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Abstract 

The work contained in this portfolio thesis was carried out as part of an Engineer- 

ing Doctorate (EngD) programme from the Institute for System Level Integration. 

The work was sponsored by Thales Optronics, and focuses on issues surrounding the 

implementation of video processing algorithms on field programmable gate arrays 

(FPGA). 

A description is given of FPGA technology and the currently dominant methods 

of designing and verifying firmware. The problems of translating a description of 

behaviour into one of structure are discussed, and some of the latest methodologies 

for tackling this problem are introduced. 

A number of algorithms are then looked at, including methods of contrast en- 

hancement, deconvolution, and image fusion. Algorithms are characterised accord- 

ing to the nature of their execution flow, and this is used as justification for some 

of the design choices that are made. An efficient method of performing large two- 

dimensional convolutions is also described. 

The portfolio also contains a discussion of an FPGA implementation of a PID con- 

trol algorithm, an overview of FPGA dynamic reconfigurability, and the development 

of a demonstration platform for rapid deployment of video processing algorithms in 

FPGA hardware. 
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Executive Summary 

The objective of this engineering doctorate (EngD) research project was to investi- 

gate some of the issues surrounding implementation of algorithms for real-time pro- 

cessing of video data on field programmable gate arrays (FPGA). This was initially 

quite a broad assignment covering similar related topics such as dynamic reconfig- 

urability, but after an initial phase of exploratory research the brief was narrowed 

to look solely at the problems faced in translating a description of an algorithm 

written in a high-level language into an efficient hardware design. The adopted re- 

search methodology looks at the implementations of several algorithms of varying 

types, and attempts to draw conclusions that could be applied to the class of video 

processing algorithms in general. 

The practical element of the project started with an investigation into the local 

range modification (LRM) method of contrast enhancement, an algorithm that had 

recently been implemented in hardware within Thales Optronics but had involved a 

lengthy and difficult design process. One of the immediate tasks facing the RE was 

to attempt to explain why this was the case. The same algorithm was implemented 

by the research engineer (RE) as part of the research effort, but rather than following 

a traditional design flow the C language was used as an intermediate step between 

algorithm and hardware; the C was written in a specific style that incorporated 

structural information and allowed the notion of concurrent processing to be demon- 

strated. This provided a means of implementing algorithms that contain complex 

execution flows, of which the LRM algorithm was an example, in reasonable time- 

frames, and an implementation was produced that was of comparable peformance 

with hand-coded methods but completed in a fraction of the development time. 

The same algorithm was also implemented using the Xilinx System Generator 
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Executive Summary xiv 

tool, a methodology that at the time was gaining in popularity within the industry 

and appealed to Thales Optronics as a means of not only smoothing the design flow, 

but also allowing the algorithm engineers to experiment with hardware implementa- 

tions. The aim of the work was to assess System Generator's suitability to the type 

of algorithms Thales Optronics are likely to implement in hardware. The results 

indicated that System Generator could potentially be a useful tool in this area, but 

is not universally applicable to image processing algorithms due to its somewhat lim- 

ited library of in-built functions and propensity for algorithms that readily conform 

to a datapath style. 

The next algorithm looked at was the Richardson-Lucy method of deconvolution, 

a method used to remove certain types of blur from an image. This algorithm could, 

with some minor manipulation, be classified as datapath dominant, and so was more 

susceptible to standard implementation methods. However, in order to reduce the 

high hardware resource requirements it was necessary to find an efficient means of 

implementing the several large two-dimensional convolutions that are required. The 

method that was employed, known as multistage separable filters, is shown to be 

extremely efficient when implementing a large range of image processing filters due 

to the common characteristic of a linear phase response. 
The third major algorithm that was looked at is a method of performing image 

fusion using a multiscale decomposition known as Gaussian pyramids. Previously 

reported methods of producing image pyramids had been based on sequential pro- 

cesses, but using the insight gained from the need to remove the complex control 
flow from the design an alternative structure was developed. The design was based 

on the use of multiple clock rates to enable the various levels of the image pyramid to 
be generated and processed concurrently, and exhibited over a hundredfold speedup 

when compared to a PC-based implementation. 

Other algorithms that were investigated include a PID servo control algorithm 

and a method of performing image warping that requires system-level functional- 

ity (a memory controller) to operate. Additional work was carried out to design a 
demonstration platform for video processing algorithms with an automated imple- 

mentation flow, which provides a fast means of demonstrating System Generator 
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implementations of video processing algorithms in hardware. 



Chapter 1 

Introduction 

Field programmable gate arrays (FPGA) have developed from niche electronic de- 

vices into a ubiquitous component of a wide variety of systems. As device geome- 

tries have shrunk the capabilities of programmable logic have increased, to the point 

where FPGAs have flexibility approaching that of general-purpose processors and 

performance nearly comparable to application specific integrated circuits (ASIC). 

Now FPGAs are not only filling the gap between these device categories, but are 

encroaching on the markets where they have traditionally been dominant. 

The sponsor of this engineering doctorate (EngD), Thales Optronics, are active in 

the defence industry. The systems that are commonly developed within the industry 

must provide high levels of performance whilst accommodating the recurring con- 

straints of low-power consumption, small physical size, robustness and reliability. It is 

not uncommon for systems to have a life span of 25 years, with upgrades taking place 

at fairly infrequent intervals over that period. Compared to the commercial sector, 

defence market volumes are extremely small, with the highest volume applications 

numbering in the thousands and the smallest possibly less than a hundred systems. 

This situation is forcing defence contractors to move away from bespoke manufactur- 

ing towards systems integration roles using commercial off-the-shelf (COTS) parts. 

The products developed by Thales Optronics, historically based on purely optical 

systems, are gradually incorporating an ever increasing amount of electronics in or- 

der to provide intelligent automatic processing of data. A large amount of research 

effort within the company is now focused purely on development of cutting-edge 

1 



1.1. Problem statement 2 

algorithms for making greater use of the data captured by imaging sensors. These 

algorithms form commercially sensitive intellectual property (IP) that drives the fu- 

ture product portfolio of the company. As all defence contractors reduce the amount 

of bespoke manufacturing they are undertaking it is the algorithms that can provide 

a competitive advantage between them. 

With the continuing development of programmable technology platforms such 

as FPGAs there is a growing potential to commercialise increasingly advanced al- 

gorithms. Unfortunately most algorithms, whatever the purpose, are written as a 

sequential list of operations that does not translate easily into a parallelised design 

suitable for hardware implementation. The onus is on the company to reduce the 

expense and difficulty involved in implementing complex algorithmic IP so that the 

commercial opportunities it offers can be exploited. Adoption of new methodologies 

that improve the system-level design process offers a range of advantages including 

the ability to perform analysis of an algorithm's suitability for the application at 

an early stage, before significant engineering resources are committed, and leaving 

decisions on target platforms until as late a time in the development process as 

possible. 

1.1 Problem statement 

This EngD research programme was commissioned as a opportunity to investigate 

these issues surrounding translation of algorithmic IP to FPGA hardware. The pro- 

cess of translating an algorithm, usually expressed as a set of mathematical formulae 

and implemented in a computing environment such as Matlab or high-level program- 

ming languages, is typically done by hand. There are a number of stages involved in 

the transformation if the benefits of a hardware implementation are to be realised. 

Each stage of the process may depend on unique data representations and language 

constructs, and thus errors and inaccuracies may be introduced at any point. Hard- 

ware implementations must make use of parallelism if they are to achieve maximum 

performance, and this must be manually incorporated into the design. Verification 

is also clearly of equal importance, and so any translation process should emphasise 
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the opportunities for ensuring design correctness. 

Alongside this main problem lies the opportunities presented by reprogrammable 

platforms to utilise dynamic reconfiguration, potentially enabling greater levels of 

functionality to be implemented in a smaller device. A benefit of this is increased 

device efficiency, since the utilisation levels can be kept high by keeping the whole de- 

vice active rather than having chip functionality going unused. If there are functions 

that are not needed concurrently then they can be loaded onto the chip as and when 

required and thus the temporal and spatial utilisation of the device is maximised. 

Although a fully automated route between algorithm behaviour and hardware 

structure would be the ideal outcome, it is perhaps an unrealistic aim. The so- 

called behavioural synthesis problem has been a topic of research in both industry 

and academia for many years, yet a single automated process is unlikely to become 

commonplace in the foreseeable future. Some of the reasons for this will be outlined 

in this document, but an overriding issue is that the size of the design space makes 

design rules impossible to create with any degree of success. For this reason the 

CAD software developers are increasingly taking a domain-specific approach to the 

synthesis problem, or focusing on one particular aspect of the translation process. 

This inevitably leads to a combination of tools being used, which can introduce 

further difficulties. 

1.2 Research goals 

The main goal of this work is to investigate some of the issues previously highlighted 

and to find a workable, efficient route between a high-level description of an algo- 

rithm's behaviour and a description of structure that can be used by the vendor 

implementation tools to produce an FPGA bitstream. In this context we define an 

efficient design process as one that can be completed using a minimum of engineering 

resources, whilst maintaining or exceeding existing standards of quality. 

More specifically, the research programme aims to determine what makes some 

algorithms difficult to implement, where problems in the implementation process 

can occur, and what can be done to mitigate these problems in future work. The 



1.3. Contributions 

approach taken to achieving these goals involves investigation of a series of algorithms 

that are expected to form integral capabilities of future Thales Optronics products, 

covering a range of functions including contrast enhancement, deconvolution, and 

image fusion. Investigation of these algorithms provides an opportunity to attempt 

to identify what underlying operations cause difficulties in their implementation. 

The individual mathematical operations that make up an algorithm may each be 

implemented in hardware in a number of ways, and without an understanding of the 

demands they place on the hardware it is difficult to assess an algorithm's suitability 

for a particular platform, and for instance whether it is more suited to a hardware 

or software implementation. There are also features that appear repeatedly in many 

algorithms of this nature, for instance two-dimensional convolution, and if a company 

is to operate efficiently it is important that where these features are encountered 

there is a clear understanding of the options available. If the lessons learnt from 

these implementations are documented and made available for designers of future 

systems, the efficiency of the design process may be improved and the goals of this 

research will have been achieved. 

Additionally, more information is required into how the new design tools being 

released may or may not improve certain aspects of this situation. Only by under- 

standing the nature of video processing algorithms and the challenges they present, 

can a design tool's suitability to the task be assessed. 

1.3 Contributions 

The work presented in this portfolio makes a number of contributions that aim to 

increase the level of understanding of the issues outlined above and facilitate future 

work carried out in this area. 
A period of exploratory research has helped to identify some of the issues sur- 

rounding dynamic reconfiguration of Xilinx FPGAs and some tools and techniques 

that are available to address this area. 

A theoretical approach to the algorithm implementation process has been used 

to understand why some algorithms pose such difficulties compared to others. The 
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model that is used in this context, which looks at algorithms according to the nature 

of their execution flow, has been successfully used to simplify the implementation of 

complex video processing algorithms. 

Several major algorithms have been implemented. The Richardson-Lucy deconvo- 

lution and pyramidal image fusion implementations were the first reported real-time 

implementations of these algorithms on an FPGA device, and resulted in publications 

at major conferences. 

During the implementation of these algorithms some features that are common 

to the application domain have been identified. Efficient solutions have been found 

to implement two such recurring features: Gaussian pyramid transforms and two- 

dimensional convolutions. 

A PID servo-control algorithm has been implemented and the resulting design 

used in a commercial product. Additional work was also carried out to provide a 
fast means of demonstrating System Generator implementations of video processing 

algorithms in hardware. 

The experience gained during the practical aspects of the research has enabled 

a set of design guidelines to be produced, to improve the efficiency of future design 

efforts. The design guidelines will be presented in this portfolio. 

1.4 Portfolio organisation 

This portfolio thesis is split into two volumes. Volume 1 contains an overview of 
the research project and highlights the novelty and commercial relevance of the 

completed work. Volume 2 contains the reports that were written during the research 

project, providing more detail on each unit of work than is present in volume 1. 

The chapters in volume 1 are as follows. Chapter 2 details the taught component 

of the EngD and highlights the value of both the technical and business elements to 

the research. Chapter 3 lists the external training courses and conferences attended 

by the research engineer (RE) during the EngD programme. Chapter 4 discusses 

in more detail the commercial relevance of the research work completed during the 

EngD, with a discussion of why Thales Optronics have identified this as being a topic 
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of research that could be beneficial to the company and the contributions that this 

thesis has made. 
Chapter 5 introduces the technical aspect of the research by providing background 

information on the areas surrounding implementation of video processing algorithms 

on FPGA. FPGAs will be briefly described, and some of the challenges faced when 

working with video data will be highlighted. This will be followed by an introduction 

to the more general problem of implementing sequential algorithms in hardware, a 

brief overview of some of the tools and methodologies that have been developed to 

tackle this problem, and look at some of the research on the subject that has been 

published by other authors. 

Chapter 6 will then go on to discuss the results obtained during the research 

period. The chapter will describe each algorithm that has been looked at and examine 

the solutions that have been found and that can be applied in general to other 

algorithms of this type. Even from looking at a relatively small number of video 

processing algorithms it is possible to see some similarities between them that allow 

some general solutions to be defined. The ability to characterise algorithms according 

to the nature of their execution flow will be discussed and this will be used as a 

justification for some of the design choices made. 

Chapter 7 will attempt to document some of the design guidelines and recom- 

mendations that have resulted from the completed research. It is hoped that these 

will improve the efficiency of the design process when implementing image and video 

processing algorithms in the, future. 

Finally, chapter 8 will summarise the conclusions that can be drawn from the 

work and suggest ways in which the research could be continued. 



Chapter 2 

Taught Modules 

Taught modules worth 180 SCOTCAT credits constitute 25% of the total EngD re- 

quirement. These are split into two parts, with two thirds coming from technical 

subjects and one third from business and management subjects. The technical mod- 

ules were taken from the MSc in System Level Integration offered by the Institute 

for System Level Integration (ISLI); the business classes were taken from the MBA 

programme of the University of Strathclyde Graduate School of Business (USGSB). 

2.1 Technical credits 

The 120 credits of technical modules were obtained through completion of the sub- 

jects listed in table 1. The subjects were chosen to give a solid theoretical foundation 

to the research work, with many being directly relevant to the research project. The 

12 subjects covered a variety of issues, as follows: 

" Analogue and Mixed Signal Design: Involved sections of work looking at ampli- 

fier design using both MOSFETs and bipolar transistors, Op-Amp design and 

analysis, and analysis of various methods of performing A/D and D/A conver- 

sion (including a significant project on sigma-delta A/D converters). Much of 

the work used SPICE simulations. 

" Communications Algorithms: This subject was an overview of many of the 

mathematical methods and techniques involved in communications applica- 

7 



2.1. Technical credits 

Subject Credits 

Analogue & Mixed Signal Design 12 

Communications Algorithms 12 

Embedded Software I- System on Chip 6 

Embedded Software II - Operating Systems 12 

Embedded Software III - Applications 6 

Introduction to Hardware Design Automation 6 

IP Block Authoring 12 

IP Block Integration 12 

Microcontrollers & Microprocessors 12 

Multimedia & Video 6 

System Partitioning 12 

VLSI Design 12 

Table 1: Breakdown of technical credits 

8 

tions, including Fourier analysis, design of FIR and IIR filters, Z-transforms 

and Laplace transforms, convolution, etc. 

" Embedded Software I- System on Chip: Looked at the software implementa- 

tion process and tool-chain for embedded targets, including compilation and 

linking using make files. Also involved a significant project looking at fixed- 

point design for FIR filters, something that would later prove invaluable. 

Embedded Software II - Operating Systems: Concentrated on development of 

applications using real-time operating systems (RTOS), involving a theoretical 

study of multi-tasking concepts such as pre-emption and priority inversion, 

and a practical task to develop a multi-tasking application for the commercial 

VxWorks RTOS. 

" Embedded Software III - Applications: Focused on networking concepts in- 

cluding the seven layer network model and TCP/IP stacks. Also looked at the 

common internet protocols HTTP and SMTP, and markup languages HTML 
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and XML (including XML schema). 

" Introduction to Hardware Design Automation: An look at hardware design 

languages, concentrating on Verilog but also a brief look at VHDL, and imple- 

mentation tool-chains for simulation and synthesis. 

" IP Block Authoring: IP issues, including the differences between soft, firm, 

and hard IP. Also design of IP for resale, according to guidelines from the 

popular Reuse-Methodology Manual and the OpenMORE ratings. Some back- 

end design issues such as chip layout (e. g. interconnect, clock distribution 

issues), capacitance and delay calculation, power and speed issues. 

" IP Block Integration: IP-based design methods, for instance using commercial 

integration platforms. Modern verification methods such as formal equivalence 

checking, static timing analysis, and dedicated verification languages. Also 

some design-for-testability issues, including boundary-scan (JTAG) and built- 

in-self-test (BIST). 

" Microcontrollers & Microprocessors: microcontroller topics covered included 

microcontroller architectures, register models, instruction sets, communication 

methods (e. g. 12C, SPI, CANBUS). Microprocessor topics were instruction 

sets and addressing modes, cache architectures, virtual memory, pipelining 

and superscalar architectures. 

do Multimedia & Video: Included several topics that would later form a major 

part of the research work, notably JPEG and MPEG compression methods 
for images and video, and constituent elements such as basic image filtering 

techniques, the direct cosine transform, run-length encoding etc. 

" System Partitioning: This subject included a look at some modern system-level 

design issues, including hardware/software partitioning and area/timing/power 

estimation. Also involved a study of modelling languages (in particular UML) 

and a project based on the system-level design language SpecC. This theoretical 

background to the system-level design problem and design tools and techniques 

would prove useful in the later research work. 



2.2. Business credits 

Subject Credits 

Finance & Financial Management 12 

Financial & Management Accounting 9 

International Business 6 

Managing People in Organisations 12 

Marketing Management 12 

Effective Project Management 6 

The Learning Manager 3 

Table 2: Breakdown of business credits 

10 

" VLSI Design: The subject looked at digital design from first-principles, includ- 

ing design of logic gates from individual transistors and CMOS circuit design. 

Also looked at some higher-level concepts such as multiplier architectures (i. e. 

Booth multipliers), speed/power/area trade-offs, logic synthesis. 

2.2 Business credits 

The 60 credits of business modules were obtained through completion of the subjects 

listed in table 2. The business modules provided an opportunity to look at the EngD 

from a commercial perspective, and to understand some of the business implications 

of the research work. The subjects were chosen to cover a variety of aspects of 

business. 

" Finance & Financial Management: This subject looked at capital expendi- 

ture, investment criteria, company financing, and share pricing amongst other 

things. These topics were useful in providing an understanding of how projects 

(for instance engineering projects) are financed and what factors make such an 

investment opportunity worthwhile. 

" Financial & Management Accounting: Covered costing, balance sheets, au- 

diting and accounting practices, and other financial topics which affect all 

engineering projects but are rarely tackled by engineers. 
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" International Business: This subject. looked at the ways in which husinte+. s is 

conducted across international boundaries, including modes of entering foreign 

markets such as direct exporting, franchising. "greenfield" investments and 
joint-ventures. These topics are increasingly relevant to the modern electronics 
industry which is carried out on a global scale. 

" Managing People in Organisations: This subject showed the human aspects 

of a business, and highlighted the fact that in any company there may be a 

%at'iety of forces at work that lead to it part icular organisational culture. So 

topics. covered included models of leadership, change management. performance 

management. motivation, and management structures. 

" Marketing Management: Marketing Management highlighted the difference be- 

tween a market-oriented and a production-oriented husiness: a distinction that 

drtnonstratrs how it is important for a technology-based company to be led 

h} the market rather than just producing technologically advanced products 

because the technology is available. The popular '4-Ps' model (product. price, 

place. promotion) was also covered, along with topics on market research, seg- 

mentation and positioning. 

"F lTrctive Project Management: The project, management subject was very rel- 

evant to the Engq, looking at several aspects of project management including 

critical path analysis, risk management, and established project management 

methodologies such as the industry standard `PRINCE2'. 

" The Learning Manager: This was an introductory course to the MBA pro- 

gramme, which covered topics such as group-working, communication and pre- 

sentational skills. Although the course was primarily intended to improve ef- 
fectiveness of people undertaking the MBA programme, these are transferable 

skills which were equally useful for the remainder of the EngD and other aspects 

of professional life. 



Chapter 3 

External Events and Training 

Over the course of the Eng® several events were attended and participated in, both 

for training purposes and for presentation and dissemination of research results. 

3.1 'Raining 

Two training courses on FPGA design were attended at the Xilinx UK office. These 

are listed in table 3, and were used as an opportunity early in the EngD programme 

to become familiar with the product offerings and design techniques from the FPGA 

manufacturer favoured by Thales. 

The Fundamentals of FPGA Design course covered the basic architecture of Xil- 

inx FPGAs. such as the structure of the configurable logic resources and I/O elements 

that make up the programmable fabric of the device. It then went on to cover the 

Xilinx design flow and an in-depth look at the software tools used in the implemen- 

tation proem. After implementing an example design the reports generated by the 

tools were examined, and the information they provide was used to create timing 

constraints that could be used to improve the implementation results. This proem 
is an important part of designing for FPGA systems. 

Designing for Performance was a more advanced course over two days that went 
into greater detail than the fundamentals course described above. The course looked 

at some architectural features of Xilinx FPGAs in more detail, including clock man- 

agement and pipelining techniques, and a look at the IP customisation tool Core 

12 
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Course Title Location [ Date 7 

Fundamentals of FPGA Design Xilinx, Weybridge, Surrey, UK 14 Jul. 

2003 

Designing for Performance Xilinx, Weybridge, Surrey, UK 15-16 

Jul. 

2003 

Table 3: Training courses attended by the RE during the En9D programme. 

Generator. A section was also dedicated to HDL coding techniques, and specifically 

the best way to write HDL code to infer efficient hardware designs. There was also 

a further study of methods available for achieving timing closure of FPGA designs, 

and a focus on the use of advanced timing constraints. 

3.2 Conference publications 
Two poster presentations were given at major academic FPGA conferences, as listed 

in table 4. The poster at FPL also involved publication of an accompanying short 

paper in the conference proceedings. 

The poster presented at the FPGA 2006 conference was based on the work con- 

tained in Appendix E of this portfolio. The work looks at the hardware implemen- 

tation of an algorithm for performing deconvolution of two-dimensional data. The 

algorithm, known as Richardson-Lucy deconvolution, is an important technique in 

the recovery of images that have been subjected to a blurring process. The imple- 

mentation uses multistage separable filters as an efficient means of performing the 

several large 2D convolutions that are required. The results showed that real-time 
full scene deconvolution is viable with today's FPGA technology. 

The poster and paper presented at the FPL 2006 conference were based on the 

work contained in Appendix F of this portfolio, describing an implementation of an 

algorithm for performing image fusion. The aim of image fusion is to combine mul- 

tiple images (from one or more sensors) into a single composite image that retains 

all useful data without introducing artefacts. Pattern-selective techniques attempt 
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Poster Title Conference Date 

A Real-Time Implementation of ACM/SIGDA 14th Interna- 22-24 

Richardson-Lucy Deconvolution tional Symposium on Field- Feb. 

Programmable Gate Arrays 2006 

(FPGA 2006). Monterey, Cal- 

ifornia, USA. 

An FPGA Implementation of 2006 International Conference 28-30 

Pattern-Selective Pyramidal Im- on Field Programmable Logic Aug. 

age Fusion and Applications (FPL 2006). 2006 

Madrid, Spain. 

Table 4: Conferences participated in by the RE during the EngD programme. 

to identify and extract whole features in the source images to use in the composite, 

and usually rely on multiresolution image representations such as Gaussian pyra- 

mids since they enable identification of features at many scales simultaneously. The 

description given of an FPGA implementation of the pyramidal decomposition and 
fusion process for dual video streams was the first reported instance of a hardware 

implementation of pattern-selective pyramidal image fusion. 

3.3 Industrial events 

The RE was also invited to give a 30 minute presentation at an internal Thales event 
held at the division headquarters in Paris. The details are given in table 5. 

The Techno-Day conference is an annual event which is well attended by repre- 

sentatives from Thales offices in several countries. The format of the conference is 

a mixture of new product demonstrations, poster sessions, and multiple concurrent 

streams of technical talks on a variety of research and development subjects relevant 

to the Thales business, with the aim of disseminating innovative achievements to 

the wider business group. The presentation given by the RE described the imple- 

mentation of Richardson-Lucy deconvolution as outlined above (and in more detail 

in Appendix E), and was one of only two full-length talks given at the event by 



3.3. Industrial events 15 

Presentation Title Event Date 

A Real-Time Implementation of 

Richardson-Lucy Deconvolution 

Techno Day, Thales Colombes, 

Paris, France 

25 Jan. 

2006 

Table 5: Industrial events participated in by the RE during the EngD programme. 

representatives from the UK Optronics side of the business. 



Chapter 4 

Commercial Relevance 

As the computational power of integrated electronic devices continues to progress at 

exponential rates, advanced data processing techniques become available to a wider 

target market and in a wider variety of situations. Whereas real-time processing 

of video data was infeasible even in a lab situation only a short time ago, it is 

now possible to find complex real-time processing of video embedded in everyday 

consumer level items such as mobile phones and video cameras. As FPGAs become 

smaller and more efficient, they are challenging these markets that have previously 

been dominated by ASICs. 

Video compression and decompression is a pertinent example of a capability that 

is now expected in a wide variety of situations. Evolving compression standards 

and techniques mean that dedicated hardware can quickly become obsolete, and 
for this reason it is often the case that compression and decompression are still 

performed in software. Inevitably this is a power drain for embedded devices with 
finite power supplies. FPGAs are set to exploit this gap. Although currently seen as 

too large and inefficient to be used in mobile phones and laptops, these platforms will 

almost certainly see embedded programmable logic in the near future. Offloading to 

programmable logic those algorithms that are complex but suitable for concurrent 

processing, for instance MPEG decoding for DVD playback, will provide gains in 

terms of both performance and power consumption. 
These benefits apply equally to the defence market. One future objective of 

the defence industry is network-enabled capability, which implies large numbers of 

16 



Chapter 4. Commercial Relevance 17 

intelligent sensing devices spread throughout the operating environment. In order to 

avoid information overload, devices must be capable of automatically processing data 

to extract the relevant detail from the mass of background information and make it 

more effective for its intended purpose, at the point at which it is collected. They 

should also comply with the recurring constraints of the industry: small physical size, 
low weight, and low power consumption. Embedded systems design and integration 

is consequently a critical factor in this environment. 
Within the defence industry the major contracts are increasingly becoming system- 

level design projects covering a number of complex functions. In order to remain 

profitable, contractors are moving away from custom-built devices towards commer- 

cial off-the-shelf (COTS) parts in a bid to reduce design times and non-recurring 

engineering (NRE) costs. This situation is inevitably leading to adoption of FPGAs, 

which offer nearly equivalent processing capabilities of ASICs but with drastically 

reduced NRE. Besides the benefits of performance gains and reprogrammability that 

have already been discussed, FPGAs typically have an abundance of I/O resources 

and provide an ideal opportunity to integrate several system functions into a single 
device. The associated reduction in the number of devices makes design, manufac- 

ture, and test of circuit boards easier, reduces the number of potential points of 
failure, and makes future upgrades more straightforward since the functionality of 

an FPGA-based system can be modified without costly modifications to hardware 

designs. 

With FPGA-based systems providing fairly generic hardware platforms, it is now 

a company's algorithmic IP that determines what capabilities it is able to bring to 

market. However, it will probably always be the case that the algorithms being de- 

veloped by specialist algorithm engineers lead the current capabilities of embedded 

processing. The reason for this discrepancy is not necessary due to lack of transis- 

tors on the target device, but rather the huge complexity of the resulting electronic 

systems resulting in a hardware design process that is too lengthy and/or expensive. 
At present FPGAs do not provide the same degree of programmability as purely 

software-driven solutions, and so there is evidently a significant additional NRE cost 

associated with producing and verifying FPGA firmware. There are therefore clear 
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financial incentives to reduce design times. The most obvious way to do this is 

through use of more efficient design methodologies. In addition to this, the gap be- 

tween what can be done offline in the lab and what designable embedded systems are 

currently capable of is an identifiable source of unexploited revenue. It is improved 

design methodologies that can help to leverage the algorithmic IP that exists within 

the company and close this design gap. 

It has also traditionally been the case that those designing the algorithms work 

separately to the engineers designing hardware implementations. Both groups will 

have their own methodologies. Making FPGAs more accessible to those without 
formal hardware design experience, by abstracting away as much low-level detail as 

possible, can ensure that the algorithm design process is not completely isolated from 

the capabilities of the target platform, and should have a positive effect on the way 

in which the two disciplines interact. 

There are also other reasons for looking to improve the design process. At present, 

the decisions on the precise behaviour of a system and potential implementation 

platforms are performed at an early stage in the system's development. Hard- 

ware/software partitioning is often carried out using fairly arbitrary guidelines, and 

significant amounts of engineering resources may be committed to a project before 

realising that the system is not optimal. Modern design techniques are attempting 

to abstract away the underlying implementation platforms in order to allow multiple 

designs to be analysed for their suitability at an early stage. Known as model-based 

design, these techniques rely on executable specifications to allow a high proportion 

of the necessary analysis and verification to be performed at an early stage in the 

development cycle. This also reduces reliance on written specifications and the inher- 

ent scope for misinterpretation. These factors all lead to reduced costs, and increase 

the chance of getting a design correct at the first attempt. 

Alongside model-based design methodologies, IP-based design methods have be- 

come standard within both the defence and wider electronic design communities. 

IP cores covering a wide range of functions are available from FPGA manufacturers 

as well as specialist IP vendors. For some system-level functions, such as Ethernet 

or PCI interfaces, or high-level DSP functions such as FFTs, the instantiation of 
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IP is vital to reduce design time. However, commercially available IP cores do not 

cover the whole gamut of operations required for video processing, and developing 

and maintaining an internal library of IP can be expensive and demanding. For 

this reason it is often the case that a formal knowledge repository and clear design 

guidelines are of greater use to a company wishing to make their design processes 

more efficient. This requires a clear understanding of the types of algorithms the 

company wishes to implement and the technical challenges they are likely to face. 

Whilst a fully automated route from behaviour to structure is still some time 

away, the work here has aimed to be general enough such that the design process is 

smoothed for all complex video processing algorithms. 

4.1 Author's contribution 

This work has involved an in-depth study of current design methodologies, and their 

suitability for the types of systems Thales Optronics produce. This has provided 
background information on why existing design flows must evolve to keep up with 

the capabilities of modern devices. An appraisal of some of the new methodologies 

that are appearing on the market has generated insights into which new tools and 

methodologies may prove relevant to the application domain. 

The work carried out during this EngD project on individual algorithms has 

resulted in suggested solutions to some of the challenges that are faced when imple- 

menting algorithms of this type. These algorithms are all likely to appear in some 
form in future Thales products. 

The work describing the use of manual scheduling and allocation of an algorithm 

written in a high level language provides a means of implementing model-based 
design methodologies within existing design flows. This also provides a method of 

making implementations of control-dominant algorithms more tractable. 

The work on two-dimensional convolutions examines this recurring feature of 
image and video processing algorithms and explains how they may be efficiently 
implemented. The findings in this report show that in many cases it is beneficial 

to implement them using a structure known as multistage separable filters. This 
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technique enabled a design capable of performing real-time deconvohition of a VGA 

video stream on a single FPGA, and was published at a major FPGA conference. 
The work on generating image pyramids has produced a hardware design capable 

of outperforming any previously reported methods. Since image pyramids are a 

feature of a number of algorithms this is useful IP for the company. Use of this 

pyramid generation technique enabled a design that could fuse dual VGA video 

streams in real-time on a single FPGA, and was also published at a major conference 

in the field. 

Alongside the main algorithms featured here, the RE has also assisted in the 

implementation of other less demanding algorithms that feature in Thales products 

currently being marketed. A set of design guidelines have been produced, which aim 

to improve the efficiency of future design efforts within the company, based on the 

findings of this research. 
An additional period of work involved development of an automated route from 

an algorithm design environment to a custom Thales hardware platform, for the 

purposes of testing algorithms in hardware. This can be used without any manual 

HDL coding or knowledge of the design tools, and so could be used to enable algo- 

rithm engineers to experiment with different hardware structures without requiring 

detailed knowledge of the implementation process. 



Chapter 5 

Technical Background 

An overview of some of the technical issues of implementing image and video process- 

ing algorithms on FPGAs will now be presented. The following section will briefly 

discuss FPGA technology, the nature of video data and video processing algorithms, 

and some of the tasks involved in the implementation process. There will also be an 

overview of some of the new methods of implementing algorithms on FPGA, followed 

by a summary of these issues and the areas this research aims to address. 

5.1 Field-programmable gate arrays 

Field programmable gate arrays (FPGA) are integrated circuits containing pro- 

grammable logic, which have evolved from the Complex Programmable Logic Devices 

(CPLD) and Programmable Array Logic (PAL) of the 1980s. The basic format of 

an FPGA is shown in figure 1. Modern FPGAs are vastly more technologically ad- 

vanced than their predecessors, acting as true system-on-chip (SoC) devices with 
integrated memory, microprocessors, digital signal processing (DSP) elements, high- 

speed transceivers, clock management, and numerous other features. In addition to 

these hardwired capabilities the FPGA vendors also provide libraries of optimised 
"soft" IP cores, often at no cost to the user, which cover a large range of functions 

and application domains. 

The basic elements of FPGAs are configurable logic blocks (CLB) connected 

together via a hierarchy of routing resources and programmable switch matrices. 

21 
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ETL-- 

Id 

CLB Routing Switch Matrix 

Figure 1: Basic FPGA structure. 

Each CLB contains a relatively small amount of memory and some logic resources 

that may he programmed to implement the desired function, with the memory acting 

as a look-up table (LUT), RAM, or a shift register. When configured as a LUT it 

may be used to replicate combinatorial logic, and CLBs may he chained together 

to implement logic functions of any size. Four-input LUTs have historically been 

the predominant architecture, but the major FPGA manufacturers have recently 

begun producing FPGAs with six-input LUTs. The size of the LUT elements is 

important: when LUTs must be cascaded together it introduces delay that may limit 

the performance of the design, which would suggest that larger LUTs are preferable; 

conversely four-input LUTs had previously been shown to be the most efficient in 

terms of area due to the reduced routing requirements [1]. 

The routing on an FPGA is an important feature that ultimately determines 

device performance. It is essentially a network of interconnecting wires with switch- 

ing matrices at crossover points comprised of pass-transistors and multiplexers [2]. 

Programmable routing resources take up a large proportion of available die area, 

and constitute a considerable overhead compared to ASICs. In addition to the pro- 

grammable routing there is a separate clock distribution network that must cover 

the entire chip. Alongside the transistors that are needed for configuration and pro- 

grammability this forms another significant overhead when compared to an ASIC. 
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Furthermore, the majority of FPGAs are volatile devices, meaning that they must 
be programmed every time they are powered up. This introduces a board level over- 
head in providing routing and power for storage devices used to hold the FPGA's 

configuration data. 

FPGAs are also relatively inefficient in terms of their power consumption. The 

interconnect routing on the chip tends to act as a considerable source of power 

wastage, since the route between any two points on the chip will usually be indirect 

and may incorporate a number of switching points, each with a small but significant 

resistance. Another considerable portion of an FPGA's power consumption is caused 
by leakage current, both in used and unused parts of the chip. A study [3] has 

calculated that on an FPGA with 75% utilisation, 45% of the power consumption 

caused by leakage current will occur in unused areas of the chip. Modern design 

tools and techniques go some way towards correcting this, but it is still important 

that correctly sized FPGAs are chosen to minimise unused capacity. 

It is therefore evident that in terms of performance and power consumption FP- 

GAs are relatively inefficient compared to their ASIC counterparts. The real benefit 

of FPGAs lies in their flexibility, the low non-recurring engineering (NRE) costs as- 

sociated with designing FPGA systems, and the complete elimination of the need 

to perform any "back-end" design. There are thus two main reasons to implement 

a design in FPGA rather than ASIC. Firstly, whenever there is a possibility that 

the system will be updated or changed at some point in its lifetime. Secondly, when 

the application is sufficiently low volume as to make the NRE costs of ASICs pro- 
hibitive. Both of these reasons can be applied to the defence sector, which highlights 

the importance of FPGA technology to a company such as Thales Optronics. 

Many of the benefits of FPGAs in terms of cost and flexibility are also available 

in software implementations based on general-purpose microprocessors, but FPGAs 

have clear performance advantages over such methods. A von Neumann architec- 

ture may have to execute several instructions in order to achieve something that an 

FPGA can do in a single clock cycle, where custom instructions are coded into the 

logic structure. This instructional efficiency, along with parallel processing, gives 

FPGAs a computational advantage over processing devices based on von Neumann 
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architectures, and although general-purpose microprocessors may run at clock speeds 

that are 10-20 times greater than typical FPGA clock speeds, it is the inefficiency 

inherent in fixed instruction sets that leads to inferior performance in benchmarks [4]. 

The von Neumann architecture is now a limitation on the processing power of 

microprocessors, despite the advances enabled by Moore's law. In fact it is feasible 

to say that the von Neumann style architecture has only endured because of Moore's 

law: the sustained increase in the number of transistors on a chip has mostly been 

used to counter the problems of von Neumann (for instance in development of sophis- 

ticated branch prediction routines and cache structures). In contrast to this, FPGAs 

are able to make better use of the developments modelled by Moore's law since their 

dataflow nature means that they are not restrained by the need to fetch data from 

memory (and face the so-called "memory wall") [5]. DeHon [6] has further shown 

that the instruction efficiency of FPGAs enables them to have an order of magni- 

tude more computational capacity per unit area of silicon die when compared to a 

RISC processor. This is a remarkable finding, especially when the logic overhead for 

configuration of the FPGA is taken into account. 
One of the areas in which FPGAs have a clear efficiency advantage over mi- 

croprocessors is in the ability to size instructions according to the demands of the 

application. For instance a 16-bit microprocessor operating on 8-bit data words will 

only be able to realise 50% of its peak processing power [6]. This is equally true 

of general-purpose microprocessors or specialised DSP devices, where static com- 

putational elements (for instance multiply blocks) promote inefficiency unless the 

algorithm can be designed in such a way as to fully utilise their capacity. In the 

programmable logic domain the firmware is designed to suit the algorithm, not vice 

versa. Modern FPGAs sacrifice some of this flexibility through integration of hard- 

wired IP cores (such as multipliers) in an effort to achieve higher speeds and densities, 

with an implicit reliance on the software tools to minimise inefficiency. 

Image processing algorithms are ideal candidates for implementation on FPGAs, 

due to the requirement to perform often complex operations on very large data sets, 

usually at speeds high enough to meet the constraints imposed by real-time video 

sources. Since image processing algorithms often involve performing the same action 
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on each pixel or region of an image, there are usually clear opportunities to exploit 

parallel processing within the FPGA. 

5.1.1 Floating-point performance 

One area in which microprocessors have traditionally been seen as superior to FPGAs 

is in the area of floating-point performance. Floating-point maths is used intensively 

in the software domain, particularly in the area of DSP. Calculations that are carried 

out in floating-point are equally possible in fixed-point, but the main advantage 

that floating-point representations offer is in dynamic range, that is the ability to 

accurately represent very large and very small numbers with a reasonably small 

word length. Furthermore, fixed-point design can often be a time consuming and 

difficult process. Recently, there has been a renewed interest in floating-point maths 

from the main FPGA manufacturers, with floating-point operations becoming more 

feasible since the inclusion of hardwired multipliers in FPGAs. Studies have shown 

that FPGA floating-point performance is improving at a greater rate than that of 

microprocessors, some estimates are that FPGAs will have an order of magnitude 

higher floating-point performance by 2009 [5]. 

