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SUMMARY

To understand cancer and the uncontrolled divisions that malignant cells undergo to 

form tumours, it is essential to elucidate normal cell cycle control mechanisms. The 

use of mammalian cell systems in this area o f research is difficult, and thus alternative 

simpler model systems, such as yeast, have been exploited. The application of yeast 

genetics has proved to be a particularly powerful tool, permitting the identification of 

a number of genes required for cell cycle progression, that have subsequently been 

shovm to have human homologues. For example, transcriptional mechanisms 

involving passage through START in G1 and commitment to S phase are conserved 

fi'om yeast to mammals.

In the work presented in this thesis, I have investigated the transcriptional 

regulation of cdc22^, a fission yeast, Schizosaccharomyces pombe, G l/S expressed 

gene, to understand cell cycle regulated mechanisms at START. We hope that such 

information will contribute towards a better understanding of transcriptional 

mechanisms of Gl/S regulated genes in other eukaryotes, including mammalian 

systems.

In fission yeast progression through the cell cycle is dependent on passage 

through START, which is regulated in part by the transcription factor complex D SC l. 

DSCl controls the expression of genes at the G l/S transition essential for DNA 

synthesis. Each of these genes contains an upstream activation sequence (UAS) that 

possess a conserved core element of one or more hexameric sequences, coinciding 

with the Mlul restriction site (ACGCGT), called a Mlul cell cycle box, or MCB motif. 

These MCB motifs bind specifically to DSCl to form the transcription control 

system.

cdc22'^ was the first fission yeast Gl/S transcribed gene to be discovered, and 

found to contain an interesting array of MCB motifs in its promoter. The promoter 

contains two clusters of MCB motifs, named in this thesis as “M CBl” and “MCB2”, 

within which there are three Mlul motifs that are identical to the Mlul recognition 

sequence, and five MCB motifs containing the central CGCG core thought to be
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essential for flinction. There is also a single core Mlul site in between the two MCB 

clusters, named here “MCBX”. The mapping of transcriptional start of cdc22^, using 

primer extension and Northern blot analysis, revealed that the start point of the gene 

lies between the two MCB clusters. Furthermore, in vitro DNAsel footprint analysis 

showed there are protected regions over MCB2, implying that either one or both of 

the MCB clusters is essential for the binding of DSCl, and activating transcription of 

cdc22^.

My initial experiments showed that both of MCB clusters, MCBl and MCB2, 

can confer Gl/S transcription. This was achieved by separately cloning the two 

clusters into a UAS-/acZ reporter constmct containing the CYCl minimal promoter 

and examining their ability to confer G l/S transcription to lacZ, Both MCB clusters 

could confer cell cycle regulation to the heterologous gene, but only when present in 

the correct orientation. This latter observation was shown to be a generic property of 

MCB motifs in fission yeast, as MCBs in other endogenous genomic locations were 

also found to only activate cell cycle transcription in one orientation.

In another experiment, using an integration vector containing the entire 

promoter region of cdc22^ linked to lacZ, we were also able to show that intact MCB 

motifs in both MCB clusters are necessaiy for the correct cell cycle regulation. It was 

observed that MCBl was required for stimulating cell cycle transcription, and that 

MCB2 is essential for basal transcription of the gene. The finding that MCB2 

participates in the transcriptional activation of cdc2T  is particularly interesting, 

because this is the first evidence in fission yeast of a transcriptional control sequence 

downstream to the transcriptional start for a RNA polymerase II regulated gene. We 

therefore name this type of new sequence a DAS (downstream activating sequence).

In vitro gel retardation analysis showed that DSCl specifically binds to MCB2 

and M CBl, confirming the importance of both clusters. Significantly, MCB2 had a 

higher “on-off’ rate that M CBl, suggesting a mechanism by which this cluster could 

activate cdc22^ transcription, while allowing RNA polymerase II to pass. Bringing 

these observations together, a model is proposed to explain DSCl-MCB regulation of 

cdc22^ transcription, which we believe will be applicable to most MCB-regulated 

genes in fission yeast.
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Chapter 1: Introduction

lA  Introduction

Of the estimated nine million new cancer cases every year more than half occur in 

developing countries (Neal and Hoskin 1997). In the UK alone during 1993, 160,000 

people died from different forms of the malignant disease, which represented about 1 

in 4 of all deaths (WHO 1996). One o f the major causes of cancer is uncontrollable 

cell division, when cells divide at incorrect times.

Replication of a cell is governed by the cell division cycle, which follows a 

pre-determined genetic programme. This genetic programme results in the 

progression of cells through growth, DNA replication and mitosis, followed by 

cytokinesis, to allow the segregation of the hereditary material into two daughter cells. 

The precise co-ordination of the progression through cell cycle phases is critical, not 

only for normal cell division, but also for effective an est under conditions of stress or 

after DNA damage. As a consequence, a derangement in the cell cycle machinery 

may contribute to uncontrolled cell division, which is a principal feature of many 

forms of cancer (Malumbres and Barbacid 2001).

Thus, an understanding of the normal eukaryotic cell cycle is an essential 

requirement to understanding cancer and the uncontrolled divisions that malignant 

cells undergo to form tumours. The application of yeast genetics to this field of work 

has proved to be a powerful tool, as it has allowed the identification of a number of 

genes that are critical for controlling cell division in all eukaryotes (Qin and Li 2003),

In this introduction, a review of the current knowledge regarding the cell cycle 

in mammalian systems is outlined, followed by the present understanding of cell cycle 

controls in yeasts. Finally, the importance of yeast species, and particularly the 

fission yeast Schizosaccharomyces pombe, as model organisms for elucidating 

eukaiyotic cell cycle control mechanisms is described.



IB Cell cycle

I Mitotic cell cycle

The cell cycle in eukaryotic cells occurs in a particular defined order, which is 

commonly divided into four phases (Nurse 2000) (Figure 1). The first gap, called G l, 

is the longest phase in mammalian cells, during which the cells prepare for DNA 

replication. This is followed by S phase (DNA synthesis), during which the DNA is 

replicated and a complete copy of each of the cluomosomes is made. The second gap 

phase, G2, occurs after S phase and before the next stage, M phase (mitosis). 

Together, G l, S and G2 comprise interphase. M phase is when the duplicated 

chromosomes are segregated between the two daughter cells as the cell divides.

M phase consists o f the various stages o f nuclear division, which can be sub­

divided into five parts. Prophase, during which the chromosomes condense. 

Prometaphase, when the chromosomes interact with the centrosome to form the 

spindle. Metaphase, during which the sister cliromatids attach at the centromere and 

become aligned in the centre of the cell. Anaphase, where the sister chromatids 

separate and move to opposite poles or spindles and segregate into the daughter cells. 

And finally, telophase, when cytokinesis pinches the cell into two daughter cells and a 

nuclear envelope re-forms around the two groups of chromosomes (Mazia 1961). 

After mitosis, proliferating cells enter Gl of the next cell cycle (Nurse 2000).



Figure 1. A schematic representation of the mitotic cell cycle of mammalian cells.
The cell cycle is classically divided into four phases: G l before DNA synthesis; S when DNA synthesis 
occurs; G2 after DNA synthesis and before M, mitosis, when nuclear division occurs. Under certain 
circumstances cells exit the cell cycle during G l and remain in Gq state as non-growing non-dividing 
(quiescent) cells. Appropriate stimulation of such cells induces them to return to G l and resume growth and 
division. The restriction point is the stage during G l when cells chose to either enter S phase or Go-

Cells normally enter S phase only if they are committed to mitosis. Under 

certain circumstances non-dividing cells may exit the cell cycle after mitosis and 

remain in a non-proliferative resting phase, called Go, or quiescence (Baserga 1976; 

Prescott 1976a; Pardee et al. 1978).

The initiation of the cell division cycle is dependent on the presence of extra­

cellular growth factors known as mitogens. In the absence of mitogens, cells 

withdraw from Gl and enter Go. The point in Gl at which information regarding the 

environment of the cell is assessed, and when the cell decides whether to enter another 

division cycle, is called the restriction point (“R” point) (Pardee 1989). The R point is 

o f crucial significance in understanding the commitment of mammalian cells to 

undergo a cell division cycle, as deregulation of the R point may lead to cancerous 

growth o f cells in vivo (Sherr 1996; Blagosklonny and Pardee 2002). In most cell 

types the R point will occur a few hours after mitosis. Cells that are starved of 

mitogens before reaching the R point will enter Go and fail to undergo cell division. 

In contrast, cells that are starved of mitogens after reaching the R point are committed
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to enter S phase and must complete cell division before entering GO from the next cell 

cycle (Blagosklonny and Pardee 2002).

II Meiosis

In all multi-cellular organisms, and in single-celled organisms that are diploid at some 

phase of their life cycle, another important type of cell division occurs that 

fundamentally differs from mitosis. This alternative life cycle is called meiosis 

(Prescott 1976b). Meiosis is a reductive form of cell division, which results in the 

production of haploid cells, sperm and egg cells in higher plants and animals 

(Cavalier-Smith 2002).

1C Checkpoint controls

Catastropliic genetic damage can occui' to cells if they progress to the next phase of 

the cell cycle before the previous phase is properly completed. Thus, a crucial 

regulation of eukaryotic cell cycle is exerted through checkpoint contj'ols that operate 

to ensure that each stage of the cell cycle is fully completed before the following stage 

is initiated (Rhind and Russell 2000a). There are different stages at which checkpoint 

controls can arrest passage through the cell cycle if  cell conditions are unsuitable. For 

example, DNA damage due to irradiation or chemical modification prevents Gl cells 

from entering S phase and G2 cells from entering mitosis. Un-replicated DNA can 

also cause S phase arrest and prevent entry into mitosis, and improper spindle 

formation results in M phase arrest preventing the cell from entering anaphase (Qin 

and Li 2003). Passage through checkpoints in the cell cycle is controlled by the 

activity of cyclin-dependent protein kinases (Nurse 2002).



I Cyclins and CDKs - activities

The cyclin-dependent protein kinase complex is made up of a regulatory sub-unit 

called a cyclin, and a catalytic sub-unit, initially discovered in yeast, called a cyclin- 

dependent kinase (CDK) (Walworth 2000). The CDKs have no catalytic activity 

unless they are associated with a cyclin, and each can associate with more than one 

type of cyclin (Fisher 1997). The cyclin family of proteins share homology in a  100 

amino acid region called the cyclin box, through which they bind specifically to the 

CDKs (Pines 1996). In addition to controlling CDK activation, the cyclin sub-unit 

may also contribute to substrate specificity and determine which target proteins are 

phosphorylated (Peeper et al. 1993).

In mammalian cells a range of cyclin sub-units activate CDKs to trigger their 

transition fi'om one phase to the next during the cell cycle. There are three different 

classes of cyclin-CDK complexes associated with either G l, S or M phases. The Gl 

CDK complexes CDK4, CDK6 and CDK3 activate transcription factors that cause 

expression of enzymes needed for DNA synthesis and the genes encoding S phase 

CDK complexes, and so prepare the cell for S phase (Reed 1997). The S phase CDK 

complex, CDK2, stimulates the onset of DNA synthesis and helps to ensure that each 

chromosome is replicated only once (Morgan 1997). It also induces chromosome 

condensation and orders chromosome separation into the two daughter cells (King et 

al. 1994). Entry into mitosis employs a highly conserved mechanism dependent on 

CDKl (Riabowol et al. 1989; Hamaguchi et al. 1992). CDKl was the first human 

cyclin-dependent kinase to be identified and was found by complementing fission 

yeast c d c l  mutants (Lee and Nurse 1987) (Introduction, pages 28 and 32).

During G2 CDKl joins newly synthesised cyclin B to form a complex called 

maturation promoting factor or MPF, that controls the G2/M transition (Doree and 

Hunt 2002). Full activation of CDKl is essential to stabilise its association with 

cyclin A. This activation is stimulated by the phosphorylation o f CDKl at its 

stimulatoi'y threonine-161 (Thr-161) site (Artherton-Fessler et al. 1993); and an 

inhibitory tyrosine-15 (Tyr-15) site, that is de-phosphorylated by a protein 

phosphatase Cdc25, after DNA synthesis has been completed (Izumi et al. 1992). In 

human cells, three CDK phosphatases have been identified named Cdc25A, Cdc25B



and Cdc25C (Galaktionov and Beach 1991). Once activated, the CDKl can then 

phosphorylate many target proteins, initiate mitosis, and also switch off the complex 

by triggering enzymes that degrades the cyclin polypeptide.

II Cyclins and CDKs -  regulation and control

Both cyclins, and some CDK-inhibitoiy proteins (CKIs), are regulated by synthesis 

and ubiquitin-mediated proteolysis (Ciechanover et al. 2000). This ubiquitin- 

proteosome system involves a large number of enzymes mediating ubiquitin 

activation (El), ubiquitin conjugation (E2) or ubiquitin ligation (E2), which modulate 

turnover of cell cycle regulatoiy proteins (King et al. 1997). Ubiquitin-dependent 

degradation performs a key regulatoiy function during G2/M and completion of 

mitosis is regulated by the maphase promoting complex (APC) - another high 

molecular weight ubiquitin ligase complex essential for chromosome segregation. 

Apart from degradation o f cyclins at specific stages during the cell cycle, 

ubiquitination-dependent proteolysis may also be important for regulating the 

activities of oncoproteins (protein products encoded by oncogenes) with the potential 

to transform cells to malignancy (Appella and Anderson 2000).

Late in the cell cycle ubiquitination and subsequent degradation o f B type 

cyclins is initiated by the APC, which functions by catalysing the binding of ubiquitin 

to cyclin B (Peters 2002). Activation of MPF and the mitotic cyclin degradation 

system occur sequentially, as the time lag between these two events allows MPF to 

remain active to induce mitotic events before APC activation ends the mitotic process. 

The APC is itself cell cycle regulated, as ubiquitination and proteolysis o f B type 

cyclins only occurs in mitosis and Gl (Imiger and Nasmyth 1997). The regulation of 

the APC in mammalian cells is poorly understood and is better studied in simpler 

model systems, such as fission yeast (Blanco et al. 2000).

CDKs can also be regulated by binding CKIs aud other proteins such as Sucl, 

that modify their specificity or accessibility to regulators (Patra and Dunphy 1996). 

CKIs inhibit CDK activity after their function has been exerted and provide an



efficient mechanism to regulate the sequential activation of specific cyclin/CDK 

complexes throughout cell cycle progression (Serrano et al. 1995).

CDKs are essential for regulating the function of transcription factors, and 

recent studies implicate CDK complexes in regulating transcription by functional and 

physical interaction with components of the basal transcription apparatus (Dynlacht 

1997; Walworth 2000). To date, the three known CDKs which appear to have a role 

in basal transcription, have been reported to be capable of utilising the carboxy- 

terminal domain (CTD) of the large sub-unit of RNA polymerase II as a substrate. 

This leads to the hyper-phosphorylation of the CTD, which is an important process in 

transcription (Svejstrup et al. 1997). CDK-activating kinase (CAK) is another 

cyclin/CDK complex composed of cyclin H, CDK7 and a third protein called MATl 

(Devault et al. 1995; Fisher and Nurse 1995; Tassan et al. 1995). CAK may provide a 

link between transcription and cell cycle control, as CDK7 is a component of TFIIH, a 

protein belonging to the basal transcription machinery. CDK7 can phosphorylate the 

C-terminus (C-term) of RNA polymerase 11, and is possibly participating in the 

induction of RNA transcription more than in activation of cyclin/CDK (Feaver et al. 

1994; Serizawa et al. 1995). Significantly, perturbation o f CDK activities can result 

in tumourogenesis (Senderowicz 2002), and their regulation, by both positive and 

negative factors, plays an important part in cell cycle progression.

I ll Mammalian DNA damage checkpoints

Mammalian cells display a cell cycle response to DNA damage similar to that of 

yeasts, but in addition they can also activate the cell death pathway (Qin and Li 2003). 

In mammalian cells the Gl DNA damage checkpoint is controlled by the two related 

kinases, ATM (ataxia telangiactasia mutated) and ATR (ataxia-and Rad related 

protein) (Abraham 2001), p53 (a protein encoded by a tumour suppressor gene) (Ko 

and Prives 1996) and a CKl, p21 (Brugarolas et al. 1995; Deng et al. 1995). The 

signals sensed by ATM and ATR are transmitted through two kinases, Cdsl and 

Chkl, which phosphorylate and thus modify the function of the targets of the 

checkpoint response (McGowan 2002). These two kinases are conserved at the level 

of primary protein sequence in eukaryotes, although current evidence suggests that
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they might not have equivalent function in all species, for example yeast (Rhind and 

Russell 1998) More recently, the precise functions of Chkl and Cdsl in mammalian 

cells are beginning to emerge (Figure 2). Cdsl is activated in response to ionising 

radiation (IR) (Brown et al. 1999a; Chaturvedi et al. 1999), and is needed for IR- 

induced stabilisation of p53, but not to initiate the G2 damage checkpoint (Fliraro et 

al. 2000). Chkl is found to be an essential gene that is required both for the S/M 

checkpoint and the G2 DNA damage checkpoint (Liu et al. 2000a).

iepÿcatàorud Stress 
UV induced damage

Checkpoint
Responses

Icmismg Radiation 
Damage

ATMATR

Musol

Brcal
Checkpoints^ 

Repair/Recovery j 
R esp on ses^

Figure 2. Schematic representation of the DNA damage and replication 
checkpoint in mammalian cells.
Arrows represent either biochemical or genetic evidence for a connection. Regulators o f  the DNA  
damage response underlined. Regulators that act only in the replication/intra-S phase checkpoint are in 
italics. Kinases that are used by both branches o f  the pathway are in green. For fiill explanation see text, 
pages 7 and 8.



IV  The spindle assembly checkpoint

In most eukaryotic cells the presence o f unattached chromosomes or defects in spindle 

assembly activates the intracellular signalling pathway known as the spindle assembly 

checkpoint, that blocks anaphase onset and stabilises the APC substrate during mitosis 

(Elledge 1996). In normal mitosis the checkpoint intervenes only when the fidelity of 

the segregation system needs to be enhanced (Clarke and Gimenez-Abian 2000). In 

addition, loss of this checkpoint may contribute to aneuploidy in cancerous cells 

(Wells 1996).

ID DNA replication in mammalian cells

I Origins o f  replication

In mammalian cells the initiation of DNA replication occurs mostly at intergenic 

regions in chromosomes, in large DNA elements ranging in size from 0.5 to 55 Kb. 

These elements are called autonomously replicating sequences (ARS) (Clyne and 

Kelly 1997). A purified multi-protein complex called the ORC (origin recognition 

complex) binds the ARSs, and the interaction of ORC with so-called 

minichromosome maintenance (MCM) proteins play an important role in the initiation 

of replication. ORC sub-units were initially identified in budding yeast, and 

homologues were identified in higher eukaryotes, suggesting similar mechanisms 

occur in mammalian cells. So far, most knowledge about ARSs and ORCs has come 

from yeasts (Fujita 1999; Wegrzyn and Wegrzyn 2001) (Introduction, pages 29-31).

II Ribonucleotide reductase

Ribonucleotide reductases (RNRs) are a family of enzymes that have an essential role 

in all living organisms, as they provide the only mechanism by which ribonucleotides 

can be converted into deoxy-ribonucleotides (Eklund et al. 2001). These enzymes are 

therefore vital for both DNA replication and repair.



RNR classes

RNRs are divided into three classes based on the nature of the cofactor providing the 

free radical for the ribonucleotide reduction reaction (Reichard 1993) (Stubbe and van 

Dor Donk 1998). Class I RNRs, present in eukaryotes and micro-organisms, use an 

iron centre to produce a stable tyrosyl radical, that is stored in one o f the sub-units of 

the enzyme. Class II RNRs, present only in micro-organisms, alternatively use 

adenosylcobalamin (AdoCbl), a precursor to a 5’-deoxyadenosyl radical and 

Cob(II)alamin. Class III RNRs, only found in anaerobic micro-organisms, utilise an 

iron-sulphur protein and S-adenosyl-methionine to generate a stable glycyl radical 

(Mulliex et al. 1999).

Although RNRs from different organisms are a diverse set of enzymes, they 

contain certain homologous structural features. The best understood of these enzymes 

is the RNR class I from E. coli, which are thought to be representative of other RNR 

classes (Figure 3). E. coli class I RNR consists of two homodimeric proteins, a small 

sub-unit called NrdA (oiz) and a large sub-unit called NrdB (P2) arranged as a 

heterotetramer (CI2P2). Based on sequence identity and allosteric properties, class I 

RNRs are sub-divided into class la and Ib, encoded respectively by the nrdABs and 

nrdEFs genes. Class II RNRs are mainly 0 .2  homodimers encoded by the nrdJ genes, 

and class III RNRs are structurally (X2-P2 with sub-units encoded by the nrdDG genes 

(Torrents et al. 2002).

The sequences of the class I RNRs from different species show weak but 

significant sequence similarities distributed along most of the polypeptide chain, 

except from the first 145 residues where there are large deviations. The similarities 

strongly suggest that the small sub-units from all species have similar overall three- 

dimensional structure to the E.coll small sub-unit, but with variations in the N- 

terminus (Torrents et al. 2002).

The class I RNR non-identical homo-dimeric sub-units are often referred to as 

R1 and R2 (Figure 3). E. coli R1 has a molecular weight of 172,0000 daltons, where 

each sub-unit contains 761 amino acid residues (Carlson et al. 1984; Nilsson et al.
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1988). RI is S-shaped and is composed of three domains: one p/a-barrel of about 480 

residues, an N-terminal portion, and another small domain attached to the p/a-barrel. 

The R1 dimer is the enzymic portion of the molecule where nucleotide reduction 

occurs. It contains both the active sites and binding sites for allosteric effectors, and 

the essential cysteines that serve as the immediate electron donor in the reduction of 

the ribose unit.

The R2 dimer has an essential role in the catalysis to generate a free radical in 

each of its two chains. It contains one di-nuclear iron centre and one stable tyrosyl 

radical per monomer, which are both essential for enzymatic activity. Amino acid 

sequence alignments of R2 proteins from different species demonstrate high similarities 

within the eukaryotic proteins (Nordlund and Eklund 1993). The E. coli R2 sub-unit has 

a molecular weight of 87,000 daltons, where each sub-unit contains 375 amino acids 

(Carlson et al. 1984). The R2 dimer is heart shaped, consisting of two p-hairpins and a- 

helices. Each R2 sub-unit is a single domain consisting of 13 helices and two p-sheet 

strands. Within the interior of the protein is Tyrl22, the tyrosyl free radical, which is 

generated by a nearby iron centre consisting of two ferric ions bridged by an oxide ion 

(Eklund et al. 2001) (Figure 3).

R1 W  /

R2(P,)

Specificity

Redox

Activity

Catalytic

Dinuclear iron centre

Ligands bound
ATP, d A l’P

ATP, dATP, dGTP, dTTP 

Glutaredoxin, thioredoxin

ADP, CDP, GDP, UDP

Tyrosine free radical (Tyr 122)

Figure 3. R1-R2 model of ribonucleotide reductase class I from E. colL
The R1 dimer is positioned on top o f  the R2 dimer and the different sites necessary for its function are labelled 
accordingly (Uhlin and Eklund 1994).
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Pathways

DNA is built from deoxy-ribonucleotides, which are synthesised from the 

corresponding ribonucleotides. In deoxy-ribonucleotide synthesis, a deoxyribose 

sugar is generated by the reduction o f the ribose within a fully formed ribonucleotide. 

The methyl group that distinguishes the thymine of DNA from the uracil o f RNA is 

added at the last step in the pathway. RNR is responsible for the reduction reaction of 

the ribonueleotides, where the 2 'hydroxyl group bonded to the C-2’ on the ribose 

moiety is stereo-specifically replaced by a hydrogen atom, with retention of the 

configuration at the C-2’ carbon atom (Figure 4). Thus, the essence of the catalytic 

reaction is a transient transfer of radical properties from the enzyme to the substrate. 

Mechanistic studies suggest that the chemistry catalysed by all classes of RNRs, with 

the exception of the reductant used, is very similar (Stubbe and van Der Donk 1998) 

(Eklund et al. 2001).

The deoxy-ribonucleotide synthesis pathway occurs in a number of steps, 

shown schematically in Figure 4. The pathway begins with step 1, where an electron 

transfer from a cysteine (Cys439) on R1 to a tyrosine radical (Tyr 122) on R2 

generates a highly active cysteine thiyl radical within the active site of R1. In step 2, 

this thiyl radical then abstracts a hydrogen atom from C-3’ of the ribose unit, 

generating a radical at the carbon atom. The presence of the radical at C-3 promotes 

step 3: the ejection of OH- from C-2, that when protonated by a second Cys225 

residue, the departing OH- leaves as a water molecule. In step 4 a hydride (proton on 

two electrons) is then transferred from a third Cys462 to complete the reduction of C- 

2 position from a disulphide bond. The hydrogen atom abstracted by the radical is 

concomitantly returned to C-3. Thus, the C-3 radical recaptures the same hydrogen 

atom originally abstracted by the first Cys439 residue and the dNTP is free to leave 

the enzyme. After substrate reduction by RNR, a disulphide bridge between Cys225 

and Cys462 is formed and has to be reduced (step 5) before the enzyme can be active 

again. The oxidised enzyme can be reduced by at least two systems, the thioredoxin 

and glutaredoxin system (Jordan and Reichard 1999).
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H S

yrosyl radical

Figure 4. Biochemical pathway showing the reduction of ribonucleotides to deoxy- 
ribonucleotidesby ribonucleotide reductase.
For details o f  the 5 steps see text page 12 (Reichard and Ehrenberg 1983).

In both cases exposed cysteine residues are oxidized to a disulfide in the 

reaction catalysed by RNR. In turn, the reduced thioredoxin or glutaredoxin is 

regenerated by electron flow from NADPH, the ultimate reductant. This reaction is 

catalysed by flavin enzymes thioredoxin reductase or glutathione reductase, 

respectively (Figure 5).
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Figure 5. Reductive electron transport sequences in the action of ribonucleotide 
reductase.
Electrons flow from NADPH  to bound FAD (oxidized form o f  flavin adenine dinucleotide) o f  the 
reductase and then to the disulfide o f  the oxidised thioredoxin/glutaredoxin (M athews and van Holde 
1996).

Regulation

RNR is regulated in mammalian cells by three mechanisms:

i) Allosteric control of the activity and specificity of RNR by NTP effectors 

(Kashlan et al. 2002).

ii) S-phase dependent transcription of RNR genes (Bjorklund et al. 1990).

iii) Rapid, proteosome-dependent proteolysis of R2 (RNR small sub-unit) in late 

mitosis (Chabes and Thelander 2000).

i) Balanced pools of dNTPs are essential for the fidelity of DNA replication. 

Allosteric regulation of NDP (CDP, ADP, GDP, UDP) reduction by ATP and dNTPs 

is one of the major regulatory mechanisms for deoxy-ribonucleotide synthesis 

(Kashlan et al. 2002) (Table 1). Errors in allosteric control can lead to unbalanced 

dNTP pools, mis-incorporation of deoxy-ribonucleotides in DNA, genetic 

abnormalities or cell death (Jordan and Reichard 1999).

14



Nucleotide Bound to 
Activity Site Specificity site Activates Reduction o f Inhibits Reduction of

ATP ATP or dATP CDP, UDP
ATP dTTP GDP CDP, UDP
ATP DGTP ADP CDP, UDP*
dATP Any effector ADP, GDP, CDP, UDP

dGTP binding inhibits reduction of pyrimidine nucleotides by the mammalian enzyme but not by the E. coli enzyme 
(Stubbe and van Der Donk 1998)

Table 1. Allosteric control of the activity and specificity of RNR by NTP effectors.

Each polypeptide of the R1 sub-unit contains two allosteric sites, one of which 

controls the overall activity of the enzyme, whereas the other regulates substrate 

specificity. Overall catalytic activity of RNR is diminished by the binding of dATP to 

the allosteric site, wliich signals the abundance of dNTPs; this feedback inhibition is 

reversed by the binding of ATP. Substiate specificity is controlled by binding ATP, 

dATP, and dTTP/dGTP to the allosteric site, all of which can compete for the same 

allosteric specificity site; dATP and ATP stimulate CDP reduction, dTTP stimulates 

GDP reduction and dGTP stimulates ADP reduction (Elledge et al. 1992). In 

addition, class la, II, and some class III RNRs contain an extra allosteric site, referred 

to as the active site. This active site activates or inhibits the overall activity of the 

enzyme, with ATP and dATP acting as enhancer and inhibitor, respectively (Jordan 

and Reichard 1999). dATP, which can bind to both sites, binds more strongly to the 

substrate specificity site, which has also been called the high affinity site (Stubbe and 

van Der Donk 1998).

Alignment of the available sequences of the R1 sub-unit shows that the 

residues involved in the binding of the allosteric effector nucleotide are conserved to a 

high degree. An example of this is Asp232 and Arg262 in loop 2, that are both 

essential for binding of the sugar and phosphate of ribonucleotides, and are both 

perfectly conserved. Other residues interacting with the base maintain the same 

chemical character in different species. The residues allowing for the high flexibility, 

required to accommodate allosteric regulation, aie also conserved (Torrents et al. 

