashion, with a loop index being explicitly incremented in

the data path. The flag is set before the end of the loop by testing whether this

index has reached the desired value, and the control path uses this flag to decide

whether execution should return to the beginning of the loop or exit by continuing

to the subsequent state. (In order to correctly create the necessary indices and flags

it is useful to transform all loops in the original code to `while' loops. This has no
loss of functionality if performed correctly.)

The control and data paths can now be split into separate functions, which will
become standalone VHDL modules. The variables that are local to each function

represent internal signals, those variables that are passed between the control and
data paths, such as flags and state information, are global and are instantiated in

the top level of the VHDL hierarchy. Using these techniques, complex programs may

thus be written in a style that exhibits both structural and behavioural information.

Figure 2 shows a block diagram representation of how the completed code example

3. Implementation process

Program 5 Branching function with separate control and datapath.

void scheduled()
{

state = 0;
do{

//Control Path
switch(state){

case 0:
state = 1;
break;

case 1:
if (flag)

state = 2;
else

state = 3;
break;

case 2:
state = 4;
break;

case 3:
state = 4;
break;

case 4:
state =4

}

}

//Data Path
switch(state){

case 1:
flag = (a>b);
break;

case 2:
z=a;
break;

case 3:
z=b;
break;

}

}while(1-=1);

145

of program 6 maps to structural hardware with implicit hierarchy. From this stage

the translation to VHDL is fairly trivial, as there is a direct mapping between the

4. Implementation details 146

instructions used in C and those available in synthesisable VHDL. (There may be a

slight change in format or syntax, for instance switch statements are known as case
in VHDL and do not require break instructions on each branch.)

Writing code in this way can be viewed in hardware terms as a custom, single-

purpose processing unit. In this sense, the state variable passed from the control path

to the data path represents the instruction to be executed. The FSMD model can
be considered as universal, in that it may represent all designs [4]. The relative sizes

of the control and datapaths are directly representative of the type of application.
Control oriented applications will have a large control path, whereas data processing

applications will be datapath dominant.

Main

Control Path

State

Flags
Data Path

Z

Figure 2: Block diagram of program 6.

4 Implementation details

4.1 Intermediate storage

The algorithm requires four arrays of data to store Block Min, Block Max, Node Min,

and Node Max values. The sizes of these arrays are obviously dependent on the size

of the input image and the block size. In the worst case, with a maximum image size

of 640 x 480 elements and using 8x8 blocks, there will be 80 x 60 = 4800 blocks

and 81 x 61 = 4941 nodes. These arrays will store 8-bit pixel values. In the original
Matlab description the arrays were two-dimensional to correspond spatially to the

4. Implementation details 147

Program 6 Branching program with control and datapath implemented as separate
functions.
void scheduled()
int controlpath(int state, boolean flag)
{

}

switch(state){
case 0:

state = 1;
break;

case 1:
if (flag)

state = 2;
else

state = 3;
break;

case 2:
state = 4;
break;

case 3:
state = 4;
break;

case 4:
state = 4;

}
return(state);

void datapath(int state, int a, int b, int z, boolean flag)
{

switch(state){
case 1:

flag = (a>b) ;
break;

case 2:
z=a;
break;

case 3:
z=b;
break;

}
}

continued...

4. Implementation details 148

Program 6 Branching program with control and datapath implemented as separate
fiinctions (cont.)
void main()
{

//These are internal signals
int state = 0;
boolean flag;

//These represent ports to outside world
int a, b;
int z;

while(state<4)
{

state = controlpath(state, flag);
datapath(state, a, b, z, flag);

}

}

input image. Although modern synthesis tools support multidimensional arrays it

is not always apparent what form the resulting hardware will take, whereas single

dimensioned arrays can be equated to blocks of memory with linear addressing. Of

course, in making this modification, changes also had to be made to the calculations

that provide indices into these arrays. These changes to the algorithm were fully

tested during the C stage of the implementation process.

The process of determining node data requires the algorithm to select from a

node's surrounding blocks the maximum and minimum values. The number of blocks

that are connected to a node differs depending on its position within the image.

There are therefore three stages to be completed: firstly the algorithm must decide

whether or not a block exists in a certain direction from the node, then the block's

corresponding address must be calculated, and finally the block data is retrieved
from memory. This must happen for all four possible locations that a block may

exist in relation to a node: above left, above right, below left, and below right.

In order to make the process more deterministic and simplify the resulting hard-

ware, the sequence of instructions was made identical for each block position re-

gardless of whether a block exists there or not. The reasoning behind this lies in

the difficulty in scheduling the varying number of instructions required to select a

4. Implementation details 149

Normal address calculation
ý 'Dummy value

Address

MAXBLOCK
_ADDRESS

Flag A
Flag B

Block Data
Store

Data Node Data
Store

Figure 3: Flags indicating a particular block is at the edge of the image cause a
dummy value to be addressed.

maximum or minimum value from one, two or four possibilities. A simpler solution
is to supply dummy values for those positions where blocks do not exist, and pro-

viding appropriate dummy values are selected they will always be overwritten later

by valid data. (When finding the maximum value, a dummy value of zero will be

overwritten by any other data. Similarly a value of 255 will be overwritten when
finding a minimum). The problem is then always one of finding the maximum or

minimum value from four possibilities.
In order to supply the dummy values to the program they are stored in an extra

location at the end of the memory space reserved for block data. An address is now

calculated for each of the four locations surrounding a node. If a block does not exist
in a certain location, then the predefined constant address MAX-BLOCK-ADDRESS

is placed on the address lines, otherwise the row and column indices are used to find

the actual block address. The resulting hardware can be seen in figure 3. The signals
Flag A and Flag B represent the Boolean operators used to signify the beginning/end

of a row/column. This information can be used to ascertain the presence of a block

in a given direction from a node.
The memory blocks to store the block and node data were generated using Xilinx's

Core Generator tool, which allows for manual instantiation of parameterisable cores
for the Xilinx FPGA devices. The addition of the dummy value to the Block Min

and Max storage means that MxN+1 locations are now required, where M is the

number of blocks in the horizontal direction, and N is the number of blocks in the

vertical direction. This equates to 4801 locations for 80 x 60 blocks. The storage

4. Implementation details 150

generated was thus two single port RAMs for the block data, at 4801 x8 bits, and

two single port RAMs for the node data, at 4941 x8 bits.

During core generation initialisation files may be specified for memory blocks,

which contain the data that the memory contents will default to at power-lip. Using

this facility the dummy value in the final location of the Block Min memory was set

to 255, and all other locations were set to zero. The dummy value for Block Max

is zero and so the whole memory may be initialised to this value. This initialisation

data is incorporated into the netlists generated by Core Generator and will be read

into the tools used during the generation of the FPGA programming bitstream.

4.2 Bilinear interpolation calculation

Using the modified version of the bilinear interpolation equation of equation 3, the

calculation may be analysed to determine the best fixed-point representation of the

resulting data. The coefficients used during the calculation all represent node data.

In the worst case, these values will all equal 255 = Maxim,.. Therefore:

[xMaxm,., + (X - x) Max�. ��] (X - y) + [xMax. + (X - x) Maxma, ý] y outmax = x2

X Maxm�. (X - y) +X Maxm. y
Dutmax = X2

nrni. t---- =
X 2Max..

. -Mb-X X2
outmax = Max.

(4)

This indicates that when the coefficients are equal the output will match this value.

Hence the linear ranges of outm and outman are equal to that of the image data, i. e.

8-bit.

The divide operation is a source of difficulty in implementing the algorithm in

hardware. In this case, because the block size has been previously constrained to

be a power of 2, the division may be performed by a right binary shift, which will
incur a loss of accuracy in the value as digits are discarded. Therefore as a means

of preserving accuracy in this value the shifting operation is not performed yet but

the binary representation is changed; in effect the theoretical binary point is moved

4. Implementation details 151

log2(X2) = 21og2(X) places to the left. Now no bits are discarded, and therefore the

error of this value compared to the Matlab original is zero.
The number of bits required to represent outmax and outmti, is now dependent

on the block size. There are 8 bits for the integer part and 21og2(X) bits for the

fractional part, and hence in total 8+ 2log2X bits are required. For example, when

using 32 x 32 element blocks 18 bits are required, of which 10 bits make up the

fractional part.

4.3 Contrast stretch calculation

The contrast stretch is performed using equation 2. As shown in Section 4.2 outmax

and outman refer to greyscale data, and after re-scaling the denominator of this expres-

sion will always equate to a value between 1 and 255. Because of the difficulties in

implementing divide operations and the abundance of on-chip memory on the target

device, it was decided that a lookup table of the reciprocals of integers in this range

would be the best method of performing this calculation. The representation chosen
for the reciprocal data was 18Q18 (an 18 bit word of 18 binary places). Spreadsheet

analysis revealed this to possess a maximum representation error of 0.09%, which

was deemed sufficiently accurate whilst making optimal use of the 18 x 18 bit dedi-

cated multipliers present on the target device. The look-up table was implemented

as a 255 x 18 Single Port Block ROM, generated using Core Generator. A text file

containing the reciprocals of the integers from 1 to 255 scaled by 218 was used as
input to Core Generator to correctly initialise the memory.

Using a look-up table of reciprocals introduces error into the system because

only a limited number of reciprocals are stored, which means that it is important

the most appropriate value is selected. The reciprocal is chosen based on the result

of outmax - outman after re-scaling back to the 0- 255 range. The re-scaling process

was originally performed by truncation of the fractional part. This results in a loss

of accuracy as follows:

The precision being discarded is 21og2(X) bits, where X represents the block size

4. Implementation details 152

being used. The linear range of the fractional part is thus:

LRfr,,, = 221og2(X)

LRfrac = 21og2(X) X 21og2(X)

LRfrac = X2

(5)

The smallest value that may be represented is therefore -17. The maximum error

occurs when these bits are all I before being discarded. In this situation the resulting
integer has a maximum absolute error of:

MaxErrort,,,, =
X2-1

(s) X2

Using actual figures demonstrates this more intuitively. For example, when using
16 x 16 element blocks there are eight bits of precision that are discarded. The

maximum error occurs when these bits are all 1, which is equivalent to 162-1 = 255 in
decimal. Because these bits represent the fractional part of the result, the maximum

absolute error is 255/256, or approximately 0.996. Truncation means that the error

will always be negative as the fractional part is simply discarded. This value for

maximum error is consistent throughout the 8-bit greyscale range and is insignificant

at high greyscale values, but in relative terms it has a greater effect when the integer

part is small.
Initial results gained from the algorithm showed that this error became unaccept-

able when the whole part of out., - outmm is of low magnitude, which occurs when

outma,, is approximately equal to outm;,,, i. e. when the local minima and maxima are

closely bound. This is an indicator of areas of very low dynamic range. It therefore

follows that the accuracy of the VHDL system compared to the Matlab equivalent
is directly related to the contrast of the input image.

To decrease the error that is introduced at this stage the truncation operation
described above was replaced by rounding, which resulted in significant observable
improvements. In general terms, rounding means that if the fractional part is greater
than 0.5 the least significant digit of the integer part is incremented. This is imple-

mented practically by adding 1 to the MSB of the fractional part before it is dis-

4. Implementation details 153

carded. Because the MSB of the fractional part is now taken into consideration, the

number of bits being discarded is 21092(X) - 1. The discarded linear range is thus:

LRfrac = 221og2(X)-1

21092(X) x 210g2(X) LRfrac =2
X2

LRf,. ac =2

The maximum error is now:

XZ

MaxError, ý�a =
2X2

Continuing the example of 16 x 16 element blocks, the expression for MaxError

evaluates to 127/256 (or approximately 0.496). This can be seen more intuitively

by considering that now only seven of the eight bits that constitute the fractional

part are discarded without consideration. It is important to note that although

the maximum error is halved, it also becomes bipolar in that it may be positive or

negative. The effect of rounding is not to decrease the total range of error, but to

shift it so that it is roughly symmetrical around the integer.

This expression indicates that the error introduced into the system before the

selection of an integer reciprocal value is a slowly changing function of block size,

and when rounding is used its magnitude is always less than 0.5. Since this is the

denominator of the stretch expression it may cause significant errors in the output

when the integer part is small. For instance compare the relative error between 1

and 1.5 (33%) to that between 250 and 250.5 (around 0.001%).

From the fixed-point analysis above, it was found that the out,,,,. and outmin

values have 2x log2(BlockSize) binary places. This is then multiplied by the recip-

rocal data to give a value that has 2x log2(BlockSize) + 18 binary places. The final

stage of the calculation is to multiply by 255, then discard 2x log2(BlockSize) + 18

bits of precision. Let the result of the reciprocal multiplication be X, and the excess

4. Implementation details 154

Pixel data in

E

Clock

Reset Control

"

Current state
nable

ýp

f

Status indicators (flags)

}
Datapath

iý Pixel
address

Pixel data
out

Figure 4: Overview of LRM design with FSMD structure.

precision p. Then:

out _
255X

out =

2P
256X X

2P 2p
Xx

out = 2(P-8) --

out= X»(p-8)-X»p

Where the » symbol denotes a right binary shift. Since a shift in hardware is easily
implemented by slicing the bit array (and has zero cost in terms of gates), the final

calculation has been reduced to the reciprocal multiply and a subtraction.

4.4 Design structure

The block diagram of the top-level design may be seen in figure 4, and figure 5

uses a timing diagram to display the relationship between the Control and Datapath

sections. The Start signal is used to initiate processing of image data. The current

state of Control represents the next state of the Datapath, or using the custom

processor paradigm, the current state of the Control function represents the next
instruction to be executed.

5. Verification and results

Clock

Reset

Start

Control State

Datapath State

I J-7

155

Figure 5: Timing diagram shows relationship between control and datapath elements
of the design.

5 Verification and results

5.1 Methodology

Testing was first carried out on the Control module using a simple test bench that

provided the clock and reset signals and simulated the flag signals from the datapath,

then through monitoring of the control path's state output the design could be

verified. Rather than write a testbench specifically for the datapath it was decided

to write the top-level module, integrate the control and datapath blocks, and develop

a testbench for the whole system. This decision was made on the basis that much of
the signal generation that would be required of a datapath testbench already existed
in the form of the verified control path, and the top-level module contains no logic

so any errors in the functionality could be traced directly to the datapath.

Testing of the completed design was carried out using real image data. The

image processing toolbox of Matlab provides capabilities for working with images as

ordinary matrices, and so the manipulation and analysis of images is straightforward.
Images may also be imported from recognised file formats such as JPEG and GIF, or

read in as data from text files. Using these facilities a test procedure was developed

that allowed the VHDL design to be tested alongside the original Matlab algorithm

using real image data.

After an image has been imported into Matlab it is resized to fit into the 256 x 240

element input memory of the VHDL design. (This image size is purposefully small

5. Verification and results 156

to keep simulation times down during early `proof-of-concept' testing.) Resizing an

image may be performed in two ways: by simply removing columns and/or vectors

from the matrix; or by the Matlab function imresize which uses interpolation to resize

the image. In practise a mixture of these two methods was used: imresize was used

first to reduce the overall image to approximately the correct size whilst retaining the

original aspect ratio, then columns and/or vectors were removed to alter the aspect

ratio to that of the target memory. Resizing the images in this manner minimises

distortion. Once resized, the images were imported into the VHDL design by using

a simple Matlab function that was developed to write matrices to a text file, in a

format that could be read by Modelsim's Memory Editor. As part of the VHDL

testbench two RAMs were instantiated to act as input and output image storage.

Because the testbench is not synthesisable this can be done without details of the

available memory on the target system.

Upon completion of the Modelsim simulation, the Memory Editor was used to

write the contents of the output frame store to a text file, which was then imported

as matrix data into Matlab. A custom function is then used to reshape the matrix

to the correct dimensions (required since Modelsim writes out Memory data as a

vector), and cast the data values as image data. During this process the data is not

affected in any way.
In order to create a benchmark against which the Modelsim output may be

gauged the test image was also processed by the original Matlab version of the LRM

algorithm. An ideal implementation would have zero difference between the VHDL

and Matlab outputs.

5.2 Analysis

The initial test image was chosen from those supplied with the Matlab image pro-

cessing toolbox as a good example of an image with poor contrast, and with several
details that may be highlighted by the algorithm. The image is shown in figure 6.

The image was applied to both versions of the LRM algorithm using 16 x 16

element blocks. Figure 7 and figure 8 show the corresponding output images from the

VHDL and Matlab methods of implementation respectively. To the human eye the

5. Verification and results 157

Figure 6: Original test image with poor contrast.

images appear nearly identical. A difference image between the two implementations

is shown in figure 9 (for ease of presentation the image has been inverted and scaled

to use the full greyscale range).