5.1.2 Dynamic reconfigurability 

Dynamic reconfigurability is a potential facet of FPGA technology that has gen- 

erated huge amounts of research since it was first conceived, particularly from the 

academic community. The main feature that dynamic reconfigurability offers is the 

ability to include more functionality into a smaller device, by swapping in and out 

parts of the design as they are required; in effect a virtual hardware system analo- 

gous to the virtual memory present in modern computer operating systems [7]. At 

present the major verification and synthesis toolsets do not provide explicit sup- 

port for dynamically changing systems, and such systems must be designed using 

ad-hoc methods; this typically takes the form of incremental synthesis techniques, 

and manipulation of configuration bitstreams. The FPGA vendors are starting to 

take dynamic reconfigurability more seriously, with the latest generation of Xilinx 
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Virtex devices offering increased support. Thales Optronics are interested in the 

potential of dynamic reconfigurability, in particular the ability to load algorithms 

into hardware as required by the current situation. To this end the EngD research 

involved a substantial study of the methods and techniques surrounding dynamic 

reconfigurability (see the portfolio document in Appendix A). On conclusion of the 

study it was however felt that dynamic reconfigurability was not commercially viable 

at that time, mostly due to difficulties involved in verification and extended design 

times. 

5.2 Video processing systems 

The implementation of image and video processing systems on FPGAs presents some\ 

unique challenges. These may be attributed to the format of the data being operated 

on and the complexities of multidimensional algorithms. Some of these challenges 

will now be discussed. 

5.2.1 Nature of video data 

The common format for digital representation of analogue colour video signals is 

in the ITU656 format [8], which consists of one brightness signal and two colour 

components (known as the YUV colour space) sampled using a 4: 2: 2 scheme with 

8-bits per sample, but for the purposes of algorithm development (and the work 

herein) it is usually assumed that the source data is 8-bit monochrome. Extension 

of an algorithm for colour operation is usually straightforward, but can require three 

times the hardware and possible colour space conversion, a topic that is not covered 

here. The size of the image depends on the source: a common size for video derived 

from analogue sources is 720 x 576 (based on the PAL standard), whereas digitally 

sourced video is typically a minimum of 640 x 480 in most applications and can be 

much larger. At 25fps a PAL video signal would present over 10 million pixels per 

second, so it is clear that data rates can be considerable. Data arrives in raster 

scan format, so the sequence of pixels goes from left to right, and top to bottom. 

Due to limited memory bandwidth data must normally be processed in a similar 
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sequence, and for real-time operation at the rate it arrives in the system, so without 

pipelining this would imply a processing time per pixel of analogue video data of sub 

90ns, which is non-trivial for complex algorithms. This usually forces pipelining to 

be employed, whereby one pixel per clock cycle can be produced as output, at the 

expense of end-to-end latency. To a certain extent some latency can be tolerated for 

video signals as anything under a few milliseconds is not usually noticeable by human 

observers; there are however some applications where minimal latency is critical. 

The need to implement algorithms in this way can often necessitate a change in 

how an algorithm is approached conceptually [9]. A common problem is how video 

data can be processed temporally (for instance processing data from multiple frames 

simultaneously) when data is arriving in raster scan format and there is insufficient 

memory on the device to buffer more than a few lines. 

Video data from analogue sources is often in an interlaced format, which can po- 
tentially cause additional problems. Deinterlacing is an inexact process that unavoid- 

ably introduces errors or artefacts. The simplest methods of deinterlacing: weaving 
(combining consecutive fields by overlaying on alternate lines), and line doubling 

(writing each line twice, to double the lines per field), reduce temporal and vertical 

resolution respectively. More sophisticated methods may employ motion estimation 

techniques to detect and compensate for movement between fields, but introduce 

a significant computational burden. Any artefacts or errors introduced during the 

deinterlacing process will have an impact on subsequent processing stages, so this is 

necessarily an important part of any video processing system with analogue sources. 
For an overview of deinterlacing techniques see [10]. 

5.2.2 Nature of image processing algorithms 

Awcock & Thomas [11] identify five categories for image pre-processing algorithms, 

which are applied to alter pixel values to make an image more suitable for subsequent 

operations: 

" Point operations 

9 Global operations 
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" Neighbourhood operations 

" Geometric operations 

" Temporal operations 

These categories cover simple algorithm operations. Many higher-level algorithms 

may be formed from combinations of operations from these five categories. Four of 

the categories are based on processing of single static images; temporal operations are 

specific to video. Hardware implementation of each of these categories may have some 

commonalities that can be generalised. For instance, an example temporal algorithm 

would be to detect motion by subtracting a frame from the previous one. This 

would require frame buffering, and it is clear that whenever processing is required 

that utilises the temporal dimension of video data the storage requirements increase 

rapidly. Alternatively, global operations involve high speed processing, as multiple 

passes through the image data will usually be required; this will increase the memory 

requirement and pose implementation challenges in timely processing of the data. 

There are some features of image processing algorithms that occur repeatedly. A 

brief overview of these will be given below before their impact on hardware imple- 

mentations is discussed in a later section. 

Two-dimensional convolution 

A large proportion of digital image processing algorithms involve spatial filtering of 

two-dimensional data. This is usually implemented in the time domain as a simple 

convolution between the two-dimensional filter response and the image data. The 

discrete convolution integral for two-dimensional data is: 

9(x, y)=f(x, y)*h(x, y)=Z Z f(z, j)h(x-i, y-. 7) 
tj 

(1) 

where f is the input image, h is the filter kernel, g is the resulting filtered output, 

and * denotes the convolution operation. 

The convolution may be thought of conceptually as a sliding window that moves 

over the image data and performs a weighted summation, as shown diagrammatically 

in figure 2. This class of algorithm can be used to effect a wide range of outcomes, 
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Figure 2: Conceptual sliding window highlights a group of pixels used to form single 

element of the output. 
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Figure 3: Prewitt' vertical edge-detection filter, Gaussian smoothing filter, and 'un- 

sharp mask' sharpening filter respectively. 

including smoothing, sharpening, edge-detection, correlation (e. g. for simple object 

recognition), and others. Typical kernel sizes for these operations are 3x3 or 5x5, 

although much larger kernels are sometimes required. Some typical filter kernels are 

shown in figure 3; note that some kernels include scaling factors to prevent altering 

the overall image brightness level. 

Since the calculations are all simple add and multiply operations they are straight- 

forward to implement in hardware and spatial parallelism easily exploited. For in- 

stance, to calculate a convolution with a3x3 window the nine multiply operations 

could he performed simultaneously, and the subsequent additions pipelined such that 

one output pixel is produced per clock cycle (albeit with some latency). The main 

consideration lies in being able to buffer data temporally such that pixels in different 

image rows can be collated and processed simultaneously. This usually requires suf- 
ficient temporary storage to hold several lines of the image. For example, a simple 
implementation of a5x5 filter kernel will require that four lines of image data be 

buffered on chip. For a VGA image this would require 4 first-in, first-out, (FIFO) 

buffers of 640 x8 hits, a total of 20Kb, so it is clear that on-chip memory is an im- 
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portant resource that can quickly become scarce. This kind of temporal processing, 

where data sets are comprised of elements that do not arrive in sequence but are 

distributed in time, is common in many video applications but because of high data 

rates can often involve a significant requirement for memory resources. 

Another factor that must always be considered when performing convolutions is 

how to handle the image edges. When the filter kernel is placed such that the central 

element falls on the edge of the image, some of the filter weights will fall outside the 

image boundaries. If the value of zero is chosen to represent these non-existent 

pixels the resulting output image will have darkened edges. Common solutions to 

this problem involve copying or mirroring the pixels that are closest to the image 

edge to the imaginary points outside the bounds of the image, but the only way to 

guarantee that the output data is correct is to disregard the data at the edges. This 

would mean that the output image is smaller than the input by k2u pixels, where k 

is the side length of the filter kernel. 

Some two-dimensional filter kernels are separable, which means that they can 

be formed from two orthogonal one-dimensional filters. This usually results in a 

reduction in computational complexity in the cases where it can be applied. This 

will be looked at further in a later section. 

Transforms 

Transforms are used throughout signal processing whenever a computational advan- 

tage may be achieved by working with a different data representation. The most 

well known of all such transforms is the Fourier transform, and its discrete form 

(DFT) and optimised "fast" form (FFT), which find multiple uses throughout the 

field of image processing. Application of the DFT to images mirrors the application 

to one-dimensional data: the DFT is a separable algorithm and so can simply be 

applied twice to the input data, once in each direction [12]. 

Working with images in the resulting spatial-frequency domain is less common 

than in one-dimensional signal processing, as Fourier transforming an image removes 

spatial locality between the pixels and makes an image unrecognisable. This makes it 

impossible to identify all but the most rudimentary image features. One area where 
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Figure 4: Multiscale decomposition of well-known image "Lena". 

the Fourier transform is often used is in spatial filtering: as with the one-dimensional 

case, time domain convolution with a filter's impulse response is equivalent to mul- 

tiplication in the frequency domain, and so if the filtering operation is complex 

enough the advantages of performing a standard multiplication rather than a two- 

dimensional convolution may amortise the cost of performing the transform and its 

inverse. Many of the other common spatial-frequency domain applications are con- 

cerned with modification of frequency components for compression or enhancement 

based on the frequency perception of the human eye [13]. 

Methods that retain locality in both spatial and spatial-frequency domains, such 

as multiscale decompositions and the wavelet transform, are increasingly being used 

because the resulting data can be processed with respect to its position and spatial- 

frequency simultaneously. These transforms are usually implemented using two- 

channel filter banks, where the lowpass branch is applied iteratively [14]. The study 

of wavelets has now become a large and active field of research with applications in 

many varied areas. The resulting data appears as multiple copies of the original, with 

each copy band-limited to only contain image features at a particular scale. These 

data sets are commonly called image pyramids; an example is shown in figure 4. 

Another transform that has found widespread use is the direct cosine transform 

(DCT), which is a fundamental component of JPEG and MPEG compression tech- 

niques. One of the features of the DCT over the FFT is that it. does not produce 

complex coefficients. 

Implementation of the DFT and DCT for two-dimensional data has been cov- 
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Figure 5: Interpolation from four neighbouring samples. 

ered thoroughly in the literature and there are freely available IP cores to perform 

these tasks. However, the implementation of an algorithm based on a multiscale 

decomposition merits investigation, and will be covered in a later section. 

Interpolation 

Interpolation is a common operation in many image processing algorithms, needed 

whenever a single output pixel value must be approximated from multiple input pix- 

els. A diagram of a situation where interpolation is required is shown in figure 5. 

The most basic method of performing interpolation is by a nearest-neighbour ap- 

proach, which simply uses the value of the nearest pixel in the input image, so in 

figure 5 the pixel z12 would be used. This method introduces errors and blockiness 

in the output image, but may often be deemed acceptable due to the simplicity of 

its implementation. A more common method is bilinear interpolation, which, as the 

name suggests, is a linear interpolation carried out in two directions consecutively. 

The bilinear equation for the interpolation in figure 5 is 

Zxy - \yz - yi / L(x2 - xi 

) 
Zia + 

(X2_xI) 
Zii J 

+ 
\y2 - yi /L 

(x2 

- xl 
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(X2_X1Iz211 
(2) 

If the interpolation is between adjacent pixels, the distance between data elements 
is equal to one, and this reduces to the equivalent form: 

Zxv _ (1 - y) [2; Z12 + (1 - X) Zll] +y [xZ22 + (1 - x) Z21] (3) 
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Obviously the reduced form is much simpler to implement in hardware because of 

the absence of divide operations. However the more complex form will be needed 

whenever interpolation is required over blocks or regions of the image that contain 

multiple pixels. 

More complex methods of interpolation exist, notably bicubic (which averages 

over a 16 pixel area using derivatives) and Lancsoz (which utilises sinc functions 

to produce a best-fit curve). These methods are significantly more computationally 

expensive than either nearest neighbour or bilinear methods, but offer improved 

accuracy. A study of the relative performance of interpolation algorithms is given 

in [15]. The tradeoff between computational latency and area versus quality of 

results must be constantly balanced when implementing algorithms and is part of 

the difficulty of mapping such algorithms to hardware. 

5.3 Algorithm implementation process 

Development of signal and image processing algorithms is usually performed in soft- 

ware at a high level of abstraction, using languages such as C/C++, or in par- 

ticular Matlab. There are also graphical development environments such as the 

Matlab-based Simulink and the specialist video processing environment WiT [16]. 

By working at a high abstraction level the designer need only be concerned with an 

algorithm's behaviour (implemented as a series of computational steps), and does 

not need to understand the underlying operations that are being performed by hard- 

ware. These high-level tools will often be able to operate with the image as a single 

entity, or in the case of Matlab the image is treated as a matrix. The design of the 

algorithm will often employ floating-point arithmetic, and include complex high-level 

commands that map to a long sequence of processor instructions, such as the single 

command in Matlab to perform a two-dimensional convolution. Abstract concepts 

such as pointers and recursion are occasionally employed, particularly by algorithm 
designers with a software background or used to programming DSP chips, but these 

have no direct analogy in 
. 
hardware. Memory structures in high-level languages are 

also much more abstract, for instance multidimensional arrays are often used in C, 
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as are structs and unions. The object-oriented paradigm present in C++ and other 
languages introduces a further level of abstraction. There are also differences in the 

way data is obtained and displayed, for instance when designing an algorithm in 

software it is usually assumed that the whole image is stored in memory, rather than 

streaming into the system in real-time. 
The design of hardware is usually carried out in a hardware design language 

(HDL), in register transfer level (RTL) code that describes structure rather than 

behaviour, and contains timing information and synchronisation at a clock cycle 
level [17]. The code infers, or explicitly instantiates, low-level hardware elements 

such as registers and multiplexers. Although the major HDLs have the ability to 

describe some higher-level behavioural constructs these are not commonly used. One 

of the reasons for this is the small subset of HDL that is synthesisable by modern 

logic synthesis tools. 

It is the transformation from the high abstraction level of the software domain 

to the low abstraction level of the hardware domain that introduces difficulties and 
inefficiencies into the implementation process. The hardware design process through 

the various levels of abstraction is shown in figure 6. The eventual aim will be a 
description of hardware written purely in the synthesisable subset of HDL. 

5.3.1 Manual tasks for high-level synthesis 

The transformation from behaviour to structure, also known as high-level synthesis, 
is usually a manual process that involves several specialised and complex activities. 
Some of these activities will now be examined. 

Iterative processes 

Iterative program loops are an integral part of many image-processing algorithms. 
Matlab code may often hide its iterative constructs from the user through use of 

matrix and vector data types and so-called vectorised instructions, but at a low level 

the flow of execution will involve loops (in some instances SIMD processor directives 

may be used in the place of explicit loop instructions). The ability of Matlab to 

natively support data in matrix and vector format is a key feature, which lends itself 



5.3. Algorithm implementation process 35 

Partitioning 

Behavbural/algorithmic level 

Behavioural 
sýmthesis 

1 

Specification 

1 

1 

RTL 

Logic synthesis 
IL 
1 

Gate level 

Technology 
mapping, place & 

route 

i FPGA bitstream 

Figure 6: Transformation from specification to hardware. Rectangles denote levels of 

abstraction; ellipses are transformations. Only the lower two ellipses are processes 
that are commonly performed automatically. 
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ideally to DSP algorithm development, but can often be one of the main difficulties 

faced when implementing the same algorithm in the hardware domain, typically 

requiring manual translation to an iterative scheme as an initial step. Care must 

obviously be taken to ensure this does not alter the algorithm's behaviour. The 

loops in C code algorithms will be more explicit, but could be numerous and often 

nested to create complex program control flows. 

Implementation of loops in hardware presents several design choices to be made. 

Modern synthesis tools have some limited support for looping HDL constructs, such 

as for and while loops, but using loops in a software style is inefficient in the hardware 

domain. An algorithm implemented using iterative loops is fundamentally a serial 

process, and direct implementation of this will only result in hardware acceleration 

of a design intended for a completely different (von Neumann) architecture, and 

fail to take advantage of features such as concurrency. Removal of loops via code 

transformations is well documented, but requires a considered approach to identify 

opportunities to exploit concurrency whilst balancing area/speed trade-offs. 

Scheduling and insertion of timing information 

Scheduling is the process of introducing timing information into the design and de- 

ciding which elements of a system may run in parallel and which must execute 

sequentially; the scheduling task is essentially to balance the cost/speed trade-offs of 

the design [18]. Synchronous design techniques, the de-facto design style for various 

reasons, mean that groups of instructions are activated by a transition on the clock 

signal; the designer must identify where data dependencies exist that prevent in- 

structions executing concurrently, and then schedule or synchronise hardware events 

to the clock as appropriate. In order to do this the designer must be aware of the 

latencies of individual processing elements, and be able to map program operations 

to the available hardware while managing these latencies. To increase design speed, 

the designer may instantiate more parallel hardware elements; to decrease area, the 

designer may schedule computational steps serially. Scheduling also includes the im- 

portant process of inserting pipeline stages, which, if done incorrectly, will result in 

poor performance and possibly unmet timing constraints. 
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Fixed-point design 

The majority of algorithms designed in a high-level language will make use of floating- 

point data types for increased accuracy and convenience of design. As previously 

discussed, although the floating-point performance of FPGAs is improving rapidly 

most current algorithm implementations involve a significant process of fixed-point 

design. One of the key benefits of FPGAs over fixed hardware is the freedom to 

select appropriate word lengths rather than being constrained by the sizes of fixed 

registers. This freedom allows the range and resolution to be individually tailored 

to the algorithm being implemented, but despite (or maybe because of) this, trans- 

lation of floating-point to fixed-point arithmetic (which involves calculation of word 

lengths, scaling factors, and handling bit-growth where appropriate) can be a time 

consuming process, often necessitating systematic analysis in order to determine ap- 

propriate representations [19]. Optimal representations must be found not only for 

instantaneous data values but also for any constants (such as filter coefficients) used 

in the system: using word lengths that are too long will result in hardware ineffi- 

ciency that ripples through the system; too short and accuracy will be sacrificed. 

Matlab algorithms present additional difficulties when translating to hardware given 

that variables in Matlab do not need to be declared before being used and are sized 

dynamically. This adds an extra stage of analysis that must be performed in order 

to ascertain appropriate hardware representations. 

Mathematical operations 

There are numerous mathematical operations that are often taken for granted in the 

software domain but can cause difficulty in translating to hardware. Divide opera- 
tions are now fairly tractable through use of free IP cores from the FPGA vendors, 

as are trigonometric, hyperbolic, and square root functions by way of the CORDIC 

algorithm [20], but these all consume a substantial amount of logic resources. Cores 

such as this are parameterised from the vendor tools and then integrated into the de- 

sign as pre-synthesised netlists, often removing flexibility for synthesis optimisations 

and requiring design of an appropriate interface. Integration of IP cores at a HDL 

level is not a straightforward task for people without digital design experience, and 
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so the inaccessibility of some fairly common mathematical operators may be viewed 

as a limitation on the programmability of FPGAs compared to software methods. 

Verification 

Offen [21] discusses the need for hierarchical verification that demonstrates the be- 

havioural equivalence between design and specification at each level of abstraction. 
Although more formal methods exist, the simplest approach is through use of the 

same verification stimulus at each stage, from executable specification right through 

to register transfer level HDL, and subsequently any post-synthesis (gate-level) sim- 

ulations. 
Verification of logic designs is at present carried out predominantly through RTL 

simulation, using event-driven HDL simulators. It is the responsibility of the designer 

to produce testbenches that correctly drive the simulation software and cover a suffi- 

cient range of test cases to ensure the original specification is being met. Due to the 

fact that testbenches are not synthesised the full extent of VHDL or Verilog instruc- 

tions may be used, which provides a considerable number of additional capabilities 

over HDL that is to be synthesised, but designing the testbench and performing 

the simulation is still a lengthy and complicated process. Within traditional HDL 

design flows reuse of testbench modules is not common, and test strategies tend to 

be applied on an ad-hoc basis. Some recent developments in this area have focused 

on enabling testbench reuse across design languages and environments, although 

adoption of such methods is not yet widespread. 

HDL for FPGAs is usually simulated in a modular style, with the simulation tool 

essentially acting like a software debugger for HDL modules. Despite this, simulation 

still takes substantially more time to complete than execution of a software model. 
This is an inherent drawback of event-based simulation, which models a design as 

a collection of independent events happening at various times. The move to cycle- 
based simulation may improve this situation: cycle based simulation is much simpler 

and quicker to execute and may complete in a fraction of the time, but currently only 

supports a limited subset of designs, specifically fully synchronous designs that are 

already compiled to gate-level (i. e. post-synthesis), or in some cases RTL code [22]. 
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There is also no ability to model timing information and separate timing analysis 

must therefore be performed; FPGA vendor software tool chains usually incorporate 

static timing analysis capabilities which can be used for this task. 

5.3.2 Design methodologies 

The problem of generating hardware designs from behavioural descriptions, known 

as behavioural synthesis, has been the subject of dozens of research papers and 
initiatives over many years. One of the reasons for this is its potential to tackle 

the so-called design-gap in the electronics industry, caused by the fact that designer 

productivity is increasing at a lesser rate than the advances in hardware prescribed by 

Moore's law [23]. To achieve increased productivity the designer should be abstracted 
from designing structure as much as possible and able to concentrate on designing 

behaviour. This mirrors the shift to high-level languages in the software domain, 

where the implementation details (such as processor instructions and registers) are 
hidden from the designer unless direct control over them is needed. In this respect the 

aim is for HDL code to become analogous to assembly language, useful on occasions 

where tight control or very high performance is needed, but otherwise too close to 

the physical hardware to be considered a viable platform for efficient development 

of complex systems. 
Due to the complex tasks involved in this process, some of which were outlined 

above, automatic behavioural synthesis remains unviable in the general case, though 

there have been some successes in domain-specific applications. Recently there has 

been a renewed emphasis on tackling automatic behavioural synthesis, with the prob- 
lem now commonly given names such as high-level synthesis, algorithmic synthesis, 

and electronic system-level (ESL) design. 

The FPGA manufacturer Xilinx recently launched an ESL initiative [24], which 

attempts to promote ESL and drive its adoption. The benefits to the FPGA manu- 
facturers of easier device programmability are enormous: they will begin to challenge 

the markets currently dominated by DSP devices and will become attractive to scien- 
tists, software engineers, and others who could benefit from the high computational 

power of FPGAs but are unable or unwilling to spend the time learning and devel- 
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oping HDL code. Xilinx describe ESL as being design tools or methodologies that 

start above RTL level, so this is an inclusive umbrella term that covers many diverse 

approaches to the problem. Some of these methodologies are specifically targeted to 

a particular application domain, while others aim to be general-purpose solutions. 
Some of these tools and methodologies will now be described. 

Xilinx System Generator/Altera DSP Builder 

The two largest FPGA manufacturers have launched competing products in their 

efforts to ease the process of implementing algorithms from Matlab/Simulink: Sys- 

tem Generator [25] from Xilinx, and DSP Builder [26] from Altera. Both tools have 

similar capabilities, and are essentially comprised of Simulink libraries of parame- 

terisable blocks that map directly to FPGA IP cores. System Generator was used 

extensively during the EngD research, for a detailed description of its capabilities see 

the portfolio document (Appendix C). An overview of the System Generator design 

flow is shown in figure 7. Given that Matlab and Simulink are a common design 

environment for algorithm engineers, System Generator (and similar tools) offers a 

valuable method of describing hardware in a format that essentially hides the un- 
derlying HDL code. An attractive feature of the tool is the ability to surround the 

hardware design with blocks from other Simulink libraries, including stimuli such 

as waveform generators as well as the matrix types native to Matlab, and which 

would otherwise be difficult and time-consuming to implement using existing HDL 

testbench methods. When the algorithm simulates in Simulink as desired, Verilog 

or VHDL RTL code can be generated along with a HDL testbench that essentially 

performs equivalence checking with the original model. This type of design flow 

is commonly called model-based design, which means that the original specification 

of the design is written in an executable or self-verifying format, and subsequent 
developments are compared with the original design. This allows verification and 
debugging to occur earlier in the design process, when it is much easier to diagnose 

errors than later on using HDL simulators [27]. A further benefit of model-based 
design is the facilitation of testbench reuse at each level of abstraction, something 

which can reduce the necessary verification effort considerably. 
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Figure 7: System Generator design flow. 

One of the problems of System Generator and similar environments is that the 

design process can be at a very low level of abstraction, for instance manually con- 

necting together elements such as individual registers and logic blocks. This is par- 

ticularly the case if the higher-level blocks in the System Generator library are not 

suitable for the design being implemented. This type of low-level design can be 

time-consuming, and can feel like a step backwards from the automatic synthesis of 

hardware possible with HDL design methods. The strengths of methodologies such 

as that offered by System Generator is in the ability to visualise data flowing through 

the system, its close integration with Simulink and Matlab, and inherent support for 

fixed-point design and pipelining. 

A recent release of System Generator allows generation of behavioural HDL for 

some blocks instead of just mapping to IP cores on the device, which gives more power 

to the synthesis tool to make optimisations and lessens some of the inflexibility of 
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IP based design. Mathworks, the makers of Matlab and Simulink, have recently 
introduced their own product into this area, known as HDL Coder [28]. Whilst 

offering similar capabilities to the tools from Xilinx and Altera, the Mathworks 

product has the advantage of not being vendor specific. 

Synthesis of high-level languages 

Several companies are looking to synthesise hardware directly from high-level lan- 

guages; this includes synthesis from Matlab M-code, a capability offered by Accelchip 

(recently acquired by Xilinx) and their product based on a commercialisation of the 

MATCH compiler [29]. The other main language that is attractive to algorithm de- 

signers is C/C++. Impulse Accelerated Technologies [30] offer a product that takes 

ANSI C, alongside their proprietary libraries, and produces HDL. The tool offers the 

ability to design a system in software and then map computationally complex sec- 

tions to custom hardware. The portions of the design that remain in software can be 

implemented on soft or hard processor cores in the FPGA. The C code that is used 

as a starting point must conform to a certain programming model, known as stream 

processing, which describes how the hardware and software processes communicate. 
Mentor Graphics' Catapult C [31] also synthesises hardware from C-based al- 

gorithms. The tool presents multiple implementation choices to the designer, who 

may then investigate the area/speed trade-offs and make decisions accordingly. This 

means that the designer is still making the implementation decisions, but design can 
be performed at an algorithmic level and exploration of the design space is guided by 

the tools and consequently made easier. Celoxica are another company offering high- 

level synthesis, their products are largely based on a variant of ANSI C known as 
Handel-C, a language that has in-built support for representation of parallelism [32]. 

System-level languages 

Other electronic design automation (EDA) tool manufacturers are looking to re- 

place Verilog and VHDL with more sophisticated languages. The most prominent 

candidates in this regard are SystemC and SystemVerilog. 

SystemC is a collection of C++ classes that is specially formed to describe system- 
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level concepts, such as interfaces and transactions, and hardware concepts such as 

concurrency, and allows for a unified hardware/software co-design. Because it is 

based on C++ it inherits the object-oriented programming paradigm and other char- 

acteristics of that language. SystemC can handle modelling concepts at a range of 

abstraction levels, from system level down to RTL. The benefit of this approach is 

that it provides the ability to design an entire system, starting from an executable 

specification and then passing off to possibly separate hardware and software teams, 

without the need for a change of language that may potentially introduce errors. 
Scheduling is handled explicitly through use of wait statements, which demarcate 

groups of instructions that are considered to execute concurrently. Several vendors 

now offer synthesis of behavioural-level SystemC; the synthesisable subset is consid- 

ered comparable to that of traditional HDLs [33]. 

SystemVerilog is an attempt to approach system-level design by augmentation 

of the existing Verilog HDL. The additional features available in SystemVerilog are 

extensive support for verification constructs, support for complex interfaces, new 
data types, ability to work with arrays as a single entity (potentially useful for image 

handling) and some high-level language constructs such as structs and unions. All 

of these new features are synthesisable, albeit with some constraints [34]. 

5.4 Related work 

This chapter has included a look at new tools and languages that are gaining traction 

within the electronics community, but the primary aim of this work is to achieve 

improved efficiency within existing design flows, based on intimate knowledge of the 

application domain and its requirements. This approach naturally draws on areas of 
both academic and industrial research. This section will briefly review some of the 

most relevant published research. 
A group from Massey University, New Zealand have published a number of papers 

concerning implementation of image processing algorithms on FPGAs. Reference 

[9] gives an overview of the topic, in terms of the difficulty of mapping sequential 

algorithms to parallelised hardware, and discusses the constraints that are faced 
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when implementing image processing algorithms. These constraints are classified 

as timing constraints (for real-time processing), bandwidth constraints (applicable 

when off-chip memory is required), and resource constraints on the device itself. 

The impact these constraints have on implementation of different classes of image 

processing algorithms (for instance window operations) is briefly discussed. 

Reference [35] from the same group provides more practical advice in the form of 
"design patterns". These are defined as generalised, reusable solutions, that act to 

assist in the implementation of image processing algorithms on FPGA by conveying 

previous design experience. The paper goes on to discuss how such design patterns 

should be documented and categorised. Although conceptually similar to the work 

that will be presented here, the design patterns that are suggested refer to issues such 

as how data is stored in memory and when pipelining should be applied, and are 

generally concerned with quite low-level technical details rather than the high-level 

operations that are the focus of this portfolio. Some relevant high-level operations 
have separately been investigated by the same group, with publications on FPGA 

implementations of division [36] and bilinear interpolation [37] operations, both of 

which are prevalent in image and video processing algorithms. 
A group from Queens University, Belfast is also doing work in this area. Ref- 

erence [38] describes the concept of using "hardware skeletons" :a parameterisable 

architecture designed for a specific task, in this case image and video processing. 
Hardware skeletons may be thought of as being similar in nature to SoC platforms, 

where specific functionality is implemented by inserting functional units (usually 

pre-designed IP cores) into a domain-specific framework. In order to design a hard- 

ware skeleton the authors model image processing algorithms using directed acyclic 

graphs, which are similar in nature to dataflow graphs, and describe how high-level 

image operations (represented by nodes on the graph) are connected together. In 

a similar way to that described in section 5.2.2, operations are classified accord- 
ing to the locality of their data access requirements, for instance point operations, 

neighbourhood operations, global operations etc. This methodology becomes useful 

when a range of possible implementations, characterised by their cost in terms of 

speed and area, are available for each node. This allows the designer to perform 
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cost-based analysis of the different implementation options for each operation. For 

instance there are a number of ways of performing a convolution, and if cost-based 

information is available about each method the designer may choose the appropri- 

ate technique according to the constraints that are faced. The designer can then 

populate the hardware skeleton using the necessary operations. 

The stated advantage of the approach is that system builders do not themselves 

require detailed hardware description skills, which is one of the aims of this portfolio. 
Unfortunately, although hardware skeletons would speed the implementation process 

when a full set of cores are available, it requires a library of optimised cores to be 

available for each hardware platform (or type of FPGA) that may be used, which 

could be difficult and costly to maintain. The method is also obviously less flexible 

than the more general idea of using design guidelines, and is heavily oriented to those 

algorithms that can be easily represented using data-flow graphs. 

Researchers at the same institution have also looked at some specific high-level 

algorithm operations, including a method of automatically generating designs for di- 

rect implementations of 2D convolutions [39] and an efficient FPGA implementation 

of a wavelet transform [40]. 

An MSc thesis from Vanderbilt University, USA and completed in 2000, [41] 

focuses on the implementation on FPGA hardware of image processing algorithms 

described originally in Matlab. The algorithms are all windowing operations, includ- 

ing basic convolution and some more complicated methods such as rank-order filters 

and erosion/dilation, and are all based on small kernel sizes, typically 3x3 elements. 

The designs are all hand-coded in VHDL and are not heavily optimised. The findings 

are that although the advantages of FPGAs are clear, the benefits can be outweighed 

by the difficulty of implementing complex mathematics on FPGA devices. A sug- 

gested solution to this problem is use of FPGAs and DSP devices in tandem, to take 

advantage of the positive benefits of each platform. This viewpoint is less popular 

today, given the large gains in the mathematical capabilities of FPGAs that have 

been made in the intervening years since the work was completed. 

The same topic of implementing Matlab algorithms is covered by work from 

Northwestern University, USA which resulted in the MATCH compiler [42]. (The 
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MATCH compiler was later commercialised as Acce1DSP, a product that is briefly 

discussed in section 5.3.2). Although now a proprietary technology, early papers 

on the subject describe a process of high-level synthesis that can also be performed 

manually. It works by unrolling loops and the vectorised Matlab instructions used 
to operate on matrices, and then scheduling and binding the resulting simplified 

code to hardware, in a similar way to that presented for C code in Appendix A of 
this portfolio. The description of the MATCH compiler given in [43] gives a good 

overview of the steps that are involved in translating behavioural-level code into an 

efficient hardware design. 

Athanas and Abbott [44] describe an attempt to classify image processing al- 

gorithms in order to expedite their implementation on programmable logic (in this 

case the multi-FPGA platform Splash-2). Their classifications are image combina- 
tion, transformation, measurement, conversion, and generation. Of particular in- 

terest are transformation operations (which include convolutions) and combination 

operations (where Gaussian and Laplacian pyramids are discussed). Comparison of 
the different classes is performed in terms of the demands they place on the under- 
lying hardware, for instance the resource requirements of an 8x8 2D convolution 

are compared with a 2D floating-point FFT. Some discussion is also given of the 

difficulties caused by raster scan data formats. Although the nature of the Splash-2 

platform differs from the single FPGA approach taken in this work, the attempt 

to form general conclusions regarding image processing algorithms in terms of their 

hardware implementations is obviously related. 

In addition to those mentioned above, there are many publications that investi- 

gate efficient implementations of individual mathematical operations that are perti- 

nent to the field of image processing. One of note is reference [45], which looks at 
implementation on FPGAs of fast Fourier transforms for signal and image process- 
ing. Their approach looks at the different methods of performing an FFT (radix-2, 

radix-4, finite Hartley transform etc. ) and considers the demands they place on 
the hardware. The findings are that the radix-2 approach performs well in terms of 

speed and area, but the finite Hartley transform has the lowest memory requirement. 
Comparisons are also made with some commercially available FFT cores. This type 
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of approach, where an operation common to many algorithms in a particular appli- 

cation domain is assessed for its hardware impact, is one approach that is advocated 
by this EngD. 

5.5 Summary 

The future of high-level synthesis will necessarily have to include new methodologies 
if the complexity faced by hardware designers is to be manageable within reason- 

able timeframes. Rather than a single solution emerging, it is increasingly evident 

that domain-specificity is going to be integral to developing methodologies that can 

produce designs of comparable performance to handcrafted methods. Each of the 

available tools and methodologies impose their own constraints, some are more suit- 

able to certain design styles than others, and there is a general lack of knowledge 

about how image and video processing algorithms fit into this environment. 

Whilst most current algorithm implementations are still carried out by hand, 

and despite the fact that the majority of image and video processing algorithms 
face similar constraints and difficulties in their implementation, there are no clear 

guidelines as to how their implementation should be tackled. It is clear that the 

process of decomposing algorithms into their basic constituent operations should be 

performed with an understanding of those operations' suitability to the target hard- 

ware. Some operations may be more difficult to implement than others, may require 

more hardware resources, or have reduced performance on a particular hardware 

platform. High-level transformations may result in drastic improvements in resource 

use, power consumption, and performance, but at present this can only be performed 

on a trial and error basis with no guidelines available. There are many classes of 

mathematical operations that may result in a variety of hardware implementations, 

some more efficient than others. 

Investigation of these issues will produce data that allows assessments to be made 

of algorithms at an early stage in their development, relating to how effectively 

they may be implemented with the software tools at hand, and which hardware 

architectures are most suitable. By looking closely at a range of algorithms, and their 
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constituent parts, the aim of this work is to demonstrate some of the problems and 

potential solutions involved in the implementation of video processing algorithms. 



Chapter 6 

Results & Discussion 

The main research effort focused on the implementation of several algorithms. These 

algorithms cover a range of applications and are likely to form integral capabilities of 
future Thales Optronics products. The main objective in looking at these algorithms 
is to identify those parts that cause problems in defining appropriate hardware struc- 
tures and attempt to explain why this is the case. Looking at a range of algorithms 
in this way also helps to identify common features that could provide benefit if they 

were implemented as reusable IP. 

This chapter will discuss these algorithms and their implementation. The starting 

point for each algorithm was a Matlab implementation along with associated test 

vectors, with the aim of producing verifiable hardware implementations for Xilinx 

FPGAs. Each algorithm will be briefly described, followed by some discussion of the 

implementation process and the general conclusions that can be drawn. 

6.1 Implementation of LRM contrast enhance 
The first algorithm implemented as part of the research was the local range modifica- 

tion (LRM) contrast enhancement algorithm by Fahnestock & Schowengert [46]. A 

full description of the implementation process can be found in the portfolio document 

(Appendix B). 

49 
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6.1.1 Background 

The contrast of an image is a way of referring to its dynamic range, i. e. the range 
between the brightest and darkest pixel. An image with poor contrast will stiffer 
from a reduced amount of visible detail, with it usually being difficult to distinguish 

foreground objects from the background. Poor contrast is a result of under- or over- 

exposure of the imaging sensor, or use of a badly chosen digital representation that 

does not provide sufficient range for the signal being captured. A simple method of 
improving the contrast of an image works by applying a linear stretch to the dynamic 

range to increase it to the maximum range available, which is usually determined in 

the digital domain by the binary word length of the data values representing pixels. 
For example, the contrast of an n-bit greyscale image could be enhanced by applying 
the following calculation to each pixel: 

an -man out= X (2"-1) 
max - min 

(4) 

where min and max are the minimum and maximum pixel values in the entire image. 

Application of this process will ensure that the brightest pixels in the input image 

will become peak white, and the darkest will become black. Another name for this 

process is histogram stretching, named for the effect the operation has on the image's 

histogram. Example images and their histograms can be seen in figure 8. 

The linear stretching operation acts globally on the image, using parameters 
derived from the image as a whole. This form of contrast enhancement is widely 

used as it provides a simple and effective means of improving contrast when the 

source image has a poor dynamic range. There are, however, some situations in 

which the method will give less satisfactory results: notably when the contrast varies 

over different regions of the image (where regions of good contrast will limit the 

effectiveness of the algorithm in regions of poor contrast), or when the image is 

affected by noise (a single pixel affected by additive noise will significantly reduce the 

amount of contrast stretching that will be applied). In these cases a global contrast 

stretch will provide less than optimal results. The purpose of the LRM algorithm is 

to provide a spatially-variant means of improving contrast, that is, one that alters 

a pixel's value dependent on the contrast of its surrounding region rather than the 
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Figure 8: Demonstration of contrast enhancement through a linear stretch. The effect 

on the image histogram is also shown. 

image as a whole. In this way the algorithm is adaptive to regional variations in 

contrast levels, and although the LRM method is not completely noise tolerant the 

effects of rogue pixel values will be limited to small confined areas. 

The LRM algorithm works by dividing the input image into blocks; these are 
typically 8x8 or greater since blocks that are too small will unnecessarily highlight 

insignificant details. The original algorithm allows for non-square blocks, and also 

allows the block size to vary within the image (a necessity at the edges when the 

image does not contain an integer number of whole blocks). As shown in figure 9, 

at the corners of each block is a node, and each node may have one, two, or four 

neighbouring blocks depending on whether it is at the corner, edge, or centre of 

the image respectively. The algorithm operates by finding minimum and maximum 

pixel values within each block, then sorting these to find the minima and maxima at 

each node. The minimum and maximum values for each pixel are then found using 

two separate bilinear interpolations that operate with the four closest corresponding 

node values. Finally a standard stretch operation (using equation 4) is applied using 

the interpolated values for min and max. 
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Figure 9: Partitioning of input image into blocks and nodes for LRM contrast en- 
hancement. 

