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Abstract

We employ the level-n action of the affine symmetric group to construct cylindric versions
of elementary and complete symmetric functions. We identify their expansions in terms
of the bases of ordinary elementary and complete symmetric functions with the structure
constants of generalised Verlinde algebras. Then we describe statistical vertex models
associated to the g-boson model, when evaluated at ¢ = 1, and study the interplay between
the partition functions of these models and the cylindric symmetric functions introduced

above.
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Chapter 1
Introduction

The basis of the ring of symmetric functions A given by the Schur functions {sy}cp+,
where A runs over the set P* of partitions, is one of the most important and well studied
within the theory of symmetric functions [52,60,67]. The reason for this lies in its connec-
tion with several other branches in mathematics, such as representation theory, algebraic

geometry and integrable systems. Consider for example the following product expansion,

5.8, = Z cﬁ,/sA , (1.1)

AepP+

A
1L

(see loc. cit.). Recall [52] the inverse limit A = lim Ay, where Ay is the ring of symmetric
—

where the non-negative integers c;, are the celebrated Littlewood-Richardson coefficients
polynomials in k variables. The Schur polynomials sy(z1,...,2x) are the characters of
the finite dimensional irreducible polynomial representations of the general linear group
GLk(C) [29], and the product expansion (1.1) then describes the tensor product multi-
plicities of the mentioned GLj(C)-representations. It is known (see e.g. [66] and refer-
ences therein) that the cohomology ring H*(Gr(k,n)) of the Grassmannian Gr(k,n) is
isomorphic to Ap/(Smik-1),---,5m)). A basis of the latter consists of the Schur poly-
nomials sy(xy,...,2;) for which the Young diagram of A fits inside a k& x (n — k) rect-
angle. An isomorphism between these two rings is given as follows: the Schubert class
oy € H*(Gr(k,n)), which is the cohomology class of the Schubert variety Q, C Gr(k,n),
is mapped to s)(x1,...,xk). The coefficients ci‘w appearing in (1.1) are the structure con-
stants of H*(Gr(k,n)), and they have the geometric interpretation as the intersection num-
ber of the Schubert varieties 2,2, Q. Finally, there exists a purely combinatorial rule
for the computation of the coefficients cfw. This is the celebrated Littlewood-Richardson
rule 52,60, 67|.

The ring of symmetric functions A carries the structure of a Hopf algebra [73]. Employing
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the coproduct A : A = A® A, one can define ‘skew Schur functions’ sy, via the equation
(see e.g. |52, 1.5])
Alsy) =D Sau®s. (1.2)
pepPt
As explained in Chapter 2, the Hopf algebra structure on A can be used to obtain the

Littlewood-Richardson coefficients via the expansion

Sx/p = Z cfws,, . (1.3)

vepP+

This implies that the skew Schur functions are ‘Schur positive’, that is their expansion
coefficients in terms of ordinary Schur functions are non-negative integers. An explicit
construction of the irreducible representations of GL;(C) is given by the Weyl modules [25],
which can be generalised to skew shapes A/u. The corresponding characters are given
by sx/u(21,...,21), and the expansion (1.3) describes the decomposition of ‘skew Weyl
modules’ into irreducible GLj(C)-representations (see loc. cit.). The adjective ‘skew’

stems from the fact that s/, has an alternative combinatorial description given by
Sx/u = ZxT : (1.4)
T

where the sum runs over all column strict tableaux 7" whose shape is given by the skew

tableau \/p. We set a7 = x;th(T)xéNtz(T) )

which is equal to . We will provide further details in due course (see Figure 2.2 for an

-+, where wt;(7T) is the number of entries in T

example of column strict tableau). A similar description holds for ordinary Schur functions

thanks to the equality sy = s, /p, with () the empty partition.

The combinatorial formula (1.4) can be generalised to cylindric skew shapes and cylindric
row strict tableaux [5,28,53,58]. In fact, skew Schur functions are particular cases of

‘cylindric Schur functions’, which are defined [58] as
SA/d/u = ZIT . (15)
T

Here X\ and p are partitions fitting inside a k x (n — k) rectangle, and d is a non-negative
integer. The sum runs over all cylindric column strict tableaux of shape A/d/u, and

i t1(T) _who (T
xT:x‘lNl( )l,;fz( ).

(see Chapter 3 for further details). The representation theoretical
interpretation of the expansion (1.3) generalises to toric Schur functions, which are the
specialisation of s)/q4/, to k variables. It was conjectured in [58| that sy/q/u(21, ..., %)) is
the GLj(C)-character of a ‘cylindric Schur module’, and a potential proof of this statement

with the help of positroid classes appears in [57|. It follows that the coefficients C’,’);,d defined
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via the expansion [58|

SA/d/;L(l‘ly--'; Z CAd ZL‘l,...,J)k) (16)

vep+

are non-negative integers. In particular, we have that Cﬁ‘,;o = c/’iy. While the cylindric
Schur functions (1.5) are not Schur positive, they are instead ‘cylindric Schur positive’; as

conjectured in [53|. In fact, we have the expansion [50]

Sx/dfn = Z > O sy amano - (1.7)

=0pvept

An alternative proof of (1.7) was presented in [45] by employing the analogues of the
Schur polynomials as elements in the principal Heisenberg subalgebra. In the discussion of
algebraic geometry, the coefficients C’ﬁ"u‘l are known as (3-point) Gromov-Witten invariants
[71]. They count the number of rational curves of degree d in Gr(k,n) that meet fixed
generic translates of the Schubert varieties €2,,, Q,, Q5. The Gromov-Witten invariants are
the structure constants of the (small) quantum cohomology ¢H*(Gr(k,n)) |26,32,69,71].
As a linear space, ¢H*(Gr(k,n)) is equal to the tensor product H*(Gr(k,n))®Z|q], whereas
the product of two Schubert classes in ¢H*(Gr(k,n)) is a g-deformation of the product
in H*(Gr(k,n)). The map oy — s\(z1,...,z,) introduced above is an isomorphism of

rings [61]
qH*(GI"(k, n)) = Ak X Z[q]/<8(n+k_1), <o+ S(n=1)5 S(n) + q(—l)k> . (1.8)

and we have the following product expansion in the quotient ring (1.8),

S#(xlw - 7$k)8y($1,. . ,l’k) - qu Z C‘;\;/dS)\(I'h s ,.Tk) . (19>

d>0 AeP+

A combinatorial proof for the non-negativity of C’/;\’Vd is still missing. There exists a formula
for C’;L\;,d as an alternating sum of Littlewood-Richardson coefficients [5], but this formula
is not manifestly positive. Attempts have been made to solve this problem by means of
Knutson-Tao puzzles [11,12,47].

1.1 Verlinde algebras

It is known [71] that the small quantum cohomology ¢H*(Gr(k,n)), when evaluated at
¢ =1, is isomorphic to the gl,-Verlinde algebra at level k. The quotient of ¢H*(Gr(k,n))
obtained by imposing the further relations ¢ = sy and s(,) = 1 is in turn isomorphic to

the sl,-Verlinde algebra at level k [46]. The Verlinde algebra of an affine Lie algebra g



CHAPTER 1. INTRODUCTION 4

is the fusion algebra of the integrable highest weight modules of level k (see i.e. [33] for
details). The structure constants of the Verlinde algebra, the so-called fusion coefficients,

are given by the celebrated Verlinde formula [70]

S0 Syo S
>\ Vo,
N, =) Heer 5. A (1.10)

g

where A, u, v are labels for the integrable dominant weights of level k. The characters
of the integrable highest weight modules of level k yield a representation of the modular
group SLy(Z) [33]. The images of the generators of SLy(Z) are known as the S-matrix
(which appears in the Verlinde formula above) and the 7-matrix of the Verlinde algebra.
There is a geometrical interpretation of the fusion coefficients as the dimension of moduli

spaces of generalised f-functions, the so-called conformal blocks [4,23].

The Verlinde algebra plays a central role in the discussion of conformal field theory (CFT).
Wess-Zumino-Witten models, which are a subclass of rational CFTs, can be constructed
from the integrable highest weight modules of affine Lie algebras, with the level & fixing
the value of the central element, and the primary fields being in one-to-one correspondence
with the highest weight vectors. The fusion of two primary fields is then described by the
Verlinde formula. The representation of SLy(Z) mentioned above is at the core of modular

covariance in rational CFTs (see e.g. the textbook [17]| for further details).

Modular tensor categories (MTCs) arise as representation categories of rational CFTs (see
e.g. |55, 72| and references therein). The Verlinde algebra is the Grothendieck ring of a
MTC [2]|, which is the ring generated by isomorphism classes of simple objects, and the
Verlinde formula yields the structure constants of this ring. The S-matrix and 7 -matrix
of a MTC, which represent the modular datum of the MTC itself, form a projective
representation of the modular group SLy(Z) (see e.g. [10]). The notion of modular data
is important because MTCs are usually classified according to their modular data [21]. A
MTC determines uniquely a three-dimensional topological quantum field theory (TQFT)
[68], and the Verlinde algebra itself can be also seen as a TQFT, but a two-dimensional one.
It is well known [1]| that the category of two-dimensional TQFTs is canonically equivalent

to the category of commutative Frobenius algebras.

1.2 Statistical vertex models

The study of statistical vertex models has attracted increasing attention over the last

century, reaching its climax with Baxter’s solution of the eight-vertex model [3]. The
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hallmark of an exactly solvable vertex model consists in the Yang-Baxter equation [3,9]

Raa(w,y)L1(2)La(y) = La(y) L1(2)Raz(x, y) - (1.11)

Here £(x) is a (infinite dimensional) matrix whose entries belong to an appropriate algebra
H. In other words, we have that £(z) € End(V (z) ® H), where V' is some complex vector
space and V(z) =V ® C[[z]]. Moreover, R(z,y) € End(V(z) ® V(y)). The Yang-Baxter
equation is therefore an identity in End(V (x)®V (y)®@#H), and the subscripts indicate which
copy of V' the operators act on. The monodromy matrix 7 (x) = L, (x) -+ Lo(x)L1(x) €
End(V (z) ® H®™), where the subscripts now indicate the copy of H in the tensor product
H®", is also a solution of the Yang-Baxter equation. This can be employed to define

Baxter’s ‘transfer matrix’ as the operator T'(z) € H®" ® C[[z]] given by the partial trace
T(x)=Try T(x). (1.12)

As a direct consequence of the Yang-Baxter equation, we have the commutation relation
T(x)T(y) = T(y)T(x) (1.13)

for arbitrary x,y. The partition function of a statistical vertex model encodes all the phys-
ical properties of the model itself. Imposing period boundary conditions in the horizontal
direction (that is, defining the vertex model on a cylinder) the partition function can be

identified with the matrix element
(AT (z1)T (z) - T(zp) | 1) -

The algebra H®™ acts on the vector space spanned by basis vectors |u) in bra-ket notation

from physics, where p are labels for the vertical boundary conditions of the lattice.

The commutation relation (1.13) implies that the partition function is symmetric in the
variables (z1,...,z;). A natural question is whether there exists an expansion in terms
of known symmetric functions which exhibits interesting combinatorial features. It was
shown [42] that the toric Schur functions (1.6) can be identified with the partition functions
of two exactly solvable vertex models, namely the vicious and osculating models (see loc.
cit. and references therein). A new class of cylindric symmetric functions P, (¢), which
can be interpreted as cylindric versions of g-Whittaker functions [27], originated from the
computation of the partition function of the vertex model defined by Baxter’s Q-operator
associated to the g-boson model [41]. If ¢ = 0 one recovers the cylindric Schur functions

defined in (1.5), but with the cylindric loop associated to A shifted in the vertical direction
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rather than in the diagonal one [41,53,58|. The expansion coefficients in terms of Schur
functions are now the structure constants of the sl,-Verlinde algebra. In fact, with an
appropriate labelling of the basis elements, the latter coincide with the Gromov-Witten
invariants C’l’);,d [38]. There is another Q-operator associated to the g-boson model, which
has been identified with a quantum version of Baxter’s ()~ -operator [43]. A combinatorial
interpretation for the partition function of the vertex model defined by this operator is

still missing for arbitrary q.

1.3 Quantum integrable models

The transfer matrix 7'(z) introduced in Section 1.2 can be interpreted as the generator of
quantum integrals of motion of a one-dimensional quantum system [3,37|. That is, the

coefficients {7, },>¢ defined by the expansion

T(z)=)» «'T, (1.14)

are the commuting Hamiltonians of a quantum integrable model. The basis vectors |u)
described above span the Fock space of the algebra H®". This is slightly different from the
XXX or XXZ models, where the quantum integrals of motion are obtained via logarithmic
derivatives of T'(z) (see e.g. [18]). In the context of quantum integrability, the methodology
described in Section 1.2 is part of what is known as the ‘Quantum Inverse Scattering
Method’ (QISM), or ‘Algebraic Bethe ansatz’ [22,62-64]. The main feature of the QISM is
that one can employ the Yang-Baxter equation to diagonalise simultaneously the quantum

integrable of motions (see loc. cit.).

There is a remarkable connection between quantum integrable models and Verlinde al-
gebras. Employing non-commutative versions of Schur polynomials, one can endow the
k-particle subspace of the phase model [9] with the structure of an algebra, which is iso-
morphic to the sl,-Verlinde algebra [46]. The phase model can be diagonalised using
the QISM, and the transition matrix from the basis of eigenvectors to the particle basis
coincides with the S-matrix of the sl,-Verlinde algebra.

The preceding discussion was generalised to the g-boson model [41]. The k-particle
subspace of this model is endowed with the structure of a Frobenius algebra. This algebra
can be interpreted as a deformation of the sl,,-Verlinde algebra, since for ¢ = 0 it specialises
to the latter. The g-boson model is also diagonalisable via the QISM for ¢ # 1, and the
transition matrix from the basis of eigenvectors to the particle basis defines a deformed

S-matrix, which can be employed to construct a deformed Verlinde formula. It is not
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known whether the deformed S-matrix is the generator of a representation of the modular
group SLy(Z) for arbitrary ¢. The deformed Verlinde formula yields the structure constants
N, lf‘,;d(q) of the deformed Verlinde algebra, and the latter are linked to the partition function
of the vertex model defined by the Q1 operator associated to the g-boson model. Namely,
the coefficients N\ lf‘;d(q) appear in the expansion of the cylindric ¢-Whittaker function
Py ,4/,(@) introduced in Section 1.2 in terms of ordinary ¢-Whittaker functions [41]. A
geometric interpretation or connection to MTCs is currently unknown, so it is of interest

to investigate the simpler case ¢ = 1 first.

1.4 Present work and outline of this thesis

We shall refer to the statistical vertex models defined by the Q™ and )~ operators as-
sociated to the g-boson model (see Section 1.2) as the QT and @~ vertex models. The
partition functions of these models depend on a indeterminate z which keeps track of the
winding number around the cylinder. Setting z = 0 and ¢ = 1, the latter can be iden-
tified respectively with ‘skew elementary symmetric functions’ e/, and ‘skew complete

symmetric functions’ h,/, which are defined via the following co-product expansions,

Aey = Z e ®ex/y Ahy = Z hys @ By - (1.15)

pepPt pepPt

The basis {ex}rep+ and {hy}rep+ of elementary and complete symmetric functions will
be described in Chapter 3. This is the main observation that motivated the present work

from a combinatorial point of view.

We will show that the symmetric functions ey, and hy/, have combinatorial expressions
which resemble the one for skew Schur functions given by (1.3). These expressions are
obtained by employing the cardinalities of sets involving the symmetric group. With the
help of the affine symmetric group and cylindric reverse plane partitions [28], we will
generalise ey, and hy/, to cylindric analogues ey,q/,, and hy,q/,, the cylindric elementary

and complete symmetric functions. We will prove the validity of the following expansions,

d+n d+n
A\d _ A d
exam =Y, > N Wevpa—ano s haja =Y > N (Dhyyazayyp . (1.16)
d'=0veP+ d'=0vep+

where the coefficients A);%(1) coincide with the structure constants Nj*(q) of the de-
formed Verlinde algebra discussed in Section 1.3, when evaluated at ¢ = 1. We will show
that the symmetric function ey/q/, can be identified with the partition function of the Q"

vertex model for ¢ = 1 and generic z. In other words, e, /4/, coincides with the cylindric



CHAPTER 1. INTRODUCTION 8

g-Whittaker function P}, /d /H,(q) discussed in Section 1.2, when evaluated at ¢ = 1. On
the other hand, the symmetric function h) 4/, has not been introduced in the literature
previously. We will describe the link between hy 4/, and the partition function of the Q)™
vertex model for ¢ = 1 and generic z. Part of this thesis is a joint work with C. Korff
that appears in [44,45]. We will refer to these papers when necessary. In particular, the

connection with quantum integrable systems is not in [44,45|.

We finish this introduction with an outline of this thesis. The reader may find it useful to

refer to the flowchart presented in Figure 1.1.

Chapter 2 We recall the notions of partitions, plane partitions, and the symmetric group.
Then we introduce the ring of symmetric functions A, and we describe some of its
bases. We present some properties of the symmetric functions ey;, and hy/,, and
we provide their expansions in terms of the bases of A described previously. Finally,
we give combinatorial expressions for ey/, and hy/, which resemble the one for skew

Schur functions given by (1.3).

Chapter 3 We recall the notions of cylindric reverse plane partitions and the affine sym-
metric group. With the help of these mathematical objects, we generalise ey, and
hy/u to cylindric analogues ey/q/, and hy/q/,. Then we provide the expansions of
ex/d/p and hysq/, in terms of the bases of A introduced in Chapter 2, and we prove
the validity of the expansions (1.16). To this end, we first derive some product ex-
pansions which hold in a quotient of the ring Ay ® Z[z, 27!]. We finish this chapter

by discussing some further properties of ey /4, and hy 4/,

Chapter 4 We describe the Q™ and @~ vertex models for the case ¢ = 1, and we present
three solutions of the Yang-Baxter equation. Then we introduce two further vertex
models, which are related to the previous ones by taking the adjoint of the transfer
matrices. We evaluate the partition functions of all these vertex models in terms
of ey/a/u and hy/q/,. In the second part of this chapter we describe the conserved
charges (i.e. the quantum integral of motions) for the free boson model, which is the
q = 1 specialisation of the g-boson model. We employ the matrix elements of these
conserved charges to present an alternative proof for the expansions of ey 4/, and
hyja/u described in Chapter 3. Then we use the same matrix elements to illustrate
an alternative approach for computing the partition functions of the vertex models

defined previously.

Chapter 5 We endow the k particle space of the free boson model with the structure of
a Frobenius algebra. This coincides with the deformed Verlinde algebra discussed

in Section 1.3, when evaluated at ¢ = 1. We show that the transition matrix from
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the basis of un-normalised eigenvectors to the particle basis is a generator of a
representation of the modular group SLy(Z). We employ this matrix to construct
a Verlinde-type formula, which yields the structure constants N l;\l;d(l) appearing in
the expansion (1.16). Finally, we present a formula for A;*(1) in terms of tensor

multiplicities for irreducible representations of the generalised symmetric group.
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Jeow svinmetric %
skew symmetric functions Yang-Baxter equation

Exfu and h’)\/ﬂ

formulation
of the @ and @~ vertex models
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for the free boson model

partition functions

cylindric symmetric functions

of the QT and Q~ vertex models
Cxsdjp a0d Fiysazg Q Q

expansions of ey 4, and fy a7, expansions of ey g7, and fiyras,

in terms of exq/p and fiy /a0 in terms of the bases of A
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structure constants

associated to

of a Frobenius algebra .
the k particle subspace

Figure 1.1: A flowchart connecting the various topics presented in this thesis. It is under-
stood that ¢ = 1.



Chapter 2
Symmetric functions

The first part of this chapter is devoted to the exposition of some basic concepts, which
will be used throughout this thesis. We introduce the ring of symmetric functions A, we
discuss its Hopf algebra structure, and we describe some of its bases. For this purpose,
we first recall the notions of partitions, plane partitions, and the symmetric group. In
the second part of this chapter we describe in detail the skew symmetric functions e/,
and hy/,, which were introduced in (1.15). In particular, we provide their expansions
in terms of the bases of A described earlier in this chapter, and we give combinatorial
expressions by employing the cardinalities of sets involving the symmetric group. From
here to the end of this thesis, we denote with Z>¢ = {0, 1,2, ... } the non-negative integers
and with N = {1,2,3,...} the positive integers. The main references for the first part of
this chapter are [52,60,67].

2.1 Partitions

A partition A = (A1, Ag,...) is a (finite or infinite) sequence of weakly decreasing non-
negative integers, that is Ay > Ay > -- -, with only finitely many non-zero terms [52]. More
generally, a composition o = (a1, ag, ... ) is an analogous sequence which is not necessarily
weakly decreasing. As a simple example we have that (3,2,0) is a partition, whereas
(0,1,2) is a composition. We will not distinguish between two such sequences differing
only by a string of zeroes at the end. So for example we regard (0, 1,2), (0,1,2,0) and
(0,1,2,0,0,...) as the same composition. We will refer to P* as the set of all partitions,
and to P as the set of all compositions. By definition it is clear that PT C P.

Let us introduce some notation. Call \; and «; the parts (or the elements) of the
partition A and the composition « respectively. Denote with () the empty partition, that
is the partition whose parts are all equal to 0. The length of a partition A is the number
£(\) of non-zero elements in A, whereas the weight |A| is the sum of these elements. The

weight || of a composition « is defined in an analogous way. For i € N denote with m;(\)

11
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1]

Figure 2.1: From left to right we have the Young diagrams of the partition A = (4,4, 3),
its conjugate partition \' = (3,3, 3,2), and the composition o = (2,0, 1, 3).

the multiplicity of 7 in A, that is the number of parts in A equal to ¢. Then we have the

equivalent notation for partitions
A= (1 gm2(V) oy (2.1)

The Young diagram of X is a set of left-justified boxes with )\; boxes in the i-th row.
Formally one can think of this as a subset of points in the Z x Z plane, whose coordinates
are increasing from left to right and downwards. Namely, one identifies the lower-right
vertex of the box in the i-th row and j-th column of a Young diagram with the point
(1,7) € Z x Z. Denote with X the conjugate partition of A, that is the partition whose
diagram is obtained by reflecting the boxes of the diagram of A along the line {(7,7) | i € Z}.

Then ! is the number of boxes in the j-th column of A, and one can show that
mi(A) = A — Ay - (2.2)

It will be useful to extend the notion of Young diagram to compositions [30,31]. Define
the (Young) diagram of a composition « as a set of left-justified boxes with «; boxes in
the ¢-th row. See Figure 2.1 for an example.

Let A, € P*, and write p C A if the diagram of p is contained in the diagram of
A, that is if u; < A; for all © € N. Assuming that u C A, we define the skew diagram
ANpCZxZas

Mp={(,)) €ZXxZ|1<i<lN), i <j<N}. (2.3)

Denote with |A\/pu| = |A| — |p| its cardinality, that is the number of boxes in A/u. Notice
that if g = (0 this simply is the Young diagram of A\. If A\/u has at most one box in
each row (respectively column) we will call it a vertical (respectively horizontal) strip. By
convention the skew diagram A\/\, which has no boxes, is both a vertical and a horizontal

strip. We will sometimes use the statement ‘A/u is a skew diagram’ to mean that p C A.

2.1.1 Plane partitions and tableaux

Assume throughout this section that A\, u € Pt with u C \.
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Definition 2.1.1. A plane partition 7 of shape A/ is a filling of the boxes of A/u with
positive integers, called the entries of 7, which are weakly decreasing from left to right in

rows and down columns.

Since A\/p C ZxZ we can interpret a plane partition asamap m : \/pp — N, (4, 7) — 7

with the constraints

Ti+1,5 lf(Z+1,j)€)\/u,
= 7Ti,j+1 s lf (Z,] + 1) € )\/,u .

3
Vv

3
V

We will call 7 a reverse plane partition (RPP) if the entries of 7 are weakly increasing
from left to right and down columns instead. Denote with wt;(7) the number of entries
of 7 equal to i. The weight of a plane partition 7 is defined as the composition wt(m) =

(wty(m), wta(7m),...). A similar notation holds for RPPs. See Figure 2.2 for an example.

Lemma 2.1.2. A plane partition m of shape \/p with highest entry | € N is equivalent to

a sequence {\MY _ of partitions with

p=A0c AW c...cAb =X, (2.4)

An analogous statement is true for RPPs.

Proof. This is a well known result, nevertheless we present a proof for RPPs since in
the next chapter we will generalise these objects to the ‘cylinder’. The proof for plane
partitions is similar and therefore we omit it. So suppose that 7 is a RPP with highest
entry [, and for r = 1,...,1 let A\ be the partition whose Young diagram is obtained
by joining the Young diagram of p with the boxes of 7 containing the entries from 1 to

r. In particular this gives A). = X, and together with A(?) = 1 we obtain a sequence of

partitions {\("}._, which by construction satisfies (2.4). Conversely, if for r = 1,...,1 we
fill the boxes of the skew diagram A /A"~1) with the integer r, we obtain a RPP 7 of
shape \/p with highest entry [, and moreover wt,(7) = |A() /A=), O

In the following we will focus our attention mostly on RPPs and their special cases
of row strict and column strict tableaux. The latter are also known in the literature as

semistandard tableaux.

Definition 2.1.3. A row (respectively column) strict tableau 7" of shape A/u is a RPP

whose entries strictly increase along each row (respectively column).

Equivalently, a row (respectively column) strict tableau of shape A/u is a sequence of
partitions {A\M}._, satisfying (2.4) such that A /A=Y is a vertical (respectively hori-

zontal) strip for r = 1,...,l. See once again Figure 2.2 for an example.
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2|2 2(2 112
3 3 1

Figure 2.2: Let A =(4,3,2,1) and p = (2,1). From left to right we have a RPP, a column
strict tableau and a row strict tableau, all of which have weight (3,2,2). The RPP on the
left is equivalent to the sequence of partitions (2,1), (3,3), (3,3,2), (4,3,2,1).

Definition 2.1.4. A standard tableau 7T of shape A/u is a row strict tableau which

contains each entry 1,2,...,|\/u| exactly once.

It follows immediately from the definition above that a standard tableau has weight
wt(T) = (1,1,...,1). Furthermore, notice that a standard tableau is also a column strict
tableau. Define f)/, as the number of standard tableaux of shape A/u. For p = () we have
the formula (see e.g. [67, Ch. 3.10])

Al!

= —,
H(i,j)e)\h)\<27j)

ha(i, §) =N+ Ny —i—j+1. (2.5)

2.1.2 The symmetric group

For a review of the symmetric group, together with its representation theory, see for

example [60]. Fix k£ € N until the end of this section.

Definition 2.1.5. The symmetric group Sy in k letters is the Coxeter group Aj_;, that
is the group generated by {o1,...,0,_1} subject to the relations

0-1'2 =1 s 0;0;410; = 0410041 , 0,05 = 0,04 for |Z —j| >1. (26)
This group can be realised as the group of bijections from [k] = {1,2,...,k} to itself,

using composition as the group product. For this reason, the elements of S, are called

‘permutations’. With this realisation, the generators o; are given by the following maps,

it1, m=i
oi(m) =<1, m=i+1 .
m, otherwise

Denote with gl, the Lie algebra of the general linear group GL(C). Moreover, let P, =
@le Ze; be the gl;, weight lattice with standard basis €y, . . ., ¢, and inner product (e;, €;) =
;5. We use the notation a = (a,...,ax) for a = Zle a;€; € Pi. Denote with 73,?0 C Ps
the positive weights, that is

PEO—{QGPk|OézZOf0rZIL7/‘7}7 (27>
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and with P;” C PEU C Py the positive dominant weights, namely
Pi={AePi| M >X> > >0}, (2.8)

We will often identify the compositions a with a; = 0 for ¢ > k as weights in 77,?0. In
particular we identify the partitions A with ¢(\) < k as weights in P} .

We shall use the right action Py, x S, — Py, given by (o, w) — a.w = (w1, - - -, Cw(k))-
In particular, a.o; is the weight obtained from « by permuting its entries at positions
and i+ 1. Let A € P;" and denote by S\ C Sy, its stabilizer subgroup, that is the subgroup
of permutations w € Sy such that A\.w = A. The stabilizer subgroup S of the weight
A € P;f is a parabolic subgroup of Sy, (see for example [8, Ch. 2.4] for further details). Its

cardinality is given by |Sy| =[] m;(A)!, where m; () for i € Z denotes the multiplicity

’L'EZZ()
of 7 in the weight A. Denote with Sy \ Sk the set of right cosets {S\w | w € Sk} of S, in
Sk. The following is a special case of a more general result involving Coxeter groups and
parabolic subgroups, which can be found for instance in [8, Prop. 2.4.4 and Cor. 2.4.5].

For this purpose, define the length of w € Sj as
((w) =min{r e N | w =0y, ---0;, for some 7y,...,i, € [k — 1]} . (2.9)

Proposition 2.1.6. (i) FEach right coset S\xw has a unique representative of minimal
length.

A

(i1) Every element w € Sy has a unique decomposition w = wyw™, with wy € S\ and

w* a minimal length representative of one right coset in Sy \ Sk.

Denote with S* the set of minimal length representatives of the right cosets Sy \ Sj.

Example 2.1.7. Let A = (3,3,2) € Py. Then Sy = {1,0,} and S* = {1, 04,0901 }.

2.2 The ring of symmetric functions

Let = {z1,22,...} be an infinite set of commuting indeterminates and consider the

formal power series ring Z[[z1,za,...]]. For each k € N we have the left action Sy X
Z[[z1, 33, ... ]] = Z[[z1, 22, ... ]] given by
(w, f(x1, 22, . .. )) = ow. f(T1, @2, ..) = f(Tw@)s - Twk)s Thgts - - ) - (2.10)

The next definition is equivalent to the one which is given for example in [67, p. 286] and
in [60, p. 151].

Definition 2.2.1. The ring of symmetric functions A is the subring of Z[[z1, x5, . . . || whose

elements f(xz1,xe,...) satisfy the following conditions: (i) for every & € N and w € S, one
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has w.f(x1,2z2,...) = f(x1,22,...), (ii) the degrees of the monomials in f(x,zs,...) are
bounded.

We will most frequently drop the variable dependence, and we will write f rather than
f(z1,29,...). We say that f € A has degree n € Z if all the monomials appearing in
f have degree n. The ring A then has the structure of a graded ring, where the grading
is given by the degree. We will often be interested in dealing with a finite number of

variables (z1,...,zy) for some k& € N. To this end, we will use the projection
A%Ak:Z[xl,...,xk]Sk s (211)

which is defined by setting z; = 0 for i > k. The notation on the RHS of (2.11) stands for
the set of Sy-invariants of Z[xq, ..., x]. For f € A denote by f(z1,...,x;) its projection
onto Ag. Condition (ii) in Definition 2.2.1 ensures that this projection is well defined, that

is f(x1,...,xx) consists of a finite sum of monomials.

Remark 2.2.2. There is yet another alternative definition of the ring A as the in-
verse limit A = lim Ay in the category of graded rings, see |52, 1.2] for further details.
For our purposesj_it is enough to realise that each f € A can be equivalently defined
as a sequence of functions {fx(1,...,7%)} kezoy, With fr(o1,...,2) € A, such that
fw(xy, ... 2,0,...,0) = fr(xy,...,zx) whenever ¥ > k. In particular, we have that

the projection A — Ay sends f to fr(x1,...,xk).

2.2.1 Monomial symmetric functions

We now proceed to describe various bases of A [52,60,67|. For A a partition and « a
composition, we write a ~ A and say that « is a permutation of A, if there exist distinct
indices {i1,4s,...,4} such that a;; = X; for j = 1,...,£()) and if, furthermore, the

other parts of a are 0. In particular A ~ A. The monomial symmetric functions are

defined as
mA:Zxa:foflng--- : (2.12)

)\ an\

Notice that mg = 1 as the only permutation of ) is given by itself.

Example 2.2.3. Some permutations of A = (3, 3,2) are given by (3, 3,2), (3,2, 3), (2,3, 3),

(0,3,3,2), (2,0,3,3). Thus m 39 = xia3a] + aiaded + afadad + adadad + afadzd + ...

The set {m)} ep+ is a basis of A, and thus the following expansion is well defined,

mum, = Z lj‘y my . (2.13)
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The coefficients li\y are non-negative integers, and they equal the cardinality of the set [13|
{(a, B) e PxPra~p,fr~v|a+pf=A}t, (2.14)

where the sum of two compositions a and 3 is defined as the composition v with parts
vi = a; + [; for © € N. By definition we have that 31, = ,j\u, and taking advantage of
(2.14) it follows that ;\V is non-zero only if p, v C .

Example 2.2.4. Let p = (2,2,1), v = (1,1) and A =(3,2,2). Consider the compositions
aq,ap ~ 1 given by o = (2,2, 1), ag = (2, 1,2) and the compositions 1, B2 ~ v given by
f1 = (1,0,1), B2 = (1,1,0). Then 2,/ = 2, since the pairs (aq, 41) and (ag, fs) are the
only ones satisfying the constraint ay + 81 = a + 2 = A.

Lemma 2.2.5 ( [52]). Let A € P, k € N and project onto the ring A,. We have that
ma(zy, ..., xr) =0 if £(N) > k, otherwise

Aw Aw 1 Aw Aw
mx(Ty, ..., T,) = Z )" HRREL ® = W Z T (”---a:k *) (2.15)

wesA wES
For ((\) < k it is understood that X € P, and thus Sy, S* C Sy.

Proof. Each monomial ® appearing in (2.12) consists of a product containing ¢(\) vari-
ables ;. If £(\) exceeds k then at least one of these terms equals 0 since z; = 0 for i > k.
This means that z* = 0 for all & ~ A and thus my(xy,...,2x) = 0. So suppose that
(X)) < k. For a ~ X we have that z* is non-zero if and only if the non-zero parts of «
are in the first k positions. Assume that x® is non-zero, then both \,a € P, and we can
take advantage of the right action P, x Sy — P described above. Since a ~ A there
exists a unique permutation w € S* C S, such that a = \.w, that is 2@ = xi‘w(l) x -:1:2“’““),
and the first equality in (2.15) follows by applying the same argument to each non-zero
monomial % in (2.12). To prove the second equality, decompose each w € Sy as in part

(ii) of Proposition 2.1.6, and then use the fact that A.wy = A for wy € S). O

Remark 2.2.6. For every & € N we have that the set {my(xy,... ,xk)}AGP;r is a basis of
Ayj. See |52, 1.2] for details.

2.2.2 Elementary and complete symmetric functions

The next two bases of A of interest are given by the elementary symmetric functions

{ex}rep+ and the complete symmetric functions {hy} ep+ respectively. For r € N these
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are defined as

e = E Tiy Ty -+ Ty ex =E€x€x (2.16)
1<ty <to<-<ir
hr = E Li1 Ly ** = Ty, h)\ = h)\l h)\Q e, (217)

1<i1 <ip <<y

where eg = hg = 1. In other words, e, consists of the sum of all products of r distinct

variables, whereas h, is the sum of all monomials of degree 7.

Example 2.2.7. We have es = 129 + 123 + -+ + Tox3 + Tox4 + ... and moreover

hy =2} +23 4+ + 21T + 1173 + -+ + Tox3 + Toxy + . ...

For » € N we have the equivalent expressions

eT:Zxa : hT:Z:cﬁ : (2.18)

aEP BEP

where the sums run over all compositions a and § with |a| = |5]| = r, and moreover «; =
0,1fori € N. A comparison with (2.12) shows that e, = m@r and h, = 3 p+ m,,, where
the second sum is restricted to those u € P with |u| = r. Let u be an indeterminate,
then the generating functions for the elementary and complete symmetric functions are

the elements in Z[[u]] ®z A given by

E(u) = Zu’"eT = H(l + ux;j) , (2.19)

r>0 7>1
, 1
H(u) = ) u hr:Hl—umz' (2.20)
r>0 j>1 J

From these equalities it can be readily seen that
E(—u)H(u) =1, (2.21)

which is equivalent to the relations > ;_ (—1)"e;h,_; = 0 for r € N.

We now want to express the symmetric functions {ey} ep+ and {hy}rep+ in terms of
monomial symmetric functions. Given a matrix A, denote with r; the sum of its elements
in the i-th row and with ¢; the sum of its elements in the j-th column. Define the
compositions row(A) = (r1,79,...) and col(A) = (¢, ¢a,...). Let A\, u € P™ and denote
with M), the number of ¢(\) x ¢(u) matrices A with entries equal to 0 or 1 satisfying
row(A) = A, col(A) = p. Similarly let Ly, be the number of ¢(\) x ¢(;) matrices A with
entries in Zs satisfying row(A) = A, col(A) = p. We then have the following expansions

for the elementary and complete symmetric functions (see e.g. [67, Prop. 7.4.1 and Prop.
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1{1 1{2 1(1 113 1{2 113 1{2 1{4
2 2 3 3 3 2 4 2

Figure 2.3: Let A = (2,1). Above there are displayed some of the column strict tableaux
of shape \. For example the first tableau has weight (2,1) and then 27 = z2x5. Thus
S21) = 1T + 2125 + 103 4+ 2123 + -+ - + 201 0T3 + 201 Ty + .. .

7.5.1))
€\ — Z M,\#m# s h)\ = Z L,\Mmu . (222)

peP+ peP+

2.2.3 Schur functions

We now introduce one of the most important basis of A, which is given by the Schur
functions {sy}rep+ (compare with the discussion presented in Chapter 1). For A € P~

the Schur function s, is defined combinatorially as
sv=> a’, (2.23)
T

where the sum runs over all column strict tableaux T of shape A, and moreover we set
2T = gDy . See Figure 2.3 for an example. For o € P with |a| = |A|, define
the Kostka number K, as the number of column strict tableaux of shape A and weight
a. If instead |a] # |A|, set K)o = 0. We can then rearrange (2.23) as sy = > p Kra2®
(see for example [67, Ch. 7.10]). Thanks to the relation K, = Kz, which holds for all
p € Pt and B € P such that 5 ~ u (see loc.cit.), we deduce the following expansion of

Schur functions in terms of monomial symmetric functions,
sv= > Kymy, (2.24)

The Jacobi-Trudi determinants [60] provide expressions for Schur functions in terms of

elementary and complete symmetric functions. These are given by

53 = det (I —i15) oo <o = et (Exi47) 1o, (2.25)

The Littlewood-Richardson coefficients cf;l, € Z>q [52,60,67] are defined via the following
product expansion,
S8y = Z cl’),/sA : (2.26)
AeP+
These coefficients admit a combinatorial interpretation in terms of Littlewood-Richardson
tableaux, which is given by the celebrated Littlewood-Richardson rule (see loc. cit.).

The Schur functions sy(z1,...,xy) are the characters of the finite dimensional irreducible
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polynomials representations of the general linear group GL.(C) (see i.e. [29]), and the
product expansion (2.26) then describes the tensor product multiplicities of the mentioned
GLj(C)-representations. The finite dimensional irreducible representations of the general
linear and symmetric groups are related via Schur-Weyl duality [25]. The irreducible
representations V) of the symmetric group Sy are labelled by partitions A\ with |A| = k.
By means of the Frobenius characteristic map, one can show that the multiplicity of the

irreducible V) in the representation Indgm w5 Vi X Vi of Spy is equal to ¢, (see loc. cit.).

2.2.4 Power sums and augmented monomial symmetric functions

Consider now the ring Ag = A ®z Q of symmetric functions with rational coefficients.
There are two bases of Ag of our interest, namely the power sums {pj}ep+ and the
augmented monomial symmetric functions {m*},ep+ (see for example [52, p. 110]). For

r € N the former are defined as

Pr=) a0, pA=paDnccc (2.27)

i>1

with the convention py = 1, whereas the latter are given by

m = uymy , Uy = Hmi()\)! . (2.28)

i>1

Notice that {px}rep+ and {m*} ep+ do not form bases of A. As a simple example, we
have that e5 = 1(p? — p2) does not have integer coefficients when expressed in terms of

power sums.

Lemma 2.2.8. Let A € P+, k € N and project onto the ring Ay,. Then m*(z1,...,x;) =0
if ((\) > k, otherwise

1 A A
Mo o) = S a0 g 2.29
m*(zy, ..., Tk) OV T ), ( )

wWE S
For ((\) < k it is understood that mo(X) is the multiplicity of 0 in X\ € P;F.

Proof. This follows by taking advantage of Lemma 2.2.5, and using the fact that [Sy| =
Hz‘eZ>0 mi(A)! = uymo(A)! for £(N) < k. 0

Let once again u be an indeterminate, then the generating function for power sums is

the element in Q[[u]] ®q Ag given by

P =3y = 3 e E(l_u)%E(—u) _ HEU)%H(U) O (230)

r>1 i>1
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We want to express the augmented monomial symmetric functions in terms of power
sums. For this purpose, we first introduce some notation. Let [ € N, and denote by
P, the set of all set partitions of [[|]. In particular, call 0 € P, the set partition of [I]
into [ singletons, that is 0 = {{1},{2}, . ,{k}} Let By, Bs,..., B, be the blocks of
IT € P, and card B; the cardinality of the block B;. Moreover, define the quantity B(Il) =
(=1)*[I;_,(card B; — 1)!. As an example, the set partition II = {{1,2},{3}} € P;
consists of the two blocks By = {1,2} and By = {3}, and then B(II) = —1. For Il € B,
and p € P satisfying ¢(u) = I, denote with p(IT) the partition whose parts are given
by ZjeBi pj, where i = 1,...,s. Now, let A € P* and set [ = ¢(\). The augmented

monomial symmetric function m* satisfies the recurrence relation [54, Theorem 1]
-1
m A p)\lm(h ~~~~~ Ai—1) _ Zm(M ,,,,, XitALs A1) ’ (2_31)
i=1

where it is understood that m® = m?* for o ~ X. The latter has the (unique) solution
( [19] and [54, Theorem 2])

m* =Y B(Ipm) - (2.32)

P,

Example 2.2.9. Let A = (3,2,2). The following quantities can be computed directly

from the definitions,

I B(II) | (1)
{1211 | 1 (322
{{1,2},{3}} —1 (5,2)
{{r3h{2} | -1 | (52)
{{235 {1} | -1 | 43)

{{1,2,3}} 2 (7)

Using (2.32) one then has that m(3’2’2) = P@3,2,2) — 2p(572) — P,3) + 2p(7).

We will also make use of the expansion of power sums in terms of monomial symmetric
functions. Let A, € Pt and define R,, as the number of set partitions IT € P,y with
g = A(II). Then we have the expansion |67, Prop. 7.7.1]

bx = Z R)\um,u . (233)

nEPT

Remark 2.2.10. The bases of symmetric functions labelled by A € P* which we described
so far are all of degree |A|. As we explained at the beginning of Section 2.2, the ring A is a
graded ring, where the grading is given by the degree. It follows that the expansions (2.22),
(2.24) and (2.33) only involve partitions p € P* with || = |[A|. In particular, for every
r € Z>q the expansion coefficients form matrices labelled by A\, u € P*, with [A| = |u| =7,
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which are invertible. One can deduce further constraints on u € P* appearing in the

expansions above by means of the natural ordering on P*. See [52, 1.6] for details.

To conclude this section, we write down the equations relating the elementary and
complete symmetric functions to the power sums. These are known as Newton’s formulae
[52], and read

T

re, = Z(—l)i_lpier_,-, (2.34)

i=1

Thr = Zpih’/‘—ia (235)
i=1

for r € N. The solutions of these recursive equations are given by

e = Zeuzglpu, (2.36)
peP+

he = > 2'pu (2.37)
peEPH

where the sums are restricted to p € P* with |u| = r, and

= (=DM = T m ()t (2.38)

1>1

2.2.5 Hall inner product and an involution

We will often use the ring homomorphism w : A — A defined for r € Z>( by
e — w(e.) = h,,

and w(ey) = hy for A € P*. The fact that {e)} cp+ is a basis of A implies that w is
well defined. We now review some properties of w; see [52, 1.2] for details. The symmetry
of the relations y ;_(—1)¢;h,—; = 0 (which were discussed in section 2.2.2) as between
the two bases {ex}rep+ and {hy}rep+ of A shows that w is an involution, that is w? is
the identity map. It follows that w is an automorphism of A. From the Jacobi-Trudi
determinants (2.25) we have the relation w(sy) = sy. Furthermore, since w interchanges
the generating functions F(u) and H(u), it follows from (2.30) that w(p,) = (=1)""'p,,
and in general w(py) = expy for A € PT. The fact that w is an automorphism allows us to
define another basis of A, the so called forgotten symmetric functions {fy} ep+, via the

relation fy = w(m,). These have no particularly simple direct description.

Remark 2.2.11. From here to the end of this thesis, if not stated otherwise, we shall

always work with the ring A ®z C of symmetric functions with complex coefficients. By
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abuse of notation we denote this with A. Similarly, we shall refer to Ay ®z C simply as Ag.