Greyscale images of the type used here may be easily assessed in the frequency

domain using the imhist function of the image processing toolbox, which produces

a histogram of the image data using a default of 256 bins representing each possible

greyscale value. Figure 10 shows the histogram of the test image. The poor contrast,

of the image is reflected in the close proximity of the two peaks (which represent

the mean values of the image subject and the background), and the narrow range of

intensities that have a non-zero number of elements indicates a low dynamic range.

The corresponding histograms from the enhanced images are shown in figure 11

(VHDL) and figure 12 (Matlab).

The improvements to the image's contrast and dynamic range are clearly visible

in both cases. (In some ways the enhanced images have a contrast that is now too

high, shown by the skew of the background mean towards dark pixel values.) Of

more interest is the similarity of the methods, although the VHDL enhancement has

resulted in a more jagged curve. The smoother curve of the Matlab approach is

evidence of a more even distribution, which in turn would suggest that the resulting

image has more gradual transitions between light and dark areas. In practise it

is difficult to detect this difference visually. It is also worth noting that although

5. Verification and results

Figure 7: Test image after processing by V1IDL implementation.

Figure 8: Test image after processing by Mailab implementation.

, r: :

Ii

-i

158

Figure 9: Difference image between Matlab and VHDL implementations.

5. Verification and results 159

i. OD

1200

1000

900

wo

400

200

50

O4Iplnal

100 uo p0 zso

Figure 10: Brightness histogram of original image.

700

Soo
500

400

300

A0

Me1IaE

I

100 150

I

200 250

Figure 11: Histogram of test image after procesing by VHDL implementation.

? DD

600
5DD

400

300

200

VHDL

I 100

I

f 150 i I w

Figure 12: Histogram of test image after procesing by Matlab implementation.

5. Verification and results 160

Test image
SAD

40684
MSE

1.0784

Table 1: Sum of absolute difference (SAD) and mean squared error (MSE) metrics
between VHDL and Matlab implementations.

both the enhanced images exhibit the classic bimodal distribution the peaks are

considerably less pronounced than the image before enhancement, an effect probably

caused by the increased number of edges between light and dark areas in the image.

(Of course, since the number of pixels in the image remains fixed the envelope curve

of the histogram must contain the same area both before and after enhancement. If

the number of edges between the foreground and background mean values increases,

the mean values themselves must be represented by a lower number of pixels. Hence

the peaks are less distinct as they are ̀ absorbed' into the rest of the curve.)

Considering the images as matrices enables further mathematical analysis of the
degree of conformity between the VHDL and Matlab results, which can be gauged in

several ways. Two such ways will be considered here, both of which are derived from

the mathematical difference between the two matrices found by simply subtracting

one from the other. In order to do this in Matlab either the data must be recast
into double precision format, or the function imabsdiff may be used, which will

automatically subtract one image from the other on an element-by-element basis

and return a matrix of absolute differences between corresponding elements. This

matrix is then used to generate two measures of conformity, mean squared error
(MSE), and sum of absolute difference (SAD), presented in table 1. Although the

SAD may seem a large figure, it is spread over 61440 pixels, and equates to a mean

absolute error per pixel of 0.66.

Figure 13 shows a histogram of error values between the VHDL and Matlab

versions of the algorithm. 87% of pixels are within ±1 greyscale value. Overall,

there is a negative bias to the error, meaning that the VHDL output may appear

slightly darker than the Matlab equivalent.

5. Verification and results 161

{ .202d
Eitor

6

Figure 13: Histogram of error values between the images of figures 7 and 8.

5.3 Results over other images

The above tests were carried out on five images, with four of the five being examples of

typical images (consisting of foreground and background areas) with poor contrast.

The final image was artificially created in order to test the limits of the system

by exploiting the known source of error: the reciprocal selection. This image was

designed to have exceedingly low contrast and dynamic range, and was generated

in Matlab as a matrix of elements all equal to 127 before application of zero mean

Gaussian noise of low variance. The resulting image had mean value 127, maximum

value 137 and minimum 115, providing the low input range necessary to amplify

relative error. These results show that in this situation the SAD is 241330, which

equates to a mean error per pixel of around 3.9. Although less than ideal, this

artificially poor input image results in a VHDL output that is a fair approximation

of the floating point Matlab equivalent. The resulting measures of conformance from

all five images are shown in table 2.

These measurements of error between the Matlab and VHDL representations are

in some cases fairly large. The source of the discrepancies can be pinpointed to the

reciprocal selection. A discussion of ways to improve the accuracy of the design may

be found in the conclusion.

6. Conclusion

SAD MSE
Pout 40684 1.0784
Road 80426 3.0333
Scene 43439 1.6315
Face 123101 8.8303
Worst case 241330 24.73

Table 2: Error metrics over 5 test images.

6 Conclusion

162

The work presented here demonstrates an effective method of realising high-level de-

scriptions of algorithms in hardware. The scheduling and allocation method allows
the sequential programming paradigm to be used as the basis for hardware design,
but still leverage parallelism of execution where it is possible. The resulting FSMD

model may be applied universally to implement any hardware-design. It is a frame-

work that is repeatable across different forms of algorithm and allows a consistent
approach to be taken, using well-known and understood techniques. In most cases
this improved tractability will drastically shorten the time take to realise algorithms
in hardware. The main problem then becomes one of optimisation, as without it
the resulting implementation may not be adequately efficient. The main areas for

optimisation lie in optimising for speed by identifying the interdependencies between

variables that prevent parallel execution of statements, and optimising for hardware

cost by sequencing instructions to share functional units within the datapath.

In addition to using scheduling and allocation several hardware based techniques

were used that facilitated the hardware design and allowed an assessment of the error

within the system to be made. Although the way in which these techniques were
applied here is specialised to this particular algorithm, the concepts may be used in a
more general sense with whole classes of algorithms. For instance, careful application

of constraints on an algorithm's parameters may greatly reduce the mathematical
burden placed on the hardware.

In the case of the LRM algorithm, it was shown that the error of intermediate

values could be virtually eliminated through careful manipulation of the fixed-point

representation. In fact, had the interpolation division been implemented using a true

6. Conclusion 163

hardware divider the total error throughout the system would have been arbitrarily

small and a function of the time allowed for calculating precision. In this application

a look-up table of reciprocals was used instead to improve the speed of the system.

The error introduced by the reciprocal multiply is caused not by the reciprocal

storage or representation, but rather through the limited quantity of reciprocal values

available, and therefore to reduce this error a larger look-up table containing a greater

number of reciprocal values would be necessary. By doubling the number of available

reciprocals and continuing to use rounding instead of truncation the representation

error before the divide could be halved. In terms of hardware cost this would require

an increase in reciprocal memory from 255 x 18 bits to 511 x 18 bits or a further

4.5Kb, which is minimal in terms of memory available on the target device. Each

doubling of the number of reciprocals would halve the representation error before

the divide, and therefore this represents a trade-off between accuracy and memory

requirements.

When working with digital greyscale images the designer often has a measure of

leeway, as inputs are usually integer values, and unless non-integer coefficients are in-

troduced or divide operations are used then the data will remain as integers through-

out the algorithm. Furthermore, the accuracy of the output is usually only required

to the nearest integer. In these situations, providing fixed-point representations are

used correctly, the need for floating-point arithmetic is greatly exaggerated. This

is particularly true in the domain of FPGAs, where the constraints of fixed register

sizes and word lengths are not present. In this work the fixed-point representations

were largely determined by the nature of the algorithm itself, however this is not

always possible and often requires some experimentation to find the best solution.
Matlab may be useful in these circumstances as it contains functions such as ̀ quan-

tizer' which allow fixed point representations to be easily specified and applied to

groups of data. The effects of changing these representations may then be easily

observed, which promotes experimentation at the Matlab level before following the

scheduling and allocation route.

The often-stated difficulty in high-level synthesis is that the time it takes to

follow the design flow prevents the subtle experimentation that is required to find

6. Conclusion 164

the optimum solution. This problem may be lessened by using a form of coding

that promotes a repeatable design flow between the high-level algorithm develop-

ment language and the HDL RTL, and thus bridges the gap between behaviour and

structure.

References

[1] J. D. Fahnestock and R. A. Schowengerdt, "Spatially variant contrast enhance-

ment using local range modification, " Optical Engineering, vol. 22, no. 3, pp.

378-381,1983.

[2] P. Banerjee, "An overview of a compiler for mapping MATLAB programs onto
FPGAs, " in Design Automation Conference, 2003. Proceedings of the ASP-DAC

2003. Asia and South Pacific, Jan. 21-24,2003, pp. 477-482.

[3] Handel-C language reference manual. Accessed 8/12/06. [Online]. Available:

http: //www. celoxica. com/techlib/files/CEL-W0410251JJ4-60. pdf

[4} D. D. Gajski and L. Ramachandran, "Introduction to high-level synthesis, " IEEE

Design and Test of Computers, vol. 11, no. 4, pp. 44-54,1994.

165

Appendix C: Implementation of
LRM Algorithm using System

Generator

166

System Generator Implementation of LRM Algorithm
September 2004

Summary: A period of approximately three months was spent learning the System

Generator tool and how it could be of use to Thales for implementing image process-
ing algorithms. The work was based on the LRM method of contrast enhancement

that had been previously implemented in hardware using hand-coded methods. Since

the time of writing this report some of the features and capabilities of System Gen-

erator have changed, however many of the general conclusions presented here remain

valid.

Oliver Sims

EngD 2nd Year

Industrial Sponsor: Thales Optronics

1. Introduction 168

1 Introduction

System Generator [1] is a set of libraries for Mathworks' Simulink that offers the abil-
ity to model Xilinx FPGA hardware within the Simulink environment. In essence the

libraries are simulation models of the IP cores available in Core Generator, the Xilinx

tool for IP parameterisation and generation within traditional Hardware Design Lan-

guage (HDL) synthesis design flows. The System Generator design flow reduces the

need for manually crafted HDL, and the graphical design environment allows blocks

to be connected together in a block diagram style, before the tool automatically

generates the HDL for synthesis. The tool also includes some advanced simulation

options such as hardware co-simulation and an interface to Mentor's Modelsim HDL

simulator for incorporating System Generator's output within a larger design.

The process of realising a sophisticated algorithm in hardware may often be a

more difficult and time-consuming process than the algorithm development itself.

Furthermore, the algorithm's effectiveness may be diminished by hardware related
issues, for instance quantisation effects. It may therefore be assumed that if the pro-

cess of realising an algorithm in hardware is eased, the level of abstraction is raised,

and the designer's efforts may be redirected towards performance and efficiency re-
lated issues.

The algorithm to be implemented is the Local Range Modification (LRM) method

of contrast enhancement, developed by Fahnestock & Schowengerdt [2]. This algo-

rithm was successfully demonstrated on FPGA hardware in an earlier project, after
following a traditional hand-coded route through the implementation tools. The

demonstration system also included clock management and composite video gener-

ation. The aim of the work with System Generator is to replace the original imple-

mentation of LRM with a version created with System Generator, whilst maintaining

the same system framework, in order to demonstrate the functional equivalence of
the two methods. It is important to note that the purpose of this work is not to

assess the performance or efficiency of the product of a particular means of imple-

mentation, but rather to examine the difficulties faced by the designer during the

implementation process. For this reason attempts were made to maintain similari-

ties between the demonstration systems, and focus purely on the subject of design

2. System Generator capabilities 169

realisation.

2 System Generator capabilities

2.1 Design features

The following are some of the features of the Simulink and System Generator envi-

ronment that are used in the creation of a hardware design.

Xilinx Blockset

The libraries provided by System Generator contain the functions that may be later

converted to hardware. There are two libraries of cores, named the Xilinx Blockset

and Xilinx Reference Blockset. The standard Blockset contains mostly basic oper-

ators such as arithmetic, logic, and memory (RAMs, ROMs, and FIFOs of various
types), and some common DSP functions such as Fast Fourier Transform or FIR

filters. There are also some more sophisticated blocks such as a `soft' processor and

microcontroller (Microblaze and Picoblaze respectively), convolution encoder, time

division multiplexer, etc. The Reference Blockset contains some more abstract func-

tions, such as a more varied range of filtering options (including a basic 2D filter for

imaging applications), CORDIC processing, and both Mealy and Moore type state

machines.

Hierarchical design methodology

The Simulink environment is tailored towards hierarchical design methods. Subsys-

tems are used to encapsulate lower levels of hierarchy, which may then be instantiated

as often as required in the wider system. This is closely related to the way in which
hardware is traditionally designed and promotes both efficiency and lucidity; it is

especially useful in this environment as large Simulink designs may become cluttered

and difficult to understand.

2. System Generator capabilities 170

Handling of fixed-point representations

Deciding on the best representation of analogue data within the digital system is

often one of the most difficult and skilled tasks facing the designer, and also one

of the main factors in the effectiveness of the completed design. System Generator

contains several components that aim to make this process easier. The conversion of
floating-point data from the outside world into the fixed-point representation used
by the system is handled through the use of `Gateway' ports, which correspond to

Input/Output Blocks (IOB) on the FPGA. These ports are parameterisable: the

user may choose the total number of bits to be used in the representation, the

number of binary places, and the format (i. e. unsigned, 2's complement, or Boolean).

Because the parameters are easily adjustable, the designer may evaluate the effect of

using different representations simply by making the alteration and re-simulating the

design. Special blocks that measure the error due to quantisation are available to be

inserted into a design at any point and help to assess the effects of different binary

representations on the accuracy of the system. Because it is not always apparent how

the design is affected by representation error before implementation in hardware, the

ability to model the quantisation process in the simulation environment is one of the

key strengths of using System Generator.

M-Code blocks

M-Code is the Matlab programming language used to sequence multiple commands

to create fully featured functions or scripts. Because Matlab contains many high-

level commands, particularly related to matrix and vector operations, it is a powerful

language for algorithm design and as such M-files are a common algorithm repre-

sentation. It would therefore be highly desirable if it was possible to synthesise

hardware directly from M-code, and a great deal of effort is directed towards this

cause in the wider research community. At present System Generator offers limited

support for synthesis of M-code. The mechanism for implementing M-code is the

M-Code Block, basically a block that has associated with it an M-file. The block

automatically adopts the correct number of inputs and outputs depending on the

parameters of its M-file, and so represents the custom Matlab function within the

2. System Generator capabilities 171

Simulink environment.
The limitations of the M-code block stem from the way in which it is handled

during the generation phase. The hardware resulting from such a block may form

combinatorial logic only, which means that the function may only contain conditional

and logical operators and simple arithmetic functions. Sequential logic cannot be

generated, and this removes the possibility of using any type of looping or waiting

constructs.

One use of the M-code blocks is in the implementation of the state transition

function of a Finite State Machine (FSM), which is basically a set of conditional

assigns. Most of the other capabilities of the M-code block are made redundant by

the functions represented in the block libraries. It is hoped that the capabilities of

this block will increase in future versions of the software.

2.2 Simulation capabilities

One of the strengths of the System Generator design flow is the rich set of simulation

tools provided by Simulink that may be used in analysis of the design. In particular

the possible signal sources, which include periodic signals, ramps, steps, and random

noise, are all easy to generate and offer a level of sophistication not easily achieved

using traditional HDL techniques. It is also possible to import data from Matlab

in real time, and export outputs back to Matlab for analysis. This readily allows

for examination of a Simulink design using Matlab's abundant analysis capabilities,

and gives the designer a convenient but powerful way of comparing an algorithm's
System Generator implementation against the original model.

When simulating a System Generator design before generation it is necessary

to draw comparisons with the equivalent simulation environment for a HDL flow,

i. e. using a HDL simulator such as Modelsim. Modelsim is more powerful and

offers a greater degree of control to the user, however the nature of Simulink means

that it is much simpler to generate stimuli and process the results. Nevertheless,

there are some features of Modelsim that would assist in Simulink simulations, such

as viewing of the contents of RAM blocks during simulation; being able to work

more closely with waveforms using cursors and search functions; and the ability

2. System Generator capabilities 172

to force signals to a desired value during the simulation. Many of the standard
features of HDL simulators are unavailable or implemented differently, the net result
is that functional verification of a design and fault diagnosis may be more difficult in

Simulink, particularly for those engineers accustomed to HDL testbench methods.
Of course Modelsim may be used later after generation of HDL, but any alterations to

the design's function would almost certainly need to be carried out back in Simulink.