A typical software implementation will require multiple passes through the input 

data to achieve this: once to find block minima and maxima; once to find node 

minima and maxima; twice to perform the two bilinear interpolations; and once to 

apply the stretch to each pixel. There is also a large amount of intermediate data 

generated by the algorithm that would typically be stored in multidimensional data 

structures. Evidently this does not lend itself to a direct hardware implementation 

when real-time operation is required. 

6.1.2 Hardware constraints 

In order to translate the algorithm into hardware it is necessary to make some design 

choices regarding the implementation of the computational stages. The main com- 

putational effort of the algorithm is in calculating bilinear interpolation equations 

similar to that shown in equation 2. These interpolations take place over an area 

the size of a block in the input image. In the software version of the algorithm the 

block size is freely definable, but since the block size forms the denominator of the 

interpolation equations one of the early design decisions was to limit the block size 

to be a power of two, and force all blocks to be square and of uniform size. This 

immediately simplifies the mathematics considerably: the six divide operations that 
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make up the interpolation calculation are now replaced by a single binary shift, a 
trivial operation in hardware. 

A side effect of forcing all blocks in the image to be an equal size is that the image 

must therefore contain an integer number of blocks. This then forces the choice of 
block size to be a common factor of the image height and width, with the maximum 
block size their greatest common divisor (GCD). The dimensions of most digital 

images (e. g. VGA 640 x 480) have at least one common factor that is a power of 
two, so this constraint is reasonable. However, for video data from analogue sources 

the constraints on the block size and/or shape may have to be relaxed, which would 

consequently increase the complexity of the calculations involved. 

Having simplified the algorithm in this way work could begin on developing a 
hardware implementation. It was decided that the transformation from software to 
hardware would be performed manually, using a clearly defined process of applying 

well-known transformations from the field of high-level synthesis, and carrying out 

verification after each stage. The language chosen for this transformation was ANSI 

C, since it is flexible enough to describe both high- and low-level behaviour. It does 

not natively handle concurrency, but by using a special coding style the impression 

of concurrency can be achieved. 

6.1.3 Transforming behaviour to structure in C 

The conversion of a Matlab algorithm into an equivalent C implementation may usu- 

ally be undertaken without significant difficulty, as many of the formal semantics of 
the languages are similar. High-level Matlab instructions with no direct equivalent in 
C, for instance instructions that perform a two-dimensional convolution or FFT, will 
obviously require a much more involved and time-consuming approach. Fortunately 

the LRM algorithm uses fairly simple operators throughout, and the complexity of 
the algorithm lies in its control flow rather than its computational aspects. An- 

other difficulty at this stage lies in determining the shape and size of arrays and 

vectors used in the Matlab code, a process that Haider et al. term scalarization [43]. 

This process also includes the act of translating Matlab's vectorised instructions into 

C-compatible loops. 
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The equivalence of the C code algorithm to the Matlab original may be verified 

by testing both versions of the algorithm with the same stimulus, chosen to cover 

a range of test cases. Once the algorithm is correctly described in C, a sequence 

of transformations can be applied that gradually incorporates more structure and 

simplifies higher-level behavioural constructs. Some of these transformations may 

involve replacing floating-point arithmetic operations with fixed-point ones, unrolling 

program loops, or simplifying statements to reduce the number of operators in a 

single line of code (known as levelization [43]). 

C is useful for this purpose because it is flexible enough to contain high-level and 
low-level code. Although a language such as VHDL also contains behavioural-level 

constructs, C remains executable, which means it can be verified quickly and with- 

out the use of HDL simulators. This is a further example of model-based design, as 
described for the System Generator design flow in chapter 5, here with the C code 
forming an executable specification of the algorithm. After each of the transforma- 

tions described above have been applied the current version of the algorithm can be 

verified against the original Matlab model using the same test-cases as were used in 

the original algorithm specification. This evidently aids verification greatly. Having 

an executable model of the system is equivalent to performing a cycle-based simu- 

lation, and avoids the difficulties of event-driven simulation as described in chapter 
5. 

The next stage in incorporating structure into the design is to introduce schedul- 

ing, such that the design incorporates the notion of clock cycles and timing. The pro- 

cess involves manual identification of instructions that can be executed on separate 

time steps, and those that must be executed sequentially due to data dependencies. 

The execution flow may be modelled in C using a large switch statement, with each 
branch containing a single instruction and representing a time-step. Each branch 

of the switch statement must be able to complete in one clock cycle. The designer 

is essentially assigning computational steps to states of a controller, such that the 

design becomes a large finite state machine (FSM), with as many states as there are 
instructions in the algorithm. The states of the controller are stepped through in 

sequence according to the program flow of the original algorithm, for instance where 
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previously there existed program loops the FSM can be designed to jump back to a 

previous state. Subsequently, states that contain instructions that are data indepen- 

dent may be combined, so that multiple instructions are executed on a single branch 

of the switch statement; these may then be thought to execute concurrently. See 

Appendix B, section 3.1 for a more detailed explanation of this process. 

6.1.4 The control/datapath model 

A theoretical model that uses the technique of scheduling computational steps using 

a state machine is the finite state machine with datapath (FSMD) first proposed 

by Gajski and Ramachandran [47]. Construction of an FSMD requires separation 

of the control operations from the rest of the algorithm. Instructions that perform 

control are looping constructs such as for and while statements, and branches such 

as if and case. The control elements and data processing elements are implemented 

as separate FSMs, and the data-processing FSM may then be considered to be a 

pipelined datapath. An overview of a system of this format is shown in figure 10. 

Note that the datapath is monitored by the controller using status flags, which may 

be used to affect the control flow of the system. The current state, which is used to 

control the datapath, may be thought to represent the instruction to be executed. 

This kind of system is known elsewhere as a high-level state machine (HLSM) [48]. 

If the number of states has been minimised as far as possible the datapath may 

Control 
Inputs 

Current state 

Status indicators 
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be considered optimal in terms of performance, as the maximum amount of spatial 

parallelism has been utilised. If resource constraints are present, for instance due to 

a limited number of hardware multipliers, then the number of states can be increased 

to reduce concurrency and hence use less hardware at a given point in time. 

Implementing the control and datapath aspects in separate modules allows com- 

parisons to be made between the relative sizes of the two. A design that has a large 

and complex controller but relatively small datapath is said to be control-dominant; 

conversely, a design with a simple controller but large datapath is datapath-dominant. 

Characterisation of algorithms in this way provides important insights into their suit- 

ability for a particular target hardware. 

Complex control-dominant flows are much more suited to a software implemen- 

tation on a programmable architecture such as a microprocessor, microcontroller, 

or DSP chip. The fundamental elements of software development (nested loops, 

branches) are characteristics of complex control and irregular execution flows. Con- 

trollers are characterised by their ability to make decisions according to the values of 

their inputs. Control flows are essentially sequential processes that may have irreg- 

ular structure but usually only need to do a single thing at a given time. Although 

it is possible to implement complex control in hardware using FSMs, it is tedious to 

design and inflexible. 

Datapaths are evidently more suited to a pure hardware implementation, where 

spatial and temporal parallelism can be exploited, i. e. when the system must perform 

the same operation(s) repeatedly, and does not need to radically change its function 

at any time. 

It is clear that algorithms intended for implementation on FPGAs should conform 

to the dataflow paradigm if the potential performance benefits of the platform are to 

be realised. The LRM algorithm is control-dominated: the bulk of its execution is 

concerned with looping through image blocks and selecting (i. e. making decisions on) 
local minima and maxima. This implies that the LRM algorithm is not an algorithm 

that is simple to implement in hardware, and the resulting implementation is not 

certain to provide huge performance benefits over a software one. 
The manual process of scheduling and allocation that has been described here 
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(and in the portfolio document) provides a mechanism for implementing control- 
dominant algorithms that do not readily conform to the dataflow paradigm. Having 

a clearly defined framework for implementing such algorithms can reduce the design 

time significantly. Using aC code version of the algorithm that can be quickly 

verified after each modification allows the designer to gradually insert structure into 

the behavioural-level specification without introducing large-scale errors, and thus 

implement model-based design within the existing design flows. 

6.1.5 Translation to VHDL and synthesis 

The aim of the manual scheduling and allocation methodology presented here is to 

have the algorithm written in a subset of C where each instruction has a direct 

equivalent in the synthesisable subset of VHDL. This is perfectly feasible: the C 

switch statement can be translated to the VHDL case statement with minor modi- 
fications, conditionals such as if have direct equivalents, and any looping operators 

should have been removed or decomposed as part of the sequencing of the FSM. 

Although the LRM algorithm is computationally quite simple, had there been any 

complex mathematical operators left at this stage that could not be decomposed any 
further within the FSM model integration of standalone modules or IP cores would 
be necessary. 

Once translated to VHDL synthesis can be undertaken as normal. Any subse- 

quent verification effort must be applied using HDL simulators and custom test- 

benches; verification may be required to ensure the equivalence of the VHDL code 

with the final C model. More details on the implementation and verification strate- 

gies are available in Appendix B, sections 4-5. 

The design was implemented on a commercial development board featuring a 
Xilinx Virtex-2 XC2VP20 FPGA and ADC/DAC devices. Table 6 shows the re- 

source usage for the LRM algorithm after implementation on the Virtex-2 FPGA. 

The development time for implementing the design, from the Matlab specification 

to a gate-level (post-synthesis) netlist was approximately six weeks. A simultaneous 
design effort within Thales for the same algorithm, but using a traditional implemen- 

tation flow that had not utilised the FSMD model, had resulted in a considerably 
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Resource I Used Available % of XC2VP7 

Occupied slices 470 4,928 9 

4-input LUTs 765 9,856 7 

Block RAM 13 44 29 

Multipliers 14 44 31 

Table 6: Resource usage of LRM algorithm. 
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longer development time. The two implementations had comparable resource usage 

and performance. The resource figures shown here highlight the relatively simple 

computational aspect (i. e. small datapath) of the algorithm. The control parts of 

the algorithm do not use significant logic resources. The performance of the final 

system was sufficient to process VGA data in real-time. 

6.1.6 System Generator implementation of LRM algorithm 

The LRM algorithm was also implemented in the Xilinx System Generator environ- 

ment. LRM was chosen as an ideal opportunity to become familiar with System 

Generator using a familiar algorithm that was well understood. The implementation 

(described in Appendix C) faced many of the same difficulties as a hand-crafted HDL 

implementation. The System Generator environment is designed with DSP applica- 

tions as the primary target domain, and so it is heavily oriented towards dataflow 

style algorithms. For this reason the LRM algorithm is not an ideal candidate for 

implementation using the System Generator block set. Because of the System Gen- 

erator library's emphasis on high-level mathematical operators many of the LRM 

algorithm's constructs had to be formed from low-level blocks, such as individual 

registers and logic functions. 

Some of the more complex control methods posed difficulties in their System 

Generator implementation that were easier to solve with hand-coded methods. For 

instance, the overall control of the design was still implemented using an FSM, 

albeit this time in Matlab M-code imported into System Generator with the `M- 

Code Block'. The nested looping constructs that appear in the algorithm were 
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implemented using a complicated system of selectively enabled counters. More details 

on some of the challenges faced in the implementation are available in Appendix C, 

section 3. 

Comparison of the results from the hand-crafted and System Generator imple- 

mentations of the LRM algorithm gave very similar resource usage and performance, 
however the design time was longer for the System Generator work (see Appendix 

C, section 4). The overall findings of this preliminary work with System Generator 

was that although strong in certain areas, notably fixed-point design and some veri- 
fication tasks, it was ill-suited to complex control algorithms such as LRM. System 

Generator would be used later in the research to more positive effect when imple- 

menting a datapath-dominant design. 

6.2 Implementation of RL deconvolution 

The Richardson-Lucy deconvolution algorithm was the second major algorithm stud- 
ied as part of the research. The full report describing the work and implementation 

may be found in the portfolio documents (Appendix E). 

6.2.1 Background 

Richardson-Lucy deconvolution is an established method for the recovery of images 

that have become blurred. The blurring process may be caused by various factors, 

including the inherent characteristics and possible defects of the optical equipment. 
The blur may be modelled mathematically as a two-dimensional convolution opera- 
tion, as described in chapter 5, with the filtering kernel replaced by a point spread 
function (PSF). The PSF represents the spreading or smearing of a single point 

source, and may be thought of as a probability distribution describing the potential 
destinations of a photon originating from a given point in the input. A PSF is spe- 

cific to a particular imaging apparatus, and may be derived mathematically using 

models of the optical path, or more commonly deduced empirically through mea- 

surement of the spreading of a point source against a black background. An example 
PSF, obtained empirically by engineers at Thales for a specific imaging apparatus, 
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Figure 11: Surface diagram of an 11 x 11 point spread function. 
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is shown in figure 11 as a discrete function, 11 x 11 elements in size. The objective of 

deconvolution is to remove the detrimental effects of the PSF and obtain the same 

data as would be observed by a hypothetical, perfectly resolving instrument. Such 

an instrument would have a PSF equivalent to a two-dimensional Dirac function [49], 

with no spreading occurring. 

Several algorithms have been reported that can be used to deconvolve the image 

and the PSF. A direct inverse to the blurring process is not usually possible due to 

the available data being mathematically incomplete (i. e. the data in the observation 

is not sufficient to describe a unique solution), and the problem therefore being ill- 

posed. For this reason statistical estimation techniques are usually required. These 

techniques attempt to estimate the data of maximum likelihood given the observation 

and the PSF. 

The Richardson-Lucy algorithm [50] [51] uses Bayesian probability theory to 

achieve this. The algorithm hinges on the insight that the input image, the output 
image, and the PSF may all be considered probability distributions. The mathemat- 
ical derivation is available in the portfolio document (Appendix E, section 2) and 

will not be reproduced here, but the algorithm may be described by the following 
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iterative operation: 
1Q 

Ir+1 = Ir x PSF * 
observation ( 

PSF * Ir ) 

where P is the current estimate of the true image and I''+1 is the next estimate, 

the * symbol denotes the two-dimensional convolution operation, and the divide and 

multiply operations and exponent ß act in a pixelwise fashion. a is an additional 

component that is not present in the original papers by Richardson and Lucy, which 

acts to accelerate the rate at which the algorithm converges. The Richardson-Lucy 

algorithm is semi-converging [52], meaning it will approach a solution but after a 

certain number of iterations diverge again rather than converging, which makes it 

important to stop iterating at the right time. Considering the hardware implications 

it is clear that the fewer iterations that are required the better. The exponent ß 

is typically chosen as a value between one and three (any higher and the algorithm 

becomes unstable), and is reported to reduce the number of iterations required by 

a factor of a [53]. Analysis was necessary to determine the minimum number of 

iterations that could realistically be implemented in hardware while still producing a 

sufficient level of deconvolution. It was found that two iterations could be used with 

a varying acceleration factor (p is equal to two for the first iteration, then reduced to 

one for the second) to good effect, with a fairly low hardware cost (for more details 

see Appendix E, section 3). 

Due to the low number of iterations required it was decided to unroll the iterative 

process and implement the algorithm as one continuous datapath. The alternative 

to unrolling the algorithm is to implement one instance of the loop but then run it 

at a clock speed that is a multiple of the data rate. This may not always be possible 

with high bandwidth video signals, and introduces a control aspect to the design. 

Unrolling the loop removes any control aspects to the algorithm and thus facilitates 

a high performance hardware design, overcoming some of the difficulties encountered 

with the LRM algorithm described in the previous section. 

6.2.2 Efficient implementation of large convolutions 

Each iteration of the deconvolution algorithm contains two two-dimensional convolu- 

tions with the PSF. The PSF in figure 11 is a fairly typical real-world example, and 
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measures 11 x 11 elements. Performing an 11 x 11 two-dimensional convolution is a 

relatively expensive task in hardware: a direct implementation requires 121 multiply 

operations and 120 additions, and a significant memory requirement to buffer and 

align data elements that are arriving in a raster scan format. To implement four of 

these operations (two per iteration) would incur an unmanageable resource overhead. 
Some two-dimensional filter kernels may be decomposed into two orthogonal one- 

dimensional filters acting separately in the horizontal and vertical directions. A 

filter that can be decomposed in this way is said to be separable, meaning that 

the coefficient matrix that represents the filter can be expressed as the product of 

a column vector multiplied with a row vector. Separable filters are advantageous 

because they allow a two-dimensional convolution to be implemented using simple 

and well-understood structures such as one-dimensional finite impulse response (FIR) 

filters. A separable 11 x 11 kernel could then be implemented using 22 multiplies 

and 21 additions. Unfortunately, while some well-known functions are separable (for 

instance the Gaussian function), the majority of real-world two-dimensional functions 

are not separable (they cannot be expressed as the product of a single column vector 

multiplied with a single row vector). 
One method to overcome this is based on the fact that a parallel connection of 

separable filters results in a non-separable response [54]. This allows several pairs 

of orthogonal one-dimensional filters to be combined as necessary to reproduce the 

desired filter response. A diagram of this kind of system is shown in figure 12. Each 

separable filter is formed from a horizontal and vertical 1D filter that acts on the 

image rows and columns respectively. A varying number of separable filters may be 

required depending on the filter response being approximated. The decomposition 

will be more efficient than a direct implementation whenever 

k(m+n) <mn (s) 
where m and n are the dimensions of the filter kernel being decomposed, and k is 

the number of separable filter pairs. required for an exact reproduction. 

The implementation of non-separable responses using simple one-dimensional fil- 

ters was first proposed by Treitel and Shanks [55], who used the term multistage 

separable filters. They show that a matrix can always be decomposed into a finite 
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Figure 12: Summation of k separable filters to produce a non-separable response. 

number of separable filters, using a mathematical technique known elsewhere as the 

singular value decomposition (SVD). The SVD of a matrix X is given as (noting 

that superscript T denotes the matrix transpose operation): 

Xmxn = UmxnEmxnVmxn (7) 

where U and V are orthogonal matrices whose columns contain the eigenvectors of 

the matrices Q= XXT and S= XTX, and E is a diagonal matrix containing values 
(known as singular values) equal to the square roots of the associated eigenvahues 
(the eigenvalues of Q and S are identical). The columns of U and V are used as 

the coefficients of the one-dimensional filters used in the parallel configuration of 
figure 12. The rank of E, which for a diagonal matrix is equivalent to the number of 

non-zero values, determines k, the number of stages that are required for an exact 

reproduction. 
Efficient use of this method to achieve a perfect reproduction of the original filter 

kernel is dependent on the kernel's linear dependence. Linear dependence may be 

thought of as redundancy in the kernel. If the filter kernel, X, being decomposed is 

linearly independent (i. e. if none of the vectors contained in X can be expressed as a 
linear combination of the other vectors in X [56]), the SVD will not provide efficiency 

savings over a direct implementation (equation 6 will not be satisfied). However, it 

is a feature of the majority of image processing kernels that they should have a lin- 

ear phase response, since it has previously been shown that the intelligibility of an 
image relies on its phase characteristic [57], and distortion of an image's phase would 
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therefore make it unrecognisable. The phase linearity of an image processing filter is 

manifest in the symmetry of its impulse response, which also implies linear depen- 

dence. It is therefore evident that image filtering applications will usually provide 

opportunities to make significant reductions in hardware costs through application 

of the multistage separable filter technique. A square, linear phase filter kernel, with 

m2 elements, will require a maximum of m2 1 separable stages. Substituting this 

value for k into equation 6 does not satisfy the inequality (the number of multiplies 

required would be m2 + m). However, whenever the multistage expansion of the 

kernel results in less than 1 separable stages, equation 6 will be satisfied and the 

savings will be made. 
The resulting one-dimensional kernels will also be symmetrical, which provides an 

opportunity to employ a well-known optimisation in 1D filter design that can reduce 
the number of multiplies required by up to a half. The method works by pre-adding 
data elements that would otherwise be separately multiplied by a common coefficient. 
It can however cause some problems as it introduces extra latency before the multiply 

stages, which for the vertical filters especially interferes with the buffering required. 
It can also result in long, non-pipelined adder chains on the output side, which may 

cause timing difficulties when the design is placed and routed on the device. 

Additional savings are possible if an associated loss of accuracy is acceptable. 
The singular values are normally listed in the matrix E in descending order, with 
the values of the greatest magnitude contributing more to the final response than 

the others. Using a reduced number of singular values (and consequently a reduced 

number of filter stages) will result in an approximation to the original matrix X, with 

an error that is the equal to the ratio of the sum of the discarded singular values to 

the sum of all singular values, or 
Ql+Q2+... +Qk 

(8) fk _1_ Ql + Q2 + 
... 

+ Qn 

which gives the error sk from using k singular values from a maximum of n, where 
k<n, and a denotes the individual singular values in the matrix E. Studies showed 
(Appendix E, table 1) that the PSF of figure 11 could be represented to 99.4% 

accuracy using two stages (44 multiplies, 43 additions). The rate at which the 

accuracy improves with successive stages is illustrated in figure 13. Similar results 
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Figure 13: Increase in accuracy with successive stages for the multistage decomposi- 

tion of the PSF in figure 11. 

are reflected in other image processing filters; Andrews [581 notes that a large subclass 

of 2D filters can be represented with a multistage separable filter with two stages. 
The multistage separable filter method provides a simple and efficient means of 

implementing large two-dimensional convolutions using one-dimensional FIR struc- 
tures, such as the transpose-form FIR filter, which is ideal for FPGA implementation 

as it is a systolic, inherently pipelined architecture. The filter coefficients used are 

usually constant, which means that the multiplications can be implemented using 
either LUTs or hardware multipliers, providing freedom to utilise the available re- 

sources in the best possible manner. 

Implementation of multiple stages means that there will be several vertical one- 
dimensional filters that act on the image columns. As described in chapter 5, vertical 
alignment of data arriving in a raster scan format is performed using FIFO buffers 

equal in length to the width of the image. Although this could become resource 

expensive with a multiple stage filter, the delay lines can be shared between stages 
to reduce the memory requirement. 
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Resource Used Available % of XC2VP20 

Occupied slices 9,278 9,280 100 

4-input LUTs 9,722 18,560 52 

Block RAM 83 88 94 

Multipliers 88 88 100 

Table 7: Resource usage of RL deconvolution algorithm. 

6.2.3 Hardware implementation 
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System Generator was used to map the system into hardware since the main loop 

body of the algorithm could easily be unrolled and implemented as a datapath. Apart 

from the convolutions the other operations performed by the algorithm are divides 

(implemented using a vendor IP core) and multiplies/raising to an exponent, which 

are all straightforward to implement with existing library blocks. The final design 

resembled a fully pipelined datapath, and as such could produce one output pixel 

per clock cycle. The synthesis tools reported a maximum clock speed of 63MHz, 

which could comfortably process 30fps SXGA video at real-time rates (in a device 

with sufficient memory). 

The resource usage for a VGA implementation is shown in table 7. The smallest 
device that could accommodate the algorithm in its initial form was a XC2VP50, 

however subsequent optimisation reduced the size of the design sufficiently to fit on a 
XC2VP20, so that it could be implemented on a custom Thales FPGA circuit board 

available for video processing demonstrations (more details on the hardware platform 

are available in Appendix G). The key areas where optimisations were possible were 
in reduction of fixed-point word-lengths, and manually mapping multipliers to logic 

(i. e. LUTs) and delay lines to the block RAM on the device that was previously going 

unused. The resulting design, including the overhead for the video I/O interfaces, 

utilised 100% of the slices on the device for either logic functions or routing. Some 

example images were produced and are shown in figure 14. The deconvolved image 

shows a general increase in spatial resolution and dynamic range, and some of the 

finer detail is clearer. 
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Figure 14: Original image, and same image after two iterations of accelerated RL 

dcconvolution. 

Figure 15 shows a difference image between the FPGA implementation and the 

original Matlab algorithm after two iterations. For presentation purposes five lines 

have been removed from each edge (to remove the edge-effects of the convolutions), 

and the image has been inverted and scaled to use the whole greyscale range. Over 

the region shown in the difference image the maximum error between corresponding 

pixels in the two implementations is equal to nine greyscale values, and the mean 

squared error (MSE) between the two implementations is approximately 1.56. Com- 

parison with the original image in figure 14 shows that errors occur along the edge 

detail within the image, as would be expected for a sharpening algorithm. The main 

sources of error are the multistage separable filter approximation of the true PSF, 

and the fixed-point hardware divide operation which has limited precision compared 

to the Matlab equivalent. 

The improvement in image quality that is possible with hardware deconvolution 

comes at a considerable price: using a whole FPGA for deconvolution may be deemed 

an unnecessary overhead when there are more basic methods of image sharpening 

available. One such method is unsharp masking, which is a simple filter that empha- 

sises high-frequency detail and can he implemented with minimal resources, but may 

also introduce noise into the output image. Introduction of noise may not always be 
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Figure 15: Inverted and scaled difference image between Matlab and hardware im- 

plementations of Richardson-Lucy deconvolution. Five lines have been cropped from 

each edge to remove the edge-effects of the convolutions. 

detrimental, particularly if the image is to be used by humans who can extract and 

recognise detail in the presence of often quite severe noise and distortion. 

Deconvohition remains the most accurate method of removing blur caused by 

processes that can be modelled by a convolution with a PSF. This covers a wide 

range of image degradations, including focus blur, motion blur, optical aberrations, 

and others. That it does so at a high computational cost presents choices to the 

system designer who must make judgements on the desired accuracy of the output. 

6.3 Implementation of pyramidal image fusion 

The third major algorithm that was investigated was a method of performing image 

fusion using Gaussian image pyramids. The implementation that is presented here 

is based on Matlab source code that is flawed in its interpretation of the published 

fusion algorithm; however many of the design details remain valid. The algorithm 

and its implementation will now be summarised along with a description of the 

problems with it; the portfolio document contains the full details (Appendix F). 
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Imaging sensors are responsive to a particular region of the electromagnetic spectrum, 

and it is often beneficial for a scene to be captured with multiple sensors in order to 

collect more information about a scene than would be captured with a single device. 

A resulting problem is then how to display this information effectively. Displaying 

multiple observations of a scene on multiple monitors is wasteful and makes the 

images difficult to compare. This has led to a requirement for methods of fusing 

images such that the useful information from each source image is displayed in a 

single composite. This process may also be used to display observations of a scene 
that have been taken with a single sensor with multiple points of focus; in this way 
the depth-of-field of the image can be increased. 

Simple methods of combining images take no account of their content, and per- 
form a linear operation such as averaging. A more sophisticated approach uses 

edge-detection and other operators to identify whole features in the source images 

that are then extracted and used in the composite. In order to extract features at 
different scales a multiresohition approach may be used, as described in chapter 5, 

whereby the input image is decomposed into a set of frequency band-limited images 

that are localised in both space and spatial-frequency. The multiresolution decom- 

position used here is the Gaussian pyramid (59], which is a special case of the more 

generalised area of wavelets. 
It should be noted that the images to be fused are assumed to be perfectly aligned. 

Frequently when multiple sensors are used there is a boresight discrepancy that would 
introduce errors into the fusion process. Alignment of images that are captured from 

differing viewpoints is a process known as image registration; a registration algorithm 

was also investigated during the research and will be discussed in section 6.4.2. 

6.3.2 Pyramid generation 

The construction of a Gaussian pyramid involves repeated low-pass filtering and sub- 

sampling of the input image. The subsampling is by a factor of two both horizontally 

and vertically, which results in an image with one quarter the number of pixels. The 
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filter kernel used is a Gaussian, usually of fairly low order, and is chosen such that the 

resulting frequency content of the image is reduced by one octave at each level of the 

pyramid, which is necessary in order to prevent the subsampling from causing alias- 
ing. (The Gaussian kernel does not have an ideal brick-wall response, which means 

that some aliasing can still occur; these slight effects are however usually disregarded 

for these purposes. ) One of the benefits of using a Gaussian kernel is its separability 

which, as described in section 6.2.2, significantly reduces the computational burden 

involved in convolving it with the image. An image pyramid is typically generated 

with three levels above the base image, any more than this and the images become 

too small to be useful and the edge-effects of the convolutions too detrimental. 

In the original paper on the generation of Gaussian pyramids, Burt [60] uses the 

following notation: 
22 

Gk(i, j) =EE w(m, n)Gk_1 (2i+m, 2j+n) 
m=-2 n=-2 

(s) 

which describes the generation of pyramid level Gk from level Gk-1 using filter kernel 

w (m, n), in this case a5x5 Gaussian function. The reverse operation, which 
is needed in the inverse transform as well as to construct another related image 

pyramid type known as the Laplacian, involves two-dimensional upsampling and 

then a further application of the generating filter kernel to smooth the image. This 

may be defined as 
22 

2--m j--n 
Gk (i, j) =4w (m, n) Gk+l 

(2'2) 

m=-2n=-2 
(lo) 

where only terms for which 'z and are integers contribute to the output. The 

multiplication by four is due to the fact that the upsampling and filtering process 

involves spreading the energy of one pixel over the area of four pixels. More details 

on this process are provided in Appendix F, section 2. 

The Matlab implementation that forms the starting point for the hardware design 

presented here is based on an incorrect interpretation of this equation where the 

subsampling is performed before the filtering. This situation bypasses the anti- 

aliasing function of the filtering stages and therefore the resulting images may exhibit 

severe aliasing artefacts. The pyramids produced using this method have been used 
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here for image fusion with passable results, but the method should not be used 

in general due to the aliasing problem. The implementation that follows does not 

therefore constitute an exact implementation of image fusion as published by Burt 

in his original paper. 

A further consequence of this method is that by performing the subsampling first 

the amount of data to be processed is reduced, hence reducing the computational 

expense of the pyramid generation portion of the algorithm. A brief discussion of the 

effects of performing the pyramid generation process in this way will be discussed 

shortly; a more detailed analysis is available in Appendix F, section 6. 

The most obvious method of generating Gaussian pyramids in this way is a 

sequential process, repeated for each level of the pyramid, whereby the image is 

subsampled in the way it is read out of memory, filtered, then stored back into a 

separate set of memory locations. This process is inefficient for a number of reasons. 
Firstly, the Gaussian pyramid with three levels above the base constitutes nearly 
times the amount of data as the original image, so a significant amount of memory is 

required. Since storing this amount of data on-chip is infeasible, this would have to 
be stored ofd chip in RAM. However, limitations on memory bandwidth would make 

getting 3 times the video data rate into and out of memory in real-time extremely 

problematic. Another detriment to generating the pyramid levels sequentially is that 

it would be a control-dominant process, and therefore time-consuming and unwieldy 

to implement in hardware for the reasons previously described. 

As has been discussed, to utilise the performance benefits of the FPGA it is 

important to implement the pyramid generation process as a pipelined datapath. 

However, due to the subsampling process the later stages of the pipeline operate at 
lower data rates than the earlier stages, and therefore the only way the process can 
be implemented as a single pipeline is by reducing the clock rate of the pipeline after 

each subsampling stage, otherwise the later stages will stall while they wait for data. 

This mechanism allows generation of a pyramid level to commence before the level 

beneath it is complete. A block diagram of the pyramid generating pipeline is shown 
in figure 16. The clock rate of each section of the pipeline is reduced by a quarter, 
to match the fact that it is receiving one quarter the amount of data. Asynchronous 



6.3. Implementation of pyramidal image fusion 72 

Pyramid Pyramid Pyramid Pyramid 
Level Le 

A 
G, .1 02 Level 

a 
G, 

-------------------------- ----------- ------------ , ii i 

i- 
I-I I--l .ýý f-- I ---l , 

i------� 
I1 ! 

i FIFO (ýn ýý 
rMYnea fý FIFO t'V1 F7F0 ýý ßa""n I 

-J 
Y III I__ ý i`- I 

;ý;, 
Sample raren i Sample rate N4 I Sample rate n/16 i Sample rate rV64 i 

1 __... ý _ . _. _ ... 
_____- - 

1- 
-- ____- ________-_- -- __ - -- - 

1___________- 
__________- __-_ý_______________ 

Figure 16: Pipelined image pyramid generation. 

FIFO buffers act as the borders between clock domains. Because the clock speeds 

are integer divisions of each other they remain held in lockstep and metastability is 

not an issue. Two-dimensional subsampling is achieved through selectively enabling 

data writes to the FIFO; horizontal subsampling involves discarding every alternate 

image pixel; vertical subsampling requires discarding every other image row. Note 

that the lack of a filtering stage before the first subsampling block means that there 

is nothing to prevent aliasing from occurring, and therefore the design as presented in 

figure 16 is not a method that should be used in general to produce image pyramids. 
A correct version of this pipeline is shown in Appendix F, figure 8. 

Generation of pyramids in this manner ensured a design that could produce full 

VGA image pyramids at rates of over 100 frames per second. Other implementa- 

tions of this process have been reported and a comparison is made in Appendix F, 

table 1. (It should be noted that the published methods generate image pyramids 

in the correct manner by filtering and then subsampling. However, as will be dis- 

cussed below, in performance terms this affects the latency only and has no effect 

on throughput. ) Transformation of an essentially control-based process into a data- 

path through manipulation of clock rates had made the algorithm more suitable for 

FPGA implementation, and enabled later stages of the fusion process to be similarly 

parallelised. In addition, by generating pyramid levels concurrently an overall lower 

clock speed can be used, with the accompanying reduction in power consumption. 
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Figure 17: Fusion of gradient pyramids. 

6.3.3 Gradient pyramid fusion 

Compo&Ns 
Image 

Successful fusion of image pyramids relies on selecting the important detail at each 

scale that should be carried forward into the composite image. The method suggested 
by Burt [61] uses gradient operators in four orientations: horizontally, vertically, and 
in the two diagonal directions. All four operators are applied at each scale of the two 

source pyramids, which results in each level of each pyramid being decomposed into 

four gradient maps. An overview of this process is shown in figure 17. The resulting 
data are known as gradient pyramids, and there are now eight of them (four gradient 

pyramids per source image) to be handled and processed concurrently. This evidently 

constitutes a substantial amount of data, and reinforces the need to implement the 

algorithm as a datapath structure. In contrast to the original software version of 
the algorithm, in hardware the gradient filters are applied to the source pyramids in 

parallel, splitting the data at each scale into four parallel streams, an example of loop- 

unrolling. These separate data streams are then combined again using comparators 
to select from the four orientations the pixel with the greatest absolute value, which 
is assumed to offer the most salient detail. 
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The inverse pyramid transform involves further application of two-dimensional 

filters followed by a summation of the four orientations, and then, starting from the 

top of the pyramid, each level is expanded using equation 10, and then added to the 

level beneath it. At the end of this process the resulting image will represent the 

composite of the two source images. The detail extraction and fusion process, and 
inverse pyramid transform, are exact implementations of Burt's original method. For 

more information on these aspects see Appendix F, section 3. 

6.3.4 Hardware implementation 

System Generator was again used to map the behaviour onto Xilinx library cores. All 

the elements of the software version of the algorithm had direct hardware equivalents. 
As with other System Generator models, it was possible to verify the design using 

the same test stimulus as was used for testing the original version of the algorithm. 
The fully pipelined nature of the design ensured that the system could produce 

output pixels at a rate of one per clock cycle. The design could comfortably run at 

clock rates that would allow fusion of dual VGA video streams at 30fps, with a latency 

of <50ms. Experiments showed a hundredfold speedup over a PC-based version of 

the same algorithm (example images and more details are given in Appendix F, 

section 5). 

The resulting resource usage after synthesis and mapping to the Virtex-2 family 

of devices is shown in table 8. Given the amount of intermediate data generated 
by the algorithm it is unsurprising that the most utilised resource is that of on-chip 
RAM. The RAM is mostly being used to implement the long buffers that are required 
for the vertical filters. One interesting feature of the algorithm is that it contains no 

multiply operations, due to the coefficients of the filters all being inverse powers of two 

and thus easily implemented using shifting and slicing operations. When hardwired 

resources, such as the dedicated multipliers, are unused they effectively become a 

source of inefficiency both in terms of area and power, which is one argument against 
incorporating hardwired elements in FPGAs. 

By bearing in mind the need to implement algorithms as datapaths it becomes 

possible to implement the complex fusion algorithm quickly and efficiently using 
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Resource I Used 1 Available % of XC2VP100 

Occupied slices 13,287 44,096 30 

4-input LUTs 24,533 88,192 27 

Block RAM 430 444 96 

Multipliers 0 444 0 

Table 8: Resource usage of pyramidal image fusion. 
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model-based methods. Sequential generation of pyramid stages would not only be 

time-consuming to implement but would also prevent use of tools such as System 

Generator due to its lack of support for bidirectional buses and consequent inability 

to interface to external memory. Conceptualising an algorithm's operation with 

respect to the raster scan format in which image data usually enters a system is 

critical to ensure performance in the face of limited memory bandwidths and the 

difficulties of implementing control-dominant applications. 

Alternative method of pyramid generation 

As described in section 6.3.2, the method of generating image pyramids that has 

been presented here is not a true implementation of the image fusion algorithm as 

published by Burt, because the subsampling is performed before filtering at each 

stage of the pyramid generation process. There is thus no mechanism to prevent the 

subsampling from causing aliasing and therefore, depending on the input data, the 

image pyramid that is produced is liable to distortions. A further consequence is that 

there is less data to be filtered at each stage, meaning that the effects of the filtering 

are more pronounced and the resulting image pyramid exhibits an increased level of 

blur. A comparison of the results from the two methods is available in Appendix F, 

section 6. 

The design presented here could be modified to generate true Gaussian pyramids 

with minor modification. At each level of the pyramid the blocks for performing the 

subsampling and filtering could simply be swapped; the multiple clock rate design 

would still provide an efficient method of implementing the algorithm. When the 
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image is filtered as part of the pyramid generation process it is twice the size in 

each dimension than it would be if filtering was done before subsampling. Therefore 

to generate true Gaussian pyramids the line-buffers for the vertical filters would all 

need to be twice as large, doubling the memory requirement of this aspect of the 

algorithm. For a 640 x 480 image this requires another 2240 memory locations, 

which is 35kb for 16-bit data (for precision the implementation uses an internal 

filter representation of 16-bits). This is applied to both images, so the total memory 
increase is 70kb. Table 8 shows that there are 14 Block RAMs available on the target 

device; each Block RAM has 18kb capacity so the modified implementation would 

require an extra four Block RAMs and could therefore be accommodated on the 

same device. The filters are the same size regardless of the way the image pyramids 

are generated and so the computational demands are the same; the latency of the 

process would however be increased by a factor of two. Because the latency of the 

pyramid generation process constitutes approximately a third of the total latency of 

the design (along with one third for detail extraction and one third for the inverse 

pyramid transform), it is estimated that the total latency of the alternative design 

would be in the region of 60-70ms. The design would remain fully pipelined so, 

providing the same clock rate was used, throughput would not be affected. The four 

levels of the pyramid are the same size whether the filtering is done before filtering 

or after, and so the implementation details for the rest of the algorithm remain the 

same. 

6.4 Other algorithms 

Several other smaller algorithms were investigated during the period of research. 
Two of note were an implementation of a polynomial image registration algorithm, 

and a PID control algorithm, as well as a number of more simple image processing 

algorithms. The implementations of the image registration and PID algorithm will 

now be briefly reviewed, as they provide an opportunity to look at algorithms differ- 

ent in operation to those previously discussed. The full reports written at the time 

the work was carried out may be found in the portfolio documents (Appendices D 
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&H). 