We define the Hall inner product on A by requiring that the bases {hj} ep+ and

{my}rep+ are dual to each other, that is
(h,\,m#) = 6)\,u . (239)

We recall some known facts about the Hall inner product; see [52, 1.4| and [67, Ch. 7.9]

for details. We have the following relations,

<S/\, 8#> = 6)\# ) <p)\7p,u,> = Z)\(S)\,u, ) (24())

which imply that {s)},ep is a orthonormal basis of A, and that {py} ep is a orthogonal
basis of A. The involution w is an isometry for the Hall inner product, that is for f,g € A
we have the relation (f,g) = (w(f),w(g)). It follows that the elementary symmetric

functions and the forgotten symmetric functions are duals of each other, that is
(ex, fu) = O - (2.41)

2.2.6 Hopf algebra structure on A

We now introduce a coproduct A : A — A ® A in the ring of symmetric functions.
See [52, p. 91| and [67, p. 342| for further details. For this purpose, notice that A ® A
can be identified with the functions in the two sets of variables x = {x,29,...} and
y = {y1, Yo, ... } which are symmetric in each set separately. As an example, for f,g € A
the element f ® g corresponds to f(z)g(y). If f € A then f(x,y) € A® A, because if f is
symmetric in {z,y} then it will be symmetric in x and y separately. Thus we define the

coproduct of f as

Af = f(x,y) . (2.42)

For r € N one has by direct inspection that

Aer:Zei@)@r—ia Ahr:Zhi®hr—ia Apr:1®pr+pr®1a
1=0

1=0

and furthermore A(1) = 1® 1. It can be shown that A satisfies coassociativity and thus,
together with the counit € : A — C given by f — f(0,0,...), A becomes a coalgebra.
Moreover, together with the usual multiplication of polynomials and the unit map n: C —
A, it can be shown that A is endowed with the structure of a bialgebra. The Hall inner

product is compatible with the bialgebra structure, namely for f, g, h € A one has that

(Af,g®h) = (f,gh) . (2.43)
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The scalar product on the LHS is defined as (fi ® g1, fo ® g2) = (f1, f2)(91, g2) for
fi, fo, 01,92 € A. An alternative interpretation of (2.43) is that the coproduct is the
adjoint map of the multiplication map m : A ® A — A. Finally, the antipode v : A — A
defined for r € Z>( by

e, = v(ey) = (=1)"h,

endows A with the structure of a cocommutative Hopf algebra over C (see 73] for further
details). By definition the antipode of a Hopf algebra is the unique map satisfying the
equalities (see e.g. [24, Ch. 4])

mo(l®y)oA=mo(y®1)oA=noe. (2.44)

Notice how the antipode is closely related to the involution w defined above.

2.3 Coproduct and skew symmetric functions

From here to the end of this section, if not stated otherwise, we assume that A\, u € P*.
The coproduct A : A — A ® A introduced earlier allows us to define new classes of
symmetric functions. We shall start by considering the so called ‘skew Schur functions’,
which are discussed for instance in [52, I.5]. Compare also with the discussion presented
in Chapter 1.

Definition 2.3.1. Define the skew Schur function s/, via the equation

Asy = Z Sx/u ® Sy - (2.45)

pepPt

Lemma 2.3.2. The symmetric function sy, can be equivalently defined as the function

satisfying the following relation, which is valid for all v € P,

(Sx/us Su) = (Sx; SuSw) - (2.46)

Notice that (2.46) fixes sy, entirely thanks to the expansion s/, = > cp+(Sx/us 5v) v,
which holds since {sy} ep+ is a basis of A. Furthermore, by linearity of the Hall inner

product we have that (s)/,,g) = (sx,s,9) for all g € A.

Proof (of Lemma 2.3.2). Starting from (2.45) one has that (As), s, ®s,) equals (s, 5,5,)
thanks to (2.43) and (s, s») thanks to (2.40). This implies the validity of (2.46). Con-
versely, define s, /,, via (2.46), and consider the expansion Asy = ijew (Asy, 5,05,)5,®
s,. Taking advantage of (2.43), (2.46) and the expansion sx/, = >, cp+(Sx/u, Sv)S, one
ends up with (2.45). O
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The adjective ‘skew’ stems from the fact that s,/, has an alternative combinatorial

description given by

Sx/u = ZxT , (2.47)
T

where the sum runs over all column strict tableaux T of shape A/u, and once again
! = thl(T)a:th(T) ---. This is the generalisation to skew diagrams of the combinatorial
definition (2.23) of Schur functions, and one has that s,/ = s\. Notice that (2.47) is well
defined only if  C A. In fact, one can show that if o ¢ A then s/, = 0 (see for example |52,
1.5]). Define the skew Kostka number K/, («) as the number of column strict tableaux of
shape A/p and weight o € P. Notice that K g(a) = Ky, where the latter is the Kostka
number defined in Section 2.2.3. The equalities K/, (V) = (Sx/u, hv) = (Sx, Suhy), which
follow by linearity of the Hall inner product, imply that the skew Kostka numbers also
appear in the product expansion s,h, =Y, p+ K)/u(v)sx. The next result can be found

for instance in [52, L.5].

Lemma 2.3.3. The symmetric function sy, can be expanded as

S\p = Z C/AUJSV = Z K)\/,u(y)ml/ ) (248)

vepP+ vePt
. )\ . .
where the coefficient c;,, was introduced in (2.26).

Proof. The first equality follows from (2.26), the expansion sy, = > cp+(Sa/u, Sv) S, and
the defining relation (2.46) of s5/,. One can show that K,/,(v) = K,,,(8), which holds
for all v € Pt and § € P such that 8 ~ v (see |67, p. 311] for details). Rearranging
(2.47) appropriately, one ends up with the second equality in (2.48). ]

Remark 2.3.4. An explicit construction of the irreducible representations of GL(C)
is given by the Weyl modules [25], which can be generalised to skew shapes A/u. The
corresponding characters are given by s)/,(21,...,2x), and the first equality in (2.48)
therefore describes the decomposition of ‘skew Weyl modules’ into irreducible GLg(C)-

representations (see loc. cit.).

2.3.1 Skew elementary and complete symmetric functions

We now discuss the symmetric functions which arise by taking the coproduct of elementary
and complete symmetric functions. We were unable to find these symmetric functions

anywhere in the literature.

Definition 2.3.5. Define the ‘skew elementary symmetric function’ e/, and the ‘skew
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complete symmetric function’ h),, via the equations

Aey = Z ex/u @ €y Ahy = Z b @ hy, (2.49)

neP+ HeEP+

Lemma 2.3.6. The symmetric functions ey, and hy;,, can be equivalently defined as the

functions satisfying the relations, which are valid for all v € P,

<e)\/,LL7 fz/> = <€)\, fufr/) s <h)\/,u7ml/> = <h)\7mﬂm'/> : (25())

Recall that the basis {h)}rep+ and {m,} ep+ are dual to each other with respect
to the Hall inner product (2.39), and so are the basis {e)}rep+ and {fa}rep+. Thus
(2.50) fixes ey/, and hy,, entirely thanks to the expansions ex/, = > cp+{(€r/u; fo) €, and
Paju = > yep+ (hajus mu) by Furthermore, by linearity of the Hall inner product we have
that (ex/u,9) = (ex, fug) and (hyj., 9) = (ha,myg) for all g € A. Since the involution w
described in Section 2.2.5 is an isometry for the Hall inner product, it follows from (2.50)
that (w(ex/u), my) = (ha, mum,) for all v € P*, and thus

w(ex/u) = Py - (2.51)

Proof (of Lemma 2.3.6). Starting from (2.49) one has that (Aey, f, ® f,) equals (e, f.f.)
thanks to (2.43) and (ey/,, f,) thanks to (2.41). This implies the validity of the first
equation in (2.50), whereas the second one follows in a similar manner. Conversely define
ex/u and hyy, via (2.50), and consider the expansion Aey = ZMVGPMAe,\, [ ® fu)e, ®e,.
Taking advantage of (2.43), (2.50) and the expansion ey/, = >, cp+{(€r/u, fo)e, one ends
up with the first equation in (2.49). Starting from Ahy = ijem (Ahy,m, @my)h, @h,

instead one arrives at the second equation in (2.49). [

For v € P, define the coefficients v/,(v) and 6,,,(v) via the product expansions

mye, = Z Ua/u(vV)ma myh, = Z Or/u(v)my . (2.52)

AePt AePt

Plugging (2.22) into (2.52), and then employing (2.13), it follows at once that

W)=Y farMue . Oru(w) = > frLuo (2.53)

oceP+t oceP+t

The coefficient f;, was introduced in (2.13), whereas M,, and L,, were described in

Section 2.2.2. The relations (2.53) imply that ¢,,,(v) and 6,,,(v) are non-zero only if

A

1o 18 non-zero only if 44 C A, as we showed in Section 2.2.1.

@ C A, since in turn
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Lemma 2.3.7. The symmetric functions ey, and hy,, can be expanded as

e = Y. faen =Y taul)my, (2.54)

vep+ vepP+t
M = Y fahw=Y_ Oyuv)m, . (2.55)
veP+t veP+t

Proof. Let us start from the equalities hy/, = > cp+ (Pajus M)l = D cps (hajus hu)ma.
Taking advantage of the second equation in (2.50), the product expansion m,m, =
> aep+ fayma in (2.13) and the second equation in (2.52), one deduces the validity of
(2.55). Similarly, consider the expansions ey, = >, cp+(€x/us fu)ew = D ep+ (€x/us ).
Applying the involution w to both sides of (2.13) one ends up with f,f, = >\ p+ f,l\qu-
This equality, together with the first equation in (2.50), the fact that w is an isometry for
the Hall inner product, and the first equation in (2.52), implies the validity of (2.54).

]

Remark 2.3.8. The first equalities in (2.54) and (2.55) imply that the symmetric func-

A

. 18 non-zero only if p1 C A.

tions ey, and hy,, are non-zero only if 4 C A, since in turn

Lemma 2.3.9. We have the identities

Z (—1)'”"‘“‘6,\/1,@/“ — Z (—1)|’\|_‘V|hx/u€u/u = O - (2.56)

vep+ vep+

Proof. The equality (mym,)m, = my(m,m,), which simply reflects the associativity of
the product in A, together with (2.13) implies the relation Y p. f5,12, = > cpt foufon
for p € PT. Taking advantage of the latter and the first equalities in (2.54) and (2.55)

one ends up with

Aerxy= D exp@eyp, A=Y hyy@hyy,. (2.57)

vept vepP+

The same equalities imply that v(ex/,) = ha/, (=) and y(hy,,) = ey, (—1)A =]
where v is the antipode of A defined in Section 2.2.6. Employing the defining relations
(2.44) of the antipode, one has that (mo (1 ® 7)o A)(ex/,) = >, cps (=D)"ley by,
(mo(y®@1)oA)(ex) = eps (D) =hy e, and (noe€)(er),) = Oy, Since these are
all equal to each other the claim follows. Had we applied the same relations to hy/,, we
would have still ended up with (2.56). O

Remark 2.3.10. The identities (2.56) represent the generalisation to skew functions of
the equalities > (—1)'e;h,—; = 0 for r € N, which are recovered by setting A = (r) and
p=0.
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To conclude this section, we provide the expansions for skew elementary and complete

symmetric functions in terms of Schur functions. Define the coefficient Xﬁy as

Xow =D frnKus . (2.58)

ocePt+

The coefficient K, is the Kostka number, which was introduced in Section 2.2.3. Notice

that x;, is a non-negative integer, since f;, and K, are non-negative integers as well.

Lemma 2.3.11. The functions ey;, and hy;, can be expanded as

e)x/,u, = Z X;);ysl/’ ; (259>
vepP+

haju = Z X;\WS,,. (2.60)
vepP+

Proof. Plug the expansions e, = Y _p+ Kyo5» and h, = > 5 K,s5,, which can be
found for instance in [52, 1.6], into the first equalities of (2.54) and (2.55) respectively. A
comparison with (2.58) then proves the validity of the claim. O

Remark 2.3.12. Lemma 2.3.11 implies that the functions e,,, and h,,, are Schur-
positive, that is the coefficients appearing in the expansions in terms of Schur functions are
non-negative integers. As we discussed in Remark 2.3.4, the polynomial characters of the
irreducible representations of GL(C) coincide with the Schur functions s, (xq,...,xx). It
follows that there exist representations of GLj(C) whose polynomial characters are given
by ex/u(z1, ..., 2,) and hyj, (21, ..., 2;) respectively. It would be interesting to present a

more explicit construction of these representations.

2.3.2 Weighted sums over reverse plane partitions

We now wish to give combinatorial expressions for ey, and hy/,, and we want these to
resemble the one for skew Schur functions given by (2.47). It turns out to be somewhat
easier to start with h,/,, and for this purpose we generalise the notion of skew diagram
described in (2.3) to compositions. Namely, for a, § € P we write o C 3 if a; < 3; for all
i € N, and we refer to the set /o C Z x Z as a ‘skew diagram’. Recall that the notation
o ~ A, which was introduced in Section 2.2.1, indicates that @ € P is a permutation of
Ae Pt

Definition 2.3.13. For A, u € P+, denote with 6,,, the cardinality of the set

{aeP|a~puacCA}. (2.61)
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Figure 2.4: Let A = (3,2,2,1) and p = (2,2,1). Above there are represented (in grey) all
the compositions o ~ p such that o C A, and thus 6/, = 6.

Lemma 2.3.14. The set (2.61) is non-empty if and only if p C A, that is if and only if

A pis a skew diagram.

Proof. 1f n C X we have that a = p belongs to (2.61) which is then non-empty. Conversely
assume that (2.61) is non-empty, that is there exists o ~ p such that o C A. Say that
o; = p for some ¢ € N, then the composition 5 ~ p obtained from « by permuting oy
and «; still satisfies § C A\, as 1 = a; < A\, < Aj and §; = ag < a; < A;. Notice that
by construction 3; = ;. Say that §; = us for some j € N, then the composition v ~ p
obtained from 3 by permuting 5; and S, still satisfies v C A, and furthermore v, = p,

Yo = pg. Proceeding in a similar vein one eventually concludes that u C . O]

Lemma 2.3.15. Suppose that ;n C X, then the cardinality of the set (2.61) has the following

explicit expression in terms of binomial coefficients,

N —
Oa =] < i “Z“) . (2.62)

/ !
i1 My — g

Proof. Lemma 2.3.14 implies that for p C A the set (2.61) is non-empty. To prove the claim
we will count the number of elements in (2.61), that is the number of distinct permutations
a of p satisfying o C A, recursively. For this purpose, set [ = A; and notice that all the

parts in g are smaller than [. To begin with, the m;(u) = p; parts of 1 equal to [ must
be among the first m;(\) = A} parts of «, and there are (:\j) distinct ways to implement
1

this constraint on «. Notice that we allow m;(u) = 0, in which case there is only ()(‘)5) =1
‘way’ to do this. Next, the m;_;(u) = pj_; — pj parts of p equal to [ — 1 must be among
the first my_1(\) +my(N\) = \_; parts of «, and since we have already fixed the p; parts

of a equal to [, there are (’\2*1_” 2) distinct ways to implement this further constraint on

Hi—1—H
Q.

The i-th step of this counting procedure would be that the m1_;(1) = p7, 1 _; — M0

parts of p equal to [ + 1 — 4 must be among the first > .., ;m;(A) = A\j;_; parts of

a, and since we have already fixed the >, , ;m;(n) = pj,,_; parts of a greater or

equal than [ + 2 — ¢ there are (;\j“—i:z §+2—") distinct ways to implement the constraint
I+1—1 1+2—1

just mentioned on «. Finally, the cardinality of (2.61) is given by the product of all these
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possibilities, that is

!
H( I+1—i _M2+2i) _ H (X :U’H-l) _
pale} Mz+1 i N;+2—i i>1 i = Mg

O

Recall that a RPP 7 of shape \/p with highest entry [ is equivalent to a sequence
{A} ez, of partitions, with A® = and A = X, such that A"~ c A" for r > 1.
The only difference with Lemma 2.1.2 is that we set AT = O for r > [,

Lemma 2.3.16. Suppose that i C X, then the skew complete symmetric function hy,,, is
the weighted sum

b= 02", 0.=]]00n00 . (2.63)

r>1

over all RPPs of shape \/ji. In particular, the coefficient 0,,(v) defined in (2.53) has the

alternative expression

O/ (v Z Or (2.64)

where the sum runs over all RPPs of shape A/ and weight v.

Proof. First we show the validity of the product expansion

muhe = Y Oyjuma (2.65)

AeP+

where the sum runs over all partitions A such that ¢ C A and |\/u| = r. Notice that the
coefficient of m in m,h, equals the coefficient of z* in the same product. From (2.12) and
(2.18) it follows that each monomial appearing in the product m,h, is of the form z®z”
for some «, 5 € P with a ~ pand || = r. Fix o ~ p, then a composition 8’ with |f'| =r
and 2% 2% = 2 exists if and only if ' C X and |A| — || = r, in which case f/ = XA — o/
Thus the coefficient of z* in m,h, equals the cardinality of the set (2.61) provided that
|A| = |p| = r. This is by definition 6,,, which is non-zero if and only if 4 C A thanks
to Lemma 2.3.14. In conclusion, the coefficient of m, in myh, is non-zero if and only if
p C Aand |A/p| = |A] = |p| = r, in which case it is equal to 6., thus proving the claim.

Applying the result just obtained repeatedly to the product m,h,, and comparing with
the second equality in (2.52), one sees the validity of (2.64). Since hg = h, for f ~ v
this also implies that 65/,(3) = 6/.(v), where 0,,,(8) for § a composition is defined
as in (2.64). Rearranging the equality hy/, = >, cp+ Or/u(v)m, proved in Lemma 2.3.7
appropriately one then arrives at (2.63).

O
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Figure 2.5: Let A = (3,2,2,1) and p = (2,2,1) as in Figure 2.4. Above there are rep-
resented (in grey) all the compositions o ~ p such that A/« is a vertical strip, and thus

Yy = 2.

Corollary 2.3.17. The coefficient Ly, introduced in (2.22) has the following alternative

eTPTession,
Ly,=> 0, (2.66)

where the sum runs over all RPPs of shape \ and weight p.

Proof. First of all, notice that from (2.14) one has that f7, = 0),. Furthermore, from the
definition of the coefficient L, it follows that Ly, = L, (compare with [67, Cor. 7.5.2]).
Finally, set 1 = () in the second equation in (2.53) and take advantage of (2.64) to prove
the claim. O

2.3.3 Weighted sums over row strict tableaux

In this section we shall provide a combinatorial expression for e),,. For this purpose, we
present a similar discussion to the one presented in the previous section for hy/,. We
generalise the notion of vertical strips given in Section 2.1.1 to compositions, and we say
that for «, 5 € P the skew diagram [/« is a vertical strip if 5; — o; = 0,1 for all i € N.

Definition 2.3.18. For A, u € P+, denote with 1/, the cardinality of the set

{a € P | an~pu,\ais a vertical strip} . (2.67)

Lemma 2.3.19. The set (2.67) is non-empty if and only if \/u is a vertical strip.

Proof. If \/u is a vertical strip we have that o = p belongs to (2.67), which is then non-
empty. Conversely, assume that (2.67) is non-empty, that is there exists a ~ p such that
A/a is a vertical strip. Assume that «; = py for some i € N, and consider the composition
B ~ p obtained from « by permuting oy and «;. We show that A/ is a vertical strip.
From the hypothesis a; > «; but we must also have a; < a1 + 1, for if o; > a3 + 1 we end
up with A\; —ay > 1, which is a contradiction since A/« is a vertical strip. Thus we can
only have a3 = a;, in which case a = [ and thus \/f is a vertical strip, or oy = o; + 1.

In the second case we must have A\; — a; = 1, that is A\ — a; = Ay — 81 = 0, otherwise
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Ai — a; < 0. We must also require \; — a; = 0, that is A\;, — a3 = \; — 5; = 1, otherwise
A1 — ag > 1. This implies once again that A/ is a vertical strip.

Assume now that 3; = po for some j € N, and denote with v ~ p the composition
obtained from 3 by permuting 3; and 8. In the same fashion as before one can show that
A/~ is a vertical strip, and furthermore v; = p1, ¥2 = po. Proceeding in a similar vein one

eventually concludes that A/u must be a vertical strip. O

Lemma 2.3.20. Suppose that A/ is a vertical strip, then the cardinality of the set (2.67)

has the following explicit expression in terms of binomial coefficients,

v =1 (Ag a ;“) - (2.68)

/ /

Proof. Lemma 2.3.19 implies that if A/ is a vertical strip the cardinality of (2.67) is
non-empty. In a similar fashion to Lemma 2.3.15, we will count the number of distinct
permutations « of u such that A/a is a vertical strip recursively. For this purpose, we set
again | = ;. The my(u) = uj parts of u equal to [ must be among the first m;(\) = A
parts of «, and there are (22) distinct ways to implement this constraint on a. Notice that
the other first A} parts of «, in number ] — 7, must be equal to [ —1 since A/« is a vertical
strip. Next, we have that the remaining m;_1(p) — (A\] — pj) = wj_; — A} parts of u equal
to [ —1 must be among the parts a; of & with \j +1 < j < A\ 4+my_;(\) = \j_;, and thus
NN

there are ( Y
Hi—1—N

parts of « in the positions just considered, in number N)_; —Aj — (u)_; — A)) = N_; — 1)1,

) distinct ways to implement this further constraint on o. The remaining

must be equal to [ — 2.

This describes the first 2 steps of the counting procedure. In the i-th step one has
that the remaining m1—;i(1) — (N9 — Hipo—i) = Mip1—; — Ao, Parts of p equal to
I +1 — i must be among the parts o of a with X\j,, ; +1 <7 < N5 ; +myp-(N) =

A

Ai41_i» and there are (Ag“—f §+2—i) distinct ways to implement this constraint on a. On

I+1—i 42—
the other hand, the remaining parts of «a in the positions just considered, in number

Nvi—i = Mgoi — (i1 — Nyoy) = Alpa—y — Hiyq—y, must be equal to [ — 4. Thus, we

11 (AQ - )‘;+1)
/ / :

)

eventually get that the cardinality of (2.67) is given by
: ( FWEDY ) ( TRy )
1 2\ _ 1 +2-i ) _
g His1—i — Mo g Alpi—i = Mis1—;

]

Lemma 2.3.21. Suppose that i C X\, then the skew elementary symmetric function ey,

15 the weighted sum

Ex/p = Z Ur a’ Y = H 1/)A<r>/,\(r—1) ) (2.69)
T

r>1
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over all row strict tableaux of shape \/p. In particular, the coefficient 1y, (v) defined in

(2.52) has the alternative expression
ba(v) = _vr, (2.70)
T

where the sum runs over all row strict tableauzx of shape \/u and weight v.

Proof. This goes very similarly to the proof of Lemma 2.3.16. One first needs to show
that

mue, = Z Yajumy (2.71)

AeP+

where the sum runs over all partitions A such that A\/u is a vertical strip and |\/u| = r.
We will use once again the fact that the coefficient of my in m,e, equals the coefficient of
2 in the same product. From (2.12) and (2.18) it follows that each monomial appearing
in the product mye, is of the form z®z” for some o ~ y and 8 € P with |3| = r and

A exists

B; = 0,1. Fix o ~ p, then a composition ' with |3'| =r, /= 0,1 and 2%z =z
if and only if A/a/ is a vertical strip and |A| — |p| = r, in which case 8’ = A — a/. Thus the
coefficient of z* in m,e, equals the cardinality of the set (2.67) provided that |A| — |u| = r.
This is by definition 1, ,,, which is non-zero if and only if A\/j is a vertical strip thanks to
Lemma 2.3.19. In conclusion the coefficient of my in me, is non-zero if and only if \/u
is a vertical strip with |\/u| = |A| — || = 7 in which case it is equal to 1)/, thus proving
the claim.

Applying the result just obtained repeatedly to the product m,e, and comparing with
the first equality in (2.52) one sees the validity of (2.70). Since eg = e, for 5 ~ v this also
implies that ¥/.(8) = ¥x/u(v), where 1y/,(8) for B a composition is defined as in (2.70).
Rearranging the equality ey, = >, cp+ ¥a/u(v)my, proved in Lemma 2.3.7, with the help
of (2.70) one then arrives at (2.69).

[

Remark 2.3.22. The combinatorial interpretation of the coefficients 0,, and v/, pre-
sented respectively in (2.65) and (2.71) is not new (see [34, Lemma 4.1] and [52, p. 215]
in the limit ¢ = 1). The novel aspect here is that these coefficients were determined via
cardinalities of sets, compare with Definitions 2.3.13 and 2.3.18. As we will discuss in the

next chapter, this provides a natural generalisation to cylindric partitions.

Corollary 2.3.23. The coefficient My, introduced in (2.22) has the following alternative

eTpression,
My, => tr, (2.72)
T

where the sum runs over all row strict tableaux of shape A and weight p.
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Proof. Notice that from the definition of the coefficient M), it follows that M, = M,
(compare with [67, Cor. 7.4.2]). Set u = () in the first equation in (2.53), use the fact that
f2y = 0xs, and then take advantage of (2.70) to prove the claim. [

2.3.4 Adjacent column tableaux

We conclude this chapter by studying the expansions of the symmetric functions ey, and
hysu in terms of power sums. For v € P* define the coeflicient ¢, ,,(v) via the product
expansion
mupy, = Z Ox/u(V)my . (2.73)
AeP+t
Plugging the expansion (2.33) into (2.73), and taking advantage of (2.13), it follows at

once that

SOA/M(V) = Z ;\URI/O' y (274)

oceP+t

where the coefficient R,, was introduced in Section 2.2.4. The relation (2.74) implies that

A

1o 18 non-zero only if 1 C A, as we showed

©x/u(v) is non-zero only if 41 C A, since in turn
in Section 2.2.1.

Lemma 2.3.24. The symmetric functions hy,, and ey, can be expanded as

6)‘/# = Z SDA/u(V)ZV_lﬁupu 5 (275)
vep+

hae = Y exvu@)z'py - (2.76)
vep+

Proof. To prove (2.76) one starts from the expansion hy/, = Y, cp+ (ha/u, Dv) 2, Dy, Which
follows from (pyx,p,) = 0xu2x, and then proceeds in a similar fashion to the proof of
Lemma 2.3.7. Applying the involution w to both sides of (2.76), and using the fact that
w(hy/u) = ex/u and w(pa) = €xpy, one ends up with (2.75). O

The coefficient ¢, ,,(v) has an alternative expression involving a new type of tableau,

which we now describe.

Definition 2.3.25. Suppose that 1 C A. We say that A/p is a ‘adjacent column horizontal
strip’ (ACHS) if A/ is a horizontal strip and if furthermore the columns in Zx Z containing
it are adjacent. A ‘adjacent column tableau’ (ACT) T of shape A/ is a sequence {\} _,
of partitions, with A(¥) = ;s and A®) = X, such that A /A1) is a ACHS for r = 1,...,1.

Definition 2.3.26. Let a,r € N and suppose that m,_1(u) # 0 (which is understood to

be always true for a = 1). Define p,, as the partition whose Young diagram is obtained
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Figure 2.6: Let A = (4,4,3,1,1) and u = (4,3,1,1). On the left we have in grey the
ACHS X\/p. Notice that A = py 4, or equivalently that A is obtained from p by adding a
part equal to 4. Since the part of A intersecting with the rightmost column of the ACHS
is equal to 4 we have that ¢y/, = m4(A) = 2. On the right we have a ACT of shape
(5,4,2)/(2,1) and weight (3,3, 2).

by adding one box per column in the Young diagram of y, starting at column a and ending

at column a +r — 1 for a total of r boxes.

Suppose that A = p,, for some a,r € N with m,_;(u) # 0. By definition we have that

/ .
Tl a<i<a+r-—1
N =" | (2.77)
T otherwise
Furthermore, using the relation m;(\) = A; — A7, , it follows that
(@ = 1)met =l (g — 1 ) Memer Ry g s ]
(...,Tm"(“)+1,...), a=1

That is, A is obtained from g by removing a part equal to a — 1 (or removing no parts if

a = 1) and adding a part equal to a — 1 4 r. See once again Figure 2.6 for an example.

Lemma 2.3.27. The skew diagram \/p is a ACHS with |A\/u| = r € N if and only if
A = payr for some a € N with m,—1(u) # 0.

Proof. The claim follows from (2.77), since if A = p,, then one must add r boxes in

adjacent columns of the Young diagram of p to obtain the Young diagram of . O]

Let A\ = pq, as before, and define

Pr/p = ma—l—i—r()\) . (279)

In particular, set ¢y/n = 1. Stated otherwise, the coefficient )/, is the multiplicity of
the part in A intersecting with the rightmost box of A\/u. See Figure 2.6 for an example.
Notice that ¢/, = mae—14,(1t) + 1 thanks to (2.78).

Lemma 2.3.28. Suppose that i C X\, then we have the equality

QOA//L(V) = Z‘PT ) Yr = H@)\W)/)\(T—l) , (2.80)
T

r>1
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where the sum runs over all ACT of shape \/u and weight v.

Proof. We just need to show for » € N the product expansion

mupr = Z O/t (281)
AeP+

where the sum runs over all partitions A such that A\/u is a ACHS with |\/u| = r, that
is A = pg, for some a € N with m,_1(p) # 0. The claim then follows after a repeated
application of (2.81) to the product m,p,, which also implies that ¢y/,(3) = ¢x/u(v) for
b~ uv.

The coefficient of my in m,p, equals the coefficient of z* in the same product. We
show that this is non-zero if and only if A = y,, for some a € N with m,_; () # 0. Using
the definition p, = Y .., 7 of power sums, one has that each monomial appearing in m,,p,
is of the form z%z? for_some a ~ pand B € P defined by §; = rd; for some [ € N. Assume

A, Since a ~ u we see

that there exists two such compositions o and 8 with z%2? = «
that A is obtained from p by removing one of its parts equal to a; (or removing no parts if
a; = 0) and replacing it with oy + 7. Setting a = a; +1 € N we then have A\ = i, , thanks
to (2.78). Conversely, suppose that A = fi,, for some a € N with m,_() # 0. Equation
(2.78) implies that there exists [ € N and a ~ p with a; = a — 1 such that A\ = a + £,
where again 3 € P is defined by 3; = r6;. Thus 2%2” = 2, and the coefficient of m, in
m,p, 1s non-zero.

So suppose that A = p,, for some a € N with m,_;(u) # 0, and let ¢ and j be the
smallest indices for which p; < a — 147 and p; = a — 1 respectively. The monomials in

m,.p, which equal 2* are of the form

AR AT AN A TR A AR I

for I =0,...,mq_14,(pt). This implies that m,p, = >, (Ma—14-(t) + 1)m,, ., where the
sum runs over all a € N such that mq_,(¢) # 0, and applying the definition of ¢/, the
latter equals (2.81).

]

Remark 2.3.29. The linear combination )+ ©a/.(v)m, is not equal to the symmetric
function p,,, defined via the relation py = E#€P+ Pr/u®@py. There seems to be no natural

definition of ‘skew power sums’ in terms of ACT.

Corollary 2.3.30. The coefficient Ry, introduced in (2.33) has the following alternative

exTPTession,
Bau =Y ¢r, (2.82)
T

where the sum runs over all AC'T' of shape p and weight \.
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Proof. Set pn =0 in (2.74), use the fact that f% = d,, and take advantage of (2.80). [

Notice the difference between this result and Corollaries 2.3.17, 2.3.23. This is because
in general Ry, # R,; see for example [52, Eq. (6.5)].



Chapter 3
Cylindric symmetric functions

The purpose of this chapter is to generalise the skew symmetric functions ey, and hy,,

which were discussed in Section 2.3, to the cylinder € ,,. This is defined as the quotient
Cron =2ZXZ/(—k,n)Z.

In words, €, is the quotient of the Z x Z plane modulo the shifting action which sends
(1,7) to (i — k,j + n). Equivalently, we will work with objects defined on Z x Z which
admit a projection onto the cylinder € ,. Although strictly speaking ambiguous, we will
call the latter ‘cylindric’. Then we introduce a quotient of the ring Ay ® C[z, 27!, and
we describe some product expansions which hold in this quotient. We shall employ these
product expansions to obtain the expansions of the ‘cylindric’ symmetric functions ey 4/,
and hy/q/ (which are the generalisation of ey /u and hy, to the cylinder € ,,) in terms of
the bases of A described in Section 2.2. From here to the end of this chapter, we assume
that £,n € N.

3.1 Cylindric Reverse Plane Partitions

Our first task is to generalise Section 2.1 to the cylinder € ,. The objects defined on
Z x Z in Chapter 2, such as skew diagrams or Young diagrams, do in general not admit
a projection onto the cylinder, and for this reason they will be referred as ‘non-cylindric’.
Our purpose is to generalise the latter ‘to the cylinder’ or ‘to the cylindric case’, that is

we will extend their definition such that their projection onto the cylinder exists.

3.1.1 Cylindric diagrams and cylindric reverse plane partitions

For the discussion in this section we take inspiration from [41,53,58|, although we expose

the material in a slightly different manner to accommodate for further developments.

38



CHAPTER 3. CYLINDRIC SYMMETRIC FUNCTIONS 39

Figure 3.1: Let k = 3 and n = 4. Displayed above are represented the (cylindric)
diagrams of the cylindric composition & = (...,5,2,3,...) and the cylindric partition
A= (...,6,5,3,...) respectively. The boundary line of the diagram of )\ is called a ‘cylin-
dric loop” in [58]. The shadowed boxes represent the (Young) diagrams of a = (5,2, 3)
and A = (6,5, 3) respectively.

Definition 3.1.1. A cylindric composition & of type (k,n) is defined as a doubly infinite

sequence
(o) G,y Gy ) (3.1)

in Z, subject to the relation &;,r = &; —n for all : € Z. A cylindric partition \ of type

(k,n) is a cylindric composition satisfying the further constraint i > 5\i+1 for all i € Z.

Denote with Py, the set of all cylindric compositions of type (k,n), and with P,I . C
P the subset of all cylindric partitions of type (k,n). It will always be clear from the
context what the type of a cylindric composition is. We now extend the notion of (Young)

diagram to cylindric compositions.

Definition 3.1.2. Define the (cylindric) diagram of & € Py, as the subset of Z x Z given
by
{(,)) €ZxZ|j<d}. (3.2)

We identify each point in the diagram of & € Py, with a box as we did for (non-
cylindric) compositions. What is different is that now there is no lower boundary for the
coordinate j. See Figure 3.1 for an example. For A € P,:f ,, define the conjugate cylindric
partition N as the cylindric partition whose diagram is obtained by reflecting the boxes
of the diagram of \ along the diagonal {(i,i) | i € Z}. One has that N € Py since
N, i = X — k for all i € Z. Denote with m;()) the multiplicity of 4 in A, then we have

that m;(\) = N, — X, 1 in analogy with the non-cylindric case.

Remark 3.1.3. We will often take advantage of the bijection Py, — Py given by & —
a = (&q,...,4), which restricts to an injection P,j’ . — P. The inverse map sends

a = (aq,...,q) to the cylindric composition & obtained by setting &; = a; fori =1,... k
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and then &, = &; —n for all ¢ € Z. It is understood that whenever & € Py, and o € Py,

appear in the same context they are related via this bijection.

Remark 3.1.4. Let \ € P,;fn with S\k > 0, in which case we have that A1 > n. Moreover,
consider the partition A which is the image of A under the map introduced in the previous
remark. View each box belonging to the diagram of A as situated on the cylinder obtained
in the following way: wrap the diagram of A\ onto itself and glue together its first and
last rows, so that for j = 1,...,\; the boxes associated respectively with the points
(k,j) and (1,7 4+ n) are adjacent. On the cylinder constructed in this way, we have that
fori =1,...,k + 1 the box associated to (i, \;) is to the right of the box associated to
(1 4+ 1, A\ix1). This is in analogy with non-cylindric Young diagrams, compare with Figure
2.1. The observation presented above represents an alternative way to justify the epithet

‘cylindric’ for cylindric partitions (see [28] for further details).

Definition 3.1.5. Let ), JIxs P,In, and write i C ) if the diagram of fi is contained in the
diagram of 5\, or equivalently if f; < i for all i € Z. Define the cylindric skew diagram
M CZxZas

Mi={(,)) €ZxZ | ju<j<h}. (33)

We will often use the expression ‘5\/ it is a cylindric skew diagram’, and by this we
mean that i C A In analogy with the non-cylindric case, we can think of 5\/ it as the set
of boxes which are placed between the boundaries of the diagrams of i and A. Denote
with [A/f| = S2F (A — f1;) the number of boxes in A/ji which are located in lines 1 to
k. If A /[ has at most one box per row (respectively column) we will call it a cylindric
vertical (respectively horizontal) strip. In particular, A / ) is both a cylindric vertical and
horizontal strip. For 5\, i€ 77,: , With j\k, iz > 0 we have that A\ and p are partitions,
and then if we restrict 5\/ f to the lines 1 to k we recover the skew diagram A/u. In
particular let 0e P,In be the cylindric partition with parts @Z =0fors=1,...,k, then
if we restrict ;\/ () to the lines 1 to k we obtain the Young diagram of A. In contrast with
the non-cylindric case, a cylindric partition i € P,I ., such that the diagram of A coincides

with the diagram of A /[ does not exists.

Definition 3.1.6 ( [28]). Let A, i Pin- A cylindric reverse plane partition (CRPP) &
of shape \/fi is a map A/t — N, (i,7) — i j, subject to the constraints

Tij = Titkj—n »
Tij < Tivlg, if (i41,5) €M,
Tij < T+, if (i,j+1) € Mji.

In other words, 7 is a filling of the boxes of A /v with positive integers, called the entries

of 7, which are weakly increasing from left to right in rows and down columns. Define the
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weight of 7 as the composition wt(7) = (wty(7), wta(7), .. .), where wt;(7) is the number
of entries equal to 7 in lines 1 to k, or equivalently in columns 1 to n. See Figure 3.2 for

an example.

Remark 3.1.7. If the entries of 7 are instead weakly decreasing from left to right in
rows and down columns, we might refer to 7 as a cylindric plane partition, although in
this thesis we will not make use of such object. In [28] this is what is called a ‘cylindric

partition’.

Remark 3.1.8. Let 5\, i€ P,:n with S\k, i1 > 0. Moreover, let 7 be a CRPP of shape 5\/,&,
and consider the RPP 7 of shape A\/u which is obtained by restricting 7 to the lines 1 to
k. View the entries of 7 as situated on the cylinder obtained in the following way: wrap m
onto itself and glue together its first and last rows, so that for j = 1,..., A; the entries 7
and 7 j1, are adjacent (compare with the discussion presented in Remark 3.1.4). On the
cylinder constructed in this way, we have that the entries of 7 are still weakly increasing
from left to right in rows and down columns. This observation represents an alternative
way to justify the epithet ‘cylindric’ for CRPPs (see 28] for further details).

Lemma 3.1.9. A CRPP 7 of shape 5\//1 with largest entry | € N is equivalent to a sequence
{NYL_ . of eylindric partitions with

~

p=2A0c iAW c...c 0=}, (3.4)

Proof. Suppose that 7 is a CRPP of shape ;\/ﬂ Set A0 = i1, and for r = 1,...,1 let
A®) be the cylindric partition whose diagram is obtained by joining the diagram of i
with the boxes of 7 containing the entries from 1 to r. In particular AD = X, Tt follows
by construction that A=Y < A) and thus the sequence {\"}._, of cylindric partitions
satisfies the condition (3.4). Conversely, define a map # : A/i — N, (i,j) — Ti; as
follows: for r = 1,... 0 set m;; = r if (i,j) € 5\(’”)/;\(“1). Since the cylindric partitions
{AMYL_ satisfy the periodicity condition Xfﬁk =
Let (i,7) € A /A for some r = 1,... 1. If (i +1,5) € M/ji it follows that (i +1,5) €
AT JAC D) for some ' > r, and then 7;; < 741, Similarly if (i, + 1) € A/ji we have

S\Z(T) —n, it follows that ; ; = g jn.

that 7, ; < 7; j41, and thus 7 is a CRPP according to Definition 3.1.6. In particular it
follows by construction that wt,(7) = A" /AC—D| for r =1,...,1. O

We shall make use of the following special case of CRPP. Compare with Definition
3.1.6.

Definition 3.1.10. Let \, /i € Prn- A cylindric row strict tableau (CRST) T of shape
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ce2-101 2 3 4 5 6 7-... 02101 2 3 4 35 6 7-..

Figure 3.2: Let k =3, n =4, A= (...,6,5,3,...) and i = (...,4,2,0,...). On the left
we have a CRPP of shape A/ji and weight (2,3,0,3). On the right we have a CRST of
shape 5\/ f and weight (1,1,3,2,1). The CRPP on the left is equivalent to the sequence
of cylindric partitions (...,4,2,0,...), (...,5,2,1,...), (-..,5,3,3,...), (...,5,3,3,...),
(...,6,5,3,...).

5\//2 is a map T : 5\//2 =N, (1,7) — Ai,j, subject to the constraints

~

ij = TLitkjn
g < Ty if (i+1,4) € M,
Az',j < Ti,jﬂ ) if (i,j+1)eNj.

Equivalently, 7" is a filling of the boxes of A /f with positive integers which are weakly
increasing down columns but strictly increasing from left to right in rows. One can define
cylindric column strict tableaux in a similar fashion [5,53,58|, although we will not make

use of such objects in our discussion.

Lemma 3.1.11. A CRST of shape 5\/;} with largest entry | is equivalent to a sequence
(AL of eylindric partitions satisfying (3.4), such that X /A=Y is a cylindric vertical
strip forr=1,...,1.

Proof. The proof of this statement proceeds in a similar fashion to the proof of Lemma
3.1.9. Let 7' be a CRST of shape 5\//1, set A0 = it and define A for = 1,...,1 as
therein. This implies that Ar=D 5\(’"), and furthermore (") / A1) g a cylindric vertical
strip since in 7' there is at most one box per line containing the entry r. Conversely, define
amap T : A/ = N, (i,j) — Tw as in the proof of Lemma 3.1.9, that is for r = 1,...,1
set T,J =rif (1,7) € 5\(7“)/5\(“1). Since 7' is a CRPP it follows that T” = Ai+k7]‘_n, and
morever T;; < Tj4y; provided that (i +1,7) € Mj. Let (i,7) € A /A0 for some
r =1,...,1, and suppose that (i,j +1) € A/ji. The fact that A /A0 is a cylindric
vertical strip implies that (i,7 + 1) € AT /A=Y for some 7/ > r, and then T}; < T} 1.
In conclusion, we have that 7" is a CRST according to Definition 3.1.10. [
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2100123 45 6T

Figure 3.3: Let k =3, n =4, A = (5,3,2) and p = (2,1). The RPP of shape A\/u on the
left does not give rise to a CRPP of shape A/ when extended periodically to Z x Z, as
shown in the picture on the right.

Remark 3.1.12. Let 5\,/1 € P,In with j\k,/lk > 0. Restricting a CRPP (respectively
CRST) of shape A//i to the lines 1 to k one obtains a RPP (respectively row strict tableau)
of shape A/u. The converse is not true in general, that is not all RPPs 7 of shape A\/u
extend to a map 7 : 5\/ it — N satisfying the requirements of Definition 3.1.6. See Figure
3.3 for a counterexample. Notice that this condition holds if the parts of A\, u € P}’ are
smaller or equal than n, since in this case there are no boxes of A\/u in columns greater

than n.

3.1.2 The extended affine symmetric group

In analogy with the non-cylindric case, we want to introduce a notion of ‘permutation’
on the set of cylindric compositions. The mathematical object which is needed for this

purpose is the following [49].

Definition 3.1.13. The extended affine symmetric group Sy is the group generated by

{00,01,...,0k_1, T} subject to the relations

2 . .
0, = 1 s 0;0;410; = 0;410;054+1 , 0,05 = 040 for ’Z —j‘ > 1 N (35)

together with

TO+1 = 0T
where the indices are understood modulo k.

We will also make extensive use of the affine symmetric group Sy, that is the affine
Coxeter group Ax_;, which is the subgroup of Sy generated by {00,...,0k_1}. The affine

symmetric group S is isomorphic to the group of bijections w : Z — Z, with composition
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as the group product, subject to the conditions

k
k
wim+k)=w(m)+k, YmeZ  and w(m) = (2> :
m=1
This statement first appeared in [51], and has been subsequently used by many authors
7,20]. The following [45] is a generalisation of such statement to Sj.