This iterative approach may be time consuming, and would possibly lead to the

adoption of incremental synthesis methods.
Another potential problem discovered during the implementation of the LRM

algorithm was that simulation of large designs required considerable amounts of

computing resources or would otherwise execute extremely slowly. This is a pretty

unavoidable consequence of modelling such complexity, but with some models con-

taining hundreds of blocks it can become necessary to use high-powered computers,

or resort to using a modular approach to verification where individual subsystems

are verified functionally correct before incorporation into the larger model.

2.3 Generation

Once the design is complete and functionally correct, System Generator offers several

methods of progressing towards realisation in hardware.

" HDL generation, where VHDL or Verilog is generated as connected instantia-

tions of the Xilinx cores.

" NGC Netlist, which generates HDL then automatically links to a synthesis tool

to produce a netlist-level output.

" Bitstream, which takes the design to the FPGA programming stage, possible

when the entire design is modelled in System Generator.

" EDK Export, for importing the design into an embedded system built using

the Xilinx EDK tool.

" Hardware Co-simulation, which allows simulation of the System Generator

design in FPGA hardware using Modelsim for providing stimuli and displaying

2. System Generator capabilities 173

the results, and Simulink to provide the interface with the hardware.

The System Generator flow integrates seamlessly into the implementation tool

chain. When generating HDL all the necessary VHDL or Verilog files are produced,

along with testbenches, timing constraint files, ISE project files, and netlists for the

Xilinx IF. When synthesis is also carried out as part of the generation process a

script is automatically generated which contains the necessary commands to identify

the design files, apply the necessary constraints, and perform the synthesis. Upon

execution of the script the synthesis tool will produce a netlist without manual
intervention by the user.

Post-generation verification

As part of the generation process the System Generator design is simulated, during

which time the value of the inputs and outputs at each time step is recorded to a
file. Once generation has completed (either to HDL or NGC) a Modelsim simulation

script is automatically produced to import the necessary libraries, compile the design

files, run a simulation, and check the results against those from Simulink. After the

simulation has ended scores are displayed that show the number of errors and a

percentage of correct samples, thus giving a simple measure of conformity between

the pre- and post-generation design. This is an impressive feature that effectively

allows the system designer, who may be proficient in Simulink but is inexperienced

using a complex HDL simulator such as Modelsim, to perform verification of the

model in Simulink and use Modelsim only to check the equivalence of the final

implementation. It is also possible to perform a similar simulation after various

stages in the implementation process, such as post-map and post-PAR.

Incorporating System Generator designs into a larger system

The results from a System Generator design may later be incorporated into a larger

hardware design, either by direct instantiation of HDL or as a black box representa-

tion of a NGC netlist. The latter method allows an incremental synthesis approach to

be taken, whereby the System Generator portion of the design is not re-synthesised

2. System Generator capabilities 174

with the other HDL but incorporated at a later stage by the FPGA implementation

tools, which merges the associated netlists into the complete design.

Simulation of the entire design is made possible through the use of special HDL

files generated during the compilation procedure, along with initialisation files for

any blocks of memory that may be needed.

2.4 Hardware co-simulation

Hardware co-simulation allows parts of a design to be compiled into hardware during

a Simulink simulation so that the FPGA itself is used to calculate results. Simulink

interfaces to the FPGA hardware via JTAG over the Parallel IV programming cable.

During simulation, the inputs to a compiled block are fed to the FPGA, and as

the results are generated they are read back into Simulink. This can provide a

significant simulation speed up, and allows the designer to test out parts of design in

hardware before completing the entire design. The hardware co-simulation feature

may be used with any board with a Xilinx FPGA, but requires a Board Support

Package (BSP). Template files are provided to create a custom BSP if necessary,

which requires knowledge of the board's JTAG scan chain and FPGA pin-out.

An interesting use of the hardware co-simulation feature is to accelerate a design

composed purely of HDL, i. e. with no Xilinx IP blocks. HDL designs may be

imported into System Generator as a black box, which at simulation time will be

simulated using Modelsim. If this black box is compiled for hardware co-simulation

there exists a method of simulating a purely HDL design with Modelsim, but using

the speed advantages of having the design running in hardware. During simulation,

Modelsim will provide the stimuli (usually defined by a testbench) which is fed to

Simulink; Simulink then interfaces with the FPGA to provide the stimuli on the

appropriate inputs and retrieve the outputs when available, which are then returned

to Modelsim for display.

3. LRM algorithm implementation 175

3 LRM algorithm implementation

3.1 Implementation details

The LRM algorithm was implemented using System Generator to demonstrate the

realisation process. The design was heavily influenced by the results of the earlier

manual HDL synthesis flow, and it is difficult to estimate how the second imple-

mentation would differ without the earlier work, for instance, how much longer the

process would have taken without the previously gained knowledge of the algorithm's

operation. The two systems have virtually identical implementations, and this is ev-

ident in the resulting device usage.

The algorithm was divided up into three distinct phases: Block Extrema, Node

Extrema, and Contrast Stretch. The three phases of the design run sequentially;

this process is controlled by a simple FSM. Each phase of operation is represented

by a subsystem in the top-level of hierarchy; a further subsystem contains logic for

generating the addresses used to identify pixel locations, and acts to sequence the

flow of data through the algorithm. Blocks of Single Port RAM are instantiated

between the top-level blocks to store intermediate data, and the address lines to

these RAMs are multiplexed as necessary. The system is shown in figure 1.

3.2 Implementation specifics

During the course of the design process there were several key problems that needed

to be solved. In order to provide an insight into the subtleties of the System Gen-

erator design process the following section describes some of these problems and the

methods used to overcome them.

System control - finite state machine

The FSM used to control the sequence of execution of the three phases of the al-

gorithm was implemented in M-code using the M-code block. The system has four

inputs and three outputs; one of the inputs represents the current state, the remain-

ing inputs and the three outputs are the respective status and activation signals for

the three subsystems under control. Also shown in the diagram is a register that

3. LRM algorithm implementation

I

sI

*X .

s

I
,4
!. i i

FJ
9ý
41

8ä
Ii

if

kk I

ý
z

ac;

ý I ý

a

It z-z

i4_:

r-ý

I

LN1i,
ý !,

-4 4-1

ý
ý
ý a ý

176

3. LRMI algorithm implementation

and

Logioal

Enable

k "0

Constlnt

ºo Index_y

Counterl

out

b

:

a-
ina. x_x

Counter

Rolational

Counters to generate x and y pixel
position within current block.

Bloch are 16x16, so counters are Obit free-running.

Figure 2: Cascaded counters used to implement nested program loops.

177

stores the current state. This structure is independent of the FSM that it contains
(besides the quantity of I/O), and could be used for any FSM code. Changing the

function of the controller is performed by modifying the underlying M-code.

Looping constructs

Most image processing algorithms contain iterative loops, as operations are carried

out both on individual pixels and groups of pixels within an image. The LRM

algorithm requires nested loops of up to four levels, as pixels are examined on a, line

by column basis within a block, and as the blocks are considered in both vertical

and horizontal directions. Although in behavioural terms a loop is easy to describe,

in hardware it is less obvious how it should be implemented. The solution shown in

figure 2 generates co-ordinates using the Xilinx Counter block. By cascading them

and utilising the optional enable input, these can be made to operate in a hierarchical

manner and count sequentially in any number base. Counters were also used as the

`select' input of multiplexers to enable sections of hardware to he activated in a

cyclical manner.

3. LRM algorithm implementation 178

Relational2

10.1

b

ý
a>b h

I
In1

In2

D
asb

d1

Mux º{sel

ý dl

Mu>Q
RelationaG

In3

CHDIý
In4

-bi fei
d0

dt

Mux1

ºo Outi

Findsthe minimum ot4 inputvalues using combinational logic.

Figure 3: Parallel comparison of four data elements.

Comparison of parallel data elements

The LRI I algorithm requires the niaxinium and minimum values from up to four sets

of data to be found, which are used as coefficients in the contrast stretch. The ability

to compare data values in parallel and extract the extreme values may be carried out

using combinatorial logic, in the manner shown in figure 3. This consists of using

relational operators to control multiplexers, which feedforward the appropriate value.

In general, because the relational operator has a maximum of two inputs it requires

n-1 comparitors to reduce n inputs down to a single value. Furthermore, the

comparison will require log2(n) stages, or logic levels. Of course, blocks of logic that

are deep because of cascaded stages may cause timing difficulties unless pipelined;
however pipelining is easily achieved in System Generator due to most blocks offering

the option to incorporate register delays.

3.3 Simulation of LRM design

The LRM design was simulated by encapsulating it within a subsystem, then pro-

viding stimuli and monitoring the outputs at this top level. The schematic is shown

in figure 4. The diagram shows the algorithm contained within a subsystem named

a
jHb

ob! ý

Relational4

4. Results

Time (weeks)
Hand-coded HDL System Generator

Design 3 4
Verification & debugging 1 2

Implementation 2 <1
Total 6 7

Table 1: Comparison of System Generator and hand-coded methods.

179

`ContrastEnhance'. Each of its two inputs (on the left) and three outputs (right) is

connected to a Gateway block, which convert signals between the Xilinx fixed-point

and Simulink floating-point representations. The image memory is implemented as

a Direct Loop-Up Table followed by a unit delay, which is intended to simulate the

on-chip RAM used for storing the image data in the real system. The look lip table

is preloaded with data by specifying the name of a Matlab vector, which in this case

is a test image (the conversion of an image to a vector representation is fairly simple

using a few Matlab commands). The output of the design was monitored using a

scope block, and was additionally written back to Matlab for more detailed analysis.
The icon in the top right of the figure is the System Generator token, which contains

various settings used to control the simulation and generation of Xilinx cores.

4 Results

Table 1 shows the time taken, in weeks, to perform the various stages of design

realisation using both the manual HDL design flow and System Generator. The

results may be slightly misleading, as although the System Generator flow took longer

to produce a working result the time learning to use the tool is indistinguishable

from the time spent implementing the LRM algorithm. However the design process

was undoubtedly quickened by the knowledge gained during the HDL flow, and as
System Generator claims to improve design times the results begin to appear less
favourable. The majority of the design time during the System Generator flow was
spent forming functional units that would otherwise be automatically inferred from

HDL by a synthesis tool. As would be expected, the time spent implementing a
design using the ISE tools is cut significantly when using System Generator.

4. Results

t

"1

0 r
ý

4
ýÖ
f.
OC
0''

JN

ýF
-I-.

G

I ia E
ný

ý

C d d

//
00

Eý
"ý

Ný

-1 N

ýý I

A

ä
v

AL

w
ý

X
0

ý
O

ql
N
ý

a

d

a
cn

Z.
ý e F
W

K

a

E
d f

d U
C

L
C

ý

C

U

ý
c ý
ý ý
d

ý
N ý 0 'N

ýý
ý

ýV
V

ý

'rN^
r

V

ý

ý

ý

ý

180

5. Conclusions 181

5 Conclusions

One of the strengths of designing FPGA hardware compared to ASIC is that the

designer does not have to worry about physical device issues to the same extent.

In effect, there is less requirement for the designer to be expert in the intricacies of

semiconductors and VLSI techniques, which allows greater emphasis to be placed

on the functionality of the design. The design tools for FPGA hardware largely

automate much of the `back-end' design that is required for ASIC. This is one step

along the route towards full behavioural synthesis, whereby from a purely behavioural

view of functionality, a hardware implementation can be generated automatically.

Behavioural synthesis has been a desire of the electronic design community for several

years, and although various tool manufacturers have often claimed to have produced a

method of achieving it, the abilities of these tools are usually not without limitations.

Fundamentally, System Generator is a way of modelling pre-determined IP cores

within the Simulink environment. Any generation process, whether to HDL, netlist,

or bitstream, is simply an automated method of instantiating and connecting cores

together. In real hardware design, selecting and using IP is only half the problem,

the main skill lies in knowing how to map an algorithm's behaviour onto the IP

available.
Despite this, in many respects System Generator offers an excellent method of

producing hardware. For data-flow applications, particularly communications, the

graphical environment allows the designer to see the progression of data through the

system, insert registers for pipelining and retime if necessary, and observe the effects

of varying fixed-point implementations with ease. In this situation the Simulink sim-

ulation apparatus is well suited to the task, and since verifying the System Generator

design is the same process as verifying the original algorithm greatly reduced design

times are possible.

However, when the algorithm does not map to the data flow paradigm it becomes

difficult to use the more advanced features provided. The designer must resort to

using low-level design techniques, building up more complex operators from funda-

mental elements such as registers, basic arithmetic units, and logic. In this situation

the skill and experience of the designer is the most significant factor in the pro-

5. Conclusions 182

duction of a correct and efficient implementation, but the majority of the effort is

merely replicating by hand what commercial HDL synthesis tools are designed to

automate. It is worth remembering that the move towards logic synthesis tools oc-

curred due to the difficulties faced by designers when attempting to use schematic

capture techniques with systems of high complexity.
Much of this difficulty stems from the absence of IP that suits the application

domain. In order to overcome these problems it may be necessary to create a library

of IF, in the form of configurable subsystems, for use in the chosen domain. Config-

urable subsystems are an integral part of the Simulink environment, and in hardware

terms represent parameterisable blocks. The custom made IP library would consist

of various functional blocks which are designed specifically to carry out the tasks

that are common to the application domain.

Matlab and Simulink offer a high powered environment for algorithm design, and

utilisation of these strengths in the process of designing hardware could potentially
be of great advantage to the designer. By linking the algorithm design directly to

the design of hardware, the process may not only be completed more quickly, but the

end results may exhibit both improved efficiency and accuracy. With the inclusion

of some of the more interesting features already available in System Generator, such

as hardware co-simulation, it is evident that System Generator could potentially
be of great benefit. For now, for algorithms that do not conform to the data-flow

paradigm, it is a promising but immature solution.

References

[1] System Generator user guide. Xilinx Inc. Accessed: 03/01/2007. [Online].

Available: http: //www. xilinx. com/support/sw-manuals/sysgen_ug. pdf

[2] J. D. Fahnestock and R. A. Schowengerdt, "Spatially variant contrast enhance-

ment using local range modification, " Optical Engineering, vol. 22, no. 3, pp.
378-381,1983.

183

Appendix D: Implementation of
PID Servo Control Algorithm

184

System Generator Implementation of PID Servo Control

Algorithm
July 2005

Summary: An opportunity arose to assist in the implementation of a PID control
algorithm that was to form part of a focus mechanism on a commercial Thales

product. The algorithm was designed and tuned in Simulink, before mapping to
System Generator blocks and generating hardware automatically. The PID control

algorithm presents some interesting challenges that are not usually present in the
implementation of video processing algorithms.

Oliver Sims

EngD 3rd Year

Industrial Sponsor: Thales Optronics

1. Introduction 186

1 Introduction

As part of a wider study into algorithm implementation tools and techniques, this

report documents the implementation of an automatic control algorithm intended

for the servomechanism in a commercial application. The algorithm is based on the

common PID paradigm, whereby a summation of three terms, Proportional, Integral,

and Derivative, provides the correct stimulus for the system under control given an
input derived from the difference between the desired and actual state of the system.
The algorithm is the standard method of performing automatic control, and can offer

good performance control over a range of different processes.

System Generator is a tool that has been developed to assist users of the Simulink

environment realise their designs in FPGA hardware. The majority of engineers
designing in Simulink with FPGA target hardware will be working with signal pro-

cessing algorithms, and the System Generator block libraries reflect this, with an

emphasis on functions such as complex transforms (FFT, DCT), and buffer memo-

ries (FIFOs and RAMs) etc. However, Simulink (and its parent application Matlab)

is also the application of choice for development of control algorithms. Control al-

gorithms pose slightly different problems to standard signal processing algorithms:

they are usually required to operate at much slower data rates (which can pose prob-
lems in an FPGA), and must have very little or ideally zero latency. FPGAs are

probably not created with the PID control market in mind. However, in the sort

of systems that Thales produce, which have stringent constraints both on physical

size and power, it makes sense to combine functionality into the fewest number of
devices possible. When an FPGA is also being used in the system for a variety of

other purposes, it is an understandable aim to utilise spare logic and I/O capacity
for the control algorithm.

A problem caused by the constraint for zero latency in the algorithm means that

there will be resulting long combinatorial paths. This may cause problems later with

meeting timing, though the low internal clock speeds may go some way to prevent

this. Even generating low clock speeds can be troublesome, as in most systems
the global clock will be running in the tens of megahertz, and the on-chip DCMs

have a low bound in the hundreds of kilohertz, anything less than this will require

2. Implementation details 187

manual clock division. The sample period will also have an effect on coefficient

representations, and so operating at a minimal clock frequency will help to improve

internal precision levels.

