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Abstract

We employ the level-n action of the affine symmetric group to construct cylindric versions
of elementary and complete symmetric functions. We identify their expansions in terms
of the bases of ordinary elementary and complete symmetric functions with the structure
constants of generalised Verlinde algebras. Then we describe statistical vertex models
associated to the q-boson model, when evaluated at q = 1, and study the interplay between
the partition functions of these models and the cylindric symmetric functions introduced
above.
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Chapter 1

Introduction

The basis of the ring of symmetric functions Λ given by the Schur functions {sλ}λ∈P+ ,
where λ runs over the set P+ of partitions, is one of the most important and well studied
within the theory of symmetric functions [52,60,67]. The reason for this lies in its connec-
tion with several other branches in mathematics, such as representation theory, algebraic
geometry and integrable systems. Consider for example the following product expansion,

sµsν =
∑
λ∈P+

cλµνsλ , (1.1)

where the non-negative integers cλµν are the celebrated Littlewood-Richardson coefficients
(see loc. cit.). Recall [52] the inverse limit Λ = lim

←
Λk, where Λk is the ring of symmetric

polynomials in k variables. The Schur polynomials sλ(x1, . . . , xk) are the characters of
the finite dimensional irreducible polynomial representations of the general linear group
GLk(C) [29], and the product expansion (1.1) then describes the tensor product multi-
plicities of the mentioned GLk(C)-representations. It is known (see e.g. [66] and refer-
ences therein) that the cohomology ring H∗(Gr(k, n)) of the Grassmannian Gr(k, n) is
isomorphic to Λk/〈s(n+k−1), . . . , s(n)〉. A basis of the latter consists of the Schur poly-
nomials sλ(x1, . . . , xk) for which the Young diagram of λ fits inside a k × (n − k) rect-
angle. An isomorphism between these two rings is given as follows: the Schubert class
σλ ∈ H∗(Gr(k, n)), which is the cohomology class of the Schubert variety Ωλ ⊂ Gr(k, n),
is mapped to sλ(x1, . . . , xk). The coefficients cλµν appearing in (1.1) are the structure con-
stants ofH∗(Gr(k, n)), and they have the geometric interpretation as the intersection num-
ber of the Schubert varieties Ωµ,Ων ,Ωλ. Finally, there exists a purely combinatorial rule
for the computation of the coefficients cλµν . This is the celebrated Littlewood-Richardson
rule [52, 60,67].

The ring of symmetric functions Λ carries the structure of a Hopf algebra [73]. Employing

1
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the coproduct ∆ : Λ→ Λ⊗Λ, one can define ‘skew Schur functions’ sλ/µ via the equation
(see e.g. [52, I.5])

∆(sλ) =
∑
µ∈P+

sλ/µ ⊗ sµ . (1.2)

As explained in Chapter 2, the Hopf algebra structure on Λ can be used to obtain the
Littlewood-Richardson coefficients via the expansion

sλ/µ =
∑
ν∈P+

cλµνsν . (1.3)

This implies that the skew Schur functions are ‘Schur positive’, that is their expansion
coefficients in terms of ordinary Schur functions are non-negative integers. An explicit
construction of the irreducible representations of GLk(C) is given by the Weyl modules [25],
which can be generalised to skew shapes λ/µ. The corresponding characters are given
by sλ/µ(x1, . . . , xk), and the expansion (1.3) describes the decomposition of ‘skew Weyl
modules’ into irreducible GLk(C)-representations (see loc. cit.). The adjective ‘skew’
stems from the fact that sλ/µ has an alternative combinatorial description given by

sλ/µ =
∑
T

xT , (1.4)

where the sum runs over all column strict tableaux T whose shape is given by the skew
tableau λ/µ. We set xT = x

wt1(T )
1 x

wt2(T )
2 · · · , where wti(T ) is the number of entries in T

which is equal to i. We will provide further details in due course (see Figure 2.2 for an
example of column strict tableau). A similar description holds for ordinary Schur functions
thanks to the equality sλ = sλ/∅, with ∅ the empty partition.

The combinatorial formula (1.4) can be generalised to cylindric skew shapes and cylindric
row strict tableaux [5, 28, 53, 58]. In fact, skew Schur functions are particular cases of
‘cylindric Schur functions’, which are defined [58] as

sλ/d/µ =
∑
T̂

xT̂ . (1.5)

Here λ and µ are partitions fitting inside a k × (n− k) rectangle, and d is a non-negative
integer. The sum runs over all cylindric column strict tableaux of shape λ/d/µ, and
xT̂ = x

wt1(T̂ )
1 x

wt2(T̂ )
2 · · · (see Chapter 3 for further details). The representation theoretical

interpretation of the expansion (1.3) generalises to toric Schur functions, which are the
specialisation of sλ/d/µ to k variables. It was conjectured in [58] that sλ/d/µ(x1, . . . , xk) is
the GLk(C)-character of a ‘cylindric Schur module’, and a potential proof of this statement
with the help of positroid classes appears in [57]. It follows that the coefficients Cλ,d

µν defined
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via the expansion [58]

sλ/d/µ(x1, . . . , xk) =
∑
ν∈P+

Cλ,d
µν sν(x1, . . . , xk) (1.6)

are non-negative integers. In particular, we have that Cλ,0
µν = cλµν . While the cylindric

Schur functions (1.5) are not Schur positive, they are instead ‘cylindric Schur positive’, as
conjectured in [53]. In fact, we have the expansion [50]

sλ/d/µ =
d∑

d′=0

∑
ν∈P+

Cλ,d′

µν sν/(d−d′)/∅ . (1.7)

An alternative proof of (1.7) was presented in [45] by employing the analogues of the
Schur polynomials as elements in the principal Heisenberg subalgebra. In the discussion of
algebraic geometry, the coefficients Cλ,d

µν are known as (3-point) Gromov-Witten invariants
[71]. They count the number of rational curves of degree d in Gr(k, n) that meet fixed
generic translates of the Schubert varieties Ωµ,Ων ,Ωλ. The Gromov-Witten invariants are
the structure constants of the (small) quantum cohomology qH∗(Gr(k, n)) [26, 32, 69, 71].
As a linear space, qH∗(Gr(k, n)) is equal to the tensor productH∗(Gr(k, n))⊗Z[q], whereas
the product of two Schubert classes in qH∗(Gr(k, n)) is a q-deformation of the product
in H∗(Gr(k, n)). The map σλ 7→ sλ(x1, . . . , xk) introduced above is an isomorphism of
rings [61]

qH∗(Gr(k, n)) ∼= Λk ⊗ Z[q]/〈s(n+k−1), . . . , s(n−1), s(n) + q(−1)k〉 . (1.8)

and we have the following product expansion in the quotient ring (1.8),

sµ(x1, . . . , xk)sν(x1, . . . , xk) =
∑
d≥0

qd
∑
λ∈P+

Cλ,d
µν sλ(x1, . . . , xk) . (1.9)

A combinatorial proof for the non-negativity of Cλ,d
µν is still missing. There exists a formula

for Cλ,d
µν as an alternating sum of Littlewood-Richardson coefficients [5], but this formula

is not manifestly positive. Attempts have been made to solve this problem by means of
Knutson-Tao puzzles [11,12,47].

1.1 Verlinde algebras

It is known [71] that the small quantum cohomology qH∗(Gr(k, n)), when evaluated at
q = 1, is isomorphic to the ĝln-Verlinde algebra at level k. The quotient of qH∗(Gr(k, n))

obtained by imposing the further relations q = s(1k) and s(n) = 1 is in turn isomorphic to
the ŝln-Verlinde algebra at level k [46]. The Verlinde algebra of an affine Lie algebra ĝ
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is the fusion algebra of the integrable highest weight modules of level k (see i.e. [33] for
details). The structure constants of the Verlinde algebra, the so-called fusion coefficients,
are given by the celebrated Verlinde formula [70]

N λ
µν =

∑
σ

SµσSνσS−1
σλ

S∅σ
, (1.10)

where λ, µ, ν are labels for the integrable dominant weights of level k. The characters
of the integrable highest weight modules of level k yield a representation of the modular
group SL2(Z) [33]. The images of the generators of SL2(Z) are known as the S-matrix
(which appears in the Verlinde formula above) and the T -matrix of the Verlinde algebra.
There is a geometrical interpretation of the fusion coefficients as the dimension of moduli
spaces of generalised θ-functions, the so-called conformal blocks [4, 23].

The Verlinde algebra plays a central role in the discussion of conformal field theory (CFT).
Wess-Zumino-Witten models, which are a subclass of rational CFTs, can be constructed
from the integrable highest weight modules of affine Lie algebras, with the level k fixing
the value of the central element, and the primary fields being in one-to-one correspondence
with the highest weight vectors. The fusion of two primary fields is then described by the
Verlinde formula. The representation of SL2(Z) mentioned above is at the core of modular
covariance in rational CFTs (see e.g. the textbook [17] for further details).

Modular tensor categories (MTCs) arise as representation categories of rational CFTs (see
e.g. [55, 72] and references therein). The Verlinde algebra is the Grothendieck ring of a
MTC [2], which is the ring generated by isomorphism classes of simple objects, and the
Verlinde formula yields the structure constants of this ring. The S-matrix and T -matrix
of a MTC, which represent the modular datum of the MTC itself, form a projective
representation of the modular group SL2(Z) (see e.g. [10]). The notion of modular data
is important because MTCs are usually classified according to their modular data [21]. A
MTC determines uniquely a three-dimensional topological quantum field theory (TQFT)
[68], and the Verlinde algebra itself can be also seen as a TQFT, but a two-dimensional one.
It is well known [1] that the category of two-dimensional TQFTs is canonically equivalent
to the category of commutative Frobenius algebras.

1.2 Statistical vertex models

The study of statistical vertex models has attracted increasing attention over the last
century, reaching its climax with Baxter’s solution of the eight-vertex model [3]. The
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hallmark of an exactly solvable vertex model consists in the Yang-Baxter equation [3, 9]

R12(x, y)L1(x)L2(y) = L2(y)L1(x)R12(x, y) . (1.11)

Here L(x) is a (infinite dimensional) matrix whose entries belong to an appropriate algebra
H. In other words, we have that L(x) ∈ End(V (x)⊗H), where V is some complex vector
space and V (x) ≡ V ⊗ C[[x]]. Moreover, R(x, y) ∈ End(V (x)⊗ V (y)). The Yang-Baxter
equation is therefore an identity in End(V (x)⊗V (y)⊗H), and the subscripts indicate which
copy of V the operators act on. The monodromy matrix T (x) = Ln(x) · · · L2(x)L1(x) ∈
End(V (x)⊗H⊗n), where the subscripts now indicate the copy of H in the tensor product
H⊗n, is also a solution of the Yang-Baxter equation. This can be employed to define
Baxter’s ‘transfer matrix’ as the operator T (x) ∈ H⊗n ⊗ C[[x]] given by the partial trace

T (x) = TrV T (x) . (1.12)

As a direct consequence of the Yang-Baxter equation, we have the commutation relation

T (x)T (y) = T (y)T (x) (1.13)

for arbitrary x, y. The partition function of a statistical vertex model encodes all the phys-
ical properties of the model itself. Imposing period boundary conditions in the horizontal
direction (that is, defining the vertex model on a cylinder) the partition function can be
identified with the matrix element

〈λ|T (x1)T (x2) · · ·T (xk)|µ〉 .

The algebra H⊗n acts on the vector space spanned by basis vectors |µ〉 in bra-ket notation
from physics, where µ are labels for the vertical boundary conditions of the lattice.

The commutation relation (1.13) implies that the partition function is symmetric in the
variables (x1, . . . , xk). A natural question is whether there exists an expansion in terms
of known symmetric functions which exhibits interesting combinatorial features. It was
shown [42] that the toric Schur functions (1.6) can be identified with the partition functions
of two exactly solvable vertex models, namely the vicious and osculating models (see loc.
cit. and references therein). A new class of cylindric symmetric functions P ′λ/d/µ(q), which
can be interpreted as cylindric versions of q-Whittaker functions [27], originated from the
computation of the partition function of the vertex model defined by Baxter’s Q+-operator
associated to the q-boson model [41]. If q = 0 one recovers the cylindric Schur functions
defined in (1.5), but with the cylindric loop associated to λ shifted in the vertical direction
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rather than in the diagonal one [41, 53, 58]. The expansion coefficients in terms of Schur
functions are now the structure constants of the ŝln-Verlinde algebra. In fact, with an
appropriate labelling of the basis elements, the latter coincide with the Gromov-Witten
invariants Cλ,d

µν [38]. There is another Q-operator associated to the q-boson model, which
has been identified with a quantum version of Baxter’s Q−-operator [43]. A combinatorial
interpretation for the partition function of the vertex model defined by this operator is
still missing for arbitrary q.

1.3 Quantum integrable models

The transfer matrix T (x) introduced in Section 1.2 can be interpreted as the generator of
quantum integrals of motion of a one-dimensional quantum system [3, 37]. That is, the
coefficients {Tr}r≥0 defined by the expansion

T (x) =
∑
r≥0

xrTr (1.14)

are the commuting Hamiltonians of a quantum integrable model. The basis vectors |µ〉
described above span the Fock space of the algebra H⊗n. This is slightly different from the
XXX or XXZ models, where the quantum integrals of motion are obtained via logarithmic
derivatives of T (x) (see e.g. [18]). In the context of quantum integrability, the methodology
described in Section 1.2 is part of what is known as the ‘Quantum Inverse Scattering
Method’ (QISM), or ‘Algebraic Bethe ansatz’ [22,62–64]. The main feature of the QISM is
that one can employ the Yang-Baxter equation to diagonalise simultaneously the quantum
integrable of motions (see loc. cit.).

There is a remarkable connection between quantum integrable models and Verlinde al-
gebras. Employing non-commutative versions of Schur polynomials, one can endow the
k-particle subspace of the phase model [9] with the structure of an algebra, which is iso-
morphic to the ŝln-Verlinde algebra [46]. The phase model can be diagonalised using
the QISM, and the transition matrix from the basis of eigenvectors to the particle basis
coincides with the S-matrix of the ŝln-Verlinde algebra.

The preceding discussion was generalised to the q-boson model [41]. The k-particle
subspace of this model is endowed with the structure of a Frobenius algebra. This algebra
can be interpreted as a deformation of the ŝln-Verlinde algebra, since for q = 0 it specialises
to the latter. The q-boson model is also diagonalisable via the QISM for q 6= 1, and the
transition matrix from the basis of eigenvectors to the particle basis defines a deformed
S-matrix, which can be employed to construct a deformed Verlinde formula. It is not
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known whether the deformed S-matrix is the generator of a representation of the modular
group SL2(Z) for arbitrary q. The deformed Verlinde formula yields the structure constants
N λ,d
µν (q) of the deformed Verlinde algebra, and the latter are linked to the partition function

of the vertex model defined by the Q+ operator associated to the q-boson model. Namely,
the coefficients N λ,d

µν (q) appear in the expansion of the cylindric q-Whittaker function
P ′λ/d/µ(q) introduced in Section 1.2 in terms of ordinary q-Whittaker functions [41]. A
geometric interpretation or connection to MTCs is currently unknown, so it is of interest
to investigate the simpler case q = 1 first.

1.4 Present work and outline of this thesis

We shall refer to the statistical vertex models defined by the Q+ and Q− operators as-
sociated to the q-boson model (see Section 1.2) as the Q+ and Q− vertex models. The
partition functions of these models depend on a indeterminate z which keeps track of the
winding number around the cylinder. Setting z = 0 and q = 1, the latter can be iden-
tified respectively with ‘skew elementary symmetric functions’ eλ/µ and ‘skew complete
symmetric functions’ hλ/µ which are defined via the following co-product expansions,

∆eλ =
∑
µ∈P+

eµ ⊗ eλ/µ , ∆hλ =
∑
µ∈P+

hµ ⊗ hλ/µ . (1.15)

The basis {eλ}λ∈P+ and {hλ}λ∈P+ of elementary and complete symmetric functions will
be described in Chapter 3. This is the main observation that motivated the present work
from a combinatorial point of view.

We will show that the symmetric functions eλ/µ and hλ/µ have combinatorial expressions
which resemble the one for skew Schur functions given by (1.3). These expressions are
obtained by employing the cardinalities of sets involving the symmetric group. With the
help of the affine symmetric group and cylindric reverse plane partitions [28], we will
generalise eλ/µ and hλ/µ to cylindric analogues eλ/d/µ and hλ/d/µ, the cylindric elementary
and complete symmetric functions. We will prove the validity of the following expansions,

eλ/d/µ =
d+n∑
d′=0

∑
ν∈P+

N λ,d′

µν (1)eν/(d−d′)/∅ , hλ/d/µ =
d+n∑
d′=0

∑
ν∈P+

N λ,d′

µν (1)hν/(d−d′)/∅ , (1.16)

where the coefficients N λ,d
µν (1) coincide with the structure constants N λ,d

µν (q) of the de-
formed Verlinde algebra discussed in Section 1.3, when evaluated at q = 1. We will show
that the symmetric function eλ/d/µ can be identified with the partition function of the Q+

vertex model for q = 1 and generic z. In other words, eλ/d/µ coincides with the cylindric
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q-Whittaker function P ′λ′/d/µ′(q) discussed in Section 1.2, when evaluated at q = 1. On
the other hand, the symmetric function hλ/d/µ has not been introduced in the literature
previously. We will describe the link between hλ/d/µ and the partition function of the Q−

vertex model for q = 1 and generic z. Part of this thesis is a joint work with C. Korff
that appears in [44, 45]. We will refer to these papers when necessary. In particular, the
connection with quantum integrable systems is not in [44,45].

We finish this introduction with an outline of this thesis. The reader may find it useful to
refer to the flowchart presented in Figure 1.1.

Chapter 2 We recall the notions of partitions, plane partitions, and the symmetric group.
Then we introduce the ring of symmetric functions Λ, and we describe some of its
bases. We present some properties of the symmetric functions eλ/µ and hλ/µ, and
we provide their expansions in terms of the bases of Λ described previously. Finally,
we give combinatorial expressions for eλ/µ and hλ/µ which resemble the one for skew
Schur functions given by (1.3).

Chapter 3 We recall the notions of cylindric reverse plane partitions and the affine sym-
metric group. With the help of these mathematical objects, we generalise eλ/µ and
hλ/µ to cylindric analogues eλ/d/µ and hλ/d/µ. Then we provide the expansions of
eλ/d/µ and hλ/d/µ in terms of the bases of Λ introduced in Chapter 2, and we prove
the validity of the expansions (1.16). To this end, we first derive some product ex-
pansions which hold in a quotient of the ring Λk ⊗ Z[z, z−1]. We finish this chapter
by discussing some further properties of eλ/d/µ and hλ/d/µ.

Chapter 4 We describe the Q+ and Q− vertex models for the case q = 1, and we present
three solutions of the Yang-Baxter equation. Then we introduce two further vertex
models, which are related to the previous ones by taking the adjoint of the transfer
matrices. We evaluate the partition functions of all these vertex models in terms
of eλ/d/µ and hλ/d/µ. In the second part of this chapter we describe the conserved
charges (i.e. the quantum integral of motions) for the free boson model, which is the
q = 1 specialisation of the q-boson model. We employ the matrix elements of these
conserved charges to present an alternative proof for the expansions of eλ/d/µ and
hλ/d/µ described in Chapter 3. Then we use the same matrix elements to illustrate
an alternative approach for computing the partition functions of the vertex models
defined previously.

Chapter 5 We endow the k particle space of the free boson model with the structure of
a Frobenius algebra. This coincides with the deformed Verlinde algebra discussed
in Section 1.3, when evaluated at q = 1. We show that the transition matrix from
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the basis of un-normalised eigenvectors to the particle basis is a generator of a
representation of the modular group SL2(Z). We employ this matrix to construct
a Verlinde-type formula, which yields the structure constants N λ,d

µν (1) appearing in
the expansion (1.16). Finally, we present a formula for N λ,d

µν (1) in terms of tensor
multiplicities for irreducible representations of the generalised symmetric group.
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Figure 1.1: A flowchart connecting the various topics presented in this thesis. It is under-
stood that q = 1.



Chapter 2

Symmetric functions

The first part of this chapter is devoted to the exposition of some basic concepts, which
will be used throughout this thesis. We introduce the ring of symmetric functions Λ, we
discuss its Hopf algebra structure, and we describe some of its bases. For this purpose,
we first recall the notions of partitions, plane partitions, and the symmetric group. In
the second part of this chapter we describe in detail the skew symmetric functions eλ/µ
and hλ/µ, which were introduced in (1.15). In particular, we provide their expansions
in terms of the bases of Λ described earlier in this chapter, and we give combinatorial
expressions by employing the cardinalities of sets involving the symmetric group. From
here to the end of this thesis, we denote with Z≥0 = {0, 1, 2, . . . } the non-negative integers
and with N = {1, 2, 3, . . . } the positive integers. The main references for the first part of
this chapter are [52,60,67].

2.1 Partitions

A partition λ = (λ1, λ2, . . . ) is a (finite or infinite) sequence of weakly decreasing non-
negative integers, that is λ1 ≥ λ2 ≥ · · · , with only finitely many non-zero terms [52]. More
generally, a composition α = (α1, α2, . . . ) is an analogous sequence which is not necessarily
weakly decreasing. As a simple example we have that (3, 2, 0) is a partition, whereas
(0, 1, 2) is a composition. We will not distinguish between two such sequences differing
only by a string of zeroes at the end. So for example we regard (0, 1, 2), (0, 1, 2, 0) and
(0, 1, 2, 0, 0, . . . ) as the same composition. We will refer to P+ as the set of all partitions,
and to P as the set of all compositions. By definition it is clear that P+ ⊂ P .

Let us introduce some notation. Call λi and αi the parts (or the elements) of the
partition λ and the composition α respectively. Denote with ∅ the empty partition, that
is the partition whose parts are all equal to 0. The length of a partition λ is the number
`(λ) of non-zero elements in λ, whereas the weight |λ| is the sum of these elements. The
weight |α| of a composition α is defined in an analogous way. For i ∈ N denote with mi(λ)

11
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Figure 2.1: From left to right we have the Young diagrams of the partition λ = (4, 4, 3),
its conjugate partition λ′ = (3, 3, 3, 2), and the composition α = (2, 0, 1, 3).

the multiplicity of i in λ, that is the number of parts in λ equal to i. Then we have the
equivalent notation for partitions

λ = (1m1(λ), 2m2(λ), . . . ) . (2.1)

The Young diagram of λ is a set of left-justified boxes with λi boxes in the i-th row.
Formally one can think of this as a subset of points in the Z×Z plane, whose coordinates
are increasing from left to right and downwards. Namely, one identifies the lower-right
vertex of the box in the i-th row and j-th column of a Young diagram with the point
(i, j) ∈ Z × Z. Denote with λ′ the conjugate partition of λ, that is the partition whose
diagram is obtained by reflecting the boxes of the diagram of λ along the line {(i, i) | i ∈ Z}.
Then λ′j is the number of boxes in the j-th column of λ, and one can show that

mi(λ) = λ′i − λ′i+1 . (2.2)

It will be useful to extend the notion of Young diagram to compositions [30, 31]. Define
the (Young) diagram of a composition α as a set of left-justified boxes with αi boxes in
the i-th row. See Figure 2.1 for an example.

Let λ, µ ∈ P+, and write µ ⊂ λ if the diagram of µ is contained in the diagram of
λ, that is if µi ≤ λi for all i ∈ N. Assuming that µ ⊂ λ, we define the skew diagram
λ/µ ⊂ Z× Z as

λ/µ = {(i, j) ∈ Z× Z | 1 ≤ i ≤ `(λ), µi < j ≤ λi} . (2.3)

Denote with |λ/µ| = |λ| − |µ| its cardinality, that is the number of boxes in λ/µ. Notice
that if µ = ∅ this simply is the Young diagram of λ. If λ/µ has at most one box in
each row (respectively column) we will call it a vertical (respectively horizontal) strip. By
convention the skew diagram λ/λ, which has no boxes, is both a vertical and a horizontal
strip. We will sometimes use the statement ‘λ/µ is a skew diagram’ to mean that µ ⊂ λ.

2.1.1 Plane partitions and tableaux

Assume throughout this section that λ, µ ∈ P+ with µ ⊂ λ.
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Definition 2.1.1. A plane partition π of shape λ/µ is a filling of the boxes of λ/µ with
positive integers, called the entries of π, which are weakly decreasing from left to right in
rows and down columns.

Since λ/µ ⊂ Z×Z we can interpret a plane partition as a map π : λ/µ→ N, (i, j) 7→ πi,j

with the constraints

πi,j ≥ πi+1,j , if (i+ 1, j) ∈ λ/µ ,

πi,j ≥ πi,j+1 , if (i, j + 1) ∈ λ/µ .

We will call π a reverse plane partition (RPP) if the entries of π are weakly increasing
from left to right and down columns instead. Denote with wti(π) the number of entries
of π equal to i. The weight of a plane partition π is defined as the composition wt(π) =

(wt1(π),wt2(π), . . . ). A similar notation holds for RPPs. See Figure 2.2 for an example.

Lemma 2.1.2. A plane partition π of shape λ/µ with highest entry l ∈ N is equivalent to
a sequence {λ(r)}lr=0 of partitions with

µ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(l) = λ . (2.4)

An analogous statement is true for RPPs.

Proof. This is a well known result, nevertheless we present a proof for RPPs since in
the next chapter we will generalise these objects to the ‘cylinder’. The proof for plane
partitions is similar and therefore we omit it. So suppose that π is a RPP with highest
entry l, and for r = 1, . . . , l let λ(r) be the partition whose Young diagram is obtained
by joining the Young diagram of µ with the boxes of π containing the entries from 1 to
r. In particular this gives λ(l) = λ, and together with λ(0) = µ we obtain a sequence of
partitions {λ(r)}lr=0 which by construction satisfies (2.4). Conversely, if for r = 1, . . . , l we
fill the boxes of the skew diagram λ(r)/λ(r−1) with the integer r, we obtain a RPP π of
shape λ/µ with highest entry l, and moreover wtr(π) = |λ(r)/λ(r−1)|.

In the following we will focus our attention mostly on RPPs and their special cases
of row strict and column strict tableaux. The latter are also known in the literature as
semistandard tableaux.

Definition 2.1.3. A row (respectively column) strict tableau T of shape λ/µ is a RPP
whose entries strictly increase along each row (respectively column).

Equivalently, a row (respectively column) strict tableau of shape λ/µ is a sequence of
partitions {λ(r)}lr=0 satisfying (2.4) such that λ(r)/λ(r−1) is a vertical (respectively hori-
zontal) strip for r = 1, . . . , l. See once again Figure 2.2 for an example.
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Figure 2.2: Let λ = (4, 3, 2, 1) and µ = (2, 1). From left to right we have a RPP, a column
strict tableau and a row strict tableau, all of which have weight (3, 2, 2). The RPP on the
left is equivalent to the sequence of partitions (2, 1), (3, 3), (3, 3, 2), (4, 3, 2, 1).

Definition 2.1.4. A standard tableau T of shape λ/µ is a row strict tableau which
contains each entry 1, 2, . . . , |λ/µ| exactly once.

It follows immediately from the definition above that a standard tableau has weight
wt(T ) = (1, 1, . . . , 1). Furthermore, notice that a standard tableau is also a column strict
tableau. Define fλ/µ as the number of standard tableaux of shape λ/µ. For µ = ∅ we have
the formula (see e.g. [67, Ch. 3.10])

fλ =
|λ|!∏

(i,j)∈λ hλ(i, j)
, hλ(i, j) = λi + λ′j − i− j + 1 . (2.5)

2.1.2 The symmetric group

For a review of the symmetric group, together with its representation theory, see for
example [60]. Fix k ∈ N until the end of this section.

Definition 2.1.5. The symmetric group Sk in k letters is the Coxeter group Ak−1, that
is the group generated by {σ1, . . . , σk−1} subject to the relations

σ2
i = 1 , σiσi+1σi = σi+1σiσi+1 , σiσj = σjσi for |i− j| > 1 . (2.6)

This group can be realised as the group of bijections from [k] ≡ {1, 2, . . . , k} to itself,
using composition as the group product. For this reason, the elements of Sk are called
‘permutations’. With this realisation, the generators σi are given by the following maps,

σi(m) =


i+ 1 , m = i

i , m = i+ 1

m , otherwise

.

Denote with glk the Lie algebra of the general linear group GLk(C). Moreover, let Pk =⊕k
i=1 Zεi be the glk weight lattice with standard basis ε1, . . . , εk and inner product (εi, εj) =

δij. We use the notation α = (α1, . . . , αk) for α =
∑k

i=1 αiεi ∈ Pk. Denote with P≥0
k ⊂ Pk

the positive weights, that is

P≥0
k = {α ∈ Pk | αi ≥ 0 for i = 1, . . . , k} , (2.7)
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and with P+
k ⊂ P

≥0
k ⊂ Pk the positive dominant weights, namely

P+
k = {λ ∈ Pk | λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0} . (2.8)

We will often identify the compositions α with αi = 0 for i > k as weights in P≥0
k . In

particular we identify the partitions λ with `(λ) ≤ k as weights in P+
k .

We shall use the right action Pk×Sk → Pk given by (α,w) 7→ α.w = (αw(1), . . . , αw(k)).
In particular, α.σi is the weight obtained from α by permuting its entries at positions i
and i+ 1. Let λ ∈ P+

k and denote by Sλ ⊂ Sk its stabilizer subgroup, that is the subgroup
of permutations w ∈ Sk such that λ.w = λ. The stabilizer subgroup Sλ of the weight
λ ∈ P+

k is a parabolic subgroup of Sk (see for example [8, Ch. 2.4] for further details). Its
cardinality is given by |Sλ| =

∏
i∈Z≥0

mi(λ)!, wheremi(λ) for i ∈ Z denotes the multiplicity
of i in the weight λ. Denote with Sλ \ Sk the set of right cosets {Sλw | w ∈ Sk} of Sλ in
Sk. The following is a special case of a more general result involving Coxeter groups and
parabolic subgroups, which can be found for instance in [8, Prop. 2.4.4 and Cor. 2.4.5].
For this purpose, define the length of w ∈ Sk as

`(w) = min{r ∈ N | w = σi1 · · ·σir for some i1, . . . , ir ∈ [k − 1]} . (2.9)

Proposition 2.1.6. (i) Each right coset Sλw has a unique representative of minimal
length.

(ii) Every element w ∈ Sk has a unique decomposition w = wλw
λ, with wλ ∈ Sλ and

wλ a minimal length representative of one right coset in Sλ \ Sk.

Denote with Sλ the set of minimal length representatives of the right cosets Sλ \ Sk.

Example 2.1.7. Let λ = (3, 3, 2) ∈ P+
3 . Then Sλ = {1, σ1} and Sλ = {1, σ2, σ2σ1}.

2.2 The ring of symmetric functions

Let x = {x1, x2, . . . } be an infinite set of commuting indeterminates and consider the
formal power series ring Z[[x1, x2, . . . ]]. For each k ∈ N we have the left action Sk ×
Z[[x1, x2, . . . ]]→ Z[[x1, x2, . . . ]] given by

(
w, f(x1, x2, . . . )

)
7→ w.f(x1, x2, . . . ) = f(xw(1), . . . , xw(k), xk+1, . . . ) . (2.10)

The next definition is equivalent to the one which is given for example in [67, p. 286] and
in [60, p. 151].

Definition 2.2.1. The ring of symmetric functions Λ is the subring of Z[[x1, x2, . . . ]] whose
elements f(x1, x2, . . . ) satisfy the following conditions: (i) for every k ∈ N and w ∈ Sk one
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has w.f(x1, x2, . . . ) = f(x1, x2, . . . ), (ii) the degrees of the monomials in f(x1, x2, . . . ) are
bounded.

We will most frequently drop the variable dependence, and we will write f rather than
f(x1, x2, . . . ). We say that f ∈ Λ has degree n ∈ Z≥0 if all the monomials appearing in
f have degree n. The ring Λ then has the structure of a graded ring, where the grading
is given by the degree. We will often be interested in dealing with a finite number of
variables (x1, . . . , xk) for some k ∈ N. To this end, we will use the projection

Λ→ Λk = Z[x1, . . . , xk]
Sk , (2.11)

which is defined by setting xi = 0 for i > k. The notation on the RHS of (2.11) stands for
the set of Sk-invariants of Z[x1, . . . , xk]. For f ∈ Λ denote by f(x1, . . . , xk) its projection
onto Λk. Condition (ii) in Definition 2.2.1 ensures that this projection is well defined, that
is f(x1, . . . , xk) consists of a finite sum of monomials.

Remark 2.2.2. There is yet another alternative definition of the ring Λ as the in-
verse limit Λ = lim

←
Λk in the category of graded rings, see [52, I.2] for further details.

For our purposes, it is enough to realise that each f ∈ Λ can be equivalently defined
as a sequence of functions {fk(x1, . . . , xk)}k∈Z≥0

, with fk(x1, . . . , xk) ∈ Λk, such that
fk′(x1, . . . , xk, 0, . . . , 0) = fk(x1, . . . , xk) whenever k′ ≥ k. In particular, we have that
the projection Λ→ Λk sends f to fk(x1, . . . , xk).

2.2.1 Monomial symmetric functions

We now proceed to describe various bases of Λ [52, 60, 67]. For λ a partition and α a
composition, we write α ∼ λ and say that α is a permutation of λ, if there exist distinct
indices {i1, i2, . . . , i`(λ)} such that αij = λj for j = 1, . . . , `(λ) and if, furthermore, the
other parts of α are 0. In particular λ ∼ λ. The monomial symmetric functions are
defined as

mλ =
∑
α∼λ

xα =
∑
α∼λ

xα1
1 x

α2
2 · · · . (2.12)

Notice that m∅ = 1 as the only permutation of ∅ is given by itself.

Example 2.2.3. Some permutations of λ = (3, 3, 2) are given by (3, 3, 2), (3, 2, 3), (2, 3, 3),
(0, 3, 3, 2), (2, 0, 3, 3). Thus m(3,3,2) = x3

1x
3
2x

2
3 + x3

1x
2
2x

3
3 + x2

1x
3
2x

3
3 + x3

2x
3
3x

2
4 + x2

1x
3
3x

3
4 + . . . .

The set {mλ}λ∈P+ is a basis of Λ, and thus the following expansion is well defined,

mµmν =
∑
λ∈P+

fλµνmλ . (2.13)
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The coefficients fλµν are non-negative integers, and they equal the cardinality of the set [13]

{(α, β) ∈ P × P , α ∼ µ, β ∼ ν | α + β = λ} , (2.14)

where the sum of two compositions α and β is defined as the composition γ with parts
γi = αi + βi for i ∈ N. By definition we have that fλµν = fλνµ, and taking advantage of
(2.14) it follows that fλµν is non-zero only if µ, ν ⊂ λ.

Example 2.2.4. Let µ = (2, 2, 1), ν = (1, 1) and λ =(3,2,2). Consider the compositions
α1, α2 ∼ µ given by α1 = (2, 2, 1), α2 = (2, 1, 2) and the compositions β1, β2 ∼ ν given by
β1 = (1, 0, 1), β2 = (1, 1, 0). Then fλµν = 2, since the pairs (α1, β1) and (α2, β2) are the
only ones satisfying the constraint α1 + β1 = α2 + β2 = λ.

Lemma 2.2.5 ( [52]). Let λ ∈ P+, k ∈ N and project onto the ring Λk. We have that
mλ(x1, . . . , xk) = 0 if `(λ) > k, otherwise

mλ(x1, . . . , xk) =
∑
w∈Sλ

x
λw(1)

1 · · ·xλw(k)

k =
1

|Sλ|
∑
w∈Sk

x
λw(1)

1 · · ·xλw(k)

k . (2.15)

For `(λ) ≤ k it is understood that λ ∈ P+
k and thus Sλ, Sλ ⊂ Sk.

Proof. Each monomial xα appearing in (2.12) consists of a product containing `(λ) vari-
ables xi. If `(λ) exceeds k then at least one of these terms equals 0 since xi = 0 for i > k.
This means that xα = 0 for all α ∼ λ and thus mλ(x1, . . . , xk) = 0. So suppose that
`(λ) ≤ k. For α ∼ λ we have that xα is non-zero if and only if the non-zero parts of α
are in the first k positions. Assume that xα is non-zero, then both λ, α ∈ Pk and we can
take advantage of the right action Pk × Sk → Pk described above. Since α ∼ λ there
exists a unique permutation w ∈ Sλ ⊂ Sk such that α = λ.w, that is xα = x

λw(1)

1 · · ·xλw(k)

k ,
and the first equality in (2.15) follows by applying the same argument to each non-zero
monomial xα in (2.12). To prove the second equality, decompose each w ∈ Sk as in part
(ii) of Proposition 2.1.6, and then use the fact that λ.wλ = λ for wλ ∈ Sλ.

Remark 2.2.6. For every k ∈ N we have that the set {mλ(x1, . . . , xk)}λ∈P+
k
is a basis of

Λk. See [52, I.2] for details.

2.2.2 Elementary and complete symmetric functions

The next two bases of Λ of interest are given by the elementary symmetric functions
{eλ}λ∈P+ and the complete symmetric functions {hλ}λ∈P+ respectively. For r ∈ N these
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are defined as

er =
∑

1<i1<i2<···<ir

xi1xi2 · · ·xir , eλ = eλ1eλ2 · · · , (2.16)

hr =
∑

1≤i1≤i2≤···≤ir

xi1xi2 · · ·xir , hλ = hλ1hλ2 · · · , (2.17)

where e0 = h0 = 1. In other words, er consists of the sum of all products of r distinct
variables, whereas hr is the sum of all monomials of degree r.

Example 2.2.7. We have e2 = x1x2 + x1x3 + · · · + x2x3 + x2x4 + . . . and moreover
h2 = x2

1 + x2
2 + · · ·+ x1x2 + x1x3 + · · ·+ x2x3 + x2x4 + . . . .

For r ∈ N we have the equivalent expressions

er =
∑
α∈P

xα , hr =
∑
β∈P

xβ , (2.18)

where the sums run over all compositions α and β with |α| = |β| = r, and moreover αi =

0, 1 for i ∈ N. A comparison with (2.12) shows that er = m(1r) and hr =
∑

µ∈P+ mµ, where
the second sum is restricted to those µ ∈ P+ with |µ| = r. Let u be an indeterminate,
then the generating functions for the elementary and complete symmetric functions are
the elements in Z[[u]]⊗Z Λ given by

E(u) =
∑
r≥0

urer =
∏
j≥1

(1 + uxj) , (2.19)

H(u) =
∑
r≥0

urhr =
∏
j≥1

1

1− uxj
. (2.20)

From these equalities it can be readily seen that

E(−u)H(u) = 1 , (2.21)

which is equivalent to the relations
∑r

i=0(−1)ieihr−i = 0 for r ∈ N.
We now want to express the symmetric functions {eλ}λ∈P+ and {hλ}λ∈P+ in terms of

monomial symmetric functions. Given a matrix A, denote with ri the sum of its elements
in the i-th row and with cj the sum of its elements in the j-th column. Define the
compositions row(A) = (r1, r2, . . . ) and col(A) = (c1, c2, . . . ). Let λ, µ ∈ P+ and denote
with Mλµ the number of `(λ) × `(µ) matrices A with entries equal to 0 or 1 satisfying
row(A) = λ, col(A) = µ. Similarly let Lλµ be the number of `(λ)× `(µ) matrices A with
entries in Z≥0 satisfying row(A) = λ, col(A) = µ. We then have the following expansions
for the elementary and complete symmetric functions (see e.g. [67, Prop. 7.4.1 and Prop.
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Figure 2.3: Let λ = (2, 1). Above there are displayed some of the column strict tableaux
of shape λ. For example the first tableau has weight (2, 1) and then xT = x2

1x2. Thus
s(2,1) = x2

1x2 + x1x
2
2 + x2

1x3 + x1x
2
3 + · · ·+ 2x1x2x3 + 2x1x2x4 + . . . .

7.5.1])
eλ =

∑
µ∈P+

Mλµmµ , hλ =
∑
µ∈P+

Lλµmµ . (2.22)

2.2.3 Schur functions

We now introduce one of the most important basis of Λ, which is given by the Schur
functions {sλ}λ∈P+ (compare with the discussion presented in Chapter 1). For λ ∈ P+

the Schur function sλ is defined combinatorially as

sλ =
∑
T

xT , (2.23)

where the sum runs over all column strict tableaux T of shape λ, and moreover we set
xT = x

wt1(T )
1 x

wt2(T )
2 · · · . See Figure 2.3 for an example. For α ∈ P with |α| = |λ|, define

the Kostka number Kλα as the number of column strict tableaux of shape λ and weight
α. If instead |α| 6= |λ|, set Kλα = 0. We can then rearrange (2.23) as sλ =

∑
α∈P Kλαx

α

(see for example [67, Ch. 7.10]). Thanks to the relation Kλµ = Kλβ, which holds for all
µ ∈ P+ and β ∈ P such that β ∼ µ (see loc.cit.), we deduce the following expansion of
Schur functions in terms of monomial symmetric functions,

sλ =
∑
µ∈P+

Kλµmµ . (2.24)

The Jacobi-Trudi determinants [60] provide expressions for Schur functions in terms of
elementary and complete symmetric functions. These are given by

sλ = det
(
hλi−i+j

)
1≤i,j≤`(λ)

= det
(
eλ′i−i+j

)
1≤i,j≤λ1

. (2.25)

The Littlewood-Richardson coefficients cλµν ∈ Z≥0 [52, 60,67] are defined via the following
product expansion,

sµsν =
∑
λ∈P+

cλµνsλ . (2.26)

These coefficients admit a combinatorial interpretation in terms of Littlewood-Richardson
tableaux, which is given by the celebrated Littlewood-Richardson rule (see loc. cit.).
The Schur functions sλ(x1, . . . , xk) are the characters of the finite dimensional irreducible
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polynomials representations of the general linear group GLk(C) (see i.e. [29]), and the
product expansion (2.26) then describes the tensor product multiplicities of the mentioned
GLk(C)-representations. The finite dimensional irreducible representations of the general
linear and symmetric groups are related via Schur-Weyl duality [25]. The irreducible
representations Vλ of the symmetric group Sk are labelled by partitions λ with |λ| = k.
By means of the Frobenius characteristic map, one can show that the multiplicity of the
irreducible Vλ in the representation IndS|λ|S|µ|×S|ν|Vµ×Vν of S|λ| is equal to cλµν (see loc. cit.).

2.2.4 Power sums and augmented monomial symmetric functions

Consider now the ring ΛQ = Λ ⊗Z Q of symmetric functions with rational coefficients.
There are two bases of ΛQ of our interest, namely the power sums {pλ}λ∈P+ and the
augmented monomial symmetric functions {mλ}λ∈P+ (see for example [52, p. 110]). For
r ∈ N the former are defined as

pr =
∑
i≥1

xri , pλ = pλ1pλ2 · · · , (2.27)

with the convention p0 = 1, whereas the latter are given by

mλ = uλmλ , uλ =
∏
i≥1

mi(λ)! . (2.28)

Notice that {pλ}λ∈P+ and {mλ}λ∈P+ do not form bases of Λ. As a simple example, we
have that e2 = 1

2
(p2

1 − p2) does not have integer coefficients when expressed in terms of
power sums.

Lemma 2.2.8. Let λ ∈ P+, k ∈ N and project onto the ring Λk. Then mλ(x1, . . . , xk) = 0

if `(λ) > k, otherwise

mλ(x1, . . . , xk) =
1

m0(λ)!

∑
w∈Sk

x
λw(1)

1 · · ·xλw(k)

k . (2.29)

For `(λ) ≤ k it is understood that m0(λ) is the multiplicity of 0 in λ ∈ P+
k .

Proof. This follows by taking advantage of Lemma 2.2.5, and using the fact that |Sλ| =∏
i∈Z≥0

mi(λ)! = uλm0(λ)! for `(λ) ≤ k.

Let once again u be an indeterminate, then the generating function for power sums is
the element in Q[[u]]⊗Q ΛQ given by

P (u) =
∑
r≥1

ur−1pr =
∑
i≥1

xi
1− xiu

=
1

E(−u)

d

du
E(−u) =

1

H(u)

d

du
H(u) . (2.30)
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We want to express the augmented monomial symmetric functions in terms of power
sums. For this purpose, we first introduce some notation. Let l ∈ N, and denote by
Pl the set of all set partitions of [l]. In particular, call 0̂ ∈ Pl the set partition of [l]

into l singletons, that is 0̂ =
{
{1}, {2}, . . . , {k}

}
. Let B1, B2, . . . , Bs be the blocks of

Π ∈ Pl, and cardBi the cardinality of the block Bi. Moreover, define the quantity B(Π) =

(−1)l−s
∏s

i=1(cardBi − 1)!. As an example, the set partition Π =
{
{1, 2}, {3}

}
∈ P3

consists of the two blocks B1 = {1, 2} and B2 = {3}, and then B(Π) = −1. For Π ∈ Pl
and µ ∈ P+ satisfying `(µ) = l, denote with µ(Π) the partition whose parts are given
by
∑

j∈Bi µj, where i = 1, . . . , s. Now, let λ ∈ P+ and set l = `(λ). The augmented
monomial symmetric function mλ satisfies the recurrence relation [54, Theorem 1]

m(λ1,...,λl) = pλlm
(λ1,...,λl−1) −

l−1∑
i=1

m(λ1,...,λi+λl,...,λl−1) , (2.31)

where it is understood that mα = mλ for α ∼ λ. The latter has the (unique) solution
( [19] and [54, Theorem 2])

mλ =
∑
Π∈Pl

B(Π)pλ(Π) . (2.32)

Example 2.2.9. Let λ = (3, 2, 2). The following quantities can be computed directly
from the definitions,

Π B(Π) λ(Π){
{1}, {2}, {3}

}
1 (3, 2, 2){

{1, 2}, {3}
}

−1 (5, 2){
{1, 3}, {2}

}
−1 (5, 2){

{2, 3}, {1}
}

−1 (4, 3){
{1, 2, 3}

}
2 (7)

Using (2.32) one then has that m(3,2,2) = p(3,2,2) − 2p(5,2) − p(4,3) + 2p(7).

We will also make use of the expansion of power sums in terms of monomial symmetric
functions. Let λ, µ ∈ P+ and define Rλµ as the number of set partitions Π ∈ P`(λ) with
µ = λ(Π). Then we have the expansion [67, Prop. 7.7.1]

pλ =
∑
µ∈P+

Rλµmµ . (2.33)

Remark 2.2.10. The bases of symmetric functions labelled by λ ∈ P+ which we described
so far are all of degree |λ|. As we explained at the beginning of Section 2.2, the ring Λ is a
graded ring, where the grading is given by the degree. It follows that the expansions (2.22),
(2.24) and (2.33) only involve partitions µ ∈ P+ with |µ| = |λ|. In particular, for every
r ∈ Z≥0 the expansion coefficients form matrices labelled by λ, µ ∈ P+, with |λ| = |µ| = r,
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which are invertible. One can deduce further constraints on µ ∈ P+ appearing in the
expansions above by means of the natural ordering on P+. See [52, I.6] for details.

To conclude this section, we write down the equations relating the elementary and
complete symmetric functions to the power sums. These are known as Newton’s formulae
[52], and read

rer =
r∑
i=1

(−1)i−1pier−i , (2.34)

rhr =
r∑
i=1

pihr−i , (2.35)

for r ∈ N. The solutions of these recursive equations are given by

er =
∑
µ∈P+

εµz
−1
µ pµ , (2.36)

hr =
∑
µ∈P+

z−1
µ pµ , (2.37)

where the sums are restricted to µ ∈ P+ with |µ| = r, and

εµ = (−1)|µ|−`(µ) , zµ =
∏
i≥1

imi(µ)mi(µ)! . (2.38)

2.2.5 Hall inner product and an involution

We will often use the ring homomorphism ω : Λ→ Λ defined for r ∈ Z≥0 by

er 7→ ω(er) = hr ,

and ω(eλ) = hλ for λ ∈ P+. The fact that {eλ}λ∈P+ is a basis of Λ implies that ω is
well defined. We now review some properties of ω; see [52, I.2] for details. The symmetry
of the relations

∑r
i=0(−1)ieihr−i = 0 (which were discussed in section 2.2.2) as between

the two bases {eλ}λ∈P+ and {hλ}λ∈P+ of Λ shows that w is an involution, that is ω2 is
the identity map. It follows that ω is an automorphism of Λ. From the Jacobi-Trudi
determinants (2.25) we have the relation ω(sλ) = sλ′ . Furthermore, since ω interchanges
the generating functions E(u) and H(u), it follows from (2.30) that ω(pr) = (−1)r−1pr,
and in general ω(pλ) = ελpλ for λ ∈ P+. The fact that ω is an automorphism allows us to
define another basis of Λ, the so called forgotten symmetric functions {fλ}λ∈P+ , via the
relation fλ = ω(mλ). These have no particularly simple direct description.

Remark 2.2.11. From here to the end of this thesis, if not stated otherwise, we shall
always work with the ring Λ ⊗Z C of symmetric functions with complex coefficients. By
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abuse of notation we denote this with Λ. Similarly, we shall refer to Λk⊗Z C simply as Λk.

We define the Hall inner product on Λ by requiring that the bases {hλ}λ∈P+ and
{mλ}λ∈P+ are dual to each other, that is

〈hλ,mµ〉 = δλµ . (2.39)

We recall some known facts about the Hall inner product; see [52, I.4] and [67, Ch. 7.9]
for details. We have the following relations,

〈sλ, sµ〉 = δλµ , 〈pλ, pµ〉 = zλδλµ , (2.40)

which imply that {sλ}λ∈P is a orthonormal basis of Λ, and that {pλ}λ∈P is a orthogonal
basis of Λ. The involution ω is an isometry for the Hall inner product, that is for f, g ∈ Λ

we have the relation 〈f, g〉 = 〈ω(f), ω(g)〉. It follows that the elementary symmetric
functions and the forgotten symmetric functions are duals of each other, that is

〈eλ, fµ〉 = δλµ . (2.41)

2.2.6 Hopf algebra structure on Λ

We now introduce a coproduct ∆ : Λ → Λ ⊗ Λ in the ring of symmetric functions.
See [52, p. 91] and [67, p. 342] for further details. For this purpose, notice that Λ ⊗ Λ

can be identified with the functions in the two sets of variables x = {x1, x2, . . . } and
y = {y1, y2, . . . } which are symmetric in each set separately. As an example, for f, g ∈ Λ

the element f ⊗ g corresponds to f(x)g(y). If f ∈ Λ then f(x, y) ∈ Λ⊗ Λ, because if f is
symmetric in {x, y} then it will be symmetric in x and y separately. Thus we define the
coproduct of f as

∆f ≡ f(x, y) . (2.42)

For r ∈ N one has by direct inspection that

∆er =
r∑
i=0

ei ⊗ er−i , ∆hr =
r∑
i=0

hi ⊗ hr−i , ∆pr = 1⊗ pr + pr ⊗ 1 ,

and furthermore ∆(1) = 1⊗ 1. It can be shown that ∆ satisfies coassociativity and thus,
together with the counit ε : Λ → C given by f 7→ f(0, 0, . . . ), Λ becomes a coalgebra.
Moreover, together with the usual multiplication of polynomials and the unit map η : C→
Λ, it can be shown that Λ is endowed with the structure of a bialgebra. The Hall inner
product is compatible with the bialgebra structure, namely for f, g, h ∈ Λ one has that

〈∆f, g ⊗ h〉 = 〈f, gh〉 . (2.43)
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The scalar product on the LHS is defined as 〈f1 ⊗ g1, f2 ⊗ g2〉 = 〈f1, f2〉〈g1, g2〉 for
f1, f2, g1, g2 ∈ Λ. An alternative interpretation of (2.43) is that the coproduct is the
adjoint map of the multiplication map m : Λ ⊗ Λ → Λ. Finally, the antipode γ : Λ → Λ

defined for r ∈ Z≥0 by
er 7→ γ(er) = (−1)rhr

endows Λ with the structure of a cocommutative Hopf algebra over C (see [73] for further
details). By definition the antipode of a Hopf algebra is the unique map satisfying the
equalities (see e.g. [24, Ch. 4])

m ◦ (1⊗ γ) ◦∆ = m ◦ (γ ⊗ 1) ◦∆ = η ◦ ε . (2.44)

Notice how the antipode is closely related to the involution ω defined above.

2.3 Coproduct and skew symmetric functions

From here to the end of this section, if not stated otherwise, we assume that λ, µ ∈ P+.
The coproduct ∆ : Λ → Λ ⊗ Λ introduced earlier allows us to define new classes of
symmetric functions. We shall start by considering the so called ‘skew Schur functions’,
which are discussed for instance in [52, I.5]. Compare also with the discussion presented
in Chapter 1.

Definition 2.3.1. Define the skew Schur function sλ/µ via the equation

∆sλ =
∑
µ∈P+

sλ/µ ⊗ sµ . (2.45)

Lemma 2.3.2. The symmetric function sλ/µ can be equivalently defined as the function
satisfying the following relation, which is valid for all ν ∈ P+,

〈sλ/µ, sν〉 = 〈sλ, sµsν〉 . (2.46)

Notice that (2.46) fixes sλ/µ entirely thanks to the expansion sλ/µ =
∑

ν∈P+〈sλ/µ, sν〉sν ,
which holds since {sλ}λ∈P+ is a basis of Λ. Furthermore, by linearity of the Hall inner
product we have that 〈sλ/µ, g〉 = 〈sλ, sµg〉 for all g ∈ Λ.

Proof (of Lemma 2.3.2). Starting from (2.45) one has that 〈∆sλ, sµ⊗sν〉 equals 〈sλ, sµsν〉
thanks to (2.43) and 〈sλ/µ, sν〉 thanks to (2.40). This implies the validity of (2.46). Con-
versely, define sλ/µ via (2.46), and consider the expansion ∆sλ =

∑
µ,ν∈P+〈∆sλ, sν⊗sµ〉sν⊗

sµ. Taking advantage of (2.43), (2.46) and the expansion sλ/µ =
∑

ν∈P+〈sλ/µ, sν〉sν one
ends up with (2.45).
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The adjective ‘skew’ stems from the fact that sλ/µ has an alternative combinatorial
description given by

sλ/µ =
∑
T

xT , (2.47)

where the sum runs over all column strict tableaux T of shape λ/µ, and once again
xT = x

wt1(T )
1 x

wt2(T )
2 · · · . This is the generalisation to skew diagrams of the combinatorial

definition (2.23) of Schur functions, and one has that sλ/∅ = sλ. Notice that (2.47) is well
defined only if µ ⊂ λ. In fact, one can show that if µ 6⊂ λ then sλ/µ = 0 (see for example [52,
I.5]). Define the skew Kostka number Kλ/µ(α) as the number of column strict tableaux of
shape λ/µ and weight α ∈ P . Notice that Kλ/∅(α) = Kλα, where the latter is the Kostka
number defined in Section 2.2.3. The equalities Kλ/µ(ν) = 〈sλ/µ, hν〉 = 〈sλ, sµhν〉, which
follow by linearity of the Hall inner product, imply that the skew Kostka numbers also
appear in the product expansion sµhν =

∑
λ∈P+ Kλ/µ(ν)sλ. The next result can be found

for instance in [52, I.5].