Proposition 3.1.14. The extended affine symmetric group Sy is isomorphic to the group

of bijections w : Z — Z, with composition as the group product, subject to the conditions

k

2) mod k.  (3.6)

k
w(m+k)=d(m)+k, YmeZ and Y i(m)= <
m=1

The isomorphism between S, and the group of bijections w : Z — Z satisfying the
constraints (3.6) is given as follows. The generator 7 € S, is mapped to the bijection
7 : Z — Z defined via 7(m) = m — 1, and for this reason we will sometimes refer to 7 as
the ‘shift operator’. Moreover, for i = 0,...,k — 1 the generator o; € Sy is mapped to the
bijection o; : Z — Z defined via

m+1, m=14modk
oi(m)=<m—-1, m=(i+1) mod k . (3.7)

m, otherwise

We now want to construct a right action of S on cylindric compositions. For this purpose,
recall [49] the level-n right action Py x Se = P, (v, W) +— ., which is fixed by the

following maps

(Oél,...7Oéi,Oél'+1,...Oék).0'i = (Oél,...,OéiJrl,Oéi,...,Oék), (38)
(o1,...,a).00 = (ag+n,a,as3,...,0, 1,01 —n), (3.9)
(a1, o). = (o +n,0q,00,...,05-1) . (3.10)

Notice that ¢ = 1,...,k — 1 in the first equation. It can be shown that the ‘alcove’
Afn)={AeP | n>N>X>- >\ >0} (3.11)

is a fundamental domain with respect to this action. That is, for any o € P} the orbit
.Sy, intersects A7 (n) in a unique point. Denote with A (n) the image of A (n) under
the bijection \ — A.
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e=2-10 1 2 3 4 5--- =210 1 2 3 4 5--- =210 1 2 3 4 5---
-1 -1 -1
0 0 0
1 1 1
A A
) )
2 X 2 - 2 X.0g
3 3 XoT 3

Figure 3.4: Let k = 2, n = 3 and A = (...,2,1,...). From left to right we have the
diagrams of A, A.7 and A.og. Notice that the diagram of A.7 is obtained by translating
cach box in the diagram of A by the vector (0, 1).

Lemma 3.1.15. The map Py X S’k — Pr.n defined as
(d,’l[)) = QL = ( .. 7&11)(1)7 dw(g), . ,d/w(k), .. ) R (3.12)

is a right group action of Sy, on cylindric compositions. On the RHS of the equality in
(3.12) it is understood that w : Z — Z (compare with Proposition 3.1.14).

Proof. Let a.w be the image of a.w € P, under the bijection described in Remark 3.1.3.
Then the map Py, X S — P given by (&, w) — G. is a group action, and moreover a

straightforward computation shows that

(...,ééi,ééi+1,...).0i = (...,d{iJ’,l,d{Z”...) R (313)
(o) Oy Qi - )T = (o Gty Gy -2 ) (3.14)
where 2 = 0, ..., k—1. That is, &.0; is obtained from & by permuting its parts at positions

i and 7 + 1 modulo k, whereas &.7 is obtained by shifting each part of & by one position
forward. It follows that the group action defined above corresponds to the map (3.12),
since equations (3.13) and (3.14) imply that the action of these two maps coincide for the
generators of Sy, and thus they must coincide for every element in S,.

O

The extended affine symmetric group S, has an alternative set of generators given by

{o1,...,o,_1} U{y1, ..., yr}. These satisfy the relations

YilYi = Y;iYi » OiYi = Yiy105 , yio; = ojy; for |i—j]>1, (3.15)

where again the indices are understood modulo k. The link with the generators introduced
in Definition 3.1.13 is given by y. = 701 ...04_1 and 0g = 01+ O)_10p_o - - - lelylzl. A

straightforward computation shows that

(@ )gi= (o ditn,...) . (3.16)
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We shall make use of the fact that every w € S, can be expressed uniquely as w = wy®
with w € Sy, and a € Py, where we use the notation y* = yi'* - - - y.* [49]. In particular, if
W € Sy C Sj, we have that |a| = 0.

For 1 € 73,1 ,, denote with gﬂ C Sy its stabilizer subgroup, which is a parabolic subgroup
of Si. Moreover, denote with S\ Sy, the set of right cosets { S | @ € Sy} of S; in Sy, We
now state a similar result to Proposition 2.1.6 for the affine case, which can be found for
instance in [8, Prop. 2.4.4 and Cor. 2.4.5|. For this purpose, define the length of @ € Sy

as
((w) =min{r e N | @ =0y, -0, for some iy,...,i, € {0,1,...,k—1}}.  (3.17)

Proposition 3.1.16. (i) Each right coset Sﬂw has a unique representative of minimal
length.
(i1) Every element w € Sy has a unique decomposition v = Wt with Wy € gﬁ and

" a minimal length representative of one right coset in Sﬂ \ Sk.
Denote with S# the set of minimal length representatives of the right cosets S‘ﬂ \ Sk.

Remark 3.1.17. In the following we shall make extensive use of both the action Py, X
Sk — Prn and the level-n right action Py, X S’k — Pr. We adopt the notation gﬂ c S
for the stabiliser subgroup of p € P;", which coincides with gﬂ. Similarly, denote with
S, \ Sy the set of right cosets {S,w | @ € S} of S, in Sy, which is the same as the set
S 2\ S, introduced above. Finally, the set S# coincides with the set S* of minimal length

representatives of the right cosets S, \ Sj.

Lemma 3.1.18. Suppose that p € Al (n). For every w € Sk, there exists a unique
element in the right coset S’Mfu? which can be written as wy® for some w € S* and o € Py,
with |a] = 0.

Proof. Since p € A (n) we have that p, +n > i, and thus S, = S, C Sj. Let @ € S¥,
and write w = wy® for some w € Sy and o € Py with |a| = 0. Part (ii) of Proposition
2.1.6 implies that there exists a unique decomposition w = w,w", with w, € S, and
wh € S*. Tt follows that (w,) 'w is the unique element in the right coset S'Mu? which can

be expressed as wy® for some w € S* and a € Py, with |a| = 0. This proves the claim. [J

3.2 Weighted sums over CRPPs

The goal of this section is to extend the skew elementary and complete symmetric functions

defined in Chapter 2 to the cylinder. For this purpose, we generalise to the cylinder the
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expansions derived in Lemmas 2.3.16 and 2.3.21, namely

e = > tvra’ . Y =][]vaopen
T

i>1

hA/# = Z@W:c” R 9,, = H(g/\(i)/)\uq) .

i>1

Recall that these expansions are valid if ;1 C A, otherwise we have that ey, = hy/, = 0.
The weights vy, and 0y, were defined in (2.67) and (2.61) respectively as the cardinalities
of the sets

{a € P | a~pu,\ais a vertical strip} , {aePla~pacCA}. (3.18)

Remark 3.2.1. Given «, 3 € Py, we write a < fif a; < ; foralli =1...,k. We shall
use the symbol C for cylindric compositions instead. That is, for &, B € Pin we write
& C B if the diagram of & is contained in the diagram of 3. Taking advantage of the
bijection introduced in Remark 3.1.3, we have that o < g if and only if & C ﬁ

Our first task is to generalise the sets (3.18), or equivalently the weights v/, and ) ,,
to the cylinder. For this purpose, we reformulate them in terms of the symmetric group
S C Sk

Lemma 3.2.2. Suppose that n C X and €(\) < k. The sets (3.18) are in bijection

respectively with
{we S* |\ — (pw); =0,1}, {we S" | pw < A} (3.19)

Proof. If a ~ p belongs to one of the sets (3.18) then it must satisfy the constraint o C A.
We can therefore identify both a and p as weights in Py,.. Moreover, we can take advantage
of the action Py x S — Py, which implies that there exists a unique element w € S* C S,
such that @ = p.w < X in the notation of Remark 3.2.1. The permutations a ~ pu
belonging to the sets (3.18) are then labelled by elements in S*, and the claim follows. [

Before proceeding with the generalisation of the sets (3.19) to the cylinder, we present
some further preliminary results. The next lemma shows that, starting from the alcove
(3.11), we can recover the set of all cylindric partitions by employing the action of the

extended affine symmetric group.

Lemma 3.2.3. Fvery element in P,jm can be expressed uniquely as A7 with \ € Af(n)
and d € Z.

Proof. Let U € 73,: L Iftoe ./l,j(n) set A\ = 7 and d = 0, otherwise periodicity implies that

either 7; > n or 0, < 0. Suppose that 7, > n, in which case (0.771)y = Dpy1 = 1 —n > 0.
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If (0.77 1) =i <nset A\ =071 e Af(n) and d = 1, otherwise consider the cylindric
partition 2.7 2. If (0.772); = 05 < nset A\ = .72 € A (n) and d = 2, otherwise consider
the cylindric partition 2.773. Proceeding in a similar vein, one concludes that there exists
d' € N such that (#.77%) < n, and the claim follows by setting A = 7.7~¢ € Af(n) and
d = d'. The proof for the case 7, < 0 is similar. n

Suppose that 0y, 0y € P,j’ .- Thanks to Lemma 3.2.3, we can express 7, and 7, uniquely
as .74 and Mo 7% with A, Ay € Al (n) and dy,dy € Z5,. Notice that, if we translate
the vertical axis by dy units in the positive direction, the cylindric skew diagram /i
is mapped to Ay rhi—dz / Xo. After an appropriate translation of the vertical axis, every
cylindric skew diagram can then be expressed as A.7¢/fi for some \, pu € Af(n) and
d € Z5y. We denote the latter by A\/d/p in agreement with [58|. That is,

Nd/p={(G,j)€ZxZ]|p<j<Arh}. (3.20)

To show that d is non-negative, use the constraint i} < (M\.79); together with (\.74), =
Ni+d and i) = X, = k. We will sometimes use the fact that [\/d/u| = S5 (A\7%);,— 1) =
|A|+dn—|p|. To obtain the diagram of A.7¢ one needs to translate each box in the diagram
of A by the vector (0,d), compare with Figure 3.4. Instead in [58] a different convention
is used, namely one has to translate each box in the diagram of A by the vector (d,d)
to obtain the cylindric skew diagram A/d/u. Thanks to Lemma 3.1.9, a CRPP of shape
A/d/p with largest entry [ is equivalent to a sequence

f=X07d c A g oo O pd = ) 4 (3.21)

of cylindric partitions with A" e fl;(n) and d, — d,_; > 0 for r = 1,...,l. Similarly,
a CRST of shape A/d/u is equivalent to a sequence (3.21) of cylindric partitions where

5\(“).7"1’“/5\(””_1).7"1“1 is a cylindric vertical strip for r =1,...,1.

3.2.1 Generalisation of 6,/, to the cylinder

We already have a mathematical object which we can use to construct ‘permutations’ of
cylindric compositions. This is the extended affine symmetric group S’k, compare with
(3.13) and (3.14). Let us generalise the notion of cylindric skew diagram described in
Definition 3.1.5 to cylindric compositions. Suppose that &, B € Pin with & C B in the

notation of Remark 3.2.1, then we refer to the set /3 /& C ZXZ as a cylindric skew diagram.

Definition 3.2.4. For A\, n € A (n) and d € Z, define 6,4/, as the cardinality of the
set
{we S| v c Ari}. (3.22)
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cee=2-10 1 2 3 4 5--- e =2-10 1 2 3 4 5--- e =2-10 1 2 3 4 5---

Figure 3.5: Let k =2, n=3,d=1and A = = (...,2,1,...). From left to right we
have, in grey, the dlagrams of i, fi.oy and fi.0o. These are the only diagrams of the form
fi.0, for w € S*, that are contained in the diagram of A7, whose boundary is indicated
by the solid black line. It follows that 65,4/, = 3.

In Figure 3.5 there is an example which emphasises the combinatorial nature of the
set (3.22). Compare with Figure 2.4 in Chapter 2. If instead we use the action of Sk on

P (compare with Remark 3.1.17), this set can be expressed equivalently as
{we S*| pi < A1l (3.23)

Notice that in (3.23) we employed the notation introduced in Remark 3.2.1 for weights in

Py.. For practical reasons we will mostly work with the set (3.23) in proofs.

Remark 3.2.5. It is straightforward to show that (3.23) reduces to the second set in
(3.19) for d = 0. In fact, let @ € S* belong to (3.23), and write @ = wy® for some w € S},
and « € Py, with || = 0. Since A, u € A} (n) we have for d = 0 that o = (0,...,0), and
thus w € S* C S, as w is a minimal length coset representative. In particular, this implies

that 8/\/0/,u = 9>\/,u'

Lemma 3.2.6. The set (3.23) has the following alternative form,
{(w,a) € S* x PZ° | |a| = d, pwy™™ < A} . (3.24)

Proof. Notice that, for every @ € S, all the elements in the right coset 5’#11) have the same
action on the weight p. Thanks to Lemma 3.1.18 it follows that (3.23) can be expressed
as the set

Si = {(w,a) € " x Py | |a| =0, pwy*t* < A} .

Write the shift operator as 7 = yxo,_1 - - - 01. Using the commutation relation o;y; = y;110;
one has that 77¢ = (o4_y -+ 01) 4 yP for some 8 € Py with || = —d. Let (w,a) € S;
and consider the weight v € P}, given by v = a.(ok_1---01)"% + S, which satisfies the
constraint || = —d. Using the fact that y* w’ = w'y**" for w' € S}, which can be proved
with the help of (3.15), one ends up with the equality wy*r~? = w(op_1 - - - 01)"%". Thus
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N
7

Figure 3.6: A pictorial representation of the weights y, i and !, which were introduced
in the proof of Proposition 3.2.7, from left to right. We have highlighted the parts (u.w);
(red) and (p.w); (green), where i < j.

0 n_ 0 n B 0 n

|

we can express the set S; as
S = {(w,7) € 8 x Pu | | = ~d, pwloir--o0)'y" < A}

If (w,7) € Sy then v; < 0, because none of the parts of p.w(oy_1 -+ 01)%" can exceed n
since A\ € A (n). In other words we have that the weight —y belongs to P;°. Part (ii)
of Proposition 2.1.6 implies that w(oy_1 - - 1)~ has a unique decomposition w,w", with
w, € 5, and w* € S*. Notice that for different elements w € S* we end up with different
elements w* € S*, and moreover we have by definition that p.w, = p. This finally implies
that Sy is the same as the set (3.24).

0

Proposition 3.2.7. The set (3.22) is non-empty if and only if i1 C N7, that is if and
only if \/d/u is a cylindric skew diagram as defined in (3.20).

Proof. To simplify the proof we will work with the set (3.23) instead. In other words we
will show that the latter is non-empty if and only if ;2 < A\.7% in the notation of Remark
3.2.1. Assume that g < A\.7% then @ = 1 belongs to the set (3.23), which is then non-
empty. Conversely suppose that (3.23) is non-empty, that is there exists w € St such
that g0 < A\.7% If d = 0 then (3.23) reduces to the second set in (3.19) and we are done
thanks to Lemma 2.3.14. So let d > 0 and write w = wy® for some w € Sy and a € Py,
with || = 0. If « = (0,0,...,0) one can prove that u < A\.7¢ in a similar vein to the proof
of Lemma 2.3.14, so assume that o # (0,0,...,0) and set | = (Jay| + -+ + |ax|)/2. We

now construct recursively a sequence

of weights in Py satisfying the constraint v < A\.7% for r = 1,...,l. Refer to Figure 3.6
for a graphical depiction of this construction.

For 1 <i,j < nlet (n.w); and (pu.w); be respectively the greatest and smallest part
of p.w. Call fi the weight obtained from p.w by swapping (u.w), with (u.w@); and (p.1)y
with (u.);, compare with Figure 3.6. By construction we have that i < A\.7%. Taking



CHAPTER 3. CYLINDRIC SYMMETRIC FUNCTIONS 51

advantage of the relation y*w’ = w'y®" for w' € Sy and part (ii) of Proposition 2.1.6 we
can write i = p.wy® for some w € S* and @ € Pj,. We have that @; > 0 and @, < 0,
otherwise @ = o = (0,0, ...,0) which contradicts the hypothesis, and thus fx +n < iy
since 1 € Af(n). Set v = ioy and notice that v < A7 as !V = [ +n <
i < (A1) and 1/,9) =g —n < A1) —n < (A7), Let oY) € P, with parts

(1) )

o’ =a,+1, a,(:) =a; — 1 and %(1 = q; for i # 1, k. Taking advantage of the equality

oy = 0 ~--0k_10k_2~--01y1y,;1 and part (ii) of Proposition 2.1.6 it then follows that
v = paw®ye™ for some w®) € S#. The crucial point here is that [o{"|+ -+ + \a,(:)] =
0]+ 1] — 2 = o]+ -+ o] — 2.

Starting from ™) and repeating the procedure just described one can construct a
second weight v such that @ < A.79. Writing v® = p.w®y*® for some w® € S»
and o® € P, it follows by construction that [o\?] +- -+ [a!?]| = |a{V|+-- - +]aV| -2 =
||+ - - - + |a| — 4. Proceeding along similar lines we end up with weights {v(”}!_, such
that v < A\.7% Writing v = ,u.w(l)y"‘(l) for some w € S* and o € Py, we have by
construction the constraint ]agl)|—|—~ S ]ag)\ = |oy|+- - - +|ag| — 20 = 0, which implies that
a =(0,0,...,0). It follows that vV = p.w® for some w® € S#, and since v < \.7¢
this completes the proof.

O

We shall use the convention

()= (") =0

for integers a, b satisfying a < b or b < 0.

Lemma 3.2.8. Let A, € Al (n), d € Z>o and suppose that \/d/p is a cylindric skew
diagram. The cardinality of the set (3.22) has the following explicit expression in terms of

cylindric partitions,

“ () — i (A —
6)\/(1/“ — H (( )7, /’Ll—l—l) o H << )’L M1+1> ) (325)

i=1 i — ﬂ;+1 i1 fii — ﬂ;+1
Proof. For d = 0 this expression reduces to ,,,, as the equality (5\.7'*1); -, = —1
implies that the second term on the RHS is 0. So suppose that d > 0, and consider the
two weights in P}, ; given by A = (n,...,n,A1,..., \p) and p@ = (uy,..., 1, 0,...,0).

To prove the claim, we construct a bijection between the set (3.24), that is

A={(w,a)eS"x P | |a| =d, pwy ™ < A},
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Figure 3.7: A graphical depiction for the proof of Lemma 3.2.8. On the left we have the
weight p.wy™® for (w,a) € A. The parts (p.wy “);, for @ = 1,...,1 are represented in
dark grey. On the right we have the weight ~.

and the following set involving weights in Py, and permutations in Sy g4,
B={wes" | i< A, (uD.w), #0} .

We then show that the cardinality of the latter is given by (3.25). Let (w, ) € A, denote
with J = {j1,..., 51} C [k] the set for which o, # 0, and with J = [k] \ J its complement.
Define a weight v € Piiq (compare with Figure 3.7) whose parts ; for 1 < j < d are
fixed by the vector

((,u.w)jl,O,...,O, (u.w)j2,0,...,O,...,(u.w)jl,O,...,O) ,
S—— N—— S——

ajl—l o

whereas for 1 < j < k they are given by

(/,LU})] N j S j
Yd+j = B
0, otherwise

By definition we have that v < A, since all the parts of ; are smaller or equal than
n and furthermore (u.w); = (n.wy=®); < A; for j € J. Moreover, since by construction
mi(y) = mi(u®) fori = 0,...,n it follows that there exists a unique permutation @ € gt
such that p@ . = v and (u9.w); = v = (pw);, # 0. In conclusion, each (w,a) € A
determines a unique element w € B, that is (w, «) — w defines a map A — B.

To show that A and B are in bijection we need to create the inverse map B — A.
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The simplest approach is to merely reverse the preceding construction. For this purpose,
suppose that @ € B. Define J C [k] as the set of indices j € J satisfying (u@.w0)4,; # 0,
and denote with J = [k] \ J = {ji,...,4i} its complement. Let (u?.w),,,..., (p@.w0),
be the non-zero parts of u(¥ 1w for indices p1,...,p < d, and consider the weight 8 € Pj,
with parts

5 — {(u(d).w)pj ., Jged
’ (1D )ary, jEJ

Define the map w — (w,«) as follows: w € S* is the unique permutation such that
paw = B, and o € 79,?0 is the weight with parts o, = piy1 —p; for i = 1,...,0 -1,
aj, =d—p and a; = 0 for j € J. The map just described is by construction the inverse
map B — A. That is, the composition of the two maps A — B and B — A gives the
identity map on A and B respectively.

The cardinality of B equals the cardinality of the set {@w € S** | @@ < AD},
which is given by 60, /@ thanks to Lemma 3.2.2, minus the cardinality of the set
{w e " | p D@ < AD (@), = 0}. The latter is in bijection with the set
{w' € Guab | p@ =Y.’ < AU} which has cardinality Opca-1) /@1 . In particular,
notice that A1 ;d=1) ¢ Piir_1- A bijection w — @ between these two sets can be

constructed via the relation ((u@.@)s,..., (u®.w)4) = p*Y.w'". Thus,

Orja/u = On@ juar — O -1y

and equation (3.25) follows by taking advantage of Lemma 2.3.15 and the equality (A(@)! =
No4d= (A7
O

3.2.2 Generalisation of ¢/, to the cylinder

We proceed in close analogy to the previous section. For &,B € Prn, with & C B we say
that B /& is a cylindric vertical strip if 5’1 —a;=0,1forallz € Z.

Definition 3.2.9. For A\, u € /Al,‘:(n) and d € Z>( define 9,4/, as the cardinality of the
set
{w e S" | A\r?/fiab is a cylindric vertical strip} . (3.26)

In Figure 3.8 there is an example which emphasises the combinatorial nature of the
set (3.22). Compare with Figure 2.5 in Chapter 2. Notice that the set (3.26) can be

equivalently expressed as

{we S*| (A7), — (pb); = 0,1} . (3.27)
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cee=2-10 1 2 3 4 5--- e =2-10 1 2 3 4 5--- e =2-10 1 2 3 4 5---

Figure 3.8: Let k=n=3,d=2 A= (...,1,1,1,...)and i = (...,3,3,1,...). From left
to right we have, in grey, the cylindric diagrams of /i, fi.oq and fi.0901. These are the only
diagrams of the form ., for w € S#, for which A2 /A is a cylindric vertical strip. It
follows that ¢y /q/, = 3.

Following similar steps as described in Remark 3.2.5, one can show that (3.27) reduces to
the first set in (3.19) for d = 0. In particular this implies that 10/, = ¥a/u-

Lemma 3.2.10. The set (3.27) has the following alternative form,
{(w,a) € S* x P | |a| = d, A\ — (pwy™®); = 0,1} . (3.28)

Proof. For every @ € S*, all the elements in the right coset g,ﬂl) have the same action on

the weight p. Thanks to Lemma 3.1.18 we have that (3.27) can be expressed as the set
{(w,a) € 5* x Py | |a| =0,\ — (pwy*r™4); = 0,1} .

The claim then follows by employing similar steps to the ones described in the proof of
Lemma 3.2.6. [

Proposition 3.2.11. The set (3.26) is non-empty if and only if N\/d/u is a cylindric

vertical strip.

Proof. To make things easier we will prove the claim for the set (3.27) instead. In other
words, we will show that the latter is non-empty if and only if (A\.7¢); — pu; = 0,1 for
all i € Z. We start by considering the case d > m,(u). Then there exists an index
j > my(p) such that (\.7%); — u; > 1, because A.7% has d parts strictly greater than n
whereas p has only m,, (1) < d parts equal to n. This implies that \/d/u is not a cylindric
vertical strip. Similarly the set (3.28), and thus the set (3.27), must be empty. In fact,
suppose that the pair (w,a) € S* x 73,?0 belongs to (3.28). Then p.wy ® must have at
least one part strictly smaller than 0, since the parts of a are non-negative, and moreover
|a| = d > my,(p). This implies that there exists an index j such that \; — (p.wy=); > 1,
and since this is a contradiction, the claim follows for d > m, (). One can prove in a
similar fashion that for d > mj(\) the cylindric skew diagram A/d/u is not a cylindric
vertical strip, and that the set (3.27) is empty.
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Suppose now that d < min(my(X), m,(p)). If A/d/u is a vertical strip the element
w = 1 belongs to (3.27), which is therefore non-empty. Conversely, assume that (3.27)
is non-empty, that is there exists @ € S* such that (A\.7%); — (p.w); = 0,1. For d = 0
the claim follows from Lemma 2.3.19 since (3.27) reduces to the first set in (3.19). So let
d > 0, and write W = wy® for some w € S and « € Py, with |a| = 0. If a = (0,0,...,0)
then A\/d/u is a cylindric vertical strip by a similar argument as then one used in the
proof of Lemma 2.3.19, so assume that « # (0,0,...,0) and set | = (|ay| + -+ + |ou]) /2.
We adopt the same strategy used in the proof of Proposition 3.2.7, namely we construct
recursively a sequence

,1/( ,...,V(l)

of weights in Py such that (\.7%); — Vi(r) =0,1forr=1,...,L

For 1 < p,q < nlet (p.), and (p.w), be respectively the greatest and smallest part
of p.. Notice that o, > 0 and «, < 0, otherwise a = (0, ...,0) which contradicts the
hypothesis. Since d < m;(\) we have that (A.7%); = n + 1 and (A\.7%), = 1. In particular
(A.7%), < n+1 which implies, together with (u.@0), > n, the constraint (u.w), = (A\.7%), =
n + 1. Similarly, we have that (u.w), = 0 and (A\.7%), = (A.7%); = 1. Thus, calling ji
the weight obtained from .1 by swapping (p.10); with (p.@), and (p.@), with (p.),, it
follows that (A\.7%); — fi; = 0,1. Finally, the weight v() = [i.oy satisfies the constraints
(A1) — VZ»(I) =0, 1 as well, thanks to the relations (A\.7%); — (jip +n) = (A7), — fir, = 0,1
and (A.7%); — (i1 —n) = (A7), — fi; = 0,1. In particular, writing v(!) = @y for
some w®) € §* and oV € Py, it follows that |a{| + - + |oz,(€1)| = log| 4+ + || — 2.

One can then construct, starting from v) and repeating the procedure just described,
a second weight @ such that (A.74); — 12 = 0,1. Writing @ = p.w®y*® for some
w? € S* and a® € P, it follows by construction that |a§2)| + -4 |0zl(€2)| = || +
-+ + |ag| — 4. Proceeding along the same line we end up with weights {¥™}._, such
that (A.79); — " = 0,1, and moreover v = WOy for some w® € S. Since
(A1d); — I/i(l) = 0,1 this completes the proof.

[

Lemma 3.2.12. Let A\, € A (n), d € Zs and suppose that \/d/yu is a cylindric vertical
strip. The cardinality of the set (3.26) has the following explicit expression in terms of
cylindric diagrams, X X
Y (AT~ <)‘~7'd);+1

U/ = IZI ( Gorty, — g ) - (3.29)
Proof. Since A/d/p is a cylindric vertical strip we must have that d < min(my (), m,(u)),
as explained in the proof of Proposition 3.2.11. We now construct a bijection between the
set (3.27), that is

A= {(w,a)ecS"x PO ol = d, N\ — (pawy™); =0, 1},
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and the set
B={weS" " |\ — (ur%w);=0,1}.

The cardinality of the latter is given by (3.29), as we will show below. Let (w, ) € A, then
a; # 0 only if (u.w); = n, in which case o; = 1. Since d < m,,(u) we have that p.77¢ =
(as1s - - pr,0,...,0). This implies that m;(u.77%) = m;(u.wy=®) for i = 0,...,n, and
thus there exists a unique permutation @ € S such that (prHaw = prw =
pavy~<. Since by construction \; — (p.77%0); = 0, 1 it follows that @w € B. In conclusion,
each (w,a) € A determines a unique element w € B, that is (w,«) — w defines a map
A — B.

We now create the inverse map B — A by reversing the construction above. Let
w € B, and consider the weight o € Py with parts o; = 1 if (u.77%0); = 0 and o; = 0
otherwise. Since the weight p.7~%w has d parts equal to 0 it follows that |a| = d. By
construction we have that m;(u) = m;(u.7~%wy®) for i = 1,...,n and thus there exists
a unique permutation w € S* such that p.w = .7 %wy®. This condition is equivalent
to pawy™® = p.7 %0, which implies that \; — (u.wy=); = 0,1 and thus the pair (w, )
belongs to A. The map w — (w,a) just described is by construction the inverse map
B — A. That is, the composition of the two maps A — B and B — A gives the identity
map on A and B respectively.

Now that we have established the bijection between the sets A and B, notice that the

latter has cardinality ¢/, .-« thanks to Lemma 2.3.20. Thus, taking advantage of the

relations (pu.779); = (.779); = i, —d for i = 1,...,n the claim follows from the equalities
z A — N (A — (S‘-Td)gﬂ
Uasdjp = Vrjpr—a = ( v >= ( " ) >
fafn = H X — (Y, H (Ard); — i
[l

3.2.3 The main definitions

We now have all the tools to extend the skew elementary and complete symmetric functions
to the cylindric case. For A, u € A (n) and d € Z>q let # be a CRPP of shape \/d/p,
that is a sequence {\) .7 “}rez., of cylindric partitions as described in (3.21). If I € N
is the largest entry of @ we set A 7dr = X.74 for r > [. Notice that applying 77%-1 to
both cylindric partitions appearing in A .7 / A1) rdr—1 one obtains the cylindric skew
diagram A\ /(d, — d,_,)/A\"~Y. Equivalently, the latter is recovered after translating the
vertical axis by the vector (0,d,_1). Set

07} = HQA(T')/(dr—dr—l)//\("‘71> 5

r>1
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and denote by 2 the monomial x‘ftl(ﬁ)x‘gm(ﬁ) -+ in the indeterminates {1, xo, ... }. Sim-

ilarly, consider a CRST T of shape A/d/u, that is a sequence {/A\(T).Tdr}rezzo of cylin-

dric partitions where A s /5\(7”_1).7"1“1 is a cylindric vertical strip for » > 1. Set
gl = gV My and

¢T = H 1/})\(’“)/(dr*dr,1)/)\(?“—l) .

r>1

Definition 3.2.13. Let \,u € A/ (n), d € Z>¢ and suppose that fi C A7 Introduce
the cylindric elementary symmetric function ey 4/, and the cylindric complete symmetric

function hy/q/, as the weighted sums
exam = Y b (3.30)
T

h)\/d/p, = ZQﬁxﬁ, (331)

over all CRSTs and CRPPs of shape \/d/u respectively. If A/d/p is not a cylindric skew

diagram set ey/q/, = haja/u = 0.

Suppose that A, 4 € A (n) with u C A. Since the parts of A and p are by definition
smaller or equal than n, it follows from Remark 3.1.12 that there exists a bijection between
CRPPs of shape A\/0/u and RPPs of shape \/u, whose action consists in restricting a
CRPP to the lines 1 to k. Calling 7 — 7 such bijection we have that wt(7) = wt(7), and
thus 2™ = 2™. Moreover, we have that 0 = 6, thanks to the discussion in Remark 3.2.5.
This implies that hys /. = hau, that is for d = 0 we recover the (non-cylindric) skew
complete symmetric functions. In particular, if u ¢ X then hy/ o/, = hy/, = 0. Similarly

one has that e/, = ex/u-

3.3 Symmetric functions at roots of unity

The main goal of this section is to prove that the cylindric symmetric functions ey 4/,
and hy/q/, introduced above are actually symmetric, that is they belong to the ring of
symmetric functions A. For this purpose it is enough to show that they can be expanded
in terms of the basis {m,},ep+ of A. Of greater interest is their expansions in terms
of {e,},ep+ and {h,},ep+ respectively, since the expansion coefficients are related to
the fusion coefficients of a 2D TQFT, as we will see in Chapter 5 (compare also with

Corollaries 3.3.13, 3.4.3 and Remark 3.4.4 below). The proof of these expansions requires
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the generalisation of the product formulae

mym, = Z ,i\umh (3.32)
Aep+t

mue, = ZQ/J/\/M(I/)mA, (3.33)
Aep+t

myh, = ZQ,\/H(V)TFL)\, (3.34)
Aep+t

which were introduced in (2.13), (2.65) and (2.71) respectively, to an appropriate ring.
The latter is given by the following quotient

Ve(n) = Ailz, 27"/ Tem (3.35)
where we set Ai[z, 27!] = Ay ®c Clz, 2], and moreover we define the two-sided ideal

Tim = (@1, ..oy 2k) — 2k, ppyr(@1, .oy xg) — 2pp(zy, . yag) forr =1,k — 1) .

It is important to keep in mind that the product formulae in Vj(n) involve symmetric
functions in % variables, whereas the expansions of e)/q/, and hy/4/, mentioned above
hold in A. The next result shows that for z = 0 one can think of Vi(n) as the ring of

symmetric functions in k variables evaluated at the n-th roots of unity.

Lemma 3.3.1. The two set of equations

po(T1, . xk)—2zk =0, ppe(Tr, .. xk)—2pe(21,. . x,) =0, 1 <r<k-1, (3.36)
and

=z, 1<r<k, (3.37)

are equivalent.

Proof. The relations (3.36) are clearly satisfied if (3.37) hold (compare with the definition
(2.27) of power sums). To show the converse, we shall take advantage of Newton’s formula
(2.34), which can be rearranged as p,_1e; = (—1)"re, + (=1)" 20— (=1)'pse, s + pr. So
assume that the relations (3.36) hold. A straightforward computation shows that

(pn-i-k—l(xh SR 73:]{2) - Zpk—l(xb B ,l'k))€1<1‘1, SR 7$k)

= Ppik(T1, .. xk) — 2pp(T1, ... k)

Since the relations (3.36) are satisfied, it follows that the LHS of the equality just obtained

is equal to 0, and so is the RHS. Similarly, one can show by induction that the relation
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Prar(T1, .o x) — 2pp(xy, ..., 2p) = 0 is valid for all » € N. Assume that u is an invertible

indeterminate, then the generating function (2.30) for power sums obeys the constraint

P(u) = Zpi(:vl, s ap)uT Zpi(azl, o ap)ut?
i=1

where in the first line we used (3.36). This last identity can be rearranged as

k

Zpi(xl, oo rpuT = (1= 2u™)Pu) = (1 — 2u™) Z

1=

X

1 —ux;

It follows that the formal series expansion of (1 — zu™)P(u) terminates after finitely many
terms. Thus for 7 = 1,...,k the residue of (1 — zu")P(u) at u~! = x; must vanish, and
these conditions provide a set of equations which corresponds to (3.37).

[l

Lemma 3.3.2. The set {m(21, ..., %k)}reat(n) 05 @ basis of Vi(n).

Proof. First of all, notice that the elements {my (21, ..., 2x)},c Af (n) are linearly indepen-
dent in Vi (n). In fact, suppose that Z/\GA;:(”) aymy(xy,...,x,) = 0 for some ay € C. For
each A € A (n) we have that the monomial . :1:2’“ appears only once in this linear

combination thanks to Lemma 3.3.1 and the expansion (2.15), that is

Ao Aw 1 Aw Aw
ma(T1, ..., xp) = Z oy :W le IEEEEE S

weSH weS

It follows that a) = 0 for all A € A (n). To prove the claim, it is then enough to show
that in Vi (n) each element of the set {my(z1,... ,:Ek)})\eplj, which is a basis of A; as we
mentioned in Remark 2.2.6, can be expanded in terms of {my(xy,... 7xk)},\e,4;(n)' Let
A € P, and denote with A € A (n) the unique intersection point of the orbit \.S) with
Al (n). Taking advantage once again of equation (2.15) and Lemma 3.3.1, one ends up
with the following equality in Vi(n),

mx(Ty, ..., xx) = mzwm;\(acl,...,95;6) : (3.38)

|Sxl

By definition we have that A = \.wy® for some w € S* and o € P,. It follows that
I\l = |\ = n|a|, and thus w € Z. This finally proves the claim. O
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3.3.1 Product expansions at roots of unity

We now wish to generalise the product formulae (3.32), (3.33) and (3.34) to the quotient
Vi(n). Let us start from the product formula (3.32). Namely, we want to expand the
product my,(x1, ..., Tg)my(z1, ..., xx) in terms of the basis of Vi (n) introduced in Lemma
3.3.2, and find a combinatorial interpretation for the expansion coefficients. The latter is

given by the following definition, as we will show in Lemma 3.3.5 below.

Definition 3.3.3. For A € Af(n), p,v € P; and d € Z define N? as the cardinality of
the set

{(w,w") € S* x S” | pw + vaw' = \y® for some o € Py with |a| =d} . (3.39)

If we restrict the weights A, y1, v to the alcove A (n), then the coefficients N, become
the fusion coefficients of a 2D TQFT, as we will see in Chapter 5. Notice furthermore that
these coeflicients are by definition non-negative integers. In Chapter 5 we provide a repre-
sentation theoretical interpretation of this statement. Namely, we will present a formula
for the coefficients IV ﬁ\[/d in terms of tensor multiplicities for irreducible representations of

the generalised symmetric group.

Lemma 3.3.4. Let A € A (n), p,v € P and d € Z. Then Ny? is non-zero only if the

following conditions are satisfied.
1. |p| + |v| = |\ = dn.
2..d>—k.
3. d >0, provided that at least one of u,v belongs to A; (n).
4.t C At that is N/d/p is a cylindric skew diagram, provided that i € A (n).

Proof. Suppose that N, is non-zero, that is the set (3.39) is non-empty. The relation
paw + vaw' = Ay® implies the constraint |u| + |v| = |A| + dn, which is equivalent to
Condition 1. Assume that (w,w’) € S* x S¥ belongs to (3.39), that is there exists a € Py
with |a| = d such that p.w + vaw' = Ay Since 1 < \; < n we have that «; > —1 for
i=1,...,k, and thus d = |a| > —k. In particular, if at least one of y, v belongs to A} (n)
it follows that o € 73,?0, since all the parts of p.w + v.w' are positive, and thus we must
have that d > 0. This proves Conditions 2 and 3.

We now show the validity of Condition 4, and for this purpose assume that u € A (n).
If d > k all the parts of \.7¢ are greater than n, and thus the relation i C A7 follows
immediately. So let d < k and suppose that NV ,i\&d is non-zero, that is there exists a pair
(w,w') € S* x S” and a € Py with |a] = d such that pw + v.w’ = Ay® This last

constraint implies that p.w < A.y®, which can be rearranged as (u.y~7).w < X after
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setting v = a.w™!. Following similar steps as described in the proof of Lemma 2.3.14, one
has that p.y™ < A, and thus p < A.y7. Notice that the parts of v must be non-negative
since the parts of p are all positive. Let i € N and suppose that d < i < k. Since |y| = d
there are at most d non-zero parts in ~, and then there exists j € N with i —d < 7 <4
such that v; = 0. We then have the chain of inequalities \;_q > A; > p; > p; which
implies that (\.7%); > p,. If instead 1 < i < d the inequality (A\.79); > p; follows from the
fact that (A\.7¢); > n. In conclusion we have that (A\.7¢); > p; for i = 1,...,k, and thus
it C A, m

Lemma 3.3.5. For p,v € P;i we have the following product expansion in Vi(n),

mu(x1, .. xp)my (21, ... o) = sz Z N’\dm,\ (T1,. .., Tk) (3.40)
deZ /\€A+( )

where the first sum is restricted to d > 0 if at least one of p,v belongs to Af(n), and to
d > —k otherwise.

The sum over d on the RHS involves only finitely many non-zero terms, for if d is large
enough the constraint [u| 4 |v| — [X| = dn can no longer be fulfilled, and thus N;* must
equal 0 thanks to Property 1 of Lemma 3.3.4. The same constraint implies that for each
A € Af(n) there is at most one non-zero term z?N /;\l;d which contributes to the coefficient

of my(z1,...,x) in m,(z1,...,25)my (21, ..., ).

Proof. For A € Af(n) and d € Z we have that the coefficient of z%m,(z1,...,z)) in

m,(z1, ..., xE)m,(z1,. .., 7%) equals the coefficient of z%x . xz’“ in the same product.

Each monomial appearing in the product m,(z1, ... ,a:k)m,,(xl, ..., xp) is of the form
w(1) TVt w(k) V! (k .

:vlf T “)---:p: WT®  for some w € S and w' € S Taking advantage of the

set of equations (3.37), which was introduced in Lemma 3.3.1, one sees that this mono-

dp . g if and only if there exists a € P, with la| = d satisfying the

mial equals z
relation p.w + vaw' = Ay®, that is if and only if the pair (w,w’) belongs to the set
(3.39). This shows that for A € A} (n) and d € Z the coefficient of z4my(x1,...,z;) in
my(z1,. .., x)my (21, ..., Tx) equals Nlj\yd, thus proving equation (3.40). The restriction
on d follows from Lemma 3.3.4. ]

Lemma 3.3.6. Let \,p € A (n), n,u,v € P and d € Z. The coefficients N,i‘{/d satisfy
the following properties.

1. Commutativity:
NME = N (3.41)

pv v
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2. Associativity: if d > —k, then

Yo ) NphNgt = N Y NpANDE (3.42)

di+do=d _A+ di+do=d _A+
i3 kg0 7€ (M) 1> kg0 7S (M)

3. If d > —k, employing the coefficient f¢, introduced in (2.13), then

e
o nrp,d o,d1 £\Tp,d2
Yoopasti= S Y NZANgE (3.43)
+ d1+do=d +
o€P, d1217k,2d220 o€ A} (n)

4. If d =0 and at least one of p,v belongs to Af(n), then

A0 eA
NXO = fo, . (3.44)

1%
5. If p € Af(n), setting n* = (n,...,n) € Af(n), then

N/\’Ci = 5d,k5)\u . (345)

un

6. If U is the unique intersection point of the orbit .Sy, with Al (n), then

M _ A+ ]S
NM =N (3.46)

" Syl

Proof. Property 1 follows immediately from the definition of N, Let 7z, : Aglz, 271 =
Vi(n) be the quotient map, and consider the equality (m,m,)m, = m,(m,m,) in Afz, z71],
which simply reflects the associativity of the product. Apply the projection Az, 271 —
Ai|z, 271, which was introduced in (2.11), to both sides of this equality first, and then
apply the quotient map 7 ,. Using the product expansion (3.40), and comparing the
terms with the same power of z, we end up with Property 2. Property 3 follows after
similar steps, where one has to start from the equality (m,m,)m, = > cp+ fr mem, in
Alz, z7!] instead. We now prove Property 4, and for this purpose notice that the coefficient

N, ;;\,;0 can be expressed as the cardinality of the set
{(w,w") € S* x 8" | pw+v.aw = A}.

In fact, if (w,w’) € S* x S” belongs to (3.39) then we must have o = (0,...,0), since
|a] = 0 and moreover « € PEO as mentioned in the proof of Lemma 3.3.4. But this is

just an equivalent rewriting of the set (2.14), and the claim follows. To prove Property 5
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notice that N4 equals the cardinality of the set
un
{we S* | pw+n" = A\y* for some a € Py with |a| = d} ,

since the stabilizer subgroup of n* coincides with Sj, and thus St s just the identity

element in S;. The constraint p.w 4+ n*F = A.y® is equivalent to p.w = .y LD which
can be fulfilled if and only if & = (1,1,...,1) and A = p, since we assumed that p € A;(n)
This shows the validity of (3.45). Finally, Property 6 follows by applying (3.38) to the
product expansion (3.40) in Vi(n). O

We shall now proceed to generalise the remaining product expansions (3.33) and (3.34)
to the quotient Vi(n).

Definition 3.3.7. Let A\, u € Al (n), d € Z>¢, v € P and suppose that ji C A.7e. Define

the coefficients
(V) = D g, (3.47)
T

Orjau(v) = Zeﬁ, (3.48)

where the sums run over all CRSTs and CRPPs of shape A\/d/u and weight v respectively.
If A/d/q is not a cylindric skew diagram set vy 4/, (V) = 05 4/,(v) = 0.

If 7 is a CRPP of shape A\/d/u and weight v then we have the constraint |\/d/u| =
Al +dn — |p| = |v|. Tt follows that 6),4/,(v) is non-zero only if |u| + |v| — [A| = dn. Let
p C A, then we have that 6 ,9,,(v) = 0x/,(v), where the latter was described in Lemma
2.3.16 as a weighted sum over RPPs. This is because the bijection 7 — 7 between CRPPs
of shape A/0/u and RPPs of shape A\/u is such that wt(7) = wt(7) and 6; = 6,. In
particular, if p ¢ A then 65/9/,(v) = 0y/,(v) = 0. Similarly, one has that ¥y /q/,(v) is
non-zero only if x| + [v| — |A| = dn, and moreover ¥ 9/, (V) = V¥ (v).

Lemma 3.3.8. Let u € Al (n) and v € P. The following product rule holds in Vi(n),

mu(z1, ..., x)hy (T, ... 2 Z Z Orsa/u(V)ma(zy, ... x) (3.49)

deZ>0  XeAf(n)

where the second sum is restricted to those A € Af(n) for which \/d/p is a cylindric skew
diagram with |p| + |v| — [N = dn.

The fact that 6)/q4/,(v) is non-zero only if |u| + |v| — |A\| = dn implies that the sum
over d € Z>o on the RHS of (3.49) terminates after finitely many terms, and that for
each A € A (n) there is at most one non-zero term 290, 4/, () which contributes to the

coefficient of my(x1, ..., zx) in my(z1,..., 28k (21, ..., 28).
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Proof. We show that the following product expansion holds in Vi (n)

mu(z1, .. xp)he (21, ..., 2) = Z 24 Z Oxsa/uma(xe, ... o) (3.50)

d€Z>0  XeAf(n)

where the second sum runs over all A € A/ (n) for which \/d/u is a cylindric skew diagram
with [A\/d/p| = r, that is |u| + 7 — |A| = dn. The claim then follows by applying (3.50)
repeatedly to the product my(z1,...,2k)h (21, ..., 2;). This also implies that 0 /4/,(8) =
0xa/u(v) for B ~ v, where 0y ,q/,(3) for 5 a composition is defined in an analogous way to
(3.48).