6.4.1 PID servo control algorithm 

Implementing a PID control algorithm offered an opportunity to look at other types 

of algorithms that could benefit from implementation on FPGA hardware. The PID 

algorithm is computationally quite simple, and from a systems integration perspec- 

tive it makes sense to implement the control loop in digital hardware if possible, 

particularly as it usually takes up relatively few resources and may utilise spare 

capacity on devices that exist in the system for other tasks. 

The PID algorithm is used in a multitude of situations and is widely understood. 
It acts to produce an input to a system based on an error signal derived from the 

difference between the system's current and desired output. To do so it uses a 

computational process with three terms: proportional, integral, and derivative. A 

closer look at the mathematics and the mapping of this process to System Generator 

blocks is presented in the portfolio document. However it is worth discussing some 

aspects of the design here, due to the interesting problems that were faced that are 

not usually present in implementation of image and video processing algorithms. 
The actual calculation aspects of the algorithm are fairly trivial to implement, 

being made up of multiplies and additions. However, it is usually desirable to have 

minimal end to end latency in the controller, which can sometimes be problematic. 
Latency in the controller can introduce instability into a closed-loop system, because 

the accompanying phase shift can lead to positive feedback. In order to counter 
forward latency it is usual to increase the sample rate. However, large sample rates 

are not desirable in digital controllers: the integral and derivative coefficients are 

scaled by the sample time and in high sample rate systems this results in coefficients 

that are fractional and very small. Consequently their fixed-point representation can 

require large word lengths that impact the size of the design when it is mapped to 

the resources in the FPGA. In addition, any inaccuracies in the fixed-point represen- 

tations are compounded by the fact that a high sample rate means the controller is 

performing more calculations, and so rounding errors can build up. For these reasons 

it is usual to work at a sample rate that is the bare minimum to correctly handle 
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the bandwidth of the system under control. There is a thus a tradeoff, between the 

need for low sample rates but also low latency, that the control system designer must 
balance. 

As with signal processing, Matlab and Simulink are the environments of choice 

for control algorithm designers, and designing control systems in System Generator is 

a natural progression. Enabling the control engineers to utilise model-based design 

techniques to implement algorithms in hardware has obvious benefits. The more 

generic advantages of FPGAs are also fully exploitable in control system design: 

the ability to exploit spatial parallelism allows all three terms of the controller to 

be calculated concurrently, thus reducing forward latency and controller efficiency, 

and the added flexibility of the FPGA design allows the controller to be modified or 

tuned after integration into the rest of the system. Since this work was carried out, 

other reports have been published that come to similar conclusions [62]. 

The resulting design used in the region of 650 slices, which is less than 10% of 

a small Virtex-2 device. The work was successful in that the controller designed 

during this phase of research became an integral part of the focusing mechanism on 

a commercial Thales product, and implementation of controllers in hardware looks 

set to continue in this manner for the foreseeable future. 

6.4.2 Image registration by polynomial warping 

Image registration is a technique to apply affine transformations to an image, such 

that it is given the appearance of being captured from a different viewpoint. This 

is necessary in many fields where images taken at different times or with different 

sensors must be compared. It is also a critical step that must be performed before 

images may be fused. The kind of transformations that are necessary are usually 

global (i. e. they do not change over the image), and are composed of rotations, 

scaling, and translations. In addition, the image to be registered may be a different 

resolution to the image to which it is being compared. 
The method of polynomial image warping depends on manual identification of 

control points in each image, i. e. points in each image that correspond to one another. 

These control points are used to form a system of simultaneous equations which, when 
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solved, provide coefficients for polynomial functions that translate input coordinates 

to output coordinates (for more details on this process see Appendix H, section 2). 

This is equivalent to a spatial mapping between the two images. Interpolation is 

usually required to determine pixel values where the desired location falls between 

pixel boundaries. 

The control points are determined once and, providing the two image capturing 
locations do not move relative to one another, the transformation remains fixed. 

For this reason the calculations to determine the spatial mapping can be performed 

off-line and do not require real-time processing. The resulting polynomials are fairly 

simple to implement in hardware, consisting of nothing more complex than multiplies 

and additions, and are ideal candidates for System Generator design. The main 
difficulty presented by an algorithm like this is caused by the need to access elements 

of the input image in a non-linear order when it is not possible to store a whole frame 

of data on-chip. For this reason it is necessary to buffer image data in external 
SDRAM before being read into the device. The image registration then occurs by 

modifying the SDRAM controller such that the addresses it accesses were determined 

by the polynomial generators. 
Limited memory bandwidth is an issue when data must be buffered off-chip and 

multiple input pixels are needed to generate a single output pixel. This would be 

the case with some of the more complex interpolation methods that could be used 
in the registration algorithm. Here we can alleviate this concern through use of 

nearest-neighbour style interpolation, which is trivial to implement, just requiring a 

rounding of the desired pixel location to the nearest integer value. 
The system was implemented as an augmentation to the video processing demon- 

stration platform that had previously been developed (as described in Appendix G), 

and used a small amount of additional resources (see Appendix H, table 1). The 

algorithm is notable for being an example where model-based techniques are appli- 

cable for the mathematical operations, but hand-crafted VHDL and manual design 

techniques are required for system-level aspects such as the memory controller and 
interfaces. A system such as this cannot be wholly implemented in System Genera- 

tor, since the tool does not include support for bidirectional buses, an integral part 
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of a memory controller. The memory controller also includes some fairly complex 

control mechanisms, since it must detect whenever a memory row change is required 

and issue the necessary activate and precharge commands to the memory. 

The complexity of the memory controller and the necessity for bidirectional buses 

meant that a VHDL implementation of an FSM was necessary to perform this task. 

However the remaining parts of the design, the polynomial functions, are ideally 

suited to a System Generator implementation. This demonstrates how it can be 

beneficial to implement different parts of a design using the most appropriate tools; 

here the datapath elements are quickly and easily implemented in System Generator, 

but the control-dominant parts require different design methods. The memory con- 

troller state machine could alternatively have been constructed in one of the many 

commercial products that allow graphical design entry and automatic code genera- 

tion for state machines. This mixture of automated tools and hand-coded HDL will 

continue to be common when designing at a system level. 



Chapter 7 

Design Guidelines 

This chapter will attempt to crystallise some of the general design guidelines that 

came out of the research. Although these are not concrete design rules, they are 
intended to convey some of the experiences and findings of the research that may 

assist in future efforts to implement image and video processing algorithms on FPGA. 

7.1 Convolution 

Two-dimensional convolutions formed a substantial part of the outcomes of the 

research. The work on deconvolution required efficient implementations of large 

(11 x 11) convolutions to be found, and discussed how the separability of a kernel 

can be found using the singular value decomposition. 

When the kernel is fairly small (say 3x3 or 5x 5) and non-separable a direct 

implementation is most efficient, using n2 multiply and n2 -1 add operations, where 

n is the order of the filter. 

Small, separable kernels, such as Gaussian filters, can be separated into a single 

pair of orthogonal 1D filters. This reduces the number of multiply operations from 

n2 to 2n, and the number of add operations from n2 -1 to 2 (n - 1). 

Larger kernels that are also linear phase can use multistage separable filters to 

achieve a resource efficient implementation. Phase linearity, characterised by sym- 

metrical filter kernels, represents redundancy that can be avoided in hardware. The 

number of multiply operations required for a multistage separable filter is 2kn, and 
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the number of additions is 2k (n - 1), where k is the number of filter stages used. To 

keep the memory requirements down it is important that when several filter stages 

are used a single set of FIFO line-buffers is shared between all the vertical filters, as 

shown in Appendix H, figure 6. Further savings are also possible when accuracy can 

be sacrificed, as demonstrated in Appendix H, section 4.1. 

Linear phase 1D kernels can pre-add data that is to be multiplied by common 

coefficients (and thus reduce the number of multiply operations that are required), 
but care must be taken when inserting register delays to avoid long adder chains 

while still maintaining correct operation. 

Large filter kernels that are not linearly dependent are more suitable for imple- 

mentation using FFT methods. Although the memory requirements are significantly 

greater, the ease of performing a multiplication in the transform domain rather than 

a 2D convolution can result in overall savings in terms of resources and delay. 

7.2 Control- versus datapath-dominant code 

As has been described in section 6.1.4, whether a segment of code is primarily con- 

cerned with control or dataflow operations directly determines how effective and 

efficient a hardware implementation can be. Datapath-dominant algorithms map to 

hardware in an intuitive way, with spatial and temporal parallelism easy to identify 

and exploit. Control-dominant code does not map easily to the pipelined datapath 

structure favoured by high-speed FPGA designs. 

But how can control-dominant code be identified? Simple loops and branches 

are control-oriented elements that are common to the majority of high-level program 

code, but with careful manipulation based on techniques such as loop-unrolling these 

simple loops, even when nested quite deeply, can be removed. 

More problematic however are loops with non-static limits, which execute in 

a non-deterministic way, and cannot be easily represented by a regular hardware 

structure. Code that includes loops with non-static limits will cause problems with 

standard HDL design methods, and are especially unsuitable for tools such as System 

Generator. Use of finite-state machines, or possibly redesign of the algorithm, may be 
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necessary. The manual scheduling and allocation process described in this portfolio 

is one such method of proceeding with the implementation of an algorithm with 

complex control flow. Unfortunately FSM structures can become quite unwieldy 

and inflexible, and do not greatly benefit from the computational advantages offered 
by FPGAs. 

It is therefore suggested that during the algorithm design phase, loops with non- 

static limits are avoided if possible when a hardware implementation is to be at- 

tempted. Techniques such as recursion should also be avoided for similar reasons. 

7.3 Optimisations 

Several well-known optimisations used in software compilers are valuable tools for a 

hardware designer and should be applied where possible. Sometimes these optimi- 

sations may be applied by experienced hardware designers intuitively, but it may be 

useful to formally discuss them here. 

Loop unrolling has been mentioned above. Loops can either be unrolled tempo- 

rally or spatially, depending on the data-dependencies between the iterations: if an 

iteration relies on the previous one for data they can be implemented sequentially 

and pipelined (parallelised in time); if they are completely independent they can be 

implemented to run concurrently (parallelised in space). If a loop cannot be unrolled 

then it becomes necessary to run the hardware at a multiple of the data rate (for 

real-time operation). Trade-offs are often possible, for instance unroll half the loop 

iterations and run the design at twice the data rate if constraints prevent completely 

unrolling the loop. 

Common sub-expression elimination is another useful optimisation used in high- 

level compilers, where multiple expressions that produce an identical result are re- 

placed by a single variable. This can be combined with constant propagation, and 

usually results in simplification of computational steps in the algorithm. Situations 

where these techniques can be useful often occur when loops are unrolled. 
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7.4 General computation 

Complex mathematical operators must be handled effectively. Divide or square-root 

operations for instance use many resources and cause delay. In some circumstances it 

may be more effective to use look-up tables, as was the case with the implementation 

of the LRM algorithm described in detail in Appendix B. When using LUTs in this 

way there is a trade-off between the level of accuracy and the amount of memory 
that is consumed, but it is a useful technique when execution speed is paramount. 

Multiply operations are fairly well catered for on modern day FPGAs, but multi- 

plications by a constant can often be implemented with LUTs or alternatively using 
just shifts and adds, as used in Appendix B, section 4.3. This method was also used 
to avoid use of multiplies in the implementation of image fusion (Appendix F). As an 

example y=7.5x can be replaced by y= 8x - 0.5x, i. e. a single multiplication with 

a constant (7.5) is replaced by two binary shifts (with zero cost in hardware) and a 

subtraction. If dedicated multipliers are not available on the device this is likely to 

be a more efficient implementation. Formally, this is a use of canonical signed digit 

(CSD) representation. 
More obvious examples are issues such as using powers of two wherever possi- 

ble in an algorithm's design (for instance in the block sizes of the LRM algorithm, 
Appendix B), which tends to simplify hardware implementations. If efficient hard- 

ware implementations of algorithms are to be facilitated it is important that these 

considerations are made at an early stage in the design process. 



Chapter 8 

Conclusion 

Efficient implementation of behavioural algorithms in FPGA hardware is a topic of 

research and debate in both the academic and industrial communities. The EngD 

programme offers an excellent opportunity to approach the problem from both van- 

tage points simultaneously. The algorithms central to the business of Thales Op- 

tronics, primarily (but not limited to) image and video processing, present multiple 

challenges to the engineer wishing to utilise FPGAs to their fullest potential. 

This portfolio thesis began by introducing the state of modern FPGA technology 

and how recent developments are making FPGAs the platform of choice for many 
DSP applications, and in particular those of the defence market. The nature of 

video processing algorithms was then discussed, highlighting some of the operations 

common to the application domain such as two-dimensional convolutions, multiscale 

transforms, and interpolation. The need for video processing algorithms to process 
data temporally when there is limited storage capacity presents difficulties, and it is 

often the case that algorithms must be approached conceptually with this limitation 

in mind. 
The currently predominant method of designing firmware for FPGAs, hand-coded 

HDL at a structural level, was then looked at. Some of the problems of this approach, 

such as its requirement for the designer to have an intimate knowledge of the un- 
derlying hardware structures, prevent widespread adoption by many of the people 

who could benefit most from the capabilities FPGAs offer. The problems facing 

firmware designers in mapping behaviour onto FPGA resources was discussed, and 
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brief descriptions were given of some of the latest developments in EDA tools that 

have appeared to tackle this challenge. 
One of the problems facing Thales and other defence contractors in adopting 

new methodologies is that they must be able to support their products for a nominal 
lifespan of 25 years, a very substantial length of time given the rate of progress in 

the electronics industry. It is envisaged that languages such as VHDL and Verilog 

will continue to be supported (in some form) for this amount of time, but since 
this is less probable with many of the more esoteric languages that have been pro- 

posed in recent years the reaction to them in the defence industry has been muted. 
An approach that may lead to integration between disciplines is that demonstrated 

through languages such as SystemC. The ability to use this language for the whole 
design flow, from system-level specification through to hardware/software partition- 
ing, and subsequent implementation of both hardware and software, should not be 

overlooked. The foundation of SystemC, C++, is a proven language that already 
has a multitude of tools and development environments available. 

The practical phase of the research began with the implementation of the LRM 

contrast enhancement algorithm. This work demonstrated how algorithms may be 

characterised according to the nature of their execution flow, and the associated 

control/datapath model is a useful theoretical framework with which to approach an 

algorithm and understand the influences that will shape any hardware implementa- 

tion. While datapath-dominant algorithms are well suited to current hardware design 

tools and techniques, control-dominant algorithms such as the LRM algorithm of- 
ten cause problems. The research showed that in these circumstances use of the 

control/datapath model can reduce the open-endedness of the problem whilst still 

providing an efficient implementation. Use of an intermediary language, in this case 
ANSI C, allowed a formal progression to take place from the behavioural-level Mat- 

lab code to a structural style representable in the synthesisable subset of VHDL. This 

progression includes tasks that are well known from the field of synthesis, including 

loop unrolling, scheduling, and allocation. The resulting design is implemented as 

manually scheduled FSMs which, although time-consuming to design, are structures 
that should be familiar to most hardware engineers. The benefit of using C over 
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a HDL is that the model remains executable throughout, and therefore verification 

is much simpler than methods based on HDL simulators. The methodology is an 

example of model-based design within existing implementation flows. 

One of the key findings of this section of work was how there is a requirement for 

the designer to be aware of how code transformations may improve the suitability 

of an algorithm for hardware, including maximising opportunities for both spatially 

parallel and temporally parallel (pipelined) processing. This is particularly the case 

for any looping or vectorised instructions in the original description. FPGAs rely 

on exploitation of both types of parallelism to achieve performance gains, and so 

when undertaking manual behavioural synthesis in this way it is important that the 

appropriate transformations are employed where appropriate. 

This concept was illustrated by the implementation of Richardson-Lucy deconvo- 

lution, an algorithm that could naturally exploit both types of parallelism: spatially 

in the multistage FIR filters; and temporally in implementing successive iterations of 

the algorithm as a single pipeline. In doing so the algorithm also became a design that 

conformed to a datapath-dominant style, and as such was an example of a complex 

system that could be readily implemented using System Generator. In these circum- 

stances, the ability of System Generator to abstract away some low-level details and 

leave the behavioural design as a simple connection of blocks greatly speeds the work 

that would otherwise be done in hand-coded HDL. Tasks such as register retiming 

and fixed-point design are much simpler to perform in a graphical environment. 

Another feature of the Richardson-Lucy algorithm was the demonstration of mul- 

tistage separable filters as a very efficient means of implementing the large linear- 

phase two-dimensional convolutions that are common in the application domain. 

This is an example of the use of mathematical techniques to alter the format of 

the algorithm into something more suitable for hardware. Techniques such as this 

can provide huge benefits, but are something that often falls in-between the usual 

remits of both algorithm and hardware engineers. Usually, the algorithm engineers 

do not know enough about the underlying hardware to know whether a particular 

method is preferable, and the hardware engineers are wary of modifying algorithms 

that are presented to them for implementation. The division of responsibility be- 
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tween those who design the behaviour (typically systems or algorithm engineers) and 

those designing the corresponding structure (the hardware/firmware engineers) is a 

continuing problem. Given that each discipline will be using their own software tools 

and techniques, data representations, and verification strategies, it is clear that pro- 
ductivity will be less that optimal while this division between them exists. Software 

tools alone cannot solve this problem, and companies that wish to ease this process 

should look at closer integration between the two camps, or dedicated engineers that 

have knowledge of both fields. 

The implementation presented here of pyramidal image fusion provides an ex- 

ample of how an algorithm can be reconceptualised given an understanding of the 

underlying hardware. The implementation challenges the established method of per- 
forming multiscale image decompositions by utilising the insight gained from the 

control/datapath model. By making a conscious effort to remove complex control 
from the algorithm through manipulation of clock rates the resulting system is more 

effective for processing raster scan data and is consequently a more efficient design, 

which allows subsequent processing to be parallelised and therefore take advantage 

of the benefits FPGAs offer. 
The PID algorithm discussed here shows that FPGAs can be put to good use on 

other types of algorithms besides high-speed data processing. The work highlighted 

the need for careful understanding of issues such as fixed-point design and coefficient 

representation, but also demonstrates the flexibility of FPGA technology. When 

designing embedded systems integration of multiple functions onto a single device is 

desirable for a number of reasons, not least power savings and cost reduction. 
It is clear that the problem of implementing these algorithms in FPGAs is not 

going to be solved in the near future with a single solution. The tools available at the 

present time may assist in the process, but a fully-automated route from behaviour 

to structure is currently unfeasible. It is necessary to have sufficient understanding of 
the algorithms to be able to understand how combinations of the currently available 

tools may be employed to the greatest effect. The approach that is advocated here 

is the formulation of an informal knowledge base of techniques and solutions that 

can assist in future design efforts. The fact that many image processing algorithms 
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contain similar features, such as convolutions and interpolations, allows us to do 

this. In addition, the control/datapath model provides a theoretical justification 

as to why some algorithms can cause so much difficulty when forming a hardware 

realisation, and that, coupled with a full understanding of the available techniques, 

can successfully smooth the implementation process. 

8.1 Future direction 

The work covered in this EngD forms part of an ever changing environment, as new 

methodologies and design tools are released to tackle aspects of the implementation 

problem. As such there are always new tools that can be trialled for their suitability 

to some of the issues that have been highlighted. Work using System Generator has 

formed a significant part of this research, but there are competing products that have 

not been trialled in detail. The Accelchip environment is one such tool that shows 

much promise for the problems described here, as do the developments in design 

languages such as SystemC and SystemVerilog, and future work could take a closer 
look at the capabilities offered by these methodologies. It may also be beneficial to 

develop an IP library for environments such as System Generator that supplements 

its existing functionality and makes it more suitable for image and video processing. 

The practical work that has been carried out has enabled a number of design 

guidelines to be suggested that may improve the efficiency of future efforts to imple- 

ment image and video processing algorithms. Expansion of this work could either 

broaden the current guidelines to cover more aspects of the application domain, or 

use quantitative data to formalise the guidelines into more strict design rules. Both 

tactics would be likely to prove beneficial. 

One way in which the guidelines could be broadened would be to investigate an 

recurring feature of video processing algorithms that was only briefly covered here: 

interpolation. A good research topic would be to find efficient implementations of 

several interpolation algorithms and produce results comparing their effectiveness 

versus hardware costs. It would also be particularly beneficial to have a range of 
interpolation algorithms implemented as IP cores that could be inserted into a design 
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where needed. 
The manual process of scheduling and allocation presented here could be auto- 

mated in several ways. In particular the conversion of Matlab code to C is possible 

with in-built Matlab functions, and would take one of the manual stages out of the 

process. 

As a means of extending the work on Richardson-Lucy deconvolution it could 
be useful, given the computational expense of the algorithm, to trial other methods 

of removing blur from images. Benefit could be gained from producing definitive 

results quantifying the improvement offered by deconvolution methods compared 
to other methods of image sharpening. There are also algorithms for performing 
blind deconvolution, i. e. when the PSF is unknown, that would make good topics of 

research concerning their hardware implementation. 

The work on multiscale decompositions that formed part of the implementation 

of the pyramidal image fusion algorithm could also be extended in several ways. 
In particular, an expansion of the work on Gaussian pyramids to include the more 

general field of wavelet transforms could provide a source of commercially valuable 

research. 
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1 Introduction 

The drivers behind reconfigurable computing in the context of Thales Optronics' sys- 

tems are lower spares inventories through hardware reuse, increased functionality for 

a given amount of hardware meaning improvements in power and space consumption, 

and improved performance through the use of hardware tailored to the application. 
From a functional viewpoint, three levels of reconfiguration can be defined as follows: 

Theatre dependent 

The value of whole groups of algorithms may be largely dependent on the theatre 

of operation. For instance, contrast enhancement techniques may give significant 

benefits in a featureless landscape, but be less effective in an urban environment. 

Reprogramming time here is not an issue (within limits), and data storage is un- 

limited. Implementing reconfigurability in this context may simply be a case of 

exchanging a Flash memory module with the system powered down. 

Mission dependent 

Different missions within the same theatre will require different functionality, and 

consequently a range of algorithms will be selected for their suitability to a particular 

mission. Reprogramming will be performed before commencement of mission and 

will have low time and data constraints. 

Mode dependent 

Reconfiguration performed during operation, to select the required functionality as 

required. The speed of the reconfiguration should be as high as possible, in order to 

minimise downtime. Because of the time constraints and the need for the system to 

remain as operational as possible whilst reconfiguring, it is envisaged that dynamic 

partial reconfiguration will be the most suitable technique. 

FPGAs can be configured in a variety of ways, and since each of these timeframes 

for reconfiguration has different requirements in terms of speed and data, different 

styles of reconfiguration may be applicable depending on the context. 
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There exists a requirement for research to be carried out into the feasibility of 

developing a reconfigurable system that satisfies the requirements listed above. As a 

precursor to commencement of the research, a survey was carried out of the available 

literature for related applications and relevant technologies. 

This report details the findings of the survey, and is split into the following 

sections: Section 2 looks at similar applications of dynamically reconfigurable logic 

in the available literature. Section 3 gives an overview of programming methods of 
Xilinx FPGAs, and the configuration management solution, SystemACE. Section 4 

focuses on partial reconfiguration, including a section on the specific case of self- 

reconfiguration. Section 5 describes two of the CAD tools that support dynamic 

reconfiguration, and section 6 concludes the report. 

2 Background research 

A comprehensive survey of the available literature was carried out to cover previ- 

ous research in the areas of reprogrammable logic, reconfigurable image processors, 

and dynamic partial reconfiguration. Because of the inter-disciplinary nature of the 

subject, relevant articles have been found in a number of different sources ranging 
from computer science to electronic engineering and specialist reprogrammable logic 

publications. 

2.1 Fundamentals 

Excellent introductions to the architectures of FPGAs can be found, and although 

the technology has evolved rapidly in recent times, the descriptions of such matters 

as routing architectures and SRAM switches given in [1], [2], [3] are still relevant 

today. These papers also cover CPLDs and (E)EPROM type technologies. 

2.2 Applications 

The applicability of FPGAs to certain tasks is examined in several articles, and 

it is often concluded that FPGAs are most effective when applied to data-parallel 

applications, where a similar function must be carried out on large volumes of data, 
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leaving irregular calculations and complex control flow to regular microprocessors [1], 

[2], [4]. In this way the overhead for reprogramming the FPGA can be minimised 

and thus more easily amortised by the speedup due to hardware execution. This use 

of FPGAs as coprocessors to speed up simple, repetitive tasks is an area of active 

research, and explains the move by FPGA vendors to offer System on a Chip (SoC) 

devices comprising microprocessors embedded within reconfigurable logic arrays. 
Within the more specific field of video/image processing, early work presented in 

[5] demonstrates the advantages of a reconfigurable architecture over traditional DSP 

methods, with savings in hardware, power and board space. The system consists of 

those tasks that are required throughout being implemented in dedicated hardware, 

with a single reconfigurable device performing the processing of the image data. The 

use of a reconfigurable device allows for the creation of a more generalised platform 
for video processing, with application overlays implementing different algorithms as 

required. Although this was a board-level solution, many of the ideas presented 

remain relevant, particularly the discussion of the potential pitfalls arising from 

dynamic reconfiguration, with similar conclusions to those drawn in [6]. Here, the 

pitfalls are deemed problems of consistency, with lack of hardware consistency arising 
from dynamic reconfiguration defined within three categories. Port Contention is a 

single port being driven by two drivers due to an incorrect reconfiguration, Token 

Loss/Duplication is the breakdown in communication between static and dynamic 

portions of a device, and Device State Maintenance is the name given to the faults 

that occur when external hardware fails to recognise the change in the reconfigured 
device. The authors' solution to avoiding these problems is the creation of a design 

approach and execution environment that guards against such faults. An overview 

of the requirements for such a run-time environment is also given in [7], where the 

comparison is made to a real-time operating system (RTOS), with hardware objects 

analogous to software threads. This concept shows promise for the future effective 

management of reconfiguring systems, but is still a research area and not a feasible 

proposition without more specialised design tools. It should be noted that Xilinx 

recommend techniques for use with their partially reconfiguring devices that go some 

way towards preventing the problems described here [8]. 
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The application domain for the previous paper is automatic target recognition. 

This is a topic that has generated a degree of interest, and is pertinent to the applica- 

tion intended here. Early work in [9] implements an algorithm that compares regions 

of interest to target templates, and reports advantages of a single FPGA over several 

ASICs. This is largely due to the parallel execution of multiple templates on a sin- 

gle FPGA, and consequently the possibility of combining those with commonalities. 

This characteristic, when coupled with the ability to reconfigure the templates as 

required, make for a powerful system, although the authors also warn of the need to 

keep the reconfiguration overhead down to maximise performance. This is achieved 

either through maximising the use of each configuration (and thus minimising the 

occurrence of reconfiguration), or minimising the time the device is idle during re- 

configuration. (At the time the paper was written, dynamic partial reconfiguration 

was not a viable proposition. ) A related application is the subject of [10], this time 

for reconfigurable radar DSP. The system consists of a reconfigurable FIR filter made 

up of Multiply and Add Cells (MAC) with two banks of coefficients but only one 

being active at any one time. The other can be updated with new coefficients while 

the device remains active, and thus the switchover incurs no downtime. (The single 

bank alternative would leave the filter non-operational whilst the coefficients were 

being updated. ) Valid points are raised on the design choices required to imple- 

ment a distributed arithmetic structure such as a FIR filter on an FPGA; a more 

mathematical account of distributed arithmetic is given in [11]. Another paper that 

has a particularly relevant application area describes a system comprising a FPGA 

coupled with a DSP that can go from a power efficient monitoring mode to an image 

capture and tracking mode upon detection of a moving object, through reconfigura- 

tion of the hardware [12]. Although this paper discusses the partitioning aspects of 

a FPGA and DSP operating together, there is little discussion of the details of the 

reconfiguration process. In order to find such details, one needs to turn to papers 

concentrating on these aspects. 

A review of available (mostly coarse-grained) devices that support dynamic re- 

configurability and the methods of programming them is available in [13]. This covers 

devices from Xilinx, Lattice Semiconductors, Atmel, and Altera; although brief it 
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Device Total no. of 
configuration 
bits 

Approx. 
SelectMAP 
down- 
load time 
(50MHz) ms 

Approx. se- 
rial download 
time (50 
MHz) ms 

Approx. 
JTAG down- 
load time (33 
MHz) ms 

XC2VP2 1,305,440 3.3 26.1 39.6 
XC2VP4 3,006,560 7.5 60.1 91.1 
XC2VP7 4,485,472 11.2 89.7 135.9 
XC2VP20 8,214,624 20.5 164.3 248.9 
XC2VP30 11,589,984 29.0 231.8 351.2 
XC2VP40 15,868,256 39.7 317.4 480.9 
XC2VP50 19,021,408 47.6 380.4 576.4 
XC2VP70 26,099,040 65.3 522.0 790.9 
XC2VP100 34,292,832 85.7 685.9 1039.2 
XC2VP125 43,602,784 109.0 872.1 1321.3 

Table 1: Virtex-II Pro full bitstream lengths and programming times 

offers a good overview of the options available. Altera in particular offer the Stratix 

device with embedded DSP cores, which directly supports algorithm implementation 

from Matlab through Altera's tools. Other device architectures, such as Quicksil- 

ver's ACM [14] and XPP from PACT [15], that are currently in development are 

specifically designed to support DSP algorithms and dynamic reconfiguration, are 

programmable with high-level languages such as C, and offer extremely fast recon- 
figuration times. Research into these architectures was deemed beyond the scope of 
this investigation, but it is envisaged that they will play an important role in similar 

applications in the future. 

The following investigation of the technical aspects of FPGA configuration tech- 

niques focuses solely on the Xilinx Virtex range of devices, being the market leader 

with widespread availability and support for dynamic reconfiguration. 

3 Configuration 

3.1 Comparison of FPGA programming techniques 

There are broadly three ways to program a Xilinx FPGA [16]. Average times for all 
three methods are given in table 1. 
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Serial mode 

Serial mode operates by loading the configuration bitstream at one bit per cycle of 

the configuration clock (CCLK), and can be performed in both master and slave 

arrangements. Master mode implies that the FPGA generates CCLK and thus con- 

trols the configuration, usually interfacing with an external PROM. In Slave Serial 

mode an external device controls CCLK; this device could be a microprocessor or 

another FPGA where devices are arranged in a daisy-chained configuration. The 

main limitation is storage capacity; in Master Serial mode the device receives the 

bitstream from an array of PROMS, which is not feasible with limited board space. 
If the device is being configured in Slave Serial mode then the possibility exists of 
the driving device having access to external storage (on say a PCI bus), this however 

is slower and less efficient than the equivalent SelectMAP mode. 

SelectMAP mode 

SelectMAP is an 8-bit parallel bus interface to configure the FPGA, which can also 
be performed in both master and slave arrangements. As with serial configuration, 
Master SelectMAP is for use with a PROM device, where the FPGA being configured 

controls the configuration clock CCLK. Slave SelectMAP mode allows several devices 

to be configured by the driving logic from a single bus, using a chip select signal 
(CSB) to select the appropriate device. It is also possible to configure parallel de- 

vices simultaneously with the same bitstream. Slave SelectMAP is the most efficient 

way of a FPGA being configured by a microprocessor or another FPGA, although 
it would require the most complicated board-level routing. Slave SelectMAP mode 

also supports dynamic partial reconfiguration. The maximum configuration clock 

speed without handshaking is 50MHz, however through monitoring of the DONE 

signal higher speeds are attainable. The parallel nature of the SelectMAP arrange- 

ment allows a frill byte of data to be loaded every clock cycle, hence the advantage 

of SelectMAP mode lies in its speed, being the fastest of the three programming 

methods. 
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JTAG boundary scan mode 

Since it is presumed that the Boundary Scan chain will be in place for test purposes, 

this method is probably the least difficult to physically implement at the board level. 

The Boundary Scan standard allows custom instructions to be specified by the de- 

vice manufacturer in addition to the standard JTAG instructions; in this instance 

the capability is used to implement Configure and Verify instructions through the 

JTAG chain. By utilising these instructions, the FPGA can be configured by itself 

or as part of a multiple-device chain. The JTAG mode also allows for partial recon- 
figuration. The main drawback with this method is its inherent slowness, operating 

at a maximum speed of 33MHz and requiring several cycles through the TAP state 

machine for each instruction or data set entered [17]. This system is not reliant on 

PROMs, and potentially unlimited data storage can be utilised by the device driving 

the scan chain. 

3.2 Configuration management - System ACE 

System ACE is a pre-engineered solution for managing the configuration process and 

storage of configuration data for Xilinx FPGA devices. It comes in two main forms: 

MPM and CF. 

System ACE MPM 

System ACE MPM (Multi-Package Module) is described in [18]. It consists of three 

integrated components: the System ACE controller (itself a small FPGA), a PROM 

containing code to configure the controller at boot, and Flash memory to store 

the configuration bitstream for the target devices. This solution offers storage of 

up to eight designs within 64Mb of storage, and can configure four FPGAs either 

sequentially or in parallel. Unfortunately, since a mid-size Virtex-II uses around 

16Mb for a full configuration this capacity is a limitation when multiple bitstreams 

are required. System ACE MPM can program devices connected to it by either Slave 

Serial or Slave SelectMAP modes of configuration. The advantage of System ACE 

MPM lies in its size (just a single module) and potential speed benefits over the 
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alternative System ACE solution, System ACE CF. 

System ACE CF 

System ACE CF is a Compact Flash solution for FPGA configuration [19]. The in- 

terface of System ACE CF allows access to any standard Compact Flash module or 

IBM Microdrive, and allows up to 8Gb of storage to be used to potentially store an 

unlimited number of designs. It is designed for systems containing multiple reconfig- 

tiring FPGAs and offers a pre-engineered solution to such systems to fully conduct 

all (re)configurations. Configuration of target devices is carried out via the JTAG 

method of programming, as shown in figure 1. 

The main drawback is that the designs must be stored in groups of up to eight 
known as collections. Only one collection may be active at run-time and so the actual 

number of designs available for reconfiguration is limited to this amount. A file in 

the root of the filesystem (xilinx. sys) has a parameter used to determine the active 

collection, the correct design subdirectory is then selected either through dedicated 

pins or register bits. The xilinx. sys file is created during the programming of the 
Compact Flash card. 

The MPU interface is a microprocessor interface for controlling and monitoring 
the System ACE CF controller. This allows direct communication with the Compact 

Flash module and the FPGA device configuration chain, and consequently data 

can be used to configure the FPGA(s) that does not exist in the Compact Flash 

device. Through interaction with the System ACE controller, the MPU can initiate 

reconfigurations of the FPGA device. All communication by the MPU is via registers 

within the System ACE controller. Note that the MPU could be an embedded 
PowerPC processor within the FPGA fabric. A possible scenario would be to have 

System ACE configure an FPGA via the standard JTAG route at power up, and 

subsequently an embedded processor interfaces with the System ACE via the MPU 

interface to carry out further reconfigurations. 
Besides the Compact Flash and MPU interfaces, a further reconfiguration path 

exists via the Test JTAG interface, offering a source of data from devices further up 
the JTAG chain. The data can be routed directly through the System ACE controller 
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or around the boundary scan path if required. 
The Compact Flash solution fits in with the three timescales of reconfigurability 

raised previously, having a plug-in COTS Compact Flash module as the centralised 
data store for the FPGA configuration bitstreams which can be changed before the 
deployment of the system in the field. 

4 Partial reconfiguration 

The Xilinx Virtex family of devices support partial dynamic reconfiguration, making 
it possible to reprogram sections of them whilst they remain operational. This re- 

quires partitioning the functionality of the system into discrete blocks that are either 

static (required during all configurations and thus resident throughout) or dynamic 

(configured in or out of the array as required). This partitioning is an important 

step in the design process, maximisation of static circuitry will minimise configura- 
tion overheads by reducing the amount of the chip that is reconfigured. This will 

result in improved performance and a more favourable comparison to fixed hardware. 

As stated by Hadley and Hutchings [20] in their analysis of static/dynamic partition- 
ing, "The designer resorts to dynamic circuitry only when functional commonality 

cannot be found between configurations". 
The second important point to note about static circuitry on a dynamic array is 

the need for it to be grouped. By implementing all static circuitry in a similar area, 
this maximises free space for dynamic blocks. This will require manual intervention 
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during the design flow to ensure locations are constrained correctly. 
Further complications exist in Virtex devices, due to the way in which they are 

programmed. The smallest unit of configuration in a Virtex device is the frame, 48 of 

which make up a column of Configurable Logic Blocks (CLBs) [21). Although frames 

can be written to individually, a whole column must be reprogrammed in order to 

change the function of a CLB, which in effect makes the column the atomic unit of 

configuration. There are various types of column; the most common contains CLBs 

with IOBs at the top and bottom. Reconfiguration of the column will temporarily 

disable the IOBs within its boundaries. 

The columnar nature of reconfiguration may become a hindrance when the FPGA 

is acting as a System on Chip (SoC) with several different tasks executing concur- 

rently within the array. If tasks are positioned on the array such that they share 

columns, they cannot be individually reconfigured without causing disruption to the 

others. The most obvious method of overcoming this, by not placing multiple tasks 

within a single column, is inefficient of resources since a task must either use all 
logic within a column or else it is wasted. This problem is addressed by Carline and 
Coulton [22], who suggest that each task (or module) be comprised of three parts: 

a static section, a reconfigurable section, and a buffer. (The buffer section exists to 

hold input data during the time the reconfigurable section is being programmed. ) 

By having such a predefined structure for modules, it allows the static regions of 
different tasks to overlap in the vertical plane and their reconfigurable regions to be 

combined, reducing the inefficiency imposed by the columnar nature of the device. 

Figure 2 shows this diagrammatically. Both Module A and Module B have separate 
buffer (ABr and BBr) and static (AS and BS) regions. The section Rc contains the 

reconfigurable logic for both A and B, and any change to the functionality of A or 
B involves the reprogramming of this section only. 

This is a useful technique; sharing reconfigurable areas between tasks is necessary 

as failing to utilise a high proportion of the logic elements in a single column will 

not only waste resources but also ultimately limit design complexity. However, some 
drawbacks can be shown. Firstly, the technique depends on the modules within 

the device having clearly defined discrete static and dynamic functionalities. These 
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Module A 

Module B 

Figure 2: Column sharing modules with common reconfigurable area [22] 
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must be extracted from the requirements early in the design process, and the design 

must then be implemented accordingly. This will involve a great deal of manual 

intervention by the designer. Second, the technique is most suited to concurrently 

operating tasks that have no interdependence, i. e. operating on different sets of data. 

Tasks containing reconfigurahle elements that operate serially on a set of data will 

require a more complicated design. 

4.1 Partial reconfiguration sequence 

The configuration sequence involves reading and writing of various options and coin- 

mands, creating an overhead associated with each configuration. The bitstream 

sequence for executing a partial reconfiguration of a Xilinx Virtex-II is shown in 

table 2, with descriptions of the various commands available in [16]. 