Lemma 2.3.3. The symmetric function sλ/µ can be expanded as

sλ/µ =
∑
ν∈P+

cλµνsν =
∑
ν∈P+

Kλ/µ(ν)mν , (2.48)

where the coefficient cλµν was introduced in (2.26).

Proof. The first equality follows from (2.26), the expansion sλ/µ =
∑

ν∈P+〈sλ/µ, sν〉sν and
the defining relation (2.46) of sλ/µ. One can show that Kλ/µ(ν) = Kλ/µ(β), which holds
for all ν ∈ P+ and β ∈ P such that β ∼ ν (see [67, p. 311] for details). Rearranging
(2.47) appropriately, one ends up with the second equality in (2.48).

Remark 2.3.4. An explicit construction of the irreducible representations of GLk(C)

is given by the Weyl modules [25], which can be generalised to skew shapes λ/µ. The
corresponding characters are given by sλ/µ(x1, . . . , xk), and the first equality in (2.48)
therefore describes the decomposition of ‘skew Weyl modules’ into irreducible GLk(C)-
representations (see loc. cit.).

2.3.1 Skew elementary and complete symmetric functions

We now discuss the symmetric functions which arise by taking the coproduct of elementary
and complete symmetric functions. We were unable to find these symmetric functions
anywhere in the literature.

Definition 2.3.5. Define the ‘skew elementary symmetric function’ eλ/µ and the ‘skew
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complete symmetric function’ hλ/µ via the equations

∆eλ =
∑
µ∈P+

eλ/µ ⊗ eµ , ∆hλ =
∑
µ∈P+

hλ/µ ⊗ hµ . (2.49)

Lemma 2.3.6. The symmetric functions eλ/µ and hλ/µ can be equivalently defined as the
functions satisfying the relations, which are valid for all ν ∈ P+,

〈eλ/µ, fν〉 = 〈eλ, fµfν〉 , 〈hλ/µ,mν〉 = 〈hλ,mµmν〉 . (2.50)

Recall that the basis {hλ}λ∈P+ and {mλ}λ∈P+ are dual to each other with respect
to the Hall inner product (2.39), and so are the basis {eλ}λ∈P+ and {fλ}λ∈P+ . Thus
(2.50) fixes eλ/µ and hλ/µ entirely thanks to the expansions eλ/µ =

∑
ν∈P+〈eλ/µ, fν〉eν and

hλ/µ =
∑

ν∈P+〈hλ/µ,mν〉hν . Furthermore, by linearity of the Hall inner product we have
that 〈eλ/µ, g〉 = 〈eλ, fµg〉 and 〈hλ/µ, g〉 = 〈hλ,mµg〉 for all g ∈ Λ. Since the involution ω
described in Section 2.2.5 is an isometry for the Hall inner product, it follows from (2.50)
that 〈ω(eλ/µ),mν〉 = 〈hλ,mµmν〉 for all ν ∈ P+, and thus

ω(eλ/µ) = hλ/µ . (2.51)

Proof (of Lemma 2.3.6). Starting from (2.49) one has that 〈∆eλ, fµ⊗fν〉 equals 〈eλ, fµfν〉
thanks to (2.43) and 〈eλ/µ, fν〉 thanks to (2.41). This implies the validity of the first
equation in (2.50), whereas the second one follows in a similar manner. Conversely define
eλ/µ and hλ/µ via (2.50), and consider the expansion ∆eλ =

∑
µ,ν∈P+〈∆eλ, fν ⊗ fµ〉eν ⊗ eµ.

Taking advantage of (2.43), (2.50) and the expansion eλ/µ =
∑

ν∈P+〈eλ/µ, fν〉eν one ends
up with the first equation in (2.49). Starting from ∆hλ =

∑
µ,ν∈P+〈∆hλ,mν ⊗mµ〉hν ⊗hµ

instead one arrives at the second equation in (2.49).

For ν ∈ P+, define the coefficients ψλ/µ(ν) and θλ/µ(ν) via the product expansions

mµeν =
∑
λ∈P+

ψλ/µ(ν)mλ , mµhν =
∑
λ∈P+

θλ/µ(ν)mλ . (2.52)

Plugging (2.22) into (2.52), and then employing (2.13), it follows at once that

ψλ/µ(ν) =
∑
σ∈P+

fλµσMνσ , θλ/µ(ν) =
∑
σ∈P+

fλµσLνσ . (2.53)

The coefficient fλµσ was introduced in (2.13), whereas Mνσ and Lνσ were described in
Section 2.2.2. The relations (2.53) imply that ψλ/µ(ν) and θλ/µ(ν) are non-zero only if
µ ⊂ λ, since in turn fλµσ is non-zero only if µ ⊂ λ, as we showed in Section 2.2.1.
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Lemma 2.3.7. The symmetric functions eλ/µ and hλ/µ can be expanded as

eλ/µ =
∑
ν∈P+

fλµνeν =
∑
ν∈P+

ψλ/µ(ν)mν , (2.54)

hλ/µ =
∑
ν∈P+

fλµνhν =
∑
ν∈P+

θλ/µ(ν)mν . (2.55)

Proof. Let us start from the equalities hλ/µ =
∑

ν∈P+〈hλ/µ,mν〉hν =
∑

ν∈P+〈hλ/µ, hν〉mν .
Taking advantage of the second equation in (2.50), the product expansion mµmν =∑

λ∈P+ fλµνmλ in (2.13) and the second equation in (2.52), one deduces the validity of
(2.55). Similarly, consider the expansions eλ/µ =

∑
ν∈P+〈eλ/µ, fν〉eν =

∑
ν∈P+〈eλ/µ, hν〉mν .

Applying the involution ω to both sides of (2.13) one ends up with fµfν =
∑

λ∈P+ fλµνfλ.
This equality, together with the first equation in (2.50), the fact that ω is an isometry for
the Hall inner product, and the first equation in (2.52), implies the validity of (2.54).

Remark 2.3.8. The first equalities in (2.54) and (2.55) imply that the symmetric func-
tions eλ/µ and hλ/µ are non-zero only if µ ⊂ λ, since in turn fλµν is non-zero only if µ ⊂ λ.

Lemma 2.3.9. We have the identities∑
ν∈P+

(−1)|ν|−|µ|eλ/νhν/µ =
∑
ν∈P+

(−1)|λ|−|ν|hλ/νeν/µ = δλµ . (2.56)

Proof. The equality (mλmµ)mν = mλ(mµmν), which simply reflects the associativity of
the product in Λ, together with (2.13) implies the relation

∑
σ∈P+ fσλµf

ρ
σν =

∑
σ∈P+ fσνµf

ρ
σλ

for ρ ∈ P+. Taking advantage of the latter and the first equalities in (2.54) and (2.55)
one ends up with

∆eλ/µ =
∑
ν∈P+

eλ/ν ⊗ eν/µ , ∆hλ/µ =
∑
ν∈P+

hλ/ν ⊗ hν/µ . (2.57)

The same equalities imply that γ(eλ/µ) = hλ/µ(−1)|λ|−|µ| and γ(hλ/µ) = eλ/µ(−1)|λ|−|µ|,
where γ is the antipode of Λ defined in Section 2.2.6. Employing the defining relations
(2.44) of the antipode, one has that (m ◦ (1 ⊗ γ) ◦∆)(eλ/µ) =

∑
ν∈P+(−1)|ν|−|µ|eλ/νhν/µ,

(m ◦ (γ⊗ 1) ◦∆)(eλ/µ) =
∑

ν∈P+(−1)|λ|−|ν|hλ/νeν/µ and (η ◦ ε)(eλ/µ) = δλµ. Since these are
all equal to each other the claim follows. Had we applied the same relations to hλ/µ, we
would have still ended up with (2.56).

Remark 2.3.10. The identities (2.56) represent the generalisation to skew functions of
the equalities

∑r
i=0(−1)ieihr−i = 0 for r ∈ N, which are recovered by setting λ = (r) and

µ = ∅.



CHAPTER 2. SYMMETRIC FUNCTIONS 28

To conclude this section, we provide the expansions for skew elementary and complete
symmetric functions in terms of Schur functions. Define the coefficient χλµν as

χλµν =
∑
σ∈P+

fλµσKνσ . (2.58)

The coefficient Kνσ is the Kostka number, which was introduced in Section 2.2.3. Notice
that χλµν is a non-negative integer, since fλµσ and Kνσ are non-negative integers as well.

Lemma 2.3.11. The functions eλ/µ and hλ/µ can be expanded as

eλ/µ =
∑
ν∈P+

χλµνsν′ , (2.59)

hλ/µ =
∑
ν∈P+

χλµνsν . (2.60)

Proof. Plug the expansions eν =
∑

σ∈P+ Kνσsσ′ and hν =
∑

σ∈P+ Kνσsσ, which can be
found for instance in [52, I.6], into the first equalities of (2.54) and (2.55) respectively. A
comparison with (2.58) then proves the validity of the claim.

Remark 2.3.12. Lemma 2.3.11 implies that the functions eλ/µ and hλ/µ are Schur-
positive, that is the coefficients appearing in the expansions in terms of Schur functions are
non-negative integers. As we discussed in Remark 2.3.4, the polynomial characters of the
irreducible representations of GLk(C) coincide with the Schur functions sν(x1, . . . , xk). It
follows that there exist representations of GLk(C) whose polynomial characters are given
by eλ/µ(x1, . . . , xk) and hλ/µ(x1, . . . , xk) respectively. It would be interesting to present a
more explicit construction of these representations.

2.3.2 Weighted sums over reverse plane partitions

We now wish to give combinatorial expressions for eλ/µ and hλ/µ, and we want these to
resemble the one for skew Schur functions given by (2.47). It turns out to be somewhat
easier to start with hλ/µ, and for this purpose we generalise the notion of skew diagram
described in (2.3) to compositions. Namely, for α, β ∈ P we write α ⊂ β if αi ≤ βi for all
i ∈ N, and we refer to the set β/α ⊂ Z× Z as a ‘skew diagram’. Recall that the notation
α ∼ λ, which was introduced in Section 2.2.1, indicates that α ∈ P is a permutation of
λ ∈ P+.

Definition 2.3.13. For λ, µ ∈ P+, denote with θλ/µ the cardinality of the set

{α ∈ P | α ∼ µ, α ⊂ λ} . (2.61)
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Figure 2.4: Let λ = (3, 2, 2, 1) and µ = (2, 2, 1). Above there are represented (in grey) all
the compositions α ∼ µ such that α ⊂ λ, and thus θλ/µ = 6.

Lemma 2.3.14. The set (2.61) is non-empty if and only if µ ⊂ λ, that is if and only if
λ/µ is a skew diagram.

Proof. If µ ⊂ λ we have that α = µ belongs to (2.61) which is then non-empty. Conversely
assume that (2.61) is non-empty, that is there exists α ∼ µ such that α ⊂ λ. Say that
αi = µ1 for some i ∈ N, then the composition β ∼ µ obtained from α by permuting α1

and αi still satisfies β ⊂ λ, as β1 = αi ≤ λi ≤ λ1 and βi = α1 ≤ αi ≤ λi. Notice that
by construction β1 = µ1. Say that βj = µ2 for some j ∈ N, then the composition γ ∼ µ

obtained from β by permuting βj and β2 still satisfies γ ⊂ λ, and furthermore γ1 = µ1,
γ2 = µ2. Proceeding in a similar vein one eventually concludes that µ ⊂ λ.

Lemma 2.3.15. Suppose that µ ⊂ λ, then the cardinality of the set (2.61) has the following
explicit expression in terms of binomial coefficients,

θλ/µ =
∏
i≥1

(
λ′i − µ′i+1

µ′i − µ′i+1

)
. (2.62)

Proof. Lemma 2.3.14 implies that for µ ⊂ λ the set (2.61) is non-empty. To prove the claim
we will count the number of elements in (2.61), that is the number of distinct permutations
α of µ satisfying α ⊂ λ, recursively. For this purpose, set l = λ1 and notice that all the
parts in µ are smaller than l. To begin with, the ml(µ) = µ′l parts of µ equal to l must
be among the first ml(λ) = λ′l parts of α, and there are

(λ′l
µ′l

)
distinct ways to implement

this constraint on α. Notice that we allow ml(µ) = 0, in which case there is only
(
λ′l
0

)
= 1

‘way’ to do this. Next, the ml−1(µ) = µ′l−1 − µ′l parts of µ equal to l − 1 must be among
the first ml−1(λ) + ml(λ) = λ′l−1 parts of α, and since we have already fixed the µ′l parts
of α equal to l, there are

(λ′l−1−µ
′
l

µ′l−1−µ
′
l

)
distinct ways to implement this further constraint on

α.
The i-th step of this counting procedure would be that the ml+1−i(µ) = µ′l+1−i−µ′l+2−i

parts of µ equal to l + 1 − i must be among the first
∑

j≥l+1−imj(λ) = λ′l+1−i parts of
α, and since we have already fixed the

∑
j≥l+2−imj(µ) = µ′l+2−i parts of α greater or

equal than l + 2 − i there are
(λ′l+1−i−µ

′
l+2−i

µ′l+1−i−µ
′
l+2−i

)
distinct ways to implement the constraint

just mentioned on α. Finally, the cardinality of (2.61) is given by the product of all these
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possibilities, that is

l∏
i=1

(
λ′l+1−i − µ′l+2−i
µ′l+1−i − µ′l+2−i

)
=
∏
i≥1

(
λ′i − µ′i+1

µ′i − µ′i+1

)
.

Recall that a RPP π of shape λ/µ with highest entry l is equivalent to a sequence
{λ(r)}r∈Z≥0

of partitions, with λ(0) = µ and λ(l) = λ, such that λ(r−1) ⊂ λ(r) for r ≥ 1.
The only difference with Lemma 2.1.2 is that we set λ(r) = λ(l) for r ≥ l.

Lemma 2.3.16. Suppose that µ ⊂ λ, then the skew complete symmetric function hλ/µ is
the weighted sum

hλ/µ =
∑
π

θπ x
π , θπ =

∏
r≥1

θλ(r)/λ(r−1) , (2.63)

over all RPPs of shape λ/µ. In particular, the coefficient θλ/µ(ν) defined in (2.53) has the
alternative expression

θλ/µ(ν) =
∑
π

θπ , (2.64)

where the sum runs over all RPPs of shape λ/µ and weight ν.

Proof. First we show the validity of the product expansion

mµhr =
∑
λ∈P+

θλ/µmλ , (2.65)

where the sum runs over all partitions λ such that µ ⊂ λ and |λ/µ| = r. Notice that the
coefficient of mλ in mµhr equals the coefficient of xλ in the same product. From (2.12) and
(2.18) it follows that each monomial appearing in the product mµhr is of the form xαxβ

for some α, β ∈ P with α ∼ µ and |β| = r. Fix α′ ∼ µ, then a composition β′ with |β′| = r

and xα′xβ′ = xλ exists if and only if α′ ⊂ λ and |λ| − |µ| = r, in which case β′ = λ − α′.
Thus the coefficient of xλ in mµhr equals the cardinality of the set (2.61) provided that
|λ| − |µ| = r. This is by definition θλ/µ, which is non-zero if and only if µ ⊂ λ thanks
to Lemma 2.3.14. In conclusion, the coefficient of mλ in mµhr is non-zero if and only if
µ ⊂ λ and |λ/µ| = |λ| − |µ| = r, in which case it is equal to θλ/µ, thus proving the claim.

Applying the result just obtained repeatedly to the product mµhν , and comparing with
the second equality in (2.52), one sees the validity of (2.64). Since hβ = hν for β ∼ ν

this also implies that θλ/µ(β) = θλ/µ(ν), where θλ/µ(β) for β a composition is defined
as in (2.64). Rearranging the equality hλ/µ =

∑
ν∈P+ θλ/µ(ν)mν proved in Lemma 2.3.7

appropriately one then arrives at (2.63).
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Figure 2.5: Let λ = (3, 2, 2, 1) and µ = (2, 2, 1) as in Figure 2.4. Above there are rep-
resented (in grey) all the compositions α ∼ µ such that λ/α is a vertical strip, and thus
ψλ/µ = 2.

Corollary 2.3.17. The coefficient Lλµ introduced in (2.22) has the following alternative
expression,

Lλµ =
∑
π

θπ , (2.66)

where the sum runs over all RPPs of shape λ and weight µ.

Proof. First of all, notice that from (2.14) one has that fλσ∅ = δλσ. Furthermore, from the
definition of the coefficient Lλµ it follows that Lλµ = Lµλ (compare with [67, Cor. 7.5.2]).
Finally, set µ = ∅ in the second equation in (2.53) and take advantage of (2.64) to prove
the claim.

2.3.3 Weighted sums over row strict tableaux

In this section we shall provide a combinatorial expression for eλ/µ. For this purpose, we
present a similar discussion to the one presented in the previous section for hλ/µ. We
generalise the notion of vertical strips given in Section 2.1.1 to compositions, and we say
that for α, β ∈ P the skew diagram β/α is a vertical strip if βi − αi = 0, 1 for all i ∈ N.

Definition 2.3.18. For λ, µ ∈ P+, denote with ψλ/µ the cardinality of the set

{α ∈ P | α ∼ µ, λ/α is a vertical strip} . (2.67)

Lemma 2.3.19. The set (2.67) is non-empty if and only if λ/µ is a vertical strip.

Proof. If λ/µ is a vertical strip we have that α = µ belongs to (2.67), which is then non-
empty. Conversely, assume that (2.67) is non-empty, that is there exists α ∼ µ such that
λ/α is a vertical strip. Assume that αi = µ1 for some i ∈ N, and consider the composition
β ∼ µ obtained from α by permuting α1 and αi. We show that λ/β is a vertical strip.
From the hypothesis αi ≥ α1 but we must also have αi ≤ α1 + 1, for if αi > α1 + 1 we end
up with λ1 − α1 > 1, which is a contradiction since λ/α is a vertical strip. Thus we can
only have α1 = αi, in which case α = β and thus λ/β is a vertical strip, or α1 = αi + 1.
In the second case we must have λ1 − α1 = 1, that is λ1 − αi = λ1 − β1 = 0, otherwise
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λi − αi < 0. We must also require λi − αi = 0, that is λi − α1 = λi − βi = 1, otherwise
λ1 − α1 > 1. This implies once again that λ/β is a vertical strip.

Assume now that βj = µ2 for some j ∈ N, and denote with γ ∼ µ the composition
obtained from β by permuting βj and β2. In the same fashion as before one can show that
λ/γ is a vertical strip, and furthermore γ1 = µ1, γ2 = µ2. Proceeding in a similar vein one
eventually concludes that λ/µ must be a vertical strip.

Lemma 2.3.20. Suppose that λ/µ is a vertical strip, then the cardinality of the set (2.67)
has the following explicit expression in terms of binomial coefficients,

ψλ/µ =
∏
i≥1

(
λ′i − λ′i+1

λ′i − µ′i

)
. (2.68)

Proof. Lemma 2.3.19 implies that if λ/µ is a vertical strip the cardinality of (2.67) is
non-empty. In a similar fashion to Lemma 2.3.15, we will count the number of distinct
permutations α of µ such that λ/α is a vertical strip recursively. For this purpose, we set
again l = λ1. The ml(µ) = µ′l parts of µ equal to l must be among the first ml(λ) = λ′l
parts of α, and there are

(λ′l
µ′l

)
distinct ways to implement this constraint on α. Notice that

the other first λ′l parts of α, in number λ′l−µ′l, must be equal to l−1 since λ/α is a vertical
strip. Next, we have that the remaining ml−1(µ)− (λ′l − µ′l) = µ′l−1 − λ′l parts of µ equal
to l− 1 must be among the parts αj of α with λ′l + 1 ≤ j ≤ λ′l +ml−1(λ) = λ′l−1, and thus
there are

(λ′l−1−λ
′
l

µ′l−1−λ
′
l

)
distinct ways to implement this further constraint on α. The remaining

parts of α in the positions just considered, in number λ′l−1−λ′l− (µ′l−1−λ′l) = λ′l−1−µ′l−1,
must be equal to l − 2.

This describes the first 2 steps of the counting procedure. In the i-th step one has
that the remaining ml+1−i(µ) − (λ′l+2−i − µ′l+2−i) = µ′l+1−i − λ′l+2−i parts of µ equal to
l + 1 − i must be among the parts αj of α with λ′l+2−i + 1 ≤ j ≤ λ′l+2−i + ml+1−i(λ) =

λ′l+1−i, and there are
(λ′l+1−i−λ

′
l+2−i

µ′l+1−i−λ
′
l+2−i

)
distinct ways to implement this constraint on α. On

the other hand, the remaining parts of α in the positions just considered, in number
λ′l+1−i − λ′l+2−i − (µ′l+1−i − λ′l+2−i) = λ′l+1−i − µ′l+1−i, must be equal to l − i. Thus, we
eventually get that the cardinality of (2.67) is given by

l∏
i=1

(
λ′l+1−i − λ′l+2−i
µ′l+1−i − λ′l+2−i

)
=

l∏
i=1

(
λ′l+1−i − λ′l+2−i
λ′l+1−i − µ′l+1−i

)
=
∏
i≥1

(
λ′i − λ′i+1

λ′i − µ′i

)
.

Lemma 2.3.21. Suppose that µ ⊂ λ, then the skew elementary symmetric function eλ/µ
is the weighted sum

eλ/µ =
∑
T

ψT x
T , ψT =

∏
r≥1

ψλ(r)/λ(r−1) , (2.69)
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over all row strict tableaux of shape λ/µ. In particular, the coefficient ψλ/µ(ν) defined in
(2.52) has the alternative expression

ψλ/µ(ν) =
∑
T

ψT , (2.70)

where the sum runs over all row strict tableaux of shape λ/µ and weight ν.

Proof. This goes very similarly to the proof of Lemma 2.3.16. One first needs to show
that

mµer =
∑
λ∈P+

ψλ/µmλ , (2.71)

where the sum runs over all partitions λ such that λ/µ is a vertical strip and |λ/µ| = r.
We will use once again the fact that the coefficient of mλ in mµer equals the coefficient of
xλ in the same product. From (2.12) and (2.18) it follows that each monomial appearing
in the product mµer is of the form xαxβ for some α ∼ µ and β ∈ P with |β| = r and
βi = 0, 1. Fix α′ ∼ µ, then a composition β′ with |β′| = r, β′i = 0, 1 and xα′xβ′ = xλ exists
if and only if λ/α′ is a vertical strip and |λ| − |µ| = r, in which case β′ = λ−α′. Thus the
coefficient of xλ in mµer equals the cardinality of the set (2.67) provided that |λ|− |µ| = r.
This is by definition ψλ/µ, which is non-zero if and only if λ/µ is a vertical strip thanks to
Lemma 2.3.19. In conclusion the coefficient of mλ in mµer is non-zero if and only if λ/µ
is a vertical strip with |λ/µ| = |λ| − |µ| = r in which case it is equal to ψλ/µ, thus proving
the claim.

Applying the result just obtained repeatedly to the product mµeν and comparing with
the first equality in (2.52) one sees the validity of (2.70). Since eβ = eν for β ∼ ν this also
implies that ψλ/µ(β) = ψλ/µ(ν), where ψλ/µ(β) for β a composition is defined as in (2.70).
Rearranging the equality eλ/µ =

∑
ν∈P+ ψλ/µ(ν)mν , proved in Lemma 2.3.7, with the help

of (2.70) one then arrives at (2.69).

Remark 2.3.22. The combinatorial interpretation of the coefficients θλ/µ and ψλ/µ pre-
sented respectively in (2.65) and (2.71) is not new (see [34, Lemma 4.1] and [52, p. 215]
in the limit t = 1). The novel aspect here is that these coefficients were determined via
cardinalities of sets, compare with Definitions 2.3.13 and 2.3.18. As we will discuss in the
next chapter, this provides a natural generalisation to cylindric partitions.

Corollary 2.3.23. The coefficient Mλµ introduced in (2.22) has the following alternative
expression,

Mλµ =
∑
T

ψT , (2.72)

where the sum runs over all row strict tableaux of shape λ and weight µ.
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Proof. Notice that from the definition of the coefficient Mλµ it follows that Mλµ = Mµλ

(compare with [67, Cor. 7.4.2]). Set µ = ∅ in the first equation in (2.53), use the fact that
fλσ∅ = δλσ, and then take advantage of (2.70) to prove the claim.

2.3.4 Adjacent column tableaux

We conclude this chapter by studying the expansions of the symmetric functions eλ/µ and
hλ/µ in terms of power sums. For ν ∈ P+ define the coefficient ϕλ/µ(ν) via the product
expansion

mµpν =
∑
λ∈P+

ϕλ/µ(ν)mλ . (2.73)

Plugging the expansion (2.33) into (2.73), and taking advantage of (2.13), it follows at
once that

ϕλ/µ(ν) =
∑
σ∈P+

fλµσRνσ , (2.74)

where the coefficient Rνσ was introduced in Section 2.2.4. The relation (2.74) implies that
ϕλ/µ(ν) is non-zero only if µ ⊂ λ, since in turn fλµσ is non-zero only if µ ⊂ λ, as we showed
in Section 2.2.1.

Lemma 2.3.24. The symmetric functions hλ/µ and eλ/µ can be expanded as

eλ/µ =
∑
ν∈P+

ϕλ/µ(ν)z−1
ν ενpν , (2.75)

hλ/µ =
∑
ν∈P+

ϕλ/µ(ν)z−1
ν pν . (2.76)

Proof. To prove (2.76) one starts from the expansion hλ/µ =
∑

ν∈P+〈hλ/µ, pν〉z−1
ν pν , which

follows from 〈pλ, pµ〉 = δλµzλ, and then proceeds in a similar fashion to the proof of
Lemma 2.3.7. Applying the involution ω to both sides of (2.76), and using the fact that
ω(hλ/µ) = eλ/µ and ω(pλ) = ελpλ, one ends up with (2.75).

The coefficient ϕλ/µ(ν) has an alternative expression involving a new type of tableau,
which we now describe.

Definition 2.3.25. Suppose that µ ⊂ λ. We say that λ/µ is a ‘adjacent column horizontal
strip’ (ACHS) if λ/µ is a horizontal strip and if furthermore the columns in Z×Z containing
it are adjacent. A ‘adjacent column tableau’ (ACT) T of shape λ/µ is a sequence {λ(r)}lr=0

of partitions, with λ(0) = µ and λ(l) = λ, such that λ(r)/λ(r−1) is a ACHS for r = 1, . . . , l.

Definition 2.3.26. Let a, r ∈ N and suppose that ma−1(µ) 6= 0 (which is understood to
be always true for a = 1). Define µa,r as the partition whose Young diagram is obtained
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Figure 2.6: Let λ = (4, 4, 3, 1, 1) and µ = (4, 3, 1, 1). On the left we have in grey the
ACHS λ/µ. Notice that λ = µ1,4, or equivalently that λ is obtained from µ by adding a
part equal to 4. Since the part of λ intersecting with the rightmost column of the ACHS
is equal to 4 we have that ϕλ/µ = m4(λ) = 2. On the right we have a ACT of shape
(5, 4, 2)/(2, 1) and weight (3, 3, 2).

by adding one box per column in the Young diagram of µ, starting at column a and ending
at column a+ r − 1 for a total of r boxes.

Suppose that λ = µa,r for some a, r ∈ N with ma−1(µ) 6= 0. By definition we have that

λ′i =

{
µ′i + 1 , a ≤ i ≤ a+ r − 1

µ′i , otherwise
. (2.77)

Furthermore, using the relation mi(λ) = λ′i − λ′i+1 it follows that

λ =

{(
. . . , (a− 1)ma−1(µ)−1, . . . , (a− 1 + r)ma−1+r(µ)+1, . . .

)
, a > 1(

. . . , rmr(µ)+1, . . .
)
, a = 1

. (2.78)

That is, λ is obtained from µ by removing a part equal to a− 1 (or removing no parts if
a = 1) and adding a part equal to a− 1 + r. See once again Figure 2.6 for an example.

Lemma 2.3.27. The skew diagram λ/µ is a ACHS with |λ/µ| = r ∈ N if and only if
λ = µa,r for some a ∈ N with ma−1(µ) 6= 0.

Proof. The claim follows from (2.77), since if λ = µa,r then one must add r boxes in
adjacent columns of the Young diagram of µ to obtain the Young diagram of λ.

Let λ = µa,r as before, and define

ϕλ/µ = ma−1+r(λ) . (2.79)

In particular, set ϕλ/λ = 1. Stated otherwise, the coefficient ϕλ/µ is the multiplicity of
the part in λ intersecting with the rightmost box of λ/µ. See Figure 2.6 for an example.
Notice that ϕλ/µ = ma−1+r(µ) + 1 thanks to (2.78).

Lemma 2.3.28. Suppose that µ ⊂ λ, then we have the equality

ϕλ/µ(ν) =
∑
T

ϕT , ϕT =
∏
r≥1

ϕλ(r)/λ(r−1) , (2.80)
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where the sum runs over all ACT of shape λ/µ and weight ν.

Proof. We just need to show for r ∈ N the product expansion

mµpr =
∑
λ∈P+

ϕλ/µmλ , (2.81)

where the sum runs over all partitions λ such that λ/µ is a ACHS with |λ/µ| = r, that
is λ = µa,r for some a ∈ N with ma−1(µ) 6= 0. The claim then follows after a repeated
application of (2.81) to the product mµpν , which also implies that ϕλ/µ(β) = ϕλ/µ(ν) for
β ∼ ν.

The coefficient of mλ in mµpr equals the coefficient of xλ in the same product. We
show that this is non-zero if and only if λ = µa,r for some a ∈ N with ma−1(µ) 6= 0. Using
the definition pr =

∑
i≥1 x

r
i of power sums, one has that each monomial appearing in mµpr

is of the form xαxβ for some α ∼ µ and β ∈ P defined by βi = rδil for some l ∈ N. Assume
that there exists two such compositions α and β with xαxβ = xλ. Since α ∼ µ we see
that λ is obtained from µ by removing one of its parts equal to αl (or removing no parts if
αl = 0) and replacing it with αl + r. Setting a = αl + 1 ∈ N we then have λ = µa,r thanks
to (2.78). Conversely, suppose that λ = µa,r for some a ∈ N with ma−1(µ) 6= 0. Equation
(2.78) implies that there exists l ∈ N and α ∼ µ with αl = a − 1 such that λ = α + β,
where again β ∈ P is defined by βi = rδil. Thus xαxβ = xλ, and the coefficient of mλ in
mµpr is non-zero.

So suppose that λ = µa,r for some a ∈ N with ma−1(µ) 6= 0, and let i and j be the
smallest indices for which µi < a − 1 + r and µj = a− 1 respectively. The monomials in
mµpr which equal xλ are of the form

xµ1

1 · · ·x
µi−l−1

i−l−1 x
µj+r
i−l x

µi−l
i−l+1 · · ·x

µj−1

j x
µj+1

j+1 · · ·

for l = 0, . . . ,ma−1+r(µ). This implies that mµpr =
∑

a(ma−1+r(µ) + 1)mµa,r , where the
sum runs over all a ∈ N such that ma−1(µ) 6= 0, and applying the definition of ϕλ/µ the
latter equals (2.81).

Remark 2.3.29. The linear combination
∑

ν∈P+ ϕλ/µ(ν)mν is not equal to the symmetric
function pλ/µ defined via the relation pλ =

∑
µ∈P+ pλ/µ⊗pµ. There seems to be no natural

definition of ‘skew power sums’ in terms of ACT.

Corollary 2.3.30. The coefficient Rλµ introduced in (2.33) has the following alternative
expression,

Rλµ =
∑
T

ϕT , (2.82)

where the sum runs over all ACT of shape µ and weight λ.
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Proof. Set µ = ∅ in (2.74), use the fact that fλσ∅ = δλσ and take advantage of (2.80).

Notice the difference between this result and Corollaries 2.3.17, 2.3.23. This is because
in general Rλµ 6= Rµλ; see for example [52, Eq. (6.5)].



Chapter 3

Cylindric symmetric functions

The purpose of this chapter is to generalise the skew symmetric functions eλ/µ and hλ/µ,
which were discussed in Section 2.3, to the cylinder Ck,n. This is defined as the quotient

Ck,n = Z× Z/(−k, n)Z .

In words, Ck,n is the quotient of the Z × Z plane modulo the shifting action which sends
(i, j) to (i − k, j + n). Equivalently, we will work with objects defined on Z × Z which
admit a projection onto the cylinder Ck,n. Although strictly speaking ambiguous, we will
call the latter ‘cylindric’. Then we introduce a quotient of the ring Λk ⊗ C[z, z−1], and
we describe some product expansions which hold in this quotient. We shall employ these
product expansions to obtain the expansions of the ‘cylindric’ symmetric functions eλ/d/µ
and hλ/d/µ (which are the generalisation of eλ/µ and hλ/µ to the cylinder Ck,n) in terms of
the bases of Λ described in Section 2.2. From here to the end of this chapter, we assume
that k, n ∈ N.

3.1 Cylindric Reverse Plane Partitions

Our first task is to generalise Section 2.1 to the cylinder Ck,n. The objects defined on
Z × Z in Chapter 2, such as skew diagrams or Young diagrams, do in general not admit
a projection onto the cylinder, and for this reason they will be referred as ‘non-cylindric’.
Our purpose is to generalise the latter ‘to the cylinder’ or ‘to the cylindric case’, that is
we will extend their definition such that their projection onto the cylinder exists.

3.1.1 Cylindric diagrams and cylindric reverse plane partitions

For the discussion in this section we take inspiration from [41,53,58], although we expose
the material in a slightly different manner to accommodate for further developments.

38
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Figure 3.1: Let k = 3 and n = 4. Displayed above are represented the (cylindric)
diagrams of the cylindric composition α̂ = (. . . , 5, 2, 3, . . . ) and the cylindric partition
λ̂ = (. . . , 6, 5, 3, . . . ) respectively. The boundary line of the diagram of λ̂ is called a ‘cylin-
dric loop’ in [58]. The shadowed boxes represent the (Young) diagrams of α = (5, 2, 3)
and λ = (6, 5, 3) respectively.

Definition 3.1.1. A cylindric composition α̂ of type (k, n) is defined as a doubly infinite
sequence

(. . . , α̂1, α̂2, . . . , α̂k, . . . ) (3.1)

in Z, subject to the relation α̂i+k = α̂i − n for all i ∈ Z. A cylindric partition λ̂ of type
(k, n) is a cylindric composition satisfying the further constraint λ̂i ≥ λ̂i+1 for all i ∈ Z.

Denote with Pk,n the set of all cylindric compositions of type (k, n), and with P+
k,n ⊂

Pk,n the subset of all cylindric partitions of type (k, n). It will always be clear from the
context what the type of a cylindric composition is. We now extend the notion of (Young)
diagram to cylindric compositions.

Definition 3.1.2. Define the (cylindric) diagram of α̂ ∈ Pk,n as the subset of Z×Z given
by

{(i, j) ∈ Z× Z | j ≤ α̂i} . (3.2)

We identify each point in the diagram of α̂ ∈ Pk,n with a box as we did for (non-
cylindric) compositions. What is different is that now there is no lower boundary for the
coordinate j. See Figure 3.1 for an example. For λ̂ ∈ P+

k,n define the conjugate cylindric
partition λ̂′ as the cylindric partition whose diagram is obtained by reflecting the boxes
of the diagram of λ̂ along the diagonal {(i, i) | i ∈ Z}. One has that λ̂′ ∈ P+

n,k since
λ̂′i+n = λ̂′i − k for all i ∈ Z. Denote with mi(λ̂) the multiplicity of i in λ̂, then we have
that mi(λ̂) = λ̂′i − λ̂′i+1 in analogy with the non-cylindric case.

Remark 3.1.3. We will often take advantage of the bijection Pk,n → Pk given by α̂ 7→
α = (α̂1, . . . , α̂k), which restricts to an injection P+

k,n → P
+
k . The inverse map sends

α = (α1, . . . , αk) to the cylindric composition α̂ obtained by setting α̂i = αi for i = 1, . . . , k



CHAPTER 3. CYLINDRIC SYMMETRIC FUNCTIONS 40

and then α̂i+k = α̂i− n for all i ∈ Z. It is understood that whenever α̂ ∈ Pk,n and α ∈ Pk
appear in the same context they are related via this bijection.

Remark 3.1.4. Let λ̂ ∈ P+
k,n with λ̂k > 0, in which case we have that λ̂1 > n. Moreover,

consider the partition λ which is the image of λ̂ under the map introduced in the previous
remark. View each box belonging to the diagram of λ as situated on the cylinder obtained
in the following way: wrap the diagram of λ onto itself and glue together its first and
last rows, so that for j = 1, . . . , λk the boxes associated respectively with the points
(k, j) and (1, j + n) are adjacent. On the cylinder constructed in this way, we have that
for i = 1, . . . , k + 1 the box associated to (i, λi) is to the right of the box associated to
(i+ 1, λi+1). This is in analogy with non-cylindric Young diagrams, compare with Figure
2.1. The observation presented above represents an alternative way to justify the epithet
‘cylindric’ for cylindric partitions (see [28] for further details).

Definition 3.1.5. Let λ̂, µ̂ ∈ P+
k,n, and write µ̂ ⊂ λ̂ if the diagram of µ̂ is contained in the

diagram of λ̂, or equivalently if µ̂i ≤ λ̂i for all i ∈ Z. Define the cylindric skew diagram
λ̂/µ̂ ⊂ Z× Z as

λ̂/µ̂ = {(i, j) ∈ Z× Z | µ̂i < j ≤ λ̂i} . (3.3)

We will often use the expression ‘λ̂/µ̂ is a cylindric skew diagram’, and by this we
mean that µ̂ ⊂ λ̂. In analogy with the non-cylindric case, we can think of λ̂/µ̂ as the set
of boxes which are placed between the boundaries of the diagrams of µ̂ and λ̂. Denote
with |λ̂/µ̂| =

∑k
i=1(λ̂i − µ̂i) the number of boxes in λ̂/µ̂ which are located in lines 1 to

k. If λ̂/µ̂ has at most one box per row (respectively column) we will call it a cylindric
vertical (respectively horizontal) strip. In particular, λ̂/λ̂ is both a cylindric vertical and
horizontal strip. For λ̂, µ̂ ∈ P+

k,n with λ̂k, µ̂k ≥ 0 we have that λ and µ are partitions,
and then if we restrict λ̂/µ̂ to the lines 1 to k we recover the skew diagram λ/µ. In
particular let ∅̂ ∈ P+

k,n be the cylindric partition with parts ∅̂i = 0 for i = 1, . . . , k, then
if we restrict λ̂/∅̂ to the lines 1 to k we obtain the Young diagram of λ. In contrast with
the non-cylindric case, a cylindric partition µ̂ ∈ P+

k,n such that the diagram of λ̂ coincides
with the diagram of λ̂/µ̂ does not exists.

Definition 3.1.6 ( [28]). Let λ̂, µ̂ ∈ P+
k,n. A cylindric reverse plane partition (CRPP) π̂

of shape λ̂/µ̂ is a map λ̂/µ̂→ N, (i, j)→ π̂i,j, subject to the constraints

π̂i,j = π̂i+k,j−n ,

π̂i,j ≤ π̂i+1,j , if (i+ 1, j) ∈ λ̂/µ̂ ,

π̂i,j ≤ π̂i,j+1 , if (i, j + 1) ∈ λ̂/µ̂ .

In other words, π̂ is a filling of the boxes of λ̂/µ̂ with positive integers, called the entries
of π̂, which are weakly increasing from left to right in rows and down columns. Define the
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weight of π̂ as the composition wt(π̂) = (wt1(π̂),wt2(π̂), . . . ), where wti(π̂) is the number
of entries equal to i in lines 1 to k, or equivalently in columns 1 to n. See Figure 3.2 for
an example.

Remark 3.1.7. If the entries of π̂ are instead weakly decreasing from left to right in
rows and down columns, we might refer to π̂ as a cylindric plane partition, although in
this thesis we will not make use of such object. In [28] this is what is called a ‘cylindric
partition’.

Remark 3.1.8. Let λ̂, µ̂ ∈ P+
k,n with λ̂k, µ̂k > 0. Moreover, let π̂ be a CRPP of shape λ̂/µ̂,

and consider the RPP π of shape λ/µ which is obtained by restricting π̂ to the lines 1 to
k. View the entries of π as situated on the cylinder obtained in the following way: wrap π
onto itself and glue together its first and last rows, so that for j = 1, . . . , λk the entries πk,j
and π1,j+n are adjacent (compare with the discussion presented in Remark 3.1.4). On the
cylinder constructed in this way, we have that the entries of π are still weakly increasing
from left to right in rows and down columns. This observation represents an alternative
way to justify the epithet ‘cylindric’ for CRPPs (see [28] for further details).

Lemma 3.1.9. A CRPP π̂ of shape λ̂/µ̂ with largest entry l ∈ N is equivalent to a sequence
{λ̂(r)}lr=0 of cylindric partitions with

µ̂ = λ̂(0) ⊂ λ̂(1) ⊂ · · · ⊂ λ̂(l) = λ̂ . (3.4)

Proof. Suppose that π̂ is a CRPP of shape λ̂/µ̂. Set λ̂(0) = µ̂, and for r = 1, . . . , l let
λ̂(r) be the cylindric partition whose diagram is obtained by joining the diagram of µ̂
with the boxes of π̂ containing the entries from 1 to r. In particular λ̂(l) = λ̂. It follows
by construction that λ̂(r−1) ⊂ λ̂(r) and thus the sequence {λ̂(r)}lr=0 of cylindric partitions
satisfies the condition (3.4). Conversely, define a map π̂ : λ̂/µ̂ → N, (i, j) → π̂i,j as
follows: for r = 1, . . . , l set π̂i,j = r if (i, j) ∈ λ̂(r)/λ̂(r−1). Since the cylindric partitions
{λ̂(r)}lr=0 satisfy the periodicity condition λ̂(r)

i+k = λ̂
(r)
i − n, it follows that π̂i,j = π̂i+k,j−n.

Let (i, j) ∈ λ̂(r)/λ̂(r−1) for some r = 1, . . . , l. If (i + 1, j) ∈ λ̂/µ̂ it follows that (i + 1, j) ∈
λ̂(r′)/λ̂(r′−1) for some r′ ≥ r, and then π̂i,j ≤ π̂i+1,j. Similarly if (i, j + 1) ∈ λ̂/µ̂ we have
that π̂i,j ≤ π̂i,j+1, and thus π̂ is a CRPP according to Definition 3.1.6. In particular it
follows by construction that wtr(π̂) = |λ̂(r)/λ̂(r−1)| for r = 1, . . . , l.

We shall make use of the following special case of CRPP. Compare with Definition
3.1.6.

Definition 3.1.10. Let λ̂, µ̂ ∈ P+
k,n. A cylindric row strict tableau (CRST) T̂ of shape
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Figure 3.2: Let k = 3, n = 4, λ̂ = (. . . , 6, 5, 3, . . . ) and µ̂ = (. . . , 4, 2, 0, . . . ). On the left
we have a CRPP of shape λ̂/µ̂ and weight (2, 3, 0, 3). On the right we have a CRST of
shape λ̂/µ̂ and weight (1, 1, 3, 2, 1). The CRPP on the left is equivalent to the sequence
of cylindric partitions (. . . , 4, 2, 0, . . . ), (. . . , 5, 2, 1, . . . ), (. . . , 5, 3, 3, . . . ), (. . . , 5, 3, 3, . . . ),
(. . . , 6, 5, 3, . . . ).

λ̂/µ̂ is a map T̂ : λ̂/µ̂→ N, (i, j)→ T̂i,j, subject to the constraints

T̂i,j = T̂i+k,j−n ,

T̂i,j ≤ T̂i+1,j , if (i+ 1, j) ∈ λ̂/µ̂ ,

T̂i,j < T̂i,j+1 , if (i, j + 1) ∈ λ̂/µ̂ .

Equivalently, T̂ is a filling of the boxes of λ̂/µ̂ with positive integers which are weakly
increasing down columns but strictly increasing from left to right in rows. One can define
cylindric column strict tableaux in a similar fashion [5,53,58], although we will not make
use of such objects in our discussion.

Lemma 3.1.11. A CRST of shape λ̂/µ̂ with largest entry l is equivalent to a sequence
{λ̂(r)}lr=0 of cylindric partitions satisfying (3.4), such that λ̂(r)/λ̂(r−1) is a cylindric vertical
strip for r = 1, . . . , l.

Proof. The proof of this statement proceeds in a similar fashion to the proof of Lemma
3.1.9. Let T̂ be a CRST of shape λ̂/µ̂, set λ̂(0) = µ̂ and define λ̂(r) for r = 1, . . . , l as
therein. This implies that λ̂(r−1) ⊂ λ̂(r), and furthermore λ̂(r)/λ̂(r−1) is a cylindric vertical
strip since in T̂ there is at most one box per line containing the entry r. Conversely, define
a map T̂ : λ̂/µ̂ → N, (i, j) 7→ T̂i,j as in the proof of Lemma 3.1.9, that is for r = 1, . . . , l

set T̂i,j = r if (i, j) ∈ λ̂(r)/λ̂(r−1). Since T̂ is a CRPP it follows that T̂i,j = T̂i+k,j−n, and
morever T̂i,j ≤ T̂i+1,j provided that (i + 1, j) ∈ λ̂/µ̂. Let (i, j) ∈ λ̂(r)/λ̂(r−1) for some
r = 1, . . . , l, and suppose that (i, j + 1) ∈ λ̂/µ̂. The fact that λ̂(r)/λ̂(r−1) is a cylindric
vertical strip implies that (i, j + 1) ∈ λ̂(r′)/λ̂(r′−1) for some r′ > r, and then T̂i,j < T̂i,j+1.
In conclusion, we have that T̂ is a CRST according to Definition 3.1.10.
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Figure 3.3: Let k = 3, n = 4, λ = (5, 3, 2) and µ = (2, 1). The RPP of shape λ/µ on the
left does not give rise to a CRPP of shape λ̂/µ̂ when extended periodically to Z × Z, as
shown in the picture on the right.

Remark 3.1.12. Let λ̂, µ̂ ∈ P+
k,n with λ̂k, µ̂k ≥ 0. Restricting a CRPP (respectively

CRST) of shape λ̂/µ̂ to the lines 1 to k one obtains a RPP (respectively row strict tableau)
of shape λ/µ. The converse is not true in general, that is not all RPPs π of shape λ/µ
extend to a map π̂ : λ̂/µ̂ → N satisfying the requirements of Definition 3.1.6. See Figure
3.3 for a counterexample. Notice that this condition holds if the parts of λ, µ ∈ P+

k are
smaller or equal than n, since in this case there are no boxes of λ/µ in columns greater
than n.

3.1.2 The extended affine symmetric group

In analogy with the non-cylindric case, we want to introduce a notion of ‘permutation’
on the set of cylindric compositions. The mathematical object which is needed for this
purpose is the following [49].

Definition 3.1.13. The extended affine symmetric group Ŝk is the group generated by
{σ0, σ1, . . . , σk−1, τ} subject to the relations

σ2
i = 1 , σiσi+1σi = σi+1σiσi+1 , σiσj = σjσi for |i− j| > 1 , (3.5)

together with
τσi+1 = σiτ ,

where the indices are understood modulo k.

We will also make extensive use of the affine symmetric group S̃k, that is the affine
Coxeter group Ãk−1, which is the subgroup of Ŝk generated by {σ0, . . . , σk−1}. The affine
symmetric group S̃k is isomorphic to the group of bijections w̃ : Z→ Z, with composition
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as the group product, subject to the conditions

w̃(m+ k) = w̃(m) + k , ∀m ∈ Z and
k∑

m=1

w̃(m) =

(
k

2

)
.

This statement first appeared in [51], and has been subsequently used by many authors
[7, 20]. The following [45] is a generalisation of such statement to Ŝk.

Proposition 3.1.14. The extended affine symmetric group Ŝk is isomorphic to the group
of bijections ŵ : Z→ Z, with composition as the group product, subject to the conditions

ŵ(m+ k) = ŵ(m) + k, ∀m ∈ Z and
k∑

m=1

ŵ(m) =

(
k

2

)
mod k . (3.6)

The isomorphism between Ŝk and the group of bijections ŵ : Z → Z satisfying the
constraints (3.6) is given as follows. The generator τ ∈ Ŝk is mapped to the bijection
τ : Z → Z defined via τ(m) = m− 1, and for this reason we will sometimes refer to τ as
the ‘shift operator’. Moreover, for i = 0, . . . , k− 1 the generator σi ∈ Ŝk is mapped to the
bijection σi : Z→ Z defined via

σi(m) =


m+ 1 , m = i mod k

m− 1 , m = (i+ 1) mod k

m , otherwise

. (3.7)

We now want to construct a right action of Ŝk on cylindric compositions. For this purpose,
recall [49] the level-n right action Pk × Ŝk → Pk, (α, ŵ) 7→ α.ŵ, which is fixed by the
following maps

(α1, . . . , αi, αi+1, . . . αk).σi = (α1, . . . , αi+1, αi, . . . , αk) , (3.8)

(α1, . . . , αk).σ0 = (αk + n, α2, α3, . . . , αn−1, α1 − n) , (3.9)

(α1, . . . , αk).τ = (αk + n, α1, α2, . . . , αk−1) . (3.10)

Notice that i = 1, . . . , k − 1 in the first equation. It can be shown that the ‘alcove’

A+
k (n) = {λ ∈ Pk | n ≥ λ1 ≥ λ2 ≥ · · · ≥ λk > 0} (3.11)

is a fundamental domain with respect to this action. That is, for any α ∈ Pk the orbit
α.Ŝk intersects A+

k (n) in a unique point. Denote with Â+
k (n) the image of A+

k (n) under
the bijection λ 7→ λ̂.
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Figure 3.4: Let k = 2, n = 3 and λ̂ = (. . . , 2, 1, . . . ). From left to right we have the
diagrams of λ̂, λ̂.τ and λ̂.σ0. Notice that the diagram of λ̂.τ is obtained by translating
each box in the diagram of λ̂ by the vector (0, 1).

Lemma 3.1.15. The map Pk,n × Ŝk → Pk,n defined as

(α̂, ŵ) 7→ α̂.ŵ = (. . . , α̂ŵ(1), α̂ŵ(2), . . . , α̂ŵ(k), . . . ) , (3.12)

is a right group action of Ŝk on cylindric compositions. On the RHS of the equality in
(3.12) it is understood that ŵ : Z→ Z (compare with Proposition 3.1.14).

Proof. Let α̂.ŵ be the image of α.ŵ ∈ Pk under the bijection described in Remark 3.1.3.
Then the map Pk,n× Ŝk → Pk,n given by (α̂, ŵ) 7→ α̂.ŵ is a group action, and moreover a
straightforward computation shows that

(. . . , α̂i, α̂i+1, . . . ).σi = (. . . , α̂i+1, α̂i, . . . ) , (3.13)

(. . . , α̂m, α̂m+1, . . . ).τ = (. . . , α̂m−1, α̂m, . . . ) , (3.14)

where i = 0, . . . , k−1. That is, α̂.σi is obtained from α̂ by permuting its parts at positions
i and i + 1 modulo k, whereas α̂.τ is obtained by shifting each part of α̂ by one position
forward. It follows that the group action defined above corresponds to the map (3.12),
since equations (3.13) and (3.14) imply that the action of these two maps coincide for the
generators of Ŝk, and thus they must coincide for every element in Ŝk.

The extended affine symmetric group Ŝk has an alternative set of generators given by
{σ1, . . . , σk−1} ∪ {y1, . . . , yk}. These satisfy the relations

yiyj = yjyi , σiyi = yi+1σi , yiσj = σjyi for |i− j| > 1 , (3.15)

where again the indices are understood modulo k. The link with the generators introduced
in Definition 3.1.13 is given by yk = τσ1 . . . σk−1 and σ0 = σ1 · · · σk−1σk−2 · · ·σ1y1y

−1
k . A

straightforward computation shows that

(. . . , α̂i, . . . ).yi = (. . . , α̂i + n, . . . ) . (3.16)
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We shall make use of the fact that every ŵ ∈ Ŝk can be expressed uniquely as ŵ = wyα

with w ∈ Sk and α ∈ Pk, where we use the notation yα ≡ yα1
1 · · · y

αk
k [49]. In particular, if

ŵ ∈ S̃k ⊂ Ŝk we have that |α| = 0.
For µ̂ ∈ P+

k,n denote with S̃µ̂ ⊂ S̃k its stabilizer subgroup, which is a parabolic subgroup
of S̃k. Moreover, denote with S̃µ̂\S̃k the set of right cosets {S̃µ̂w̃ | w̃ ∈ S̃k} of S̃µ̂ in S̃k. We
now state a similar result to Proposition 2.1.6 for the affine case, which can be found for
instance in [8, Prop. 2.4.4 and Cor. 2.4.5]. For this purpose, define the length of w̃ ∈ S̃k
as

`(w̃) = min
{
r ∈ N | w̃ = σi1 · · · σir for some i1, . . . , ir ∈ {0, 1, . . . , k − 1}

}
. (3.17)

Proposition 3.1.16. (i) Each right coset S̃µ̂w has a unique representative of minimal
length.

(ii) Every element w̃ ∈ S̃k has a unique decomposition w̃ = w̃µ̂w̃
µ̂, with w̃µ̂ ∈ S̃µ̂ and

w̃µ̂ a minimal length representative of one right coset in S̃µ̂ \ S̃k.

Denote with S̃µ̂ the set of minimal length representatives of the right cosets S̃µ̂ \ S̃k.

Remark 3.1.17. In the following we shall make extensive use of both the action Pk,n ×
Ŝk → Pk,n and the level-n right action Pk × Ŝk → Pk. We adopt the notation S̃µ ⊂ S̃k

for the stabiliser subgroup of µ ∈ P+
k , which coincides with S̃µ̂. Similarly, denote with

S̃µ \ S̃k the set of right cosets {S̃µw̃ | w̃ ∈ S̃k} of S̃µ in S̃k, which is the same as the set
S̃µ̂ \ S̃k introduced above. Finally, the set S̃µ̂ coincides with the set S̃µ of minimal length
representatives of the right cosets S̃µ \ S̃k.

Lemma 3.1.18. Suppose that µ ∈ A+
k (n). For every w̃ ∈ S̃µ, there exists a unique

element in the right coset S̃µw̃ which can be written as wyα for some w ∈ Sµ and α ∈ Pk
with |α| = 0.