For A € Af(n) and d € Z we have that the coefficient of 2%m,(z1,...,2;) in the

product my(z1,...,xk)h(21,...,25) equals the coeflicient of 20z :)32’“ in the same
product. Projecting the expansion (2.18) of h, onto Ay one has that h.(zi,...,x;) =
Z%PEO z]*---2)*, where the sum runs over all v € P;” such that |y| = 7. It then
follows that each monomial appearing in the product my(x1,...,xg)h(21,...,2) is of
the form xlfw“)ﬂl : --mgw(k)+7k for some w € S* and v € P with |y| = r. The latter

equals 2%} - .- x2* if and only if there exists a € Py with |a| = d satisfying the relation
paw + v = Ay® If such a weight a € Py exists then it must belong to 73,?0 since
1t € A (n), and this in turn implies that d € Zsq. Thus the coefficient of 2%} - - - 2% in

my(z1,. .., xK)h (21, ..., 7)) equals the cardinality of the set
A={(w,7,0) € 8 x PO x PE | rl = lal = dpaw + 7 = Ay}

provided that d € Z(. Notice that A is non-empty only if |u| + 7 — |A] = dn due to the
constraint p.w+~v = A.y®. In particular this implies that A is non-empty only if d satisfies
the inequality kn +r — k > dn, since kn and k are respectively the largest and smallest
possible values for || and |A|. So suppose that the relation |u| +r — |A| = dn is satisfied.
With this assumption, the set A can be put in bijection with

B = {(w,oz) €S x P | || = d, pw < )\.yo‘} .

In fact, if (w, a,y) € A then p.w < A.y®, and thus (w, «) € B. The assignment (w, v, y) —
(w, ) therefore defines a map A — B. To construct the inverse map B — A, notice that if
(w, @) € B then the weight v = \.y® — p.w belongs to P, and since |y| = |A\|+nd—|u| = r
it follows that (w,«,v) € A. Thus, the assignment (w,«) — (w, «,y) is by construction
the inverse map B — A. Lemma 3.2.6 implies that the set B has cardinality 0,4/,
which is non-zero if and only if A\/d/u is a cylindric skew diagram thanks to Proposition
3.2.7. In conclusion, for A € Af(n) and d € Z, the coefficient of z%my(z1,...,xx) in
my(z1, ..., x,)h (21, ..., xp) is non-zero if and only if A/d/p is a cylindric skew diagram

with || +7 — |A] = dn, in which case it equals 0 /4/,. This completes the proof of (3.50).
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Lemma 3.3.9. Let y € Al (n) and v € P. The following product rule holds in Vi(n),

mu(xl,...,:L’k)el,(azl,...,xk) = Z Zd Z wk/d/H<V)m/\(.fC1,...,SL’k). (351)

d€Z50  AeAf(n)

where the second sum is restricted to those A € Af(n) for which \/d/p is a cylindric skew

diagram with |p| + |v| — |A| = dn.

As mentioned above, the coefficient 1) ,4/,(v) is non-zero only if |u| + |v| — |A| = dn.
Thus, the sum over d € Zs( on the RHS of (3.51) is finite, and for each A\ € A; (n) there
is at most one non-zero term 2%, 4/, () contributing to the coefficient of my(z1, ..., zy)

in my(x1,...,zp)e (21, .., xk).

Proof. We proceed in close analogy to the proof of Lemma 3.3.8. That is, we first show
the validity of the following product expansion in Vy(n),

mu(x1, ..., xp)e (T, ..., Tp) = Z P Z Uaja/uma(@r, ..., ) (3.52)

deZ>0  XeAf(n)

where the second sum runs over all A € A; (n) for which A\/d/pu is a cylindric vertical strip
with |u| +7 — |A\| = dn. The claim then follows by applying repeatedly the equality above
to the product m,, (@1, ..., xx)e, (21, .., ;). This also implies that ¥x/q/,(8) = ¥a/a/u(v)
for B ~ v, where 1) ,4/,(f) for § a composition is defined in an analogous way to (3.47).
As usual, for A € A} (n) and d € Z we have that the coefficient of z9my(z1,. .., zx)
in my(x1,...,z5)e-(21,. .., 2x) equals the coefficient of 20 .. 932’“ in the same product.
Projecting the expansion (2.18) of e, onto Ay, one has that e,.(z1,...,z;) = 2767’50 SRR S
where the sum runs over all v € P;” such that v; = 0,1 and |y| = r. This implies
that each monomial appearing in the product m,(z1, ..., zx)e.(21,...,2x) is of the form

Haw(1)+71 How (k) Tk
x IR l’k

1 for some w € S* and y € P7° with v; = 0,1 and |y| = 7. The latter

equals z%2}" - - - 2% if and only if there exists o € PZ° with |a| = d satisfying the relation
pwaw + v = \y®. If such a weight a € Py exists then it must belong to 77,?0, and this
implies that d € Zo. Thus the coefficient of 2%x}" - 3% in my, (21, ..., 2x)e (T1, . . ., T%)

equals the cardinality of the set
A= {(w,%a) €S x P X PEY | v =0,L 1y =1 la| =d, pw+v = A-y“} :

which is non-empty only if |u| + 7 — |A| = dn. Following similar steps as in the proof of

Lemma 3.3.8, one can show that A is in bijection with the set

B —{(w,0) € 8" x P | la| =d. (\y™)i — (w); = 0,1} ,
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provided that |u| + 7 — |A\| = dn. But the latter corresponds to the set (3.28), whose
cardinality is by definition t,4/,. Moreover, B is non-empty if and only if A/d/u is a
cylindric vertical strip according to Proposition 3.2.11. In conclusion, for A € A} (n) and
d € Zsq the coefficient of z%my (21, ..., ) in my(x1, ..., 25)e (21, .., 2g) is non-zero if
and only if A\/d/u is a cylindric vertical strip with |u| + 7 — |A| = dn, in which case it is
equal to /4, This shows the validity of (3.52).

O

The coefficients described in Definition 3.3.7 have alternative combinatorial expressions
which are the generalisation of (2.53) to the cylinder. For A € PT recall the expansions

ey = ZM6P+ My,m, and hy = Zuep+ Ly,m,, in A, which were introduced in (2.22).

Proposition 3.3.10. Let A\, € A} (n), d € Z>¢ and v € P. The following equalities hold

Unjav) = ZNjngya, (3.53)
06732'

Onjau(v) = D NptLy, . (3.54)
0679,:r

Proof. Projecting onto Ay one has that e, (xq,...,zx) = ZUE”P: M,,my(x1,. .., ). This,
together with the quotient map 7y, : Ag[z,27'] — Vi(n) and the product expansion
(3.40), can be used to obtain the following identity in Vi(n),

mu(z1,. .., xK)e (21, ..., 0x) = Z 2% Z ( Z Njc;dMV(,)m,\(xl,...?xk).

d€Z>0  AeAf(n) \oeP,

Thanks to part 4 of Lemma 3.3.4, the second sum on the RHS is restricted to those
A € Af(n) for which \/d/p is a cylindric skew diagram, together with the constraint
|l + |v| = [A| = dn since N is non-zero only if |u| 4 |o| — [A| = dn and M,,, is non-zero
only if |v| = |o|. A comparison of the latter with (3.51) then yields (3.53) provided that
A/d/p is a cylindric skew diagram. If instead i ¢ A.7¢ then both Yxja/u(v) and Nyt are 0,
and thus (3.53) still holds. Equation (3.54) follows in an analogous way, using the product
expansion (3.49) instead. O

3.3.2 Expansion formulae for cylindric symmetric functions

We are now ready to prove the main expansion formulae for cylindric symmetric functions,
which are the generalisation of (2.54) and (2.55) to the cylinder.

Proposition 3.3.11. Let A\, € A} (n) and d € Zxq. The functions ey/ay, and hyjq/, can
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be expanded as

EXd/p = Z%U,\/d/u(V)mw (3.55)
vepPt+

hajape =Y Ovjapu(v)my | (3.56)
veP+t

into the basis {m,},ep+ of A, and thus are symmetric.

Proof. Suppose that A/d/u is a cylindric skew diagram. A simple rewriting of (3.30) shows

that
xam= >, Y 52%, (3.57)

vePt B~v

where the last sum runs over all CRSTs 7' of shape A/d/q and weight 3, and thus ey /q/, =
D ovePt D 2915 /4/,(B). The latter can then be rearranged to give (3.55) thanks to the
relation ¥4/, (8) = ¥x/a/u(v) for B ~ v, which was proved in Lemma 3.3.9, and the
definition m, =) oo 2 of monomial symmetric functions. If instead /i ¢ A.7% then both
ex/a/u and ¥y /q/,(v) are 0, and (3.55) still holds. Equation (3.56) follows in a completely

analogous way.

O
Theorem 3.3.12. Let A\, u € Af(n) and d € Zso. We have the expansions
exa = Y Npfe,, (3.58)
VEPJr
haja = Y Npfhy (3.59)
1/679,2r

into the basis {h,},ep+ and {e,},ep+ of A respectively.

Proof. Using (3.53) one has that > ps ¥aja/u(0) M, equals Nyt if £(v) < k, that is if

v € P, and 0 otherwise. Starting from (3.55), and using the fact that the basis {e)}ep+
and {f\} ep+ of A are dual to each other, we then have that

ENd/p = Z ?/fx/d/u mmfu €y = Z ( Z %ZJ,\/d/u )

v,0€Pt veP+ Noept

which implies the validity of (3.58). To justify the second equality notice first of all that
(Mg, for) = (w(my),w(f,)) = (fs, mw), where w is the involution in A described in Section

2.2.5. Then use the the expansion m, = > . M ! » €p together with the orthogonality

peEP
relation (f,,e,) = dsp. The proof of (3.59) is completely analogous and therefore we omit

it. [l
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Theorem 3.3.12 has a few consequences, some of which we now explore. First of all,

applying the involution w to both sides of (3.58) it follows that

w(exsa/u) = Pajaju (3.60)

which means that ey/q/, and hy/q, are ‘dual’ to each other. A further consequence is
given by the following corollary. Namely, by expanding ey 4/, and hy 4/, in a suitable way,
we recover the coefficients N ﬁ;,d involving only weights in A} (n). These are the fusion
coefficients of a 2D TQFT, as we will see in Chapter 5.

Corollary 3.3.13 ( [45]). Let A\, u € Al (n) and d € Zsq. We have the expansions

dtk
exfd/p = Z Z N;i\édea/(dJrkfd’)/nka (3.61)
d'=0 e A¥ (n)
d+k
h)x/d/u = Z Z N:édhcr/(d—&-k—d’)/nk? (362>

d'=0 O’GA;: (n)

where n* = (n,...,n) € Af(n).

Proof. Setting p = 0 in (3.43) and renaming the partitions appropriately one has that

Nyt = Zd di+di=d D oedt(n) Nl‘jédl N,;* thanks to the relation f7) = d,,. Furthermore,
12—k, 022

notice that the coefficient Ng,;d equals the cardinality of the set
{we S| vaw=ocy" for some a € Pj, with |a| =d} .

The constraint v.w = o.y® holds if and only if v.w + n* = o.y® holds, where we defined
o =a+(1,1,...,1), and this implies that Ngy’d = Ns,;d;rk. Starting from (3.58) we end

up with the following chain of equalities,

Ex/d/p = Z Nli‘;de,,

11673,:r

S S SID SiP DY

+  dy+do=d +
veP, &2 >0 g€A; (n)

_ o,d1+k N7 do
= E E E N NGH e,

+ di+da=d +
veP, 021550 g€A; (n)

d+k
— A d' o,d+k—d’
= g g Ny N.i., €y
d'=0 UE.A;: (n) VGP;
d+k

B Z Z Nﬁéd/ea/(djtk—d/)/nk-

d'=0 ge A (n)
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In the third line we used Properties 1 and 2 of Lemma 3.3.6, whereas in the last line we
applied (3.58) once again. This proves (3.61), and applying the involution w to both sides
of the latter one ends up with (3.62). O

For practical purposes we defined the cylindric symmetric functions ey,q/, and hyq/,
for cylindric skew diagrams of the form A\/d/u (compare with Definition 3.2.13). Recall
from Lemma 3.2.3 that every cylindric partition can be written as A.7% for some A € A (n)
and d € Z. Thus, the most general cylindric skew diagram is given by A.rh /i1.7% for some
A\ u € Af(n) and dy, dy € Z such that d; —dy > 0. But every CRPP (respectively CRST)
of shape Arh /i1.7% can be translated along the vertical direction to a CRPP (respectively
CRST) of shape A\/(d; — ds)/u. Moreover, it is straightforward to extend the definitions
of ¥4/, and 04y, to the most general cylindric skew diagram A7h /% and these
definitions turn out to be invariant under translation of the vertical axis. It is then

natural to define cylindric symmetric functions for cylindric skew diagrams \.7% /i1.7% as

eS\.le/ﬂ.'rd2 - ek/(dl—dz)/,u ) (363)

hi.rdl/,;.sz = haj(di—do)/u - (3.64)

In particular one has that e; , /= EN/(d+k) ks which are the symmetric functions used
in the expansion (3.61). Moreover, we set €5 u, /; ;a = g jay 0, = 0 if A/ prd s
not a cylindric skew diagram. Notice that if d < mg()) then there are no boxes of A.7¢
in columns greater than n. It follows from Remark 3.1.12 that there exists a bijection
T +— T between CRSTs of shape A7l / () and row strict tableaux of shape A\.7%, which in

turn implies that €5 rdjh = Errd- A completely analogous discussion holds for (3.64).

Lemma 3.3.14. Let A € A (n) and d € Z. We have the equalities

BN
e = D i (3.65)
1/673‘k+ Y
BN
hscap = D S (3.66)
1/673‘k+

where the sums are restricted to those v € \.Sy with |v| — || = dn.
Proof. Properties 4 and 5 of Lemma 3.3.6 imply that

Ad+k+ 2212 | S|

Ntk _ _ |55
NG =Ny 5] d+m;M706ADm ;
where 7 is the unique intersection point of the orbit .S, with Af(n). Let 7 = A, then

by definition we have that v = A\wy® for some w € S* and a € P,. This implies that
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v =[Al
n

only if d > —m,,(\). Similarly we have that €5 rd /i is non-zero only if d > —m,, (), because

la] = > —my,(A) since the parts of v are all positive, and thus N;,;flfk is non-zero
if d < —my(\) then A.7?/ 0 is not a cylindric skew diagram. This proves the claim for
d < —my(\), so suppose that d > —m,, (). Plugging the relation for N;L\,;Tk just obtained
into the expansion €5rdfh = EXJ(dth)/nt = Zuep,j Ni,;d;ke,, we get the validity of (3.65).
Equation (3.66) follows by applying the involution w to both sides of (3.65). O

The next result shows that the expansions (3.61) and (3.62) are unique.

Corollary 3.3.15 ( [45]). The sets

{e5a0 | X €A (), d = —mu(N)}, (3.67)

{hyap | A€ AL (), d = —m,(N)} . (3.68)

are linearly independent in A.

Proof. Suppose that ZAeA;(n) Y dez Q5 -d€5 rash = 0 for some a; 4 € C, where the second
sum is restricted to those d € Z for which d > —m,(\). For v € Pt the symmetric
function e, only appears once in this linear combination. This holds thanks to (3.65), and
the fact that the set A (n) is a fundamental domain for the action of Sy on Py. Since
the set {e,},ep+ is linearly independent in A it follows that a5 s = 0 for all A € Af(n)
and d € Z such that d > —m,,()\), thus proving the claim for the set (3.67). The proof for
(3.67) is completely analogous. O

Remark 3.3.16. The set (3.67) does not form a spanning set for A. In fact, the symmetric
function e, appears in the expansion (3.65) only if v € PT satisfies the constraint 1, —n <
V. This implies that if v does not satisfy such constraint then e, cannot be written as a
linear combination of elements belonging to (3.67). On the other hand, A is spanned by
{e, },ep+, and therefore we conclude that the set (3.67) does not form a spanning set for
A. An analogous statement holds for (3.68).

To conclude this section, we write down the expansions for cylindric elementary and
complete symmetric functions in terms of Schur functions. These expansions are the
generalisation of (2.59) (2.60) to the cylinder.

Definition 3.3.17. Let \,u € A (n), d € Z>¢ and v € P;. Define the weight

=" N#K,, . (3.69)

GGP:

The coefficient K, is the Kostka number, which was introduced in Section 2.2.3.
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Recall that N,;* is non-zero only if |u| + |o| — |A| = dn, as we showed in Lemma 3.3.4.
Moreover, we have by definition that K,, is non-zero only if |v| = |o|. This implies that

Xpi!is non-zero only if [pu] + |v| — [X| = dn. Thanks to Property 4 of Lemma 3.3.6 we have

A0
v

have that y"¢ is a non-negative integer, since N>¢ and K, are non-negative integers as
v ) po

the relation x X)» where the coefficient y), was introduced in (2.58). Finally, we

well.

Proposition 3.3.18. Let A\, € A} (n) and d € Zxq. The functions ey/ay, and hyjq/, can

be expanded as

i = Y Xoibsu (3.70)
1/673:

haja = Y Xoiksy (3.71)
1/673,:r

Proof. Plug the expansions e, = Y . Kyo5» and h, = > o K,»5,, which can be
found for instance in [52, 1.6], into (3.58) and (3.59) respectively. A comparison with
(3.69) then proves the validity of the claim. O

Remark 3.3.19. Lemma 2.3.11 implies that the functions e, /4, and hyq/,, are Schur-
positive. It follows that there exist representations of GL,(C) whose polynomial characters
are given by ey/a/u(21,...,2,) and hyq/, (@1, ..., x,) respectively (compare with the dis-
cussion presented in Remark 2.3.12). It would be interesting to present a more explicit

construction of these representations.

3.3.3 Cylindric adjacent column tableaux

We finally wish to expand hy 4/, and e,;q/, in terms of the basis {p, },ep+ of A. For this
purpose we generalise the notion of ACHS defined in Section 2.3.4 to the cylinder, and to
do this we take inspiration from Definition 2.3.26 and Lemma 2.3.27. Compare also with
Figure 3.9.

Definition 3.3.20. Let g € P,j,n, r € Nand 1 <a<n with m,_1(it) # 0. Define fi,,
as the cylindric partition whose diagram is obtained as follows: for every p € Z add one
box per column in the diagram of ji, starting at column a 4+ pn and ending at column

a+r — 1+ pn, for a total of r boxes.

Lemma 3.3.21. We have the equality
flay = flag- T, (3.72)

where we set r = sn + q for some s € Z>g and 1 < g < n.
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Proof. For r < n, that is for s = 0, equation (3.72) reduces to the identity fi, = flaq- SO
suppose that r > n, that is s > 0. Notice that to obtain the diagram of ji,, we need to
add at least s boxes in each column of the diagram of ji. In other words, we have that
(ftay); — [ > s for all i € Z and thus i C fi,,.7°. This is because for each p € Z we
are adding, among others, a box per column in the diagram of £ from columns a + pn to
a+ (p+ s)n — 1. Periodicity implies that the diagram of /i, .7 is obtained by adding a
box per column in the diagram of i from columns a + pn to a + ¢ — 1 + pn, and repeating

this procedure for all p € Z. But this is by definition /i, , and the claim follows. n

Definition 3.3.22. Let ), i€ P,:fn with o C A. We say that 5\/,11 is a ‘cylindric adjacent
column skew diagram’ (CACSD) if either A = i or A\ = ji,, for some 1 < a < n with
mq_1(f1) # 0 and r € N. A ‘cylindric adjacent column reverse plane partition’ (CACRPP)
7 of shape ;\//l is a sequence {S\(T)}ZT:O of cylindric partitions, with A@ = 7 and \® = ),
such that A\ /A1 is a CACSD for r = 1,...,1.

See Figure 3.9 for a depiction of two CACSDs. Notice that for A,y € A (n) the
restriction of A /[t to the lines 1 to k is a ACHS, and conversely the periodic continuation
of A\/u to the cylinder is a CACSD.

Remark 3.3.23. Whereas a ACHS is a special case of horizontal strip, from the proof of
Lemma 3.3.21 it follows that a CACSD is not always a cylindric horizontal strip. Compare
with Figure 3.9.

Let \,u € A;(n) and d € Zs( such that Al = fla, for some 1 < a < n with
ma—1(f1) # 0. Suppose that 1 < r < n, then by definition we have the equality

Gy jg:+1, a+pn<i<a+r—1-+pn for somepeZ (3.73)
T i - y .
i, otherwise
and since (A\.7%) — i, = d it follows that d = 0,1. For j € Z define
jModn = jmodn + 1nd;medn.o ; (3.74)

and notice that 1 < jModn < n. Using the relation m;(A.7%) = (A.79), — (5\.7‘1);“ =
m;(\), together with (3.73), and adopting the notation (2.1) for partitions we end up with

A= ( . ((a—1) Modn)ma*l(m_l, o (la=14r) Modn)ma*l“(mﬂ, . ) . (3.75)

That is, A is obtained from p by removing a part equal to (a — 1) Mod n and adding a part
equal to (a — 1+ r) Mod n. In particular, for r = n it follows that A = p and d = 1.

Remark 3.3.24. Equation (3.73) implies that for » < n the integer a is unique, and if in

general rmodn # 0 we can just apply Lemma 3.3.21 to reduce to the previous case. On
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-2-101 23 45 6 7--- 2101 23 456 7---

Figure 3.9: Let A\, u € A$(4) given by A = (3,1,1) and u = (3,2,1). On the left we have
the CACSD A\/1/p with A\.7 = fi33. In fact, if in the diagram of i we add one box in
columns —1,0, 1, and then in columns 3,4, 5, and so on we recover the cylindric diagram
of A.7. Since ms(A.7) = ms(A) = 2 it follows that ©x/1/u = 2. On the right we have the

CACSD A\/2/p with A\.72 = fi37. In fact, if in the diagram of i we add one box in columns
—5,—4,-3,—2,—1,0,1 (red) and then in columns —1,0,1,2,3,4,5 (green), in columns
3,4,5,6,7,8,9 (blue), in columns 7,8,9,10,11,12,13 (fuchsia) and so on we recover the
cylindric diagram of A.72. Since mg(X.72) = mg(\) = ms(A) = 2 it follows that ©Orja/u = 2.
Notice that fi37 = fi33.7 and that ©y/2/, = ©x/1/u-

the other hand, for r = n the same equation implies that AT = flan for every 1 <a <n

such that m,_1(1) # 0. A similar argument applies if r modn = 0.

Let » € N and suppose that A7l = flqr as above. Define

ma,Hr(j\.Td) , rmodn#0
Oxfd/p = { ; (3.76)

, otherwise

and in particular set ¢y, » = 1. Notice that ¢y/q/, = Ma—14-(ft) + 1 for rmodn # 0
thanks to (3.75). The weight ¢)/q/, is the generalisation of the coefficient ¢y, defined
in (2.79) to the cylinder. In fact, the restriction of the CACSD A/0/u to the lines 1 to k
generates the ACHS \/u. If d = 0 equation (3.73) implies that a — 1 4+ r < n, and thus it
follows by definition that v/, = ©a/u-

Definition 3.3.25. Let A\, u € A (n), d € Z>¢, v € P and suppose that ji C \. Define

the coeflicient

oxaW) =Y _ers pr = or0/trmdyryren 5 (3.77)

r>1

where the sum runs over all CACRPPs of shape A\/d/u and weight v. If A\/d/u is not a

cylindric skew diagram set ¢ /q/,(v) = 0.
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In particular, ¢y /q/,(v) is non-zero only if || + |v| — |A| = dn. Moreover we have that
©x/0/u(V) = @a/u(v) where the latter is the coefficient appearing in the product expansion
(2.73), which was described in Lemma 2.3.28 as a weighted sum over ACT.

Lemma 3.3.26. Let u € Al (n) and v € PT. The following product rule holds in Vi(n)

m,u,('rh”‘axk)pll(xlv‘"Jxk) = Z Zd Z @A/d/;t(y)m)\(xlv“ka) ) (378>

d€Z50  AeAl(n)

where the second sum is restricted to those A € Al (n) for which \/d/p is a cylindric skew
diagram with |p| + |v| — [N = dn.

Since ¢y /q/,(v) is non-zero only if |u| + |v| — |A| = dn it follows that the sum over
d € Zso on the RHS of (3.78) is finite, and that for each A € Af(n) there is at

most one non-zero term z%py/q/,(v) contributing to the coefficient of my(zy,...,zy) in

mu(z1, ..., x)pu (21, ..., xk).

Proof. In analogy with the proofs of Lemmas 3.3.8 and 3.3.9 we show for r € N the
following identity in Vi (n)

mu(z1, ..., x)pe(T1, ... Tg) = Z 2% Z ©Oxjd/pmA(T1, .., x) (3.79)

d€Z>0  AeAf(n)

where the second sum runs over all A € Af(n) for which A\/d/u is a CACSD with |u| +
r — |A\| = dn. The claim then follows by applying repeatedly the equality above to the
product my(z1,...,2,)py(T1,...,2,). This also implies that vy/a/.(8) = @xa/u(v) for
B ~ v, where @y/q/,(8) for B a composition is defined in an analogous way to (3.77).

We first show that it is enough to prove (3.79) for 1 < r < n. For this purpose suppose
that » > n and write r = sn 4+ ¢ for some s > 1 and 1 < g < n. Let \ € A;’(n) and
d € Z>( such that Ard = flar for some 1 < a < k with m,_1(t) # 0. From the discussion
of Lemma 3.3.21 it follows that (A7)} = k + d = (fla,)}, > k + s, and thus we must
have d > 5. The same lemma implies that A\.7¢ = fi,, if and only if .79 = fi,,. In
other words, \/d/u is a CACSD if and only if A/(d — s)/u is, and moreover the equality
Ma14r(ATY) = Ma_14- (A7) implies that ©rjd/u = Pr/(d—s)/u- Thus the RHS of (3.79)

equals

sz Z Oxja/uma(T1, ..., 1) = ZSsz_S Z O/ (d—s)/uMA(T1, - -, Tp)

d>s  xeAf(n) dzs AEA] (n)

= zSsz/ Z ©x/@ jpma(Te, ... xr) , (3.80)

d'20  xedj(n)

where in the last equality the second sum runs over all A\ € A/ (n) for which \/d'/u is
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a CACSD with |u| + ¢ — |A| = d'n. On the other hand we have that p,.(z1,...,2) —
2°pg(x1, ..., x1) is in the ideal Zj, introduced in (3.35). This shows that the product
mu(z1,. .., x,)pr(T1, ..., 2x) equals (3.80) provided that (3.79) has been proved for 1 <
r < n. Suppose now that = n. Then (3.79) follows since m,,(x1, ..., z)pn(21, ..., 2k) =
zkmy (21, ..., x)), and moreover the only weight A € A;(n) such that Al = fla,n for some
deZsgand 1 <a <n with m,_1(t) # 0 is A = y, in which case we have that d =1 and
Orj1/p = k.

So suppose that 1 < r < n — 1. We now prove that for A\ € Af(n) the coeffi-
cient of )" -+~ a2t in my(x1, ..., 2%)p(21, . .., Tp) is non-zero if and only if A7 = flar
for some 1 < a < n with m,_1(t) # 0 and d = 0,1. Each monomial appearing in
My (1, ... x)pe(a, ... xp) is of the form 4@ - .. 2O .. M ® for some w € S* and
1 <1 < k. Assume that the latter equals zd:vi\l . 352‘“ for some d € Z>y. Then )\ is obtained
from o by removing a part equal to p, ) and adding a part equal to (ju,)+7) Mod n, which
also implies that d = 0 for ju,,qy+7r < n and d = 1 otherwise. Setting a = (1) +1) Mod n
we have that A\.7¢ = fia thanks to (3.75), and this proves the ‘if’ part of the statement.
For the ‘only if’ part, one can proceed in a similar fashion to the proof of Lemma 2.3.28.

Let A € Af (n) and suppose that A.7% = fi,., for some 1 < a < n with m,_; (1) # 0 and
d=0,1. Assume that a — 147 < n, and let ¢ and j be the smallest indices for which p; <
a—1+r and p; = a — 1 respectively. Then the monomials in m,,(z1, ..., x%)p (21, ..., Tk)

which equal 27" - - xz’“ are of the form

51 Mi—l—1, M+ i Mj—1_ Hj+1 o3
S T A A A RS B
for t =0,...,mq_14,(p). Assume now that a — 1 +r > n, let ¢ be the smallest index for
which p; < a — 147 —n and let j be the greatest index for which p; = @ — 1. Then the
D : A
monomials in my,(x1, ..., 2g)pr(21, ..., 2x) which equal zz)t - - -a;* are of the form
M1 Hj—1_ Hj+1 Mi—l—1, Mj+T i o
0 B T L B A A LT B
for [ =0,...,ma_11r—n(p). In conclusion we have that

mu(z1,. .., x)pe(T1, .. 0) = Z(ma_1+r(u)+1)m)\(x1,...,xk)

a

+z Z(ma—ur—n(ﬂ) +Dmazy, )

a

where A € Al (n) is defined via A = flor in the first sum, and via P flar in the
second sum. Both sums run over all 1 < a < n such that m, (1) # 0, together with
the constraint a — 1 + r < n for the first one, and the constraint a — 1 + r > n for the

second one. This finally implies the validity of (3.79) after applying the definition (3.76)
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of Pr/d/ - ]

We now generalise (2.74) to the cylinder, namely we give an alternative combinato-
rial description of the coefficient ¢),q/,(v). For this purpose recall the expansion py =
> pep+ Faumy, in A, which was introduced in (2.33).

Lemma 3.3.27. Let A\, € Al (n), d € Zso and v € P. The following equality holds

@A/d/u(y> - Z N::TdRucr . (381)

O’EP;

Proof. This statement follows by employing similar steps as the ones described in the proof
of Proposition 3.3.10. Plug the expansion p,(z1,...,2;) = Zaep,j R,omy(x1,. .., x) into
m(x1,. .., 28)py (21, ..., xk), take the quotient map g, : Ax[z, 271 = Vi(n) and use the

product expansion (3.40). A comparison with (3.78) then yields the desired equality. [

Proposition 3.3.28 ( [45]). Let A\, n € A (n) and d € Zso. We have the expansions

Ex/d/p = Z (px\/d/u(y)zy_leupu ) (382>
vep+

hyjan = Z exja(V)z) D (3.83)
vep+

into the basis {p, },ep+ of Ag.

Proof. Using (3.81) we have that Njy* = 3> 1. @x/a/u(0) R, for v € P, Furthermore we
have the relation zue??,j Rlte, = z,e,p,, see for example [52, page 104]. Plugging these
equalities into the expansion ey/q/, = Zue??,j Nli‘;,dey we end up with (3.82). Equation
(3.83) follows by applying the involution w to both sides of (3.82). ]

3.4 Properties of cylindric symmetric functions

We start this section by evaluating the coproduct of the cylindric symmetric functions
ex/d/u and hysq,, and then by exploring some consequences of this computation. In
particular, we shall identify certain subspaces as subcoalgebras of A, whose structure
constants are given by the coefficients N;* (see Definition 3.3.3) for A, p,v € A (n).
In Chapter 5 we will identify these coefficients as the structure constants of a Frobenius
algebra, i.e. a 2D TQFT.

Proposition 3.4.1 ( [45]). Let \,u € A} (n) and d € Z>o. We have the following coprod-
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ucts of cylindric symmetric functions

Alerasu) = Z Z ex/dy /v @ €u/dy/u 5 (3.84)
6211+ddQ>0 V6A+( )

Alhyja) = D > hajau @ hujayy - (3.85)
di+da=d ye A} (n)
dy1,d2>0

Proof. Consider the chain of equalities

Alewan) = 30 NxA) = 0 NA S e @c,

1/673k+ 1/673’7L P, 0673’7L

- ¥ (Z N>®

p.o€PF CveEPE

~ Y ¥ ( 3 le;dlep> ® ( 3 N’/jgf%g) .

d1+d2 dV€A+(n) peP;F ceP
1 2

In the first line we used (3.58) and then we took advantage of the identities A(e,) =
Zaep,j evjo ® €, and e,/, = ZpeP,j f3,€p, which were introduced in (2.54) and (2.57)
respectively. Notice that we restricted these sums to o, p € P, since the coefficient f¥ , 18
non-zero only if o,p C v € P;. In the third line we used Properties 2 and 3 in Lemma
5.2.5, and then we rearranged terms appropriately. Exploiting once again (3.58) in the

last line, equation (3.84) follows. One can prove (3.85) in an analogous way.

[
Corollary 3.4.2. Let A\, u € Af(n) and d € Zso. We have the identities
> D nMETey s by = Oaidao (3.86)
g e
Yo > MR e = o - (3.87)
d1+d2 VGA+( )
dy,do>

Proof. Taking advantage of Theorem 3.3.12 we end up with y(ex/q/,) = (—1)|)‘|+d”*‘“‘h)\/d/u
and y(hyjq/,) = (—1)MFrdn=leley ), where v is the antipode of A defined in Section 2.2.6.
The claim then follows after applying the defining relations (2.44) of the antipode to €y /q/,.
Had we started with hy/4/, we would have reached the same equalities.

]

Corollary 3.4.3 ( [45]). The respective subspaces spanned by (3.67) and (3.68) each form
a positive subcoalgebra of A with structure constants Nlj‘;,d for A\, u,v € Af(n). That is, for
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A

Figure 3.10: Let A = (5,5,3,1) € Af(5). Then \Y = (5,3,1,1) is the complementary
partition of A in the bounding box of height 4 and width 6 shown in the Figure.

A€ Af(n) and d € Z with d > —m,,(\) we have the coproduct expansion

A(eﬂ.fd/é)) = Z Z ex/dy/u & €hrdz 5 (3.88)

di1+do=d EAJF
i s PEAE )

di+n
ex/di/p = Z Z N;\l;dlleﬁﬂ_dl—dll/ﬁy (389)

d}=0 VE.AIT (n)
and the analogous coproduct expansion holds for hj\_q—d/@)‘

Proof. The claim is a direct consequence of Corollary 3.3.13 and Proposition 3.4.1, together
with the equalities (3.63) and (3.64). O

Remark 3.4.4. Setting Copin—di s = Cu/(di—d}) /05 We have that (3.89) corresponds to the
first expansion in (1.16). In other words, the coefficients N* for X, p, v € A (n) coincide
with the structure constants N, };\,;d(q) of the deformed Verlinde algebra discussed in Section

1.3, when evaluated at ¢ = 1. Compare with Remark 5.2.4 in Chapter 5.

3.4.1 An involution between cylindric reverse plane partitions

Define now the map V : A (n) — Al (n) by
Ao A = (1= Aon+1— Ay .on+ 1) (3.90)

That is, AV is the complementary partition of A in a bounding box of height k£ and width
n + 1 (see Figure 3.10), and thus V : Af(n) — Af(n) is an involution. This map
will play an important role in the next chapter, so we spend the rest of this section to
describe some of its properties. The parts of the cylindric partition AV are given by
S\ZV =n+1- j\k“_i. In fact, for 1 < ¢ < k this matches with the definition of AV above,
and moreover 5\;/% =n+1-— (5\k+1_i_k) =n+1-— 5\k+1_z~ —n = ;\zv —n for i € Z. Similarly
the parts of the conjugate cylindric partition Y are given by Y = k — X, 4o_;- This
holds for 1 <7 < n since A and AV fit in a bounding box of height k& and width n + 1, and
furthermore XZV;,L =k— (;\’,L+2_l-_n) =k— 5‘;1+2—i — k=X —kforieZ We will make
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use of the identities

~

'Td>i - [jlz - (MV-Td)k+1—i+d - S‘Z-i-l—i—f—d ) (391)

-Td); - ﬂ;‘ = (ﬂV-Td);erQ—i - S‘X;Q—i ) (3-92)

P

(
(

P

which follow after a straightforward computation using (A.7%); = A\;_g and (\.79); = X, +d
respectively.

Lemma 3.4.5. Let \,u € A (n) and d € Zsq. Then ji C A7 if and only if \Y C a7,
and in particular \/d/p is a cylindric vertical strip if and only if p*/d/\Y is. Moreover
Nd/pis a CACSD if and only if u¥/d/N\Y is. We have the identities

EN S| S|
Orja/n = to 0w ja/nv Ua/djp = 1o Vuvdav Oxjd/p = To1Pujany > (3.93)
|S,] S, Syl

where in the last one it is understood that @y a/, = ©uv jany = 0 if A/d/p is not a CACSD.

Proof. Equation (3.91) implies the first statement of the lemma. For the part involving
the CACSDs, suppose that Ard = fla,r for some 1 < a < n with m,_1(ft) # 0 and r < n.
Taking advantage of (3.73) and (3.92) we end up with

N +1, n+2—(a+r—1)+pm<i<n+2—a+pn,peZ
(0”74 = :

< ‘
A otherwise

That is, i¥.7% = A and thus p¥/d/\Y is a CACSD (see Figure 3.11 for an

example). Now suppose that r > n and write r = sn + ¢ for some s > 1 and 1 < ¢ < n.

\%
n+2—(a+r—1) Mod n,r

Lemma 3.3.21 implies that Al = flqr if and only if Ard=s = flaq- Since ¢ < n we
have that f¥.797% = 5\V+2_(a+q_1)Modn7q, that is u¥/(d — s)/AY is a CACSD, and applying
Lemma 3.3.21 once again we conclude that " /d/\Y is a CACSD as well. This finally
proves the second statement of the lemma thanks to the fact that V : Af(n) — Al (n) is
an involution. The first identity in (3.93) is identically 0 if A\/d/u is not a cylindric skew
diagram, as Proposition 3.2.7 then implies that 0,4/, = 0,v/a/xv = 0. Otherwise this
follows after a manipulation of (3.25), with the help of (A.79), = X +d and \, = [ N
One can prove the second identity in (3.93) in a similar fashion. Assuming that \/d/u is
a CACSD, that is Ard = fiar for some 1 < a <nandr € N with m,_1(i1) # 0, the third
identity follows by noticing that

|S)\‘ _ maJrrfl(;\) . ma+r71(5\~7-d) _ Pa/d/p
i

|SAL’ a Ma-1( a Mnt2-a(f1Y.7) a Puv jd/ AV ’

where we used the equality ma_1 (i) = @,y — il = a0 — fes o = Musa-a(pY). O

Let Il ,, be the set of all CRPPs, and consider the map V : Iy, — Il , which sends
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-2-101 23 45 6 7--- 2101 23 456 7---

Figure 3.11: Let A\, € AJ(4) given by A = (3,1,1), u = (3,2,1) and let d = 1. On
the left we have the CACSD \/d/u, whereas on the right we have the CACSD p"/d/\Y,
where p¥ = (4,3,2) and AV = (4,4,2). In the Z x Z plane on the left there is highlighted a
bounding box of height 3 and width 5 containing A and \Y, whose top-left corner is on the
point (0, d). The same bounding box is reproduced on the right, rotated by 180° and with
its top-left corner on the point (0,0). Notice that the cylindric skew diagram on the right
is obtained from the one on the left by rotation of 180°. Furthermore, whereas AT = fi3.3

~\/ _ A\/ — A\/
we have that gV.7 = >\4+2,(3+3,1)Mod4,3 = >‘1,3-

the CRPP 7 of shape \/d/u given by
= AO) pdo o \ND) pdv oo NO ph = ) 4

to the CRPP ¥ of shape ¥ /d/\Y given by

~

MDY =\ c N pdmdioy oo N)Y pdmdi = A(0)Y pd—do /lv.Td .

This map is well defined thanks to Lemma 3.4.5, and it is an involution since V : A/ (n) —
Al (n) is. See Figure 3.12 for an example. In particular, Lemma 3.4.5 implies that T and
# are respectively a CRST and a CACRPP if and only if 7V and #¥ are. Notice that if 7
has weight (wt(#)1,..., wt(#);) then #" has weight (wt(#),, ..., wt(7);). In fact, thanks

to Lemma 3.1.9 and equation (3.91), we have the chain of equalities, for r =1,...,1,

wt(7Y) = ’5\(177')\/'Td*dl—r/j\(lfTJrl)v'Tdfdl,ﬂrl|

’5\([77'+1).le77“+1 /&(lfr).lefrl = th+17,,. (’ﬁ-) .

Corollary 3.4.6. Let A\, € Al (n) and d € Zsg. Suppose that 7y, T and #y are respec-
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+=2-10 1 2 3 4 5 6 7--- e =2-10 1 2 3 4 5 6 7---

Figure 3.12: Let A\, u € AJ(4) given by A = (4,3,2), p = (2,2,1) and let d = 1. On the
left we have a CRPP 7 of shape \/d/u and weight (4,3, 1), whereas on the right we have
its image 7V under the map V : Iy, — II,. This is a CRPP of shape p¥/d/\Y and
weight (1,3,4), where ¥ = (4,3,3) and A\Y = (3,2,1). In the Z x Z plane on the left there
is highlighted a bounding box of height 3 and width 5 containing A and AV, whose top-left
corner is on the point (0, d). The same bounding box is reproduced on the right, rotated
by 180° and with its top-left corner on the point (0,0). Notice that 7" is obtained by first
rotating 7 of 180°, and then applying the substitutions 1 <+ 3, 2 <+ 2 to the entries of the
latter.

tively a CRPP, a CRST and a CACRPP of shape \/d/u. We have the identities

S|
EA

S
o Vi Oiy = |_>\|90fr¥ : (3.94)

/l/}T* | |
M

071’1 - 71'1 Y
[l

Proof. Using the first equality in (3.93) we have that

l
O = HQW/(di—di_l)/w—l)

- H |S/\( 1>| DN J(d-di 1) ~(d=di) ]2

|S)] BN
|S |H‘9/\(z DY J(d—di—1)—(d—d;)/JADY = |S_M|€7"r¥ .

This prove the first identity in (3.94), whereas the other ones follow in a similar way.

[
Proposition 3.4.7. Let \,u € A} (n) and d € Zso. We have the identities
BN
e,\/d/ﬂ = |S ’eHV/d/Av , (3.95)
IS\,

h)\/d/# = |S ’ \//d/)\\/ . (396)
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Proof. As we noticed before, if the CRPP 7 of shape A/d/u has weight v = (v4,...,1,)
then the CRPP 7V of shape ¥ /d/A\Y has weight (v, ...,v1). The first identity in (3.94)
implies that

|S>\ BN |SA|
Hk/d/u ZG Z |S | m@,ﬂ/d//\v ((I/l, .. .,1/1)) |S | V/d/AV(V) .

In the last equality we used the fact that 0,v q/\v(8) = 0,v /v (v) for B ~ v. The
expansion hya/, = > ep+ Orja/u(v)m,, then implies the validity of (3. 96) Alternatlvely
we could have proved the same identity by first showing that ¢y 4/, (V) = ‘ s ‘ ©uv ja/v (V)
and then exploiting the expansion hy/a/, = > cp+ Or/a/u(V)z, Do Equatlon (3.95) can
be proved in a similar way. Namely one can show that 1 /q/,(v) = | 5 |¢uv /a/xv, and the
claim follows by applying the latter to the expansion ey/a/, = D, cp+ Yaja/u(v)my.

0



Chapter 4
Quantum integrable systems

This chapter aims to make a connection between the cylindric symmetric functions ey 4/,
and hy,q/, defined in Chapter 3, and the study of quantum integrable systems. In particu-
lar, we are interested in the vertex models defined by the Q™ and @)~ operators associated
to the g-boson model (compare with the discussion presented in Section 1.2), when eval-
uated at ¢ = 1. We refer to the latter as the QT and )~ vertex models. We shall also
consider two additional vertex models, which are related to the previous ones by taking
the adjoint of the transfer matrices. We show that ey 4/, and hy;q/,, can be identified with
the partition functions of these vertex models with periodic boundary conditions in the
horizontal direction. To this end, we provide a bijection between lattice configurations
and CRPPs, as defined in Section 3.1.

The transfer matrices of the vertex models defined above commute with the Hamiltonian
of the free boson model, which is the ¢ = 1 specialisation of the g-boson model. We identify
the matrix elements of the quantum integral of motions of the free boson model with the
coefficients appearing in certain product expansions in Vi (n), the quotient of Ay[z, 271]
defined in Section 3.3. We exploit this observation to illustrate an alternative method
for evaluating the expansions of e),q/, and hy/q/, in terms of the bases of A introduced
in Section 2.2. Then we present an alternative approach for computing the partition
functions of the vertex models defined above. Finally, we employ the quantum integral
of motions of the free boson model to endow the k-particle space with the structure of a

unital, commutative and associative algebra.