2002).
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ii) Mammalian RNR is located in the cytoplasm and is transcriptionally 

regulated during the mitotic cell cycle. Levels o f R1 are constant and in excess during 

the cell cycle because of a long half-life (more than 20 hours). The R2 protein, in 

contrast, is made in the late G1 phase slightly before DNA replication and is 

completely stable during S and G2. It has a half-life of 3 hours in exponentially 

growing cell cultures and is limiting for activity (Bjorklund et al. 1990; Eriksson et al. 

1984; Mann et al. 1988).

iii) RNR small sub-unit R2 is specifically degraded by a proteosome- 

dependent process, both during the mammalian cell cycle and indirectly after DNA 

damage or a replication block (Chabes and Thelander 2000). In combination with the 

dATP feedback control, the controlled degradation of the R2 directly regulates 

ribonucleotide reduction in proliferating mammalian cells. The specific degradation of 

R2 in late mitosis, inactivating ribonucleotide reduction in G l, may contribute to 

preventing reduplication of DNA before the next S phase. This enables the S phase 

dNTP pools to be regulated at a level that is optimal for replication, but which does 

not increase even when the limiting R2-protein is overproduced.

A recently discovered R2-like gene product, p53R2, is induced in response to 

DNA damage by the p53 protein, unlike R2 (Tanaka and Okayama 2000; Lozano and 

Elledge 2000). Cells in S and G2 phases o f the cell cycle, which do not normally 

make R2, induce DNA-repair in a p53-dependent manner. R1 can function as the 

normal partner of p53R2 protein and the Rl-p53R2 complex may explain how resting 

cells can supply deoxy-ribonucleotides for DNA repair. This observation strongly 

suggests that p53R2 may be most important for repair in phases of the cell cycle 

outside S and G2 (Guittet et al. 2001).
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IE G l regulators -  E2F and RB

In mammalian systems, progression through Gl and into S phase is in part regulated 

by activation (and in some cases inhibition) of gene transcription, whereas 

progression through the later cell cycle phases appears to be regulated primarily by 

post-transcriptional mechanisms. These Gl transcriptional control mechanisms are 

conserved from yeast to mammals (La Thangue 2001).

In mammalian cells passage through the R point during Gl critically depends 

on the activation of the transcription factor E2F (Ginsberg 2002). There are six known 

members of the E2F family, E2F1 to E2F6, and two hetero-dimerization partners of 

E2F, Dp-1 and Dp-2, encoded by the DP gene family (La Thangue 1996; Cartwright 

et al. 1998). A majority of E2F-regulated genes encode proteins that are essential in 

DNA replication and in cell cycle progression, for example DHFR, CDC6 and cyclin 

E (Geng et al. 1996; Wells et al. 1997; Hateboer et al. 1998).

E2F itself is a key downstream target for the retinoblastoma tumour suppressor 

protein RB, the product of one of the most common tumour suppressor genes in 

human cancer (La Thangue 2001). Also, two RB-related proteins, p i07 and p i30, 

which show related structures and similar biochemical properties to RB, are involved 

in these processes (Classon and Dyson 2001). Collectively, these three proteins are 

known as pocket proteins.

RB is an active repressor of gene transcription when bound to E2F-regulated 

promoters during G l, which play an important role in cell-cycle control. Thus, RB 

regulates progression through R point in G l, and the expression of proteins essential 

for the initiation of DNA replication, including the three closes o f RNA polymerases 

I, II and III (Lipinski and Jacks 1999).

The RB pocket proteins interact directly with E2F complexes with different 

specificity, and associate with the E2F complexes in a temporally modulated schedule 

during the cell cycle (Dyson 1998). RB binding to E2F1 in Gl stabilises a 

RB/E2F1/DP1 complex that allows RB itself to express its control on the Gl/S phase 

progression, and so protects E2F1 from degradation by the ubiquitin-proteosome
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pathway. Like RB, p i07 and p i30 interact with and inhibit the transcriptional activity 

of E2F/DP heterodimers, and they are also substrates of Gl CDK/cyclin complexes 

(Baldi et al. 1995). However, p i07 and p i30 appear to function in growth-signalling 

pathways distinct from those involving RB (Vairo et al. 1995). p i07 and p i30 

interact with E2F4, E2F5 and RB to specifically bind E2F1-3, although an E2F4/RB 

complex is detectable during Gl/S phase transition (Pagi et al. 1996). This suggests 

that RB might play the role of universal regulator of E2F/DP member function 

(Malumbres and Barbacid 2001 ).

Phosphorylation of RB proteins by CDKs during middle and late Gl phases 

releases RB from E2F, leading to de-repression and/or activation of E2F-dependent 

genes, and subsequent entry into S phase (Figure 6) (Lipinski and Jacks 1999).

Mitogeoic signaling
ATP
#  ADP

GlcycÉi<!!l)K activation

\ ^ E 2 F  ^  (̂ E 2 F
■

 ■ > Sphase entry

Figure 6. Schematic diagram showing the regulation of E2F by RB and the Gl 
cyclin/CDK complex.
For details see text.

Cyclin/CDK mediated phosphorylation of RB is the mechanism by which the 

growth suppressive function of RB is turned off during the Gl/S phase transition, and 

in the following phases of the cell cycle. Thus, a loss of function of physiological 

inhibitory constraints o f cyclin/CDK complexes can produce a state of uncontrolled 

cell proliferation (Bartek and Lukas 2001).
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The D type cyclins recruit CDKs to their substrates and are unique in their 

ability to physically interact with RB (Matsushime et al. 1994). As synthesis of D- 

type cyclins in many cells is growth factor dependent, they are the first cyclins to be 

expressed after mitogenic stimulation of quiescent cells, and are perceived as a link 

between the cell cycle macliinery and growth factor-induced signalling (Lukas et al. 

1996). Once these cyclins have been accumulated, they associate to form complexes 

with CDK4 and CDK6 to regulate their function. Cyclin D l may also have additional 

functions as a possible transcriptional regulator, which modulates the activity of 

transcription factors (Coqueret 2002).

As the cell proceeds through the R point into late G l, other cyclins, such as 

cyclin E and cyclin A, form complexes with CDK2, which specifically target RB 

phosphorylation sites to maintain RB phosphorylation (Bartek et al. 1996). p i07 and 

p i30 also associate with the G l- specific cyclin E/CDK2 and cyclin A/CDK2 

complexes to form E2F-containing complexes still able to bind E2F. Thus, RB, p i 07 

and p i30 co-operate to confine the activation of E2F, and thus expression of E2F- 

responsive genes to precise stages of the cell cycle (Bartek and Lukas 2001).

IF Eukaryotic transcription

I Transcription mechanisms

Transcription is the process by which one strand of a double-stranded DNA molecule 

is used as a template for the synthesis o f a complementary single-stranded RNA 

strand. This is the crucial stage in the overall process of gene expression, which 

ultimately leads to synthesis of the protein encoded by a gene. RNA polymerase and 

transcription factors form the complex that initiates transcription. Therefore, RNA 

polymerase is the crucial enzyme responsible for catalysing transcription (Turner et 

al. 2000).
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Transcription occurs in multiple steps in the following way:

RNA polymerase
DNA

duplex
RNA

INITIATION: RNA polymerase initiates a new nucleic acid strand when it finds a 

specific initiation site, called a promoter, on duplex DNA. The polymerase binds the 

promoter DNA, temporarily separates the two strands in that region (usually 

unwinding about 17 base pairs of template DNA), and begins generating a new RNA 

strand. The position of the first synthesised base of the RNA is called the start site 

and is designated as position +1.

ELONGATION : DNA is unwound ahead of the moving polymerase, and the helix is 

reformed behind the polymerase as it moves along the DNA and sequentially 

synthesises the RNA chain.

TERMINATION : This is the dissociation o f the transcription complex and the ending 

of RNA synthesis. It involves the recognition by the polymerase of a specific 

sequence known as the ‘terminator’ sequence.

There are three different RNA polymerases identified so far in eukaryotic

cells, designated I, II and III. Each eukaryotic RNA polymerase catalyses

transcription of genes encoding different classes of RNA. RNA polymerase I is

responsible for the synthesis of precursor ribosomal RNA (rRNA). RNA polymerase
20



II catalyses transcription of all protein-coding genes by producing mRNAs and also 

produces four small RNAs that take part in RNA splicing. Lastly, RNA polymerase

III transcribes the genes encoding a whole range of small, stable RNAs including 

tRNAs and some smaller rRNAs. The RNA polymerases contain two Imge sub-units 

and 12-15 smaller sub-units, some of which are present in two or all three of the 

polymerases.

Combinations of short sequence elements in the immediate vicinity of a gene 

act as recognition signals for transcription factors to bind to the DNA in order to guide 

and activate the polymerase, as RNA polymerases are not able to initiate transcription 

by themselves. A major group of such short sequence elements is often clustered 

upstream of the coding sequence of a gene, where they collectively constitute the 

promoter. After general transcription factors bind to the promoter region, an RNA 

polymerase binds to the transcription factor complex and is activated to initiate the 

synthesis of RNA from a unique location.

Transcription factors are ^raw^-acting elements, which recognise and bind 

specific cA-acting promoter DNA sequence elements. Promoters are a recognised 

class of cA-acting sequence element for individual genes, and are present a short 

distance upstream of the open reading frame. Other examples of uA-acting sequences 

include enhancer elements that can initiate transcription and enhance the 

transcriptional activity of specific genes. Enhancer elements may be located at a great 

distance, either, upstream, downstream or even within the midst of a transcribed gene 

that they controls. They can even exert their stimulatory actions over distances of 

several thousand base pairs, and then function is independent of their orientation. 

Binding of specific proteins to an enhancer element either stimulates or decreases the 

rate o f transcription of the associated gene. Enhancer elements appear to work by 

binding to gene regulatory proteins and, subsequently, the DNA between the promoter 

and enhancer loops out, allowmg the proteins bound to the enhancer to interact with 

the transcription factors bormd to the promoter, or with the RNA polymerase. 

Enhancers are effective only in certain cells, for example the immunoglobulin 

enhancer functions in B-lymphocytes, but not elsewhere (Turner et al. 2000).

Another class o f cA-acting elements are called “response” elements. These

are found only in selected genes whose expression is controlled by certain external
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factors, such as a hormone, a growth factor, or by an internal signalling molecule such 

as cAMP. They are often located a short distance upstream of the promoter elements 

(often within 1 kb of the transcription start site). Finally, so-called “silencers”, the 

most recently discovered cA-acting elements, negatively control expression. They 

have been reported to be found both upstream and downstream of tiunscriptional start, 

and occasionally lie within introns (Lodish et al. 1995).

Many genes are also controlled by multiple promoter proximal elements. 

Regulatory DNA sequences, located within 200 base pairs of the promoter, bind 

specific proteins, thereby modulating transcription of the associated protein-coding 

gene (Turner et al. 2000).

II RNA polymerase II

Genes actively transcribed by RNA polymerase II have a promoter element, which 

always includes a TATA box. This consensus sequence is a heptanucleotide of A and 

T residues, flanked by GC rich sequences, and is present in nearly all eukaryotic 

genes giving rise to mRNA. A single base change in this nucleotide sequence 

drastically decreases in vitro transcription o f TATA containing promoters. The 

TATA box is not always sufficient when strong promoter activity is necessary, and 

additional elements can be located between -40 and -110 base pairs, relative to the 

ATG. Many promoters also contain a CAAT box at about -80 base pairs, which is 

usually the strongest determinant of promoter efficiency. Constitutive genes also 

contain a GC box in their promoter, containing variants of the consensus sequence 

GGGCGG. The positions of these upstream sequences vary amongst promoters. 

Both the CAAT box and GC boxes appear to be able to function in either orientation, 

although their sequences are asymmetrical (Naar et al. 2001).

In order to initiate transcription RNA polymerase II is guided to the start site 

by a set of transcription factors known collectively as TFll (transcription factor RNA 

polymerase II). Initiation begins with the binding of a component of TFIID, TATA 

box binding protein (TBP), to the TATA box, wliich is the heart o f the initiation 

complex. The surface of the TBP provides docking sites for the binding of other
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components of TFII whereby TFIIA is recruited, followed by TFIIB (Reinberg et al.

1998). RNA polymerase II and then TFIÏE join the other factors to form a complex 

called the basal transcription apparatus. The assembly of additional transcription 

factors occurs on this nucleus and DNA can be looped so that sites further apart in the 

linear sequence are brought closer together. This enables proteins bound to distant 

enhancers to interact with the TBP and participate in the formation of a functional 

transcription complex (Dynlacht et al, 1991),
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IG Yeast

I Introduction to yeast

The discovery that all eukaryotes have similar mechanisms underlying the regulation 

o f their cell cycles has validated the proposal to study it in the simplest possible 

experimental system that can be manipulated with the most powerful genetic tools. 

Thus, the application of yeast genetics to the cell division cycle has proved to be of 

significant benefit, as it has allowed the identification of a number of genes critical for 

controlling cell division (Qin and Li 2003). Yeasts have been especially useful for 

isolation of mutants that are blocked at specific steps in the cell cycle, or that exhibit 

altered regulation of the cycle. Temperature and cold-sensitive mutants (A and cs 

mutants, respectively) with defects in specific proteins essential to progress through 

the cell cycle are readily recognised microscopically (Hartwell 1974; Nurse et al. 

1976). This makes it possible to learn about the function of a conserved regulator 

rapidly in yeast and use the knowledge to understand complex metazoan systems, in 

which experimental procedures are more difficult to perform.

Although a considerable amount of knowledge regarding the regulation of 

eukaryotic cell cycle stems from the budding yeast Saccharomyces cerevisiae, a 

substantial amount o f data has also been generated from the fission yeast 

Schizosaccharomyces pombe. Both these yeast species have been used with great 

success over the past years as model organisms to elucidate eukaryotic cell cycle 

control mechanisms (Hartwell 1974; Nurse 1985; Lee and Nurse 1987; Qin and Li 

2003).
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11 Budding yeast

S. cerevisiae is a single celled organism that reproduces by budding, with the bud 

growing in size throughout the cell cycle, providing a morphological indicator of 

cycle progress. A fundamental step in understanding the cell division cycle in 

budding yeast was the isolation o f so called cell division cycle {cdc) mutants. By 

definition, mutations in genes required for cell division are lethal for the cell, as they 

are essential, which precludes the use of conventional mutants to identify such genes. 

The identification of ts conditional lethal cell cycle mutants was a major step in cycle 

studies, as it allowed the identification of cell cycle genes. These mutants only 

display their mutant phenotype at the non-permissive temperature, when they 

eventually die. At the permissive temperature, however, they behave essentially like 

wild-type cells and can be manipulated to allow experiments to be performed 

(Hartwell 1974). Consequently, studies with these genes allowed the identification of 

genes critical for cell cycle progression in budding yeast, and ultimately contributed 

significantly to our current knowledge of cell cycle mechanisms in higher eukaryotes 

and mammalian models.

In addition, the mutants demonstrated that the initiation of certain steps in the 

cell division cycle is dependent on the completion of one or more preceding steps. 

For instance, onset of mitosis and nuclear division is dependent on the completion of 

DNA replication, and the completion o f mitosis is dependent on the assembly of the 

mitotic spindle. These observations were the first evidence for the existence of 

checkpoint control mechanisms (Hereford and Hartwell 1974).
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I ll Fission yeast

S. pombe is also a single celled organism, but is rod shaped and increases in length 

before dividing in the middle by medial fission, to form two daughter cells. DNA and 

RNA sequence analyses have been used to demonstrate that fission yeast is 

phylogenetically as distant from budding yeast as it is from humans. The 

Schizosaccharomyces lineage separated about 1 billion yeai’s ago to form an ancestral 

branch of the ascomycetes (Figure 7) (Sipiczki 2000).

i—Hemiascomycotina - - Saccharomyces

Fungi —

Metazoa - - 

- Plants - - 

Protists - -

Ascomycota —

Basidiomycota - - 

Glomus - - 

Chytrids - -

■Euascomycotina -Taphrina

Archiascomycotina — Schizosaccharomyces 

Pneumocystis - -

Saccharomyces cerevisiae

■ Schizosaccharomyces 
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*— Schizosaccharomyces 
octosporus 
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Figure 7. A consensus phylogeny of fission yeast.
Times are estimated as (1) 1,200 million years ago (Ma); (2) 1,100 to 1,000 Ma; (3) 600 to 500 Ma; (4) 

400 Ma; (5) 420 to 330 Ma; (6) 250 Ma. Modified from Sipiczki (2000).

Fission yeast cells are usually haploid, with a genome size similar to budding yeast of 

approximately 14 million base pairs (Mb) in size. In budding yeast this is organised 

as 17 chromosomes, whereas in fission yeast it is organised as three chromosomes, 

namely chromosome 1 (5.7 Mb), II (4.6 Mb), and 111 (3.5 Mb). The gene density in 

fission yeast is approximately 1 gene per 2,300 base pairs and the whole genome is 

predicted to contain approximately 5,400 genes (Wood et al. 2002).
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Fission yeast temperature-sensitive conditional lethal cdc mutants have also 

been isolated, which enabled the identification of genes required for cell cycle 

progress in this organism (Nurse et al. 1976; Nasmyth and Nurse 1981). These cdc 

mutants grow without dividing, and so form elongated cells at the non-permissive 

temperature, which creates a distinct phenotype when examined microscopically 

(Figure 8).

Figure 8. Growth morphology of fission yeast.
A. Wild-type S. pombe cells. B. S. pombe temperature sensitive 
cdc mutant cells, after incubation at 36”C for 4  hours.

Another class of S. pombe cell cycle mutants, called ‘wee’ (from the Scottish 

word for small) divide before the parental cell has grown to the normal length, 

forming daughter cells that are thus, shorter than normal (Nurse and Thuriaux 1980). 

These genes encode regulators of the cell cycle.

IV Cloning o f cell cycle genes

Temperature sensitive mutations in particular cdc mutants block progression through 

the cell cycle at the non-permissive temperature, and eventually cause cells to die 

(Nurse et al. 1976). The wild-type version of a cdc  ̂ gene can be isolated by 

transforming mutant cdc cells with a wild-type fission yeast plasmid DNA library. 

These transformed cells, cultured at the permissive temperature, are then grown at the 

non-permissive temperature. The mutant cells that take up a plasmid containing the 

wild-type version of the mutant cdc gene are complemented, allowing the cell to
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replicate and form a colony at the non-permissive temperature. The plasmid bearing 

the wild-type allele can then be recovered from these cells.

As many of the proteins regulating the cell cycle are highly conserved, it has 

also been possible to rapidly isolate human genes encoding cell cycle control proteins 

using yeast as model systems (Nurse 1990). Human cDNAs libraries in yeast 

expression vectors when transformed into fission yeast cdc mutants, have been found 

to complement yeast function (Lee and Nurse 1987). A number of human 

homologues to yeast cdc genes have been found to complement yeast cdc mutants, 

thus permitting their isolation (Sancliez-Diaz et al. 2001) (Introduction, page5).

IH Control points

There are two major control points during the cell cycle of the two yeast species, one 

in G l called START (equivalent to the Restriction point “R” in mammals (Pardee 

1989) (Introduction, page 3), and another in late G2, just prior to mitosis. At START 

the cell makes a decision to enter a sexual or vegetative cell cycle. Before START 

cells are competent to enter either life cycle, but in the absence of nutrients haploid 

cells stop progression through the mitotic cycle and enter stationary phase. In the 

presence of cells of the opposite mating type, cells can enter the sexual cycle of 

conjugation, meiosis and sporulation.

Another major control point for the mitotic cell cycle occurs at the G2/M 

transition, when processes are activated to assess whether DNA replication is 

completed, and to ensure that DNA is not damaged. The mechanisms regulating this 

step are conserved among higher eukaryotes from yeasts to mammalian cells (Doree 

and Hunt 2002).

In yeasts, a number of checkpoint responses to DNA damage or S phase arrest 

have been identified. These include the DNA damage checkpoint, which prevents 

mitosis when DNA damage occurs, and the intm-S phase checkpoint, which causes a 

delay of progression of DNA replication in response to DNA damage (Humphrey 

2000).
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1 1 DNA Replication in yeast 

/  Budding yeast

DNA replication is accurately and temporally regulated during the cell cycle in all 

eukaryotes. In yeasts, as in mammalian cells, each chromosome contains 

autonomously replicating sequences (ARS) which, depending on then location in the 

chromosome, initiate replication either in early or late S phase. Pre-replicative 

complexes (pre-RC) are assembled during M and Gl phase (Nasheuer et al. 2002). 

Budding yeast ARS elements are typically short, only about 100 to 200 base pairs, 

compared to fission yeast ARS, which are much longer at about 500 to 1000 base 

pairs and appear to be more dififise and functionally less efficient (Dubey et al. 1996; 

Clyne and Kelly 1997).

In budding yeast the pre-RC, essential for initiation of replication, contains the 

qrigin-recognition complex (ORC), the rmnichromosome-maintenance complex 

(MOM) and Cdc6p (Kelly and Brown 2000). The pre-replication complex is fomied at 

the end of mitosis. pre-RC formation is initiated by the association of Cdc6p with the 

ORC, followed by the binding of a set of six related proteins, Mcm2p to Mcm7p 

(Tanaka et al, 1997). After complex formation the components of the complex are 

phosphorylated by the S phase CDKs Clb5p or Clb6p, in association with the Cdc28p, 

and the Dbf4p/Cdc7p kinases, that leads to initiation of DNA replication (Donaldson 

and Blow 1999).

ORC, consisting of six polypeptides, remains bound to ARS throughout the 

cell cycle and is essential for DNA replication and cell division (Klein and Kreuzer 

2002). Cdc6p, when over-expressed, can bind to ORC throughout the cell cycle, 

although the binding o f MCM proteins to the 0RC-Cdc6p complex during G2 and M 

phase is inhibited, most likely due to inliibitory effects from S-CDK protein kinases. 

This strongly suggests that Cdc6p, which is also known to have sequence similarity to 

the large sub-unit of ORC (Drury et al. 1997), plays a central and limiting role in the 

onset of DNA replication in S. cerevisiae. Cdc6p is synthesised during the cell cycle 

in two peaks, initially in late mitosis after anaphase, and secondly in late Gl and is 

targeted for proteolysis at onset of S phase (Donovan et al. 1997).
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II Fission yeast

Similar mechanisms regulating DNA replication are proposed to operate in other 

organisms, including fission yeast, since homologues of pre-RC proteins and its 

regulators have been found in many organisms (Dutta and Bell 1997). However, one 

notable difference is that the ARS in fission yeast and mammalian cells are not 

discrete sequence specific regions of DNA as in budding yeast, but are spread out 

over large AT rich regions. In fission yeast the proteins involved in the initiation of 

DNA synthesis include CdclSp (a homologue to budding yeast Cdc6p), Cdtlp 

(Yanow et al. 2001), ORP proteins (homologous to ORC proteins) (Leatherwood et ah 

1996), MCM proteins (Maiorano et ah 1996), and the Hskl-Dfylp/Himlp complex (a 

counterpart of Cdc7-Dfb4p) (Takeda et ah 1999). Many of these components are also 

needed for restraining mitosis during S phase in the cell cycle (Moser and Russell 

2000).

Initiation of DNA synthesis occurs once pre-RC has been formed and is 

triggered by cell cycle regulated protein kinases. Protein kinase activity is stimulated 

by the binding of Dfylp (the homologue of Dfb4p in budding yeast) and Hsklp (the 

homologue to Cdc7p in budding yeast), which phosphorylate MCM2p (Cdcl9p) 

(Masai et ah 1995; Brown and Kelly 1998; Takeda et ah 1999). The cell cycle 

regulated accumulation o f Dfplp at the G l/S boundary initiates activation of Hsklp, 

and the actual trigger for replication initiation is the phosphorylation of pre-RC 

components by this kinase and another cell cycle specific protein kinase, Cdc2p 

(Brown and Kelly 1999b).

At the onset of S phase the binding complex of CdclSp, Cdtlp and ORP, 

essential to load the MCM protein complex onto DNA, is recruited to the replication 

start sites to licence DNA for replication (Kearsey et ah 2000). Cdtlp interacts with 

CdclSp and enhances the ability of CdclSp to induce continuing DNA synthesis, 

suggesting that both proteins work together to promote DNA replication (Nishitani et 

ah 2000). CdclSp is phosphorylated late in G l, possibly by the kinase complex 

Cdc2/Cig2p, resulting in its dissociation firom DNA and subsequent degradation. The 

down regulation of Cdcl 8p, due to cdc 18^ transcription being switched off during S 

phase, prevents re-initiation of DNA synthesis until completion of M phase (Yanow et 

ah 2001).

30



In addition, regulation of both these proteins in G2 plays a crucial role in 

preventing the re-initiation of DNA synthesis until the next cell cycle (Yanow et al. 

2001). Cdtlp has been detected in S. cerevisiae, and its importance for DNA 

licensing in eukaryotes has been confirmed by its discovery in Xenopus oocyte lysates 

(Maiorano et al. 2000; Tanaka and Diffley 2002).

The ORP complex in fission yeast also consists of six sub-units similar to 

ORC in budding yeast, SpOrclp-SpOrc6p, which are encoded by the orpl-orp6 

genes, respectively (Lygerou and Nurse 1999; Moon et al. 1999). These sub-units 

form a complex throughout the cell cycle and their nuclear localisation and chromatin 

association remain constitutive. The SpOrc2 sub-unit is phosphorylated in cells 

arrested in M phase, when Cdc2p activity is high, and its de-phosphorylation 

accompanies completion o f mitosis and cell cycle progression to G l (Leatherwood et 

al. 1996).

IJ Cyclins and CDKs

I Activity

Passage through control points and checkpoints in yeast, as in mammalian cells during 

the cell cycle, is controlled by the activity of CDKs, However, unlike higher 

eukaryotic cells wliich have multiple CDKs that regulate cell cycle progression, a 

single CDK in association with B-type cyclins regulates both S phase and mitosis in 

budding and fission yeast. Thus, the specific cyclins and CDKs required for the 

transition of mammalian cells through Gl and S phase differ to those needed for 

similar processes in yeast (Clarke and Gimenez-Abian 2000).

Initiation of DNA synthesis and nuclear divisions in budding and fission yeast 

is attributed to the activity of the single CDK catalytic sub-unit encoded by the 

CDC28 and cdc2~̂  genes, respectively (Doree and Hunt 2002). Other CDKs may play 

a role in certain circumstances (Nishizawa et al. 1998). Dominant forms of Cdc2p 

advance entry into mitosis (Nurse and Thuriaux 1980), whereas a loss of Cdc2p
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kinase activity results in cells arresting before START in Gl and in late G2 before M 

phase (Nurse and Bissett 1981a).

The yeast Cdc2p/Cdc28p kinase, required for entry into both S phase and 

mitosis in yeasts, is the homologue to human CDKl, which is only essential for 

mitotic entiy in mammalian cells (Riabowol et al. 1989; Hamaguchi et al. 1992). The 

amino acid sequences o f human and yeast Cdc2p proteins are 65% identical - so 

similar that a mutant yeast lacking cdc2^ can be rescued by insertion of the 

homologous human gene (Lee and Nurse 1987). Thus, the regulatory control over 

Cdc2p is highly conserved in eukaryotic evolution, with its activity being regulated by 

the binding of B-type cyclin and reversible phosphorylation that control the activity of 

the complex (Dunphy 1994; Doree and Hunt 2002).

II Fission yeast

In fission yeast once START has been traversed Cdc2p is activated when complexed 

with the B-type cyclins Cdcl3p and Cig2p. Cdc2p is also known to associate with 

two other cyclins, Puclp and Ciglp, which may monitor cell growth or cell size 

during Gl phase of the cell cycle, and induce the Gl/S transition indirectly (Martin- 

Castellanos et al. 2000).

The amount of Cdc2p protein remains constant throughout cell cycle, while 

cyclin protein levels oscillate (Moser and Russell 2000). A proposed model for cell 

cycle specific regulation of Cdc2p is shown in Figure 9. Cig2p, the major S phase 

cyclin, plays the principal role in promoting entry into DNA replication (Fisher and 

Nurse 1996), whereas Cdcl3p is needed for Cdc2p activity at the onset of M phase 

(Moreno et al. 1989). Consequently, tlie level of Cig2-Cdc2p complex activity peaks 

around Gl/S (Mondeseit et al. 1996). Cdcl3p levels are low in Gl phase, but increase 

in G2 phase and are maintained until the end of M phase (Booher et al. 1989).

The inactive state of the Cdc2p complexes in Gl is maintained by both direct 

binding of a CKI, Rumlp, and proteolytic degradation of the cyclin sub-unit 

(Kominami et al. 1998). Rumlp accumulates in mitotic anaphase and persists through
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G l, inhibiting the kinase activities of Cdc2/Cdcl3p and Cdc2/Cig2p and targets 

Cdcl3p for degradation. At the Gl/S transition phosphorylation of Rumlp itself by a 

ubiquitination dependent mechanism results in its degradation, allowing Cdc2/Cig2p 

to induce S phase entry (Benito et al. 1998).