Proof. Since µ ∈ A+
k (n) we have that µk + n > µ1, and thus S̃µ = Sµ ⊂ Sk. Let w̃ ∈ S̃µ,

and write w̃ = w̄yα for some w̄ ∈ Sk and α ∈ Pk with |α| = 0. Part (ii) of Proposition
2.1.6 implies that there exists a unique decomposition w̄ = wµw

µ, with wµ ∈ Sµ and
wµ ∈ Sµ. It follows that (wµ)−1w̃ is the unique element in the right coset S̃µw̃ which can
be expressed as wyα for some w ∈ Sµ and α ∈ Pk with |α| = 0. This proves the claim.

3.2 Weighted sums over CRPPs

The goal of this section is to extend the skew elementary and complete symmetric functions
defined in Chapter 2 to the cylinder. For this purpose, we generalise to the cylinder the
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expansions derived in Lemmas 2.3.16 and 2.3.21, namely

eλ/µ =
∑
T

ψTx
T , ψT =

∏
i≥1

ψλ(i)/λ(i−1) ,

hλ/µ =
∑
π

θπx
π , θπ =

∏
i≥1

θλ(i)/λ(i−1) .

Recall that these expansions are valid if µ ⊂ λ, otherwise we have that eλ/µ = hλ/µ = 0.
The weights ψλ/µ and θλ/µ were defined in (2.67) and (2.61) respectively as the cardinalities
of the sets

{α ∈ P | α ∼ µ, λ/α is a vertical strip} , {α ∈ P | α ∼ µ, α ⊂ λ} . (3.18)

Remark 3.2.1. Given α, β ∈ Pk, we write α ≤ β if αi ≤ βi for all i = 1 . . . , k. We shall
use the symbol ⊂ for cylindric compositions instead. That is, for α̂, β̂ ∈ Pk,n we write
α̂ ⊂ β̂ if the diagram of α̂ is contained in the diagram of β̂. Taking advantage of the
bijection introduced in Remark 3.1.3, we have that α ≤ β if and only if α̂ ⊂ β̂.

Our first task is to generalise the sets (3.18), or equivalently the weights ψλ/µ and θλ/µ,
to the cylinder. For this purpose, we reformulate them in terms of the symmetric group
Sk ⊂ Ŝk.

Lemma 3.2.2. Suppose that µ ⊂ λ and `(λ) ≤ k. The sets (3.18) are in bijection
respectively with

{w ∈ Sµ | λi − (µ.w)i = 0, 1} , {w ∈ Sµ | µ.w ≤ λ} . (3.19)

Proof. If α ∼ µ belongs to one of the sets (3.18) then it must satisfy the constraint α ⊂ λ.
We can therefore identify both α and µ as weights in Pk. Moreover, we can take advantage
of the action Pk×Sk → Pk, which implies that there exists a unique element w ∈ Sµ ⊂ Sk

such that α = µ.w ≤ λ in the notation of Remark 3.2.1. The permutations α ∼ µ

belonging to the sets (3.18) are then labelled by elements in Sµ, and the claim follows.

Before proceeding with the generalisation of the sets (3.19) to the cylinder, we present
some further preliminary results. The next lemma shows that, starting from the alcove
(3.11), we can recover the set of all cylindric partitions by employing the action of the
extended affine symmetric group.

Lemma 3.2.3. Every element in P+
k,n can be expressed uniquely as λ̂.τ d with λ ∈ A+

k (n)

and d ∈ Z.

Proof. Let ν̂ ∈ P+
k,n. If ν̂ ∈ Â

+
k (n) set λ̂ = ν̂ and d = 0, otherwise periodicity implies that

either ν̂1 > n or ν̂k < 0. Suppose that ν̂1 > n, in which case (ν̂.τ−1)k = ν̂k+1 = ν̂1−n > 0.
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If (ν̂.τ−1)1 = ν̂2 ≤ n set λ̂ = ν̂.τ−1 ∈ Â+
k (n) and d = 1, otherwise consider the cylindric

partition ν̂.τ−2. If (ν̂.τ−2)1 = ν̂3 ≤ n set λ̂ = ν̂.τ−2 ∈ Â+
k (n) and d = 2, otherwise consider

the cylindric partition ν̂.τ−3. Proceeding in a similar vein, one concludes that there exists
d′ ∈ N such that (ν̂.τ−d

′
) ≤ n, and the claim follows by setting λ̂ = ν̂.τ−d

′ ∈ Â+
k (n) and

d = d′. The proof for the case ν̂k < 0 is similar.

Suppose that ν̂1, ν̂2 ∈ P+
k,n. Thanks to Lemma 3.2.3, we can express ν̂1 and ν̂2 uniquely

as λ̂1.τ
d1 and λ̂2.τ

d2 , with λ1, λ2 ∈ A+
k (n) and d1, d2 ∈ Z≥0. Notice that, if we translate

the vertical axis by d2 units in the positive direction, the cylindric skew diagram ν̂1/ν̂2

is mapped to λ̂1.τ
d1−d2/λ̂2. After an appropriate translation of the vertical axis, every

cylindric skew diagram can then be expressed as λ̂.τ d/µ̂ for some λ, µ ∈ A+
k (n) and

d ∈ Z≥0. We denote the latter by λ/d/µ in agreement with [58]. That is,

λ/d/µ = {(i, j) ∈ Z× Z | µ̂i < j ≤ (λ̂.τ d)i} . (3.20)

To show that d is non-negative, use the constraint µ̂′1 ≤ (λ̂.τ d)′1 together with (λ̂.τ d)′i =

λ̂′i+d and µ̂′1 = λ̂′1 = k. We will sometimes use the fact that |λ/d/µ| =
∑k

i=1((λ̂.τ d)i−µ̂i) =

|λ|+dn−|µ|. To obtain the diagram of λ̂.τ d one needs to translate each box in the diagram
of λ̂ by the vector (0, d), compare with Figure 3.4. Instead in [58] a different convention
is used, namely one has to translate each box in the diagram of λ̂ by the vector (d, d)

to obtain the cylindric skew diagram λ/d/µ. Thanks to Lemma 3.1.9, a CRPP of shape
λ/d/µ with largest entry l is equivalent to a sequence

µ̂ = λ̂(0).τ d0 ⊂ λ̂(1).τ d1 ⊂ · · · ⊂ λ̂(l).τ dl = λ̂.τ d (3.21)

of cylindric partitions with λ̂(r) ∈ Â+
k (n) and dr − dr−1 ≥ 0 for r = 1, . . . , l. Similarly,

a CRST of shape λ/d/µ is equivalent to a sequence (3.21) of cylindric partitions where
λ̂(r).τ dr/λ̂(r−1).τ dr−1 is a cylindric vertical strip for r = 1, . . . , l.

3.2.1 Generalisation of θλ/µ to the cylinder

We already have a mathematical object which we can use to construct ‘permutations’ of
cylindric compositions. This is the extended affine symmetric group Ŝk, compare with
(3.13) and (3.14). Let us generalise the notion of cylindric skew diagram described in
Definition 3.1.5 to cylindric compositions. Suppose that α̂, β̂ ∈ Pk,n with α̂ ⊂ β̂ in the
notation of Remark 3.2.1, then we refer to the set β̂/α̂ ⊂ Z×Z as a cylindric skew diagram.

Definition 3.2.4. For λ, µ ∈ A+
k (n) and d ∈ Z≥0 define θλ/d/µ as the cardinality of the

set
{w̃ ∈ S̃µ̂ | µ̂.w̃ ⊂ λ̂.τ d} . (3.22)
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Figure 3.5: Let k = 2, n = 3, d = 1 and λ̂ = µ̂ = (. . . , 2, 1, . . . ). From left to right we
have, in grey, the diagrams of µ̂, µ̂.σ1 and µ̂.σ0. These are the only diagrams of the form
µ̂.w̃, for w ∈ S̃µ̂, that are contained in the diagram of λ̂.τ , whose boundary is indicated
by the solid black line. It follows that θλ/d/µ = 3.

In Figure 3.5 there is an example which emphasises the combinatorial nature of the
set (3.22). Compare with Figure 2.4 in Chapter 2. If instead we use the action of Ŝk on
Pk (compare with Remark 3.1.17), this set can be expressed equivalently as

{w̃ ∈ S̃µ | µ.w̃ ≤ λ.τ d} . (3.23)

Notice that in (3.23) we employed the notation introduced in Remark 3.2.1 for weights in
Pk. For practical reasons we will mostly work with the set (3.23) in proofs.

Remark 3.2.5. It is straightforward to show that (3.23) reduces to the second set in
(3.19) for d = 0. In fact, let w̃ ∈ S̃µ belong to (3.23), and write w̃ = wyα for some w ∈ Sk
and α ∈ Pk with |α| = 0. Since λ, µ ∈ A+

k (n) we have for d = 0 that α = (0, . . . , 0), and
thus w̃ ∈ Sµ ⊂ Sk as w̃ is a minimal length coset representative. In particular, this implies
that θλ/0/µ = θλ/µ.

Lemma 3.2.6. The set (3.23) has the following alternative form,

{
(w, α) ∈ Sµ × P≥0

k | |α| = d, µ.wy−α ≤ λ
}
. (3.24)

Proof. Notice that, for every w̃ ∈ S̃µ, all the elements in the right coset S̃µw̃ have the same
action on the weight µ. Thanks to Lemma 3.1.18 it follows that (3.23) can be expressed
as the set

S1 =
{

(w, α) ∈ Sµ × Pk | |α| = 0, µ.wyατ−d ≤ λ
}
.

Write the shift operator as τ = ykσk−1 · · ·σ1. Using the commutation relation σiyi = yi+1σi

one has that τ−d = (σk−1 · · ·σ1)−d yβ for some β ∈ Pk with |β| = −d. Let (w, α) ∈ S1

and consider the weight γ ∈ Pk given by γ = α.(σk−1 · · ·σ1)−d + β, which satisfies the
constraint |γ| = −d. Using the fact that yαw′ = w′ yα.w

′ for w′ ∈ Sk, which can be proved
with the help of (3.15), one ends up with the equality wyατ−d = w(σk−1 · · ·σ1)−dyγ. Thus
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Figure 3.6: A pictorial representation of the weights µ, µ̄ and ν(1), which were introduced
in the proof of Proposition 3.2.7, from left to right. We have highlighted the parts (µ.w̃)i
(red) and (µ.w̃)j (green), where i < j.

we can express the set S1 as

S2 =
{

(w, γ) ∈ Sµ × Pk | |γ| = −d, µ.w(σk−1 · · ·σ1)dyγ ≤ λ
}
.

If (w, γ) ∈ S2 then γi ≤ 0, because none of the parts of µ.w(σk−1 · · ·σ1)dyγ can exceed n
since λ ∈ A+

k (n). In other words we have that the weight −γ belongs to P≥0
k . Part (ii)

of Proposition 2.1.6 implies that w(σk−1 · · ·σ1)−d has a unique decomposition wµwµ, with
wµ ∈ Sµ and wµ ∈ Sµ. Notice that for different elements w ∈ Sµ we end up with different
elements wµ ∈ Sµ, and moreover we have by definition that µ.wµ = µ. This finally implies
that S2 is the same as the set (3.24).

Proposition 3.2.7. The set (3.22) is non-empty if and only if µ̂ ⊂ λ̂.τ d, that is if and
only if λ/d/µ is a cylindric skew diagram as defined in (3.20).

Proof. To simplify the proof we will work with the set (3.23) instead. In other words we
will show that the latter is non-empty if and only if µ ≤ λ.τ d in the notation of Remark
3.2.1. Assume that µ ≤ λ.τ d, then w̃ = 1 belongs to the set (3.23), which is then non-
empty. Conversely suppose that (3.23) is non-empty, that is there exists w̃ ∈ S̃µ such
that µ.w̃ ≤ λ.τ d. If d = 0 then (3.23) reduces to the second set in (3.19) and we are done
thanks to Lemma 2.3.14. So let d > 0 and write w̃ = wyα for some w ∈ Sk and α ∈ Pk
with |α| = 0. If α = (0, 0, . . . , 0) one can prove that µ ≤ λ.τ d in a similar vein to the proof
of Lemma 2.3.14, so assume that α 6= (0, 0, . . . , 0) and set l = (|α1| + · · · + |αk|)/2. We
now construct recursively a sequence

ν(1), ν(2), . . . , ν(l)

of weights in Pk satisfying the constraint ν(r) ≤ λ.τ d for r = 1, . . . , l. Refer to Figure 3.6
for a graphical depiction of this construction.

For 1 ≤ i, j ≤ n let (µ.w̃)i and (µ.w̃)j be respectively the greatest and smallest part
of µ.w̃. Call µ̄ the weight obtained from µ.w̃ by swapping (µ.w̃)1 with (µ.w̃)i and (µ.w̃)k

with (µ.w̃)j, compare with Figure 3.6. By construction we have that µ̄ ≤ λ.τ d. Taking
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advantage of the relation yαw′ = w′yα.w
′ for w′ ∈ Sk and part (ii) of Proposition 2.1.6 we

can write µ̄ = µ.w̄ yᾱ for some w̄ ∈ Sµ and ᾱ ∈ Pk. We have that ᾱ1 > 0 and ᾱk < 0,
otherwise ᾱ = α = (0, 0, . . . , 0) which contradicts the hypothesis, and thus µ̄k + n < µ̄1

since µ ∈ A+
k (n). Set ν(1) = µ̄.σ0 and notice that ν(1) ≤ λ.τ d as ν(1)

1 = µ̄k + n <

µ̄1 ≤ (λ.τ d)1 and ν
(1)
k = µ̄1 − n ≤ (λ.τ d)1 − n ≤ (λ.τ d)k. Let α(1) ∈ Pk with parts

α
(1)
1 = ᾱk + 1, α(1)

k = ᾱ1 − 1 and α(1)
i = ᾱi for i 6= 1, k. Taking advantage of the equality

σ0 = σ1 · · ·σk−1σk−2 · · ·σ1y1y
−1
k and part (ii) of Proposition 2.1.6 it then follows that

ν(1) = µ.w(1)yα
(1) for some w(1) ∈ Sµ. The crucial point here is that |α(1)

1 |+ · · ·+ |α
(1)
k | =

|ᾱ1|+ · · ·+ |ᾱk| − 2 = |α1|+ · · ·+ |αk| − 2.
Starting from ν(1) and repeating the procedure just described one can construct a

second weight ν(2) such that ν(2) ≤ λ.τ d. Writing ν(2) = µ.w(2)yα
(2) for some w(2) ∈ Sµ

and α(2) ∈ Pk it follows by construction that |α(2)
1 |+ · · ·+ |α

(2)
k | = |α

(1)
1 |+ · · ·+ |α

(1)
k |−2 =

|α1|+ · · ·+ |αk| − 4. Proceeding along similar lines we end up with weights {ν(r)}lr=1 such
that ν(r) ≤ λ.τ d. Writing ν(l) = µ.w(l)yα

(l) for some w(l) ∈ Sµ and α(l) ∈ Pk, we have by
construction the constraint |α(l)

1 |+ · · ·+ |α
(l)
k | = |α1|+ · · ·+ |αk|−2l = 0, which implies that

α(l) = (0, 0, . . . , 0). It follows that ν(l) = µ.w(l) for some w(l) ∈ Sµ, and since ν(l) ≤ λ.τ d

this completes the proof.

We shall use the convention (
a

b

)
=

(
a

a− b

)
= 0

for integers a, b satisfying a < b or b < 0.

Lemma 3.2.8. Let λ, µ ∈ A+
k (n), d ∈ Z≥0 and suppose that λ/d/µ is a cylindric skew

diagram. The cardinality of the set (3.22) has the following explicit expression in terms of
cylindric partitions,

θλ/d/µ =
n∏
i=1

(
(λ̂.τ d)′i − µ̂′i+1

µ̂′i − µ̂′i+1

)
−

n∏
i=1

(
(λ̂.τ d−1)′i − µ̂′i+1

µ̂′i − µ̂′i+1

)
. (3.25)

Proof. For d = 0 this expression reduces to θλ/µ, as the equality (λ̂.τ−1)′n − µ̂′n = −1

implies that the second term on the RHS is 0. So suppose that d > 0, and consider the
two weights in P+

k+d given by Λ(d) = (n, . . . , n, λ1, . . . , λk) and µ(d) = (µ1, . . . , µk, 0, . . . , 0).
To prove the claim, we construct a bijection between the set (3.24), that is

A =
{

(w, α) ∈ Sµ × P≥0
k | |α| = d, µ.wy−α ≤ λ

}
,
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Figure 3.7: A graphical depiction for the proof of Lemma 3.2.8. On the left we have the
weight µ.wy−α for (w, α) ∈ A. The parts (µ.wy−α)ji for i = 1, . . . , l are represented in
dark grey. On the right we have the weight γ.

and the following set involving weights in Pk+d and permutations in Sk+d,

B = {w̄ ∈ Sµ(d) | µ(d).w̄ ≤ Λ(d), (µ(d).w̄)1 6= 0} .

We then show that the cardinality of the latter is given by (3.25). Let (w, α) ∈ A, denote
with J = {j1, . . . , jl} ⊂ [k] the set for which αji 6= 0, and with J̄ = [k] \ J its complement.
Define a weight γ ∈ Pk+d (compare with Figure 3.7) whose parts γj for 1 ≤ j ≤ d are
fixed by the vector

(
(µ.w)j1 , 0, . . . , 0︸ ︷︷ ︸

αj1−1

, (µ.w)j2 , 0, . . . , 0︸ ︷︷ ︸
αj2−1

, . . . , (µ.w)jl , 0, . . . , 0︸ ︷︷ ︸
αjl−1

)
,

whereas for 1 ≤ j ≤ k they are given by

γd+j =

{
(µ.w)j , j ∈ J̄

0 , otherwise
.

By definition we have that γ ≤ Λ(d), since all the parts of µ are smaller or equal than
n and furthermore (µ.w)j = (µ.wy−α)j ≤ λj for j ∈ J̄ . Moreover, since by construction
mi(γ) = mi(µ

(d)) for i = 0, . . . , n it follows that there exists a unique permutation w̄ ∈ Sµ(d)

such that µ(d).w̄ = γ and (µ(d).w̄)1 = γ1 = (µ.w)j1 6= 0. In conclusion, each (w, α) ∈ A

determines a unique element w̄ ∈ B, that is (w, α) 7→ w̄ defines a map A→ B.
To show that A and B are in bijection we need to create the inverse map B → A.
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The simplest approach is to merely reverse the preceding construction. For this purpose,
suppose that w̄ ∈ B. Define J̄ ⊂ [k] as the set of indices j ∈ J̄ satisfying (µ(d).w̄)d+j 6= 0,
and denote with J = [k] \ J̄ = {j1, . . . , jl} its complement. Let (µ(d).w̄)p1 , . . . , (µ

(d).w̄)pl
be the non-zero parts of µ(d).w̄ for indices p1, . . . , pl ≤ d, and consider the weight β ∈ Pk
with parts

βj =

{
(µ(d).w̄)pj , j ∈ J

(µ(d).w̄)d+j , j ∈ J̄
.

Define the map w̄ 7→ (w, α) as follows: w ∈ Sµ is the unique permutation such that
µ.w = β, and α ∈ P≥0

k is the weight with parts αji = pi+1 − pi for i = 1, . . . , l − 1,
αjl = d− pl and αj = 0 for j ∈ J̄ . The map just described is by construction the inverse
map B → A. That is, the composition of the two maps A → B and B → A gives the
identity map on A and B respectively.

The cardinality of B equals the cardinality of the set {w̄ ∈ Sµ
(d) | µ(d).w̄ ≤ Λ(d)},

which is given by θΛ(d)/µ(d) thanks to Lemma 3.2.2, minus the cardinality of the set
{w̄ ∈ Sµ

(d) | µ(d).w̄ ≤ Λ(d), (µ(d).w̄)1 = 0}. The latter is in bijection with the set
{w̄′ ∈ Sµ

(d−1) | µ(d−1).w̄′ ≤ Λ(d−1)}, which has cardinality θΛ(d−1)/µ(d−1) . In particular,
notice that Λ(d−1), µ(d−1) ∈ P+

d+k−1. A bijection w̄ 7→ w̄′ between these two sets can be
constructed via the relation

(
(µ(d).w̄)2, . . . , (µ

(d).w̄)d
)

= µ(d−1).w̄′. Thus,

θλ/d/µ = θΛ(d)/µ(d) − θΛ(d−1)/µ(d−1) ,

and equation (3.25) follows by taking advantage of Lemma 2.3.15 and the equality (Λ(d))′i =

λ′i + d = (λ̂.τ d)′i.

3.2.2 Generalisation of ψλ/µ to the cylinder

We proceed in close analogy to the previous section. For α̂, β̂ ∈ Pk,n with α̂ ⊂ β̂ we say
that β̂/α̂ is a cylindric vertical strip if β̂i − α̂i = 0, 1 for all i ∈ Z.

Definition 3.2.9. For λ, µ ∈ Â+
k (n) and d ∈ Z≥0 define ψλ/d/µ as the cardinality of the

set
{w̃ ∈ S̃µ̂ | λ̂.τ d/µ̂.w̃ is a cylindric vertical strip} . (3.26)

In Figure 3.8 there is an example which emphasises the combinatorial nature of the
set (3.22). Compare with Figure 2.5 in Chapter 2. Notice that the set (3.26) can be
equivalently expressed as

{w̃ ∈ S̃µ | (λ.τ d)i − (µ.w̃)i = 0, 1} . (3.27)
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Figure 3.8: Let k = n = 3, d = 2, λ̂ = (. . . , 1, 1, 1, . . . ) and µ̂ = (. . . , 3, 3, 1, . . . ). From left
to right we have, in grey, the cylindric diagrams of µ̂, µ̂.σ0 and µ̂.σ0σ1. These are the only
diagrams of the form µ̂.w̃, for w ∈ S̃µ̂, for which λ̂.τ 2/µ̂.w̃ is a cylindric vertical strip. It
follows that ψλ/d/µ = 3.

Following similar steps as described in Remark 3.2.5, one can show that (3.27) reduces to
the first set in (3.19) for d = 0. In particular this implies that ψλ/0/µ = ψλ/µ.

Lemma 3.2.10. The set (3.27) has the following alternative form,

{
(w, α) ∈ Sµ × P≥0

k | |α| = d, λi − (µ.wy−α)i = 0, 1
}
. (3.28)

Proof. For every w̃ ∈ S̃µ, all the elements in the right coset S̃µw̃ have the same action on
the weight µ. Thanks to Lemma 3.1.18 we have that (3.27) can be expressed as the set

{
(w, α) ∈ Sµ × Pk | |α| = 0, λi − (µ.wyατ−d)i = 0, 1

}
.

The claim then follows by employing similar steps to the ones described in the proof of
Lemma 3.2.6.

Proposition 3.2.11. The set (3.26) is non-empty if and only if λ/d/µ is a cylindric
vertical strip.

Proof. To make things easier we will prove the claim for the set (3.27) instead. In other
words, we will show that the latter is non-empty if and only if (λ.τ d)i − µi = 0, 1 for
all i ∈ Z. We start by considering the case d > mn(µ). Then there exists an index
j > mn(µ) such that (λ.τ d)j − µj > 1, because λ.τ d has d parts strictly greater than n

whereas µ has only mn(µ) < d parts equal to n. This implies that λ/d/µ is not a cylindric
vertical strip. Similarly the set (3.28), and thus the set (3.27), must be empty. In fact,
suppose that the pair (w, α) ∈ Sµ × P≥0

k belongs to (3.28). Then µ.wy−α must have at
least one part strictly smaller than 0, since the parts of α are non-negative, and moreover
|α| = d > mn(µ). This implies that there exists an index j such that λj − (µ.wy−α)j > 1,
and since this is a contradiction, the claim follows for d > mn(µ). One can prove in a
similar fashion that for d > m1(λ) the cylindric skew diagram λ/d/µ is not a cylindric
vertical strip, and that the set (3.27) is empty.
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Suppose now that d ≤ min(m1(λ),mn(µ)). If λ/d/µ is a vertical strip the element
w̃ = 1 belongs to (3.27), which is therefore non-empty. Conversely, assume that (3.27)
is non-empty, that is there exists w̃ ∈ S̃µ such that (λ.τ d)i − (µ.w̃)i = 0, 1. For d = 0

the claim follows from Lemma 2.3.19 since (3.27) reduces to the first set in (3.19). So let
d > 0, and write w̃ = wyα for some w ∈ Sk and α ∈ Pk with |α| = 0. If α = (0, 0, . . . , 0)

then λ/d/µ is a cylindric vertical strip by a similar argument as then one used in the
proof of Lemma 2.3.19, so assume that α 6= (0, 0, . . . , 0) and set l = (|α1| + · · · + |αk|)/2.
We adopt the same strategy used in the proof of Proposition 3.2.7, namely we construct
recursively a sequence

ν(1), ν(2), . . . , ν(l)

of weights in Pk such that (λ.τ d)i − ν(r)
i = 0, 1 for r = 1, . . . , l.

For 1 ≤ p, q ≤ n let (µ.w̃)p and (µ.w̃)q be respectively the greatest and smallest part
of µ.w̃. Notice that αp > 0 and αq < 0, otherwise α = (0, . . . , 0) which contradicts the
hypothesis. Since d ≤ m1(λ) we have that (λ.τ d)1 = n+ 1 and (λ.τ d)k = 1. In particular
(λ.τ d)p ≤ n+1 which implies, together with (µ.w̃)p > n, the constraint (µ.w̃)p = (λ.τ d)p =

n + 1. Similarly, we have that (µ.w̃)q = 0 and (λ.τ d)q = (λ.τ d)k = 1. Thus, calling µ̄
the weight obtained from µ.w̃ by swapping (µ.w̃)1 with (µ.w̃)p and (µ.w̃)k with (µ.w̃)q, it
follows that (λ.τ d)i − µ̄i = 0, 1. Finally, the weight ν(1) = µ̄.σ0 satisfies the constraints
(λ.τ d)i−ν(1)

i = 0, 1 as well, thanks to the relations (λ.τ d)1− (µ̄k +n) = (λ.τ d)k− µ̄k = 0, 1

and (λ.τ d)k − (µ̄1 − n) = (λ.τ d)1 − µ̄1 = 0, 1. In particular, writing ν(1) = µ.w(1)yα
(1) for

some w(1) ∈ Sµ and α(1) ∈ Pk, it follows that |α(1)
1 |+ · · ·+ |α

(1)
k | = |α1|+ · · ·+ |αk| − 2.

One can then construct, starting from ν(1) and repeating the procedure just described,
a second weight ν(2) such that (λ.τ d)i − ν(2)

i = 0, 1. Writing ν(2) = µ.w(2)yα
(2) for some

w(2) ∈ Sµ and α(2) ∈ Pk it follows by construction that |α(2)
1 | + · · · + |α

(2)
k | = |α1| +

· · · + |αk| − 4. Proceeding along the same line we end up with weights {ν(r)}lr=1 such
that (λ.τ d)i − ν

(r)
i = 0, 1, and moreover ν(l) = µ.w(l)y(0,0,...,0) for some w(l) ∈ Sµ. Since

(λ.τ d)i − ν(l)
i = 0, 1 this completes the proof.

Lemma 3.2.12. Let λ, µ ∈ Â+
k (n), d ∈ Z≥0 and suppose that λ/d/µ is a cylindric vertical

strip. The cardinality of the set (3.26) has the following explicit expression in terms of
cylindric diagrams,

ψλ/d/µ =
n∏
i=1

(
(λ̂.τ d)′i − (λ̂.τ d)′i+1

(λ̂.τ d)′i − µ̂′i

)
. (3.29)

Proof. Since λ/d/µ is a cylindric vertical strip we must have that d ≤ min(m1(λ),mn(µ)),
as explained in the proof of Proposition 3.2.11. We now construct a bijection between the
set (3.27), that is

A =
{

(w, α) ∈ Sµ × P≥0
k | |α| = d, λi − (µ.wy−α)i = 0, 1

}
,
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and the set
B = {w̄ ∈ Sµ.τ−d | λi − (µ.τ−dw̄)i = 0, 1} .

The cardinality of the latter is given by (3.29), as we will show below. Let (w, α) ∈ A, then
αj 6= 0 only if (µ.w)j = n, in which case αj = 1. Since d ≤ mn(µ) we have that µ.τ−d =

(µd+1, . . . µk, 0, . . . , 0). This implies that mi(µ.τ
−d) = mi(µ.wy

−α) for i = 0, . . . , n, and
thus there exists a unique permutation w̄ ∈ Sµ.τ

−d such that (µ.τ−d).w̄ = µ.τ−dw̄ =

µ.wy−α. Since by construction λi − (µ.τ−dw̄)i = 0, 1 it follows that w̄ ∈ B. In conclusion,
each (w, α) ∈ A determines a unique element w̄ ∈ B, that is (w, α) 7→ w̄ defines a map
A→ B.

We now create the inverse map B → A by reversing the construction above. Let
w̄ ∈ B, and consider the weight α ∈ Pk with parts αj = 1 if (µ.τ−dw̄)j = 0 and αj = 0

otherwise. Since the weight µ.τ−dw̄ has d parts equal to 0 it follows that |α| = d. By
construction we have that mi(µ) = mi(µ.τ

−dw̄yα) for i = 1, . . . , n and thus there exists
a unique permutation w ∈ Sµ such that µ.w = µ.τ−dw̄yα. This condition is equivalent
to µ.wy−α = µ.τ−dw̄, which implies that λi − (µ.wy−α)i = 0, 1 and thus the pair (w, α)

belongs to A. The map w̄ 7→ (w, α) just described is by construction the inverse map
B → A. That is, the composition of the two maps A → B and B → A gives the identity
map on A and B respectively.

Now that we have established the bijection between the sets A and B, notice that the
latter has cardinality ψλ/µ.τ−d thanks to Lemma 2.3.20. Thus, taking advantage of the
relations (µ.τ−d)′i = (µ̂.τ−d)′i = µ̂′i− d for i = 1, . . . , n the claim follows from the equalities

ψλ/d/µ = ψλ/µ.τ−d =
n∏
i=1

(
λ′i − λ′i+1

λ′i − (µ.τ−d)′i

)
=

n∏
i=1

(
(λ̂.τ d)′i − (λ̂.τ d)′i+1

(λ̂.τ d)′i − µ̂′i

)
.

3.2.3 The main definitions

We now have all the tools to extend the skew elementary and complete symmetric functions
to the cylindric case. For λ, µ ∈ A+

k (n) and d ∈ Z≥0 let π̂ be a CRPP of shape λ/d/µ,
that is a sequence {λ̂(r).τ dr}r∈Z≥0

of cylindric partitions as described in (3.21). If l ∈ N

is the largest entry of π̂ we set λ̂(r).τ dr = λ̂.τ d for r ≥ l. Notice that applying τ−dr−1 to
both cylindric partitions appearing in λ̂(r).τ dr/λ̂(r−1).τ dr−1 one obtains the cylindric skew
diagram λ(r)/(dr − dr−1)/λ(r−1). Equivalently, the latter is recovered after translating the
vertical axis by the vector (0, dr−1). Set

θπ̂ =
∏
r≥1

θλ(r)/(dr−dr−1)/λ(r−1) ,
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and denote by xπ̂ the monomial xwt1(π̂)
1 x

wt2(π̂)
2 · · · in the indeterminates {x1, x2, . . . }. Sim-

ilarly, consider a CRST T̂ of shape λ/d/µ, that is a sequence {λ̂(r).τ dr}r∈Z≥0
of cylin-

dric partitions where λ̂(r).τ dr/λ̂(r−1).τ dr−1 is a cylindric vertical strip for r ≥ 1. Set
xT̂ = x

wt1(T̂ )
1 x

wt2(T̂ )
2 · · · , and

ψT̂ =
∏
r≥1

ψλ(r)/(dr−dr−1)/λ(r−1) .

Definition 3.2.13. Let λ, µ ∈ A+
k (n), d ∈ Z≥0 and suppose that µ̂ ⊂ λ̂.τ d. Introduce

the cylindric elementary symmetric function eλ/d/µ and the cylindric complete symmetric
function hλ/d/µ as the weighted sums

eλ/d/µ =
∑
T̂

ψT̂x
T̂ , (3.30)

hλ/d/µ =
∑
π̂

θπ̂x
π̂ , (3.31)

over all CRSTs and CRPPs of shape λ/d/µ respectively. If λ/d/µ is not a cylindric skew
diagram set eλ/d/µ = hλ/d/µ = 0.

Suppose that λ, µ ∈ A+
k (n) with µ ⊂ λ. Since the parts of λ and µ are by definition

smaller or equal than n, it follows from Remark 3.1.12 that there exists a bijection between
CRPPs of shape λ/0/µ and RPPs of shape λ/µ, whose action consists in restricting a
CRPP to the lines 1 to k. Calling π̂ 7→ π such bijection we have that wt(π̂) = wt(π), and
thus xπ̂ = xπ. Moreover, we have that θπ̂ = θπ thanks to the discussion in Remark 3.2.5.
This implies that hλ/0/µ = hλ/µ, that is for d = 0 we recover the (non-cylindric) skew
complete symmetric functions. In particular, if µ 6⊂ λ then hλ/0/µ = hλ/µ = 0. Similarly
one has that eλ/0/µ = eλ/µ.

3.3 Symmetric functions at roots of unity

The main goal of this section is to prove that the cylindric symmetric functions eλ/d/µ
and hλ/d/µ introduced above are actually symmetric, that is they belong to the ring of
symmetric functions Λ. For this purpose it is enough to show that they can be expanded
in terms of the basis {mν}ν∈P+ of Λ. Of greater interest is their expansions in terms
of {eν}ν∈P+ and {hν}ν∈P+ respectively, since the expansion coefficients are related to
the fusion coefficients of a 2D TQFT, as we will see in Chapter 5 (compare also with
Corollaries 3.3.13, 3.4.3 and Remark 3.4.4 below). The proof of these expansions requires
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the generalisation of the product formulae

mµmν =
∑
λ∈P+

fλµνmλ , (3.32)

mµeν =
∑
λ∈P+

ψλ/µ(ν)mλ , (3.33)

mµhν =
∑
λ∈P+

θλ/µ(ν)mλ , (3.34)

which were introduced in (2.13), (2.65) and (2.71) respectively, to an appropriate ring.
The latter is given by the following quotient

Vk(n) = Λk[z, z
−1]/Ik,n , (3.35)

where we set Λk[z, z
−1] = Λk ⊗C C[z, z−1], and moreover we define the two-sided ideal

Ik,n = 〈pn(x1, . . . , xk)− zk, pn+r(x1, . . . , xk)− zpr(x1, . . . , xk) for r = 1, . . . , k − 1〉 .

It is important to keep in mind that the product formulae in Vk(n) involve symmetric
functions in k variables, whereas the expansions of eλ/d/µ and hλ/d/µ mentioned above
hold in Λ. The next result shows that for z = 0 one can think of Vk(n) as the ring of
symmetric functions in k variables evaluated at the n-th roots of unity.

Lemma 3.3.1. The two set of equations

pn(x1, . . . , xk)−zk = 0 , pn+r(x1, . . . , xk)−zpr(x1, . . . , xk) = 0 , 1 ≤ r ≤ k−1 , (3.36)

and

xnr = z , 1 ≤ r ≤ k , (3.37)

are equivalent.

Proof. The relations (3.36) are clearly satisfied if (3.37) hold (compare with the definition
(2.27) of power sums). To show the converse, we shall take advantage of Newton’s formula
(2.34), which can be rearranged as pr−1e1 = (−1)rrer + (−1)r

∑r−2
i=1 (−1)ipier−i + pr. So

assume that the relations (3.36) hold. A straightforward computation shows that

(
pn+k−1(x1, . . . , xk)− zpk−1(x1, . . . , xk)

)
e1(x1, . . . , xk)

= pn+k(x1, . . . , xk)− zpk(x1, . . . , xk) .

Since the relations (3.36) are satisfied, it follows that the LHS of the equality just obtained
is equal to 0, and so is the RHS. Similarly, one can show by induction that the relation



CHAPTER 3. CYLINDRIC SYMMETRIC FUNCTIONS 59

pn+r(x1, . . . , xk)− zpr(x1, . . . , xk) = 0 is valid for all r ∈ N. Assume that u is an invertible
indeterminate, then the generating function (2.30) for power sums obeys the constraint

P (u) =
n∑
i=1

pi(x1, . . . , xk)u
i−1 +

∑
i>n

pi(x1, . . . , xk)u
i−1

=
n∑
i=1

pi(x1, . . . , xk)u
i−1 + zun

∑
i≥1

pi(x1, . . . , xk)u
i−1

=
n∑
i=1

pi(x1, . . . , xk)u
i−1 + zunP (u) ,

where in the first line we used (3.36). This last identity can be rearranged as

n∑
i=1

pi(x1, . . . , xk)u
i−1 = (1− zun)P (u) = (1− zun)

k∑
i=1

xi
1− uxi

.

It follows that the formal series expansion of (1− zun)P (u) terminates after finitely many
terms. Thus for i = 1, . . . , k the residue of (1 − zun)P (u) at u−1 = xi must vanish, and
these conditions provide a set of equations which corresponds to (3.37).

Lemma 3.3.2. The set {mλ(x1, . . . , xk)}λ∈A+
k (n) is a basis of Vk(n).

Proof. First of all, notice that the elements {mλ(x1, . . . , xk)}λ∈A+
k (n) are linearly indepen-

dent in Vk(n). In fact, suppose that
∑

λ∈A+
k (n) aλmλ(x1, . . . , xk) = 0 for some aλ ∈ C. For

each λ ∈ A+
k (n) we have that the monomial xλ1

1 · · ·x
λk
k appears only once in this linear

combination thanks to Lemma 3.3.1 and the expansion (2.15), that is

mλ(x1, . . . , xk) =
∑
w∈Sλ

x
λw(1)

1 · · ·xλw(k)

k =
1

|Sλ|
∑
w∈Sk

x
λw(1)

1 · · ·xλw(k)

k .

It follows that aλ = 0 for all λ ∈ A+
k (n). To prove the claim, it is then enough to show

that in Vk(n) each element of the set {mλ(x1, . . . , xk)}λ∈P+
k
, which is a basis of Λk as we

mentioned in Remark 2.2.6, can be expanded in terms of {mλ(x1, . . . , xk)}λ∈A+
k (n). Let

λ ∈ P+
k , and denote with λ̌ ∈ A+

k (n) the unique intersection point of the orbit λ.Ŝk with
A+
k (n). Taking advantage once again of equation (2.15) and Lemma 3.3.1, one ends up

with the following equality in Vk(n),

mλ(x1, . . . , xk) =
|Sλ̌|
|Sλ|

z
|λ|−|λ̌|
n mλ̌(x1, . . . , xk) . (3.38)

By definition we have that λ̌ = λ.wyα for some w ∈ Sλ and α ∈ Pk. It follows that
|λ̌| − |λ| = n|α|, and thus |λ|−|λ̌|

n
∈ Z. This finally proves the claim.
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3.3.1 Product expansions at roots of unity

We now wish to generalise the product formulae (3.32), (3.33) and (3.34) to the quotient
Vk(n). Let us start from the product formula (3.32). Namely, we want to expand the
product mµ(x1, . . . , xk)mν(x1, . . . , xk) in terms of the basis of Vk(n) introduced in Lemma
3.3.2, and find a combinatorial interpretation for the expansion coefficients. The latter is
given by the following definition, as we will show in Lemma 3.3.5 below.

Definition 3.3.3. For λ ∈ A+
k (n), µ, ν ∈ P+

k and d ∈ Z define Nλ,d
µν as the cardinality of

the set

{
(w,w′) ∈ Sµ × Sν | µ.w + ν.w′ = λ.yα for some α ∈ Pk with |α| = d

}
. (3.39)

If we restrict the weights λ, µ, ν to the alcove A+
k (n), then the coefficients Nλ,d

µν become
the fusion coefficients of a 2D TQFT, as we will see in Chapter 5. Notice furthermore that
these coefficients are by definition non-negative integers. In Chapter 5 we provide a repre-
sentation theoretical interpretation of this statement. Namely, we will present a formula
for the coefficients Nλ,d

µν in terms of tensor multiplicities for irreducible representations of
the generalised symmetric group.

Lemma 3.3.4. Let λ ∈ A+
k (n), µ, ν ∈ P+

k and d ∈ Z. Then Nλ,d
µν is non-zero only if the

following conditions are satisfied.

1. |µ|+ |ν| − |λ| = dn.

2. d ≥ −k.

3. d ≥ 0, provided that at least one of µ, ν belongs to A+
k (n).

4. µ̂ ⊂ λ̂.τ d, that is λ/d/µ is a cylindric skew diagram, provided that µ ∈ A+
k (n).

Proof. Suppose that Nλ,d
µν is non-zero, that is the set (3.39) is non-empty. The relation

µ.w + ν.w′ = λ.yα implies the constraint |µ| + |ν| = |λ| + dn, which is equivalent to
Condition 1. Assume that (w,w′) ∈ Sµ×Sν belongs to (3.39), that is there exists α ∈ Pk
with |α| = d such that µ.w + ν.w′ = λ.yα. Since 1 ≤ λi ≤ n we have that αi ≥ −1 for
i = 1, . . . , k, and thus d = |α| ≥ −k. In particular, if at least one of µ, ν belongs to A+

k (n)

it follows that α ∈ P≥0
k , since all the parts of µ.w + ν.w′ are positive, and thus we must

have that d ≥ 0. This proves Conditions 2 and 3.
We now show the validity of Condition 4, and for this purpose assume that µ ∈ A+

k (n).
If d ≥ k all the parts of λ.τ d are greater than n, and thus the relation µ̂ ⊂ λ̂.τ d follows
immediately. So let d < k and suppose that Nλ,d

µν is non-zero, that is there exists a pair
(w,w′) ∈ Sµ × Sν and α ∈ Pk with |α| = d such that µ.w + ν.w′ = λ.yα. This last
constraint implies that µ.w ≤ λ.yα, which can be rearranged as (µ.y−γ).w ≤ λ after
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setting γ = α.w−1. Following similar steps as described in the proof of Lemma 2.3.14, one
has that µ.y−γ ≤ λ, and thus µ ≤ λ.yγ. Notice that the parts of γ must be non-negative
since the parts of µ are all positive. Let i ∈ N and suppose that d < i ≤ k. Since |γ| = d

there are at most d non-zero parts in γ, and then there exists j ∈ N with i − d ≤ j ≤ i

such that γj = 0. We then have the chain of inequalities λi−d ≥ λj ≥ µj ≥ µi which
implies that (λ.τ d)i ≥ µi. If instead 1 ≤ i ≤ d the inequality (λ.τ d)i ≥ µi follows from the
fact that (λ.τ d)i > n. In conclusion we have that (λ.τ d)i ≥ µi for i = 1, . . . , k, and thus
µ̂ ⊂ λ̂.τ d.

Lemma 3.3.5. For µ, ν ∈ P+
k we have the following product expansion in Vk(n),

mµ(x1, . . . , xk)mν(x1, . . . , xk) =
∑
d∈Z

zd
∑

λ∈A+
k (n)

Nλ,d
µν mλ(x1, . . . , xk) , (3.40)

where the first sum is restricted to d ≥ 0 if at least one of µ, ν belongs to A+
k (n), and to

d ≥ −k otherwise.

The sum over d on the RHS involves only finitely many non-zero terms, for if d is large
enough the constraint |µ| + |ν| − |λ| = dn can no longer be fulfilled, and thus Nλ,d

µν must
equal 0 thanks to Property 1 of Lemma 3.3.4. The same constraint implies that for each
λ ∈ A+

k (n) there is at most one non-zero term zdNλ,d
µν which contributes to the coefficient

of mλ(x1, . . . , xk) in mµ(x1, . . . , xk)mν(x1, . . . , xk).

Proof. For λ ∈ A+
k (n) and d ∈ Z we have that the coefficient of zdmλ(x1, . . . , xk) in

mµ(x1, . . . , xk)mν(x1, . . . , xk) equals the coefficient of zdxλ1
1 · · ·x

λk
k in the same product.

Each monomial appearing in the product mµ(x1, . . . , xk)mν(x1, . . . , xk) is of the form
x
µw(1)+νw′(1)

1 · · ·xµw(k)+νw′(k)

k , for some w ∈ Sµ and w′ ∈ Sν . Taking advantage of the
set of equations (3.37), which was introduced in Lemma 3.3.1, one sees that this mono-
mial equals zdxλ1

1 · · ·x
λk
k if and only if there exists α ∈ Pk with |α| = d satisfying the

relation µ.w + ν.w′ = λ.yα, that is if and only if the pair (w,w′) belongs to the set
(3.39). This shows that for λ ∈ A+

k (n) and d ∈ Z the coefficient of zdmλ(x1, . . . , xk) in
mµ(x1, . . . , xk)mν(x1, . . . , xk) equals Nλ,d

µν , thus proving equation (3.40). The restriction
on d follows from Lemma 3.3.4.

Lemma 3.3.6. Let λ, ρ ∈ A+
k (n), η, µ, ν ∈ P+

k and d ∈ Z. The coefficients Nλ,d
µν satisfy

the following properties.

1. Commutativity:
Nλ,d
µν = Nλ,d

νµ . (3.41)
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2. Associativity: if d ≥ −k, then∑
d1+d2=d

d1≥−k,d2≥0

∑
σ∈A+

k (n)

Nσ,d1
ηµ Nρ,d2

σν =
∑

d1+d2=d
d1≥−k,d2≥0

∑
σ∈A+

k (n)

Nσ,d1
νµ Nρ,d2

ση . (3.42)

3. If d ≥ −k, employing the coefficient fσηµ introduced in (2.13), then∑
σ∈P+

k

fσηµN
ρ,d
σν =

∑
d1+d2=d

d1≥−k,d2≥0

∑
σ∈A+

k (n)

Nσ,d1
ηµ Nρ,d2

σν . (3.43)

4. If d = 0 and at least one of µ, ν belongs to A+
k (n), then

Nλ,0
µν = fλµν . (3.44)

5. If µ ∈ A+
k (n), setting nk = (n, . . . , n) ∈ A+

k (n), then

Nλ,d
µnk

= δd,kδλµ . (3.45)

6. If ν̌ is the unique intersection point of the orbit ν.Ŝk with A+
k (n), then

Nλ,d
µν = N

λ,d+
|ν̌|−|ν|
n

µν̌

|Sν̌ |
|Sν |

. (3.46)

Proof. Property 1 follows immediately from the definition of Nλ,d
µν . Let πk,n : Λk[z, z

−1]→
Vk(n) be the quotient map, and consider the equality (mηmµ)mν = mη(mµmν) in Λ[z, z−1],
which simply reflects the associativity of the product. Apply the projection Λ[z, z−1] →
Λk[z, z

−1], which was introduced in (2.11), to both sides of this equality first, and then
apply the quotient map πk,n. Using the product expansion (3.40), and comparing the
terms with the same power of z, we end up with Property 2. Property 3 follows after
similar steps, where one has to start from the equality (mηmµ)mν =

∑
σ∈P+ fσηµmσmν in

Λ[z, z−1] instead. We now prove Property 4, and for this purpose notice that the coefficient
Nλ,0
µν can be expressed as the cardinality of the set

{(w,w′) ∈ Sµ × Sν | µ.w + ν.w′ = λ} .

In fact, if (w,w′) ∈ Sµ × Sν belongs to (3.39) then we must have α = (0, . . . , 0), since
|α| = 0 and moreover α ∈ P≥0

k as mentioned in the proof of Lemma 3.3.4. But this is
just an equivalent rewriting of the set (2.14), and the claim follows. To prove Property 5
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notice that Nλ,d
µnk

equals the cardinality of the set

{
w ∈ Sµ | µ.w + nk = λ.yα for some α ∈ Pk with |α| = d

}
,

since the stabilizer subgroup of nk coincides with Sk, and thus Snk is just the identity
element in Sk. The constraint µ.w+ nk = λ.yα is equivalent to µ.w = λ.yα−(1,1,...,1), which
can be fulfilled if and only if α = (1, 1, . . . , 1) and λ = µ, since we assumed that µ ∈ A+

k (n).
This shows the validity of (3.45). Finally, Property 6 follows by applying (3.38) to the
product expansion (3.40) in Vk(n).

We shall now proceed to generalise the remaining product expansions (3.33) and (3.34)
to the quotient Vk(n).

Definition 3.3.7. Let λ, µ ∈ A+
k (n), d ∈ Z≥0, ν ∈ P and suppose that µ̂ ⊂ λ̂.τ d. Define

the coefficients

ψλ/d/µ(ν) =
∑
T̂

ψT̂ , (3.47)

θλ/d/µ(ν) =
∑
π̂

θπ̂ , (3.48)

where the sums run over all CRSTs and CRPPs of shape λ/d/µ and weight ν respectively.
If λ/d/µ is not a cylindric skew diagram set ψλ/d/µ(ν) = θλ/d/µ(ν) = 0.

If π̂ is a CRPP of shape λ/d/µ and weight ν then we have the constraint |λ/d/µ| =

|λ| + dn − |µ| = |ν|. It follows that θλ/d/µ(ν) is non-zero only if |µ| + |ν| − |λ| = dn. Let
µ ⊂ λ, then we have that θλ/0/µ(ν) = θλ/µ(ν), where the latter was described in Lemma
2.3.16 as a weighted sum over RPPs. This is because the bijection π̂ 7→ π between CRPPs
of shape λ/0/µ and RPPs of shape λ/µ is such that wt(π̂) = wt(π) and θπ̂ = θπ. In
particular, if µ 6⊂ λ then θλ/0/µ(ν) = θλ/µ(ν) = 0. Similarly, one has that ψλ/d/µ(ν) is
non-zero only if |µ|+ |ν| − |λ| = dn, and moreover ψλ/0/µ(ν) = ψλ/µ(ν).

Lemma 3.3.8. Let µ ∈ A+
k (n) and ν ∈ P. The following product rule holds in Vk(n),

mµ(x1, . . . , xk)hν(x1, . . . , xk) =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

θλ/d/µ(ν)mλ(x1, . . . , xk) , (3.49)

where the second sum is restricted to those λ ∈ A+
k (n) for which λ/d/µ is a cylindric skew

diagram with |µ|+ |ν| − |λ| = dn.

The fact that θλ/d/µ(ν) is non-zero only if |µ| + |ν| − |λ| = dn implies that the sum
over d ∈ Z≥0 on the RHS of (3.49) terminates after finitely many terms, and that for
each λ ∈ A+

k (n) there is at most one non-zero term zdθλ/d/µ(ν) which contributes to the
coefficient of mλ(x1, . . . , xk) in mµ(x1, . . . , xk)hν(x1, . . . , xk).
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Proof. We show that the following product expansion holds in Vk(n)

mµ(x1, . . . , xk)hr(x1, . . . , xk) =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

θλ/d/µmλ(x1, . . . , xk) , (3.50)

where the second sum runs over all λ ∈ A+
k (n) for which λ/d/µ is a cylindric skew diagram

with |λ/d/µ| = r, that is |µ| + r − |λ| = dn. The claim then follows by applying (3.50)
repeatedly to the product mµ(x1, . . . , xk)hν(x1, . . . , xk). This also implies that θλ/d/µ(β) =

θλ/d/µ(ν) for β ∼ ν, where θλ/d/µ(β) for β a composition is defined in an analogous way to
(3.48).

For λ ∈ A+
k (n) and d ∈ Z we have that the coefficient of zdmλ(x1, . . . , xk) in the

product mµ(x1, . . . , xk)hr(x1, . . . , xk) equals the coefficient of zdxλ1
1 · · ·x

λk
k in the same

product. Projecting the expansion (2.18) of hr onto Λk one has that hr(x1, . . . , xk) =∑
γ∈P≥0

k
xγ1

1 · · ·x
γk
k , where the sum runs over all γ ∈ P≥0

k such that |γ| = r. It then
follows that each monomial appearing in the product mµ(x1, . . . , xk)hr(x1, . . . , xk) is of
the form x

µw(1)+γ1

1 · · ·xµw(k)+γk
k for some w ∈ Sµ and γ ∈ P≥0

k with |γ| = r. The latter
equals zdxλ1

1 · · ·x
λk
k if and only if there exists α ∈ Pk with |α| = d satisfying the relation

µ.w + γ = λ.yα. If such a weight α ∈ Pk exists then it must belong to P≥0
k since

µ ∈ A+
k (n), and this in turn implies that d ∈ Z≥0. Thus the coefficient of zdxλ1

1 · · ·x
λk
k in

mµ(x1, . . . , xk)hr(x1, . . . , xk) equals the cardinality of the set

A =
{

(w, γ, α) ∈ Sµ × P≥0
k × P

≥0
k | |γ| = r, |α| = d, µ.w + γ = λ.yα

}
,

provided that d ∈ Z≥0. Notice that A is non-empty only if |µ| + r − |λ| = dn due to the
constraint µ.w+γ = λ.yα. In particular this implies that A is non-empty only if d satisfies
the inequality kn + r − k > dn, since kn and k are respectively the largest and smallest
possible values for |µ| and |λ|. So suppose that the relation |µ|+ r− |λ| = dn is satisfied.
With this assumption, the set A can be put in bijection with

B =
{

(w, α) ∈ Sµ × P≥0
k | |α| = d, µ.w ≤ λ.yα

}
.

In fact, if (w, α, γ) ∈ A then µ.w ≤ λ.yα, and thus (w, α) ∈ B. The assignment (w, α, γ) 7→
(w, α) therefore defines a map A→ B. To construct the inverse map B→ A, notice that if
(w, α) ∈ B then the weight γ = λ.yα−µ.w belongs to P≥0

k , and since |γ| = |λ|+nd−|µ| = r

it follows that (w, α, γ) ∈ A. Thus, the assignment (w, α) 7→ (w, α, γ) is by construction
the inverse map B → A. Lemma 3.2.6 implies that the set B has cardinality θλ/d/µ,
which is non-zero if and only if λ/d/µ is a cylindric skew diagram thanks to Proposition
3.2.7. In conclusion, for λ ∈ A+

k (n) and d ∈ Z≥0 the coefficient of zdmλ(x1, . . . , xk) in
mµ(x1, . . . , xk)hr(x1, . . . , xk) is non-zero if and only if λ/d/µ is a cylindric skew diagram
with |µ|+ r− |λ| = dn, in which case it equals θλ/d/µ. This completes the proof of (3.50).
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Lemma 3.3.9. Let µ ∈ A+
k (n) and ν ∈ P. The following product rule holds in Vk(n),

mµ(x1, . . . , xk)eν(x1, . . . , xk) =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

ψλ/d/µ(ν)mλ(x1, . . . , xk) . (3.51)

where the second sum is restricted to those λ ∈ A+
k (n) for which λ/d/µ is a cylindric skew

diagram with |µ|+ |ν| − |λ| = dn.

As mentioned above, the coefficient ψλ/d/µ(ν) is non-zero only if |µ| + |ν| − |λ| = dn.
Thus, the sum over d ∈ Z≥0 on the RHS of (3.51) is finite, and for each λ ∈ A+

k (n) there
is at most one non-zero term zdψλ/d/µ(ν) contributing to the coefficient of mλ(x1, . . . , xk)

in mµ(x1, . . . , xk)eν(x1, . . . , xk).