2 Implementation details

The continuous form of the PID algorithm is as follows:

u(t) = Ký e(t)+Tt f e(t)dt+Tdddýt)
0

(1)

Kc is the gain of the controller, Ti is the integral time (or reset time), and Td is

the derivative time (rate time). e(t) is the current error term of the system to be

controlled. The discretized versions of the three terms will now be discussed.

2.1 Proportional term

The proportional term is equivalent to

up (t) = Ke(t) ý2)

The discretized form is:

up (k) = K,, e(k) (3)

The proportional term is thus implemented as a simple gain applied to all samples.
The proportional coefficient represents the reciprocal of a measurement known as the

proportional band, which is the range of deviation between the process variable and
the set point that will produce a proportional response in the controller's output. A

proportional term that is too large will cause the controller to oscillate, too small

and the output may drift away from the set point.

0

2. Implementation details 188

2.2 Integral term

The integral term is defined as:

tr

uI(t)=KýJ e(T)dT Ti
0

Using a trapezoidal numerical approximation for the integration:

t k
e(i) +e (i - 1)) fe(r)drT8 E2

00

The discrete integral term is thus:

ý

(4)

(5)

ul(k) =
K9

8E e(i) + e(i - 1) (6)
i=0

where Ki =T is the integral term coefficient.
Trapezoidal integration differs from standard rectangular integration as it aver-

ages the input value over the last two samples. This has the effect of helping to avoid

sharp changes in integral action caused by a sudden change in the error signal, and

will thus help to minimise overshoot.

The integral coefficient will determine the amount of integral action in the con-

troller's output. Too high and the controller may become unstable and oscillate.
Too low and the controller may have steady state error. Figure 1 shows the discrete

integral calculation mapped to the System Generator library.

2.3 Derivative term

The derivative term is:

UD(t) = xeTddý t)

A numerical approximation for the derivative term is given by:

(7)

de(t)
~N

e(t) - e(t - 1) (8) dt T.

3. Design features 189

Anti-windup Integral gain
logic term

w. aM. cý

/

ýýý ýýý
ý cýr--. ý

ýmý

N^) ' Fy^. 11

MnwlnEup leplc

o. oooi

NuNiDM bY 1/1

M-0

Co-l

Add two Multiply by
samples TS/2

L q,
ý

I 4J at fe
M-

Integrator

wb

AdE5O:

L-In =''a
a. aie.. 1

10 I (. 1)

Mull

Figure 1: System Generator implementation of integral term

The discrete derivative term is thus:

uo(k) =
Td [e(k) - e(k - 1)] (9)

where Kd = K, Td is the derivative term coefficient.

The input to the derivative term is calculated by subtracting the previous sample

from the current one, before dividing by the sample period, hence calculating the

gradient of the input function. The System Generator implementation is shown in

figure 2.

3 Design features

3.1 Generic, parameterisable design

The coefficients for the three terms are all fed in as variables at the top level, which

enables tuning of the controller without the having to regenerate the design files.

Large scale changes in the coefficients may require the fixed point representations to

he adjusted. Customisation and optimisation have not been extensively performed in

3. Design features 190

orror

'1

Lº1ý ='aý-º
.

e
R. pist. 4` u(n)- xjn. 1)

ý

A

(ab)
b

MuH2

newsoiy by tlrs

Subtract
previous sample Multiply by 1/Ts
from current one

Derivative gain term

Figure 2: System Generator implementation of derivative term

order to keep t lie design as generic as possible, but savings are possible by trimming

unnecessary precision from internal word lengths. If accuracy is an overriding con-

straint then the maximum number of bits can be used for fixed-point representations,

in order to minimise quantisation error.

3.2 Anti-windup logic

The PIU controller is the standard form with first order integrative and derivative

terms. The integrator is augmented with a simple form of anti-windup logic, which

enables a more effective recovery when the controller's output has become saturated.

This is implemented by setting the input to the accumulator equal to zero when the

output limit has been exceeded in either positive or the negative direction. This

prevents the accumulator from increasing its internal value far outside the range of

the controller's output, and works in conjunction with the output limiting logic.

3.3 Output-limiting

The output may be limited to less than its full range through setting a limit pa-

rameter at run-time. This will restrict the output through use of relational blocks.

This provides the ability to reduce the maximum absolute output to prevent dam-

4. Implementation results

CID controller output

c Limit Relationall

Logical
aw_enable

Negate

Fiqurc 3: System Generator implementation of anti-windup logic

age to the mechanism or for development purposes while the process is still being

characterised.

3.4 Downsampling

To reduce the internal sample rate of the controller the input data stream is downsam-

pled. To observe the constraint of zero latency this is carried out without incurring

register delays, using the purely combinatorial form of the Xilinx downsample core.

Using a smaller internal sample rate (i. e. a larger sample period) helps ensure that

fixed-point representations of internal data on the Integral/ Derivative paths (where

the sample period is used as a multiplier/divisor) can be represented using a smaller

number of bits.

4 Implementation results

The design was synthesised with Precision Synthesis 2005a. 69 and implemented with

Xilinx ISE 7.1i. and was found to utilise 651 Xilinx Virtex slices. This is approxi-

mately 8 per cent of a medium sized Virtex-2, or 4 per cent of a medium Virtex-2

Pro. Throughput issues are typically not a problem, and low internal clock speeds

mean that timing constraints are easily met within the control loop. It should he

noted that System Generator will usually generate a "clock wrapper" to contain and

drive the algorithm with the correct control signals, and the presence of a downsam-

ple block within the algorithm will cause the tools to infer the need for a DCM. Since

t lie I'll) alg(rit hn1 \vill usually he used within a larger system, also presumably with

N a

191

a >=b
b Z1

Relational or ºcD
a

a<=b
x ("1) bZ1

4. Implementation results 192

a DCM, often the clock wrapper is unnecessary. However, this will require manual
driving of the two clock domains within the algorithm.

Appendix E: Implementation of
Richardson-Lucy Deconvolution

193

Implementation of Richardson-Lucy Deconvolution

September 2005

Summary: The Richardson-Lucy deconvolution algorithm is an important method

in removing blur from images, by using statistical estimation techniques based on
Bayesian probability theory. A Matlab version of the algorithm was available within
Thales, and this presented an opportunity to investigate the issues surrounding

implementation of a mathematically quite complex algorithm in FPGA. The algo-

rithm is an iterative process that includes some mathematical operators that are not

straightforward to implement in hardware, including several large 2D convolutions.
These solutions found to these problems and the resulting design is presented in the

following report.

Oliver Sims

EngD 3rd Year

Industrial Sponsor: Thales Optronics

1. Introduction 195

1 Introduction

Observing and recording a scene is, in practise, an imperfect process. The measure-

ment of physical quantities is always limited by the inherent characteristics of the

measurement device, for instance finite resolution, or flaws in the imaging compo-

nents. Naturally occurring phenomena such as spreading, smearing, and blurring

also impact the accuracy of the observation. All sources of degradations introduced

during the observation process reduce sharpness and obscure detail in the final im-

age. In most cases the processes that impair measurement of physical quantities

may be represented mathematically by a convolution operation, and the problem of

recovering the true data given a limited observation is the justification for efficient

and robust deconvolution techniques. Many of these techniques were developed in

the field of astronomy, but have since spread to such diverse areas as medical to-

mography, seismology, spectroscopy, magnetic resonance imaging, and others [1].

Deconvolution techniques are not confined to problems in one- and two- dimensions,

and application to higher dimensional problems involving reconstruction from pro-

jections have also been reported. The ideal solution is the recovery of the same data

that would be observed by a hypothetical, perfectly resolving instrument [2]. The

degradation process may be characterised as:

00

In =E
Sn_mOm, (1)

m=-W

where I represents the image, S is a Point Spread Function (PSF), and 0 is the

object. The PSF represents the spreading or smearing of a single point source and

in a perfectly resolving instrument would be equivalent to a two-dimensional Dirac

function [2), so that I becomes equal to 0. A PSF with a wide spread will result in a

severely blurred image. In other cases the PSF may be quite compact with a sharp

peak, and this may lead to a situation where the primary concern is reduction in

dynamic range and sensitivity, rather than loss of spatial resolution. The application

presented here describes a deconvolution process where the PSF is known a priori,
having been determined empirically or through modelling of the factors influencing

the observation, but deconvolution with an unknown PSF is also possible. This is

2. The Richardson-Lucy algorithm 196

then known as blind deconvolution, which uses a process of revising estimates to the

PSF; an overview of blind deconvolution techniques may be found in [3].

The degradation that occurs during the observation process may be thought to

correspond to the null-space of the observing system [4], and the resulting data as
incomplete (in the mathematical sense). The task is therefore an inverse problem

that is ill posed, and as such cannot be solved directly. Most techniques rely on

statistical estimation methods to generate best-fit solutions. The Richardson-Lucy

algorithm [5], [6] is one such method that came to prominence during the early

1990s, when it emerged as the de-facto standard for restoration of images from

the Hubble Space Telescope, before an aberration present in the imaging mirror

was corrected in a repair mission three years after launch [7]. The algorithm was
developed independently by Richardson and Lucy in the 1970s, and uses Bayesian

probability theory to seek the image of highest probability given the data and the

PSF [2].

Use of a general-purpose processor to implement a real-time implementation of

the Richardson-Lucy algorithm is unfeasible, due to the performance constraints im-

plied by working with real-time video signals. FPGAs are an ideal medium for the

implementation of complex image processing algorithms due to their ability to realise

massive parallelism. In this paper an FPGA implementation of the Richardson-Lucy

algorithm will be discussed. The paper is organised as follows: Section 2 will intro-

duce the algorithm. Section 3 describes a software implementation developed in

Matlab and efforts to improve the speed of convergence. Section 4 describes some of

the issues faced and methods used to overcome these issues in translating the algo-

rithm into a hardware description. Section 5 provides results of the implementation,

and some conclusions are drawn in Section 6.

2 The Richardson-Lucy algorithm

The following mathematical description of the Richardson-Lucy algorithm uses the

notation used by Lucy in his original paper. Unlike Lucy, Richardson uses a 2D

notation from the start, but the link to the original convolution operation is slightly

2. The Richardson-Lucy algorithm 197

less clear.
The convolution of a scene with a PSF may be modelled in the 1D sense as

follows:
O(x) = JW()P(xI)de (2)

where O(x) is the blurred image, ' (ý) is the true image and P (x1e) is the PSF. It

is important to note at this stage that both images and the PSF may be considered

probability distributions, with P (xIý) being the probability that x/ will fall in the

interval (x, x+ dx) when it is known that ý/ = ý. The PSF is thus a probability

distribution describing the potential destinations of a single unit of energy originating

from a given point in the input.

Define Q (cjx) to be the probability that ý/ comes from the interval + dý)

when it is known that x/ = x. This is in effect an inverse PSF.

From Bayes's Theorem:

P (AIB) -P
(BIA) P (A)

P (B)

we can infer:

Hence

(eI x) =P
(xl e) w (e)
0 (x)

ý' (xl e) it (e) =0 (x) Q (ei x)

(3)

(4)

(5)

Since P (xle) is a probability distribution, it follows that:

'y (4) =10 (ý) Q (elx) dx (6)

This has the appearance of being the inverse of the original equation, but it cannot

be used in this form directly since Q (ýjx) is dependent on W, the true image. We

can however use this to formulate an iterative scheme for generating estimates to V.

If ý is the original observation, and W' is the r-th estimate of the true image, the

(r + 1)-th estimate is:

IV+1 (e) =1ý (ý) Qr (eix) dx (7)

3. Software implementation 198

Program 1 Matlab implementation of accelerated Richardson-Lucy algorithm
for i=1: fctrl

implied-observation = filter2(PSF, reconstructed);
factor = observation. /(implied-observation + le-12);
correction = filter2(PSF, f actor);
reconstructed = reconstructed. *(correction. "pwr);

reconstructed = min(ones(a, b), reconstructed);
end

where
Q,

(S)
r(tlx) =

P(xIS)Wr
`ý o (x) (8)

and

so that

o' (x) =
flfl()P(xI)dE

(9)

ýr+1(Z) ='I'r (Z) 1ý((xjP (xI e) dx (10)

This shows that the iterative scheme will converge if

ý=0 =f Wr(4)P(xIe)d4 (11)

i. e. when the original observation equals the current estimate convolved with the

PSF. This may be viewed as a goodness-of-fit measure.

The application of this algorithm to images may be represented as follows, as-

suming a symmetric point spread function:

P'+1 = Jr X PSF *
observation (

PSF * Jr

3 Software implementation

(12)

A Matlab implementation of the iterative scheme of 12 was the starting point for

hardware development [8]. Due to the high-level nature of the Matlab command

environment the main loop of the algorithm could be represented by five instructions.

The main loop body, with a slight modification to be discussed below, is shown in

program 1. In the literature there is a lack of general consensus regarding the number

3. Software implementation 199

of iterations the algorithm will need before it converges. Some results, particularly
those based on applications in astronomy, state in the region of 20-30 [1], though

this could be particular to the nature of astronomical images and the Poisson noise

model used in that field. Other publications highlight the semi-converging nature of

the algorithm; i. e. that it approaches a solution, typically before 10 iterations, and
then diverges again [9]. To improve the rate at which the algorithm approaches a

solution a further parameter may be introduced, denoted in the following equation:

P'+i = I'' X PSF * observation ß (
PSF * I*

)
(13)

Typically 1<3<3, and is shown in [10] to reduce the required number of iterations

by a factor of , Q. Values greater than three tend to introduce instability and cause

the algorithm to fail to converge. The eventual divergence of the algorithm may be

attributed to the effects of noise, and excessive iterations will cause deterioration in

image quality as the algorithm tries to fit the estimation too closely to the noisy input

data. This effectively causes the algorithm to fit to the noise in the image rather than

the useful data. The algorithm will thus tend to amplify any noise bumps, as the

smoothing effect of the PSF means that noise errors in the observation can only be

approximated by large noise spikes in the original [7]. In software implementations

of Richardson-Lucy the characteristic of semi-convergence is unimportant, as a trial

and error approach may be taken to find the best stopping point. In a real-time
hardware implementation this approach is less realistic, especially with overriding

constraints on logic usage, latency, and throughput. Some experimentation was

therefore necessary to determine the optimum number of iterations and degree of

acceleration, whilst keeping the amount of hardware required to a minimum.
Five test images were chosen that were deemed to represent a variety of situations,

with varying brightness and contrast levels. The images were treated with zero-

mean Gaussian noise, before being blurred with a suitable two-dimensional PSF.

The Matlab implementation of Richardson-Lucy was then applied to each image

individually. In order to measure the performance of the deconvolution process an

error matrix was calculated after each iteration by subtracting the current image from

4. Hardware implementation 200

the original reference image. The edges of both images were discounted to remove

the edge-effects caused by convolution (the number of lines removed from each edge

is equivalent to N211 where N is the width of the convolution kernel). A performance

metric was then generated by finding the mean squared error over all values in the

error matrix. This value is subsequently normalised, so that the initial blurred

image has an error value equal to unity, and a figure of zero represents a perfect

reproduction of the original image before blurring. Consequently, reductions of the

error value demonstrate improvements in image quality. A graph showing average

results over the five images is shown in figure 1, where the solid line represents the

Richardson-Lucy algorithm with no acceleration (/3 = 1), and the dashed line the

accelerated algorithm (/3 = 2). The improvement caused by acceleration is clearly

visible: the minimum of the accelerated algorithm is reached after a single iteration,

compared with two or three iterations for the standard algorithm. It should also be

noted that, although slower, the un-accelerated algorithm achieves a marginally lower

minimum value. This may be explained by considering the Richardson-Lucy process

to be an implementation of a steepest-descent method, with parameter ,ß equivalent

to the step size (11]. In this sense the un-accelerated algorithm may find a smaller

error value by taking smaller steps towards the minima, and thus decreasing the

possibility of overshoot. This raises the possibility of using the accelerated algorithm

for the initial iteration, followed by the standard algorithm for subsequent iterations.

figure 2 shows the average results over the five test images when this method is used,

and indicates that the variable exponent method finds lower minima than either the

standard or accelerated versions of the algorithm when the exponent is constant.

The minimum is found after two iterations in four of the five test cases.