4.1 Vertex models in statistical physics

We start with the formulation of the Q% and @~ vertex models, and for the discussion

presented in Sections 4.1.1, 4.1.2 and 4.1.3 we take inspiration from [40-43|. From here to

83
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the end of this thesis we assume, if not stated otherwise, that [,n € N and that k € Z-,.

4.1.1 Vertex and lattice configurations

The Q1 and )~ vertex models are defined over a two dimensional lattice I' C Z x Z with
[ rows and n columns, as the one depicted for example in Figure 4.2 (see [41, Ch. 4.1] for
a formal definition). Denote with E the set of horizontal and vertical lattice edges, each

edge consisting of two points in I'.

Definition 4.1.1. A lattice configuration C : E — Z5( is an assignment of non-negative

integers to the lattice edges.

In particular, a vertex configuration is defined as a set of four non-negative integers
{a,b,c,d} attached to a point in I, called a ‘vertex’, and oriented as in Figure 4.1. To each
vertex configuration we associate a (vertex) weight, and a vertex configuration is said to
be ‘allowed’ if the related weight is non-zero. In Figure 4.1 we introduce the allowed vertex
configurations for the Q* vertex models, together with the associated weights. The vertex
weights for these models depend by definition on an indeterminate x. When evaluated
in the complex numbers, this indeterminate is called a ‘spectral parameter’. We assume
that the weights of the vertices in the i-th row depend on the same indeterminate x;. The

weight of a lattice configuration C is defined as

wt(C) = [[ [ wt(viy) . (4.1)

i=1j=1

where v; ; is the vertex obtained by intersecting the i-th row with the j-th column, and
wt(v; ;) is the associated weight. For the sake of clarity, we will be using the symbols wt™
and wt~ whenever we associate to a vertex configuration, or a lattice configuration, the
weight defined for the Q* and @~ vertex model respectively.

In the following we impose periodic boundary conditions in the horizontal direction,
that is we identify the leftmost and rightmost edges in the same lattice row. In other words,
we define the vertex models on a cylinder. We identify the boundary of this cylinder with

a vertical line between columns n and 1.

Remark 4.1.2. The allowed lattice configurations for the Q% vertex models, that is
the ones with non-zero weight, can be interpreted in terms of non-intersecting lattice
paths travelling from North-West to South-East. See Figures 4.1 and 4.2. The constraint
a+b = c+d at each vertex of the lattice implies that on the cylinder the number of paths
is conserved throughout the lattice. In other words, the number of vertical paths between
rows ¢ and ¢ + 1 of the lattice is the same for every i = 1,...,l — 1. This number coincides
with the number of vertical paths above row 1, and the number of vertical paths below

row [.
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allowed vertex configuration allowed path configuration associated weight

& ¢ e (d)

C =y

a

d:a+b—c d:a+b—C

b b
a
Q_ a ¢ — xa(a+b)

b

c

d=a+b—c d=a+b—c

Figure 4.1: The allowed vertex configurations for the Q" and )~ vertex models, together
with their associated weights. For the Q% vertex model, we only allow for the vertex
configurations such that a +b = ¢+ d and b > ¢, or equivalenty d > a. For the @~
vertex model, a vertex configuration is ‘allowed’ if the only condition a + b = ¢ + d is
satisfied. The allowed vertex configurations for these models can be interpreted in terms
of non-intersecting paths travelling from North-West to South-East.

Given an allowed lattice configuration, let £k € Z>, be the number of non-intersecting
paths. We fix the values of the outer vertical edges on top and bottom respectively with
two partitions p and A belonging to the set A (n) (see Figure 4.2). The latter was
introduced in (3.11), that is

Afn)={ eP, n>M >N > > )\ >0}.

For j = 1,...,n, we have that m;(u) represents the number of paths starting from the
j-th column of the lattice, or equivalently the value attached to the upmost edge of the
same column. Similarly, m;(\) represents the number of paths ending at the j-th column
of the lattice, or equivalently the value attached the lowest edge of the same column.

A central object in the discussion of vertex models, which encodes all the physical
properties of the models themselves, is the so called ‘partition function’. Given A\, u €
A} (n), denote with I'y (1) (respectively I'y (1)) the set of allowed lattice configurations
for the QT (respectively Q) vertex model, where the values attached to the outer vertical
edges on top and bottom are fixed respectively by p and A. The partition functions of
the QF vertex models, for the lattice with periodic boundary conditions in the horizontal

direction, are defined as the weighted sums

Zi (o) = > 2wty (4.2)

+
'inF)\”u(l)
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m(p) 1 1 2 0 m(p) 11 2 0

m(A) 2 1 0 1 m(A) 2 1 0 1

Figure 4.2: Allowed lattice configurations for the @* vertex model (on the left) and for
the @~ vertex model (on the right), with periodic boundary conditions in the horizontal
direction. The lattices have | = 3 rows and n = 4 columns. The lattice configurations
consists of & = 4 non-intersecting paths. Two paths are crossing the boundary of the
cylinder, and therefore d = 2 in the notation of equation (4.2). The upper and lower
boundary conditions, that is the values attached to the outer vertical edges on top and
bottom, are fixed respectively by the partitions p = (3,3,2,1) and A = (4,2,1,1), which
belong to Af(4). We set m(p) = (mq (i), ...,mp(p)) and m(\) = (mi(N), ..., me(N)).

Here z is a formal variable, and for each lattice configuration v+ € F)i\’ u(l) we set d = d(vF)
to be the number of paths crossing the boundary of the cylinder. Compare with the
notation introduced in [41, Eq. (5.1)].

Remark 4.1.3. The partition functions Zf,# (21, ...,7;) acquire a physical meaning when
the indeterminates z and (z1,...,x;) are evaluated in the interval (0,1) C R. In this
thesis we shall not discuss any physical properties related to the Q* vertex models. On
the other hand, in Section 4.1.3 we provide a combinatorial interpretation for the partition
functions (4.2), which relies on the cylindric symmetric functions defined in Chapter 3.
For this reason, we will always regard Z/j\fu(xl, ...,x;) as a formal power series in the

indeterminates z and (z1,...,x;).

For A € P* and s € Z define the partition [45]
rot® A\ = (1™1==W) gma=s(N)  pma—s()y (4.3)

where the indices are understood modulo n.

Lemma 4.1.4. Let \,u € A (n) and 1 < s <n. We have the identities

Z*+ (T1,...,1) = sz:I(mi(“)_mi()‘))Zi#(xl, ceyTy) (4.4)

rot—S A\;rot=S pu

Proof. We shall only prove the claim for the Q" vertex model, since for the )~ vertex

model the claim follows in a completely analogous way. For this purpose, we first construct
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a bijection between the sets Fju(l) and F:;t_s/\rot_su

(I). Let v € Ty (1), and shift the
paths in the horizontal direction by s units clockwise (compare with Figure 4.3). Denote
by 4 the lattice configuration obtained via this shift, and notice that the upper and lower
boundary conditions of 7 are fixed respectively by the partitions rot~® ;s and rot™® A. Since
the Q* vertex model is defined on a cylinder, it follows that at each vertex of 4 we recover

the path configuration depicted in Figure 4.1. This implies that 7 is an allowed lattice

Jr
rot=S A\jrot =S5 p

(1), that is y — 4 defines a

configuration for the Q* vertex model, and therefore 4 € T’ (1). In conclusion,

+

cach v € T’y ,.(1) determines a unique element 5y € I'7 .\ . 4

map I'y (1) — T} ().

rot=S A\jrot =S pu

To show that I'{ (1) and I'[, ., .~ ,(I) are in bijection, we need to create the inverse
map I'F o\ o, () = T, (0). Let ¥ € T, . ,(0), and shift the paths in the

horizontal direction by s units counterclockwise. Denote by ~ the lattice configuration

obtained in this way. Following similar steps as the ones described above, one can show

that v € I’y ,(1). The assignment 5 ~  therefore definesamap T\ ., . (1) = Ty (1),
which is clearly the inverse of the map 'y (1) — I'f ., . (1) introduced above. We
conclude that there exists a bijection between the sets F;\“’M(Z) and I'7 | vot—s (1)

Let v € Ty (1), and consider the lattice configuration 7 € T} (1) which is the

rot =S A\;rot—*

image under the map Fj\i W) — | u(l) described previously. Denote by v;; the

rot =5 A,;rot—*
vertex obtained by intersecting the i-th row of the lattice with the j-th column. Employing
the map I'y (1) = T'0 ., (1) we have that the vertex configuration attached to v, ;
becomes the vertex configuration attached to v;;_,, where the indices are understood
modulo n. We can therefore take advantage of (4.1) to deduce the identity wt*(y) =
wtT (7). By construction, the number of paths d associated to ~ that are crossing the
boundary of the cylinder coincides with the number of paths associated to 7 that are
crossing the vertical line between columns n — s and n — s + 1. Let d be the number
of paths associated to 4 that are crossing the boundary of the cylinder. Notice that the
constraint a + b = ¢ + d at each vertex of the lattice (compare with Figure 4.1) implies

that

n n

d+ Z mi(rot ™ p) = d + Z m;(rot ™5 \) .

i=n—s+1 i=n—s+1
Starting from (4.2), and then employing this last identity, together with the relation
m;(rot™* X) = my, (), one ends up with (4.4). O

Remark 4.1.5. A natural question is how the partition functions (4.2) change if we
identify the boundary of the cylinder with a vertical line between columns s and s + 1,
and then we redefine the number d = d(7*) as the number of paths crossing this new

boundary. Employing the map ¥ + 7 defined in Lemma 4.1.4, we deduce that these
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m(p) 1 1 2 0 m(rot=3u) o

m(rot™3\) 1

Figure 4.3: Let [ =3, n =4, k =4, p = (3,3,2,1) and A = (4,2,1,1). On the left we
have an allowed lattice configuration v € Fj\L,u(l) for the Q* vertex model. On the right
we have the allowed lattice configuration 74 for the Q* vertex model which is obtained
from v by shifting the paths in the horizontal direction by 3 units clockwise. This is the
image under the map I'{ (1) = T 5, 5 (I) defined in the proof of Lemma 4.1.4. To
ease the comparison, on the left we drew a vertical dashed line between columns n and 1,
which corresponds to the boundary of the cylinder, and on the right we shifted this line

by 3 units clockwise (that is, from right to left).

m(A) 2 1 0 1

2 1 0

partition functions are given by eréts A\ rots u(xl’ ..., x;), which equal
ZZ?:n—sﬁ-l(mi()‘)*mi(/"‘))Z;SM<x17 . ,xl)

thanks to (4.4) and the relation m;(rot® \) = m;_s(\).

4.1.2 Solutions of the Yang-Baxter equation

As it is customary in the discussion of vertex models, we now wish to identify the vertex
weights for the QF vertex models as matrix elements of a vector space. For this purpose,
we now interpret the values attached to the edges of the lattice as labels of basis vectors

in the vector space F = P Cuv,,. We shall be using the the bra-ket notation from

mEZZO
physics. Namely, we denote the vector v,, € F with the ‘ket’ symbol |m), and the dual
Cv™ with the ‘bra’ symbol (m|. The

dual vectors are defined via the relation v™ (v,,/) = 0y, Which corresponds to the ‘braket’

vector v™ belonging to the dual space F = &P

mEZZO

(m|m’y = ;s in the bra-ket notation.

Definition 4.1.6. The Heisenberg algebra H is the unital, associative C-algebra generated
by the two elements {b, b*} subject to the relation [b, b*] = bb* — b*b = 1.

Lemma 4.1.7. The set {(b*)Pb? | p,q € Z>¢} forms a basis of H.

Proof. This is a well known result, see for example [65]. O
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Equip the vector space F with the map H x F — F defined as

b*lm) = (m+1)im+1),
blm) = |m—=1),

together with b]0) = 0. This map turns F into an infinite dimensional left module of the
Heisenberg algebra #H with highest vector |0). See for example [35, 5.1.1, Proposition 3]
in the limit ¢ = 0. Similarly, equip F with the map F x H — F defined as

(m|b* = (m—1|m,

(mlo = (m+1],

together with (0| b* = 0. In this way, F becomes an infinite dimensional right module of
the Heisenberg algebra with highest vector (0|. As a consequence of the above actions, we
have the relations

()™

m)!

Im) = 0) , and (m| = (0] b™ . (4.5)

Let 2 be an indeterminate and set F((z)) = C((z)) ® F. The LT and L~ operators
are the operators L*(x) € End(F((x))) ® H defined via the relations

+ _ / ﬁ s« \mpm’

L) my@l = > [m’) @ — ()"0 (4.6)
m/EZZO

— ! ™ m’ (1x\m

L (x)mye@l = > [m’) @ —b™ (b)" . (4.7)
mIEZZO ’

For a,b € Zsg, we shall use the notation |a,b) = |a) ® |b). Moreover, we set (§) = 0

whenever a < b.

Lemma 4.1.8. The matriz elements of the L* operators are given by

d
(e,d|LT(x)|a,b) = a° <a> Oatbetd » (4.8)
_ ofa+0b
(c,d|L™(x)]a,b) = =x < b >5a+b7c+d . (4.9)
Proof. The claim follows after a straightforward computation. O

A comparison with Figure 4.1 shows that the matrix element (4.8) is non-zero if and
only if the integers {a, b, c,d} represent an allowed vertex configuration for the Q* vertex
model. Similarly, the matrix element (4.9) is non-zero if and only if the vertex configuration

defined by the integers {a,b,c,d} is ‘allowed’ for the )~ vertex model. If these matrix
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elements are non-zero, then they coincide with the vertex weights introduced in Figure
4.1. We can therefore identify the vertex weights for the Q% vertex models with the matrix
elements of the L* operators. Let P € End(F ® F) be the flip operator P |my,my) =
|ma, m1). Define operators R* € End[C((z,y)) ® F @ F] via the relations

/ mi mh—my
my, mh|RY (x/y)|mq, me) = (m2> <£) (1 — f) Oy +ma.m’ +m! 4.10
(my, my| R (2/y)|ma, ma) m )\ y g, m) -+ (4.10)

and
R (z/y) = PR"(y/x)P . (4.11)

Moreover, define R € End[C((z,y)) ® F ® F] via

my+m AN x\ e
el = (") (D) (14 D) T g - (412
my Y Y

We employ these operators to construct three solutions of the Yang-Baxter equation (YBE)

in terms of the Heisenberg algebra.

Proposition 4.1.9. The LT operators are solutions of the YBE

Riy(x/y) LT (x)L3 (y) = L3 (y)Li(z)Riy(z/y) , (4.13)
Ryy(z/y)Ly (x)Ly (y) = Ly (y)Ly (x)Rip(x/y) , (4.14)
Ris(z/y)Ly (x)L3 (y) = L3 (y)Ly (x)Ria(x/y) . (4.15)

The three solutions of the YBE presented above are identities in End[C((z,y)) ® F ®
F] ® H. The subscripts attached to the operators specify which copies of the Fock space

these operators are acting on. For example, we have that

T ,
LT(I‘) |m17 m2> ®1 = Z |frn/7 m2> ® '(b*)mlbm ’
MIEZZO my:
L;(y) |?7”L17 m2> ®1 = Z |m17 m/> ® %(b*)mzbm/ .
m/ezzo 2.

Notice that (4.13) is the limit ¢ = 1 of a similar identity proved in [41, Proposition 3.7].
Equations (4.14) and (4.15) are new results.

Proof. Denote by Li,jm(m) € H®C((x)) the elements defined via the relation L*(u)|m)®
L=3 ez, |m’>®Lfn,7m(u). Equations (4.6) and (4.7) imply that L}, (z) = 2 (b )mp™
and L, (x) = Zbm(b)m. Set RE, . (afy) = {mb,mb|R*(e/y)|mi,ma) and

Ryt mtymyms (2/y) = (my, my|R(x/y)|mi, my). Applying both sides of (4.13) to the el-

ement |my,me) ® 1, and then doing the same for (4.14) and (4.15), one arrives at the
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following set of constraints for the operators L, (),

+ + +
Z fivﬂbl,ng;m’l,m’2 Lmll,ml (ZL‘)Lm,27m2 (y> -

! !
my,my>0

Z LiQ,mé <y)L$1,m’1 (x)Ri’pm’Q;ml,mz ('T/y) )

/ /
mfi,m5>0

together with

Z }%111,n2;m’1,m/2 L;lll,ml (I)L:_néij <y> -

/ !
m7,m5>0

Z L:27m'2 (y)L;mel (m)Rm’l,mé;mth (z/y)

/ /
mfi,m5>0

for mq,mg,n1,ne € Z5¢. The constraints involving solely the operators L;,,m(x) can be
deduced from [41, Proposition 3.7] by taking the limit ¢ = 1. The others follow after a
straightforward but tedious computation, whose details we omit. For this purpose, one

has to take advantage of the following commutation relation,

min(r,s)

*\T 1.8 —1)'rls! s—1(px\T—
(b)e" = ; 1!(7«(—1))!(3—1)!6 e

which can be proved by induction. O

Remark 4.1.10. The universal R-matrix R € U ® U of a quantum group U satisfies the

relation

R12R13R23 = R23R13R12 . (416>

In the context of quantum groups, the latter is what is known as the Yang-Baxter equation.
Suppose now that X, Y and Z are /-modules. Denote by Rxy the universal R-matrix that
is acting on the first two spaces of the tensor product X ® Y ® Z. Define Rx and Ry, in
an analogous way. We then deduce from (4.16) the relation Ryy RxzRyz = RyzRxzRxy.
The spaces X and Y are usually referred to as the ‘auxiliary spaces’, whereas Z is the
‘quantum space’. Moreover, it is customary to call Rxy; = Ly, and similarly Ry, = Ly,
the ‘Lax matrix’. See for example [15] for further details. In our discussion, the matrix
R* defined in (4.10) is a degenerate limit of the universal R-matrix of U, (sl,) [39]. Even
though the L-operators defined in (4.6), (4.7) and the R-matrices defined in (4.10), (4.11),
(4.12) are not related, it is customary in quantum integrable systems to call the equations
of the form (4.13), (4.14) and (4.15) as the Yang-Baxter equation. See for example [41,
Proposition 3.6].

We now generalise the discussion presented so far to include the partition functions

(4.2). Namely, we wish to express the latter as the matrix elements of some suitable
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operators. For this purpose, consider the n-fold tensor product H, = H®", and denote
with {b;, b } the generators belonging to the i-th copy of H. It follows that H,, is generated
by the elements {b;, b;}!_; subject to the relations

[bi7 bj] = [bra b;] =0, [bi7 b;] = 517' : <4'17>

The n-fold tensor product F*" admits the decomposition F®" = ®k62>0 FZ". For k €
Zg, the subspace F;°™ C F®" is spanned by the vectors |my, ma, ..., m,) = |m1) @ |ma) @
-+ ® |my,) satisfying the constraint y ;" , m; = k. We label these vectors with partitions
A € Af(n) as follows,

1 * * *
P‘> - |m1()\), mz(/\)7 <. 7mn()‘)> - u_Ab’\lb& T b,\k |0> ) (4'18>

where the symbol uy = [[,~, mi(\)! was introduced in (2.28). Every partition p € Pt with
i1 < n can then be identi%ied with a vector in F®" via the relation (4.18). Similarly, we
have the decomposition F&" = ®k62>0 ]},;@” For k € Z-, the subspace ]-2,;@” is spanned
by the vectors

] = ms (3), ma(), ., ma(A)] = (0] by, by, (4.19)

where \ ranges over all partitions in A; (n). By construction we have that (u|v) = ¢, for
all u,v € P with py, v, <n.

Fori=1...,n,let L¥(x) € F((x)) ® H, coincide with the L* operators defined in
(4.6) and (4.7), where the elements {b,b*} of H are replaced by the elements {b;, b} of
H.,. Define the monodromy matrices Q*(z) € F((z)) ® H,, as

Q*(x) = Ly (x) - Ly (2) Ly (w) . (4.20)

Notice that the subscripts attached to the L* operators in (4.20) have a different meaning
from the subscripts introduced in Proposition 4.1.9. Denote with Qi,m(x) € H,2C((z))
the elements defined via the relation Q*(z) |m) ® 1 =Y ., |m') @ Q. . (x).

Corollary 4.1.11. The monodromy matrices (4.20) are solutions of the YBE

Ri(z/y)Qf (2)Q5 (v) = Q3 (1)Q7 (z)Riy(z/y) , (4.21)
Ri(z/y)Qr ()Qy (y) = Qu (v)Qq (z)Rpp(x/y) , (4.22)
Rix(x/y)Qr (#)Q5 (v) = Qi (y)Q1 (z)Riz(x/y), (4.23)

where the operators RT, R~ and R were defined respectively in (4.10), (4.11) and (4.12).

The three solutions of the YBE presented above are identities in End[C((z,y)) ® F ®
F|®@H,,. The subscripts attached to the operators have the same meaning of the subscripts
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introduced in Proposition 4.1.9. That is, they specify which copies of the Fock space these

operators are acting on.

Proof. Taking advantage of Proposition 4.1.9, one can prove the claim via induction on n.

This is a standard computation, which can be found for instance in [37, VI.1]. ]

Lemma 4.1.12. We have the equalities

m ]
@) = () (BbB) ™ - (Bt b)Y 4.24
Qm’,m(x) m! G;O 061!"‘Oén_1!< 1) ( 1 2) ( n—1 n) n ( : )
|
Q- ()= i > me/(b*bn_l)an* Co (BB ()™ (4.25)
m/,m m) = Oé1! . an—I! n n 2 1
aC 1

where the set P20, = {a € Po_y | a; >0 fori=1,...,n — 1} was introduced in (2.7).

Proof. These equalities are the limit ¢ = 1 of similar identities proved in [43, Lemma
4.1]. 0

Introduce QT and QQ~ operators as the operators Q*(x) € H,, ® C((z,x)) defined via

the following partial trace,

QF () =Trr2"QF(x) = > 2705 (1), (4.26)

mEZZQ

where the operator 2V € End(F) is defined via the relation (m/|z"|m) = 2™6,m. The
partial trace of the monodromy matrix associated to some vertex model, which in our case
coincides with the QT operators defined above, is also known in the literature as Baxter’s
‘transfer matrix’. The following result shows that we can interpret the matrix elements of

the QF operators as the partition functions (4.2) of the QF vertex models.

Lemma 4.1.13. Let A\, u € Af(n). We have the identities

Zy (@@, ) = (NQF(21)QF (w2) - QF () ) - (4.27)

Proof. Suppose that v is a lattice configuration belonging to either Fj{, L) or Iy (1). We
first label the values attached to the edges of the lattice in a suitable manner; compare
with Figure 4.4. Fori=1,...,land j =1,...,n let aéi) be the value attached to the edge
in the i-th row between columns (5 — 1) Modn and j, where Mod was defined in (3.74).

Similarly, fori =1,...,1—1 let mg-i) be the value attached to the edge in the j-th column
(0)
J

Notice that the vertex configuration associated to v; ;, which is the vertex obtained by

between rows ¢ and ¢ + 1. Moreover, set m;” = m;(x) and mg.l) =m;(\).

intersecting the i-th row with the j-th column, consists of the four non-negative integers
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{ay), my_l), aﬁl, my)} oriented as in Figure 4.1. By definition we have that v is an allowed

lattice configuration, which means that its associated weight is non-zero. Equation (4.1)

implies that the vertex configuration associated to v; ; is also ‘allowed’. A comparison with

Figure 4.1 shows that for i = 1,...,l and j = 1, ..., n the integers {agi), mgi_l), aﬁl, méi)}
satisfy the constraint agi) + mg-i_l) = aﬁl + mgi). Moreover, thanks to (4.8) and (4.9) we
have the identity

wtE(v;;) = (@), m\|LE (z)|al”, m{ Yy (4.28)

Fori =0, ..., define the partition A via the relation m;(A®¥)) = mg»i)

In particular, notice that A® = p and A = X. The lattice configuration v consists of

, where j = 1,... L.

k € Z>( non-intersecting paths, and since these paths are conserved throughout the lattice,
we have for i = 0,...,[ the relation 2?21 mgi) = k. The latter can be also deduced from
the constraints ag-i) + mg-i*l) = a§21 + my) mentioned above. It follows that A\ € Af(n)
for i = 0,...,1, and the partition functions (4.2) can then be expressed as the following

weighted sum,

L n
G ) D DT oy i=1a§“HHWti(vi,j).

AWeAfm)  A-Dedfn)dVezsy 0P ezsg =1j=1
Notice that the number of paths crossing the boundary of the cylinder is equal to 22:1 agi).
Taking advantage of (4.20) and (4.26), and identifying the vertex weight associated
to v;; with the matrix element (4.28), one can show after a straightforward computation
that the matrix element (\|Q*(z1)Q*(x9) -+ QF(2;)|p) coincides with the expansion for
Zfﬂ(xl, Ta,...,1;) obtained above, thus proving the claim.
O

With the help of Corollary 4.1.11, we can deduce that the transfer matrices of the Q*
vertex models, which are just the Q* operators, commute with themselves for arbitrary

values of the spectral parameter. This is the main feature of exactly solvable vertex models.

Corollary 4.1.14. We have the commutation relations

[Q*(2), Q% ()] = Q7 (), Q" ()] = 0. (4.29)

Proof. A straightforward computation shows that the operators R™ and R~, which were in-
troduced in (4.10) and (4.11) respectively, satisfy R*(z/y)R™(z/y) = R (x/y)R" (z/y) =

1. In other words, these operators are invertible, and they are each other’s inverse. We
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then have the following chain of equalities,

Q* (x)Q (y) = TrrerzV'Qi(2)2"Q5(y)
= Trrer R(z/y)Riz(x/y)z" 2" Q7 (2)Q5 (y)
= Trrer Ri(z/y)z" 2" QF (2)Q5 (y) Riy(x/y)
= Trrer Ri(z/y)z" 2" R (2/y)Q; (v) Q7 (z)
= Trrer2™Q5 (y)2"' Qi (z)

= QT (y)Q*(x) .

The subscripts attached to the operators indicate which copy of the Fock space in the tensor
product F ® F these operators are acting on. In the third line we used the cyclicity of the
trace for the operators R, (z/y), whereas in the fourth line we took advantage of (4.21) and
(4.22). In the fifth line we used the commutation relation [R¥,(z/y), 2N 2™2] = 0, which
can be deduced from (4.10) and (4.11). This is a standard computation in the discussion of
vertex models (see for example [37, VI.1]), and it shows that [Q*(z), Q*(y)] = 0. The same
reasoning cannot be applied to derive the commutation relation [Q™(z), Q™ (y)] = 0, since
the operator R, which was introduced in (4.12), is not invertible. Acting with both sides

of equation (4.23) on the element |my, my) ® 1, we end up with the following constraint,

mi+msa T m 7 —mi1—ma my + e
— 1 e _ .
TrLZZO (y) < - y) ( m )Qmm‘l (I) mi+mo—m,n2 (y)
X m T —ni—n2 ny + Ny ni+nz )
- <§> (1 - 5) ( nq Z Q:_n%nl-i-nz—m(y) m1,m($) s

m=0

for my, ma,n1,na € Z>g. Set ny = mg = 0 and ny = my; = s, multiply both sides of this
last equality by 2® and sum over s € Zsq. Then the LHS equals Q™ (2)Q*(y), whereas the
RHS equals QT (2)Q~ (y), thus proving that [QT(x), Q@ (y)] = 0. O

4.1.3 Partition functions and cylindric symmetric functions

Lemma 4.1.13 and Corollary 4.1.14 imply that the partition functions Ziu(xl, )
defined in (4.2) are symmetric in the variables {x1,...,x;}. The goal of this section is to
show that Zifu(xl, ..., 1) can be expanded in terms of the cylindric symmetric functions
ex/d/u and hy,q/, introduced in Section 3.2.3. To this end, we proceed as follows. First,
we show that the allowed lattice configurations of the Q1 and @~ vertex models are in
bijection respectively with CRSTs and CRPPs, which were defined in Section 3.1.1. Then
we provide the relation between the weight of these lattice configurations and the weights
Y/ and 04/, introduced in Definitions 3.2.9 and 3.2.4 respectively. In Section 4.3.2

we shall evaluate the partition functions qu(xl, ..., ;) via a different method, which
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mi~ m-g:_l) m,(,f_l)
T | op
?Tbg’) ng Tn«g)

Figure 4.4: The i-th row of a lattice configuration v belonging to either FI“(Z) or Fj\“’#(l),
together with the labels introduced in Lemma 4.1.13 for its lattice edges.

consists in computing the action of the Q* operators defined in (4.26) on the vectors
(4.18) belonging to F®™.

Let \,u € Aj(n) and d € Zsq. Define Ff\fu(l,d) C Ff\fu(l) as the set of allowed
lattice configurations for the Q* vertex models, where the values attached to the outer
vertical edges on top and bottom are fixed respectively by p and A\, and the number
of paths crossing the boundary of the cylinder is equal to d. In particular, notice that
Fiu(l) = ez, Fiu(l, d). If A\/d/p is a cylindric skew diagram as defined in (3.3), denote
with IIy/q/,(l) (respectively Ty/q/,(l)) the set of CRPPs (respectively CRSTs) of shape
A/d/u, whose largest entry is smaller or equal than [. On the other hand, if \/d/u is
not a cylindric skew diagram, that is if 4 ¢ A\.7% in the notation of Remark 3.2.1, set
My/a/u(l) = Tajayu(l) = 0. Let I” € N such that I’ < [, and suppose that \/d/u is
a cylindric skew diagram. Recall that a CRPP of shape \/d/u with largest entry I’ is

equivalent to a sequence
fr= AO) 7do o O 7d oo A gl = )

of cylindric partitions with A" € /Al,j(n) and d, —d,_y > 0 for r = 1,...,I'. Compare
with equation (3.21). Setting A" 7% = X\.7% for I’ < r < I, it follows that every CRPP

belonging to IIy/4/,(1) is equivalent to a sequence
f=20 74 c A g oo O pd = ) 4 (4.30)

of cylindric partitions with A" € /l;(n) and d. —d,_; > 0 for r =1,...,[. Similarly, one
has that every CRST belonging to T /q/,(l) is equivalent to a sequence (4.30) of cylindric
partitions, where 5\(7”).7"1’"/5\(“_1).7"1“1 is a cylindric vertical strip for r =1,...,1.

Notice that IIy/4/,(l) is non-empty if and only if i C A7t In fact, if \/d/u is a
cylindric skew diagram, then one can obtain a CRPP belonging to II/q/,(l) by filling all
the boxes of A/d/p with the entry 1. The same statement is not true for T} q/, (/). For
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example, there are no CRSTs of shape A\/d/p with A = (3,2,2), p = (3,3,2), d =1 and
largest entry [ = 2.

Consider the expansion (3.30) for the cylindric symmetric function e, ;q/,. Projecting
both sides of this expansion onto A;, that is setting x; = 0 for ¢ > [, one has that only the
terms involving CRSTs with largest entry smaller or equal than [ are non-zero. Similarly,
projecting onto A; both sides of the expansion (3.31) for the complete symmetric function
hjdyu, it follows that only the terms involving CRPPs with largest entry smaller or equal

than [ are non-zero. In other words, we have the identities

exapulan, . m) = Y gl (4.31)
TeTA/d//L(l)
h)\/d/ﬂ(l'l, ce ,:Cl) = Z Hﬁxﬁ . (432)

ﬁGHA/d/#(l)

Proposition 4.1.15. For every \, u € A} (n) and d € Zsy, there exists a bijection between
the sets I'y ,(I,d) and /(1)

Proof. Let \,p € Af(n) and d € Zs. Assume that I'y (I,d) is non-empty, and let
S F;N(l, d). We label the values attached to the lattice edges in the same way as
described in the proof of Lemma 4.1.13 (see also Figure 4.4). In particular, for i =0,...,1
define the partition A) € A (n) as therein, that is via the relation m;(A®)) = mg-i), where
j=1,...,n. Fori=1,...,lset d; = 22:1 agp), and notice that the number of paths
crossing the boundary of the cylinder is given by d = Z;Zl aip ) = d;.

By definition, we have that v~ is an allowed lattice configuration for the )~ vertex
model. That is, fori =1,...,land j = 1,...,n the integers {agi), my_l), ag)rl, mgi)}, which
are the values attached to the vertex v; j, represent an allowed vertex configuration for the
@~ vertex model. A comparison with Figure 4.1 shows that fori =1,...,landj=1,...,n
we have the constraint agi) + mgi_l) = aﬁl + mgz) Employing the latter, together with
the identity (5\.7'd);- = 5\; + d, it follows that (S\(i)ﬂ'di); — (5\(1'_1).7"11'*1); = agi) > 0, which

in turn implies that A1 7%-1 < X 74 for j = 1,..., 1. We deduce that the sequence
= AO AW 7t oo O = )

of cylindric partitions is equivalent to a CRPP 7 belonging to Il 4/, (1), that is a CRPP of
shape \/d/; whose largest entry is smaller or equal than [. In conclusion, the set IIy/q4/,(1)
is non-empty, and each v~ € F;#(l ,d) determines a unique element 7 € II/4/,(1), that is
v~ > @ defines a map I'y (I, d) — 1Ly ay,(1).

Let once again A\, € Af(n) and d € Zs. Assume that II,,4/,(l) is non-empty,
and let 7 € II/q/,(l). Moreover, define MNO = XD = X dy = 0and d = d. As
we explained in (4.30), the CRPP # is equivalent to a sequence {A).74}_ of cylindric
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m(p) o 2 1 0

mA 1 1 0 1

Figure 4.5: Let n =4, k =4, 1 =3, A = (4,2,1), p = (3,2,2) and d = 2. On the left
we have a lattice configuration v~ € I'y ,({,d). On the right we have the CRPP 7 which
is the image of 4~ under the map I'y (I,d) — Ily/,(l) defined in Proposition 4.1.15.
We can construct 7 as follows. Let p € Z. In the notation of Figure 4.4, we have that
agl) =1, a§2) =0 and a§3) = 1. Thus, in column 1 + pn of the diagram of /i, add one box
with entr;/ 1, zero boxes with entry 2, and one box with entry 3. Moreover, we have that
agl) = aéQ =0 and ag’) = 1. Thus, in column 2 + pn of the diagram of /i, add zero boxes
with entries 1 and 2, and one box with entry 3. Proceed in an analogous way for columns
3 4 pn and 4 + pn of the diagram of [, and then repeat the algorithm just described for

all p € Z.

partitions, with \® € A;(n) and d; — d;_, > 0, such that A=V rdici < \O 7di for

i =1,...,1. Define a lattice configuration v~ as follows. For¢t=1,....,land j=1,...,n
@) _ (36G) ~d; \(i—1) ~di— L -

set aj(A)— (A7 )i — (MG 7 1);. Furthermore, for i = 1,...,l —land j = 1,...,n

set m;’ = mj()\(i)). Finally, fix the upper and lower outer horizontal edges of v~ with the

two p]artitions MO = and A® = X respectively. By definition we have that mgi) > 0,
and since NV 7di-1 = \(O 7di it follows that agi) > 0. Notice that mgi) = 5\?)/ — 5\5-2/1 =
(S\(i).Tdi);» - (S\(i).Tdi);H, where in the second equality we took advantage of the fact that
(A7) = X +d. Tt follows that a? + m§~i_1) = aﬁl + mgi) = (;\(i).Tdi);- - (S\(i_l).Tdifl);»H,
which in turn implies that for ¢ = 1,...,l and j = 1,...,n the vertex configuration
associated to the vertex v;; is ‘allowed’, and then v~ is an allowed lattice configuration
for the )~ vertex model. Moreover, since the number of paths crossing the boundary
of the cylinder is given by 2;:1 agp) = d = d, we deduce that v~ € T’y (l,d). In
conclusion, the set I'y (/,d) is non-empty, and each 7 € Il/4/,(l) determines a unique
element v~ € I'y (I, d), that is # — 7~ defines a map II, 4/, (1) = Ty (1, d).

From the discussion presented so far we deduce that the sets I'y ([, d) and IIy /4y, (1) are
either both empty or non-empty. If these sets are both non-empty, the map II, 4/, () —
'y .(l,d) is by construction the inverse of the map I'y ,(/,d) — Ilyq/.(l) defined above.
That is, the composition of these two maps gives the identity map on F;M(l ,d) and on
II5/4/,(1) respectively. This proves the claim.

[]
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Let v~ € I'y ,(I,d), and consider the CRPP 7 which is the image of v~ under the map
Iy, (L;d) = ya/u(l) defined in the proof of Proposition 4.1.15. Notice that (S\(i).’i'di); —
(S\(ifl).TdFl);- is the number of boxes which are placed in column j of the cylindric skew
diagram A®_ 7% /AG=D 7di-1 - and that this number is by construction equal to a§i). We
can then construct 7 as follows (compare with Figure 4.5). Let p € Z. In column 1 + pn
of the diagram of /i, add agl) boxes with entry 1, a?) boxes with entry 2, and so on, up to
agl) boxes with entry /. In column 2 + pn of the diagram of [, add agl) boxes with entry
1, a§2> boxes with entry 2, and so on, up to aél) boxes with entry [. Proceed in a similar
fashion for columns 3 + pn to k + pn of the diagram of fi. Finally, repeat the algorithm

just described for all p € Z.

Proposition 4.1.16. For every A\, u € A} (n) and d € Zsy, there exists a bijection between
the sets T\ ,(I,d) and Tx/az,(1).

Proof. The proof of this statement, which has been already presented in [41, Theorem 6.4],
is closely related to the proof of Proposition 4.1.15. Let \, u € A (n) and d € Z5(. Assume
that F;u(l, d) is non-empty, and let v+ € FIH(Z). Label the values attached to the lattice
edges in the same way as described in the proof of Lemma 4.1.13. In particular, define for
i =0,...,1 the partition \) € A (n) as therein, that is via the relation m;(A\?)) = mg-i),
where j =1,...,n. Forr =14,..., [ set d; = Z;Zl a§p>, and notice that d; is equal to the
number of paths d crossing the boundary of the cylinder.

By definition, we have that v* is an allowed lattice configuration for the Q1 vertex

i—1 7 7
g' )7a’g'—|)-17m§')}7

which are the values attached to the vertex v; ;, represent an allowed vertex configuration

model. That is, for ¢« = 1,...,l and j = 1,...,n the integers {ay),m

for the Q* vertex model. A comparison with Figure 4.1 shows that for ¢ = 1,...,1

4 ; gi) —i—Amg.i_l) = a%)rl + m§-i), togethgr with the
inequality my*l) — aﬁl > 0. It follows that (AD.7%), — (AG=D 7dimr) = ay) > 0, and
moreover (;\(ifl)rdi*); — (;\(i).Tdi);-H > 0. These properties imply that fori =1,...,[ the

and j = 1,...,n we have the constraint a

cylindric skew diagram A® . 7% /X(0=1 rdi-1 ig a cylindric vertical strip. See [41, Theorem

6.4] for details. Thus, we have that the sequence
= A c NO ph o 2D g = )

of cylindric partitions is equivalent to a CRST T belonging to T sa/u(l), that is a CRST of
shape \/d/; whose largest entry is smaller or equal than [. In conclusion, the set T /q/, (1)
is non-empty, and each v* € Fj{,u(l, d) determines a unique element T €Ty sa/u(l), that is
A+ = T defines a map Iy (1 d) = Tajayu(l).

Let once again A, u € Af(n) and d € Zs¢, and assume that T)/q/,(1) is non-empty.
Following similar steps as the ones described in the proof of Proposition 4.1.15, one

can show that T'f M(l, d) is non-empty as well. Moreover, one can then construct a map
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Tasasu(l) = T (1, d), which turns out to be the inverse of the map I'y (I, d) — Tx/ay, (1)
defined above. See once again [41, Theorem 6.4] for details.
O

Remark 4.1.17. Proposition 4.1.15 implies that the set I'y u(l ,d) is non-empty if and only
if A\/d/u is a cylindric skew diagram, since we showed at the beginning of this section that
an analogous statement holds for the set Iy /q4/,(I). On the other hand, the set 'y (I, d)
is non-empty only if \/d/u is a cylindric skew diagram. This is because, as we discussed

before, the set T'/q/,(l) might be empty even if A/d/u is a cylindric skew diagram.

Theorem 4.1.18. Let \,u € Af(n). The partition functions of the Q* vertex models

admit the following expansions,

Z;u(xl, To, ..., 1) = Z zde,\/d/u(xl,xg, ), (4.33)
dEZZO
l
_ 1
ZA,M(%’ Ta, ..., Tp) = H 1— oo Z Zdh)\/d/u(xhx% C ) (4.34)
i=1 i deZwq

Proof. Equation (4.33) is the limit ¢ = 1 of a similar identity proved in [41, Theorem 6.4].
Nevertheless, we present a proof of (4.33) for the sake of completeness. Let d € Z>g, and

recall from Lemma 3.2.12 that the weight 1,4/, has the following expression in terms of

no AT — (T,
Yxjdjp = ( 7 7 )
a H (A7) — ]

Moreover, we shall employ the fact that the number |\/d/u| of boxes in A/d/u which
are located in lines 1 to k, or equivalently in columns 1 to n, is equal to Z;-L:l((j\ﬂ'd); -
ﬂ;) Suppose that 4T € F}C“(l,d), and label the values attached to the lattice edges

binomial coefficients,

J=1

as described in Lemma 4.1.13 (see also Figure 4.4). For i = 1,...;l and j = 1,...,n

we have that the vertex configuration associated to the vertex v;; consists of the four

integers {ay), mg.ifl), aﬁ-’lp mgi)} oriented as in Figure 4.1, and then we have by definition
the identity
, (i)
al® (M
wtt (v;) = z;’ < (]z)) '
@

Consider the CRST T of shape A/d/u which is the image of v+ under the map F;M(l, d) —

T»/a/u(l) defined in Proposition 4.1.16. By definition, T is equivalent to the sequence
()
al. “,. ) J

and (A(l).Tdi);- — ()\(’*1).7“{1‘*1); = ag-z). In the proof of Lemma 3.1.9 we showed that the
multiplicity of the entry € N in 7', between lines 1 to k, satisfies the equality Wtr(T) =

A" /(d, — dp_y)/A""D]|. Taking advantage of the identity (A.7%), = X + d we have that

{AD 7ML of eylindric partitions which are defined via the relations m;(A®?) = m
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ay) = (S\(i).Tdi*dFl); - (5\("*1));, which can be used to show the relation wt;(7) = 3" al?

Jj=1"7
forv=1,...,]. We then have the following chain of equalities,
I n Lo rm®
a j
e < A1 ()
i=1 j=1 palratey ;
l .on NG —d;_ . .
_ Hl’ " al? H (()\ ),TAd d 1)9 _ ()\(z)ﬂ:d d 1);'+1)
i=1 =1 ()\(Z)'Tdi—di—l); _ ()\(1_1));

l
wt; T [
= HI’Z ( )w)\(“/(di—di,l)//\(i*l) = ’QDT.%T .
1=1

In the second line we employed the equalities mgi) = )‘S'i), — )\5-2,1 = (S\(i).Tdi*dFl); —

(S\(i),Tdi—di—l)‘/j+1. Taking advantage of (4.2) and the identity Fj\iu(l) = |_|d€Z>0 F;u(l’ d),
we end up with
Z;:u(l‘hiﬂg,...,xl) = Z Zd Z ¢TxT .