In mammalian cells, as in yeast, the CKIs are marked for degradation by a 

ubiquitin-conjugating enzyme system consisting of E l, E2 and E3. El is the 

ubiquitin-activating enzyme, E2 the ubiquitin conjugation enzyme and E3 the 

ubiquitin ligating enzyme (Ciechanover et al. 2000). Whilst E l enzyme initiates the 

first step in the reaction, a variety o f E2 enzymes in conjunction with E3 enzymes 

seem to determine the specificity for the proteins targeted for ubiquitination. Once 

the target proteins are ubiquinated they are readily degraded (Hilt and Wolf 1996). 

This ubiquitin-dependent proteolysis is also responsible for the destruction of cyclins, 

contributing to periodic changes in their levels during cell cycle (Deshaies et al. 

1995). It also plays a key regulatory function during the G2/M transition (Smits and 

Medema 2001). Completion of mitosis is regulated by APC, which in fission yeast 

functions to specifically target the mitotic B type cyclins Cdcl3p and Ciglp for 

degradation in Gl (Blanco et al. 2000). On passage through START APC-mediated 

degradation is inhibited and the Cdc2/Cdcl3p complex accumulates, increasing to 

peak in late G2.

The transcription factor complex DSCl (DNA synthesis control 1) plays a key 

role in the inactivation of Cdcl3p by controlling the periodic production of APC 

regulators (Tournier and Millar 2000). Thus, Cdcl3p protein levels accumulate from 

S phase to the end of mitosis when it is degraded by APC, and Cig2p protein and 

mRNA levels both peak around Gl/S, when the level of Cdcl3p protein is low 

(Mondesert et al. 1996). Translational inhibition of Cdcl3p and Cig2p represents a 

mechanism that contributes to Cdc2p inactivation as cells exit fr om the mitotic cell 

cycle and prepare for meiosis (Gralleit et al. 2000). This acts as another cell cycle 

control mechanism.
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Figure 9. Model of cell-cycle specific regulation of Cdc2p in fission yeast.
Cdc2p activity is inhibited when the cells exit mitosis by degradation o f associated C dcl3p. Accumulation 
o f the Cdc2p inhibitor R um lp ensures that Cdc2p activity is kept low throughout late M phase and G l-  
phase. Phosphorylation then targets R um lp for degradation, resulting in a rise in Cdc2p-Cig2p activity, 

which induces entry into S phase. C d cl3p  accumulates during S phase and remains associated with Cdc2p 
until it is degraded upon exit from M phase. In S and G2, its activity is down regulated through the 

inhibitory phosphorylation mediated by M ik lp  during S phase, and W eelp  during G2 phase. W eelp  is 
inhibited by the various protein kinases. In contrast Cdc25p phosphatase accumulates during interphase, 
probably through translational up-regulation. The counter balance o f W eelp  and Cdc25p activity changes 
as cell size increases; at the proper cell size, Cdc25p is able to bring about Cdc2p activation, driving cells 

into M phase.
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Although Cdc2p associates with four cyclins, only Cdcl3p is indispensable for 

cell cycle progression and is sufficient to trigger both S phase and the initiation of 

mitosis in the absence of the other cyclins (Stern and Nurse 1996). The S. pombe 

cdcl3^ gene has homology to sea urchin and Xenopus cyclin B. Further studies 

showed that a heterodimer of Cdcl3p and Cdc2p form S. pombe MPF and, like 

mammalian MPF, this heterodimer has protein kinase activity (Nurse 1990).

Cdc2p is phosphorylated by Wee Ip and M iklp on the inhibitoiy residue 

tyrosine-15 (Tyr-15), in order to restrain activity during S phase and G2. Cdc2p Tyr- 

15 phosphorylation regulates the timing of mitosis during the normal cell cycle and is 

also thought to be the method of controlling mitosis following activation of the DNA 

replication and the DNA damage checkpoints (Rhind and Russell 2001). M iklp 

regulation helps to ensure that the onset of mitosis is coupled to the completion of 

DNA replication during the normal cell cycle or completion of DNA repair in cells 

that have suffered DNA damage (Baber-Furnari et al. 2000; Ng et al. 2001). It has 

also been found that M iklp can be moderately induced in G2 cells in a Chklp 

dependent mamier, independently of the M iklp responses in S phase. Chklp is an 

important kinase in the DNA replication checkpoint (Christensen et al. 2000).

De-phosphoiylation of the Tyr-15 residue is carried out by the Cdc25p 

tyrosine phosphatase and to a lesser extent by the Pyp3p phosphatase (Millar and 

Russell 1992). Full activation of Cdc2p by tyrosine de-phosphorylation brings about 

entry into mitosis. The kinase activity of Tyr-15 phosphorylated Cdc2p is about 30% 

compared with that of the de-phosphorylated form in fission yeast interphase cells. 

This activity is sufficient to bring about DNA replication but not mitosis (Fisher and 

Nurse 1996).

A newly discovered gene, slm9^, identified in a genetic screen looking for 

genes that control the timing o f the entry into mitosis, regulates Cdc2p activity 

through Wee Ip and is involved in multiple signal transduction pathways that affect 

cell growth (Kanoh and Russell 2000).

In fission yeast the G2 DNA damage checkpoint promotes cell cycle delay

through a double control mechanism, through both up-regulation of Wee Ip and down-

regulation of Cdc25p, to ensure cell cycle arrest and genomic stability. Due to the
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high degree of homology of G2/M cell cycle and checkpoint controls, this model may 

be applicable to all eukaryotes (Raleigh and O'Connell 2000). Indeed, an analogous 

inhibitory pathway to tyrosine-19 phosphorylation of Cdc28p (equivalent to Tyr-15 of 

Cdc2 in fission yeast) has been described in budding yeast. This residue is 

phosphorylated by Swelp - a homologue of W eelp, and de-phosphorylated by M ihlp 

- a homologue of Cdc25 (Booher et al. 1993). When a bud is not formed properly or 

the actin cytoskeleton is defective a morphogenesis checkpoint, which requires 

Swelp-mediated phosphorylation of Cdc28p, operates to delay nuclear division 

(McMillan et al. 1999), However, there is no evidence that tyrosine phosphorylation 

determines the cell cycle timing o f mitosis in budding yeast, as in fission yeast.

Ill B udding yeast

The Cdc28p CDK and the G1 cyclins, Clnlp, Cln2p and Cln3p are essential for 

passage through START in S. cerevisiae (Clarke and Gimenez-Abian 2000). START 

requires the activation of Clnl/Cdc28p and Cln2/Cdc28p. The transcription of the 

two genes CLNl and CLN2, like many other genes acting in late G l, is dependent on 

the accumulation of Cln3p, whose association with Cdc28p rises in late Gl (Koch and 

Nasmyth 1994). When a threshold concentration of the Cln3p/Cdc28p kinase 

complex is achieved, a burst of late Gl specific gene transcription occurs, including 

CLNl and CLN2 (Dirick et al. 1995). Active Clnlp/Cdc28p and Cln2p/Cdc28p 

complexes act as a positive feedback loop to further stimulate the transcription of 

CLNs. In Gl both B-type cyclins Clb5p and Clb6p also associate with Cdc28p 

(Nasmyth 1993). Their transcription is concurrent with that of CLNl and CLN2 in 

late Gl (Schwob and Nasmyth 1993). Two additional budding yeast G l cyclins, 

PCLl and PCL2 (formerly called Hcs26p and Orfdp, respectively) are also maximally 

expressed in Gl (Tyers et al. 1993), Pci Ip and Pcl2p complex ^vitli another cyclin- 

dependent kinase, Pho85p, to promote cell cycle progression (Measday et al. 1994). 

The Cln3p/Cdc28p-dependent transcription of late Gl specific genes is mediated by 

two related heterodimeric transcription factors, MBF {Mlul cell-cycle box binding 

factor) and SBF (Swi4/Swi6 cell cycle box binding factor) (Iyer et al. 2001).
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IV Regulation

Although proteolysis is of major importance for the regulation of cyclin periodicity, 

cyclin expression can also he regulated at the level of translation. In budding yeast, 

expression of the Gl cyclins, Cin2p and ClnSp, is inhibited by means of translational 

repression under certain conditions (Hall et al. 1998; Philpott et al. 1998), thereby 

linking translation to regulation of progression thi ough the Gl phase of the cell cycle.

In fission yeast it has been suggested that translational inhibition of cdclS^ 

expression contributes to Cdc2p inactivation as cells exit from the mitotic cell cycle 

and prepare for meiosis (Gralleif et al. 2000). This translational regulation of B-type 

cyclins is important in higher eukaryotes for both cell cycle control and development.

CDK activity is also essential for the regulation of cell cycle progression and 

is tightly regulated through different mechanisms: binding by activating cyclins, 

binding by inhibitory CDK inhibitors (CKIs), inhibitory phosphorylation of the CDK 

and activating phosphorylation of the CDK by a CDK-activating kinase (CAK) 

(Kaldis 1999). CAK phosphorylation stabilises cyclin-CDK interaction, enhances 

substrate-binding (Russo et al. 1996), and is essential for CDK activation as a loss of 

CAK activity causes cell cycle arrest (Larochelle et al. 1998).

In S. pombe the CAK, Mcs6p/Moplp/Crklp, works witli a divergent CDK 

family member, Csklp, to activate Cdc2p (Lee et al. 1999). Homologues to CAK in 

budding yeast, Kin28p, and metazoans, CDK7p (Buck et al. 1995; Damagnez et al. 

1995), have been identified suggesting that similar mechanisms exist in all higher 

eukaryote.
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IK Checkpoint controls

Genetic screens in fission yeast and budding yeast have identified many genes needed 

for G2 checkpoint control, which appear to be highly conserved in evolution. Both 

DNA damage and S phase arrest are accompanied by the formation of DNA structures 

that are able to recruit checkpoint kinases into catalytically active complexes 

(O'Connell et al. 2000).

In all eukaryotic organisms each characterised DNA-damage and replication 

checkpoint pathway depends completely on one or more members of the 

phosphoinositide-3-kinase-related (PIK) family (Zhou and Elledge 2000). M eclp is 

the PIK in budding yeast and in fission yeast and mammalian cells they are Rad3p and 

ATM, respectively. M eclp and Rad3p are needed for both S phase arrest and the 

DNA damage checkpoints. A protein with similarity to a subgroup of PIK, ATM, is 

the catalytic sub-unit of the DNA dependent protein kinase (DNA-PK) (Smith and 

Jackson 1999). DNA-PK is needed for immunoglobulin gene rearrangement, 

recombination and repair of radiation induced double-stranded breaks (DSBs). Two 

regulatory sub-units, Ku70 and Ku86, bind to DSBs are needed for DNA-PK to 

function as a serine/threonine protein kinase, which then plays a key role in non- 

homologous end joining o f the damaged DNA (DeFazio et al. 2002).

Other genes involved in DNA damage processing in yeasts, include fission 

yeast radl^ and the budding yeast homologue RADI 7, which encode putative 3-5’ 

exonucleases needed for DNA-repair and arrest. Furtheimore, RAD24 in S. cerevisiae 

and rad 17^ in S, pombe, display limited homology to human replication factor C, 

which is required for DNA polymerase sub-unit binding to primed DNA (Boddy and 

Russell 2001).

Genomic integrity requires that chromosomes are not only fully replicated 

each cell cycle, but also that sister chromatids are properly segregated at mitosis. 

Recent data suggests that Trf4p and Trf5p, two closely related proteins in S. 

cerevisiae, act as a DNA polymerase to couple cohesin to replicatioin (Wang et al. 

2000b). Two related TRF4/5 genes in S. pombe are cidl^ and cidl3^\ Cidlp and 

Cidl3p are representative of a class of cytoplasmic proteins with poly (A) polymerase
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activity (Wang et al. 2000a; Saitoh et al. 2002). Poly(A) polymerase is responsible 

for bulk mRNA polyadenylation in the nucleus following the site-specific cleavage of 

primary polll transcripts (Proudfoot et al. 2002). Poly (A) tail length is associated 

with stability of the mRNA and efficient translation after export to the cytoplasm, as 

the poly(A) binding protein is an important component of the translation pre-initiation 

complex (Pestova et al. 2001).

Cytoplasmic Cidlp and Cidl3p act to extend the poly(A) polymerase of 

cytoplasmic mRNAs and increase the levels of corresponding protein products by 

promoting mRNA stability and/or translation efficiency (Read et al. 2002). In 

addition Cidlp is found to be specifically required to inhibit mitosis, promoting cell 

survival when certain DNA polymerases are inliibited (Wang et al. 2000a) and like 

Cidl3p is suggested to be essential during DNA damage checkpoint in order to 

maintain dNTP pools (Read et al. 2002). Multiple Cidlp/Cidl3p-related proteins are 

also identified in distantly related eukaryotes including plants and humans. At least 

one of the human Cidlp-like proteins is constitutively cytoplasmic (Read et al. 2002), 

suggesting similar mechanisms for DNA replication checkpoint control may be 

present in higher eukaryotes (Wang et al. 2000a).

The proteins encoded by checkpoint genes are mainly protein kinases and in 

many cases they act by phosphorylating, and thus activating, one or both o f the 

downstream protein kinases. In the case of fission yeast the essential checkpoint 

proteins are the Chklp and Cdslp protein kinases. The activation and function of 

these two proteins is cell cycle dependent (Rhind and Russell 2000b). Chklp and 

Cdslp function downstream of a group of checkpoint ‘Rad’ proteins. These are 

essential for the S/M replication checkpoint when DNA replication is slowed in order 

to prevent mitosis by maintaining Cdc2p in an inhibited, tyrosine phosphorylated state 

(Figure 6) (Saka et al. 1997; Rhind and Russell 1998). The protein kinase Cdslp 

functions downstream of the checkpoint Rad proteins in order to enforce the S/M 

checkpoint (McGowan 2002).

Chklp is not found to be essential for normal yeast cell growth but is

important for yeast to survive radiation exposure (Liu et al. 2000a). Chklp forms a

complex with and phosphoiylates Cdc25p during S and G2 phases (Fumari et al.

1997; Peng et al. 1997). This keeps Cdc25p sequestered in an inactive complex,
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thereby preventing it from de-phosphorylating and activating Cdc2p, and so 

preventing the G2/M phase transition. This part of the checkpoint pathway is species 

specific, as it occurs in S. pombe and human systems, whereas no chkl"^ related genes 

have been found in S. cerevisiae (Figure 10) (Liu et al. 2000a).

The human homologues of the c h k f  and cdsl'^ genes inhibit Cdc25p, and 

become activated or hyper-phosphorylated in response to DNA damage via ATM 

(Blasina et al. 1999; Brown et al. 1999a). In S. pombe Rad3p is responsible for 

phosphorylating the different targets in response to DNA damage and S phase arrest. 

The functions of most Radp proteins are usually interdependent and so central to 

DNA-damage and replication checkpoint signalling that deletion o f the gene encoding 

any one of them usually completely eliminates checkpoint signalling (Edwards et al.

1999).

In recent findings it has been suggested that DNA damage-inducible 

recombination and/or repair processes may compete with and thus slow down 

replication (Foiani et al. 2000; Liberi et al. 2000; Rliind and Russell 2000b). In 

addition, it has been suggested that downstream protein kinases in fission yeast, such 

as Cliklp and Cdslp, only activate the intra-S phase checkpoint when replication 

forks encounter DNA damage (Rhind and Russell 2000b).
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In S. cerevisiae the Rad53p protein kinase, homologous to S. pombe Cdslp (Tercero 

and Diffley 2001), is activated by trans-phosphorylation in a Meclp-dependent 

manner in response to both DNA damage and S phase arrest (Figure 11) (Gilbert et al. 

2001; Pellicioli et al. 2001).
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phase checkpoint are indicated in italics. Protein kinases involved in both branches o f  the 
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IL Transcriptional control at START 

I Budding yeast

The M u l cell eycle box binding factor (MBF) and Swi4/Swi6 cell cycle box binding 

factor (SBF) are two large protein complexes involved in cell cycle specific 

transcriptional regulation in S. cerevisiae. Specific binding of these complexes to 

DNA sequences in promoters regulates transcription of many genes during the Gl/S 

transition period of the cell cycle. Cyclin-dependent activation and inactivation 

causes MBF and SBF mediated transcription to be cell cycle regulated (Horak et al. 

2002).

Both complexes contain the Swi6p regulatory protein and one of two distinct 

DNA binding proteins, Swi4p in SBF (Andrews and Flerskowitz 1989b; Andrews 

1992) or M bplp in MBF (Koch et al. 1993). SBF is necessary for the expression of a 

number of genes involved in cell wall biosynthesis, budding and moiphogenesis, and 

Gl cyclins including CLNl, CLN2, PCLl and PCL2 (Cho et al. 1998; Spellman et al. 

1998). The SBF complex binds to a DNA sequence during Gl known as the SCB 

motif (Swi4/Swi6 dependent cell-cycle box), that consists of a consensus sequence 

that is often present in multiple copies of CACGAAA (Iyer et al. 2001).

Genes encoding proteins for DNA replication aie regulated by the binding of 

MBF to sequences called MCBs (Mlul cell-cycle box), that have a similar consensus 

sequence - ACGCGTNA - to the Mlul restriction site (McIntosh et al. 1991; McIntosh 

1993; Iyer et al. 2001). It has been suggested that SBF is not as specific for SCBs as 

was originally thought, but rather can bind, at least in some cases, to motifs more 

closely matching the MCB consensus sequence (Partridge et al. 1997). Activation of 

these transcription factor complexes at the G l/S boundaiy requires Cdc28p kinase 

associated with one of the four Clnp cyclins (Wijnen et al. 2002).

Cyclin associated Cdc28p kinase regulates the ability of SBF to bind SCB, or 

the ability of previously bound SBF to activate transcription in a positive feedback 

manner (Taba et al. 1991; Koch et al. 1996). Any one of the Clnp cyclins is capable 

of activating late Gl specific transcription of SBF or MBF when ectopically

43



expressed, although CLN3 is believed to activate SBF and MBF in vivo under normal 

conditions (Wijnen et al. 2002).

Transcription factors homologous to the MBF complex have been identified in 

other eukaryotes, including fission yeast and mammalian systems. In mammalian 

cells it is believed that E2F is the functional homologue of MBF, although E2F 

transcription factors are not structural homologues of the transcription factors 

associated with the MBF complex (Nurse 1990). The E2F factors are key components 

in a cell cycle checkpoint that determines whether a cell will arrest in Gl to 

differentiate or enter into S phase (Macleod 1999; La Thangue 2001),

To date a structural homologue of RB has not been identified in yeast, but 

proteins that are similar to mammalian targets of RB function have been noted. For 

example it was found that when RB was ectopically expressed in S. cerevisiae it was 

phosphorylated prior to the initiation of DNA synthesis, coincident with the cell cycle 

checkpoint START (Weinberg 1995). It has also been found that RB family of 

proteins can function as direct transcriptional repressors in yeast with properties 

similar but distinct from those observed in mammalian cells (Arneric et al. 2002). 

The transcriptional response of a subset of RB-regulated genes is dependent on GC- 

rich promoter elements termed retinoblastoma control elements (RCE’s) (Chen et al. 

1994; Udvadia et al. 1995). The RCEs share limited sequence homology GCGC- 

CACC with yeast SCB and MCB motifs, and it has been hypothesised that RCEs 

might represent a related family of cell cycle-regulated yeast promoter elements. 

Furthermore, a novel cell cycle regulated RCE-binding protein, pl80p, when 

synthesised in S. cerevisiae has been found to have a binding domain functionally 

homologous to members o f a family o f mammalian transcription factors (Cuevo et al.

1997). It has therefore been suggested that pl80p may regulate the transcription of a 

subset of yeast genes whose expression is coincident with the onset, and or 

progression, of DNA replication.
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II Fission yeast 

DSCl
In fission yeast a transcription factor complex, similar to budding yeast MBF has been 

discovered and named DSCl (DNA synthesis control 1). DSCl binds to MCB 

sequences and regulates transcription at START (Lowndes et al. 1992). DSCl may be 

directly or indhectly under the control of CDK/cyclin activity, as it is found to 

disappear at the onset of mitosis and reappears during S phase of the next cell eycle 

(Reymond and Simanis 1993). More recently it has been suggested that a new cyclin 

named Pas Ip, structurally similar to the budding yeast Pelp family members, may be 

able to contribute to the control of the cell cycle START in fission yeast (Moffat et al.

2000). Pas Ip cyclin resembles Clnl/2/3p of budding yeast in function and promotes 

cell cycle START by specifically activating DSCl through its association with a 

kinase, Peflp, and Cdc2p (Tanaka and Okayama 2000). However, Cdc2p kinase does 

not appear to be essential for the induction, maintenance and repression of target 

genes o f DSCl (Baum et al. 1997).

In S. pombe the first genes to be identified as required for the passage of 

START were cdc2^ and cdclO^ (Nurse and Bissett 1981). CdclOp is found to be an 

essential component of DSCl (Lowndes et al. 1992), which also contains products of 

the resF , res2^, rep2^ and rep F  genes (Cahgiuri and Beach 1993; Miyamoto et al. 

1994; Sugiyama et al. 1994; Nakashima et al. 1995; Zhu et al. 1997; Tahara et al. 

1998; White et al. 2001). Interestingly, Swiôp, Swi4p and M bplp of budding yeast 

together with CdclOp, Res Ip and Res2p foim a closely related family of transcription 

factors that share several regions of sequence homology (Taylor et al. 2000). It is 

found that the N-terminal regions of Swi4p and Mbplp are highly homologous to 

those of Res Ip and Res2p. In addition, Swi4p and Swi6p have homology to one 

another and also to CdclOp (Breeden and Nasmyth 1987; Andrews and Herskowitz 

1989a). This homology is most significant within two 33 amino acid regions, known 

as the ankyrin repeats, that also occur m a number of metazoan proteins (Andrews and 

Herskowitz 1990). However, it is worth noting that although Swi6p and CdclOp are 

found to have similar roles (Breeden and Nasmyth 1987), they are not functionally 

interchangeable (Lowndes et al. 1992). Furthermore, homologous segments have also
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been identified in several other transcriptional regulators indicating that this motif 

may also be commonly used in other species (Foord et al. 1999).

Like the N-terminal regions of Swi4p and Mbplp, which are necessary for the 

DNA binding activity of SBF and MBF (Primig et al. 1992; Koch et al. 1993), the 

DNA binding function of DSCl is also found to be accomplished by Res Ip and Res2p 

(Whitehall et al. 1999). Res Ip and Res2p also contain highly similar N-terminal 

DNA binding domains and have centrally located ankyrin repeats, which interact with 

CdclOp via their C-terminus. The C-terminal region of Res2p is essential for the 

specific function of Res2p in meiosis and is also found to confer requirement for the 

co-activator Rep2p (Sturm and Okayama 1996) which itself has a potent activation 

domain (Tahara et al. 1998). Rep2 shares a limited but significant structural and 

functional similarity with Rep Ip (Nakashima et al. 1995), which has recently been 

suggested to be an important factor involved in the regulation of DSCl during mitosis 

(Wliite et al. 2001).

Despite being highly related in sti'ucture. Res Ip and Res2p are functionally 

non-identical. Cells deleted for resF  (reslA) have deficiencies in the mitotic cycle, 

and have a cold and heat sensitive phenotype resulting in a Gl arrest (Tanaka et al. 

1992). In contrast, res2A cells have no obvious defects in the mitotic cell cycle, but 

are severely impaired in their ability to enter into pre-meiotic DNA synthesis and 

meiosis, indicating that Res2p has roles in the sexual differentiation process 

(Miyamoto et al. 1994; Zhu et al. 1994; Ayte and DeCaprio 1997). In addition it was 

found that over-expression of res2'^ can rescue the mitotic defects of resJ A cells, but 

that the meiotic phenotypes of res2A cells are unable to be rescued by over-expression 

of (Miyamoto et al. 1994; Zhu et al. 1997).

Consequently, the phenotypes of mutations in the two genes led to a model 

whereby two different but overlapping DSCl complexes were thought to operate, 

with Cdc 10/Res Ip acting during the mitotie cycle and Cdcl0/Res2p acting during 

meiotic cell cycle. However, it has emerged that Res Ip and Res2p can heterodimerise 

in a Cdc 1 Op-dependent manner in vitro, and that the mitotic DSCl complex, 

detectable in native extracts by gel retardation experiments contains. Res Ip, Res2p 

and CdclOp (Miyamoto et al. 1994; Ayte et al. 1995). Additional genetic analysis has
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shown that both Resp sub-units are needed for mitotic regulated transcription and that 

Res2p, like Res Ip, is an active component of DSCl in mitosis (Sturm and Okayama 

1996; Baum et al. 1997; White et al. 2001). Therefore, a revised model suggesting 

that both Res proteins remain associated to CdclOp throughout the mitotic cell cycle, 

and are needed for periodic cell cycle-regulated transcription, has been proposed 

(Figure 12) (White et al. 2001).

Mutations of cdc 10^, res2^ and rep F  have also been found to affect meiotic 

progression, suggesting additional roles for all these components in meiosis (Beach et 

al. 1985; Smith 1994; Zhu et al. 1994).

It has been suggested that N-terminal fragments of Res2p bind to MCB 

elements as dimers (Zhu et al. 1997). However, titration experiments demonstrated 

that the N-terminal domains of Swi4p and M bplp bind to MCB and SCB sequences, 

with a stoichiometry of one protein molecule per recognition site (Taylor et al. 2000). 

Given the degree of sequence conservation within this family of proteins, it is likely 

that this will be true for all members.

CdclOp

Res2p f  Kep2p

iSSSSBi
MCBs

Figure 12. Schematic representation of the fission yeast transcription factor complex.
D SC l (D N A  synthesis control), binding MCB (M «I cell cycle box) promoter motifs that operate during the 

G l/S  transition.
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I ll Fission yeast 

MCBs
DSCl is essential for the periodic expression of genes during the mitotic Gl/S 

transition (Lowndes et ah 1992; Kelly et al. 1993), whose products are needed for the 

onset of DNA synthesis in fission yeast. These genes include, cdc22^, cig2^, cdiF, 

cdcl8^ and mikC  (McIntosh et al. 1991; Connolly and Beach 1994; Hoffhiann and 

Beach 1994; Baum et al. 1997; Nishitani et al. 2000; Ng et al. 2001). Each of these 

genes is found to contain an upstream activation sequence (UAS) motif that is 

eommon to the 5’ non-transcribed regions of these genes (Gordon and Fantes 1986; 

Lowndes et al. 1991; McIntosh et al. 1991). The conserved core of this motif consists 

of one or more hexameric sequence that coincides with the MluX restriction site 

(ACGCGT), and is referred to as the M u l  cell cycle box, or MCB motif. Each of the 

MCB-regulated genes contains one or more MCB motif in its promoter, which binds 

specifically to DSCl and forms an integral component of the transcription system 

(Gordon and Fantes 1986; Ng et al. 2001). DSCl also foims an inactive eomplex, 

with MCBs responsible for the transcriptional repression of genes in late S/G2 

(Mclnerny et al. 1995).

MCBs have highly related promoter sequences present in the phylogenetically 

distinct budding yeast (McIntosh 1993). It is also interesting to note that the 

recognition sequence for E2F, the functional homologue to DSCl in mammalian 

systems, TTTTGCGCG or CGCGCAAAA is present in the promoters o f many genes 

induced at the beginning of S phase (Mudryi et al. 1990; Johnston and Lowndes

1992). This sequence is found in close proximity to the transcription start site in cell 

cycle regulated genes that are important for DNA replication (Kel et al 2001), which 

suggests that such types of control may also be present amongst all eukaryotes.

In budding yeast some MCB-containing genes expressed at Gl/S during 

mitosis are also induced during meiosis (Johnston et al. 1986). However, although no 

role for MCB sequences in meiotic transcription in budding yeast has been established 

(Cole and Mortimer 1989), more recently it has been suggested that MCB sequences 

are physiologically relevant during meiosis in fission yeast and are likely to control 

transcription during pre-meiotic S phase (Cunliffe et al. unpublished data).
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At present there is little understanding of how DSCl and MCBs work together 

to confer cell cycle regulation of genes transcribed at the G l/S boundary in fission 

yeast. CdclOp is believed to play a central role in this regulation as it is absolutely 

needed for cell cycle progression (Nurse and Fantes 1981b). Various cdc 10' mutants 

are found to have profound effects on MCB-dependent genes, suggesting both 

positive and negative roles for CdclOp in controls (Kelly et al. 1993; Hoffinann and 

Beach 1994; Mclnerny et al. 1995; Baum et al. 1997), More recently, it has been 

shown that over-expression of cdc 10^ had no effect on MCB-regulated gene 

transcription, arguing that it is not the gross level of CdclOp that controls MCB gene 

expression but other components of DSCl, which ultimately contribute to cell cycle 

activation (White et al. 2001).