Proof. We proceed in close analogy to the proof of Lemma 3.3.8. That is, we first show
the validity of the following product expansion in Vk(n),

mµ(x1, . . . , xk)er(x1, . . . , xk) =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

ψλ/d/µmλ(x1, . . . , xk) , (3.52)

where the second sum runs over all λ ∈ A+
k (n) for which λ/d/µ is a cylindric vertical strip

with |µ|+ r− |λ| = dn. The claim then follows by applying repeatedly the equality above
to the product mµ(x1, . . . , xk)eν(x1, . . . , xk). This also implies that ψλ/d/µ(β) = ψλ/d/µ(ν)

for β ∼ ν, where ψλ/d/µ(β) for β a composition is defined in an analogous way to (3.47).
As usual, for λ ∈ A+

k (n) and d ∈ Z we have that the coefficient of zdmλ(x1, . . . , xk)

in mµ(x1, . . . , xk)er(x1, . . . , xk) equals the coefficient of zdxλ1
1 · · ·x

λk
k in the same product.

Projecting the expansion (2.18) of er onto Λk one has that er(x1, . . . , xk) =
∑

γ∈P≥0
k
xγ1

1 · · ·x
γk
k ,

where the sum runs over all γ ∈ P≥0
k such that γi = 0, 1 and |γ| = r. This implies

that each monomial appearing in the product mµ(x1, . . . , xk)er(x1, . . . , xk) is of the form
x
µw(1)+γ1

1 · · ·xµw(k)+γk
k for some w ∈ Sµ and γ ∈ P≥0

k with γi = 0, 1 and |γ| = r. The latter
equals zdxλ1

1 · · · x
λk
k if and only if there exists α ∈ P≥0

k with |α| = d satisfying the relation
µ.w + γ = λ.yα. If such a weight α ∈ Pk exists then it must belong to P≥0

k , and this
implies that d ∈ Z≥0. Thus the coefficient of zdxλ1

1 · · ·x
λk
k in mµ(x1, . . . , xk)er(x1, . . . , xk)

equals the cardinality of the set

A =
{

(w, γ, α) ∈ Sµ × P≥0
k × P

≥0
k | γi = 0, 1, |γ| = r, |α| = d, µ.w + γ = λ.yα

}
,

which is non-empty only if |µ| + r − |λ| = dn. Following similar steps as in the proof of
Lemma 3.3.8, one can show that A is in bijection with the set

B =
{

(w, α) ∈ Sµ × P≥0
k | |α| = d, (λ.yα)i − (µ.w)i = 0, 1

}
,
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provided that |µ| + r − |λ| = dn. But the latter corresponds to the set (3.28), whose
cardinality is by definition ψλ/d/µ. Moreover, B is non-empty if and only if λ/d/µ is a
cylindric vertical strip according to Proposition 3.2.11. In conclusion, for λ ∈ A+

k (n) and
d ∈ Z≥0 the coefficient of zdmλ(x1, . . . , xk) in mµ(x1, . . . , xk)er(x1, . . . , xk) is non-zero if
and only if λ/d/µ is a cylindric vertical strip with |µ| + r − |λ| = dn, in which case it is
equal to ψλ/d/µ. This shows the validity of (3.52).

The coefficients described in Definition 3.3.7 have alternative combinatorial expressions
which are the generalisation of (2.53) to the cylinder. For λ ∈ P+ recall the expansions
eλ =

∑
µ∈P+ Mλµmµ and hλ =

∑
µ∈P+ Lλµmµ in Λ, which were introduced in (2.22).

Proposition 3.3.10. Let λ, µ ∈ A+
k (n), d ∈ Z≥0 and ν ∈ P. The following equalities hold

ψλ/d/µ(ν) =
∑
σ∈P+

k

Nλ,d
µσ Mνσ , (3.53)

θλ/d/µ(ν) =
∑
σ∈P+

k

Nλ,d
µσ Lνσ . (3.54)

Proof. Projecting onto Λk one has that eν(x1, . . . , xk) =
∑

σ∈P+
k
Mνσmσ(x1, . . . , xk). This,

together with the quotient map πk,n : Λk[z, z
−1] → Vk(n) and the product expansion

(3.40), can be used to obtain the following identity in Vk(n),

mµ(x1, . . . , xk)eν(x1, . . . , xk) =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

( ∑
σ∈P+

k

Nλ,d
µσ Mνσ

)
mλ(x1, . . . , xk) .

Thanks to part 4 of Lemma 3.3.4, the second sum on the RHS is restricted to those
λ ∈ A+

k (n) for which λ/d/µ is a cylindric skew diagram, together with the constraint
|µ|+ |ν| − |λ| = dn since Nλ,d

µσ is non-zero only if |µ|+ |σ| − |λ| = dn and Mνσ is non-zero
only if |ν| = |σ|. A comparison of the latter with (3.51) then yields (3.53) provided that
λ/d/µ is a cylindric skew diagram. If instead µ̂ 6⊂ λ̂.τ d then both ψλ/d/µ(ν) and Nλ,d

µσ are 0,
and thus (3.53) still holds. Equation (3.54) follows in an analogous way, using the product
expansion (3.49) instead.

3.3.2 Expansion formulae for cylindric symmetric functions

We are now ready to prove the main expansion formulae for cylindric symmetric functions,
which are the generalisation of (2.54) and (2.55) to the cylinder.

Proposition 3.3.11. Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. The functions eλ/d/µ and hλ/d/µ can
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be expanded as

eλ/d/µ =
∑
ν∈P+

ψλ/d/µ(ν)mν , (3.55)

hλ/d/µ =
∑
ν∈P+

θλ/d/µ(ν)mν . (3.56)

into the basis {mν}ν∈P+ of Λ, and thus are symmetric.

Proof. Suppose that λ/d/µ is a cylindric skew diagram. A simple rewriting of (3.30) shows
that

eλ/d/µ =
∑
ν∈P+

∑
β∼ν

xβ
∑
T̂

ψπ̂ , (3.57)

where the last sum runs over all CRSTs T̂ of shape λ/d/µ and weight β, and thus eλ/d/µ =∑
ν∈P+

∑
β∼ν x

βψλ/d/µ(β). The latter can then be rearranged to give (3.55) thanks to the
relation ψλ/d/µ(β) = ψλ/d/µ(ν) for β ∼ ν, which was proved in Lemma 3.3.9, and the
definition mν =

∑
β∼ν x

β of monomial symmetric functions. If instead µ̂ 6⊂ λ̂.τ d then both
eλ/d/µ and ψλ/d/µ(ν) are 0, and (3.55) still holds. Equation (3.56) follows in a completely
analogous way.

Theorem 3.3.12. Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. We have the expansions

eλ/d/µ =
∑
ν∈P+

k

Nλ,d
µν eν , (3.58)

hλ/d/µ =
∑
ν∈P+

k

Nλ,d
µν hν , (3.59)

into the basis {hν}ν∈P+ and {eν}ν∈P+ of Λ respectively.

Proof. Using (3.53) one has that
∑

σ∈P+ ψλ/d/µ(σ)M−1
νσ equals Nλ,d

µν if `(ν) ≤ k, that is if
ν ∈ P+

k , and 0 otherwise. Starting from (3.55), and using the fact that the basis {eλ}λ∈P+

and {fλ}λ∈P+ of Λ are dual to each other, we then have that

eλ/d/µ =
∑

ν,σ∈P+

ψλ/d/µ(σ)〈mσ, fν〉eν =
∑
ν∈P+

( ∑
σ∈P+

ψλ/d/µ(σ)M−1
νσ

)
eν ,

which implies the validity of (3.58). To justify the second equality notice first of all that
〈mσ, fν〉 = 〈w(mσ), w(fν〉) = 〈fσ,mν〉, where w is the involution in Λ described in Section
2.2.5. Then use the the expansion mν =

∑
ρ∈P+ M−1

νρ eρ together with the orthogonality
relation 〈fσ, eρ〉 = δσρ. The proof of (3.59) is completely analogous and therefore we omit
it.
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Theorem 3.3.12 has a few consequences, some of which we now explore. First of all,
applying the involution ω to both sides of (3.58) it follows that

ω(eλ/d/µ) = hλ/d/µ , (3.60)

which means that eλ/d/µ and hλ/d/µ are ‘dual’ to each other. A further consequence is
given by the following corollary. Namely, by expanding eλ/d/µ and hλ/d/µ in a suitable way,
we recover the coefficients Nλ,d

µν involving only weights in A+
k (n). These are the fusion

coefficients of a 2D TQFT, as we will see in Chapter 5.

Corollary 3.3.13 ( [45]). Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. We have the expansions

eλ/d/µ =
d+k∑
d′=0

∑
σ∈A+

k (n)

Nλ,d′

µσ eσ/(d+k−d′)/nk , (3.61)

hλ/d/µ =
d+k∑
d′=0

∑
σ∈A+

k (n)

Nλ,d′

µσ hσ/(d+k−d′)/nk , (3.62)

where nk = (n, . . . , n) ∈ A+
k (n).

Proof. Setting µ = ∅ in (3.43) and renaming the partitions appropriately one has that
Nλ,d
µν =

∑
d1+d2=d

d1≥−k,d2≥0

∑
σ∈A+

k (n) N
σ,d1

µ∅ Nλ,d2
σν thanks to the relation fση∅ = δση. Furthermore,

notice that the coefficient Nσ,d
∅ν equals the cardinality of the set

{
w ∈ Sν | ν.w = σ.yα for some α ∈ Pk with |α| = d

}
.

The constraint ν.w = σ.yα holds if and only if ν.w + nk = σ.yα
′ holds, where we defined

α′ = α + (1, 1, . . . , 1), and this implies that Nσ,d
∅ν = Nσ,d+k

nkν
. Starting from (3.58) we end

up with the following chain of equalities,

eλ/d/µ =
∑
ν∈P+

k

Nλ,d
µν eν

=
∑
ν∈P+

k

∑
d1+d2=d

d1≥−k,d2≥0

∑
σ∈A+

k (n)

Nσ,d1

µ∅ Nλ,d2
σν eν

=
∑
ν∈P+

k

∑
d1+d2=d

d1≥−k,d2≥0

∑
σ∈A+

k (n)

Nσ,d1+k
nkν

Nλ,d2
σµ eν

=
d+k∑
d′=0

∑
σ∈A+

k (n)

Nλ,d′

µσ

∑
ν∈P+

k

Nσ,d+k−d′
nkν

eν

=
d+k∑
d′=0

∑
σ∈A+

k (n)

Nλ,d′

µσ eσ/(d+k−d′)/nk .
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In the third line we used Properties 1 and 2 of Lemma 3.3.6, whereas in the last line we
applied (3.58) once again. This proves (3.61), and applying the involution ω to both sides
of the latter one ends up with (3.62).

For practical purposes we defined the cylindric symmetric functions eλ/d/µ and hλ/d/µ
for cylindric skew diagrams of the form λ/d/µ (compare with Definition 3.2.13). Recall
from Lemma 3.2.3 that every cylindric partition can be written as λ̂.τ d for some λ ∈ A+

k (n)

and d ∈ Z. Thus, the most general cylindric skew diagram is given by λ̂.τ d1/µ̂.τ d2 for some
λ, µ ∈ A+

k (n) and d1, d2 ∈ Z such that d1− d2 ≥ 0. But every CRPP (respectively CRST)
of shape λ̂.τ d1/µ̂.τ d2 can be translated along the vertical direction to a CRPP (respectively
CRST) of shape λ/(d1 − d2)/µ. Moreover, it is straightforward to extend the definitions
of ψλ/d/µ and θλ/d/µ to the most general cylindric skew diagram λ̂.τ d1/µ̂.τ d2 , and these
definitions turn out to be invariant under translation of the vertical axis. It is then
natural to define cylindric symmetric functions for cylindric skew diagrams λ̂.τ d1/µ̂.τ d2 as

eλ̂.τd1/µ̂.τd2 = eλ/(d1−d2)/µ , (3.63)

hλ̂.τd1/µ̂.τd2 = hλ/(d1−d2)/µ . (3.64)

In particular one has that eλ̂.τd/∅̂ = eλ/(d+k)/nk , which are the symmetric functions used
in the expansion (3.61). Moreover, we set eλ̂.τd1/µ̂.τd2 = hλ̂.τd1/µ̂.τd2 = 0 if λ̂.τ d1/µ̂.τ d2 is
not a cylindric skew diagram. Notice that if d ≤ m0(λ̂) then there are no boxes of λ.τ d

in columns greater than n. It follows from Remark 3.1.12 that there exists a bijection
T̂ 7→ T between CRSTs of shape λ̂.τ d/∅̂ and row strict tableaux of shape λ.τ d, which in
turn implies that eλ̂.τd/∅̂ = eλ.τd . A completely analogous discussion holds for (3.64).

Lemma 3.3.14. Let λ ∈ A+
k (n) and d ∈ Z. We have the equalities

eλ̂.τd/∅̂ =
∑
ν∈P+

k

|Sλ|
|Sν |

eν , (3.65)

hλ̂.τd/∅̂ =
∑
ν∈P+

k

|Sλ|
|Sν |

hν , (3.66)

where the sums are restricted to those ν ∈ λ.Ŝk with |ν| − |λ| = dn.

Proof. Properties 4 and 5 of Lemma 3.3.6 imply that

Nλ,d+k
nkν

= N
λ,d+k+

|ν̌|−|ν|
n

nkν̌

|Sν̌ |
|Sν |

= δ
d+
|ν̌|−|ν|
n

,0
δλν̌
|Sν̌ |
|Sν |

,

where ν̌ is the unique intersection point of the orbit ν.Ŝk with A+
k (n). Let ν̌ = λ, then

by definition we have that ν = λ.wyα for some w ∈ Sλ and α ∈ Pk. This implies that
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|α| = |ν|−|λ|
n
≥ −mn(λ) since the parts of ν are all positive, and thus Nλ,d+k

nkν
is non-zero

only if d ≥ −mn(λ). Similarly we have that eλ̂.τd/∅̂ is non-zero only if d ≥ −mn(λ), because

if d < −mn(λ) then λ̂.τ d/∅̂ is not a cylindric skew diagram. This proves the claim for
d < −mn(λ), so suppose that d ≥ −mn(λ). Plugging the relation for Nλ,d+k

nkν
just obtained

into the expansion eλ̂.τd/∅̂ = eλ/(d+k)/nk =
∑

ν∈P+
k
Nλ,d+k
nkν

eν we get the validity of (3.65).
Equation (3.66) follows by applying the involution ω to both sides of (3.65).

The next result shows that the expansions (3.61) and (3.62) are unique.

Corollary 3.3.15 ( [45]). The sets

{eλ̂.τd/∅̂ | λ ∈ A
+
k (n), d ≥ −mn(λ)} , (3.67)

{hλ̂.τd/∅̂ | λ ∈ A
+
k (n), d ≥ −mn(λ)} , (3.68)

are linearly independent in Λ.

Proof. Suppose that
∑

λ∈A+
k (n)

∑
d∈Z aλ̂.τdeλ̂.τd/∅̂ = 0 for some aλ̂.τd ∈ C, where the second

sum is restricted to those d ∈ Z for which d ≥ −mn(λ). For ν ∈ P+ the symmetric
function eν only appears once in this linear combination. This holds thanks to (3.65), and
the fact that the set A+

k (n) is a fundamental domain for the action of Ŝk on Pk. Since
the set {eν}ν∈P+ is linearly independent in Λ it follows that aλ̂.τd = 0 for all λ ∈ A+

k (n)

and d ∈ Z such that d ≥ −mn(λ), thus proving the claim for the set (3.67). The proof for
(3.67) is completely analogous.

Remark 3.3.16. The set (3.67) does not form a spanning set for Λ. In fact, the symmetric
function eν appears in the expansion (3.65) only if ν ∈ P+ satisfies the constraint ν1−n ≤
νk. This implies that if ν does not satisfy such constraint then eν cannot be written as a
linear combination of elements belonging to (3.67). On the other hand, Λ is spanned by
{eν}ν∈P+ , and therefore we conclude that the set (3.67) does not form a spanning set for
Λ. An analogous statement holds for (3.68).

To conclude this section, we write down the expansions for cylindric elementary and
complete symmetric functions in terms of Schur functions. These expansions are the
generalisation of (2.59) (2.60) to the cylinder.

Definition 3.3.17. Let λ, µ ∈ A+
k (n), d ∈ Z≥0 and ν ∈ P+

k . Define the weight

χλ,dµν =
∑
σ∈P+

k

Nλ,d
µσ Kνσ . (3.69)

The coefficient Kνσ is the Kostka number, which was introduced in Section 2.2.3.
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Recall that Nλ,d
µσ is non-zero only if |µ|+ |σ| − |λ| = dn, as we showed in Lemma 3.3.4.

Moreover, we have by definition that Kνσ is non-zero only if |ν| = |σ|. This implies that
χλ,dµν is non-zero only if |µ|+ |ν|− |λ| = dn. Thanks to Property 4 of Lemma 3.3.6 we have
the relation χλ,0µν = χλµν , where the coefficient χλµν was introduced in (2.58). Finally, we
have that χλ,dµν is a non-negative integer, since Nλ,d

µσ and Kνσ are non-negative integers as
well.

Proposition 3.3.18. Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. The functions eλ/d/µ and hλ/d/µ can

be expanded as

eλ/d/µ =
∑
ν∈P+

k

χλ,dµν sν′ , (3.70)

hλ/d/µ =
∑
ν∈P+

k

χλ,dµν sν . (3.71)

Proof. Plug the expansions eν =
∑

σ∈P+ Kνσsσ′ and hν =
∑

σ∈P+ Kνσsσ, which can be
found for instance in [52, I.6], into (3.58) and (3.59) respectively. A comparison with
(3.69) then proves the validity of the claim.

Remark 3.3.19. Lemma 2.3.11 implies that the functions eλ/d/µ and hλ/d/µ are Schur-
positive. It follows that there exist representations of GLr(C) whose polynomial characters
are given by eλ/d/µ(x1, . . . , xr) and hλ/d/µ(x1, . . . , xr) respectively (compare with the dis-
cussion presented in Remark 2.3.12). It would be interesting to present a more explicit
construction of these representations.

3.3.3 Cylindric adjacent column tableaux

We finally wish to expand hλ/d/µ and eλ/d/µ in terms of the basis {pν}ν∈P+ of Λ. For this
purpose we generalise the notion of ACHS defined in Section 2.3.4 to the cylinder, and to
do this we take inspiration from Definition 2.3.26 and Lemma 2.3.27. Compare also with
Figure 3.9.

Definition 3.3.20. Let µ̂ ∈ P+
k,n, r ∈ N and 1 ≤ a ≤ n with ma−1(µ̂) 6= 0. Define µ̂a,r

as the cylindric partition whose diagram is obtained as follows: for every p ∈ Z add one
box per column in the diagram of µ̂, starting at column a + pn and ending at column
a+ r − 1 + pn, for a total of r boxes.

Lemma 3.3.21. We have the equality

µ̂a,r = µ̂a,q.τ
s , (3.72)

where we set r = sn+ q for some s ∈ Z≥0 and 1 ≤ q ≤ n.
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Proof. For r ≤ n, that is for s = 0, equation (3.72) reduces to the identity µ̂a,q = µ̂a,q. So
suppose that r > n, that is s > 0. Notice that to obtain the diagram of µ̂a,r we need to
add at least s boxes in each column of the diagram of µ̂. In other words, we have that
(µ̂a,r)

′
i − µ̂′i ≥ s for all i ∈ Z and thus µ̂ ⊂ µ̂a,r.τ

−s. This is because for each p ∈ Z we
are adding, among others, a box per column in the diagram of µ̂ from columns a+ pn to
a+ (p+ s)n− 1. Periodicity implies that the diagram of µ̂a,r.τ−s is obtained by adding a
box per column in the diagram of µ̂ from columns a+ pn to a+ q− 1 + pn, and repeating
this procedure for all p ∈ Z. But this is by definition µ̂a,q and the claim follows.

Definition 3.3.22. Let λ̂, µ̂ ∈ P+
k,n with µ̂ ⊂ λ̂. We say that λ̂/µ̂ is a ‘cylindric adjacent

column skew diagram’ (CACSD) if either λ̂ = µ̂ or λ̂ = µ̂a,r for some 1 ≤ a ≤ n with
ma−1(µ̂) 6= 0 and r ∈ N. A ‘cylindric adjacent column reverse plane partition’ (CACRPP)
π̂ of shape λ̂/µ̂ is a sequence {λ̂(r)}lr=0 of cylindric partitions, with λ̂(0) = µ̂ and λ̂(l) = λ̂,
such that λ̂(r)/λ̂(r−1) is a CACSD for r = 1, . . . , l.

See Figure 3.9 for a depiction of two CACSDs. Notice that for λ, µ ∈ A+
k (n) the

restriction of λ̂/µ̂ to the lines 1 to k is a ACHS, and conversely the periodic continuation
of λ/µ to the cylinder is a CACSD.

Remark 3.3.23. Whereas a ACHS is a special case of horizontal strip, from the proof of
Lemma 3.3.21 it follows that a CACSD is not always a cylindric horizontal strip. Compare
with Figure 3.9.

Let λ, µ ∈ A+
k (n) and d ∈ Z≥0 such that λ̂.τ d = µ̂a,r for some 1 ≤ a ≤ n with

ma−1(µ̂) 6= 0. Suppose that 1 ≤ r ≤ n, then by definition we have the equality

(λ̂.τ d)′i =

{
µ̂′i + 1 , a+ pn ≤ i ≤ a+ r − 1 + pn for some p ∈ Z

µ̂′i , otherwise
, (3.73)

and since (λ̂.τ d)′n − µ̂′n = d it follows that d = 0, 1. For j ∈ Z define

jModn = jmodn+ nδjmodn,0 , (3.74)

and notice that 1 ≤ jModn ≤ n. Using the relation mi(λ̂.τ
d) = (λ̂.τ d)′i − (λ̂.τ d)′i+1 =

mi(λ̂), together with (3.73), and adopting the notation (2.1) for partitions we end up with

λ =
(
. . . ,

(
(a− 1) Modn

)ma−1(µ̂)−1
, . . . ,

(
(a− 1 + r) Modn

)ma−1+r(µ̂)+1
, . . .

)
. (3.75)

That is, λ is obtained from µ by removing a part equal to (a−1) Modn and adding a part
equal to (a− 1 + r) Modn. In particular, for r = n it follows that λ = µ and d = 1.

Remark 3.3.24. Equation (3.73) implies that for r < n the integer a is unique, and if in
general rmodn 6= 0 we can just apply Lemma 3.3.21 to reduce to the previous case. On
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Figure 3.9: Let λ, µ ∈ A+
3 (4) given by λ = (3, 1, 1) and µ = (3, 2, 1). On the left we have

the CACSD λ/1/µ with λ̂.τ = µ̂3,3. In fact, if in the diagram of µ̂ we add one box in
columns −1, 0, 1, and then in columns 3, 4, 5, and so on we recover the cylindric diagram
of λ̂.τ . Since m5(λ̂.τ) = m5(λ̂) = 2 it follows that ϕλ/1/µ = 2. On the right we have the
CACSD λ/2/µ with λ̂.τ 2 = µ̂3,7. In fact, if in the diagram of µ̂ we add one box in columns
−5,−4,−3,−2,−1, 0, 1 (red) and then in columns −1, 0, 1, 2, 3, 4, 5 (green), in columns
3, 4, 5, 6, 7, 8, 9 (blue), in columns 7, 8, 9, 10, 11, 12, 13 (fuchsia) and so on we recover the
cylindric diagram of λ̂.τ 2. Since m9(λ̂.τ 2) = m9(λ̂) = m5(λ̂) = 2 it follows that ϕλ/2/µ = 2.
Notice that µ̂3,7 = µ̂3,3.τ and that ϕλ/2/µ = ϕλ/1/µ.

the other hand, for r = n the same equation implies that λ̂.τ = µ̂a,n for every 1 ≤ a ≤ n

such that ma−1(µ̂) 6= 0. A similar argument applies if rmodn = 0.

Let r ∈ N and suppose that λ̂.τ d = µ̂a,r as above. Define

ϕλ/d/µ =

{
ma−1+r(λ̂.τ

d) , r mod n 6= 0

k , otherwise
, (3.76)

and in particular set ϕλ/0/λ = 1. Notice that ϕλ/d/µ = ma−1+r(µ̂) + 1 for rmodn 6= 0

thanks to (3.75). The weight ϕλ/d/µ is the generalisation of the coefficient ϕλ/µ defined
in (2.79) to the cylinder. In fact, the restriction of the CACSD λ/0/µ to the lines 1 to k
generates the ACHS λ/µ. If d = 0 equation (3.73) implies that a− 1 + r ≤ n, and thus it
follows by definition that ϕλ/0/µ = ϕλ/µ.

Definition 3.3.25. Let λ, µ ∈ A+
k (n), d ∈ Z≥0, ν ∈ P and suppose that µ̂ ⊂ λ̂. Define

the coefficient

ϕλ/d/µ(ν) =
∑
π̂

ϕπ̂ , ϕπ̂ =
∏
r≥1

ϕλ(r)/(dr−dr−1)/λ(r−1) , (3.77)

where the sum runs over all CACRPPs of shape λ/d/µ and weight ν. If λ/d/µ is not a
cylindric skew diagram set ϕλ/d/µ(ν) = 0.
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In particular, ϕλ/d/µ(ν) is non-zero only if |µ|+ |ν| − |λ| = dn. Moreover we have that
ϕλ/0/µ(ν) = ϕλ/µ(ν) where the latter is the coefficient appearing in the product expansion
(2.73), which was described in Lemma 2.3.28 as a weighted sum over ACT.

Lemma 3.3.26. Let µ ∈ A+
k (n) and ν ∈ P+. The following product rule holds in Vk(n)

mµ(x1, . . . , xk)pν(x1, . . . , xk) =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

ϕλ/d/µ(ν)mλ(x1, . . . , xk) , (3.78)

where the second sum is restricted to those λ ∈ A+
k (n) for which λ/d/µ is a cylindric skew

diagram with |µ|+ |ν| − |λ| = dn.

Since ϕλ/d/µ(ν) is non-zero only if |µ| + |ν| − |λ| = dn it follows that the sum over
d ∈ Z≥0 on the RHS of (3.78) is finite, and that for each λ ∈ A+

k (n) there is at
most one non-zero term zdϕλ/d/µ(ν) contributing to the coefficient of mλ(x1, . . . , xk) in
mµ(x1, . . . , xk)pν(x1, . . . , xk).

Proof. In analogy with the proofs of Lemmas 3.3.8 and 3.3.9 we show for r ∈ N the
following identity in Vk(n)

mµ(x1, . . . , xk)pr(x1, . . . , xk) =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

ϕλ/d/µmλ(x1, . . . , xk) , (3.79)

where the second sum runs over all λ ∈ A+
k (n) for which λ/d/µ is a CACSD with |µ| +

r − |λ| = dn. The claim then follows by applying repeatedly the equality above to the
product mµ(x1, . . . , xk)pν(x1, . . . , xk). This also implies that ϕλ/d/µ(β) = ϕλ/d/µ(ν) for
β ∼ ν, where ϕλ/d/µ(β) for β a composition is defined in an analogous way to (3.77).

We first show that it is enough to prove (3.79) for 1 ≤ r ≤ n. For this purpose suppose
that r > n and write r = sn + q for some s ≥ 1 and 1 ≤ q ≤ n. Let λ ∈ A+

k (n) and
d ∈ Z≥0 such that λ̂.τ d = µ̂a,r for some 1 ≤ a ≤ k with ma−1(µ̂) 6= 0. From the discussion
of Lemma 3.3.21 it follows that (λ̂.τ d)′1 = k + d = (µ̂a,r)

′
1 ≥ k + s, and thus we must

have d ≥ s. The same lemma implies that λ̂.τ d = µ̂a,r if and only if λ̂.τ d−s = µ̂a,q. In
other words, λ/d/µ is a CACSD if and only if λ/(d − s)/µ is, and moreover the equality
ma−1+r(λ̂.τ

d) = ma−1+r(λ̂.τ
d−s) implies that ϕλ/d/µ = ϕλ/(d−s)/µ. Thus the RHS of (3.79)

equals∑
d≥s

zd
∑

λ∈A+
k (n)

ϕλ/d/µmλ(x1, . . . , xk) = zs
∑
d≥s

zd−s
∑

λ∈A+
k (n)

ϕλ/(d−s)/µmλ(x1, . . . , xk)

= zs
∑
d′≥0

zd
′ ∑
λ∈A+

k (n)

ϕλ/d′/µmλ(x1, . . . , xk) , (3.80)

where in the last equality the second sum runs over all λ ∈ A+
k (n) for which λ/d′/µ is
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a CACSD with |µ| + q − |λ| = d′n. On the other hand we have that pr(x1, . . . , xk) −
zspq(x1, . . . , xk) is in the ideal Ik,n introduced in (3.35). This shows that the product
mµ(x1, . . . , xk)pr(x1, . . . , xk) equals (3.80) provided that (3.79) has been proved for 1 ≤
r ≤ n. Suppose now that r = n. Then (3.79) follows since mµ(x1, . . . , xk)pn(x1, . . . , xk) =

zkmµ(x1, . . . , xk), and moreover the only weight λ ∈ A+
k (n) such that λ̂.τ d = µ̂a,n for some

d ∈ Z≥0 and 1 ≤ a ≤ n with ma−1(µ̂) 6= 0 is λ = µ, in which case we have that d = 1 and
ϕλ/1/µ = k.

So suppose that 1 ≤ r ≤ n − 1. We now prove that for λ ∈ A+
k (n) the coeffi-

cient of xλ1
1 · · ·x

λk
k in mµ(x1, . . . , xk)pr(x1, . . . , xk) is non-zero if and only if λ̂.τ d = µ̂a,r

for some 1 ≤ a ≤ n with ma−1(µ̂) 6= 0 and d = 0, 1. Each monomial appearing in
mµ(x1, . . . , xk)pr(x1, . . . , xk) is of the form x

µw(1)

1 · · ·xµw(l)+r

l · · ·xµw(k)

k for some w ∈ Sµ and
1 ≤ l ≤ k. Assume that the latter equals zdxλ1

1 · · ·x
λk
k for some d ∈ Z≥0. Then λ is obtained

from µ by removing a part equal to µw(l) and adding a part equal to (µw(l)+r) Modn, which
also implies that d = 0 for µw(l) +r ≤ n and d = 1 otherwise. Setting a = (µw(l) +1) Modn

we have that λ̂.τ d = µ̂a,r thanks to (3.75), and this proves the ‘if’ part of the statement.
For the ‘only if’ part, one can proceed in a similar fashion to the proof of Lemma 2.3.28.

Let λ ∈ A+
k (n) and suppose that λ̂.τ d = µ̂a,r for some 1 ≤ a ≤ n with ma−1(µ̂) 6= 0 and

d = 0, 1. Assume that a−1 + r ≤ n, and let i and j be the smallest indices for which µi <
a− 1 + r and µj = a− 1 respectively. Then the monomials in mµ(x1, . . . , xk)pr(x1, . . . , xk)

which equal xλ1
1 · · · x

λk
k are of the form

xµ1

1 · · ·x
µi−l−1

i−l−1 x
µj+r
i−l x

µi−l
i−l+1 · · ·x

µj−1

j x
µj+1

j+1 · · ·x
µk
k

for l = 0, . . . ,ma−1+r(µ). Assume now that a− 1 + r > n, let i be the smallest index for
which µi < a− 1 + r − n and let j be the greatest index for which µj = a− 1. Then the
monomials in mµ(x1, . . . , xk)pr(x1, . . . , xk) which equal zxλ1

1 · · ·x
λk
k are of the form

xµ1

1 · · ·x
µj−1

j−1 x
µj+1

j · · ·xµi−l−1

i−l−2 x
µj+r
i−l−1x

µi−l
i−l · · · x

µk
k

for l = 0, . . . ,ma−1+r−n(µ). In conclusion we have that

mµ(x1, . . . , xk)pr(x1, . . . , xk) =
∑
a

(ma−1+r(µ) + 1)mλ(x1, . . . , xk)

+z
∑
a

(ma−1+r−n(µ) + 1)mλ(x1, . . . , xk) ,

where λ ∈ A+
k (n) is defined via λ̂ = µ̂a,r in the first sum, and via λ̂.τ = µ̂a,r in the

second sum. Both sums run over all 1 ≤ a ≤ n such that ma−1(µ̂) 6= 0, together with
the constraint a − 1 + r ≤ n for the first one, and the constraint a − 1 + r > n for the
second one. This finally implies the validity of (3.79) after applying the definition (3.76)
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of ϕλ/d/µ.

We now generalise (2.74) to the cylinder, namely we give an alternative combinato-
rial description of the coefficient ϕλ/d/µ(ν). For this purpose recall the expansion pλ =∑

µ∈P+ Rλµmµ in Λ, which was introduced in (2.33).

Lemma 3.3.27. Let λ, µ ∈ A+
k (n), d ∈ Z≥0 and ν ∈ P. The following equality holds

ϕλ/d/µ(ν) =
∑
σ∈P+

k

Nλ,d
µσ Rνσ . (3.81)

Proof. This statement follows by employing similar steps as the ones described in the proof
of Proposition 3.3.10. Plug the expansion pν(x1, . . . , xk) =

∑
σ∈P+

k
Rνσmσ(x1, . . . , xk) into

mµ(x1, . . . , xk)pν(x1, . . . , xk), take the quotient map πk,n : Λk[z, z
−1]→ Vk(n) and use the

product expansion (3.40). A comparison with (3.78) then yields the desired equality.

Proposition 3.3.28 ( [45]). Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. We have the expansions

eλ/d/µ =
∑
ν∈P+

ϕλ/d/µ(ν)z−1
ν ενpν , (3.82)

hλ/d/µ =
∑
ν∈P+

ϕλ/d/µ(ν)z−1
ν pν , (3.83)

into the basis {pν}ν∈P+ of ΛQ.

Proof. Using (3.81) we have thatNλ,d
µν =

∑
σ∈P+ ϕλ/d/µ(σ)R−1

νσ for ν ∈ P+
k . Furthermore we

have the relation
∑

ν∈P+
k
R−1
νσ eν = zσeσpσ, see for example [52, page 104]. Plugging these

equalities into the expansion eλ/d/µ =
∑

ν∈P+
k
Nλ,d
µν eν we end up with (3.82). Equation

(3.83) follows by applying the involution ω to both sides of (3.82).

3.4 Properties of cylindric symmetric functions

We start this section by evaluating the coproduct of the cylindric symmetric functions
eλ/d/µ and hλ/d/µ, and then by exploring some consequences of this computation. In
particular, we shall identify certain subspaces as subcoalgebras of Λ, whose structure
constants are given by the coefficients Nλ,d

µν (see Definition 3.3.3) for λ, µ, ν ∈ A+
k (n).

In Chapter 5 we will identify these coefficients as the structure constants of a Frobenius
algebra, i.e. a 2D TQFT.

Proposition 3.4.1 ( [45]). Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. We have the following coprod-
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ucts of cylindric symmetric functions

∆(eλ/d/µ) =
∑

d1+d2=d
d1,d2≥0

∑
ν∈A+

k (n)

eλ/d1/ν ⊗ eν/d2/µ , (3.84)

∆(hλ/d/µ) =
∑

d1+d2=d
d1,d2≥0

∑
ν∈A+

k (n)

hλ/d1/ν ⊗ hν/d2/µ . (3.85)

Proof. Consider the chain of equalities

∆(eλ/d/µ) =
∑
ν∈P+

k

Nλ,d
µν ∆(eν) =

∑
ν∈P+

k

Nλ,d
µν

∑
ρ,σ∈P+

k

f νρσeρ ⊗ eσ

=
∑

ρ,σ∈P+
k

( ∑
ν∈P+

k

f νρσN
λ,d
µν

)
eρ ⊗ eσ

=
∑

d1+d2=d
d1,d2≥0

∑
ν∈A+

k (n)

( ∑
ρ∈P+

k

Nλ,d1
νρ eρ

)
⊗
( ∑
σ∈P+

k

N ν,d2
µσ eσ

)
.

In the first line we used (3.58) and then we took advantage of the identities ∆(eν) =∑
σ∈P+

k
eν/σ ⊗ eσ and eν/σ =

∑
ρ∈P+

k
f νσρeρ, which were introduced in (2.54) and (2.57)

respectively. Notice that we restricted these sums to σ, ρ ∈ P+
k since the coefficient f νσρ is

non-zero only if σ, ρ ⊂ ν ∈ P+
k . In the third line we used Properties 2 and 3 in Lemma

5.2.5, and then we rearranged terms appropriately. Exploiting once again (3.58) in the
last line, equation (3.84) follows. One can prove (3.85) in an analogous way.

Corollary 3.4.2. Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. We have the identities∑

d1+d2=d
d1,d2≥0

∑
ν∈A+

k (n)

(−1)|ν|+nd2−|µ|eλ/d1/ν hν/d2/µ = δλµδd,0 , (3.86)

∑
d1+d2=d
d1,d2≥0

∑
ν∈A+

k (n)

(−1)|λ|+nd1−|ν|hλ/d1/ν eν/d2/µ = δλµδd,0 . (3.87)

Proof. Taking advantage of Theorem 3.3.12 we end up with γ(eλ/d/µ) = (−1)|λ|+dn−|µ|hλ/d/µ

and γ(hλ/d/µ) = (−1)|λ|+dn−|µ|eλ/d/µ, where γ is the antipode of Λ defined in Section 2.2.6.
The claim then follows after applying the defining relations (2.44) of the antipode to eλ/d/µ.
Had we started with hλ/d/µ we would have reached the same equalities.

Corollary 3.4.3 ( [45]). The respective subspaces spanned by (3.67) and (3.68) each form
a positive subcoalgebra of Λ with structure constants Nλ,d

µν for λ, µ, ν ∈ A+
k (n). That is, for
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Figure 3.10: Let λ = (5, 5, 3, 1) ∈ A+
4 (5). Then λ∨ = (5, 3, 1, 1) is the complementary

partition of λ in the bounding box of height 4 and width 6 shown in the Figure.

λ ∈ A+
k (n) and d ∈ Z with d ≥ −mn(λ) we have the coproduct expansion

∆(eλ̂.τd/∅̂) =
∑

d1+d2=d
d1,d2≥−k

∑
µ∈A+

k (n)

eλ/d1/µ ⊗ eµ̂.τd2/∅̂ , (3.88)

eλ/d1/µ =

d1+n∑
d′1=0

∑
ν∈A+

k (n)

Nλ,d′1
µν e

ν̂.τd1−d
′
1/∅̂ , (3.89)

and the analogous coproduct expansion holds for hλ̂.τd/∅̂.

Proof. The claim is a direct consequence of Corollary 3.3.13 and Proposition 3.4.1, together
with the equalities (3.63) and (3.64).

Remark 3.4.4. Setting e
ν̂.τd1−d

′
1/∅̂ = eν/(d1−d′1)/∅, we have that (3.89) corresponds to the

first expansion in (1.16). In other words, the coefficients Nλ,d
µν for λ, µ, ν ∈ A+

k (n) coincide
with the structure constants N λ,d

µν (q) of the deformed Verlinde algebra discussed in Section
1.3, when evaluated at q = 1. Compare with Remark 5.2.4 in Chapter 5.

3.4.1 An involution between cylindric reverse plane partitions

Define now the map ∨ : A+
k (n)→ A+

k (n) by

λ 7→ λ∨ = (n+ 1− λk, n+ 1− λk−1, . . . , n+ 1− λ1) . (3.90)

That is, λ∨ is the complementary partition of λ in a bounding box of height k and width
n + 1 (see Figure 3.10), and thus ∨ : A+

k (n) → A+
k (n) is an involution. This map

will play an important role in the next chapter, so we spend the rest of this section to
describe some of its properties. The parts of the cylindric partition λ̂∨ are given by
λ̂∨i = n + 1− λ̂k+1−i. In fact, for 1 ≤ i ≤ k this matches with the definition of λ∨ above,
and moreover λ̂∨i+k = n+ 1− (λ̂k+1−i−k) = n+ 1− λ̂k+1−i−n = λ̂∨i −n for i ∈ Z. Similarly
the parts of the conjugate cylindric partition λ̂∨

′ are given by λ̂∨
′

i = k − λ̂′n+2−i. This
holds for 1 ≤ i ≤ n since λ and λ∨ fit in a bounding box of height k and width n+ 1, and
furthermore λ̂∨′i+n = k − (λ̂′n+2−i−n) = k − λ̂′n+2−i − k = λ̂∨

′
i − k for i ∈ Z. We will make
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use of the identities

(λ̂.τ d)i − µ̂i = (µ̂∨.τ d)k+1−i+d − λ̂∨k+1−i+d , (3.91)

(λ̂.τ d)′i − µ̂′i = (µ̂∨.τ d)′n+2−i − λ̂∨
′

n+2−i , (3.92)

which follow after a straightforward computation using (λ̂.τ d)i = λ̂i−d and (λ̂.τ d)′i = λ̂′i+d

respectively.

Lemma 3.4.5. Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. Then µ̂ ⊂ λ̂.τ d if and only if λ̂∨ ⊂ µ̂∨.τ d,

and in particular λ/d/µ is a cylindric vertical strip if and only if µ∨/d/λ∨ is. Moreover
λ/d/µ is a CACSD if and only if µ∨/d/λ∨ is. We have the identities

θλ/d/µ =
|Sλ|
|Sµ|

θµ∨/d/λ∨ , ψλ/d/µ =
|Sλ|
|Sµ|

ψµ∨/d/λ∨ , ϕλ/d/µ =
|Sλ|
|Sµ|

ϕµ∨/d/λ∨ , (3.93)

where in the last one it is understood that ϕλ/d/µ = ϕµ∨/d/λ∨ = 0 if λ/d/µ is not a CACSD.

Proof. Equation (3.91) implies the first statement of the lemma. For the part involving
the CACSDs, suppose that λ̂.τ d = µ̂a,r for some 1 ≤ a ≤ n with ma−1(µ̂) 6= 0 and r ≤ n.
Taking advantage of (3.73) and (3.92) we end up with

(µ̂∨.τ d)′i =

{
λ̂∨
′

i + 1 , n+ 2− (a+ r − 1) + pn ≤ i ≤ n+ 2− a+ pn, p ∈ Z

λ̂∨
′

i , otherwise
.

That is, µ̂∨.τ d = λ̂∨n+2−(a+r−1) Modn,r and thus µ∨/d/λ∨ is a CACSD (see Figure 3.11 for an
example). Now suppose that r > n and write r = sn + q for some s ≥ 1 and 1 ≤ q ≤ n.
Lemma 3.3.21 implies that λ̂.τ d = µ̂a,r if and only if λ̂.τ d−s = µ̂a,q. Since q ≤ n we
have that µ̂∨.τ d−s = λ̂∨n+2−(a+q−1) Modn,q, that is µ

∨/(d− s)/λ∨ is a CACSD, and applying
Lemma 3.3.21 once again we conclude that µ∨/d/λ∨ is a CACSD as well. This finally
proves the second statement of the lemma thanks to the fact that ∨ : A+

k (n)→ A+
k (n) is

an involution. The first identity in (3.93) is identically 0 if λ/d/µ is not a cylindric skew
diagram, as Proposition 3.2.7 then implies that θλ/d/µ = θµ∨/d/λ∨ = 0. Otherwise this
follows after a manipulation of (3.25), with the help of (λ̂.τ d)′i = λ̂′i+d and λ̂′i = k−λ̂∨′n+2−i.
One can prove the second identity in (3.93) in a similar fashion. Assuming that λ/d/µ is
a CACSD, that is λ̂.τ d = µ̂a,r for some 1 ≤ a ≤ n and r ∈ N with ma−1(µ̂) 6= 0, the third
identity follows by noticing that

|Sλ|
|Sµ|

=
ma+r−1(λ̂)

ma−1(µ̂)
=

ma+r−1(λ̂.τ d)

mn+2−a(µ̂∨.τ d)
=

ϕλ/d/µ
ϕµ∨/d/λ∨

,

where we used the equality ma−1(µ̂) = µ̂′a−1 − µ̂′a = µ̂∨
′

n+2−a − µ̂∨
′

n+3−a = mn+2−a(µ̂
∨).

Let Πk,n be the set of all CRPPs, and consider the map ∨ : Πk,n → Πk,n which sends
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Figure 3.11: Let λ, µ ∈ A+
3 (4) given by λ = (3, 1, 1), µ = (3, 2, 1) and let d = 1. On

the left we have the CACSD λ/d/µ, whereas on the right we have the CACSD µ∨/d/λ∨,
where µ∨ = (4, 3, 2) and λ∨ = (4, 4, 2). In the Z×Z plane on the left there is highlighted a
bounding box of height 3 and width 5 containing λ and λ∨, whose top-left corner is on the
point (0, d). The same bounding box is reproduced on the right, rotated by 180◦ and with
its top-left corner on the point (0, 0). Notice that the cylindric skew diagram on the right
is obtained from the one on the left by rotation of 180◦. Furthermore, whereas λ̂.τ = µ̂3,3

we have that µ̂∨.τ = λ̂∨4+2−(3+3−1) Mod 4,3 = λ̂∨1,3.

the CRPP π̂ of shape λ/d/µ given by

µ̂ = λ̂(0).τ d0 ⊂ λ̂(1).τ d1 ⊂ · · · ⊂ λ̂(l).τ dl = λ̂.τ d

to the CRPP π̂∨ of shape µ∨/d/λ∨ given by

λ̂(l)∨ = λ̂∨ ⊂ λ̂(l−1)∨ .τ d−dl−1 ⊂ · · · ⊂ λ̂(1)∨ .τ d−d1 ⊂ λ̂(0)∨ .τ d−d0 = µ̂∨.τ d .

This map is well defined thanks to Lemma 3.4.5, and it is an involution since ∨ : A+
k (n)→

A+
k (n) is. See Figure 3.12 for an example. In particular, Lemma 3.4.5 implies that T̂ and

π̂ are respectively a CRST and a CACRPP if and only if T̂∨ and π̂∨ are. Notice that if π̂
has weight

(
wt(π̂)1, . . . ,wt(π̂)l

)
then π̂∨ has weight

(
wt(π̂)l, . . . ,wt(π̂)1

)
. In fact, thanks

to Lemma 3.1.9 and equation (3.91), we have the chain of equalities, for r = 1, . . . , l,

wtr(π̂
∨) = |λ̂(l−r)∨ .τ d−dl−r/λ̂(l−r+1)∨ .τ d−dl−r+1|

= |λ̂(l−r+1).τ dl−r+1/λ̂(l−r).τ dl−r | = wtl+1−r(π̂) .

Corollary 3.4.6. Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. Suppose that π̂1, T̂ and π̂2 are respec-
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Figure 3.12: Let λ, µ ∈ A+
3 (4) given by λ = (4, 3, 2), µ = (2, 2, 1) and let d = 1. On the

left we have a CRPP π̂ of shape λ/d/µ and weight (4, 3, 1), whereas on the right we have
its image π̂∨ under the map ∨ : Πk,n → Πk,n. This is a CRPP of shape µ∨/d/λ∨ and
weight (1, 3, 4), where µ∨ = (4, 3, 3) and λ∨ = (3, 2, 1). In the Z×Z plane on the left there
is highlighted a bounding box of height 3 and width 5 containing λ and λ∨, whose top-left
corner is on the point (0, d). The same bounding box is reproduced on the right, rotated
by 180◦ and with its top-left corner on the point (0, 0). Notice that π̂∨ is obtained by first
rotating π̂ of 180◦, and then applying the substitutions 1↔ 3, 2↔ 2 to the entries of the
latter.

tively a CRPP, a CRST and a CACRPP of shape λ/d/µ. We have the identities

θπ̂1 =
|Sλ|
|Sµ|

θπ̂∨1 , ψT̂ =
|Sλ|
|Sµ|

ψT̂∨ , ϕπ̂2 =
|Sλ|
|Sµ|

ϕπ̂∨2 . (3.94)

Proof. Using the first equality in (3.93) we have that

θπ̂1 =
l∏

i=1

θλ(i)/(di−di−1)/λ(i−1)

=
l∏

i=1

|Sλ(i)|
|Sλ(i−1)|

θλ(i−1)∨/(d−di−1)−(d−di)/λ(i)∨

=
|Sλ|
|Sµ|

l∏
i=1

θλ(i−1)∨/(d−di−1)−(d−di)/λ(i)∨ =
|Sλ|
|Sµ|

θπ̂∨1 .

This prove the first identity in (3.94), whereas the other ones follow in a similar way.

Proposition 3.4.7. Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. We have the identities

eλ/d/µ =
|Sλ|
|Sµ|

eµ∨/d/λ∨ , (3.95)

hλ/d/µ =
|Sλ|
|Sµ|

hµ∨/d/λ∨ . (3.96)
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Proof. As we noticed before, if the CRPP π̂ of shape λ/d/µ has weight ν = (ν1, . . . , νl)

then the CRPP π̂∨ of shape µ∨/d/λ∨ has weight (νl, . . . , ν1). The first identity in (3.94)
implies that

θλ/d/µ(ν) =
∑
π̂

θπ̂ =
∑
π̂∨

|Sλ|
|Sµ|

θπ̂∨ =
|Sλ|
|Sµ|

θµ∨/d/λ∨
(
(νl, . . . , ν1)

)
=
|Sλ|
|Sµ|

θµ∨/d/λ∨(ν) .

In the last equality we used the fact that θµ∨/d/λ∨(β) = θµ∨/d/λ∨(ν) for β ∼ ν. The
expansion hλ/d/µ =

∑
ν∈P+ θλ/d/µ(ν)mν then implies the validity of (3.96). Alternatively

we could have proved the same identity by first showing that ϕλ/d/µ(ν) = |Sλ|
|Sµ| ϕµ∨/d/λ∨(ν)

and then exploiting the expansion hλ/d/µ =
∑

ν∈P+ ϕλ/d/µ(ν)z−1
ν pν . Equation (3.95) can

be proved in a similar way. Namely one can show that ψλ/d/µ(ν) = |Sλ|
|Sµ|ψµ∨/d/λ∨ , and the

claim follows by applying the latter to the expansion eλ/d/µ =
∑

ν∈P+ ψλ/d/µ(ν)mν .



Chapter 4

Quantum integrable systems

This chapter aims to make a connection between the cylindric symmetric functions eλ/d/µ
and hλ/d/µ defined in Chapter 3, and the study of quantum integrable systems. In particu-
lar, we are interested in the vertex models defined by the Q+ and Q− operators associated
to the q-boson model (compare with the discussion presented in Section 1.2), when eval-
uated at q = 1. We refer to the latter as the Q+ and Q− vertex models. We shall also
consider two additional vertex models, which are related to the previous ones by taking
the adjoint of the transfer matrices. We show that eλ/d/µ and hλ/d/µ can be identified with
the partition functions of these vertex models with periodic boundary conditions in the
horizontal direction. To this end, we provide a bijection between lattice configurations
and CRPPs, as defined in Section 3.1.

The transfer matrices of the vertex models defined above commute with the Hamiltonian
of the free boson model, which is the q = 1 specialisation of the q-boson model. We identify
the matrix elements of the quantum integral of motions of the free boson model with the
coefficients appearing in certain product expansions in Vk(n), the quotient of Λk[z, z

−1]

defined in Section 3.3. We exploit this observation to illustrate an alternative method
for evaluating the expansions of eλ/d/µ and hλ/d/µ in terms of the bases of Λ introduced
in Section 2.2. Then we present an alternative approach for computing the partition
functions of the vertex models defined above. Finally, we employ the quantum integral
of motions of the free boson model to endow the k-particle space with the structure of a
unital, commutative and associative algebra.

4.1 Vertex models in statistical physics

We start with the formulation of the Q+ and Q− vertex models, and for the discussion
presented in Sections 4.1.1, 4.1.2 and 4.1.3 we take inspiration from [40–43]. From here to

83
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the end of this thesis we assume, if not stated otherwise, that l, n ∈ N and that k ∈ Z≥0.

4.1.1 Vertex and lattice configurations

The Q+ and Q− vertex models are defined over a two dimensional lattice Γ ⊂ Z×Z with
l rows and n columns, as the one depicted for example in Figure 4.2 (see [41, Ch. 4.1] for
a formal definition). Denote with E the set of horizontal and vertical lattice edges, each
edge consisting of two points in Γ.

Definition 4.1.1. A lattice configuration C : E → Z≥0 is an assignment of non-negative
integers to the lattice edges.

In particular, a vertex configuration is defined as a set of four non-negative integers
{a, b, c, d} attached to a point in Γ, called a ‘vertex’, and oriented as in Figure 4.1. To each
vertex configuration we associate a (vertex) weight, and a vertex configuration is said to
be ‘allowed’ if the related weight is non-zero. In Figure 4.1 we introduce the allowed vertex
configurations for the Q± vertex models, together with the associated weights. The vertex
weights for these models depend by definition on an indeterminate x. When evaluated
in the complex numbers, this indeterminate is called a ‘spectral parameter’. We assume
that the weights of the vertices in the i-th row depend on the same indeterminate xi. The
weight of a lattice configuration C is defined as

wt(C) =
l∏

i=1

n∏
j=1

wt(vi,j) , (4.1)

where vi,j is the vertex obtained by intersecting the i-th row with the j-th column, and
wt(vi,j) is the associated weight. For the sake of clarity, we will be using the symbols wt+

and wt− whenever we associate to a vertex configuration, or a lattice configuration, the
weight defined for the Q+ and Q− vertex model respectively.

In the following we impose periodic boundary conditions in the horizontal direction,
that is we identify the leftmost and rightmost edges in the same lattice row. In other words,
we define the vertex models on a cylinder. We identify the boundary of this cylinder with
a vertical line between columns n and 1.

Remark 4.1.2. The allowed lattice configurations for the Q± vertex models, that is
the ones with non-zero weight, can be interpreted in terms of non-intersecting lattice
paths travelling from North-West to South-East. See Figures 4.1 and 4.2. The constraint
a+ b = c+d at each vertex of the lattice implies that on the cylinder the number of paths
is conserved throughout the lattice. In other words, the number of vertical paths between
rows i and i+ 1 of the lattice is the same for every i = 1, . . . , l− 1. This number coincides
with the number of vertical paths above row 1, and the number of vertical paths below
row l.
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Figure 4.1: The allowed vertex configurations for the Q+ and Q− vertex models, together
with their associated weights. For the Q+ vertex model, we only allow for the vertex
configurations such that a + b = c + d and b ≥ c, or equivalenty d ≥ a. For the Q−
vertex model, a vertex configuration is ‘allowed’ if the only condition a + b = c + d is
satisfied. The allowed vertex configurations for these models can be interpreted in terms
of non-intersecting paths travelling from North-West to South-East.