4 Hardware implementation

The following section describes some of the design challenges faced during the imple-

mentation of the algorithm in FPGA hardware. The system was developed using the

Xilinx System Generator tool for Simulink, and was carried out as part of a wider

study into algorithm implementation tools and techniques. The diagram in figure 3

4. Hardware implementation 201

Figure 1: Comparison of standard and accelerated algorithm

Figure 2: Improvement gained by a variable acceleration exponent

shows a top-level block diagram representing a single iteration of the Matlab code

in program 1. The delay line running parallel to the main computational pipeline is

necessary to align the observation data with the correction factor being computed.

4.1 Two-dimensional filtering

Two of the stages shown in the single iteration of figure 3 require a two-dimensional

convolution to be performed. In a single dimension FIR filters are generalised struc-

tures commonly used to carry out this task. The extension to two dimensions is

however not straightforward, as a direct implementation quickly becomes expensive

4. Hardware implementation 202

Observation

r----C
to Convolution i--. Divide i IN

2

Convolution

_.

H MWtiply
output Acceleration

Exponent

Figure 3: Block diagram depicting a single iteration of the Richardson-Lucy method

in hardware terms as the size of the kernel increases. In some circumstances, these

difficulties may be solved by reducing the two dimensional kernel into a combina-

tion of two single dimensional convolutions, which may then be implemented by two

FIR filters. A kernel that can be decomposed in this way is said to be separable.
Separable filter kernels are a special case of general two-dimensional filter kernels

where the kernel matrix can be expressed purely as a combination of two vectors.
Unfortunately, separable kernels are limited in their applicability, and in most cir-

cumstances a kernel will not be separable, largely due to the difficulties involved in

factoring polynomials in two independent variables [12]. This often prevents a sim-

ple realisation using cascade or parallel structures. Despite this there are alternative

methods of decomposing the kernel, based on the fact that a parallel connection of

separable filters results in a non-separable response [12]. This raises the possibility

of using sets of easily implementable orthogonal one-dimensional filters in parallel

to create the desired two-dimensional filter, as shown in figure 4. In this way the

response of a non-separable filter may be accurately reproduced as a combination of

separable filters, each of which is formed by two cascaded 1D convolutions that act
individually in the horizontal and vertical directions. It can be shown that for square
kernels when the required number of parallel filter sets is less than half the order of

the filter, this structure will still utilise less hardware than a direct implementation

of the 2D convolution. In some cases, as demonstrated later, this condition can be

relaxed further.

The extraction of separable filters is based on a technique by Treitel & Shanks

[13], who use the term multistage separable planar filters. Their method utilises a

technique known elsewhere as the Singular Value Decomposition (SVD) [14], and
has previously been shown to be successful in the implementation of arbitrary two-

4. Hardware implementation 203

Figure 4: Summation of separable filters to produce a non-separable response

dimensional filters [15]. The SVD of a matrix, X, is given as:

' mxn = UmxnI+mxnvmxn (14)

(where superscript T denotes the matrix transpose operation) and is found by calcu-
lating the eigenvalues and associated eigenvectors of the square matrices Q= XXT

and S= XTX. It is demonstrated in [13] that the eigenvalues for both Q and S will

always be the same. The square root of these eigenvalues are known as the singular

values of X, and are listed in the diagonal matrix S. The associated eigenvectors
from Q and S form the columns in the orthonormal matrices U and V respectively.
The rank of S, which is equal to the number of non-zero elements, determines the

number of separable filters required to exactly reproduce the original kernel. Since

the values in S are the eigenvalues of Q and S, it follows that the rank of S will be

equivalent to the number of linearly independent columns in the original matrix X.

This can be particularly advantageous in image processing applications, where filter

kernels with a linear phase response are often a necessity, and the resulting kernel is

symmetrical. Thus an N2 kernel will have N2 1 linearly dependent rows and columns.
When the SVD is calculated the eigenvalues corresponding to these rows/columns

vanish, meaning that any linear phase kernel can be exactly reproduced with, at

most, separable filters.

Further savings can be made by making approximations to the original filter de-

sign rather than reproducing it directly. By convention the eigenvalues in S, known as

singular values, are listed in descending order, which suggests that the corresponding

4. Hardware implementation 204

columns of U and V are of decreasing importance to the final reproduction. Using a

reduced number of singular values will produce an approximation to the original ma-

trix X, with an error that is equal to the ratio of the stun of the discarded eigenvalues

to the sum of all eigenvalues in S [13]. Thus:

ek
01+172+... +0'k

=1-
O'1 + 62 +

...
+ O'n

(15)

gives the error ek from using k singular values from a maximum of n, where k<n,

and a denotes the individual singular values in the matrix E. When all singular

values are used, k=n and the error a is reduced to zero. The aim is to balance

the need to keep the error matrix e to a minimum, whilst reducing the necessary
hardware as far as possible. Since each additional singular value will result in another

separable filter pair in the final implementation, potentially large savings in hardware

may be achieved by keeping the number of singular values included in the design to

a minimum.
This may be best demonstrated with a real example. The following work uses the

empirically obtained PSF that will be the focus of the subsequent implementation

of the Richardson-Lucy algorithm. The PSF, shown in figure 5 using both surface

and contour plots, is equivalent to an 11 x 11 normalised filter kernel that exhibits

the linear phase characteristics discussed earlier. Application of the SVD to this

kernel results in six eigenvalues (i. e. rank(E) = 6), and thus, to exactly reproduce

this response using separable filters, six filter pairs would be needed. Table 1 shows
how successive singular values become less significant, and the resulting error term

decreases with each additional stage. The results indicate that in this instance two

filter stages will reproduce the original kernel to > 99% accuracy, and any more than

four is almost certainly unnecessary in most applications of this particular kernel.

Once the separable filter coefficients have been determined there are still a num-
ber of design decisions regarding the hardware structure of the filter. FIR filters

may be implemented in an FPGA device in numerous ways, depending on whether
the overriding constraint is in terms of throughput, logic area, or some other fac-

tor. Parallel FIR architectures, such as direct and transpose forms, use the greatest

4. Hardware implementation

12

Figure 5: 11 x 11 PSF

k Singular Normalised Accuracy Normalised
value ak contribution Qk

k error k
n

c`J
Qi

i=1
n

Q%
1

s=1 Q

1= 1-n
i

i=1

1 0.400661 0.972346 97.2346% 0.0277
2 0.009133 0.022164 99.4510% 0.0055
3 0.001951 0.004736 99.9246% 0.0008
4 0.000285 0.000692 99.9938% 6.2 x 10-
5 2.44x105 - 0.000059 99.9997% 2.7x106 -
6 1.10x106 - 0.000003 100.0000% 0.0

205

Table 1: Significance of the n singular values (n=6) of the filter kernel shown in
Figure 4.3

amount of logic resources but have high throughput and low latency. Alternatively

Multiply and Accumulate (MAC) FIR filters may use just a single MAC element

and so are highly efficient in terms of hardware, but must operate at a multiple of

the data rate and will thus reduce throughput in most applications. A trade-off

solution in FPGAs also exists in the form of a distributed arithmetic filter, which is

nearly as hardware efficient as a MAC FIR but maintains throughput at higher filter

lengths. FIR filtering in the vertical direction requires slightly altered architectures

to allow the pixel data, which is normally streamed line by line, to be filtered with

corresponding data that are vertically adjacent in the image. To achieve this line

buffers must be inserted between multiplier elements that delay each pixel by the

width of one line. Consequently a vertical filter will require sufficient storage for the

4. Hardware implementation 206

number of elements in a single row multiplied by the number of filter coefficients. For

multistage filters such as those developed here this becomes an unrealistic amount of

storage, and to save memory the filters were designed to share line buffers, as shown

in figure 6 with two filter stages present. The multiplier structures inside the vertical
FIR subsystems are all transpose direct-form parallel filters, an inherently pipelined

architecture that allows high clock speeds and thus high throughput. MAC FIRS

are not easily implemented for vertical filtering applications due to the need for line

buffers.

4.2 Other stages

The divide operation in the deconvolution algorithm determines a correction factor

from the ratio of the observed image to the image obtained by filtering the current
best guess. System Generator does not provide a native divide operation, but one

may be implemented using the black box function to import soft IP cores, in this case

the Pipelined Divider v3.0 core provided by Xilinx and customised through the Core

Generator tool. Importing the VHDL and EDIF netlist produced by Core Generator

into the black box module results in the block format shown in figure 7. The core

was parameterised to provide a quotient output every clock cycle, with a fractional

remainder that was subsequently concatenated to the quotient. The resulting latency

of the core is proportional to the word lengths of the output data, in this instance

equal to the number of quotient bits + number of remainder bits + 4. Later stages of

the deconvolution algorithm are both multiply operations and are easily implemented

with standard System Generator blocks. The acceleration exponent (with a value

of two) squares the current value by feeding it through both inputs of a multiplier

simultaneously. The second multiplier acts on the squared correction factor and the

delayed observation data. The multiplier stages are shown in figure 8. All stages

were connected together in the format shown in the block diagram of figure 3. The

design is fully pipelined throughout to enable high clock speeds, and can produce an

output value every cycle after an initial latency proportional to the image width.

4. Hardware implementation

08

ý

s

ý

N
Ix
IL

207

N

5. Results 208

='v

N. oibr

4 !
+.

a. aý+., ý

Y-0

ceýn. ýý

O{eMd. n

f{ ei. -

v /ob

tli

y. M

a

na ý3 i i,

vmiedud
Bl. d Bor- P. p. n. Drv4.1

H

*1

M

n
wtI ýId s1V

ConcMnaM ReyiCc2

Figure 7: Pipelined divider in System Generator using a Black Box, module and a
Core Generator netlist

�d el a

R. pistu

d i,

R. pist., t

Daia}3

10ý a
ab)

b L--JH

MuIt

ý
. 6'b) b= 0. ý d iýq

Multi R. git., 2

D

Figure 8: Output stage of a single iteration of the accelerated deconvolution algorithm

5 Results

Because the design is extensible, the figures presented here are specific to this imple-

mentation with an 11 x 11 PSF and designed for an 8-hit greyscale VGA image of

640 x 480 elements. The two dimensional filters are implemented with two separable

filter stages, which approximates the true kernel to 99%. The parameters that will

influence the amount of logic usage are the size of the input image, the dimensions of

the PSF, the number of iterations that are required, the desired accuracy of the filter

stages (and hence the number of separable filters required to reproduce the kernel),

and the structure of the horizontal FIRs. Using single MAC FIRs will significantly

reduce the amount of logic required but will also reduce the throughput accordingly.

A larger PSF will require an increased number of line buffers for the two-dimensional

filters, of width proportional to the width of the input image.

The design was synthesised using Precision Synthesis 2005a. 69 before being im-

plemented with ISE6.3i targeting the Virtex-2 family of devices. A single iteration

of the algorithm uses approximately 12,000 slices of the device, 20 Block RAMs,

6. Conclusion 209

and 90 dedicated multipliers. The variable exponent format with two iterations uses

20,095 slices, 40 Block R. AMs, and 179 dedicated multipliers. The smallest device

that will accommodate the algorithm in this configuration is a Virtex 2 XC2VP50.

Using more aggressive synthesis and place and route settings may improve the figures

described here.

The maximum clock speed suggested by ISE with minimal synthesis/place and

route effort is 63 MHZ. A frequency of just 20MHz will allow video in 8-bit greyscale
VGA format to be processed in real time at 60 frames per second, with a latency

< 0.5 ms. Video formats with higher bandwidth could be processed comfortably in

a device with sufficient memory. Moving to a Virtex-4 device could allow modern

video standards such as SXGA to be deconvolved in real time. The abundance of
DSP elements in the Virtex-4 SX family, intended specifically for signal processing

applications, are ideally suited to the filtering stages involved in this application.
Optimisations in the fixed-point word lengths used throughout the implementa-

tion may also produce valuable savings in slice usage. The current implementation

uses a minimum of 12 binary places for all internal fixed-point representations. Op-

timisation of internal word lengths was not performed here as it was desired to leave

the implementation as general as possible.

Sample images have been produced for comparison: on the left of figure 9 is an

aerial image that has been blurred by the 11 x 11 PSF; the same image after two

iterations of deconvolution is shown to the right. The increase in spatial resolution
is noticeable in several areas, and edges are generally sharper.

6 Conclusion

An extensible implementation of the Richardson-Lucy deconvolution algorithm has

been presented, that will perform full scene deconvolution in real time. The design

is modular, to allow as many iterations as necessary or hardware will allow, with no

significant changes to the design of each module. Hardware efficiency is promoted

throughout, particularly in terms of the two-dimensional convolutions, where multi-

stage separable filters have been used to reproduce the arbitrary PSF to a custom

6. Conclusion 210

Fuqýu, rc 9: Fram. plc blurred and deconvolved images

accuracy. This approach allows a trade-off to take place between accuracy of response

and hardware utilisation. In order to improve the performance of the algorithm over

a limited number of iterations, a modified acceleration technique has been incorpo-

rated. The variable exponent technique further increases the probability of finding a

desirable solution when there are hardware limitations. The design is fully pipelined

and will produce an output element every clock cycle. Initial results show that a

design offering two iterations of accelerated deconvolution may achieve a throughput

of over 60 million pixels per second using Virtex-2 hardware.

There are a number of directions future work could take to improve on the results

shown here. Investigations into the effects on the output image of reducing the

accuracy of the filtering stages may allow further hardware savings to be made.

In particular it is unknown whether using reduced accuracy when implementing the

filtering stages in the earlier iterations will severely impair the deconvolution process,

and it is possible that, during this initial search of the solution space, a more heavy

handed approach may he adopted.

References

[1] R. Molina, J. Nunez, F. J. Cortijo, and J. Mateos, "Image restoration in astron-

omy: a Bayesian perspective, " IEEE Signal Processing Magazine, vol. 18, no. 2,

pp. 11-29, Max. 2001.

[2] P. A. Jansson, Deconvolution of Images and Spectra. Academic Press, 1996.

[3] D. Kundur and D. Hatzinakos, "Blind image deconvolution, " IEEE Signal Pro-

cessing Magazine, vol. 13, no. 3, pp. 43-64, May 1996.

[4] K. M. Hanson, "Bayesian and related methods in image reconstruction from

incomplete data, " in Image recovery - theory and application, H. Stark, Ed.

Academic Press, 1987.

[51 L. B. Lucy, "An iterative technique for the rectification of observed distribu-

tions, " Astronomical Journal, vol. 79, no. 6, pp. 745-754, June 1974.

[6] W. H. Richardson, "Bayesian-based iterative method of image restoration, "

Journal of the Optical Society of America, vol. 62, no. 1, pp. 55-59, Jan. 1972.

[7] R. J. Hanisch, "Deconvolution of Hubble space telescope images and spectra, "

in Deconvolution of images and spectra, P. A. Jansson, Ed. Academic Press,

1997.

[8] O. Thomas, "Product enhancement study - Matlab implementation of
Richardson-Lucy deconvolution, " Thales Optronics, Tech. Rep., 2002.

[9] M. Bertero and P. Boccacci, "Image deconvohition, " in From cells to proteins:
imaging nature across dimensions. Proceedings of the NATO Advanced Study

211

References 212

Institute, V. Evangelista, L. Barsanti, V. Passarell, and P. Gualtieri, Eds., Pisa,

Italy, Sept. 2004.

[10] H. Lanteri, M. Roche, 0. Cuevas, and C. Aime, "A general method to de-

vise maximum-likelihood signal restoration multiplicative algorithms with non-

negativity constraints, " Signal Processing, vol. 81, no. 5, pp. 945-974,2001.

[11] T. S. Zaccheo and R. A. Gonsalves, "Iterative maximum likelihood estimators
for positively constrained objects, " Journal of the Optical Society of America,

vol. 13, no. 2, Feb. 1996.

[12] D. Dudgeon and R. M. Mersereau, Multidimensional digital signal processing.
Prentice-Hall, 1984.

[13] S. Treitel and J. L. Shanks, "The design of multistage separable planar filters, "

IEEE Transactions on Geoscience Electronics, vol. 9, no. 1, pp. 10-27, Jan.

1971.

[14] V. Klema and A. Laub, "The singular value decomposition: its computation and

some applications, " IEEE Transactions on Automatic Control, vol. 25, no. 2,

pp. 164-176, Apr. 1980.

[15] M. Andrews, "Architectures for generalized 2D FIR filtering using separable
filter structures, " in Acoustics, Speech, and Signal Processing, 1999. ICASSP

'99. Proceedings., 1999 IEEE International Conference on, vol. 4, Phoenix, AZ,

Mar. 15-19,1999, pp. 2215-2218.