This is the minimum number of operations required for reconfiguration of a sec- 

tion of the device. As shown, in addition to the configuration data itself there is an 

overhead of 20 words (640 bits) phis one frame's length of no-op (required to flush 

the internal configuration pipelines). Using this information, some approximate par- 

tial reconfiguration tines can he calculated, see table 3 and figure 3. It is worth 

noting that these times are idealistic and do not account for the overhead involved 

when writing to non-sequential addresses, which becomes an issue when the unusual 
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Packet Type Packet Contents 
Dummy Wore! 
S nchronisation Word 

Header Write to CMD 
Data RCRC 
Header Write to COR 

it W H d 
Data Config Ops 

e r ea er 
(13 Words) Header Write to IDCODE 

Data IDCODE 
Header Write to CMD 
Data WCFG 
Header Write to FAR 
Data Frame Address 
Header Write to FDRI 

Config Data Frames 

F t 1 _ 
CRC Value 

oo er 
(3 Words) Header write to CMD 

Data DGHIGH 
1 Frame of No-Op 

Header Write to CRC 
Footer 2 Data CRC Value 
(4 Words) Header Write to CMD 

Data DESYNCH 

Table 2: Partial reconfiguration sequence 
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Number of C Ion Büs 33MHz JTAG Download Time (a) MHz SalaotMAP Download Time (a 
No or Frames Frame Sias 10% 50% 100% 10% 50% 100% 10% 50% 100% 

XC2VP2 88 1472 131648 852736 1303 0.0040 0.0188 0.0394 0.0003 0.001 0.0033 
XC2VP30 1758 6592 1160832 5195008 11582784 0.0352 0.1756 0.3510 0.0029 0.0145 0.0280 
XC2VP125 3936 11072 4363008 21801408 43591104 0.1322 0.8806 1.3209 0.0109 0.0543 0.1090 

Table 3: Programming times of Virtex-II Pro for varying configuration loads 

addressing scheme of Virtex devices is considered. The start address of logic on a 
Virtex is in the centre of the device, addresses then alternate between the left and 

right sides, causing one side to have even addresses and the other odd. This creates 

an overhead in writes to the device as a single logic block on the FPGA may contain 

several columns, each of which must be individually addressed (an example of how 

the Virtex devices were not designed specifically for partial reconfiguration). 

4.2 Modular design flow for partial reconfiguration 

Dynamic partial reconfiguration is the process of reprogramming sections of the 

FPGA during execution, while other fixed sections are unaffected and remain opera- 



4. Partial reconfiguration 

Figure 3: SelectMAP programming times 
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tional. For a Virtex device this can be carried out in two ways: module based partial 

reconfiguration and small bit manipulation [8]. 

The small bit manipulation partial reconfiguration process involves making small 

changes to the configuration of a device, usually carried out by hand using a tool such 

as FPGA Editor. The reconfiguration bit-stream is simply the difference between 

the two configurations, and since this is typically small the reconfiguration process 

completes very quickly. This method requires hand crafting of the mapping and 

placement of the design and so is deemed too specialised for the intended application. 

Module based partial reconfiguration is the reprogramming of sections of the 

device, and is based around Xilinx's "Modular Design" flow [23]. These sections 

(known as modules) are of regular size and shape; their width always corresponds to 

a column edge, and they occupy the full height of the device. Any elements (such 

as Block RAM, IOBs and routing) contained within the boundaries of a module 

also need to be considered as hardware for reconfiguration. The routing acting as 

communication paths between a reconfigurable module and those around it must 

remain fixed. In order to facilitate communication between reconfigurable blocks, a 

technique known as a Bus Macro is used; this is a fixed routing bridge across the 

module boundaries. All modules making use of the bus macro must instantiate and 
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implement the bus macro routing channels accordingly. A separate bus macro must 
be instantiated for every four bits of inter-module communication. 

Data storage within the module will retain its contents between configurations. 
This may be of some advantage, but if not some means of re-initialising the memory 
is needed. The use of a global reset to do this is not possible, and each reconfigurable 

module must therefore have an individual user-defined reset capability in the HDL. 

The implementation of a partially reconfigurable design is as follows: The HDL 

code is written and synthesised to comply with the architectural constraints for 

reconfiguration. The HDL should be strictly written to hierarchical methodologies, 

with each module being a self-contained block with its own set of port declarations. 

All clock structures need to be implemented using global resources in order that 

they remain functional between configurations. Each module is then synthesised 
individually beginning with the top-level. Floorplanning is carried out to ensure that 

the modules fit into the boundaries defined earlier. At this point the design consists 

of an area-based floorplan, location constraints for bus macros and top-level logic, 

and global timing constraints. Following definition of any module-level constraints, 

a bitstream can be generated for each module. When these bitstreams are then 

combined into a complete FPGA design each module will retain its placement and 

routing structure. At least one assembly must be carried out with a configuration 

present for each module of the FPGA; this will then become the initial bitstream 

loaded into the device at boot up as a complete design. Designs after reconfiguration 

need not be assembled, however Xilinx recommend that every possible combination 

of static and reconfigurable blocks is assembled for visual inspection in order to detect 

any breach of design rules, and also for post-PAR simulation if required. 

4.3 Design considerations 

Protection against misconfiguration 

Damage can occur to an FPGA device if it is configured incorrectly through creation 

of excessively high currents. This can happen through configuration of inputs as 

outputs, possibly causing a conflict in logic levels between the device and whatever 
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it is connected to, or alternatively contentions can be created within the device 

by causing multiple logic blocks to drive the same routing resource simultaneously 
[241. In either case, a path for high currents is created and physical damage to 

the device can ensue. Normal configuration procedures for Xilinx devices prevent 

misconfiguration, firstly by checks performed by the programming software, and 

secondly through the use of the internal FPGA signal GHIGH. GHIGH holds the 

configuration logic in a shutdown state during programming, and does not release 

it until the configuration bitstream has been validated using a CRC at the end 

of transmission. However, if the device remains active throughout reconfiguration 
(active partial dynamic reconfiguration), an end of transmission CRC will not suffice 

and intermediary checks will be required, potentially after transmission of each frame 

(the smallest unit of reconfiguration) [25]. In [25], the solution to this problem is the 

creation of a block within the FPGA that performs the validation of the bitstream 

as it is presented to the configuration interface; if a CRC fails, the reconfiguration is 

aborted and the FPGA rebooted. 

Dual-function pins 

The three methods of configuring a FPGA each use varying numbers of pins, some 

dedicated to the configuration process whilst others double as I/O during the normal 

operation of the device. If these dual-fimction pins are required for I/O purposes, 

procedures must be in place to ensure that they are set to the required standard 

after configuration has taken place. Furthermore, in order to implement partial 

reconfiguration (using slave SelectMAP) the pins must be used as the configuration 

interface again, and hence two banks of I/O pins are unavailable during this time. 

This will have to be considered at design time. If the two banks are not required 

for I/O purposes during the normal execution of the system, then they can be set to 

retain their configuration function throughout. During configuration, all I/O banks 

are set for the LVTTL standard. JTAG inputs use dedicated pins and so the interface 

is always present, however TDO is sourced from V., which should be set according 

to the TDI of the subsequent device in the chain. 
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4.4 Self-reconfiguration 

A Virtex-II device may use an embedded PowerPC core (alternatively a "soft" Mi- 

croblaze Processor) for the configuration controller so the device is actively repro- 

gramming parts of itself, eliminating the need for external hardware. A particu- 
larly good overview of self-controlling dynamic configuration can be found in [25]; 

similar systems can also be found in more recent articles where it is termed self- 

reconfiguration [26], [27]. 

If the controller has access to a PCI bus through a core implemented on the 

FPGA fabric itself, a potentially unlimited amount of storage may be utilised for 

configuration data. A typical configuration sequence may involve the device being 

"booted" to initialise the PowerPC processor and PCI core using a full configura- 

tion stored on a PROM. Subsequent partial reconfigurations of the remaining FPGA 

fabric can then be performed as necessary with no external programming hardware. 

The method of loading the bootstrap code depends on how subsequent reconfigura- 

tions should be carried out. Two methodologies can be identified, configuration via 

JTAG or via the Virtex Internal Configuration Access Port (ICAP). 

Configuration via JTAG 

Figure 4 shows a method of using System ACE CF to boot the FPGA via the JTAG 

interface. A configuration controller, (here a PowerPC core within the FPGA) then 

controls the subsequent reconfigurations by drawing data from the PCI bus and 

writing it to the MPU interface of System ACE. System ACE will in turn process 

the data into the correct format for the programming logic of the FPGA and place 

it onto the JTAG chain for partial reconfiguration of the device. The FPGA is 

initiating the reconfigurations but requires external hardware, and is thus a self- 

controlling reconfigurable system. 

Configuration via SelectMAP/ICAP 

The second method requires System ACE MPM to boot the FPGA via the Se- 

lectMAP parallel interface, shown in figure 5. Subsequent partial reconfigurations 

are carried out completely within the FPGA through the ICAP interface, with con- 
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Figure 4: Partial reconfiguration via MPU interface to System ACE CF 

figuration data being retrieved from a storage device on the PCI bus. The ICAP 

is essentially a multiplexed connection to the SelectMAP interface, allowing an em- 
bedded PowerPC core to directly drive the configuration registers with no external 
hardware required, in essence self-reconfiguration as proposed in [25], [26], [27]. The 

ICAP interface consists of the standard SelectMAP signals of separate 8-bit data 

paths for reads and writes, write and chip enables, a busy signal, and clock input [25]. 

Because both the initial (full) configuration and further partial reconfigurations are 

carried out using SelectMAP parallel buses this method has significant performance 

gains over JTAG, but is also the most sophisticated to implement. 

Extensibility to dual FPGA system 

The benefit of both of these methods of self-reconfiguration is their extensibility to 

a dual FPGA system. Using the JTAG method, the extra FPGA simply requires 

access to the JTAG chain, all configurations and reconfigurations are then handled 

by the FPGA with access to the MPU interface. Using the ICAP interface the 

connections from System ACE are used to boot both FPGAs in parallel, they then 

both have embedded PowerPC and PCI cores with which they control their own 

reconfigurations independently. 
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5 CAD tools for dynamically reconfigurable logic 

The following section describes two alternatives to the Xilinx Modular Design flow 

for partial reconfiguration, Dynamic Circuit Switching and JBits. Each method has 

its own advantages and disadvantages, and should be selected according to its merits 

for a particular application. A third option, known as PARBIT, is not described 

here as it is deemed too specialised; further information can be found in [28]. 

5.1 Dynamic Circuit Switching 

Work carried out at the University of Strathclyde, Glasgow, on the subject of recon- 

figurable logic has largely concentrated on defining a CAD framework for dynamically 

reconfigurable systems. Lysaght & Stockwood [29] first proposed Dynamic Circuit 

Switching (DCS) in 1996 as a method of overcoming the additional complexity dy- 

namic reconfigurability introduces into the design cycle. Subsequent publications 

report extensions to handle new device architectures [30], [31]; the addition of new 

modules [32], [33]; and improved functionality [34], [35]. 

To model the reconfiguration process, four distinct steps are identified in order 

to prevent erroneous interactions between a reconfiguring block and those around it. 
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These are: 

1. Isolation of the array to be configured 

2. Loading of a default (safe) configuration 

3. Loading of the new configuration 

4. Reactivation of the block and the connections to its neighbours 

DCS works by allowing for identification of the dynamically reconfigurable com- 

ponents within a design and provides a means of specifying their behaviour that was 

previously unavailable. It does so in a way that allows integration with existing CAD 

systems without being dependent on proprietary features. 

In early versions of DCS each dynamic task is allocated a reconfiguration sched- 

ule consisting of five attributes that specify the task's dynamic behaviour, including 

the conditions that cause a reconfiguration to take place and the times taken for 

loading and removing the task. These attributes are either textual (as in VHDL 

attributes) or represented schematically. A netlist post-processor is then used to 

insert virtual components, known as isolation switches, at the inputs and outputs of 
dynamic tasks. These are controlled by Schedule Control Modules (SCMs), which 

detect the stimuli that trigger a reconfiguration and switch the affected block in/out 

of the system as appropriate. The SCMs also provide status signals to allow moni- 

toring of the condition of a reconfigurable block; i. e. whether it is active, inactive, or 

currently undergoing reconfiguration. The instability of a block undergoing reconfig- 

uration is represented for simulation purposes by the isolation switches propagating 

the unknown signal ̀ X' from the block's outputs. (The model of the isolation switch 

was later redefined by Robinson & Lysaght [36]. When the task to which it relates 
is active, the output of the switch is equal to its input. When the task is inactive, 

the output is `Z', the weakest signal in VHDL std-logic and thus overwritten by any 

other value. In this way the inactive task is `invisible' to those it drives. As before, 

the task drives `X' whilst in transition between the active and inactive states. ) 

Changes made by Robinson et al. in 1998 [32] include using a single file for the 

reconfiguration attributes, centralising the location of this information. This enables 
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HDL design to be used as the primary means of design entry, which encourages a 
hierarchical design approach to be taken. Other changes made are the introduction of 

a technique known as task grouping, and improved modelling of the reconfiguration 

port. Task grouping is applied where tasks are identified that share common logic 

but exist at different times due to reconfiguration. These groups, known as muter 
(mutually exclusive) groups, can be checked as possible causes of contention for 

resources. Improvements to the modelling of the reconfiguration port, so that only 

one task can access the port at any one time, were added for the case where several 

reconfigurations are taking place concurrently, thus requiring a form of arbitration 

mechanism. The system is scalable to simulate multiple reconfiguration ports if 

required. 
Also at this time two new modules were added: DCSEst and DCSTech, and the 

simulation aspect renamed to DCSim; the term DCS now covering the complete set 

of CAD tools for dynamically reconfigurable logic. DCSEst is a tool used to provide 

timing estimates that are back annotated into the original design; it can operate 

with design files at various stages of the design flow. DCSTech uses the information 

in the reconfiguration file to split the dynamically reconfigurable design into several 

static designs, making processing by technology dependent mapping tools possible. 

The output of DCSTech is a design file for each dynamically reconfigurable task 

within the system, plus an extra design file for all the static tasks. DCSTech handles 

dynamic tasks through the reservation of space for each mutex group, sufficient to 

cover all tasks within the group. 

In order to cope with different forms of configuration controller, another virtual 

component was added in the same year [341. Known as Task Status Registers (TSR), 

these are designed to give a generic interface to a controller regardless of its imple- 

mentation, and allow for standardisation of the connection to the isolation switches 

and the reconfiguration status of the task to be presented in a predefined format. 

DCSim can take advantage of this to perform analysis and aid in the verification of 

the dynamically reconfigurable aspects of the design. 

The DCS framework, in particular DCSTech, was extended in 2002 to cover the 

Xilinx Virtex devices. The complete design flow, from VHDL source to verification 
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and bitstream generation, can be achieved for a dynamically reconfigurable design, 

see figure 6. DCSTech takes as input a structural design, with dynamic tasks rep- 

resented as components, and a reconfiguration file describing the dynamic aspects. 
The resulting bitstreams represent each dynamic task plus the static tasks in the 

design. These must then be manually altered into valid partial bitstreams using a 

tool such as JBits (see below). 

The most recent developments to DCS came as a response to an alternative 

method of simulating dynamically reconfigurable logic published by Vasilko & Ca- 

banis [37]. Known as Clock Morphing, the technique has the ability to represent the 

internal state of synchronous elements during reconfiguration, although with defi- 

ciencies in other areas most notably its usage being restricted exclusively to VHDL. 

The solution proposed by Robertson et al. [35] is the usage of DCSim in conjunction 

with Clock Morphing to provide exhaustive simulation when it is required at the 

expense of portability. Improvements to DCSim were also made at this time in re- 

modelling the isolation switches as Dynamic Task Modellers (DTMs), and Dynamic 

Task Selectors (DTSs), effectively splitting the combined functions of the original 

switches. This change was made to ensure correct results in the special case of a 

static task being driven only by a dynamic task, thus having an invalid input of `Z' 

when that task was not present on the array. The DTS overcomes this by driving 

`X' when it receives only `Z' on its inputs. 

5.2 JBits 

The lack of high-level design tools for partially reconfiguring systems has prevented 

widespread use in commercial applications. The JBits API (Application Program- 

ming Interface) is an example of a lower-level tool that attempts to address this 

lack of appropriate techniques. JBits is a set of Java classes that can be used to 

create and manipulate the bitstream of a reconfigurable Xilinx FPGA [38]. Because 

of its nature as a library of precompiled classes it can be used within a user-defined 

environment, or integrated into a custom design tool, to perform operations at the 

bitstream level. The use of JBits is through function calls which operate on the 

bitstream through an interface as part of the API. 
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results 

Although it can he used as a means of generating a, complete configuration bit- 

stream for a Virtex device, its capacity to alter bitstreams created by standard tools 

offers the potential of working with more sophisticated designs. An intimate knowl- 

edge of the FPGA architecture is required in order to create bitstreams with JBits, 

since primitives must be manually instantiated and connected. Because the API 

operates at the downstream end of the toolchain, high quality designs are difficult 

to create, and the standard simulation/synthesis methods for HDL designs cannot 
be used. However, it is through modification of bitstreams that JBits can be used 

most effectively, as re-design at a low-level negates the need for high-level tools and 

the associated lengthy design flow when implementing a minor change. 

An extension to JBits to encompass features enabling partial dynamic reconfig- 

uration in Virtex devices is described in [39]. Known as JRTR, this adds additional 

function calls to the API that facilitate the creation of partial bitstreams. It does 

so through the use of a caching model that tracks changes to a bitstream stored in 

memory and outputs a partial bitstream consisting of just the sections required to 

reproduce those modifications on the device. The JBits function calls are still used to 

device 
bitstreams 

i 
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make the modifications, but on a bitstream that has been preloaded into the JRTR 

cache. 
Of the many publications reporting usage of JBits one of note, published by Dyer 

et al. (2002) [40], suggests a design flow that allows the designer to work at a higher 

level of abstraction. It does so by utilising standalone cores created using traditional 

industry-standard CAD tools; these cores comply with architectural constraints that 

allow them to be connected together with predefined connection structures. (This is 

similar in principle to the interconnection of IP blocks using `collars' in ASIC SoC 

design). The application consists of a CPU core and dynamically reconfigurable co- 

processor operating within the FPGA. These implement an audio decoder: the CPU 

unpacks data arriving over an ethernet connection, then passes it to the coprocessor 

which decodes the audio stream and sends to a D/A converter. Dynamic reconfigu- 

ration is used to allow different formats of audio encoding to be sent to the device, 

with the coprocessor reconfiguring to implement the various decoders as necessary. 
The CPU and coprocessor blocks are designed and synthesised using standard 

high-level CAD tools, then manually placed on to the FPGA and connected to- 

gether through a specially designed interface called a Virtual Socket, which acts as 

the boundary between static and dynamic portions of a design. A complete bitstream 

is produced using the normal Xilinx tools, which will implement the full configura- 

tion of the device. A secondary design can then be created for the coprocessor; its 

placement is constrained to connect to the Virtual Socket defined earlier. This is also 

implemented with the Xilinx tools into a full bitstream, but this is then operated on 

using a custom tool based on JBits named JBitsCopy, which can extract portions of 

a design from a configuration bitstream: here it is used to extract the bit sequence 

detailing the coprocessor. A standard JBits function is then used to merge this co- 

processor with the original full bitstream, creating a full bitstream with the second 

coprocessor and all the other components. Now two full bitstreams exist, having 

different coprocessors but identical in all other respects. These can be compared 

and the difference extracted to create a partial configuration that will implement the 

change in coprocessor while the remainder of the design remains active. 

Several difficulties exist that have prevented the widespread use of JBits. It 
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is still a tool in early stages of development, and an area of active research both 

in industry and academia. Because of this it is not supported by any high-level 

CAD tools, meaning that designs must be created through explicit statement of all 
details. Furthermore, a precise knowledge of the device architecture is needed in 

order to make manual changes. JBits does not support explicit definition of routing 

structures, so techniques must be adopted to constrain routing to certain areas (the 

above application uses feed-through components, simple elements that lock routing 

to a given point on the array). However JBits does show promise in the ability 
to automate certain aspects of reconfigurable design that have traditionally been 

done by hand, and offers the ability to develop architectures from within a software 

environment, which reduces the reliance on large CAD suites when making small 

changes to a design. 

6 Conclusions and further work 

The related applications that have been reported show that signal and image pro- 

cessing with dynamically reconfigurable FPGAs is an area of active research both in 

the industrial and academic worlds. However, the constraints imposed by the nature 

of the embedded systems Thales plans to implement, such as low size and low power 
for portability, alongside high performance, mean that no direct precedents exist. 

FPGA implementations of signal processing algorithms and dynamic reconfigu- 

ration are both fully developed fields in their own right. Add to this the low size 

constraint which makes self-controlling partial reconfiguration look necessary, and 

the need for design methodologies to be used which are at present underdeveloped, 

and it becomes clear that the proposed system will require a convergence of several 

research areas. 
F\irther research can be classified into three areas: 

Algorithm implementation 

How is an algorithm implemented in a predefined FPGA system with the minimum 

of manual intervention and hand crafting? Partial reconfiguration works best when 
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static functionality can be found between configurations, for which it will be neces- 

sary to find commonalities between algorithms. However, it should be possible to 

implement algorithms without the requirement for them to conform to a possibly 

restrictive preordained static framework. Therefore there is a trade-off between ease 

of algorithm implementation and system performance. This is further complicated 
by the introduction of "mostly static" blocks, a term introduced by Hadley and 
Hutchings [20], to describe functional blocks that share functionality but vary in 

some small way such as precision, or are architecturally equivalent but functionally 

different, for example a bit-serial adder and bit-serial subtractor. 

Qualitative assessments need to be made as to how this trade-off should be bal- 

anced. In the extreme case, perhaps all the functionality of an algorithm will be 

reconfigurable. If the reconfiguration mechanism provides the necessary performance 

to keep reconfiguration times reasonable, this will place fewer demands on the algo- 

rithm design. 

Self-controlling dynamic reconfiguration 

Two main problems exist that prevent the use of a more general system architecture. 
Firstly, the hardware and space restraints imposed by the nature of the application 

mean that having a dedicated configuration controller is unfeasible. Second, current 

methods of managing configurations rely on banks of PROMS, which is not feasible 

when a large amount of configuration data is required. Xilinx's System ACE CF is 

promising but has shortcomings both in the number of accessible designs and the fact 

that it uses the slow JTAG method of programming the FPGA. Until an effective 

configuration management solution exists that can accommodate more than eight 

designs over the SelectMAP interface, then storage of configuration data is also a 

system element that will require an innovative solution. 

A means of overcoming these problems through development of a self-controlling 

partially reconfiguring system has been suggested, implementing a PowerPC pro- 

cessor with PCI functionality and utilising the Virtex ICAP interface for efficient 

partial reconfiguration. Similar proposals made elsewhere [25], [26], [27], [40], do 

not incorporate the PCI interface, but theoretically it is possible. If this system was 
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developed, it would offer a solution that is extensible to multiple FPGA systems, has 

potentially unlimited storage capacity, and has high performance reconfigurations. 
Furthermore, all dynamic reconfiguration functionality would be software based, i. e. 

the program running on the PowerPC, and easily upgradeable. In this case, the boot 

code contains the system core functionality, and all image processing algorithms 

reside on the PCI device. 

There are potential drawbacks however. A self-controlling design will by defini- 

tion contain a mixture of static and dynamic tasks, requiring constrained placement 

within the design. Also, problems can arise due to the fact that having separate con- 

trollers for initial programming and subsequent reprogramming mean that two con- 

trollers exist in the system. One example is the possibility of the initial programming 

device prematurely losing control of the configuration process due to contention [27]. 

These problems may be solved with careful design; however the deciding factor for 

self-reconfiguring designs may be the device utilisation after the processor, ICAP, and 
PCI core and any other reconfiguration control modules have been instantiated. If a 
large portion of the device is taken up by the reconfiguration mechanism alone, and 

this is required for each FPGA in the system, it would make more sense to centralise it 

to a dedicated device (board space permitting), and have all configurations performed 

over the more traditional SelectMAP method. 

Design flow 

Well established design tools and methodologies for specification and verification 

of dynamically reconfigurable systems do not exist at present. It is envisaged that 

thorough and comprehensive testing and verification will be required of a commercial 

system. However the tools available all have associated advantages and disadvan- 

tages, and further research and experimentation may be required before a design 

methodology can be chosen. The modular design flow, advocated by Xilinx, allows 
for simulation of individual modules within the larger design, but cannot model the 

reconfiguration process itself. DCS allows for such simulation within a comprehen- 

sive design flow, with support for other high-level analysis tools, but does not as yet 

support the latest devices. JBits bypasses the need for high-level tools by operating 
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directly on the bitstream, but requires high skill levels and custom software to be 

utilised. 

Hardware/Software partitioning 

Hardware/Software co-design is envisaged to be a key problem in the design of the 

system, particularly one that controls its own reconfigurations. For instance, a self- 

reconfiguring device will require decisions to be made as to how much of the config- 

uration controller will be implemented in the hardware of the FPGA fabric, or as 

software executing on the embedded processor. Reconfiguration performance may 
dictate a hardware approach, but high device utilisation levels could mean a soft- 

ware approach is necessary to ensure sufficient free resources for data processing 

requirements. Many similar situations may become evident during development of 

the system. 

Future work 

The research carried out so far has highlighted the number of considerations involved 

in the development of the intended system. The results of this work show that a 

self-reconfiguring system looks to be the most likely direction for success, due to 

it implementing the required functionality with minimum external hardware. Fu- 

ture research intends to develop a prototype of a self-reconfiguring device, for which 

possible solutions to the issues described above can be assessed. 
An FPGA incorporating PowerPC, PCI, and ICAP should be developed, initially 

using the Xilinx Modular Design technique (JBits and DCS can be experimented with 
later). Configuration control can initially be implemented in software, with subse- 

quent mapping to hardware of critical functions for improved performance. Decisions 

can then be made regarding the viability of such an approach in the context of a 

commercial system. A secondary avenue of work should focus on FPGA implementa- 

tions of DSP algorithms, aiming at reducing the amount of manual intervention and 

creating a design technique that considers dynamic reconfiguration as a property of 
the algorithm. The convergence of these two research areas will be the final stage in 

the development of the intended system. 
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1 Introduction 

The benefits of executing algorithms on FPGAs rather than general-purpose proces- 

sors are well known. However the implementation process requires specialist experi- 

ence and skills, and is largely a manual procedure despite the prevalence of highly 

sophisticated CAD tools. In many situations bespoke solutions must be created for 

each algorithm, and the number of implementation decisions involved means that a 

large design space must be explored. Key decisions must be taken involving fixed- 

point representations, area/speed trade-offs, memory requirements etc., and it is not 

always clear when the optimal solution has been found. Because a sub-optimal de- 

sign may negate the performance benefits resulting from the use of FPGA technology 

the realisation process may take in the order of months to complete. 

In general terms the process of transforming a behavioural view of a system into 

a structural one is known as behavioural synthesis. Although a language such as 

VHDL contains the necessary constructs to describe both behaviour and structure, 

the limited subset of VHDL that is synthesisable makes it unwieldy for algorithm 

design. Algorithms are usually developed in a high-level language such as C or Mat- 

lab. Matlab is the language of choice for algorithm designers as it offers sophisticated 

analysis techniques and a wide range of powerful operators that can handle a variety 

of data formats. Some instructions are at a very high level, for instance `, fi`t', which 

cause several problems when designing hardware. Often these relate to the use of 

matrices, which are ideal for image operations and allow powerful techniques to be 

utilised in just a few commands, but in hardware terms these may require several 

levels of branching and looping constructs. The advantages of designing algorithms 

at a raised level of abstraction are thus negated by the difficulties involved in realising 

them in hardware. 

The following work demonstrates a methodology for transforming a typical image- 

processing algorithm from a high-level language into a synthesisable register transfer- 

level (RTL) model in a hardware design language (HDL) such as VHDL or Verilog, 

which may then be used directly in the production of hardware. The methodology 

is repeatable, and produces a single purpose custom processor that conforms to a 

well-known paradigm. The method uses C as an intermediate language in which 
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the transformation from behavioural-level Matlab code to structural-level HDL can 

take place in clearly defined stages. It is envisaged that by utilising a repeatable 

methodology the design process will become more tractable, and as the difficulties 

faced during the process become common to many algorithms the time to complete 

a design will shorten. There are also some issues that were encountered, such as the 

best methods of performing complex calculations and error modelling, that may be 

common to the implementation process of many algorithms. Some example solutions 

to problems of this nature are also demonstrated here. 

2 Target algorithm 

The algorithm being implemented is the Local Range Modification method of con- 

trast enhancement, developed by Fahnestock & Schowengerdt [1]. This algorithm 

implements a standard linear stretch of the contrast at each pixel, however it does 

so using parameters that are derived from within the pixel's locality and not over 

the image as a whole. In this way the algorithm is adaptive to regional variations in 

contrast levels. 

The algorithm operates by first subdividing the image into adjoining blocks. The 

performance of the algorithm is highly dependent on the size of block used: too 

small a block means that insignificant detail may be highlighted, whereas too large 

a block reduces the overall level of enhancement. The calculation required for each 

pixel varies with its location within a block, and the resulting value is dependent 

on not only the contrast range of the containing block but also of those blocks that 

surround it. The initial phase of the algorithm defines the block boundaries, and 
finds local minimum and maximum pixel values within each block. At the corner of 

each block exists a node, and a node may have associated with it one, two or four 

neighbouring blocks (figure 1). An image with MXN blocks will therefore have 

(M + 1) x (N + 1) nodes. The second phase of the algorithm uses the block maxima 

and minima to find node maxima and minima. The minimum and maximum at each 

node is found from the neighbouring blocks, this equates to using overlapping blocks 

of twice the width and height of the original partitions. 
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Figure 1: Partitioning of input image into blocks and nodes for LRM contrast en- 
hancement. 

Once this data is obtained, a maximum and minimum value for each pixel can be 

found by a bilinear interpolation of the node values. For example, the following two 

calculations give the range of output for a pixel in the upper left block of figure 1. 

Outmin 

outmax 

+ 

LMmn5 +( 
XXý1 

Mini) 
(Y_ ) 

x [Min6+(\ 

X 
xx x/ Minzý Y 

= 
[Max5 

+(X X 
x) MaxiJ 

\Yý, 
y/ 

+ 
[Max6 

+ 
(X_ x) Max2] y 

(la) 

(lb) 

Where x and y give the pixel locations within each block, and X and Y give the 

block size in each direction. The desired pixel value is then found by a linear stretch: 

in - outmi, 
out = outmý - out 

x 255 
mi. 

(2) 

The algorithm is ideally suited to a hardware rather than software implementation, 

as although mathematically fairly simplistic (the most computationally difficult stage 

being the several divide operations of the bilinear interpolation) it has a significant 
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throughput requirement. Two passes through the image data are required, once to 

find the minimum and maximum values for each block and then a second time to 

perform the stretch. Hence the algorithm must operate at a high speed to achieve 

satisfactory frame rates, and increasing its efficiency was a key consideration during 

implementation. The algorithm also requires substantial amounts of intermediate 

storage for block and node data, and optimisations were sought here also. 
In an attempt to decrease the potential latency of the algorithm, efforts were 

made to reduce the complexity of the calculations involved. It can be shown that by 

placing certain constraints on the algorithm's operation it may be made more suitable 

for hardware implementation. Firstly, by forcing the blocks to be square, the number 

of divide operations may be reduced. In the original algorithm description both the 

horizontal and vertical block dimension are parameterisable, however non-square 

blocks would conceivably only be useful in very limited circumstances, and removing 

them greatly simplifies the calculations. 

The effects of this constraint may be shown mathematically. A sample of the 

bilinear interpolation calculation is: 

[xMin5 + (X - x) Min, ] (X - y) + [xMin6 + (X - x) Mine] y 
outs;,, = Xz 

(3) 

This has the effect of reducing the number of divides from six to one. Since a 
divide operation in hardware is expensive in terms of gates and delay, this results in 

substantial savings in hardware terms. If the block size is then further constrained 

to be a power of two the single division may now be accomplished by a right binary 

shift of 2x loge (block size) places. 
Another feature of the original algorithm was its ability to handle images that 

contained a non integer number of blocks. The final row and column was thus likely 

to contain blocks that were a different size to the majority within the frame, causing 

the calculations to vary depending on the current block's relative position. However, 

by introducing a further constraint that requires the image to contain an integer 

multiple of blocks all blocks are guaranteed to be same size. Although this is a more 

restrictive constraint the savings in hardware complexity are significant due to the 
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computations being identical regardless of block position. 

3 Implementation process 

As an intermediate step between the Matlab original and synthesisable VHDL the 

algorithm was ported to ANSI C. This was done with the aim of creating an adapt- 

able model in a language that shares features with both Matlab and VHDL. C was 
chosen due to its flexibility and the availability of the GNU C compiler (GCC) and 
debugger (GDB), both of which are freely available and fully featured. Using C al- 
lows a progression to take place between the original model and the desired hardware 

description. The C code at any given stage represents an executable specification 

of the design. Because the model is executable, testing can be performed after each 
revision, using the original test cases applied to the Matlab algorithm. In this way 
errors introduced during the conversion process are not only quantifiable but may 
also be pinpointed to specific changes made. 

The initial C implementation was functionally an exact copy of the Matlab M_ 

code, but several syntactical changes had to be made to support Matlab instructions 

that do not have a direct C equivalent. For instance, in Matlab the maximum value 

of an array of any dimension may be found simply using `max(array name)'. In C 

this requires nested for loops (a level per array dimension), and temporary storage 
for the current maximum. A further problem exists due to Matlab not requiring 

variables to be declared before use, their size and type instead being inferred at run 

time. In C all variables must be declared before use, and therefore some analysis was 

required to determine the necessary details. Although in this instance this task was 

performed by hand, options exist to insert commands into the Matlab M-file to report 

the size and type of variables after use (using the size command for instance). This 

is an issue covered by the MATCH compiler (now commercially known as Accelchip), 

where annotations are inserted into the Matlab code and are used to instruct the 

compiler on the storage required [2]. 

Once the C version of the M-code algorithm is functionally identical to the orig- 
inal, testing may be performed on both versions to ensure their equivalence. By 
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writing the output of the C algorithm to file the output data may be loaded back 

into Matlab to take advantage of the rich analysis environment. This C code is 

denoted Version 1 and any changes that are subsequently made en-route to VHDL 

are given a new version number. By comparing the operation of a given version 

with that of its predecessor a traceable route from Matlab to VHDL is available, 

and the degree of conformance may be quantified. If unacceptable levels of error 

are introduced between two versions, then it is clear where and how the errors are 

occurring. 

The purpose of the transformation process is to develop a route from Matlab 

equivalent C, to C that can be mapped to VHDL with the minimum of difficulty. 

Although less abstract than Matlab, C is still classed as a high-level language, and 

so in order to represent VHDL a coding style and subset of commands are adopted. 
It is the inherent flexibility of C that allows it to bridge the gap between high and 
low-level designs, or, more generally, the transformation from behaviour to structure. 
Whilst the C language contains both high and low-level constructs, the obvious and 

most fundamental difference between C and VHDL is that C is sequential, whereas 
VHDL models concurrent processes. The method of overcoming this problem used in 

several commercial behavioural synthesis tools is the use of non-ANSI C extensions, 
for example the Handel-C language used by Celoxica [3]. The method presented here 

allows for representation of concurrency in standard C. 

3.1 Scheduling and allocation 

By adopting a specific coding style, it is possible to introduce a suggestion of struc- 

ture and concurrency into the standard C language. Scheduling and Allocation 

is a technique used in high-level synthesis to transform HDL from a behavioural 

representation to a structural one. The resulting hardware represents a custom sin- 

gle purpose processor, which conforms to the Finite State Machine with Datapath 

(FSMD) model [4]. Here the technique is adapted to apply to an algorithm described 

using a high-level language. Scheduling and allocation models hardware by splitting 

the original code into discrete time steps (scheduling), and then determining the 

best hardware usage in order to meet design constraints (allocation). These con- 
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straints may be in the form of minimum performance requirements or limitations in 

the amount of discrete hardware elements that are available. To perform the same 

process in a high-level language, statements present in the original description are 

grouped according to their data dependencies, and control signals are then gener- 

ated to trigger the activation of these groups as appropriate. The mechanism used 
to generate these control signals takes the form of a finite state machine. 

As an example, consider the C code fragment in program 1. This implements 

three simple assignment statements. It is clear that the order of execution of the 

statements is crucial in obtaining a correct output. This may be scheduled as shown 

in program 2. Here, the code has been implemented using two case statements. The 

upper one is the control mechanism, designated the control path, which produces 

the control signals necessary to correctly sequence the instructions contained in the 

lower case statement, the data path. A new variable called state has been introduced 

which represents the control signals between the two parts of the program. There 

are two points worthy of note. Firstly, the allocation of assignment statements to 

case numbers is arbitrary, as it is the control path code that defines the order of 

execution and not their position in the code. Second, the control path has two states 

where no datapath activity is scheduled, state 0 and state 4, which represent a reset 

state and halt state respectively. The halt state is implemented by simply causing 

execution to loop back on itself with no corresponding datapath instruction. 

Program 1 Basic sequential function. 
void sequential() 
{ 

x= a+b; 
y=a-b; 
z=x*y; 

} 

An impression of concurrency may now be introduced into the code. From in- 

spection of the original sequential code fragment, the assignments to x and y may 
be executed in any order without affecting the outcome of the program. These 

statements may therefore be scheduled to occur during the same time step. The 

assignment to z is dependent on the values of x and y and so must occur after their 
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Program 2 Sequential function with separate control and datapath structures. 
void scheduled() 
{ 

state = 0; 
do{ 

//Control Path 
switch(state){ 

case 0: 
state = 1; 
break; 

case 1: 
state = 2; 
break; 

case 2: 
state = 3; 
break; 

case 3: 
state = 4; 
break; 

case 4: 
state = 4; 
break; 

} 

//Data Path 
switch(state){ 

case 1: 
x=a+b; 
break; 

case 2: 
y=a -b; 
break; 

case 3: 
z=x *y; 
break; 
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} 
}while(1==1); 

} 
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assignment has taken place, on the next time step. This is shown in program 3. The 

assignments to x and y can now be considered to occur in parallel, and the number 

of control states is thus reduced accordingly. 

Program 3 Independent datapath states are combined to suggest concurrency. 
void scheduled() 
{ 

state = 0; 
do{ 

//Control Path 
switch(state){ 

case 0: 
state = 1; 
break; 

case 1: 
state = 2; 
break; 

case 2: 
state = 3; 
break; 

case 3: 
state = 3; 
break; 

} 

//Data Path 
switch(state){ 

case 1: 
x=a+b; 
y=a -b; 
break; 

case 2: 
z=x*y; 
break; 

} 
}while(1==1); 

} 

The examples shown so far have been purely sequential, and have contained no 

complex control constructs. However, most programs contain loops and conditionals, 

and these require more sophisticated techniques in the interaction between the con- 

trol and datapath sections. As an example consider the code fragment in program 4. 

This simply assigns to z the greater of a or b. A choice must be made as to which 
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Program 4 Basic function with branching execution flow. 

void sequential() 
{ 

if (a>b) 

z=a; 
else 

z=b; 
} 

path through the code should be taken in order to affect the correct assignment. 
This requires translation to retain the correct operation of the if construct but still 

conform to the syntax of the switch constructs that make up the control and data 

segments. Hence an extra flag variable is required to communicate the outcome of 
the relational operator between the control and data paths. The control path then 

uses this flag to decide on the correct datapath instruction to execute. The scheduled 

version of this code may be seen in program 5. Here, the Boolean variable aflag 
is set during state 1 according to the outcome of the test a>b. The control path 
then sets the next state to either 2 or 3 as necessary. Control from state 2 will pass 

next to state 4, missing the unwanted assignment in state 3. Loops may also be 

implemented in a similar fashion, with a loop index being explicitly incremented in 

the data path. The flag is set before the end of the loop by testing whether this 

index has reached the desired value, and the control path uses this flag to decide 

whether execution should return to the beginning of the loop or exit by continuing 

to the subsequent state. (In order to correctly create the necessary indices and flags 

it is useful to transform all loops in the original code to `while' loops. This has no 
loss of functionality if performed correctly. ) 

The control and data paths can now be split into separate functions, which will 
become standalone VHDL modules. The variables that are local to each function 

represent internal signals, those variables that are passed between the control and 
data paths, such as flags and state information, are global and are instantiated in 

the top level of the VHDL hierarchy. Using these techniques, complex programs may 

thus be written in a style that exhibits both structural and behavioural information. 