Partners to CdclOp in DSCl, Res Ip and Res2p, have roles in cell cycle- 

regulated transcription, with Res Ip activating the Res2p repressing transcription 

(Baum et al. 1997; Whitehall et al. 1999). In addition, over-expression of repF  and 

rep2^ results in loss o f cell cycle regulated transcription of MCB genes, suggesting 

that both these genes have important regulatory roles in controlling MCB gene 

expression during mitosis (White et al. 2001). Other experiments have also suggested 

that Rep2p confers an important positive function to DSCl, possibly through its direct 

contact with Res2p (Nakashima et al. 1995; Sturm and Okayama 1996; Tahara et al. 

1998).

IV Ribonucleotide reductase in the two yeast species

The two yeast species are good model systems for studies of ribonucleotide reductase 

(RNR) regulation at the transcriptional level and its role in the cell division eycle. In 

addition they have provided a good system for the study of the DNA damage response 

pathway, which is largely conserved from yeast to humans (Lozano and Elledge 2000; 

Tanaka and Okayama 2000).
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Budding yeast
There are four genes in budding yeast encoding the large and small sub-units o f RNR, 

which are all located on different chromosomes (V, IX, X and VII) (Huang et al.

1998). Unlike the mammalian enzyme, the major control of budding yeast RNR 

appears to focus on the large sub-unit, encoded by two alternative genes, named RNRl 

and RNR3. Expression of RJSIRI is essential for mitotic viability and is primarily cell 

cycle regulated with maximal mRNA levels present during S phase. RNR3 is not 

essential for mitotic viability, but is instead highly induced by DNA damage (Elledge 

and Davis 1990). Its transcript, almost absent during normal growth, appears after 

DNA damage. Thus during normal growth the large sub-unit is an a2  homodimer 

containing only Rnrlp (Domkin et al. 2002).

The small sub-unit of RNR is encoded by the essential RNR2 gene (Hurd et al. 

1987; Elledge and Davis 1987; Huang and Elledge 1997). Rnr2p cannot fold 

correctly by itself and is unable to form an iron-radical centre. Instead, another 

protein, Rnr4p, an R2-like protein (Wang et al. 1997), has the crucial role of correctly 

folding and stabilising an active Rnr2p-Rnr4p complex (Chabes et al. 2000). Thus, in 

contrast to other class I RNRs, the active form of the budding yeast small sub-unit is a 

pp’ heterodimer containing Rnr2p and Rnr4p, the only active form of the small sub­

unit.

Although transcription of all RNR genes is inducible by DNA 

damage/replication blocks, the effect is most pronounced for RNR3 (de la Torre Ruiz 

and Lowndes 2000). It is also found that RNR3 is not an essential gene, as gene 

disruption studies with rnr3 mutants have no phenotype under all studied conditions 

(Elledge and Davis 1990). Such features have meant this gene is frequently used in 

the study of the DNA damage checkpoint pathway in S. cerevisiae. It has 

consequently permitted the identification o f a number of important genes involved in 

the DNA damage checkpoint function such as CRTl, TUPl, SSN6 and DUNl (Zhou 

and Elledge 1992; Zhou and Elledge 1993; Huang et al. 1998; Li and Reese 2001).

Over-expression of RNR1/RNR3 suppresses the lethality of meclA  and rad53A 

null mutants, genes encoding proteins essential to arrest cell cycle progression in the 

presence of DNA damage/DNA replication blocks (Huang et al. 1998). This is
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explained by the observation that the DNA damage response in budding yeast 

activates the M eclp and Rad53p protein kinase pathways, which in turn activates the 

transcription o f the RNR genes. In parallel, this leads to the degradation o f the Smllp 

protein, a specific inhibitor o f the yeast RNR large sub-unit (Chabes et al. 1999). This 

is achieved through the action o f Dunlp, a downstream checkpoint kinase of the 

Meclp/Rad53p checkpoint, which removes Smllp during S phase and after DNA 

damage (Introduction, page 40 and Figure 11) (Zhoa et al. 2001).

Fission yeast

In fission yeast the larger sub-unit o f RNR is encoded by cdc22^ (homologous to 

RNR3) and the smaller sub-unit is encoded by suc22^ (homologous to RNR2) 

(Fernandez-Sarabia et al. 1993). As in budding yeast, both genes are located on 

different chromosomes (I and II, respectively), cdc22'  ̂ encodes a single transcript, 

that is periodically expressed during the cell cycle with a peak at G l/S, whereas two 

transcripts have been identified for suc22'^ (Gordon and Fantes 1986). The smaller 

suc22^ transcript, of about 1.5 kb in size, is sufficient to contain the predicted ORF 

1.2 Kb in size. It is, however, present at an essentially constant level thioughout the 

cell cycle (Gordon and Fantes 1986; Fernandez-Sarabia et al. 1993). The larger 

transcript, 1.9 Kb in size, which also derives from the sue22^ gene has start sites -550 

nucleotides upstieam of those o f the smaller transcript. Its expression is periodic 

during the cell cycle, with a maximum at the Gl/S boundary, coincident with cdc22^ 

(Harris et al. 1996).

Both cdc22^ and suc22'^ large transcript are induced after treatment with

hydi'oxyurea, which suggested this is a response to DNA damage (Fernandez-Sarabia

et al. 1993). Hydroxyurea (HU) is a knovm inhibitor of RNR, which scavenges the

essential RNR tyrosyl free radical and converts it to an abnormal tyrosine residue

(Thelander et al. 1985). After exposure to HU, cells arrest in S phase and do not enter

mitosis and at the level o f transcription, RNR gene expression is elevated during S

phase (Elledge et al. 1992). This is due to the transcriptional activation o f RNR being

tightly linked to the DNA replication (S-M) checkpoint response (Harris et al. 1996;

Huang et al. 1998). Central to this response is RadSp in fission yeast (Bentley et al.

1996), a protein kinase analogous to ATR in humans (Introduction, page 40) (Keegan

et al. 1996) and M eclp in budding yeast (Zhou and Elledge 2000) (Introduction, page

38). Rad3p activates programmes that arrest cell cycle progression, modulate repair
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and promote recovery from replication arrest (Boddy and Russell 2001). Part o f this 

response mechanism involves regulation of RNR (Huang et al. 1998; Zhoa et al. 

2001).

Since HU arrests cells in S phase it is possible that the observed induction of 

RNR genes is solely due to accumulation of cells in S phase, rather than DNA 

damage. In order to confirm that the induction of cdc22^ and suc22^ large transcript 

can be due to a DNA damage response, the G2 airest checkpoint resulting from UV- 

induced DNA dænage was exploited. Wild-type cells were treated with the UV- 

mimetic agent 4-NQO (4-nitroquinoline oxide) and it was demonstrated that induction 

can occur outside S phase. Thus, induction of suc22'^ large transcript and cdc22^ can 

occur both in response to DNA damage and through inhibition of DNA synthesis 

(Harris et al. 1996), as in budding yeast (Elledge et al. 1992).

In S. pombe another DNA checkpoint gene, radC, effects the induction of the 

small sub-unit of RNR in response to HU and also triggers cell cycle arrest 

(Introduction, page 40). The radC  gene product, needed for the induction of suc22'^ 

large transcript (Harris et al. 1996), is an essential component of the mitotic 

checkpoint system, which responds by blocking DNA replication and DNA damage 

(Introduction, page 37). Thus it is needed for checkpoint mediated G2 anest (Lydall 

and Weinert 1995).

The large transcript of suc22^, in contrast to cdc22^, is also inducible by heat 

shock and unlike induction by DNA damage, this response does not need radÜ  

(Harris et al. 1996). This response may be mediated by the heat shock factor (HSF), a 

universal eukaryotic transcription factor involved in heat shock responses, which 

binds to a variable number of inverted nGAAn motifs (Amin et al. 1994; Fernandes et 

al. 1994). This sequence is found upstream of the start site of suc22^ large transcript, 

adjacent to the MCB motifs (Fernandez-Sarabia et al. 1993).

In S. pombe cdc22^ was the first cell cycle regulated gene to be discovered that 

is expressed at the G l/S interval (Gordon and Fantes 1986). It was identified by the 

isolation of two mutant alleles in collections of temperature-sensitive lethal mutants.
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showing the classical cell cycle arrest phenotype of cell elongation (Nasmyth and 

Nurse 1981).

cdc22^ has an interesting array of MCB motifs in its promoter region 

(McIntosh et al. 1991; Lowndes et al. 1992; Fernandez-Sarabia et al. 1993). It was 

found that it contains two clusters of MCB motifs, which appear to bind to DSCl 

(Figure 13) (Lowndes et al. 1992). Within these clusters there are three MCB motifs 

that are identical to the Mlul recognition sequence, while the remaining five all 

contain the central CGCG core thought to be essential for function as defined in 

budding yeast (McIntosh 1993). There is also a single core MCB motif between the 

two MCB clusters.

MCBx

MCBl -310 '280 -269

536 -405 -139 -25

MCB2 cdc22 +

Figure 13. Schematic representation of the fission yeast cdc22* promoter region.

Mlu\ sites (filled boxes), Mlu\ % matches (empty boxes) and transcriptional start sites (arrow) are indicated. The position 

o f  the MCB {Mlu\ cell cycle box) motifs and the transcriptional start site relative to the open reading frame are indicated.
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IM Research aims

I am interested in understanding the mechanisms that control the cell division cycle in 

fission yeast, as I hope studies in tliis model eukaryotic organism may contribute to 

current knowledge of cell division in human cells.

Specifically, we planned to study the molecular processes that regulate the 

expression of genes needed for DNA synthesis, or S phase, to occur. An important 

part of this mechanism in fission yeast involves the DSCl transcription factor 

complex binding to MCB motifs present in the promoters o f genes specifically 

transcribed at Gl/S (Lowndes et al. 1992). We aimed to understand further how 

DSCl and MCB interact to regulate Gl/S transcription in fission yeast.

To this end, we studied the cdc22^ gene, which was the first Gl/S transcribed 

gene to be discovered in fission yeast (Gordon and Fantes 1986). Previous work had 

shown that cdc22'^ contains a complicated and interesting array of MCB motifs in its 

promoter region, with two clusters of MCB motifs present. This array is not untypical 

o f other MCB-regulated genes in fission yeast, so we hope new information about this 

gene’s regulation may be true for fission yeast MCB-regulated genes in general.

In previous experiments, mapping of the cdc22^ gene using primer extension 

and Northern blot analysis led to the finding that the transcription start point of the 

gene lies between the two clusters of MCBs (Figuie 12) (Lovmdes et al. 1992; 

Maqbool et al. 2003). In addition, in vitro gel retardation analysis and in vitro DNAsel 

footprint suggested that DSCl can bind to either MCB cluster, implying that both 

MCB clusters binds to DSCl and may be involved in the transcriptional initiation of 

the gene (Maqbool et al. 2003).

In this thesis, I describe a series of experiments to investigate the role of the 

two MCB clusters in binding of DSCl that elucidate the contribution o f these factors 

to the cell cycle regulation of cdc22^.
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Chapter 2: Materials and Methods

Escherichia coli

Bacterial cell culture and strains
Basic E. coli culture and growth was as described in Sambrook et ah 1989. Vectors, 

oligonucleotides and bacterial strains used in this study are described in Appendix A,

Appendix B and Appendix C, respectively.

Preparation of plasmid DNA from E, coli
For plasmid DNA preparation from E. coli, a single isolated bacterial colony was selected 

from a fresh solid medium plate and used to inoculate 10 ml o f LB medium containing 

appropriate selective antibiotic (50 pg ml'^ ampicillin). Following overnight incubation at 

37“C in an orbital shaker, 1.5 ml of cells were transferred to a micro-centrifuge tube and 

harvested by centrifugation at 13,000 rpm, for 1 minute. The bacterial pellet was re­

suspended in 150 pi of buffer PI (50 mM tris.Cl pH 8.0, 10 mM EDTA, 100 pg ml'* RNAse 

A) and then mixed with 150 pi buffer P2 (0.2 M NaOH, 1% SDS), to initiate alkaline lysis of 

the cells. This reaction was allowed to proceed for 5-10 minutes at room temperature before 

neutralising the lysate by the addition o f 150 pi o f chilled buffer P3 (2.55 M KOAc pH 4.8), 

which subsequently resulted in the formation of a precipitate of potassium dodecyl sulphate. 

The SDS-denatured proteins and chromosomal DNA were co-precipitated with the detergent 

whilst the plasmid DNA remained in solution. The precipitate was pelleted by centrifugation 

for 5 minutes at 13,000 rpm. The supernatant containing plasmid DNA was transferred to 

another micro-centrifuge tube and the DNA precipitated by adding 1 ml of 100 % ethanol with 

centrifugation for 5 minutes at 13,000 rpm. The plasmid DNA pellet was then washed with 

70% ethanol, dried at room temperature for 5-10 minutes, and re-suspended in a 40 pi volume 

o f TE buffer pH 8 (10 mM tris.Cl pH 8, 1 mM EDTA).

Bacterial transformation (Sambrook a/. 1989)

E. coli XL-1 Blue “Super-competent” cells (Stratagene; used for colour selection) or “One 

shot” competent DH5ct E. coli cells (Stratagene) were transformed using either a chemical or
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electroporation method, for plasmid storage and propagation. In both cases bacterial cells, 

stored at -70°C, were thawed on ice to prevent loss of transformation efficiency.

The chemical method used 2 pi o f 0.5 M |3-mercaptoethanol, which enhanced 

transformation efficiency, and was added to 50 pi of E. coli cells. Typically 10-20 pi of 

plasmid DNA was then gently mixed into the chilled cells. The contents were occasionally 

tapped during a 30 minute incubation on ice, before being heat shocked for 30 seconds in a 

42®C water bath, and then transferred to ice for a further 2 minutes (care was taken not to 

shake the samples at this point). Cells were incubated in an orbital shaker (225-250 rpm) for 

one hour at 37°C following the addition o f 250 pi of SOC medium (LB broth, 0.04% glucose, 

10 mM MgCli).

When the electroporation method was used, 40 pi of cell suspension was mixed with 1- 

2 pi of DNA. The cells were left on ice for 0.5-1 minutes, before transfer to an ice-chilled 0.2 

ml cuvette and pulsed using the electroporator apparatus (Biorad E. coli puiser, settings: 2.25 

kV, 200 (3). 1 ml o f SOC was immediately added and the cells were quickly but gently re­

suspended with a pasteur pipette (this step was important in maximizing the recovery of the 

transformants) before being incubated in an orbital shaker (225-250 rpm) for one hour at 37^C.

After both transformation methods, 50 pi and 200 pi aliquots of the transformation 

mixture were then plated on LB agar (2% LB, 2% agar) plates containing 50 pg ml"*of 

ampicillin. With E. coli XL-1 Blue “Super-competent” cells, 40 pi of 20 mg inf* X-Gal, was 

also added at this stage to permit colour selection. The plates were incubated at 37°C 

overnight to allow growth and colony-formation of transformed cells.

S. pombe

Fission yeast cell culture and strains
Media used for the propagation o f S, pombe were as described by Moreno et al (1991). 

Standard genetic procedures of Gutz et al (1974) and Kohli et al (1977) were followed. Fission 

yeast strains used in this study are described in Appendix D.

To resuscitate yeast strains from -70®C glycerol stocks (made by adding 850 pi of 

cells, from a 10 ml pre-culture of cells to 15% glycerol) cells were streaked onto complete rich 

medium (YE) plates (Moreno et al 1991). The cells were then grown at the permissive 

temperature (25°C) for 2/3 nights and checked microscopically to ensure no contamination had
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occurred, and that the cells were growing normally. A few individual colonies were then 

picked and streaked onto a YE master-plate, which was incubated overnight at 25°C. The 

master plate was used to replica-plate colonies, using a velvet cloth, onto selective medium to 

confirm the yeast strain genotype.

For physiological experiments cells were routinely grown in minimal medium (EMM) 

with shaking at 25°C or 32”C (Moreno et al 1991). Temperature sensitive mutants were 

incubated at the restrictive temperature of 36°C to display their mutant phenotype.

Cell number per ml of liquid culture was determined from a sample added to Isoton 

(Becton Dickinson); following sonication cells were counted electronically with a Z2 Coulter 

Counter. Typically 100 pi of cells was added to 10 ml of Isoton and counted twice and added 

together (each count was for 500 pi) and multiplied by 100 (the dilution factor) to give the 

final cell count per ml * of cells. A cell count of 1 to 2 x 10  ̂cells ml'* indicated cells were at 

exponential phase of growth.

Synchronisation of cells by transient temperature shifts in the cdc25-22 mutants was 

achieved by growing the cells in EMM to mid-exponential growth at 25°C, before shifting to 

36°C for 4 hours to cause cells to arrest in G l. Cells were then shifted back to 25°C to enter 

the mitotic cell cycle in synchrony. Samples were subsequently removed at 15 minute time 

intervals both for RNA extraction (35 ml) and to measure septation indices (90 pi (added to 10 

pi o f formaldehyde)) by microscopic examination.

Fission yeast transformation
Fission yeast cells from glycerol stocks were awoken and transformed using a chemical 

(Bahler et al. 1998) or electroporation method (Biorad instructions), for plasmid storage and 

propagation. For both methods cells for transformation were prepared by growth in EMM to 

mid-log phase with a density of about 10  ̂cells ml"*, at 25”C.

In the chemical method (Bahler et al. 1998) cells were harvested by centrifugation at 

3,000 rpm for 5 minutes at 20°C and washed once with an equal volume of ice cold sterile 

water. Cells were then re-suspended in 1 ml o f water and transferred to a 1.5 ml micro­

centrifuge tube before being washed again with LiAc/TE made from 10 x filter-sterilised 

stocks (10 X Li Ac: 1 M Lithium acetate adjusted to pH 7.5 with diluted acetic acid, 10 x TE: 

0.1 M tris.Cl pH 7.5, 0.01 M EDTA, pH 7.5). The cell pellet was then re-suspended in 

LiAc/TE at 2 X 10  ̂cells ml"* and a 100 pi of the concentrated cells were mixed with 2 pi of
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sheared hearing testes DNA (10 mg ml"* yeast marker carrier DNA; Clontech Laboratories) 

and 10 pi of the transforming DNA. After incubation at room temperature for 10 minutes, 260 

pi of 40% PEG/LiAc/TE (dissolved 8g of PEG 4000 in 2 ml of LiAc, 2 ml of 10 x TE and 

9.75 ml sterile dH^O, solution was filter sterilised and could be stored up to one month) was 

added and the cell suspension gently mixed and incubated at 30“C for 30-60 minutes. Cells 

were heat shocked for 5 minutes at 42® after adding 43 pi of DMSO (dimethyl sulfoxide) and 

washed once with 1 ml of sterile water before being re-suspended in 0.5 ml of sterile water. 

The cells were then plated onto selective EMM, left to air dry, and incubated at permissive 

temperature for 3/4 days.

When using the electroporation method the cell pellet was re-suspended in 40 ml of 

ice-cold 1 M sorbitol before being finally re-suspended in 2 ml o f ice-cold 1 M sorbitol, to a 

density o f about 1.5 x 10  ̂cells ml"*. 200 pi of the cell suspension was then added to a chilled 

1.5 ml micro-centrifuge tube containing 1-2 pi of DNA and incubated on ice for 5 minutes. 

The cells and DNA were transferred to an ice chilled 0.2 ml cuvette and pulsed using an 

electroporator (Biorad E. coli puiser, settings: 1.5 kV, 200 Q). 1 M sorbitol was then

immediately added to the cuvette, the cell suspension returned to the micro-centrifuge tube 

and placed on ice. The transformation mixture was then plated out onto selective EMM, left 

to air dry, and incubated at permissive temperature for 3/4 days.

Plasmid stability test (Moreno etal. 1991)

To confirm the instability of a plasmid in transformed yeast strains (as opposed to stable 

integrated vectors), transformed cells were streaked to single colony on minimal medium and 

incubated for 2/3 days at the permissive temperature of 25®C. Single colonies were then 

selected and re-streaked on YE plates and incubated at the permissive temperature for 2/3 

days, before being replica-plated onto selective minimal medium plates. Instability of 

transformed plasmids was shown by loss o f ability o f transformed strains to grow after 

relaxation of nutritional selection, due to plasmid loss.
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Mating fission yeast cells (Moreno et al. 1991)

To mate two different yeast strains of opposite mating types, a loop-full of freshly growing 

cells fi-om a master-plate of each strain was mixed together on an ME agar plate with 100 pi of 

dHiO. The cells were air dried before incubation at below 30®C for 3/4 days. A portion of the 

mating mix was then added, in a micro-centrifuge tube, to 1 ml of dHiO and 20 pi of (3 - 

glucoronidase (Sigma G0876, 100 units pi'*) before incubation and left over-night at 37®C. 

The cells were then pelleted and re-suspended in 1 ml of dHiO, and pelleted again, and then 

re-suspended in 500 pi of dHiO. 100 pi of this cell culture were spread onto a YE plate and 

left at 25®C for 2/3 days and dilutions with 10 pi and 1 pi of cells with 100 pi of dH20 were 

also spread onto separate YE plates.

Isolation of chromosomal D N A  from fission yeast (Moreno et al. 1991)

For plasmid DNA preparation, an isolated fission yeast colony was selected from a master- 

plate and used to inoculate 10 ml of YE. Once the cells were grown to saturation for 2/3 

overnights at the permissive temperature, they were harvested by centrifugation at 2000 rpm 

for 5 mins. The cells were then re-suspended in 0.5 ml dHiO and transferred to a 1.5 ml 

micro-centrifuge tube and pelleted by a 5 second spin. The pellet was re-suspended in its 

residual liquid before adding 0.2 ml of solution A (10% Triton, 10% SDS, 1 M NaOH, 1 M 

tris.Cl pH 7.5, 0.5 M EDTA), 0.2 ml of phenol/chloroform (1:1 ratio) and 0.3 g of acid washed 

glass beads (425 -  600 micron. Sigma G 9268). The sample was vortexed for 3-5 minutes and 

0.4 ml of TE buffer was added before being centrifuged at high speed for 5 minutes. The 

aqueous layer, containing the RNA and DNA was transferred to a new tube and the nucleic 

acids were precipitated by adding 1 ml of 100% ethanol and centrifuging the sample for 2 

minutes. The pellet was re-suspended in 0.4 ml o f TE buffer and 30 pg o f RNAse A 

(dissolved at 10 mg mf* in 0.01 M sodium acetate pH 5.2) and incubated at 37®C for 5 

minutes to remove the RNA. DNA was precipitated by adding 8 pi of 5 M NHjAc, 1 ml of 

100% ethanol, and centrifuged at high speed for 2 minutes. The supernatant was carefully 

discarded and the pellet left to air dry before being re-suspended in 100 pi of TE buffer.
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RNA preparation from fission yeast (Mclnerny et a l  1995)

For RNA extraction from fission yeast, 200 ml cultures o f mid-exponential stage o f growth 

fission yeast cells were prepared and harvested by centrifugation at 3000 rpm for 5 minutes. 

Each cell pellet was re-suspended in 1 ml of STE (0.32 M sucrose, 20 mM tris.Cl pH 7.5, 10 

mM EDTA pH 8.0) and transferred to a screw cap micro-centrifuge tube and centrifuged at 

high speed for 5 seconds (cells could be stored at -70"C at this stage). The cell pellets were 

re-suspended in 200 \i\ o f STE before adding acid washed glass beads (425 -  600 micron, 

Sigma G 9268) to just beneath the meniscus, followed by 600 p,l of NTES (100 mM NaCl, 5 

mM EDTA, 50 mM tris.Cl pH 7.5, 1% (w/v) SDS). 500 p,l o f H2O saturated hot phenol at 

65”C was added next and the cells were disrupted using a Ribolyser (Hybaid Ltd, UK) with 3 

bursts of 40 seeonds, at setting 4, and centrifuged for 5 minutes at high speed. This resulted in 

the separation of the samples into three phases: a lower and red organic phase containing 

protein, a middle white interphase containing precipitated DNA, and an upper colourless 

aqueous phase containing the RNA. The upper and middle interface were carefully removed 

and transferred to a second 500 p.1 aliquot of hot (65 °C) phenol and again homogenised in the 

Ribolyser with 1 burst at 40 seconds, setting 4. Samples were centrifuged for 5 minutes at 

high speed and the aqueous phase only was transferred to an aliquot o f 400 (il o f 

phenol/chloroform at room temperature and given another burst of 40 seconds in the ribolyser. 

The aqueous phase was again removed and transferred into a second aliquot o f 400 ^1 

phenol/chloroform at room temperature, and homogenised in the Ribolyser, 1 burst for 40 

seconds at setting 4, before being centrifuged at high speed for 5 minutes. (This step was 

repeated if any protein was found present at the phenol/aqueous interface).

The aqueous phase was precipitated with 1/10 volume of 3 M sodium acetate and 3 

volumes of 100% ethanol. Following an overnight incubation at 20°C, the RNA was pelleted 

by centrifugation at high speed for 10 minutes at room temperature and washed with 70% 

ethanol in RNAse-free H2O. The RNA pellet was re-suspended in 100 p,l of RNAse-free H2O 

and dissolved by incubating at 65°C for 3 minutes, with repeated pipetting to facilitate the re­

suspension of the RNA.

5 p,l o f each sample was diluted in 500 p.1 of dH20 and was used to estimate the 

amount and quality of RNA by spectrophotometry at A260. The concentration of RNA in jig 

ql"̂  was calculated by using the formula: (A260 x dilution factor x 40) ^  1000. Usually such
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dilutions gave readings of about 0.5, within the accurate range of the spectrophotometer. If 

the RNA was too concentrated, it was diluted fmfher before measurement. The RNA samples 

were stored at -70*^C.

Protein extraction from fission yeast (Ng et al. 2001)

200 ml cultures of fission yeast cells, in mid-exponential stage of growth, were prepared and 

harvested by centrifugation at 5000 rpm for 10 minutes in screw cap centrifuge tubes. The cell 

pellet was re-suspended in 200 |il of ice cold lysis buffer [50 mM KCl, 50 mM tris.Cl pH 8, 

25% glycerol, 2 mM DTT (dithiothreitol. Sigma), 0.1% Triton X-100, 5 jrg of protease 

inhibitors: chymostatin, pepstatin, antipain, leupeptin, aprotonin (Sigma), 0.2 mM PMSF 

(phenylmethanesulfonylfluoride)] in 2 ml screw capped micro-centrifuge tubes. The cells 

were pelleted at 13,000 rpm for 1 minute in a high speed micro-centrifuge and again re­

suspended in 200 ^1 of lysis buffer. Acid washed glass beads (425 -  600 micron, Sigma) were 

added to just beneath the meniscus and the tubes were chilled on ice for 2-3 minutes before 

being disrupted using a Ribolyser (Hybaid Ltd, UK) wiüî 1 burst at 40 seconds, setting 4. The 

cell debris was pelleted by centrifugation at 13,000 rpm for 5 minutes at 4°C and the protein 

supernatants were transferred to a fresh chilled micro-centrifuge tube, and clarified by 

centrifugation at 13,000 rpm for 30 minutes at 4*̂ C.

Supernatants were transfened to a fresh chilled micro-centrifuge tube and 5 (xl was 

removed to determine protein concentration, which was estimated using Bradford’s reagent 

(Biorad) according to the manufacturer’s instmctions, and the remainder of the protein sample 

was snap frozen on solid CO2, and stored at -70^C.

General molecular techniques

Acrylamide gel purification of DNA
Small polymerase chain reaction (PCR) products (100-300 base pairs) were commonly 

separated on a 6% acrylamide gel and purified using the following method. The acrylamide 

gel was stained with ethidium bromide and DNA visualised under short-wave UV, and the 

desired DNA fragment was excised with a scalpel. The acrylamide pieces were then
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transferred to a 500 \d pipette tip (sealed with a bimsen flame and containing a siliconized 

glass wool plug) and mashed with a tooth pick. The mashed acrylamide was suspended in 400 

pi of elution buffer and the top of the 500 pi tip was sealed using Nesco-film. Following an 

overnight incubation at 37°C, the tip of pipette was removed and the solution eluted into a 1.5 

ml micro-centrifuge tube, by adding 400 pi more elution buffer. To remove excess 

acrylamide the sample was micro-centrifuged for 5 minutes. Two volumes of ethanol and 1 pi 

of carrier glycogen (20 mg m f \  Roche) were added to the supernatant and left at -70°C for 5- 

10 minutes to precipitate the DNA. The DNA was pelleted at 13,000 rpm for 30 minutes, 

washed with 90% ethanol and was re-suspended in 30-50 pi dH20. 5-10 pi of the sample was 

loaded onto a 1% agarose gel next to a 1 kb ladder of known concentration and visualised 

under short-wave UV to determine the concentration of the sample DNA.