Given an allowed lattice configuration, let k ∈ Z≥0 be the number of non-intersecting
paths. We fix the values of the outer vertical edges on top and bottom respectively with
two partitions µ and λ belonging to the set A+

k (n) (see Figure 4.2). The latter was
introduced in (3.11), that is

A+
k (n) = {λ ∈ Pk | n ≥ λ1 ≥ λ2 ≥ · · · ≥ λk > 0} .

For j = 1, . . . , n, we have that mj(µ) represents the number of paths starting from the
j-th column of the lattice, or equivalently the value attached to the upmost edge of the
same column. Similarly, mj(λ) represents the number of paths ending at the j-th column
of the lattice, or equivalently the value attached the lowest edge of the same column.

A central object in the discussion of vertex models, which encodes all the physical
properties of the models themselves, is the so called ‘partition function’. Given λ, µ ∈
A+
k (n), denote with Γ+

λ,µ(l) (respectively Γ−λ,µ(l)) the set of allowed lattice configurations
for the Q+ (respectively Q−) vertex model, where the values attached to the outer vertical
edges on top and bottom are fixed respectively by µ and λ. The partition functions of
the Q± vertex models, for the lattice with periodic boundary conditions in the horizontal
direction, are defined as the weighted sums

Z±λ,µ(x1, . . . , xl) =
∑

γ±∈Γ±λ,µ(l)

zd wt±(γ±) . (4.2)
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Figure 4.2: Allowed lattice configurations for the Q+ vertex model (on the left) and for
the Q− vertex model (on the right), with periodic boundary conditions in the horizontal
direction. The lattices have l = 3 rows and n = 4 columns. The lattice configurations
consists of k = 4 non-intersecting paths. Two paths are crossing the boundary of the
cylinder, and therefore d = 2 in the notation of equation (4.2). The upper and lower
boundary conditions, that is the values attached to the outer vertical edges on top and
bottom, are fixed respectively by the partitions µ = (3, 3, 2, 1) and λ = (4, 2, 1, 1), which
belong to A+

4 (4). We set m(µ) = (m1(µ), . . . ,mk(µ)) and m(λ) = (m1(λ), . . . ,mk(λ)).

Here z is a formal variable, and for each lattice configuration γ± ∈ Γ±λ,µ(l) we set d = d(γ±)

to be the number of paths crossing the boundary of the cylinder. Compare with the
notation introduced in [41, Eq. (5.1)].

Remark 4.1.3. The partition functions Z±λ,µ(x1, . . . , xl) acquire a physical meaning when
the indeterminates z and (x1, . . . , xl) are evaluated in the interval (0, 1) ⊂ R. In this
thesis we shall not discuss any physical properties related to the Q± vertex models. On
the other hand, in Section 4.1.3 we provide a combinatorial interpretation for the partition
functions (4.2), which relies on the cylindric symmetric functions defined in Chapter 3.
For this reason, we will always regard Z±λ,µ(x1, . . . , xl) as a formal power series in the
indeterminates z and (x1, . . . , xl).

For λ ∈ P+ and s ∈ Z define the partition [45]

rots λ = (1m1−s(λ), 2m2−s(λ), . . . , nmn−s(λ)) , (4.3)

where the indices are understood modulo n.

Lemma 4.1.4. Let λ, µ ∈ A+
k (n) and 1 ≤ s ≤ n. We have the identities

Z±
rot−s λ,rot−s µ(x1, . . . , xl) = z

∑s
i=1(mi(µ)−mi(λ))Z±λ,µ(x1, . . . , xl) . (4.4)

Proof. We shall only prove the claim for the Q+ vertex model, since for the Q− vertex
model the claim follows in a completely analogous way. For this purpose, we first construct
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a bijection between the sets Γ+
λ,µ(l) and Γ+

rot−s λ,rot−s µ(l). Let γ ∈ Γ+
λ,µ(l), and shift the

paths in the horizontal direction by s units clockwise (compare with Figure 4.3). Denote
by γ̃ the lattice configuration obtained via this shift, and notice that the upper and lower
boundary conditions of γ̃ are fixed respectively by the partitions rot−s µ and rot−s λ. Since
the Q+ vertex model is defined on a cylinder, it follows that at each vertex of γ̃ we recover
the path configuration depicted in Figure 4.1. This implies that γ̃ is an allowed lattice
configuration for the Q+ vertex model, and therefore γ̃ ∈ Γ+

rot−s λ,rot−s µ(l). In conclusion,
each γ ∈ Γ+

λ,µ(l) determines a unique element γ̃ ∈ Γ+
rot−s λ,rot−s µ(l), that is γ 7→ γ̃ defines a

map Γ+
λ,µ(l)→ Γ+

rot−s λ,rot−s µ(l).
To show that Γ+

λ,µ(l) and Γ+
rot−s λ,rot−s µ(l) are in bijection, we need to create the inverse

map Γ+
rot−s λ,rot−s µ(l) → Γ+

λ,µ(l). Let γ̃ ∈ Γ+
rot−s λ,rot−s µ(l), and shift the paths in the

horizontal direction by s units counterclockwise. Denote by γ the lattice configuration
obtained in this way. Following similar steps as the ones described above, one can show
that γ ∈ Γ+

λ,µ(l). The assignment γ̃ 7→ γ therefore defines a map Γ+
rot−s λ,rot−s µ(l)→ Γ+

λ,µ(l),
which is clearly the inverse of the map Γ+

λ,µ(l) → Γ+
rot−s λ,rot−s µ(l) introduced above. We

conclude that there exists a bijection between the sets Γ+
λ,µ(l) and Γ+

rot−s λ,rot−s µ(l).
Let γ ∈ Γ+

λ,µ(l), and consider the lattice configuration γ̃ ∈ Γ+
rot−s λ,rot−s µ(l) which is the

image under the map Γ+
λ,µ(l) → Γ+

rot−s λ,rot−s µ(l) described previously. Denote by vi,j the
vertex obtained by intersecting the i-th row of the lattice with the j-th column. Employing
the map Γ+

λ,µ(l) → Γ+
rot−s λ,rot−s µ(l) we have that the vertex configuration attached to vi,j

becomes the vertex configuration attached to vi,j−s, where the indices are understood
modulo n. We can therefore take advantage of (4.1) to deduce the identity wt+(γ) =

wt+(γ̃). By construction, the number of paths d associated to γ that are crossing the
boundary of the cylinder coincides with the number of paths associated to γ̃ that are
crossing the vertical line between columns n − s and n − s + 1. Let d̃ be the number
of paths associated to γ̃ that are crossing the boundary of the cylinder. Notice that the
constraint a + b = c + d at each vertex of the lattice (compare with Figure 4.1) implies
that

d+
n∑

i=n−s+1

mi(rot−s µ) = d̃+
n∑

i=n−s+1

mi(rot−s λ) .

Starting from (4.2), and then employing this last identity, together with the relation
mi(rot−s λ) = mi+s(λ), one ends up with (4.4).

Remark 4.1.5. A natural question is how the partition functions (4.2) change if we
identify the boundary of the cylinder with a vertical line between columns s and s + 1,
and then we redefine the number d = d(γ±) as the number of paths crossing this new
boundary. Employing the map γ̃ 7→ γ defined in Lemma 4.1.4, we deduce that these
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Figure 4.3: Let l = 3, n = 4, k = 4, µ = (3, 3, 2, 1) and λ = (4, 2, 1, 1). On the left we
have an allowed lattice configuration γ ∈ Γ+

λ,µ(l) for the Q+ vertex model. On the right
we have the allowed lattice configuration γ̃ for the Q+ vertex model which is obtained
from γ by shifting the paths in the horizontal direction by 3 units clockwise. This is the
image under the map Γ+

λ,µ(l) → Γ+
rot−3 λ,rot−3 µ

(l) defined in the proof of Lemma 4.1.4. To
ease the comparison, on the left we drew a vertical dashed line between columns n and 1,
which corresponds to the boundary of the cylinder, and on the right we shifted this line
by 3 units clockwise (that is, from right to left).

partition functions are given by Z±rots λ,rots µ(x1, . . . , xl), which equal

z
∑n
i=n−s+1(mi(λ)−mi(µ))Z±λ,µ(x1, . . . , xl)

thanks to (4.4) and the relation mi(rots λ) = mi−s(λ).

4.1.2 Solutions of the Yang-Baxter equation

As it is customary in the discussion of vertex models, we now wish to identify the vertex
weights for the Q± vertex models as matrix elements of a vector space. For this purpose,
we now interpret the values attached to the edges of the lattice as labels of basis vectors
in the vector space F =

⊕
m∈Z≥0

Cvm. We shall be using the the bra-ket notation from
physics. Namely, we denote the vector vm ∈ F with the ‘ket’ symbol |m〉, and the dual
vector vm belonging to the dual space F̃ =

⊕
m∈Z≥0

Cvm with the ‘bra’ symbol 〈m|. The
dual vectors are defined via the relation vm(vm′) = δmm′ , which corresponds to the ‘braket’
〈m|m′〉 = δmm′ in the bra-ket notation.

Definition 4.1.6. The Heisenberg algebraH is the unital, associative C-algebra generated
by the two elements {b, b∗} subject to the relation [b, b∗] ≡ bb∗ − b∗b = 1.

Lemma 4.1.7. The set {(b∗)pbq | p, q ∈ Z≥0} forms a basis of H.

Proof. This is a well known result, see for example [65].
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Equip the vector space F with the map H×F → F defined as

b∗ |m〉 = (m+ 1) |m+ 1〉 ,

b |m〉 = |m− 1〉 ,

together with b |0〉 = 0. This map turns F into an infinite dimensional left module of the
Heisenberg algebra H with highest vector |0〉. See for example [35, 5.1.1, Proposition 3]
in the limit q = 0. Similarly, equip F̃ with the map F̃ × H → F̃ defined as

〈m| b∗ = 〈m− 1|m ,

〈m| b = 〈m+ 1| ,

together with 〈0| b∗ = 0. In this way, F̃ becomes an infinite dimensional right module of
the Heisenberg algebra with highest vector 〈0|. As a consequence of the above actions, we
have the relations

|m〉 =
(b∗)m

m!
|0〉 , and 〈m| = 〈0| bm . (4.5)

Let x be an indeterminate and set F((x)) = C((x)) ⊗ F . The L+ and L− operators
are the operators L±(x) ∈ End(F((x)))⊗H defined via the relations

L+(x) |m〉 ⊗ 1 =
∑

m′∈Z≥0

|m′〉 ⊗ xm

m!
(b∗)mbm

′
, (4.6)

L−(x) |m〉 ⊗ 1 =
∑

m′∈Z≥0

|m′〉 ⊗ xm

m!
bm
′
(b∗)m . (4.7)

For a, b ∈ Z≥0, we shall use the notation |a, b〉 = |a〉 ⊗ |b〉. Moreover, we set
(
a
b

)
= 0

whenever a < b.

Lemma 4.1.8. The matrix elements of the L± operators are given by

〈c, d|L+(x)|a, b〉 = xa
(
d

a

)
δa+b,c+d , (4.8)

〈c, d|L−(x)|a, b〉 = xa
(
a+ b

b

)
δa+b,c+d . (4.9)

Proof. The claim follows after a straightforward computation.

A comparison with Figure 4.1 shows that the matrix element (4.8) is non-zero if and
only if the integers {a, b, c, d} represent an allowed vertex configuration for the Q+ vertex
model. Similarly, the matrix element (4.9) is non-zero if and only if the vertex configuration
defined by the integers {a, b, c, d} is ‘allowed’ for the Q− vertex model. If these matrix
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elements are non-zero, then they coincide with the vertex weights introduced in Figure
4.1. We can therefore identify the vertex weights for the Q± vertex models with the matrix
elements of the L± operators. Let P ∈ End(F ⊗ F) be the flip operator P |m1,m2〉 =

|m2,m1〉. Define operators R± ∈ End[C((x, y))⊗F ⊗F ] via the relations

〈m′1,m′2|R+(x/y)|m1,m2〉 =

(
m′2
m1

)(
x

y

)m1
(

1− x

y

)m′2−m1

δm1+m2,m′1+m′2
(4.10)

and
R−(x/y) = PR+(y/x)P . (4.11)

Moreover, define R ∈ End[C((x, y))⊗F ⊗F ] via

〈m′1,m′2|R(x/y)|m1,m2〉 =

(
m1 +m2

m1

)(
x

y

)m1
(

1 +
x

y

)−m1−m2

δm1+m2,m′1+m′2
. (4.12)

We employ these operators to construct three solutions of the Yang-Baxter equation (YBE)
in terms of the Heisenberg algebra.

Proposition 4.1.9. The L± operators are solutions of the YBE

R+
12(x/y)L+

1 (x)L+
2 (y) = L+

2 (y)L+
1 (x)R+

12(x/y) , (4.13)

R−12(x/y)L−1 (x)L−2 (y) = L−2 (y)L−1 (x)R−12(x/y) , (4.14)

R12(x/y)L−1 (x)L+
2 (y) = L+

2 (y)L−1 (x)R12(x/y) . (4.15)

The three solutions of the YBE presented above are identities in End[C((x, y))⊗F ⊗
F ]⊗H. The subscripts attached to the operators specify which copies of the Fock space
these operators are acting on. For example, we have that

L+
1 (x) |m1,m2〉 ⊗ 1 =

∑
m′∈Z≥0

|m′,m2〉 ⊗
xm1

m1!
(b∗)m1bm

′
,

L+
2 (y) |m1,m2〉 ⊗ 1 =

∑
m′∈Z≥0

|m1,m
′〉 ⊗ ym2

m2!
(b∗)m2bm

′
.

Notice that (4.13) is the limit q = 1 of a similar identity proved in [41, Proposition 3.7].
Equations (4.14) and (4.15) are new results.

Proof. Denote by L±m′,m(x) ∈ H⊗C((x)) the elements defined via the relation L±(u) |m〉⊗
1 =

∑
m′∈Z≥0

|m′〉⊗L±m′,m(u). Equations (4.6) and (4.7) imply that L+
m′,m(x) = xm

m!
(b∗)mbm

′

and L−m′,m(x) = xm

m!
bm
′
(b∗)m. Set R±m′1,m′2;m1,m2

(x/y) = 〈m′1,m′2|R±(x/y)|m1,m2〉 and
Rm′1,m

′
2;m1,m2

(x/y) = 〈m′1,m′2|R(x/y)|m1,m2〉. Applying both sides of (4.13) to the el-
ement |m1,m2〉 ⊗ 1, and then doing the same for (4.14) and (4.15), one arrives at the
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following set of constraints for the operators L±m′,m(x),∑
m′1,m

′
2≥0

R±n1,n2;m′1,m
′
2
L±m′1,m1

(x)L±m′2,m2
(y) =

∑
m′1,m

′
2≥0

L±n2,m′2
(y)L±n1,m′1

(x)R±m′1,m′2;m1,m2
(x/y) ,

together with ∑
m′1,m

′
2≥0

Rn1,n2;m′1,m
′
2
L−m′1,m1

(x)L+
m′2,m2

(y) =

∑
m′1,m

′
2≥0

L+
n2,m′2

(y)L−n1,m′1
(x)Rm′1,m

′
2;m1,m2

(x/y) ,

for m1,m2, n1, n2 ∈ Z≥0. The constraints involving solely the operators L+
m′,m(x) can be

deduced from [41, Proposition 3.7] by taking the limit q = 1. The others follow after a
straightforward but tedious computation, whose details we omit. For this purpose, one
has to take advantage of the following commutation relation,

(b∗)rbs =

min(r,s)∑
l=0

(−1)lr!s!

l!(r − l)!(s− l)!
bs−l(b∗)r−l ,

which can be proved by induction.

Remark 4.1.10. The universal R-matrix R ∈ U ⊗ U of a quantum group U satisfies the
relation

R12R13R23 = R23R13R12 . (4.16)

In the context of quantum groups, the latter is what is known as the Yang-Baxter equation.
Suppose now thatX, Y and Z are U -modules. Denote by RXY the universal R-matrix that
is acting on the first two spaces of the tensor product X⊗Y ⊗Z. Define RXZ and RY Z in
an analogous way. We then deduce from (4.16) the relation RXYRXZRY Z = RY ZRXZRXY .
The spaces X and Y are usually referred to as the ‘auxiliary spaces’, whereas Z is the
‘quantum space’. Moreover, it is customary to call RXZ = LX , and similarly RY Z = LY ,
the ‘Lax matrix’. See for example [15] for further details. In our discussion, the matrix
R+ defined in (4.10) is a degenerate limit of the universal R-matrix of Uq(ŝl2) [39]. Even
though the L-operators defined in (4.6), (4.7) and the R-matrices defined in (4.10), (4.11),
(4.12) are not related, it is customary in quantum integrable systems to call the equations
of the form (4.13), (4.14) and (4.15) as the Yang-Baxter equation. See for example [41,
Proposition 3.6].

We now generalise the discussion presented so far to include the partition functions
(4.2). Namely, we wish to express the latter as the matrix elements of some suitable
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operators. For this purpose, consider the n-fold tensor product Hn = H⊗n, and denote
with {bi, b∗i } the generators belonging to the i-th copy of H. It follows that Hn is generated
by the elements {bi, b∗i }ni=1 subject to the relations

[bi, bj] = [b∗i , b
∗
j ] = 0 , [bi, b

∗
j ] = δij . (4.17)

The n-fold tensor product F⊗n admits the decomposition F⊗n =
⊕

k∈Z≥0
F⊗nk . For k ∈

Z≥0, the subspace F⊗nk ⊂ F⊗n is spanned by the vectors |m1,m2, . . . ,mn〉 = |m1〉⊗|m2〉⊗
· · · ⊗ |mn〉 satisfying the constraint

∑n
i=1mi = k. We label these vectors with partitions

λ ∈ A+
k (n) as follows,

|λ〉 = |m1(λ),m2(λ), . . . ,mn(λ)〉 =
1

uλ
b∗λ1
b∗λ2
· · · b∗λk |0〉 , (4.18)

where the symbol uλ =
∏

i≥1mi(λ)! was introduced in (2.28). Every partition µ ∈ P+ with
µ1 ≤ n can then be identified with a vector in F⊗n via the relation (4.18). Similarly, we
have the decomposition F̃⊗n =

⊕
k∈Z≥0

F̃⊗nk . For k ∈ Z≥0, the subspace F̃⊗nk is spanned
by the vectors

〈λ| = 〈m1(λ),m2(λ), . . . ,mn(λ)| = 〈0| bλk · · · bλ1 , (4.19)

where λ ranges over all partitions in A+
k (n). By construction we have that 〈µ|ν〉 = δµν for

all µ, ν ∈ P+ with µ1, ν1 ≤ n.
For i = 1 . . . , n, let L±i (x) ∈ F((x)) ⊗ Hn coincide with the L± operators defined in

(4.6) and (4.7), where the elements {b, b∗} of H are replaced by the elements {bi, b∗i } of
Hn. Define the monodromy matrices Q±(x) ∈ F((x))⊗Hn as

Q±(x) = L±n (x) · · ·L±2 (x)L±1 (x) . (4.20)

Notice that the subscripts attached to the L± operators in (4.20) have a different meaning
from the subscripts introduced in Proposition 4.1.9. Denote with Q±m′,m(x) ∈ Hn⊗C((x))

the elements defined via the relation Q±(x) |m〉 ⊗ 1 =
∑

m′∈Z≥0
|m′〉 ⊗Q±m′,m(x).

Corollary 4.1.11. The monodromy matrices (4.20) are solutions of the YBE

R+
12(x/y)Q+

1 (x)Q+
2 (y) = Q+

2 (y)Q+
1 (x)R+

12(x/y) , (4.21)

R−12(x/y)Q−1 (x)Q−2 (y) = Q−2 (y)Q−1 (x)R−12(x/y) , (4.22)

R12(x/y)Q−1 (x)Q+
2 (y) = Q+

2 (y)Q−1 (x)R12(x/y) , (4.23)

where the operators R+, R− and R were defined respectively in (4.10), (4.11) and (4.12).

The three solutions of the YBE presented above are identities in End[C((x, y))⊗F ⊗
F ]⊗Hn. The subscripts attached to the operators have the same meaning of the subscripts
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introduced in Proposition 4.1.9. That is, they specify which copies of the Fock space these
operators are acting on.

Proof. Taking advantage of Proposition 4.1.9, one can prove the claim via induction on n.
This is a standard computation, which can be found for instance in [37, VI.1].

Lemma 4.1.12. We have the equalities

Q+
m′,m(x) =

xm

m!

∑
α∈P≥0

n−1

x|α|

α1! · · ·αn−1!
(b∗1)m(b1b

∗
2)α1 · · · (bn−1b

∗
n)αn−1bm

′

n , (4.24)

Q−m′,m(x) =
xm

m!

∑
α∈P≥0

n−1

x|α|

α1! · · ·αn−1!
bm
′

n (b∗nbn−1)αn−1 · · · (b∗2b1)α1(b∗1)m . (4.25)

where the set P≥0
n−1 = {α ∈ Pn−1 | αi ≥ 0 for i = 1, . . . , n− 1} was introduced in (2.7).

Proof. These equalities are the limit q = 1 of similar identities proved in [43, Lemma
4.1].

Introduce Q+ and Q− operators as the operators Q±(x) ∈ Hn ⊗ C((z, x)) defined via
the following partial trace,

Q±(x) = TrF z
NQ±(x) =

∑
m∈Z≥0

zmQ±m,m(x) , (4.26)

where the operator zN ∈ End(F) is defined via the relation 〈m′|zN |m〉 = zmδm′m. The
partial trace of the monodromy matrix associated to some vertex model, which in our case
coincides with the Q± operators defined above, is also known in the literature as Baxter’s
‘transfer matrix’. The following result shows that we can interpret the matrix elements of
the Q± operators as the partition functions (4.2) of the Q± vertex models.

Lemma 4.1.13. Let λ, µ ∈ A+
k (n). We have the identities

Z±λ,µ(x1, x2, . . . , xl) = 〈λ|Q±(x1)Q±(x2) · · ·Q±(xl)|µ〉 . (4.27)

Proof. Suppose that γ is a lattice configuration belonging to either Γ+
λ,µ(l) or Γ−λ,µ(l). We

first label the values attached to the edges of the lattice in a suitable manner; compare
with Figure 4.4. For i = 1, . . . , l and j = 1, . . . , n let a(i)

j be the value attached to the edge
in the i-th row between columns (j − 1) Modn and j, where Mod was defined in (3.74).
Similarly, for i = 1, . . . , l− 1 let m(i)

j be the value attached to the edge in the j-th column
between rows i and i+ 1. Moreover, set m(0)

j = mj(µ) and m(l)
j = mj(λ).

Notice that the vertex configuration associated to vi,j, which is the vertex obtained by
intersecting the i-th row with the j-th column, consists of the four non-negative integers
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{a(i)
j ,m

(i−1)
j , a

(i)
j+1,m

(i)
j } oriented as in Figure 4.1. By definition we have that γ is an allowed

lattice configuration, which means that its associated weight is non-zero. Equation (4.1)
implies that the vertex configuration associated to vi,j is also ‘allowed’. A comparison with
Figure 4.1 shows that for i = 1, . . . , l and j = 1, . . . , n the integers {a(i)

j ,m
(i−1)
j , a

(i)
j+1,m

(i)
j }

satisfy the constraint a(i)
j + m

(i−1)
j = a

(i)
j+1 + m

(i)
j . Moreover, thanks to (4.8) and (4.9) we

have the identity
wt±(vi,j) = 〈a(i)

j+1,m
(i)
j |L±j (xi)|a(i)

j ,m
(i−1)
j 〉 . (4.28)

For i = 0, . . . , l, define the partition λ(i) via the relationmj(λ
(i)) = m

(i)
j , where j = 1, . . . , l.

In particular, notice that λ(0) = µ and λ(l) = λ. The lattice configuration γ consists of
k ∈ Z≥0 non-intersecting paths, and since these paths are conserved throughout the lattice,
we have for i = 0, . . . , l the relation

∑n
j=1m

(i)
j = k. The latter can be also deduced from

the constraints a(i)
j + m

(i−1)
j = a

(i)
j+1 + m

(i)
j mentioned above. It follows that λ(i) ∈ A+

k (n)

for i = 0, . . . , l, and the partition functions (4.2) can then be expressed as the following
weighted sum,

Z±λ,µ(x1, x2, . . . , xl) =
∑

λ(1)∈A+
k (n)

· · ·
∑

λ(l−1)∈A+
k (n)

∑
a

(i)
1 ∈Z≥0

· · ·
∑

a
(i)
n ∈Z≥0

z
∑l
i=1 a

(i)
1

l∏
i=1

n∏
j=1

wt±(vi,j) .

Notice that the number of paths crossing the boundary of the cylinder is equal to
∑l

i=1 a
(i)
1 .

Taking advantage of (4.20) and (4.26), and identifying the vertex weight associated
to vi,j with the matrix element (4.28), one can show after a straightforward computation
that the matrix element 〈λ|Q±(x1)Q±(x2) · · ·Q±(xl)|µ〉 coincides with the expansion for
Z±λ,µ(x1, x2, . . . , xl) obtained above, thus proving the claim.

With the help of Corollary 4.1.11, we can deduce that the transfer matrices of the Q±

vertex models, which are just the Q± operators, commute with themselves for arbitrary
values of the spectral parameter. This is the main feature of exactly solvable vertex models.

Corollary 4.1.14. We have the commutation relations

[Q±(x), Q±(y)] = [Q+(x), Q−(y)] = 0 . (4.29)

Proof. A straightforward computation shows that the operatorsR+ andR−, which were in-
troduced in (4.10) and (4.11) respectively, satisfy R+(x/y)R−(x/y) = R−(x/y)R+(x/y) =

1. In other words, these operators are invertible, and they are each other’s inverse. We
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then have the following chain of equalities,

Q±(x)Q±(y) = TrF⊗F z
N1Q±1 (x)zN2Q±2 (y)

= TrF⊗F R
∓
12(x/y)R±12(x/y)zN1zN2Q±1 (x)Q±2 (y)

= TrF⊗F R
±
12(x/y)zN1zN2Q±1 (x)Q±2 (y)R∓12(x/y)

= TrF⊗F R
±
12(x/y)zN1zN2R∓12(x/y)Q±2 (y)Q±1 (x)

= TrF⊗F z
N2Q±2 (y)zN1Q±1 (x)

= Q±(y)Q±(x) .

The subscripts attached to the operators indicate which copy of the Fock space in the tensor
product F ⊗F these operators are acting on. In the third line we used the cyclicity of the
trace for the operators R∓12(x/y), whereas in the fourth line we took advantage of (4.21) and
(4.22). In the fifth line we used the commutation relation [R±12(x/y), zN1zN2 ] = 0, which
can be deduced from (4.10) and (4.11). This is a standard computation in the discussion of
vertex models (see for example [37, VI.1]), and it shows that [Q±(x), Q±(y)] = 0. The same
reasoning cannot be applied to derive the commutation relation [Q+(x), Q−(y)] = 0, since
the operator R, which was introduced in (4.12), is not invertible. Acting with both sides
of equation (4.23) on the element |m1,m2〉 ⊗ 1, we end up with the following constraint,

m1+m2∑
m=0

(
x

y

)m(
1 +

x

y

)−m1−m2
(
m1 +m2

m

)
Q−m,n1

(x)Q+
m1+m2−m,n2

(y)

=

(
x

y

)n1
(

1 +
x

y

)−n1−n2
(
n1 + n2

n1

) n1+n2∑
m=0

Q+
m2,n1+n2−m(y)Q−m1,m

(x) ,

for m1,m2, n1, n2 ∈ Z≥0. Set n1 = m2 = 0 and n2 = m1 = s, multiply both sides of this
last equality by zs and sum over s ∈ Z≥0. Then the LHS equals Q−(x)Q+(y), whereas the
RHS equals Q+(x)Q−(y), thus proving that [Q+(x), Q−(y)] = 0.

4.1.3 Partition functions and cylindric symmetric functions

Lemma 4.1.13 and Corollary 4.1.14 imply that the partition functions Z±λ,µ(x1, . . . , xl)

defined in (4.2) are symmetric in the variables {x1, . . . , xl}. The goal of this section is to
show that Z±λ,µ(x1, . . . , xl) can be expanded in terms of the cylindric symmetric functions
eλ/d/µ and hλ/d/µ introduced in Section 3.2.3. To this end, we proceed as follows. First,
we show that the allowed lattice configurations of the Q+ and Q− vertex models are in
bijection respectively with CRSTs and CRPPs, which were defined in Section 3.1.1. Then
we provide the relation between the weight of these lattice configurations and the weights
ψλ/d/µ and θλ/d/µ introduced in Definitions 3.2.9 and 3.2.4 respectively. In Section 4.3.2
we shall evaluate the partition functions Z±λ,µ(x1, . . . , xl) via a different method, which
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Figure 4.4: The i-th row of a lattice configuration γ belonging to either Γ+
λ,µ(l) or Γ+

λ,µ(l),
together with the labels introduced in Lemma 4.1.13 for its lattice edges.

consists in computing the action of the Q± operators defined in (4.26) on the vectors
(4.18) belonging to F⊗n.

Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. Define Γ±λ,µ(l, d) ⊂ Γ±λ,µ(l) as the set of allowed

lattice configurations for the Q± vertex models, where the values attached to the outer
vertical edges on top and bottom are fixed respectively by µ and λ, and the number
of paths crossing the boundary of the cylinder is equal to d. In particular, notice that
Γ±λ,µ(l) =

⊔
d∈Z≥0

Γ±λ,µ(l, d). If λ/d/µ is a cylindric skew diagram as defined in (3.3), denote
with Πλ/d/µ(l) (respectively Tλ/d/µ(l)) the set of CRPPs (respectively CRSTs) of shape
λ/d/µ, whose largest entry is smaller or equal than l. On the other hand, if λ/d/µ is
not a cylindric skew diagram, that is if µ̂ 6⊂ λ̂.τ d in the notation of Remark 3.2.1, set
Πλ/d/µ(l) = Tλ/d/µ(l) = ∅. Let l′ ∈ N such that l′ ≤ l, and suppose that λ/d/µ is
a cylindric skew diagram. Recall that a CRPP of shape λ/d/µ with largest entry l′ is
equivalent to a sequence

µ̂ = λ̂(0).τ d0 ⊂ λ̂(1).τ d1 ⊂ · · · ⊂ λ̂(l′).τ dl′ = λ̂.τ d

of cylindric partitions with λ̂(r) ∈ Â+
k (n) and dr − dr−1 ≥ 0 for r = 1, . . . , l′. Compare

with equation (3.21). Setting λ̂(r).τ dr = λ̂.τ d for l′ < r ≤ l, it follows that every CRPP
belonging to Πλ/d/µ(l) is equivalent to a sequence

µ̂ = λ̂(0).τ d0 ⊂ λ̂(1).τ d1 ⊂ · · · ⊂ λ̂(l).τ dl = λ̂.τ d (4.30)

of cylindric partitions with λ̂(r) ∈ Â+
k (n) and dr − dr−1 ≥ 0 for r = 1, . . . , l. Similarly, one

has that every CRST belonging to Tλ/d/µ(l) is equivalent to a sequence (4.30) of cylindric
partitions, where λ̂(r).τ dr/λ̂(r−1).τ dr−1 is a cylindric vertical strip for r = 1, . . . , l.

Notice that Πλ/d/µ(l) is non-empty if and only if µ̂ ⊂ λ̂.τ d. In fact, if λ/d/µ is a
cylindric skew diagram, then one can obtain a CRPP belonging to Πλ/d/µ(l) by filling all
the boxes of λ/d/µ with the entry 1. The same statement is not true for Tλ/d/µ(l). For
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example, there are no CRSTs of shape λ/d/µ with λ = (3, 2, 2), µ = (3, 3, 2), d = 1 and
largest entry l = 2.

Consider the expansion (3.30) for the cylindric symmetric function eλ/d/µ. Projecting
both sides of this expansion onto Λl, that is setting xi = 0 for i > l, one has that only the
terms involving CRSTs with largest entry smaller or equal than l are non-zero. Similarly,
projecting onto Λl both sides of the expansion (3.31) for the complete symmetric function
hλ/d/µ, it follows that only the terms involving CRPPs with largest entry smaller or equal
than l are non-zero. In other words, we have the identities

eλ/d/µ(x1, . . . , xl) =
∑

T̂∈Tλ/d/µ(l)

ψT̂x
T̂ , (4.31)

hλ/d/µ(x1, . . . , xl) =
∑

π̂∈Πλ/d/µ(l)

θπ̂x
π̂ . (4.32)

Proposition 4.1.15. For every λ, µ ∈ A+
k (n) and d ∈ Z≥0, there exists a bijection between

the sets Γ−λ,µ(l, d) and Πλ/d/µ(l).

Proof. Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. Assume that Γ−λ,µ(l, d) is non-empty, and let

γ− ∈ Γ−λ,µ(l, d). We label the values attached to the lattice edges in the same way as
described in the proof of Lemma 4.1.13 (see also Figure 4.4). In particular, for i = 0, . . . , l

define the partition λ(i) ∈ A+
k (n) as therein, that is via the relation mj(λ

(i)) = m
(i)
j , where

j = 1, . . . , n. For i = 1, . . . , l set di =
∑i

p=1 a
(p)
1 , and notice that the number of paths

crossing the boundary of the cylinder is given by d =
∑l

p=1 a
(p)
1 = dl.

By definition, we have that γ− is an allowed lattice configuration for the Q− vertex
model. That is, for i = 1, . . . , l and j = 1, . . . , n the integers {a(i)

j ,m
(i−1)
j , a

(i)
j+1,m

(i)
j }, which

are the values attached to the vertex vi,j, represent an allowed vertex configuration for the
Q− vertex model. A comparison with Figure 4.1 shows that for i = 1, . . . , l and j = 1, . . . , n

we have the constraint a(i)
j + m

(i−1)
j = a

(i)
j+1 + m

(i)
j . Employing the latter, together with

the identity (λ̂.τ d)′j = λ̂′j + d, it follows that (λ̂(i).τ di)′j − (λ̂(i−1).τ di−1)′j = a
(i)
j ≥ 0, which

in turn implies that λ̂(i−1).τ di−1 ⊂ λ̂(i).τ di for i = 1, . . . , l. We deduce that the sequence

µ̂ = λ̂(0) ⊂ λ̂(1).τ d1 ⊂ · · · ⊂ λ̂(l).τ dl = λ̂.τ d

of cylindric partitions is equivalent to a CRPP π̂ belonging to Πλ/d/µ(l), that is a CRPP of
shape λ/d/µ whose largest entry is smaller or equal than l. In conclusion, the set Πλ/d/µ(l)

is non-empty, and each γ− ∈ Γ−λ,µ(l, d) determines a unique element π̂ ∈ Πλ/d/µ(l), that is
γ− 7→ π̂ defines a map Γ−λ,µ(l, d)→ Πλ/d/µ(l).

Let once again λ, µ ∈ A+
k (n) and d ∈ Z≥0. Assume that Πλ/d/µ(l) is non-empty,

and let π̂ ∈ Πλ/d/µ(l). Moreover, define λ(0) = µ, λ(l) = λ, d0 = 0 and dl = d. As
we explained in (4.30), the CRPP π̂ is equivalent to a sequence {λ̂(i).τ di}li=0 of cylindric
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Figure 4.5: Let n = 4, k = 4, l = 3, λ = (4, 2, 1), µ = (3, 2, 2) and d = 2. On the left
we have a lattice configuration γ− ∈ Γ−λ,µ(l, d). On the right we have the CRPP π̂ which
is the image of γ− under the map Γ−λ,µ(l, d) → Πλ/d/µ(l) defined in Proposition 4.1.15.
We can construct π̂ as follows. Let p ∈ Z. In the notation of Figure 4.4, we have that
a

(1)
1 = 1, a(2)

1 = 0 and a(3)
1 = 1. Thus, in column 1 + pn of the diagram of µ̂, add one box

with entry 1, zero boxes with entry 2, and one box with entry 3. Moreover, we have that
a

(1)
2 = a

(2)
2 = 0 and a(3)

2 = 1. Thus, in column 2 + pn of the diagram of µ̂, add zero boxes
with entries 1 and 2, and one box with entry 3. Proceed in an analogous way for columns
3 + pn and 4 + pn of the diagram of µ̂, and then repeat the algorithm just described for
all p ∈ Z.

partitions, with λ̂(i) ∈ Â+
k (n) and di − di−1 ≥ 0, such that λ̂(i−1).τ di−1 ⊂ λ̂(i).τ di for

i = 1, . . . , l. Define a lattice configuration γ− as follows. For i = 1, . . . , l and j = 1, . . . , n

set a(i)
j = (λ̂(i).τ di)′j − (λ̂(i−1).τ di−1)′j. Furthermore, for i = 1, . . . , l − 1 and j = 1, . . . , n

set m(i)
j = mj(λ

(i)). Finally, fix the upper and lower outer horizontal edges of γ− with the
two partitions λ(0) = µ and λ(l) = λ respectively. By definition we have that m(i)

j ≥ 0,
and since λ̂(i−1).τ di−1 ⊂ λ̂(i).τ di it follows that a(i)

j ≥ 0. Notice that m(i)
j = λ̂

(i)′

j − λ̂
(i)′

j+1 =

(λ̂(i).τ di)′j − (λ̂(i).τ di)′j+1, where in the second equality we took advantage of the fact that
(λ̂.τ d)′i = λ̂′i + d. It follows that a(i)

j +m
(i−1)
j = a

(i)
j+1 +m

(i)
j = (λ̂(i).τ di)′j − (λ̂(i−1).τ di−1)′j+1,

which in turn implies that for i = 1, . . . , l and j = 1, . . . , n the vertex configuration
associated to the vertex vi,j is ‘allowed’, and then γ− is an allowed lattice configuration
for the Q− vertex model. Moreover, since the number of paths crossing the boundary
of the cylinder is given by

∑l
p=1 a

(p)
1 = dl = d, we deduce that γ− ∈ Γ−λ,µ(l, d). In

conclusion, the set Γ−λ,µ(l, d) is non-empty, and each π̂ ∈ Πλ/d/µ(l) determines a unique
element γ− ∈ Γ−λ,µ(l, d), that is π̂ 7→ γ− defines a map Πλ/d/µ(l)→ Γ−λ,µ(l, d).

From the discussion presented so far we deduce that the sets Γ−λ,µ(l, d) and Πλ/d/µ(l) are
either both empty or non-empty. If these sets are both non-empty, the map Πλ/d/µ(l) →
Γ−λ,µ(l, d) is by construction the inverse of the map Γ−λ,µ(l, d) → Πλ/d/µ(l) defined above.
That is, the composition of these two maps gives the identity map on Γ−λ,µ(l, d) and on
Πλ/d/µ(l) respectively. This proves the claim.
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Let γ− ∈ Γ−λ,µ(l, d), and consider the CRPP π̂ which is the image of γ− under the map
Γ−λ,µ(l, d) → Πλ/d/µ(l) defined in the proof of Proposition 4.1.15. Notice that (λ̂(i).τ di)′j −
(λ̂(i−1).τ di−1)′j is the number of boxes which are placed in column j of the cylindric skew
diagram λ̂(i).τ di/λ̂(i−1).τ di−1 , and that this number is by construction equal to a(i)

j . We
can then construct π̂ as follows (compare with Figure 4.5). Let p ∈ Z. In column 1 + pn

of the diagram of µ̂, add a(1)
1 boxes with entry 1, a(2)

1 boxes with entry 2, and so on, up to
a

(l)
1 boxes with entry l. In column 2 + pn of the diagram of µ̂, add a(1)

2 boxes with entry
1, a(2)

2 boxes with entry 2, and so on, up to a(l)
2 boxes with entry l. Proceed in a similar

fashion for columns 3 + pn to k + pn of the diagram of µ̂. Finally, repeat the algorithm
just described for all p ∈ Z.

Proposition 4.1.16. For every λ, µ ∈ A+
k (n) and d ∈ Z≥0, there exists a bijection between

the sets Γ+
λ,µ(l, d) and Tλ/d/µ(l).

Proof. The proof of this statement, which has been already presented in [41, Theorem 6.4],
is closely related to the proof of Proposition 4.1.15. Let λ, µ ∈ A+

k (n) and d ∈ Z≥0. Assume
that Γ+

λ,µ(l, d) is non-empty, and let γ+ ∈ Γ+
λ,µ(l). Label the values attached to the lattice

edges in the same way as described in the proof of Lemma 4.1.13. In particular, define for
i = 0, . . . , l the partition λ(i) ∈ A+

k (n) as therein, that is via the relation mj(λ
(i)) = m

(i)
j ,

where j = 1, . . . , n. For r = i, . . . , l set di =
∑i

p=1 a
(p)
1 , and notice that dl is equal to the

number of paths d crossing the boundary of the cylinder.
By definition, we have that γ+ is an allowed lattice configuration for the Q+ vertex

model. That is, for i = 1, . . . , l and j = 1, . . . , n the integers {a(i)
j ,m

(i−1)
j , a

(i)
j+1,m

(i)
j },

which are the values attached to the vertex vi,j, represent an allowed vertex configuration
for the Q+ vertex model. A comparison with Figure 4.1 shows that for i = 1, . . . , l

and j = 1, . . . , n we have the constraint a(i)
j + m

(i−1)
j = a

(i)
j+1 + m

(i)
j , together with the

inequality m(i−1)
j − a

(i)
j+1 ≥ 0. It follows that (λ̂(i).τ di)′j − (λ̂(i−1).τ di−1)′j = a

(i)
j ≥ 0, and

moreover (λ̂(i−1).τ di−1)′j− (λ̂(i).τ di)′j+1 ≥ 0. These properties imply that for i = 1, . . . , l the
cylindric skew diagram λ̂(i).τ di/λ̂(i−1).τ di−1 is a cylindric vertical strip. See [41, Theorem
6.4] for details. Thus, we have that the sequence

µ̂ = λ̂(0) ⊂ λ̂(1).τ d1 ⊂ · · · ⊂ λ̂(l).τ dl = λ̂.τ d

of cylindric partitions is equivalent to a CRST T̂ belonging to Tλ/d/µ(l), that is a CRST of
shape λ/d/µ whose largest entry is smaller or equal than l. In conclusion, the set Tλ/d/µ(l)

is non-empty, and each γ+ ∈ Γ+
λ,µ(l, d) determines a unique element T̂ ∈ Tλ/d/µ(l), that is

γ+ 7→ T̂ defines a map Γ+
λ,µ(l, d)→ Tλ/d/µ(l).

Let once again λ, µ ∈ A+
k (n) and d ∈ Z≥0, and assume that Tλ/d/µ(l) is non-empty.

Following similar steps as the ones described in the proof of Proposition 4.1.15, one
can show that Γ+

λ,µ(l, d) is non-empty as well. Moreover, one can then construct a map
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Tλ/d/µ(l)→ Γ+
λ,µ(l, d), which turns out to be the inverse of the map Γ+

λ,µ(l, d)→ Tλ/d/µ(l)

defined above. See once again [41, Theorem 6.4] for details.

Remark 4.1.17. Proposition 4.1.15 implies that the set Γ−λ,µ(l, d) is non-empty if and only
if λ/d/µ is a cylindric skew diagram, since we showed at the beginning of this section that
an analogous statement holds for the set Πλ/d/µ(l). On the other hand, the set Γ+

λ,µ(l, d)

is non-empty only if λ/d/µ is a cylindric skew diagram. This is because, as we discussed
before, the set T λ/d/µ(l) might be empty even if λ/d/µ is a cylindric skew diagram.

Theorem 4.1.18. Let λ, µ ∈ A+
k (n). The partition functions of the Q± vertex models

admit the following expansions,

Z+
λ,µ(x1, x2, . . . , xl) =

∑
d∈Z≥0

zdeλ/d/µ(x1, x2, . . . , xl) , (4.33)

Z−λ,µ(x1, x2, . . . , xl) =
l∏

i=1

1

1− zxni

∑
d∈Z≥0

zdhλ/d/µ(x1, x2, . . . , xl) . (4.34)

Proof. Equation (4.33) is the limit q = 1 of a similar identity proved in [41, Theorem 6.4].
Nevertheless, we present a proof of (4.33) for the sake of completeness. Let d ∈ Z≥0, and
recall from Lemma 3.2.12 that the weight ψλ/d/µ has the following expression in terms of
binomial coefficients,

ψλ/d/µ =
n∏
j=1

(
(λ̂.τ d)′j − (λ̂.τ d)′j+1

(λ̂.τ d)′j − µ̂′j

)
.

Moreover, we shall employ the fact that the number |λ/d/µ| of boxes in λ/d/µ which
are located in lines 1 to k, or equivalently in columns 1 to n, is equal to

∑n
j=1((λ̂.τ d)′j −

µ̂′j). Suppose that γ+ ∈ Γ+
λ,µ(l, d), and label the values attached to the lattice edges

as described in Lemma 4.1.13 (see also Figure 4.4). For i = 1, . . . , l and j = 1, . . . , n

we have that the vertex configuration associated to the vertex vi,j consists of the four
integers {a(i)

j ,m
(i−1)
j , a

(i)
j+1,m

(i)
j } oriented as in Figure 4.1, and then we have by definition

the identity

wt+(vi,j) = x
a

(i)
j

i

(
m

(i)
j

a
(i)
j

)
.

Consider the CRST T̂ of shape λ/d/µ which is the image of γ+ under the map Γ+
λ,µ(l, d)→

Tλ/d/µ(l) defined in Proposition 4.1.16. By definition, T̂ is equivalent to the sequence
{λ̂(i).τ di}li=0 of cylindric partitions which are defined via the relations mj(λ

(i)) = m
(i)
j

and (λ̂(i).τ di)′j − (λ̂(i−1).τ di−1)′j = a
(i)
j . In the proof of Lemma 3.1.9 we showed that the

multiplicity of the entry r ∈ N in T̂ , between lines 1 to k, satisfies the equality wtr(T̂ ) =

|λ(r)/(dr − dr−1)/λ(r−1)|. Taking advantage of the identity (λ̂.τ d)′i = λ̂′i + d we have that
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a
(i)
j = (λ̂(i).τ di−di−1)′j−(λ̂(i−1))′j, which can be used to show the relation wti(T̂ ) =

∑n
j=1 a

(i)
j

for i = 1, . . . , l. We then have the following chain of equalities,

wt+(γ+) =
l∏

i=1

n∏
j=1

wt+(vi,j) =
l∏

i=1

n∏
j=1

x
a

(i)
j

i

(
m

(i)
j

a
(i)
j

)

=
l∏

i=1

x
∑n
j=1 a

(i)
j

i

n∏
j=1

(
(λ̂(i).τ di−di−1)′j − (λ̂(i).τ di−di−1)′j+1

(λ̂(i).τ di−di−1)′j − (λ̂(i−1))′j

)

=
l∏

i=1

x
wti(T̂ )
i ψλ(i)/(di−di−1)/λ(i−1) = ψT̂x

T̂ .

In the second line we employed the equalities m(i)
j = λ

(i)′

j − λ
(i)′

j+1 = (λ̂(i).τ di−di−1)′j −
(λ̂(i).τ di−di−1)′j+1. Taking advantage of (4.2) and the identity Γ+

λ,µ(l) =
⊔
d∈Z≥0

Γ+
λ,µ(l, d),

we end up with
Z+
λ,µ(x1, x2, . . . , xl) =

∑
d∈Z≥0

zd
∑

T̂∈Tλ/d/µ(l)

ψT̂x
T̂ .

A comparison of the latter with (4.31) then shows the validity of (4.33).
We now prove (4.34). For this purpose, let d ∈ Z≥0 and define the weight

θ̃λ/d/µ =
d∑
d̄=0

θλ/d̄/µ =
n∏
j=1

(
(λ̂.τ d)j − µ̂′j+1

µ̂′j − µ̂′j+1

)
. (4.35)

In the second equality we took advantage of the expression for θλ/d/µ in terms of binomial
coefficients, which was proved in Lemma 3.2.8. Suppose that γ− ∈ Γ+

λ,µ(l, d), and label
the values attached to the lattice edges as described in Lemma 4.1.13. The weight of each
vertex vi,j can then be expressed as

wt−(vi,j) = xa
(i)
j

(
a

(i)
j +m

(i−1)
j

m
(i−1)
j

)
.

Consider the CRPP π̂ of shape λ/d/µ which is the image of γ− under the map Γ−λ,µ(l, d)→
Πλ/d/µ(l) defined in Proposition 4.1.15. By definition, π̂ is equivalent to the sequence
{λ̂(i).τ di}li=0 of cylindric partitions which are defined via the relations mj(λ

(i)) = m
(i)
j and

(λ̂(i).τ di)′j − (λ̂(i−1).τ di−1)′j = a
(i)
j . Setting θ̃π̂ =

∏l
r=1 θ̃λ(r)/(dr−dr−1)/λ(r−1) , we end up with
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the following chain of equalities,

wt−(γ−) =
l∏

i=1

n∏
j=1

wt−(vi,j) =
l∏

i=1

n∏
j=1

xa
(i)
j

(
a

(i)
j +m

(i−1)
j

m
(i−1)
j

)

=
l∏

i=1

x
∑n
j=1 a

(i)
j

i

n∏
j=1

(
(λ̂(i).τ di−di−1)′j − (λ̂(i−1))′j+1

(λ̂(i−1))′j − (λ̂(i−1))′j+1

)

=
l∏

i=1

x
wti(π̂)
i θ̃λ(i)/(di−di−1)/λ(i−1) = θ̃π̂x

π̂ ,

and employing (4.2) once again, we have that

Z−λ,µ(x1, x2, . . . , xl) =
∑
d∈Z≥0

zd
∑

π̂∈Πλ/d/µ(l)

θ̃π̂x
π̂ . (4.36)

Thanks to Proposition 3.2.7, it follows that θ̃λ/d/µ is non-zero if and only if λ/d/µ is a
cylindric skew diagram, that is if and only if µ̂ ⊂ λ̂.τ d. This implies that in the RHS
of (4.36) we can replace the sum over π̂ ∈ Πλ/d/µ(l) with the sum over all sequences
{λ̂(r).τ dr}lr=0 of cylindric partitions, where λ(0) = µ, λ(l) = λ, d0 = 0 and dl = d. The
latter is equivalent to the joint sum over all sequences {λ(r)}l−1

r=1 of weights in A+
k (n), and

over all sequences {dr}l−1
r=1 of integers. The sum does not change if we use the restriction

dr − dr−1 ≥ 0. This is because λ̂(r−1).τ dr−1 ⊂ λ̂(r).τ dr only if dr − dr−1 ≥ 0, as we showed
in the discussion of equation 3.21. Setting d′r = dr − dr−1 for r = 1, . . . , l, we have that
d′r ∈ Z≥0 and d′1 + · · ·+ d′l = d. The partition function Z−λ,µ(x1, x2, . . . , xl) is then equal to

∑
d′1∈Z≥0

· · ·
∑

d′l∈Z≥0

zd
′
1+···+d′l

∑
λ(1)∈A+

k (n)

· · ·
∑

λ(l−1)∈A+
k (n)

l∏
r=1

θ̃λ(r)/d′r/λ
(r−1)

l∏
i=1

x
|λ(i)/d′i/λ

(i−1)|
i . (4.37)

Applying the definition (4.35) of the weight θ̃λ/d/µ, it follows that

l∏
r=1

θ̃λ(r)/d′r/λ
(r−1) =

d′1∑
d′′1 =0

· · ·
d′l∑

d′′l =0

l∏
r=1

θλ(r)/d′′r /λ
(r−1) .

Moreover, we have the identity |λ(i)/d′i/λ
(i−1)| = |λ(i)/d′′i /λ

(i−1)|+n(d′i−d′′i ), provided that
λ(i)/d′′i /λ

(i−1) is a cylindric skew diagram. This identity can be deduced from the equality
|λ/d/µ| =

∑n
j=1((λ̂.τ d)′j − µ̂′j), together with the fact that (λ̂.τ d)′j = λ̂′j + d. Applying the

identities just obtained to (4.37), swapping the sums in d′i and d′′i , and then employing the
formula

∑
i≥0 x

i = (1− x)−1 for x a formal variable, we deduce that Z−λ,µ(x1, x2, . . . , xl) is
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Figure 4.6: The allowed vertex configurations for the Q∗± vertex models, together with
their associated weights. For the Q∗+ vertex model, we only allow for the vertex config-
urations such that b + c = a + d and b ≥ a, or equivalently d ≥ c. For the Q∗− vertex
model, a vertex configuration is ‘allowed’ if the only condition b + c = a + d is satisfied.
The allowed vertex configurations for these models can be interpreted in terms of non-
intersecting paths travelling from North-East to South-West. Notice that the allowed path
configurations depicted above are obtained by reflecting the allowed path configurations
in Figure 4.1 about the vertical line passing through the edges labelled by b and d.

equal to
∏l

i=1(1− zxni )−1 times the following weighted sum,

∑
d′′1∈Z≥0

· · ·
∑

d′′l ∈Z≥0

zd
′′
1 +···+d′′l

∑
λ(1)∈A+

k (n)

· · ·
∑

λ(l−1)∈A+
k (n)

l∏
r=1

θλ(r)/d′′r /λ
(r−1)

l∏
i=1

x
|λ(i)/d′′i /λ

(i−1)|
i . (4.38)

Notice that (4.38) is the same equation as (4.37), where the weights θ̃λ/d/µ are replaced
by θλ/d/µ. Following similar steps as the ones leading from (4.36) to (4.37), but in re-
verse order, we conclude that (4.38) is equal to

∑
d∈Z≥0

zd
∑

π̂∈Πλ/d/µ(l) θπ̂x
π̂. This finally

completes the proof of (4.34), thanks to (4.32).

4.1.4 Vertex models for the adjoint operators

We shall now consider two additional vertex models, which we call the Q∗± vertex models.
The allowed vertex configurations for such models, together with the associated weights,
are defined in Figure 4.6. We will be using the symbols wt∗+ and wt∗− whenever we
associate to a vertex configuration, or a lattice configuration, the weight defined for the
Q∗+ and Q∗− vertex model respectively.

Remark 4.1.19. The allowed lattice configurations for the Q∗± vertex models can be
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interpreted in terms of non-intersecting lattice paths travelling from North-West to South-
East, in contrast to the ones for the Q± vertex models, where the paths are travelling from
North-East to South-West instead. See Figures 4.1 and 4.6. The constraint a+ d = b+ c

at each vertex of the lattice implies that on the cylinder the number of paths is conserved
throughout the lattice (compare with Remark 4.1.2).

Given λ, µ ∈ A+
k (n), denote with Γ∗±λ,µ(l) the set of allowed lattice configurations for

the Q∗± vertex models, such that the values of the outer vertical edges on top and bottom
are fixed respectively by µ and λ. Moreover, assume that the formal variable z introduced
in (4.2) is invertible. The partition functions of the Q∗± vertex models, for the lattice with
periodic boundary conditions in the horizontal direction, are defined as the weighted sums

Z∗±λ,µ(x1, . . . , xl) =
∑

γ∗±∈Γ±λ,µ(l)

z−d wt∗±(γ∗±) . (4.39)

For each lattice configuration γ∗± ∈ Γ∗±λ,µ(l), we set d = d(γ∗±) to be the number of paths
crossing the boundary of the cylinder.