Appendix F: Implementation of

Pyramidal Image Fusion

213

Implementation of Pyramidal Image Fusion

April 2006

Summary: This is a modified version of a paper submitted to the FPL2006 confer-

ence, describing an implementation of image fission using a multiscale decomposition

known as gradient image pyramids. The method presented here uses multiple sample

rates to allow the different frequency ranges of the decomposed image to be processed

concurrently. The resulting design exhibited a speedup of over 100 times compared
to an equivalent software implementation. The design has since been found to be

erroneous and may produce incorrect output data. Some discussion of the problems

will be given and an estimate of a correct implementation is provided.

Oliver Sims

EngD 4th year

Industrial Sponsor: Thales Optronics

1. Introduction 215

1 Introduction

Image fusion allows multiple observations of a scene to be combined, in order to

increase the information content presented in a single image, and make the image

more effective for its intended application. The images to be fused may originate
from a single sensor, perhaps taken with different points of focus, or from multiple

sensors that are sensitive to different spectral regions. The resulting composite image

may subsequently be used by a human observer or, increasingly, used in machine

vision applications. Image fusion has been used widely in medical, manufacturing,

military, and security applications, amongst others [1]. One modern example where
image fusion techniques are proving useful is in the detection of concealed weapons
by using a composite of thermal and visible-range observations [2].

There are several methods of performing image fusion, with a successful imple-

mentation being one that retains all useful information from the source images into

a single composite image, without introducing artefacts. Basic methods take no

account of the image content and perform simple merging of the image data, for in-

stance averaging. More sophisticated methods work at a higher level by identifying

detail in the source images and using a selection process to determine the elements
that will be used in the final composite.

Several key methods in image fusion rely on the multiscale image pyramid [3].

Image pyramids are a decomposition of a single image into a series of images of

varying resolutions, with each image containing data representative of detail at a

particular scale. The advantages of a multiscale representation lie in its localisation

in both spatial and spatial-frequency domains. It is thought that such a represen-

tation has similarities with the operation of the human eye [3]. For a more rigorous

explanation of image pyramids see papers by Burt [4115], who developed much of
the theory describing image pyramids such as the Gaussian and Laplacian pyramids

used in image fusion. An example of an image pyramid may be seen in figure 1.

The fusion algorithm that will be presented here uses pyramids that have been

further decomposed into orientation specific pyramids [5], [6], [7]. It uses simple

edge filters (gradient filters) to identify details in the source images along four ori-

entations. These edges are compared, and the most useful features are selected

1. Introduction 216

according to some measure of saliency and then carried forward into the composite

image. Using gradient pyramids has been found to reduce the artefacts that fusion

with straightforward Laplacian pyramids can introduce [5].

The pattern-selective fusion algorithm is complicated and requires thousands of

calculations to be performed in order to produce a single output image. For this

reason a microprocessor implementation is inherently slow, and real-time processing

unfeasible. However, like many image processing algorithms, there are opportunities

to exploit parallelism in the algorithm's operation that make an FPGA implemen-

tation an attractive option.

This paper describes an implementation of a pattern-selective fusion algorithm

on a single Virtex-2 FPGA. The implementation uses several novel approaches to

enable an design that can fuse dual greyscale VGA images in real-time. Extension of

the methods presented here would permit fusion of multiple images without major
design modifications. Note that the implementation described here uses a method

of generating image pyramids that exhibits increased levels of blur and is liable to

cause aliasing. It has been used here for image fusion with passable results, but

in general the design is incorrect and should not be used. The implications of this

approach and a comparison with the correct method of generating image pyramids

will be described in a later section.

It should also be noted that image registration is not covered in this work, and all

source images are assumed to be pre-aligned. If the sensors are not perfectly aligned

this may be achieved using automatic registration techniques, which are beyond the

scope of this paper.

The paper is organised as follows. Section 2 gives an outline of image pyramids

and their construction. Section 3 looks at the processing of these pyramids to extract

the salient features, and the subsequent formation of a composite image. Section 4

briefly discusses the inverse pyramid transform; section 5 provides implementation

results for the design, and includes some quantification of the speedup achieved

by using FPGAs compared to software methods. Section 6 discusses the method

of generating pyramids that has been used here, and produces a comparison with

traditional methods. Finally, section 7 concludes the paper.

2. Pyramid generation 217

.. ý ýý FA ^ ,,,

ý. aýaýý
Figure 1: Gaussian pyramid of the uwll-known image .. Lena".

2 Pyramid generation

The Gaussian or low pass pyramid and Laplacian bandpass pyramids were introduced

by Burt in 1983 [4]. These methods have since been used in a wide variety of

applicat ions besides fusion, and were a precursor to the development of more general

multiresolution methods, in particular the study of wavelets.

The image to be decomposed forms the bottom level of a notional pyramid.

Standard methods generate higher levels of the pyramid by low-pass filtering and

then two-dimensionally subsampling (by a factor of two) the pyramid level beneath

it. The act of low-pass filtering reduces the band limit by one octave, and hence,

according to the sampling theorem, subsampling can take place without any loss of

information. In reality the generating filter is not "ideal", which means that the

following subsampling may result in some aliasing; however these effects are usually

slight and can be disregarded for these purposes [8]. The low-pass filter is usually

chosen to be a5x5 Gaussian, which has the added advantage of being separable.

Hence, the pyramid generation process can be described as:

22

Gk (i, j) _EE 2v(7n, n)Gk-1 (2i + in, 2j + n)
m=-2 n=-2

(1)

for k=1,..., N; Go - I, the original image; w is the filter kernel.

The following implementation is based on Matlab code that differs from equa-

tion I by performing the subsampling before filtering at each stage. This implemen-

tation thus has no means of preventing aliasing, and higher levels of the pyramid are

2. Pyramid generation 218

Figure 2: Image pyramid of the Lena image where subsampling is performed before
filtering at each stage.

likely to become distorted. Subsampling before filtering also exaggerates the effect

of the filtering process and thus causes pyramids to be produced with an increased

level of blur. Figure 2 shows the pyramid of figure 1 when subsampling is performed

before filtering. With this particular image it is difficult to discern any artefacts due

to spatial aliasing; however increased blur is clearly noticeable at the higher pyramid

levels. Because of these effects, subsampling should not be performed before filtering

in general applications of image pyramids. The hardware implications of performing

the process in this way and the effect it has on the fused image will be discussed in

a later section.

The process of equation 1 is usually referred to as REDUCE, when considering

the 2D image as a whole:

Gk = REDUCE (Gk-1) (2)

Since each image is half the size in each dimension of the one below it, it therefore

consists of one quarter the number of pixels.

The alternative pyramid type is known as the Laplacian. This is formed as a

Bandpass pyramid rather than a low pass, and is obtained by subtracting a level of

the Gaussian pyramid from the level directly beneath it. Each level of the Laplacian

pyramid can thus be thought of as a difference image between two corresponding

levels of the Gaussian pyramid. Because two levels of the Gaussian pyramid are

different sizes, in order to subtract one from another the resolution of the image at
level k+1 must first be increased to the resolution of the image at level k. In order

2. Pyramid generation 219

to do this we use the EXPAND operation, which upsamples the smaller image (by

inserting zeros), and then interpolates the missing values by a further application of

the generating filter kernel, i. e.

22 2i +m 2 j+n EXPAND (Gk+l) =4EE w(m, n)Gk+l
(-2

m=-2 n=-2

then:

(3)

Lk = Gk - EXPAND (Gk+l) (4)

There must be one fewer levels in the Laplacian pyramid than in the Gaussian.

Typically the Gaussian and Laplacian pyramids are generated with three levels above
the base image. At levels higher than this the resulting images may become too small
to be useful. Another consideration is that with each successive reduction in size, the

edge-effects of the convolutions with the generating kernel become more detrimental.

It is possible to perform fusion with less than four pyramid levels, but the ability of

the algorithm to distinguish features of different sizes is compromised.
The Gaussian pyramid is the one used in the process of extracting detail from

the source images to be used for fusion. The Laplacian pyramid described here,

and a variant of it known as the FSD Laplacian [9], is used in the inverse pyramid

transform to reconstruct the composite image.

2.1 Hardware implementation

There is an inherent parallelism in the pyramid generation process that can be used
to generate multiple levels of the pyramid concurrently. A block diagram of the

system for generating image pyramids where the subsampling is performed before

filtering is shown in figure 3. (Note that for the reasons outlined above this process is

conceptually incorrect and should not used as a general method of producing Gaus-

sian pyramids.) As image data flows into the design, it is immediately downsampled

in two dimensions. Horizontal downsampling occurs by discarding every other sam-

ple; vertical downsampling occurs by discarding every other row. The samples that

are not discarded are stored in a FIFO. When there is sufficient data in the FIFO

2. Pyramid generation 220

Pyramid Pyramid Pyramid Pyramid
Level G. Level G, Level Gz Level G a

aa

4-I

----L-

-ºi FWO ý
o«rMn

Ilbr
20

". mw. ý FIFO ý
6rrYrn

f"

------------ -ý-------------

F--ý--ºi
20

ýýa" ý -L- FIFO F-11ý

A
I
I
1
{

Sample rar n Sample rate 04 i Sample rate n/16 i Sample rate n/64

Figure 3: Block diagram of pipeline for generating image pyramids where subsampling
is performed before filtering.

the next pyramid level starts to read data out of it. This pyramid level operates at

a clock rate that is one quarter that of the level below it, to match the fact that

it is receiving one quarter the number of samples. In this way the higher level can

run concurrently with the lower level, without emptying the FIFO. This structure is

repeated for each level of the pyramid, with each level operating at one quarter the

clock speed of the level below it. By using this approach all levels can be generated

near simultaneously, and the time to generate the whole pyramid is only 1.1 times

that needed to read a full frame of data.

Because the filters used to generate the pyramids are separable and the coeffi-

cients are inverse powers of two, they can be implemented using only shift and adds,

meaning the design is resource efficient.

This approach allows a fully pipelined method of generating this modified form of
image pyramids. Table 1 gives a comparison of the design presented here and the two

notable instances of hardware pyramid generation that have been reported. Although

the implementation presented here differs from the two referenced implementations

in that subsampling is performed before filtering, a consequence of using a fully

pipelined structure means that swapping the position of filtering and subsampling
blocks would only affect the latency of the design and throughput would remain

as shown in the table. Swapping the filtering and subsampling blocks would be

necessary to produce Gaussian pyramids with an acceptable level of aliasing and
blur, but could be performed whilst still using a multiple clock rate design.

3. Detail extraction and fusion 221

I Image Size I Max Throughput (fps)
PYR [8) 1_512 x 480 1 44
Splash 2 [10] 512 x 512 30
Proposed 640 x 480 100
Architecture

Table 1: Comparison of proposed and previously reported architectures for image
pyramid decomposition.

3 Detail extraction and fusion

The following section will briefly describe the fusion process, but for a more complete
discussion of the algorithm see [6]. The implementation presented here is an exact
implementation of that published method. To extract detail from the levels of the

source pyramids four gradient operators are each applied to each level of the source

pyramids via a simple convolution. The operators represent derivatives in the hor-

izontal, vertical, and two diagonal directions, and essentially act as edge detection

filters in the four orientations. The gradient filters are as follows:

dl I1
-1]

r0
-11 1

ä2 l10'

-1 d3 =
1

d4 =
r1
I -1 01

10 1ý o il-vý2-

(5)

The resulting set of images is known as a gradient pyramid [6], and can completely

represent the original image [10]. The gradient pyramid is essentially a set of gra-
dient maps of the source images at varying scales. As illustrated in figure 4, the

gradient pyramids constitute a large amount of intermediate data: each level of the

two source pyramids is now represented by four gradient maps. Another way to

conceptualise this is that the two source pyramids have now been decomposed into

four further pyramids each, giving a total of eight full image pyramids to be handled

3. Detail extraction and fusion 222

M=ý>
sw2. im. p. n Pyr. mN

ý11

I

GQ

S- ý" a

Conpý im. qe PymiC

i
ttt QQQ

f

ý
Sou.. Imps B PP'-k

Figure 4: Gradient pyramid decomposition and fusion

and processed concurrently. Obviously, the ability to work with this amount of data

on chip is one of the ways in which an FPGA may achieve large performance gains

over a microprocessor based implementation.

When applying the gradient operators, the source pyramids are first convolved

with (1 + iii), where 1i' is a3x3 filter with binomial coefficients, and chosen such

that ii., * 1i) =w (where w is the Gaussian filter used in the creation of the Gaussian

pyramids). Let Dkl be the kth level and lth orientation gradient pyramid image for

I. Then:

Dkl = dl * [1 + Ti)] * Gk

Dkl=di *[Gk+w*Gk]

(6)

(7)

Fusion of the gradient pyramids then takes place by selecting the most prominent

detail from each level. In this application the elements with the greatest absolute

value are chosen through a simple comparison, this is an implementation of the

simple measure of saliency given in [5]. Other, more complex measures of saliency

(also known as activity-level measurements [11]), based on texture criteria and other

higher order attributes, may give better results in some specific circumstances, but

the amplitude based measure has been shown to provide good results in the general

case [5].

3. Detail extraction and fusion 223

3.1 Gaussian to Laplacian pyramid conversion

Before the inverse transform can take place it is necessary to adjust the format of the

composite image pyramid, as the inverse pyramid transform relies on the Laplacian

rather than the Gaussian pyramid. The steps involved in the conversion are detailed

below. Firstly each gradient filter is reapplied to the corresponding oriented data

stream, which, combined with the first application, is equivalent to application of a

second derivative. The reason for this is due to a relationship between the binomial

filter and the gradient filters:

1 -w = -(dl *dl+d2*d2+d3* d3+d4*d4) 1
8

(8)

Thus each gradient pyramid level Dki can be converted to a second derivative pyramid
(or oriented Laplacian [61) level through a second application of the gradient filters

multiplied by - 8:

Lkj = -gdi*Dki

Substituting for D, from (6)

Lkt=-8d! *dt*(1-Fw)*Gk

Lkt=(1-iu)*(1+w)*Gk

(9)

Lkt = (1 - w) * Gk (10)

which is the equation for the FSD Laplacian pyramid [6]. Hence by combining the

four orientations we arrive at the FSD Laplacian:

4

Lk =ý Lkl
1=1

(11)

Conversion from the FSD Laplacian to the RE Laplacian can then be performed by

the following approximation, accurate enough for these purposes [61

Lk ..: [1 + w] * Lk (12)

4. Inverse pyramid transform 224

3.2 Hardware implementation

A schematic of the fusion portion of the design at a single pyramid level is shown in

figure 5. When implementing this process in hardware, at each level of the pyramid

the eight gradient operators (four per source image) run in parallel on the source

data. The most salient detail in each orientation is then selected from each image

through a set of comparators. This detail is fed forward, through a second application

of the gradient filters and an adder tree structure for (11), before being filtered again

for (12). This structure is repeated at each level of the pyramid, and as with the

pyramid generation logic, each level runs at one quarter of the clock speed of the

level below it, to account for the fact that the image at that level has a quarter of

the number of pixels. The output of each fusion section will form a single level of

the composite pyramid, which is subsequently inverse transformed.

4 Inverse pyramid transform

The method of reconstructing an image from its Laplacian pyramid uses the EX-

PAND operation given in (4). The starting point for the inverse transform is the top

level of the Gaussian pyramid (in this case G5). This is formed by a simple averaging

of the top level of the source pyramids. Then, from (5):

Gk = Lk + EXPAND (Gk+1) (13)

This process is performed repeatedly to expand each pyramid level. The addition

of Lk represents the incorporation of detail data at each scale. The complete fused

image lies at the bottom of this pyramid, level Go. This process mirrors the decom-

position process described in section 2, and again uses FIFOs to store data between

pyramid levels, with two-dimensional upsampling occurring as data are read from

the FIFOs through insertion of zero value samples.

4. Inverse pyramid transform

T

E

I

1

n
4

ä

ý

A

T

3

L

;
""

L¢ . . \' /¢ ..