Northern blot analysis (Sambrook et al. 1989)

Typically RNA samples of 10 pg were added to 20 pi of RNA sample buffer [600 

Formaldehyde, 200 pi formamide, 240 pi 5 x MNE (0.12M MOPS pH 7, 25 mM NaOAc, 5 

mM EDTA), 160 pi dH2Ü]. Samples were heated at 65°C for 5 minutes to denature the RNA 

secondary structure, and were immediately transferred to ice to prevent re-natuiation. To each 

sample 1 p 1 of a 1/30 dilution of ethidium bromide (10 mg ml'^) was added, and the samples 

were loaded onto a formaldehyde denaturing gel (1% agarose, 20 ml 5 x MNE, 38 % 

formaldehyde, 63 ml dHiO). The gel was electrophoresed for 3-4 hours at 60 v in 1 x MNE to 

separate the different species of RNA according to size. The gel was visualised under a UV 

trans-illuminator to confirm successful separation and photographed.

The gel was then washed for 15 minutes in 10 mM Na2HP0 4 /NaH2P0 4  (pH 6.5) [100 

ml stock; 3.9 ml 1 M NaH2P0 4 , 6.1 ml 1 M Na2HP0 4 , 90 ml dH20] prior to capillary transfer 

as described by Sambrook et al (1989). The transfer procedure required the prepared gel to be 

placed, inverted, on a bridge of Whatman 3 MM chromatography paper supported on a glass 

plate and suspended over a reservoir o f 10 mM Na2HP0 4 /NaH2P0 4  (pH6.5). An appropriate 

size o f Genescreen membrane (NEN Life Science) was pre-soaked in 10 mM 

Na2HP0 4 /NaH2P0 4  (pH6.5) and positioned over the gel, followed by a further two layers of 

pre-soaked Whatman paper. Care was taken to ensure removal of air bubbles. A stack of 

paper towels and a weight were added on top of the arrangement to allow efficient capillary
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action. During transfer the migration of the RNA from the gel to the membrane was 

facilitated by the passive movement of the solution through the gel. Plastic strips were placed 

along each side of the gel to prevent direct contact between the paper towels and the Whatman 

bridge; this ensured movement o f the buffer was only through the gel. To achieve high 

transfer efficiency, the capillary action was allowed to proceed overnight. Following transfer, 

the RNA was fixed to the membrane by UV-cross-linking at 1200 MJ and was then washed 

for 5 minutes in dHzO.

Radio-labelled DNA probes complementary in sequence to a particular RNA of 

interest were used to locate it on the membrane. The probes were routinely amplified by PCR 

using fission yeast genomic DNA as a template. The end product was a region of about 1 kb 

of each ORF, and the oligonucleotides used to make the various probes are listed in Appendix 

B.

The DNA probes were labelled using random hexanucleotide (Ne) primed method of 

Feinberg and Volgelstein (1983). This involved the addition of 10-15 p,g DNA to DEPC 

water to give a final volume of 11 |.il, which was then denatured for 5 minutes at 95®C 

followed by the addition of 2 pi o f Nô random hexanucleotide at 100 pm pl"̂  (MWG 

oligonucleotide service). Labelling was carried out at 37®C for 1 hour or more in a 1 x 

reaction buffer (containing 500 mM tris.Cl pH7.5 with 100 mM MgCL) following the addition 

of 2 nl o f 250 nM:dCTP, dGTP, dATP (Promega), 40 |xCi of [a“ P] dCTP (300 Ci mmol ') 

and 2U DNA polymerase I Klenow fr agment (Boehringer Mannheim).

The probe was purified by addition of 100 pi of dHiO, and passing the mixture through 

a Sephadex G-50 size exclusion column. The Sephadex G-50 (Pharmacia) was prepared by 

autoclaving in two volumes of TE. A plunger from a 1 ml disposable syringe (Plastipak) was 

removed and a small amount of siliconised glass wool (Sigma 20411) was pushed to the 

bottom of the tube and the column was placed in a 50 ml plastic screw cap tube with a micro- 

centrifuge tube placed at the end. The G-50 was added to fill the column, which was then 

spun for 2-5 minutes at 2,000 rpm. The remaining TE was discarded and, if  necessary, the 

column was spun again. The labelled DNA was added and the column was spun again for 2-5 

minutes at 2,000 rpm with a fresh micro-centrifuge tube and the separation of labelled DNA 

fragment from unincorporated radio-nucleotide was confirmed by monitoring the radioactive 

profile with a Geiger counter.
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The probe was added to the Genescreen membrane with bound RNA after the membrane 

had been pre-hybridised. This involved rotation in a hybridisation oven at 42”C for 2-4 hours 

in 18 mis o f pre-hybridization buffer [10 ml formamide, 4 ml P buffer (1% BSA, 1% 

pyrolidone, 1% ficoll, 250 mM tris.Cl pH8, 0.5% sodium pyrophosphate, 5% SDS), 4 ml 50% 

DXSO4 (10 g dextran sulphate, 20 ml dHzO)] these ingredients were heated together at 42®C 

for 10 minutes before the addition of 1.16 g NaCl and 200 pi salmon sperm (this was added 

after incubation at 95®C for 5 minutes and ice for 5 minutes). The radio-labelled probe was 

then added to the pre-hybridisation buffer, and membrane incubated with rotation at 42°C for 

16 hours. The nylon membrane was then rinsed in 2 x SSPE [20 x SSPE in 1 litre: 175.3 g 

NaCl, 27.6 g NaH2P0 4 , and 40 ml EDTA pH 8] at room temperature for 30 minutes. This was 

followed by rinsing with 2 x SSPE + 0.5% SDS at 65°C for 15 minutes. A final wash in 0.1% 

SSPE at room temperature was completed to remove residual SDS, before being exposing the 

membrane to auto-radiography film overnight at -70^C.

The membranes were stripped of probe DNA by incubating at 70°C for 30-120 minutes 

in strip buffer [1 M tris.Cl pH 8, 0.5M EDTA pH 8, 0.5 M sodium pyrophosphate, 0.02% 

polyvinylyrolidone, 0.02% ficoll, 0.02% BSA (Helena Biosciences)], until no radioactivity 

was detected.

Quanitification of Northern blot transcripts

To allow comparison between transcript levels in different samples detected by Northern blot 

analysis, the transcripts were quantified using NIH image software. A box was drawn around 

each transcript and the calculated measurement of the intensity of each band was noted using 

the software. To minimise error the same sized box was drawn around each transcript before 

the measurement was taken. Occasionally, background signal had to be measured and 

subtracted from the counts. The invariant adhl^ transcript level was also quantified using the 

same method, and the ratio of transcript levels to adhl^ calculated and plotted for each 

experiment.
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Electophoretic mobility shift assay (EMSA) (Ng et al. 2001)

Probe preparation

DNA fragments were 5’ end-labelled using T4 polynucleotide kinase (PNK). To 5-10 pig of 

DNA in 5 pil of dH20 on ice was added 10 U of T4 PNK in 1 x T4 PNK buffer (Promega), 

followed by the addition of 10 piCi of [y-^^P] dATP (Amersham, 10 pCi pif') to give a total 

volume of 8 pil. The reaction was incubated at 37°C for 1 hour, and the DNA was purified 

using the Sephadex G-50 column (p.x).

EMSA Assay

Each shift assay was performed by adding 10 pi of sample buffer [1 M tris.Cl pH 7.5, 1 M 

KCl, 50 % Glycerol, 100 mM DTT, 100 mM protease inhibitors: chymostatin, pepstatin, 

antipain, leupeptin, aprotonin (Sigma), 100 mM PMSF, 1 M MgCb] to 20 p,g of protein, 1 pig 

of dldC (1 mg ml '; Pharmacia) and 1-2 pil of labelled probe. If required non-specific or 

specific competitor DNA was also added. The samples were left for 5 minutes on ice before 

the addition of each reagent. Analysis of the formation of protein-DNA complexes was 

achieved by electrophoresis of samples on a 10% acrylamide gel in 1 x TAE buffer (40 mM 

tris-acetate, 1 mM EDTA pH 8) for 1.5-2 hours at 180v. The gel was dried for 1.5 hours at 

80°C and exposed to auto-radiography film at -70°C.

Site directed mutagenesis

A series of PCR amplification reactions were used to introduce mutated base pairs into the 

ode22^ promoter region, using the appropriate integration vector, pPJK7 or pPJKlO as a DNA 

template.

: i L -
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Figure A. A schematic representation o f  the oligonucleotides designed relative to the cdc22' 
promoter region to mutate the MCB2 motifs in pPJK7 and pPJKlO. Filled boxes, MCB motifs exact 
matches to Mlu\ site; empty boxes, core CGCG sequence. Arrows indicate oligonucleotides, which are 
labelled as A to F (Appendix B). Note that C and E are reverse complements to D and F.
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Oligonucleotide primers are labelled A-F for clarity (Figure A; Appendix B). 

Oligonucleotides C -F contained the mutations to be included in the final product. 

Oligonucleotides A and B incorporated the restriction sites HindiW and Kpnl, respectively, 

which allowed the ligation o f the new DNA fragment into the integration vector. Separate 

PCRs were used to amplify two DNA products with the oligonucleotides, A+C and D+B. The 

amplified DNA products were run on a 1% agorose gel and purified using agorse gel 

purification kit (Qiagen). Using these purified DNA products as DNA templates, a fusion 

PCR was performed using the oligonucleotides A+B. This gave an amplified DNA product 

containing the mutations introduced by the oligonucleotides C+D. The newly amplified 

product was then purified with the agarose gel extraction , and used as a DNA template for 

another two separate PCRs using oligonucleotides A+E and F+B. These amplified DNA 

products were then band purified. A fusion PCR was carried out again using the 

oligonucleotides A and B, this time using the new amplified PCR products as templates, and 

this final mutated product cloned into pPJK7 or pPJKlO. All mutations were confirmed by 

sequencing.
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Chapter 3: Results

A cdc22^ MCB clusters confer Gl/S transcription

I Introduction

Progression through tlie cell division cycle in fission yeast is dependent on passage 

through START, which is controlled in part by the transcription factor complex DSCl 

that regulates the expression of genes essential for DNA synthesis (Lowndes et al. 1992; 

Connolly and Beach 1994; Hofmann and Beach 1994; Baum et al. 1997; Nishitani et al. 

2000; White et al. 2001). The DSCl tianscription factor complex is essential for the 

periodie expression of genes during the Gl/S transition (Lowndes et al. 1992; Kelly et al.

1993). DSCl activates G l/S transcription by binding MCB HAS motifs present in the 

promoters of a group of genes expressed at this cell cycle time. The conserved core of 

this element consists of one or more hexameric sequence that coincides with the Mlul 

restriction site (ACGCGT), and is referred to as the M nl cell cycle box, or MCB motif. 

Each of the MCB-regulated genes contains one or more MCB motifs in its promoter, 

which bind specifically to DSCl to form the transcription control system (Lowndes et al 

1992; Ng et al 2002).

The MCB motif was originally identified in budding yeast, where a consensus 

sequence ACGCGTNA was found in the promoter region of cell cycle regulated genes 

essential for DNA synthesis (McIntosh et al. 1991). It has also been identified in fungi 

(McIntosh et al. 1993) and the most similar sequence currently found in mammalian 

genes is the E2F transcription factor site TTTGCGC or CGCGCAAAA. Similar to yeast, 

the E2F binding site can be found in the promoter of cell cycle regulated genes, whose 

expressioin peaks at the G l/S boundary and are required for DNA replication (Kel et al.

2001). As transcriptional mechanisms involving passage through START and 

commitment to a new cell cycle appear to be conserved fi'om yeast to mammals (Qin and

67



Li 2003), it is possible that MCB motifs may also be an integral component of a 

transcription system that is conserved in other eukaryotic organisms.

cdc22^, encoding the large sub-unit of ribonucleotide reductase, was the first gene 

to be discovered in fission yeast whose expression is cell cycle regulated at the Gl/S 

interval (Gordon et al. 1986). cdc22^ has been found to contain an interesting array of 

MCB motifs in its promoter, implicated in regulating its G l/S specific expression 

(McIntosh et al. 1991; Lowndes et al. 1992; Fernandez-Sarabia et al 1993, Mclnerny et 

al. 1995). The promoter region contains two clusters of MCB motifs, for clarity named in 

this thesis “M CBl” and “MCB2” (Figures 13 and 14). Within MCBl and MCB2, there 

are three Mlul motifs that are identical to the Mlul recognition sequence, while the 

remaining five motifs all contain the central CGCG core thought to be essential for 

function (McIntosh et al. 1991). There is also a single core Mlul site between the two 

MCB clusters, named in this thesis “MCBX” (Figures 13 and 14).

In previous experiments, the mapping of transcriptional start of cdc22^, using 

primer extension and Northern blot analysis revealed that the start point of the gene lies 

between the two MCB clusters (Figures 13 and 14) (Maqbool et al, 2003). Furthermore, 

in vitro DNAsel footprint analysis showed there are protected regions over MCB2, the 

downstream cluster of MCBs (Maqbool et al, 2003). These results imply that either one 

or both of the MCB clusters is essential for the binding of DSCl and activating 

transcription of cdc22^. The possibility that MCB2 may participate in the initiation of the 

transcription of cdc22^ is interesting, because this would be the first evidence for a UAS 

downstream to the transcriptional start site of a RNA polymerase II regulated gene in 

yeasts. This potential obseiwation is especially interesting in light of recent observations 

that reveal mammalian E2F binding sites occur in close proximity, upstream or 

downstream, to the transcriptional start site o f cell cycle regulated genes (Kel et al. 2001).

The role of MCB motifs in fission yeast Gl/S specific transcription was first 

suggested by the observation that three adjacent synthetic Mlul sequences placed in the 

UAS reporter plasmid pSPA178 conferred G l/S specific transcription to the lacZ gene 

(Lowndes et al. 1992). This result demonstrated that MCB motifs can confer expression
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to a heterologous gene in a cell cycle dependant manner in fission yeast, implicating the 

MCB motifs in the cdc22^ promoter in regulating its cell cycle transcription. The 

presence of MCB motifs in the promoters of other fission yeast Gl/S regulated genes is 

also eonsistent with this hypothesis.

However, these initial experiments were limited, as the native promoter of the 

endogenous cdc22^ gene contains 9 Mlul motifs, which are dispersed along the promoter 

and are not immediately adjacent to each other. In addition, they occui* as two main 

clusters, MCBl and MCB2, within which there are three Mlul motifs that are identical to 

the Mlul recognition sequence, and six that only contain the central CGCG core (Figure 

14). These initial experiments did not show, therefore, which of the MCB clusters in the 

endogenous cdc22^ promoter binds to DSCl, nor did they confirm if other elements may 

contribute to promoter activity.

Thus, the main aim of the research presented in this thesis is to understand the role 

and contribution of the two MCB motifs in the cdc22^ promoter in regulating its 

expression at the Gl/S boundary. It is hoped that such information will contribute 

towards a better understanding of cell cycle regulated transcription in fission yeast and 

ultimately other eukaryotic systems including mammalian cells.
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CTTTATCAATT6TATGTTATGATCTTCTCCAACAGGTAATTGACAACATCAAAAAGTAAT 
-644  +---------------- +---------------- +---------------- +---------------- +---------------- +--------- -5 8 5

ATAAAGAACAAGGGGAAATTGATATCTAGATATATTAGAGAAATTAGTAGTTCAATCTCA 
584---  +---------------- +---------------- +---------------- +---------------- +---------------- +---------  -5 2 5

TAGAGCAGGTTGGTAGTCGGGTTGGACC<3eC^GTTTAATTTATGTAAACAG'lCGCGTCW 
524  +---------------- +---------------- +---------------- +---------------- +---------------- +---------  -4 6 5

M( 3X

QTTGCAATTGAGACGCQTAAATAAATATTTAATTTATTACATTCAGTCGTAAACAGAGTA 
-464 —— —+— 4 ------*-————— —405

TTTATAAACACTTTTTTTATGTTTAATAAAAGATAAATGTAACAGTTGAATGTATTGTAT 
—404  1----------------- ^----------------- 1----------------- ^-----------------1------------------ 1---------  —345

caggtcag accacttcaacatgtttaaicgcgtttttttaaaaaaatatttttttaattt 
-344   +------------------  +---------------- +----------------+---------------- +--------- -2 8 5

*  *

TTAAAAGTCGGACTTATTTTAGCGGAACTTTGAT6TTCAGAAGTGAAAAAGATAAATCTA 
—284 ————+--------------—I——------------------------------------------------------------------------------------- —225

TTTAGCAAGTCTTAATTAACGTCTTTTAGATATAGTAGAGCTACAAAAATGATCCGGTTT 
224 — —+— ————— +—— —————+—————— ——+—————————4-— ——————+—— — —165

CCACTCTTAGCTTTATTTATTTACATTGATCAACATGACTTAAAGTTCGGATGAC<^^Ç 
■164 — — — — —-—-------------------------  4----------------------- — r ————— —105

GCQGCATCACGTTATATTAGCGTGACGCÇrPCTGAACGiCGT'TTTTCATTTACTATAAATAT Ç  ? ^  ^
■ 104 ------------1----------------------------1--------------------- ——4---------------------------- 1----------------------------1----------------------------1  —45 %

j
TCCCGGTATTTACCACCTTACAAACTAGAACAAACACGATGTTTGTATACAAAA \

-44   +---------------- +---------------- +---------------- +---------------- +---------------- +  15 I

Figure 14. The 5’ nucleotide sequence of the S. pombe cdc22^ promoter region
MCB cluster fragments used in subsequent experim ents are indicated; M C B l (dark blue), M CB2 (pink), 

M CBX (light blue) and overlapping region between M C B l and M CBX (green). MCB m otifs (purple) and 

transcriptional start sites (asterisks), are also indicated. Numbers are relative to the predicted start codon 

(red).
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Il Cloning o f cdc22^ MCB clusters into pSPAl 78

We initially extended previous observations analysing the role of MCB motifs in fission 

yeast by testing if native MCB motifs from the cdc22^ promoter could confer Gl/S  

transcription to lacZ. We separately cloned the two MCB clusters, MCBl and MCB2 

(Figure 14), from the promoter of the cdc22^ into the UAS reporter plasmid pSPA178 

(Appendix A.l) in both the forward and reverse orientations (Figure 15). We then tested 

the ability of these four constructs to confer Gl/S expression to lacZ in fission yeast.

Each MCB cluster amplified by PCR

MCBl MCB2

Ligation of the MCB clusters into T,̂  vector

Xhol sites incorporated at either end 

o f  the amplified products, enabling 

the fragments to be ligated into the 

reporter plasmid

T ransform ation o f  bacterial cells

i
Xhol restriction digestion was used to linearise the 
pSPA178 vector and to excise the MCB clusters from vector

i
Ligation of each MCB cluster into pSPA178 (Appendix A. 1 )

pSPA178

M C B I f
pSPA178

MCB1r

PSPAI78

M CB2f
T ransform ation o f  yeast cells

Figure 15. Schematic representation of the construction of four vectors containing the two cdc22* 

promoter MCB clusters in different orientations in the UAS reporter plasmid pSPAlTS.

p S P A l7 8 .M C B lf (GB 73) and p S P A l78 .M C B lr (GB 74) each contain M C Bl in the forward and reverse orientation, 

respectively. p SP A l78 .M C B 2f (GB 57) and pSPA l78.M C B 2r (GB 58) each contain MCB2 in the forward and reverse 

orientations, respectively.
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I ll M CBl and MCB2, in the correct orientation, can each confer cell 

cycle expression

To test the ability of each MCB cluster from the cdc22^ promoter to confer mitotic cell 

cycle transcription to lacZ each of the four constructs, containing either MCBl or MCB2 

in either orientation, was transformed into the fission yeast mutant strain cdc25-22 (GG 

193; Materials and methods, pages 57-58). This temperature sensitive cell cycle mutant 

strain permits the synchronisation of fission yeast cells by transient temperature arrest. 

Routinely, we would transfer exponentially dividing cells grown at 25^C, to the non- 

permissive temperature of 36°C, for 4 hours. At this temperature the cells continued to 

grow but stopped dividing, and accumulated at G2/M. The cells were then shifted back 

to the permissive temperature of 25^C, when they were able to proceed through highly 

synchronous cell cycles, as determined by measuring septation indices. Quantification of 

each transcript was completed using NIH image software (Material and methods, page 

64): measurements were taken for each transcript and these ratioed to a d h f  mRNA 

levels as a loading control in each sample. Two control lanes were included, containing 

RNA from asynchronous fission yeast mutant cdclO-C4 cells, containing (i) the pSPA178 

plasmid with a triple MCB, known to confer lacZ transcription and (ii) pSPA178 empty 

vector, known not to confer lacZ transcription. cdclO-C4, mutated in a component of 

DSCl, results in deregulated expression of all known MCB regulated genes throughout 

the cell cycle, which in asynchronous cells manifests as over-expression relative to wild- 

type (Mclnerny et al. 1995; Ng et al. 2001).

Northern blot analysis o f RNA obtained fr om the cells containing pSPA178 with 

MCBl in the forward orientation, in three identical experiments, revealed specific 

induction of lacZ mRNA, similar to the cdc22^ profile (Figure 16). MCBl conferred one 

prominent peak of Gl/S transcription to lacZ during the first cell cycle, and a weaker 

second peak during the second cell cycle. Similarly, Northern blot analysis of cells 

containing MCB2 in the forward orientation also revealed a lacZ profile similar to cdc22^ 

(Figure 18). However, MCB2 was able to drive two peaks o f lacZ transcription over the 

two synchionous cell cycles. Interestingly, no lacZ transcript was observed in cells
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undergoing synchronous cell cycles containing either MCB cluster in the reverse

orientation (Figures 17 and 19).

These experiments allowed us to conclude that both MCB clusters are capable of 

contributing to cdc22^ cell cycle expression independently of each other, as each can 

confer Gl/S transcription to a heterologous lacZ gene. At least for MCB2 this result was 

surprising, as the cluster lies downstream to transcriptional start of the native cdc22'^ 

promoter. These data implicate MCB2 as a downstream UAS (here termed a DAS, for a 

downstream activating sequence), the first example of such an element in fission yeast for 

a RNA polymerase II regulated gene. We were also surprised by the fact that both MCBl 

and MCB2 appeared to have no ability to initiate transcription in the reverse orientations, 

as the “perfect” MCB motifs in each cluster are palindromic, having the sequence 

ACGCGT. However, unlike MCB motifs in budding yeast (McIntosh 1993) this result 

suggested that the activity of MCB clusters in the promoter of cdc22^ are orientation 

dependent.
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Figure 16. MCBl confers Gl/S expression to lacZ in the forward orientation.
(A) An exponentially growing culture o f cdc25-22 cells containing pSPA178.MCBlf (GG 251) was 

grown in minimal media and arrested at G2 by incubation at 36°C for 4 hours. Cells were shifted to 25®C 

and samples collected every 15 minutes for RNA extraction, and examined microscopically for the 

appearance o f septa. (B) The RNA was subjected to Northern blot analysis and the blot was hybridised 

with cdc22^, lacZ and adhl"^ probes, which were amplified by PCR using genomic DNA (oligo’s 

described in Appendix B). Two control lanes were included containing RNA from asynchronous cdcIO- 

C4 cells containing the plasmid (i) pSPA178 empty vector (GG 258) and (ii) pSPA178.3M (GG 257). 

Quantification of each transcript against adhl^ using NIH image software is shown. Data presented are 

representative of three identical experiments.
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Figure 17. MCBl does not confer expression to lacZ in the reverse orientation.
(A) An exponentially growing culture of cdc25-22 cells containing pSPA178.MCBlr (GG 265) was 

grown in minimal media and arrested at G2 by incubation at 36”C for 4 hours. Cells were shifted to 25“C 

and samples collected every 15 minutes for RNA extraction, and examined microscopically for the 

appearance of septa. (B) The RNA was subjected to Northern blot analysis and the blot was hybridised 

with cdc22^, lacZ and a d h f  probes, which were amplified by PCR using genomic DNA (oligo’s 

described in Appendix B). Two control lanes were included containing RNA from asynchronous cdclO- 

C4 cells containing the plasmid (i) pSPA178.3M (GG 257) and (ii) pSPA178 empty vector (GG 258). 

Quantification of each transcript against adhf^ using NIH image software is shown. Data presented are 

representative of three identical experiments.
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Figure 18. MCB2 confers Gl/S expression to lacZ in the forward orientation
(A) An exponentially growing culture of cdc25-22 cells containing pSPA178.MCB2f (GG 252) was 

grown in minimal media and arrested at G2 by incubation at 36°C for 4 hours. Cells were shifted to 25"C 

and samples collected every 15 minutes for RNA extraction, and examined microscopically for the 

appearance of septa. (B) The RNA was subjected to Northern blot analysis and the blot was hybridised 

with cdc22*, lacZ and a d h t  probes, which were amplified by PCR using genomic DNA (oligo’s 

described in Appendix B). Two control lanes were included containing RNA from asynchronous cdclO- 

C4 cells containing the plasmid (i) pSPA178.3M (GG 257) and (ii) pSPA178 empty vector (GG 258). 

Quantification of each transcript against a d h t,  using NIH image software is shown. Data presented are 

representative of three identical experiments.

79



120

100

B
Time (minutes)

cdc22*ladhr

* — lacZJadhl

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 (i) (ii)

cdc22^

Time (minutes)

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 (i) (ii)

lacZ

adhr

80



Figure 19. MCB2 does not confer expression to lacZ in the reverse orientation.
(A) An exponentially growing culture of cdc25~22 cells containing pSPA178.MCB2r (GG 253) was 

grown in minimal media and arrested at G2 by incubation at 36“C for 4 hours. Cells were shifted to 25°C 

and samples collected eveiy 15 minutes for RNA extraction, and examined microscopically for the 

appearance of septa. (B) The RNA was subjected to Northern blot analysis and the blot was hybridised 

with cdc22*, lacZ and a d h f  probes, which were amplified by PCR using genomic DNA (oligo’s 

described in Appendix B). Two control lanes were included containing RNA from asynchronous cdclO- 

C4 cells containing the plasmid (i) pSPA178.3M (GG 257) and (ii) pSPA178 empty vector (GG 258). 

Quantification of each transcript against a d h t,  using NIH image software is shown. Data presented are 

representative of three identical experiments.
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IV M CBl and MCB2 bind to a DSCl-like complex

Previous experiments have implicated a transcription factor complex called DSCl in 

regulating cdc22^ cell cycle expression. DSCl was first identified by gel retardation 

studies using a synthetic DNA fi-agment containing three adjacent MCB sequences as 

labelled substrate (Lowndes et al. 1992). These studies also revealed that MCBl and 

MCB2 independently bind to DSCl, whereas MCBX cannot, when used as unlabelled 

competitor DNAs in vitro (Lowndes et a l  1992).

We next confirmed and extend these experiments by using MCBl, MCB2 and 

MCBX DNA instead as labelled substrates in gel retardation experiments (Materials and 

methods, pages 64-65). With MCBl and MCB2 as labelled probes, we detected a 

binding activity in fission yeast wild-type cells, which produced a single prominent band 

of similar low mobility to DSCl (Figure 20, lane 2, and lane 7, large arrow) (Lowndes et 

al. 1992). The low mobility o f this complex suggested that it was likely to be DSCL In 

both cases the complex was specifically competed when the same DNA was added as 

unlabelled competitor to the reaction mixtures (Figure 20, lanes 3-5 and 8-10). However, 

when MCBX was used as labelled substrate no retarded complex was detected (Figure 

20, lanes 12-15), suggesting this lone MCB motif did not bind to DSCl.
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Figure 20. Both MCBl and MCB2, but not MBCX, bind to a DSCl-like complex in vitro.

Gel retardation assay using M C B l, MCB2 and MCBX DNA promoter fragments as labelled probes, with protein 

extracts from wild-type cells (GG 217). In alternate lanes we added equal amounts (1:1) and I in 10 (1:10) and 1 in 

100 (1:100) dilutions o f  excess unlabelled self-com petitor MCB DNA s to the reaction mixture prior to 

electrophoresis. Large arrow indicates D SC l-like com plex, small arrow free probe. Data presented are 

representative o f  three identical experiments.
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V The complex that binds to M CBl and MCB2 is DSCl

To confirm that the low mobility complex detected in the previous experiment was DSCl, gel 

retardation analysis with various stiains containing mutations in components of DSCl was 

completed. Protein extracts were prepared from reslA, res2A, rep2A and cdcl 0-129 cells. cdclO- 

129 is a temperature sensitive cdclO mutant which, when grown at the permissive temperature of 

25“C, behaves like wild type, but at the restrictive temperature of 36‘’C, when the cells are cell cycle 

arrested, results in the loss of DSCl binding affinity in vitro (Lowndes et al. 1992).

When MCBl was used as a labelled substrate, the single retarded band of low mobility was 

detected in protein extracts from wild-type (Figure 21, lane 2) and cdcl 0-129 cells at permissive 

temperature (Figure 21, lane 6). This band disappeared in protein extiacts from cells containing 

deletions of components of DSCl, and in cdcl0-129 cells grown at the restrictive temperature of 

36°C for four hours (Figure 21, lanes 3-5 and 7). Similarly, when MCB2 was used as labelled 

substrate, the same low mobility complex was detected in protein extracts from wild-type (Figure 

21, lane 2) and cdcl 0-129 cells at permissive temperature (Figure 21, lane 6). This low mobility 

complex was also lost in protein extracts from cells containing deletions o f DSCl, and in cdcl 0-129 

cells grown at the restrictive temperature of 36°C (Figure 21, lanes 3-5 and 7). Combined, these 

results confirm that the retarded complex of low mobility that binds to both MCBl and MCB2 in 

vitro is DSCl.