Figure 2 shows a block diagram representation of how the completed code example 
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Program 5 Branching function with separate control and datapath. 

void scheduled() 
{ 

state = 0; 
do{ 

//Control Path 
switch(state){ 

case 0: 
state = 1; 
break; 

case 1: 
if (flag) 

state = 2; 
else 

state = 3; 
break; 

case 2: 
state = 4; 
break; 

case 3: 
state = 4; 
break; 

case 4: 
state =4 

} 

} 

//Data Path 
switch(state){ 

case 1: 
flag = (a>b); 
break; 

case 2: 
z=a; 
break; 

case 3: 
z=b; 
break; 

} 

}while(1-=1); 
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of program 6 maps to structural hardware with implicit hierarchy. From this stage 

the translation to VHDL is fairly trivial, as there is a direct mapping between the 
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instructions used in C and those available in synthesisable VHDL. (There may be a 

slight change in format or syntax, for instance switch statements are known as case 
in VHDL and do not require break instructions on each branch. ) 

Writing code in this way can be viewed in hardware terms as a custom, single- 

purpose processing unit. In this sense, the state variable passed from the control path 

to the data path represents the instruction to be executed. The FSMD model can 
be considered as universal, in that it may represent all designs [4]. The relative sizes 

of the control and datapaths are directly representative of the type of application. 
Control oriented applications will have a large control path, whereas data processing 

applications will be datapath dominant. 

Main 

Control Path 

State 

Flags 
Data Path 

Z 

Figure 2: Block diagram of program 6. 

4 Implementation details 

4.1 Intermediate storage 

The algorithm requires four arrays of data to store Block Min, Block Max, Node Min, 

and Node Max values. The sizes of these arrays are obviously dependent on the size 

of the input image and the block size. In the worst case, with a maximum image size 

of 640 x 480 elements and using 8x8 blocks, there will be 80 x 60 = 4800 blocks 

and 81 x 61 = 4941 nodes. These arrays will store 8-bit pixel values. In the original 
Matlab description the arrays were two-dimensional to correspond spatially to the 
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Program 6 Branching program with control and datapath implemented as separate 
functions. 
void scheduled() 
int controlpath(int state, boolean flag) 
{ 

} 

switch(state){ 
case 0: 

state = 1; 
break; 

case 1: 
if (flag) 

state = 2; 
else 

state = 3; 
break; 

case 2: 
state = 4; 
break; 

case 3: 
state = 4; 
break; 

case 4: 
state = 4; 

} 
return(state); 

void datapath(int state, int a, int b, int z, boolean flag) 
{ 

switch(state){ 
case 1: 

flag = (a>b) ; 
break; 

case 2: 
z=a; 
break; 

case 3: 
z=b; 
break; 

} 
} 

continued... 
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Program 6 Branching program with control and datapath implemented as separate 
fiinctions (cont. ) 
void main() 
{ 

//These are internal signals 
int state = 0; 
boolean flag; 

//These represent ports to outside world 
int a, b; 
int z; 

while(state<4) 
{ 

state = controlpath(state, flag); 
datapath(state, a, b, z, flag); 

} 

} 

input image. Although modern synthesis tools support multidimensional arrays it 

is not always apparent what form the resulting hardware will take, whereas single 

dimensioned arrays can be equated to blocks of memory with linear addressing. Of 

course, in making this modification, changes also had to be made to the calculations 

that provide indices into these arrays. These changes to the algorithm were fully 

tested during the C stage of the implementation process. 

The process of determining node data requires the algorithm to select from a 

node's surrounding blocks the maximum and minimum values. The number of blocks 

that are connected to a node differs depending on its position within the image. 

There are therefore three stages to be completed: firstly the algorithm must decide 

whether or not a block exists in a certain direction from the node, then the block's 

corresponding address must be calculated, and finally the block data is retrieved 
from memory. This must happen for all four possible locations that a block may 

exist in relation to a node: above left, above right, below left, and below right. 

In order to make the process more deterministic and simplify the resulting hard- 

ware, the sequence of instructions was made identical for each block position re- 

gardless of whether a block exists there or not. The reasoning behind this lies in 

the difficulty in scheduling the varying number of instructions required to select a 
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Figure 3: Flags indicating a particular block is at the edge of the image cause a 
dummy value to be addressed. 

maximum or minimum value from one, two or four possibilities. A simpler solution 
is to supply dummy values for those positions where blocks do not exist, and pro- 

viding appropriate dummy values are selected they will always be overwritten later 

by valid data. (When finding the maximum value, a dummy value of zero will be 

overwritten by any other data. Similarly a value of 255 will be overwritten when 
finding a minimum). The problem is then always one of finding the maximum or 

minimum value from four possibilities. 
In order to supply the dummy values to the program they are stored in an extra 

location at the end of the memory space reserved for block data. An address is now 

calculated for each of the four locations surrounding a node. If a block does not exist 
in a certain location, then the predefined constant address MAX-BLOCK-ADDRESS 

is placed on the address lines, otherwise the row and column indices are used to find 

the actual block address. The resulting hardware can be seen in figure 3. The signals 
Flag A and Flag B represent the Boolean operators used to signify the beginning/end 

of a row/column. This information can be used to ascertain the presence of a block 

in a given direction from a node. 
The memory blocks to store the block and node data were generated using Xilinx's 

Core Generator tool, which allows for manual instantiation of parameterisable cores 
for the Xilinx FPGA devices. The addition of the dummy value to the Block Min 

and Max storage means that MxN+1 locations are now required, where M is the 

number of blocks in the horizontal direction, and N is the number of blocks in the 

vertical direction. This equates to 4801 locations for 80 x 60 blocks. The storage 
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generated was thus two single port RAMs for the block data, at 4801 x8 bits, and 

two single port RAMs for the node data, at 4941 x8 bits. 

During core generation initialisation files may be specified for memory blocks, 

which contain the data that the memory contents will default to at power-lip. Using 

this facility the dummy value in the final location of the Block Min memory was set 

to 255, and all other locations were set to zero. The dummy value for Block Max 

is zero and so the whole memory may be initialised to this value. This initialisation 

data is incorporated into the netlists generated by Core Generator and will be read 

into the tools used during the generation of the FPGA programming bitstream. 

4.2 Bilinear interpolation calculation 

Using the modified version of the bilinear interpolation equation of equation 3, the 

calculation may be analysed to determine the best fixed-point representation of the 

resulting data. The coefficients used during the calculation all represent node data. 

In the worst case, these values will all equal 255 = Maxim,.. Therefore: 

[xMaxm,., + (X - x) Max�. ��] (X - y) + [xMax. + (X - x) Maxma, ý] y outmax = x2 

X Maxm�. (X - y) +X Maxm. y 
Dutmax = X2 

nrni. t---- = 
X 2Max.. 

. -Mb-X X2 
outmax = Max. 

(4) 

This indicates that when the coefficients are equal the output will match this value. 

Hence the linear ranges of outm and outman are equal to that of the image data, i. e. 

8-bit. 

The divide operation is a source of difficulty in implementing the algorithm in 

hardware. In this case, because the block size has been previously constrained to 

be a power of 2, the division may be performed by a right binary shift, which will 
incur a loss of accuracy in the value as digits are discarded. Therefore as a means 

of preserving accuracy in this value the shifting operation is not performed yet but 

the binary representation is changed; in effect the theoretical binary point is moved 
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log2(X2) = 21og2(X) places to the left. Now no bits are discarded, and therefore the 

error of this value compared to the Matlab original is zero. 
The number of bits required to represent outmax and outmti, is now dependent 

on the block size. There are 8 bits for the integer part and 21og2(X) bits for the 

fractional part, and hence in total 8+ 2log2X bits are required. For example, when 

using 32 x 32 element blocks 18 bits are required, of which 10 bits make up the 

fractional part. 

4.3 Contrast stretch calculation 

The contrast stretch is performed using equation 2. As shown in Section 4.2 outmax 

and outman refer to greyscale data, and after re-scaling the denominator of this expres- 

sion will always equate to a value between 1 and 255. Because of the difficulties in 

implementing divide operations and the abundance of on-chip memory on the target 

device, it was decided that a lookup table of the reciprocals of integers in this range 

would be the best method of performing this calculation. The representation chosen 
for the reciprocal data was 18Q18 (an 18 bit word of 18 binary places). Spreadsheet 

analysis revealed this to possess a maximum representation error of 0.09%, which 

was deemed sufficiently accurate whilst making optimal use of the 18 x 18 bit dedi- 

cated multipliers present on the target device. The look-up table was implemented 

as a 255 x 18 Single Port Block ROM, generated using Core Generator. A text file 

containing the reciprocals of the integers from 1 to 255 scaled by 218 was used as 
input to Core Generator to correctly initialise the memory. 

Using a look-up table of reciprocals introduces error into the system because 

only a limited number of reciprocals are stored, which means that it is important 

the most appropriate value is selected. The reciprocal is chosen based on the result 

of outmax - outman after re-scaling back to the 0- 255 range. The re-scaling process 

was originally performed by truncation of the fractional part. This results in a loss 

of accuracy as follows: 

The precision being discarded is 21og2(X) bits, where X represents the block size 
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being used. The linear range of the fractional part is thus: 

LRfr,,, = 221og2(X) 

LRfrac = 21og2(X) X 21og2(X) 

LRfrac = X2 

(5) 

The smallest value that may be represented is therefore -17. The maximum error 

occurs when these bits are all I before being discarded. In this situation the resulting 
integer has a maximum absolute error of: 

MaxErrort,,,, = 
X2-1 

(s) X2 

Using actual figures demonstrates this more intuitively. For example, when using 
16 x 16 element blocks there are eight bits of precision that are discarded. The 

maximum error occurs when these bits are all 1, which is equivalent to 162-1 = 255 in 
decimal. Because these bits represent the fractional part of the result, the maximum 

absolute error is 255/256, or approximately 0.996. Truncation means that the error 

will always be negative as the fractional part is simply discarded. This value for 

maximum error is consistent throughout the 8-bit greyscale range and is insignificant 

at high greyscale values, but in relative terms it has a greater effect when the integer 

part is small. 
Initial results gained from the algorithm showed that this error became unaccept- 

able when the whole part of out., - outmm is of low magnitude, which occurs when 

outma,, is approximately equal to outm;,,, i. e. when the local minima and maxima are 

closely bound. This is an indicator of areas of very low dynamic range. It therefore 

follows that the accuracy of the VHDL system compared to the Matlab equivalent 
is directly related to the contrast of the input image. 

To decrease the error that is introduced at this stage the truncation operation 
described above was replaced by rounding, which resulted in significant observable 
improvements. In general terms, rounding means that if the fractional part is greater 
than 0.5 the least significant digit of the integer part is incremented. This is imple- 

mented practically by adding 1 to the MSB of the fractional part before it is dis- 
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carded. Because the MSB of the fractional part is now taken into consideration, the 

number of bits being discarded is 21092(X) - 1. The discarded linear range is thus: 

LRfrac = 221og2(X)-1 

21092(X) x 210g2(X) LRfrac =2 
X2 

LRf,. ac =2 

The maximum error is now: 

XZ 

MaxError, ý�a = 
2X2 

Continuing the example of 16 x 16 element blocks, the expression for MaxError 

evaluates to 127/256 (or approximately 0.496). This can be seen more intuitively 

by considering that now only seven of the eight bits that constitute the fractional 

part are discarded without consideration. It is important to note that although 

the maximum error is halved, it also becomes bipolar in that it may be positive or 

negative. The effect of rounding is not to decrease the total range of error, but to 

shift it so that it is roughly symmetrical around the integer. 

This expression indicates that the error introduced into the system before the 

selection of an integer reciprocal value is a slowly changing function of block size, 

and when rounding is used its magnitude is always less than 0.5. Since this is the 

denominator of the stretch expression it may cause significant errors in the output 

when the integer part is small. For instance compare the relative error between 1 

and 1.5 (33%) to that between 250 and 250.5 (around 0.001%). 

From the fixed-point analysis above, it was found that the out,,,,. and outmin 

values have 2x log2(BlockSize) binary places. This is then multiplied by the recip- 

rocal data to give a value that has 2x log2(BlockSize) + 18 binary places. The final 

stage of the calculation is to multiply by 255, then discard 2x log2(BlockSize) + 18 

bits of precision. Let the result of the reciprocal multiplication be X, and the excess 
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Figure 4: Overview of LRM design with FSMD structure. 

precision p. Then: 

out _ 
255X 

out = 

2P 
256X X 

2P 2p 
Xx 

out = 2(P-8) -- 

out= X»(p-8)-X»p 

Where the » symbol denotes a right binary shift. Since a shift in hardware is easily 
implemented by slicing the bit array (and has zero cost in terms of gates), the final 

calculation has been reduced to the reciprocal multiply and a subtraction. 

4.4 Design structure 

The block diagram of the top-level design may be seen in figure 4, and figure 5 

uses a timing diagram to display the relationship between the Control and Datapath 

sections. The Start signal is used to initiate processing of image data. The current 

state of Control represents the next state of the Datapath, or using the custom 

processor paradigm, the current state of the Control function represents the next 
instruction to be executed. 
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Figure 5: Timing diagram shows relationship between control and datapath elements 
of the design. 

5 Verification and results 

5.1 Methodology 

Testing was first carried out on the Control module using a simple test bench that 

provided the clock and reset signals and simulated the flag signals from the datapath, 

then through monitoring of the control path's state output the design could be 

verified. Rather than write a testbench specifically for the datapath it was decided 

to write the top-level module, integrate the control and datapath blocks, and develop 

a testbench for the whole system. This decision was made on the basis that much of 
the signal generation that would be required of a datapath testbench already existed 
in the form of the verified control path, and the top-level module contains no logic 

so any errors in the functionality could be traced directly to the datapath. 

Testing of the completed design was carried out using real image data. The 

image processing toolbox of Matlab provides capabilities for working with images as 

ordinary matrices, and so the manipulation and analysis of images is straightforward. 
Images may also be imported from recognised file formats such as JPEG and GIF, or 

read in as data from text files. Using these facilities a test procedure was developed 

that allowed the VHDL design to be tested alongside the original Matlab algorithm 

using real image data. 

After an image has been imported into Matlab it is resized to fit into the 256 x 240 

element input memory of the VHDL design. (This image size is purposefully small 
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to keep simulation times down during early `proof-of-concept' testing. ) Resizing an 

image may be performed in two ways: by simply removing columns and/or vectors 

from the matrix; or by the Matlab function imresize which uses interpolation to resize 

the image. In practise a mixture of these two methods was used: imresize was used 

first to reduce the overall image to approximately the correct size whilst retaining the 

original aspect ratio, then columns and/or vectors were removed to alter the aspect 

ratio to that of the target memory. Resizing the images in this manner minimises 

distortion. Once resized, the images were imported into the VHDL design by using 

a simple Matlab function that was developed to write matrices to a text file, in a 

format that could be read by Modelsim's Memory Editor. As part of the VHDL 

testbench two RAMs were instantiated to act as input and output image storage. 

Because the testbench is not synthesisable this can be done without details of the 

available memory on the target system. 

Upon completion of the Modelsim simulation, the Memory Editor was used to 

write the contents of the output frame store to a text file, which was then imported 

as matrix data into Matlab. A custom function is then used to reshape the matrix 

to the correct dimensions (required since Modelsim writes out Memory data as a 

vector), and cast the data values as image data. During this process the data is not 

affected in any way. 
In order to create a benchmark against which the Modelsim output may be 

gauged the test image was also processed by the original Matlab version of the LRM 

algorithm. An ideal implementation would have zero difference between the VHDL 

and Matlab outputs. 

5.2 Analysis 

The initial test image was chosen from those supplied with the Matlab image pro- 

cessing toolbox as a good example of an image with poor contrast, and with several 
details that may be highlighted by the algorithm. The image is shown in figure 6. 

The image was applied to both versions of the LRM algorithm using 16 x 16 

element blocks. Figure 7 and figure 8 show the corresponding output images from the 

VHDL and Matlab methods of implementation respectively. To the human eye the 
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Figure 6: Original test image with poor contrast. 

images appear nearly identical. A difference image between the two implementations 

is shown in figure 9 (for ease of presentation the image has been inverted and scaled 

to use the full greyscale range). 

Greyscale images of the type used here may be easily assessed in the frequency 

domain using the imhist function of the image processing toolbox, which produces 

a histogram of the image data using a default of 256 bins representing each possible 

greyscale value. Figure 10 shows the histogram of the test image. The poor contrast, 

of the image is reflected in the close proximity of the two peaks (which represent 

the mean values of the image subject and the background), and the narrow range of 

intensities that have a non-zero number of elements indicates a low dynamic range. 

The corresponding histograms from the enhanced images are shown in figure 11 

(VHDL) and figure 12 (Matlab). 

The improvements to the image's contrast and dynamic range are clearly visible 

in both cases. (In some ways the enhanced images have a contrast that is now too 

high, shown by the skew of the background mean towards dark pixel values. ) Of 

more interest is the similarity of the methods, although the VHDL enhancement has 

resulted in a more jagged curve. The smoother curve of the Matlab approach is 

evidence of a more even distribution, which in turn would suggest that the resulting 

image has more gradual transitions between light and dark areas. In practise it 

is difficult to detect this difference visually. It is also worth noting that although 
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Figure 7: Test image after processing by V1IDL implementation. 

Figure 8: Test image after processing by Mailab implementation. 
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Figure 9: Difference image between Matlab and VHDL implementations. 
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Figure 10: Brightness histogram of original image. 
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Figure 11: Histogram of test image after procesing by VHDL implementation. 
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Figure 12: Histogram of test image after procesing by Matlab implementation. 
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Test image 
SAD 

40684 
MSE 

1.0784 

Table 1: Sum of absolute difference (SAD) and mean squared error (MSE) metrics 
between VHDL and Matlab implementations. 

both the enhanced images exhibit the classic bimodal distribution the peaks are 

considerably less pronounced than the image before enhancement, an effect probably 

caused by the increased number of edges between light and dark areas in the image. 

(Of course, since the number of pixels in the image remains fixed the envelope curve 

of the histogram must contain the same area both before and after enhancement. If 

the number of edges between the foreground and background mean values increases, 

the mean values themselves must be represented by a lower number of pixels. Hence 

the peaks are less distinct as they are ̀ absorbed' into the rest of the curve. ) 

Considering the images as matrices enables further mathematical analysis of the 
degree of conformity between the VHDL and Matlab results, which can be gauged in 

several ways. Two such ways will be considered here, both of which are derived from 

the mathematical difference between the two matrices found by simply subtracting 

one from the other. In order to do this in Matlab either the data must be recast 
into double precision format, or the function imabsdiff may be used, which will 

automatically subtract one image from the other on an element-by-element basis 

and return a matrix of absolute differences between corresponding elements. This 

matrix is then used to generate two measures of conformity, mean squared error 
(MSE), and sum of absolute difference (SAD), presented in table 1. Although the 

SAD may seem a large figure, it is spread over 61440 pixels, and equates to a mean 

absolute error per pixel of 0.66. 

Figure 13 shows a histogram of error values between the VHDL and Matlab 

versions of the algorithm. 87% of pixels are within ±1 greyscale value. Overall, 

there is a negative bias to the error, meaning that the VHDL output may appear 

slightly darker than the Matlab equivalent. 



5. Verification and results 161 

{ .202d 
Eitor 

6 

Figure 13: Histogram of error values between the images of figures 7 and 8. 

5.3 Results over other images 

The above tests were carried out on five images, with four of the five being examples of 

typical images (consisting of foreground and background areas) with poor contrast. 

The final image was artificially created in order to test the limits of the system 

by exploiting the known source of error: the reciprocal selection. This image was 

designed to have exceedingly low contrast and dynamic range, and was generated 

in Matlab as a matrix of elements all equal to 127 before application of zero mean 

Gaussian noise of low variance. The resulting image had mean value 127, maximum 

value 137 and minimum 115, providing the low input range necessary to amplify 

relative error. These results show that in this situation the SAD is 241330, which 

equates to a mean error per pixel of around 3.9. Although less than ideal, this 

artificially poor input image results in a VHDL output that is a fair approximation 

of the floating point Matlab equivalent. The resulting measures of conformance from 

all five images are shown in table 2. 

These measurements of error between the Matlab and VHDL representations are 

in some cases fairly large. The source of the discrepancies can be pinpointed to the 

reciprocal selection. A discussion of ways to improve the accuracy of the design may 

be found in the conclusion. 
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SAD MSE 
Pout 40684 1.0784 
Road 80426 3.0333 
Scene 43439 1.6315 
Face 123101 8.8303 
Worst case 241330 24.73 

Table 2: Error metrics over 5 test images. 

6 Conclusion 
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The work presented here demonstrates an effective method of realising high-level de- 

scriptions of algorithms in hardware. The scheduling and allocation method allows 
the sequential programming paradigm to be used as the basis for hardware design, 
but still leverage parallelism of execution where it is possible. The resulting FSMD 

model may be applied universally to implement any hardware-design. It is a frame- 

work that is repeatable across different forms of algorithm and allows a consistent 
approach to be taken, using well-known and understood techniques. In most cases 
this improved tractability will drastically shorten the time take to realise algorithms 
in hardware. The main problem then becomes one of optimisation, as without it 
the resulting implementation may not be adequately efficient. The main areas for 

optimisation lie in optimising for speed by identifying the interdependencies between 

variables that prevent parallel execution of statements, and optimising for hardware 

cost by sequencing instructions to share functional units within the datapath. 

In addition to using scheduling and allocation several hardware based techniques 

were used that facilitated the hardware design and allowed an assessment of the error 

within the system to be made. Although the way in which these techniques were 
applied here is specialised to this particular algorithm, the concepts may be used in a 
more general sense with whole classes of algorithms. For instance, careful application 

of constraints on an algorithm's parameters may greatly reduce the mathematical 
burden placed on the hardware. 

In the case of the LRM algorithm, it was shown that the error of intermediate 

values could be virtually eliminated through careful manipulation of the fixed-point 

representation. In fact, had the interpolation division been implemented using a true 
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hardware divider the total error throughout the system would have been arbitrarily 

small and a function of the time allowed for calculating precision. In this application 

a look-up table of reciprocals was used instead to improve the speed of the system. 

The error introduced by the reciprocal multiply is caused not by the reciprocal 

storage or representation, but rather through the limited quantity of reciprocal values 

available, and therefore to reduce this error a larger look-up table containing a greater 

number of reciprocal values would be necessary. By doubling the number of available 

reciprocals and continuing to use rounding instead of truncation the representation 

error before the divide could be halved. In terms of hardware cost this would require 

an increase in reciprocal memory from 255 x 18 bits to 511 x 18 bits or a further 

4.5Kb, which is minimal in terms of memory available on the target device. Each 

doubling of the number of reciprocals would halve the representation error before 

the divide, and therefore this represents a trade-off between accuracy and memory 

requirements. 

When working with digital greyscale images the designer often has a measure of 

leeway, as inputs are usually integer values, and unless non-integer coefficients are in- 

troduced or divide operations are used then the data will remain as integers through- 

out the algorithm. Furthermore, the accuracy of the output is usually only required 

to the nearest integer. In these situations, providing fixed-point representations are 

used correctly, the need for floating-point arithmetic is greatly exaggerated. This 

is particularly true in the domain of FPGAs, where the constraints of fixed register 

sizes and word lengths are not present. In this work the fixed-point representations 

were largely determined by the nature of the algorithm itself, however this is not 

always possible and often requires some experimentation to find the best solution. 
Matlab may be useful in these circumstances as it contains functions such as ̀ quan- 

tizer' which allow fixed point representations to be easily specified and applied to 

groups of data. The effects of changing these representations may then be easily 

observed, which promotes experimentation at the Matlab level before following the 

scheduling and allocation route. 

The often-stated difficulty in high-level synthesis is that the time it takes to 

follow the design flow prevents the subtle experimentation that is required to find 
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the optimum solution. This problem may be lessened by using a form of coding 

that promotes a repeatable design flow between the high-level algorithm develop- 

ment language and the HDL RTL, and thus bridges the gap between behaviour and 

structure. 
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Summary: A period of approximately three months was spent learning the System 

Generator tool and how it could be of use to Thales for implementing image process- 
ing algorithms. The work was based on the LRM method of contrast enhancement 

that had been previously implemented in hardware using hand-coded methods. Since 

the time of writing this report some of the features and capabilities of System Gen- 

erator have changed, however many of the general conclusions presented here remain 

valid. 
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1 Introduction 

System Generator [1] is a set of libraries for Mathworks' Simulink that offers the abil- 
ity to model Xilinx FPGA hardware within the Simulink environment. In essence the 

libraries are simulation models of the IP cores available in Core Generator, the Xilinx 

tool for IP parameterisation and generation within traditional Hardware Design Lan- 

guage (HDL) synthesis design flows. The System Generator design flow reduces the 

need for manually crafted HDL, and the graphical design environment allows blocks 

to be connected together in a block diagram style, before the tool automatically 

generates the HDL for synthesis. The tool also includes some advanced simulation 

options such as hardware co-simulation and an interface to Mentor's Modelsim HDL 

simulator for incorporating System Generator's output within a larger design. 

The process of realising a sophisticated algorithm in hardware may often be a 

more difficult and time-consuming process than the algorithm development itself. 

Furthermore, the algorithm's effectiveness may be diminished by hardware related 
issues, for instance quantisation effects. It may therefore be assumed that if the pro- 

cess of realising an algorithm in hardware is eased, the level of abstraction is raised, 

and the designer's efforts may be redirected towards performance and efficiency re- 
lated issues. 

The algorithm to be implemented is the Local Range Modification (LRM) method 

of contrast enhancement, developed by Fahnestock & Schowengerdt [2]. This algo- 

rithm was successfully demonstrated on FPGA hardware in an earlier project, after 
following a traditional hand-coded route through the implementation tools. The 

demonstration system also included clock management and composite video gener- 

ation. The aim of the work with System Generator is to replace the original imple- 

mentation of LRM with a version created with System Generator, whilst maintaining 

the same system framework, in order to demonstrate the functional equivalence of 
the two methods. It is important to note that the purpose of this work is not to 

assess the performance or efficiency of the product of a particular means of imple- 

mentation, but rather to examine the difficulties faced by the designer during the 

implementation process. For this reason attempts were made to maintain similari- 

ties between the demonstration systems, and focus purely on the subject of design 
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realisation. 

2 System Generator capabilities 

2.1 Design features 

The following are some of the features of the Simulink and System Generator envi- 

ronment that are used in the creation of a hardware design. 

Xilinx Blockset 

The libraries provided by System Generator contain the functions that may be later 

converted to hardware. There are two libraries of cores, named the Xilinx Blockset 

and Xilinx Reference Blockset. The standard Blockset contains mostly basic oper- 

ators such as arithmetic, logic, and memory (RAMs, ROMs, and FIFOs of various 
types), and some common DSP functions such as Fast Fourier Transform or FIR 

filters. There are also some more sophisticated blocks such as a `soft' processor and 

microcontroller (Microblaze and Picoblaze respectively), convolution encoder, time 

division multiplexer, etc. The Reference Blockset contains some more abstract func- 

tions, such as a more varied range of filtering options (including a basic 2D filter for 

imaging applications), CORDIC processing, and both Mealy and Moore type state 

machines. 

Hierarchical design methodology 

The Simulink environment is tailored towards hierarchical design methods. Subsys- 

tems are used to encapsulate lower levels of hierarchy, which may then be instantiated 

as often as required in the wider system. This is closely related to the way in which 
hardware is traditionally designed and promotes both efficiency and lucidity; it is 

especially useful in this environment as large Simulink designs may become cluttered 

and difficult to understand. 
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Handling of fixed-point representations 

Deciding on the best representation of analogue data within the digital system is 

often one of the most difficult and skilled tasks facing the designer, and also one 

of the main factors in the effectiveness of the completed design. System Generator 

contains several components that aim to make this process easier. The conversion of 
floating-point data from the outside world into the fixed-point representation used 
by the system is handled through the use of `Gateway' ports, which correspond to 

Input/Output Blocks (IOB) on the FPGA. These ports are parameterisable: the 

user may choose the total number of bits to be used in the representation, the 

number of binary places, and the format (i. e. unsigned, 2's complement, or Boolean). 

Because the parameters are easily adjustable, the designer may evaluate the effect of 

using different representations simply by making the alteration and re-simulating the 

design. Special blocks that measure the error due to quantisation are available to be 

inserted into a design at any point and help to assess the effects of different binary 

representations on the accuracy of the system. Because it is not always apparent how 

the design is affected by representation error before implementation in hardware, the 

ability to model the quantisation process in the simulation environment is one of the 

key strengths of using System Generator. 

M-Code blocks 

M-Code is the Matlab programming language used to sequence multiple commands 

to create fully featured functions or scripts. Because Matlab contains many high- 

level commands, particularly related to matrix and vector operations, it is a powerful 

language for algorithm design and as such M-files are a common algorithm repre- 

sentation. It would therefore be highly desirable if it was possible to synthesise 

hardware directly from M-code, and a great deal of effort is directed towards this 

cause in the wider research community. At present System Generator offers limited 

support for synthesis of M-code. The mechanism for implementing M-code is the 

M-Code Block, basically a block that has associated with it an M-file. The block 

automatically adopts the correct number of inputs and outputs depending on the 

parameters of its M-file, and so represents the custom Matlab function within the 
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Simulink environment. 
The limitations of the M-code block stem from the way in which it is handled 

during the generation phase. The hardware resulting from such a block may form 

combinatorial logic only, which means that the function may only contain conditional 

and logical operators and simple arithmetic functions. Sequential logic cannot be 

generated, and this removes the possibility of using any type of looping or waiting 

constructs. 

One use of the M-code blocks is in the implementation of the state transition 

function of a Finite State Machine (FSM), which is basically a set of conditional 

assigns. Most of the other capabilities of the M-code block are made redundant by 

the functions represented in the block libraries. It is hoped that the capabilities of 

this block will increase in future versions of the software. 

2.2 Simulation capabilities 

One of the strengths of the System Generator design flow is the rich set of simulation 

tools provided by Simulink that may be used in analysis of the design. In particular 

the possible signal sources, which include periodic signals, ramps, steps, and random 

noise, are all easy to generate and offer a level of sophistication not easily achieved 

using traditional HDL techniques. It is also possible to import data from Matlab 

in real time, and export outputs back to Matlab for analysis. This readily allows 

for examination of a Simulink design using Matlab's abundant analysis capabilities, 

and gives the designer a convenient but powerful way of comparing an algorithm's 
System Generator implementation against the original model. 

When simulating a System Generator design before generation it is necessary 

to draw comparisons with the equivalent simulation environment for a HDL flow, 

i. e. using a HDL simulator such as Modelsim. Modelsim is more powerful and 

offers a greater degree of control to the user, however the nature of Simulink means 

that it is much simpler to generate stimuli and process the results. Nevertheless, 

there are some features of Modelsim that would assist in Simulink simulations, such 

as viewing of the contents of RAM blocks during simulation; being able to work 

more closely with waveforms using cursors and search functions; and the ability 
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to force signals to a desired value during the simulation. Many of the standard 
features of HDL simulators are unavailable or implemented differently, the net result 
is that functional verification of a design and fault diagnosis may be more difficult in 

Simulink, particularly for those engineers accustomed to HDL testbench methods. 
Of course Modelsim may be used later after generation of HDL, but any alterations to 

the design's function would almost certainly need to be carried out back in Simulink. 

This iterative approach may be time consuming, and would possibly lead to the 

adoption of incremental synthesis methods. 
Another potential problem discovered during the implementation of the LRM 

algorithm was that simulation of large designs required considerable amounts of 

computing resources or would otherwise execute extremely slowly. This is a pretty 

unavoidable consequence of modelling such complexity, but with some models con- 

taining hundreds of blocks it can become necessary to use high-powered computers, 

or resort to using a modular approach to verification where individual subsystems 

are verified functionally correct before incorporation into the larger model. 

2.3 Generation 

Once the design is complete and functionally correct, System Generator offers several 

methods of progressing towards realisation in hardware. 

" HDL generation, where VHDL or Verilog is generated as connected instantia- 

tions of the Xilinx cores. 

" NGC Netlist, which generates HDL then automatically links to a synthesis tool 

to produce a netlist-level output. 

" Bitstream, which takes the design to the FPGA programming stage, possible 

when the entire design is modelled in System Generator. 

" EDK Export, for importing the design into an embedded system built using 

the Xilinx EDK tool. 

" Hardware Co-simulation, which allows simulation of the System Generator 

design in FPGA hardware using Modelsim for providing stimuli and displaying 
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the results, and Simulink to provide the interface with the hardware. 

The System Generator flow integrates seamlessly into the implementation tool 

chain. When generating HDL all the necessary VHDL or Verilog files are produced, 

along with testbenches, timing constraint files, ISE project files, and netlists for the 

Xilinx IF. When synthesis is also carried out as part of the generation process a 

script is automatically generated which contains the necessary commands to identify 

the design files, apply the necessary constraints, and perform the synthesis. Upon 

execution of the script the synthesis tool will produce a netlist without manual 
intervention by the user. 

Post-generation verification 

As part of the generation process the System Generator design is simulated, during 

which time the value of the inputs and outputs at each time step is recorded to a 
file. Once generation has completed (either to HDL or NGC) a Modelsim simulation 

script is automatically produced to import the necessary libraries, compile the design 

files, run a simulation, and check the results against those from Simulink. After the 

simulation has ended scores are displayed that show the number of errors and a 

percentage of correct samples, thus giving a simple measure of conformity between 

the pre- and post-generation design. This is an impressive feature that effectively 

allows the system designer, who may be proficient in Simulink but is inexperienced 

using a complex HDL simulator such as Modelsim, to perform verification of the 

model in Simulink and use Modelsim only to check the equivalence of the final 

implementation. It is also possible to perform a similar simulation after various 

stages in the implementation process, such as post-map and post-PAR. 

Incorporating System Generator designs into a larger system 

The results from a System Generator design may later be incorporated into a larger 

hardware design, either by direct instantiation of HDL or as a black box representa- 

tion of a NGC netlist. The latter method allows an incremental synthesis approach to 

be taken, whereby the System Generator portion of the design is not re-synthesised 
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with the other HDL but incorporated at a later stage by the FPGA implementation 

tools, which merges the associated netlists into the complete design. 

Simulation of the entire design is made possible through the use of special HDL 

files generated during the compilation procedure, along with initialisation files for 

any blocks of memory that may be needed. 

2.4 Hardware co-simulation 

Hardware co-simulation allows parts of a design to be compiled into hardware during 

a Simulink simulation so that the FPGA itself is used to calculate results. Simulink 

interfaces to the FPGA hardware via JTAG over the Parallel IV programming cable. 

During simulation, the inputs to a compiled block are fed to the FPGA, and as 

the results are generated they are read back into Simulink. This can provide a 

significant simulation speed up, and allows the designer to test out parts of design in 

hardware before completing the entire design. The hardware co-simulation feature 

may be used with any board with a Xilinx FPGA, but requires a Board Support 

Package (BSP). Template files are provided to create a custom BSP if necessary, 

which requires knowledge of the board's JTAG scan chain and FPGA pin-out. 

An interesting use of the hardware co-simulation feature is to accelerate a design 

composed purely of HDL, i. e. with no Xilinx IP blocks. HDL designs may be 

imported into System Generator as a black box, which at simulation time will be 

simulated using Modelsim. If this black box is compiled for hardware co-simulation 

there exists a method of simulating a purely HDL design with Modelsim, but using 

the speed advantages of having the design running in hardware. During simulation, 

Modelsim will provide the stimuli (usually defined by a testbench) which is fed to 

Simulink; Simulink then interfaces with the FPGA to provide the stimuli on the 

appropriate inputs and retrieve the outputs when available, which are then returned 

to Modelsim for display. 
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3 LRM algorithm implementation 

3.1 Implementation details 

The LRM algorithm was implemented using System Generator to demonstrate the 

realisation process. The design was heavily influenced by the results of the earlier 

manual HDL synthesis flow, and it is difficult to estimate how the second imple- 

mentation would differ without the earlier work, for instance, how much longer the 

process would have taken without the previously gained knowledge of the algorithm's 

operation. The two systems have virtually identical implementations, and this is ev- 

ident in the resulting device usage. 

The algorithm was divided up into three distinct phases: Block Extrema, Node 

Extrema, and Contrast Stretch. The three phases of the design run sequentially; 

this process is controlled by a simple FSM. Each phase of operation is represented 

by a subsystem in the top-level of hierarchy; a further subsystem contains logic for 

generating the addresses used to identify pixel locations, and acts to sequence the 

flow of data through the algorithm. Blocks of Single Port RAM are instantiated 

between the top-level blocks to store intermediate data, and the address lines to 

these RAMs are multiplexed as necessary. The system is shown in figure 1. 

3.2 Implementation specifics 

During the course of the design process there were several key problems that needed 

to be solved. In order to provide an insight into the subtleties of the System Gen- 

erator design process the following section describes some of these problems and the 

methods used to overcome them. 

System control - finite state machine 

The FSM used to control the sequence of execution of the three phases of the al- 

gorithm was implemented in M-code using the M-code block. The system has four 

inputs and three outputs; one of the inputs represents the current state, the remain- 

ing inputs and the three outputs are the respective status and activation signals for 

the three subsystems under control. Also shown in the diagram is a register that 
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stores the current state. This structure is independent of the FSM that it contains 
(besides the quantity of I/O), and could be used for any FSM code. Changing the 

function of the controller is performed by modifying the underlying M-code. 

Looping constructs 

Most image processing algorithms contain iterative loops, as operations are carried 

out both on individual pixels and groups of pixels within an image. The LRM 

algorithm requires nested loops of up to four levels, as pixels are examined on a, line 

by column basis within a block, and as the blocks are considered in both vertical 

and horizontal directions. Although in behavioural terms a loop is easy to describe, 

in hardware it is less obvious how it should be implemented. The solution shown in 

figure 2 generates co-ordinates using the Xilinx Counter block. By cascading them 

and utilising the optional enable input, these can be made to operate in a hierarchical 

manner and count sequentially in any number base. Counters were also used as the 

`select' input of multiplexers to enable sections of hardware to he activated in a 

cyclical manner. 
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Comparison of parallel data elements 

The LRI I algorithm requires the niaxinium and minimum values from up to four sets 

of data to be found, which are used as coefficients in the contrast stretch. The ability 

to compare data values in parallel and extract the extreme values may be carried out 

using combinatorial logic, in the manner shown in figure 3. This consists of using 

relational operators to control multiplexers, which feedforward the appropriate value. 

In general, because the relational operator has a maximum of two inputs it requires 

n-1 comparitors to reduce n inputs down to a single value. Furthermore, the 

comparison will require log2(n) stages, or logic levels. Of course, blocks of logic that 

are deep because of cascaded stages may cause timing difficulties unless pipelined; 
however pipelining is easily achieved in System Generator due to most blocks offering 

the option to incorporate register delays. 