A comparison of the latter with (4.31) then shows the validity of (4.33).
We now prove (4.34). For this purpose, let d € Z>o and define the weight

7 : - (XTd) = W
Onjarn = O =1 < e ) : (4.35)
d=0

N/ N
=1 N H T

In the second equality we took advantage of the expression for 0,4/, in terms of binomial
coefficients, which was proved in Lemma 3.2.8. Suppose that v~ € F;M(l, d), and label
the values attached to the lattice edges as described in Lemma 4.1.13. The weight of each

vertex v; ; can then be expressed as

B o a§-i) + m§i—1)
wt (Uz’,j) =T m(ifl)
J

Consider the CRPP # of shape A/d/u which is the image of v~ under the map I'y (I, d) —

II5/a/u(1) defined in Proposition 4.1.15. By definition, 7 is equivalent to the sequence

{A® 74}l of cylindric partitions which are defined via the relations m;(A\)) = mg-i) and

(X(i).Tdi); - (S\(i_l).Tdi—l); = ag-i). Setting 0; = [['._, é/\m/(dT_dr_l)/,\(pl), we end up with
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the following chain of equalities,

I n () (i-1)
o NONAO ML
w0 = e =TT (Y105
i=1 j=1 i=1 j=1 J
e mw g
j=1 ()‘(Z 1 ) (A(Z 1 ) +1

wt; (7T) A #
= H._'L'l ( )9/\(i>/(di—di_1)/x(i*1> = 67}1’ s
=1
and employing (4.2) once again, we have that

Z):M<.T1, Zoy ... ,.Tl) - Z Zd Z éﬁ—ﬂ?ﬁ . (436)

deZx A€y, (1)

Thanks to Proposition 3.2.7, it follows that 5,\/65/“ is non-zero if and only if A\/d/u is a
cylindric skew diagram, that is if and only if 4 € A.7%. This implies that in the RHS
of (4.36) we can replace the sum over 7 € II,/4,(I) with the sum over all sequences
{S\(T).Tdr}izo of cylindric partitions, where A = ., A® = X\, dy = 0 and d;, = d. The
latter is equivalent to the joint sum over all sequences {\™}!.Z] of weights in A (n), and
over all sequences {d,}'~} of integers. The sum does not Change if we use the restriction
d, — d,._1 > 0. This is because A=) ey o \() pdr only if d, — d,_1; > 0, as we showed
in the discussion of equation 3.21. Setting d, = d, — d,_; for r = 1,...,l, we have that
d, € Zp and d} + - - -+ d; = d. The partition function Z}  (z1,22,...,2;) is then equal to

ST AP MITD S | (TN | Ea Pt

di€Zso  dj€Zso ADeAf(n)  A=Dedf(n)
Applying the definition (4.35) of the weight 0, Jd/u, it follows that

l

d d

r=1 /=0  d'=0r=1

Moreover, we have the identity [A?) /d/ /A1 | = |X® /@ NV | 4-n(d,—d"), provided that
A /d” JAG=D) s a cylindric skew diagram. This identity can be deduced from the equality
(AJdful =375 ex: ) — [i};), together with the fact that (A1 4, = X + d. Applying the
identities just obtained to (4.37), swapping the sums in d; and d/, and then employing the

formula ), 2’ = (1 — )~ for z a formal variable, we deduce that Zy  (z1,2s,...,2) is
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allowed vertex configuration allowed path configuration associated weight
b b

ay a c! (d)

Q*‘i— a c — ﬁc 5

C
d:b+c—a d:b+C—CL
b b
c
Q*_ a c — aja’c—'(b—i_c)
'V b
a.
«Z
d=b+c—a d=b+c—a

Figure 4.6: The allowed vertex configurations for the Q** vertex models, together with
their associated weights. For the Q** vertex model, we only allow for the vertex config-
urations such that b +c¢ = a4+ d and b > a, or equivalently d > ¢. For the QQ*~ vertex
model, a vertex configuration is ‘allowed’ if the only condition b + ¢ = a + d is satisfied.
The allowed vertex configurations for these models can be interpreted in terms of non-
intersecting paths travelling from North-East to South-West. Notice that the allowed path
configurations depicted above are obtained by reflecting the allowed path configurations
in Figure 4.1 about the vertical line passing through the edges labelled by b and d.

equal to [Ji_,(1 — zz7")~" times the following weighted sum,

)OI DIRCEEC D DRRRID DI | (AP ) P EITEN

di€Z>0  df€Zxg ADeAf(n)  AE=Dedf(n)r=1 i=1

Notice that (4.38) is the same equation as (4.37), where the weights 5,\/(1/“ are replaced
by 03/a/,. Following similar steps as the ones leading from (4.36) to (4.37), but in re-
verse order, we conclude that (4.38) is equal to Zdezzo 24 ZﬁEHA/d/u(Z) 0zz™. This finally
completes the proof of (4.34), thanks to (4.32).

[l

4.1.4 Vertex models for the adjoint operators

We shall now consider two additional vertex models, which we call the Q** vertex models.
The allowed vertex configurations for such models, together with the associated weights,
are defined in Figure 4.6. We will be using the symbols wt*t and wt*~ whenever we
associate to a vertex configuration, or a lattice configuration, the weight defined for the

Q*" and Q*~ vertex model respectively.

Remark 4.1.19. The allowed lattice configurations for the Q** vertex models can be



CHAPTER 4. QUANTUM INTEGRABLE SYSTEMS 104

interpreted in terms of non-intersecting lattice paths travelling from North-West to South-
East, in contrast to the ones for the QT vertex models, where the paths are travelling from
North-East to South-West instead. See Figures 4.1 and 4.6. The constraint a +d =b+c¢
at each vertex of the lattice implies that on the cylinder the number of paths is conserved

throughout the lattice (compare with Remark 4.1.2).

Given A\, i € Af(n), denote with F;i“(l) the set of allowed lattice configurations for
the Q** vertex models, such that the values of the outer vertical edges on top and bottom
are fixed respectively by p and A. Moreover, assume that the formal variable z introduced
in (4.2) is invertible. The partition functions of the Q** vertex models, for the lattice with

periodic boundary conditions in the horizontal direction, are defined as the weighted sums

Zit (e, ) = Y 2wt () (4.39)

* :t
Y ier‘)\,#(l)

For each lattice configuration y** € F;i(l), we set d = d(7**) to be the number of paths
crossing the boundary of the cylinder.

We now present for the Q** vertex models a similar discussion to the one described
in Section 4.1.2. The L** operators are the operators L**(z) € End(F((r))) ® H defined

via the relations

m

L@ myel = 3 m)e )", (4.40)
mIEZZO me:

L~ (@)myol = Y \m'>®%bm(b*)m’. (4.41)
m/'€Z>q ’

The next result shows that we can identify the vertex weights for the Q** vertex models

with the matrix elements of the L** operators.

Lemma 4.1.20. The matriz elements of the L** operators are given by

(e,d|L*"(z)|a,b) = 2° <Z> Satdptc s (4.42)
o [0+ c
(c,d|L* (z)|a,b) = =z < b )(5a+d,b+c : (4.43)
Proof. The claim follows after a straightforward computation. O]

Consider the vector space isomorphism ¢ : F&" — F®" defined as [41]

A o (4.44)

U

This induces a scalar product on F®" which we denote by (| ),, and which we assume to
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be anti-linear in the first factor. A straightforward computation shows that the generators

b; and b} are the Hermitian adjoints of each other, with respect to the scalar product ( | ),.

* o,

Remark 4.1.21. The Heisenberg algebra admits an involutive anti-automorphism

H, — H,, whose action is given by (see e.g. [6])
(bj)" = b7, (b5)" = b; . (4.45)

The Hermitian adjoints with respect to the scalar product (| ), of the elements in #,
are therefore the images under the map * : H,, — H,, treated as operators in End(F®").
Although strictly speaking ambiguous, we refer to the images under * : H,, — H,, as the

‘adjoint’ operators.

Let Lfn,m(x) and L:jfm(a:) be the elements defined via the relations L*(z) |m) ® 1 =
Soezog IM) @ Ly, (2) and L*™*(z)|m) @ 1 = Yz |m/) ® Ly, (x) respectively.
Comparing equations (4.6) and (4.7) respectively with (4.40) and (4.41), it follows at once
that

L (@) =Ly, . (2)" (4.46)

provided that z* = . In words, the operator L;‘ni,m(x) is the adjoint of Lfn,7m(:c).

Proposition 4.1.22. The L** operators are solutions of the YBE

Riy(x/y) L3 () Ly (x) = LiT(x)L3"(y)Riz(x/y) | (4.47)
Ryp(e/y) Ly ()i (x) = L7 (2)Ly (y)Rip(2/y) (4.48)
Rio(x/y) LT ()L (x) = Li(2)L3" (y) Rua(2/y) | (4.49)

where the operators RT, R~ and R were defined respectively in (4.10), (4.11) and (4.12).

Proof. Applying both sides of (4.47) to the element |m;, ms) ® 1, and then doing the same
for (4.48) and (4.49), one ends up with a set of constraints for the operators Lfni,m(x)
which are the adjoint of the constraints appearing in the proof of Proposition 4.1.9 for
the operators Li,m(az). It follows that the YBE (4.13), (4.14) and (4.15) are equivalent
to the YBE (4.47), (4.48) and (4.49). Proposition 4.1.9 then implies the validity of the

claim. O

Define the monodromy matrices Q**(x) € F((x)) ® H,, as the operators
Q(x) = Ly () - Li* () . (4.50)

Moreover, denote with Q:fm(x) € H, ® C((z)) the elements defined via the relation
QE@) M) ©1= 3, e, ') & Q1 (2),
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Corollary 4.1.23. The monodromy matrices (4.50) are solutions of the YBE

Ry (z/y)Q5 (1) Qi (x) = QiF(2)Qs ()R (x/y) , (4.51)
Ry(z/y)Q; (y)Qi (x) = Qi (2)Q5 (y)Rip(x/y) , (4.52)
Ris(z/y)Q5" (1)Qi (2) = Qi (2)Q5" (y)Ruz(z/y) - (4.53)

Proof. Taking advantage of Proposition 4.1.22, one can prove the claim via induction on
n (see for example [37, VI.1]). O

Lemma 4.1.24. We have the equalities

* ™ xla‘ *\m’ * « *\ Qg Lm
Qulon@) =00 D Gt R (i)™t (b (4.54)
a€P-,
Q@ = S i G ) (459
mm m! >0 al' an—ll ! 1 ot " . '
a€P -,

Proof. These equalities follow by induction on n. Compare with the proof of Lemma 4.1
in [43]. O]

Lemma 4.1.25. Suppose that x* = x. We have the identities

Qi (@) = Qo ()" - (4.56)
Proof. The claim follows immediately by comparing the expressions for Qi,,m(u) and
Q;"jm(u) derived in Lemmas 4.1.12 and 4.1.24 respectively. O

Introduce Q** and Q*~ operators as the operators in H,, ® C((z,z)) which are defined

via the following partial traces,

Q@) =Trr2"Q* () = Y 2"Qu () . (4.57)

mEZZO

Lemma 4.1.26. We have the identities

Z;i(xl, Ty, ..., 1) = NQ™ (2) Q" (mg) - - - Q" () |p) . (4.58)

Proof. The proof of this statement is completely analogous to the one of Lemma 4.1.13,

and therefore we omit it. O]

Corollary 4.1.27. We have the commutation relations

Q@ (2), Q" (y)] = @ (), Q" (y)] = 0. (4.59)
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Proof. The claim follows by employing completely analogous steps as the ones described
in the proof of Corollary 4.1.14. O]

1

Corollary 4.1.28. Suppose that z* = z=" and x* = x. We have the identities

Q™ (x) = Q% ()" (4.60)

Proof. The claim is a direct consequence of Lemma 4.1.25, together with equations (4.26)
and (4.57). O
We now show that the partition functions Z:i(:vl, ...,x;) can be expanded in terms

of the cylindric symmetric functions ey,q/, and hy/q,. For this purpose, we shall take
advantage of the fact that, at each vertex, the allowed path configurations for the Q**
vertex models are obtained by reflecting the ones for the Q% vertex models about the
vertical line passing through the edges labelled by b and d. Compare with Figures 4.1 and
4.6. In Section 4.3.2 we will evaluate Z;‘\i(xl, ..., x;) by employing the Q** operators.

Given \,u € Af(n) and d € Zs, define Ff\i(l,d) C F;j;(l) as the set of allowed
lattice configurations for the Q** vertex models, where the values attached to the outer
vertical edges on top and bottom are fixed respectively by p and A, and the number of
paths crossing the boundary of the cylinder is equal to d. We shall take advantage of the
involution V : Af(n) — A (n), which was defined in Section 3.4.1 as

)\|—>)\v:(n—i—l—)\k,n—i—l—)\k_l,...,n—i—l—)\1). (461)

Proposition 4.1.29. (i) For every A\, € Al (n) and d € Zs, there exists a bijection
between the sets Uy, (1,d) and Txv ayv(1). (ii) For every X\, € A{ (n) and d € Zxg, there
exists a bijection between the sets I'y" (I, d) and Iy 4/, (1)

Proof. We prove part (i) first, and for this purpose we construct, for every A, p € A (n)
and d € Z>y, a bijection between the sets T'! (I, d) and 'y, . (I, d).

Let A\, € Af(n) and d € Z5,. Suppose that Ff\j;(l,d) is non-empty, and let v** €
F;L(l, d). Draw a vertical line between columns n/2 and n/2+ 1 of the lattice if n is even,
or a vertical line overlapping column (n + 1)/2 if n is odd. Reflect the lattice, together
with the paths travelling along the lattice itself, about this line. Refer to Figure 4.7 for
an example. The paths are now travelling from North-West to South-East, and at each
vertex one recovers the path configuration depicted in Figure 4.1 for the Q* vertex model.
Stated otherwise, by reflecting the lattice in the way just described we end up with a lattice
configuration for the Q" vertex model, which we denote by v*. The values attached to
the outer vertical edges of 4+ on top and bottom are given by (m,(u),...,mi(p)) and

(my(A),...,mi(X)) respectively. In the notation of Figure 4.2, these values coincide with
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m(p") and m(AY), and thus v* € I'yy v (I, d). In conclusion, the set T'y (I, d) is non-empty,
and the assignment v** — v defines a map Ff\j;(l, d) — Fi_v’p‘v(l, d).

Let once again A\, u € A} (n) and d € Z>,. Suppose that Fj{vwv (1, d) is non-empty, and
let y* € TH v (I, d). Reflecting the lattice about the same vertical line introduced above,
and using the fact that the map V : Af(n) — Af(n) is an involution, we end up with a
unique lattice configuration v** € F;j;(l, d). It follows that I”;;(l, d) is non-empty, and
that 4+ ~— ~* defines a map T'yy v (I,d) — 'y}, (l,d), which is clearly the inverse of the
map I} (1,d) = T v (l,d) described above. We conclude that for every A, pu € Af(n)
and d € Zs there exists a bijection between the sets Ff\j;(l, d) and 'y, v (1,d). Employing
Proposition 4.1.16, we then deduce the validity of part (i) of the claim.

The proof of part (ii) is completely analogous. One can prove that the sets I'y ([, d)
and I'y, “v(l, d) are either both empty or non-empty. In the second case, one can define
a map I'y (I,d) — D'y, v(l,d), together with the inverse I'yv . (I,d) — I'y ,(,d), by
reflecting the lattice configurations about the same vertical line described in the proof
of part (i). It follows that for every A\, u € Af(n) and d € Zs there exists a bijection
between the sets I'\" (I, d) and I'y, (I, d). Proposition 4.1.15 then implies the validity of
part (ii) of the claim.

[

Theorem 4.1.30. Let \,u € A (n). The partition functions of the Q** vertex models

have the expansion

Z;,—;(xhx%"'?xl) - Z Z_de)\v/d/,uv(xlax%‘"7xl> ) (462>
dEZZO
l

Z;;L(azl,xg, coTy) = H ﬁ Z z’dhAV/d/uv(:cl,xQ, ox) . (4.63)
i=1 v deZsg
Proof. We shall prove (4.62) first. Let d € Z>q, v*" € Ff\;(l, d), and denote with v the
lattice configuration of the Q@+ vertex model which is the image of v** under the map
30 (1,d) — Ty v (l,d) introduced in the proof of Proposition 4.1.29. Denote with v;
the vertex obtained by intersecting the i-th row of the lattice with the j-th column. If
we reflect the lattice about the vertical line described in the proof of Proposition 4.1.29,
it follows that v;; is mapped to v;,41—;. Label the edges associated to the lattice con-
figuration 4T as in the proof of Lemma 4.1.13 (compare with Figure 4.4). In particular,
the vertex configuration assigned to the ‘reflected vertex’ v;,41—; consists of the four
integers {aﬁfil_j,mff;f)_j,affig_j,mgil_j} oriented as in Figure 4.1. It follows that the
vertex configuration associated to the ‘non reflected vertex’ v;; is given by the integers
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(1) 0

{anho s My 12y Apiy g -}, and then we have the identity

n+1 J
GG
(@) ap, Mpi1—j
Wt (1) = atmiag T (TS (4.64)
’ a?, 1\a",
n+2—j n+l—j

Let T be the CRST of shape A /d/u" and highest entry [ which is the image of v+ under
the map F;\“V’Mv(l,d) — Tv/q/uv (1) described in Proposition 4.1.15. By definition, T is
equivalent to the sequence {A® .74} _ of cylindric partitions which are defined via the
relations m;(A?) = mgi) and (A®.rd), — (A1 zdiry = agi). Employing (4.64), we have

that
I n I n Lon ) oD m
) = TITT e ) = TTTT w4 (s ) = TTTT ( g >
i=1 j=1 i=1 j=1 i=1j=1 ' “
. n )\( i) ~di—d;_1 )\(’L di—d;_1
_ H IE] X ; i) H (( T | ) ( T | ) +1)
()\(% i dz—l)j — ()\(2—1))]-

Jj=1

wt Tt (

wt; T 3
=1

Taking advantage of (4.39), the relation F’;J;(l) = ez, Ff\L(Z, d), and Proposition 4.1.29,
we end up with the identity

Z/\M(xl,xQ,...,xl) = Z 27 Z ¢TxT.

dEZZO TET/\\//d//L\/ (l)

The latter then implies the validity of (4.62), thanks to equation (4.31).

We now prove (4.63). Let v~ € I'} ,(/,d), and denote with v~ the lattice configura-
tion of the )~ model which is the image of v*~ under the map I\’ (l,d) — I'\v (I, d)
introduced in the proof of Proposition 4.1.29. Label the edges associated to the lattice
configuration v~ as in the proof of Lemma 4.1.13. We can then express wt*~ (v; ;) in terms

of the vertex configuration of the ‘reflected vertex’ v,4,_; via the following equality,

) (4.65)

n+1l—j

i i i—1
(i) 7,a51)+1—j! (aiil it m;-&-l)J)
N :

Let 7 be the CRPP of shape A\V/d/u" and highest entry [ which is the image of v~ under
the map I'yv v(l,d) — IIyv g/ (1) described in Proposition 4.1.15. By definition, # is
equivalent to the sequence {5\ ' d'}l of cylindric partitions which are defined via the
relations m;(A?) = mji and (A\O.74), — (\O-1 pdi1) = (l) Thanks to (4.65), we have
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m(p) o 2 1 1 m(pY) 11

0 1

mA 1 01 2 m(AY) 2 1

Figure 4.7: Let [ =3, n=4, k=4, p= (4,3,2,2) and A\ = (4,4, 3,1). On the left we have
an allowed lattice configuration v** € T'}" (1, d) for the Q** vertex model. On the right we
have the allowed vertex configuration v for the Q" vertex model which is obtained from
~** by reflecting the lattice and the paths about the vertical dashed line passing between
columns 2 and 3. This is the image of 4** under the map I'y’ (I, d) — T'y, (I, d) defined
in the proof of Proposition 4.1.29.

that
I n L@ all )t al) +mY
*— [ k— *= X =
Wt () = HHWt (vi,) HWt via—y) = [ 1] ]<z>.( = )
i=1 j=1 i=17=1 4" "
(’L dz_dzfl J— (7’_1) .
- T2i=1 §)H (()‘ )J R ()\ )J+1>
M ey — e,

= H x?ti(ﬁ)e,\(i)/(difdi,l)/)\(i—l) — 07}1’7}
i=1

In the last line we employed the relation (4.35) for the weight 0, /d/u- Taking advantage of
(4.39) once again, it follows that

Z/\M(Jfl,.rg,...,l’l) = Z ¢ Z O™ .

deZ>g rellyv  q/uv (1)

One can then prove the validity of (4.63) by employing similar steps as the ones described
after equation (4.36).
m

Corollary 4.1.31. Let \,u € Af(n) and suppose that z* = 27" and xf = x; for i =
1,...,l. We have the following identities involving the partition functions of the Q* and
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Q** wertex models,

Z;’:Z(Il, To, ... ,xl) = Z;\tv#v (Ily To, ... ,ZEZ)* s (466)
and
* u *
Z)\i(xl, To, ..., X)) = u_AZiA(xl’:E?’ ezt (4.67)
m

Proof. Equation (4.66) follows immediately from Theorems 4.1.18 and 4.1.30, since the
map V : A (n) — Af(n) is an involution. Recall that the stabiliser subgroup of A € P,
has cardinality |Sy| = [[,~,mi(A)! (see Section 2.1.2). Moreover, notice that we have the
equalities |Sy| = uy and |*_9u| = u,, which follow from the fact that mg(\) = mo(p) =0 as
A\ i € Af(n). Equation (4.67) is then a direct consequence of Proposition 3.4.7.

[

4.2 The conserved charges for the free boson model

It is well known [3] that in many situations of interest the transfer matrix of a 2-dimensional
classical vertex model commutes with the Hamiltonian of a 1-dimensional quantum model.
As explained below, this is also true for the vertex models described in the previous
section: the Q* and Q** operators, which were introduced respectively in (4.26) and
(4.57), commute with the Hamiltonian of the free boson model with periodic boundary
conditions. This arises as the limit ¢ = 1 for the Hamiltonian of the g-boson model [48§],

and it is defined as

n

H == (b + bibiy — 2570;) (4.68)

i=1

We set b7, = zby and b,41 = 27 'by, where the formal variable z was introduced in (4.2).
We shall consider free bosons on a 1-dimensional lattice defined on a circle. Assuming that
the lattice has n sites, we identify the boundary of the circle with a point placed between
sites n and 1. The ‘ket’ vector |A), which was introduced in (4.18), represents a quantum
state with m;(\) bosons sitting at site i, and the vector space F®" spanned by all the
states |A) is known as the ‘Fock space’. The generator b} creates a boson at site i, whereas
b; annihilates a boson at the same site. Thus, each term of the form bb; moves one boson
from site j (if there are any) to site i. For this reason, the free boson model defined by the
Hamiltonian (4.68) is sometimes referred as a ‘hopping’ model. Whenever a boson crosses
the boundary of the circle clockwise via the action of the operator b} b, = zbib,, the
quantum states acquire a factor equal to z. Similarly, if a boson crosses the boundary of
the circle counterclockwise, then the quantum states acquire a factor equal to z~!. This

is because we have the relation 0 b, = z‘lb;bl. While z is treated as a formal variable
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here, in the quantum mechanical setting it would be evaluated in the unit circle and,
hence, we will call it a ‘phase factor’. The operator b;b; counts the number of bosons at
site i via the eigenvalue equation bib; |\) = m;(\) |\), which follows after a straightforward
computation. In particular, the number operator N = »"" | b*b; counts how many bosons
are sitting in the lattice.

In the context of quantum integrability, the methodology described in Section 4.1.2
is part of what is known as the ‘Quantum Inverse Scattering Method’ (QISM) [22, 62—
64]. The starting point of the QISM is represented by the Yang-Baxter equation (see
Propositions 4.1.9 and 4.1.22), which can be employed to construct a set of quantum
commuting operators. We explain how to achieve this from the discussion presented in
Sections 4.1.2 and 4.1.4. Set H,[z,27'] = H, ®c C[z, 27|, and define the operators

{QF}rezoy € Haulz, 27'] via the following expansion of the Q* operators,

Q)= ) 2"QF . (4.69)

7‘6220

Similarly, define the operators {Q;*},ez., € Haulz,27"] via the expansion

Q*(x)= ) »Qr*. (4.70)
TEZZO
In the following, we assume that z satisfies the relations z* = z = 271

Lemma 4.2.1. Forr € Z>,, we have the identity

Q7 = Q)" (4.71)

Proof. The claim follows by taking advantage of equations (4.69), (4.70) and Corollary
4.1.28. O

Corollaries 4.1.14 and 4.1.27 immediately imply that for every r,s € Z>, we have the

commutation relations

@F,Q71=Qf.Q]=0, and  [QF, Q] =@, Q7] =0. (4.72)

Notice that these commutation relations are not independent. Namely, thanks to Lemma
4.2.1, we can recover the ones on the right by taking the adjoint of the ones on the left,

and vice versa.
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Lemma 4.2.2. Forr € Z>,, we have the identities

P O € i (L R (U et %
v - % | 4.73)
aEPq
N T e U R
0167)770

where both sums are restricted to those o € P2 with || = r. In particular, we have that

Qp =@ =1
Proof. The claim follows from [43, Lemma 4.1] by taking the limit ¢ = 1. ]

The goal of this section is to prove that the free boson model is ‘quantum integrable’.
Stated otherwise, we will show that the operators {Qf}rezzo are quantum integrals of
motion, that is they commute with the Hamiltonian (4.68). This is one of the many
characterisations for quantum integrability that are adopted in the literature; see [14] for
details. Since the Hamiltonian (4.68) is self-adjoint, it follows from Lemma 4.2.1 that the
operators {Q;*},ez., commute with (4.68) as well. Moreover, thanks to (4.69) and (4.70),
we deduce that the QF and Q** operators also commute with the Hamiltonian (4.68). In
agreement with the physics literature, we refer to the quantum integrals of motion as

‘conserved charges’.

4.2.1 Functional relations for the conserved charges

The strategy we employ to prove quantum integrability of the free boson model is to show
that the operators {Q: },ez., and {Q;* },cz., belong to the same commutative subalgebra
of H,[z, 271] (see Definition 4.2.6 and Proposition 4.2.10 below). To this end, we will make

use of the following simpler operators,

T, = > bibi, (4.75)
=1

T, = ) bib,, . (4.76)
=1

for r € Z\ {0}, together with Ty = Ty = 1. The operators b; and b¥ for i > n and i < —1

are defined via the relations

bipn = 2b; , and by, = 2b; . (4.77)
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1

Since z* = 27", it follows that the operators b and b; are adjoint of each other for all

1 € Z. Notice that for i, j € Z we have the commutation relation

i, 7] — O,j_i (j —i)modn #0 (4.78)

zw, (j—i)modn =0 .

Setting z = 1, we have that the operators {11,...,T,,_1} are the limit ¢ = 1 of similar
operators appearing in the discussion of the ¢g-boson model [9]. The latter arise from a
solution of the YBE which holds only for g # 1. Notice that 27T, is equal to the number
operator N = " | bfb; introduced above, thanks to the relations (4.77). Let us present

some properties for the operators {7} },ez and {7, },ez.

Lemma 4.2.3. Forr € Z we have the relations

T = T, (4.79)
T o= T, . (4.80)

Proof. These relations follow after a straightforward computation, with the help of (4.77).

O
Lemma 4.2.4. Forr € Z\ {0}, we have the identity
- {Tr, rmodn # 0
= ) . (4.81)
T, +nzn, rmodn =20
Proof. The claim follows by taking advantage of (4.77) and (4.78). O
Lemma 4.2.5. Forr € Z with r # 0,n we have the relations
T, =z2T,_, , and T, =21, . (4.82)
Proof. The claim can be deduced by employing (4.77). ]

Thanks to Lemmas 4.2.4 and 4.2.5, it follows that {7 },cz and {Tr}rez can be expressed
solely in terms of the operators {1} U {T},...,T,,}. A similar statement is true for the

Hamiltonian (4.68) of the free boson model, which can be expressed as
H=—(Ty+T.,-22'T,) . (4.83)

Moreover, the operators {T},...,T,} are algebraically independent, as we will show in
Lemma 4.2.11.
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Definition 4.2.6. Let 7,[z, 27!] be the unital subalgebra of H,[z, 27!] generated by the
operators {11, ...,T,}.

We will show in Proposition 4.2.10 that 7,[z,2z7!] is abelian, and that the opera-
tors {QF }rez., and {Q;*},ez., belong to Ty [z,z7']. This implies in particular that the
conserved charges are normal operators, thanks to (4.79). Since the Hamiltonian (4.68)
belongs to T,[z,271] as well, it follows that the free boson model is quantum integrable,
according to the definition of quantum integrability that we discussed at the beginning of
this section. Before proceeding with the proof of the above statement, we need to show
the validity of some functional relations between the operators defined in this section (see
Proposition 4.2.8 and Corollary 4.2.9). The simplest among these relations is given by
Ty = Qf = @i, which can be deduced from Lemma 4.2.2 and equation (4.75). Let us

present a preliminary result.

Lemma 4.2.7. Forr € N and j € Z we have the commutation relations

b;QF = Qb +Q b1, (4.84)

Qi = BQI+8.Q5 . (4.85)
together with

b;Q, = Q. bj+b;1Q, 4, (4.86)

Q7b = BQ7+ Qb (4.87)

Proof. These equations are the limit ¢ = 1 of similar commutation relations appearing
in [43, Theorem 5.2 and Lemma 5.3]. Nevertheless we present a proof of their validity,
and at the same time we introduce some notation which will be used again in the proof
of Proposition 4.2.8. Set

(2b7)" (b1b3)* - - - (bnab) ™" b3

anl - ay!

Q" (o) =

for « € P2Y and QT («) = 0 if at least one part of a € P, is negative. Then we can write
QF =2 pepzo QF (), where the sum is restricted to those a € P7° with |af = 7. Denote
with €1, ..., €, the standard basis of the gl, weight lattice P,, and recall that the notation
a=(o,...,a,) € P,, which was introduced in Section 2.1.2, stands for o = Y. | oye;.
Taking advantage of the commutation relation [(b;_105)%~",b;] = —a;_1(bj_1b5)% b4,

we end up with

(Zb»{)an(blbz)m .. [(bjilb;)aj_l’ bj] o (bnﬂb:l)a"’lbg”

ar!- - ay!

Q% (a),b] =
= —Q"(a—¢-1)bj
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for j = 2,...,n, whereas the commutation relation [(b])%", b;] = —a,,(b7)* ! implies that
Q1 (), 1] = —2QT (o — €,)b,. With the help of (4.77), it follows that

[Q+(04)7 bl = —Q+(Oé - E(j—l)Modn)bj—l (4.88)

for all j € Z, where Mod was defined in (3.74). Summing both sides of this last equality

over all a« € P=% with |a| = r, we have that

Q)b = —< > Qf(a- E(j—l)Modn))bjl :

aGP%O

Notice that, on the RHS of this last equality, the weight v = o — €(;_1)no0dn ranges over all
P=0 with |y] = r — 1, and that QT () = 0 if any of the parts of v are negative. It follows
that ZaePEO QT (o — €(j—1)Modn) = Q" ,, and then we deduce the validity of (4.84) from
the equality above. Equation (4.85) can be proved in a similar way. For this purpose, one

has to take advantage of the commutation relation
QT (), bl = b;f+1Q+(a —€), (4.89)

which follows after a straightforward computation.
The proof of (4.86) and (4.87) is analogous to the proof of (4.84) and (4.85). Set

(b b) e (bib3) ()™

arl - ay!

Q (a)

for a € P29 and Q™ (a) = 0 if at least one of the parts of a € P, is negative. This implies
that Q7 = > p>0 Q@ (), where the sum is restricted to those o € P;? with |a| = 7.

Following similar steps as the ones described above, one can show that

Q (), b] = —bj—1Q (@ — €(j—1)Modn) 5 (4.90)
[Q_(oz),b;f] = Q (a— ej)b;k-Jrl , (4.91)

and summing both sides of these commutation relations over all weights o € P=% with
|a| = r, one can finally deduce the validity of (4.86) and (4.87) respectively.
O

Proposition 4.2.8. The following functional equations are valid for all r € N,

r

rQf = Y (-)7'LQL, (4.92)

=1

rQr = > TiQ, . (4.93)
=1
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Proof. We adopt the same notation used in the proof of Lemma 4.2.7. Let us start by show-
ing the validity of (4.92) first. If r = 1, the latter reduces to the identity Qi = T}, so as-
sume that 7 > 1. Using the relation b;(b;_1b})*—1 = (b;_1b})*=1b; + ;1 (b;_1b} )17 b;_4,

we end up for ¢ = 2,...,n — 1 with the chain of equalities

(b7)2 « - bi(bi—a 7)1 b7y (biby )™ - - b

* . + o an n
binbi@™ () = 2 agl - ap!
o 1) (Db ) (b ) b
N oq! !
o (D7) - -+ (bia b)) 7 b q b (Db, ) - - b
ol (=Dl

= (ai + 1>Q+(Oé + 6@') + b;-k+1Q+(a — Eifl)bl',l .

A similar computation shows that b10,Q" () = (o, + 1)Q (a4 €,) + b7QT (v — €, 1)b .
and b30:Q7 (@) = (1 + 1)Q T (a + €1) + b3Q™ (o — €,,)2b,,. Taking advantage of (4.77), w
deduce the identity

bibiQ () = (o + 1)QF (v + €) + bf+1Q+(Oé — €(i—1) Modn)bi—1

which is valid for all ¢ € Z. This, together with a repeated application of (4.88), implies
that

|l l

biabiQ (@) = (i +1)QF (a+e)+ Y bibi(—1)7'Q" (a =) €6-p Modn) :
=1 j=1
The first sum on the RHS is restricted to those [ € N with [ < |a|. In fact, for [ > || the
weight o — 2221 €(i—j)Modn has at least one part smaller than 0, and then we have that
Q*( Zj 1 e(i_j)MOdn) = 0. Summing both sides of the equality above over i = 1,...,n

and a € P20 with || = r — 1, we end up with

Z > (a4 +1D)QF(a+6)

i=1 qep2®
TV

n r—1 l
+ Z biy1bi-i ! Z Q" (a - Z €(i—j) Modn) :
1 =1 aepgo j=1

=
N J/
-~

©)

For every 8 € PZ° with |f] = r, the term Q*(8) appears Y ., 3; = r times in @, and
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thus @ = r@;". On the other hand, we have that

l
Z QJr (CY - Z €(i—j) Modn) = er_l_l .

= =

This is because, on the LHS of this last equality, the weight v = a— 2;:1 €(i—j) Mod n TANEES
over all P20 with |y| =r — 1 — [, and furthermore Q*(v) = 0 if any of the parts of 7 are
negative. With the help of (4.75), it then follows that @ =3 ()" Q. In
conclusion, we end up with the identity T2QF , = rQf + 31—} (—=1)"'T111Q;_,_,, which
coincides with (4.92) after a simple rearrangement of terms.

Equation (4.93) can be proved by employing similar steps as the ones described for the
proof of (4.92). If r = 1, this equation reduces to the identity Q7 = Ty = T}, so assume
that » > 1. First of all, one can show after a straightforward computation the validity of

the following relation,
bibi 1 Q (@) = (i + Q™ (¢ + &) — b Q™ (@ — €(i1) Modn) Vi1 -
This, together with a repeated application of (4.91), implies that
|o| !
@ (0) = o0 D (o)~ D B @ (o= X i ) -
7=1

Summing both sides of this last identity over i = 1,...,n and a € P=Y with |a| =r — 1,

one ends up with
~ n n r—1 l
TIQ;fl = Z Z (Cki + 1) Oé + 6@ Z Z bzbz+1+l Z Qi (Oé - Z 6(i—‘,—j)Modn) .
=1 CXEPEO =1 =1 aE'P»%O 7j=1

Finally, proceeding in a similar fashion as described above, it follows that TlQr__1 =
rQ,; — Z}:ll ;_l_lj}ﬂ, which is equivalent to (4.93). O

Corollary 4.2.9. The following functional equations are valid for all r € N:

T

rQit = ) (=D)L (4.94)
=1

rQr = ) TLQr,. (4.95)
=1

Proof. These equations follow by taking the adjoint of both sides of (4.92) and (4.93)
respectively, and then by employing Lemma 4.2.3. [
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Proposition 4.2.10. (i) T,[z, 27 is a commutative subalgebra of H,[z,27"] .
(it) The operators {QF }rez., and {Q;"}rez,, belong to Tlz, z7').

Proof. To prove part (i) of the claim, we just need to show the validity of the commutation
relation [T, 7] = 0 for all r, s € Z such that 1 < r;s < n . Taking advantage of (4.75),

we have that

TT‘? T Z bj+5 b;k—f—r? + Z bz—H" b b;k—‘rs :
2,7=1 3,7=1
Thanks to (4.78), together with the inequalities 1 < i+ 1 < 2n, it follows that [b},,,b;] =
—0itrj — 20itrj+n, and with the help of (4.77) we have the chain of equalities

E j+s z+r7 § bz+r+s - § bz+r+s n - E bz+r+s

2,5=1 i=n—r+1

Similarly, we have that > 7', b7, b;[bi, b5, ] = >0, by, i, and thus [T, T] = 0.

We now prove part (ii) of the claim. Employing (4.92) and (4.93), one can show by
induction that {Q; },ez., and {Q; }rcz., can be expressed in terms of {T}},cz., and
{Tr}rezzo respectively. Similarly, with the help of (4.94) and (4.95), we deduce that
{Q;" }rezo, and {Q; }rez., can be written in terms of {7",},cz., and {T—T}TEZZO re-
spectively. As we pointed out in the discussion preceding Definition 4.2.6, the operators
{T.},ez and {T,},cz can be expressed solely in terms of {1} U {T},...,T,}. Since the
latter generate 7T,[z, 27|, the claim follows.

]
Lemma 4.2.11. The operators {Ty,...,T,} are algebraically independent over C[z, z71].

Proof. Taking advantage of Lemma 4.1.7, it follows that a basis of H,[z, 27| is given by
{0 - (0p) ] - 00 | oy € PO} (4.96)

Suppose that Y, a\T\ = 0 for some a, € C[z, z7'], where we set T) = T\, Ty, -, and
the sum runs over all A\ € P* for which A\; < n. Each operator Ty belonging to this sum

contains the term by, , by, ,, ---0] bé( , which equals

T+Aen 71
Zmno\)(bi)m7t(>\)(b;>ml(>\) .. (bfl)m"*lmbi(’\) (4.97)

thanks to (4.77). We deduce that the element (4.97) does not appear in the operators 7},
for which u # X. Apart from the factor 2™ the element (4.97) belongs to the basis
(4.96) of H,[z,27]. Tt follows that ay = 0 for all A\ € P* with A\; < n, thus proving the

claim. =
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4.3 Conserved charges and symmetric functions

Proposition 4.2.8 suggests a connection between the conserved charges of the free bo-
son model and the symmetric functions defined in Section 2.2. Namely, notice that the

functional relation (4.92) has the same form of Newton’s formula (2.34), that is

rer =S 1 i (4.98)
=1

where {p}rep+ and {e)}rep+ are the power sums and the elementary symmetric func-
tions. An analogous statement holds for the adjoint equation (4.94). We formalise this

observation as follows.

Proposition 4.3.1. The maps =% : A — T,[z, 27 defined via
Dr — E'r:lz:(pr) =Ty, (499)

for r € Zso, and ZX(py) = To, Ty, -+ for X € PT, are algebra homomorphisms. The
following relations hold for every r € Zs,

= e,) = QF (4.100)

r o

Q. (4.101)

[1]
S
—

S
<
~—

I

Proof. The maps =F : A — T,[z,271] are well defined since {py}rep+ is a basis of A.
Moreover, these maps are algebra homomorphisms, since the operators {7} },cz commute
with each other thanks to Proposition 4.2.10. This proves the first part of the claim. We
shall now prove (4.100) via induction. For r = 1, equation (4.100) holds thanks to the
identities p; = e; and T} = @7, so assume that r > 1. Using the induction hypothesis,

together with (2.34) and (4.92), we end up with the following chain of equalities,

s T

_ va! _ 1 -
= (er) = :I(— > (1) p) =2 (DTN, =Qf

=1 =1

which completes the induction proof. Equation (4.101) follows in a completely analogous
way, with the help of (4.94). O

Remark 4.3.2. The identification (4.99) between symmetric functions and conserved
charges is also based on the eigenvalues of the latter, when evaluating on the space F®"

spanned by the states (4.18). Compare with Lemma 4.5.5.

Remark 4.3.3. Notice that both equation (4.93) and its adjoint (4.95) are of the same
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form as Newton’s formula (2.35), that is
rhy = pihe_ (4.102)
I=1

where {hy}rep+ are the complete symmetric functions (see Section 2.2). Lemmas 4.2.3
and 4.2.5, together with Proposition 4.2.10, imply that the operators {7.},cz commute
with each other. It follows that the maps =% : A — T, [z, 27!] defined via

e Z5(p,) = T, (4.103)

for r € Z>, and éf (p) = T\, T», - - - for A € P+, are algebra homomorphisms. Moreover,
proceeding in close analogy to Proposition 4.99, we have for all r € Z> that

- (4.104)

r

Q. (4.105)

r

S+
—~
=
<S
~—
|

[1]: [1

S |
—~
>
S
~—

+

- are of little importance in our discussion, so we shall only

The algebra homomorphisms =

focus on the ones introduced in Proposition 4.3.1.

With the help of the map =, we now introduce the analogoues of the symmetric
functions defined in Section 2.2 as elements in 7,[z, 27!], and denote these with capital
letters if not defined previously (compare with the discussion presented in [45, Ch. 2.5]).
Set T\ = T\, T»,--- and QF = QF QF --- for A € P*. By definition of the map Z we
have that

T = EZ5(p) (4.106)
whereas from Proposition 4.3.1 it follows that

Qx = Eilen). (4.107)
Let us define for r € Z> the operator

H, = Z'(h,). (4.108)

In Section 4.3.2 we show the relation between (4.108) and the conserved charges {Q; }rez.,-
Setting Hy = Hy,Hy, --- for A € P*_ it follows from Proposition 4.3.1 that

Hy = Z'(hy). (4.109)
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Moreover, let us introduce the operators

S)\ = E+(S)\), (4.111)

which are the images under = of the monomial symmetric functions {my}ep+ and the
Schur functions {s)} ep+ respectively (see Section 2.2). The next result shows that we can
recover the operators belonging to the image of = by taking the adjoint of the operators

just defined. Denote by Agr C A the ring of symmetric functions with real coefficients.

Lemma 4.3.4. For every g € Agr we have the equality

2. (9) =E(9)" (4.112)

Proof. Since {px}iep+ is a basis of Ag, we can write that g = >, 5. gaps for some
coefficients gy € R. Using the fact that the operators {7, },cz commute with each other,
together with the relation g, = g3, and taking advantage of (4.79) we end up with the

chain of equalities

E.(9) = Z DT ANTn, - = Z DI, - = < Z DINT, - > =Z,(9).

AePT AePt AepPt

Let A\, € Af(n) and v € PT. In Section 4.4 we will prove the following identities for

the matrix elements of the operators introduced above,

ATy = > 2onauv) (4.113)
dEZZO

NI = > 2aamv) (4.114)
deZZO

NH ) = > 2%0yau(v) (4.115)
dEZZO

Ol = 3 SN (4.116)
dEZZO

MSulwy = > 2, (4.117)
dEZZO

where it is understood that V, l;\,;d = Xﬁf = 0 if {(v) > k. These identities are obtained by
evaluating the action of such operators, treated as elements in End(F®"), on the vectors
|p) introduced in (4.18), and then by applying the dual vector (| defined in (4.19). The

coefficients vy /4, (V), ¥x/a/u(V), Oxja/u(v), and X;\j were introduced respectively in (3.77),
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(3.47), (3.48), and (3.69), whereas N);* was defined as the cardinality of the set (3.39).
Recall that such coefficients are non-zero only if |u| + |v| — |A\| = dn, and thus the sums
on the RHS of the identities above involve at most one non-zero term.

We shall employ the identities (4.113) to (4.117) for the following purposes. First,
we present an alternative method to the one presented in Section 3.3.2 for evaluating the
expansions of the cylindric symmetric functions ey;q/, and hy;q/, in terms of the bases of
A introduced in Section 2.2. Then we will illustrate an alternative approach to the one
described in Sections 4.1.3 and 4.1.4 for computing the partition functions of the Q* and

Q** vertex models. Let us present some preliminary results.

Lemma 4.3.5. For each | € Z>o we have the chain of equalities

QM (@)Q (@s)---Q (@) = Y Qfmy(xr,...,m) (4.118)
veP,

= > Mey(ny,....z) (4.119)

= V;{ ez, Typ,(x1,. .., 1) (4.120)

— VGZPS Sysy(T1, ... 1) . (4.121)
vepP+

Proof. As pointed out in Section 4.1.3, the product QT (x1)Q" (z2) - - - Q1 (x;) is symmetric
in the indeterminates (z,...,x;). This product can therefore be expanded in terms of the
symmetric functions in [ variables, with the expansion coefficients belonging to H,[z, 27 1].
To obtain the expansion in terms of monomial symmetric functions, notice that for v €
P;" the coefficient of m, (z1,...,2;) in QT (z1)QT (z2) - QT (1) equals the coefficient of
xi* - - 2" in the same product, which is just ;. This proves (4.118). The other expansions

follow by taking advantage of the relationships between the various bases of A, together

+
n

with their images under = Consider for example the relation e, = ZUGPJr M,em,,
which was introduced in (2.22), and where the matrix M,, was defined in Section 2.2.2.
Applying the map =} to both sides of the latter, it follows that Qf = > v MyoM,.
Moreover, projecting onto A; we have that e,(xy,...,2;) = 2067’? Myomg(xq,...,27).
This is because m,(x1,...,2;) = 0 if £(o) > [, as shown in Lemma 2.2.5. The identities
just described, together with the fact that M,, = M,, (compare with [67, Cor. 7.5.2]),
can then be used to prove (4.119). For the proof of (4.120) and (4.121), one can take
advantage of the expansions m, = Y. o K, so = > ps Rylpo, v = 3. cps Ko Jes
and pe,z,' = Y py Ry je,. The matrices K,, and R,, were defined respectively in
(2.22) and (2.24). The expansions of s, and p, in terms of the basis {e, },ep+ of A can be

found for instance in [52, L.6]. O
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We shall now make use of the following operator,

H(u)= > u'H,, (4.122)

TEZZO

where the operators { H, },cz., are defined in (4.108). We are adopting the same notation
for the generating function of complete symmetric functions, which was introduced in
(2.20). Nevertheless, it will be clear from the context which one of these two objects we

are using.