Interestingly, in protein extracts from reslA  and cdcl 0-129 cells grown at the restrictive 

temperature an additional retarded band of higher mobility than DSCl was identified, when MCB2 

was used as labelled substrate (Figure 22, red arrow; lanes 7 and 3). To establish if  this band was a 

non-specific/specific complex binding to MCB2 (possibly DSCl containing a reduced number of 

components), gel retardation analysis was carried out using MCB2 DNA as labelled substrate and 

protein extracts were prepared from wild-type, reslA  and cdcl 0-129 cells at the restrictive 

temperature. It was consequently found that the higher mobility band did not disappear when 

MCBl or MCB2 DNAs were added as unlabelled competitor (Figure 23, lanes 5-10). This 

observation suggests that the higher mobility band has no binding specificity for MCB motifs, and 

is therefore a non-specific protein complex binding to MCB2 DNA that is not DSCl.
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Figure 21. Loss of complex binding to MCBl in DSCl mutant strains.
Gel retardation assay using M C Bl D NA  promoter fragment as labelled probe with protein extracts from 

various D SCl mutants. In lanes 2-7 protein extracts were prepared from wild-type (GG 217), res I à  (GG 155), 

res2A (GG 156), rep2A (GG 158), and cdcIO-129 (GG 28) cells grown at 25"C and 36°C, respectively. Large 

arrow indicates D S C l, small arrow free probe. Data presented are representative o f  three identical 

experiments.
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Figure 22. Loss of complex binding to MCB2 in DSCl mutant strains. Gel

retardation assay using MCB2 D N A  promoter fragment as labelled probe with protein extracts from 

various mutants. In lanes 2-7 protein extracts were prepared from wild-type (GG 217), res IA (GG 

155), res2A (GG 156), rep2A (GG 158), and cdclO-129 (GG 28) cells grown at 25"C and at 36"C, 

respectively. Large arrow indicates D S C l; red arrow indicates non-specific complex; small arrow free 

probe. Data presented are representative o f  three identical experiments.
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Figure 23. Higher mobility band detected binding to MCB2 in reslA and 

cdcIO-129 cells is not DSCl.
Gel retardation assay using MCB2 D NA  promoter fragment as labelled probe with protein 

extracts from wild-type and various mutant cells. In lanes 2-10 protein extracts were prepared 

from wild-type (GG 217), res IA (GG 155), and o d d  0-129 (GG 28) cells grown at grown at 

36”C. Large arrow indicates D SC l; small arrow free probe. In alternate lanes w e added equal 

amounts (1:1) o f  excess unlabelled self-com petitor/M CBl D N A s to the reaction mixture prior 

to electrophoresis. Data presented are representative o f  three identical experiments.



VI M CBl has a stronger binding affinity for DSCl than MCB2

We next sought to determine if the different MCB clusters were capable of competing 

with each other In vitro, to give an indication of then relative binding affinities for D SC l.

MCBl DNA, when used as labelled substrate in gel retardation studies, revealed 

DSCl binding, which disappeared when the same DNA or MCB2 DNA were added as 

unlabelled competitors (Figure 24, lanes 2-4, lanes 5-7). However, as expected, adding 

MCBX as unlabelled competitor had no effect on DSCl binding (Figure 24, lanes 8-10).

Similarly, gel retardation studies using MCB2 DNA as labelled subsüate revealed 

the retarded complex that is DSCl, which disappeared when the same DNA or MCBl 

DNA were added as unlabelled competitors (Figure 25, lanes 2-4 and 5-7). Again, when 

MCBX was used as unlabelled competitor, DSCl did not disappear (Figure 25, lanes 8- 

10), confirming that MCBX does not bind DSCl in vitro.

Combined these results confirm that both MCBl and MCB2 bind to DSCl in 

vitro and compete with each other for its binding activity. Furthermore, it appears that 

MCBl has a stronger binding affinity for DSCl than MCB2 as, in both cases, MCBl was 

the stronger competitor for DSCl. These gel retardation results by themselves suggest 

that MCBl has a more important role in regulating cdc22^ expression, if  in vitro binding 

affinity reflects in vivo activity. This is surprising, as MCB2 conferred G l/S expression 

to lacZ more efficiently than MCBl in vivo (Figures 16 and 18),
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Figure 24. M CBl can compete with MCB2 to bind DSCl in vitro.

Gel retardation assay using M C Bl DNA promoter fragment as labelled probe with protein 

extracts from wild type (GG 217) cells. In alternate lanes w e added equal amounts (1:1), 1 

in 10 (1:10) and 1 in 100 (1:100) dilutions o f  excess unlabelled se lf competitor MCB 

D N A s to the reaction mixture prior to electrophoresis. Large arrow indicates D S C l, small 

arrow free probe. Data presented are representative o f  three identical experiments.
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Figure 25. MCB2 can compete with M CBl to bind DSCl in vitro.

Gel retardation assay using MCB2 D NA  promoter fragment as labelled probe with protein 

extracts from wild-type (GG 217) cells. In alternate lanes we added equal amounts (1:1), 1 in 10 

(1:10) and 1 in 100 (1:100) dilutions o f  excess unlabelled competitor MCB D N A s from MCB2, 

M CBl and M CBX to the reaction mixtures prior to electrophoresis. Large arrow indicates 

D SC l ; small arrow free probe. Data presented are representative o f  three identical experiments.
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3B cdc22^ MCB clusters are required for Gl/S transcription

I cdc22* promoter confers G l/S cell cycle regulation to lacZ in an 

integration vector

The previous experiments have established that native MCB clusters, present in the 

cdc22^ promoter, can both confer G l/S transcription to îacZ in vivo and bind to DSCl in 

vitro, strongly implicating them in regulating cell cycle specific expression of this gene in 

fission yeast. As another way to address the role of the MCB clusters in the cdc22^ 

promoter, we next sought to examine the effect of mutating the motifs in the context of 

the complete promoter on Gl/S specific transcription.

To do this we initially used a vector named pPJK7 made by Dr. Kersey in Dr. 

Fautes's laboratory, at the University of Edinburgh (Kersey 1995). pPJK7 contains the 

entire cdc22^ promoter linked in frame to the lacZ gene (Appendix A.2). This vector also 

contains the u r a f  nutritional gene, which allows the plasmid to be integrated into the 

fission yeast ura4 genomic locus in single copy, by homologous recombination. pPJK7 

also contains the amp^ gene and an E. coli origin of replication, to permit the growth and 

maintenance of the vector in bacteria.

In the experiments carried out with pPJK7 by Dr. Kersey, the construct was 

integrated into wild-type cells, which were synchronised for mitotic division by 

élutriation (Kersey 1995). This method permits the size selection of small fission yeast 

cells in early G2, which subsequently divide synchronously. Wlien cdc22^ and lacZ 

transcript levels were monitored in such cells it was observed that lacZ mRNA was 

present in a higher proportion of the cell cycle than the cdc22^ mRNA, although the two 

transcript levels appeared to peak at similar times. It was also found that when p- 

galactosidase activity (per ml of culture) was examined, it was also less tightly confined 

within the cell cycle than cdc22^ mRNA (Kersey 1995). It was thus concluded that lacZ 

was expressed similarly, though not identically to cdc22^, possibly because different 

transcriptional termination of the two genes results in the lacZ transcript being more
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stable than cdc22^ transcript. We therefore decided to repeat this experiment using the 

cdc25-22 mutant as an alternative method for synchronising fission yeast cell cultures.

pPJK7 was provided to us integrated in single copy in S. pombe wild-type cells, 

which we crossed into a cdc25~22 background (Materials and methods, pages 62-63). 

pPJK7 cdc25-22 cells were synchronised using transient temperature shifts as described 

in previous experiments, and the cell cycle expression of the lacZ transcript detected 

using Northern blot analysis (Figure 26), As expected, and in agreement with Dr. 

Kersey’s results, the lacZ gene was periodically expressed during the cell cycle, 

coincident to cdc22'^. Two control lanes were included, containing RNA from 

asynchronous cdclO-C4 cells containing (i) the pSPA178 plasmid with a triple MCB, 

known to confer lacZ transcription and (ii) pSPA178 empty vector, known not to confer 

lacZ transcription. The use of a different plasmid resulted in a difference in the size of 

transcript seen in the control lanes. Three identical experiments showed that although the 

lacZ transcript persisted after the first cell cycle peak, it coincided tightly with the second 

peak of cdc22^ mRNA. This suggested that lacZ expression was more similar' to cdc22"" 

expression in cells synchronised using the cdc25-22 mutant, than in wild-type cells 

synchronised by élutriation. We consequently decided to use cdc25~22 for further cell 

cycle experiments with this construct.
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Figure 26. cdc22^ promoter confers Gl/S transcription to lacZ,
(A) An exponentially growing culture o f pPJK7 cdc25-22 cells (GG 470) was grown in minimal media 

and arrested at G2 by incubation at 36“C for 4 hours. Cells were shifted to 25°C to enter a synchronous 

cell cycle, with samples collected for RNA extraction every 15 minutes, and cells examined 

microscopically for the appearance o f septa at the times indicated. (B) RNA was subjected to Northern 

blot analysis and the blot hybridised with cdc22^, lacZ and a d h f  probes, which were amplified by PCR 

using genomic DNA (oligo’s described in Appendix B). Two control lanes were included containing 

RNA from asynchronous cdcI0-C4 cells containing the plasmid (i) pSPA178.3M (GG 257) and (ii) 

pSPA178 empty vector (GG 258). Quantification of each transcript against a d h f ,  using NIH image 

software is shown. Data presented are representative of three identical experiments.
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II Intact MCBs in M CBl are essential for cell cycle regulated 

transcription o f cdc22^

Previous findings presented in this thesis have shown that both the MCBl and MCB2 

clusters in the cdc22^ promoter can bind to DSCl in vitro (Figures 21 and 22), and that 

MCB2 can confer Gl/S expression to lacZ more efficiently than MCBl in vivo (Figures 

16 and 18), These results suggest that both MCB clusters control transcription of cdc22^. 

At least for MCB2 this particularly interesting as tliis cluster lies within the transcribed 

region, and so MCB2 may be the first example of a downstream activating sequence in 

fission yeast.

To investigate the role o f MCBl and MCB2 further we next sought to study the 

contribution of each cluster to G l/S transcription by examining the effect of mutating 

MCB motifs on lacZ transcription. This was achieved by using another integration vector 

provided by Dr. Fantes’s laboratory, called pPJKlO (Kersey 1995). This vector is the 

same as pPJK7 but differs in that the core CGCG of each MCB motif, thought to be 

essential for function (McIntosh 1993), has been mutated to CTAG in MCBl (Figure 27) 

(Appendix A.3). We called this new mutated MCBl cluster “MCBlm”.

In the studies carried out by Dr Kersey, pPJKlO, like pPJK7, had been integrated 

into wild-type fission yeast cells, which were size selected by élutriation (Kersey 1995). 

In subsequent synchronously dividing cells, it was observed that the lacZ transcript levels 

varied, with a slight peak at the same time as cdc22^ transcript. However, lacZ mRNA 

was clearly present during more of the cell cycle than mRNA produced by the 

endogenous cdc22'^ gene. It was also found that the ^-galactosidase activity increased for 

a short period immediately after synclironisation (Kersey 1995). Given that MCBl had a 

strong binding affinity for DSCl than MCB2 (Figures 24 and 25) and that this cluster can 

confer cell cycle transcription to lacZ (Figure 16), we found it surprising that mutating 

the MCBs in MCBl did not have a stronger effect on periodic gene expression. We 

therefore decided to repeat these experiments using the cdc25~22 mutant.
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The u r a f  gene within the vector contains a single cleavage restriction site for 

BlnVAvril, that permitted the linearisation o f the vector (Appendix A.3) to integrate it in 

single copy into the ura4 locus of cdc25-22 ura4-294 cells (GG 469) (Materials and 

methods, pages 57-58). To confirm that pPJKlO had integrated at the correct site and in 

single copy, PCR was performed using genomic DNA from potential positive colonies. 

The oligonucleotide primers used for amplification were specific for the flanking region 

of tira4^ in tlie chromosome and to the bacterial lacZ gene in the vector (Figure 29). An 

amplified product was detected in a potential positive clone containing the integration 

vector (Figure 28, lane 2), that did not appear in the control reaction (Figure 28, lane 5), 

which used wild-type chromosomal DNA as a template. This result confirmed that the 

integration o f pPJKlO had occurred correctly.

pPJKlO cdc25~22 cells were prepared to undergo synchionous mitosis by 

transient temperature shifts, and Northern blot analysis o f RN/Cwas completed to detect 

lacZ mRNA through the cell cycle (Figure 30). Two control lanes were included, 

containing RNA from asynchronous cdclO-C4 cells containing (i) the pSPA178 plasmid 

with a triple MCB, known to confer lacZ transcription and (ii) pSPA178 empty vector, 

known not to confer lacZ transcription. The use o f a different plasmid resulted in the 

difference in the size of lacZ transcript seen in the two control lanes.

In contrast to the results obtained by Dr. Kersey it was observed that, in three 

identical experiments, the lacZ transcript profile did not coincide with the cdc22^ 

transcript profile. Instead, it was seen that mutating the MCB motifs in MCBl resulted in 

constitutive lacZ transcription at moderate levels throughout the cell cycle. This result 

strongly suggested that intact MCB motifs in MCBl are essential for the correct cell 

cycle regulation of c d c 2 f,  and consequently are essential for stimulating cell cycle 

transcription. It further suggested that MCBl has a negative role in the context of the 

complete promoter, whereby it represses transcription of cdc22^ outside the Gl/S 

boundary.
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- 5 3 6  GTAGTTCAATCTCATAGAGCAGGTTGGTAGTCGGGTTGG

ACCTAGTGTTTAATTTATGTAAACAGTCTAGTCTAGTTG

CAATTGAGACTAGTAAATAAATATTTAATTTATTACATT

MC i1m
CAGTCGTAAACAGAG -  405

Figure 27. Nucleotide sequence of “MCBlm”, containing mutated MCB motifs in MCBl.

MCB motifs are shown in purple and mutated base changes in red. Numbers are relative to the ATG.

-12216  kb

"2036 kb
-1636 kb
- 0 1 8  kb

'5 1 7 /5 0 6  kb 
-3 9 6  kb

Figure 28. Agarose gel of ethidium stained DNA from PCR amplifications showing successful 

integration of cdc22^ promoter-/acZ vectors into the genomic uraC locus of fission yeast.
Lane 1: DNA molecular weight marker, lane 2: pPJKlO cdc25-22 (GG 471), lane3: pZM l cdc25-22 (GG 591), lane 4: 

pZM2 cdc25-22 (GG 592), and lane 5: wild type genom ic DNA (GG 217) containing no vector. In each case a 

successful amplification, using oligonucleotides specific for the flanking region o f  u r a l  and to the bacterial lacZ gene 

(Figure 29), resulted in the production o f  a -1 .3  kb DNA fragment.

ura4 in the 
genome

le
ura4*
75 bp

lacZ
cdcir

promoter
Amp̂ uro4*

1745 bp uru4 in the 
genome

Figure 29. Schematic representation of pPJK7/10 and pZMl/2 plasmids integrated into the 
fission yeast chromosome.
Plasmids (Appendix A ) were cut at a single restriction site in ura4^ using the restriction enzym e Bln\ at position 5275, to 

permit integration into fission yeast ura4 locus. Oligonucleotide A (GO 521) bound to a sequence 24  base pairs upstream 
from the ATG o f the ura4*̂  ORF in genomic DNA. Oligonucleotide B (GO 522) was specific for the lacZ gene at position 
4768 on the plasmid map. Oligonucleotides are described in Appendix B. Amplification with these oligonucleotides, 
demonstrating a successful integration o f the vector in to the ura4 locus, gave a DNA product o f ~1.3 kb (Figure 28).
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Figure 30. MCBl is required for cell cycle specific expression of cdc22^.

(A) An exponentially growing culture o f pPJKlO cdc25-22 cells (GG 471) was grown in minimal media 

and arrested at 0 2  by incubation at for 4 hours. Cells were shifted to 25"C to enter a synchronous 

cell cycle, with samples collected for RNA extraction every 15 minutes, and cells examined 

microscopically for the appearance o f septa at the times indicated. (B) The RNA was subjected to 

Northern blot analysis and the blot was hybridised with cdc22^, lacZ and adhl^ probes, which were 

amplified by PCR using genomic DNA (oligo’s described in Appendix B). Two control lanes were 

included containing RNA from asynchronous cdcI0-C4 cells containing the plasmid (i) pSPA178.3M 

(GG 257) and (ii) pSPA178 empty vector (GG 258). Quantification of each transcript against a d h t ,  

using NIH image software is shown. Data presented are representative o f three identical experiments.
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I ll Intact MCBs in MCB2 are essential for basal transcription o f  

cdc22^

We next sought to determine the role of MCB2 in regulating cdc22^ expression. We used 

site directed mutagenesis to mutate the MCB motifs in MCB2 in pPJK7 (Materials and 

methods, pages 65-66), to make a new construct pZMl (GB 245; Appendix A.4). We 

named this mutated MCB2 cluster “MCB2m” (Figure 31). The oligonucleotides used for 

this mutagenesis are listed in Appendix B, and the mutations created in MCB2 DNA were 

confirmed by sequencing. As before, this plasmid was integrated in single copy into the 

cdc25-22 ura4-294 background (Materials and methods, pages 57-58) and its single copy 

integration into the ura4^ locus confirmed by PCR (Figure 28, lane 2).

pZMl cdc25~22 cells were synchronised for division by transient temperature 

shifts, and the transcript profile of lacZ was examined by Northern blot analysis (Figure 

32). Interestingly, three identical experiments showed that no lacZ transcript was seen 

during the cell cycle, indicating that MCB2 is required for expression of cdc22^ and so 

has an essential role in conferring transcription of this gene. This observation is 

consistent with previous results shown in tliis thesis, where MCB2 was found to bind to 

DSCl in vitro (Figure 22), and conferred transcriptional activation at Gl/S to lacZ 

(Figure 18). Together, these data confirm that MCB2 has the properties of a DAS, and 

has the potential to function as a downstream activation sequence controlling cdc22* cell 

cycle specific expression.
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1 4 1  C ATTGATC AAC ATGACTTAAAGTTCGGATGACTAGACTAG

GCATCACGTTATATTAGCGTGACTAGTCTGAACTAGTTTT 

TCATTTACTATAAATATTCCCGGTATTTACCACC - 3 0

MC 2m

Figure 31. Nucleotide sequence of containing mutated MCB motifs in MCB2.
MCB motifs are shown in purple and mutated base changes in red. Numbers are relative to the ATG.
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Figure 32. MCB2 is essential for basal transcription of cdc22^
(A) An exponentially growing culture o f pZMl cdc25-22 cells (GG 591) was grown in minimal media and 

arrested at G2 by incubation at 36°C for 4 hours. Cells were shifted to 25”C to enter a synchronous cell 

cycle, with samples collected for RNA extraction every 15 minutes, and cells examined microscopically 

for the appearance of septa at the times indicated. (B) The RNA was subjected to Northern blot analysis 

and the blot was hybridised with cdc22^, lacZ and adhl^ probes, which were amplified by PCR using 

genomic DNA (oligo’s described in Appendix B). Two control lanes were included containing RNA from 

cells containing pPJK7 (GG 470) at a peak cell cycle stage. Quantification o f each transcript against 

adhl^, using NIH image software is shown. Data presented are representative of three identical 

experiments.
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IV Intact MCBs in M CBl and MCB2 are essential fo r basal 

transcription

To confirm the previous experiments showing the requirement of MCBl and MCB2 in 

controlling of cdc22^ expression, we examined the effect of mutating the MCB motifs in 

both MCBl and MCB2 on Gl/S transcription of lacZ. This was achieved by using site 

directed mutagenesis to mutate the MCB2 motifs in pPJKlO, to create pZM2 (GB 246; 

Materials and methods, pages 65-66 and Appendix A.5). pZM2 contains mutated MCB 

motif in both clusters, leaving only MCBX intact. The oligonucleotides used in the 

mutagenesis are described in Appendix B, and the mutations in both MCB clusters were 

confirmed by sequencing. As before, this construct was integrated in single copy into 

cdc25-22 ura4~294 cells (Materials and methods, pages 57-58) at the um4^ locus, and 

PCR used to confirm its correct integration (Figure 28, lane 3).

A culture of synchronous pZM2 cdc25-22 cells was prepared by transient 

temperature shifts and Northern blot analysis of RNA revealed that lacZ transcript was 

absent from all stages of the cell cycle (Figure 33). This result is consistent with our 

previous finding that both intact MCB clusters are required for controlling cdc22'^ G l/S 

specific expression. Furthermore, this result confirms that MCBX has no role in the 

regulation of G l/S transcription of cdc22^.
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Figure 33. MCBl and MCB2 are both required for transcription of cdc22^
(A) An exponentially growing culture of pZM2 cdc25-22 cells (GG 592) was grown in minimal media 

and arrested at G2 by incubation at 36“C for 4 hours. Cells were shifted to 25”C to enter a synchronous 

cell cycle, with samples collected for RNA extraction every 15 minutes, and cells examined 

microscopically for the appearance of septa at the times indicated. (B) RNA was subjected to Northern 

blot analysis and the blot hybridised with cdc22*, lacZ and a d h f  probes, which were amplified by PCR 

using genomic DNA (oligo’s described in Appendix B). Two control lanes were included containing 

RNA from cells containing pPJK7 (GG 470) known to peak during the cell cycle. Quantification of 

each transcript against a d h t ,  using NIH image software is shown. Data presented are representative of 

three identical experiments.
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V M CBlm and MCB2m do not bind to DSCl

To further examine the importance of intact MCBs in the MCBl and MCB2 clusters in 

cell cycle regulated transcription, we examined the ability of mutated MCB clusters 

(MCBlm and MCB2m) to separately bind to DSCl in vitro. Initially, gel retardation 

studies were performed using M CBlm DNA as labelled substrate (Figure 34, lane 3) 

which revealed no band conesponding to DSCL However, a single prominent retarded 

band that contained DSCl was seen, as expected, when wild-type non-mutated MCBl 

DNA was used as labelled substrate (Figure 34, lane 2, large arrow). This band 

disappeared when the same DNA was added (Figure 34, lane 4) as unlabelled competitor, 

but not when M CBlm and MCB2m were added as unlabelled competitors (lanes 5 and 

6).

Gel retardation analysis using MCB2 as labelled substrate also revealed DSCl 

binding (Figure 35, lane 2). This disappeared when the same DNA was added (lanes 4) 

as unlabelled competitor, but not when MCB2m and MCBlm were added as unlabelled 

competitors (Figure 35, lanes 5 and 6). Furthermore, using MCB2m as labelled substrate 

revealed no band corresponding to DSCl (lane 3).

These results demonstrate that M CBlm and MCB2m have no binding activity 

with DSCl in vitro, and so confirm that intact MCB motifs are required for binding to 

DSCl.
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Figure 34. MCBlm does not bind to DSCl in vitro.
Gel retardation assay using M C Bl and M C Blm  DNA  promoter fragments as 

labelled probes with protein extracts from wild-type (GG 217) cells. In 

alternate lanes equal amounts (1:1) o f  excess unlabelled competitor MCB  

D NA s, M C B l/M C B  lm /M C B2m  were added to the reaction mixtures prior 

to electrophoresis. Large arrow indicates D S C l, small arrow free probe. 

Data presented are representative o f  three identical experiments.
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Figure 35. MCB2m does not bind to DSCl in vitro.
Gel retardation assay using MCB2 and MCB2m DNA promoter fragments as 

labelled probes with protein extracts from wild-type (GG 217) cells. In 

alternate lanes equal amounts (1:1) o f  unlabelled competitor MCB DNAs, 

M CB2/M CB1 m/M CB2m were added to the reaction mixtures prior to 

electrophoresis. Large arrow indicates D S C l, small arrow free probe. Data 

presented are representative o f  three identical experiments.
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VI M CBlm and MCB2m do not bind to DSCl or DSCl mutants

To confirm that M CBlm and MCB2m do not bind to DSCl, gel retardation analysis with 

various DSCl mutant strains was completed. As before, protein extracts were obtained 

from reslA, res2A, rep2A and cdcl0-129 cells at restrictive and permissive temperatures.

When M CBlm was used as labelled substrate no band of low mobility, 

corresponding to DSCl was detected in protein extracts from the wild-type or mutant 

cells (Figure 36). Similarly, when MCB2m was used as a labelled substrate no band 

corresponding to DSCl appears in protein extracts from the different cells (Figure 37). 

These data fiirther confirm that M CBlm and MCB2m do not bind DSCl in vitro, and that 

intact MCB motifs are necessary for this binding.
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Figure 36. MCBlm does not bind to DSCl in vitro in DSCl mutant ceils.
Gel retardation assay using M C B lm  D NA  promoter fragment as labelled probe with protein 

extracts from various mutants. In lanes 2-7 protein extracts were prepared from wild type (GO 

217), res IA (GG 155), res2A (GG 156), rep2A (GG 158), and cdc 10-129 (GG 28) cells grown at 

25°C and 36“C, respectively. Small arrow indicates free probe. Data presented are representative 

o f  three identical experiments.
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Figure 37. MCB2m does not bind to DSCl in vitro in DSCl mutant cells.
Gel retardation assay using MCB2m D NA  promoter fragment as labelled probe with protein 

extracts from various mutants. In lanes 2-7  protein extracts were prepared from wild type (GG 

217), reslA  (GG 155), res2A (GG 156), rep2A (GG 158), and cdclO-129 (GG 28) cells grown at 

25°C and 36°C, respectively. Small arrow indicates free probe. Data presented are 

representative o f  three identical experiments.
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3C Genomic MCBs are not palindromes in the genome

An interesting conclusion from some of our previous experiments (Figures 16-19) is that 

MCBl and MCB2 only confer cell cycle regulation to lacZ in the correct orientation. 

This finding suggests that MCB motifs in the cdc22^ promoter are orientation dependent 

in their ability to regulate gene expression. This observation is the first evidence that 

promoter elements in fission yeast may not be palindromic in their ability to control 

transcription. A possible explanation for this property may lie in the compact nature of 

the fission yeast genome, where genes are present in close proximity (Wood et al. 2002). 

Non-palindromic promoter elements may serve to ensure the specific control of genes.

To test this hypothesis, we studied MCB motifs present in the promoters of other 

fission yeast genes in the fission yeast genome (Figure 38A). We searched the S. pombe 

database (Wood et al. 2002) to identify pairs of genes, where one of the genes was MCB- 

regulated, and the other gene was transcribed in the opposite orientation, a short distance 

upstream from the MCB motifs. We then assayed transcription of both genes to 

determine if they were both under the control of DSCl-MCB system. We did this by 

using a cell division cycle fission yeast mutant, cdclO-C4, which is mutated in a 

component of DSCl. At low temperatures (16-24®C) this mutation results in deregulated 

expression of all known MCB regulated genes throughout the cell cycle, which in 

asynchronous cells manifests as over-expression relative to wild-type (Mclnerny et al. 

1995; Ng et al. 2001).

Upon searching the S. pombe database we identified 5 pairs of genes, which are 

listed in Table 2.
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MCB regulated 
gene MCB motif 3 * from ATG

Upstream gene

cdtC  (cell division 
cycle protein)

-70 GGCGAcAcr,ATAncrACGCGACGCGTcAACAAACGCG -34 SPBC428.17C
(hypothetical nuclear 
protein)

cdt2'^ (hypothetical 
WD-repeat protein)

-98 ACGCGTgaACGCGACGCGT -120
-377 ACGCGT -382.................... -440 TCGCG -444 p sc3 ^  (Psc3 protein)

rW 27^(double- 
strand-break repair 
protein)

-232 ACGCGcagCGCGT -220 SPCC338.18
(hypothetical 13.3 kDa 
protein)

Ste6^  (ste6 protein) -200 ACGCGACGCG -213 SPCC1450.16C 
(hypothetical protein)

mikl^ (mitosis 
inhibitor protein 
kinase)

-370 CGGGTtatccgaaatgaaaaACGCGaACGCGïcatcACGCGT 
ACGCGT -328

radl f  (replication 
factor-a protein 1}

Table 2. Position of genomic MCB motifs in promoters of genes.
Pairs of genes were identified from the fission yeast data base (Wood et ai. 2002), where one is known to be under DSCl- 
MCB control, with the other gene transcribed in the opposite orientation, a sliort distance upstream from the MCB motifs. 
Protein functions are indicated in brackets. MCB motifs upstream to each gene relative to the ATG are indicated; underlined 
motifs are exact Mlu\ matches and remaining motifs are MCB motifs containing 5/6 base pair matches containing the core 
CGCG, thought to be essential for function.