We now present for the Q∗± vertex models a similar discussion to the one described
in Section 4.1.2. The L∗± operators are the operators L∗±(x) ∈ End(F((x)))⊗H defined
via the relations

L∗+(x) |m〉 ⊗ 1 =
∑

m′∈Z≥0

|m′〉 ⊗ xm

m!
(b∗)m

′
bm , (4.40)

L∗−(x) |m〉 ⊗ 1 =
∑

m′∈Z≥0

|m′〉 ⊗ xm

m!
bm(b∗)m

′
. (4.41)

The next result shows that we can identify the vertex weights for the Q∗± vertex models
with the matrix elements of the L∗± operators.

Lemma 4.1.20. The matrix elements of the L∗± operators are given by

〈c, d|L∗+(x)|a, b〉 = xa
(
c

a

)
δa+d,b+c , (4.42)

〈c, d|L∗−(x)|a, b〉 = xa
(
b+ c

b

)
δa+d,b+c . (4.43)

Proof. The claim follows after a straightforward computation.

Consider the vector space isomorphism ι : F⊗n → F̃⊗n defined as [41]

|λ〉 7→ 1

uλ
〈λ| . (4.44)

This induces a scalar product on F⊗n which we denote by 〈 | 〉ι, and which we assume to
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be anti-linear in the first factor. A straightforward computation shows that the generators
bi and b∗i are the Hermitian adjoints of each other, with respect to the scalar product 〈 | 〉ι.

Remark 4.1.21. The Heisenberg algebra admits an involutive anti-automorphism ∗ :

Hn → Hn, whose action is given by (see e.g. [6])

(bj)
∗ = b∗j , (b∗j)

∗ = bj . (4.45)

The Hermitian adjoints with respect to the scalar product 〈 | 〉ι of the elements in Hn

are therefore the images under the map ∗ : Hn → Hn, treated as operators in End(F⊗n).
Although strictly speaking ambiguous, we refer to the images under ∗ : Hn → Hn as the
‘adjoint’ operators.

Let L±m′,m(x) and L∗±m′,m(x) be the elements defined via the relations L±(x) |m〉 ⊗ 1 =∑
m′∈Z≥0

|m′〉 ⊗ L±m′,m(x) and L∗±(x) |m〉 ⊗ 1 =
∑

m′∈Z≥0
|m′〉 ⊗ L∗±m′,m(x) respectively.

Comparing equations (4.6) and (4.7) respectively with (4.40) and (4.41), it follows at once
that

L∗±m′,m(x) = L±m′,m(x)∗ , (4.46)

provided that x∗ = x. In words, the operator L∗±m′,m(x) is the adjoint of L±m′,m(x).

Proposition 4.1.22. The L∗± operators are solutions of the YBE

R+
12(x/y)L∗+2 (y)L∗+1 (x) = L∗+1 (x)L∗+2 (y)R+

12(x/y) , (4.47)

R−12(x/y)L∗−2 (y)L∗−1 (x) = L∗−1 (x)L∗−2 (y)R−12(x/y) , (4.48)

R12(x/y)L∗+2 (y)L∗−1 (x) = L∗−1 (x)L∗+2 (y)R12(x/y) , (4.49)

where the operators R+, R− and R were defined respectively in (4.10), (4.11) and (4.12).

Proof. Applying both sides of (4.47) to the element |m1,m2〉⊗1, and then doing the same
for (4.48) and (4.49), one ends up with a set of constraints for the operators L∗±m′,m(x)

which are the adjoint of the constraints appearing in the proof of Proposition 4.1.9 for
the operators L±m′,m(x). It follows that the YBE (4.13), (4.14) and (4.15) are equivalent
to the YBE (4.47), (4.48) and (4.49). Proposition 4.1.9 then implies the validity of the
claim.

Define the monodromy matrices Q∗±(x) ∈ F((x))⊗Hn as the operators

Q∗±(x) = L∗±n (x) · · ·L∗±1 (x) . (4.50)

Moreover, denote with Q∗±m′,m(x) ∈ Hn ⊗ C((x)) the elements defined via the relation
Q∗±(x) |m〉 ⊗ 1 =

∑
m′∈Z≥0

|m′〉 ⊗Q∗±m′,m(x).
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Corollary 4.1.23. The monodromy matrices (4.50) are solutions of the YBE

R+
12(x/y)Q∗+2 (y)Q∗+1 (x) = Q∗+1 (x)Q∗+2 (y)R+

12(x/y) , (4.51)

R−12(x/y)Q∗−2 (y)Q∗−1 (x) = Q∗−1 (x)Q∗−2 (y)R−12(x/y) , (4.52)

R12(x/y)Q∗+2 (y)Q∗−1 (x) = Q∗−1 (x)Q∗+2 (y)R12(x/y) . (4.53)

Proof. Taking advantage of Proposition 4.1.22, one can prove the claim via induction on
n (see for example [37, VI.1]).

Lemma 4.1.24. We have the equalities

Q∗+m′,m(x) =
xm

m!

∑
α∈P≥0

n−1

x|α|

α1! · · ·αn−1!
(b∗n)m

′
(bnb

∗
n−1)αn−1 · · · (b2b

∗
1)α1bm1 , (4.54)

Q∗−m′,m(x) =
xm

m!

∑
α∈P≥0

n−1

x|α|

α1! · · ·αn−1!
(b1)m(b∗1b2)α1 · · · (b∗n−1bn)αn−1(b∗n)m

′
. (4.55)

Proof. These equalities follow by induction on n. Compare with the proof of Lemma 4.1

in [43].

Lemma 4.1.25. Suppose that x∗ = x. We have the identities

Q∗±m′,m(x) = Q±m′,m(x)∗ . (4.56)

Proof. The claim follows immediately by comparing the expressions for Q±m′,m(u) and
Q∗±m′,m(u) derived in Lemmas 4.1.12 and 4.1.24 respectively.

Introduce Q∗+ and Q∗− operators as the operators in Hn⊗C((z, x)) which are defined
via the following partial traces,

Q∗±(x) = TrF z
−NQ∗±(x) =

∑
m∈Z≥0

z−mQ∗±m,m(x) . (4.57)

Lemma 4.1.26. We have the identities

Z∗±λ,µ(x1, x2, . . . , xl) = 〈λ|Q∗±(x1)Q∗±(x2) · · ·Q∗±(xl)|µ〉 . (4.58)

Proof. The proof of this statement is completely analogous to the one of Lemma 4.1.13,
and therefore we omit it.

Corollary 4.1.27. We have the commutation relations

[Q∗±(x), Q∗±(y)] = [Q∗+(x), Q∗−(y)] = 0 . (4.59)
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Proof. The claim follows by employing completely analogous steps as the ones described
in the proof of Corollary 4.1.14.

Corollary 4.1.28. Suppose that z∗ = z−1 and x∗ = x. We have the identities

Q∗±(x) = Q±(x)∗ . (4.60)

Proof. The claim is a direct consequence of Lemma 4.1.25, together with equations (4.26)
and (4.57).

We now show that the partition functions Z∗±λ,µ(x1, . . . , xl) can be expanded in terms
of the cylindric symmetric functions eλ/d/µ and hλ/d/µ. For this purpose, we shall take
advantage of the fact that, at each vertex, the allowed path configurations for the Q∗±

vertex models are obtained by reflecting the ones for the Q± vertex models about the
vertical line passing through the edges labelled by b and d. Compare with Figures 4.1 and
4.6. In Section 4.3.2 we will evaluate Z∗±λ,µ(x1, . . . , xl) by employing the Q∗± operators.

Given λ, µ ∈ A+
k (n) and d ∈ Z≥0, define Γ∗±λ,µ(l, d) ⊂ Γ∗±λ,µ(l) as the set of allowed

lattice configurations for the Q∗± vertex models, where the values attached to the outer
vertical edges on top and bottom are fixed respectively by µ and λ, and the number of
paths crossing the boundary of the cylinder is equal to d. We shall take advantage of the
involution ∨ : A+

k (n)→ A+
k (n), which was defined in Section 3.4.1 as

λ 7→ λ∨ = (n+ 1− λk, n+ 1− λk−1, . . . , n+ 1− λ1) . (4.61)

Proposition 4.1.29. (i) For every λ, µ ∈ A+
k (n) and d ∈ Z≥0, there exists a bijection

between the sets Γ∗+λ,µ(l, d) and Tλ∨/d/µ∨(l). (ii) For every λ, µ ∈ A+
k (n) and d ∈ Z≥0, there

exists a bijection between the sets Γ∗−λ,µ(l, d) and Πλ∨/d/µ∨(l).

Proof. We prove part (i) first, and for this purpose we construct, for every λ, µ ∈ A+
k (n)

and d ∈ Z≥0, a bijection between the sets Γ∗+λ,µ(l, d) and Γ+
λ∨,µ∨(l, d).

Let λ, µ ∈ A+
k (n) and d ∈ Z≥0. Suppose that Γ∗+λ,µ(l, d) is non-empty, and let γ∗+ ∈

Γ∗+λ,µ(l, d). Draw a vertical line between columns n/2 and n/2 + 1 of the lattice if n is even,
or a vertical line overlapping column (n + 1)/2 if n is odd. Reflect the lattice, together
with the paths travelling along the lattice itself, about this line. Refer to Figure 4.7 for
an example. The paths are now travelling from North-West to South-East, and at each
vertex one recovers the path configuration depicted in Figure 4.1 for the Q+ vertex model.
Stated otherwise, by reflecting the lattice in the way just described we end up with a lattice
configuration for the Q+ vertex model, which we denote by γ+. The values attached to
the outer vertical edges of γ+ on top and bottom are given by (mn(µ), . . . ,m1(µ)) and
(mn(λ), . . . ,m1(λ)) respectively. In the notation of Figure 4.2, these values coincide with
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m(µ∨) andm(λ∨), and thus γ+ ∈ Γ+
λ∨,µ∨(l, d). In conclusion, the set Γ+

λ,µ(l, d) is non-empty,
and the assignment γ∗+ 7→ γ+ defines a map Γ∗+λ,µ(l, d)→ Γ+

λ∨,µ∨(l, d).
Let once again λ, µ ∈ A+

k (n) and d ∈ Z≥0. Suppose that Γ+
λ∨,µ∨(l, d) is non-empty, and

let γ+ ∈ Γ+
λ∨,µ∨(l, d). Reflecting the lattice about the same vertical line introduced above,

and using the fact that the map ∨ : A+
k (n) → A+

k (n) is an involution, we end up with a
unique lattice configuration γ∗+ ∈ Γ∗+λ,µ(l, d). It follows that Γ∗+λ,µ(l, d) is non-empty, and
that γ+ 7→ γ∗ defines a map Γ+

λ∨,µ∨(l, d) → Γ∗+λ,µ(l, d), which is clearly the inverse of the
map Γ∗+λ,µ(l, d) → Γ+

λ∨,µ∨(l, d) described above. We conclude that for every λ, µ ∈ A+
k (n)

and d ∈ Z≥0 there exists a bijection between the sets Γ∗+λ,µ(l, d) and Γ+
λ∨,µ∨(l, d). Employing

Proposition 4.1.16, we then deduce the validity of part (i) of the claim.
The proof of part (ii) is completely analogous. One can prove that the sets Γ∗−λ,µ(l, d)

and Γ−λ∨,µ∨(l, d) are either both empty or non-empty. In the second case, one can define
a map Γ∗−λ,µ(l, d) → Γ−λ∨,µ∨(l, d), together with the inverse Γ−λ∨,µ∨(l, d) → Γ∗−λ,µ(l, d), by
reflecting the lattice configurations about the same vertical line described in the proof
of part (i). It follows that for every λ, µ ∈ A+

k (n) and d ∈ Z≥0 there exists a bijection
between the sets Γ∗−λ,µ(l, d) and Γ−λ∨,µ∨(l, d). Proposition 4.1.15 then implies the validity of
part (ii) of the claim.

Theorem 4.1.30. Let λ, µ ∈ A+
k (n). The partition functions of the Q∗± vertex models

have the expansion

Z∗+λ,µ(x1, x2, . . . , xl) =
∑
d∈Z≥0

z−deλ∨/d/µ∨(x1, x2, . . . , xl) , (4.62)

Z∗−λ,µ(x1, x2, . . . , xl) =
l∏

i=1

1

1− z−1xni

∑
d∈Z≥0

z−dhλ∨/d/µ∨(x1, x2, . . . , xl) . (4.63)

Proof. We shall prove (4.62) first. Let d ∈ Z≥0, γ
∗+ ∈ Γ∗+λ,µ(l, d), and denote with γ+ the

lattice configuration of the Q+ vertex model which is the image of γ∗+ under the map
Γ∗+λ,µ(l, d) → Γ+

λ∨,µ∨(l, d) introduced in the proof of Proposition 4.1.29. Denote with vi,j

the vertex obtained by intersecting the i-th row of the lattice with the j-th column. If
we reflect the lattice about the vertical line described in the proof of Proposition 4.1.29,
it follows that vi,j is mapped to vi,n+1−j. Label the edges associated to the lattice con-
figuration γ+ as in the proof of Lemma 4.1.13 (compare with Figure 4.4). In particular,
the vertex configuration assigned to the ‘reflected vertex’ vi,n+1−j consists of the four
integers {a(i)

n+1−j,m
(i−1)
n+1−j, a

(i)
n+2−j,m

(i)
n+1−j} oriented as in Figure 4.1. It follows that the

vertex configuration associated to the ‘non reflected vertex’ vi,j is given by the integers
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{a(i)
n+2−j,m

(i−1)
n+1−j, a

(i)
n+1−j,m

(i)
n+1−j}, and then we have the identity

wt∗+(vi,j) = xa
(i)
n+2−j

a
(i)
n+1−j!

a
(i)
n+2−j!

(
m

(i)
n+1−j

a
(i)
n+1−j

)
. (4.64)

Let T̂ be the CRST of shape λ∨/d/µ∨ and highest entry l which is the image of γ+ under
the map Γ+

λ∨,µ∨(l, d) → Tλ∨/d/µ∨(l) described in Proposition 4.1.15. By definition, T̂ is
equivalent to the sequence {λ̂(i).τ di}li=0 of cylindric partitions which are defined via the
relations mj(λ

(i)) = m
(i)
j and (λ̂(i).τ di)′j − (λ̂(i−1).τ di−1)′j = a

(i)
j . Employing (4.64), we have

that

wt∗+(γ∗+) =
l∏

i=1

n∏
j=1

wt∗+(vi,j) =
l∏

i=1

n∏
j=1

wt∗+(vi,n+1−j) =
l∏

i=1

n∏
j=1

x
a

(i)
j+1

i

a
(i)
j !

a
(i)
j+1!

(
m

(i)
j

a
(i)
j

)

=
l∏

i=1

x
∑n
j=1 a

(i)
j

n∏
j=1

(
(λ̂(i).τ di−di−1)′j − (λ̂(i).τ di−di−1)′j+1

(λ̂(i).τ di−di−1)′j − (λ̂(i−1))′j

)

=
l∏

i=1

x
wti(T̂ )
i ψλ(i)/(di−di−1)/λ(i−1) = ψT̂x

T̂ .

Taking advantage of (4.39), the relation Γ∗+λ,µ(l) =
⊔
d∈Z≥0

Γ∗+λ,µ(l, d), and Proposition 4.1.29,
we end up with the identity

Z∗+λ,µ(x1, x2, . . . , xl) =
∑
d∈Z≥0

z−d
∑

T̂∈Tλ∨/d/µ∨ (l)

ψT̂x
T̂ .

The latter then implies the validity of (4.62), thanks to equation (4.31).
We now prove (4.63). Let γ∗− ∈ Γ∗−λ,µ(l, d), and denote with γ− the lattice configura-

tion of the Q− model which is the image of γ∗− under the map Γ∗−λ,µ(l, d) → Γ−λ∨,µ∨(l, d)

introduced in the proof of Proposition 4.1.29. Label the edges associated to the lattice
configuration γ− as in the proof of Lemma 4.1.13. We can then express wt∗−(vi,j) in terms
of the vertex configuration of the ‘reflected vertex’ vn+1−j via the following equality,

wt∗−(vi,j) = xa
(i)
n+2−j

a
(i)
n+1−j!

a
(i)
n+2−j!

(
a

(i)
n+1−j +m

(i−1)
n+1−j

m
(i−1)
n+1−j

)
. (4.65)

Let π̂ be the CRPP of shape λ∨/d/µ∨ and highest entry l which is the image of γ− under
the map Γ−λ∨,µ∨(l, d) → Πλ∨/d/µ∨(l) described in Proposition 4.1.15. By definition, π̂ is
equivalent to the sequence {λ̂(i).τ di}li=0 of cylindric partitions which are defined via the
relations mj(λ

(i)) = m
(i)
j and (λ̂(i).τ di)′j − (λ̂(i−1).τ di−1)′j = a

(i)
j . Thanks to (4.65), we have
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Figure 4.7: Let l = 3, n = 4, k = 4, µ = (4, 3, 2, 2) and λ = (4, 4, 3, 1). On the left we have
an allowed lattice configuration γ∗+ ∈ Γ∗+λ,µ(l, d) for the Q∗+ vertex model. On the right we
have the allowed vertex configuration γ+ for the Q+ vertex model which is obtained from
γ∗+ by reflecting the lattice and the paths about the vertical dashed line passing between
columns 2 and 3. This is the image of γ∗+ under the map Γ∗+λ,µ(l, d)→ Γ+

λ∨,µ∨(l, d) defined
in the proof of Proposition 4.1.29.

that

wt∗−(γ∗−) =
l∏

i=1

n∏
j=1

wt∗−(vi,j) =
n∏
j=1

wt∗−(vi,n+1−j) =
l∏

i=1

n∏
j=1

x
a

(i)
j+1

i

a
(i)
j+1!

a
(i)
j !

(
a

(i)
j +m

(i−1)
j

m
(i−1)
j

)

=
l∏

i=1

x
∑n
j=1 a

(i)
j

n∏
j=1

(
(λ̂(i).τ di−di−1)′j − (λ̂(i−1))′j+1

(λ̂(i−1))′j − (λ̂(i−1))′j+1

)

=
l∏

i=1

x
wti(π̂)
i θ̃λ(i)/(di−di−1)/λ(i−1) = θ̃π̂x

π̂ .

In the last line we employed the relation (4.35) for the weight θ̃λ/d/µ. Taking advantage of
(4.39) once again, it follows that

Z∗−λ,µ(x1, x2, . . . , xl) =
∑
d∈Z≥0

z−d
∑

π̂∈Πλ∨/d/µ∨ (l)

θ̃π̂x
π̂ .

One can then prove the validity of (4.63) by employing similar steps as the ones described
after equation (4.36).

Corollary 4.1.31. Let λ, µ ∈ A+
k (n) and suppose that z∗ = z−1 and x∗i = xi for i =

1, . . . , l. We have the following identities involving the partition functions of the Q± and
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Q∗± vertex models,

Z∗±λ,µ(x1, x2, . . . , xl) = Z±λ∨,µ∨(x1, x2, . . . , xl)
∗ , (4.66)

and
Z∗±λ,µ(x1, x2, . . . , xl) =

uλ
uµ
Z±µ,λ(x1, x2, . . . , xl)

∗ . (4.67)

Proof. Equation (4.66) follows immediately from Theorems 4.1.18 and 4.1.30, since the
map ∨ : A+

k (n) → A+
k (n) is an involution. Recall that the stabiliser subgroup of λ ∈ P+

k

has cardinality |Sλ| =
∏

i≥0mi(λ)! (see Section 2.1.2). Moreover, notice that we have the
equalities |Sλ| = uλ and |Sµ| = uµ, which follow from the fact that m0(λ) = m0(µ) = 0 as
λ, µ ∈ A+

k (n). Equation (4.67) is then a direct consequence of Proposition 3.4.7.

4.2 The conserved charges for the free boson model

It is well known [3] that in many situations of interest the transfer matrix of a 2-dimensional
classical vertex model commutes with the Hamiltonian of a 1-dimensional quantum model.
As explained below, this is also true for the vertex models described in the previous
section: the Q± and Q∗± operators, which were introduced respectively in (4.26) and
(4.57), commute with the Hamiltonian of the free boson model with periodic boundary
conditions. This arises as the limit q = 1 for the Hamiltonian of the q-boson model [48],
and it is defined as

H = −
n∑
i=1

(b∗i+1bi + b∗i bi+1 − 2b∗i bi) , (4.68)

We set b∗n+1 = zb1 and bn+1 = z−1b1, where the formal variable z was introduced in (4.2).
We shall consider free bosons on a 1-dimensional lattice defined on a circle. Assuming that
the lattice has n sites, we identify the boundary of the circle with a point placed between
sites n and 1. The ‘ket’ vector |λ〉, which was introduced in (4.18), represents a quantum
state with mi(λ) bosons sitting at site i, and the vector space F⊗n spanned by all the
states |λ〉 is known as the ‘Fock space’. The generator b∗i creates a boson at site i, whereas
bi annihilates a boson at the same site. Thus, each term of the form b∗i bj moves one boson
from site j (if there are any) to site i. For this reason, the free boson model defined by the
Hamiltonian (4.68) is sometimes referred as a ‘hopping’ model. Whenever a boson crosses
the boundary of the circle clockwise via the action of the operator b∗n+1bn = zb∗1bn, the
quantum states acquire a factor equal to z. Similarly, if a boson crosses the boundary of
the circle counterclockwise, then the quantum states acquire a factor equal to z−1. This
is because we have the relation b∗nbn+1 = z−1b∗nb1. While z is treated as a formal variable
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here, in the quantum mechanical setting it would be evaluated in the unit circle and,
hence, we will call it a ‘phase factor’. The operator b∗i bi counts the number of bosons at
site i via the eigenvalue equation b∗i bi |λ〉 = mi(λ) |λ〉, which follows after a straightforward
computation. In particular, the number operator N =

∑n
i=1 b

∗
i bi counts how many bosons

are sitting in the lattice.
In the context of quantum integrability, the methodology described in Section 4.1.2

is part of what is known as the ‘Quantum Inverse Scattering Method’ (QISM) [22, 62–
64]. The starting point of the QISM is represented by the Yang-Baxter equation (see
Propositions 4.1.9 and 4.1.22), which can be employed to construct a set of quantum
commuting operators. We explain how to achieve this from the discussion presented in
Sections 4.1.2 and 4.1.4. Set Hn[z, z−1] = Hn ⊗C C[z, z−1], and define the operators
{Q±r }r∈Z≥0

∈ Hn[z, z−1] via the following expansion of the Q± operators,

Q±(x) =
∑
r∈Z≥0

xrQ±r . (4.69)

Similarly, define the operators {Q∗±r }r∈Z≥0
∈ Hn[z, z−1] via the expansion

Q∗±(x) =
∑
r∈Z≥0

xrQ∗±r . (4.70)

In the following, we assume that z satisfies the relations z∗ = z̄ = z−1.

Lemma 4.2.1. For r ∈ Z≥0, we have the identity

Q∗±r = (Q±r )∗ . (4.71)

Proof. The claim follows by taking advantage of equations (4.69), (4.70) and Corollary
4.1.28.

Corollaries 4.1.14 and 4.1.27 immediately imply that for every r, s ∈ Z≥0 we have the
commutation relations

[Q±r , Q
±
s ] = [Q+

r , Q
−
s ] = 0 , and [Q∗±r , Q∗±s ] = [Q∗+r , Q∗−s ] = 0 . (4.72)

Notice that these commutation relations are not independent. Namely, thanks to Lemma
4.2.1, we can recover the ones on the right by taking the adjoint of the ones on the left,
and vice versa.
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Lemma 4.2.2. For r ∈ Z≥0, we have the identities

Q+
r =

∑
α∈P≥0

n

(zb∗1)αn(b1b
∗
2)α1 · · · (bn−1b

∗
n)αn−1bαnn

α1! · · ·αn!
, (4.73)

Q−r =
∑
α∈P≥0

n

bαnn (bn−1b
∗
n)αn−1 · · · (b1b

∗
2)α1(zb∗1)αn

α1! · · ·αn!
, (4.74)

where both sums are restricted to those α ∈ P≥0
n with |α| = r. In particular, we have that

Q+
0 = Q−0 = 1.

Proof. The claim follows from [43, Lemma 4.1] by taking the limit q = 1.

The goal of this section is to prove that the free boson model is ‘quantum integrable’.
Stated otherwise, we will show that the operators {Q±r }r∈Z≥0

are quantum integrals of
motion, that is they commute with the Hamiltonian (4.68). This is one of the many
characterisations for quantum integrability that are adopted in the literature; see [14] for
details. Since the Hamiltonian (4.68) is self-adjoint, it follows from Lemma 4.2.1 that the
operators {Q∗±r }r∈Z≥0

commute with (4.68) as well. Moreover, thanks to (4.69) and (4.70),
we deduce that the Q± and Q∗± operators also commute with the Hamiltonian (4.68). In
agreement with the physics literature, we refer to the quantum integrals of motion as
‘conserved charges’.

4.2.1 Functional relations for the conserved charges

The strategy we employ to prove quantum integrability of the free boson model is to show
that the operators {Q±r }r∈Z≥0

and {Q∗±r }r∈Z≥0
belong to the same commutative subalgebra

of Hn[z, z−1] (see Definition 4.2.6 and Proposition 4.2.10 below). To this end, we will make
use of the following simpler operators,

Tr =
n∑
i=1

b∗i+rbi , (4.75)

T̃r =
n∑
i=1

bib
∗
i+r , (4.76)

for r ∈ Z \ {0}, together with T0 = T̃0 = 1. The operators bi and b∗i for i > n and i < −1

are defined via the relations

bi−n = zbi , and b∗i+n = zb∗i . (4.77)
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Since z∗ = z−1, it follows that the operators b∗i and bi are adjoint of each other for all
i ∈ Z. Notice that for i, j ∈ Z we have the commutation relation

[bi, b
∗
j ] =

0, (j − i) modn 6= 0

z
j−i
n , (j − i) modn = 0

. (4.78)

Setting z = 1, we have that the operators {T1, . . . , Tn−1} are the limit q = 1 of similar
operators appearing in the discussion of the q-boson model [9]. The latter arise from a
solution of the YBE which holds only for q 6= 1. Notice that z−1Tn is equal to the number
operator N =

∑n
i=1 b

∗
i bi introduced above, thanks to the relations (4.77). Let us present

some properties for the operators {Tr}r∈Z and {T̃r}r∈Z.

Lemma 4.2.3. For r ∈ Z we have the relations

T ∗r = T−r , (4.79)

T̃ ∗r = T̃−r . (4.80)

Proof. These relations follow after a straightforward computation, with the help of (4.77).

Lemma 4.2.4. For r ∈ Z \ {0}, we have the identity

T̃r =

{
Tr, rmodn 6= 0

Tr + nz
r
n , rmodn = 0

. (4.81)

Proof. The claim follows by taking advantage of (4.77) and (4.78).

Lemma 4.2.5. For r ∈ Z with r 6= 0, n we have the relations

Tr = zTr−n , and T̃r = zT̃r−n . (4.82)

Proof. The claim can be deduced by employing (4.77).

Thanks to Lemmas 4.2.4 and 4.2.5, it follows that {Tr}r∈Z and {T̃r}r∈Z can be expressed
solely in terms of the operators {1} ∪ {T1, . . . , Tn}. A similar statement is true for the
Hamiltonian (4.68) of the free boson model, which can be expressed as

H = −(T1 + T−1 − 2z−1Tn) . (4.83)

Moreover, the operators {T1, . . . , Tn} are algebraically independent, as we will show in
Lemma 4.2.11.
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Definition 4.2.6. Let Tn[z, z−1] be the unital subalgebra of Hn[z, z−1] generated by the
operators {T1, . . . , Tn}.

We will show in Proposition 4.2.10 that Tn[z, z−1] is abelian, and that the opera-
tors {Q±r }r∈Z≥0

and {Q∗±r }r∈Z≥0
belong to Tn[z, z−1]. This implies in particular that the

conserved charges are normal operators, thanks to (4.79). Since the Hamiltonian (4.68)
belongs to Tn[z, z−1] as well, it follows that the free boson model is quantum integrable,
according to the definition of quantum integrability that we discussed at the beginning of
this section. Before proceeding with the proof of the above statement, we need to show
the validity of some functional relations between the operators defined in this section (see
Proposition 4.2.8 and Corollary 4.2.9). The simplest among these relations is given by
T1 = Q+

1 = Q−1 , which can be deduced from Lemma 4.2.2 and equation (4.75). Let us
present a preliminary result.

Lemma 4.2.7. For r ∈ N and j ∈ Z we have the commutation relations

bjQ
+
r = Q+

r bj +Q+
r−1bj−1 , (4.84)

Q+
r b
∗
j = b∗jQ

+
r + b∗j+1Q

+
r−1 , (4.85)

together with

bjQ
−
r = Q−r bj + bj−1Q

−
r−1 , (4.86)

Q−r b
∗
j = b∗jQ

−
r +Q−r−1b

∗
j+1 . (4.87)

Proof. These equations are the limit q = 1 of similar commutation relations appearing
in [43, Theorem 5.2 and Lemma 5.3]. Nevertheless we present a proof of their validity,
and at the same time we introduce some notation which will be used again in the proof
of Proposition 4.2.8. Set

Q+(α) =
(zb∗1)αn(b1b

∗
2)α1 · · · (bn−1b

∗
n)αn−1bαnn

α1! · · ·αn!

for α ∈ P≥0
n , and Q+(α) = 0 if at least one part of α ∈ Pn is negative. Then we can write

Q+
r =

∑
α∈P≥0

n
Q+(α), where the sum is restricted to those α ∈ P≥0

n with |α| = r. Denote
with ε1, . . . , εn the standard basis of the gln weight lattice Pn, and recall that the notation
α = (α1, . . . , αn) ∈ Pn, which was introduced in Section 2.1.2, stands for α =

∑n
i=1 αiεi.

Taking advantage of the commutation relation [(bj−1b
∗
j)
αj−1 , bj] = −αj−1(bj−1b

∗
j)
αj−1−1bj−1,

we end up with

[Q+(α), bj] =
(zb∗1)αn(b1b

∗
2)α1 · · · [(bj−1b

∗
j)
αj−1 , bj] · · · (bn−1b

∗
n)αn−1bαnn

α1! · · ·αn!

= −Q+(α− εj−1)bj−1
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for j = 2, . . . , n, whereas the commutation relation [(b∗1)αn , b1] = −αn(b∗1)αn−1 implies that
[Q+(α), b1] = −zQ+(α− εn)bn. With the help of (4.77), it follows that

[Q+(α), bj] = −Q+(α− ε(j−1) Modn)bj−1 (4.88)

for all j ∈ Z, where Mod was defined in (3.74). Summing both sides of this last equality
over all α ∈ P≥0

n with |α| = r, we have that

[Q+
r , bj] = −

( ∑
α∈P≥0

n

Q+(α− ε(j−1) Modn)

)
bj−1 .

Notice that, on the RHS of this last equality, the weight γ = α− ε(j−1) Modn ranges over all
P≥0
n with |γ| = r − 1, and that Q+(γ) = 0 if any of the parts of γ are negative. It follows

that
∑

α∈P≥0
n
Q+(α − ε(j−1) Modn) = Q+

r−1, and then we deduce the validity of (4.84) from
the equality above. Equation (4.85) can be proved in a similar way. For this purpose, one
has to take advantage of the commutation relation

[Q+(α), b∗j ] = b∗j+1Q
+(α− εj) , (4.89)

which follows after a straightforward computation.
The proof of (4.86) and (4.87) is analogous to the proof of (4.84) and (4.85). Set

Q−(α) =
bαnn (bn−1b

∗
n)αn−1 · · · (b1b

∗
2)α1(zb∗1)αn

α1! · · ·αn!

for α ∈ P≥0
n , and Q−(α) = 0 if at least one of the parts of α ∈ Pn is negative. This implies

that Q−r =
∑

α∈P≥0
n
Q−(α), where the sum is restricted to those α ∈ P≥0

n with |α| = r.
Following similar steps as the ones described above, one can show that

[Q−(α), bj] = −bj−1Q
−(α− ε(j−1) Modn) , (4.90)

[Q−(α), b∗j ] = Q−(α− εj)b∗j+1 , (4.91)

and summing both sides of these commutation relations over all weights α ∈ P≥0
n with

|α| = r, one can finally deduce the validity of (4.86) and (4.87) respectively.

Proposition 4.2.8. The following functional equations are valid for all r ∈ N,

rQ+
r =

r∑
l=1

(−1)l−1TlQ
+
r−l , (4.92)

rQ−r =
r∑
l=1

T̃lQ
−
r−l . (4.93)
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Proof. We adopt the same notation used in the proof of Lemma 4.2.7. Let us start by show-
ing the validity of (4.92) first. If r = 1, the latter reduces to the identity Q+

1 = T1, so as-
sume that r > 1. Using the relation bi(bi−1b

∗
i )
αi−1 = (bi−1b

∗
i )
αi−1bi +αi−1(bi−1b

∗
i )
αi−1−1bi−1,

we end up for i = 2, . . . , n− 1 with the chain of equalities

b∗i+1biQ
+(α) = zαn

(b∗1)αn · · · bi(bi−1b
∗
i )
αi−1b∗i+1(bib

∗
i+1)αi · · · bαnn

α1! · · ·αn!

= zαn
(b∗1)αn · · · (bi−1b

∗
i )
αi−1(bib

∗
i+1)αi+1 · · · bαnn

α1! · · ·αn!

+zαn
(b∗1)αn · · · (bi−1b

∗
i )
αi−1−1bi−1b

∗
i+1(bib

∗
i+1)αi · · · bαnn

α1! · · · (αi−1 − 1)! · · ·αn!

= (αi + 1)Q+(α + εi) + b∗i+1Q
+(α− εi−1)bi−1 .

A similar computation shows that b∗1bnQ+(α) = (αn + 1)Q+(α+ εn) + b∗1Q
+(α− εn−1)bn−1

and b∗2b1Q
+(α) = (α1 + 1)Q+(α + ε1) + b∗2Q

+(α− εn)zbn. Taking advantage of (4.77), we
deduce the identity

b∗i+1biQ
+(α) = (αi + 1)Q+(α + εi) + b∗i+1Q

+(α− ε(i−1) Modn)bi−1 ,

which is valid for all i ∈ Z. This, together with a repeated application of (4.88), implies
that

b∗i+1biQ
+(α) = (αi + 1)Q+(α + εi) +

|α|∑
l=1

b∗i+1bi−l(−1)l−1Q+

(
α−

l∑
j=1

ε(i−j) Modn

)
.

The first sum on the RHS is restricted to those l ∈ N with l ≤ |α|. In fact, for l > |α| the
weight α −

∑l
j=1 ε(i−j) Modn has at least one part smaller than 0, and then we have that

Q+
(
α−

∑l
j=1 ε(i−j) Modn

)
= 0. Summing both sides of the equality above over i = 1, . . . , n

and α ∈ P≥0
n with |α| = r − 1, we end up with

T1Q
+
r−1 =

n∑
i=1

∑
α∈P≥0

n

(αi + 1)Q+(α + εi)

︸ ︷︷ ︸
1

+
n∑
i=1

r−1∑
l=1

b∗i+1bi−l(−1)l−1
∑
α∈P≥0

n

Q+

(
α−

l∑
j=1

ε(i−j) Modn

)
︸ ︷︷ ︸

2

.

For every β ∈ P≥0
n with |β| = r, the term Q+(β) appears

∑n
i=1 βi = r times in 1 , and
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thus 1 = rQ+
r . On the other hand, we have that

∑
α∈P≥0

n

Q+

(
α−

l∑
j=1

ε(i−j) Modn

)
= Q+

r−1−l .

This is because, on the LHS of this last equality, the weight γ = α−
∑l

j=1 ε(i−j) Modn ranges
over all P≥0

n with |γ| = r − 1− l, and furthermore Q+(γ) = 0 if any of the parts of γ are
negative. With the help of (4.75), it then follows that 2 =

∑r−1
l=1 (−1)l−1Tl+1Q

+
r−1−l. In

conclusion, we end up with the identity T1Q
+
r−1 = rQ+

r +
∑r−1

l=1 (−1)l−1Tl+1Q
+
r−1−l, which

coincides with (4.92) after a simple rearrangement of terms.
Equation (4.93) can be proved by employing similar steps as the ones described for the

proof of (4.92). If r = 1, this equation reduces to the identity Q−1 = T̃1 = T1, so assume
that r > 1. First of all, one can show after a straightforward computation the validity of
the following relation,

bib
∗
i+1Q

−(α) = (αi + 1)Q−(α + εi)− biQ−(α− ε(i+1) Modn)b∗i+2 .

This, together with a repeated application of (4.91), implies that

bib
∗
i+1Q

−(α) = (αi + 1)Q−(α + εi)−
|α|∑
l=1

bib
∗
i+1+lQ

−
(
α−

l∑
j=1

ε(i+j) Modn

)
.

Summing both sides of this last identity over i = 1, . . . , n and α ∈ P≥0
n with |α| = r − 1,

one ends up with

T̃1Q
−
r−1 =

n∑
i=1

∑
α∈P≥0

n

(αi + 1)Q−(α + εi)−
n∑
i=1

r−1∑
l=1

bib
∗
i+1+l

∑
α∈P≥0

n

Q−
(
α−

l∑
j=1

ε(i+j) Modn

)
.

Finally, proceeding in a similar fashion as described above, it follows that T̃1Q
−
r−1 =

rQ−r −
∑r−1

l=1 Q
−
r−l−1T̃l+1, which is equivalent to (4.93).

Corollary 4.2.9. The following functional equations are valid for all r ∈ N:

rQ∗+r =
r∑
l=1

(−1)l−1T−lQ
∗+
r−l , (4.94)

rQ∗−r =
r∑
l=1

T̃−lQ
∗−
r−l . (4.95)

Proof. These equations follow by taking the adjoint of both sides of (4.92) and (4.93)
respectively, and then by employing Lemma 4.2.3.



CHAPTER 4. QUANTUM INTEGRABLE SYSTEMS 119

Proposition 4.2.10. (i) Tn[z, z−1] is a commutative subalgebra of Hn[z, z−1] .
(ii) The operators {Q±r }r∈Z≥0

and {Q∗±r }r∈Z≥0
belong to Tn[z, z−1].

Proof. To prove part (i) of the claim, we just need to show the validity of the commutation
relation [Tr, Ts] = 0 for all r, s ∈ Z such that 1 ≤ r, s ≤ n . Taking advantage of (4.75),
we have that

[Tr, Ts] =
n∑

i,j=1

b∗j+sbi[b
∗
i+r, bj] +

n∑
i,j=1

b∗i+rbj[bi, b
∗
j+s] .

Thanks to (4.78), together with the inequalities 1 ≤ i+ r ≤ 2n, it follows that [b∗i+r, bj] =

−δi+r,j − zδi+r,j+n, and with the help of (4.77) we have the chain of equalities

n∑
i,j=1

b∗j+sbi[b
∗
i+r, bj] = −

n−r∑
i=1

b∗i+r+sbi − z
n∑

i=n−r+1

b∗i+r+s−nbi = −
n∑
i=1

b∗i+r+sbi .

Similarly, we have that
∑n

i,j=1 b
∗
i+rbj[bi, b

∗
j+s] =

∑n
i=1 b

∗
i+r+sbi, and thus [Tr, Ts] = 0.

We now prove part (ii) of the claim. Employing (4.92) and (4.93), one can show by
induction that {Q+

r }r∈Z≥0
and {Q−r }r∈Z≥0

can be expressed in terms of {Tr}r∈Z≥0
and

{T̃r}r∈Z≥0
respectively. Similarly, with the help of (4.94) and (4.95), we deduce that

{Q∗+r }r∈Z≥0
and {Q∗−r }r∈Z≥0

can be written in terms of {T−r}r∈Z≥0
and {T̃−r}r∈Z≥0

re-
spectively. As we pointed out in the discussion preceding Definition 4.2.6, the operators
{Tr}r∈Z and {T̃r}r∈Z can be expressed solely in terms of {1} ∪ {T1, . . . , Tn}. Since the
latter generate Tn[z, z−1], the claim follows.

Lemma 4.2.11. The operators {T1, . . . , Tn} are algebraically independent over C[z, z−1].

Proof. Taking advantage of Lemma 4.1.7, it follows that a basis of Hn[z, z−1] is given by

{(b∗1)α1 · · · (b∗n)αnbγ1

1 · · · bγnn | α, γ ∈ P≥0
n } . (4.96)

Suppose that
∑

λ aλTλ = 0 for some aλ ∈ C[z, z−1], where we set Tλ = Tλ1Tλ2 · · · , and
the sum runs over all λ ∈ P+ for which λ1 ≤ n. Each operator Tλ belonging to this sum
contains the term b∗1+λ1

b∗1+λ2
· · · b∗1+λ`(λ)

b
`(λ)
1 , which equals

zmn(λ)(b∗1)mn(λ)(b∗2)m1(λ) · · · (b∗n)mn−1(λ)b
`(λ)
1 (4.97)

thanks to (4.77). We deduce that the element (4.97) does not appear in the operators Tµ
for which µ 6= λ. Apart from the factor zmn(λ), the element (4.97) belongs to the basis
(4.96) of Hn[z, z−1]. It follows that aλ = 0 for all λ ∈ P+ with λ1 ≤ n, thus proving the
claim.
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4.3 Conserved charges and symmetric functions

Proposition 4.2.8 suggests a connection between the conserved charges of the free bo-
son model and the symmetric functions defined in Section 2.2. Namely, notice that the
functional relation (4.92) has the same form of Newton’s formula (2.34), that is

rer =
r∑
l=1

(−1)l−1pler−l , (4.98)

where {pλ}λ∈P+ and {eλ}λ∈P+ are the power sums and the elementary symmetric func-
tions. An analogous statement holds for the adjoint equation (4.94). We formalise this
observation as follows.

Proposition 4.3.1. The maps Ξ±n : Λ→ Tn[z, z−1] defined via

pr 7→ Ξ±n (pr) = T±r (4.99)

for r ∈ Z≥0, and Ξ±n (pλ) = Tλ1Tλ2 · · · for λ ∈ P+, are algebra homomorphisms. The
following relations hold for every r ∈ Z≥0,

Ξ+
n (er) = Q+

r , (4.100)

Ξ−n (er) = Q∗+r . (4.101)

Proof. The maps Ξ±n : Λ → Tn[z, z−1] are well defined since {pλ}λ∈P+ is a basis of Λ.
Moreover, these maps are algebra homomorphisms, since the operators {Tr}r∈Z commute
with each other thanks to Proposition 4.2.10. This proves the first part of the claim. We
shall now prove (4.100) via induction. For r = 1, equation (4.100) holds thanks to the
identities p1 = e1 and T1 = Q+

1 , so assume that r > 1. Using the induction hypothesis,
together with (2.34) and (4.92), we end up with the following chain of equalities,

Ξ+
n (er) = Ξ+

n

(
1

r

r∑
l=1

(−1)l−1pler−l

)
=

1

r

r∑
l=1

(−1)l−1TlQ
+
r−l = Q+

r ,

which completes the induction proof. Equation (4.101) follows in a completely analogous
way, with the help of (4.94).

Remark 4.3.2. The identification (4.99) between symmetric functions and conserved
charges is also based on the eigenvalues of the latter, when evaluating on the space F⊗n

spanned by the states (4.18). Compare with Lemma 4.5.5.

Remark 4.3.3. Notice that both equation (4.93) and its adjoint (4.95) are of the same
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form as Newton’s formula (2.35), that is

rhr =
r∑
l=1

plhr−l , (4.102)

where {hλ}λ∈P+ are the complete symmetric functions (see Section 2.2). Lemmas 4.2.3
and 4.2.5, together with Proposition 4.2.10, imply that the operators {T̃r}r∈Z commute
with each other. It follows that the maps Ξ̃±n : Λ→ Tn[z, z−1] defined via

pr 7→ Ξ̃±n (pr) = T̃±r (4.103)

for r ∈ Z≥0, and Ξ̃±n (pλ) = T̃λ1T̃λ2 · · · for λ ∈ P+, are algebra homomorphisms. Moreover,
proceeding in close analogy to Proposition 4.99, we have for all r ∈ Z≥0 that

Ξ̃+
n (hr) = Q−r , (4.104)

Ξ̃−n (hr) = Q∗−r . (4.105)

The algebra homomorphisms Ξ̃±n are of little importance in our discussion, so we shall only
focus on the ones introduced in Proposition 4.3.1.

With the help of the map Ξ+
n , we now introduce the analogoues of the symmetric

functions defined in Section 2.2 as elements in Tn[z, z−1], and denote these with capital
letters if not defined previously (compare with the discussion presented in [45, Ch. 2.5]).
Set Tλ = Tλ1Tλ2 · · · and Q+

λ = Q+
λ1
Q+
λ2
· · · for λ ∈ P+. By definition of the map Ξ+

n we
have that

Tλ = Ξ+
n (pλ) , (4.106)

whereas from Proposition 4.3.1 it follows that

Q+
λ = Ξ+

n (eλ) . (4.107)

Let us define for r ∈ Z≥0 the operator

Hr = Ξ+
n (hr) . (4.108)

In Section 4.3.2 we show the relation between (4.108) and the conserved charges {Q−r }r∈Z≥0
.

Setting Hλ = Hλ1Hλ2 · · · for λ ∈ P+, it follows from Proposition 4.3.1 that

Hλ = Ξ+
n (hλ) . (4.109)
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Moreover, let us introduce the operators

Mλ = Ξ+
n (mλ) , (4.110)

Sλ = Ξ+
n (sλ) , (4.111)

which are the images under Ξ+
n of the monomial symmetric functions {mλ}λ∈P+ and the

Schur functions {sλ}λ∈P+ respectively (see Section 2.2). The next result shows that we can
recover the operators belonging to the image of Ξ−n by taking the adjoint of the operators
just defined. Denote by ΛR ⊂ Λ the ring of symmetric functions with real coefficients.

Lemma 4.3.4. For every g ∈ ΛR we have the equality

Ξ−n (g) = Ξ+
n (g)∗ . (4.112)

Proof. Since {pλ}λ∈P+ is a basis of ΛR, we can write that g =
∑

λ∈P+ gλpλ for some
coefficients gλ ∈ R. Using the fact that the operators {Tr}r∈Z commute with each other,
together with the relation gλ = g∗λ, and taking advantage of (4.79) we end up with the
chain of equalities

Ξ−n (g) =
∑
λ∈P+

gλT−λ1T−λ2 · · · =
∑
λ∈P+

gλT
∗
λ1
T ∗λ2
· · · =

( ∑
λ∈P+

gλTλ1Tλ2 · · ·
)∗

= Ξ+
n (g)∗ .

Let λ, µ ∈ A+
k (n) and ν ∈ P+. In Section 4.4 we will prove the following identities for

the matrix elements of the operators introduced above,

〈λ|Tν |µ〉 =
∑
d∈Z≥0

zdϕλ/d/µ(ν) , (4.113)

〈λ|Q+
ν |µ〉 =

∑
d∈Z≥0

zdψλ/d/µ(ν) , (4.114)

〈λ|Hν |µ〉 =
∑
d∈Z≥0

zdθλ/d/µ(ν) , (4.115)

〈λ|Mν |µ〉 =
∑
d∈Z≥0

zdNλ,d
µν , (4.116)

〈λ|Sν |µ〉 =
∑
d∈Z≥0

zdχλ,dµν , (4.117)

where it is understood that Nλ,d
µν = χλ,dµν = 0 if `(ν) > k. These identities are obtained by

evaluating the action of such operators, treated as elements in End(F⊗n), on the vectors
|µ〉 introduced in (4.18), and then by applying the dual vector 〈λ| defined in (4.19). The
coefficients ϕλ/d/µ(ν), ψλ/d/µ(ν), θλ/d/µ(ν), and χλ,dµν were introduced respectively in (3.77),
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(3.47), (3.48), and (3.69), whereas Nλ,d
µν was defined as the cardinality of the set (3.39).

Recall that such coefficients are non-zero only if |µ| + |ν| − |λ| = dn, and thus the sums
on the RHS of the identities above involve at most one non-zero term.

We shall employ the identities (4.113) to (4.117) for the following purposes. First,
we present an alternative method to the one presented in Section 3.3.2 for evaluating the
expansions of the cylindric symmetric functions eλ/d/µ and hλ/d/µ in terms of the bases of
Λ introduced in Section 2.2. Then we will illustrate an alternative approach to the one
described in Sections 4.1.3 and 4.1.4 for computing the partition functions of the Q± and
Q∗± vertex models. Let us present some preliminary results.

Lemma 4.3.5. For each l ∈ Z≥0 we have the chain of equalities

Q+(x1)Q+(x2) · · ·Q+(xl) =
∑
ν∈P+

l

Q+
νmν(x1, . . . , xl) (4.118)

=
∑
ν∈P+

Mνeν(x1, . . . , xl) (4.119)

=
∑
ν∈P+

ενz
−1
ν Tνpν(x1, . . . , xl) (4.120)

=
∑
ν∈P+

Sνsν′(x1, . . . , xl) . (4.121)

Proof. As pointed out in Section 4.1.3, the product Q+(x1)Q+(x2) · · ·Q+(xl) is symmetric
in the indeterminates (x1, . . . , xl). This product can therefore be expanded in terms of the
symmetric functions in l variables, with the expansion coefficients belonging to Hn[z, z−1].
To obtain the expansion in terms of monomial symmetric functions, notice that for ν ∈
P+
l the coefficient of mν(x1, . . . , xl) in Q+(x1)Q+(x2) · · ·Q+(xl) equals the coefficient of

xν1
1 · · · x

νl
l in the same product, which is justQ+

ν . This proves (4.118). The other expansions
follow by taking advantage of the relationships between the various bases of Λ, together
with their images under Ξ+

n . Consider for example the relation eν =
∑

σ∈P+ Mνσmσ,
which was introduced in (2.22), and where the matrix Mνσ was defined in Section 2.2.2.
Applying the map Ξ+

n to both sides of the latter, it follows that Q+
ν =

∑
σ∈P+ MνσMσ.

Moreover, projecting onto Λl we have that eν(x1, . . . , xl) =
∑

σ∈P+
l
Mνσmσ(x1, . . . , xl).

This is because mσ(x1, . . . , xl) = 0 if `(σ) > l, as shown in Lemma 2.2.5. The identities
just described, together with the fact that Mνσ = Mσν (compare with [67, Cor. 7.5.2]),
can then be used to prove (4.119). For the proof of (4.120) and (4.121), one can take
advantage of the expansions mν =

∑
σ∈P+ K−1

νσ sσ =
∑

σ∈P+ R−1
νσ pσ, sν =

∑
σ∈P+ K

−1
σν′eσ

and pνενz
−1
ν =

∑
σ∈P+ R−1

νσ eσ. The matrices Kνσ and Rνσ were defined respectively in
(2.22) and (2.24). The expansions of sν and pν in terms of the basis {eσ}σ∈P+ of Λ can be
found for instance in [52, I.6].
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We shall now make use of the following operator,

H(u) =
∑
r∈Z≥0

urHr , (4.122)

where the operators {Hr}r∈Z≥0
are defined in (4.108). We are adopting the same notation

for the generating function of complete symmetric functions, which was introduced in
(2.20). Nevertheless, it will be clear from the context which one of these two objects we
are using.

Lemma 4.3.6. For each l ∈ Z≥0 we have the chain of equalities

H(x1)H(x2) · · ·H(xl) =
∑
ν∈P+

l

Hνmν(x1, . . . , xl) (4.123)

=
∑
ν∈P+

Mνhν(x1, . . . , xl) (4.124)

=
∑
ν∈P+

z−1
ν Tνpν(x1, . . . , xl) (4.125)

=
∑
ν∈P+

Sνsν(x1, . . . , xl) . (4.126)

Proof. The product H(x1)H(x2) · · ·H(xl) is symmetric in the indeterminates (x1, . . . , xl).
This is because Propositions 4.2.10 and 4.3.1 imply that the operators {Hr}r∈Z≥0

commute
with each other. To obtain the expansion in terms of monomial symmetric functions,
notice that for ν ∈ P+

l the coefficient of mν(x1, . . . , xl) in H(x1)H(x2) · · ·H(xl) equals
the coefficient of xν1

1 · · ·x
νl
l in the same product, which is just Hν . This proves (4.123).