ýa
i

Q

i

2

I

a
ýa

ý
ý ý ý

225

5. Implementation results

Resource Used Available % of XC2VP100
Slices 13,287 44,096 30
4-input LUTs 24,533 88,192 27
Slice FFs 5,784 88,192 6
Block RAMS 430 444 96

Table 2: FPGA resource requirements

FPGA Maximum Clock Frequency 31 MHz
FPGA Maximum Frame Rate (8-bit, VGA) 101 fps
PC/Matlab Frame Rate (2.8GHz P4,1GB RAM) 0.91 fps
Speedup 111x

Table 3: Performance compared to PC implementation

5 Implementation results

226

The entire design was implemented using Xilinx System Generator and mapped to a

Virtex-2 XC2VP100 device. Synthesis was carried out using Xilinx's proprietary XST

tool, as part of ISE8.1. The logic usage results are presented in table 2. The main

hardware requirement is for RAM, which is understandable given the large amount

of intermediate data that has to be held within the FPGA during the processing of

a single pair of input frames. The RAM is essentially being used as long delay lines,

and there is scope to retarget some of this requirement towards use of the flip-flops

on the device. This may enable the design to fit into a slightly smaller device. The

design is fully pipelined and capable of producing an output pixel every clock cycle.

The maximum clock speed reported by the place and route tools is 31MHz.

As a means of comparing the system's performance with a software implemen-

tation, the Matlab Profiler was used to measure the speed of execution of a Matlab

implementation of the same algorithm. Processing a single frame of data on a 2.8GHz

Pentium-4 processor with 1GB RAM takes, on average, 1.1 seconds. A comparison

of the performance of both FPGA and PC-based versions of the algorithm is shown

in table 3. The Matlab version of the algorithm is used in its original (interpreted)

format, and use of compiled code may improve the results from the PC-based imple-

mentation.

Note that although the maximum reported clock speed is 31MHz, a speed of

5. Implementation results

N image IR image

227

Fused image

Figure 6: Example of source and fused images using the described algorithm and
implementation.

10MIIz would allow 8-hit greyscale VGA video at 30fps to be processed in real-time,

with a latency of <50ms. Sample images have been produced for comparison and are

shown in figure 6. The source images are from a TV camera and thermal (IR) camera

respectively, and are pre-registered. Both source images accentuate different features

about the scene being observed. The composite image contains the significant details

from both source images. A side effect of producing pyramids by subsampling before

filtering is that the output images are more blurred than they would be otherwise

and are likely to suffer from distortions caused by spatial aliasing. Reversing the

ordering of the subsampling and filtering blocks in the pipeline structure of figure 3

would produce clearer images, at the expense of increased latency.

A difference image (after inversion and scaling) between the Matlab and FPGA

implementations is shown in figure 7. Forty lines have been removed from each edge

to remove most of the edge-effects caused by the convolutions. (Although the filters

are only 5x5, the upsampling and downsampling involved in the pyramidal algorithm

means that the edge-effects are spread over a wider area than in typical convolution

applications). Over the region shown the maximum error between corresponding

pixels of the two implementations is equal to 1.35, and the mean-squared error is

0.02. The small error value is explained by the simple mathematics of the algorithm

(just basic convolutions with easily representable coefficients), which pose no problem

to the hardware implementation.

6. Implications of the alternative pyramid generation process

A

rý
--V 1

ý--
_ -. ý

.
ýF. Wro ýr`ý1vrº.,...,.. ý. - ý. a.., Y.. .. dl

228

Figure 7: Inverted and scaled difference image between Matlab and hardware imple-
mentations of pyramidal image fusion, after removing the edge pixels affected by the
convolutions.

6 Implications of the alternative pyramid genera-

tion process

The method of generating image pyramids that has been used here is conceptually

incorrect, due to subsampling being performed before filtering at each stage of the

process. Depending on the bandwidth of the source images this method will therefore

produce image pyramids with varying levels of distortion due to spatial aliasing. As

was shown in figure 2, the resulting image pyramids also exhibit an increased level

of blur. The implementation described here demonstrates that a degree of image

fusion can be performed with image pyramids generated in this way, but the method

should not be used in a general sense because of the erroneous data it produces. In

order to generate true Gaussian pyramids the processing pipeline of figure 3 could

be modified by swapping the positions of the subsampling and filtering blocks, as

shown in the modified pipeline of figure 8. The multiple clock rate design would still

be an effective method for the same reasons that are described above.

This change has hardware implications due to the increased size of the images

being filtered at each stage, meaning that the line-buffers in the two-dimensional

filters must now be twice as long. Calculations show that for two 640 x 480 video

streams and filters with internal 16-bit representations an implementation of image

fusion would have an increased memory requirement of 70kb. This would require an

additional four of the 18kb Block RAMs available on the Virtex-2 FPGA used for

6. Implications of the alternative pyramid generation process

Px"'dd level G4

I

---------------------------- I

Pyramw
Laval G,

229

Pynmid Pyramld
Lawl Cn Lavel ß3

TTT

20
a.

ý
rAwgM

01Mlq ý""ý
, Jh, YUO�

ý ý"ý�{
U, h; Ynpb FIfO

---- i

Sarripk nta n Swmpla nNa nM Sampla rab n/18 Sample rats nf84 i
- -------- --------------- - -- --

Figure 8: Modified pipeline for generating true Gaussian pyramids.

the implementation; table 2 shows that there are sufficient remaining resources to

accommodate this on the same device.

Although there is an increased memory requirement the size of the filters is un-

changed and so there is no additional computational expense. However the latency

of the pyramid generation process is increased by a factor of two. Due to the pyra-

mid generation process constituting about a third of the total implementation, it is

estimated that the total latency for the alternative design would be in the region of

60-70ms.

The section of the design for performing detail extraction and fusion process is

not affected by the change in how pyramids are generated. The inverse pyramid

transform implemented here is also an exact implementation of that published by

Burt in his original paper.
Comparison images between the implementation presented here and fusion with

true Burt pyramids is presented in figure 9. Although it is difficult to discern aliasing

artefacts from the original implementation, the increased level of blur is evident.

With these test images the two implementations appear to select the same details

from the source images, but with images that use the frill bandwidth the aliasing

artefacts caused by the original pipeline of figure 3 may be identified as detail by the

gradient filters and therefore be noticeable in the composite image. The difference

image shows that the most severe differences are found where features have high

contrast relative to the surrounding region.
For these reasons the processing pipeline of figure 8 is the method that should

always be used, despite the increased resource requirements.

7. Conclusion 230

Burt pyramids

-T1
-. 416

. -h. .

Implemented algorithm Difference image

Figure: 9: Comparison of fused images when Burt Gaussian pyramids are used versus
the implemented pyramid algorithm. The difference image has been inverted and
scaled to use the whole greyscale range.

7 Conclusion

An implementation of a pattern-selective image fusion algorithm has been presented

that utilises aspects of FPGA technology to enable dual video streams to be pro-

cessed in real-time. The results from the implementation showed that four levels of

pyramidal decomposition, with four separate gradient operators, can all run on a

single FPGA with no requirement for off-chip memory. The modular nature of the

design means that pyramids with less, or more, levels could be added without major

modification. Use of an FPGA has enabled a design that can process images at a rate

over 100 times faster than a similar PC-based Matlab implementation. The method

of generating Gaussian pyramids used here is based on an incorrect implementation

of the Burt algorithm, which is prone to aliasing and increased blur, and is in general

an unacceptable method. An analysis has been given of the cost of implementing the

true Burt algorithm using the same pipelined structure, concluding that the modified

design could fit on the same device with only a small decrease in performance.

References

[1] P. K. Varshney, "Multisensor data fusion, " Electronics and Communication En-

gineering Journal, vol. 9, no. 6, pp. 245-253, Dec. 1997.

[2] Z. Xue, R. S. Blum, and Y. Li, "Fusion of visual and IR images for concealed

weapon detection, " in Proc. 5th Int. Conf. Information Fusion, vol. 1, Sept.

2002.

[3] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,

"Pyramid methods in image processing, " RCA Engineer, vol. 29, no. 6, pp.

33-41, Nov. 1984.

[4] P. Burt and E. Adelson, "The Laplacian pyramid as a compact image code, "

IEEE Transactions on Communications, vol. 31, no. 4, pp. 532-540, Apr. 1983.

[5] P. J. Burt, "A gradient pyramid-basis for pattern-selective image fusion, " in

Proc. Society for Information Display Conf., 1992.

[6] P. J. Burt and R. J. Kolczynski, "Enhanced image capture through fusion, "

in Computer Vision, 1993. Proceedings., Fourth International Conference on,
Berlin, May 11-14,1993, pp. 173-182.

[7] V. S. Petrovic and C. S. Xydeas, "Gradient based multiresolution image fusion, "

IEEE Transactions on Image Processing, vol. 13, no. 2, pp. 228-237, Feb. 2004.

[8] G. S. van der Wal and P. J. Burt, "A VLSI pyramid chip for multiresolution

image analysis, " Int. Jour. Computer Vision, vol. 8, no. 3, pp. 177-189,1992.

[9] C. H. Anderson, "Filter-subtract-decimate hierarchical pyramid signal analyzing

and synthesizing technique. "
231

References 232

[10] A. L. Abbot, P. M. Athanas, L. Chen, and R. L. Elliot, "Finding lines and build-

ing pyramids with Splash-2, " in Proc. IEEE Workshop on FPGAs for custom

computing machines, Apr. 1994, pp. 155-163.

[11] Z. Zhang and R. S. Blum, "A categorization of multiscale-decomposition-based

image fusion schemes with a performance study for a digital camera, " Proceed-

ings of the IEEE, vol. 87, no. 8, pp. 177-189, Aug. 1999.

Appendix G: Video Processing

Demonstration Platform

233

Video Processing Demonstration Platform

August 2006

Summary: Several algorithms presented in this portfolio were implemented on a

custom FPGA circuit board designed by Thales for a commercial product. The

board was ideal for algorithm implementation purposes, as it featured a medium

sized Virtex-2 FPGA, video D/A and A/D converter ICs, and six banks of SDRAM

each with independent address and data buses.

In order to make the algorithm implementation process easier, a suite of au-

tomated scripts and batch files were produced by the RE that enabled a System

Generator algorithm design to be synthesised and implemented on the board with

no manual intervention from the user. A VHDL `wrapper' was also developed to

handle low-level issues such as memory accesses and clocking.

Use of this system would enable a person with little or no hardware design expe-

rience to trial and demonstrate video processing algorithms in hardware, and it may

therefore be useful for algorithm development purposes. This short report documents

the board and implementation process and how it should be used.

Oliver Sims

EngD 4th year

Industrial Sponsor: Thales Optronics

1. Introduction 235

1 Introduction

The following document describes a system developed to provide a standard platform
for video processing algorithms. Use of this demonstration platform allows for rapid
deployment of video processing algorithms on FPGA hardware, and provides an

opportunity for the designer to trial algorithms quickly using high-speed logic.

The platform essentially provides a VHDL wrapper for algorithms implemented

using Xilinx System Generator. The wrapper provides clock management, mem-

ory interfaces, and interfaces to video A/D and D/A chips that manage the data

acquisition and display.

System Generator allows use of Xilinx IP cores in a high-level graphical domain,

and allows the designer to utilise the whole range of advanced Simulink stimulus and

verification tools to test the design. Once the algorithm is operating satisfactorily

a push-button process generates HDL code. A set of scripts and batch files have

been produced that will translate this HDL code into an FPGA programming file.

In this way an algorithm design can go from a high-level block diagram to a working
demonstration in hardware in minutes, with no manual intervention required. The

automated implementation process will in some cases be a quicker alternative to

performing a PC-based simulation, and will give a more immediate means to display

and compare the efficacy of different algorithm models.

This report documents the hardware design and software environment that makes

up the demonstration platform, and the format required for algorithms to be demon-

strated.

2 Hardware

The system uses the main board and portions of firmware from the Thales Joint

Target Acquisition System (JTAS) project. The JTAS project is a handheld system

with dual video input channels and interfaces for a variety of peripheral equipment,
for instance navigational systems. On-board it features six independent SDRAM

devices, with each device containing 8M 16-bit locations. Each device has dedicated

address and data lines, meaning they can be accessed individually and independently

3. System architecture 236

of each other.

The video input channels are controlled by SAF7113H video input processors
from Philips Semiconductor. These devices synchronise to an analogue video stream

at the input, perform A/D conversion, before outputting the active video data in

ITU656 4: 2: 2 format. The devices are highly configurable and can handle a wide

range of input video standards. They are programmed using an 12C interface. The

JTAS board outputs analogue video data via an ADV7179 video encoder from Analog

Devices. The device converts 8-bit 4: 2: 2 video into a configurable analogue output.
The device handles all timing issues and generates the synchronising and blanking

periods as necessary for the output standard being used. The device is also configured

using an 12C interface.

It should be noted that the JTAS platform is designed for full colour video whereas

this video processing demonstrator is greyscale only. Greyscale is sufficient to demon-

strate the majority of image and video processing algorithms, and it cuts down the

complexity of the system and provides more spare logic for the algorithm.

3 System architecture

A block diagram of the system in shown in figure 1. There are multiple clock domains

throughout the design, with asynchronous FIFOs acting as buffers between domains.

At the ends of the pipeline the clock rate is 27MHz, as determined by the 4: 2: 2 format

for digital sampling of analogue video (ITU-R 656). In the 27MHz domains the video
input and output processor modules interface with the video decoder and encoder
devices respectively. These modules are taken from the original JTAS design with

only minor modifications to handle greyscale only images.

On either side of the algorithm the video data is buffered in large SDRAM stores.
The SDRAM blocks are controlled by two separate SDRAM controllers, whose func-

tion is to read/write data from/to RAM as necessary to prevent the FIFOs from

filling or emptying. The SDRAM controllers are subtly different to each other in the

way they operate: the input side memory controller is designed in such a way as to

crudely deinterlace the video data on the input side of the system through weaving

3. System architecture

27UHa

ýý Ao

OOMw

Aeyul. lbn

ý. ý ý.. ý.

Wom

I 29rH: I
(conRpýraele) I

V

ýý -J ceo °ine1b'
m+. inr

I ýý

I
I

WD

237

sommz

ONpIry Yae

WRAM -1.1.

BDRM1

Figure 1: System block diagram.

ýo

27MHz

NdM MIWI
peuýwr El ý

of alternate frames as they are written to memory; this operation is reversed on the

output side. Although this form of deinterlacing may introduce artefacts for fast

moving objects, it is chosen here for its simplicity.

The SDRAM controllers both operate at a clock frequency of 80MHz, this is

a remnant of the JTAS design where this frequency was chosen to accommodate
SVGA video formats. It remains unchanged here, as 80MHz provides sufficient

responsiveness to perform the SDRAM reads/writes given that the clock frequency

of the algorithm is user definable and may be increased.

The System Generator container module connects the System Generator netlist

to the surrounding hardware. The clock rate of this module is variable, through

modification of the top-level VHDL netlist and/or reconfiguration of the Digital

Clock Management (DCM) units on the FPGA. Increasing the clock speed of the

algorithm may be necessary in situations where the algorithm requires multiple clock

cycles of processing time per pixel, and a clock speed of 25MHz is insufficient to

process the incoming video data in real-time. The algorithm in the System Generator

module does not run continuously, but instead operates in bursts by processing whole
lines of image data one at a time. This is controlled by the VHDL container module,

which detects when a full line of data is available in the input FIFO, and then enables
the algorithm for sufficient time to process that data and write it to the output FIFO.

The controller and interface logic has the resource overhead described in table 1.

The remaining logic is available for the algorithm.

4. System Generator model format

Resource Used Total on Device % of XC2VP20
Slices 923 9,280 9%

4-input LUTs 1,382 18,560 7%
Slice FFs 990 18,560 5%

Block RAMs 6 88 6%

Table 1: Resource overhead

4 System Generator model format

238

A copy of the System Generator model to be used as a basis for algorithm develop-

ment is shown in figure 2.

The designer is free to implement any algorithm using the System Generator block

set, but there are certain constraints to ensure compatibility with the surrounding
hardware:

" The algorithm will only operate on video data arriving in a raster format.

" There must be a parallel delay line (3-bits wide) that is used to send sync
information alongside the data. This delay line must be the same length as
the latency of the algorithm being deployed. The latency of the algorithm can

usually be determined by counting the number of register stages (denoted zit
by System Generator) between the input and output.

" The filename used for the System Generator model must be alg. mdl, and the

generated code must be saved into a sub-folder of the SysGen folder called

netlist.

" The image size is currently imposed by the PAL input as 575 lines of 720 pixels.
Modification to operate on smaller images (for instance VGA) is possible but

requires alteration of the SDRAM controllers.

There is a user input labelled filter-en, which can be used within the algorithm, this

is connected to the fire push-button on the JTAS test harness. One way in which
this could be used is in selecting between a processed and unprocessed version of the

video stream, implemented using a multiplexer at the output of the algorithm. In

addition the centre button of the five directional buttons on the test harness acts

4. System Generator model format 239

as a master reset. The HDL netlist is generated using the Generate button in the
System Generator block. A copy of the System Generator dialog box is shown in
figure 3; the settings shown in the figure should not be altered.