In the case of four known MCB regulated genes ste6^, rad21^, cdtl^  and cdt2^ 

(Nishitani et al. 2000; Papadaki et al. 2002; Pati et al 2002; Yoshida et al 2003) genes 

SPAC17H9.19c, SPCC338.18C, SPCC1450.16c and psc3'^ were identified upstream to 

each MCB cluster in the opposite orientation, respectively (Figme 3 8 A), 

Oligonucleotides were designed for each gene (Appendix B) and amplification by PCR 

produced DNA fi-agments o f ~1 kb that were used as probes. Transcripts were detected 

by Northern blot analysis in asynchronous cells wild-type (GG 217) and cdclO-C4 cells 

(GG 108) at 25®C. The Northern blot was also hybridised with probes for cdc22^ and 

adhî'^ as controls, and the quantification of each gene’s transcript against adhl^ 

transcript, using NIH image software was completed (Figure 3 8A).
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The transcript levels o f MCB-regulated genes in cdclO-C4 were present at a 

similar level to cdc22^ (Figure 3 8A) significantly higher than in wild-type cells, 

confirming that they were all under DSCl-MCB control. In contrast, the transcripts of 

genes in the opposite orientation to the MCB motifs were either not expressed at all 

(SPBC428.17C and SPCC338.18c), or occurred at similar levels to that seen in wild-type 

cells (SPCC1450.16c and psc3^) in cdclO-C4, indicating that these genes are not under 

DSCl-MCB control (Figure 38A).

We confirmed and extended these results for one of the pair of genes, cdt2'^ and 

psc3^. Northern blot analysis of RNA obtained from cdc25~22 cells, undergoing a 

synchronous mitotic cell cycle, revealed cell cycle regulation of cdt2'^ transcript 

coincident to cdc22^ profile (Figure 38B). Subsequent hybridisation with a psc3^' probe 

revealed two transcripts, one of which was the remaining cdt2^ transcript (-1.5 kb), and 

the other the psc3'^ transcript (-3 kb) (Figure 38B). psc3^ transcript was present 

throughout the cell cycle. This result confirmed that cdt2'" was under DSCl-MCB 

controls, whilst psc3^ was not.

One exception to the situation concerning the pairs of genes we have described is 

mikt" and rad ll^ , which are two adjacent gene both known to be MCB-regulated and 

transcribed at G l/S (Table 2) (Parker et al. 1997; Ng et al. 2001). In this particular case, 

with 5 MCB motifs present between the two genes they are able to confer Gl/S specific 

expression in both orientations. Possible explanations for this difference are described in 

the Discussion (pages 130-131).
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Figure 38. MCB motifs are orientation specific within the fission yeast genome.
(A) Schematic diagram showing position and orientation o f pairs o f genes, with MCB motifs; purple indicates 

MCB motifs with Mlul exact matches and blue indicates 5/6 matches. Base pair distances indicated; sizes of 

intergenic regions, ORFs and MCBs relative to the ATG of the MCB gene are indicated in red and numbers in 

blue indicate chromosomal location o f genes. RNA was prepared from wild-type (GG 217) and cdclO-C4 (GG 

108) cells, and subjected to Northern blot analysis. The Northern blot was hybridised with probes for the 

indicated genes, and with probes for cdc22* and a d h f  as controls, which were amplified by PCR using genomic 

DNA (oligo’s described in Appendix B). Quantification o f each gene’s transcript against adhl^ transcript, using 

NIH image software, is shown, with cdclO-C4 (dark bar) and wild-type (open bar). (B) An exponentially 

growing culture o f cdc25-22 (GG 193) cells was grown in minimal media and arrested at G2 by incubation at 

36“C for 4 hours. Cells were shifted back to 25°C and samples collected at 15 minute intervals RNA extraction, 

and cells examined microscopically for the appearance of septa. The RNA was subjected to Northern blot 

analysis and the blot was hybridised with cdc22^, cdt2^^ psc3^ and a d h f  probes. Quantification of cdtl^/adhl^ 

and psc3^fadh f transcripts using NIH image software is shown. Data presented are representative of three 

identical experiments.
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3D MCBl has a slower *‘on-off^ rate than MCB2

Previous experiments have also demonstrated that MCB2 has a significant role in 

regulating cdc22^ transcription (Figures 18, 22 and 32), which is intriguing as the MCB2 

cluster lies within the transcribed region of this gene (Figure 14). We were interested in 

investigating how it is possible for MCB2 to be bound to DSCl to activate gene 

transcription, but also allow RNA pol II to bind whilst transcribing the gene. Thus, we 

examined the “on-off’ binding properties of DSCl bound to either MCBl or MCB2 

using competitive gel retardation analysis, to suggest a mechanism how this may occur.

A gel retardation assay performed using MCBl as a labelled substrate, revealed a 

single prominent band that is DSCl (Figure 39, lane 2, large arrow). When cold 

competitor MCBl DNA was sequentially added in separate reactions, this band partially 

disappeared by 5 minutes (Figure 39, lane 5), and was almost entirely gone by 20 minutes 

(Figure 39, lane 7). Thus it took 5-10 minutes for DSCl to “come o ff’ M C B l.

In contrast, when MCB2 was used as a labelled substrate (Figure 39, lanes 8-14), 

DSCl was seen to “come o ff’ almost immediately after the cold competitor was added, 

with DSCl entirely absent by 5 minutes.

This experiment demonstrates that MCB2 has a significantly liigher “on-off’ rate 

than MCBl. This result is, therefore, consistent with the suggestion that DSCl might 

temporarily dissociate from MCB2, but remain bound to MCBl, to allow RNA 

polymerase II to pass during transcription.
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Figure 39. MCBl “on-ofF’ rate is slower than MCB2.
Gel retardation assay using M C Bl and MCB2 DNA promoter fragments as labelled 

probes with protein extracts from wild-type (GG 217) cells. Large arrow indicates D SC l; 

small arrow free probe. In alternate lanes equal amounts o f  excess unlabelled competitor 

M CB1/M CB2 D NA  was added to protein extracts from wild type cells at 0 mins, 1 min, 5 

min, 10 min and 20 minute time intervals, to the reaction mixture prior to electrophoresis. 

Data presented are representative o f  three identical experiments.
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Chapter 4: Discussion

Introduction

The restriction point (“R” point) in the G1 phase o f the mammalian cell cycle is an 

essential control point responsible for regulating cell duplication (Pardee 1989). This is 

the point between early and late G1 that represents an irreversible commitment of the cell 

to undergo cell division. An understanding of the R point in the cell cycle is o f crucial 

significance, as its de-regulation is thought to contribute to cancerous division o f cells in 

vivo (Blagosklonny and Pardee 2002). To study the R point it is important to use the 

simplest possible experimental system that can be easily manipulated in the laboratory. 

Yeasts have been found to be good model organisms as they have been used with great 

success over the past few years to elucidate eukaryotic cell cycle control mechanisms 

(Qin and Li 2003). They have proved to be a particularly powerful tool in understanding 

the role of genes that are critical for controlling cell division in all eukaryotes.

Progression through the cell division cycle in yeasts is dependent on passage 

through a critical point at G1 called START, that is analogous to the R point in 

mammalian cells. In mammalian cells, E2F is the transcription factor essential for 

regulating cell cycle progression by influencing the expression of proteins required for 

the G l/S transition phase and DNA synthesis. The E2F family of proteins are considered 

critical for the passage of cells through the restriction point in G1 and into S phase. In 

fission yeast passage through START is controlled in part by the transcription factor 

complex D SCl, functionally similar to E2F, which regulates the expression o f genes 

essential for DNA synthesis (Lowndes et al. 1992; Connolly and Beach 1994; Hoffmann 

and Beach 1994; Baum et al. 1997; Nishitani et al. 2000; Ng et al. 2001). In this thesis I 

describe experiments that analyse DSCl function in fission yeast, to establish a better 

understanding of cell cycle control mechanisms that may be applicable to mammalian 

and other eukaryotic systems.
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The DSCl transcription factor complex in fission yeast is essential for the 

periodic expression of genes during the G l/S transition (White et al. 2001). It functions 

by binding MCB UAS motifs present in the promoters of a group of genes expressed at 

this cell cycle time. The conserved core of this element consists of one or more 

hexameric sequence that coincides with the Mlul restriction site (ACGCGT), and is 

referred to as the Mlul cell cycle box, or MCB motif. Each of the MCB-regulated genes 

contains one or more MCB motifs in its promoter, which bind specifically to DSCl to 

form the transcription control system (Lowndes et al. 1992; Ng et al. 2001). The MCB 

m otif was initially identified in budding yeast, where it is also responsible for co­

ordinating transcriptional regulation o f genes essential for DNA synthesis at the G l/S 

boundary (McIntosh et al. 1991). Significantly, the most similar sequence currently 

found in mammalian genes is the E2F transcription factor site, TTTGCGC or 

CGCGCAAAA, found upstream of several genes that are associated with or involved in 

DNA replication (Kel et al, 2001). This suggests that similar types o f control 

mechanisms regulating the cell cycle at GI/S may be present amongst all eukaryotes.

We analysed the control o f expression of cdc22^, the first fission yeast G l/S 

transcribed gene to be discovered. cdc22'^ has been studied in the past and found to 

contain an interesting array o f MCB motifs in its promoter (Lowndes et al. 1992; 

Fernandez-Sarabia et al. 1993). The promoter region contains two clusters of MCB 

motifs, in this thesis named “M CBl” and “MCB2”, both of which bind DSCl (Figures 13 

and 14) (Lowndes et al. 1992). Within MCBl and MCB2, there are three Mlul motifs 

that are identical to the Mlul recognition sequence, while the remaining five all contain 

the central CGCG core thought to be essential for function (McIntosh 1993). There is 

also a single core M lul site in between the two MCB clusters, named “MCBX”.

In previous experiments, the mapping o f transcriptional start o f cdc22^^ using 

primer extension and Northern blot analysis revealed that the start point of the gene lies 

between the two MCB clusters (Figures 13 and 14) (Maqbool et al. 2003). Furthermore, 

in vitro DNAsel footprint analysis showed there are protected regions over MCB2, the 

downstream cluster of MCBs (Maqbool et al. 2003). These results imply that either one
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or both of the MCB clusters is essential for the binding o f DSCl and activating 

transcription of cdc22^. The possibility that MCB2 may participate in the initiation of the 

transcription of ci/c22"*'was particularly interesting because in fission yeast there has been 

no evidence so far o f a UAS downstream to the transcriptional start for a RNA 

polymerase II regulated gene. This is particularly interesting in light of recent findings in 

human cells, which have revealed that the E2F binding sites in the promoters of cell cycle 

regulated genes occur in close proximity to the transcriptional start site, between 

positions -400 and +100 (Kel et al. 2001).

II Summary o f main conclusions

The main findings of my research can be summarised as follows:

• The two MCB motif clusters in the cdc22^ promoter, MCB 1 and MCB2, both contribute 

to its cell cycle regulation (Figures 16 and 18).

• MCBl and MCB2 are not palindromic in function (Figures 17 and 19).

• Both MCBl and MCB2 bind to DSCl in vitro (Figures 21 and 22).

• MCBX does not bind to DSCl in vitro (Figure 20).

• MCBl has a stronger binding affinity for DSCl than MCB2 in vitro (Figures 24 and 25).

• Intact MCB motifs in MCBl are necessary for the correct cell cycle regulation of cdc22^ 

(Figure 30).

• Intact MCB motifs in MCB2 are essential for basal transcription of cdc22~  ̂(Figure 32).

• MCBX has no role in the regulation of G l/S transcription of cdc22^ (Figure 33).

• Mutated M CBlm and MCB2m do not bind DSCl in vitro (Figures 34 and 35).

• MCB motifs in the promoters of genes in their native genomic locations are only able to 

function in one orientation in fission yeast (Figure 38).

• MCB2 has a significantly higher “on-ofF’ binding rate for DSCl compared to MCBl 

(Figure 39).
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n i Both M CBl and MCB2, in the correct orientation, confer cell cycle 

regulation

Initial studies in budding yeast identified the conserved MCB DNA sequence, 

ACGCGTNA, in the promoters of cell cycle regulated genes needed for DNA synthesis 

(McIntosh et al 1991). Using a high copy reporter plasmid, it was demonstrated that this 

sequence was able to direct periodic transcription of a reporter gene at the G l/S  

boundary, and that it was orientation independent. It was also noted that deletions or 

point mutations within the MCB motif severely inhibited expression of G l/S expressed 

genes (Gordon and Campbell 1991).

Following these studies, Lowndes et al. (1992) investigated the ability of MCB 

motifs to confer cell cycle regulation in fission yeast. A synthetic DNA construct 

containing three adjacent Mlul sequences was placed in a UAS reporter plasmid, 

pSPA178, and shown to confer Gl/S transcription to the heterologous lacZ gene in fission 

yeast (Lowndes et al 1992). This result suggested that MCB motifs present in the cdc22^ 

promoter (and in the promoters of other fission yeast Gl/S expressed genes) regulate cell 

cycle transcription at the start of S phase.

To prove that natural MCB motifs from a native fission yeast promoter can also 

confer G l/S transcription to lacZ we initially examined the ability of the two MCB 

clusters from the cdc22'^ promoter to regulate G l/S transcription. Using the same UAS 

reporter construct pSPA178 (Lowndes et al. 1992) we showed that both MCB clusters 

could independently confer cell cycle transcription to the lacZ  gene, coincident to 

endogenous ce/c22^ expression, in the correct orientation. MCB2 drove two peaks of lacZ 

expression over two cell cycles, whereas M CBl gave only one prominent peak of 

transcription during the first cell cycle, with a weaker second peak (Figures 16-19).

These experiments allow us to conclude that each MCB cluster is capable of 

contributing to cdc22^ cell cycle expression in the correct orientation, as each conferred 

G l/S transcription in the correct orientation only. At least for MCB2 this result was
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surprising, as this cluster lies downstream to transcriptional start of the native cdc22^ 

promoter. These data implicate MCB2 as a downstream UAS, here termed a DAS, for a 

downstream activating sequence, the first example of such a promoter element in fission 

yeast.

DAS sequences have already been described in cell cycle regulated genes in 

human systems, where E2F transcription factor binding sites are found in close 

proximity, both upstream and downstream to the transcriptional start site. This sequence 

is recognised as the most similar sequence to MCB motifs in mammalian systems and 

also has the ability to control expression of genes when present in either orientation (Kel 

et al. 2001), similar to MCB motifs in budding yeast (McIntosh 1993). However, 

contrary to this, our results show that both MCB 1 and MCB2 do not have palindromic 

activity as they are unable to confer Gl/S transcription to lacZ in the opposite orientation 

(Figures 17 and 19). It is possible that this occui’s because the genes present in the fission 

yeast genome are tightly packed, with some genes present close together in opposite 

orientations. Having a non-palindromic MCB cluster, therefore, ensures that only the 

genes required specifically at the start of S-phase are expressed at this cell cycle time.

Previous experiments using in vitro gel retardation analysis have also implicated 

the transcription complex DSCl in regulating G l/S transcription, by its binding to both 

MCB clusters, MCBl or MCB2 (Lowndes et al. 1992). In this thesis these results were 

confirmed and extended by in vitro gel retardation analysis using MCB 1, MCB2 and 

MCBX DNA instead as labelled substrates. These studies revealed that MCBl and 

MCB2 can independently bind to DSCl, but MCBX has no binding activity (Figures 20-

25). We also found that DSCl has a stronger in vitro binding affinity for MCBl than 

MCB2 (Figures 24 and 25) as assayed by in vitro gel retardation analysis.

These gel retardation results by themselves suggest that MCBl has a more 

important role in regulating cdc22^ expression, if  in vitro binding affinity reflects in vivo 

activity. This is surprising as MCB2 conferred G l/S expression to lacZ more efficiently
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than MCBl in vivo (Figures 16 and 18). This contradiction might be reconciled by the 

observation that MCB2 has a higher “on-off” rate than MCBl (Figure 39).

IV Intact MCBs are essential for cdc22^ transcription

Our experiments using the UAS reporter plasmid pSPA178 allowed two novel 

observations about the regulation of cdc22^ expression by the MCB clusters in its 

promoter. First, that both clusters can confer G l/S transcription to /acZ, and so both are 

likely to contribute to regulating endogenous cdc22^. Second, that both clusters are 

orientation dependent in their regulation, as they do not show UAS activity when present 

in the opposite orientation.

These experiments have two potential flaws that might be significant for our 

conclusions. Firstly, a serious limitation when using pSPA178 is the fact that 

transcriptional start is artificially manipulated using this construct. A major conclusion 

we wish to make from these studies is that the MCB2 cluster, which lies downstream of 

transcriptional start of endogenous cdc22^, contributes to the cell cycle expression of the 

gene. We cannot be sure of this conclusion using pSPA178 alone, as the transcriptional 

start site in this construct containing MCB2 are likely to have been altered. Transcription 

would be expected to start downstream of the MCB motifs, at the cytochrome c {CYCl) 

minimal promoter locus where the TATA box sequence resides.

The second limitation is that pSPA178 is a multi-copy plasmid, which has two 

inherent, and potentially serious, implications;

a) pSPA178 containing MCB clusters and present in high copy, results in an 

unnaturally high number o f MCB motifs in cells containing the construct. This might 

result in binding to and titrating out of DSCl function, causing transcription to be altered 

in the cellular context.
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b) pSPA178, being a circular extra chromosomal plasmid, does not form genomic 

chromatin DNA structure, with associated proteins and ancillary factors. This chromatin 

structure may be important for regulation of expression of MCB-controlled genes.

To overcome these potential problems we used another approach to address the 

role of the MCB motifs in the cdc22^ promoter. We examined the effect of mutating 

MCB motifs on G l/S transcription, by initially using an integration vector, pPJK7, 

containing the entire cdc22^ promoter linked in frame to the lacZ gene. This vector was 

provided to us by Dr. Kersey in Dr Fautes’s laboratory, at the University of Edinburgh 

(Kersey 1995). pPJK7 overcomes both of the limitations described for pSPA178, as it is 

used in single copy integrated into the fission yeast chromosome.

A series of experiments with pPJK7 to study the regulation of cdc22^ expression, 

where élutriation of wild-type cells was used to synchronise cells containing pPJK7 were 

initially performed by Dr Kersey (1995), When cdc22~  ̂ and lacZ transcript levels were 

monitored in such cells, it was observed that lacZ was expressed similarly, though not 

identically, to cdc22~ .̂ lacZ mRNA was present through a higher proportion of the cell 

cycle than the cdc22^ mRNA, although the two transcripts appeared to peak at similar 

times. It was also found that (3-galactosidase activity (per ml of culture) was less tightly 

confined within the cell cycle than cdc22^ expression (Kersey 1995). A possible 

explanation given for this difference was that alternative transcriptional termination of 

the two genes resulted in the lacZ transcript being more stable than cdc22^ transcript 

(Kersey 1995).

We tested this hypotliesis using the cdc25~22 mutant as an alternative method for 

synchi’onising fission yeast cells. pPJK7 was integrated in single copy into the cdc25-22 

mutant and, in three identical experiments, it was found that lacZ expression profile was 

more coincident to cdc22^, than in wild-type cells synchronised by élutriation (Figure

26). We consequently decided to use cdc25-22 for further cell cycle experiments to 

analyse the effect of mutating the MCB motifs within each of the MCB clusters on cell 

cycle transcription.
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The fact that that both MCBl and MCB2 can bind to DSCl in vitro (Figme 20), 

and that MCB2 can confer Gl/S expression to lacZmore efficiently than MCBl (Figures 

16 and 18) in vivo, prompted us to examine the contribution of each MCB cluster to Gl/S 

transcription more closely. To do this, we examined the effect of mutating MCB motifs 

in each cluster on lacZ transcription. This was achieved by initially using another vector 

provided by Dr. Fautes’s lab, pPJKlO. This vector is the same as the pPJK7 vector but 

differs in that the core CGCG of each MCB motif in MCB 1 has been mutated to CTAG 

(Figure 27). We also used site directed mutagenesis to introduce mutations into the core 

of MCB2, within pPJK7 and pPJKlO, to make two new constructs: pZM l, containing 

MCB2 mutated only, and pZM2 containing both M CBl and MCB2 mutated. Such 

constructs allowed the effect of mutating either or both MCB clusters to be assayed. 

Again, in light of our concerns about using pSPA178, these constructs were present in 

single copy in the genomic context.

Using this alternative approach, it was demonstrated that loss o f MCB motifs in 

either MCB cluster resulted in cell cycle transcription of lacZ being altered.

Mutating MCBs in MCBl resulted in constitutive lacZ transcription at moderate 

levels tliroughout the cell cycle (Figure 30), suggesting that MCBl is required for 

stimulating cell cycle specific transcription, and may have a negative role in the context 

o f the native promoter. This result was similar, though not identical, to previous results 

obtained using the same MCB 1 mutated construct in wild type cells synchronised by 

élutriation (Kersey 1995). In the latter case it was observed that lacZ transcript was 

weakly coincident to the cdc22^ profile, suggesting some periodic expression. However, 

in these experiments lacZ mRNA was present during more of the cell cycle than that of 

the endogenous cdc22^ gene, and p-galactosidase activity increased immediately after 

synchronisation. We believe, as we suggested with pPJK7, the slight differences between 

our results were due to variations in synchronisation efficiencies in the two experiments.

Using the construct pZM l, in three identical experiments, we found that mutating 

MCB2 resulted in no lacZ transcription at any time during the cell cycle (Figure 32). 

This result strongly suggests that MCB2 has an essential role in conferring basal

128



transcription of cdc22^. This observation also confirms that MCB2 does have the 

properties of a DAS, as it functions as a downstream activation sequence. Furthermore, 

mutating both M CBl and MCB2, leaving only MCBX, also resulted in no lacZ 

transcription (Figure 33), confirming that intact MCBs in both MCBl and MCB2 are 

essential for conferring cell cycle transcription and regulation, and that MCBX by itself 

has no role in regulating Gl/S specific expression.

One possible problem that the integration approach has not entirely eliminated is 

that of genomic location and structure. It is possible that the endogenous native location 

of the cdc22"^ promoter is important for its control of gene expression. This may be due 

to the natural position of histones and other chromatin protein, which might bind this 

region of DNA (Beaujean 2002). For technical reasons the integration vector had to be 

inserted at the uraC  locus. Ideally, the MCB motifs should be mutated in their natural 

position at the cdc22^ locus. Such experiments are difficult, especially as cdc22^ is an 

essential gene. However, it is technically feasible using a method previously described 

(Mclnerny et al. 1997) to integrate mutated MCBs into the natural cdc22^ promoter 

locus, and determine their effect on transcriptional activation of the gene.

In brief, the method exploits two rounds of homologous replacements in a diploid 

fission yeast strain, first to remove one copy o f the cdc22'^ promoter, the second to 

replace it with mutated MCB DNA. Subsequent sporulation permits the requirement of 

either MCB clusters to be determined on cell viability. Given that we found that mutated 

MCBl results in the constitutive expression of cdc22^ (Figure 30), we would predict such 

mutations would confer constitutive cdc22^ transcription and so permit cell growth. In 

contrast, as MCB2 was found to be essential for the basal transcription of cdc22^ (Figure 

32), we would predict that mutations introduced into the MCB2 native region would 

result in no cdc22^ expression, and consequent cell death. In either case such 

experiments would allow us to confirm (or refute) our proposed functions for the MCB 

clusters in the cdc22'^ promoter.
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V MCB clusters in fission yeast are not palindromes

An important part of our studies was to establish whether specific findings we have made 

about the regulation of cdc22^ expression, is generally applicable in fission yeast to other 

MCB-regulated genes.

One major and surprising conclusion from our experiments was that MCB 

clusters are orientation-specific in their ability to confer G l/S transcription (Figures 17 

and 19). This is contrary to the MCB motifs found in budding yeast and the E2F binding 

sites recognised in mammalian cells, which are orientation independent (McIntosh et al. 

1991, Kel et al. 2001). To establish if  MCB motifs present in the promoters o f other 

fission yeast genes are also orientation specific, we extended our initial investigation to 

the whole of the fission yeast genome (Figure 38). There are eleven known mitotic MCB 

regulated genes: cdc22^, cdcl8 ,̂ cig2^, c d tf ,  cdt2' ,̂ mikC, rad lC , rad2C, ste6^, ste9^ 

and suc22'  ̂(large transcript) (Harris et al. 1996; Mondesert et al. 1996; Parker et al. 1997; 

Liu et al 2000b; Nishitani et al. 2000; Ng et al. 2001; Blanco et al. 2000; Papadaki et al. 

2002; Pati et al. 2002; Maqbool et al. 2003; Yoshida et al. 2003). We therefore searched 

the S. pombe database to identify pairs o f genes, where one of the genes was MCB- 

regulated, and the other gene was transcribed in the opposite orientation, a short distance 

upstream firom the MCB motifs. We identified four examples of such genes: cdt2 ,̂ cdtC, 

r a d 2 f  andsteô^; with psc3^, SPBC428.17c, SPCC338.18 and SPCC1450.16c upstream 

to the MCB motifs in the opposite orientation, respectively (Figure 3 8A, Table 2) (Wood 

et al. 2002). Transcription o f these genes was assayed in wild type and cdclO~C4 mutant 

cells, the latter which are mutated in a component o f DSCl and result in the constitutive 

expression of MCB-regulated genes at low temperature. It was demonstrated that MCB 

motifs in the promoters o f these genes, like cdc22^, only stimulate transcription o f genes 

in one orientation (Figure 38), and so are non-palindromic in function.

During our database search we also identified m ik f  and radl f  as a pair o f genes 

that are upstream to one another with MCBs in the promoter region. The MCBs in this
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case appear to confer transcription of the two genes as both are periodically expressed at 

G l/S (Parker et al. 1997; Ng et al. 2001). A closer look at the MCB motifs in the 

promoter region of these genes shows it contains five MCB motifs: three exact matches 

to the Mlul sequence and two motifs that contain the core CGCG, thought to be essential 

for function (McIntosh et al. 1993). We propose that only one or two of these motifs are 

specific for UAS activity to either gene, and within this context are still orientation 

dependent. This hypothesis is supported by the observation that ste^'" and r a d 2 f  have 

only two MCB motifs in their promoter region (Figure 3 8A), and so this number of 

motifs are sufficient to confer G l/S UAS activity in fission yeast. A more detailed 

analysis of these motifs is needed to confirm this hypothesis. It would be interesting to 

identify which o f the motifs is indeed able to confer UAS activity, and whether 

transcriptional activity of either gene is altered when the core of one or more of the 

motifs is mutated.

A closer look at the MCB motifs in the promoter of cdc22^ shows that only three 

motifs within the two MCB clusters are palindromes in their DNA sequence - ACGCGT. 

The other 5 motifs are not palindromes, having only a 5/6 match. Fission yeast MCBs do 

not fit a consensus as defined in budding yeast, and instead have only the central CGCG 

conserved, with either an A or a T on each side. Sometimes these MCBs occur in 

tandem. In either case such MCBs are not palindromes. It is possible that the non- 

palindromic MCBs are responsible for the orientation specificity conferred by MCBl or 

MCB2 in cdc22^. This may also be true for the other genes cdtÜ, cdt2^, r a d 2 f  and ste6^ 

as all these genes also contain one or more non-palindromic MCB motifs.

VI MCB2 has a higher rate

Another interesting finding in this thesis is the observation that the MCB2 cluster occurs 

within the transcribed region of cdc22^, and has been demonstrated to have a role in 

regulating the gene’s expression (Figures 18 and 33). This suggests that a mechanism
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must exist which facilitates the binding of DSCl to MCB2, while at the same time also 

allowing RNA polymerase II to pass when transcribing the gene.

By examining the “on-off’ rates o f DSCl bound to M CBl and MCB2 we 

examined how this mechanism might function. Using competitive gel retardation 

analysis we were able to show that MCB2 had a significantly higher “on-off’ rate than 

M CBl. DSCl came ‘o f f  the MCB2 DNA in 1-2 minutes, whereas MCBl took 5-10 

minutes (Figure 39). This higher “on-off’ rate for MCB2 suggested that DSCl might 

temporarily dissociate from MCB2 once it has activated transcription, to allow RNA 

polymerase II to pass. The significantly higher “on-off’ rate of MCB2 may also account 

for our previous observation that MCBl shows a stronger binding affinity for DSCl 

(Figures 20 and 21).

Recently it was found that Res2p specifically interacts with the C-terminal 

domain o f RNA polymerase II in yeast (Aranda and Proudfoot 2001), suggesting that 

Res2p may have a dual function both as a component of DSCl, and as a separate mRNA 

termination factor. It may be possible, therefore, that DSCl mediates mRNA termination 

when bound to DNA at MCB sequences positioned far away from the site of RNAP II 

binding (Birse et al. 1997). Our results implicate binding of DSCl to M CBl in the 

promoter of cdc22^ in regulating this termination mechanism.