3.3 Simulation of LRM design 

The LRM design was simulated by encapsulating it within a subsystem, then pro- 

viding stimuli and monitoring the outputs at this top level. The schematic is shown 

in figure 4. The diagram shows the algorithm contained within a subsystem named 
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jHb 
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Time (weeks) 
Hand-coded HDL System Generator 

Design 3 4 
Verification & debugging 1 2 

Implementation 2 <1 
Total 6 7 

Table 1: Comparison of System Generator and hand-coded methods. 
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`ContrastEnhance'. Each of its two inputs (on the left) and three outputs (right) is 

connected to a Gateway block, which convert signals between the Xilinx fixed-point 

and Simulink floating-point representations. The image memory is implemented as 

a Direct Loop-Up Table followed by a unit delay, which is intended to simulate the 

on-chip RAM used for storing the image data in the real system. The look lip table 

is preloaded with data by specifying the name of a Matlab vector, which in this case 

is a test image (the conversion of an image to a vector representation is fairly simple 

using a few Matlab commands). The output of the design was monitored using a 

scope block, and was additionally written back to Matlab for more detailed analysis. 
The icon in the top right of the figure is the System Generator token, which contains 

various settings used to control the simulation and generation of Xilinx cores. 

4 Results 

Table 1 shows the time taken, in weeks, to perform the various stages of design 

realisation using both the manual HDL design flow and System Generator. The 

results may be slightly misleading, as although the System Generator flow took longer 

to produce a working result the time learning to use the tool is indistinguishable 

from the time spent implementing the LRM algorithm. However the design process 

was undoubtedly quickened by the knowledge gained during the HDL flow, and as 
System Generator claims to improve design times the results begin to appear less 
favourable. The majority of the design time during the System Generator flow was 
spent forming functional units that would otherwise be automatically inferred from 

HDL by a synthesis tool. As would be expected, the time spent implementing a 
design using the ISE tools is cut significantly when using System Generator. 
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5 Conclusions 

One of the strengths of designing FPGA hardware compared to ASIC is that the 

designer does not have to worry about physical device issues to the same extent. 

In effect, there is less requirement for the designer to be expert in the intricacies of 

semiconductors and VLSI techniques, which allows greater emphasis to be placed 

on the functionality of the design. The design tools for FPGA hardware largely 

automate much of the `back-end' design that is required for ASIC. This is one step 

along the route towards full behavioural synthesis, whereby from a purely behavioural 

view of functionality, a hardware implementation can be generated automatically. 

Behavioural synthesis has been a desire of the electronic design community for several 

years, and although various tool manufacturers have often claimed to have produced a 

method of achieving it, the abilities of these tools are usually not without limitations. 

Fundamentally, System Generator is a way of modelling pre-determined IP cores 

within the Simulink environment. Any generation process, whether to HDL, netlist, 

or bitstream, is simply an automated method of instantiating and connecting cores 

together. In real hardware design, selecting and using IP is only half the problem, 

the main skill lies in knowing how to map an algorithm's behaviour onto the IP 

available. 
Despite this, in many respects System Generator offers an excellent method of 

producing hardware. For data-flow applications, particularly communications, the 

graphical environment allows the designer to see the progression of data through the 

system, insert registers for pipelining and retime if necessary, and observe the effects 

of varying fixed-point implementations with ease. In this situation the Simulink sim- 

ulation apparatus is well suited to the task, and since verifying the System Generator 

design is the same process as verifying the original algorithm greatly reduced design 

times are possible. 

However, when the algorithm does not map to the data flow paradigm it becomes 

difficult to use the more advanced features provided. The designer must resort to 

using low-level design techniques, building up more complex operators from funda- 

mental elements such as registers, basic arithmetic units, and logic. In this situation 

the skill and experience of the designer is the most significant factor in the pro- 
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duction of a correct and efficient implementation, but the majority of the effort is 

merely replicating by hand what commercial HDL synthesis tools are designed to 

automate. It is worth remembering that the move towards logic synthesis tools oc- 

curred due to the difficulties faced by designers when attempting to use schematic 

capture techniques with systems of high complexity. 
Much of this difficulty stems from the absence of IP that suits the application 

domain. In order to overcome these problems it may be necessary to create a library 

of IF, in the form of configurable subsystems, for use in the chosen domain. Config- 

urable subsystems are an integral part of the Simulink environment, and in hardware 

terms represent parameterisable blocks. The custom made IP library would consist 

of various functional blocks which are designed specifically to carry out the tasks 

that are common to the application domain. 

Matlab and Simulink offer a high powered environment for algorithm design, and 

utilisation of these strengths in the process of designing hardware could potentially 
be of great advantage to the designer. By linking the algorithm design directly to 

the design of hardware, the process may not only be completed more quickly, but the 

end results may exhibit both improved efficiency and accuracy. With the inclusion 

of some of the more interesting features already available in System Generator, such 

as hardware co-simulation, it is evident that System Generator could potentially 
be of great benefit. For now, for algorithms that do not conform to the data-flow 

paradigm, it is a promising but immature solution. 
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System Generator Implementation of PID Servo Control 

Algorithm 
July 2005 

Summary: An opportunity arose to assist in the implementation of a PID control 
algorithm that was to form part of a focus mechanism on a commercial Thales 

product. The algorithm was designed and tuned in Simulink, before mapping to 
System Generator blocks and generating hardware automatically. The PID control 

algorithm presents some interesting challenges that are not usually present in the 
implementation of video processing algorithms. 

Oliver Sims 

EngD 3rd Year 

Industrial Sponsor: Thales Optronics 
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1 Introduction 

As part of a wider study into algorithm implementation tools and techniques, this 

report documents the implementation of an automatic control algorithm intended 

for the servomechanism in a commercial application. The algorithm is based on the 

common PID paradigm, whereby a summation of three terms, Proportional, Integral, 

and Derivative, provides the correct stimulus for the system under control given an 
input derived from the difference between the desired and actual state of the system. 
The algorithm is the standard method of performing automatic control, and can offer 

good performance control over a range of different processes. 

System Generator is a tool that has been developed to assist users of the Simulink 

environment realise their designs in FPGA hardware. The majority of engineers 
designing in Simulink with FPGA target hardware will be working with signal pro- 

cessing algorithms, and the System Generator block libraries reflect this, with an 

emphasis on functions such as complex transforms (FFT, DCT), and buffer memo- 

ries (FIFOs and RAMs) etc. However, Simulink (and its parent application Matlab) 

is also the application of choice for development of control algorithms. Control al- 

gorithms pose slightly different problems to standard signal processing algorithms: 

they are usually required to operate at much slower data rates (which can pose prob- 
lems in an FPGA), and must have very little or ideally zero latency. FPGAs are 

probably not created with the PID control market in mind. However, in the sort 

of systems that Thales produce, which have stringent constraints both on physical 

size and power, it makes sense to combine functionality into the fewest number of 
devices possible. When an FPGA is also being used in the system for a variety of 

other purposes, it is an understandable aim to utilise spare logic and I/O capacity 
for the control algorithm. 

A problem caused by the constraint for zero latency in the algorithm means that 

there will be resulting long combinatorial paths. This may cause problems later with 

meeting timing, though the low internal clock speeds may go some way to prevent 

this. Even generating low clock speeds can be troublesome, as in most systems 
the global clock will be running in the tens of megahertz, and the on-chip DCMs 

have a low bound in the hundreds of kilohertz, anything less than this will require 
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manual clock division. The sample period will also have an effect on coefficient 

representations, and so operating at a minimal clock frequency will help to improve 

internal precision levels. 

2 Implementation details 

The continuous form of the PID algorithm is as follows: 

u(t) = Ký e(t)+Tt f e(t)dt+Tdddýt) 
0 

(1) 

Kc is the gain of the controller, Ti is the integral time (or reset time), and Td is 

the derivative time (rate time). e(t) is the current error term of the system to be 

controlled. The discretized versions of the three terms will now be discussed. 

2.1 Proportional term 

The proportional term is equivalent to 

up (t) = Ke(t) ý2) 

The discretized form is: 

up (k) = K,, e(k) (3) 

The proportional term is thus implemented as a simple gain applied to all samples. 
The proportional coefficient represents the reciprocal of a measurement known as the 

proportional band, which is the range of deviation between the process variable and 
the set point that will produce a proportional response in the controller's output. A 

proportional term that is too large will cause the controller to oscillate, too small 

and the output may drift away from the set point. 

0 
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2.2 Integral term 

The integral term is defined as: 

tr 

uI(t)=KýJ e(T)dT Ti 
0 

Using a trapezoidal numerical approximation for the integration: 

t k 
e(i) +e (i - 1) ) fe(r)drT8 E2 

00 

The discrete integral term is thus: 

ý 

(4) 

(5) 

ul(k) = 
K9 

8E e(i) + e(i - 1) (6) 
i=0 

where Ki =T is the integral term coefficient. 
Trapezoidal integration differs from standard rectangular integration as it aver- 

ages the input value over the last two samples. This has the effect of helping to avoid 

sharp changes in integral action caused by a sudden change in the error signal, and 

will thus help to minimise overshoot. 

The integral coefficient will determine the amount of integral action in the con- 

troller's output. Too high and the controller may become unstable and oscillate. 
Too low and the controller may have steady state error. Figure 1 shows the discrete 

integral calculation mapped to the System Generator library. 

2.3 Derivative term 

The derivative term is: 

UD(t) = xeTddý t) 

A numerical approximation for the derivative term is given by: 

(7) 

de(t) 
~N 

e(t) - e(t - 1) (8) dt T. 
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Figure 1: System Generator implementation of integral term 

The discrete derivative term is thus: 

uo(k) = 
Td [e(k) - e(k - 1)] (9) 

where Kd = K, Td is the derivative term coefficient. 

The input to the derivative term is calculated by subtracting the previous sample 

from the current one, before dividing by the sample period, hence calculating the 

gradient of the input function. The System Generator implementation is shown in 

figure 2. 

3 Design features 

3.1 Generic, parameterisable design 

The coefficients for the three terms are all fed in as variables at the top level, which 

enables tuning of the controller without the having to regenerate the design files. 

Large scale changes in the coefficients may require the fixed point representations to 

he adjusted. Customisation and optimisation have not been extensively performed in 
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order to keep t lie design as generic as possible, but savings are possible by trimming 

unnecessary precision from internal word lengths. If accuracy is an overriding con- 

straint then the maximum number of bits can be used for fixed-point representations, 

in order to minimise quantisation error. 

3.2 Anti-windup logic 

The PIU controller is the standard form with first order integrative and derivative 

terms. The integrator is augmented with a simple form of anti-windup logic, which 

enables a more effective recovery when the controller's output has become saturated. 

This is implemented by setting the input to the accumulator equal to zero when the 

output limit has been exceeded in either positive or the negative direction. This 

prevents the accumulator from increasing its internal value far outside the range of 

the controller's output, and works in conjunction with the output limiting logic. 

3.3 Output-limiting 

The output may be limited to less than its full range through setting a limit pa- 

rameter at run-time. This will restrict the output through use of relational blocks. 

This provides the ability to reduce the maximum absolute output to prevent dam- 
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Fiqurc 3: System Generator implementation of anti-windup logic 

age to the mechanism or for development purposes while the process is still being 

characterised. 

3.4 Downsampling 

To reduce the internal sample rate of the controller the input data stream is downsam- 

pled. To observe the constraint of zero latency this is carried out without incurring 

register delays, using the purely combinatorial form of the Xilinx downsample core. 

Using a smaller internal sample rate (i. e. a larger sample period) helps ensure that 

fixed-point representations of internal data on the Integral/ Derivative paths (where 

the sample period is used as a multiplier/divisor) can be represented using a smaller 

number of bits. 

4 Implementation results 

The design was synthesised with Precision Synthesis 2005a. 69 and implemented with 

Xilinx ISE 7.1i. and was found to utilise 651 Xilinx Virtex slices. This is approxi- 

mately 8 per cent of a medium sized Virtex-2, or 4 per cent of a medium Virtex-2 

Pro. Throughput issues are typically not a problem, and low internal clock speeds 

mean that timing constraints are easily met within the control loop. It should he 

noted that System Generator will usually generate a "clock wrapper" to contain and 

drive the algorithm with the correct control signals, and the presence of a downsam- 

ple block within the algorithm will cause the tools to infer the need for a DCM. Since 

t lie I'll) alg( rit hn1 \vill usually he used within a larger system, also presumably with 
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a DCM, often the clock wrapper is unnecessary. However, this will require manual 
driving of the two clock domains within the algorithm. 
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Implementation of Richardson-Lucy Deconvolution 

September 2005 

Summary: The Richardson-Lucy deconvolution algorithm is an important method 

in removing blur from images, by using statistical estimation techniques based on 
Bayesian probability theory. A Matlab version of the algorithm was available within 
Thales, and this presented an opportunity to investigate the issues surrounding 

implementation of a mathematically quite complex algorithm in FPGA. The algo- 

rithm is an iterative process that includes some mathematical operators that are not 

straightforward to implement in hardware, including several large 2D convolutions. 
These solutions found to these problems and the resulting design is presented in the 

following report. 

Oliver Sims 

EngD 3rd Year 

Industrial Sponsor: Thales Optronics 
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1 Introduction 

Observing and recording a scene is, in practise, an imperfect process. The measure- 

ment of physical quantities is always limited by the inherent characteristics of the 

measurement device, for instance finite resolution, or flaws in the imaging compo- 

nents. Naturally occurring phenomena such as spreading, smearing, and blurring 

also impact the accuracy of the observation. All sources of degradations introduced 

during the observation process reduce sharpness and obscure detail in the final im- 

age. In most cases the processes that impair measurement of physical quantities 

may be represented mathematically by a convolution operation, and the problem of 

recovering the true data given a limited observation is the justification for efficient 

and robust deconvolution techniques. Many of these techniques were developed in 

the field of astronomy, but have since spread to such diverse areas as medical to- 

mography, seismology, spectroscopy, magnetic resonance imaging, and others [1]. 

Deconvolution techniques are not confined to problems in one- and two- dimensions, 

and application to higher dimensional problems involving reconstruction from pro- 

jections have also been reported. The ideal solution is the recovery of the same data 

that would be observed by a hypothetical, perfectly resolving instrument [2]. The 

degradation process may be characterised as: 

00 

In =E 
Sn_mOm, (1) 

m=-W 

where I represents the image, S is a Point Spread Function (PSF), and 0 is the 

object. The PSF represents the spreading or smearing of a single point source and 

in a perfectly resolving instrument would be equivalent to a two-dimensional Dirac 

function [2), so that I becomes equal to 0. A PSF with a wide spread will result in a 

severely blurred image. In other cases the PSF may be quite compact with a sharp 

peak, and this may lead to a situation where the primary concern is reduction in 

dynamic range and sensitivity, rather than loss of spatial resolution. The application 

presented here describes a deconvolution process where the PSF is known a priori, 
having been determined empirically or through modelling of the factors influencing 

the observation, but deconvolution with an unknown PSF is also possible. This is 
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then known as blind deconvolution, which uses a process of revising estimates to the 

PSF; an overview of blind deconvolution techniques may be found in [3]. 

The degradation that occurs during the observation process may be thought to 

correspond to the null-space of the observing system [4], and the resulting data as 
incomplete (in the mathematical sense). The task is therefore an inverse problem 

that is ill posed, and as such cannot be solved directly. Most techniques rely on 

statistical estimation methods to generate best-fit solutions. The Richardson-Lucy 

algorithm [5], [6] is one such method that came to prominence during the early 

1990s, when it emerged as the de-facto standard for restoration of images from 

the Hubble Space Telescope, before an aberration present in the imaging mirror 

was corrected in a repair mission three years after launch [7]. The algorithm was 
developed independently by Richardson and Lucy in the 1970s, and uses Bayesian 

probability theory to seek the image of highest probability given the data and the 

PSF [2]. 

Use of a general-purpose processor to implement a real-time implementation of 

the Richardson-Lucy algorithm is unfeasible, due to the performance constraints im- 

plied by working with real-time video signals. FPGAs are an ideal medium for the 

implementation of complex image processing algorithms due to their ability to realise 

massive parallelism. In this paper an FPGA implementation of the Richardson-Lucy 

algorithm will be discussed. The paper is organised as follows: Section 2 will intro- 

duce the algorithm. Section 3 describes a software implementation developed in 

Matlab and efforts to improve the speed of convergence. Section 4 describes some of 

the issues faced and methods used to overcome these issues in translating the algo- 

rithm into a hardware description. Section 5 provides results of the implementation, 

and some conclusions are drawn in Section 6. 

2 The Richardson-Lucy algorithm 

The following mathematical description of the Richardson-Lucy algorithm uses the 

notation used by Lucy in his original paper. Unlike Lucy, Richardson uses a 2D 

notation from the start, but the link to the original convolution operation is slightly 
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less clear. 
The convolution of a scene with a PSF may be modelled in the 1D sense as 

follows: 
O(x) = JW()P(xI)de (2) 

where O(x) is the blurred image, ' (ý) is the true image and P (x1e) is the PSF. It 

is important to note at this stage that both images and the PSF may be considered 

probability distributions, with P (xIý) being the probability that x/ will fall in the 

interval (x, x+ dx) when it is known that ý/ = ý. The PSF is thus a probability 

distribution describing the potential destinations of a single unit of energy originating 

from a given point in the input. 

Define Q (cjx) to be the probability that ý/ comes from the interval + dý) 

when it is known that x/ = x. This is in effect an inverse PSF. 

From Bayes's Theorem: 

P (AIB) -P 
(BIA) P (A) 

P (B) 

we can infer: 

Hence 

(eI x) =P 
(xl e) w (e) 
0 (x) 

ý' (xl e) it (e) =0 (x) Q (ei x) 

(3) 

(4) 

(5) 

Since P (xle) is a probability distribution, it follows that: 

'y (4) =10 (ý) Q (elx) dx (6) 

This has the appearance of being the inverse of the original equation, but it cannot 

be used in this form directly since Q (ýjx) is dependent on W, the true image. We 

can however use this to formulate an iterative scheme for generating estimates to V. 

If ý is the original observation, and W' is the r-th estimate of the true image, the 

(r + 1)-th estimate is: 

IV+1 (e) =1ý (ý) Qr (eix) dx (7) 
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Program 1 Matlab implementation of accelerated Richardson-Lucy algorithm 
for i=1: fctrl 

implied-observation = filter2(PSF, reconstructed); 
factor = observation. /(implied-observation + le-12); 
correction = filter2(PSF, f actor); 
reconstructed = reconstructed. *(correction. "pwr); 

reconstructed = min(ones(a, b), reconstructed); 
end 

where 
Q, 

(S) 
r(tlx) = 

P(xIS)Wr 
`ý o (x) (8) 

and 

so that 

o' (x) = 
flfl()P(xI)dE 

(9) 

ýr+1(Z ) ='I'r (Z) 1ý((xjP (xI e) dx (10) 

This shows that the iterative scheme will converge if 

ý=0 =f Wr(4)P(xIe)d4 (11) 

i. e. when the original observation equals the current estimate convolved with the 

PSF. This may be viewed as a goodness-of-fit measure. 

The application of this algorithm to images may be represented as follows, as- 

suming a symmetric point spread function: 

P'+1 = Jr X PSF * 
observation ( 

PSF * Jr 

3 Software implementation 

(12) 

A Matlab implementation of the iterative scheme of 12 was the starting point for 

hardware development [8]. Due to the high-level nature of the Matlab command 

environment the main loop of the algorithm could be represented by five instructions. 

The main loop body, with a slight modification to be discussed below, is shown in 

program 1. In the literature there is a lack of general consensus regarding the number 
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of iterations the algorithm will need before it converges. Some results, particularly 
those based on applications in astronomy, state in the region of 20-30 [1], though 

this could be particular to the nature of astronomical images and the Poisson noise 

model used in that field. Other publications highlight the semi-converging nature of 

the algorithm; i. e. that it approaches a solution, typically before 10 iterations, and 
then diverges again [9]. To improve the rate at which the algorithm approaches a 

solution a further parameter may be introduced, denoted in the following equation: 

P'+i = I'' X PSF * observation ß ( 
PSF * I* 

) 
(13) 

Typically 1<3<3, and is shown in [10] to reduce the required number of iterations 

by a factor of , Q. Values greater than three tend to introduce instability and cause 

the algorithm to fail to converge. The eventual divergence of the algorithm may be 

attributed to the effects of noise, and excessive iterations will cause deterioration in 

image quality as the algorithm tries to fit the estimation too closely to the noisy input 

data. This effectively causes the algorithm to fit to the noise in the image rather than 

the useful data. The algorithm will thus tend to amplify any noise bumps, as the 

smoothing effect of the PSF means that noise errors in the observation can only be 

approximated by large noise spikes in the original [7]. In software implementations 

of Richardson-Lucy the characteristic of semi-convergence is unimportant, as a trial 

and error approach may be taken to find the best stopping point. In a real-time 
hardware implementation this approach is less realistic, especially with overriding 

constraints on logic usage, latency, and throughput. Some experimentation was 

therefore necessary to determine the optimum number of iterations and degree of 

acceleration, whilst keeping the amount of hardware required to a minimum. 
Five test images were chosen that were deemed to represent a variety of situations, 

with varying brightness and contrast levels. The images were treated with zero- 

mean Gaussian noise, before being blurred with a suitable two-dimensional PSF. 

The Matlab implementation of Richardson-Lucy was then applied to each image 

individually. In order to measure the performance of the deconvolution process an 

error matrix was calculated after each iteration by subtracting the current image from 
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the original reference image. The edges of both images were discounted to remove 

the edge-effects caused by convolution (the number of lines removed from each edge 

is equivalent to N211 where N is the width of the convolution kernel). A performance 

metric was then generated by finding the mean squared error over all values in the 

error matrix. This value is subsequently normalised, so that the initial blurred 

image has an error value equal to unity, and a figure of zero represents a perfect 

reproduction of the original image before blurring. Consequently, reductions of the 

error value demonstrate improvements in image quality. A graph showing average 

results over the five images is shown in figure 1, where the solid line represents the 

Richardson-Lucy algorithm with no acceleration (/3 = 1), and the dashed line the 

accelerated algorithm (/3 = 2). The improvement caused by acceleration is clearly 

visible: the minimum of the accelerated algorithm is reached after a single iteration, 

compared with two or three iterations for the standard algorithm. It should also be 

noted that, although slower, the un-accelerated algorithm achieves a marginally lower 

minimum value. This may be explained by considering the Richardson-Lucy process 

to be an implementation of a steepest-descent method, with parameter ,ß equivalent 

to the step size (11]. In this sense the un-accelerated algorithm may find a smaller 

error value by taking smaller steps towards the minima, and thus decreasing the 

possibility of overshoot. This raises the possibility of using the accelerated algorithm 

for the initial iteration, followed by the standard algorithm for subsequent iterations. 

figure 2 shows the average results over the five test images when this method is used, 

and indicates that the variable exponent method finds lower minima than either the 

standard or accelerated versions of the algorithm when the exponent is constant. 

The minimum is found after two iterations in four of the five test cases. 

4 Hardware implementation 

The following section describes some of the design challenges faced during the imple- 

mentation of the algorithm in FPGA hardware. The system was developed using the 

Xilinx System Generator tool for Simulink, and was carried out as part of a wider 

study into algorithm implementation tools and techniques. The diagram in figure 3 
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Figure 1: Comparison of standard and accelerated algorithm 

Figure 2: Improvement gained by a variable acceleration exponent 

shows a top-level block diagram representing a single iteration of the Matlab code 

in program 1. The delay line running parallel to the main computational pipeline is 

necessary to align the observation data with the correction factor being computed. 

4.1 Two-dimensional filtering 

Two of the stages shown in the single iteration of figure 3 require a two-dimensional 

convolution to be performed. In a single dimension FIR filters are generalised struc- 

tures commonly used to carry out this task. The extension to two dimensions is 

however not straightforward, as a direct implementation quickly becomes expensive 
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Figure 3: Block diagram depicting a single iteration of the Richardson-Lucy method 

in hardware terms as the size of the kernel increases. In some circumstances, these 

difficulties may be solved by reducing the two dimensional kernel into a combina- 

tion of two single dimensional convolutions, which may then be implemented by two 

FIR filters. A kernel that can be decomposed in this way is said to be separable. 
Separable filter kernels are a special case of general two-dimensional filter kernels 

where the kernel matrix can be expressed purely as a combination of two vectors. 
Unfortunately, separable kernels are limited in their applicability, and in most cir- 

cumstances a kernel will not be separable, largely due to the difficulties involved in 

factoring polynomials in two independent variables [12]. This often prevents a sim- 

ple realisation using cascade or parallel structures. Despite this there are alternative 

methods of decomposing the kernel, based on the fact that a parallel connection of 

separable filters results in a non-separable response [12]. This raises the possibility 

of using sets of easily implementable orthogonal one-dimensional filters in parallel 

to create the desired two-dimensional filter, as shown in figure 4. In this way the 

response of a non-separable filter may be accurately reproduced as a combination of 

separable filters, each of which is formed by two cascaded 1D convolutions that act 
individually in the horizontal and vertical directions. It can be shown that for square 
kernels when the required number of parallel filter sets is less than half the order of 

the filter, this structure will still utilise less hardware than a direct implementation 

of the 2D convolution. In some cases, as demonstrated later, this condition can be 

relaxed further. 

The extraction of separable filters is based on a technique by Treitel & Shanks 

[13], who use the term multistage separable planar filters. Their method utilises a 

technique known elsewhere as the Singular Value Decomposition (SVD) [14], and 
has previously been shown to be successful in the implementation of arbitrary two- 



4. Hardware implementation 203 

Figure 4: Summation of separable filters to produce a non-separable response 

dimensional filters [15]. The SVD of a matrix, X, is given as: 

' mxn = UmxnI+mxnvmxn (14) 

(where superscript T denotes the matrix transpose operation) and is found by calcu- 
lating the eigenvalues and associated eigenvectors of the square matrices Q= XXT 

and S= XTX. It is demonstrated in [13] that the eigenvalues for both Q and S will 

always be the same. The square root of these eigenvalues are known as the singular 

values of X, and are listed in the diagonal matrix S. The associated eigenvectors 
from Q and S form the columns in the orthonormal matrices U and V respectively. 
The rank of S, which is equal to the number of non-zero elements, determines the 

number of separable filters required to exactly reproduce the original kernel. Since 

the values in S are the eigenvalues of Q and S, it follows that the rank of S will be 

equivalent to the number of linearly independent columns in the original matrix X. 

This can be particularly advantageous in image processing applications, where filter 

kernels with a linear phase response are often a necessity, and the resulting kernel is 

symmetrical. Thus an N2 kernel will have N2 1 linearly dependent rows and columns. 
When the SVD is calculated the eigenvalues corresponding to these rows/columns 

vanish, meaning that any linear phase kernel can be exactly reproduced with, at 

most, separable filters. 

Further savings can be made by making approximations to the original filter de- 

sign rather than reproducing it directly. By convention the eigenvalues in S, known as 

singular values, are listed in descending order, which suggests that the corresponding 
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columns of U and V are of decreasing importance to the final reproduction. Using a 

reduced number of singular values will produce an approximation to the original ma- 

trix X, with an error that is equal to the ratio of the stun of the discarded eigenvalues 

to the sum of all eigenvalues in S [13]. Thus: 

ek 
01+172+... +0'k 

=1- 
O'1 + 62 + 

... 
+ O'n 

(15) 

gives the error ek from using k singular values from a maximum of n, where k<n, 

and a denotes the individual singular values in the matrix E. When all singular 

values are used, k=n and the error a is reduced to zero. The aim is to balance 

the need to keep the error matrix e to a minimum, whilst reducing the necessary 
hardware as far as possible. Since each additional singular value will result in another 

separable filter pair in the final implementation, potentially large savings in hardware 

may be achieved by keeping the number of singular values included in the design to 

a minimum. 
This may be best demonstrated with a real example. The following work uses the 

empirically obtained PSF that will be the focus of the subsequent implementation 

of the Richardson-Lucy algorithm. The PSF, shown in figure 5 using both surface 

and contour plots, is equivalent to an 11 x 11 normalised filter kernel that exhibits 

the linear phase characteristics discussed earlier. Application of the SVD to this 

kernel results in six eigenvalues (i. e. rank(E) = 6), and thus, to exactly reproduce 

this response using separable filters, six filter pairs would be needed. Table 1 shows 
how successive singular values become less significant, and the resulting error term 

decreases with each additional stage. The results indicate that in this instance two 

filter stages will reproduce the original kernel to > 99% accuracy, and any more than 

four is almost certainly unnecessary in most applications of this particular kernel. 

Once the separable filter coefficients have been determined there are still a num- 
ber of design decisions regarding the hardware structure of the filter. FIR filters 

may be implemented in an FPGA device in numerous ways, depending on whether 
the overriding constraint is in terms of throughput, logic area, or some other fac- 

tor. Parallel FIR architectures, such as direct and transpose forms, use the greatest 
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12 

Figure 5: 11 x 11 PSF 

k Singular Normalised Accuracy Normalised 
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n 

c`J 
Qi 

i=1 
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Q% 
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s=1 Q 

1= 1-n 
i 

i=1 

1 0.400661 0.972346 97.2346% 0.0277 
2 0.009133 0.022164 99.4510% 0.0055 
3 0.001951 0.004736 99.9246% 0.0008 
4 0.000285 0.000692 99.9938% 6.2 x 10- 
5 2.44x105 - 0.000059 99.9997% 2.7x106 - 
6 1.10x106 - 0.000003 100.0000% 0.0 
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Table 1: Significance of the n singular values (n=6) of the filter kernel shown in 
Figure 4.3 

amount of logic resources but have high throughput and low latency. Alternatively 

Multiply and Accumulate (MAC) FIR filters may use just a single MAC element 

and so are highly efficient in terms of hardware, but must operate at a multiple of 

the data rate and will thus reduce throughput in most applications. A trade-off 

solution in FPGAs also exists in the form of a distributed arithmetic filter, which is 

nearly as hardware efficient as a MAC FIR but maintains throughput at higher filter 

lengths. FIR filtering in the vertical direction requires slightly altered architectures 

to allow the pixel data, which is normally streamed line by line, to be filtered with 

corresponding data that are vertically adjacent in the image. To achieve this line 

buffers must be inserted between multiplier elements that delay each pixel by the 

width of one line. Consequently a vertical filter will require sufficient storage for the 



4. Hardware implementation 206 

number of elements in a single row multiplied by the number of filter coefficients. For 

multistage filters such as those developed here this becomes an unrealistic amount of 

storage, and to save memory the filters were designed to share line buffers, as shown 

in figure 6 with two filter stages present. The multiplier structures inside the vertical 
FIR subsystems are all transpose direct-form parallel filters, an inherently pipelined 

architecture that allows high clock speeds and thus high throughput. MAC FIRS 

are not easily implemented for vertical filtering applications due to the need for line 

buffers. 

4.2 Other stages 

The divide operation in the deconvolution algorithm determines a correction factor 

from the ratio of the observed image to the image obtained by filtering the current 
best guess. System Generator does not provide a native divide operation, but one 

may be implemented using the black box function to import soft IP cores, in this case 

the Pipelined Divider v3.0 core provided by Xilinx and customised through the Core 

Generator tool. Importing the VHDL and EDIF netlist produced by Core Generator 

into the black box module results in the block format shown in figure 7. The core 

was parameterised to provide a quotient output every clock cycle, with a fractional 

remainder that was subsequently concatenated to the quotient. The resulting latency 

of the core is proportional to the word lengths of the output data, in this instance 

equal to the number of quotient bits + number of remainder bits + 4. Later stages of 

the deconvolution algorithm are both multiply operations and are easily implemented 

with standard System Generator blocks. The acceleration exponent (with a value 

of two) squares the current value by feeding it through both inputs of a multiplier 

simultaneously. The second multiplier acts on the squared correction factor and the 

delayed observation data. The multiplier stages are shown in figure 8. All stages 

were connected together in the format shown in the block diagram of figure 3. The 

design is fully pipelined throughout to enable high clock speeds, and can produce an 

output value every cycle after an initial latency proportional to the image width. 
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Core Generator netlist 
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Figure 8: Output stage of a single iteration of the accelerated deconvolution algorithm 

5 Results 

Because the design is extensible, the figures presented here are specific to this imple- 

mentation with an 11 x 11 PSF and designed for an 8-hit greyscale VGA image of 

640 x 480 elements. The two dimensional filters are implemented with two separable 

filter stages, which approximates the true kernel to 99%. The parameters that will 

influence the amount of logic usage are the size of the input image, the dimensions of 

the PSF, the number of iterations that are required, the desired accuracy of the filter 

stages (and hence the number of separable filters required to reproduce the kernel), 

and the structure of the horizontal FIRs. Using single MAC FIRs will significantly 

reduce the amount of logic required but will also reduce the throughput accordingly. 

A larger PSF will require an increased number of line buffers for the two-dimensional 

filters, of width proportional to the width of the input image. 

The design was synthesised using Precision Synthesis 2005a. 69 before being im- 

plemented with ISE6.3i targeting the Virtex-2 family of devices. A single iteration 

of the algorithm uses approximately 12,000 slices of the device, 20 Block RAMs, 
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and 90 dedicated multipliers. The variable exponent format with two iterations uses 

20,095 slices, 40 Block R. AMs, and 179 dedicated multipliers. The smallest device 

that will accommodate the algorithm in this configuration is a Virtex 2 XC2VP50. 

Using more aggressive synthesis and place and route settings may improve the figures 

described here. 

The maximum clock speed suggested by ISE with minimal synthesis/place and 

route effort is 63 MHZ. A frequency of just 20MHz will allow video in 8-bit greyscale 
VGA format to be processed in real time at 60 frames per second, with a latency 

< 0.5 ms. Video formats with higher bandwidth could be processed comfortably in 

a device with sufficient memory. Moving to a Virtex-4 device could allow modern 

video standards such as SXGA to be deconvolved in real time. The abundance of 
DSP elements in the Virtex-4 SX family, intended specifically for signal processing 

applications, are ideally suited to the filtering stages involved in this application. 
Optimisations in the fixed-point word lengths used throughout the implementa- 

tion may also produce valuable savings in slice usage. The current implementation 

uses a minimum of 12 binary places for all internal fixed-point representations. Op- 

timisation of internal word lengths was not performed here as it was desired to leave 

the implementation as general as possible. 

Sample images have been produced for comparison: on the left of figure 9 is an 

aerial image that has been blurred by the 11 x 11 PSF; the same image after two 

iterations of deconvolution is shown to the right. The increase in spatial resolution 
is noticeable in several areas, and edges are generally sharper. 

6 Conclusion 

An extensible implementation of the Richardson-Lucy deconvolution algorithm has 

been presented, that will perform full scene deconvolution in real time. The design 

is modular, to allow as many iterations as necessary or hardware will allow, with no 

significant changes to the design of each module. Hardware efficiency is promoted 

throughout, particularly in terms of the two-dimensional convolutions, where multi- 

stage separable filters have been used to reproduce the arbitrary PSF to a custom 
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Fuqýu, rc 9: Fram. plc blurred and deconvolved images 

accuracy. This approach allows a trade-off to take place between accuracy of response 

and hardware utilisation. In order to improve the performance of the algorithm over 

a limited number of iterations, a modified acceleration technique has been incorpo- 

rated. The variable exponent technique further increases the probability of finding a 

desirable solution when there are hardware limitations. The design is fully pipelined 

and will produce an output element every clock cycle. Initial results show that a 

design offering two iterations of accelerated deconvolution may achieve a throughput 

of over 60 million pixels per second using Virtex-2 hardware. 

There are a number of directions future work could take to improve on the results 

shown here. Investigations into the effects on the output image of reducing the 

accuracy of the filtering stages may allow further hardware savings to be made. 

In particular it is unknown whether using reduced accuracy when implementing the 

filtering stages in the earlier iterations will severely impair the deconvolution process, 

and it is possible that, during this initial search of the solution space, a more heavy 

handed approach may he adopted. 
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1 Introduction 

Image fusion allows multiple observations of a scene to be combined, in order to 

increase the information content presented in a single image, and make the image 

more effective for its intended application. The images to be fused may originate 
from a single sensor, perhaps taken with different points of focus, or from multiple 

sensors that are sensitive to different spectral regions. The resulting composite image 

may subsequently be used by a human observer or, increasingly, used in machine 

vision applications. Image fusion has been used widely in medical, manufacturing, 

military, and security applications, amongst others [1]. One modern example where 
image fusion techniques are proving useful is in the detection of concealed weapons 
by using a composite of thermal and visible-range observations [2]. 

There are several methods of performing image fusion, with a successful imple- 

mentation being one that retains all useful information from the source images into 

a single composite image, without introducing artefacts. Basic methods take no 

account of the image content and perform simple merging of the image data, for in- 

stance averaging. More sophisticated methods work at a higher level by identifying 

detail in the source images and using a selection process to determine the elements 
that will be used in the final composite. 

Several key methods in image fusion rely on the multiscale image pyramid [3]. 

Image pyramids are a decomposition of a single image into a series of images of 

varying resolutions, with each image containing data representative of detail at a 

particular scale. The advantages of a multiscale representation lie in its localisation 

in both spatial and spatial-frequency domains. It is thought that such a represen- 

tation has similarities with the operation of the human eye [3]. For a more rigorous 

explanation of image pyramids see papers by Burt [4115], who developed much of 
the theory describing image pyramids such as the Gaussian and Laplacian pyramids 

used in image fusion. An example of an image pyramid may be seen in figure 1. 

The fusion algorithm that will be presented here uses pyramids that have been 

further decomposed into orientation specific pyramids [5], [6], [7]. It uses simple 

edge filters (gradient filters) to identify details in the source images along four ori- 

entations. These edges are compared, and the most useful features are selected 
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according to some measure of saliency and then carried forward into the composite 

image. Using gradient pyramids has been found to reduce the artefacts that fusion 

with straightforward Laplacian pyramids can introduce [5]. 

The pattern-selective fusion algorithm is complicated and requires thousands of 

calculations to be performed in order to produce a single output image. For this 

reason a microprocessor implementation is inherently slow, and real-time processing 

unfeasible. However, like many image processing algorithms, there are opportunities 

to exploit parallelism in the algorithm's operation that make an FPGA implemen- 

tation an attractive option. 

This paper describes an implementation of a pattern-selective fusion algorithm 

on a single Virtex-2 FPGA. The implementation uses several novel approaches to 

enable an design that can fuse dual greyscale VGA images in real-time. Extension of 

the methods presented here would permit fusion of multiple images without major 
design modifications. Note that the implementation described here uses a method 

of generating image pyramids that exhibits increased levels of blur and is liable to 

cause aliasing. It has been used here for image fusion with passable results, but 

in general the design is incorrect and should not be used. The implications of this 

approach and a comparison with the correct method of generating image pyramids 

will be described in a later section. 

It should also be noted that image registration is not covered in this work, and all 

source images are assumed to be pre-aligned. If the sensors are not perfectly aligned 

this may be achieved using automatic registration techniques, which are beyond the 

scope of this paper. 

The paper is organised as follows. Section 2 gives an outline of image pyramids 

and their construction. Section 3 looks at the processing of these pyramids to extract 

the salient features, and the subsequent formation of a composite image. Section 4 

briefly discusses the inverse pyramid transform; section 5 provides implementation 

results for the design, and includes some quantification of the speedup achieved 

by using FPGAs compared to software methods. Section 6 discusses the method 

of generating pyramids that has been used here, and produces a comparison with 

traditional methods. Finally, section 7 concludes the paper. 
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2 Pyramid generation 

The Gaussian or low pass pyramid and Laplacian bandpass pyramids were introduced 

by Burt in 1983 [4]. These methods have since been used in a wide variety of 

applicat ions besides fusion, and were a precursor to the development of more general 

multiresolution methods, in particular the study of wavelets. 

The image to be decomposed forms the bottom level of a notional pyramid. 

Standard methods generate higher levels of the pyramid by low-pass filtering and 

then two-dimensionally subsampling (by a factor of two) the pyramid level beneath 

it. The act of low-pass filtering reduces the band limit by one octave, and hence, 

according to the sampling theorem, subsampling can take place without any loss of 

information. In reality the generating filter is not "ideal", which means that the 

following subsampling may result in some aliasing; however these effects are usually 

slight and can be disregarded for these purposes [8]. The low-pass filter is usually 

chosen to be a5x5 Gaussian, which has the added advantage of being separable. 