1. System Generator model format

lk 4
1/1/

E°

m

CD

ý

0 C

0 C)

E

O

Ö

C

R

d

V
Ä

E
ý I, ý 0

s 0
ý ý
0

ý

C
71ý

ý ý
Q, 10 ID

t

ýý

T
ý
I-

C

d
ä

c=

M
xm

aý +_ d
Zr OD Co 9

E °; ' mýö
ým

to oýa QC

naov
aCVC
rNN

ni
V

t.
G^7ýý

Cpy Til
a' N` -v CÜ

S-0
mýýöwä

_w °° ä-c
rm mcy

Zd
vdN

7L_W

CC2y
VL

_N L

240

1. System Generator model format

ýý

Q>

Li

Xilinx System Generator

Compilation :

DL Netlist F

Part :
frirtex2P xc2vp20-5ff896

Target directory :
Imetlist

Synthesis tool :
JXST ý VHDL

FPGA clock period (ns) : Clock pin location :
Fo

r Create testbench r

r Provide clock enable clear pin

-1 1 xl

Browse...

Hardware description language :

IA, rnrding to E; k)r_. ý: '_: pthrd7c

Simulink system period (sec) :h

Block icon display: tDefault

Generate OK

ý

Apply Cancel Help

i

241

Figure 3: Correct, settings for System Generator dialog box

5. Directory structure 242

5 Directory structure

The directory structure in listing 1 is required for correct operation of the scripts.
Some of the important design files are also listed. All paths are relative, so the

structure may be placed on a drive with any letter as its name. Note the System

Generator model file, named alg. mdl, in the SysGen subdirectory of Videoproc. This

is the file that should contain the algorithm to be deployed.

6 Implementation

The following software must be present on the host PC before implementing a design:

" Mentor Graphics Precision RTL Synthesis

" Xilinx ISE 8.1 or later, including iMPACT programming tools

The Path environment variable on the host PC must also be correctly configured

to allow access to these programs from anywhere in the file system. In addition to

the software requirements, a Compact Flash card reader is required to transfer the

bitstream to the target hardware.

The process of taking the System Generator netlist through to an FPGA bit-

stream has been automated through the use of TCL scripts and a batch file. The

implementation process is controlled from the XFLOW directory (XFLOW being the

name given to the Xilinx command used for running the ISE tools in batch mode).

There are three stages to the implementation process: synthesis, Xilinx implemen-

tation, and generation of the programming file. There are two batch files that can
be used for this process:

" Go. bat prompts the user before executing each program. This is useful to check
the output of a program before executing the next one.

" Go_all. bat executes all stages without requiring user input.

The synthesis stage calls Precision Synthesis in batch mode and synthesises the

design. The commands are TCL scripted to collate and compile the necessary VHDL

files and apply synthesis constraints.

6. Implementation

Listing 1 Directory structure
\VIDEOPROC
I ADV7179IIC. vhd
I AlgSim. vhd
I CONFIGrst. vhd
I Debounce. vhd
I PALout. vhd
I SAF7113IIC. vhd
I SDRAM_Acq. vhd
(SDRAM_Disp. vhd
I SURAC_A. vhd
I VideoChain. vhd
I VideoIn444. vhd

+---Cores
II
+---SysGen
II alg. mdl
I +---netlist
II
+---Test
+---work
II
\---xflow

I bitgen_opts. opt
I go. bat
I go_all. bat
I ISE_opts. opt
I precision_rtl. sdc
I precision_settings. tcl
(precproj. tcl
(precsynth. tcl
I SURAC. ucf

+---impact
I \---VidProCF
II xilinx. sys
I \---VidProCF

+---Reports

+---ISE

\---Synthesis
\---Precision

243

7. Notes 244

The Xilinx tools translate the netlist into Xilinx hardware and then perform

placement and routing. These processes are controlled from the XFLOW command.
Finally, the Xilinx iMPACT tool is called to generate the programming files. On

completion the programming files (a folder called VidProCF and a xilinx. sys file)

should be copied to the root of the System ACE Compact Flash card being used to

program the device.

During the implementation phase several reports and log files are generated.
These are all automatically copied to the /xflow/Reports subdirectory. These reports

are useful to check for any warnings or errors detected by the synthesis tool, and can

also be used to check device usage and timing information as reported by ISE. The

device usage information is contained in the Map report, named SURAC-nap. mrp.

7 Notes

There are several areas where the demonstration platform could be developed further:

Cater for adjustable image sizes. For instance, VGA would be a popular reso-
lution but currently requires modification of the VHDL firmware design.

" The constraints of the ITU601 standard mean that although the video is in

8-bit format, the necessity of sync levels etc. means that this translates to 200

quantisation levels not 255. The black level corresponds to 16, and the white
level is 235. Algorithms that exceed this range in their output will still work

without causing problems as the logic has been designed to impose these limits

before outputting data to the video encoder. Unfortunately this means there
is a reduction of dynamic range available to the algorithm.

Appendix H: Implementation of
Image Registration by Polynomial

Warping

245

Image Registration by Polynomial Warping
September 2006

Summary: An introduction to an algorithm that uses polynomial equations to gen-

erate spatial maps, which describe the affine transformations required to register an

image to a reference image. Registration is a necessary step before image fusion may

be performed. The implementation adapts an SDRAM controller to warp an image

as it is read out of memory.

Oliver Sims

EngD 4th Year

Industrial Sponsor: Thales Optronics

1. Introduction 247

1 Introduction

Image registration is required in a variety of fields where information contained in

multiple images must be compared or combined. Some example uses of image regis-

tration are in medical imaging (for instance monitoring tumour growth), updating of

map imagery, computer graphics, etc. Due to the wide range of applications, there

has emerged an abundance of methods of performing image registration. These are

increasingly becoming domain-specific, such that the popular algorithms in one area

of image registration may not have similar success in other areas.

The problem is essentially one of transforming an image, such that when it is

compared with another image of the same scene any common features are in the

same relative position. This will enable identification of any differences between

the images, whilst removing the discrepancies caused by the processes involved in

capturing the image data. These discrepancies may be caused by using different

sensors for each image, movement of a sensor between captures, or a time delay

between captures, amongst other things.

The application domain of this work is in registration of images that are to be

used as input to an image fusion algorithm, operating on data obtained from two

different sensors. The purpose of image fusion is to combine images such that all

useful information from both source images is retained into the final composite,

without introduction of unnecessary noise or artefacts. The information content of
the fused image is thus greater than either source image, and may be deemed more

effective for either human or machine interpretation. The two sensors that provide

the data for fusion will be operating simultaneously, and will usually be adjacent to

one another; the difference in viewing angle between the two sensors is known as the

boresight error. The sensors may be also be of differing resolutions. The objective

of the registration algorithm is to harmonise the two images such that they are the

same resolution and appear to be captured from the same viewpoint. It is equally
important that no detail in either image is destroyed or lost by the registration

process.
The fact that the two sensors are adjacent means that the amount of translation

between the two images can be assessed once before processing begins, and is assumed

2. Polynomial warping 248

to remain constant. This means that automatic registration techniques (whereby

the amount of transformation that must be applied is calculated in real-time) are

unnecessary. Rather than mathematically modelling the transformation it is common

to rely on manual identification of multiple control points, i. e. points in each image

that correspond to one-another. These points may then be used to calculate the

transformation that is required.
This document describes a hardware implementation of one such image regis-

tration algorithm known as polynomial warping. The target hardware is a video

processing demonstration platform, comprising the necessary hardware for analogue

video acquisition, FPGA processing, and subsequent D/A conversion and display.

The resulting implementation is a small module that can warp the image data as

it is being read into the FPGA ready for further processing, for instance for image

fusion.

2 Polynomial warping

The key task of image registration for fusion applications is the removal of the varia-

tion in boresight between two (or more) sensors. This may be classed as a rigid-body

transformation, i. e. one that is formed of a translation, rotation, and a scale change.

Rigid-body transformations are global (the same transformation applies over the

whole image) and fall into the category of of ine transformations [1]. This makes

them suitable for implementation using polynomial warping methods; an example of

the kind of warping possible with affine transformations is shown in figure 1.

Polynomial warping produces a non-linear spatial map that describes the plane-

to-place mapping between the two images [2]. This mapping can be used to select the

pixel in the unregistered image that corresponds to a given pixel in the registered
image. There will not always be a direct one-to-one mapping, so interpolation is

usually required to calculate values at a sub-pixel level.

Given two images, f (xl, x2) and f (u. 1, u2), the task is to find a coordinate trans-

form between the two, i. e. functions that translate an input pixel location (x1i x2)

2. Polynomial warping

Figure 1: Example of an affine transformation

to an output pixel location (ul, u2):

X1 = 91 (Uli u2)

249

(la)

X2 = 92 (ui, u2) (ib)

Rather than attempting to mathematically model the transforming functions gl and

g2, it is usually sufficient to approximate them using polynomials of the form:

N N-i

x1
E K, jui1.2

i=0 j---o

N N-i

22 K
S3

Z'i'fC32

i---o j---o

(2a)

(2b)

where K' and K2 are sets of constant coefficients. N gives the order of the polynomi-

als; low orders are usually sufficient and all affine transformations can be described

by first order (N=1) equations [3). In this case the polynomials expand to:

xi = Köo + Koluz + Kloul

02 = Ký + k-2
_01U2 + k-2 pu1

(3a)

(3b)

The coefficients K' and K2 may be determined through a process based on identi-

fication of control points, which are used to form systems of simultaneous equations

3. Implementation 250

that when solved give the values for the coefficients. In order to determine six un-
known coefficients, as required for the first order equations above, it is necessary to

identify at least six control point pairs. (More than six control points may also be

used, resulting in an over-determined system of equations). The control points may
be defined as:

{xli, x2i, Uli, u2i} for i=1 to 6 (4)

Solution of the system of equations can then be performed using standard matrix

methods, i. e.

[Hence:

x11

-112

X13

K1 00
Köl

Kio

1 U21 ull

1 U22 U12

1 U23 U13

1 u21 1111

1 U22 1612

1 1123 413

K1 00
K01,
K1

10

1[
X11

X12

X13

(5)

(s)

will provide the solutions for the Kl coefficients, and the similar operation can be

performed for K2.
Once the coefficients have been calculated the polynomial equations can be used

to identify the pixel locations in the input image that are required for the output
image. The values generated by the polynomials will not usually be integers, so that
the point they refer to in the input image may be between pixels, and interpolation
will be required to approximate the necessary value.

3 Implementation

The process of calculating the coefficients for the warping polynomials only needs to
be performed once for a particular transformation between two sensor positions, so
that if the sensors do not move relative to one another there is no need to repeat
the calculations. These calculations can thus be performed beforehand (using for

instance Matlab) in order to generate the polynomial coefficients that can then be

hard coded into the design.

3. Implementation

KOO

251

Figure 2: System Generator implementation of first-order polynomial equation

System Generator was used to implement the polynomial equations that utilise

the coefficients. System Generator is ideally suited to applications such as this: it is

designed to facilitate experimentation with binary precision and word-lengths, and

the polynomials are formed from add and multiply operations which map directly to

the standard block libraries. For these reasons, and the inherent ease in designing

systems graphically, implementing a design such as this is much quicker in System

Generator than in manually written VHDL.

Figure 2 shows the implementation of one of the polynomial equations. The

coefficients are hard-coded as constants for the two gain terms and as an input into

the second adder block. Figure 3 shows how this model of a polynomial equation

is used to generate the spatial neap. Two counters are used to generate the input

addresses; the counters should be able to represent all pixel locations in the input

image (in this case a 640 x 480 element VGA image), so the first counter represents

the pixels per line (up to a maximum of 640), and the second counter represents the

current, image row (up to 480). In this way all pixel locations are generated in raster

format, one per clock cycle.

Sixteen bits are used to represent the constants in signed or unsigned format,

with a fixed binary point that may be positioned as appropriate for each coefficient.

Subsequently the values that are naturally output by the system are real numbers

and are rarely integers. The input image is comprised of discrete pixels that lie on

3. Implementation 252

u1 c

WI

1ý ua

Pdynprlial I

840
Cýý

ý a ý D+

RMMlmal

V
ý

Ou

ýz ý

O> u1

a ý
Pdynma 2

out

Figure 3: System Generator implementation of hardware to generate a spatial map
in raster format, using two first-order polynomials

a sampling grid, and the coordinates generated by the polynomials generate a new

sampling grid with pixel locations that do not correspond exactly to the pixels in the

input, image [3]. Interpolation is required to approximate the output pixel values. Bi-

linear interpolation is commonly used in these situations, however nearest-neighbour

interpolation has the advantage of being significantly easier to implement as it may

be achieved simply by rounding the output to the nearest integer. The disadvantage

of nearest-neighbour interpolation is that it may introduce some blockiness in places

in the output image. However, bilinear interpolation is also problematic (it has an
inherent smoothing effect that can reduce detail), and so the reduced complexity

of nearest-neighbour interpolation is preferred for demonstration purposes. More

sophisticated methods of interpolation could be used at a later stage if necessary.

3.1 SDRAM controller

The video processing system used for the registration process buffers image data

arriving from a PAL analogue camera in an SDRAM store. As the data are stored

in memory the alternate fields are weaved together as a simple form of deinterlacing.

SDRAM memory is organised into rows and columns, and the image is stored with

one image line split over two rows of memory.

The spatial maps generated by the polynomial equations are utilised during the

process of reading the data out of SDRAM and into the FPGA for processing. The

read addresses for the SDRAM are formed from the coordinates generated by the

4. Results 253

End of
image line

Figure 4: State machine implementation of memory controller for image registration

System Generator polynomials, with xu representing the required memory row and

x2 representing the required memory column. As coordinates are generated in a

raster format, the column address changes significantly more frequently than the row

address. Due to the way in which SDRAM operates, when the row address changes

a Precharge command must be issued to the row currently being accessed, and then

the next row must be activated before reads can continue. This introduces extra

complexity into the SDRAM controller; a state machine was necessary to detect the

changes in row addresses and issue the correct sequence of commands, this is shown

in figure 4. The issuing of Active and Precharge commands adds latency, which

may become problematic if the warping includes a significant rotational aspect since

the number of row changes required per image line will be high. In this situation

the clock rate of the SDRAM controller may need to be increased in order to meet

real-time constraints imposed by the source video.

4 Results

The design is mostly comprised of the System Generator implementation of the

polynomial equations, and the extra control logic needed in the SDRAM controller

5. Conclusion

Pi, guure 5: TV image before registration

254

lo he able to perform the active/precharge commands as required by the addresses

as they are generated. For this reason the registration design consumes a minimal

amount of FPGA resources.

Resource I Used I Available I% of XC2VP20
Occupied slices 242 9,280 2

4-input LUTs 1 469 1 18,560 12
Block RAM 0 444 0
Multipliers 0 444 0

Table 1: Resource usage of registration design

Some example images are presented below. Figure 5 shows an image of a scene

captured with a standard TV camera. Figure 6 shows the same scene captured by a
high-resolution thermal camera. This image is the reference image, to which the TV

image should he registered, however the TV image is capturing a much wider area.
Figure 7 shows the TV image from figure 5 after it has been warped to match the

thermal image from figure 6. The warping includes an inherent magnification of the

desired region. It now shows the same area, and common features are in the same

relative position.

5 Conclusion

This report has presented a simple method of performing a spatial warp of an im-

age as it. is read from an off-chip SDRAM frame store into an FPGA. To do so it

uses polynomial equations, implemented in System Generator, to generate the pixel

locations required in the unregistered image. The warp is predetermined according

5. Conclusion

Figure 6: Reference image (thermal)

Figure 7: Registered TV image

255

to manual selection of control points in the unregistered and reference images. A

finite state machine is used to generate the necessary sequence of commands to the

SDRAM memory. The application is a simple example of separating control and
datapath elements of a design, and implementing them with the appropriate tools.

References

[1] L. G. Brown, "A survey of image registration techniques, " ACM Computing

Surveys, vol. 24, no. 4, pp. 325-376,1992.

[2] P. A. Kenny, D. J. Dowsett, D. Vernon, and J. T. Ennis, "A technique for digital

image registration used prior to subtraction of lung images in nuclear medicine, "

Physics in Medicine and Biology, vol. 35, no. 5, pp. 679-685,1990.

[3] G. Wolberg, Digital image warping. IEEE Computer Society Press, 1990.

256