VII DSCl-MCB interactions

The MCB clusters in the cdtC, cdt2^ and cdcl8^ promoters are similar' to cdc22^, as they 

also contain a complicated array of multiple MCB motifs. It is therefore possible that the 

same mechanisms for regulating gene expression occur at Gl/S. Other genes, such as 

r a d 2 f  and ste6^, which have much simpler MCB motif arrays in their promoters must 

have differences in regulating gene expression at Gl/S. Similar studies of the promoters 

o f these genes as described in this thesis with cdc22^ would provide important 

information in this regard.
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The presence of highly related sequences similar to MCBs present in budding 

yeast, fungi and mammalian systems suggests that similar types of control may also be 

present amongst all eukaiyotes (McIntosh et al. 1993). In mammalian systems it is found 

that the E2F transcription factor site is one of the most commonly known sequences 

similar to MCBs (Kel et al. 2002). Although E2F was thought to be a functional 

homologue of DSCl (La Thangue et al. 2001), more recently a new mammalian protein 

has been found to complement the fission yeast DSCl called HBF2 (Sanchez-Diaz et al. 

2001). The HBP2 gene has been isolated by functional complementation of cells unable 

to undergo DNA replication in fission yeast, and is found to activate transcription at Gl/S 

in S. pombe. The protein itself is a member o f the sequence specific high mobility group 

(HMG) box protein, whereby HBPl is known to repress the expression of a set of genes 

activated by E2F, contributing to cell-cycle exit (Shih et al. 1998).

VIII Model

Bringing all o f the observations presented in this thesis together I suggest the following 

model to explain DSCl-MCB regulation of cdc22^ transcription (Figure 40). Given that 

both MCB clusters bind to DSCl in vitro (Figures 21 and 22), and that both clusters 

confer cell cycle regulation of cdc22'^ in one orientation in vivo (Figures 16-19), we 

propose that cell cycle transcription o f cdc22^ is stimulated when DSCl binds to MCBl 

and MCB2 in an orientation-dependent mamier (Figure 40a). Furthermore, binding of 

DSCl to MCBl and MCB2 positions RNA polymerase II on the promoter sequence and 

initiates transcription of the gene (Figure 40b). MCBl has an ancillary role and assists 

MCB2 to cause transcription to occur in a cell cycle dependent manner: it was observed 

that intact MCB motifs in MCB 1 are necessary for the correct cell cycle regulation of 

cdc22^, and that MCB2 is essential for basal transcription (Figure 30 and 32). Possibly, 

MCBl has a negative function, preventing cdc22'^ expression outside the G l/S boundary. 

As the ‘on-off binding rate for DSCl was significantly higher for MCB2 compared to 

MCBl (Figure 39), we suggest that DSCl binds to and dissociates from MCB2 to allow
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RNA poiymerae II to pass (Figure 40 c), to permit RNA polymerase II to transcribe tlie 

cdc22^ mRNA (Figure 40d).

In budding yeast, cell cycle regulated genes commonly contain an MCB motif 

upstream to the transcriptional start site and there is no evidence of a downstream 

activation sequence (McIntosh 1993). In human systems however, a recent study on the 

distribution of the potential E2F sites in cell cycle regulated genes suggests that they 

localise close to the transcription start site, between positions -400 and +100 (Kel et al

2001). Thus, as transcriptional mechanisms involving passage through Start are known 

to be conserved from yeast to mammals (Qin and Li 2003), it is possible that MCBs and 

the way they function may be an integral component of a transcription system conserved 

amongst eukaryotic organisms.

However, one major difference observed in our findings between the MCBs in 

different eukaryotes is that MCB elements in fission yeast are not palindromic. The 

fission yeast genome consists of tightly packed genes, which occur close together and in 

some cases in opposite orientations (Wood et al. 2002). It is possible therefore that the 

non-palindromic activity of the MCB cluster in fission yeast ensures that only the genes 

required specifically at the start o f S-phase are expressed exclusively at this cell cycle 

time.
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Figure 40. Schematic model of DSC 1-MCB interaction in the regulation of cdc22^ transcription.
(a) In late G l, at the start o f  S-phase, D SC l binds to the two MCB motifs clusters MCBI and MCB2 to stimulate cdc22* 

transcription. MCBI controls cell cycle transcription, possibly through a negative function, and MCB2 controls basal 

transcription o f  cdc22*. (b) RNA polymerase II initiates transcription between the two MCB clusters, (c) D SC l temporarily 

dissociates from MCB2 allowing RNA polymerase II to pass and complete transcription ofcdc22^ (d).
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IX Future aims

Define more precisely the MCB DNA sequence in fission yeast

The importance of the MCB motif as a component of the system regulating cell cycle- 

dependent transcription was initially identified in budding yeast. MCB sequences were 

characterised in this organism using site-directed mutagenesis in combination with 

deletion analysis and sub-cloning experiments. These experiments allowed the consensus 

sequence ACGCGTNA to be proposed (McIntosh et ah 1991).

In fission yeast, experiments with a synthetic DNA fragment containing three 

adjacent Mlul sequences implicated MCB motifs as having UAS activity (Lowndes et ah

1992). This synthetic MCB linked to the heterologous lacZ gene in a reporter construct 

conferred G l/S transcription in wild-type fission yeast cells. Consequently, it was 

suggested that MCB motifs, found in the promoter of the cdc22^ gene, regulated its Gl/S 

expression. However, a limitation in these findings is that the synthetic MCB is very 

different to the MCB motifs that occur in their native context in the cdc22^ ORF. cdc22^ 

contains two clusters of MCB motifs within which there are eight MCB motifs, tliree of 

these are exact matches to the Mlul restriction sequence, ACGCGT, whilst the remaining 

five, contain the central core CGCG, thought to be essential for function (McIntosh

1993). There is also a core MCB motif between the two clusters, MCBX.

In the research presented in this thesis I have shown that intact MCB motifs are 

essential for G l/S expression in fission yeast, as their mutation from ACGCGT to 

ACTAGT, resulted in loss of activity. Although this shows that the core GC of the 

MCBs in each cluster is essential for UAS function, we have not yet characterised the 

complete sequence in the cdc22^ promoter that has G l/S activity. Thus, it would be 

interesting to define the actual MCB sequence necessary for G l/S activity within the 

cdc22^ promoter, and determine if  all the MCB motifs within an MCB element are 

essential. This could he done using the integration vector pPJK7 where the effect of 

mutating individual bases within each MCB motif on lacZ transcription examined. This 

would allow us to identify any functional differences which may exist between the

136



palindromie MCB m otif sequences and the non-palindromic sequences. It may be 

possible that only some of the MCB motifs in each cluster possess G l/S activity, as not 

all the motifs are exact Mlul sequences and like MCBX, they may not bind to DSCl or 

contribute to cell cycle transcription. Previous in vitro studies have indicated that DSCl 

specifically binds to the two MCB motifs in MCB2 that are palindromic in their sequence 

(Maqbool et al. 2003). Alternatively, the non-palindromic MCB motifs may be able to 

confer UAS activity, as in the case of the s te6 ^ ira d lf  genes, where two non-palindromic 

MCB motifs solely confer transcriptional activation of these genes (Papadaki et al. 2002; 

Patietal. 2002).

It would also be interesting to examine the effect of altering the spatial 

relationship between the two MCB clusters within the cdc22^ promoter, and determine if 

this has an overall effect on the G l/S activity. It is possible that the complex organisation 

o f the cdc22^ promoter is related to the location of the MCB2 cluster within the 

transcribed gene. In this regard it would be useful to examine the effect on 

transcriptional activation of placing MCB2 upstream of the transcription start site, 

replacing MCBI with MCB2 sequence and/or vice versa. Such experiments could also 

provide a test of the idea in our proposed model (Figure 40) that the two MCBs serve to 

position the RNA polymerase 11.

Other MCB-regulated genes

MCB-regulated genes in fission yeast vary considerably in the arrangement or number of 

MCB motifs present in their promoters (Table 2, Figure 38). Some genes, like cdc22'^, 

possess a complicated array of motifs, whereas others have only one or two MCB motifs 

in their promoters, such as ste6^ or rad2F  (Papadaki et al. 2002; Pati et al. 2002). It 

would be interesting to analyse the role of MCB motifs in these genes with simpler MCB 

arrays. As before, the MCB clusters from the different genes would be cloned into 

pSPA178 in the forward and reverse orientations and lacZ transcript detected in 

synchronized cells. This would also establish if  other MCB motifs in fission yeast are 

also orientation specific.
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In other MCB-regulated genes that have more complicated arrays of MCB motifs, 

like cdclS^ and cdt2^, it would be useful to perform primer extension (Liu et al. 2000b; 

Yoshida et al. 2003). This would determine the transcriptional start o f these genes and 

indicate if  any of the MCB motifs occur within the transcribed regions. Such 

downstream MCB motifs might have DAS activity, as shown in this thesis with cdc22^.

It would also be informative to make new integration vectors, similar to pPJK7 

but instead containing the promoters of other MCB-regulated genes. In this way it would 

be possible to mutate the MCBs, and detect lacZ transcript to determine if there are 

differences in the way the genes with similar complicated MCB motifs function.

More recently it has been observed that the arrangement of origin of replication 

initiation (ORl) sequences in S. pombe could be similar to those found in animal cells, 

and a number of fission yeast ORls have been mapped in close proximity to gene 

promoters (Gomez and Antequera 1999). It has been suggested ORIs may contribute to 

transcriptional activation of genes and transcription factors could contribute to recruiting 

the replication machinery onto DNA. It would therefore he pertinent to establish if ORls 

occur in the intergenic regions of MCB regulated genes, using the ‘sucrose gradient’ 

approach, which allows the isolation of short DNA replication intermediates (Gomez and 

Antequera 1999). Although it has been suggested that replication initiation is not effected 

when the promoters within close proximity to ORls are altered (Gomez and Antequera 

1999), it might still be informative to establish if  this is the case when MCB motifs are 

mutated.

In vivo footprint analysis

In vivo footprint analysis would he the preferred method to confirm which region of the 

cdc22^ promoter DSCl binds. In vitro footprint analysis has revealed that DSCl binds to 

MCB2 (Maqbool et al. 2003), whereas findings presented in this thesis, using gel 

retardation studies, showed that both MCBI and MCB2 are able to hind to DSCl in vitro. 

This discrepancy may be partly due to the fact that we are working with fragments of 

promoter DNA, which have been taken out of their native chromosome context. Thus,
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performing in vivo footprint analysis will give a clearer indication of DSCl-MCB 

interactions in the promoters of genes in their native context within the fission yeast 

genome, and possibly reconcile this anomaly.

Chromosome immuno-precipitation (Chip) analysis

In recent studies. Chip and genomic micro-array hybridisations have shown that SBF, a 

transcription factor homologous to DSCl in budding yeast, binds the promoters o f 

several other transcription factors, which play a role in regulating the periodic expression 

o f genes during the G l/S (Horak et al. 2002). Such studies have also facilitated the 

definition more precisely of genomic binding sites of the MBF/SBF transcription factors 

in budding yeast in vivo (Iyer et al. 2001),

Other Chip experiments have shown that DSCl binds constitutively to the o d d 8^ 

promoter (Wuarin et al. 2002). It would be interesting to further understand the events of 

the G l/S transition in the fission yeast, to carry out similar experiments with other genes, 

including cdc22'^, in this organism.

Chip analysis and micro-array hybridisation studies could also be used to identify 

the direct binding targets of DSCl across the fission yeast genome and so elucidate the 

importance of the DSCl components to transcription of the cell cycle genes on a genome- 

wide basis.

Computer-assisted identification o f  MCB regulated genes

In a recent study in mammalian systems it has been shown that E2F binding sites in the 

promoters of cell cycle regulated genes occur in close proximity to the transcription start 

site (Kel et al. 2001). A method was developed by which it was possible to identify 

composite substructures (modules) in regulatory regions of genes consisting of a binding 

site for a key transcription factor and additional contextual motifs: potential targets for 

other transcription factors that may synergistically regulate gene transcription. Applying 

this method to cell cycle-related promoters, a programme was created for context-specific 

identification of binding sites for transcription factors of the E2F family. In addition a 

Chip assay experimentally verified the binding of E2F in vivo to the promoters predicted 

by the computer-assisted methods validating its use. It was consequently found that,
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although the expression of most E2F dependent genes peaks at G l/S boundary, E2F 

factors are also involved in regulating genes that control other phases o f the cell cycle. 

Thus, such studies in fission yeast would complement the Chip assay and micro-array 

hybridisation studies and indicate if DSCl is capable of regulating genes that control 

other phases of the cell cycle. Such analysis might suggest that similar types of cell cycle 

control mechanisms exist amongst all eukaryotes.

Nascent-chain transcription assay

Regulation of transcription initiation is by far the most widespread form of gene control 

in eukaryotes. This has often been demonstrated by direct measurement o f the 

transcription rates o f multiple genes. To understand more about MCB-gene control in 

fission yeast it would thus be beneficial to measure the transcription rates of these genes. 

This can be achieved by use of a ‘nascent-chain’ (run-on) assay (Turner et al. 2000). In 

this method, labelled RNA is initially prepared in isolated nuclei by allowing extension of 

already initiated RNA chains. The reactions are then run for a brief period, enabling 

RNA polymerase 11 to add a few hundred nucleotides to nascent RNA chains. By 

hybridising the labelled RNA transcribed to a cloned DNA from a specific gene, the 

fraction of the total RNA copied from a particular gene (i.e. its relative transcription rate) 

can be determined.

Induction o f  MCB genes

In previous studies by doxy urea (HU), an RNR inhibitor, has been shown to induce MCB- 

containing genes in asynchronous yeast (Harris et al. 1996). This observation suggested 

that DNA replication was not necessary for MCB gene induction. However, HU also 

triggers the replication-arrest checkpoint (Allen et al. 1994) and induction of MCB genes 

due to triggering of this checkpoint may mask whether replication is needed for MCB 

gene induction at Gl/S during a normal cell cycle. In a recent study in budding yeast this 

issue has been addressed by using a temperature sensitive dbf4 mutant (Horak et al,

2002), which in the presence o f HU or at the non-permissive temperature blocks DNA 

chain elongation/initiation. The findings o f this study resulted in a proposed model, 

whereby it was suggested that MCB gene induction serves to increase the levels o f
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enzymes such as RNR, thymidylate synthase and thymidylate kinase, which in turn 

support a higher rate of DNA precursor synthesis. Furthermore, it was found that both 

MCB gene induction and dNTP accumulation occur in the absence o f DNA chain 

initiation/elongation, suggesting that a mechanism exists to pre-emptively rather than 

reflexively increase the rate of DNA precursor synthesis to ensure that the replication 

machinery has an adequate supply o f dNTPs. It would therefore be of benefit to conduct a 

similar study in fission yeast in order to establish if DNA replication may contribute to 

MCB gene induction at G l/S similar to budding yeast. It may be possible that a similar 

mechanism exists amongst other eukaryotes.

X Why are some genes expressed only at Gl/S?

Recent use of micro-airay analysis has allowed the characterisation of gene expression 

through the budding yeast cell cycle. Analysis of mRNA levels of all genes in 

synclxronous cell cultures have, surprisingly, revealed that more than 10% of genes in the 

budding yeast genome are cell cycle regulated (Cho et al. 1998; Spellman et al. 1998). 

Due to the amount of conservation already shown to occur between budding and fission 

yeast in cell cycle control mechanisms, it is likely that a similar number of genes are also 

cell cycle regulated in this organism.

Why are so many of these genes cell cycle regulated?

• Some genes are cell cycle regulated because they are only needed once per cell cycle, 

as there is a particular demand for their activities during a specific cell cycle phase. 

For example, cdc22^, which encodes the large sub-unit of RNR, is expressed at Gl/S 

as it is essential for DNA precursor metabolism required at the the onset of S-phase 

(Fernandez-Sarabia et al. 1993). Such expression patterns also facilitates cellular 

economy. Expression of these genes throughout the cell cycle may not harm the cell, 

but might waste cellular resources.
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Other genes are rate-limiting and are necessary to control regulation of the cell cycle 

during the specific phases. For example, cyclins are needed at particular phases to 

bind CDKs, to allow cell cycle progression (Coqueret 2002). Expression of such 

genes, therefore, throughout the cell cycle would interfere with cellular mechanisms 

and disturb the normal progression of the cell cycle.

Some genes, although not rate-limiting, can harm the normal cell cycle if  they are 

expressed throughout division. Thus, cell cycle regulation of these genes ensures 

other components of the cell cycle machinery are not disrupted. For example 

constitutive expression of m ikF, a newly discovered MCB regulated gene, inhihits 

cell cycle entry into mitosis, which manifests as cells abnormally long at division (Ng 

et al. 2001).

XI Fission yeast: a good model organism?

The increasing number o f human gene homologues emerging in yeast provides 

encouragement for the further development of fission yeast as a host in which to elucidate 

cell cycle and other molecular mechanisms within all eukaryotes.

For example, recent findings confinn that S. pombe is a useful model for studying 

the molecular mechanism of Vpr-induced G2/M arrest (Elder et al. 2002). It was found 

that Vpr, one of the HlV-1 accessory proteins thought to play an important role in viral 

replication and pathogenesis, also causes cell cycle arrest in S. pombe. The toxicity of 

Vpr has been documented for mammalian cells and other systems including bacteria and 

the budding yeast and is thought to affect the viability of S. pombe by deteriorating a 

basic biological function highly conserved in various species (Masuda et al. 2002).

Fission yeast has also heen established as an experimental model for the study of anti­

sense RNA-mediated gene suppression (Clarke et al. 2000). Anti-sense RNA is used to 

regulate gene expression, and is established as a basis for the development of gene
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therapeutics and as a tool for elucidating gene function (Raponi et al. 2000). It has been 

recently shown that the efficacy of anti-sense RNA in fission yeast cells is comparable to 

that seen in mammalian cells and this validates S. pombe as a model for the development 

of strategies to suppress target genes in human cells (Arndt et al. 2000).
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Appendix A

Appendix A.l Restriction Map of pSPA178

Restriction map o f fission yeast UAS reporter construct, 
pSPA178. Potential UAS is inserted into Xhol restriction site 
and UAS activity is assayed by lacZ transcription.

SamHI 0.25
Xho\ 0.0

HindW 8.09

EcoR\ 8.06 eraURA3

ARS6

EcoRl 7.00 pSPAl78 lacz
9.10 Kb

Amp'

on

'EcoRl 4.50

Single cut restriction enzymes: 
Xhol,
BamHl
HindlU

produces a fragment of ~ 9.1 kb

A double restriction digest 
with BamlU. and HindlU 
produces two fragments at: 

~ 7.5 kb
1.5 kb

EcoRl digestion 
produces fragments at: 

- 3  kb,
4.5 kb
1.05 kb

168~"



Appendix A.2 Restriction Map of pPJK7

Restriction map of fission yeast integration vector, pPJK7. Entire 
cdc22^ promoter region fused in frame with lacZ, Plasmid contains 
wild type promoter o f cdc22^ with M CBl, MCB2 and MCBX. 
Plasmid was cut at a single restriction site in ura4^ using the 
restriction enzyme BlnVAvril to permit integration into fission yeast 
ura4 locus.

on

HindW 0.00

cdc 2 2^ Kpnl 1.69

Sa/I 7.02

HindW 6.98 

Stu\ 6.17

Single cut restriction enzymes: 
Kpnl,
EcoRl,
BamUl,
Stul,
Blnl/Avrll,
Sail

produces a fragment of ~ 10.75 Kb

pPJK7 

10.75 Kb

EcoR\ 4.78

Bln\/Avr\\ 5.28
BamH\ 5.22 

HindW 5.23

A double restriction digest 
with Kpnl and EcoRl 
produces two fiagments at:

~ 7.7 kb 
3.1 kb

HindlU digestion 
produces fragments at: 

-  5.2 kb,
1.8 kb
3.8 kb
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Appendix A 3 Restriction Map of pPJKlO

Restriction map of fission yeast integration vector, pPJKlO, 
Entire cdc22^ promoter region fused in frame with lacZ. 
Similar to pPJK7 but plasmid contains MCBl mutated, 
MCBlm.

HindW 0.00

Amp̂

cdc22^
promoter
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on
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Bln\/Avf\l 5.28
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Appendix A.4 Restriction Map of pZMl

Restriction map of fission yeast integration vector, pZMl. 
Entire cdc22^ promoter region fused in frame with lacZ. 
Similar to pPJK7 but plasmid contains MCB2 mutated, 
MCB2m,

HindW 0.00

Amp'

promoter
Kpn\ 1.69

on

pZMI

10.75 Kb lacZ

ura4
Sa/1 7.02

HindW 6.98 
Stul 6.17 EcoRl 4.78

Bln\/Avr\\ 5.28
BamHl 5.22

Hindu 5.23
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Appendix A.5 Restriction Map of pZM2

Restriction map of fission yeast integration vector, pZM2. 
Entire cdc22^ promoter region fused in' frame with lacZ. 
Similar to pPJK7 but plasmid contains MCBl mutated, MCBlm 
and MCB2 mutated. MCB2m.

HindW 0.00

Amp'

cc/c22+l
promoter

on

pZM2

10.75 Kb lacZ

ura4
Sa/I 7.02

HindW 6.98 
Stul 6.17

Bln\/Avr\\ 5.28
BamHl 5.22

HindW 5.23

Kpnl 1.69
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Appendix B

♦  Oligonucleotide primer list

Glasgow collection 
number

GO 36

GO 37 

GO 39 

GO 40 

GO 42 

GO 44 

GO 46 

GO 47 

GO 365 

GO 366 

GO 367 

GO 368 

GO 369 

GO 370 

GO 373 

GO 374 

GO 375 

GO 376

Sequence

GCGC CTCGAG GTA GTT CAA TCT CAT AGA 
cdc22^ clone 5’ MCBl region with27ioI site

GCGC CTCGAG CTC TGT TTA CGA CTG AAT G 
cdc22^ clone 3’ MCBl region withATfoI site

GCGC CTCGAG CAT TCA GTC GTA AAC AGA G 
cdc22^ Clone 3’ MCBX region with Xhol site

CGCG CTCGAG CCG CTA AAA TAA GTC CGA 
cdc22^ Clone 5’ MCBX region withZ^oI site

GCGC CTCGAG GGT GGT AAA TAC CGG GAA 
cdc22^ Clone 3’ MCB2 region with A%oI site

GCGC CTCGAG CAT TGA TCA ACA TGA CTT AAA G 
cdc22* Clone 5’ MCB2 region vilihXhol site

CAC GCC TGG CGG ATC TG
3’ to amplify insert from pSPA178 Xhol site

CTA AAC TCA CAA ATT AGA GC 
5’ to amplify insert from pSPA178 Xhol site

CTT CTC CCG CAG CAC CTT CC 
5’ to amplify cdt2^

CCA TCC CGA GAA CAA CTT ACC 
3’ to amplify cdt2^

GGA GAC AGA GAA TCT TCC CC 
3’ to amplify

CAT GGC AC GAC CCA AGA C 
5’ to amplify

GGG CAG AAG CAC ATA ACG
3’ to amplify gene upstream to rad21^, Spcc338.l8c

CTG CGC AAA ACA GTT CCC G
5’ to amplify gene upstream to rad21*, Spcc338.18c

ACT CCC GAG GAC GTC TTC AT
3’ to amplify gene upstream to Spb428.17c

CTT CCA CTA CCT ATC GGG
5’ to amplify gene upstream to cdtl^^ Spb428.17c

TAC AAG TCG CGG CAT CCC AA 
3’ to amplify ste9^

ACC TCG CAC AAA CGA GGG AG 
5’ to amplify

173



Appendix B

♦ Oligonucleotide primer list continued

GO 377 GAG GAT CTA CTG CG GTC G
3’ to amplify gene upstream of ste9*, Spacl44.14c

GO 378 TGT AGG GGT GAT GCT TTC
5’ to amplify gene upstieam of ste9*, Spacl44.14c

GO 379 CAT CTG GTG ATG CCT GAG GA
3’ to amplify spkl'^ gene

GO 380 GTA TGT GTG CCG CGC TTC AC
5’ to amplify spkl^ gene

GO 381 CTC GGC CTG GAA GTT TAA TG
3’ to amplify gene upstream to s p k t ,  Spac31g5.10

GO 382 CTC ATC CGG AAG CCA AAC TC
5’ to amplify gene upstream to spkl^, Spac31g5.10

GO 383 GAG GTT TCA AAC GAC CGC
3’ to amplify ste^

GO 3 84 CAT GCG CTA TCA AAG AGC CC
5’ to amplify ste6^

GO 385 CGG CAC TCC AGA TCA GCA C
3’ to amplify gene upstream to ste6^, Spccl450.16c

GO 386 ACA AGG CGT CGG GGC GTT G
5’ to amplify gene upstieam to ste6^, Spccl450.16c

GO 499 GTT CGG ATG ACT AGA CTA GGC ATC GT
“D” 3’ to amplify MCB2(a) mutated in cdc22^ for site directed mutagenesis

GO 500 ATT AGC GTG ACT AGT CTG AAC TAG TTT TTC ATT TAC
“F” 3’ to amplify MCB2(b) mutated in cdc22^ for site directed mutagenesis

GO 501 ACG TGA TGC CTA GTC TAG TCA TCC GAA C
“C” 5’ to amplify MCB2(a) mutated in cdc22^ for site directed mutagenesis

GO 502 GTA AAT GAA AAA TA GTT CAG ACT AGT CAC GCT AAT
“E” 5’ to amplify MCB2(b) mutated in cdc22^ for site directed mutagenesis

GO 503 AAG CTT TCT CAC AGC ACG TAA TTG C
“A” cdc22^ clone 3’ MCB2 region with Hindfll site

GO 504 GGT ACC ACG AGC AGT GAT TTT GTC
“B” cdc22^ clone 5’ MCB2 region with Kpn\ site

GO 521 GCT TCG TCG GCA TCT CTG C
5’ specific to ura4^ promoter region in chromosome
(to check integration vector is inserted into the ura4^ locus, with GO 521)

GO 522 TTC GCG CGT CCC GCA GCG C
3’ specific to lacZ in integration vectors, pPJK7, pPJKlO, PZMl and PZM2 
(to check integration vector is inserted into the ura4^ locus with GO 522)
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Appendix C

♦  Bacterial strain list

Glasgow collection 
number Genotype

GBIO

GB57

GB58

GB73

GB74

GB75

GB76

GB 150

GB 154

GB245

GB246

E. coll DH5a containing pSPA178 plasmid

E. coli DH5a containing pSPA178 plasmid with MCB2 forward orientation insert

E. coli DH5a containing pSPA178 plasmid with MCB2 reverse orientation insert

E. coli DH5a containing pSPA178 plasmid with MCBl forward orientation insert

E. coli DH5a containing pSPA178 plasmid with MCBl reverse orientation insert

E. coli DH5a containing a TA cloning vector with MCBl insert

E. coli DH5a containing a TA cloning vector with MCB2 insert

E. coli DH5a containing pPJK7 integration plasmid containing wilt type cdc22* 
promoter fused inframe with lacZ.

E. coli DH5a containing pPJKlO integration plasmid, similar to pPJK7 with 
MCBl cluster mutated (MCBlm)

E. coli DH5a containing pZMl integration plasmid, similar to pPJK7 with 
MCB2 cluster mutated (MCB2m) using primers:
GO 499, GO 500, GO501, GO 502, GO 503 and GO 504

E. coli DH5a containing pZM2 integration plasmid, similar to pPJK7 with 
MCBl and MCB2 clusters mutated (MCBlm and MCB2m) using primers:
GO 499, GO 500, GO 501, GO 502, GO 503 and GO 504
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Appendix D

♦  Fission yeast strain list

Glasgow  collection  
number Genotype Plasmid

G G 28 h+ cdclO-129

GG 75 h+ leul-32 ura4-294

G G 108 h+ cdclO-C4 ura4~D18

G G 155 h" resl::ura4^ ade6-M216 um4~D18 leul-32

G G 156 h' res2::ura4^ ura4-DI8 leul-32

G G 158 h" rep2::wm4^ ura4-D18 leul-32

G G 193 h‘ cdc25-22 leul-32 ura4-D18

G G 217 h+ 972 (“wild-type”)

G G 251 h' cdc2S-22 leul-32 ura4-D18 pSPA178.M CBl ‘forward’

G G 252 h‘ cdc25-22 leul-32 ura4-D18 pSPA178.M CB2 ‘forward’

G G 253 h" cdc25-22 leul-32 ura4-D18 pSPA178.M CB2 ‘reverse’

G G 257 h" cdclO-Cé ura4r-D18 pSPA178.3M CB

G G 258 h+ cdclO-C4 ura4-D18 pSPA178

G G 265 h' cdc25-22 leul-32 ura4-D18 pSPA178.M CBl ‘reverse’

GG 469 h' cdc25-22 leul-32 ura4~294

G G 470 h" cdc25-22 ura4^::ura4-294 leul-32 pJK7 (w ild type M C Bs)

G G 471 h+ cdc25-22 ura^::ura4-294 leul-32 pJKlO (M C B lm )

G G 591 h+ cdc25-22 ura4^\:ura4-294 leul-32 PZM l (M CB2m)

G G 592 cdc25-22 ura4'^::ura4-294 leul-32 PZM2 (M C B lm  and MCB
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