Lemma 4.3.6. For each | € Z>y we have the chain of equalities

H(z1)H(zo) - H(z) = Y Hymy(ar,... ) (4.123)
VGP?_
= > Mhy(x1,..., 1) (4.124)
veP+t
= Z Zu_l Tupu<x1a"'7xl) (4125>
veP+t
= Z Sysu(T1, ..., m) . (4.126)
vep+

Proof. The product H(xq1)H (z3) - -+ H(x;) is symmetric in the indeterminates (x1, ..., z;).
This is because Propositions 4.2.10 and 4.3.1 imply that the operators { H, },cz., commute
with each other. To obtain the expansion in terms of monomial symmetric functions,
notice that for v € P;" the coefficient of m,(z1,...,2;) in H(z1)H (z2) - H(z;) equals
the coefficient of z7* ---z]" in the same product, which is just H,. This proves (4.123).
One can then proceed as in the proof of Lemma 4.3.5 to deduce the remaining equalities.
For this purpose one can take advantage of the relation h, = ZU€P+ L,sm,, which was
introduced in (2.22), and where the matrix L,, was defined in Section 2.2.2, together
with the expansions s, = Y p+ K, ho and py2,' =>4 Ry} h, (see for instance [52,
L.6]). O
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4.3.1 Expansions of cylindric symmetric functions

We now give an alternative proof for the following expansions of the cylindric symmetric

functions ey/a/, and hy/q/p,

exan = > Uajauv)my (4.127)
vepP+
= > Nyt (4.128)
1167)2—
= Z pxsa/(V)enz, by (4.129)
vepP+
= > xptsur (4.130)
VEP;
together with
hajap = Oxjau(v)m, (4.131)
veP+t
= > Ny'h, (4.132)
1/673;r
= > onauv)z'p (4.133)
vePt
= > xtsy (4.134)
I/G’P]:L

These expansions have been already proved in Propositions 3.3.11, 3.3.18, 3.3.28 and in
Theorem 3.3.12. The new aspect here is that on the RHS of the expansions (4.127) to
(4.134) the coefficients are the matrix elements (4.113) to (4.117). Let A\, u € A; (n) and
d € Z>y. We start from the definitions

€A/d/u(I1, coTy) = Z waT , (4.135)
TET /q/u(1)
hjaju(®r, .. 1) = Z 02" (4.136)

ﬁ'EH)\/d/y‘(l)

which were discussed in (4.31) and (4.32) respectively. Let v € Pt and for § € P a
composition set Q; = QEIQEQ -++. Since the operators {Q; },cz., commute with each
other, we have that Q; = @ for every § ~ v, with the notation introduced in Section
2.2.1. We deduce from (4.114) that ¢ ,4/,.(8) = ¥x/a/u(v) for every § ~ v, where ¥ /q/,(5)
is defined in an analogous way to (3.47). The validity of this last identity was shown by
other means in the proof of Lemma 3.3.9. Similarly, setting Hg = Hpg, Hg, --- for § € P,

we have that Hgz = H, for every 5 ~ v, as the operators {Hr}rezzo commute with each
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other. It follows from (4.115) that 6y /a;,(3) = 0x/ay.(v) for every 8 ~ v, where 0)/4/,(B) is
defined in an analogous way to (3.48). Compare with the proof of Lemma 3.3.8. Following
similar steps as the ones described in the proof of Proposition 3.3.11, and then taking
advantage of the relation m,(z1,...,2;) = 0 for £(v) > [, we can rearrange (4.135) and

(4.136) to obtain the expansions

exja/u(T1, ... 1) = Z Unja/u(@)my (1, ... 1) (4.137)
vepP+

hkﬂuu(xl,...,aq) = 2{: QAAUM(V)Tny(xl,...,Jq). (4.138)
vepP+

Now, act on the vector |u) with the RHS of (4.118), and then apply the dual vector ()|
defined in (4.19). Do the same with the expressions appearing in (4.119), (4.120) and
(4.121). Taking advantage of the identities (4.113) to (4.117), together with the expansion
(4.137), and comparing the terms with the same power of z, we end up with the following

chain of equalities,

exd/u(@1; -, m) = ZN)‘d (1,...,71) (4.139)
u€P+

- Z QOA/d/N(V)EVZ;IpV(xla s 7xl) (4140)
vepP+

— ZX (21, .. 1) . (4.141)
VEP+

Similarly, starting from Lemma 4.3.6 and proceeding as above, we have that

Pajagu(n, - om) = Y Npthy(en,. o) (4.142)
VEPJ

= Z S0)‘/d/luf(V)’Z/I/_lpl/(%'l7 cee 7$l) (4143)
vep+

- Z X (T1s. . ) (4.144)
VGPJr

As we discussed in Remark 2.2.2, a symmetric function f € A is equivalent to a sequence of
functions { fi(z1, ..., %) hezoy, With fi(z, ..., 1) € Ay, satisfying for I’ > [ the constraint
fo(z1, .. 2,0,...,0) = fi(xy,...,2). For f,g € A, it follows that f = ¢ if and only if
the equality fi(z1,...,2;) = gi(z1,...,2;) holds in A; for all [ € N. But the expansions
obtained above for ey/q/,(71,...,2;) and hy/q/u(1,. .., 2;) are identities in A; which are
valid for all [ € N, and thus they must hold on A as well. In this way we recover the

expansions (4.127) to (4.134) for the cylindric symmetric functions ey/q/, and hyjq,.-

Remark 4.3.7. The proof presented in Chapter 3 for the expansions (4.127) to (4.134)
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relies on Vi (n), which is the quotient of Ax[z, z7!] introduced in (3.35). On the other hand,
the approach we use here to show the validity of the same expansions does not involve any

quotient of Ag[z, z71.

We now describe how the expansions (4.137) to (4.144) can be also obtained by means
of the adjoint operators, that is the operators belonging to the image of the map =
introduced in (4.99), see also Lemma 4.3.4. For this purpose, define the operator P €
End(F®") via the relation

PN =\, (4.145)

where A € A (n), and the map V : Af(n) — A/ (n) was introduced in (4.61). Since the

latter is an involution in End(A} (n)), it follows that P is an involution in End(F®™).

Lemma 4.3.8. For every g € Ar C A we have the following equality in End(F®"),

= (9) =PEL(9) P (4.146)

where Z¥(g) is the complex conjugate of ZF(g).

Proof. Recall that |[A\) = |my(N),...,my(N)), as we described in (4.18). It follows that
IAY) = |mn(N),...,mi(N)), and then we can deduce the following identities in End(F®"),

bj =P bn+1,]’ P s and bj =P b:;Jrlfj P . (4147>

Taking advantage of (4.147) and the relation z = 27!, together with Lemmas 4.2.2, 4.2.1
and Proposition 4.99, we end up with the identity

=,(e.) =PZt(e,)P. (4.148)

The claim then follows from the fact that {ey},. Af (n) 15 @& basis of A, and that P is an
involution.
0

Since the operators {Q;*},ez., and {H;},ez,, commute with each other, we can em-
ploy Lemma 4.3.8, together with (4.114) and (4.115), to deduce once again the validity of
the identities ¥x/a/.(8) = ¥aa/u(v) and 0y/ay,.(8) = 0xja/u(v) for every B ~ v. This allows
us to recover the expansions (4.137) and (4.138). Take the adjoint of the RHS of (4.118),
act on the vector |¢") and then apply the dual vector (A\V]. Do the same with the RHS of
(4.123), and with the expressions appearing in (4.119), (4.120), (4.121), (4.124), (4.125)
and (4.126). Employing Lemma 4.3.8, and comparing the terms with the same power of
z = z~!, we finally end up with the expansions (4.139) to (4.144).
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4.3.2 Computation of the partition functions

In the previous section we employed the identities (4.113) to (4.117) to re-establish the
validity of the expansions (4.127) to (4.134) of the cylindric symmetric functions ey 4/, and
hyja/u- We now present an alternative proof of the identities stated in Theorems 4.1.18
and 4.1.30 for the partition functions of the Q* and Q** vertex models respectively. For
this purpose, we shall take advantage of the matrix elements (4.114), (4.115) and the
expansions (4.137), (4.138). We start by considering the Q* vertex model.

Lemma 4.3.9. Let \,u € A (n) and | € N. We have the equality

QT (21)Q T (w2) -+ QT () = Y 2enjasulzr,. .. m) . (4.149)

dEZZO

Proof. Taking matrix elements of both sides of (4.118), and then using (4.114), we obtain
the identity

MO (21)Q (w2) -+ Q () w) = Y 2> njaguw)mu(z, ... m) .

dEZzo V6P+

The claim then follows by employing (4.137). O

Thanks to Lemmas 4.1.13 and 4.3.9 we then recover (4.33), which is the expansion
of the partition function Z;:#(.fl,l'g, ...,x;) in terms of cylindric elementary symmetric
functions. We now present a similar discussion for the )~ vertex model. To this end, we
first need to understand the connection between {Q} },cz., and the operators belonging
to the image of the map =, introduced in (4.99). Applying =7 to both sides of Newton’s
formula rh, = ",_, pih,—; we end up with the equality

rH,=> TH,, (4.150)

where the operators {H, },cz., are defined in (4.108). Notice the similarity between this
last equality and (4.93). It is then natural to seek a relation between the operators

{Q; }rezo, and {H, },cz.,, which is given by the following result.

Lemma 4.3.10. For r € Z>¢ we have the identity

Q;, r<n
H, = . (4.151)
Q; - ZQ;—na r 2 n
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Proof. We first show by induction that

S

Qunig =D 2" His—tynsq (4.152)

t=0

where s € Z5p and 0 < ¢ < n — 1. The claim is true for s = ¢ = 0, in which case
Qy = Ho = 1. So let sn + q # 0, and suppose that (4.152) holds for all s’ € Z>, and
0 < ¢ <n—1such that s'n + ¢ < sn + ¢. Thanks to (4.81) and (4.93), we have that

sn+q
(sn+q)Qunig = Z TiQunyq—5 t 1 Z o Q (s—t')ntq
t'=1
5n+q 1

= Z T5n+q jQ +nzz Qs t)n+q

t'=1
N 7
N~ -~ v

@ ©)

Taking advantage of the induction hypothesis, it follows that

s—t! s s—t/

- t/ t+t”
@ = n E E Z Hs t'—t"\n-+q =N E E 8 ' —t"n+q

t'=1 t'"=0 t'=11t"=0

= N Z tZtH(S,t)nJrq .
t=1

To express @ in terms of the operators {H,,}rezzo, we need to distinguish between the two
cases 1 <g<n—1and q¢=0. Setting j = s"n+¢", where s” € Z>gand 0 < ¢’ <n—1,

we have in the first case the chain of equalities

s q—1
@ = E E Tsn+q_(8//n+q//)Q;/n+q//

//_0 q//_o
s
= E E TSTL-H] (s"n+q") E z H (s —t)n-+q"
// Oq// 0
s
= Z S Lo e By
t=0 s"=t ¢/’ =0
s—t q—1
= E E E Ts t)yn+q—(s’ n—i—q”)Hs”n—l—q”
I/ O q// 0
s
_ t
- E :Z ((5 - t)” + Q)H(s—t)n-f—q :
t=0

In the second line we used the induction hypothesis, whereas in the third line we swapped
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the sums in ¢ and in 7. In the last line we took advantage of (4.150). If instead g = 0,
we end up after similar steps with the identity @ = > ézt((s — t)n) H(s_ty,. Putting

together all the results just described, we conclude that

@ + @ = (sn+q) Z 2" His—tynsq »
=0

which shows that @),

sn+q Satisfies the relation (4.152) as well. This completes the induction

proof.

We now use induction again to show the validity of (4.151). Notice that, thanks to
(4.152), the latter holds already for r < n. Solet r = sn+qgwiths >land 0 <¢g<n-—1,
and assume that (4.151) holds for all #" < r. Starting from (4.152), and using the induction
hypothesis, we then have that

H, = Q;_ZZtH(S—t)HJrq
= QT__Z stn+q ZQstanrq) Q_

_ t— ty—
S LIS SEl
t=1 t=2

= Q; - ZQ(_S—l)n+q = Q; - ZQ;—n :

I
L

Corollary 4.3.11. We have the identity
H(u) =Q (u)(1 —zu"), (4.153)

where the operator H(u) was introduced in (4.122).
Proof. The claim follows after a straightforward computation, with the help of (4.151). [

Lemma 4.3.12. Let \,pu € Al (n) and | € N. We have the equality

N H (@) H(zs) - H@)lp) = > 2 hajapul@r,... m) - (4.154)

deZZO

Proof. Take matrix elements of both sides of (4.123). Taking advantage of equation
(4.115), we have that

NH (21)H (x2) - H(w) ) = > 2> Orjapu()my (@, .. a) .

d€Z>0  veP;f
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The claim then follows by taking advantage of (4.138). O

Employing Lemmas 4.1.13 and 4.3.12, together with the relation (4.153), we finally
end up with the expansion (4.34) for the partition function Zy (21, s, ..., 21).

Assume that 7; = ;. The expansions (4.62) and (4.63) for the partition functions
of the Q** vertex models can be now deduced immediately by taking matrix elements of
both sides of the following identity in End(F®"),

Q= (1) QF(x) = PQ (1) - Q@ (2) P, (4.155)

which is a direct consequence of Proposition 4.99 and Lemma 4.3.8, and then by applying
Lemma 4.1.26.

4.4 The action of the conserved charges

The goal of this section is to prove the identities (4.113) to (4.117). In other words, we

will evaluate the action of the operator =

{pv}vep+, {ev}vept, {hw}vept, {mu}oep+ and {s,},cp+, on the state (4.18), that is

(g9), where g € A can be any of the functions

) = uibzl e br [0) (4.156)
m

We adopt the following strategy. We first compute the commutation relation [=7(g), b;] for
all ¢ € Z, and then we apply repeatedly such commutation relation to the state =1 (g) |u).
For the operator =1 (p, ) we instead evaluate its action on |u) directly, compare with Lemma
4.4.2 below. The action of = (g) on |u) can be computed by either using the identity
Z-(9) = PEf(g) P in End(F®"), which was proved in Lemma 4.3.8, or by employing a
similar approach to the one described above. In the second case, one needs to evaluate
the commutation relation (= (g), ] for all i € Z. Equivalently, thanks to the relation
=.(9) = £ (9)*, which was showed in Lemma 4.3.4, one can first evaluate the commutation

[bi;, =1 (g)] for all i € Z, and then take the adjoint.
4.4.1 Power sums
We start with the operator introduced in (4.106) and in Proposition 4.3.1, that is
Tn = E5(p) - (4.157)

We shall make use of CACSDs and CACRPPs, which were described in Section 3.3.3. In
particular, we will take advantage of the weight ¢, /q4/,, defined in equation (3.76), and of
the weight ¢, /q4/,(v) introduced in Definition 3.3.25.
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Lemma 4.4.1. Forr,j € Z we have the commutation relations

b = T, +bi,,, (4.158)

Proof. These identities follow by taking advantage of (4.77), together with the commuta-
tion relation (4.78). O

Lemma 4.4.2. Let v € P* and pn € Af (n). We have the equalities

Ty = Y2 ) onam®) ) (4.160)

d€Z>0 )\6A+( )

Tl = D> 2" > oavaum )N (4.161)

deZ>o AeAS (n)

The second sum in (4.160) runs over all X € A} (n) for which \/d/u is a cylindric skew
diagram with |p| + |v] — || = dn. The second sum in (4.161) runs instead over all
A € Af(n) for which XV /d/u" is a cylindric skew diagram with |p"| + |v] — |[\Y| = dn.

Proof. We prove (4.160) first. For this purpose, it is enough to show that

Tl =D 2" > onamuld) (4.162)

d€Z>0  AeAf(n)

for r > 0, where the second sum runs over all A € A} (n) for which A/d/u is a CACSD with
|| +7—|A| = dn. Then (4.160) follows after a repeated application of (4.162) to the state
T, |p). If r =0, we have that (4.162) reduces to the identity |u) = |u). This is because
To = 1, and moreover the only CACSD A/d/u such that |A/d/u| = [N +dn — |u| = 0 is
given by 11/0/p, in which case ¢, /0/, = 1 by definition. Suppose now that r = sn for some
s € N, and let A € Af(n) and d € Z5. Notice that \/d/u is a CACSD satisfying the
constraint || + sn — [A| = dn, that is \.7%¢ = fig.e, for some 1 < a < n with me_1(f1) # 0,
if and only if A = p and d = s. This follows from (3.75) for s = 1, whereas for s > 1 this
can be deduced from the fact that \.75 = flasn if and only if AT = flan, Which is a direct
consequence of Lemma 3.3.21. Since v,/,/, = k, we have that the RHS of (4.162) is equal
to z°k |n). Equation (4.162) then follows, as its LHS is also equal to z°k |u) thanks to the
identity T, = 2° N, which can be derived from (4.75).

We now assume that » > 1 and rmodn # 0. We evaluate the action of the operator
T, = Z] L b5,.b; on the state |u) directly, and for this purpose let 7 € N with 1 <7 < n.
Notice that b}, b; |p) = 0 if m;(p) = 0, so suppose that m;(u) # 0. Let o € A (n) b
the partition obtained from p by removing a part equal to ¢ and adding a part equal to
(1 + r) Mod n, where Mod was defined in (3.74). Equation (3.75), together with Lemma
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3.3.21, implies that 6.7%" = fi(i-+1) Modn,r» Where d” € Z>( is defined via the relation
|| + r — |o| = d"n. Moreover, taking advantage of (4.77), it follows that

be bi 1) = 2 M Moan(0) [0) = 28 myy (6.7Y) o)

Thus, we have the identity

T, i) :ngma (D7) [p)

a

where the sum runs over all 1 < a < n such that m,_1 (1) # 0, and p € A (n), d' € Z5q are
defined via the relation p.7% = fi,,. Let A € Al (n), d € Z>( and suppose that \/d/u is a
cylindric skew diagram. If A/d/u is a CACSD satisfying the constraint |u| +r — |A| = dn,
that is if \.7¢ = fiar for some 1 < a < n with m,_1(ft) # 0, it follows from the equality
above that (A\T,|u) = 2% 4/, where we employed the relation (3.76) for the weight
©x/a/u- Otherwise, we have that (A|T.|x) = 0. This completes the proof of (4.162), since
by applying the dual vector (A| on (4.162) we recover the same identity.

Equation (4.161) follows immediately by employing the identity 7 = PT,P in
End(F®"), which is a consequence of Lemmas 4.3.4 and 4.3.8. The involution P €
End(F®") was introduced in (4.145).

[

Remark 4.4.3. The weight ¢5/4/,(v) is non-zero only if A/d/p is a cylindric skew diagram
with |p|+|v|—|A| = dn (compare with Definition 3.3.25), and then (4.160) does not change
if we allow A to run over all the weights in A (n). It follows that

ATy = 2oramv) (4.163)

dEZZO

which is the identity (4.113).

4.4.2 Elementary and complete symmetric functions

The next operators of our interest are the images under =7 of the elementary and complete

symmetric functions, which were defined in (4.107) and (4.109) as

Qx = Ejle), (4.164)
H, = Ei(hy). (4.165)

We shall take advantage of the weights 1,4/, and 0,4/, which were introduced in Def-
initions 3.2.9 and 3.2.4 respectively. We will also make use of the weights 1) ,4/,(v) and
054/, (v). See Definition 3.3.7.
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Lemma 4.4.4. Forr € N and j € Z we have the commutation relations

Hb: = b H, + H b, (4.166)
ijr - Hrbj+bj—1Hr—l- (4167)

Proof. These relations can be obtained after a straigthforward computation, with the help
of (4.86), (4.87) and (4.151). 0

Lemma 4.4.5. Let v € P* and p € Al (n). We have the equalities

Qilmy = D2 Y by (4.168)

deZ>0 e Af(n)

Q7w = Z Z Uav gy (V) |A) (4.169)

d€Z>0 )\E.A+ )

The second sum in (4.168) runs over all X € A (n) for which \/d/u is a cylindric skew
diagram with |p| + |v] — |A| = dn. The second sum in (4.169) runs instead over all
A € Af(n) for which XV /d/u" is a cylindric skew diagram with |p"| + |v] — |\Y| = dn.

Proof. We prove the validity of (4.168) first. For this purpose, it is enough to show that

QFlmy = > 2" > sl (4.170)

d€Z>0  XeAj(n)

for > 0, where the second sum runs over all A € A; (n) for which \/d/u is a cylindric
vertical strip with |u| + 7 — |A\| = dn. Equation (4.168) then follows after a repeated
application of (4.170) to the state Q) |u). If » = 0, we have that (4.170) reduces to the
identity |u) = |u). This is because @ = 1, and moreover the only cylindric vertical strip
A/d/p such that [A/d/p| = |A| +dn — || = 0 is given by p/0/p, in which case v,/0/, = 1.
So assume that 7 > 0. Let s € Zs, and notice that Q@ ]0) = 0 unless s = 0, in which
case Q¢ |0) = |0). This can be deduced from the expansion (4.73) of QF in terms of the
generators of H,[z, 271], together with the fact that b; |0) = 0. Set

by, = b5, b5, - (4.171)
for aw € P, and consider the expansion (4.156) for the state |u). After a repeated applica-

tion of the commutation relation (4.84), we end up with the identity

Q+ |“ Z b/ﬁ-n

77€P

where the sum is restricted to those weights n € P.° with 7; = 0,1 and || = 7. Let
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A € A (n). Thanks to (4.77), together with the fact that (A|o) = 0y, for all o € A} (n),
it follows that (A[b},,.,
satisfying the constraint u+n = A\.w'y®. Employing part (ii) of Proposition 2.1.6, we have

|0) is non-zero if and only if there exists a pair (v, 3) € S* x 73,;0

that if the pair (w', 3) exists then it is unique, and moreover (A[b%,,[0) = z%lu,. Thus,

we have the identity

/\|b,u+17 Z 2? Ux Z Z 5u+n>\wy37

deZx w'eSH gep2?

where the third sum is restricted to those weights 8 € 73,?0 with |8| = d, and then

/\|Q+|lu Z du>\ Z Z 5u+n)\wy3'

d€Z>¢ “weSA n,8ePZ°

Let f: P, — C, and notice that

D) =ux > fhw) . (4.172)

wESE weSA

This can be deduced by first employing part (ii) of Proposition 2.1.6, and then by taking
advantage of the identity |Sy| = wu,, which follows from the fact that mg(\) = 0 as
A € Af(n). With the help of (4.172), we then have the equality

>‘|Q+|:u Z Z - Z Z 5u+77/\wy5'

deZxg w’ €Sy, /3€fp

/

Set w = (w')~!, vy = n.w and a = B.w. Taking advantage of the relation w'y® = P )y
we can rewrite the constraint u+n = A\.w'y® as p.w +~v = A\.y®. Using (4.172) once more,

(M@ ) = Z Z Z OpawrtyAye » (4.173)

dEZZO wESH 77a€'p>0

we end up with

where the second sum is restricted to those weights v, a € P7° with v; = 0,1, |y| = r and
|o| = d. Let d € Z>¢, and notice that the sum ) . Z%aepgo Lty ye appearing in
(4.173) is non-zero only if ||+ 7 —|A| = dn. Assuming that the relation |u| +r— |\ = dn

is satisfied, this sum equals the cardinality of the set
{(w,v,a) € S* x PEO X 77,?0 |7 =0,1,|y|=rl|al =d pw+~v=Ay*}.

But the latter coincides with the set A introduced in the proof of Lemma 3.3.9, the
cardinality of which is given by 1)5/4/,. Lemma 3.2.11 implies that )4/, is non-zero if

and only if A/d/p is a cylindric vertical strip, and then we finally deduce that (A\|Q;F|u) =
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D dezoy 2%y /a/u, where the sum runs over all d € Zsq for which A\/d/u is a cylindric
vertical strip with |u|+7— || = dn. This proves the validity of (4.170), since by applying
the dual vector (A| on (4.170) we recover the same equality.

The validity of (4.169) follows by employing the identity Q% = P @, P in End(F®"),
which can be deduced from Lemmas 4.3.4 and 4.3.8. For the sake of completeness, we
present an alternative proof of (4.169) that relies on the commutation relation (4.84). For

this purpose, it is enough to show the validity of

Qi lmy =Y =" > v [N (4.174)

d€Z>o AEAS (n)

for 7 > 0, where the second sum runs over all A € A} (n) for which \V/d/u" is a cylindric
vertical strip with |pu¥| + 7 — |\Y] = dn. Equation (4.169) then follows after a repeated
application of (4.174) to the state Q5" |u). Let A € A (n). Employing the adjoint of
equation (4.84), which is given by Q;b5 = b5Q;™ + b3 _,Q**, and following similar steps

as the ones described above, we end up with the equality

)\’QHW Z Z Z Opd—y Ay »

dEZZO wES” ~,a E'PZO

where the second sum is restricted to those weights v, a € 73,620 with 7, = 0,1, |y| = r and
|a| = d. Notice that the constraint p.w — v = A\.y® can be rewritten as pu".w + v = AV.y*,
by

replacing each generator o;; with o3_;;. Taking advantage of equation (4.172), together

where o = (ay,...,a;), and moreover w € Sy is obtained from w = oy, - iy

with the identity u, = u,v, we have that

)‘|CZ*—"_|:u Z Z Z 5u AWy, Ay (4175)

deZx wesHY v, G’PZO

where the second sum is restricted to those weights v, a € P7? with v; = 0,1, |y| = r and
la| =d. Let d € Z>0, and notice that the sum - q.v >° aep20 0¥ w4y, AV .y Appearing in
(4.175) is non-zero only if |u”|+7r—|AY| = dn. Assuming that the relation |p"|+7r—|\Y| =

dn is satisfied, this sum equals the cardinality of the set
{(w,7,0) € S x PO x P | 7 =0,1, 7| = Ja| = d, " w+v = Ay},

which is given by 1y v . It follows that (AQ;* i) = 3 ey 27 “bav jayuv, Where the sum
runs over all d € Zs for which \Y /d/u" is a cylindric vertical strip with |p"|+r—|A\Y| = dn.
This proves the validity of (4.174), since by applying the dual vector (A| on (4.174) we

recover the same equality. O]
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Lemma 4.4.6. Let v € P* and pn € Af(n). We have the equalities

Hylp) = > 2% > Oyau@) N (4.176)

deZ> AEAJr( )

Hylpy = Y 2" > Ovjape ()N (4.177)

deZx AeAS (n)

The second sum in (4.176) runs over all X € A} (n) for which \/d/p is a cylindric skew
diagram with |u| + |v| — |A| = dn. The second sum in (4.177) runs instead over all
A € Af(n) for which XV /d/u" is a cylindric skew diagram with |p"| + |v] — |\Y| = dn.

Proof. The proof of (4.176) is similar to the one of (4.168), and for this purpose we just

need to shown that

Helwy= 2" > OyaulN) (4.178)
deZ>0  AeAf(n)

for r > 0, where the second sum runs over all A € A} (n) for which A\/d/u is a cylindric
skew diagram with |u| +r — |A\| = dn. If r = 0, we have that (4.178) reduces to the
identity |u) = |p). This is because Hy = 1, and moreover the only cylindric skew diagram
Ad/p with |A/d/p| = |A| +dn — || = 0 is given by u/0/p, in which case 6,0/, = 1. So
assume that r > 0. Let s € Z5, and notice that Hg|0) = 0 unless s = 0, in which case
Hy|0) = |0). This can be deduced from (4.74) and (4.151). A repeated application of
(4.166) yields the equality H,b5 = >, b5, H._, which can be used to show that

Hy |u) = Z by 10)

vePZ°

where the sum is restricted to those weights v € P.° with |y| = 7. Let A € Af(n).

Following similar steps as the ones described in the proof of (4.170), one ends up with

A’H ’M Z Z Z (S;Ler’Y/\y ) (4179)

deZZO wES# eprO

where the second sum is restricted to those weights v, € P7° with |y| = r and |a| = d.
Let d € Z>o, and notice that the sum -, . >° aep20 Opwtyaye appearing in (4.179) is
non-zero only if |u|+7—|\| = dn. Assuming that the relation |u|+r—|\| = dn is satisfied,

this sum equals the cardinality of the set
{(w,7,0) € " x P x P | Y| =7, |a| = d, pw +v = Ay} .

The latter coincides with the set A introduced in the proof of Lemma 3.3.8, the cardinality

of which is given by 0,/4/,. Lemma 3.2.7 implies that 0,4/, is non-zero if and only if
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A/d/p is a cylindric skew diagram, and then we end up with the equality (M@ |u) =
Y ez, 2%)) a/u, where the sum runs over all d € Zsg for which \/d/pu is a cylindric skew
diagram with |u| +7 — |[A\| = dn. This proves the validity of (4.178), since by applying the
dual vector (A] on (4.178) we recover the same equality.

Equation (4.169) follows from the identity H} = P H, P in End(F®"), which can be
deduced from Lemmas 4.3.4 and 4.3.8. Alternatively, one can prove (4.169) by employing
similar steps as the ones described above. For this purpose, one has to take advantage of the
commutation relation H}b% = >, (b5  H' ,, which follows after a repeated application
of the adjoint equation of (4.167).

]

Remark 4.4.7. The weights 95/4/,(v) and 6,4/, (v) are non-zero only if A/d/j is a cylin-
dric skew diagram with |u| + |v| — |\| = dn (compare with Definition 3.3.7). This means
that (4.168) and (4.176) do not change if we allow A to run over all the weights in A} (n),

and then we have the identities

MRS = > 2aamuv) (4.180)
deZ=g

NH ) = > 2%0yauv) . (4.181)
deZ=g

These are the identities (4.114) and (4.115) respectively.

4.4.3 Monomial symmetric functions

We shall now focus on the operator introduced in (4.110), that is

In Section 4.5 we will employ the operators {M,,} A (n) O construct an algebra which is

isomorphic to Vi(n), the quotient of Ay[z, 27!] defined in Section 3.3. Let

MY = ZF(m}) (4.183)

A = uymy (see

be the image under = of the augmented monomial symmetric function m
Section 2.2.4), and notice that by definition we have the identity M* = uyM,. Applying

the map = to both sides of (2.32), it follows that

M= > B(I)Tym - (4.184)

HGP[()\)
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Recall that we can express every partition A € P* with the notation (1™ 2m2(N) )
which was introduced in (2.1). Set IpA = A, and for j > 0 define the partition

L= (1™ gma) g yma=tQ) gm0+t g yman )y (4.185)
Moreover, set RoA = A, and for j > 0 with m;(\) # 0 define the partition
R\ = (1™ gma) 5 yma Q) gmi=L o ymen )y (4.186)

Stated otherwise, we have that I\ is obtained from )\ by adding a part equal to j, whereas
R;\ is obtained from A by removing a part equal to j, provided that m;(\) # 0. Applying
the map = to both sides of (2.31), and taking advantage of (4.185) and (4.186), we have

that for £(\) > 1 the operator M* satisfies the recurrence formula

oN)—1
M = T)\ZMRM)‘ — Z MDiex Bx Bx A , (4187)

=1

where we set [ = ¢(\). If instead ¢(A\) = 1, that is if A\ = (r) for some r € N, it follows
from (4.184) that M) = M, =T,.

Proposition 4.4.8. For A € P and j € Z we have the commutation relations

o(N)

MY = bIMA Y b MDA (4.188)
i=1
‘()

MY = M+ MM, (4.189)
i=1

where we set M = 0 whenever m;(\) = 0.

Proof. We shall only prove (4.188), since (4.189) follows after employing completely anal-
ogous steps. For this purpose we use induction on the length of A. If £(\) = 0, that is if
A =0, then (4.188) reduces to the identity b} = b}, as My = 1. If instead £()\) = 1, that
is if A = (r) for some r € N, then (4.188) coincides with the relation 7,05 = b;T, + b},
which is just (4.158). So let A € P* with £(\) > 1, and assume that (4.188) holds for all
partitions A such that £(\) < ¢()\). Moreover, set [ = £()\). Taking advantage of (4.187),
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together with the induction hypothesis, we have that

-1
A]\j)\b;'< = (T)\ZMRM)\ . Z Mb‘fr)‘lR)‘iR)\l)‘) b;

i=1

- 7 (b*MR“ S )

B Z (b*MIA i Z DY pa M Daen A gt A ) .
s;éz

Employing the commutation relation (4.158), it follows that

My = BT M b5, M +Zb]+A Ty, M +Z i, M

=1 =1
-1 -1 -1
_ * Iy 40, Bx;, B A _ Iy 42, Bas B, B A 2 B A
bj E M ! ! E E bﬁ MR ! +/\ +/\1M :
=1 =1 s=1
s#£i

In the double sum appearing in the second line, we took advantage of the equality
R)\SI)\iJF)\lR)\iR)\Z)\ = I)\Hr/\zR)\sR)\iR)\l)‘v which is valid for s # i and s % [ — 1. In the
same double sum, let us first swap the summations in ¢ and in s, and then make the

change of variables ¢ <+ s. The equality above then becomes

-1

MAb; = b;f (T)\ZMRM)\ _ Z M Ixi+a B B A ) + b*—i-)\ MFA

-1

+ g b]+)\ (T/\ZMRAZRAZ-/\ _ E MI/\-S"L)‘ZR)‘SRAZR/\i)‘) )

s=1
Ss#1i

Using once again (4.187) for the terms in brackets, we then recover (4.188), and this
completes the proof by induction. O]

Corollary 4.4.9. For A\ € P* and j € Z we have the commutation relations

Mb; = bIMy+ > by Mg,y (4.190)
i>1

biMy = Mb;+ Y Mpabj;, (4.191)
i>1

where we set Mg,» = 0 whenever m;(\) = 0.
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Proof. Notice that (4.188) can be written in the following equivalent form,

ME2m;(\) .

A7 * A
M =DM+ Y b,

1>1
Dividing both sides of this equality by u, one then recovers (4.190), thanks to the fact
that M* = uyM,, and that uy = up,xm;(A\) whenever m;()\) # 0. Equation (4.191) follows

after a similar computation, starting from (4.189) instead.
O

Lemma 4.4.10. Let v € Pt and p € Af(n). We have that M, |u) = M} |u) = 0 if
U(v) > k, otherwise

M, lpy = > 2 > Ny (4.192)

d€Z>0  AeAf(n)

Myl = Y 3T ONNAN (4.193)

d€Z>0  AeA{(n)

The coefficient N;‘l;d was defined in Chapter 3 as the cardinality of the set (3.39).

Proof. We start by evaluating the action of M, on the state |u). For this purpose, we
shall use the identity
MY, = Y b Mg, , (4.194)
~ePZ°

where R,v = Ry R, ---v if m;(y) < m;(v) for all i € N, and otherwise we set Mp_, = 0.
This identity follows after a repeated application of the commutation relation (4.190),
which can be written as M, b; = ZZGZ>O b iMp,,. Let r € Z, and notice that T, [0) = 0
unless 7 = 0, in which case T [0) = |0). This can be deduced from (4.75), together with
the fact that b;|0) = 0. Moreover, let 0 € P*. Taking advantage of (4.184) and the
equality M° = u,M,, it follows that M, |0) = 0 unless o = (}, in which case My |0) = |0).
Suppose that (v) > k. Let v € 77,?0 and notice that ~, by definition, has fewer non-zero
parts than v. We then have that Mg, [0) = 0, since Ryv # 0 if m;(vy) < m;(v) for
all i € N, and Mg , = 0 otherwise. Exploiting the expansion (4.156) for the state |u),
together with (4.194), we conclude that M, |u) = tMVbZ |0) = 0.

We now show the validity of (4.192), so suppose that ¢(v) < k. Let v € 73 , and
notice that Mg, [0) = 0 unless v = v.w” for some w” € S, in which case R,v = (), and
then Mp , |0) = |0). Taking advantage of (4.156) and (4.194), it follows that

M |/J“ Z b,u,—l-l/w” |0
//GSV

Let A € Af(n). Thanks to (4.77), we have that (\|b*,,.~|0) is non-zero if and only if

ptv.aw’
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"

there exists a pair (w”, ) € S* x 79,?0 satisfying the constraint p 4 v.w” = X\.w™”y®. If the

pair (w", §) exists, then it is unique thanks to part (ii) of Proposition 2.1.6, and moreover

(A6 r10) = 2Pluy. With the help of (4.172), we then end up with the equalities
Ux
MMy = Zdu_ SN Y Gy
de€Zxy Ko e §v i e A BepZO
S SRS SID Sl SR A
deZ w' €Y w'" €Sy gep
where the sums are restricted to those 8 € 73,?0 with |5| = d. Let us rewrite the con-

P as p.(w") T+ va” (w”) "t = A.y®, where we used the relation

1

straint p 4+ v.w” = Aw

l// n

y? = @) " and we set a = B.(w")~'. Part (ii) of Proposition 2.1.6 implies
that w”(w”)™! = w,w", for some w, € S, and w” € S¥, and then v.w”(w”)™! = vaw”.
Notice that for different elements w” € S” we end up with different elements w” € S”. Set

w= (w”)"" and w’ = w”. Using (4.172) once again, we have that

)\|M |,u Z Z Z Z 5uw+uw’/\y

deZ> wESH w'eSv epg

Let d € Zsg, and notice that > . > e Zaepzo 8 wtvr Ay, Where the third sum is

restricted to those weights a € 73,?0 with |a| = d, equals the cardinality of the set
{(w,w') € S* x ¥ | pw +vaw' = A.y® for some a € P.° with |a| = d}
which is given by N# (compare with Definition 3.3.3). In conclusion, we have that

MM [y = > 2Nt (4.195)

dEZZO

which is the identity (4.116), and this finally implies the validity of (4.192).

The claim for the operator Mj is a consequence of the identity M) = PM,P in
End(F®™), which can be deduced from Lemmas 4.3.4 and 4.3.8. Alternatively, one can
prove the claim for M; by employing similar steps as the ones described above. For this
purpose, one has to take advantage of the commutation relation M;b; = ZZEZ>0 b;_ Mg,
which follows after a repeated application of the adjoint equation of (4.191).

]

Remark 4.4.11. The coefficients N? for A, pi, v € A (n) correspond to the fusion coef-
ficients of a 2D TQFT, as we will see in Chapter 5. The interest aspect here is that these
coefficients are obtained by taking the matrix elements of the operators (4.183), which

are defined in terms of the conserved charges of a quantum integrable model. Recall that
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the same fusion coefficients were obtained in Chapter 3 by different means, that is via the
expansions (3.61), (3.62) and via the coproducts (3.88), (3.89).

4.4.4 Schur functions

Consider now the operator
S)\ = E:(S)\) s (4196)

which was defined in (4.111). From here to the end of this section, we set @ = H, =0
for r < 0. With this convention, we have for example that the commutation relation
Qb = b5Q;f +b;+1Q;L_1, which was shown in Lemma 4.2.7, holds for all » € Z. Moreover,

applying the map =1 to the Jacobi-Trudi determinants (2.25), it follows that

Sy =det (Hx—ivs) i iop = 96 (@ i) 1cijen, - (4.197)

Suppose that A\/u is a cylindric skew diagram with r boxes. Write A\/u = (r) if A/p is a
horizontal strip, and A\/p = (1) if A\/p is a vertical strip.

Lemma 4.4.12. For A\ € P and j € Z we have the commutation relations

A1
Sy = DS+ Y b Y S, (4.198)
r=1 pept
A u=(r)
A1
b;Sy = SAbj+Z( > Su>bj_r. (4.199)
r=1 pept
A u=(r)

Proof. We proceed in close analogy to the proof of Proposition 11.4 in [46]. We shall only
prove (4.198), since (4.199) follows after employing completely analogous steps. Let us

first rewrite (4.198) in terms of the conjugate partitions, that is

)
Swbi =Sy + Y b > Su. (4.200)
r=1 nepPt

Au=(17)

We will prove (4.200) by induction on the length of A. If £(\) = 0, that is if A = (), this
reduced to the identity b5 = b7, as Sp = 1. If instead £(A) = 1, that is if A = (r) for some
r € N, it follows from (4.197) that S, = @', and then (4.200) reduces to the identity
Fb5 = 0rQ; +05,,Q 1. Solet £(X) > 1, and assume that (4.200) holds for all partitions

T

A with 6(5\) < L(N\). Moreover, write £(A) =1+ 1 for some [ € N. Set A = (Ao, A1, ..., Ar),
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and define the partitions

A0 = (A, N,
A= N1, A+ L N, N

where ¢ = 1,...,l. Expanding the determinant in second equality of (4.197) along the

first column, it follows that

!
S =S (~1)'Q%_ Sy (4:201)
=0
Employing this identity, together with the induction hypothesis and the commutation
relation Q;Fb% = b5Q;F + b5, ,Q;",, we have that

Swbi = > (-1)'Q5_ (b Sy +ZW > S,,)

i=0 ‘MEP+
A fu=(17)

- Z(_Di(b;Q)\ +b*+1Q>\ _im1) S

i=0
l l
Z l Z J+TQA —i T b*+r+1Q>\ —i— 1 Z Su/
=0 r=1

uePt
Al /=17
Let ps be the partition of length s € Z>, whose parts are all equal to 1. Since g()\[i}) =1, it
follows that the only partition x such that A /u = (1') is given by g = Al — p;, and then
N Ju=(1t) O = S(alil_p,y- Moreover, since the only partition satisfying the constraint
M/ = (1) is given by = A, we have that S,y = Dol oy S+ Taking advantage

of the results just described, and rearranging terms, we end up with

Syb; = bSA/+Z ]+TZ (Qxl Z Sw+Qx iy Z Su’)
1=0

pept pePt

@ Nl Ju=(17) N Jp=(171)

(. J
~\~

!
+ b;+l+1 Z(_l)lQ;—z‘qS(AW—pz)’

=0
- S
g

®

Let v = (vy,...,ur) be a partition with I/ < [, set v = (11,... 1) and moreover
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Wl = (vo+1,... v 1+ 1,40, ) for 1 < j < I'. Notice that if \/v = (1) for some
r € Z>g, then for every i € N with 1 <4 <[’ we have that either \; = v; or \; = v; + 1.
We can use this fact to prove that A\/v = (17) and \; = v; if and only if A1 /ull = (17).
Similarly, we have that A\/v = (1") and \; = v; + 1 if and only if A/l = (1771).
See [46, Proposition 11.4] for details. Taking advantage of (4.201), and employing the

results which we just discussed, we have that

D Sw = 2V ) S

pep+ =0 pept
N p=(1"7) A p=(1")
l
- sevfen X s X8,
i=0 pept pept
A/ p=(17) A/ p=(1m71)
Notice that the sum in the index ¢ runs up to [, since for ¢ > I’ we have that Q+ = 0.

It then follows that @ S biyr D onju=ir) Su- Finally, taking advantage of (4.201),
together with the identity Al — p, = (A — le)H, which can be deduced after a straight-

forward computation, we end up with

l

@ - b;+l+1 Z(_1)in\sz'715(>\—pl+1)[il’ - b;+l+15(>\fm+1)’ = Z Sy

i=0 pept
Mu=(11+1)
In conclusion, the combination @ + @ + @ coincides with the RHS of (4.200). This

completes the induction proof. O

Lemma 4.4.13. Let v € P and p € A (n). We have that S, |p) = Si|u) = 0 if
U(v) > k, otherwise

SHTEEED DD DIV (1.202)

d€Z>0  XeAf(n)

Splmy = > 3 oty (4.203)

d€Z>0  XeAf(n)

The coefficient X;\L;jd was introduced in Definition 3.3.17.

Proof. The claim follows after a straightforward but tedious computation, which resembles
the one presented in the proof of Lemma 4.4.10. This computation consists in a repeated
application of (4.198) and the adjoint equation of (4.199) to the states S, |p) and S} |u)
respectively.

We now present an alternative proof of the claim. Applying the maps = and =

to both sides of the expansion s, = > __p+ K,m,, which was introduced in (2.24), we
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end up respectively with the identities S, = > p+ KoM, and S5 = Y o Ko M.
Moreover, we have that that K,, = 0 if {(0) < ¢(v); see for example [52, 1.6]. Taking
advantage of these results, together with Lemma 4.4.10 and Definition 3.3.17, we deduce
that S, |u) = S;|u) = 0 if {(v) > k, and that equations (4.202) and (4.203) hold if
lv) <k.

O

Remark 4.4.14. Applying the dual vector (|, where A € A} (n), on the state (4.202) we
end up with the equality

MSulmy = > 2o, (4.204)

dGZzo

provided that ¢(v) < k. Otherwise we have that (A|S,|u) = 0. This completes the proof
of the identities (4.113) to (4.117).

Remark 4.4.15. The result presented in Lemma 4.4.13 can be used to prove some com-
binatorial identities between the coefficients appearing in (4.160), (4.168), (4.176), (4.192)
and (4.202). As an example, consider the expansion e, = ) . M,,m,, which first
appeared in (2.22). Applying the map =, to both sides of this expansion, we have that
QF = > sep+ MyoM,, and taking advantage of this last relation, together with Lemma
4.4.10, we can then deduce that

Q=3 % (ZNAdMW) A

deZ>g AEA+7H Pk

A comparison with (4.168) yields the following combinatorial identity,

Unjapu(v) = Y Nps'Myo

UEP;

which has been shown already in Proposition 3.3.10 by different means.