One can then proceed as in the proof of Lemma 4.3.5 to deduce the remaining equalities.
For this purpose one can take advantage of the relation hν =

∑
σ∈P+ Lνσmσ, which was

introduced in (2.22), and where the matrix Lνσ was defined in Section 2.2.2, together
with the expansions sν =

∑
σ∈P+ K−1

σν hσ and pνz−1
ν =

∑
σ∈P+ R−1

νσhσ (see for instance [52,
I.6]).
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4.3.1 Expansions of cylindric symmetric functions

We now give an alternative proof for the following expansions of the cylindric symmetric
functions eλ/d/µ and hλ/d/µ,

eλ/d/µ =
∑
ν∈P+

ψλ/d/µ(ν)mν (4.127)

=
∑
ν∈P+

k

Nλ,d
µν eν (4.128)

=
∑
ν∈P+

ϕλ/d/µ(ν)ενz
−1
ν pν (4.129)

=
∑
ν∈P+

k

χλ,dµν sν′ , (4.130)

together with

hλ/d/µ =
∑
ν∈P+

θλ/d/µ(ν)mν (4.131)

=
∑
ν∈P+

k

Nλ,d
µν hν (4.132)

=
∑
ν∈P+

ϕλ/d/µ(ν)z−1
ν pν (4.133)

=
∑
ν∈P+

k

χλ,dµν sν . (4.134)

These expansions have been already proved in Propositions 3.3.11, 3.3.18, 3.3.28 and in
Theorem 3.3.12. The new aspect here is that on the RHS of the expansions (4.127) to
(4.134) the coefficients are the matrix elements (4.113) to (4.117). Let λ, µ ∈ A+

k (n) and
d ∈ Z≥0. We start from the definitions

eλ/d/µ(x1, . . . , xl) =
∑

T̂∈Tλ/d/µ(l)

ψT̂x
T̂ , (4.135)

hλ/d/µ(x1, . . . , xl) =
∑

π̂∈Πλ/d/µ(l)

θπ̂x
π̂ , (4.136)

which were discussed in (4.31) and (4.32) respectively. Let ν ∈ P+, and for β ∈ P a
composition set Q+

β = Q+
β1
Q+
β2
· · · . Since the operators {Q+

r }r∈Z≥0
commute with each

other, we have that Q+
β = Q+

ν for every β ∼ ν, with the notation introduced in Section
2.2.1. We deduce from (4.114) that ψλ/d/µ(β) = ψλ/d/µ(ν) for every β ∼ ν, where ψλ/d/µ(β)

is defined in an analogous way to (3.47). The validity of this last identity was shown by
other means in the proof of Lemma 3.3.9. Similarly, setting Hβ = Hβ1Hβ2 · · · for β ∈ P ,
we have that Hβ = Hν for every β ∼ ν, as the operators {Hr}r∈Z≥0

commute with each
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other. It follows from (4.115) that θλ/d/µ(β) = θλ/d/µ(ν) for every β ∼ ν, where θλ/d/µ(β) is
defined in an analogous way to (3.48). Compare with the proof of Lemma 3.3.8. Following
similar steps as the ones described in the proof of Proposition 3.3.11, and then taking
advantage of the relation mν(x1, . . . , xl) = 0 for `(ν) > l, we can rearrange (4.135) and
(4.136) to obtain the expansions

eλ/d/µ(x1, . . . , xl) =
∑
ν∈P+

ψλ/d/µ(ν)mν(x1, . . . , xl) , (4.137)

hλ/d/µ(x1, . . . , xl) =
∑
ν∈P+

θλ/d/µ(ν)mν(x1, . . . , xl) . (4.138)

Now, act on the vector |µ〉 with the RHS of (4.118), and then apply the dual vector 〈λ|
defined in (4.19). Do the same with the expressions appearing in (4.119), (4.120) and
(4.121). Taking advantage of the identities (4.113) to (4.117), together with the expansion
(4.137), and comparing the terms with the same power of z, we end up with the following
chain of equalities,

eλ/d/µ(x1, . . . , xl) =
∑
ν∈P+

k

Nλ,d
µν eν(x1, . . . , xl) (4.139)

=
∑
ν∈P+

ϕλ/d/µ(ν)ενz
−1
ν pν(x1, . . . , xl) (4.140)

=
∑
ν∈P+

k

χλ,dµν sν′(x1, . . . , xl) . (4.141)

Similarly, starting from Lemma 4.3.6 and proceeding as above, we have that

hλ/d/µ(x1, . . . , xl) =
∑
ν∈P+

k

Nλ,d
µν hν(x1, . . . , xl) (4.142)

=
∑
ν∈P+

ϕλ/d/µ(ν)z−1
ν pν(x1, . . . , xl) (4.143)

=
∑
ν∈P+

k

χλ,dµν sν(x1, . . . , xl) . (4.144)

As we discussed in Remark 2.2.2, a symmetric function f ∈ Λ is equivalent to a sequence of
functions {fl(x1, . . . , xl)}l∈Z≥0

, with fl(x1, . . . , xl) ∈ Λl, satisfying for l′ ≥ l the constraint
fl′(x1, . . . , xl, 0, . . . , 0) = fl(x1, . . . , xl). For f, g ∈ Λ, it follows that f = g if and only if
the equality fl(x1, . . . , xl) = gl(x1, . . . , xl) holds in Λl for all l ∈ N. But the expansions
obtained above for eλ/d/µ(x1, . . . , xl) and hλ/d/µ(x1, . . . , xl) are identities in Λl which are
valid for all l ∈ N, and thus they must hold on Λ as well. In this way we recover the
expansions (4.127) to (4.134) for the cylindric symmetric functions eλ/d/µ and hλ/d/µ.

Remark 4.3.7. The proof presented in Chapter 3 for the expansions (4.127) to (4.134)
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relies on Vk(n), which is the quotient of Λk[z, z
−1] introduced in (3.35). On the other hand,

the approach we use here to show the validity of the same expansions does not involve any
quotient of Λk[z, z

−1].

We now describe how the expansions (4.137) to (4.144) can be also obtained by means
of the adjoint operators, that is the operators belonging to the image of the map Ξ−n

introduced in (4.99), see also Lemma 4.3.4. For this purpose, define the operator P ∈
End(F⊗n) via the relation

P |λ〉 = |λ∨〉 , (4.145)

where λ ∈ A+
k (n), and the map ∨ : A+

k (n) → A+
k (n) was introduced in (4.61). Since the

latter is an involution in End(A+
k (n)), it follows that P is an involution in End(F⊗n).

Lemma 4.3.8. For every g ∈ ΛR ⊂ Λ we have the following equality in End(F⊗n),

Ξ−n (g) = P Ξ+
n (g)P , (4.146)

where Ξ+
n (g) is the complex conjugate of Ξ+

n (g).

Proof. Recall that |λ〉 = |m1(λ), . . . ,mn(λ)〉, as we described in (4.18). It follows that
|λ∨〉 = |mn(λ), . . . ,m1(λ)〉, and then we can deduce the following identities in End(F⊗n),

bj = P bn+1−j P , and b∗j = P b∗n+1−j P . (4.147)

Taking advantage of (4.147) and the relation z̄ = z−1, together with Lemmas 4.2.2, 4.2.1
and Proposition 4.99, we end up with the identity

Ξ−n (er) = P Ξ+
n (er)P . (4.148)

The claim then follows from the fact that {eλ}λ∈A+
k (n) is a basis of ΛR, and that P is an

involution.

Since the operators {Q∗±r }r∈Z≥0
and {H∗r }r∈Z≥0

commute with each other, we can em-
ploy Lemma 4.3.8, together with (4.114) and (4.115), to deduce once again the validity of
the identities ψλ/d/µ(β) = ψλ/d/µ(ν) and θλ/d/µ(β) = θλ/d/µ(ν) for every β ∼ ν. This allows
us to recover the expansions (4.137) and (4.138). Take the adjoint of the RHS of (4.118),
act on the vector |µ∨〉 and then apply the dual vector 〈λ∨|. Do the same with the RHS of
(4.123), and with the expressions appearing in (4.119), (4.120), (4.121), (4.124), (4.125)
and (4.126). Employing Lemma 4.3.8, and comparing the terms with the same power of
z̄ = z−1, we finally end up with the expansions (4.139) to (4.144).
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4.3.2 Computation of the partition functions

In the previous section we employed the identities (4.113) to (4.117) to re-establish the
validity of the expansions (4.127) to (4.134) of the cylindric symmetric functions eλ/d/µ and
hλ/d/µ. We now present an alternative proof of the identities stated in Theorems 4.1.18
and 4.1.30 for the partition functions of the Q± and Q∗± vertex models respectively. For
this purpose, we shall take advantage of the matrix elements (4.114), (4.115) and the
expansions (4.137), (4.138). We start by considering the Q+ vertex model.

Lemma 4.3.9. Let λ, µ ∈ A+
k (n) and l ∈ N. We have the equality

〈λ|Q+(x1)Q+(x2) · · ·Q+(xl)|µ〉 =
∑
d∈Z≥0

zdeλ/d/µ(x1, . . . , xl) . (4.149)

Proof. Taking matrix elements of both sides of (4.118), and then using (4.114), we obtain
the identity

〈λ|Q+(x1)Q+(x2) · · ·Q+(xl)|µ〉 =
∑
d∈Z≥0

zd
∑
ν∈P+

l

ψλ/d/µ(ν)mν(x1, . . . , xl) .

The claim then follows by employing (4.137).

Thanks to Lemmas 4.1.13 and 4.3.9 we then recover (4.33), which is the expansion
of the partition function Z+

λ,µ(x1, x2, . . . , xl) in terms of cylindric elementary symmetric
functions. We now present a similar discussion for the Q− vertex model. To this end, we
first need to understand the connection between {Q−r }r∈Z≥0

and the operators belonging
to the image of the map Ξ+

n introduced in (4.99). Applying Ξ+
n to both sides of Newton’s

formula rhr =
∑r

l=1 plhr−l we end up with the equality

rHr =
r∑
l=1

TlHr−l , (4.150)

where the operators {Hr}r∈Z≥0
are defined in (4.108). Notice the similarity between this

last equality and (4.93). It is then natural to seek a relation between the operators
{Q−r }r∈Z≥0

and {Hr}r∈Z≥0
, which is given by the following result.

Lemma 4.3.10. For r ∈ Z≥0 we have the identity

Hr =

{
Q−r , r < n

Q−r − zQ−r−n, r ≥ n
. (4.151)
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Proof. We first show by induction that

Q−sn+q =
s∑
t=0

ztH(s−t)n+q , (4.152)

where s ∈ Z≥0 and 0 ≤ q ≤ n − 1. The claim is true for s = q = 0, in which case
Q−0 = H0 = 1. So let sn + q 6= 0, and suppose that (4.152) holds for all s′ ∈ Z≥0 and
0 ≤ q′ ≤ n− 1 such that s′n+ q′ < sn+ q. Thanks to (4.81) and (4.93), we have that

(sn+ q)Q−sn+q =

sn+q∑
j=1

TjQ
−
sn+q−j + n

s∑
t′=1

zt
′
Q−(s−t′)n+q

=

sn+q−1∑
j=0

Tsn+q−jQ
−
j︸ ︷︷ ︸

1

+n

s∑
t′=1

zt
′
Q−(s−t′)n+q︸ ︷︷ ︸
2

Taking advantage of the induction hypothesis, it follows that

2 = n
s∑

t′=1

zt
′
s−t′∑
t′′=0

zt
′′
H(s−t′−t′′)n+q = n

s∑
t′=1

s−t′∑
t′′=0

zt
′+t′′H(s−t′−t′′)n+q

= n
s∑
t=1

tztH(s−t)n+q .

To express 1 in terms of the operators {Hr}r∈Z≥0
, we need to distinguish between the two

cases 1 ≤ q ≤ n− 1 and q = 0. Setting j = s′′n+ q′′, where s′′ ∈ Z≥0 and 0 ≤ q′′ ≤ n− 1,
we have in the first case the chain of equalities

1 =
s∑

s′′=0

q−1∑
q′′=0

Tsn+q−(s′′n+q′′)Q
−
s′′n+q′′

=
s∑

s′′=0

q−1∑
q′′=0

Tsn+q−(s′′n+q′′)

s′′∑
t=0

ztH(s′′−t)n+q′′

=
s∑
t=0

zt
s∑

s′′=t

q−1∑
q′′=0

Tsn+q−(s′′n+q′′)H(s′′−t)n+q′′

=
s∑
t=0

zt
s−t∑
s′′=0

q−1∑
q′′=0

T(s−t)n+q−(s′′n+q′′)Hs′′n+q′′

=
s∑
t=0

zt
(
(s− t)n+ q

)
H(s−t)n+q .

In the second line we used the induction hypothesis, whereas in the third line we swapped
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the sums in t and in r. In the last line we took advantage of (4.150). If instead q = 0,
we end up after similar steps with the identity 1 =

∑s−1
t=0 z

t
(
(s − t)n

)
H(s−t)n. Putting

together all the results just described, we conclude that

1 + 2 = (sn+ q)
s∑
t=0

ztH(s−t)n+q ,

which shows that Q−sn+q satisfies the relation (4.152) as well. This completes the induction
proof.

We now use induction again to show the validity of (4.151). Notice that, thanks to
(4.152), the latter holds already for r ≤ n. So let r = sn+q with s ≥ 1 and 0 ≤ q ≤ n−1,
and assume that (4.151) holds for all r′ < r. Starting from (4.152), and using the induction
hypothesis, we then have that

Hr = Q−r −
s∑
t=1

ztH(s−t)n+q

= Q−r −
s−1∑
t=1

zt(Q−(s−t)n+q − zQ
−
(s−t−1)n+q)−Q

−
q

= Q−r −
s∑
t=1

ztQ−(s−t)n+q +
s∑
t=2

ztQ−(s−t)n+q

= Q−r − zQ−(s−1)n+q = Q−r − zQ−r−n .

Corollary 4.3.11. We have the identity

H(u) = Q−(u)(1− zun) , (4.153)

where the operator H(u) was introduced in (4.122).

Proof. The claim follows after a straightforward computation, with the help of (4.151).

Lemma 4.3.12. Let λ, µ ∈ A+
k (n) and l ∈ N. We have the equality

〈λ|H(x1)H(x2) · · ·H(xl)|µ〉 =
∑
d∈Z≥0

zdhλ/d/µ(x1, . . . , xl) . (4.154)

Proof. Take matrix elements of both sides of (4.123). Taking advantage of equation
(4.115), we have that

〈λ|H(x1)H(x2) · · ·H(xl)|µ〉 =
∑
d∈Z≥0

zd
∑
ν∈P+

k

θλ/d/µ(ν)mν(x1, . . . , xl) .



CHAPTER 4. QUANTUM INTEGRABLE SYSTEMS 131

The claim then follows by taking advantage of (4.138).

Employing Lemmas 4.1.13 and 4.3.12, together with the relation (4.153), we finally
end up with the expansion (4.34) for the partition function Z−λ,µ(x1, x2, . . . , xl).

Assume that xi = xi. The expansions (4.62) and (4.63) for the partition functions
of the Q∗± vertex models can be now deduced immediately by taking matrix elements of
both sides of the following identity in End(F⊗n),

Q∗±(x1) · · ·Q∗±(xl) = PQ±(x1) · · ·Q±(xl)P , (4.155)

which is a direct consequence of Proposition 4.99 and Lemma 4.3.8, and then by applying
Lemma 4.1.26.

4.4 The action of the conserved charges

The goal of this section is to prove the identities (4.113) to (4.117). In other words, we
will evaluate the action of the operator Ξ+

n (g), where g ∈ Λ can be any of the functions
{pν}ν∈P+ , {eν}ν∈P+ , {hν}ν∈P+ , {mν}ν∈P+ and {sν}ν∈P+ , on the state (4.18), that is

|µ〉 =
1

uµ
b∗µ1
· · · b∗µk |0〉 . (4.156)

We adopt the following strategy. We first compute the commutation relation [Ξ+
n (g), b∗i ] for

all i ∈ Z, and then we apply repeatedly such commutation relation to the state Ξ+
n (g) |µ〉.

For the operator Ξ+
n (pν) we instead evaluate its action on |µ〉 directly, compare with Lemma

4.4.2 below. The action of Ξ−n (g) on |µ〉 can be computed by either using the identity
Ξ−n (g) = P Ξ+

n (g)P in End(F⊗n), which was proved in Lemma 4.3.8, or by employing a
similar approach to the one described above. In the second case, one needs to evaluate
the commutation relation [Ξ−n (g), b∗i ] for all i ∈ Z. Equivalently, thanks to the relation
Ξ−n (g) = Ξ+

n (g)∗, which was showed in Lemma 4.3.4, one can first evaluate the commutation
[bi,Ξ

+
n (g)] for all i ∈ Z, and then take the adjoint.

4.4.1 Power sums

We start with the operator introduced in (4.106) and in Proposition 4.3.1, that is

Tλ = Ξ+
n (pλ) . (4.157)

We shall make use of CACSDs and CACRPPs, which were described in Section 3.3.3. In
particular, we will take advantage of the weight ϕλ/d/µ defined in equation (3.76), and of
the weight ϕλ/d/µ(ν) introduced in Definition 3.3.25.
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Lemma 4.4.1. For r, j ∈ Z we have the commutation relations

Trb
∗
j = b∗jTr + b∗j+r , (4.158)

bjTr = Trbj − bj−r . (4.159)

Proof. These identities follow by taking advantage of (4.77), together with the commuta-
tion relation (4.78).

Lemma 4.4.2. Let ν ∈ P+ and µ ∈ A+
k (n). We have the equalities

Tν |µ〉 =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

ϕλ/d/µ(ν) |λ〉 , (4.160)

T ∗ν |µ〉 =
∑
d∈Z≥0

z−d
∑

λ∈A+
k (n)

ϕλ∨/d/µ∨(ν) |λ〉 , (4.161)

The second sum in (4.160) runs over all λ ∈ A+
k (n) for which λ/d/µ is a cylindric skew

diagram with |µ| + |ν| − |λ| = dn. The second sum in (4.161) runs instead over all
λ ∈ A+

k (n) for which λ∨/d/µ∨ is a cylindric skew diagram with |µ∨|+ |ν| − |λ∨| = dn.

Proof. We prove (4.160) first. For this purpose, it is enough to show that

Tr |µ〉 =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

ϕλ/d/µ |λ〉 (4.162)

for r ≥ 0, where the second sum runs over all λ ∈ A+
k (n) for which λ/d/µ is a CACSD with

|µ|+r−|λ| = dn. Then (4.160) follows after a repeated application of (4.162) to the state
Tν |µ〉. If r = 0, we have that (4.162) reduces to the identity |µ〉 = |µ〉. This is because
T0 = 1, and moreover the only CACSD λ/d/µ such that |λ/d/µ| = |λ| + dn − |µ| = 0 is
given by µ/0/µ, in which case ϕµ/0/µ = 1 by definition. Suppose now that r = sn for some
s ∈ N, and let λ ∈ A+

k (n) and d ∈ Z≥0. Notice that λ/d/µ is a CACSD satisfying the
constraint |µ|+ sn− |λ| = dn, that is λ̂.τ d = µ̂a,sn for some 1 ≤ a ≤ n with ma−1(µ̂) 6= 0,
if and only if λ = µ and d = s. This follows from (3.75) for s = 1, whereas for s > 1 this
can be deduced from the fact that λ̂.τ s = µ̂a,sn if and only if λ̂.τ = µ̂a,n, which is a direct
consequence of Lemma 3.3.21. Since ψµ/s/µ = k, we have that the RHS of (4.162) is equal
to zsk |µ〉. Equation (4.162) then follows, as its LHS is also equal to zsk |µ〉 thanks to the
identity Tr = zsN , which can be derived from (4.75).

We now assume that r > 1 and rmodn 6= 0. We evaluate the action of the operator
Tr =

∑n
j=1 b

∗
j+rbj on the state |µ〉 directly, and for this purpose let i ∈ N with 1 ≤ i ≤ n.

Notice that b∗i+rbi |µ〉 = 0 if mi(µ) = 0, so suppose that mi(µ) 6= 0. Let σ ∈ A+
k (n) be

the partition obtained from µ by removing a part equal to i and adding a part equal to
(i + r) Modn, where Mod was defined in (3.74). Equation (3.75), together with Lemma
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3.3.21, implies that σ̂.τ d′′ = µ̂(i+1) Modn,r, where d′′ ∈ Z≥0 is defined via the relation
|µ|+ r − |σ| = d′′n. Moreover, taking advantage of (4.77), it follows that

b∗i+rbi |µ〉 = zd
′′
m(i+r) Modn(σ) |σ〉 = zd

′′
mi+r(σ̂.τ

d′′) |σ〉 .

Thus, we have the identity

Tr |µ〉 =
∑
a

zd
′
ma−1+r(ρ̂.τ

d′) |ρ〉 ,

where the sum runs over all 1 ≤ a ≤ n such thatma−1(µ̂) 6= 0, and ρ ∈ A+
k (n), d′ ∈ Z≥0 are

defined via the relation ρ̂.τ d′ = µ̂a,r. Let λ ∈ A+
k (n), d ∈ Z≥0 and suppose that λ/d/µ is a

cylindric skew diagram. If λ/d/µ is a CACSD satisfying the constraint |µ|+ r− |λ| = dn,
that is if λ̂.τ d = µ̂a,r for some 1 ≤ a ≤ n with ma−1(µ̂) 6= 0, it follows from the equality
above that 〈λ|Tr|µ〉 = zdϕλ/d/µ, where we employed the relation (3.76) for the weight
ϕλ/d/µ. Otherwise, we have that 〈λ|Tr|µ〉 = 0. This completes the proof of (4.162), since
by applying the dual vector 〈λ| on (4.162) we recover the same identity.

Equation (4.161) follows immediately by employing the identity T ∗ν = P Tν P in
End(F⊗n), which is a consequence of Lemmas 4.3.4 and 4.3.8. The involution P ∈
End(F⊗n) was introduced in (4.145).

Remark 4.4.3. The weight ϕλ/d/µ(ν) is non-zero only if λ/d/µ is a cylindric skew diagram
with |µ|+|ν|−|λ| = dn (compare with Definition 3.3.25), and then (4.160) does not change
if we allow λ to run over all the weights in A+

k (n). It follows that

〈λ|Tν |µ〉 =
∑
d∈Z≥0

zdϕλ/d/µ(ν) , (4.163)

which is the identity (4.113).

4.4.2 Elementary and complete symmetric functions

The next operators of our interest are the images under Ξ+
n of the elementary and complete

symmetric functions, which were defined in (4.107) and (4.109) as

Q+
λ = Ξ+

n (eλ) , (4.164)

Hλ = Ξ+
n (hλ) . (4.165)

We shall take advantage of the weights ψλ/d/µ and θλ/d/µ, which were introduced in Def-
initions 3.2.9 and 3.2.4 respectively. We will also make use of the weights ψλ/d/µ(ν) and
θλ/d/µ(ν). See Definition 3.3.7.
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Lemma 4.4.4. For r ∈ N and j ∈ Z we have the commutation relations

Hrb
∗
j = b∗jHr +Hr−1b

∗
j+1 , (4.166)

bjHr = Hrbj + bj−1Hr−1 . (4.167)

Proof. These relations can be obtained after a straigthforward computation, with the help
of (4.86), (4.87) and (4.151).

Lemma 4.4.5. Let ν ∈ P+ and µ ∈ A+
k (n). We have the equalities

Q+
ν |µ〉 =

∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

ψλ/d/µ(ν) |λ〉 , (4.168)

Q∗+ν |µ〉 =
∑
d∈Z≥0

z−d
∑

λ∈A+
k (n)

ψλ∨/d/µ∨(ν) |λ〉 . (4.169)

The second sum in (4.168) runs over all λ ∈ A+
k (n) for which λ/d/µ is a cylindric skew

diagram with |µ| + |ν| − |λ| = dn. The second sum in (4.169) runs instead over all
λ ∈ A+

k (n) for which λ∨/d/µ∨ is a cylindric skew diagram with |µ∨|+ |ν| − |λ∨| = dn.

Proof. We prove the validity of (4.168) first. For this purpose, it is enough to show that

Q+
r |µ〉 =

∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

ψλ/d/µ |λ〉 (4.170)

for r ≥ 0, where the second sum runs over all λ ∈ A+
k (n) for which λ/d/µ is a cylindric

vertical strip with |µ| + r − |λ| = dn. Equation (4.168) then follows after a repeated
application of (4.170) to the state Q+

ν |µ〉. If r = 0, we have that (4.170) reduces to the
identity |µ〉 = |µ〉. This is because Q+

0 = 1, and moreover the only cylindric vertical strip
λ/d/µ such that |λ/d/µ| = |λ|+ dn− |µ| = 0 is given by µ/0/µ, in which case ψµ/0/µ = 1.
So assume that r > 0. Let s ∈ Z≥0, and notice that Q+

s |0〉 = 0 unless s = 0, in which
case Q+

0 |0〉 = |0〉. This can be deduced from the expansion (4.73) of Q+
s in terms of the

generators of Hn[z, z−1], together with the fact that bi |0〉 = 0. Set

b∗α = b∗α1
b∗α2
· · · (4.171)

for α ∈ P , and consider the expansion (4.156) for the state |µ〉. After a repeated applica-
tion of the commutation relation (4.84), we end up with the identity

Q+
r |µ〉 =

1

uµ

∑
η∈P≥0

k

b∗µ+η |0〉 ,

where the sum is restricted to those weights η ∈ P≥0
k with ηi = 0, 1 and |η| = r. Let
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λ ∈ A+
k (n). Thanks to (4.77), together with the fact that 〈λ|σ〉 = δλσ for all σ ∈ A+

k (n),
it follows that 〈λ|b∗µ+η|0〉 is non-zero if and only if there exists a pair (w′, β) ∈ Sλ × P≥0

k

satisfying the constraint µ+η = λ.w′yβ. Employing part (ii) of Proposition 2.1.6, we have
that if the pair (w′, β) exists then it is unique, and moreover 〈λ|b∗µ+η|0〉 = z|β|uλ. Thus,
we have the identity

〈λ|b∗µ+η|0〉 =
∑
d∈Z≥0

zduλ
∑
w′∈Sλ

∑
β∈P≥0

k

δµ+η,λ.w′yβ ,

where the third sum is restricted to those weights β ∈ P≥0
k with |β| = d, and then

〈λ|Q+
r |µ〉 =

∑
d∈Z≥0

zd
uλ
uµ

∑
w′∈Sλ

∑
η,β∈P≥0

k

δµ+η,λ.w′yβ .

Let f : Pk → C, and notice that∑
w∈Sk

f(λ.w) = uλ
∑
w∈Sλ

f(λ.w) . (4.172)

This can be deduced by first employing part (ii) of Proposition 2.1.6, and then by taking
advantage of the identity |Sλ| = uλ, which follows from the fact that m0(λ) = 0 as
λ ∈ A+

k (n). With the help of (4.172), we then have the equality

〈λ|Q+
r |µ〉 =

∑
d∈Z≥0

zd
1

uµ

∑
w′∈Sk

∑
η,β∈P≥0

k

δµ+η,λ.w′yβ .

Set w = (w′)−1, γ = η.w and α = β.w. Taking advantage of the relation w′yβ = yβ.(w
′)−1

w′,
we can rewrite the constraint µ+ η = λ.w′yβ as µ.w+ γ = λ.yα. Using (4.172) once more,
we end up with

〈λ|Q+
r |µ〉 =

∑
d∈Z≥0

zd
∑
w∈Sµ

∑
γ,α∈P≥0

k

δµ.w+γ,λ.yα , (4.173)

where the second sum is restricted to those weights γ, α ∈ P≥0
k with γi = 0, 1, |γ| = r and

|α| = d. Let d ∈ Z≥0, and notice that the sum
∑

w∈Sµ
∑

γ,α∈P≥0
k
δµ.w+γ,λ.yα appearing in

(4.173) is non-zero only if |µ|+ r−|λ| = dn. Assuming that the relation |µ|+ r−|λ| = dn

is satisfied, this sum equals the cardinality of the set

{(w, γ, α) ∈ Sµ × P≥0
k × P

≥0
k | γi = 0, 1, |γ| = r, |α| = d, µ.w + γ = λ.yα} .

But the latter coincides with the set A introduced in the proof of Lemma 3.3.9, the
cardinality of which is given by ψλ/d/µ. Lemma 3.2.11 implies that ψλ/d/µ is non-zero if
and only if λ/d/µ is a cylindric vertical strip, and then we finally deduce that 〈λ|Q+

r |µ〉 =
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∑
d∈Z≥0

zdψλ/d/µ, where the sum runs over all d ∈ Z≥0 for which λ/d/µ is a cylindric
vertical strip with |µ|+ r−|λ| = dn. This proves the validity of (4.170), since by applying
the dual vector 〈λ| on (4.170) we recover the same equality.

The validity of (4.169) follows by employing the identity Q∗ν = P Qν P in End(F⊗n),
which can be deduced from Lemmas 4.3.4 and 4.3.8. For the sake of completeness, we
present an alternative proof of (4.169) that relies on the commutation relation (4.84). For
this purpose, it is enough to show the validity of

Q∗+r |µ〉 =
∑
d∈Z≥0

z−d
∑

λ∈A+
k (n)

ψλ∨/d/µ∨ |λ〉 (4.174)

for r ≥ 0, where the second sum runs over all λ ∈ A+
k (n) for which λ∨/d/µ∨ is a cylindric

vertical strip with |µ∨| + r − |λ∨| = dn. Equation (4.169) then follows after a repeated
application of (4.174) to the state Q∗+ν |µ〉. Let λ ∈ A+

k (n). Employing the adjoint of
equation (4.84), which is given by Q∗+r b∗j = b∗jQ

∗+
r + b∗j−1Q

∗+
r−1, and following similar steps

as the ones described above, we end up with the equality

〈λ|Q∗+r |µ〉 =
∑
d∈Z≥0

z−d
∑
w̄∈Sµ

∑
γ,ᾱ∈P≥0

k

δµ.w̄−γ,λ.yᾱ ,

where the second sum is restricted to those weights γ, ᾱ ∈ P≥0
k with γi = 0, 1, |γ| = r and

|ᾱ| = d. Notice that the constraint µ.w̄− γ = λ.yᾱ can be rewritten as µ∨.w+ γ = λ∨.yα,
where α = (ᾱk, . . . , ᾱ1), and moreover w ∈ Sk is obtained from w̄ = σi1 · · · σi`(w̄)

by
replacing each generator σij with σk−ij . Taking advantage of equation (4.172), together
with the identity uµ = uµ∨ , we have that

〈λ|Q∗+r |µ〉 =
∑
d∈Z≥0

z−d
∑
w∈Sµ∨

∑
γ,α∈P≥0

k

δµ∨.w+γ,λ∨.yα , (4.175)

where the second sum is restricted to those weights γ, α ∈ P≥0
k with γi = 0, 1, |γ| = r and

|α| = d. Let d ∈ Z≥0, and notice that the sum
∑

w∈Sµ∨
∑

γ,α∈P≥0
k
δµ∨.w+γ,λ∨.yα appearing in

(4.175) is non-zero only if |µ∨|+r−|λ∨| = dn. Assuming that the relation |µ∨|+r−|λ∨| =
dn is satisfied, this sum equals the cardinality of the set

{(w, γ, α) ∈ Sµ∨ × P≥0
k × P

≥0
k | γi = 0, 1, |γ| = r, |α| = d, µ∨.w + γ = λ∨.yα} ,

which is given by ψλ∨/d/µ∨ . It follows that 〈λ|Q∗+r |µ〉 =
∑

d∈Z≥0
z−dψλ∨/d/µ∨ , where the sum

runs over all d ∈ Z≥0 for which λ∨/d/µ∨ is a cylindric vertical strip with |µ∨|+r−|λ∨| = dn.
This proves the validity of (4.174), since by applying the dual vector 〈λ| on (4.174) we
recover the same equality.
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Lemma 4.4.6. Let ν ∈ P+ and µ ∈ A+
k (n). We have the equalities

Hν |µ〉 =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

θλ/d/µ(ν) |λ〉 (4.176)

H∗ν |µ〉 =
∑
d∈Z≥0

z−d
∑

λ∈A+
k (n)

θλ∨/d/µ∨(ν) |λ〉 (4.177)

The second sum in (4.176) runs over all λ ∈ A+
k (n) for which λ/d/µ is a cylindric skew

diagram with |µ| + |ν| − |λ| = dn. The second sum in (4.177) runs instead over all
λ ∈ A+

k (n) for which λ∨/d/µ∨ is a cylindric skew diagram with |µ∨|+ |ν| − |λ∨| = dn.

Proof. The proof of (4.176) is similar to the one of (4.168), and for this purpose we just
need to shown that

Hr |µ〉 =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

θλ/d/µ |λ〉 (4.178)

for r ≥ 0, where the second sum runs over all λ ∈ A+
k (n) for which λ/d/µ is a cylindric

skew diagram with |µ| + r − |λ| = dn. If r = 0, we have that (4.178) reduces to the
identity |µ〉 = |µ〉. This is because H0 = 1, and moreover the only cylindric skew diagram
λ/d/µ with |λ/d/µ| = |λ| + dn− |µ| = 0 is given by µ/0/µ, in which case θµ/0/µ = 1. So
assume that r > 0. Let s ∈ Z≥0, and notice that Hs |0〉 = 0 unless s = 0, in which case
H0 |0〉 = |0〉. This can be deduced from (4.74) and (4.151). A repeated application of
(4.166) yields the equality Hrb

∗
j =

∑r
t=0 b

∗
j+tHr−t, which can be used to show that

Hr |µ〉 =
1

uµ

∑
γ∈P≥0

k

b∗µ+γ |0〉 ,

where the sum is restricted to those weights γ ∈ P≥0
k with |γ| = r. Let λ ∈ A+

k (n).
Following similar steps as the ones described in the proof of (4.170), one ends up with

〈λ|Hr|µ〉 =
∑
d∈Z≥0

zd
∑
w∈Sµ

∑
γ,α∈P≥0

k

δµ.w+γ,λ.yα , (4.179)

where the second sum is restricted to those weights γ, α ∈ P≥0
k with |γ| = r and |α| = d.

Let d ∈ Z≥0, and notice that the sum
∑

w∈Sµ
∑

γ,α∈P≥0
k
δµ.w+γ,λ.yα appearing in (4.179) is

non-zero only if |µ|+r−|λ| = dn. Assuming that the relation |µ|+r−|λ| = dn is satisfied,
this sum equals the cardinality of the set

{(w, γ, α) ∈ Sµ × P≥0
k × P

≥0
k | |γ| = r, |α| = d, µ.w + γ = λ.yα} .

The latter coincides with the set A introduced in the proof of Lemma 3.3.8, the cardinality
of which is given by θλ/d/µ. Lemma 3.2.7 implies that θλ/d/µ is non-zero if and only if
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λ/d/µ is a cylindric skew diagram, and then we end up with the equality 〈λ|Q+
r |µ〉 =∑

d∈Z≥0
zdψλ/d/µ, where the sum runs over all d ∈ Z≥0 for which λ/d/µ is a cylindric skew

diagram with |µ|+ r− |λ| = dn. This proves the validity of (4.178), since by applying the
dual vector 〈λ| on (4.178) we recover the same equality.

Equation (4.169) follows from the identity H∗ν = P Hν P in End(F⊗n), which can be
deduced from Lemmas 4.3.4 and 4.3.8. Alternatively, one can prove (4.169) by employing
similar steps as the ones described above. For this purpose, one has to take advantage of the
commutation relation H∗r b

∗
j =

∑r
t=0 b

∗
j−tH

∗
r−t, which follows after a repeated application

of the adjoint equation of (4.167).

Remark 4.4.7. The weights ψλ/d/µ(ν) and θλ/d/µ(ν) are non-zero only if λ/d/µ is a cylin-
dric skew diagram with |µ| + |ν| − |λ| = dn (compare with Definition 3.3.7). This means
that (4.168) and (4.176) do not change if we allow λ to run over all the weights in A+

k (n),
and then we have the identities

〈λ|Q+
ν |µ〉 =

∑
d∈Z≥0

zdψλ/d/µ(ν) , (4.180)

〈λ|Hν |µ〉 =
∑
d∈Z≥0

zdθλ/d/µ(ν) . (4.181)

These are the identities (4.114) and (4.115) respectively.

4.4.3 Monomial symmetric functions

We shall now focus on the operator introduced in (4.110), that is

Mλ = Ξ+
n (mλ) . (4.182)

In Section 4.5 we will employ the operators {Mµ}µ∈A+
k (n) to construct an algebra which is

isomorphic to Vk(n), the quotient of Λk[z, z
−1] defined in Section 3.3. Let

Mλ = Ξ+
n (mλ) (4.183)

be the image under Ξ+
n of the augmented monomial symmetric function mλ = uλmλ (see

Section 2.2.4), and notice that by definition we have the identity Mλ = uλMλ. Applying
the map Ξ+

n to both sides of (2.32), it follows that

Mλ =
∑

Π∈P`(λ)

B(Π)Tλ(Π) . (4.184)



CHAPTER 4. QUANTUM INTEGRABLE SYSTEMS 139

Recall that we can express every partition λ ∈ P+ with the notation (1m1(λ), 2m2(λ), . . . ),
which was introduced in (2.1). Set I0λ = λ, and for j > 0 define the partition

Ijλ = (1m1(λ), 2m2(λ), . . . , (j − 1)mj−1(λ), jmj(λ)+1, (j + 1)mj+1(λ), . . . ) . (4.185)

Moreover, set R0λ = λ, and for j > 0 with mj(λ) 6= 0 define the partition

Rjλ = (1m1(λ), 2m2(λ), . . . , (j − 1)mj−1(λ), jmj(λ)−1, (j + 1)mj+1(λ), . . . ) . (4.186)

Stated otherwise, we have that Ijλ is obtained from λ by adding a part equal to j, whereas
Rjλ is obtained from λ by removing a part equal to j, provided that mj(λ) 6= 0. Applying
the map Ξ+

n to both sides of (2.31), and taking advantage of (4.185) and (4.186), we have
that for `(λ) > 1 the operator Mλ satisfies the recurrence formula

Mλ = TλlM
Rλlλ −

`(λ)−1∑
i=1

M Iλi+λlRλiRλlλ , (4.187)

where we set l = `(λ). If instead `(λ) = 1, that is if λ = (r) for some r ∈ N, it follows
from (4.184) that M (r) = M(r) = Tr.

Proposition 4.4.8. For λ ∈ P+ and j ∈ Z we have the commutation relations

Mλb∗j = b∗jM
λ +

`(λ)∑
i=1

b∗j+λiM
Rλiλ , (4.188)

bjM
λ = Mλbj +

`(λ)∑
i=1

MRλiλbj−λi , (4.189)

where we set MRiλ = 0 whenever mi(λ) = 0.

Proof. We shall only prove (4.188), since (4.189) follows after employing completely anal-
ogous steps. For this purpose we use induction on the length of λ. If `(λ) = 0, that is if
λ = ∅, then (4.188) reduces to the identity b∗j = b∗j , as M∅ = 1. If instead `(λ) = 1, that
is if λ = (r) for some r ∈ N, then (4.188) coincides with the relation Trb∗j = b∗jTr + b∗j+r,
which is just (4.158). So let λ ∈ P+ with `(λ) > 1, and assume that (4.188) holds for all
partitions λ̃ such that `(λ̃) < `(λ). Moreover, set l = `(λ). Taking advantage of (4.187),
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together with the induction hypothesis, we have that

Mλb∗j =

(
TλlM

Rλlλ −
l−1∑
i=1

M Iλi+λlRλiRλlλ

)
b∗j

= Tλl

(
b∗jM

Rλlλ +
l−1∑
i=1

b∗j+λiM
RλiRλlλ

)

−
l−1∑
i=1

(
b∗jM

Iλi+λlRλiRλlλ +
l−1∑
s=1
s 6=i

b∗j+λsM
RλsIλi+λlRλiRλlλ + b∗j+λi+λlM

RλiRλlλ

)
.

Employing the commutation relation (4.158), it follows that

Mλb∗j = b∗jTλlM
Rλlλ + b∗j+λlM

Rλlλ +
l−1∑
i=1

b∗j+λiTλlM
RλiRλlλ +

l−1∑
i=1

b∗j+λi+λlM
RλiRλlλ

− b∗j

l−1∑
i=1

M Iλi+λlRλiRλlλ −
l−1∑
i=1

l−1∑
s=1
s 6=i

b∗j+λsM
Iλi+λlRλsRλiRλlλ −

l−1∑
i=1

b∗j+λi+λlM
RλiRλlλ .

In the double sum appearing in the second line, we took advantage of the equality
RλsIλi+λlRλiRλlλ = Iλi+λlRλsRλiRλlλ, which is valid for s 6= i and s 6= l − 1. In the
same double sum, let us first swap the summations in i and in s, and then make the
change of variables i↔ s. The equality above then becomes

Mλb∗j = b∗j

(
TλlM

Rλlλ −
l−1∑
i=1

M Iλi+λlRλiRλlλ

)
+ b∗j+λlM

Rλlλ

+
l−1∑
i=1

b∗j+λi

(
TλlM

RλlRλiλ −
l−1∑
s=1
s 6=i

M Iλs+λl
RλsRλlRλiλ

)
.

Using once again (4.187) for the terms in brackets, we then recover (4.188), and this
completes the proof by induction.

Corollary 4.4.9. For λ ∈ P+ and j ∈ Z we have the commutation relations

Mλb
∗
j = b∗jMλ +

∑
i≥1

b∗j+iMRiλ , (4.190)

bjMλ = Mλbj +
∑
i≥1

MRiλbj−i , (4.191)

where we set MRiλ = 0 whenever mi(λ) = 0.
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Proof. Notice that (4.188) can be written in the following equivalent form,

Mλb∗j = b∗jM
λ +

∑
i≥1

b∗j+iM
Riλmi(λ) .

Dividing both sides of this equality by uλ one then recovers (4.190), thanks to the fact
thatMλ = uλMλ, and that uλ = uRiλmi(λ) whenever mi(λ) 6= 0. Equation (4.191) follows
after a similar computation, starting from (4.189) instead.

Lemma 4.4.10. Let ν ∈ P+ and µ ∈ A+
k (n). We have that Mν |µ〉 = M∗

ν |µ〉 = 0 if
`(ν) > k, otherwise

Mν |µ〉 =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

Nλ,d
µν |λ〉 , (4.192)

M∗
ν |µ〉 =

∑
d∈Z≥0

z−d
∑

λ∈A+
k (n)

Nλ∨,d
µ∨ν |λ〉 . (4.193)

The coefficient Nλ,d
µν was defined in Chapter 3 as the cardinality of the set (3.39).

Proof. We start by evaluating the action of Mν on the state |µ〉. For this purpose, we
shall use the identity

Mνb
∗
µ =

∑
γ∈P≥0

k

b∗µ+γMRγν , (4.194)

where Rγν = Rγ1Rγ2 · · · ν if mi(γ) ≤ mi(ν) for all i ∈ N, and otherwise we set MRγν = 0.
This identity follows after a repeated application of the commutation relation (4.190),
which can be written as Mνb

∗
j =

∑
i∈Z≥0

b∗j+iMRiν . Let r ∈ Z, and notice that Tr |0〉 = 0

unless r = 0, in which case T0 |0〉 = |0〉. This can be deduced from (4.75), together with
the fact that bi |0〉 = 0. Moreover, let σ ∈ P+. Taking advantage of (4.184) and the
equality Mσ = uσMσ, it follows that Mσ |0〉 = 0 unless σ = ∅, in which case M∅ |0〉 = |0〉.
Suppose that `(ν) > k. Let γ ∈ P≥0

k and notice that γ, by definition, has fewer non-zero
parts than ν. We then have that MRγν |0〉 = 0, since Rγν 6= ∅ if mi(γ) ≤ mi(ν) for
all i ∈ N, and MRγν = 0 otherwise. Exploiting the expansion (4.156) for the state |µ〉,
together with (4.194), we conclude that Mν |µ〉 = 1

uµ
Mνb

∗
µ |0〉 = 0.

We now show the validity of (4.192), so suppose that `(ν) ≤ k. Let γ ∈ P≥0
k , and

notice that MRγν |0〉 = 0 unless γ = ν.w′′ for some w′′ ∈ Sν , in which case Rγν = ∅, and
then MRγν |0〉 = |0〉. Taking advantage of (4.156) and (4.194), it follows that

Mν |µ〉 =
1

uµ

∑
w′′∈Sν

b∗µ+ν.w′′ |0〉 .

Let λ ∈ A+
k (n). Thanks to (4.77), we have that 〈λ|b∗µ+ν.w′′|0〉 is non-zero if and only if



CHAPTER 4. QUANTUM INTEGRABLE SYSTEMS 142

there exists a pair (w′′′, β) ∈ Sλ×P≥0
k satisfying the constraint µ+ ν.w′′ = λ.w′′′yβ. If the

pair (w′′′, β) exists, then it is unique thanks to part (ii) of Proposition 2.1.6, and moreover
〈λ|b∗µ+ν.w′′|0〉 = z|β|uλ. With the help of (4.172), we then end up with the equalities

〈λ|Mν |µ〉 =
∑
d∈Z≥0

zd
uλ
uµ

∑
w′′∈Sν

∑
w′′′∈Sλ

∑
β∈P≥0

k

δµ+ν.w′′,λ.w′′′yβ

=
∑
d∈Z≥0

zd
1

uµ

∑
w′′∈Sν

∑
w′′′∈Sk

∑
β∈P≥0

k

δµ+ν.w′′,λ.w′′′yβ ,

where the sums are restricted to those β ∈ P≥0
k with |β| = d. Let us rewrite the con-

straint µ+ ν.w′′ = λ.w′′′yβ as µ.(w′′′)−1 + ν.w′′(w′′′)−1 = λ.yα, where we used the relation
w′′′yβ = yβ.(w

′′′)−1
w′′′, and we set α = β.(w′′′)−1. Part (ii) of Proposition 2.1.6 implies

that w′′(w′′′)−1 = wνw
ν , for some wν ∈ Sν and wν ∈ Sν , and then ν.w′′(w′′′)−1 = ν.wν .

Notice that for different elements w′′ ∈ Sν we end up with different elements wν ∈ Sν . Set
w = (w′′′)−1 and w′ = wν . Using (4.172) once again, we have that

〈λ|Mν |µ〉 =
∑
d∈Z≥0

zd
∑
w∈Sµ

∑
w′∈Sν

∑
α∈P≥0

k

δµ.w+ν.w′,λ.yα .

Let d ∈ Z≥0, and notice that
∑

w∈Sµ
∑

w′∈Sν
∑

α∈P≥0
k
δµ.w+ν.w′,λ.yα , where the third sum is

restricted to those weights α ∈ P≥0
k with |α| = d, equals the cardinality of the set

{(w,w′) ∈ Sµ × Sν | µ.w + ν.w′ = λ.yα for some α ∈ P≥0
k with |α| = d} ,

which is given by Nλ,d
µν (compare with Definition 3.3.3). In conclusion, we have that

〈λ|Mν |µ〉 =
∑
d∈Z≥0

zdNλ,d
µν , (4.195)

which is the identity (4.116), and this finally implies the validity of (4.192).
The claim for the operator M∗

λ is a consequence of the identity M∗
ν = PMν P in

End(F⊗n), which can be deduced from Lemmas 4.3.4 and 4.3.8. Alternatively, one can
prove the claim for M∗

λ by employing similar steps as the ones described above. For this
purpose, one has to take advantage of the commutation relationM∗

ν b
∗
j =

∑
i∈Z≥0

b∗j−iM
∗
Riν

,
which follows after a repeated application of the adjoint equation of (4.191).

Remark 4.4.11. The coefficients Nλ,d
µν for λ, µ, ν ∈ A+

k (n) correspond to the fusion coef-
ficients of a 2D TQFT, as we will see in Chapter 5. The interest aspect here is that these
coefficients are obtained by taking the matrix elements of the operators (4.183), which
are defined in terms of the conserved charges of a quantum integrable model. Recall that
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the same fusion coefficients were obtained in Chapter 3 by different means, that is via the
expansions (3.61), (3.62) and via the coproducts (3.88), (3.89).

4.4.4 Schur functions

Consider now the operator

Sλ = Ξ+
n (sλ) , (4.196)

which was defined in (4.111). From here to the end of this section, we set Q+
r = Hr = 0

for r < 0. With this convention, we have for example that the commutation relation
Q+
r b
∗
j = b∗jQ

+
r +b∗j+1Q

+
r−1, which was shown in Lemma 4.2.7, holds for all r ∈ Z. Moreover,

applying the map Ξ+
n to the Jacobi-Trudi determinants (2.25), it follows that

Sλ = det
(
Hλi−i+j

)
1≤i,j≤`(λ)

= det
(
Q+
λ′i−i+j

)
1≤i,j≤λ1

. (4.197)

Suppose that λ/µ is a cylindric skew diagram with r boxes. Write λ/µ = (r) if λ/µ is a
horizontal strip, and λ/µ = (1r) if λ/µ is a vertical strip.

Lemma 4.4.12. For λ ∈ P+ and j ∈ Z we have the commutation relations

Sλb
∗
j = b∗jSλ +

λ1∑
r=1

b∗j+r
∑
µ∈P+

λ/µ=(r)

Sµ , (4.198)

bjSλ = Sλbj +

λ1∑
r=1

( ∑
µ∈P+

λ/µ=(r)

Sµ

)
bj−r . (4.199)

Proof. We proceed in close analogy to the proof of Proposition 11.4 in [46]. We shall only
prove (4.198), since (4.199) follows after employing completely analogous steps. Let us
first rewrite (4.198) in terms of the conjugate partitions, that is

Sλ′b
∗
j = b∗jSλ′ +

`(λ)∑
r=1

b∗j+r
∑
µ∈P+

λ/µ=(1r)

Sµ′ . (4.200)

We will prove (4.200) by induction on the length of λ. If `(λ) = 0, that is if λ = ∅, this
reduced to the identity b∗j = b∗j , as S∅ = 1. If instead `(λ) = 1, that is if λ = (r) for some
r ∈ N, it follows from (4.197) that S(r)′ = Q+

r , and then (4.200) reduces to the identity
Q+
r b
∗
j = b∗jQ

+
r + b∗j+1Q

+
r−1. So let `(λ) > 1, and assume that (4.200) holds for all partitions

λ̃ with `(λ̃) < `(λ). Moreover, write `(λ) = l + 1 for some l ∈ N. Set λ = (λ0, λ1, . . . , λl),
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and define the partitions

λ[0] = (λ1, . . . , λl) ,

λ[i] = (λ0 + 1, . . . , λi−1 + 1, λi+1, . . . , λl) ,

where i = 1, . . . , l. Expanding the determinant in second equality of (4.197) along the
first column, it follows that

Sλ′ =
l∑

i=0

(−1)iQ+
λi−iSλ[i]′ . (4.201)

Employing this identity, together with the induction hypothesis and the commutation
relation Q+

r b
∗
j = b∗jQ

+
r + b∗j+1Q

+
r−1, we have that

Sλ′b
∗
j =

l∑
i=0

(−1)iQ+
λi−i

(
b∗jSλ[i]′ +

l∑
r=1

b∗j+r
∑
µ∈P+

λ[i]/µ=(1r)

Sµ′

)

=
l∑

i=0

(−1)i(b∗jQ
+
λi−i + b∗j+1Q

+
λi−i−1)Sλ[i]′

+
l∑

i=0

(−1)i
l∑

r=1

(b∗j+rQ
+
λi−i + b∗j+r+1Q

+
λi−i−1)

∑
µ∈P+

λ[i]/µ=(1r)

Sµ′ .

Let ρs be the partition of length s ∈ Z≥0 whose parts are all equal to 1. Since `(λ[i]) = l, it
follows that the only partition µ such that λ[i]/µ = (1l) is given by µ = λ[i]− ρl, and then∑

λ[i]/µ=(1l) Sµ′ = S(λ[i]−ρl)′ . Moreover, since the only partition µ satisfying the constraint
λ[i]/µ = (10) is given by µ = λ[i], we have that Sλ[i]′ =

∑
λ[i]/µ=(10) Sµ′ . Taking advantage

of the results just described, and rearranging terms, we end up with

Sλ′b
∗
j = b∗jSλ′︸ ︷︷ ︸

1

+
l∑

r=1

b∗j+r

l∑
i=0

(−1)i
(
Q+
λi−i

∑
µ∈P+

λ[i]/µ=(1r)

Sµ′ +Q+
λi−i−1

∑
µ∈P+

λ[i]/µ=(1r−1)

Sµ′

)
︸ ︷︷ ︸

2

+ b∗j+l+1

l∑
i=0

(−1)iQ+
λi−i−1S(λ[i]−ρl)′︸ ︷︷ ︸

3

Let ν = (ν0, . . . , νl′) be a partition with l′ ≤ l, set ν [0] = (ν1, . . . , νl) and moreover
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ν [j] = (ν0 + 1, . . . , νj−1 + 1, νj+1, . . . , νl′) for 1 ≤ j ≤ l′. Notice that if λ/ν = (1r) for some
r ∈ Z≥0, then for every i ∈ N with 1 ≤ i ≤ l′ we have that either λi = νi or λi = νi + 1.
We can use this fact to prove that λ/ν = (1r) and λi = νi if and only if λ[i]/µ[i] = (1r).
Similarly, we have that λ/ν = (1r) and λi = νi + 1 if and only if λ[i]/µ[i] = (1r−1).
See [46, Proposition 11.4] for details. Taking advantage of (4.201), and employing the
results which we just discussed, we have that

∑
µ∈P+

λ/µ=(1r)

Sµ′ =
l∑

i=0

(−1)iQ+
µi−i

∑
µ∈P+

λ/µ=(1r)

Sµ[i]′

=
l∑

i=0

(−1)i
(
Q+
λi−i

∑
µ∈P+

λ[i]/µ=(1r)

Sµ′ +Q+
λi−i−1

∑
µ∈P+

λ[i]/µ=(1r−1)

Sµ′

)
.

Notice that the sum in the index i runs up to l, since for i > l′ we have that Q+
µi−i = 0.

It then follows that 2 =
∑l

r=1 b
∗
j+r

∑
λ/µ=(1r) Sµ. Finally, taking advantage of (4.201),

together with the identity λ[i] − ρl = (λ− ρl+1)[i], which can be deduced after a straight-
forward computation, we end up with

3 = b∗j+l+1

l∑
i=0

(−1)iQ+
λi−i−1S(λ−ρl+1)[i]′ = b∗j+l+1S(λ−ρl+1)′ =

∑
µ∈P+

λ/µ=(1l+1)

Sµ′ .

In conclusion, the combination 1 + 2 + 3 coincides with the RHS of (4.200). This
completes the induction proof.

Lemma 4.4.13. Let ν ∈ P+ and µ ∈ A+
k (n). We have that Sν |µ〉 = S∗ν |µ〉 = 0 if

`(ν) > k, otherwise

Sν |µ〉 =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

χλ,dµν |λ〉 , (4.202)

S∗ν |µ〉 =
∑
d∈Z≥0

z−d
∑

λ∈A+
k (n)

χλ
∨,d
µ∨ν |λ〉 . (4.203)

The coefficient χλ,dµν was introduced in Definition 3.3.17.

Proof. The claim follows after a straightforward but tedious computation, which resembles
the one presented in the proof of Lemma 4.4.10. This computation consists in a repeated
application of (4.198) and the adjoint equation of (4.199) to the states Sν |µ〉 and S∗ν |µ〉
respectively.

We now present an alternative proof of the claim. Applying the maps Ξ+
n and Ξ−n

to both sides of the expansion sν =
∑

σ∈P+ Kνσmσ, which was introduced in (2.24), we
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end up respectively with the identities Sν =
∑

σ∈P+ KνσMσ and S∗ν =
∑

σ∈P+ KνσM
∗
σ .

Moreover, we have that that Kνσ = 0 if `(σ) < `(ν); see for example [52, I.6]. Taking
advantage of these results, together with Lemma 4.4.10 and Definition 3.3.17, we deduce
that Sν |µ〉 = S∗ν |µ〉 = 0 if `(ν) > k, and that equations (4.202) and (4.203) hold if
`(ν) ≤ k.

Remark 4.4.14. Applying the dual vector 〈λ|, where λ ∈ A+
k (n), on the state (4.202) we

end up with the equality

〈λ|Sν |µ〉 =
∑
d∈Z≥0

zdχλ,dµν , (4.204)

provided that `(ν) ≤ k. Otherwise we have that 〈λ|Sν |µ〉 = 0. This completes the proof
of the identities (4.113) to (4.117).

Remark 4.4.15. The result presented in Lemma 4.4.13 can be used to prove some com-
binatorial identities between the coefficients appearing in (4.160), (4.168), (4.176), (4.192)
and (4.202). As an example, consider the expansion eν =

∑
σ∈P+ Mνσmσ, which first

appeared in (2.22). Applying the map Ξ+
n to both sides of this expansion, we have that

Q+
ν =

∑
σ∈P+ MνσMσ, and taking advantage of this last relation, together with Lemma

4.4.10, we can then deduce that

Q+
ν |µ〉 =

∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

( ∑
σ∈P+

k

Nλ,d
µσ Mνσ

)
|λ〉 .