Hence, the pyramid generation process can be described as: 

22 

Gk (i, j) _EE 2v(7n, n)Gk-1 (2i + in, 2j + n) 
m=-2 n=-2 

(1) 

for k=1,..., N; Go - I, the original image; w is the filter kernel. 

The following implementation is based on Matlab code that differs from equa- 

tion I by performing the subsampling before filtering at each stage. This implemen- 

tation thus has no means of preventing aliasing, and higher levels of the pyramid are 
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Figure 2: Image pyramid of the Lena image where subsampling is performed before 
filtering at each stage. 

likely to become distorted. Subsampling before filtering also exaggerates the effect 

of the filtering process and thus causes pyramids to be produced with an increased 

level of blur. Figure 2 shows the pyramid of figure 1 when subsampling is performed 

before filtering. With this particular image it is difficult to discern any artefacts due 

to spatial aliasing; however increased blur is clearly noticeable at the higher pyramid 

levels. Because of these effects, subsampling should not be performed before filtering 

in general applications of image pyramids. The hardware implications of performing 

the process in this way and the effect it has on the fused image will be discussed in 

a later section. 

The process of equation 1 is usually referred to as REDUCE, when considering 

the 2D image as a whole: 

Gk = REDUCE (Gk-1) (2) 

Since each image is half the size in each dimension of the one below it, it therefore 

consists of one quarter the number of pixels. 

The alternative pyramid type is known as the Laplacian. This is formed as a 

Bandpass pyramid rather than a low pass, and is obtained by subtracting a level of 

the Gaussian pyramid from the level directly beneath it. Each level of the Laplacian 

pyramid can thus be thought of as a difference image between two corresponding 

levels of the Gaussian pyramid. Because two levels of the Gaussian pyramid are 

different sizes, in order to subtract one from another the resolution of the image at 
level k+1 must first be increased to the resolution of the image at level k. In order 
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to do this we use the EXPAND operation, which upsamples the smaller image (by 

inserting zeros), and then interpolates the missing values by a further application of 

the generating filter kernel, i. e. 

22 2i +m 2 j+n EXPAND (Gk+l) =4EE w(m, n)Gk+l 
(-2 

m=-2 n=-2 

then: 

(3) 

Lk = Gk - EXPAND (Gk+l) (4) 

There must be one fewer levels in the Laplacian pyramid than in the Gaussian. 

Typically the Gaussian and Laplacian pyramids are generated with three levels above 
the base image. At levels higher than this the resulting images may become too small 
to be useful. Another consideration is that with each successive reduction in size, the 

edge-effects of the convolutions with the generating kernel become more detrimental. 

It is possible to perform fusion with less than four pyramid levels, but the ability of 

the algorithm to distinguish features of different sizes is compromised. 
The Gaussian pyramid is the one used in the process of extracting detail from 

the source images to be used for fusion. The Laplacian pyramid described here, 

and a variant of it known as the FSD Laplacian [9], is used in the inverse pyramid 

transform to reconstruct the composite image. 

2.1 Hardware implementation 

There is an inherent parallelism in the pyramid generation process that can be used 
to generate multiple levels of the pyramid concurrently. A block diagram of the 

system for generating image pyramids where the subsampling is performed before 

filtering is shown in figure 3. (Note that for the reasons outlined above this process is 

conceptually incorrect and should not used as a general method of producing Gaus- 

sian pyramids. ) As image data flows into the design, it is immediately downsampled 

in two dimensions. Horizontal downsampling occurs by discarding every other sam- 

ple; vertical downsampling occurs by discarding every other row. The samples that 

are not discarded are stored in a FIFO. When there is sufficient data in the FIFO 
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Figure 3: Block diagram of pipeline for generating image pyramids where subsampling 
is performed before filtering. 

the next pyramid level starts to read data out of it. This pyramid level operates at 

a clock rate that is one quarter that of the level below it, to match the fact that 

it is receiving one quarter the number of samples. In this way the higher level can 

run concurrently with the lower level, without emptying the FIFO. This structure is 

repeated for each level of the pyramid, with each level operating at one quarter the 

clock speed of the level below it. By using this approach all levels can be generated 

near simultaneously, and the time to generate the whole pyramid is only 1.1 times 

that needed to read a full frame of data. 

Because the filters used to generate the pyramids are separable and the coeffi- 

cients are inverse powers of two, they can be implemented using only shift and adds, 

meaning the design is resource efficient. 

This approach allows a fully pipelined method of generating this modified form of 
image pyramids. Table 1 gives a comparison of the design presented here and the two 

notable instances of hardware pyramid generation that have been reported. Although 

the implementation presented here differs from the two referenced implementations 

in that subsampling is performed before filtering, a consequence of using a fully 

pipelined structure means that swapping the position of filtering and subsampling 
blocks would only affect the latency of the design and throughput would remain 

as shown in the table. Swapping the filtering and subsampling blocks would be 

necessary to produce Gaussian pyramids with an acceptable level of aliasing and 
blur, but could be performed whilst still using a multiple clock rate design. 
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I Image Size I Max Throughput (fps) 
PYR [8) 1_512 x 480 1 44 
Splash 2 [10] 512 x 512 30 
Proposed 640 x 480 100 
Architecture 

Table 1: Comparison of proposed and previously reported architectures for image 
pyramid decomposition. 

3 Detail extraction and fusion 

The following section will briefly describe the fusion process, but for a more complete 
discussion of the algorithm see [6]. The implementation presented here is an exact 
implementation of that published method. To extract detail from the levels of the 

source pyramids four gradient operators are each applied to each level of the source 

pyramids via a simple convolution. The operators represent derivatives in the hor- 

izontal, vertical, and two diagonal directions, and essentially act as edge detection 

filters in the four orientations. The gradient filters are as follows: 

dl I1 
-1] 

r0 
-11 1 

ä2 l10' 

-1 d3 = 
1 

d4 = 
r1 
I -1 01 

10 1ý o il-vý2- 

(5) 

The resulting set of images is known as a gradient pyramid [6], and can completely 

represent the original image [10]. The gradient pyramid is essentially a set of gra- 
dient maps of the source images at varying scales. As illustrated in figure 4, the 

gradient pyramids constitute a large amount of intermediate data: each level of the 

two source pyramids is now represented by four gradient maps. Another way to 

conceptualise this is that the two source pyramids have now been decomposed into 

four further pyramids each, giving a total of eight full image pyramids to be handled 
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Figure 4: Gradient pyramid decomposition and fusion 

and processed concurrently. Obviously, the ability to work with this amount of data 

on chip is one of the ways in which an FPGA may achieve large performance gains 

over a microprocessor based implementation. 

When applying the gradient operators, the source pyramids are first convolved 

with (1 + iii), where 1i' is a3x3 filter with binomial coefficients, and chosen such 

that ii., * 1i) =w (where w is the Gaussian filter used in the creation of the Gaussian 

pyramids). Let Dkl be the kth level and lth orientation gradient pyramid image for 

I. Then: 

Dkl = dl * [1 + Ti)] * Gk 

Dkl=di *[Gk+w*Gk] 

(6) 

(7) 

Fusion of the gradient pyramids then takes place by selecting the most prominent 

detail from each level. In this application the elements with the greatest absolute 

value are chosen through a simple comparison, this is an implementation of the 

simple measure of saliency given in [5]. Other, more complex measures of saliency 

(also known as activity-level measurements [11] ), based on texture criteria and other 

higher order attributes, may give better results in some specific circumstances, but 

the amplitude based measure has been shown to provide good results in the general 

case [5]. 
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3.1 Gaussian to Laplacian pyramid conversion 

Before the inverse transform can take place it is necessary to adjust the format of the 

composite image pyramid, as the inverse pyramid transform relies on the Laplacian 

rather than the Gaussian pyramid. The steps involved in the conversion are detailed 

below. Firstly each gradient filter is reapplied to the corresponding oriented data 

stream, which, combined with the first application, is equivalent to application of a 

second derivative. The reason for this is due to a relationship between the binomial 

filter and the gradient filters: 

1 -w = -(dl *dl+d2*d2+d3* d3+d4*d4) 1 
8 

(8) 

Thus each gradient pyramid level Dki can be converted to a second derivative pyramid 
(or oriented Laplacian [61) level through a second application of the gradient filters 

multiplied by - 8: 

Lkj = -gdi*Dki 

Substituting for D, from (6) 

Lkt=-8d! *dt*(1-Fw)*Gk 

Lkt=(1-iu)*(1+w)*Gk 

(9) 

Lkt = (1 - w) * Gk (10) 

which is the equation for the FSD Laplacian pyramid [6]. Hence by combining the 

four orientations we arrive at the FSD Laplacian: 

4 

Lk =ý Lkl 
1=1 

(11) 

Conversion from the FSD Laplacian to the RE Laplacian can then be performed by 

the following approximation, accurate enough for these purposes [61 

Lk ..: [1 + w] * Lk (12) 
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3.2 Hardware implementation 

A schematic of the fusion portion of the design at a single pyramid level is shown in 

figure 5. When implementing this process in hardware, at each level of the pyramid 

the eight gradient operators (four per source image) run in parallel on the source 

data. The most salient detail in each orientation is then selected from each image 

through a set of comparators. This detail is fed forward, through a second application 

of the gradient filters and an adder tree structure for (11), before being filtered again 

for (12). This structure is repeated at each level of the pyramid, and as with the 

pyramid generation logic, each level runs at one quarter of the clock speed of the 

level below it, to account for the fact that the image at that level has a quarter of 

the number of pixels. The output of each fusion section will form a single level of 

the composite pyramid, which is subsequently inverse transformed. 

4 Inverse pyramid transform 

The method of reconstructing an image from its Laplacian pyramid uses the EX- 

PAND operation given in (4). The starting point for the inverse transform is the top 

level of the Gaussian pyramid (in this case G5). This is formed by a simple averaging 

of the top level of the source pyramids. Then, from (5): 

Gk = Lk + EXPAND (Gk+1) (13) 

This process is performed repeatedly to expand each pyramid level. The addition 

of Lk represents the incorporation of detail data at each scale. The complete fused 

image lies at the bottom of this pyramid, level Go. This process mirrors the decom- 

position process described in section 2, and again uses FIFOs to store data between 

pyramid levels, with two-dimensional upsampling occurring as data are read from 

the FIFOs through insertion of zero value samples. 
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5. Implementation results 

Resource Used Available % of XC2VP100 
Slices 13,287 44,096 30 
4-input LUTs 24,533 88,192 27 
Slice FFs 5,784 88,192 6 
Block RAMS 430 444 96 

Table 2: FPGA resource requirements 

FPGA Maximum Clock Frequency 31 MHz 
FPGA Maximum Frame Rate (8-bit, VGA) 101 fps 
PC/Matlab Frame Rate (2.8GHz P4,1GB RAM) 0.91 fps 
Speedup 111x 

Table 3: Performance compared to PC implementation 

5 Implementation results 

226 

The entire design was implemented using Xilinx System Generator and mapped to a 

Virtex-2 XC2VP100 device. Synthesis was carried out using Xilinx's proprietary XST 

tool, as part of ISE8.1. The logic usage results are presented in table 2. The main 

hardware requirement is for RAM, which is understandable given the large amount 

of intermediate data that has to be held within the FPGA during the processing of 

a single pair of input frames. The RAM is essentially being used as long delay lines, 

and there is scope to retarget some of this requirement towards use of the flip-flops 

on the device. This may enable the design to fit into a slightly smaller device. The 

design is fully pipelined and capable of producing an output pixel every clock cycle. 

The maximum clock speed reported by the place and route tools is 31MHz. 

As a means of comparing the system's performance with a software implemen- 

tation, the Matlab Profiler was used to measure the speed of execution of a Matlab 

implementation of the same algorithm. Processing a single frame of data on a 2.8GHz 

Pentium-4 processor with 1GB RAM takes, on average, 1.1 seconds. A comparison 

of the performance of both FPGA and PC-based versions of the algorithm is shown 

in table 3. The Matlab version of the algorithm is used in its original (interpreted) 

format, and use of compiled code may improve the results from the PC-based imple- 

mentation. 

Note that although the maximum reported clock speed is 31MHz, a speed of 
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Fused image 

Figure 6: Example of source and fused images using the described algorithm and 
implementation. 

10MIIz would allow 8-hit greyscale VGA video at 30fps to be processed in real-time, 

with a latency of <50ms. Sample images have been produced for comparison and are 

shown in figure 6. The source images are from a TV camera and thermal (IR) camera 

respectively, and are pre-registered. Both source images accentuate different features 

about the scene being observed. The composite image contains the significant details 

from both source images. A side effect of producing pyramids by subsampling before 

filtering is that the output images are more blurred than they would be otherwise 

and are likely to suffer from distortions caused by spatial aliasing. Reversing the 

ordering of the subsampling and filtering blocks in the pipeline structure of figure 3 

would produce clearer images, at the expense of increased latency. 

A difference image (after inversion and scaling) between the Matlab and FPGA 

implementations is shown in figure 7. Forty lines have been removed from each edge 

to remove most of the edge-effects caused by the convolutions. (Although the filters 

are only 5x5, the upsampling and downsampling involved in the pyramidal algorithm 

means that the edge-effects are spread over a wider area than in typical convolution 

applications). Over the region shown the maximum error between corresponding 

pixels of the two implementations is equal to 1.35, and the mean-squared error is 

0.02. The small error value is explained by the simple mathematics of the algorithm 

(just basic convolutions with easily representable coefficients), which pose no problem 

to the hardware implementation. 
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Figure 7: Inverted and scaled difference image between Matlab and hardware imple- 
mentations of pyramidal image fusion, after removing the edge pixels affected by the 
convolutions. 

6 Implications of the alternative pyramid genera- 

tion process 

The method of generating image pyramids that has been used here is conceptually 

incorrect, due to subsampling being performed before filtering at each stage of the 

process. Depending on the bandwidth of the source images this method will therefore 

produce image pyramids with varying levels of distortion due to spatial aliasing. As 

was shown in figure 2, the resulting image pyramids also exhibit an increased level 

of blur. The implementation described here demonstrates that a degree of image 

fusion can be performed with image pyramids generated in this way, but the method 

should not be used in a general sense because of the erroneous data it produces. In 

order to generate true Gaussian pyramids the processing pipeline of figure 3 could 

be modified by swapping the positions of the subsampling and filtering blocks, as 

shown in the modified pipeline of figure 8. The multiple clock rate design would still 

be an effective method for the same reasons that are described above. 

This change has hardware implications due to the increased size of the images 

being filtered at each stage, meaning that the line-buffers in the two-dimensional 

filters must now be twice as long. Calculations show that for two 640 x 480 video 

streams and filters with internal 16-bit representations an implementation of image 

fusion would have an increased memory requirement of 70kb. This would require an 

additional four of the 18kb Block RAMs available on the Virtex-2 FPGA used for 
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Figure 8: Modified pipeline for generating true Gaussian pyramids. 

the implementation; table 2 shows that there are sufficient remaining resources to 

accommodate this on the same device. 

Although there is an increased memory requirement the size of the filters is un- 

changed and so there is no additional computational expense. However the latency 

of the pyramid generation process is increased by a factor of two. Due to the pyra- 

mid generation process constituting about a third of the total implementation, it is 

estimated that the total latency for the alternative design would be in the region of 

60-70ms. 

The section of the design for performing detail extraction and fusion process is 

not affected by the change in how pyramids are generated. The inverse pyramid 

transform implemented here is also an exact implementation of that published by 

Burt in his original paper. 
Comparison images between the implementation presented here and fusion with 

true Burt pyramids is presented in figure 9. Although it is difficult to discern aliasing 

artefacts from the original implementation, the increased level of blur is evident. 

With these test images the two implementations appear to select the same details 

from the source images, but with images that use the frill bandwidth the aliasing 

artefacts caused by the original pipeline of figure 3 may be identified as detail by the 

gradient filters and therefore be noticeable in the composite image. The difference 

image shows that the most severe differences are found where features have high 

contrast relative to the surrounding region. 
For these reasons the processing pipeline of figure 8 is the method that should 

always be used, despite the increased resource requirements. 
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Figure: 9: Comparison of fused images when Burt Gaussian pyramids are used versus 
the implemented pyramid algorithm. The difference image has been inverted and 
scaled to use the whole greyscale range. 

7 Conclusion 

An implementation of a pattern-selective image fusion algorithm has been presented 

that utilises aspects of FPGA technology to enable dual video streams to be pro- 

cessed in real-time. The results from the implementation showed that four levels of 

pyramidal decomposition, with four separate gradient operators, can all run on a 

single FPGA with no requirement for off-chip memory. The modular nature of the 

design means that pyramids with less, or more, levels could be added without major 

modification. Use of an FPGA has enabled a design that can process images at a rate 

over 100 times faster than a similar PC-based Matlab implementation. The method 

of generating Gaussian pyramids used here is based on an incorrect implementation 

of the Burt algorithm, which is prone to aliasing and increased blur, and is in general 

an unacceptable method. An analysis has been given of the cost of implementing the 

true Burt algorithm using the same pipelined structure, concluding that the modified 

design could fit on the same device with only a small decrease in performance. 
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Video Processing Demonstration Platform 

August 2006 

Summary: Several algorithms presented in this portfolio were implemented on a 

custom FPGA circuit board designed by Thales for a commercial product. The 

board was ideal for algorithm implementation purposes, as it featured a medium 

sized Virtex-2 FPGA, video D/A and A/D converter ICs, and six banks of SDRAM 

each with independent address and data buses. 

In order to make the algorithm implementation process easier, a suite of au- 

tomated scripts and batch files were produced by the RE that enabled a System 

Generator algorithm design to be synthesised and implemented on the board with 

no manual intervention from the user. A VHDL `wrapper' was also developed to 

handle low-level issues such as memory accesses and clocking. 

Use of this system would enable a person with little or no hardware design expe- 

rience to trial and demonstrate video processing algorithms in hardware, and it may 

therefore be useful for algorithm development purposes. This short report documents 

the board and implementation process and how it should be used. 

Oliver Sims 

EngD 4th year 

Industrial Sponsor: Thales Optronics 
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1 Introduction 

The following document describes a system developed to provide a standard platform 
for video processing algorithms. Use of this demonstration platform allows for rapid 
deployment of video processing algorithms on FPGA hardware, and provides an 

opportunity for the designer to trial algorithms quickly using high-speed logic. 

The platform essentially provides a VHDL wrapper for algorithms implemented 

using Xilinx System Generator. The wrapper provides clock management, mem- 

ory interfaces, and interfaces to video A/D and D/A chips that manage the data 

acquisition and display. 

System Generator allows use of Xilinx IP cores in a high-level graphical domain, 

and allows the designer to utilise the whole range of advanced Simulink stimulus and 

verification tools to test the design. Once the algorithm is operating satisfactorily 

a push-button process generates HDL code. A set of scripts and batch files have 

been produced that will translate this HDL code into an FPGA programming file. 

In this way an algorithm design can go from a high-level block diagram to a working 
demonstration in hardware in minutes, with no manual intervention required. The 

automated implementation process will in some cases be a quicker alternative to 

performing a PC-based simulation, and will give a more immediate means to display 

and compare the efficacy of different algorithm models. 

This report documents the hardware design and software environment that makes 

up the demonstration platform, and the format required for algorithms to be demon- 

strated. 

2 Hardware 

The system uses the main board and portions of firmware from the Thales Joint 

Target Acquisition System (JTAS) project. The JTAS project is a handheld system 

with dual video input channels and interfaces for a variety of peripheral equipment, 
for instance navigational systems. On-board it features six independent SDRAM 

devices, with each device containing 8M 16-bit locations. Each device has dedicated 

address and data lines, meaning they can be accessed individually and independently 
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of each other. 

The video input channels are controlled by SAF7113H video input processors 
from Philips Semiconductor. These devices synchronise to an analogue video stream 

at the input, perform A/D conversion, before outputting the active video data in 

ITU656 4: 2: 2 format. The devices are highly configurable and can handle a wide 

range of input video standards. They are programmed using an 12C interface. The 

JTAS board outputs analogue video data via an ADV7179 video encoder from Analog 

Devices. The device converts 8-bit 4: 2: 2 video into a configurable analogue output. 
The device handles all timing issues and generates the synchronising and blanking 

periods as necessary for the output standard being used. The device is also configured 

using an 12C interface. 

It should be noted that the JTAS platform is designed for full colour video whereas 

this video processing demonstrator is greyscale only. Greyscale is sufficient to demon- 

strate the majority of image and video processing algorithms, and it cuts down the 

complexity of the system and provides more spare logic for the algorithm. 

3 System architecture 

A block diagram of the system in shown in figure 1. There are multiple clock domains 

throughout the design, with asynchronous FIFOs acting as buffers between domains. 

At the ends of the pipeline the clock rate is 27MHz, as determined by the 4: 2: 2 format 

for digital sampling of analogue video (ITU-R 656). In the 27MHz domains the video 
input and output processor modules interface with the video decoder and encoder 
devices respectively. These modules are taken from the original JTAS design with 

only minor modifications to handle greyscale only images. 

On either side of the algorithm the video data is buffered in large SDRAM stores. 
The SDRAM blocks are controlled by two separate SDRAM controllers, whose func- 

tion is to read/write data from/to RAM as necessary to prevent the FIFOs from 

filling or emptying. The SDRAM controllers are subtly different to each other in the 

way they operate: the input side memory controller is designed in such a way as to 

crudely deinterlace the video data on the input side of the system through weaving 
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Figure 1: System block diagram. 
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of alternate frames as they are written to memory; this operation is reversed on the 

output side. Although this form of deinterlacing may introduce artefacts for fast 

moving objects, it is chosen here for its simplicity. 

The SDRAM controllers both operate at a clock frequency of 80MHz, this is 

a remnant of the JTAS design where this frequency was chosen to accommodate 
SVGA video formats. It remains unchanged here, as 80MHz provides sufficient 

responsiveness to perform the SDRAM reads/writes given that the clock frequency 

of the algorithm is user definable and may be increased. 

The System Generator container module connects the System Generator netlist 

to the surrounding hardware. The clock rate of this module is variable, through 

modification of the top-level VHDL netlist and/or reconfiguration of the Digital 

Clock Management (DCM) units on the FPGA. Increasing the clock speed of the 

algorithm may be necessary in situations where the algorithm requires multiple clock 

cycles of processing time per pixel, and a clock speed of 25MHz is insufficient to 

process the incoming video data in real-time. The algorithm in the System Generator 

module does not run continuously, but instead operates in bursts by processing whole 
lines of image data one at a time. This is controlled by the VHDL container module, 

which detects when a full line of data is available in the input FIFO, and then enables 
the algorithm for sufficient time to process that data and write it to the output FIFO. 

The controller and interface logic has the resource overhead described in table 1. 

The remaining logic is available for the algorithm. 
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Resource Used Total on Device % of XC2VP20 
Slices 923 9,280 9% 

4-input LUTs 1,382 18,560 7% 
Slice FFs 990 18,560 5% 

Block RAMs 6 88 6% 

Table 1: Resource overhead 

4 System Generator model format 
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A copy of the System Generator model to be used as a basis for algorithm develop- 

ment is shown in figure 2. 

The designer is free to implement any algorithm using the System Generator block 

set, but there are certain constraints to ensure compatibility with the surrounding 
hardware: 

" The algorithm will only operate on video data arriving in a raster format. 

" There must be a parallel delay line (3-bits wide) that is used to send sync 
information alongside the data. This delay line must be the same length as 
the latency of the algorithm being deployed. The latency of the algorithm can 

usually be determined by counting the number of register stages (denoted zit 
by System Generator) between the input and output. 

" The filename used for the System Generator model must be alg. mdl, and the 

generated code must be saved into a sub-folder of the SysGen folder called 

netlist. 

" The image size is currently imposed by the PAL input as 575 lines of 720 pixels. 
Modification to operate on smaller images (for instance VGA) is possible but 

requires alteration of the SDRAM controllers. 

There is a user input labelled filter-en, which can be used within the algorithm, this 

is connected to the fire push-button on the JTAS test harness. One way in which 
this could be used is in selecting between a processed and unprocessed version of the 

video stream, implemented using a multiplexer at the output of the algorithm. In 

addition the centre button of the five directional buttons on the test harness acts 
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as a master reset. The HDL netlist is generated using the Generate button in the 
System Generator block. A copy of the System Generator dialog box is shown in 
figure 3; the settings shown in the figure should not be altered. 
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ýý 

Q> 

Li 

Xilinx System Generator 

Compilation : 

DL Netlist F 

Part : 
frirtex2P xc2vp20-5ff896 

Target directory : 
Imetlist 

Synthesis tool : 
JXST ý VHDL 

FPGA clock period (ns) : Clock pin location : 
Fo 

r Create testbench r 

r Provide clock enable clear pin 

-1 1 xl 

Browse... 

Hardware description language : 

IA, rnrding to E; k)r_. ý: '_: pthrd7c 

Simulink system period (sec) :h 

Block icon display: tDefault 

Generate OK 

ý 

Apply Cancel Help 

i 
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Figure 3: Correct, settings for System Generator dialog box 
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5 Directory structure 

The directory structure in listing 1 is required for correct operation of the scripts. 
Some of the important design files are also listed. All paths are relative, so the 

structure may be placed on a drive with any letter as its name. Note the System 

Generator model file, named alg. mdl, in the SysGen subdirectory of Videoproc. This 

is the file that should contain the algorithm to be deployed. 

6 Implementation 

The following software must be present on the host PC before implementing a design: 

" Mentor Graphics Precision RTL Synthesis 

" Xilinx ISE 8.1 or later, including iMPACT programming tools 

The Path environment variable on the host PC must also be correctly configured 

to allow access to these programs from anywhere in the file system. In addition to 

the software requirements, a Compact Flash card reader is required to transfer the 

bitstream to the target hardware. 

The process of taking the System Generator netlist through to an FPGA bit- 

stream has been automated through the use of TCL scripts and a batch file. The 

implementation process is controlled from the XFLOW directory (XFLOW being the 

name given to the Xilinx command used for running the ISE tools in batch mode). 

There are three stages to the implementation process: synthesis, Xilinx implemen- 

tation, and generation of the programming file. There are two batch files that can 
be used for this process: 

" Go. bat prompts the user before executing each program. This is useful to check 
the output of a program before executing the next one. 

" Go_all. bat executes all stages without requiring user input. 

The synthesis stage calls Precision Synthesis in batch mode and synthesises the 

design. The commands are TCL scripted to collate and compile the necessary VHDL 

files and apply synthesis constraints. 
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Listing 1 Directory structure 
\VIDEOPROC 
I ADV7179IIC. vhd 
I AlgSim. vhd 
I CONFIGrst. vhd 
I Debounce. vhd 
I PALout. vhd 
I SAF7113IIC. vhd 
I SDRAM_Acq. vhd 
( SDRAM_Disp. vhd 
I SURAC_A. vhd 
I VideoChain. vhd 
I VideoIn444. vhd 

+---Cores 
II 
+---SysGen 
II alg. mdl 
I +---netlist 
II 
+---Test 
+---work 
II 
\---xflow 

I bitgen_opts. opt 
I go. bat 
I go_all. bat 
I ISE_opts. opt 
I precision_rtl. sdc 
I precision_settings. tcl 
( precproj. tcl 
( precsynth. tcl 
I SURAC. ucf 

+---impact 
I \---VidProCF 
II xilinx. sys 
I \---VidProCF 

+---Reports 

+---ISE 

\---Synthesis 
\---Precision 
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The Xilinx tools translate the netlist into Xilinx hardware and then perform 

placement and routing. These processes are controlled from the XFLOW command. 
Finally, the Xilinx iMPACT tool is called to generate the programming files. On 

completion the programming files (a folder called VidProCF and a xilinx. sys file) 

should be copied to the root of the System ACE Compact Flash card being used to 

program the device. 

During the implementation phase several reports and log files are generated. 
These are all automatically copied to the /xflow/Reports subdirectory. These reports 

are useful to check for any warnings or errors detected by the synthesis tool, and can 

also be used to check device usage and timing information as reported by ISE. The 

device usage information is contained in the Map report, named SURAC-nap. mrp. 

7 Notes 

There are several areas where the demonstration platform could be developed further: 

Cater for adjustable image sizes. For instance, VGA would be a popular reso- 
lution but currently requires modification of the VHDL firmware design. 

" The constraints of the ITU601 standard mean that although the video is in 

8-bit format, the necessity of sync levels etc. means that this translates to 200 

quantisation levels not 255. The black level corresponds to 16, and the white 
level is 235. Algorithms that exceed this range in their output will still work 

without causing problems as the logic has been designed to impose these limits 

before outputting data to the video encoder. Unfortunately this means there 
is a reduction of dynamic range available to the algorithm. 
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Summary: An introduction to an algorithm that uses polynomial equations to gen- 

erate spatial maps, which describe the affine transformations required to register an 

image to a reference image. Registration is a necessary step before image fusion may 

be performed. The implementation adapts an SDRAM controller to warp an image 

as it is read out of memory. 
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1 Introduction 

Image registration is required in a variety of fields where information contained in 

multiple images must be compared or combined. Some example uses of image regis- 

tration are in medical imaging (for instance monitoring tumour growth), updating of 

map imagery, computer graphics, etc. Due to the wide range of applications, there 

has emerged an abundance of methods of performing image registration. These are 

increasingly becoming domain-specific, such that the popular algorithms in one area 

of image registration may not have similar success in other areas. 

The problem is essentially one of transforming an image, such that when it is 

compared with another image of the same scene any common features are in the 

same relative position. This will enable identification of any differences between 

the images, whilst removing the discrepancies caused by the processes involved in 

capturing the image data. These discrepancies may be caused by using different 

sensors for each image, movement of a sensor between captures, or a time delay 

between captures, amongst other things. 

The application domain of this work is in registration of images that are to be 

used as input to an image fusion algorithm, operating on data obtained from two 

different sensors. The purpose of image fusion is to combine images such that all 

useful information from both source images is retained into the final composite, 

without introduction of unnecessary noise or artefacts. The information content of 
the fused image is thus greater than either source image, and may be deemed more 

effective for either human or machine interpretation. The two sensors that provide 

the data for fusion will be operating simultaneously, and will usually be adjacent to 

one another; the difference in viewing angle between the two sensors is known as the 

boresight error. The sensors may be also be of differing resolutions. The objective 

of the registration algorithm is to harmonise the two images such that they are the 

same resolution and appear to be captured from the same viewpoint. It is equally 
important that no detail in either image is destroyed or lost by the registration 

process. 
The fact that the two sensors are adjacent means that the amount of translation 

between the two images can be assessed once before processing begins, and is assumed 
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to remain constant. This means that automatic registration techniques (whereby 

the amount of transformation that must be applied is calculated in real-time) are 

unnecessary. Rather than mathematically modelling the transformation it is common 

to rely on manual identification of multiple control points, i. e. points in each image 

that correspond to one-another. These points may then be used to calculate the 

transformation that is required. 
This document describes a hardware implementation of one such image regis- 

tration algorithm known as polynomial warping. The target hardware is a video 

processing demonstration platform, comprising the necessary hardware for analogue 

video acquisition, FPGA processing, and subsequent D/A conversion and display. 

The resulting implementation is a small module that can warp the image data as 

it is being read into the FPGA ready for further processing, for instance for image 

fusion. 

2 Polynomial warping 

The key task of image registration for fusion applications is the removal of the varia- 

tion in boresight between two (or more) sensors. This may be classed as a rigid-body 

transformation, i. e. one that is formed of a translation, rotation, and a scale change. 

Rigid-body transformations are global (the same transformation applies over the 

whole image) and fall into the category of of ine transformations [1]. This makes 

them suitable for implementation using polynomial warping methods; an example of 

the kind of warping possible with affine transformations is shown in figure 1. 

Polynomial warping produces a non-linear spatial map that describes the plane- 

to-place mapping between the two images [2]. This mapping can be used to select the 

pixel in the unregistered image that corresponds to a given pixel in the registered 
image. There will not always be a direct one-to-one mapping, so interpolation is 

usually required to calculate values at a sub-pixel level. 

Given two images, f (xl, x2) and f (u. 1, u2), the task is to find a coordinate trans- 

form between the two, i. e. functions that translate an input pixel location (x1i x2) 
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Figure 1: Example of an affine transformation 

to an output pixel location (ul, u2): 

X1 = 91 (Uli u2) 
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(la) 

X2 = 92 (ui, u2) (ib) 

Rather than attempting to mathematically model the transforming functions gl and 

g2, it is usually sufficient to approximate them using polynomials of the form: 

N N-i 

x1 
E K, jui1.2 

i=0 j---o 

N N-i 

22 K 
S3 

Z'i'fC32 

i---o j---o 

(2a) 

(2b) 

where K' and K2 are sets of constant coefficients. N gives the order of the polynomi- 

als; low orders are usually sufficient and all affine transformations can be described 

by first order (N=1) equations [3). In this case the polynomials expand to: 

xi = Köo + Koluz + Kloul 

02 = Ký + k-2 
_01U2 + k-2 pu1 

(3a) 

(3b) 

The coefficients K' and K2 may be determined through a process based on identi- 

fication of control points, which are used to form systems of simultaneous equations 
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that when solved give the values for the coefficients. In order to determine six un- 
known coefficients, as required for the first order equations above, it is necessary to 

identify at least six control point pairs. (More than six control points may also be 

used, resulting in an over-determined system of equations). The control points may 
be defined as: 

{xli, x2i, Uli, u2i} for i=1 to 6 (4) 

Solution of the system of equations can then be performed using standard matrix 

methods, i. e. 

[ Hence: 

x11 

-112 

X13 

K1 00 
Köl 

Kio 

1 U21 ull 

1 U22 U12 

1 U23 U13 

1 u21 1111 

1 U22 1612 

1 1123 413 

K1 00 
K01, 
K1 

10 

1[ 
X11 

X12 

X13 

(5) 

(s) 

will provide the solutions for the Kl coefficients, and the similar operation can be 

performed for K2. 
Once the coefficients have been calculated the polynomial equations can be used 

to identify the pixel locations in the input image that are required for the output 
image. The values generated by the polynomials will not usually be integers, so that 
the point they refer to in the input image may be between pixels, and interpolation 
will be required to approximate the necessary value. 

3 Implementation 

The process of calculating the coefficients for the warping polynomials only needs to 
be performed once for a particular transformation between two sensor positions, so 
that if the sensors do not move relative to one another there is no need to repeat 
the calculations. These calculations can thus be performed beforehand (using for 

instance Matlab) in order to generate the polynomial coefficients that can then be 

hard coded into the design. 
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Figure 2: System Generator implementation of first-order polynomial equation 

System Generator was used to implement the polynomial equations that utilise 

the coefficients. System Generator is ideally suited to applications such as this: it is 

designed to facilitate experimentation with binary precision and word-lengths, and 

the polynomials are formed from add and multiply operations which map directly to 

the standard block libraries. For these reasons, and the inherent ease in designing 

systems graphically, implementing a design such as this is much quicker in System 

Generator than in manually written VHDL. 

Figure 2 shows the implementation of one of the polynomial equations. The 

coefficients are hard-coded as constants for the two gain terms and as an input into 

the second adder block. Figure 3 shows how this model of a polynomial equation 

is used to generate the spatial neap. Two counters are used to generate the input 

addresses; the counters should be able to represent all pixel locations in the input 

image (in this case a 640 x 480 element VGA image), so the first counter represents 

the pixels per line (up to a maximum of 640), and the second counter represents the 

current, image row (up to 480). In this way all pixel locations are generated in raster 

format, one per clock cycle. 

Sixteen bits are used to represent the constants in signed or unsigned format, 

with a fixed binary point that may be positioned as appropriate for each coefficient. 

Subsequently the values that are naturally output by the system are real numbers 

and are rarely integers. The input image is comprised of discrete pixels that lie on 
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Figure 3: System Generator implementation of hardware to generate a spatial map 
in raster format, using two first-order polynomials 

a sampling grid, and the coordinates generated by the polynomials generate a new 

sampling grid with pixel locations that do not correspond exactly to the pixels in the 

input, image [3]. Interpolation is required to approximate the output pixel values. Bi- 

linear interpolation is commonly used in these situations, however nearest-neighbour 

interpolation has the advantage of being significantly easier to implement as it may 

be achieved simply by rounding the output to the nearest integer. The disadvantage 

of nearest-neighbour interpolation is that it may introduce some blockiness in places 

in the output image. However, bilinear interpolation is also problematic (it has an 
inherent smoothing effect that can reduce detail), and so the reduced complexity 

of nearest-neighbour interpolation is preferred for demonstration purposes. More 

sophisticated methods of interpolation could be used at a later stage if necessary. 

3.1 SDRAM controller 

The video processing system used for the registration process buffers image data 

arriving from a PAL analogue camera in an SDRAM store. As the data are stored 

in memory the alternate fields are weaved together as a simple form of deinterlacing. 

SDRAM memory is organised into rows and columns, and the image is stored with 

one image line split over two rows of memory. 

The spatial maps generated by the polynomial equations are utilised during the 

process of reading the data out of SDRAM and into the FPGA for processing. The 

read addresses for the SDRAM are formed from the coordinates generated by the 
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End of 
image line 

Figure 4: State machine implementation of memory controller for image registration 

System Generator polynomials, with xu representing the required memory row and 

x2 representing the required memory column. As coordinates are generated in a 

raster format, the column address changes significantly more frequently than the row 

address. Due to the way in which SDRAM operates, when the row address changes 

a Precharge command must be issued to the row currently being accessed, and then 

the next row must be activated before reads can continue. This introduces extra 

complexity into the SDRAM controller; a state machine was necessary to detect the 

changes in row addresses and issue the correct sequence of commands, this is shown 

in figure 4. The issuing of Active and Precharge commands adds latency, which 

may become problematic if the warping includes a significant rotational aspect since 

the number of row changes required per image line will be high. In this situation 

the clock rate of the SDRAM controller may need to be increased in order to meet 

real-time constraints imposed by the source video. 

4 Results 

The design is mostly comprised of the System Generator implementation of the 

polynomial equations, and the extra control logic needed in the SDRAM controller 
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Pi, guure 5: TV image before registration 
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lo he able to perform the active/precharge commands as required by the addresses 

as they are generated. For this reason the registration design consumes a minimal 

amount of FPGA resources. 

Resource I Used I Available I% of XC2VP20 
Occupied slices 242 9,280 2 

4-input LUTs 1 469 1 18,560 12 
Block RAM 0 444 0 
Multipliers 0 444 0 

Table 1: Resource usage of registration design 

Some example images are presented below. Figure 5 shows an image of a scene 

captured with a standard TV camera. Figure 6 shows the same scene captured by a 
high-resolution thermal camera. This image is the reference image, to which the TV 

image should he registered, however the TV image is capturing a much wider area. 
Figure 7 shows the TV image from figure 5 after it has been warped to match the 

thermal image from figure 6. The warping includes an inherent magnification of the 

desired region. It now shows the same area, and common features are in the same 

relative position. 

5 Conclusion 

This report has presented a simple method of performing a spatial warp of an im- 

age as it. is read from an off-chip SDRAM frame store into an FPGA. To do so it 

uses polynomial equations, implemented in System Generator, to generate the pixel 

locations required in the unregistered image. The warp is predetermined according 
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Figure 6: Reference image (thermal) 

Figure 7: Registered TV image 
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to manual selection of control points in the unregistered and reference images. A 

finite state machine is used to generate the necessary sequence of commands to the 

SDRAM memory. The application is a simple example of separating control and 
datapath elements of a design, and implementing them with the appropriate tools. 
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