4.5 State-charge correspondence

In Section 4.4 we considered the images under the maps =& of the bases of A introduced
in Section 2.2, and we studied their action on the vectors |u) € F®". Notice that in
Lemmas 4.4.2, 4.4.5, 4.4.6 and 4.4.10 we recover the coefficients appearing in the product
expansions (3.40), (3.49), (3.51) and (3.78). These product expansions belong to V(n),
which is the quotient of Ag[z, 27!] defined in Section 3.3. We shall formalise this fact in the

next lemma. Denote by Ag C A the ring of symmetric functions with real coefficients. For
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A\ u € Af(n) and g € AR, define the coefficient gfjd via the following product expansion
in Vk(n),

g(z1, .. x)my (2, ... @y, Z Z g Ya(w, ..., 1) (4.205)

d€Z e Af(n)

Lemma 4.5.1. Let yu € Al (n) and g € Ar. We have the equalities

Zio) ) = S0 S g (4.206)

deZ )\EA+()

== — AV.d

@)l = Do D gt (4.207)
deZ )\EA+()

Proof. Since g € Agr, we can write that g = > _,, g,m, for some coefficients g, € R
satisfying the relation g, = g*. Projecting both sides of this equality onto A, we arrive at
the identity g(x1,..., ) = Zaep,j GoMmo (1, ..., xx). This is because my(zq,...,25) =0
if ¢(o) > k, as shown in Lemma 2.2.5. Taking advantage of the quotient map my,, :
Alz, 27'] = Vi (n), together with Lemma 3.3.5, we end up with the following identity in

Vi(n),

g(zr, .. xp)my(z, ... xp) :sz Z ( Z gUN’\d>m>\ 1y, Th)

d€Z  XeAf(n) “oePt

and a comparison with (4.205) yields the equality gﬁ’d = Zggfr gC,N . Thanks to this
last equality, together with Lemma 4.4.10, we can then employ the relations =1 (g) =

Y ept 9o My and = (g) = > cp+ 9o M to prove the claim.
]

We now show that the conserved charges of the free boson model generate an algebra
which is isomorphic to Vi(n). Compare with [46, Theorem 6.12| and [41, Theorem 7.11].

Theorem 4.5.2. Set Fi(n) = F>" ® Clz,27"], and define for p,v € A (n) the product
) ® |v) = M, |v) . (4.208)

Then (Fi(n),®) is a commutative, associative and unital Clz, z~']-algebra. The unit is

given by 2% |n*), where n* = (n,...,n) € Af(n). So, in particular |\) = 2=*M, |n*).

Proof. Thanks to Lemma 4.4.10, we have that

=2 ) Ny (4.209)

d€Z>() /\e_A+ )
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The fact that (Fi(n),®) is a commutative algebra follows from the equality N = Np.¢,
which was shown in Lemma 3.3.6. Taking advantage of (4.209), together with Property 5
of Lemma 3.3.6, which is the identity N;L\l;(i = 0q10x, it follows that [n*) ® |v) = 2% |v).
This implies that the unit element of (F,(n), ®) is given by 2% |n¥). Finally, associativity

is a consequence of the following chain of equalities,

(M@l ev) = Y = Y Niblo)@ly)

di€Z>0  geAf(n)

= YN Mt N NgENG® | p)

d1€Z50 d2€Z>¢ o,pEAS (n)

= 2.2 ( > X N"leﬁJ’Q) )

d€Z>0  peAf(n) cillltgl;;odaeA;()

S IED M (D VD SRVAR TS 1Y

d€Z>0  peAf(n) Cfil‘f‘éb:dae.AZ(n)
1,

220
_ E E di+dz E o,d1 pTp,d2
- z N;w Non ‘p>
di1€Z>0 d2€Z> o.pEAS (n)

~me( ¥ X o)

d1€Z50 o€Af (n)

= me(welv),

where in the fourth line we used Property 2 of Lemma 3.3.6. m

Theorem 4.5.3. The assignment |\) — my(x1,...,xx) € Vi(n) for all X € A (n) defines
an isomorphism of algebras

(Fr(n), ®) = Vy(n) . (4.210)

Proof. Let ¢ : (Fix(n),®) — Vi(n) be the map defined as ¢(|\)) = my(x1,...,xx) for
all A € Af(n). Taking advantage of Lemma 3.3.5, together with (4.209), one has that
o(lu) ® [v)) = o(|n))o(|v)). This implies that ¢ defines an algebra homomorphism. But
since {|)\)}A€A:(n) and {my(xy,... ,xk)}AeA:(n) are bases of (Fr(n),®) and Vi(n) respec-

tively, it follows that ¢ is an algebra isomorphism, thus proving the claim. O]

4.5.1 Idempotents in the algebra (Fi(n),®)

The goal of this section is to show that the eigenvectors of the operators belonging to
the image of the maps =& coincide with the idempotents of the algebra (Fy(n), ®) intro-
duced in Theorem 4.5.2. This statement is formalised in Proposition 4.5.6 below. This is
analogous to the case of the Verlinde algebra Vi (sl,) in relation to the phase model [46].

+1/n

Assume that z exists, and let x be a primitive n-th root of unity. For j = 1,...,n,
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set (j = 2'/7\J and consider the following Fourier transforms of the creation operators in

the Heisenberg algebra H,,,
1 n
B =—> (G)'b (4.211)
J J l
N4 —

Moreover, for A € A; (n) set (, = (Cy,,---,(,) and define

* * * 1 N
1) = B3, B, - 'BAk 0) = k2 ZJr m?(Cy) o) . (4.212)
g€A; (n)

In the last equality we used the identity m?(Cx) = > ,cs, C}\w(l) C;:(k)> which follows

—1 We will show in

from Lemma 2.2.8, and moreover we employed the relation z = z
Lemma 4.5.5 below that the states (4.212) are simultaneous eigenvectors of all the opera-
tors belonging to the image of the maps Z£. We shall take advantage of the scalar product
(] ), introduced in Section 4.1.4. This is the scalar product induced by the vector space

isomorphism ¢ : F®* — F®" which was defined in (4.44) as

1
|A) = u—Aw :

Recall that (| ), is by definition antilinear in the first factor.

Lemma 4.5.4. The states {]Q)}A@ﬁ form an orthogonal basis of FiZ™ with respect to

the scalar product (| ),. Their norm is given by ||(x|| = (A >1/2 u}\/Z.

Proof. Thanks to Lemma 2.2.5, we can deduce that

A (4.213)

wESk i=1

Taking advantage of this last identity, together with the relation m? = u,m,, we have

that the scalar product between the states |¢) and |(,) is given by

1

(O, = F > me(G)m?(C)
U€A+()
- % T L et
0€A+ Uw w'eSy i=1

Let f: Pr — C, and consider the identity

ZZf(g) = Z Zf(a.w),

o1=1 op=1 €A (n) WEST
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where we set o = (071, ...,0k) € Py. If the function f satisfies the constraint f(o.w) = f(0)
for all w € S7, then the RHS of the identity above is equal to ZaeA;(n) |S?| f (o). Moreover,
for o € A (n) we have the relation |S,| = u,, and then |S?| = |Sk|/|S,| = k!/u,. Notice
that if we set f(o) = > . res, 15, X7 P @~ #u@) | we have that

flow) = Z ﬁxgw(i)()‘w/(i)“w”(i))

w w'" €S i=1

k
— E HXo-i()\w_lw’(i)7luw_1w”(i))

w w'"esSy i=1
k
. o"()‘w’ i) T Hw! (i ) —
= E Hxl @) = f(g) .
w' w'"eSy i=1
In the last line we renamed w™'w’ and w™'w” respectively as w’ and w”. We then have

the following chain of equalities,

<C)\ | C}L>L - # Z Z e Z H X"i(Aw’(i)_#w”(z‘))

w w" €Sy o1=1 or=11i=1

= kikl Z ﬁixo—i(Aw’(i)_ruw”(i))
n K.

w' w"eSy i=1 0;=1

k
! J
R Z H ORI

T w w'eSy i=1

1 k k

T w w'esSy i=1 weSH i=1

In the third line we employed for r € Z the relation Z;;l X" = nd, modn,0, which follows
from the fact that x is a n-th root of unity. In the last equality, we first renamed (w’)~!w”

as w, and then we applied equation (4.172). It follows that

(O Gud, = Wb (4.214)

which shows that the vectors {|(x)} ¢ At () are orthogonal, with norm [1CA]] = u}\/ ®. This
also implies the validity of the following identity,
1 ag
— > me(G)me(Gu) = urbyy - (4.215)

o€Af (n)

Taking advantage of (4.212) and (4.215), together with the equality z~1°/"m7(¢y) =
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2= NmmA(¢,), we end up with

iy = > nk/(g )|§>\>- (4.216)

AEAS (n)

Since this last relation holds for all u € A} (n), and since {|u>}H€A+( ) is a basis of F2m,
we conclude that the states {|(\)} ¢ At (n) form a basis of F2™ as well, thus proving the

claim. =

Lemma 4.5.5. For every g € A, the states {|C,\>}/\€A:(n) are eigenvectors of the operators
—+

—n

(9), with eigenvalues

E5(9) 1) = glQ) e (4.217)
E. (@) = g(G) 16 - (4.218)

Proof. Multiplying both sides of the commutation relation Q;b; = b;Q;" + b}, ,Q;_; by
n~1/2(¢;)7!, and summing over all [ = 1,...,m and r € Zs(, we end up with the equality
Q" (u)B; = (1+u¢;)B;Q" (u). This, together with (4.212), can be used to prove that the

states {|Ca) } e Af (n) 8re cigenvectors of the Q" operator, with eigenvalue

k

QTG =[] +ut) 1) - (4.219)

=1

A comparison of (4.219) with the generating function (2.19) of the elementary symmetric
functions, which for k variables is given by E(u) = H?Zl(l + uz;), implies that Q;" [()) =
e-(C\)[¢\) for all r € Zsg and A € A (n). Thanks to Proposition 4.99 we have that
Q" = Zf(e.), and since {ey} ep+ is a basis of A we deduce the validity of (4.217). Let

s € Z with 0 < s < n, and consider the following chain of equalities,

T . |C>\> = ZﬁlTnfs |C>\> = zilpn S(CA) |<>\>
= 2! Z Cf;s IC\) = ZC}\ IC\) = ps ps (&) 16 -
j=1

In the first line we employed equations (4.82) and (4.217). In the second line we used
the identity (' = z for j = 1,...,n, together with the relation 271
T, = z !N, it follows that T, |(\) = p.((3)[¢). This is because, as we mentioned at

the beginning of Section 4.2, the number operator N = > "

= Z. Moreover, since

—q b7b; satisfies the eigenvalue
equation N [¢\) = k|¢)\). Finally, taking advantage of the relation T_; = 27T, for
i > n, we have that 7", |(\) = p-(C\) |(y) for all r € Z5. This last equality implies the

validity of (4.218), since = (p,) = T-, by definition, and moreover {p,} ep+ is a basis of
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A.
[
The next result implies that the states {|ex)},c A (n) defined via the relation
= 4.220
lex) = ST [ey, (4.220)

are a complete set of orthogonal idempotents of the algebra (Fy(n), ®). Compare with [41,
Prop. 7.15].

Proposition 4.5.6. For every A\, i € Af (n) we have the relation
|6>\> ® |eu> = 6)\;4 |€>\> . (4221)

Moreover, the unit of (Fr(n),®) admits the following decomposition,

Efy = Y e (4.222)

AL (n)
where n* = (n,...,n) € Af(n).
Proof. We have the chain of equalities
1 -
[O) ®@1C) = i > mo() o) @ ¢
UeAz(n)
1 -
= 2 > ma ()Mo 1¢)
o€AL (n)
1 -
= = 2 mCIma(G)1G) = B G -
oE.AZ(n)

In the first line we used the expansion (4.212), whereas in the second line we took ad-
vantage of the product (4.208). In the third line we employed Lemma 4.5.5 for the op-
erator M, = Zt(m,), and then we made use of the relation (4.215). Equation (4.221)
then follows by plugging the relation |(,) = n*/?u, |e,) for v € A (n) into the equality
160) ® |Cu) = 0x,n*/2uy [¢)). Starting from (4.215), and taking advantage of the relation
21/ my(¢,) = 2M/mu,m (¢, which follows from (4.213), we end up with the identity

% > uimA(CU)m“(Q,):(SM. (4.223)

ceAf (n)
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We can then employ (4.223) to obtain the equalities

SHREEE S (% S im) )

A (n) o€AL (n) A (n)
1 1 -
> <n— > ujmnk@m%@)) ) = =)
oeAf (n) AeAS (n)

thus proving the validity of (4.222). In the first line we took advantage of (4.212) and
(4.220), whereas in the second line we used the relation m,x((,) = z¥, which can be
deduced from (4.213). O



Chapter 5
Generalised Verlinde algebras

The Verlinde algebra of an affine Lie algebra g is the fusion algebra of the integrable
highest weight modules of level & [33]. The basis of the Verlinde algebra is indexed by the
elements from the set of integral dominant weights of level k. For the special case of the
sl,-Verlinde algebra, the latter is in bijection with the set A (n) introduced in (3.11) [41].
The sl,-Verlinde algebra is therefore defined as the C-algebra with basis indexed by the

elements from A} (n) with the multiplication

A p = Z /\/;f‘l,y, (5.1)

veAL (n)

where the structure constants N, the so-called fusion coefficients, are given in terms of

Iz
the Verlinde formula

S16S6S, )

Ny =Y “Tka“ . (5.2)
ceAf (n)

The characters of the integrable highest weight modules of level k yield a representation
of the modular group SLy(Z) [33]. The images of the generators of SLy(Z) are known as
the S-matrix (which appears in the Verlinde formula) and the 7-matrix of the Verlinde
algebra. The S-matrix is given by the Kac-Peterson formula [33|, but for the sl,,-Verlinde
algebra it can be alternatively computed via Schur functions (see Section 2.2) evaluated
at roots of unity [46]. Verlinde algebras can be identified with the Grothendieck ring
of modular tensor categories [2|, and therefore they are endowed with the structure of a

Frobenius algebra, that is a 2D TQFT (see Section 1.1).

As we discussed in Chapter 1, we have the isomorphism of rings

Vk(f:[n) = Ak/<8(n) - 1, S(n+1)y -« > 5(n+k—1)> S(n+k) + (—1)k8(1k)> > (53)

154
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where Vy(sl,,) is the sl,-Verlinde algebra, and {sy}rep+ are the Schur functions. If k = 1,
we have that V; (f;[n) is isomorphic to Vi (n), the quotient of A[z, z7!] introduced in Section
3.3, when specialised to z = 1 [44]. We therefore refer to Vi.(n) as a ‘generalised Verlinde
algebra’. We show that Vi (n) is a Frobenius algebra, and that its structure constants
N, 3,;‘1 (see Definition 3.3.3) satisfy a Verlinde-type formula. We describe a representation
of the modular group SLy(Z), and we identify the image of a generator of SLy(Z) as the
transition matrix from the basis of eigenvectors for the free boson model to the particle
basis (see Section 4.5.1). The latter is the matrix which enters into the Verlinde-type
formula mentioned above. Finally, we present an alternative formula for NV, ,i\{/d in terms of
tensor multiplicities for irreducible representations of the generalised symmetric group. We
shall work with the algebra (Fj(n),®) introduced in Theorem 4.5.2, which is isomorphic
to Vi(n) as showed in Theorem 4.5.3.

5.1 The modular group

The modular group is by definition the special linear group SLs(Z), which is the group of
2 X 2 matrices with integer entries and determinant 1 (see e.g. [21, Ch. 8.16]). The group
SLs(Z) is isomorphic to the group generated by two elements s and t, which satisfy the
relations

(st)® = s, st=1. (5.4)

Some authors define the modular group to be the projective special linear group PSLy(Z)
instead, which is the quotient of SLy(Z) over the integers by its centre {1, —1} (see e.g. [17,
Ch. 10]).

Let x be a n-th primitive root of unity, and recall from Section 4.5.1 the notation
Oo= (-5 0,) for A € Af(n), where ¢; = 2"y for j = 1,...,n. Employing equation

(4.216), we can introduce the transition matrix [45, Lemma 4.1]

mA((ﬂ)

N

Sy = (5.5)
from the basis {w,;! ()} et () to the basis {|A)}ycar () of 7", where the vector [(y)
was introduced in (4.212). Notice that both these bases are orthogonal with respect to
the scalar product (| ), introduced in Section 4.1.4. Namely, setting [(,) = uy'[C\) we
have that (u|)), = @J&)L = u) '8y,. We call (5.5) the S-matrix, although at present such
matrix is not related to any known Verlinde algebra. The goal of this section is to prove

that the S-matrix introduced above, together with the 7-matrix defined via the relation

i Y

k _ )
T =[]0, by, = ¢ 5 (D) (56)
j=1
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yields a representation of the modular group. Notice that both these matrices are labelled

in terms of partitions belonging to the set A; (n).

5.1.1 Properties of the S-matrix

Define an involution * : Af(n) — A/ (n) via
A AT = (1mnt B Jgmaa ) (g — 1)) e (V) (5.7)

where we use the notation introduced in (2.1) for partitions. Notice that we have the

alternative expression
A= (1,0 = A —mn (V) - - 0= A2, 10— Ap) (5.8)

Lemma 5.1.1. The S-matrixz introduced in (5.5) satisfies the following properties.

A =lul W
Rlolel Uy

1. S)\H:Z n U—S“)\.
A

M=lp] =—

-1 _ b
EENE RN _9olAl

3. S)\/t =z n S)\*M =z 278)\“* .

Proof. Thanks to Lemma 2.2.5 we have the identity

el k
maG) = =5 37 T (5.9

wESy i=1

which was mentioned in the proof of Proposition 4.5.4. Taking advantage of the equality
21/ my(¢,) = 2M/mu,m, (¢)), which follows from (5.9), we can then immediately deduce

the validity of Property 1. A comparison of equation (4.223), that is

with (5.5) shows that

mt((,) o111t My (C) o]~ L]
nk/2q, B n%u =~ SUM ) <5'1O>

—1 _
S, =

which proves Property 2. Let w € S*" be the permutation defined via the relation \*.w =
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(Aes Ai_q, ..., A]), and consider the following chain of equalities,
Z_M k
_ " =il (i
mA(Cu) - T E HX Hu@
A weSy 1=1
_ AL k
_ Fn E H X(n*)\i)uw(i)
u
A wESy i=1
_ AL k
— Z E H X’\E(i)“w(i)
u
A weSy i=1
N i EEREN
n * A +A
— A bg=lu() — 5~
S [Tt - ).
A weS =1

1

In the first line we used the relation z = 2!, whereas in the third line we employed (5.8),

together with the fact that y® = 1. In the last line we first renamed @ 'w as w, and
then we used (5.9). A similar computation shows that m,(¢,) = Z_Q%m)\(gu*). Thanks
to these equalities, together with (5.5), we can finally deduce the validity of Property 3.

[]

5.1.2 The charge conjugation matrix

The S-matrix of the Verlinde algebra satisfies the identity Sfu = O+, Where A, 11 are labels
for the integrable dominant weights of level k, and \*, u* are the weights corresponding
to the conjugate representations. The matrix C = S? is known as the charge conjugation
matrix (or C-matrix) of the Verlinde algebra. See for example [17] for details. Let us

define a C-matrix via the relation
C)\;l, = 5)\,11,* ) (511)

where A\, € A} (n), and the map * : Af(n) — Al (n) was introduced in (5.7). Since the

map * : A (n) = A (n) is an involution, it follows that
Ch = O - (5.12)

Stated otherwise, C? corresponds to the identity matrix.

Lemma 5.1.2. Set z = 1. The S-matriz, T -matriz and C-matriz introduced respectively
in (5.5), (5.6) and (5.11) satisfy the identities

S?=¢C (5.13)

and

CT =TC. (5.14)
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Proof. Suppose first that £ = 1. Equations (5.5), (5.6) and (5.11) then coincide respec-
tively with the S-matrix, 7-matrix and C-matrix from the sl,-Verlinde algebra at level
=1 (see e.g. [33] for details). The proof of (5.13) and (5.14) for k = 1 can be found in

loc. cit. Assume now that k£ > 1, and notice that we have the identities

k k k
S)“u - Z HSw(Ai)aM ) 7j\/1 = Hﬂi,ﬂi ) C/\,u = Hc)‘i’#i s (515)
i=1 i=1

wesh i=1

where (Sys)1<rs<n, (Trs)1<rs<n and (Cps)1<rs<n are the S-matrix, 7-matrix and C-matrix
for the case k = 1. In the proof of Proposition 4.5.4 we showed the validity of the following
equality,

YD flo)= ) f—:f(cf), (5.16)

o1=1 op=1 O'E.A;:(TL)

where 0 = (01,...,0k) € Pi, and f : P, — C satisfies the constraint f(o.w) = f(o) for
all w € Si. Starting from the expansion SE# = e AF (n) S)oSyy we deduce the following

chain of equalities,
k k k
2 2 _ _ _
SA“ B Z HS/\w(i)uU‘i - Z HCAw(i)vui - Z Hé()\w(i)—ui)modn,ﬂ = C/\u )
weSA 1=1 weSA i=1 weSA 1=1

which proves the validity of the relation §* = C for k > 1. The first equality follows after
a straightforward computation, with the help of (5.15) and (5.16). For the second one
we employed the relation S? = C for the case & = 1. In the third we used the identity
Crs = O(r—s) modn,0, Which follows from (5.11) for k = 1. The relation (5.14) follows instead

from the equalities

k
T ) = Cu Hem ch\mz wi = HHA Coipe = TC)M )
i=1

where in the third one we employed the relation CT = TC for the case k = 1. m

5.1.3 A representation of the modular group

We are now ready to prove the main result of this section.

Proposition 5.1.3 ( [45]). Set z = 1. The S-matriz and T -matriz introduced respectively
in (5.5) and (5.6) define a representation of the modular group SLy(Z). That is, we have

the relations

(ST)* =87, St=1. (5.17)

Proof. Notice that the relation S* = 1 follows immediately from Lemma 5.1.2, since C?
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ARV

Figure 5.1: The cobordisms which represent a generating set of arrows for 2Cob.

coincides with the identity matrix. Suppose that £k = 1. As we pointed out in the proof of
Lemma 5.1.2, equations (5.5), (5.6) and (5.11) coincide respectively with the S-matrix, 7T-
matrix and C-matrix from the sl,-Verlinde algebra at level k = 1 (see e.g. [33] for details).
The proof of the relation (ST)* = 82 for k = 1 can then be found in loc. cit. Assume now
that k£ > 1, and consider the expansion (ST)3, = > i+ m Sap0pSpo05Ssub,, where we
set 0, =[], 8,, for v € A (n). With the he?g of (5.p715E)A;;1C)1 (5{.)1;),pwe enl:i l;p with the

following chain of equalities,

k k k
(ST)?))\N = Z H(ST>§i,uw(i) = Z HC)‘ivuw(i) = Z Hd()\iﬁuw(i))mOd”,O = C)\M :

weSH i=1 weSH i=1 weSH i=1

which shows the validity of the relation (S7)* = &2 for k£ > 1 thanks to equation (5.13).
In the second equality we employed the relations (S7)? = §? = C for the case k = 1.
O

5.2 Frobenius algebras and 2D TQFT

In this section we will show that the algebra (FZ", ®), which was introduced in Theorem
4.5.2, can be endowed with the structure of a Frobenius algebra. We first recall some
known facts about Frobenius algebras, and we refer the reader to [36, Ch.2| for further
details.

Let A be an algebra over a field K, and suppose that A is equipped with a bilinear
form 6 : A® A — K. The bilinear form S is non-denegerate if and only if the relation
B(a,b) = 0 for all a € A implies that b = 0. Moreover, (3 is called invariant if for every

a,b,c € A the following relation is satisfied,

B(a,be) = B(ab,c) . (5.18)

Definition 5.2.1. A Frobenius algebra is a finite dimensional, unital and associative

algebra A over a field K equipped with a non-degenerate and invariant bilinear form.

Equivalently, one can define a Frobenius algebra as a finite dimensional, unital and
associative algebra A over a field K equipped with a linear functional ¢ : A — K whose

kernel contains no non-trivial left ideals. The functional € € A* is called a Frobenius form,
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and we have the identity
B=¢€eopn, (5.19)

where 4 : A® A — A is the multiplication map. Since the bilinear form [ is non-
degenerate, one can show that there exists a unique co-form v : K — A ® A such that the

two compositions

A Ap A A 4
are the identity map Id4 : A — A. The following compositions coincide,

A A Ae AL 4w A,

A A A0 A 4w A,
and define a coproduct 0 : A — A ® A. The latter satisfies the identity
y=2don, (5.20)

where 1 : K — A is the unit map. The coproduct ¢ is co-associative, and the Frobenius
algebra A is therefore endowed with the structure of a co-algebra, where the co-unity map
is given by the Frobenius form e.

It is well known [1| that the category of commutative Frobenius algebras and the
category of 2D TQFT are canonically equivalent. Let us briefly introduce the notion of
2D TQFT. See [36, Ch. 3| for further details.

Definition 5.2.2. A 2D TQFT is a monoidal functor C' : 2Cob — Vectg, from the
category 2Cob of two dimensional cobordisms (2-cobordisms) to the category Vecty of

finite dimensional vector spaces over K.

The objects of 2Cob are given by {0,1,2,...}, where j represents the disjoint union
of j circles. Identifying the 2-cobordisms which are homeomorphic, one can show that the
cobordisms depicted in Figure 5.1 represent a generating set of arrows for 2Cob. That is,
every 2-cobordism can be constructed via concatenation of the 2-cobordisms belonging to
this set.

Suppose that a vector space A is the image of the object 1 under a 2D TQFT C.
Then A carries the structure of a commutative Frobenius algebra. The images of the
2-cobordisms represented in Figure 5.1 under the functor C are (from left to right) the
Frobenius form € : A — K, the multiplication map u : A ® A — A, the identity map
Idy : A — A, the co-multiplication map § : A - A® A, the unit map n: K — A, and the
twist map 0 : A® A - A® A. The twist map ensures that the Frobenius algebra A is
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Figure 5.2: An illustration of two cobordisms which are obtained via concatenation of
cobordisms belonging to the generating set depicted in Figure 5.1.

commutative. Notice that the cobordism appearing on the left of Figure 5.2 is obtained
via concatenation of the first and second cobordisms appearing in Figure 5.1. Its image
under C' is then given by € o y, which coincides with the bilinear form f: A® A — K
thanks to (5.19). Similarly, the cobordism appearing on the right of Figure 5.2 is obtained
via concatenation of the fourth and fifth cobordisms appearing in Figure 5.1. Its image
under C' is then given by § o 7, which coincides with the co-form v : K - A ® A thanks
to (5.20).

Conversely, given a Frobenius algebra A one can construct a unique 2D TQFT, that
is a monoidal functor C' : 2Cob — Vectk. We refer the reader to [36] for details.

5.2.1 The Verlinde formula

We shall now employ the S-matrix introduced in (5.5) to show that the structure constants
of the algebra (F2", ®), that is the coefficients N ;j\l;d defined in Chapter 3 as the cardinality
of the set (3.39), satisfy a Verlinde-type formula. We will then take advantage of this
formula to show some further properties for the coefficients N, jl;d (compare with Lemmas
3.3.4 and 3.3.6), which will be crucial for the proof of Theorem 5.2.6 below. Given A, u, v €
Al (n), define d via the constraint |u| 4 |v| — |A\| = dn, and set

L NY dez
Nj, = : (5.21)
0, otherwise

Proposition 5.2.3. Let \,u,v € Af(n), d € Z, and suppose that the relation |u| + |v| —
|A| = dn holds. The coefficient Nﬁu satisfies the following Verlinde-type formula,

— S O'SVO'S(:I
N, =74 Y~ Sretor (5.22)

k
oA (n) "

o

where n* = (n,...,n) € Af(n).

Proof. We shall make use of the operator M,, which was introduced in (4.182) as the
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image of m,, under the map = defined in (4.99). Consider the equalities

_ IS)
Mlw) = Y M

oAl (n) 7

== Z mV(CO’)S,uU’fL_U>

UE.Az(n) 7

- Y (X mdeses)w

AeAS (n) o€ (n)

= > (zk > %_&) IA) (5.23)

AEAS (n) o€Af (n)

In the first and third line we used the fact that the S-matrix (5.5) is by definition the
transition matrix from the basis of eigenvectors {u, ' [(,)},c Af (n) to the basis {1} e A ()"
In the second line we employed the eigenvalue equation M, |§a> my,(¢,) |¢s), which is a
consequence of Lemma 4.5.5. The identity in the last line follows by taking advantage of
equation (5.5), together with the fact that S,x, = z*n~/2, which can be deduced after a
straightforward computation. Thanks to Lemma 4.4.10 we have that

AIM, |p) = 2Ny,
which is non-zero only if d € Z. A comparison with the matrix elements of (5.23) implies

the validity of the claim.
O

Remark 5.2.4. The structure constants N /fl;d(q) of the deformed Verlinde algebra dis-
cussed in Section 1.3 satisfy a similar Verlinde-Type formula [41], which specialises to
(5.22) when evaluated at ¢ = 1. In other words, we have the equality N, j;,d =N, :‘l;d(l) for
A\ w, v € Af(n). Compare with Remark 3.4.4.

The next lemma is the special case ¢ = 1 of a similar result presented in [41, Cor.
7.13].

Lemma 5.2.5. Let \, u,v € Al (n). The coefficient N[}V satisfy the following properties.

1. Ny, =Ny

“ l/* .
Y
2. N/,LV - u_(;/’“/* .
I
A v
3. N _ NW :

U Uy
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Proof. We shall set z = 1 for convenience. Starting from (5.22), and taking advantage of

Property 3 of Lemma 5.1.1, we end up with

. S0+ Spo= S
PR po* Qvo* O g )\
N,U‘*V* —_— Z T .

O’GAZ_(n)
Since the map * : Af(n) — A} (n) is an involution, it follows that the RHS of this last
identity is equal to V. };\V, and this proves Property 1. With the help of Lemma 5.1.1, one

can show that
U

—1_ Uy
Sy = u_AS“*’\ . (5.24)
Thanks to this last identity, together with the relations (n*)* = n* and u,x = k!, we can

employ (5.22) to deduce the equality
S kD g
ij - u_VS'uV .

Property 2 then follows, since Sﬁu = Cu = 9~ thanks to Lemma 5.1.2. Finally, the
validity of Property 3 follows from the chain of equalities

S,6S0eS; )

A poOvaOg)

Moo = 2L
oeAS (n) e

—1 U
e L Sur 2 S

O'uo_

- 2 Soro

oAl (n)

—1
UA S}\*USI/USUN* 'U,)\ )U“*
SEID P i i
nko u

u
" eat(n) a

where in the second line we employed (5.24). O

5.2.2 An infinite family of Frobenius Algebras

We are now ready to show that the algebra (F", ®) can be endowed with the structure of
a Frobenius algebra, i.e. a 2D TQFT. Notice that, with the help of (5.21), we can express
the product (4.208) of the algebra (F2", ®) as

mel)y= > NiIA - (5.25)

)\E.Az (n)

Theorem 5.2.6 ( [41]). Set z =1, and equip the algebra (FZ",®) with the bilinear form
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B FE" @ FE" — C defined by

B(lw) @) = Np, | (5.26)

k

where n* = (n,...,n) € Af(n). Then (FZ",®,3) is a commutative Frobenius algebra

over C with unit |n*).

Proof. We proceed in close analogy to the proof of [41, Th. 7.11]. Thanks to Property 2
of Lemma 5.2.5 we can express the bilinear form [ as
k!
Bl @ V) = — e - (5.27)
Uy
In view of Theorem 4.5.2, we just need to show that the bilinear form [ is non-degenerate
and invariant. Non-degeneracy is a consequence of the fact that the map * : A (n) —
A (n) is an involution. Let a be an element of the algebra (F2", ®,7), and suppose that
B(|lu) ® a) = 0 for all p € Af(n). It follows that a = 0, because if a = |v) for some
v € A (n) equation (5.27) then implies that 3(|v*) ® |v)) # 0, which is a contradiction.
Taking advantage of (5.25), together with Property 3 of Proposition 5.2.5, we end up with

the following chain of equalities

BlN@m) @) = > NLB(p) @ |v))

peAF (n)
k! * k! *
= = N;ﬂ = — N,?V
= Z BN @) =B(1A) @ (ln) @ |v)))
pEAL (n)
which prove that (8 is invariant. O

Remark 5.2.7. The commutative Frobenius algebra (FZ", ®, 3) coincides with the de-

formed Verlinde algebra discussed in Section 1.3, when evaluated at ¢ = 1.

5.3 The generalised symmetric group

The goal of this section is to derive a formula for the structure constants N lfy of the
Frobenius algebra (F", ®, 3) in terms of tensor multiplicities for irreducible representa-
tions of the generalised symmetric group. Let C,, be the cyclic group of order n, that is the
group generated by an element of order n. Consider the k-fold group product C*, and
denote with y; the generator of the i-th copy of C**. By definition we have the relations
y* = 1 and y;y; = y;v;- Moreover, notice that every element in C** can be expressed as

y* =yt -y * for some a € Py
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Definition 5.3.1. The generalised symmetric group S(n, k) is the wreath product C, 1 Sy,
that is
S(n, k) =C*" xSy . (5.28)

Stated otherwise, the group S(n, k) consists of the set of pairs (y®,w), where y* € C**

and w € S, with multiplication rule

Qi

(¥, wr). (Y2, wa) = (Y™™ wyws) (5.29)

The group S(n, k) admits the following presentation [16]: S(k,n) is isomorphic to the
group generated by the elements {oy,..., 051} U{y1,...,yn} subject to the relations

2 . .
o; =1, 0i0i410; = 01100441 oio; =0j0; forl|i—j|>1, (5.30)

and

=1, Yy =Y, (5.31)

together with
0iYi = Yi+104 , oiy; = yjo; for jFii+1. (5.32)

It is clear that the subgroup of S(n, k) generated by {oy,...,0,_1} is isomorphic to Sy
(see Section 2.1.2), whereas the normal subgroup N of S(n, k) generated by {y1,...,yn}

is isomorphic to Cx¥.

5.3.1 Irreducible representations

Let us briefly describe the irreducible representations of S(n, k) (compare with the discus-
sion presented in [45, Appendix B| and references therein). Define a n-multipartition A

as a sequemnce
A=W ) (5.33)

of partitions. It was shown in [56] that the finite dimensional irreducible representa-
tions of S(n, k) are in bijection with n-multipartitions X satisfying the constraint |A| =
S IAD] = k. We denote the resulting representations by L£(X). Define the type of
a n-multipartition A as the unique partition \ satisfying the relation m;(A) = |\ for
i=1,...,n, and m;(\) = 0 otherwise. It follows that |[A| = k if and only if A € A} (n),
where the latter is the set of partitions introduced in (3.11).

Definition 5.3.2. A standard n-tableau T of shape A is a sequence
T =(TW, 73 . TM) (5.34)

of row strict tableau, where 7@ has shape A?), and furthermore the entries 1,2, ..., BN



CHAPTER 5. GENERALISED VERLINDE ALGEBRAS 166

appear exactly once in T'.

Let A be a n-multipartition of type A € A} (n), that is a n-multipartition which satisfies
the constraint |A| = k. We now recall an explicit construction [59] for the irreducible
representation £(), and for this purpose we employ the presentation of S(n, k) introduced
in (5.30), (5.31) and (5.32). The irreducible representation £(\) is spanned by the set of
all standard n-tableaux T of shape A. Let y be a primitive n-th root of unity, and for
j=1,...,k set p;(T) =i if the entry i belongs to the tableau TG of T. For a € P;, we
have the action

yo. T =y D+tep(D) (5.35)

Define the content of the box (a,b) € TV) in T containing the entry i as ¢;(T) = a — b.

Set
1

= Ci+1(T> - Ci(T>

(5.36)

if the entries 4 and 7 + 1 of T belong to the same tableau 7V), and set ¢; = 0 otherwise.
Denote with T'(; ;1) the standard n-tableau which is obtained from T' by swapping the
entries ¢ and 7 + 1 if the result is another standard n-tableau, otherwise set T'; ;1) = 0.

The action of the generators {01, ...,0,_1} of S(n, k) is given by

5.3.2 Representation theory and fusion coefficients

Let Rep S(n, k) be the representation ring of the finite dimensional modules of the gener-

alised symmetric group, with structure constants

L(p)® L) =LA . (5.38)
A

In Proposition 5.3.5 we shall derive a formula which relates the coefficients N li‘y introduced
in (5.21) to the structure constants cf;u appearing in (5.38), but first we present some
preliminary results. Recall from Section 4.5.1 the notation {, = ((,,...,(y,) for A €
A (n), where (; = 21/"x7 for j = 1,...,n. Moreover, set xo = (X', ..., x%) for a € P.
Lemma 5.3.3 ( [45]). Let A = (AV, ... X)) be a n-multipartition of type A € A (n).
The characters of L(X) restricted to the normal subgroup N =2 C** of S(n, k) generated
by {y1,...,yx} are given by

k
Troen y* = fama(Xa) Ix= H Hhao s (5.39)
=1

where fy is defined in Section 2.1.1 as the number of standard tableaux of shape X.
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Proof. Set X = ((|]AW]),..., (]A®™])). That is, X is the n-partition whose parts are given
by the partitions (|]AU)|) with length 1. Notice that the action (5.35) of 4 on the standard
n-tableaux of shape A does not depend on the shape of each AY), but only on |[AD)|. It
follows that

TI‘[;()\) ya = f)\ TrC(X) ya . (540)

We now show that there exists a bijection between the set of standard n-tableaux of shape
X and the set of permutations in S*. Let T be a standard n-tableau of shape X, and
consider the weight § € Py with parts §; = p;(T) for j = 1,...,k. Since X has type A,
it follows that m;(5) = m;(X) for all ¢ = 1,...,n, and then there exists a unique element
w € S* such that 3 = A.w. This procedure therefore defines a map T ~ w. Conversely,
given w € S*, define the standard n-tableau T of shape X via the relation (A\.w); = p;(T)
for 57 = 1,...,n. This defines a map w — T which is by construction the inverse of
the map T — w defined above. Employing the bijection just described it follows that
Trex ¥ = Dwes yerAwhitterA e — 4y (y,), where the last equality follows from
Lemma 2.2.5. This implies the validity of the claim thanks to (5.40).

O

Lemma 5.3.4. Let f,g € A. The identity f(z1,...,x5) = g(x1,...,2x) holds in Vi(n) if
and only if the relation f((,) = g({,) is valid for all o € Af(n).

Proof. We shall employ completely analogous steps as the ones described in [41, Lemma
7.4]. First of all, notice that Ay = C[py,...,px]. In other words, the ring of symmetric
functions Ay, in k variables is freely generated by the power sums {py, ..., pr} [52]. Set

Pr — ZPr—n, T:n+17'--7n+k’—l
Pr = Pn — 2k, r=mn ) (5'41>

Drs otherwise

and without any loss of generality suppose that z = 1. Denote by

Vk’,n = {(ﬂ-lv SR ,7Tk) € Ck : ﬁnlp:w == ﬁn-‘rk’—l‘p:ﬂ. = O} (542)

the solutions of the equations (3.36) for z = 1 in the affine space C*, where it is understood
that p, € Ay, and moreover p, ‘p:ﬂ is obtained by replacing p, — 7, in the expansion (5.41).
The two set of equations (3.36) and (3.37) are equivalent, as proved in Lemma 3.3.1. The

claim therefore follows from the equality
Z(Ven) =L » (5.43)

where Z(Vy,,) is the vanishing ideal of the affine variety (5.42), and Zj,, is the two-sided
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ideal generated by the set of equations (3.36), which was introduced in Section 3.3. We
now prove that 7y, is a radical ideal. Equation (5.43) then follows from Hilbert’s Null-
stellensatz.

The elements {p, } ez, are algebraically independent in A [52], and so are the elements
{]57‘}1”62207 since p,4, and p, have different degree. We deduce that the set {p}rep+,
where Py = P, D», - - -, is linearly independent in A. Let I, C A be the ideal generated
by {Pn,Pn+t1s-- - Pnik—1}, and notice that projecting I, onto Ay we obtain the ideal
Zkn C Ag. Suppose that f = Z/\QH cxpx € A is not in Iy ,. This means that there
must exist at least one partition p such that p; & {n,n+1,...,n+k — 1} for all j € N.
Let m € N, and notice that the expansion of f™ contains p,», where u" is the partition
containing each part p; > 0 exactly m times. It follows that f™ ¢ Z; , for all m € N,
which implies that I, is radical. Projecting onto A; we conclude that Zj , is radical as

well, thus proving the validity of the claim. O]

Proposition 5.3.5 ( [45]). Let A, u,v € A} (n). Moreover, suppose that p and v are two
n-multipartitions of type p and v respectively. We have the identity

A x M
NW = c

)
g

(5.44)

where the sum runs over all n-multipartitions X of type .

Proof. Notice that we can rewrite the product expansion (3.40), which holds in Vi(n), as

mu(z1,. .., x)my (T, ..., o5) = Z szﬁymp(xl, Ce Tg) (5.45)
peAL (n)

The integer d appearing on the RHS is defined via the relation |u| + |v| — |p| = dn. From
(5.38) it follows that Trzmerw) ¥y’ = p Chw Tr(p) y*, and taking advantage of Lemma
5.3.3 we end up with with the relation

N o
m#(XU)mV (XU) ; Cuu fp,fu

m,y(Xo)

which is valid for all ¢ € A (n). The partition p € A} (n) on the RHS of this relation
corresponds to the type of p. Setting z = 1, in which case x, = ¢, for all o € A (n), we

can employ Lemma 5.3.4 to deduce the following equalities in Vy(n),

my(z1,. .., x)my (21, ..., T8) = Zc”
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where the second sum in the second line runs over all n-multipartitions p of type p. Using
the fact that {m,(z1,... >33k)}peA{(n) is a basis of Vi(n), which was proved in Lemma

3.3.2, the claim follows after a comparison with (5.45). [



Chapter 6
Conclusions and open problems

We conclude this thesis with a summary of some open problems and potential avenues of

research.

Representation theory of the general linear group GL(C)
As pointed out in Remark 3.3.19, the cylindric symmetric functions e, q/, and
hyja/u are Schur positive. It would be interesting to present an explicit construc-
tion of the GL,(C)-representations whose characters are given by ey;q/, (21, ..., z;)
and hy/a/u(21, ..., ) respectively. Perhaps a breakthrough could be achieved if
we had a combinatorial interpretation for the coefficient x; (see Definition 3.3.17)
which resembles the one for 05/4/,(v) and v¥y/4/,(v) (see Definition 3.3.7). Such a

combinatorial interpretation is still missing.

The Q' and )~ vertex models for arbitrary ¢
The symmetric function ey/q/,, which was defined from a purely combinatorially
approach by employing the level-n action of the affine symmetric group, can be
identified with the partition function of the Q" vertex model for ¢ = 1. Similarly,
the symmetric function hy/q/, plays a central role in the computation of the partition
function of the )~ vertex model for ¢ = 1. See Theorem 4.1.18. The next step
would be to construct, from a purely combinatorially approach, a g-deformation of
ex/a/p that coincides with the cylindric g-Whittaker function Py, ;,(¢) discussed in
Section 1.2. The latter can be identified with the partition function of the Q" vertex
model for arbitrary ¢ [41]. One could then construct a g-deformation of hy/q/, in a
similar way, and see whether such g-deformation of h) 4/, provides a combinatorial

interpretation for the partition function of the )~ vertex model for arbitrary q.

Modular tensor categories
The Verlinde formula and the existence of the modular group representation (see
Chapter 5) are a ‘fingerprint’ of a richer structure: a modular tensor category (MTC).

The S-matrix of a MTC is symmetric, and the coefficients arising from the Verlinde

170
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formula are non-negative integers, as they coincide with the structure constants of
the Grothendieck ring of the MTC (see e.g. [10]). Notice that the S-matrix defined

in (5.5) is not symmetric. On the other hand, let us introduce the transition matrix

1/2
s, ) my(G)
z U;l/2 k2

(6.1)

from the basis {u;1/2 |CM>}#€A:(7L) to the basis {ui/2 ])x}}/\eA:(n) of F2". This S-
matrix is symmetric thanks to Lemma (2.2.5), and together with the 7-matrix de-
fined in (5.6) we still have a representation of the modular group. But if we employ
the Verlinde formula with this S-matrix we end up with coefficients that are in gen-
eral not integral. It would be interesting to investigate in more depth whether there
exists a family of MTCs associated to the free boson model. Then one could ask

himself how this discussion extends to the g-boson model for arbitrary gq.
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