A comparison with (4.168) yields the following combinatorial identity,

ψλ/d/µ(ν) =
∑
σ∈P+

k

Nλ,d
µσ Mνσ ,

which has been shown already in Proposition 3.3.10 by different means.

4.5 State-charge correspondence

In Section 4.4 we considered the images under the maps Ξ±n of the bases of Λ introduced
in Section 2.2, and we studied their action on the vectors |µ〉 ∈ F⊗n. Notice that in
Lemmas 4.4.2, 4.4.5, 4.4.6 and 4.4.10 we recover the coefficients appearing in the product
expansions (3.40), (3.49), (3.51) and (3.78). These product expansions belong to Vk(n),
which is the quotient of Λk[z, z

−1] defined in Section 3.3. We shall formalise this fact in the
next lemma. Denote by ΛR ⊂ Λ the ring of symmetric functions with real coefficients. For



CHAPTER 4. QUANTUM INTEGRABLE SYSTEMS 147

λ, µ ∈ A+
k (n) and g ∈ ΛR, define the coefficient gλ,dµ via the following product expansion

in Vk(n),

g(x1, . . . , xk)mµ(x1, . . . , xk) =
∑
d∈Z

zd
∑

λ∈A+
k (n)

gλ,dµ mλ(x1, . . . , xk) . (4.205)

Lemma 4.5.1. Let µ ∈ A+
k (n) and g ∈ ΛR. We have the equalities

Ξ+
n (g) |µ〉 =

∑
d∈Z

zd
∑

λ∈A+
k (n)

gλ,dµ |λ〉 , (4.206)

Ξ−n (g) |µ〉 =
∑
d∈Z

z−d
∑

λ∈A+
k (n)

gλ
∨,d
µ∨ |λ〉 . (4.207)

Proof. Since g ∈ ΛR, we can write that g =
∑

σ∈P+ gσmσ for some coefficients gσ ∈ R

satisfying the relation gσ = g∗σ. Projecting both sides of this equality onto Λk, we arrive at
the identity g(x1, . . . , xk) =

∑
σ∈P+

k
gσmσ(x1, . . . , xk). This is because mσ(x1, . . . , xk) = 0

if `(σ) > k, as shown in Lemma 2.2.5. Taking advantage of the quotient map πk,n :

Λ[z, z−1] → Vk(n), together with Lemma 3.3.5, we end up with the following identity in
Vk(n),

g(x1, . . . , xk)mµ(x1, . . . , xk) =
∑
d∈Z

zd
∑

λ∈A+
k (n)

( ∑
σ∈P+

k

gσN
λ,d
σµ

)
mλ(x1, . . . , xk) ,

and a comparison with (4.205) yields the equality gλ,dµ =
∑

σ∈P+
k
gσN

λ,d
σµ . Thanks to this

last equality, together with Lemma 4.4.10, we can then employ the relations Ξ+
n (g) =∑

σ∈P+ gσMσ and Ξ−n (g) =
∑

σ∈P+ gσM
∗
σ to prove the claim.

We now show that the conserved charges of the free boson model generate an algebra
which is isomorphic to Vk(n). Compare with [46, Theorem 6.12] and [41, Theorem 7.11].

Theorem 4.5.2. Set Fk(n) = F⊗nk ⊗ C[z, z−1], and define for µ, ν ∈ A+
k (n) the product

|µ〉~ |ν〉 ≡Mµ |ν〉 . (4.208)

Then (Fk(n),~) is a commutative, associative and unital C[z, z−1]-algebra. The unit is
given by z−k |nk〉, where nk = (n, . . . , n) ∈ A+

k (n). So, in particular |λ〉 = z−kMλ |nk〉.

Proof. Thanks to Lemma 4.4.10, we have that

|µ〉~ |ν〉 =
∑
d∈Z≥0

zd
∑

λ∈A+
k (n)

Nλ,d
µν |λ〉 . (4.209)
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The fact that (Fk(n),~) is a commutative algebra follows from the equality Nλ,d
µν = Nλ,d

νµ ,
which was shown in Lemma 3.3.6. Taking advantage of (4.209), together with Property 5

of Lemma 3.3.6, which is the identity Nλ,d
nkν

= δd,kδλν , it follows that |nk〉 ~ |ν〉 = zk |ν〉.
This implies that the unit element of (Fk(n),~) is given by z−k |nk〉. Finally, associativity
is a consequence of the following chain of equalities,

(|η〉~ |µ〉) ~ |ν〉 =
∑

d1∈Z≥0

zd1

∑
σ∈A+

k (n)

Nσ,d1
ηµ |σ〉~ |ν〉

=
∑

d1∈Z≥0

∑
d2∈Z≥0

zd1+d2

∑
σ,ρ∈A+

k (n)

Nσ,d1
ηµ Nρ,d2

σν |ρ〉

=
∑
d∈Z≥0

zd
∑

ρ∈A+
k (n)

( ∑
d1+d2=d
d1,d2≥0

∑
σ∈A+

k (n)

Nσ,d1
ηµ Nρ,d2

σν

)
|ρ〉

=
∑
d∈Z≥0

zd
∑

ρ∈A+
k (n)

( ∑
d1+d2=d
d1,d2≥0

∑
σ∈A+

k (n)

Nσ,d1
µν Nρ,d2

ση

)
|ρ〉

=
∑

d1∈Z≥0

∑
d2∈Z≥0

zd1+d2

∑
σ,ρ∈A+

k (n)

Nσ,d1
µν Nρ,d2

ση |ρ〉

= |η〉~
( ∑
d1∈Z≥0

zd1

∑
σ∈A+

k (n)

Nσ,d1
µν |σ〉

)
= |η〉~ (|µ〉~ |ν〉) ,

where in the fourth line we used Property 2 of Lemma 3.3.6.

Theorem 4.5.3. The assignment |λ〉 7→ mλ(x1, . . . , xk) ∈ Vk(n) for all λ ∈ A+
k (n) defines

an isomorphism of algebras
(Fk(n),~) ∼= Vk(n) . (4.210)

Proof. Let φ : (Fk(n),~) → Vk(n) be the map defined as φ(|λ〉) = mλ(x1, . . . , xk) for
all λ ∈ A+

k (n). Taking advantage of Lemma 3.3.5, together with (4.209), one has that
φ(|µ〉~ |ν〉) = φ(|µ〉)φ(|ν〉). This implies that φ defines an algebra homomorphism. But
since {|λ〉}λ∈A+

k (n) and {mλ(x1, . . . , xk)}λ∈A+
k (n) are bases of (Fk(n),~) and Vk(n) respec-

tively, it follows that φ is an algebra isomorphism, thus proving the claim.

4.5.1 Idempotents in the algebra (Fk(n),~)

The goal of this section is to show that the eigenvectors of the operators belonging to
the image of the maps Ξ±n coincide with the idempotents of the algebra (Fk(n),~) intro-
duced in Theorem 4.5.2. This statement is formalised in Proposition 4.5.6 below. This is
analogous to the case of the Verlinde algebra Vk(ŝln) in relation to the phase model [46].
Assume that z±1/n exists, and let χ be a primitive n-th root of unity. For j = 1, . . . , n,
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set ζj = z1/nχj and consider the following Fourier transforms of the creation operators in
the Heisenberg algebra Hn,

B∗j =
1√
n

n∑
l=1

(ζj)
−l b∗l . (4.211)

Moreover, for λ ∈ A+
k (n) set ζλ = (ζλ1 , . . . , ζλk) and define

|ζλ〉 = B∗λ1
B∗λ2
· · ·B∗λk |0〉 =

1

nk/2

∑
σ∈A+

k (n)

mσ(ζλ) |σ〉 . (4.212)

In the last equality we used the identity mσ(ζλ) =
∑

w∈Sk ζ
σw(1)

λ1
· · · ζσw(k)

λk
, which follows

from Lemma 2.2.8, and moreover we employed the relation z̄ = z−1. We will show in
Lemma 4.5.5 below that the states (4.212) are simultaneous eigenvectors of all the opera-
tors belonging to the image of the maps Ξ±n . We shall take advantage of the scalar product
〈 | 〉ι introduced in Section 4.1.4. This is the scalar product induced by the vector space
isomorphism ι : F⊗n → F̃⊗n, which was defined in (4.44) as

|λ〉 7→ 1

uλ
〈λ| .

Recall that 〈 | 〉ι is by definition antilinear in the first factor.

Lemma 4.5.4. The states {|ζλ〉}λ∈A+
k (n) form an orthogonal basis of F⊗nk with respect to

the scalar product 〈 | 〉ι. Their norm is given by ||ζλ|| ≡ 〈ζλ|ζλ〉1/2ι = u
1/2
λ .

Proof. Thanks to Lemma 2.2.5, we can deduce that

mλ(ζµ) =
z
|λ|
n

uλ

∑
w∈Sk

k∏
i=1

χλi µw(i) . (4.213)

Taking advantage of this last identity, together with the relation mσ = uσmσ, we have
that the scalar product between the states |ζλ〉 and |ζµ〉 is given by

〈ζλ | ζµ〉ι =
1

nk

∑
σ∈A+

k (n)

mσ(ζλ)mσ(ζµ)

=
1

nk

∑
σ∈A+

k (n)

1

uσ

∑
w′,w′′∈Sk

k∏
i=1

χσi(λw′(i)−µw′′(i)) .

Let f : Pk → C, and consider the identity

n∑
σ1=1

· · ·
n∑

σk=1

f(σ) =
∑

σ∈A+
k (n)

∑
w∈Sσ

f(σ.w) ,
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where we set σ = (σ1, . . . , σk) ∈ Pk. If the function f satisfies the constraint f(σ.w) = f(σ)

for all w ∈ Sσ, then the RHS of the identity above is equal to
∑

σ∈A+
k (n) |Sσ|f(σ). Moreover,

for σ ∈ A+
k (n) we have the relation |Sσ| = uσ, and then |Sσ| = |Sk|/|Sσ| = k!/uσ. Notice

that if we set f(σ) =
∑

w′,w′′∈Sk

∏k
i=1 χ

σi(λw′(i)−µw′′(i)), we have that

f(σ.w) =
∑

w′,w′′∈Sk

k∏
i=1

χσw(i)(λw′(i)−µw′′(i))

=
∑

w′,w′′∈Sk

k∏
i=1

χσi(λw−1w′(i)−µw−1w′′(i))

=
∑

w′,w′′∈Sk

k∏
i=1

χσi(λw′(i)−µw′′(i)) = f(σ) .

In the last line we renamed w−1w′ and w−1w′′ respectively as w′ and w′′. We then have
the following chain of equalities,

〈ζλ | ζµ〉ι =
1

nkk!

∑
w′,w′′∈Sk

n∑
σ1=1

· · ·
n∑

σk=1

n∏
i=1

χσi(λw′(i)−µw′′(i))

=
1

nkk!

∑
w′,w′′∈Sk

k∏
i=1

n∑
σi=1

χσi(λw′(i)−µw′′(i))

=
1

k!

∑
w′,w′′∈Sk

k∏
i=1

δλw′(i),µw′′(i)

=
1

k!

∑
w′,w′′∈Sk

k∏
i=1

δλi,µ(w′)−1w′′(i)
= uµ

∑
w∈Sµ

k∏
i=1

δλi,µw(i)
.

In the third line we employed for r ∈ Z the relation
∑n

j=1 χ
rj = nδrmodn,0, which follows

from the fact that χ is a n-th root of unity. In the last equality, we first renamed (w′)−1w′′

as w, and then we applied equation (4.172). It follows that

〈ζλ | ζµ〉ι = uµδλµ , (4.214)

which shows that the vectors {|ζλ〉}λ∈A+
k (n) are orthogonal, with norm ||ζλ|| = u

1/2
λ . This

also implies the validity of the following identity,

1

nk

∑
σ∈A+

k (n)

mσ(ζλ)mσ(ζµ) = uλδλµ . (4.215)

Taking advantage of (4.212) and (4.215), together with the equality z−|σ|/nmσ(ζλ) =
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z−|λ|/nmλ(ζσ), we end up with

|µ〉 =
∑

λ∈A+
k (n)

mµ(ζλ)

nk/2uλ
|ζλ〉 . (4.216)

Since this last relation holds for all µ ∈ A+
k (n), and since {|µ〉}µ∈A+

k (n) is a basis of F⊗nk ,
we conclude that the states {|ζλ〉}λ∈A+

k (n) form a basis of F⊗nk as well, thus proving the
claim.

Lemma 4.5.5. For every g ∈ Λ, the states {|ζλ〉}λ∈A+
k (n) are eigenvectors of the operators

Ξ±n (g), with eigenvalues

Ξ+
n (g) |ζλ〉 = g(ζλ) |ζλ〉 , (4.217)

Ξ−n (g) |ζλ〉 = g(ζλ) |ζλ〉 . (4.218)

Proof. Multiplying both sides of the commutation relation Q+
r b
∗
l = b∗lQ

+
r + b∗l+1Q

+
r−1 by

n−1/2(ζj)
−l, and summing over all l = 1, . . . ,m and r ∈ Z≥0, we end up with the equality

Q+(u)B∗j = (1 + uζj)B
∗
jQ

+(u). This, together with (4.212), can be used to prove that the
states {|ζλ〉}λ∈A+

k (n) are eigenvectors of the Q+ operator, with eigenvalue

Q+(u) |ζλ〉 =
k∏
i=1

(1 + uζλi) |ζλ〉 . (4.219)

A comparison of (4.219) with the generating function (2.19) of the elementary symmetric
functions, which for k variables is given by E(u) =

∏k
j=1(1 + uxj), implies that Q+

r |ζλ〉 =

er(ζλ) |ζλ〉 for all r ∈ Z≥0 and λ ∈ A+
k (n). Thanks to Proposition 4.99 we have that

Q+
r = Ξ+

n (er), and since {eλ}λ∈P+ is a basis of Λ we deduce the validity of (4.217). Let
s ∈ Z with 0 < s < n, and consider the following chain of equalities,

T−s |ζλ〉 = z−1Tn−s |ζλ〉 = z−1pn−s(ζλ) |ζλ〉

= z−1

n∑
j=1

ζn−sλj
|ζλ〉 =

n∑
i=1

ζ−sλj |ζλ〉 = ps(ζλ) |ζλ〉 .

In the first line we employed equations (4.82) and (4.217). In the second line we used
the identity ζnj = z for j = 1, . . . , n, together with the relation z−1 = z̄. Moreover, since
T−n = z−1N , it follows that T−n |ζλ〉 = pn(ζλ) |ζλ〉. This is because, as we mentioned at
the beginning of Section 4.2, the number operator N =

∑n
i=1 b

∗
i bi satisfies the eigenvalue

equation N |ζλ〉 = k |ζλ〉. Finally, taking advantage of the relation T−i = z−1T−i+n for
i > n, we have that T−r |ζλ〉 = pr(ζλ) |ζλ〉 for all r ∈ Z≥0. This last equality implies the
validity of (4.218), since Ξ−n (pr) = T−r by definition, and moreover {pλ}λ∈P+ is a basis of
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Λ.

The next result implies that the states {|eλ〉}λ∈A+
k (n) defined via the relation

|eλ〉 ≡
1

nk/2uλ
|ζλ〉 (4.220)

are a complete set of orthogonal idempotents of the algebra (Fk(n),~). Compare with [41,
Prop. 7.15].

Proposition 4.5.6. For every λ, µ ∈ A+
k (n) we have the relation

|eλ〉~ |eµ〉 = δλµ |eλ〉 . (4.221)

Moreover, the unit of (Fk(n),~) admits the following decomposition,

z−k |nk〉 =
∑

λ∈A+
k (n)

|eλ〉 , (4.222)

where nk = (n, . . . , n) ∈ A+
k (n).

Proof. We have the chain of equalities

|ζλ〉~ |ζµ〉 =
1

nk/2

∑
σ∈A+

k (n)

mσ(ζλ) |σ〉~ |ζµ〉

=
1

nk/2

∑
σ∈A+

k (n)

mσ(ζλ)Mσ |ζµ〉

=
1

nk/2

∑
σ∈A+

k (n)

mσ(ζλ)mσ(ζµ) |ζµ〉 = δλµ n
k/2uλ |ζλ〉 .

In the first line we used the expansion (4.212), whereas in the second line we took ad-
vantage of the product (4.208). In the third line we employed Lemma 4.5.5 for the op-
erator Mσ = Ξ+

n (mσ), and then we made use of the relation (4.215). Equation (4.221)
then follows by plugging the relation |ζν〉 = nk/2uν |eν〉 for ν ∈ A+

k (n) into the equality
|ζλ〉 ~ |ζµ〉 = δλµ n

k/2uλ |ζλ〉. Starting from (4.215), and taking advantage of the relation
z|µ|/nuλmλ(ζµ) = z|λ|/nuµmµ(ζλ), which follows from (4.213), we end up with the identity

1

nk

∑
σ∈A+

k (n)

1

uσ
mλ(ζσ)mµ(ζσ) = δλµ . (4.223)
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We can then employ (4.223) to obtain the equalities

∑
λ∈A+

k (n)

|eλ〉 =
∑

σ∈A+
k (n)

(
1

nk

∑
λ∈A+

k (n)

1

uλ
mσ(ζλ)

)
|σ〉

= z−k
∑

σ∈A+
k (n)

(
1

nk

∑
λ∈A+

k (n)

1

uλ
mnk(ζλ)mσ(ζλ)

)
|σ〉 = z−k |nk〉 ,

thus proving the validity of (4.222). In the first line we took advantage of (4.212) and
(4.220), whereas in the second line we used the relation mnk(ζλ) = zk, which can be
deduced from (4.213).



Chapter 5

Generalised Verlinde algebras

The Verlinde algebra of an affine Lie algebra ĝ is the fusion algebra of the integrable
highest weight modules of level k [33]. The basis of the Verlinde algebra is indexed by the
elements from the set of integral dominant weights of level k. For the special case of the
ŝln-Verlinde algebra, the latter is in bijection with the set A+

k (n) introduced in (3.11) [41].
The ŝln-Verlinde algebra is therefore defined as the C-algebra with basis indexed by the
elements from A+

k (n) with the multiplication

λ ∗ µ =
∑

ν∈A+
k (n)

N λ
µν ν , (5.1)

where the structure constants N λ
µν , the so-called fusion coefficients, are given in terms of

the Verlinde formula

N λ
µν =

∑
σ∈A+

k (n)

SµσSνσS−1
σλ

Snkσ
. (5.2)

The characters of the integrable highest weight modules of level k yield a representation
of the modular group SL2(Z) [33]. The images of the generators of SL2(Z) are known as
the S-matrix (which appears in the Verlinde formula) and the T -matrix of the Verlinde
algebra. The S-matrix is given by the Kac-Peterson formula [33], but for the ŝln-Verlinde
algebra it can be alternatively computed via Schur functions (see Section 2.2) evaluated
at roots of unity [46]. Verlinde algebras can be identified with the Grothendieck ring
of modular tensor categories [2], and therefore they are endowed with the structure of a
Frobenius algebra, that is a 2D TQFT (see Section 1.1).

As we discussed in Chapter 1, we have the isomorphism of rings

Vk(ŝln) ∼= Λk/〈s(n) − 1, s(n+1), . . . , s(n+k−1), s(n+k) + (−1)ks(1k)〉 , (5.3)

154
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where Vk(ŝln) is the ŝln-Verlinde algebra, and {sλ}λ∈P+ are the Schur functions. If k = 1,
we have that Vk(ŝln) is isomorphic to Vk(n), the quotient of Λ[z, z−1] introduced in Section
3.3, when specialised to z = 1 [44]. We therefore refer to Vk(n) as a ‘generalised Verlinde
algebra’. We show that Vk(n) is a Frobenius algebra, and that its structure constants
Nλ,d
µν (see Definition 3.3.3) satisfy a Verlinde-type formula. We describe a representation

of the modular group SL2(Z), and we identify the image of a generator of SL2(Z) as the
transition matrix from the basis of eigenvectors for the free boson model to the particle
basis (see Section 4.5.1). The latter is the matrix which enters into the Verlinde-type
formula mentioned above. Finally, we present an alternative formula for Nλ,d

µν in terms of
tensor multiplicities for irreducible representations of the generalised symmetric group. We
shall work with the algebra (Fk(n),~) introduced in Theorem 4.5.2, which is isomorphic
to Vk(n) as showed in Theorem 4.5.3.

5.1 The modular group

The modular group is by definition the special linear group SL2(Z), which is the group of
2× 2 matrices with integer entries and determinant 1 (see e.g. [21, Ch. 8.16]). The group
SL2(Z) is isomorphic to the group generated by two elements s and t, which satisfy the
relations

(st)3 = s2 , s4 = 1 . (5.4)

Some authors define the modular group to be the projective special linear group PSL2(Z)

instead, which is the quotient of SL2(Z) over the integers by its centre {I,−I} (see e.g. [17,
Ch. 10]).

Let χ be a n-th primitive root of unity, and recall from Section 4.5.1 the notation
ζλ = (ζλ1 , . . . , ζλk) for λ ∈ A+

k (n), where ζj = z1/nχj for j = 1, . . . , n. Employing equation
(4.216), we can introduce the transition matrix [45, Lemma 4.1]

Sλµ =
mλ(ζµ)

nk/2
(5.5)

from the basis {u−1
µ |ζµ〉}µ∈A+

k (n) to the basis {|λ〉}λ∈A+
k (n) of F⊗nk , where the vector |ζλ〉

was introduced in (4.212). Notice that both these bases are orthogonal with respect to
the scalar product 〈 | 〉ι introduced in Section 4.1.4. Namely, setting |ζ̃λ〉 = u−1

λ |ζλ〉 we
have that 〈µ|λ〉ι = 〈ζ̃µ|ζ̃λ〉ι = u−1

λ δλµ. We call (5.5) the S-matrix, although at present such
matrix is not related to any known Verlinde algebra. The goal of this section is to prove
that the S-matrix introduced above, together with the T -matrix defined via the relation

Tλµ = δλµ

k∏
j=1

θλj , θλj = e−
πi
n

(
λ2
j+

1
12
n(n−1)

)
, (5.6)
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yields a representation of the modular group. Notice that both these matrices are labelled
in terms of partitions belonging to the set A+

k (n).

5.1.1 Properties of the S-matrix

Define an involution ∗ : A+
k (n)→ A+

k (n) via

λ 7→ λ∗ = (1mn−1(λ), 2mn−2(λ), . . . , (n− 1)m1(λ), nmn(λ)) , (5.7)

where we use the notation introduced in (2.1) for partitions. Notice that we have the
alternative expression

λ∗ = (n, . . . , n, n− λ`(λ)−mn(λ), . . . , n− λ2, n− λ1) . (5.8)

Lemma 5.1.1. The S-matrix introduced in (5.5) satisfies the following properties.

1. Sλµ = z
|λ|−|µ|
n

uµ
uλ
Sµλ .

2. S−1
λµ = z

|λ|−|µ|
n Sλµ .

3. Sλµ = z−
|λ|+|λ∗|

n Sλ∗µ = z−2
|λ|
n Sλµ∗ .

Proof. Thanks to Lemma 2.2.5 we have the identity

mλ(ζµ) =
z
|λ|
n

uλ

∑
w∈Sk

k∏
i=1

χλi µw(i) , (5.9)

which was mentioned in the proof of Proposition 4.5.4. Taking advantage of the equality
z|µ|/nuλmλ(ζµ) = z|λ|/nuµmµ(ζλ), which follows from (5.9), we can then immediately deduce
the validity of Property 1. A comparison of equation (4.223), that is

1

nk

∑
σ∈A+

k (n)

1

uσ
mλ(ζσ)mµ(ζσ) = δλµ ,

with (5.5) shows that

S−1
σµ =

mµ(ζσ)

nk/2uσ
= z

|σ|−|µ|
n

mσ(ζµ)

n
k
2

= z
|σ|−|µ|
n Sσµ , (5.10)

which proves Property 2. Let w̄ ∈ Sλ∗ be the permutation defined via the relation λ∗.w̄ =
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(λ∗k, λ
∗
k−1, . . . , λ

∗
1), and consider the following chain of equalities,

mλ(ζµ) =
z−
|λ|
n

uλ

∑
w∈Sk

k∏
i=1

χ−λiµw(i)

=
z−
|λ|
n

uλ

∑
w∈Sk

k∏
i=1

χ(n−λi)µw(i)

=
z−
|λ|
n

uλ

∑
w∈Sk

k∏
i=1

χλ
∗
w̄(i)

µw(i)

=
z−
|λ|
n

uλ

∑
w∈Sk

k∏
i=1

χλ
∗
i µw̄−1w(i) = z−

|λ∗|+|λ|
n mλ∗(ζµ) .

In the first line we used the relation z̄ = z−1, whereas in the third line we employed (5.8),
together with the fact that χn = 1. In the last line we first renamed w̄−1w as w, and
then we used (5.9). A similar computation shows that mλ(ζµ) = z−2

|λ|
n mλ(ζµ∗). Thanks

to these equalities, together with (5.5), we can finally deduce the validity of Property 3.

5.1.2 The charge conjugation matrix

The S-matrix of the Verlinde algebra satisfies the identity S2
λµ = δλµ∗ , where λ, µ are labels

for the integrable dominant weights of level k, and λ∗, µ∗ are the weights corresponding
to the conjugate representations. The matrix C = S2 is known as the charge conjugation
matrix (or C-matrix) of the Verlinde algebra. See for example [17] for details. Let us
define a C-matrix via the relation

Cλµ = δλµ∗ , (5.11)

where λ, µ ∈ A+
k (n), and the map ∗ : A+

k (n)→ A+
k (n) was introduced in (5.7). Since the

map ∗ : A+
k (n)→ A+

k (n) is an involution, it follows that

C2
λµ = δλµ . (5.12)

Stated otherwise, C2 corresponds to the identity matrix.

Lemma 5.1.2. Set z = 1. The S-matrix, T -matrix and C-matrix introduced respectively
in (5.5), (5.6) and (5.11) satisfy the identities

S2 = C (5.13)

and
CT = T C . (5.14)
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Proof. Suppose first that k = 1. Equations (5.5), (5.6) and (5.11) then coincide respec-
tively with the S-matrix, T -matrix and C-matrix from the ŝln-Verlinde algebra at level
k = 1 (see e.g. [33] for details). The proof of (5.13) and (5.14) for k = 1 can be found in
loc. cit. Assume now that k > 1, and notice that we have the identities

Sλµ =
∑
w∈Sλ

k∏
i=1

Sw(λi),µi , Tλµ =
k∏
i=1

Tλi,µi , Cλµ =
k∏
i=1

Cλi,µi , (5.15)

where (Srs)1≤r,s≤n, (Trs)1≤r,s≤n and (Crs)1≤r,s≤n are the S-matrix, T -matrix and C-matrix
for the case k = 1. In the proof of Proposition 4.5.4 we showed the validity of the following
equality,

n∑
σ1=1

· · ·
n∑

σk=1

f(σ) =
∑

σ∈A+
k (n)

k!

uσ
f(σ) , (5.16)

where σ = (σ1, . . . , σk) ∈ Pk, and f : Pk → C satisfies the constraint f(σ.w) = f(σ) for
all w ∈ Sk. Starting from the expansion S2

λµ =
∑

σ∈A+
k (n) SλσSσµ we deduce the following

chain of equalities,

S2
λµ =

∑
w∈Sλ

k∏
i=1

S2
λw(i),µi

=
∑
w∈Sλ

k∏
i=1

Cλw(i),µi =
∑
w∈Sλ

k∏
i=1

δ(λw(i)−µi) modn,0 = Cλµ ,

which proves the validity of the relation S2 = C for k > 1. The first equality follows after
a straightforward computation, with the help of (5.15) and (5.16). For the second one
we employed the relation S2 = C for the case k = 1. In the third we used the identity
Crs = δ(r−s) modn,0, which follows from (5.11) for k = 1. The relation (5.14) follows instead
from the equalities

(CT )λµ = Cλµ
k∏
i=1

θµi =
k∏
i=1

Cλiµiθµi =
k∏
i=1

θλiCλiµi = (T C)λµ ,

where in the third one we employed the relation CT = T C for the case k = 1.

5.1.3 A representation of the modular group

We are now ready to prove the main result of this section.

Proposition 5.1.3 ( [45]). Set z = 1. The S-matrix and T -matrix introduced respectively
in (5.5) and (5.6) define a representation of the modular group SL2(Z). That is, we have
the relations

(ST )3 = S2 , S4 = 1 . (5.17)

Proof. Notice that the relation S4 = 1 follows immediately from Lemma 5.1.2, since C2
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Figure 5.1: The cobordisms which represent a generating set of arrows for 2Cob.

coincides with the identity matrix. Suppose that k = 1. As we pointed out in the proof of
Lemma 5.1.2, equations (5.5), (5.6) and (5.11) coincide respectively with the S-matrix, T -
matrix and C-matrix from the ŝln-Verlinde algebra at level k = 1 (see e.g. [33] for details).
The proof of the relation (ST )3 = S2 for k = 1 can then be found in loc. cit. Assume now
that k > 1, and consider the expansion (ST )3

λµ =
∑

ρ,σ∈A+
k (n) SλρθρSρσθσSσµθµ, where we

set θν =
∏k

i=1 θνi for ν ∈ A
+
k (n). With the help of (5.15) and (5.16), we end up with the

following chain of equalities,

(ST )3
λµ =

∑
w∈Sµ

k∏
i=1

(ST )3
λi,µw(i)

=
∑
w∈Sµ

k∏
i=1

Cλi,µw(i)
=
∑
w∈Sµ

k∏
i=1

δ(λi−µw(i)) modn,0 = Cλµ .

which shows the validity of the relation (ST )3 = S2 for k > 1 thanks to equation (5.13).
In the second equality we employed the relations (ST )3 = S2 = C for the case k = 1.

5.2 Frobenius algebras and 2D TQFT

In this section we will show that the algebra (F⊗nk ,~), which was introduced in Theorem
4.5.2, can be endowed with the structure of a Frobenius algebra. We first recall some
known facts about Frobenius algebras, and we refer the reader to [36, Ch.2] for further
details.

Let A be an algebra over a field K, and suppose that A is equipped with a bilinear
form β : A ⊗ A → K. The bilinear form β is non-denegerate if and only if the relation
β(a, b) = 0 for all a ∈ A implies that b = 0. Moreover, β is called invariant if for every
a, b, c ∈ A the following relation is satisfied,

β(a, bc) = β(ab, c) . (5.18)

Definition 5.2.1. A Frobenius algebra is a finite dimensional, unital and associative
algebra A over a field K equipped with a non-degenerate and invariant bilinear form.

Equivalently, one can define a Frobenius algebra as a finite dimensional, unital and
associative algebra A over a field K equipped with a linear functional ε : A → K whose
kernel contains no non-trivial left ideals. The functional ε ∈ A∗ is called a Frobenius form,
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and we have the identity
β = ε ◦ µ , (5.19)

where µ : A ⊗ A → A is the multiplication map. Since the bilinear form β is non-
degenerate, one can show that there exists a unique co-form γ : K→ A⊗A such that the
two compositions

A
IdA⊗γ−−−→ A⊗ A⊗ A β⊗IdA−−−−→ A ,

A
γ⊗IdA−−−→ A⊗ A⊗ A IdA⊗β−−−−→ A ,

are the identity map IdA : A→ A. The following compositions coincide,

A
IdA⊗γ−−−→ A⊗ A⊗ A µ⊗IdA−−−−→ A⊗ A ,

A
γ⊗IdA−−−→ A⊗ A⊗ A IdA⊗µ−−−−→ A⊗ A ,

and define a coproduct δ : A→ A⊗ A. The latter satisfies the identity

γ = δ ◦ η , (5.20)

where η : K → A is the unit map. The coproduct δ is co-associative, and the Frobenius
algebra A is therefore endowed with the structure of a co-algebra, where the co-unity map
is given by the Frobenius form ε.

It is well known [1] that the category of commutative Frobenius algebras and the
category of 2D TQFT are canonically equivalent. Let us briefly introduce the notion of
2D TQFT. See [36, Ch. 3] for further details.

Definition 5.2.2. A 2D TQFT is a monoidal functor C : 2Cob → VectK, from the
category 2Cob of two dimensional cobordisms (2-cobordisms) to the category VectK of
finite dimensional vector spaces over K.

The objects of 2Cob are given by {0,1,2, . . . }, where j represents the disjoint union
of j circles. Identifying the 2-cobordisms which are homeomorphic, one can show that the
cobordisms depicted in Figure 5.1 represent a generating set of arrows for 2Cob. That is,
every 2-cobordism can be constructed via concatenation of the 2-cobordisms belonging to
this set.

Suppose that a vector space A is the image of the object 1 under a 2D TQFT C.
Then A carries the structure of a commutative Frobenius algebra. The images of the
2-cobordisms represented in Figure 5.1 under the functor C are (from left to right) the
Frobenius form ε : A → K, the multiplication map µ : A ⊗ A → A, the identity map
IdA : A→ A, the co-multiplication map δ : A→ A⊗A, the unit map η : K→ A, and the
twist map σ : A ⊗ A → A ⊗ A. The twist map ensures that the Frobenius algebra A is
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Figure 5.2: An illustration of two cobordisms which are obtained via concatenation of
cobordisms belonging to the generating set depicted in Figure 5.1.

commutative. Notice that the cobordism appearing on the left of Figure 5.2 is obtained
via concatenation of the first and second cobordisms appearing in Figure 5.1. Its image
under C is then given by ε ◦ µ, which coincides with the bilinear form β : A ⊗ A → K

thanks to (5.19). Similarly, the cobordism appearing on the right of Figure 5.2 is obtained
via concatenation of the fourth and fifth cobordisms appearing in Figure 5.1. Its image
under C is then given by δ ◦ η, which coincides with the co-form γ : K → A ⊗ A thanks
to (5.20).

Conversely, given a Frobenius algebra A one can construct a unique 2D TQFT, that
is a monoidal functor C : 2Cob→ VectK. We refer the reader to [36] for details.

5.2.1 The Verlinde formula

We shall now employ the S-matrix introduced in (5.5) to show that the structure constants
of the algebra (F⊗nk ,~), that is the coefficients Nλ,d

µν defined in Chapter 3 as the cardinality
of the set (3.39), satisfy a Verlinde-type formula. We will then take advantage of this
formula to show some further properties for the coefficients Nλ,d

µν (compare with Lemmas
3.3.4 and 3.3.6), which will be crucial for the proof of Theorem 5.2.6 below. Given λ, µ, ν ∈
A+
k (n), define d via the constraint |µ|+ |ν| − |λ| = dn, and set

Nλ
µν =

{
Nλ,d
µν , d ∈ Z

0, otherwise
. (5.21)

Proposition 5.2.3. Let λ, µ, ν ∈ A+
k (n), d ∈ Z, and suppose that the relation |µ|+ |ν| −

|λ| = dn holds. The coefficient Nλ
µν satisfies the following Verlinde-type formula,

Nλ
µν = zk−d

∑
σ∈A+

k (n)

SµσSνσS−1
σλ

Snkσ
, (5.22)

where nk = (n, . . . , n) ∈ A+
k (n).

Proof. We shall make use of the operator Mν , which was introduced in (4.182) as the
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image of mν under the map Ξ+
n defined in (4.99). Consider the equalities

Mν |µ〉 =
∑

σ∈A+
k (n)

MνSµσ
|ζσ〉
uσ

=
∑

σ∈A+
k (n)

mν(ζσ)Sµσ
|ζσ〉
uσ

=
∑

λ∈A+
k (n)

( ∑
σ∈A+

k (n)

mν(ζσ)SµσS−1
σλ

)
|λ〉

=
∑

λ∈A+
k (n)

(
zk

∑
σ∈A+

k (n)

SµσSνσS−1
σλ

Snkσ

)
|λ〉 . (5.23)

In the first and third line we used the fact that the S-matrix (5.5) is by definition the
transition matrix from the basis of eigenvectors {u−1

σ |ζσ〉}σ∈A+
k (n) to the basis {|µ〉}µ∈A+

k (n).
In the second line we employed the eigenvalue equation Mν |ζσ〉 = mν(ζσ) |ζσ〉, which is a
consequence of Lemma 4.5.5. The identity in the last line follows by taking advantage of
equation (5.5), together with the fact that Snkσ = zkn−1/2, which can be deduced after a
straightforward computation. Thanks to Lemma 4.4.10 we have that

〈λ|Mν |µ〉 = zdNλ
µν ,

which is non-zero only if d ∈ Z. A comparison with the matrix elements of (5.23) implies
the validity of the claim.

Remark 5.2.4. The structure constants N λ,d
µν (q) of the deformed Verlinde algebra dis-

cussed in Section 1.3 satisfy a similar Verlinde-Type formula [41], which specialises to
(5.22) when evaluated at q = 1. In other words, we have the equality Nλ,d

µν = N λ,d
µν (1) for

λ, µ, ν ∈ A+
k (n). Compare with Remark 3.4.4.

The next lemma is the special case q = 1 of a similar result presented in [41, Cor.
7.13].

Lemma 5.2.5. Let λ, µ, ν ∈ A+
k (n). The coefficient Nλ

µν satisfy the following properties.

1. Nλ
µν = Nλ∗

µ∗ν∗ .

2. Nnk

µν =
k!

uµ
δµν∗ .

3.
Nλ
µν

uλ
=
Nν∗

µλ∗

uν
.
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Proof. We shall set z = 1 for convenience. Starting from (5.22), and taking advantage of
Property 3 of Lemma 5.1.1, we end up with

Nλ∗

µ∗ν∗ =
∑

σ∈A+
k (n)

Sµσ∗Sνσ∗S−1
σ∗λ

Snkσ∗
.

Since the map ∗ : A+
k (n) → A+

k (n) is an involution, it follows that the RHS of this last
identity is equal to Nλ

µν , and this proves Property 1. With the help of Lemma 5.1.1, one
can show that

S−1
λµ =

uµ
uλ
Sµ∗λ . (5.24)

Thanks to this last identity, together with the relations (nk)∗ = nk and unk = k!, we can
employ (5.22) to deduce the equality

Nnk

µν =
k!

uν
S2
µν .

Property 2 then follows, since S2
µν = Cµν = δµν∗ thanks to Lemma 5.1.2. Finally, the

validity of Property 3 follows from the chain of equalities

Nλ
µν =

∑
σ∈A+

k (n)

SµσSνσS−1
σλ

Snkσ

=
∑

σ∈A+
k (n)

uσ
uµ
S−1
σµ∗Sνσ uλuσSλ∗σ
Snkσ

=
uλ
uµ

∑
σ∈A+

k (n)

Sλ∗σSνσS−1
σµ∗

Snkσ
=
uλ
uµ
Nµ∗

λ∗ν ,

where in the second line we employed (5.24).

5.2.2 An infinite family of Frobenius Algebras

We are now ready to show that the algebra (F⊗nk ,~) can be endowed with the structure of
a Frobenius algebra, i.e. a 2D TQFT. Notice that, with the help of (5.21), we can express
the product (4.208) of the algebra (F⊗nk ,~) as

|µ〉~ |ν〉 =
∑

λ∈A+
k (n)

Nλ
µν |λ〉 . (5.25)

Theorem 5.2.6 ( [41]). Set z = 1, and equip the algebra (F⊗nk ,~) with the bilinear form
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β : F⊗nk ⊗F
⊗n
k → C defined by

β
(
|µ〉 ⊗ |ν〉

)
≡ Nnk

µν , (5.26)

where nk = (n, . . . , n) ∈ A+
k (n). Then (F⊗nk ,~, β) is a commutative Frobenius algebra

over C with unit |nk〉.

Proof. We proceed in close analogy to the proof of [41, Th. 7.11]. Thanks to Property 2

of Lemma 5.2.5 we can express the bilinear form β as

β
(
|µ〉 ⊗ |ν〉) =

k!

uµ
δµν∗ . (5.27)

In view of Theorem 4.5.2, we just need to show that the bilinear form β is non-degenerate
and invariant. Non-degeneracy is a consequence of the fact that the map ∗ : A+

k (n) →
A+
k (n) is an involution. Let a be an element of the algebra (F⊗nk ,~, η), and suppose that

β
(
|µ〉 ⊗ a) = 0 for all µ ∈ A+

k (n). It follows that a = 0, because if a = |ν〉 for some
ν ∈ A+

k (n) equation (5.27) then implies that β(|ν∗〉 ⊗ |ν〉) 6= 0, which is a contradiction.
Taking advantage of (5.25), together with Property 3 of Proposition 5.2.5, we end up with
the following chain of equalities

β
(
(|λ〉~ |µ〉)⊗ |ν〉

)
=

∑
ρ∈A+

k (n)

Nρ
λµβ(|ρ〉~ |ν〉)

=
k!

uν
N ν∗

λµ =
k!

uλ
Nλ∗

µν

=
∑

ρ∈A+
k (n)

Nρ
µνβ(|λ〉~ |ρ〉) = β

(
|λ〉 ⊗ (|µ〉~ |ν〉)

)
,

which prove that β is invariant.

Remark 5.2.7. The commutative Frobenius algebra (F⊗nk ,~, β) coincides with the de-
formed Verlinde algebra discussed in Section 1.3, when evaluated at q = 1.

5.3 The generalised symmetric group

The goal of this section is to derive a formula for the structure constants Nλ
µν of the

Frobenius algebra (F⊗nk ,~, β) in terms of tensor multiplicities for irreducible representa-
tions of the generalised symmetric group. Let Cn be the cyclic group of order n, that is the
group generated by an element of order n. Consider the k-fold group product C×kn , and
denote with yi the generator of the i-th copy of C×k. By definition we have the relations
yni = 1 and yiyj = yjyi. Moreover, notice that every element in C×k can be expressed as
yα ≡ yα1

1 · · · y
αk
k for some α ∈ Pk.
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Definition 5.3.1. The generalised symmetric group S(n, k) is the wreath product Cn oSk,
that is

S(n, k) = C×kn o Sk . (5.28)

Stated otherwise, the group S(n, k) consists of the set of pairs (yα, w), where yα ∈ C×k

and w ∈ Sk, with multiplication rule

(yα1 , w1).(yα2 , w2) = (yα1+α2.w1 , w1w2) . (5.29)

The group S(n, k) admits the following presentation [16]: S(k, n) is isomorphic to the
group generated by the elements {σ1, . . . , σk−1} ∪ {y1, . . . , yn} subject to the relations

σ2
i = 1 , σiσi+1σi = σi+1σiσi+1 , σiσj = σjσi for |i− j| > 1 , (5.30)

and
yni = 1 , yiyj = yjyi , (5.31)

together with
σiyi = yi+1σi , σiyj = yjσi for j 6= i, i+ 1 . (5.32)

It is clear that the subgroup of S(n, k) generated by {σ1, . . . , σk−1} is isomorphic to Sk
(see Section 2.1.2), whereas the normal subgroup N of S(n, k) generated by {y1, . . . , yn}
is isomorphic to C×kn .

5.3.1 Irreducible representations

Let us briefly describe the irreducible representations of S(n, k) (compare with the discus-
sion presented in [45, Appendix B] and references therein). Define a n-multipartition λ
as a sequence

λ = (λ(1), . . . , λ(n)) (5.33)

of partitions. It was shown in [56] that the finite dimensional irreducible representa-
tions of S(n, k) are in bijection with n-multipartitions λ satisfying the constraint |λ| ≡∑n

i=1 |λ(i)| = k. We denote the resulting representations by L(λ). Define the type of
a n-multipartition λ as the unique partition λ satisfying the relation mi(λ) = |λ(i)| for
i = 1, . . . , n, and mi(λ) = 0 otherwise. It follows that |λ| = k if and only if λ ∈ A+

k (n),
where the latter is the set of partitions introduced in (3.11).

Definition 5.3.2. A standard n-tableau T of shape λ is a sequence

T = (T (1), T (2), . . . , T (n)) (5.34)

of row strict tableau, where T (j) has shape λ(j), and furthermore the entries 1, 2, . . . , |λ|
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appear exactly once in T .

Let λ be a n-multipartition of type λ ∈ A+
k (n), that is a n-multipartition which satisfies

the constraint |λ| = k. We now recall an explicit construction [59] for the irreducible
representation L(λ), and for this purpose we employ the presentation of S(n, k) introduced
in (5.30), (5.31) and (5.32). The irreducible representation L(λ) is spanned by the set of
all standard n-tableaux T of shape λ. Let χ be a primitive n-th root of unity, and for
j = 1, . . . , k set pj(T ) = i if the entry i belongs to the tableau T (j) of T . For α ∈ Pk we
have the action

yα.T = χα1p1(T )+···+αkpk(T ) T . (5.35)

Define the content of the box (a, b) ∈ T (j) in T containing the entry i as ci(T ) = a − b.
Set

ti =
1

ci+1(T )− ci(T )
(5.36)

if the entries i and i + 1 of T belong to the same tableau T (j), and set ti = 0 otherwise.
Denote with T (i,i+1) the standard n-tableau which is obtained from T by swapping the
entries i and i + 1 if the result is another standard n-tableau, otherwise set T (i,i+1) = 0.
The action of the generators {σ1, . . . , σk−1} of S(n, k) is given by

σi.T = tiT +
√

1− t2i T (i,i+1) . (5.37)

5.3.2 Representation theory and fusion coefficients

Let RepS(n, k) be the representation ring of the finite dimensional modules of the gener-
alised symmetric group, with structure constants

L(µ)⊗ L(ν) =
⊕
λ

cλµνL(λ) . (5.38)

In Proposition 5.3.5 we shall derive a formula which relates the coefficients Nλ
µν introduced

in (5.21) to the structure constants cλµν appearing in (5.38), but first we present some
preliminary results. Recall from Section 4.5.1 the notation ζλ = (ζλ1 , . . . , ζλk) for λ ∈
A+
k (n), where ζj = z1/nχj for j = 1, . . . , n. Moreover, set χα = (χα1 , . . . , χαk) for α ∈ Pk.

Lemma 5.3.3 ( [45]). Let λ = (λ(1), . . . , λ(n)) be a n-multipartition of type λ ∈ A+
k (n).

The characters of L(λ) restricted to the normal subgroup N ∼= C×kn of S(n, k) generated
by {y1, . . . , yk} are given by

TrL(λ) y
α = fλmλ(χα) , fλ =

k∏
i=1

fλ(i) , (5.39)

where fλ is defined in Section 2.1.1 as the number of standard tableaux of shape λ.
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Proof. Set λ =
(
(|λ(1)|), . . . , (|λ(n)|)

)
. That is, λ is the n-partition whose parts are given

by the partitions (|λ(j)|) with length 1. Notice that the action (5.35) of yα on the standard
n-tableaux of shape λ does not depend on the shape of each λ(j), but only on |λ(j)|. It
follows that

TrL(λ) y
α = fλ TrL(λ) y

α . (5.40)

We now show that there exists a bijection between the set of standard n-tableaux of shape
λ and the set of permutations in Sλ. Let T be a standard n-tableau of shape λ, and
consider the weight β ∈ Pk with parts βj = pj(T ) for j = 1, . . . , k. Since λ has type λ,
it follows that mi(β) = mi(λ) for all i = 1, . . . , n, and then there exists a unique element
w ∈ Sλ such that β = λ.w. This procedure therefore defines a map T 7→ w. Conversely,
given w ∈ Sλ, define the standard n-tableau T of shape λ via the relation (λ.w)j = pj(T )

for j = 1, . . . , n. This defines a map w 7→ T which is by construction the inverse of
the map T 7→ w defined above. Employing the bijection just described it follows that
TrL(λ) y

α =
∑

w∈Sλ χ
α1(λ.w)1+···+αk(λ.w)k = mλ(χα), where the last equality follows from

Lemma 2.2.5. This implies the validity of the claim thanks to (5.40).

Lemma 5.3.4. Let f, g ∈ Λ. The identity f(x1, . . . , xk) = g(x1, . . . , xk) holds in Vk(n) if
and only if the relation f(ζσ) = g(ζσ) is valid for all σ ∈ A+

k (n).

Proof. We shall employ completely analogous steps as the ones described in [41, Lemma
7.4]. First of all, notice that Λk = C[p1, . . . , pk]. In other words, the ring of symmetric
functions Λk in k variables is freely generated by the power sums {p1, . . . , pk} [52]. Set

p̃r =


pr − zpr−n, r = n+ 1, . . . , n+ k − 1

pn − zk, r = n

pr, otherwise

, (5.41)

and without any loss of generality suppose that z = 1. Denote by

Vk,n = {(π1, . . . , πk) ∈ Ck : p̃n
∣∣
p=π

= · · · = p̃n+k−1

∣∣
p=π

= 0} (5.42)

the solutions of the equations (3.36) for z = 1 in the affine space Ck, where it is understood
that p̃r ∈ Λk, and moreover p̃r

∣∣
p=π

is obtained by replacing pr → πr in the expansion (5.41).
The two set of equations (3.36) and (3.37) are equivalent, as proved in Lemma 3.3.1. The
claim therefore follows from the equality

I(Vk,n) = Ik,n , (5.43)

where I(Vk,n) is the vanishing ideal of the affine variety (5.42), and Ik,n is the two-sided
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ideal generated by the set of equations (3.36), which was introduced in Section 3.3. We
now prove that Ik,n is a radical ideal. Equation (5.43) then follows from Hilbert’s Null-
stellensatz.

The elements {pr}r∈Z≥0
are algebraically independent in Λ [52], and so are the elements

{p̃r}r∈Z≥0
, since pn+r and pr have different degree. We deduce that the set {p̃λ}λ∈P+ ,

where p̃λ = p̃λ1 p̃λ2 · · · , is linearly independent in Λ. Let Ik,n ⊂ Λ be the ideal generated
by {p̃n, p̃n+1, . . . , p̃n+k−1}, and notice that projecting Ik,n onto Λk we obtain the ideal
Ik,n ⊂ Λk. Suppose that f =

∑
λ∈P+ cλp̃λ ∈ Λ is not in Ik,n. This means that there

must exist at least one partition µ such that µj 6∈ {n, n + 1, . . . , n + k − 1} for all j ∈ N.
Let m ∈ N, and notice that the expansion of fm contains p̃µn , where µn is the partition
containing each part µj > 0 exactly m times. It follows that fm 6∈ Ik,n for all m ∈ N,
which implies that Ik,n is radical. Projecting onto Λk we conclude that Ik,n is radical as
well, thus proving the validity of the claim.

Proposition 5.3.5 ( [45]). Let λ, µ, ν ∈ A+
k (n). Moreover, suppose that µ and ν are two

n-multipartitions of type µ and ν respectively. We have the identity

Nλ
µν =

∑
λ

cλµν
fλ
fµfν

, (5.44)

where the sum runs over all n-multipartitions λ of type λ.

Proof. Notice that we can rewrite the product expansion (3.40), which holds in Vk(n), as

mµ(x1, . . . , xk)mν(x1, . . . , xk) =
∑

ρ∈A+
k (n)

zdNρ
µνmρ(x1, . . . , xk) . (5.45)

The integer d appearing on the RHS is defined via the relation |µ|+ |ν| − |ρ| = dn. From
(5.38) it follows that TrL(µ)⊗L(ν) y

σ =
∑
ρ c
ρ
µν TrL(ρ) y

α, and taking advantage of Lemma
5.3.3 we end up with with the relation

mµ(χσ)mν(χσ) =
∑
ρ

cρµν
fρ
fµfν

mρ(χσ) ,

which is valid for all σ ∈ A+
k (n). The partition ρ ∈ A+

k (n) on the RHS of this relation
corresponds to the type of ρ. Setting z = 1, in which case χσ = ζσ for all σ ∈ A+

k (n), we
can employ Lemma 5.3.4 to deduce the following equalities in Vk(n),

mµ(x1, . . . , xk)mν(x1, . . . , xk) =
∑
ρ

cρµν
fρ
fµfν

mρ(x1, . . . , xk)

=
∑

ρ∈A+
k (n)

(∑
ρ

cρµν
fρ
fµfν

)
mρ(x1, . . . , xk) ,
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where the second sum in the second line runs over all n-multipartitions ρ of type ρ. Using
the fact that {mρ(x1, . . . , xk)}ρ∈A+

k (n) is a basis of Vk(n), which was proved in Lemma
3.3.2, the claim follows after a comparison with (5.45).



Chapter 6

Conclusions and open problems

We conclude this thesis with a summary of some open problems and potential avenues of
research.

Representation theory of the general linear group GLk(C)

As pointed out in Remark 3.3.19, the cylindric symmetric functions eλ/d/µ and
hλ/d/µ are Schur positive. It would be interesting to present an explicit construc-
tion of the GLr(C)-representations whose characters are given by eλ/d/µ(x1, . . . , xr)

and hλ/d/µ(x1, . . . , xr) respectively. Perhaps a breakthrough could be achieved if
we had a combinatorial interpretation for the coefficient χλ,dµν (see Definition 3.3.17)
which resembles the one for θλ/d/µ(ν) and ψλ/d/µ(ν) (see Definition 3.3.7). Such a
combinatorial interpretation is still missing.

The Q+ and Q− vertex models for arbitrary q

The symmetric function eλ/d/µ, which was defined from a purely combinatorially
approach by employing the level-n action of the affine symmetric group, can be
identified with the partition function of the Q+ vertex model for q = 1. Similarly,
the symmetric function hλ/d/µ plays a central role in the computation of the partition
function of the Q− vertex model for q = 1. See Theorem 4.1.18. The next step
would be to construct, from a purely combinatorially approach, a q-deformation of
eλ/d/µ that coincides with the cylindric q-Whittaker function P ′λ′/d/µ′(q) discussed in
Section 1.2. The latter can be identified with the partition function of the Q+ vertex
model for arbitrary q [41]. One could then construct a q-deformation of hλ/d/µ in a
similar way, and see whether such q-deformation of hλ/d/µ provides a combinatorial
interpretation for the partition function of the Q− vertex model for arbitrary q.

Modular tensor categories
The Verlinde formula and the existence of the modular group representation (see
Chapter 5) are a ‘fingerprint’ of a richer structure: a modular tensor category (MTC).
The S-matrix of a MTC is symmetric, and the coefficients arising from the Verlinde

170
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formula are non-negative integers, as they coincide with the structure constants of
the Grothendieck ring of the MTC (see e.g. [10]). Notice that the S-matrix defined
in (5.5) is not symmetric. On the other hand, let us introduce the transition matrix

Sλµ =
u

1/2
λ

u
1/2
µ

mλ(ζµ)

nk/2
(6.1)

from the basis {u−1/2
µ |ζµ〉}µ∈A+

k (n) to the basis {u1/2
λ |λ〉}λ∈A+

k (n) of F⊗nk . This S-
matrix is symmetric thanks to Lemma (2.2.5), and together with the T -matrix de-
fined in (5.6) we still have a representation of the modular group. But if we employ
the Verlinde formula with this S-matrix we end up with coefficients that are in gen-
eral not integral. It would be interesting to investigate in more depth whether there
exists a family of MTCs associated to the free boson model. Then one could ask
himself how this discussion extends to the q-boson model for arbitrary q.
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